1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/Loads.h" 27 #include "llvm/Analysis/MemoryLocation.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Analysis/VectorUtils.h" 31 #include "llvm/CodeGen/Analysis.h" 32 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h" 33 #include "llvm/CodeGen/CodeGenCommonISel.h" 34 #include "llvm/CodeGen/FunctionLoweringInfo.h" 35 #include "llvm/CodeGen/GCMetadata.h" 36 #include "llvm/CodeGen/ISDOpcodes.h" 37 #include "llvm/CodeGen/MachineBasicBlock.h" 38 #include "llvm/CodeGen/MachineFrameInfo.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineInstrBuilder.h" 41 #include "llvm/CodeGen/MachineInstrBundleIterator.h" 42 #include "llvm/CodeGen/MachineMemOperand.h" 43 #include "llvm/CodeGen/MachineModuleInfo.h" 44 #include "llvm/CodeGen/MachineOperand.h" 45 #include "llvm/CodeGen/MachineRegisterInfo.h" 46 #include "llvm/CodeGen/RuntimeLibcalls.h" 47 #include "llvm/CodeGen/SelectionDAG.h" 48 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 49 #include "llvm/CodeGen/StackMaps.h" 50 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 51 #include "llvm/CodeGen/TargetFrameLowering.h" 52 #include "llvm/CodeGen/TargetInstrInfo.h" 53 #include "llvm/CodeGen/TargetOpcodes.h" 54 #include "llvm/CodeGen/TargetRegisterInfo.h" 55 #include "llvm/CodeGen/TargetSubtargetInfo.h" 56 #include "llvm/CodeGen/WinEHFuncInfo.h" 57 #include "llvm/IR/Argument.h" 58 #include "llvm/IR/Attributes.h" 59 #include "llvm/IR/BasicBlock.h" 60 #include "llvm/IR/CFG.h" 61 #include "llvm/IR/CallingConv.h" 62 #include "llvm/IR/Constant.h" 63 #include "llvm/IR/ConstantRange.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/IR/DataLayout.h" 66 #include "llvm/IR/DebugInfo.h" 67 #include "llvm/IR/DebugInfoMetadata.h" 68 #include "llvm/IR/DerivedTypes.h" 69 #include "llvm/IR/DiagnosticInfo.h" 70 #include "llvm/IR/EHPersonalities.h" 71 #include "llvm/IR/Function.h" 72 #include "llvm/IR/GetElementPtrTypeIterator.h" 73 #include "llvm/IR/InlineAsm.h" 74 #include "llvm/IR/InstrTypes.h" 75 #include "llvm/IR/Instructions.h" 76 #include "llvm/IR/IntrinsicInst.h" 77 #include "llvm/IR/Intrinsics.h" 78 #include "llvm/IR/IntrinsicsAArch64.h" 79 #include "llvm/IR/IntrinsicsWebAssembly.h" 80 #include "llvm/IR/LLVMContext.h" 81 #include "llvm/IR/Metadata.h" 82 #include "llvm/IR/Module.h" 83 #include "llvm/IR/Operator.h" 84 #include "llvm/IR/PatternMatch.h" 85 #include "llvm/IR/Statepoint.h" 86 #include "llvm/IR/Type.h" 87 #include "llvm/IR/User.h" 88 #include "llvm/IR/Value.h" 89 #include "llvm/MC/MCContext.h" 90 #include "llvm/Support/AtomicOrdering.h" 91 #include "llvm/Support/Casting.h" 92 #include "llvm/Support/CommandLine.h" 93 #include "llvm/Support/Compiler.h" 94 #include "llvm/Support/Debug.h" 95 #include "llvm/Support/MathExtras.h" 96 #include "llvm/Support/raw_ostream.h" 97 #include "llvm/Target/TargetIntrinsicInfo.h" 98 #include "llvm/Target/TargetMachine.h" 99 #include "llvm/Target/TargetOptions.h" 100 #include "llvm/TargetParser/Triple.h" 101 #include "llvm/Transforms/Utils/Local.h" 102 #include <cstddef> 103 #include <iterator> 104 #include <limits> 105 #include <optional> 106 #include <tuple> 107 108 using namespace llvm; 109 using namespace PatternMatch; 110 using namespace SwitchCG; 111 112 #define DEBUG_TYPE "isel" 113 114 /// LimitFloatPrecision - Generate low-precision inline sequences for 115 /// some float libcalls (6, 8 or 12 bits). 116 static unsigned LimitFloatPrecision; 117 118 static cl::opt<bool> 119 InsertAssertAlign("insert-assert-align", cl::init(true), 120 cl::desc("Insert the experimental `assertalign` node."), 121 cl::ReallyHidden); 122 123 static cl::opt<unsigned, true> 124 LimitFPPrecision("limit-float-precision", 125 cl::desc("Generate low-precision inline sequences " 126 "for some float libcalls"), 127 cl::location(LimitFloatPrecision), cl::Hidden, 128 cl::init(0)); 129 130 static cl::opt<unsigned> SwitchPeelThreshold( 131 "switch-peel-threshold", cl::Hidden, cl::init(66), 132 cl::desc("Set the case probability threshold for peeling the case from a " 133 "switch statement. A value greater than 100 will void this " 134 "optimization")); 135 136 // Limit the width of DAG chains. This is important in general to prevent 137 // DAG-based analysis from blowing up. For example, alias analysis and 138 // load clustering may not complete in reasonable time. It is difficult to 139 // recognize and avoid this situation within each individual analysis, and 140 // future analyses are likely to have the same behavior. Limiting DAG width is 141 // the safe approach and will be especially important with global DAGs. 142 // 143 // MaxParallelChains default is arbitrarily high to avoid affecting 144 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 145 // sequence over this should have been converted to llvm.memcpy by the 146 // frontend. It is easy to induce this behavior with .ll code such as: 147 // %buffer = alloca [4096 x i8] 148 // %data = load [4096 x i8]* %argPtr 149 // store [4096 x i8] %data, [4096 x i8]* %buffer 150 static const unsigned MaxParallelChains = 64; 151 152 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 153 const SDValue *Parts, unsigned NumParts, 154 MVT PartVT, EVT ValueVT, const Value *V, 155 std::optional<CallingConv::ID> CC); 156 157 /// getCopyFromParts - Create a value that contains the specified legal parts 158 /// combined into the value they represent. If the parts combine to a type 159 /// larger than ValueVT then AssertOp can be used to specify whether the extra 160 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 161 /// (ISD::AssertSext). 162 static SDValue 163 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, 164 unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V, 165 std::optional<CallingConv::ID> CC = std::nullopt, 166 std::optional<ISD::NodeType> AssertOp = std::nullopt) { 167 // Let the target assemble the parts if it wants to 168 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 169 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 170 PartVT, ValueVT, CC)) 171 return Val; 172 173 if (ValueVT.isVector()) 174 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 175 CC); 176 177 assert(NumParts > 0 && "No parts to assemble!"); 178 SDValue Val = Parts[0]; 179 180 if (NumParts > 1) { 181 // Assemble the value from multiple parts. 182 if (ValueVT.isInteger()) { 183 unsigned PartBits = PartVT.getSizeInBits(); 184 unsigned ValueBits = ValueVT.getSizeInBits(); 185 186 // Assemble the power of 2 part. 187 unsigned RoundParts = llvm::bit_floor(NumParts); 188 unsigned RoundBits = PartBits * RoundParts; 189 EVT RoundVT = RoundBits == ValueBits ? 190 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 191 SDValue Lo, Hi; 192 193 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 194 195 if (RoundParts > 2) { 196 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 197 PartVT, HalfVT, V); 198 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 199 RoundParts / 2, PartVT, HalfVT, V); 200 } else { 201 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 202 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 203 } 204 205 if (DAG.getDataLayout().isBigEndian()) 206 std::swap(Lo, Hi); 207 208 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 209 210 if (RoundParts < NumParts) { 211 // Assemble the trailing non-power-of-2 part. 212 unsigned OddParts = NumParts - RoundParts; 213 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 214 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 215 OddVT, V, CC); 216 217 // Combine the round and odd parts. 218 Lo = Val; 219 if (DAG.getDataLayout().isBigEndian()) 220 std::swap(Lo, Hi); 221 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 222 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 223 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 224 DAG.getConstant(Lo.getValueSizeInBits(), DL, 225 TLI.getShiftAmountTy( 226 TotalVT, DAG.getDataLayout()))); 227 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 228 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 229 } 230 } else if (PartVT.isFloatingPoint()) { 231 // FP split into multiple FP parts (for ppcf128) 232 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 233 "Unexpected split"); 234 SDValue Lo, Hi; 235 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 236 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 237 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 238 std::swap(Lo, Hi); 239 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 240 } else { 241 // FP split into integer parts (soft fp) 242 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 243 !PartVT.isVector() && "Unexpected split"); 244 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 245 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 246 } 247 } 248 249 // There is now one part, held in Val. Correct it to match ValueVT. 250 // PartEVT is the type of the register class that holds the value. 251 // ValueVT is the type of the inline asm operation. 252 EVT PartEVT = Val.getValueType(); 253 254 if (PartEVT == ValueVT) 255 return Val; 256 257 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 258 ValueVT.bitsLT(PartEVT)) { 259 // For an FP value in an integer part, we need to truncate to the right 260 // width first. 261 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 262 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 263 } 264 265 // Handle types that have the same size. 266 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 267 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 268 269 // Handle types with different sizes. 270 if (PartEVT.isInteger() && ValueVT.isInteger()) { 271 if (ValueVT.bitsLT(PartEVT)) { 272 // For a truncate, see if we have any information to 273 // indicate whether the truncated bits will always be 274 // zero or sign-extension. 275 if (AssertOp) 276 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 277 DAG.getValueType(ValueVT)); 278 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 279 } 280 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 281 } 282 283 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 284 // FP_ROUND's are always exact here. 285 if (ValueVT.bitsLT(Val.getValueType())) 286 return DAG.getNode( 287 ISD::FP_ROUND, DL, ValueVT, Val, 288 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 289 290 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 291 } 292 293 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 294 // then truncating. 295 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 296 ValueVT.bitsLT(PartEVT)) { 297 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 298 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 299 } 300 301 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 302 } 303 304 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 305 const Twine &ErrMsg) { 306 const Instruction *I = dyn_cast_or_null<Instruction>(V); 307 if (!V) 308 return Ctx.emitError(ErrMsg); 309 310 const char *AsmError = ", possible invalid constraint for vector type"; 311 if (const CallInst *CI = dyn_cast<CallInst>(I)) 312 if (CI->isInlineAsm()) 313 return Ctx.emitError(I, ErrMsg + AsmError); 314 315 return Ctx.emitError(I, ErrMsg); 316 } 317 318 /// getCopyFromPartsVector - Create a value that contains the specified legal 319 /// parts combined into the value they represent. If the parts combine to a 320 /// type larger than ValueVT then AssertOp can be used to specify whether the 321 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 322 /// ValueVT (ISD::AssertSext). 323 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 324 const SDValue *Parts, unsigned NumParts, 325 MVT PartVT, EVT ValueVT, const Value *V, 326 std::optional<CallingConv::ID> CallConv) { 327 assert(ValueVT.isVector() && "Not a vector value"); 328 assert(NumParts > 0 && "No parts to assemble!"); 329 const bool IsABIRegCopy = CallConv.has_value(); 330 331 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 332 SDValue Val = Parts[0]; 333 334 // Handle a multi-element vector. 335 if (NumParts > 1) { 336 EVT IntermediateVT; 337 MVT RegisterVT; 338 unsigned NumIntermediates; 339 unsigned NumRegs; 340 341 if (IsABIRegCopy) { 342 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 343 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, 344 NumIntermediates, RegisterVT); 345 } else { 346 NumRegs = 347 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 348 NumIntermediates, RegisterVT); 349 } 350 351 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 352 NumParts = NumRegs; // Silence a compiler warning. 353 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 354 assert(RegisterVT.getSizeInBits() == 355 Parts[0].getSimpleValueType().getSizeInBits() && 356 "Part type sizes don't match!"); 357 358 // Assemble the parts into intermediate operands. 359 SmallVector<SDValue, 8> Ops(NumIntermediates); 360 if (NumIntermediates == NumParts) { 361 // If the register was not expanded, truncate or copy the value, 362 // as appropriate. 363 for (unsigned i = 0; i != NumParts; ++i) 364 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 365 PartVT, IntermediateVT, V, CallConv); 366 } else if (NumParts > 0) { 367 // If the intermediate type was expanded, build the intermediate 368 // operands from the parts. 369 assert(NumParts % NumIntermediates == 0 && 370 "Must expand into a divisible number of parts!"); 371 unsigned Factor = NumParts / NumIntermediates; 372 for (unsigned i = 0; i != NumIntermediates; ++i) 373 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 374 PartVT, IntermediateVT, V, CallConv); 375 } 376 377 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 378 // intermediate operands. 379 EVT BuiltVectorTy = 380 IntermediateVT.isVector() 381 ? EVT::getVectorVT( 382 *DAG.getContext(), IntermediateVT.getScalarType(), 383 IntermediateVT.getVectorElementCount() * NumParts) 384 : EVT::getVectorVT(*DAG.getContext(), 385 IntermediateVT.getScalarType(), 386 NumIntermediates); 387 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 388 : ISD::BUILD_VECTOR, 389 DL, BuiltVectorTy, Ops); 390 } 391 392 // There is now one part, held in Val. Correct it to match ValueVT. 393 EVT PartEVT = Val.getValueType(); 394 395 if (PartEVT == ValueVT) 396 return Val; 397 398 if (PartEVT.isVector()) { 399 // Vector/Vector bitcast. 400 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 401 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 402 403 // If the parts vector has more elements than the value vector, then we 404 // have a vector widening case (e.g. <2 x float> -> <4 x float>). 405 // Extract the elements we want. 406 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) { 407 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 408 ValueVT.getVectorElementCount().getKnownMinValue()) && 409 (PartEVT.getVectorElementCount().isScalable() == 410 ValueVT.getVectorElementCount().isScalable()) && 411 "Cannot narrow, it would be a lossy transformation"); 412 PartEVT = 413 EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(), 414 ValueVT.getVectorElementCount()); 415 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val, 416 DAG.getVectorIdxConstant(0, DL)); 417 if (PartEVT == ValueVT) 418 return Val; 419 if (PartEVT.isInteger() && ValueVT.isFloatingPoint()) 420 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 421 422 // Vector/Vector bitcast (e.g. <2 x bfloat> -> <2 x half>). 423 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 424 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 425 } 426 427 // Promoted vector extract 428 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 429 } 430 431 // Trivial bitcast if the types are the same size and the destination 432 // vector type is legal. 433 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 434 TLI.isTypeLegal(ValueVT)) 435 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 436 437 if (ValueVT.getVectorNumElements() != 1) { 438 // Certain ABIs require that vectors are passed as integers. For vectors 439 // are the same size, this is an obvious bitcast. 440 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 441 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 442 } else if (ValueVT.bitsLT(PartEVT)) { 443 const uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 444 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 445 // Drop the extra bits. 446 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 447 return DAG.getBitcast(ValueVT, Val); 448 } 449 450 diagnosePossiblyInvalidConstraint( 451 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 452 return DAG.getUNDEF(ValueVT); 453 } 454 455 // Handle cases such as i8 -> <1 x i1> 456 EVT ValueSVT = ValueVT.getVectorElementType(); 457 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 458 unsigned ValueSize = ValueSVT.getSizeInBits(); 459 if (ValueSize == PartEVT.getSizeInBits()) { 460 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 461 } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) { 462 // It's possible a scalar floating point type gets softened to integer and 463 // then promoted to a larger integer. If PartEVT is the larger integer 464 // we need to truncate it and then bitcast to the FP type. 465 assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types"); 466 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 467 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 468 Val = DAG.getBitcast(ValueSVT, Val); 469 } else { 470 Val = ValueVT.isFloatingPoint() 471 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 472 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 473 } 474 } 475 476 return DAG.getBuildVector(ValueVT, DL, Val); 477 } 478 479 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 480 SDValue Val, SDValue *Parts, unsigned NumParts, 481 MVT PartVT, const Value *V, 482 std::optional<CallingConv::ID> CallConv); 483 484 /// getCopyToParts - Create a series of nodes that contain the specified value 485 /// split into legal parts. If the parts contain more bits than Val, then, for 486 /// integers, ExtendKind can be used to specify how to generate the extra bits. 487 static void 488 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 489 unsigned NumParts, MVT PartVT, const Value *V, 490 std::optional<CallingConv::ID> CallConv = std::nullopt, 491 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 492 // Let the target split the parts if it wants to 493 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 494 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 495 CallConv)) 496 return; 497 EVT ValueVT = Val.getValueType(); 498 499 // Handle the vector case separately. 500 if (ValueVT.isVector()) 501 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 502 CallConv); 503 504 unsigned OrigNumParts = NumParts; 505 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 506 "Copying to an illegal type!"); 507 508 if (NumParts == 0) 509 return; 510 511 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 512 EVT PartEVT = PartVT; 513 if (PartEVT == ValueVT) { 514 assert(NumParts == 1 && "No-op copy with multiple parts!"); 515 Parts[0] = Val; 516 return; 517 } 518 519 unsigned PartBits = PartVT.getSizeInBits(); 520 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 521 // If the parts cover more bits than the value has, promote the value. 522 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 523 assert(NumParts == 1 && "Do not know what to promote to!"); 524 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 525 } else { 526 if (ValueVT.isFloatingPoint()) { 527 // FP values need to be bitcast, then extended if they are being put 528 // into a larger container. 529 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 530 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 531 } 532 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 533 ValueVT.isInteger() && 534 "Unknown mismatch!"); 535 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 536 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 537 if (PartVT == MVT::x86mmx) 538 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 539 } 540 } else if (PartBits == ValueVT.getSizeInBits()) { 541 // Different types of the same size. 542 assert(NumParts == 1 && PartEVT != ValueVT); 543 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 544 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 545 // If the parts cover less bits than value has, truncate the value. 546 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 547 ValueVT.isInteger() && 548 "Unknown mismatch!"); 549 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 550 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 551 if (PartVT == MVT::x86mmx) 552 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 553 } 554 555 // The value may have changed - recompute ValueVT. 556 ValueVT = Val.getValueType(); 557 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 558 "Failed to tile the value with PartVT!"); 559 560 if (NumParts == 1) { 561 if (PartEVT != ValueVT) { 562 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 563 "scalar-to-vector conversion failed"); 564 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 565 } 566 567 Parts[0] = Val; 568 return; 569 } 570 571 // Expand the value into multiple parts. 572 if (NumParts & (NumParts - 1)) { 573 // The number of parts is not a power of 2. Split off and copy the tail. 574 assert(PartVT.isInteger() && ValueVT.isInteger() && 575 "Do not know what to expand to!"); 576 unsigned RoundParts = llvm::bit_floor(NumParts); 577 unsigned RoundBits = RoundParts * PartBits; 578 unsigned OddParts = NumParts - RoundParts; 579 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 580 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL)); 581 582 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 583 CallConv); 584 585 if (DAG.getDataLayout().isBigEndian()) 586 // The odd parts were reversed by getCopyToParts - unreverse them. 587 std::reverse(Parts + RoundParts, Parts + NumParts); 588 589 NumParts = RoundParts; 590 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 591 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 592 } 593 594 // The number of parts is a power of 2. Repeatedly bisect the value using 595 // EXTRACT_ELEMENT. 596 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 597 EVT::getIntegerVT(*DAG.getContext(), 598 ValueVT.getSizeInBits()), 599 Val); 600 601 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 602 for (unsigned i = 0; i < NumParts; i += StepSize) { 603 unsigned ThisBits = StepSize * PartBits / 2; 604 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 605 SDValue &Part0 = Parts[i]; 606 SDValue &Part1 = Parts[i+StepSize/2]; 607 608 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 609 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 610 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 611 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 612 613 if (ThisBits == PartBits && ThisVT != PartVT) { 614 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 615 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 616 } 617 } 618 } 619 620 if (DAG.getDataLayout().isBigEndian()) 621 std::reverse(Parts, Parts + OrigNumParts); 622 } 623 624 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, 625 const SDLoc &DL, EVT PartVT) { 626 if (!PartVT.isVector()) 627 return SDValue(); 628 629 EVT ValueVT = Val.getValueType(); 630 EVT PartEVT = PartVT.getVectorElementType(); 631 EVT ValueEVT = ValueVT.getVectorElementType(); 632 ElementCount PartNumElts = PartVT.getVectorElementCount(); 633 ElementCount ValueNumElts = ValueVT.getVectorElementCount(); 634 635 // We only support widening vectors with equivalent element types and 636 // fixed/scalable properties. If a target needs to widen a fixed-length type 637 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below. 638 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) || 639 PartNumElts.isScalable() != ValueNumElts.isScalable()) 640 return SDValue(); 641 642 // Have a try for bf16 because some targets share its ABI with fp16. 643 if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) { 644 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 645 "Cannot widen to illegal type"); 646 Val = DAG.getNode(ISD::BITCAST, DL, 647 ValueVT.changeVectorElementType(MVT::f16), Val); 648 } else if (PartEVT != ValueEVT) { 649 return SDValue(); 650 } 651 652 // Widening a scalable vector to another scalable vector is done by inserting 653 // the vector into a larger undef one. 654 if (PartNumElts.isScalable()) 655 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 656 Val, DAG.getVectorIdxConstant(0, DL)); 657 658 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 659 // undef elements. 660 SmallVector<SDValue, 16> Ops; 661 DAG.ExtractVectorElements(Val, Ops); 662 SDValue EltUndef = DAG.getUNDEF(PartEVT); 663 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef); 664 665 // FIXME: Use CONCAT for 2x -> 4x. 666 return DAG.getBuildVector(PartVT, DL, Ops); 667 } 668 669 /// getCopyToPartsVector - Create a series of nodes that contain the specified 670 /// value split into legal parts. 671 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 672 SDValue Val, SDValue *Parts, unsigned NumParts, 673 MVT PartVT, const Value *V, 674 std::optional<CallingConv::ID> CallConv) { 675 EVT ValueVT = Val.getValueType(); 676 assert(ValueVT.isVector() && "Not a vector"); 677 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 678 const bool IsABIRegCopy = CallConv.has_value(); 679 680 if (NumParts == 1) { 681 EVT PartEVT = PartVT; 682 if (PartEVT == ValueVT) { 683 // Nothing to do. 684 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 685 // Bitconvert vector->vector case. 686 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 687 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 688 Val = Widened; 689 } else if (PartVT.isVector() && 690 PartEVT.getVectorElementType().bitsGE( 691 ValueVT.getVectorElementType()) && 692 PartEVT.getVectorElementCount() == 693 ValueVT.getVectorElementCount()) { 694 695 // Promoted vector extract 696 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 697 } else if (PartEVT.isVector() && 698 PartEVT.getVectorElementType() != 699 ValueVT.getVectorElementType() && 700 TLI.getTypeAction(*DAG.getContext(), ValueVT) == 701 TargetLowering::TypeWidenVector) { 702 // Combination of widening and promotion. 703 EVT WidenVT = 704 EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(), 705 PartVT.getVectorElementCount()); 706 SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT); 707 Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT); 708 } else { 709 // Don't extract an integer from a float vector. This can happen if the 710 // FP type gets softened to integer and then promoted. The promotion 711 // prevents it from being picked up by the earlier bitcast case. 712 if (ValueVT.getVectorElementCount().isScalar() && 713 (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) { 714 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 715 DAG.getVectorIdxConstant(0, DL)); 716 } else { 717 uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 718 assert(PartVT.getFixedSizeInBits() > ValueSize && 719 "lossy conversion of vector to scalar type"); 720 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 721 Val = DAG.getBitcast(IntermediateType, Val); 722 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 723 } 724 } 725 726 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 727 Parts[0] = Val; 728 return; 729 } 730 731 // Handle a multi-element vector. 732 EVT IntermediateVT; 733 MVT RegisterVT; 734 unsigned NumIntermediates; 735 unsigned NumRegs; 736 if (IsABIRegCopy) { 737 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 738 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates, 739 RegisterVT); 740 } else { 741 NumRegs = 742 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 743 NumIntermediates, RegisterVT); 744 } 745 746 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 747 NumParts = NumRegs; // Silence a compiler warning. 748 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 749 750 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 751 "Mixing scalable and fixed vectors when copying in parts"); 752 753 std::optional<ElementCount> DestEltCnt; 754 755 if (IntermediateVT.isVector()) 756 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 757 else 758 DestEltCnt = ElementCount::getFixed(NumIntermediates); 759 760 EVT BuiltVectorTy = EVT::getVectorVT( 761 *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt); 762 763 if (ValueVT == BuiltVectorTy) { 764 // Nothing to do. 765 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) { 766 // Bitconvert vector->vector case. 767 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 768 } else { 769 if (BuiltVectorTy.getVectorElementType().bitsGT( 770 ValueVT.getVectorElementType())) { 771 // Integer promotion. 772 ValueVT = EVT::getVectorVT(*DAG.getContext(), 773 BuiltVectorTy.getVectorElementType(), 774 ValueVT.getVectorElementCount()); 775 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 776 } 777 778 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) { 779 Val = Widened; 780 } 781 } 782 783 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type"); 784 785 // Split the vector into intermediate operands. 786 SmallVector<SDValue, 8> Ops(NumIntermediates); 787 for (unsigned i = 0; i != NumIntermediates; ++i) { 788 if (IntermediateVT.isVector()) { 789 // This does something sensible for scalable vectors - see the 790 // definition of EXTRACT_SUBVECTOR for further details. 791 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 792 Ops[i] = 793 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 794 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 795 } else { 796 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 797 DAG.getVectorIdxConstant(i, DL)); 798 } 799 } 800 801 // Split the intermediate operands into legal parts. 802 if (NumParts == NumIntermediates) { 803 // If the register was not expanded, promote or copy the value, 804 // as appropriate. 805 for (unsigned i = 0; i != NumParts; ++i) 806 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 807 } else if (NumParts > 0) { 808 // If the intermediate type was expanded, split each the value into 809 // legal parts. 810 assert(NumIntermediates != 0 && "division by zero"); 811 assert(NumParts % NumIntermediates == 0 && 812 "Must expand into a divisible number of parts!"); 813 unsigned Factor = NumParts / NumIntermediates; 814 for (unsigned i = 0; i != NumIntermediates; ++i) 815 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 816 CallConv); 817 } 818 } 819 820 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 821 EVT valuevt, std::optional<CallingConv::ID> CC) 822 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 823 RegCount(1, regs.size()), CallConv(CC) {} 824 825 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 826 const DataLayout &DL, unsigned Reg, Type *Ty, 827 std::optional<CallingConv::ID> CC) { 828 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 829 830 CallConv = CC; 831 832 for (EVT ValueVT : ValueVTs) { 833 unsigned NumRegs = 834 isABIMangled() 835 ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT) 836 : TLI.getNumRegisters(Context, ValueVT); 837 MVT RegisterVT = 838 isABIMangled() 839 ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT) 840 : TLI.getRegisterType(Context, ValueVT); 841 for (unsigned i = 0; i != NumRegs; ++i) 842 Regs.push_back(Reg + i); 843 RegVTs.push_back(RegisterVT); 844 RegCount.push_back(NumRegs); 845 Reg += NumRegs; 846 } 847 } 848 849 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 850 FunctionLoweringInfo &FuncInfo, 851 const SDLoc &dl, SDValue &Chain, 852 SDValue *Glue, const Value *V) const { 853 // A Value with type {} or [0 x %t] needs no registers. 854 if (ValueVTs.empty()) 855 return SDValue(); 856 857 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 858 859 // Assemble the legal parts into the final values. 860 SmallVector<SDValue, 4> Values(ValueVTs.size()); 861 SmallVector<SDValue, 8> Parts; 862 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 863 // Copy the legal parts from the registers. 864 EVT ValueVT = ValueVTs[Value]; 865 unsigned NumRegs = RegCount[Value]; 866 MVT RegisterVT = isABIMangled() 867 ? TLI.getRegisterTypeForCallingConv( 868 *DAG.getContext(), *CallConv, RegVTs[Value]) 869 : RegVTs[Value]; 870 871 Parts.resize(NumRegs); 872 for (unsigned i = 0; i != NumRegs; ++i) { 873 SDValue P; 874 if (!Glue) { 875 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 876 } else { 877 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Glue); 878 *Glue = P.getValue(2); 879 } 880 881 Chain = P.getValue(1); 882 Parts[i] = P; 883 884 // If the source register was virtual and if we know something about it, 885 // add an assert node. 886 if (!Register::isVirtualRegister(Regs[Part + i]) || 887 !RegisterVT.isInteger()) 888 continue; 889 890 const FunctionLoweringInfo::LiveOutInfo *LOI = 891 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 892 if (!LOI) 893 continue; 894 895 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 896 unsigned NumSignBits = LOI->NumSignBits; 897 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 898 899 if (NumZeroBits == RegSize) { 900 // The current value is a zero. 901 // Explicitly express that as it would be easier for 902 // optimizations to kick in. 903 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 904 continue; 905 } 906 907 // FIXME: We capture more information than the dag can represent. For 908 // now, just use the tightest assertzext/assertsext possible. 909 bool isSExt; 910 EVT FromVT(MVT::Other); 911 if (NumZeroBits) { 912 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 913 isSExt = false; 914 } else if (NumSignBits > 1) { 915 FromVT = 916 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 917 isSExt = true; 918 } else { 919 continue; 920 } 921 // Add an assertion node. 922 assert(FromVT != MVT::Other); 923 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 924 RegisterVT, P, DAG.getValueType(FromVT)); 925 } 926 927 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 928 RegisterVT, ValueVT, V, CallConv); 929 Part += NumRegs; 930 Parts.clear(); 931 } 932 933 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 934 } 935 936 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 937 const SDLoc &dl, SDValue &Chain, SDValue *Glue, 938 const Value *V, 939 ISD::NodeType PreferredExtendType) const { 940 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 941 ISD::NodeType ExtendKind = PreferredExtendType; 942 943 // Get the list of the values's legal parts. 944 unsigned NumRegs = Regs.size(); 945 SmallVector<SDValue, 8> Parts(NumRegs); 946 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 947 unsigned NumParts = RegCount[Value]; 948 949 MVT RegisterVT = isABIMangled() 950 ? TLI.getRegisterTypeForCallingConv( 951 *DAG.getContext(), *CallConv, RegVTs[Value]) 952 : RegVTs[Value]; 953 954 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 955 ExtendKind = ISD::ZERO_EXTEND; 956 957 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 958 NumParts, RegisterVT, V, CallConv, ExtendKind); 959 Part += NumParts; 960 } 961 962 // Copy the parts into the registers. 963 SmallVector<SDValue, 8> Chains(NumRegs); 964 for (unsigned i = 0; i != NumRegs; ++i) { 965 SDValue Part; 966 if (!Glue) { 967 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 968 } else { 969 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Glue); 970 *Glue = Part.getValue(1); 971 } 972 973 Chains[i] = Part.getValue(0); 974 } 975 976 if (NumRegs == 1 || Glue) 977 // If NumRegs > 1 && Glue is used then the use of the last CopyToReg is 978 // flagged to it. That is the CopyToReg nodes and the user are considered 979 // a single scheduling unit. If we create a TokenFactor and return it as 980 // chain, then the TokenFactor is both a predecessor (operand) of the 981 // user as well as a successor (the TF operands are flagged to the user). 982 // c1, f1 = CopyToReg 983 // c2, f2 = CopyToReg 984 // c3 = TokenFactor c1, c2 985 // ... 986 // = op c3, ..., f2 987 Chain = Chains[NumRegs-1]; 988 else 989 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 990 } 991 992 void RegsForValue::AddInlineAsmOperands(InlineAsm::Kind Code, bool HasMatching, 993 unsigned MatchingIdx, const SDLoc &dl, 994 SelectionDAG &DAG, 995 std::vector<SDValue> &Ops) const { 996 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 997 998 InlineAsm::Flag Flag(Code, Regs.size()); 999 if (HasMatching) 1000 Flag.setMatchingOp(MatchingIdx); 1001 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 1002 // Put the register class of the virtual registers in the flag word. That 1003 // way, later passes can recompute register class constraints for inline 1004 // assembly as well as normal instructions. 1005 // Don't do this for tied operands that can use the regclass information 1006 // from the def. 1007 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 1008 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 1009 Flag.setRegClass(RC->getID()); 1010 } 1011 1012 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 1013 Ops.push_back(Res); 1014 1015 if (Code == InlineAsm::Kind::Clobber) { 1016 // Clobbers should always have a 1:1 mapping with registers, and may 1017 // reference registers that have illegal (e.g. vector) types. Hence, we 1018 // shouldn't try to apply any sort of splitting logic to them. 1019 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 1020 "No 1:1 mapping from clobbers to regs?"); 1021 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 1022 (void)SP; 1023 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 1024 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 1025 assert( 1026 (Regs[I] != SP || 1027 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 1028 "If we clobbered the stack pointer, MFI should know about it."); 1029 } 1030 return; 1031 } 1032 1033 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 1034 MVT RegisterVT = RegVTs[Value]; 1035 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value], 1036 RegisterVT); 1037 for (unsigned i = 0; i != NumRegs; ++i) { 1038 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 1039 unsigned TheReg = Regs[Reg++]; 1040 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 1041 } 1042 } 1043 } 1044 1045 SmallVector<std::pair<unsigned, TypeSize>, 4> 1046 RegsForValue::getRegsAndSizes() const { 1047 SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec; 1048 unsigned I = 0; 1049 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1050 unsigned RegCount = std::get<0>(CountAndVT); 1051 MVT RegisterVT = std::get<1>(CountAndVT); 1052 TypeSize RegisterSize = RegisterVT.getSizeInBits(); 1053 for (unsigned E = I + RegCount; I != E; ++I) 1054 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1055 } 1056 return OutVec; 1057 } 1058 1059 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1060 AssumptionCache *ac, 1061 const TargetLibraryInfo *li) { 1062 AA = aa; 1063 AC = ac; 1064 GFI = gfi; 1065 LibInfo = li; 1066 Context = DAG.getContext(); 1067 LPadToCallSiteMap.clear(); 1068 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1069 AssignmentTrackingEnabled = isAssignmentTrackingEnabled( 1070 *DAG.getMachineFunction().getFunction().getParent()); 1071 } 1072 1073 void SelectionDAGBuilder::clear() { 1074 NodeMap.clear(); 1075 UnusedArgNodeMap.clear(); 1076 PendingLoads.clear(); 1077 PendingExports.clear(); 1078 PendingConstrainedFP.clear(); 1079 PendingConstrainedFPStrict.clear(); 1080 CurInst = nullptr; 1081 HasTailCall = false; 1082 SDNodeOrder = LowestSDNodeOrder; 1083 StatepointLowering.clear(); 1084 } 1085 1086 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1087 DanglingDebugInfoMap.clear(); 1088 } 1089 1090 // Update DAG root to include dependencies on Pending chains. 1091 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1092 SDValue Root = DAG.getRoot(); 1093 1094 if (Pending.empty()) 1095 return Root; 1096 1097 // Add current root to PendingChains, unless we already indirectly 1098 // depend on it. 1099 if (Root.getOpcode() != ISD::EntryToken) { 1100 unsigned i = 0, e = Pending.size(); 1101 for (; i != e; ++i) { 1102 assert(Pending[i].getNode()->getNumOperands() > 1); 1103 if (Pending[i].getNode()->getOperand(0) == Root) 1104 break; // Don't add the root if we already indirectly depend on it. 1105 } 1106 1107 if (i == e) 1108 Pending.push_back(Root); 1109 } 1110 1111 if (Pending.size() == 1) 1112 Root = Pending[0]; 1113 else 1114 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1115 1116 DAG.setRoot(Root); 1117 Pending.clear(); 1118 return Root; 1119 } 1120 1121 SDValue SelectionDAGBuilder::getMemoryRoot() { 1122 return updateRoot(PendingLoads); 1123 } 1124 1125 SDValue SelectionDAGBuilder::getRoot() { 1126 // Chain up all pending constrained intrinsics together with all 1127 // pending loads, by simply appending them to PendingLoads and 1128 // then calling getMemoryRoot(). 1129 PendingLoads.reserve(PendingLoads.size() + 1130 PendingConstrainedFP.size() + 1131 PendingConstrainedFPStrict.size()); 1132 PendingLoads.append(PendingConstrainedFP.begin(), 1133 PendingConstrainedFP.end()); 1134 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1135 PendingConstrainedFPStrict.end()); 1136 PendingConstrainedFP.clear(); 1137 PendingConstrainedFPStrict.clear(); 1138 return getMemoryRoot(); 1139 } 1140 1141 SDValue SelectionDAGBuilder::getControlRoot() { 1142 // We need to emit pending fpexcept.strict constrained intrinsics, 1143 // so append them to the PendingExports list. 1144 PendingExports.append(PendingConstrainedFPStrict.begin(), 1145 PendingConstrainedFPStrict.end()); 1146 PendingConstrainedFPStrict.clear(); 1147 return updateRoot(PendingExports); 1148 } 1149 1150 void SelectionDAGBuilder::visit(const Instruction &I) { 1151 // Set up outgoing PHI node register values before emitting the terminator. 1152 if (I.isTerminator()) { 1153 HandlePHINodesInSuccessorBlocks(I.getParent()); 1154 } 1155 1156 // Add SDDbgValue nodes for any var locs here. Do so before updating 1157 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1158 if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) { 1159 // Add SDDbgValue nodes for any var locs here. Do so before updating 1160 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1161 for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I); 1162 It != End; ++It) { 1163 auto *Var = FnVarLocs->getDILocalVariable(It->VariableID); 1164 dropDanglingDebugInfo(Var, It->Expr); 1165 if (It->Values.isKillLocation(It->Expr)) { 1166 handleKillDebugValue(Var, It->Expr, It->DL, SDNodeOrder); 1167 continue; 1168 } 1169 SmallVector<Value *> Values(It->Values.location_ops()); 1170 if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder, 1171 It->Values.hasArgList())) 1172 addDanglingDebugInfo(It, SDNodeOrder); 1173 } 1174 } 1175 1176 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1177 if (!isa<DbgInfoIntrinsic>(I)) 1178 ++SDNodeOrder; 1179 1180 CurInst = &I; 1181 1182 // Set inserted listener only if required. 1183 bool NodeInserted = false; 1184 std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener; 1185 MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections); 1186 if (PCSectionsMD) { 1187 InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>( 1188 DAG, [&](SDNode *) { NodeInserted = true; }); 1189 } 1190 1191 visit(I.getOpcode(), I); 1192 1193 if (!I.isTerminator() && !HasTailCall && 1194 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1195 CopyToExportRegsIfNeeded(&I); 1196 1197 // Handle metadata. 1198 if (PCSectionsMD) { 1199 auto It = NodeMap.find(&I); 1200 if (It != NodeMap.end()) { 1201 DAG.addPCSections(It->second.getNode(), PCSectionsMD); 1202 } else if (NodeInserted) { 1203 // This should not happen; if it does, don't let it go unnoticed so we can 1204 // fix it. Relevant visit*() function is probably missing a setValue(). 1205 errs() << "warning: loosing !pcsections metadata [" 1206 << I.getModule()->getName() << "]\n"; 1207 LLVM_DEBUG(I.dump()); 1208 assert(false); 1209 } 1210 } 1211 1212 CurInst = nullptr; 1213 } 1214 1215 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1216 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1217 } 1218 1219 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1220 // Note: this doesn't use InstVisitor, because it has to work with 1221 // ConstantExpr's in addition to instructions. 1222 switch (Opcode) { 1223 default: llvm_unreachable("Unknown instruction type encountered!"); 1224 // Build the switch statement using the Instruction.def file. 1225 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1226 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1227 #include "llvm/IR/Instruction.def" 1228 } 1229 } 1230 1231 static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG, 1232 DILocalVariable *Variable, 1233 DebugLoc DL, unsigned Order, 1234 RawLocationWrapper Values, 1235 DIExpression *Expression) { 1236 if (!Values.hasArgList()) 1237 return false; 1238 // For variadic dbg_values we will now insert an undef. 1239 // FIXME: We can potentially recover these! 1240 SmallVector<SDDbgOperand, 2> Locs; 1241 for (const Value *V : Values.location_ops()) { 1242 auto *Undef = UndefValue::get(V->getType()); 1243 Locs.push_back(SDDbgOperand::fromConst(Undef)); 1244 } 1245 SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {}, 1246 /*IsIndirect=*/false, DL, Order, 1247 /*IsVariadic=*/true); 1248 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1249 return true; 1250 } 1251 1252 void SelectionDAGBuilder::addDanglingDebugInfo(const VarLocInfo *VarLoc, 1253 unsigned Order) { 1254 if (!handleDanglingVariadicDebugInfo( 1255 DAG, 1256 const_cast<DILocalVariable *>(DAG.getFunctionVarLocs() 1257 ->getVariable(VarLoc->VariableID) 1258 .getVariable()), 1259 VarLoc->DL, Order, VarLoc->Values, VarLoc->Expr)) { 1260 DanglingDebugInfoMap[VarLoc->Values.getVariableLocationOp(0)].emplace_back( 1261 VarLoc, Order); 1262 } 1263 } 1264 1265 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI, 1266 unsigned Order) { 1267 // We treat variadic dbg_values differently at this stage. 1268 if (!handleDanglingVariadicDebugInfo( 1269 DAG, DI->getVariable(), DI->getDebugLoc(), Order, 1270 DI->getWrappedLocation(), DI->getExpression())) { 1271 // TODO: Dangling debug info will eventually either be resolved or produce 1272 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 1273 // between the original dbg.value location and its resolved DBG_VALUE, 1274 // which we should ideally fill with an extra Undef DBG_VALUE. 1275 assert(DI->getNumVariableLocationOps() == 1 && 1276 "DbgValueInst without an ArgList should have a single location " 1277 "operand."); 1278 DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, Order); 1279 } 1280 } 1281 1282 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1283 const DIExpression *Expr) { 1284 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1285 DIVariable *DanglingVariable = DDI.getVariable(DAG.getFunctionVarLocs()); 1286 DIExpression *DanglingExpr = DDI.getExpression(); 1287 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1288 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << printDDI(DDI) 1289 << "\n"); 1290 return true; 1291 } 1292 return false; 1293 }; 1294 1295 for (auto &DDIMI : DanglingDebugInfoMap) { 1296 DanglingDebugInfoVector &DDIV = DDIMI.second; 1297 1298 // If debug info is to be dropped, run it through final checks to see 1299 // whether it can be salvaged. 1300 for (auto &DDI : DDIV) 1301 if (isMatchingDbgValue(DDI)) 1302 salvageUnresolvedDbgValue(DDI); 1303 1304 erase_if(DDIV, isMatchingDbgValue); 1305 } 1306 } 1307 1308 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1309 // generate the debug data structures now that we've seen its definition. 1310 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1311 SDValue Val) { 1312 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1313 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1314 return; 1315 1316 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1317 for (auto &DDI : DDIV) { 1318 DebugLoc DL = DDI.getDebugLoc(); 1319 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1320 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1321 DILocalVariable *Variable = DDI.getVariable(DAG.getFunctionVarLocs()); 1322 DIExpression *Expr = DDI.getExpression(); 1323 assert(Variable->isValidLocationForIntrinsic(DL) && 1324 "Expected inlined-at fields to agree"); 1325 SDDbgValue *SDV; 1326 if (Val.getNode()) { 1327 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1328 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1329 // we couldn't resolve it directly when examining the DbgValue intrinsic 1330 // in the first place we should not be more successful here). Unless we 1331 // have some test case that prove this to be correct we should avoid 1332 // calling EmitFuncArgumentDbgValue here. 1333 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL, 1334 FuncArgumentDbgValueKind::Value, Val)) { 1335 LLVM_DEBUG(dbgs() << "Resolve dangling debug info for " << printDDI(DDI) 1336 << "\n"); 1337 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1338 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1339 // inserted after the definition of Val when emitting the instructions 1340 // after ISel. An alternative could be to teach 1341 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1342 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1343 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1344 << ValSDNodeOrder << "\n"); 1345 SDV = getDbgValue(Val, Variable, Expr, DL, 1346 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1347 DAG.AddDbgValue(SDV, false); 1348 } else 1349 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " 1350 << printDDI(DDI) << " in EmitFuncArgumentDbgValue\n"); 1351 } else { 1352 LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(DDI) << "\n"); 1353 auto Undef = UndefValue::get(V->getType()); 1354 auto SDV = 1355 DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder); 1356 DAG.AddDbgValue(SDV, false); 1357 } 1358 } 1359 DDIV.clear(); 1360 } 1361 1362 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1363 // TODO: For the variadic implementation, instead of only checking the fail 1364 // state of `handleDebugValue`, we need know specifically which values were 1365 // invalid, so that we attempt to salvage only those values when processing 1366 // a DIArgList. 1367 Value *V = DDI.getVariableLocationOp(0); 1368 Value *OrigV = V; 1369 DILocalVariable *Var = DDI.getVariable(DAG.getFunctionVarLocs()); 1370 DIExpression *Expr = DDI.getExpression(); 1371 DebugLoc DL = DDI.getDebugLoc(); 1372 unsigned SDOrder = DDI.getSDNodeOrder(); 1373 1374 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1375 // that DW_OP_stack_value is desired. 1376 bool StackValue = true; 1377 1378 // Can this Value can be encoded without any further work? 1379 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) 1380 return; 1381 1382 // Attempt to salvage back through as many instructions as possible. Bail if 1383 // a non-instruction is seen, such as a constant expression or global 1384 // variable. FIXME: Further work could recover those too. 1385 while (isa<Instruction>(V)) { 1386 Instruction &VAsInst = *cast<Instruction>(V); 1387 // Temporary "0", awaiting real implementation. 1388 SmallVector<uint64_t, 16> Ops; 1389 SmallVector<Value *, 4> AdditionalValues; 1390 V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops, 1391 AdditionalValues); 1392 // If we cannot salvage any further, and haven't yet found a suitable debug 1393 // expression, bail out. 1394 if (!V) 1395 break; 1396 1397 // TODO: If AdditionalValues isn't empty, then the salvage can only be 1398 // represented with a DBG_VALUE_LIST, so we give up. When we have support 1399 // here for variadic dbg_values, remove that condition. 1400 if (!AdditionalValues.empty()) 1401 break; 1402 1403 // New value and expr now represent this debuginfo. 1404 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue); 1405 1406 // Some kind of simplification occurred: check whether the operand of the 1407 // salvaged debug expression can be encoded in this DAG. 1408 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) { 1409 LLVM_DEBUG( 1410 dbgs() << "Salvaged debug location info for:\n " << *Var << "\n" 1411 << *OrigV << "\nBy stripping back to:\n " << *V << "\n"); 1412 return; 1413 } 1414 } 1415 1416 // This was the final opportunity to salvage this debug information, and it 1417 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1418 // any earlier variable location. 1419 assert(OrigV && "V shouldn't be null"); 1420 auto *Undef = UndefValue::get(OrigV->getType()); 1421 auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1422 DAG.AddDbgValue(SDV, false); 1423 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << printDDI(DDI) 1424 << "\n"); 1425 } 1426 1427 void SelectionDAGBuilder::handleKillDebugValue(DILocalVariable *Var, 1428 DIExpression *Expr, 1429 DebugLoc DbgLoc, 1430 unsigned Order) { 1431 Value *Poison = PoisonValue::get(Type::getInt1Ty(*Context)); 1432 DIExpression *NewExpr = 1433 const_cast<DIExpression *>(DIExpression::convertToUndefExpression(Expr)); 1434 handleDebugValue(Poison, Var, NewExpr, DbgLoc, Order, 1435 /*IsVariadic*/ false); 1436 } 1437 1438 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values, 1439 DILocalVariable *Var, 1440 DIExpression *Expr, DebugLoc DbgLoc, 1441 unsigned Order, bool IsVariadic) { 1442 if (Values.empty()) 1443 return true; 1444 SmallVector<SDDbgOperand> LocationOps; 1445 SmallVector<SDNode *> Dependencies; 1446 for (const Value *V : Values) { 1447 // Constant value. 1448 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1449 isa<ConstantPointerNull>(V)) { 1450 LocationOps.emplace_back(SDDbgOperand::fromConst(V)); 1451 continue; 1452 } 1453 1454 // Look through IntToPtr constants. 1455 if (auto *CE = dyn_cast<ConstantExpr>(V)) 1456 if (CE->getOpcode() == Instruction::IntToPtr) { 1457 LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0))); 1458 continue; 1459 } 1460 1461 // If the Value is a frame index, we can create a FrameIndex debug value 1462 // without relying on the DAG at all. 1463 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1464 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1465 if (SI != FuncInfo.StaticAllocaMap.end()) { 1466 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second)); 1467 continue; 1468 } 1469 } 1470 1471 // Do not use getValue() in here; we don't want to generate code at 1472 // this point if it hasn't been done yet. 1473 SDValue N = NodeMap[V]; 1474 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1475 N = UnusedArgNodeMap[V]; 1476 if (N.getNode()) { 1477 // Only emit func arg dbg value for non-variadic dbg.values for now. 1478 if (!IsVariadic && 1479 EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc, 1480 FuncArgumentDbgValueKind::Value, N)) 1481 return true; 1482 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 1483 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can 1484 // describe stack slot locations. 1485 // 1486 // Consider "int x = 0; int *px = &x;". There are two kinds of 1487 // interesting debug values here after optimization: 1488 // 1489 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 1490 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 1491 // 1492 // Both describe the direct values of their associated variables. 1493 Dependencies.push_back(N.getNode()); 1494 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex())); 1495 continue; 1496 } 1497 LocationOps.emplace_back( 1498 SDDbgOperand::fromNode(N.getNode(), N.getResNo())); 1499 continue; 1500 } 1501 1502 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1503 // Special rules apply for the first dbg.values of parameter variables in a 1504 // function. Identify them by the fact they reference Argument Values, that 1505 // they're parameters, and they are parameters of the current function. We 1506 // need to let them dangle until they get an SDNode. 1507 bool IsParamOfFunc = 1508 isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt(); 1509 if (IsParamOfFunc) 1510 return false; 1511 1512 // The value is not used in this block yet (or it would have an SDNode). 1513 // We still want the value to appear for the user if possible -- if it has 1514 // an associated VReg, we can refer to that instead. 1515 auto VMI = FuncInfo.ValueMap.find(V); 1516 if (VMI != FuncInfo.ValueMap.end()) { 1517 unsigned Reg = VMI->second; 1518 // If this is a PHI node, it may be split up into several MI PHI nodes 1519 // (in FunctionLoweringInfo::set). 1520 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1521 V->getType(), std::nullopt); 1522 if (RFV.occupiesMultipleRegs()) { 1523 // FIXME: We could potentially support variadic dbg_values here. 1524 if (IsVariadic) 1525 return false; 1526 unsigned Offset = 0; 1527 unsigned BitsToDescribe = 0; 1528 if (auto VarSize = Var->getSizeInBits()) 1529 BitsToDescribe = *VarSize; 1530 if (auto Fragment = Expr->getFragmentInfo()) 1531 BitsToDescribe = Fragment->SizeInBits; 1532 for (const auto &RegAndSize : RFV.getRegsAndSizes()) { 1533 // Bail out if all bits are described already. 1534 if (Offset >= BitsToDescribe) 1535 break; 1536 // TODO: handle scalable vectors. 1537 unsigned RegisterSize = RegAndSize.second; 1538 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1539 ? BitsToDescribe - Offset 1540 : RegisterSize; 1541 auto FragmentExpr = DIExpression::createFragmentExpression( 1542 Expr, Offset, FragmentSize); 1543 if (!FragmentExpr) 1544 continue; 1545 SDDbgValue *SDV = DAG.getVRegDbgValue( 1546 Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, SDNodeOrder); 1547 DAG.AddDbgValue(SDV, false); 1548 Offset += RegisterSize; 1549 } 1550 return true; 1551 } 1552 // We can use simple vreg locations for variadic dbg_values as well. 1553 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg)); 1554 continue; 1555 } 1556 // We failed to create a SDDbgOperand for V. 1557 return false; 1558 } 1559 1560 // We have created a SDDbgOperand for each Value in Values. 1561 // Should use Order instead of SDNodeOrder? 1562 assert(!LocationOps.empty()); 1563 SDDbgValue *SDV = DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies, 1564 /*IsIndirect=*/false, DbgLoc, 1565 SDNodeOrder, IsVariadic); 1566 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1567 return true; 1568 } 1569 1570 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1571 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1572 for (auto &Pair : DanglingDebugInfoMap) 1573 for (auto &DDI : Pair.second) 1574 salvageUnresolvedDbgValue(DDI); 1575 clearDanglingDebugInfo(); 1576 } 1577 1578 /// getCopyFromRegs - If there was virtual register allocated for the value V 1579 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1580 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1581 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1582 SDValue Result; 1583 1584 if (It != FuncInfo.ValueMap.end()) { 1585 Register InReg = It->second; 1586 1587 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1588 DAG.getDataLayout(), InReg, Ty, 1589 std::nullopt); // This is not an ABI copy. 1590 SDValue Chain = DAG.getEntryNode(); 1591 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1592 V); 1593 resolveDanglingDebugInfo(V, Result); 1594 } 1595 1596 return Result; 1597 } 1598 1599 /// getValue - Return an SDValue for the given Value. 1600 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1601 // If we already have an SDValue for this value, use it. It's important 1602 // to do this first, so that we don't create a CopyFromReg if we already 1603 // have a regular SDValue. 1604 SDValue &N = NodeMap[V]; 1605 if (N.getNode()) return N; 1606 1607 // If there's a virtual register allocated and initialized for this 1608 // value, use it. 1609 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1610 return copyFromReg; 1611 1612 // Otherwise create a new SDValue and remember it. 1613 SDValue Val = getValueImpl(V); 1614 NodeMap[V] = Val; 1615 resolveDanglingDebugInfo(V, Val); 1616 return Val; 1617 } 1618 1619 /// getNonRegisterValue - Return an SDValue for the given Value, but 1620 /// don't look in FuncInfo.ValueMap for a virtual register. 1621 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1622 // If we already have an SDValue for this value, use it. 1623 SDValue &N = NodeMap[V]; 1624 if (N.getNode()) { 1625 if (isIntOrFPConstant(N)) { 1626 // Remove the debug location from the node as the node is about to be used 1627 // in a location which may differ from the original debug location. This 1628 // is relevant to Constant and ConstantFP nodes because they can appear 1629 // as constant expressions inside PHI nodes. 1630 N->setDebugLoc(DebugLoc()); 1631 } 1632 return N; 1633 } 1634 1635 // Otherwise create a new SDValue and remember it. 1636 SDValue Val = getValueImpl(V); 1637 NodeMap[V] = Val; 1638 resolveDanglingDebugInfo(V, Val); 1639 return Val; 1640 } 1641 1642 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1643 /// Create an SDValue for the given value. 1644 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1645 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1646 1647 if (const Constant *C = dyn_cast<Constant>(V)) { 1648 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1649 1650 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1651 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1652 1653 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1654 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1655 1656 if (isa<ConstantPointerNull>(C)) { 1657 unsigned AS = V->getType()->getPointerAddressSpace(); 1658 return DAG.getConstant(0, getCurSDLoc(), 1659 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1660 } 1661 1662 if (match(C, m_VScale())) 1663 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1664 1665 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1666 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1667 1668 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1669 return DAG.getUNDEF(VT); 1670 1671 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1672 visit(CE->getOpcode(), *CE); 1673 SDValue N1 = NodeMap[V]; 1674 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1675 return N1; 1676 } 1677 1678 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1679 SmallVector<SDValue, 4> Constants; 1680 for (const Use &U : C->operands()) { 1681 SDNode *Val = getValue(U).getNode(); 1682 // If the operand is an empty aggregate, there are no values. 1683 if (!Val) continue; 1684 // Add each leaf value from the operand to the Constants list 1685 // to form a flattened list of all the values. 1686 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1687 Constants.push_back(SDValue(Val, i)); 1688 } 1689 1690 return DAG.getMergeValues(Constants, getCurSDLoc()); 1691 } 1692 1693 if (const ConstantDataSequential *CDS = 1694 dyn_cast<ConstantDataSequential>(C)) { 1695 SmallVector<SDValue, 4> Ops; 1696 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1697 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1698 // Add each leaf value from the operand to the Constants list 1699 // to form a flattened list of all the values. 1700 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1701 Ops.push_back(SDValue(Val, i)); 1702 } 1703 1704 if (isa<ArrayType>(CDS->getType())) 1705 return DAG.getMergeValues(Ops, getCurSDLoc()); 1706 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1707 } 1708 1709 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1710 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1711 "Unknown struct or array constant!"); 1712 1713 SmallVector<EVT, 4> ValueVTs; 1714 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1715 unsigned NumElts = ValueVTs.size(); 1716 if (NumElts == 0) 1717 return SDValue(); // empty struct 1718 SmallVector<SDValue, 4> Constants(NumElts); 1719 for (unsigned i = 0; i != NumElts; ++i) { 1720 EVT EltVT = ValueVTs[i]; 1721 if (isa<UndefValue>(C)) 1722 Constants[i] = DAG.getUNDEF(EltVT); 1723 else if (EltVT.isFloatingPoint()) 1724 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1725 else 1726 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1727 } 1728 1729 return DAG.getMergeValues(Constants, getCurSDLoc()); 1730 } 1731 1732 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1733 return DAG.getBlockAddress(BA, VT); 1734 1735 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) 1736 return getValue(Equiv->getGlobalValue()); 1737 1738 if (const auto *NC = dyn_cast<NoCFIValue>(C)) 1739 return getValue(NC->getGlobalValue()); 1740 1741 VectorType *VecTy = cast<VectorType>(V->getType()); 1742 1743 // Now that we know the number and type of the elements, get that number of 1744 // elements into the Ops array based on what kind of constant it is. 1745 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1746 SmallVector<SDValue, 16> Ops; 1747 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1748 for (unsigned i = 0; i != NumElements; ++i) 1749 Ops.push_back(getValue(CV->getOperand(i))); 1750 1751 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1752 } 1753 1754 if (isa<ConstantAggregateZero>(C)) { 1755 EVT EltVT = 1756 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1757 1758 SDValue Op; 1759 if (EltVT.isFloatingPoint()) 1760 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1761 else 1762 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1763 1764 return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op); 1765 } 1766 1767 llvm_unreachable("Unknown vector constant"); 1768 } 1769 1770 // If this is a static alloca, generate it as the frameindex instead of 1771 // computation. 1772 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1773 DenseMap<const AllocaInst*, int>::iterator SI = 1774 FuncInfo.StaticAllocaMap.find(AI); 1775 if (SI != FuncInfo.StaticAllocaMap.end()) 1776 return DAG.getFrameIndex( 1777 SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType())); 1778 } 1779 1780 // If this is an instruction which fast-isel has deferred, select it now. 1781 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1782 Register InReg = FuncInfo.InitializeRegForValue(Inst); 1783 1784 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1785 Inst->getType(), std::nullopt); 1786 SDValue Chain = DAG.getEntryNode(); 1787 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1788 } 1789 1790 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) 1791 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1792 1793 if (const auto *BB = dyn_cast<BasicBlock>(V)) 1794 return DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 1795 1796 llvm_unreachable("Can't get register for value!"); 1797 } 1798 1799 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1800 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1801 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1802 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1803 bool IsSEH = isAsynchronousEHPersonality(Pers); 1804 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1805 if (!IsSEH) 1806 CatchPadMBB->setIsEHScopeEntry(); 1807 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1808 if (IsMSVCCXX || IsCoreCLR) 1809 CatchPadMBB->setIsEHFuncletEntry(); 1810 } 1811 1812 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1813 // Update machine-CFG edge. 1814 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1815 FuncInfo.MBB->addSuccessor(TargetMBB); 1816 TargetMBB->setIsEHCatchretTarget(true); 1817 DAG.getMachineFunction().setHasEHCatchret(true); 1818 1819 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1820 bool IsSEH = isAsynchronousEHPersonality(Pers); 1821 if (IsSEH) { 1822 // If this is not a fall-through branch or optimizations are switched off, 1823 // emit the branch. 1824 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1825 TM.getOptLevel() == CodeGenOptLevel::None) 1826 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1827 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1828 return; 1829 } 1830 1831 // Figure out the funclet membership for the catchret's successor. 1832 // This will be used by the FuncletLayout pass to determine how to order the 1833 // BB's. 1834 // A 'catchret' returns to the outer scope's color. 1835 Value *ParentPad = I.getCatchSwitchParentPad(); 1836 const BasicBlock *SuccessorColor; 1837 if (isa<ConstantTokenNone>(ParentPad)) 1838 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1839 else 1840 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1841 assert(SuccessorColor && "No parent funclet for catchret!"); 1842 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1843 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1844 1845 // Create the terminator node. 1846 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1847 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1848 DAG.getBasicBlock(SuccessorColorMBB)); 1849 DAG.setRoot(Ret); 1850 } 1851 1852 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1853 // Don't emit any special code for the cleanuppad instruction. It just marks 1854 // the start of an EH scope/funclet. 1855 FuncInfo.MBB->setIsEHScopeEntry(); 1856 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1857 if (Pers != EHPersonality::Wasm_CXX) { 1858 FuncInfo.MBB->setIsEHFuncletEntry(); 1859 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1860 } 1861 } 1862 1863 // In wasm EH, even though a catchpad may not catch an exception if a tag does 1864 // not match, it is OK to add only the first unwind destination catchpad to the 1865 // successors, because there will be at least one invoke instruction within the 1866 // catch scope that points to the next unwind destination, if one exists, so 1867 // CFGSort cannot mess up with BB sorting order. 1868 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic 1869 // call within them, and catchpads only consisting of 'catch (...)' have a 1870 // '__cxa_end_catch' call within them, both of which generate invokes in case 1871 // the next unwind destination exists, i.e., the next unwind destination is not 1872 // the caller.) 1873 // 1874 // Having at most one EH pad successor is also simpler and helps later 1875 // transformations. 1876 // 1877 // For example, 1878 // current: 1879 // invoke void @foo to ... unwind label %catch.dispatch 1880 // catch.dispatch: 1881 // %0 = catchswitch within ... [label %catch.start] unwind label %next 1882 // catch.start: 1883 // ... 1884 // ... in this BB or some other child BB dominated by this BB there will be an 1885 // invoke that points to 'next' BB as an unwind destination 1886 // 1887 // next: ; We don't need to add this to 'current' BB's successor 1888 // ... 1889 static void findWasmUnwindDestinations( 1890 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1891 BranchProbability Prob, 1892 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1893 &UnwindDests) { 1894 while (EHPadBB) { 1895 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1896 if (isa<CleanupPadInst>(Pad)) { 1897 // Stop on cleanup pads. 1898 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1899 UnwindDests.back().first->setIsEHScopeEntry(); 1900 break; 1901 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1902 // Add the catchpad handlers to the possible destinations. We don't 1903 // continue to the unwind destination of the catchswitch for wasm. 1904 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1905 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1906 UnwindDests.back().first->setIsEHScopeEntry(); 1907 } 1908 break; 1909 } else { 1910 continue; 1911 } 1912 } 1913 } 1914 1915 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1916 /// many places it could ultimately go. In the IR, we have a single unwind 1917 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1918 /// This function skips over imaginary basic blocks that hold catchswitch 1919 /// instructions, and finds all the "real" machine 1920 /// basic block destinations. As those destinations may not be successors of 1921 /// EHPadBB, here we also calculate the edge probability to those destinations. 1922 /// The passed-in Prob is the edge probability to EHPadBB. 1923 static void findUnwindDestinations( 1924 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1925 BranchProbability Prob, 1926 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1927 &UnwindDests) { 1928 EHPersonality Personality = 1929 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1930 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1931 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1932 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1933 bool IsSEH = isAsynchronousEHPersonality(Personality); 1934 1935 if (IsWasmCXX) { 1936 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1937 assert(UnwindDests.size() <= 1 && 1938 "There should be at most one unwind destination for wasm"); 1939 return; 1940 } 1941 1942 while (EHPadBB) { 1943 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1944 BasicBlock *NewEHPadBB = nullptr; 1945 if (isa<LandingPadInst>(Pad)) { 1946 // Stop on landingpads. They are not funclets. 1947 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1948 break; 1949 } else if (isa<CleanupPadInst>(Pad)) { 1950 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1951 // personalities. 1952 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1953 UnwindDests.back().first->setIsEHScopeEntry(); 1954 UnwindDests.back().first->setIsEHFuncletEntry(); 1955 break; 1956 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1957 // Add the catchpad handlers to the possible destinations. 1958 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1959 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1960 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1961 if (IsMSVCCXX || IsCoreCLR) 1962 UnwindDests.back().first->setIsEHFuncletEntry(); 1963 if (!IsSEH) 1964 UnwindDests.back().first->setIsEHScopeEntry(); 1965 } 1966 NewEHPadBB = CatchSwitch->getUnwindDest(); 1967 } else { 1968 continue; 1969 } 1970 1971 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1972 if (BPI && NewEHPadBB) 1973 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1974 EHPadBB = NewEHPadBB; 1975 } 1976 } 1977 1978 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1979 // Update successor info. 1980 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1981 auto UnwindDest = I.getUnwindDest(); 1982 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1983 BranchProbability UnwindDestProb = 1984 (BPI && UnwindDest) 1985 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1986 : BranchProbability::getZero(); 1987 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1988 for (auto &UnwindDest : UnwindDests) { 1989 UnwindDest.first->setIsEHPad(); 1990 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1991 } 1992 FuncInfo.MBB->normalizeSuccProbs(); 1993 1994 // Create the terminator node. 1995 SDValue Ret = 1996 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1997 DAG.setRoot(Ret); 1998 } 1999 2000 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 2001 report_fatal_error("visitCatchSwitch not yet implemented!"); 2002 } 2003 2004 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 2005 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2006 auto &DL = DAG.getDataLayout(); 2007 SDValue Chain = getControlRoot(); 2008 SmallVector<ISD::OutputArg, 8> Outs; 2009 SmallVector<SDValue, 8> OutVals; 2010 2011 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 2012 // lower 2013 // 2014 // %val = call <ty> @llvm.experimental.deoptimize() 2015 // ret <ty> %val 2016 // 2017 // differently. 2018 if (I.getParent()->getTerminatingDeoptimizeCall()) { 2019 LowerDeoptimizingReturn(); 2020 return; 2021 } 2022 2023 if (!FuncInfo.CanLowerReturn) { 2024 unsigned DemoteReg = FuncInfo.DemoteRegister; 2025 const Function *F = I.getParent()->getParent(); 2026 2027 // Emit a store of the return value through the virtual register. 2028 // Leave Outs empty so that LowerReturn won't try to load return 2029 // registers the usual way. 2030 SmallVector<EVT, 1> PtrValueVTs; 2031 ComputeValueVTs(TLI, DL, 2032 PointerType::get(F->getContext(), 2033 DAG.getDataLayout().getAllocaAddrSpace()), 2034 PtrValueVTs); 2035 2036 SDValue RetPtr = 2037 DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]); 2038 SDValue RetOp = getValue(I.getOperand(0)); 2039 2040 SmallVector<EVT, 4> ValueVTs, MemVTs; 2041 SmallVector<uint64_t, 4> Offsets; 2042 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 2043 &Offsets, 0); 2044 unsigned NumValues = ValueVTs.size(); 2045 2046 SmallVector<SDValue, 4> Chains(NumValues); 2047 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 2048 for (unsigned i = 0; i != NumValues; ++i) { 2049 // An aggregate return value cannot wrap around the address space, so 2050 // offsets to its parts don't wrap either. 2051 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 2052 TypeSize::Fixed(Offsets[i])); 2053 2054 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 2055 if (MemVTs[i] != ValueVTs[i]) 2056 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 2057 Chains[i] = DAG.getStore( 2058 Chain, getCurSDLoc(), Val, 2059 // FIXME: better loc info would be nice. 2060 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 2061 commonAlignment(BaseAlign, Offsets[i])); 2062 } 2063 2064 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 2065 MVT::Other, Chains); 2066 } else if (I.getNumOperands() != 0) { 2067 SmallVector<EVT, 4> ValueVTs; 2068 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 2069 unsigned NumValues = ValueVTs.size(); 2070 if (NumValues) { 2071 SDValue RetOp = getValue(I.getOperand(0)); 2072 2073 const Function *F = I.getParent()->getParent(); 2074 2075 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 2076 I.getOperand(0)->getType(), F->getCallingConv(), 2077 /*IsVarArg*/ false, DL); 2078 2079 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 2080 if (F->getAttributes().hasRetAttr(Attribute::SExt)) 2081 ExtendKind = ISD::SIGN_EXTEND; 2082 else if (F->getAttributes().hasRetAttr(Attribute::ZExt)) 2083 ExtendKind = ISD::ZERO_EXTEND; 2084 2085 LLVMContext &Context = F->getContext(); 2086 bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg); 2087 2088 for (unsigned j = 0; j != NumValues; ++j) { 2089 EVT VT = ValueVTs[j]; 2090 2091 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 2092 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 2093 2094 CallingConv::ID CC = F->getCallingConv(); 2095 2096 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 2097 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 2098 SmallVector<SDValue, 4> Parts(NumParts); 2099 getCopyToParts(DAG, getCurSDLoc(), 2100 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 2101 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 2102 2103 // 'inreg' on function refers to return value 2104 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2105 if (RetInReg) 2106 Flags.setInReg(); 2107 2108 if (I.getOperand(0)->getType()->isPointerTy()) { 2109 Flags.setPointer(); 2110 Flags.setPointerAddrSpace( 2111 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 2112 } 2113 2114 if (NeedsRegBlock) { 2115 Flags.setInConsecutiveRegs(); 2116 if (j == NumValues - 1) 2117 Flags.setInConsecutiveRegsLast(); 2118 } 2119 2120 // Propagate extension type if any 2121 if (ExtendKind == ISD::SIGN_EXTEND) 2122 Flags.setSExt(); 2123 else if (ExtendKind == ISD::ZERO_EXTEND) 2124 Flags.setZExt(); 2125 2126 for (unsigned i = 0; i < NumParts; ++i) { 2127 Outs.push_back(ISD::OutputArg(Flags, 2128 Parts[i].getValueType().getSimpleVT(), 2129 VT, /*isfixed=*/true, 0, 0)); 2130 OutVals.push_back(Parts[i]); 2131 } 2132 } 2133 } 2134 } 2135 2136 // Push in swifterror virtual register as the last element of Outs. This makes 2137 // sure swifterror virtual register will be returned in the swifterror 2138 // physical register. 2139 const Function *F = I.getParent()->getParent(); 2140 if (TLI.supportSwiftError() && 2141 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 2142 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 2143 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2144 Flags.setSwiftError(); 2145 Outs.push_back(ISD::OutputArg( 2146 Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)), 2147 /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0)); 2148 // Create SDNode for the swifterror virtual register. 2149 OutVals.push_back( 2150 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 2151 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 2152 EVT(TLI.getPointerTy(DL)))); 2153 } 2154 2155 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 2156 CallingConv::ID CallConv = 2157 DAG.getMachineFunction().getFunction().getCallingConv(); 2158 Chain = DAG.getTargetLoweringInfo().LowerReturn( 2159 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 2160 2161 // Verify that the target's LowerReturn behaved as expected. 2162 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 2163 "LowerReturn didn't return a valid chain!"); 2164 2165 // Update the DAG with the new chain value resulting from return lowering. 2166 DAG.setRoot(Chain); 2167 } 2168 2169 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 2170 /// created for it, emit nodes to copy the value into the virtual 2171 /// registers. 2172 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 2173 // Skip empty types 2174 if (V->getType()->isEmptyTy()) 2175 return; 2176 2177 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 2178 if (VMI != FuncInfo.ValueMap.end()) { 2179 assert((!V->use_empty() || isa<CallBrInst>(V)) && 2180 "Unused value assigned virtual registers!"); 2181 CopyValueToVirtualRegister(V, VMI->second); 2182 } 2183 } 2184 2185 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 2186 /// the current basic block, add it to ValueMap now so that we'll get a 2187 /// CopyTo/FromReg. 2188 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 2189 // No need to export constants. 2190 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 2191 2192 // Already exported? 2193 if (FuncInfo.isExportedInst(V)) return; 2194 2195 Register Reg = FuncInfo.InitializeRegForValue(V); 2196 CopyValueToVirtualRegister(V, Reg); 2197 } 2198 2199 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 2200 const BasicBlock *FromBB) { 2201 // The operands of the setcc have to be in this block. We don't know 2202 // how to export them from some other block. 2203 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 2204 // Can export from current BB. 2205 if (VI->getParent() == FromBB) 2206 return true; 2207 2208 // Is already exported, noop. 2209 return FuncInfo.isExportedInst(V); 2210 } 2211 2212 // If this is an argument, we can export it if the BB is the entry block or 2213 // if it is already exported. 2214 if (isa<Argument>(V)) { 2215 if (FromBB->isEntryBlock()) 2216 return true; 2217 2218 // Otherwise, can only export this if it is already exported. 2219 return FuncInfo.isExportedInst(V); 2220 } 2221 2222 // Otherwise, constants can always be exported. 2223 return true; 2224 } 2225 2226 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2227 BranchProbability 2228 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2229 const MachineBasicBlock *Dst) const { 2230 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2231 const BasicBlock *SrcBB = Src->getBasicBlock(); 2232 const BasicBlock *DstBB = Dst->getBasicBlock(); 2233 if (!BPI) { 2234 // If BPI is not available, set the default probability as 1 / N, where N is 2235 // the number of successors. 2236 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2237 return BranchProbability(1, SuccSize); 2238 } 2239 return BPI->getEdgeProbability(SrcBB, DstBB); 2240 } 2241 2242 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2243 MachineBasicBlock *Dst, 2244 BranchProbability Prob) { 2245 if (!FuncInfo.BPI) 2246 Src->addSuccessorWithoutProb(Dst); 2247 else { 2248 if (Prob.isUnknown()) 2249 Prob = getEdgeProbability(Src, Dst); 2250 Src->addSuccessor(Dst, Prob); 2251 } 2252 } 2253 2254 static bool InBlock(const Value *V, const BasicBlock *BB) { 2255 if (const Instruction *I = dyn_cast<Instruction>(V)) 2256 return I->getParent() == BB; 2257 return true; 2258 } 2259 2260 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2261 /// This function emits a branch and is used at the leaves of an OR or an 2262 /// AND operator tree. 2263 void 2264 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2265 MachineBasicBlock *TBB, 2266 MachineBasicBlock *FBB, 2267 MachineBasicBlock *CurBB, 2268 MachineBasicBlock *SwitchBB, 2269 BranchProbability TProb, 2270 BranchProbability FProb, 2271 bool InvertCond) { 2272 const BasicBlock *BB = CurBB->getBasicBlock(); 2273 2274 // If the leaf of the tree is a comparison, merge the condition into 2275 // the caseblock. 2276 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2277 // The operands of the cmp have to be in this block. We don't know 2278 // how to export them from some other block. If this is the first block 2279 // of the sequence, no exporting is needed. 2280 if (CurBB == SwitchBB || 2281 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2282 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2283 ISD::CondCode Condition; 2284 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2285 ICmpInst::Predicate Pred = 2286 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2287 Condition = getICmpCondCode(Pred); 2288 } else { 2289 const FCmpInst *FC = cast<FCmpInst>(Cond); 2290 FCmpInst::Predicate Pred = 2291 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2292 Condition = getFCmpCondCode(Pred); 2293 if (TM.Options.NoNaNsFPMath) 2294 Condition = getFCmpCodeWithoutNaN(Condition); 2295 } 2296 2297 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2298 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2299 SL->SwitchCases.push_back(CB); 2300 return; 2301 } 2302 } 2303 2304 // Create a CaseBlock record representing this branch. 2305 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2306 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2307 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2308 SL->SwitchCases.push_back(CB); 2309 } 2310 2311 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2312 MachineBasicBlock *TBB, 2313 MachineBasicBlock *FBB, 2314 MachineBasicBlock *CurBB, 2315 MachineBasicBlock *SwitchBB, 2316 Instruction::BinaryOps Opc, 2317 BranchProbability TProb, 2318 BranchProbability FProb, 2319 bool InvertCond) { 2320 // Skip over not part of the tree and remember to invert op and operands at 2321 // next level. 2322 Value *NotCond; 2323 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2324 InBlock(NotCond, CurBB->getBasicBlock())) { 2325 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2326 !InvertCond); 2327 return; 2328 } 2329 2330 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2331 const Value *BOpOp0, *BOpOp1; 2332 // Compute the effective opcode for Cond, taking into account whether it needs 2333 // to be inverted, e.g. 2334 // and (not (or A, B)), C 2335 // gets lowered as 2336 // and (and (not A, not B), C) 2337 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 2338 if (BOp) { 2339 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 2340 ? Instruction::And 2341 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 2342 ? Instruction::Or 2343 : (Instruction::BinaryOps)0); 2344 if (InvertCond) { 2345 if (BOpc == Instruction::And) 2346 BOpc = Instruction::Or; 2347 else if (BOpc == Instruction::Or) 2348 BOpc = Instruction::And; 2349 } 2350 } 2351 2352 // If this node is not part of the or/and tree, emit it as a branch. 2353 // Note that all nodes in the tree should have same opcode. 2354 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 2355 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 2356 !InBlock(BOpOp0, CurBB->getBasicBlock()) || 2357 !InBlock(BOpOp1, CurBB->getBasicBlock())) { 2358 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2359 TProb, FProb, InvertCond); 2360 return; 2361 } 2362 2363 // Create TmpBB after CurBB. 2364 MachineFunction::iterator BBI(CurBB); 2365 MachineFunction &MF = DAG.getMachineFunction(); 2366 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2367 CurBB->getParent()->insert(++BBI, TmpBB); 2368 2369 if (Opc == Instruction::Or) { 2370 // Codegen X | Y as: 2371 // BB1: 2372 // jmp_if_X TBB 2373 // jmp TmpBB 2374 // TmpBB: 2375 // jmp_if_Y TBB 2376 // jmp FBB 2377 // 2378 2379 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2380 // The requirement is that 2381 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2382 // = TrueProb for original BB. 2383 // Assuming the original probabilities are A and B, one choice is to set 2384 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2385 // A/(1+B) and 2B/(1+B). This choice assumes that 2386 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2387 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2388 // TmpBB, but the math is more complicated. 2389 2390 auto NewTrueProb = TProb / 2; 2391 auto NewFalseProb = TProb / 2 + FProb; 2392 // Emit the LHS condition. 2393 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 2394 NewFalseProb, InvertCond); 2395 2396 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2397 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2398 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2399 // Emit the RHS condition into TmpBB. 2400 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2401 Probs[1], InvertCond); 2402 } else { 2403 assert(Opc == Instruction::And && "Unknown merge op!"); 2404 // Codegen X & Y as: 2405 // BB1: 2406 // jmp_if_X TmpBB 2407 // jmp FBB 2408 // TmpBB: 2409 // jmp_if_Y TBB 2410 // jmp FBB 2411 // 2412 // This requires creation of TmpBB after CurBB. 2413 2414 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2415 // The requirement is that 2416 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2417 // = FalseProb for original BB. 2418 // Assuming the original probabilities are A and B, one choice is to set 2419 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2420 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2421 // TrueProb for BB1 * FalseProb for TmpBB. 2422 2423 auto NewTrueProb = TProb + FProb / 2; 2424 auto NewFalseProb = FProb / 2; 2425 // Emit the LHS condition. 2426 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 2427 NewFalseProb, InvertCond); 2428 2429 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2430 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2431 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2432 // Emit the RHS condition into TmpBB. 2433 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2434 Probs[1], InvertCond); 2435 } 2436 } 2437 2438 /// If the set of cases should be emitted as a series of branches, return true. 2439 /// If we should emit this as a bunch of and/or'd together conditions, return 2440 /// false. 2441 bool 2442 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2443 if (Cases.size() != 2) return true; 2444 2445 // If this is two comparisons of the same values or'd or and'd together, they 2446 // will get folded into a single comparison, so don't emit two blocks. 2447 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2448 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2449 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2450 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2451 return false; 2452 } 2453 2454 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2455 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2456 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2457 Cases[0].CC == Cases[1].CC && 2458 isa<Constant>(Cases[0].CmpRHS) && 2459 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2460 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2461 return false; 2462 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2463 return false; 2464 } 2465 2466 return true; 2467 } 2468 2469 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2470 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2471 2472 // Update machine-CFG edges. 2473 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2474 2475 if (I.isUnconditional()) { 2476 // Update machine-CFG edges. 2477 BrMBB->addSuccessor(Succ0MBB); 2478 2479 // If this is not a fall-through branch or optimizations are switched off, 2480 // emit the branch. 2481 if (Succ0MBB != NextBlock(BrMBB) || 2482 TM.getOptLevel() == CodeGenOptLevel::None) { 2483 auto Br = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 2484 getControlRoot(), DAG.getBasicBlock(Succ0MBB)); 2485 setValue(&I, Br); 2486 DAG.setRoot(Br); 2487 } 2488 2489 return; 2490 } 2491 2492 // If this condition is one of the special cases we handle, do special stuff 2493 // now. 2494 const Value *CondVal = I.getCondition(); 2495 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2496 2497 // If this is a series of conditions that are or'd or and'd together, emit 2498 // this as a sequence of branches instead of setcc's with and/or operations. 2499 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2500 // unpredictable branches, and vector extracts because those jumps are likely 2501 // expensive for any target), this should improve performance. 2502 // For example, instead of something like: 2503 // cmp A, B 2504 // C = seteq 2505 // cmp D, E 2506 // F = setle 2507 // or C, F 2508 // jnz foo 2509 // Emit: 2510 // cmp A, B 2511 // je foo 2512 // cmp D, E 2513 // jle foo 2514 const Instruction *BOp = dyn_cast<Instruction>(CondVal); 2515 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp && 2516 BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) { 2517 Value *Vec; 2518 const Value *BOp0, *BOp1; 2519 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 2520 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 2521 Opcode = Instruction::And; 2522 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 2523 Opcode = Instruction::Or; 2524 2525 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2526 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { 2527 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode, 2528 getEdgeProbability(BrMBB, Succ0MBB), 2529 getEdgeProbability(BrMBB, Succ1MBB), 2530 /*InvertCond=*/false); 2531 // If the compares in later blocks need to use values not currently 2532 // exported from this block, export them now. This block should always 2533 // be the first entry. 2534 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2535 2536 // Allow some cases to be rejected. 2537 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2538 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2539 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2540 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2541 } 2542 2543 // Emit the branch for this block. 2544 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2545 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2546 return; 2547 } 2548 2549 // Okay, we decided not to do this, remove any inserted MBB's and clear 2550 // SwitchCases. 2551 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2552 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2553 2554 SL->SwitchCases.clear(); 2555 } 2556 } 2557 2558 // Create a CaseBlock record representing this branch. 2559 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2560 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2561 2562 // Use visitSwitchCase to actually insert the fast branch sequence for this 2563 // cond branch. 2564 visitSwitchCase(CB, BrMBB); 2565 } 2566 2567 /// visitSwitchCase - Emits the necessary code to represent a single node in 2568 /// the binary search tree resulting from lowering a switch instruction. 2569 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2570 MachineBasicBlock *SwitchBB) { 2571 SDValue Cond; 2572 SDValue CondLHS = getValue(CB.CmpLHS); 2573 SDLoc dl = CB.DL; 2574 2575 if (CB.CC == ISD::SETTRUE) { 2576 // Branch or fall through to TrueBB. 2577 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2578 SwitchBB->normalizeSuccProbs(); 2579 if (CB.TrueBB != NextBlock(SwitchBB)) { 2580 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2581 DAG.getBasicBlock(CB.TrueBB))); 2582 } 2583 return; 2584 } 2585 2586 auto &TLI = DAG.getTargetLoweringInfo(); 2587 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2588 2589 // Build the setcc now. 2590 if (!CB.CmpMHS) { 2591 // Fold "(X == true)" to X and "(X == false)" to !X to 2592 // handle common cases produced by branch lowering. 2593 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2594 CB.CC == ISD::SETEQ) 2595 Cond = CondLHS; 2596 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2597 CB.CC == ISD::SETEQ) { 2598 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2599 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2600 } else { 2601 SDValue CondRHS = getValue(CB.CmpRHS); 2602 2603 // If a pointer's DAG type is larger than its memory type then the DAG 2604 // values are zero-extended. This breaks signed comparisons so truncate 2605 // back to the underlying type before doing the compare. 2606 if (CondLHS.getValueType() != MemVT) { 2607 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2608 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2609 } 2610 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2611 } 2612 } else { 2613 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2614 2615 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2616 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2617 2618 SDValue CmpOp = getValue(CB.CmpMHS); 2619 EVT VT = CmpOp.getValueType(); 2620 2621 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2622 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2623 ISD::SETLE); 2624 } else { 2625 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2626 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2627 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2628 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2629 } 2630 } 2631 2632 // Update successor info 2633 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2634 // TrueBB and FalseBB are always different unless the incoming IR is 2635 // degenerate. This only happens when running llc on weird IR. 2636 if (CB.TrueBB != CB.FalseBB) 2637 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2638 SwitchBB->normalizeSuccProbs(); 2639 2640 // If the lhs block is the next block, invert the condition so that we can 2641 // fall through to the lhs instead of the rhs block. 2642 if (CB.TrueBB == NextBlock(SwitchBB)) { 2643 std::swap(CB.TrueBB, CB.FalseBB); 2644 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2645 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2646 } 2647 2648 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2649 MVT::Other, getControlRoot(), Cond, 2650 DAG.getBasicBlock(CB.TrueBB)); 2651 2652 setValue(CurInst, BrCond); 2653 2654 // Insert the false branch. Do this even if it's a fall through branch, 2655 // this makes it easier to do DAG optimizations which require inverting 2656 // the branch condition. 2657 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2658 DAG.getBasicBlock(CB.FalseBB)); 2659 2660 DAG.setRoot(BrCond); 2661 } 2662 2663 /// visitJumpTable - Emit JumpTable node in the current MBB 2664 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2665 // Emit the code for the jump table 2666 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2667 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2668 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2669 JT.Reg, PTy); 2670 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2671 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2672 MVT::Other, Index.getValue(1), 2673 Table, Index); 2674 DAG.setRoot(BrJumpTable); 2675 } 2676 2677 /// visitJumpTableHeader - This function emits necessary code to produce index 2678 /// in the JumpTable from switch case. 2679 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2680 JumpTableHeader &JTH, 2681 MachineBasicBlock *SwitchBB) { 2682 SDLoc dl = getCurSDLoc(); 2683 2684 // Subtract the lowest switch case value from the value being switched on. 2685 SDValue SwitchOp = getValue(JTH.SValue); 2686 EVT VT = SwitchOp.getValueType(); 2687 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2688 DAG.getConstant(JTH.First, dl, VT)); 2689 2690 // The SDNode we just created, which holds the value being switched on minus 2691 // the smallest case value, needs to be copied to a virtual register so it 2692 // can be used as an index into the jump table in a subsequent basic block. 2693 // This value may be smaller or larger than the target's pointer type, and 2694 // therefore require extension or truncating. 2695 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2696 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2697 2698 unsigned JumpTableReg = 2699 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2700 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2701 JumpTableReg, SwitchOp); 2702 JT.Reg = JumpTableReg; 2703 2704 if (!JTH.FallthroughUnreachable) { 2705 // Emit the range check for the jump table, and branch to the default block 2706 // for the switch statement if the value being switched on exceeds the 2707 // largest case in the switch. 2708 SDValue CMP = DAG.getSetCC( 2709 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2710 Sub.getValueType()), 2711 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2712 2713 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2714 MVT::Other, CopyTo, CMP, 2715 DAG.getBasicBlock(JT.Default)); 2716 2717 // Avoid emitting unnecessary branches to the next block. 2718 if (JT.MBB != NextBlock(SwitchBB)) 2719 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2720 DAG.getBasicBlock(JT.MBB)); 2721 2722 DAG.setRoot(BrCond); 2723 } else { 2724 // Avoid emitting unnecessary branches to the next block. 2725 if (JT.MBB != NextBlock(SwitchBB)) 2726 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2727 DAG.getBasicBlock(JT.MBB))); 2728 else 2729 DAG.setRoot(CopyTo); 2730 } 2731 } 2732 2733 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2734 /// variable if there exists one. 2735 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2736 SDValue &Chain) { 2737 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2738 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2739 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2740 MachineFunction &MF = DAG.getMachineFunction(); 2741 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2742 MachineSDNode *Node = 2743 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2744 if (Global) { 2745 MachinePointerInfo MPInfo(Global); 2746 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2747 MachineMemOperand::MODereferenceable; 2748 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2749 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); 2750 DAG.setNodeMemRefs(Node, {MemRef}); 2751 } 2752 if (PtrTy != PtrMemTy) 2753 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2754 return SDValue(Node, 0); 2755 } 2756 2757 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2758 /// tail spliced into a stack protector check success bb. 2759 /// 2760 /// For a high level explanation of how this fits into the stack protector 2761 /// generation see the comment on the declaration of class 2762 /// StackProtectorDescriptor. 2763 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2764 MachineBasicBlock *ParentBB) { 2765 2766 // First create the loads to the guard/stack slot for the comparison. 2767 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2768 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2769 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2770 2771 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2772 int FI = MFI.getStackProtectorIndex(); 2773 2774 SDValue Guard; 2775 SDLoc dl = getCurSDLoc(); 2776 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2777 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2778 Align Align = 2779 DAG.getDataLayout().getPrefTypeAlign(PointerType::get(M.getContext(), 0)); 2780 2781 // Generate code to load the content of the guard slot. 2782 SDValue GuardVal = DAG.getLoad( 2783 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2784 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2785 MachineMemOperand::MOVolatile); 2786 2787 if (TLI.useStackGuardXorFP()) 2788 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2789 2790 // Retrieve guard check function, nullptr if instrumentation is inlined. 2791 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2792 // The target provides a guard check function to validate the guard value. 2793 // Generate a call to that function with the content of the guard slot as 2794 // argument. 2795 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2796 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2797 2798 TargetLowering::ArgListTy Args; 2799 TargetLowering::ArgListEntry Entry; 2800 Entry.Node = GuardVal; 2801 Entry.Ty = FnTy->getParamType(0); 2802 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg)) 2803 Entry.IsInReg = true; 2804 Args.push_back(Entry); 2805 2806 TargetLowering::CallLoweringInfo CLI(DAG); 2807 CLI.setDebugLoc(getCurSDLoc()) 2808 .setChain(DAG.getEntryNode()) 2809 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2810 getValue(GuardCheckFn), std::move(Args)); 2811 2812 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2813 DAG.setRoot(Result.second); 2814 return; 2815 } 2816 2817 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2818 // Otherwise, emit a volatile load to retrieve the stack guard value. 2819 SDValue Chain = DAG.getEntryNode(); 2820 if (TLI.useLoadStackGuardNode()) { 2821 Guard = getLoadStackGuard(DAG, dl, Chain); 2822 } else { 2823 const Value *IRGuard = TLI.getSDagStackGuard(M); 2824 SDValue GuardPtr = getValue(IRGuard); 2825 2826 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2827 MachinePointerInfo(IRGuard, 0), Align, 2828 MachineMemOperand::MOVolatile); 2829 } 2830 2831 // Perform the comparison via a getsetcc. 2832 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2833 *DAG.getContext(), 2834 Guard.getValueType()), 2835 Guard, GuardVal, ISD::SETNE); 2836 2837 // If the guard/stackslot do not equal, branch to failure MBB. 2838 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2839 MVT::Other, GuardVal.getOperand(0), 2840 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2841 // Otherwise branch to success MBB. 2842 SDValue Br = DAG.getNode(ISD::BR, dl, 2843 MVT::Other, BrCond, 2844 DAG.getBasicBlock(SPD.getSuccessMBB())); 2845 2846 DAG.setRoot(Br); 2847 } 2848 2849 /// Codegen the failure basic block for a stack protector check. 2850 /// 2851 /// A failure stack protector machine basic block consists simply of a call to 2852 /// __stack_chk_fail(). 2853 /// 2854 /// For a high level explanation of how this fits into the stack protector 2855 /// generation see the comment on the declaration of class 2856 /// StackProtectorDescriptor. 2857 void 2858 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2859 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2860 TargetLowering::MakeLibCallOptions CallOptions; 2861 CallOptions.setDiscardResult(true); 2862 SDValue Chain = 2863 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2864 std::nullopt, CallOptions, getCurSDLoc()) 2865 .second; 2866 // On PS4/PS5, the "return address" must still be within the calling 2867 // function, even if it's at the very end, so emit an explicit TRAP here. 2868 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2869 if (TM.getTargetTriple().isPS()) 2870 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2871 // WebAssembly needs an unreachable instruction after a non-returning call, 2872 // because the function return type can be different from __stack_chk_fail's 2873 // return type (void). 2874 if (TM.getTargetTriple().isWasm()) 2875 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2876 2877 DAG.setRoot(Chain); 2878 } 2879 2880 /// visitBitTestHeader - This function emits necessary code to produce value 2881 /// suitable for "bit tests" 2882 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2883 MachineBasicBlock *SwitchBB) { 2884 SDLoc dl = getCurSDLoc(); 2885 2886 // Subtract the minimum value. 2887 SDValue SwitchOp = getValue(B.SValue); 2888 EVT VT = SwitchOp.getValueType(); 2889 SDValue RangeSub = 2890 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2891 2892 // Determine the type of the test operands. 2893 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2894 bool UsePtrType = false; 2895 if (!TLI.isTypeLegal(VT)) { 2896 UsePtrType = true; 2897 } else { 2898 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2899 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2900 // Switch table case range are encoded into series of masks. 2901 // Just use pointer type, it's guaranteed to fit. 2902 UsePtrType = true; 2903 break; 2904 } 2905 } 2906 SDValue Sub = RangeSub; 2907 if (UsePtrType) { 2908 VT = TLI.getPointerTy(DAG.getDataLayout()); 2909 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2910 } 2911 2912 B.RegVT = VT.getSimpleVT(); 2913 B.Reg = FuncInfo.CreateReg(B.RegVT); 2914 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2915 2916 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2917 2918 if (!B.FallthroughUnreachable) 2919 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2920 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2921 SwitchBB->normalizeSuccProbs(); 2922 2923 SDValue Root = CopyTo; 2924 if (!B.FallthroughUnreachable) { 2925 // Conditional branch to the default block. 2926 SDValue RangeCmp = DAG.getSetCC(dl, 2927 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2928 RangeSub.getValueType()), 2929 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2930 ISD::SETUGT); 2931 2932 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2933 DAG.getBasicBlock(B.Default)); 2934 } 2935 2936 // Avoid emitting unnecessary branches to the next block. 2937 if (MBB != NextBlock(SwitchBB)) 2938 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2939 2940 DAG.setRoot(Root); 2941 } 2942 2943 /// visitBitTestCase - this function produces one "bit test" 2944 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2945 MachineBasicBlock* NextMBB, 2946 BranchProbability BranchProbToNext, 2947 unsigned Reg, 2948 BitTestCase &B, 2949 MachineBasicBlock *SwitchBB) { 2950 SDLoc dl = getCurSDLoc(); 2951 MVT VT = BB.RegVT; 2952 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2953 SDValue Cmp; 2954 unsigned PopCount = llvm::popcount(B.Mask); 2955 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2956 if (PopCount == 1) { 2957 // Testing for a single bit; just compare the shift count with what it 2958 // would need to be to shift a 1 bit in that position. 2959 Cmp = DAG.getSetCC( 2960 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2961 ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT), 2962 ISD::SETEQ); 2963 } else if (PopCount == BB.Range) { 2964 // There is only one zero bit in the range, test for it directly. 2965 Cmp = DAG.getSetCC( 2966 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2967 ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE); 2968 } else { 2969 // Make desired shift 2970 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2971 DAG.getConstant(1, dl, VT), ShiftOp); 2972 2973 // Emit bit tests and jumps 2974 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2975 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2976 Cmp = DAG.getSetCC( 2977 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2978 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2979 } 2980 2981 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2982 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2983 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2984 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2985 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2986 // one as they are relative probabilities (and thus work more like weights), 2987 // and hence we need to normalize them to let the sum of them become one. 2988 SwitchBB->normalizeSuccProbs(); 2989 2990 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2991 MVT::Other, getControlRoot(), 2992 Cmp, DAG.getBasicBlock(B.TargetBB)); 2993 2994 // Avoid emitting unnecessary branches to the next block. 2995 if (NextMBB != NextBlock(SwitchBB)) 2996 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2997 DAG.getBasicBlock(NextMBB)); 2998 2999 DAG.setRoot(BrAnd); 3000 } 3001 3002 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 3003 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 3004 3005 // Retrieve successors. Look through artificial IR level blocks like 3006 // catchswitch for successors. 3007 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 3008 const BasicBlock *EHPadBB = I.getSuccessor(1); 3009 MachineBasicBlock *EHPadMBB = FuncInfo.MBBMap[EHPadBB]; 3010 3011 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 3012 // have to do anything here to lower funclet bundles. 3013 assert(!I.hasOperandBundlesOtherThan( 3014 {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, 3015 LLVMContext::OB_gc_live, LLVMContext::OB_funclet, 3016 LLVMContext::OB_cfguardtarget, 3017 LLVMContext::OB_clang_arc_attachedcall}) && 3018 "Cannot lower invokes with arbitrary operand bundles yet!"); 3019 3020 const Value *Callee(I.getCalledOperand()); 3021 const Function *Fn = dyn_cast<Function>(Callee); 3022 if (isa<InlineAsm>(Callee)) 3023 visitInlineAsm(I, EHPadBB); 3024 else if (Fn && Fn->isIntrinsic()) { 3025 switch (Fn->getIntrinsicID()) { 3026 default: 3027 llvm_unreachable("Cannot invoke this intrinsic"); 3028 case Intrinsic::donothing: 3029 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 3030 case Intrinsic::seh_try_begin: 3031 case Intrinsic::seh_scope_begin: 3032 case Intrinsic::seh_try_end: 3033 case Intrinsic::seh_scope_end: 3034 if (EHPadMBB) 3035 // a block referenced by EH table 3036 // so dtor-funclet not removed by opts 3037 EHPadMBB->setMachineBlockAddressTaken(); 3038 break; 3039 case Intrinsic::experimental_patchpoint_void: 3040 case Intrinsic::experimental_patchpoint_i64: 3041 visitPatchpoint(I, EHPadBB); 3042 break; 3043 case Intrinsic::experimental_gc_statepoint: 3044 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 3045 break; 3046 case Intrinsic::wasm_rethrow: { 3047 // This is usually done in visitTargetIntrinsic, but this intrinsic is 3048 // special because it can be invoked, so we manually lower it to a DAG 3049 // node here. 3050 SmallVector<SDValue, 8> Ops; 3051 Ops.push_back(getRoot()); // inchain 3052 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3053 Ops.push_back( 3054 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(), 3055 TLI.getPointerTy(DAG.getDataLayout()))); 3056 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 3057 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 3058 break; 3059 } 3060 } 3061 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 3062 // Currently we do not lower any intrinsic calls with deopt operand bundles. 3063 // Eventually we will support lowering the @llvm.experimental.deoptimize 3064 // intrinsic, and right now there are no plans to support other intrinsics 3065 // with deopt state. 3066 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 3067 } else { 3068 LowerCallTo(I, getValue(Callee), false, false, EHPadBB); 3069 } 3070 3071 // If the value of the invoke is used outside of its defining block, make it 3072 // available as a virtual register. 3073 // We already took care of the exported value for the statepoint instruction 3074 // during call to the LowerStatepoint. 3075 if (!isa<GCStatepointInst>(I)) { 3076 CopyToExportRegsIfNeeded(&I); 3077 } 3078 3079 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 3080 BranchProbabilityInfo *BPI = FuncInfo.BPI; 3081 BranchProbability EHPadBBProb = 3082 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 3083 : BranchProbability::getZero(); 3084 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 3085 3086 // Update successor info. 3087 addSuccessorWithProb(InvokeMBB, Return); 3088 for (auto &UnwindDest : UnwindDests) { 3089 UnwindDest.first->setIsEHPad(); 3090 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 3091 } 3092 InvokeMBB->normalizeSuccProbs(); 3093 3094 // Drop into normal successor. 3095 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 3096 DAG.getBasicBlock(Return))); 3097 } 3098 3099 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 3100 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 3101 3102 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 3103 // have to do anything here to lower funclet bundles. 3104 assert(!I.hasOperandBundlesOtherThan( 3105 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 3106 "Cannot lower callbrs with arbitrary operand bundles yet!"); 3107 3108 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 3109 visitInlineAsm(I); 3110 CopyToExportRegsIfNeeded(&I); 3111 3112 // Retrieve successors. 3113 SmallPtrSet<BasicBlock *, 8> Dests; 3114 Dests.insert(I.getDefaultDest()); 3115 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 3116 3117 // Update successor info. 3118 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 3119 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 3120 BasicBlock *Dest = I.getIndirectDest(i); 3121 MachineBasicBlock *Target = FuncInfo.MBBMap[Dest]; 3122 Target->setIsInlineAsmBrIndirectTarget(); 3123 Target->setMachineBlockAddressTaken(); 3124 Target->setLabelMustBeEmitted(); 3125 // Don't add duplicate machine successors. 3126 if (Dests.insert(Dest).second) 3127 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 3128 } 3129 CallBrMBB->normalizeSuccProbs(); 3130 3131 // Drop into default successor. 3132 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 3133 MVT::Other, getControlRoot(), 3134 DAG.getBasicBlock(Return))); 3135 } 3136 3137 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 3138 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 3139 } 3140 3141 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 3142 assert(FuncInfo.MBB->isEHPad() && 3143 "Call to landingpad not in landing pad!"); 3144 3145 // If there aren't registers to copy the values into (e.g., during SjLj 3146 // exceptions), then don't bother to create these DAG nodes. 3147 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3148 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 3149 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 3150 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 3151 return; 3152 3153 // If landingpad's return type is token type, we don't create DAG nodes 3154 // for its exception pointer and selector value. The extraction of exception 3155 // pointer or selector value from token type landingpads is not currently 3156 // supported. 3157 if (LP.getType()->isTokenTy()) 3158 return; 3159 3160 SmallVector<EVT, 2> ValueVTs; 3161 SDLoc dl = getCurSDLoc(); 3162 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 3163 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 3164 3165 // Get the two live-in registers as SDValues. The physregs have already been 3166 // copied into virtual registers. 3167 SDValue Ops[2]; 3168 if (FuncInfo.ExceptionPointerVirtReg) { 3169 Ops[0] = DAG.getZExtOrTrunc( 3170 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3171 FuncInfo.ExceptionPointerVirtReg, 3172 TLI.getPointerTy(DAG.getDataLayout())), 3173 dl, ValueVTs[0]); 3174 } else { 3175 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 3176 } 3177 Ops[1] = DAG.getZExtOrTrunc( 3178 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3179 FuncInfo.ExceptionSelectorVirtReg, 3180 TLI.getPointerTy(DAG.getDataLayout())), 3181 dl, ValueVTs[1]); 3182 3183 // Merge into one. 3184 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 3185 DAG.getVTList(ValueVTs), Ops); 3186 setValue(&LP, Res); 3187 } 3188 3189 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 3190 MachineBasicBlock *Last) { 3191 // Update JTCases. 3192 for (JumpTableBlock &JTB : SL->JTCases) 3193 if (JTB.first.HeaderBB == First) 3194 JTB.first.HeaderBB = Last; 3195 3196 // Update BitTestCases. 3197 for (BitTestBlock &BTB : SL->BitTestCases) 3198 if (BTB.Parent == First) 3199 BTB.Parent = Last; 3200 } 3201 3202 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 3203 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 3204 3205 // Update machine-CFG edges with unique successors. 3206 SmallSet<BasicBlock*, 32> Done; 3207 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 3208 BasicBlock *BB = I.getSuccessor(i); 3209 bool Inserted = Done.insert(BB).second; 3210 if (!Inserted) 3211 continue; 3212 3213 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 3214 addSuccessorWithProb(IndirectBrMBB, Succ); 3215 } 3216 IndirectBrMBB->normalizeSuccProbs(); 3217 3218 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 3219 MVT::Other, getControlRoot(), 3220 getValue(I.getAddress()))); 3221 } 3222 3223 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 3224 if (!DAG.getTarget().Options.TrapUnreachable) 3225 return; 3226 3227 // We may be able to ignore unreachable behind a noreturn call. 3228 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 3229 if (const CallInst *Call = dyn_cast_or_null<CallInst>(I.getPrevNode())) { 3230 if (Call->doesNotReturn()) 3231 return; 3232 } 3233 } 3234 3235 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3236 } 3237 3238 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3239 SDNodeFlags Flags; 3240 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3241 Flags.copyFMF(*FPOp); 3242 3243 SDValue Op = getValue(I.getOperand(0)); 3244 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3245 Op, Flags); 3246 setValue(&I, UnNodeValue); 3247 } 3248 3249 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3250 SDNodeFlags Flags; 3251 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3252 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3253 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3254 } 3255 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 3256 Flags.setExact(ExactOp->isExact()); 3257 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3258 Flags.copyFMF(*FPOp); 3259 3260 SDValue Op1 = getValue(I.getOperand(0)); 3261 SDValue Op2 = getValue(I.getOperand(1)); 3262 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3263 Op1, Op2, Flags); 3264 setValue(&I, BinNodeValue); 3265 } 3266 3267 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3268 SDValue Op1 = getValue(I.getOperand(0)); 3269 SDValue Op2 = getValue(I.getOperand(1)); 3270 3271 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3272 Op1.getValueType(), DAG.getDataLayout()); 3273 3274 // Coerce the shift amount to the right type if we can. This exposes the 3275 // truncate or zext to optimization early. 3276 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3277 assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) && 3278 "Unexpected shift type"); 3279 Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy); 3280 } 3281 3282 bool nuw = false; 3283 bool nsw = false; 3284 bool exact = false; 3285 3286 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3287 3288 if (const OverflowingBinaryOperator *OFBinOp = 3289 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3290 nuw = OFBinOp->hasNoUnsignedWrap(); 3291 nsw = OFBinOp->hasNoSignedWrap(); 3292 } 3293 if (const PossiblyExactOperator *ExactOp = 3294 dyn_cast<const PossiblyExactOperator>(&I)) 3295 exact = ExactOp->isExact(); 3296 } 3297 SDNodeFlags Flags; 3298 Flags.setExact(exact); 3299 Flags.setNoSignedWrap(nsw); 3300 Flags.setNoUnsignedWrap(nuw); 3301 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3302 Flags); 3303 setValue(&I, Res); 3304 } 3305 3306 void SelectionDAGBuilder::visitSDiv(const User &I) { 3307 SDValue Op1 = getValue(I.getOperand(0)); 3308 SDValue Op2 = getValue(I.getOperand(1)); 3309 3310 SDNodeFlags Flags; 3311 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3312 cast<PossiblyExactOperator>(&I)->isExact()); 3313 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3314 Op2, Flags)); 3315 } 3316 3317 void SelectionDAGBuilder::visitICmp(const User &I) { 3318 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3319 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3320 predicate = IC->getPredicate(); 3321 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3322 predicate = ICmpInst::Predicate(IC->getPredicate()); 3323 SDValue Op1 = getValue(I.getOperand(0)); 3324 SDValue Op2 = getValue(I.getOperand(1)); 3325 ISD::CondCode Opcode = getICmpCondCode(predicate); 3326 3327 auto &TLI = DAG.getTargetLoweringInfo(); 3328 EVT MemVT = 3329 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3330 3331 // If a pointer's DAG type is larger than its memory type then the DAG values 3332 // are zero-extended. This breaks signed comparisons so truncate back to the 3333 // underlying type before doing the compare. 3334 if (Op1.getValueType() != MemVT) { 3335 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3336 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3337 } 3338 3339 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3340 I.getType()); 3341 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3342 } 3343 3344 void SelectionDAGBuilder::visitFCmp(const User &I) { 3345 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3346 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3347 predicate = FC->getPredicate(); 3348 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3349 predicate = FCmpInst::Predicate(FC->getPredicate()); 3350 SDValue Op1 = getValue(I.getOperand(0)); 3351 SDValue Op2 = getValue(I.getOperand(1)); 3352 3353 ISD::CondCode Condition = getFCmpCondCode(predicate); 3354 auto *FPMO = cast<FPMathOperator>(&I); 3355 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3356 Condition = getFCmpCodeWithoutNaN(Condition); 3357 3358 SDNodeFlags Flags; 3359 Flags.copyFMF(*FPMO); 3360 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3361 3362 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3363 I.getType()); 3364 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3365 } 3366 3367 // Check if the condition of the select has one use or two users that are both 3368 // selects with the same condition. 3369 static bool hasOnlySelectUsers(const Value *Cond) { 3370 return llvm::all_of(Cond->users(), [](const Value *V) { 3371 return isa<SelectInst>(V); 3372 }); 3373 } 3374 3375 void SelectionDAGBuilder::visitSelect(const User &I) { 3376 SmallVector<EVT, 4> ValueVTs; 3377 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3378 ValueVTs); 3379 unsigned NumValues = ValueVTs.size(); 3380 if (NumValues == 0) return; 3381 3382 SmallVector<SDValue, 4> Values(NumValues); 3383 SDValue Cond = getValue(I.getOperand(0)); 3384 SDValue LHSVal = getValue(I.getOperand(1)); 3385 SDValue RHSVal = getValue(I.getOperand(2)); 3386 SmallVector<SDValue, 1> BaseOps(1, Cond); 3387 ISD::NodeType OpCode = 3388 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3389 3390 bool IsUnaryAbs = false; 3391 bool Negate = false; 3392 3393 SDNodeFlags Flags; 3394 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3395 Flags.copyFMF(*FPOp); 3396 3397 Flags.setUnpredictable( 3398 cast<SelectInst>(I).getMetadata(LLVMContext::MD_unpredictable)); 3399 3400 // Min/max matching is only viable if all output VTs are the same. 3401 if (all_equal(ValueVTs)) { 3402 EVT VT = ValueVTs[0]; 3403 LLVMContext &Ctx = *DAG.getContext(); 3404 auto &TLI = DAG.getTargetLoweringInfo(); 3405 3406 // We care about the legality of the operation after it has been type 3407 // legalized. 3408 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3409 VT = TLI.getTypeToTransformTo(Ctx, VT); 3410 3411 // If the vselect is legal, assume we want to leave this as a vector setcc + 3412 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3413 // min/max is legal on the scalar type. 3414 bool UseScalarMinMax = VT.isVector() && 3415 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3416 3417 // ValueTracking's select pattern matching does not account for -0.0, 3418 // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that 3419 // -0.0 is less than +0.0. 3420 Value *LHS, *RHS; 3421 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3422 ISD::NodeType Opc = ISD::DELETED_NODE; 3423 switch (SPR.Flavor) { 3424 case SPF_UMAX: Opc = ISD::UMAX; break; 3425 case SPF_UMIN: Opc = ISD::UMIN; break; 3426 case SPF_SMAX: Opc = ISD::SMAX; break; 3427 case SPF_SMIN: Opc = ISD::SMIN; break; 3428 case SPF_FMINNUM: 3429 switch (SPR.NaNBehavior) { 3430 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3431 case SPNB_RETURNS_NAN: break; 3432 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3433 case SPNB_RETURNS_ANY: 3434 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) || 3435 (UseScalarMinMax && 3436 TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()))) 3437 Opc = ISD::FMINNUM; 3438 break; 3439 } 3440 break; 3441 case SPF_FMAXNUM: 3442 switch (SPR.NaNBehavior) { 3443 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3444 case SPNB_RETURNS_NAN: break; 3445 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3446 case SPNB_RETURNS_ANY: 3447 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) || 3448 (UseScalarMinMax && 3449 TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()))) 3450 Opc = ISD::FMAXNUM; 3451 break; 3452 } 3453 break; 3454 case SPF_NABS: 3455 Negate = true; 3456 [[fallthrough]]; 3457 case SPF_ABS: 3458 IsUnaryAbs = true; 3459 Opc = ISD::ABS; 3460 break; 3461 default: break; 3462 } 3463 3464 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3465 (TLI.isOperationLegalOrCustom(Opc, VT) || 3466 (UseScalarMinMax && 3467 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3468 // If the underlying comparison instruction is used by any other 3469 // instruction, the consumed instructions won't be destroyed, so it is 3470 // not profitable to convert to a min/max. 3471 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3472 OpCode = Opc; 3473 LHSVal = getValue(LHS); 3474 RHSVal = getValue(RHS); 3475 BaseOps.clear(); 3476 } 3477 3478 if (IsUnaryAbs) { 3479 OpCode = Opc; 3480 LHSVal = getValue(LHS); 3481 BaseOps.clear(); 3482 } 3483 } 3484 3485 if (IsUnaryAbs) { 3486 for (unsigned i = 0; i != NumValues; ++i) { 3487 SDLoc dl = getCurSDLoc(); 3488 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); 3489 Values[i] = 3490 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); 3491 if (Negate) 3492 Values[i] = DAG.getNegative(Values[i], dl, VT); 3493 } 3494 } else { 3495 for (unsigned i = 0; i != NumValues; ++i) { 3496 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3497 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3498 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3499 Values[i] = DAG.getNode( 3500 OpCode, getCurSDLoc(), 3501 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3502 } 3503 } 3504 3505 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3506 DAG.getVTList(ValueVTs), Values)); 3507 } 3508 3509 void SelectionDAGBuilder::visitTrunc(const User &I) { 3510 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3511 SDValue N = getValue(I.getOperand(0)); 3512 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3513 I.getType()); 3514 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3515 } 3516 3517 void SelectionDAGBuilder::visitZExt(const User &I) { 3518 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3519 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3520 SDValue N = getValue(I.getOperand(0)); 3521 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3522 I.getType()); 3523 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3524 } 3525 3526 void SelectionDAGBuilder::visitSExt(const User &I) { 3527 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3528 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3529 SDValue N = getValue(I.getOperand(0)); 3530 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3531 I.getType()); 3532 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3533 } 3534 3535 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3536 // FPTrunc is never a no-op cast, no need to check 3537 SDValue N = getValue(I.getOperand(0)); 3538 SDLoc dl = getCurSDLoc(); 3539 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3540 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3541 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3542 DAG.getTargetConstant( 3543 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3544 } 3545 3546 void SelectionDAGBuilder::visitFPExt(const User &I) { 3547 // FPExt is never a no-op cast, no need to check 3548 SDValue N = getValue(I.getOperand(0)); 3549 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3550 I.getType()); 3551 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3552 } 3553 3554 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3555 // FPToUI is never a no-op cast, no need to check 3556 SDValue N = getValue(I.getOperand(0)); 3557 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3558 I.getType()); 3559 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3560 } 3561 3562 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3563 // FPToSI is never a no-op cast, no need to check 3564 SDValue N = getValue(I.getOperand(0)); 3565 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3566 I.getType()); 3567 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3568 } 3569 3570 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3571 // UIToFP is never a no-op cast, no need to check 3572 SDValue N = getValue(I.getOperand(0)); 3573 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3574 I.getType()); 3575 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3576 } 3577 3578 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3579 // SIToFP is never a no-op cast, no need to check 3580 SDValue N = getValue(I.getOperand(0)); 3581 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3582 I.getType()); 3583 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3584 } 3585 3586 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3587 // What to do depends on the size of the integer and the size of the pointer. 3588 // We can either truncate, zero extend, or no-op, accordingly. 3589 SDValue N = getValue(I.getOperand(0)); 3590 auto &TLI = DAG.getTargetLoweringInfo(); 3591 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3592 I.getType()); 3593 EVT PtrMemVT = 3594 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3595 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3596 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3597 setValue(&I, N); 3598 } 3599 3600 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3601 // What to do depends on the size of the integer and the size of the pointer. 3602 // We can either truncate, zero extend, or no-op, accordingly. 3603 SDValue N = getValue(I.getOperand(0)); 3604 auto &TLI = DAG.getTargetLoweringInfo(); 3605 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3606 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3607 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3608 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3609 setValue(&I, N); 3610 } 3611 3612 void SelectionDAGBuilder::visitBitCast(const User &I) { 3613 SDValue N = getValue(I.getOperand(0)); 3614 SDLoc dl = getCurSDLoc(); 3615 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3616 I.getType()); 3617 3618 // BitCast assures us that source and destination are the same size so this is 3619 // either a BITCAST or a no-op. 3620 if (DestVT != N.getValueType()) 3621 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3622 DestVT, N)); // convert types. 3623 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3624 // might fold any kind of constant expression to an integer constant and that 3625 // is not what we are looking for. Only recognize a bitcast of a genuine 3626 // constant integer as an opaque constant. 3627 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3628 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3629 /*isOpaque*/true)); 3630 else 3631 setValue(&I, N); // noop cast. 3632 } 3633 3634 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3635 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3636 const Value *SV = I.getOperand(0); 3637 SDValue N = getValue(SV); 3638 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3639 3640 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3641 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3642 3643 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3644 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3645 3646 setValue(&I, N); 3647 } 3648 3649 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3650 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3651 SDValue InVec = getValue(I.getOperand(0)); 3652 SDValue InVal = getValue(I.getOperand(1)); 3653 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3654 TLI.getVectorIdxTy(DAG.getDataLayout())); 3655 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3656 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3657 InVec, InVal, InIdx)); 3658 } 3659 3660 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3661 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3662 SDValue InVec = getValue(I.getOperand(0)); 3663 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3664 TLI.getVectorIdxTy(DAG.getDataLayout())); 3665 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3666 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3667 InVec, InIdx)); 3668 } 3669 3670 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3671 SDValue Src1 = getValue(I.getOperand(0)); 3672 SDValue Src2 = getValue(I.getOperand(1)); 3673 ArrayRef<int> Mask; 3674 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3675 Mask = SVI->getShuffleMask(); 3676 else 3677 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3678 SDLoc DL = getCurSDLoc(); 3679 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3680 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3681 EVT SrcVT = Src1.getValueType(); 3682 3683 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3684 VT.isScalableVector()) { 3685 // Canonical splat form of first element of first input vector. 3686 SDValue FirstElt = 3687 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3688 DAG.getVectorIdxConstant(0, DL)); 3689 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3690 return; 3691 } 3692 3693 // For now, we only handle splats for scalable vectors. 3694 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3695 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3696 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3697 3698 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3699 unsigned MaskNumElts = Mask.size(); 3700 3701 if (SrcNumElts == MaskNumElts) { 3702 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3703 return; 3704 } 3705 3706 // Normalize the shuffle vector since mask and vector length don't match. 3707 if (SrcNumElts < MaskNumElts) { 3708 // Mask is longer than the source vectors. We can use concatenate vector to 3709 // make the mask and vectors lengths match. 3710 3711 if (MaskNumElts % SrcNumElts == 0) { 3712 // Mask length is a multiple of the source vector length. 3713 // Check if the shuffle is some kind of concatenation of the input 3714 // vectors. 3715 unsigned NumConcat = MaskNumElts / SrcNumElts; 3716 bool IsConcat = true; 3717 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3718 for (unsigned i = 0; i != MaskNumElts; ++i) { 3719 int Idx = Mask[i]; 3720 if (Idx < 0) 3721 continue; 3722 // Ensure the indices in each SrcVT sized piece are sequential and that 3723 // the same source is used for the whole piece. 3724 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3725 (ConcatSrcs[i / SrcNumElts] >= 0 && 3726 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3727 IsConcat = false; 3728 break; 3729 } 3730 // Remember which source this index came from. 3731 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3732 } 3733 3734 // The shuffle is concatenating multiple vectors together. Just emit 3735 // a CONCAT_VECTORS operation. 3736 if (IsConcat) { 3737 SmallVector<SDValue, 8> ConcatOps; 3738 for (auto Src : ConcatSrcs) { 3739 if (Src < 0) 3740 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3741 else if (Src == 0) 3742 ConcatOps.push_back(Src1); 3743 else 3744 ConcatOps.push_back(Src2); 3745 } 3746 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3747 return; 3748 } 3749 } 3750 3751 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3752 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3753 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3754 PaddedMaskNumElts); 3755 3756 // Pad both vectors with undefs to make them the same length as the mask. 3757 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3758 3759 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3760 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3761 MOps1[0] = Src1; 3762 MOps2[0] = Src2; 3763 3764 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3765 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3766 3767 // Readjust mask for new input vector length. 3768 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3769 for (unsigned i = 0; i != MaskNumElts; ++i) { 3770 int Idx = Mask[i]; 3771 if (Idx >= (int)SrcNumElts) 3772 Idx -= SrcNumElts - PaddedMaskNumElts; 3773 MappedOps[i] = Idx; 3774 } 3775 3776 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3777 3778 // If the concatenated vector was padded, extract a subvector with the 3779 // correct number of elements. 3780 if (MaskNumElts != PaddedMaskNumElts) 3781 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3782 DAG.getVectorIdxConstant(0, DL)); 3783 3784 setValue(&I, Result); 3785 return; 3786 } 3787 3788 if (SrcNumElts > MaskNumElts) { 3789 // Analyze the access pattern of the vector to see if we can extract 3790 // two subvectors and do the shuffle. 3791 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3792 bool CanExtract = true; 3793 for (int Idx : Mask) { 3794 unsigned Input = 0; 3795 if (Idx < 0) 3796 continue; 3797 3798 if (Idx >= (int)SrcNumElts) { 3799 Input = 1; 3800 Idx -= SrcNumElts; 3801 } 3802 3803 // If all the indices come from the same MaskNumElts sized portion of 3804 // the sources we can use extract. Also make sure the extract wouldn't 3805 // extract past the end of the source. 3806 int NewStartIdx = alignDown(Idx, MaskNumElts); 3807 if (NewStartIdx + MaskNumElts > SrcNumElts || 3808 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3809 CanExtract = false; 3810 // Make sure we always update StartIdx as we use it to track if all 3811 // elements are undef. 3812 StartIdx[Input] = NewStartIdx; 3813 } 3814 3815 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3816 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3817 return; 3818 } 3819 if (CanExtract) { 3820 // Extract appropriate subvector and generate a vector shuffle 3821 for (unsigned Input = 0; Input < 2; ++Input) { 3822 SDValue &Src = Input == 0 ? Src1 : Src2; 3823 if (StartIdx[Input] < 0) 3824 Src = DAG.getUNDEF(VT); 3825 else { 3826 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3827 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3828 } 3829 } 3830 3831 // Calculate new mask. 3832 SmallVector<int, 8> MappedOps(Mask); 3833 for (int &Idx : MappedOps) { 3834 if (Idx >= (int)SrcNumElts) 3835 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3836 else if (Idx >= 0) 3837 Idx -= StartIdx[0]; 3838 } 3839 3840 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3841 return; 3842 } 3843 } 3844 3845 // We can't use either concat vectors or extract subvectors so fall back to 3846 // replacing the shuffle with extract and build vector. 3847 // to insert and build vector. 3848 EVT EltVT = VT.getVectorElementType(); 3849 SmallVector<SDValue,8> Ops; 3850 for (int Idx : Mask) { 3851 SDValue Res; 3852 3853 if (Idx < 0) { 3854 Res = DAG.getUNDEF(EltVT); 3855 } else { 3856 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3857 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3858 3859 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3860 DAG.getVectorIdxConstant(Idx, DL)); 3861 } 3862 3863 Ops.push_back(Res); 3864 } 3865 3866 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3867 } 3868 3869 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3870 ArrayRef<unsigned> Indices = I.getIndices(); 3871 const Value *Op0 = I.getOperand(0); 3872 const Value *Op1 = I.getOperand(1); 3873 Type *AggTy = I.getType(); 3874 Type *ValTy = Op1->getType(); 3875 bool IntoUndef = isa<UndefValue>(Op0); 3876 bool FromUndef = isa<UndefValue>(Op1); 3877 3878 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3879 3880 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3881 SmallVector<EVT, 4> AggValueVTs; 3882 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3883 SmallVector<EVT, 4> ValValueVTs; 3884 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3885 3886 unsigned NumAggValues = AggValueVTs.size(); 3887 unsigned NumValValues = ValValueVTs.size(); 3888 SmallVector<SDValue, 4> Values(NumAggValues); 3889 3890 // Ignore an insertvalue that produces an empty object 3891 if (!NumAggValues) { 3892 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3893 return; 3894 } 3895 3896 SDValue Agg = getValue(Op0); 3897 unsigned i = 0; 3898 // Copy the beginning value(s) from the original aggregate. 3899 for (; i != LinearIndex; ++i) 3900 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3901 SDValue(Agg.getNode(), Agg.getResNo() + i); 3902 // Copy values from the inserted value(s). 3903 if (NumValValues) { 3904 SDValue Val = getValue(Op1); 3905 for (; i != LinearIndex + NumValValues; ++i) 3906 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3907 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3908 } 3909 // Copy remaining value(s) from the original aggregate. 3910 for (; i != NumAggValues; ++i) 3911 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3912 SDValue(Agg.getNode(), Agg.getResNo() + i); 3913 3914 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3915 DAG.getVTList(AggValueVTs), Values)); 3916 } 3917 3918 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3919 ArrayRef<unsigned> Indices = I.getIndices(); 3920 const Value *Op0 = I.getOperand(0); 3921 Type *AggTy = Op0->getType(); 3922 Type *ValTy = I.getType(); 3923 bool OutOfUndef = isa<UndefValue>(Op0); 3924 3925 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3926 3927 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3928 SmallVector<EVT, 4> ValValueVTs; 3929 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3930 3931 unsigned NumValValues = ValValueVTs.size(); 3932 3933 // Ignore a extractvalue that produces an empty object 3934 if (!NumValValues) { 3935 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3936 return; 3937 } 3938 3939 SmallVector<SDValue, 4> Values(NumValValues); 3940 3941 SDValue Agg = getValue(Op0); 3942 // Copy out the selected value(s). 3943 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3944 Values[i - LinearIndex] = 3945 OutOfUndef ? 3946 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3947 SDValue(Agg.getNode(), Agg.getResNo() + i); 3948 3949 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3950 DAG.getVTList(ValValueVTs), Values)); 3951 } 3952 3953 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3954 Value *Op0 = I.getOperand(0); 3955 // Note that the pointer operand may be a vector of pointers. Take the scalar 3956 // element which holds a pointer. 3957 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3958 SDValue N = getValue(Op0); 3959 SDLoc dl = getCurSDLoc(); 3960 auto &TLI = DAG.getTargetLoweringInfo(); 3961 3962 // Normalize Vector GEP - all scalar operands should be converted to the 3963 // splat vector. 3964 bool IsVectorGEP = I.getType()->isVectorTy(); 3965 ElementCount VectorElementCount = 3966 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 3967 : ElementCount::getFixed(0); 3968 3969 if (IsVectorGEP && !N.getValueType().isVector()) { 3970 LLVMContext &Context = *DAG.getContext(); 3971 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 3972 N = DAG.getSplat(VT, dl, N); 3973 } 3974 3975 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3976 GTI != E; ++GTI) { 3977 const Value *Idx = GTI.getOperand(); 3978 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3979 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3980 if (Field) { 3981 // N = N + Offset 3982 uint64_t Offset = 3983 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field); 3984 3985 // In an inbounds GEP with an offset that is nonnegative even when 3986 // interpreted as signed, assume there is no unsigned overflow. 3987 SDNodeFlags Flags; 3988 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3989 Flags.setNoUnsignedWrap(true); 3990 3991 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3992 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3993 } 3994 } else { 3995 // IdxSize is the width of the arithmetic according to IR semantics. 3996 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 3997 // (and fix up the result later). 3998 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3999 MVT IdxTy = MVT::getIntegerVT(IdxSize); 4000 TypeSize ElementSize = 4001 DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType()); 4002 // We intentionally mask away the high bits here; ElementSize may not 4003 // fit in IdxTy. 4004 APInt ElementMul(IdxSize, ElementSize.getKnownMinValue()); 4005 bool ElementScalable = ElementSize.isScalable(); 4006 4007 // If this is a scalar constant or a splat vector of constants, 4008 // handle it quickly. 4009 const auto *C = dyn_cast<Constant>(Idx); 4010 if (C && isa<VectorType>(C->getType())) 4011 C = C->getSplatValue(); 4012 4013 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 4014 if (CI && CI->isZero()) 4015 continue; 4016 if (CI && !ElementScalable) { 4017 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 4018 LLVMContext &Context = *DAG.getContext(); 4019 SDValue OffsVal; 4020 if (IsVectorGEP) 4021 OffsVal = DAG.getConstant( 4022 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 4023 else 4024 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 4025 4026 // In an inbounds GEP with an offset that is nonnegative even when 4027 // interpreted as signed, assume there is no unsigned overflow. 4028 SDNodeFlags Flags; 4029 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 4030 Flags.setNoUnsignedWrap(true); 4031 4032 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 4033 4034 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 4035 continue; 4036 } 4037 4038 // N = N + Idx * ElementMul; 4039 SDValue IdxN = getValue(Idx); 4040 4041 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 4042 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 4043 VectorElementCount); 4044 IdxN = DAG.getSplat(VT, dl, IdxN); 4045 } 4046 4047 // If the index is smaller or larger than intptr_t, truncate or extend 4048 // it. 4049 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 4050 4051 if (ElementScalable) { 4052 EVT VScaleTy = N.getValueType().getScalarType(); 4053 SDValue VScale = DAG.getNode( 4054 ISD::VSCALE, dl, VScaleTy, 4055 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 4056 if (IsVectorGEP) 4057 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 4058 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 4059 } else { 4060 // If this is a multiply by a power of two, turn it into a shl 4061 // immediately. This is a very common case. 4062 if (ElementMul != 1) { 4063 if (ElementMul.isPowerOf2()) { 4064 unsigned Amt = ElementMul.logBase2(); 4065 IdxN = DAG.getNode(ISD::SHL, dl, 4066 N.getValueType(), IdxN, 4067 DAG.getConstant(Amt, dl, IdxN.getValueType())); 4068 } else { 4069 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 4070 IdxN.getValueType()); 4071 IdxN = DAG.getNode(ISD::MUL, dl, 4072 N.getValueType(), IdxN, Scale); 4073 } 4074 } 4075 } 4076 4077 N = DAG.getNode(ISD::ADD, dl, 4078 N.getValueType(), N, IdxN); 4079 } 4080 } 4081 4082 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 4083 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 4084 if (IsVectorGEP) { 4085 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 4086 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 4087 } 4088 4089 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 4090 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 4091 4092 setValue(&I, N); 4093 } 4094 4095 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 4096 // If this is a fixed sized alloca in the entry block of the function, 4097 // allocate it statically on the stack. 4098 if (FuncInfo.StaticAllocaMap.count(&I)) 4099 return; // getValue will auto-populate this. 4100 4101 SDLoc dl = getCurSDLoc(); 4102 Type *Ty = I.getAllocatedType(); 4103 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4104 auto &DL = DAG.getDataLayout(); 4105 TypeSize TySize = DL.getTypeAllocSize(Ty); 4106 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 4107 4108 SDValue AllocSize = getValue(I.getArraySize()); 4109 4110 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), I.getAddressSpace()); 4111 if (AllocSize.getValueType() != IntPtr) 4112 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 4113 4114 if (TySize.isScalable()) 4115 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4116 DAG.getVScale(dl, IntPtr, 4117 APInt(IntPtr.getScalarSizeInBits(), 4118 TySize.getKnownMinValue()))); 4119 else 4120 AllocSize = 4121 DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4122 DAG.getConstant(TySize.getFixedValue(), dl, IntPtr)); 4123 4124 // Handle alignment. If the requested alignment is less than or equal to 4125 // the stack alignment, ignore it. If the size is greater than or equal to 4126 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 4127 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 4128 if (*Alignment <= StackAlign) 4129 Alignment = std::nullopt; 4130 4131 const uint64_t StackAlignMask = StackAlign.value() - 1U; 4132 // Round the size of the allocation up to the stack alignment size 4133 // by add SA-1 to the size. This doesn't overflow because we're computing 4134 // an address inside an alloca. 4135 SDNodeFlags Flags; 4136 Flags.setNoUnsignedWrap(true); 4137 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4138 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 4139 4140 // Mask out the low bits for alignment purposes. 4141 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4142 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 4143 4144 SDValue Ops[] = { 4145 getRoot(), AllocSize, 4146 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 4147 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4148 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4149 setValue(&I, DSA); 4150 DAG.setRoot(DSA.getValue(1)); 4151 4152 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4153 } 4154 4155 static const MDNode *getRangeMetadata(const Instruction &I) { 4156 // If !noundef is not present, then !range violation results in a poison 4157 // value rather than immediate undefined behavior. In theory, transferring 4158 // these annotations to SDAG is fine, but in practice there are key SDAG 4159 // transforms that are known not to be poison-safe, such as folding logical 4160 // and/or to bitwise and/or. For now, only transfer !range if !noundef is 4161 // also present. 4162 if (!I.hasMetadata(LLVMContext::MD_noundef)) 4163 return nullptr; 4164 return I.getMetadata(LLVMContext::MD_range); 4165 } 4166 4167 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4168 if (I.isAtomic()) 4169 return visitAtomicLoad(I); 4170 4171 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4172 const Value *SV = I.getOperand(0); 4173 if (TLI.supportSwiftError()) { 4174 // Swifterror values can come from either a function parameter with 4175 // swifterror attribute or an alloca with swifterror attribute. 4176 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4177 if (Arg->hasSwiftErrorAttr()) 4178 return visitLoadFromSwiftError(I); 4179 } 4180 4181 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4182 if (Alloca->isSwiftError()) 4183 return visitLoadFromSwiftError(I); 4184 } 4185 } 4186 4187 SDValue Ptr = getValue(SV); 4188 4189 Type *Ty = I.getType(); 4190 SmallVector<EVT, 4> ValueVTs, MemVTs; 4191 SmallVector<TypeSize, 4> Offsets; 4192 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets, 0); 4193 unsigned NumValues = ValueVTs.size(); 4194 if (NumValues == 0) 4195 return; 4196 4197 Align Alignment = I.getAlign(); 4198 AAMDNodes AAInfo = I.getAAMetadata(); 4199 const MDNode *Ranges = getRangeMetadata(I); 4200 bool isVolatile = I.isVolatile(); 4201 MachineMemOperand::Flags MMOFlags = 4202 TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 4203 4204 SDValue Root; 4205 bool ConstantMemory = false; 4206 if (isVolatile) 4207 // Serialize volatile loads with other side effects. 4208 Root = getRoot(); 4209 else if (NumValues > MaxParallelChains) 4210 Root = getMemoryRoot(); 4211 else if (AA && 4212 AA->pointsToConstantMemory(MemoryLocation( 4213 SV, 4214 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4215 AAInfo))) { 4216 // Do not serialize (non-volatile) loads of constant memory with anything. 4217 Root = DAG.getEntryNode(); 4218 ConstantMemory = true; 4219 MMOFlags |= MachineMemOperand::MOInvariant; 4220 } else { 4221 // Do not serialize non-volatile loads against each other. 4222 Root = DAG.getRoot(); 4223 } 4224 4225 SDLoc dl = getCurSDLoc(); 4226 4227 if (isVolatile) 4228 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4229 4230 SmallVector<SDValue, 4> Values(NumValues); 4231 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4232 4233 unsigned ChainI = 0; 4234 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4235 // Serializing loads here may result in excessive register pressure, and 4236 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4237 // could recover a bit by hoisting nodes upward in the chain by recognizing 4238 // they are side-effect free or do not alias. The optimizer should really 4239 // avoid this case by converting large object/array copies to llvm.memcpy 4240 // (MaxParallelChains should always remain as failsafe). 4241 if (ChainI == MaxParallelChains) { 4242 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4243 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4244 ArrayRef(Chains.data(), ChainI)); 4245 Root = Chain; 4246 ChainI = 0; 4247 } 4248 4249 // TODO: MachinePointerInfo only supports a fixed length offset. 4250 MachinePointerInfo PtrInfo = 4251 !Offsets[i].isScalable() || Offsets[i].isZero() 4252 ? MachinePointerInfo(SV, Offsets[i].getKnownMinValue()) 4253 : MachinePointerInfo(); 4254 4255 SDValue A = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]); 4256 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, PtrInfo, Alignment, 4257 MMOFlags, AAInfo, Ranges); 4258 Chains[ChainI] = L.getValue(1); 4259 4260 if (MemVTs[i] != ValueVTs[i]) 4261 L = DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]); 4262 4263 Values[i] = L; 4264 } 4265 4266 if (!ConstantMemory) { 4267 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4268 ArrayRef(Chains.data(), ChainI)); 4269 if (isVolatile) 4270 DAG.setRoot(Chain); 4271 else 4272 PendingLoads.push_back(Chain); 4273 } 4274 4275 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4276 DAG.getVTList(ValueVTs), Values)); 4277 } 4278 4279 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4280 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4281 "call visitStoreToSwiftError when backend supports swifterror"); 4282 4283 SmallVector<EVT, 4> ValueVTs; 4284 SmallVector<uint64_t, 4> Offsets; 4285 const Value *SrcV = I.getOperand(0); 4286 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4287 SrcV->getType(), ValueVTs, &Offsets, 0); 4288 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4289 "expect a single EVT for swifterror"); 4290 4291 SDValue Src = getValue(SrcV); 4292 // Create a virtual register, then update the virtual register. 4293 Register VReg = 4294 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4295 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4296 // Chain can be getRoot or getControlRoot. 4297 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4298 SDValue(Src.getNode(), Src.getResNo())); 4299 DAG.setRoot(CopyNode); 4300 } 4301 4302 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4303 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4304 "call visitLoadFromSwiftError when backend supports swifterror"); 4305 4306 assert(!I.isVolatile() && 4307 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4308 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4309 "Support volatile, non temporal, invariant for load_from_swift_error"); 4310 4311 const Value *SV = I.getOperand(0); 4312 Type *Ty = I.getType(); 4313 assert( 4314 (!AA || 4315 !AA->pointsToConstantMemory(MemoryLocation( 4316 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4317 I.getAAMetadata()))) && 4318 "load_from_swift_error should not be constant memory"); 4319 4320 SmallVector<EVT, 4> ValueVTs; 4321 SmallVector<uint64_t, 4> Offsets; 4322 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4323 ValueVTs, &Offsets, 0); 4324 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4325 "expect a single EVT for swifterror"); 4326 4327 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4328 SDValue L = DAG.getCopyFromReg( 4329 getRoot(), getCurSDLoc(), 4330 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4331 4332 setValue(&I, L); 4333 } 4334 4335 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4336 if (I.isAtomic()) 4337 return visitAtomicStore(I); 4338 4339 const Value *SrcV = I.getOperand(0); 4340 const Value *PtrV = I.getOperand(1); 4341 4342 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4343 if (TLI.supportSwiftError()) { 4344 // Swifterror values can come from either a function parameter with 4345 // swifterror attribute or an alloca with swifterror attribute. 4346 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4347 if (Arg->hasSwiftErrorAttr()) 4348 return visitStoreToSwiftError(I); 4349 } 4350 4351 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4352 if (Alloca->isSwiftError()) 4353 return visitStoreToSwiftError(I); 4354 } 4355 } 4356 4357 SmallVector<EVT, 4> ValueVTs, MemVTs; 4358 SmallVector<TypeSize, 4> Offsets; 4359 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4360 SrcV->getType(), ValueVTs, &MemVTs, &Offsets, 0); 4361 unsigned NumValues = ValueVTs.size(); 4362 if (NumValues == 0) 4363 return; 4364 4365 // Get the lowered operands. Note that we do this after 4366 // checking if NumResults is zero, because with zero results 4367 // the operands won't have values in the map. 4368 SDValue Src = getValue(SrcV); 4369 SDValue Ptr = getValue(PtrV); 4370 4371 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4372 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4373 SDLoc dl = getCurSDLoc(); 4374 Align Alignment = I.getAlign(); 4375 AAMDNodes AAInfo = I.getAAMetadata(); 4376 4377 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4378 4379 unsigned ChainI = 0; 4380 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4381 // See visitLoad comments. 4382 if (ChainI == MaxParallelChains) { 4383 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4384 ArrayRef(Chains.data(), ChainI)); 4385 Root = Chain; 4386 ChainI = 0; 4387 } 4388 4389 // TODO: MachinePointerInfo only supports a fixed length offset. 4390 MachinePointerInfo PtrInfo = 4391 !Offsets[i].isScalable() || Offsets[i].isZero() 4392 ? MachinePointerInfo(PtrV, Offsets[i].getKnownMinValue()) 4393 : MachinePointerInfo(); 4394 4395 SDValue Add = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]); 4396 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4397 if (MemVTs[i] != ValueVTs[i]) 4398 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4399 SDValue St = 4400 DAG.getStore(Root, dl, Val, Add, PtrInfo, Alignment, MMOFlags, AAInfo); 4401 Chains[ChainI] = St; 4402 } 4403 4404 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4405 ArrayRef(Chains.data(), ChainI)); 4406 setValue(&I, StoreNode); 4407 DAG.setRoot(StoreNode); 4408 } 4409 4410 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4411 bool IsCompressing) { 4412 SDLoc sdl = getCurSDLoc(); 4413 4414 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4415 MaybeAlign &Alignment) { 4416 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4417 Src0 = I.getArgOperand(0); 4418 Ptr = I.getArgOperand(1); 4419 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue(); 4420 Mask = I.getArgOperand(3); 4421 }; 4422 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4423 MaybeAlign &Alignment) { 4424 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4425 Src0 = I.getArgOperand(0); 4426 Ptr = I.getArgOperand(1); 4427 Mask = I.getArgOperand(2); 4428 Alignment = std::nullopt; 4429 }; 4430 4431 Value *PtrOperand, *MaskOperand, *Src0Operand; 4432 MaybeAlign Alignment; 4433 if (IsCompressing) 4434 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4435 else 4436 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4437 4438 SDValue Ptr = getValue(PtrOperand); 4439 SDValue Src0 = getValue(Src0Operand); 4440 SDValue Mask = getValue(MaskOperand); 4441 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4442 4443 EVT VT = Src0.getValueType(); 4444 if (!Alignment) 4445 Alignment = DAG.getEVTAlign(VT); 4446 4447 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4448 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4449 MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata()); 4450 SDValue StoreNode = 4451 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4452 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4453 DAG.setRoot(StoreNode); 4454 setValue(&I, StoreNode); 4455 } 4456 4457 // Get a uniform base for the Gather/Scatter intrinsic. 4458 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4459 // We try to represent it as a base pointer + vector of indices. 4460 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4461 // The first operand of the GEP may be a single pointer or a vector of pointers 4462 // Example: 4463 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4464 // or 4465 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4466 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4467 // 4468 // When the first GEP operand is a single pointer - it is the uniform base we 4469 // are looking for. If first operand of the GEP is a splat vector - we 4470 // extract the splat value and use it as a uniform base. 4471 // In all other cases the function returns 'false'. 4472 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4473 ISD::MemIndexType &IndexType, SDValue &Scale, 4474 SelectionDAGBuilder *SDB, const BasicBlock *CurBB, 4475 uint64_t ElemSize) { 4476 SelectionDAG& DAG = SDB->DAG; 4477 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4478 const DataLayout &DL = DAG.getDataLayout(); 4479 4480 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type"); 4481 4482 // Handle splat constant pointer. 4483 if (auto *C = dyn_cast<Constant>(Ptr)) { 4484 C = C->getSplatValue(); 4485 if (!C) 4486 return false; 4487 4488 Base = SDB->getValue(C); 4489 4490 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 4491 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4492 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4493 IndexType = ISD::SIGNED_SCALED; 4494 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4495 return true; 4496 } 4497 4498 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4499 if (!GEP || GEP->getParent() != CurBB) 4500 return false; 4501 4502 if (GEP->getNumOperands() != 2) 4503 return false; 4504 4505 const Value *BasePtr = GEP->getPointerOperand(); 4506 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4507 4508 // Make sure the base is scalar and the index is a vector. 4509 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4510 return false; 4511 4512 TypeSize ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType()); 4513 if (ScaleVal.isScalable()) 4514 return false; 4515 4516 // Target may not support the required addressing mode. 4517 if (ScaleVal != 1 && 4518 !TLI.isLegalScaleForGatherScatter(ScaleVal.getFixedValue(), ElemSize)) 4519 return false; 4520 4521 Base = SDB->getValue(BasePtr); 4522 Index = SDB->getValue(IndexVal); 4523 IndexType = ISD::SIGNED_SCALED; 4524 4525 Scale = 4526 DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4527 return true; 4528 } 4529 4530 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4531 SDLoc sdl = getCurSDLoc(); 4532 4533 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4534 const Value *Ptr = I.getArgOperand(1); 4535 SDValue Src0 = getValue(I.getArgOperand(0)); 4536 SDValue Mask = getValue(I.getArgOperand(3)); 4537 EVT VT = Src0.getValueType(); 4538 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4539 ->getMaybeAlignValue() 4540 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4541 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4542 4543 SDValue Base; 4544 SDValue Index; 4545 ISD::MemIndexType IndexType; 4546 SDValue Scale; 4547 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4548 I.getParent(), VT.getScalarStoreSize()); 4549 4550 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4551 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4552 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4553 // TODO: Make MachineMemOperands aware of scalable 4554 // vectors. 4555 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata()); 4556 if (!UniformBase) { 4557 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4558 Index = getValue(Ptr); 4559 IndexType = ISD::SIGNED_SCALED; 4560 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4561 } 4562 4563 EVT IdxVT = Index.getValueType(); 4564 EVT EltTy = IdxVT.getVectorElementType(); 4565 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4566 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4567 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4568 } 4569 4570 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4571 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4572 Ops, MMO, IndexType, false); 4573 DAG.setRoot(Scatter); 4574 setValue(&I, Scatter); 4575 } 4576 4577 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4578 SDLoc sdl = getCurSDLoc(); 4579 4580 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4581 MaybeAlign &Alignment) { 4582 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4583 Ptr = I.getArgOperand(0); 4584 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue(); 4585 Mask = I.getArgOperand(2); 4586 Src0 = I.getArgOperand(3); 4587 }; 4588 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4589 MaybeAlign &Alignment) { 4590 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4591 Ptr = I.getArgOperand(0); 4592 Alignment = std::nullopt; 4593 Mask = I.getArgOperand(1); 4594 Src0 = I.getArgOperand(2); 4595 }; 4596 4597 Value *PtrOperand, *MaskOperand, *Src0Operand; 4598 MaybeAlign Alignment; 4599 if (IsExpanding) 4600 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4601 else 4602 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4603 4604 SDValue Ptr = getValue(PtrOperand); 4605 SDValue Src0 = getValue(Src0Operand); 4606 SDValue Mask = getValue(MaskOperand); 4607 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4608 4609 EVT VT = Src0.getValueType(); 4610 if (!Alignment) 4611 Alignment = DAG.getEVTAlign(VT); 4612 4613 AAMDNodes AAInfo = I.getAAMetadata(); 4614 const MDNode *Ranges = getRangeMetadata(I); 4615 4616 // Do not serialize masked loads of constant memory with anything. 4617 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 4618 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4619 4620 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4621 4622 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4623 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4624 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 4625 4626 SDValue Load = 4627 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4628 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4629 if (AddToChain) 4630 PendingLoads.push_back(Load.getValue(1)); 4631 setValue(&I, Load); 4632 } 4633 4634 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4635 SDLoc sdl = getCurSDLoc(); 4636 4637 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4638 const Value *Ptr = I.getArgOperand(0); 4639 SDValue Src0 = getValue(I.getArgOperand(3)); 4640 SDValue Mask = getValue(I.getArgOperand(2)); 4641 4642 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4643 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4644 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 4645 ->getMaybeAlignValue() 4646 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4647 4648 const MDNode *Ranges = getRangeMetadata(I); 4649 4650 SDValue Root = DAG.getRoot(); 4651 SDValue Base; 4652 SDValue Index; 4653 ISD::MemIndexType IndexType; 4654 SDValue Scale; 4655 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4656 I.getParent(), VT.getScalarStoreSize()); 4657 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4658 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4659 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4660 // TODO: Make MachineMemOperands aware of scalable 4661 // vectors. 4662 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges); 4663 4664 if (!UniformBase) { 4665 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4666 Index = getValue(Ptr); 4667 IndexType = ISD::SIGNED_SCALED; 4668 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4669 } 4670 4671 EVT IdxVT = Index.getValueType(); 4672 EVT EltTy = IdxVT.getVectorElementType(); 4673 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4674 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4675 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4676 } 4677 4678 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4679 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4680 Ops, MMO, IndexType, ISD::NON_EXTLOAD); 4681 4682 PendingLoads.push_back(Gather.getValue(1)); 4683 setValue(&I, Gather); 4684 } 4685 4686 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4687 SDLoc dl = getCurSDLoc(); 4688 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4689 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4690 SyncScope::ID SSID = I.getSyncScopeID(); 4691 4692 SDValue InChain = getRoot(); 4693 4694 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4695 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4696 4697 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4698 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4699 4700 MachineFunction &MF = DAG.getMachineFunction(); 4701 MachineMemOperand *MMO = MF.getMachineMemOperand( 4702 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4703 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, 4704 FailureOrdering); 4705 4706 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4707 dl, MemVT, VTs, InChain, 4708 getValue(I.getPointerOperand()), 4709 getValue(I.getCompareOperand()), 4710 getValue(I.getNewValOperand()), MMO); 4711 4712 SDValue OutChain = L.getValue(2); 4713 4714 setValue(&I, L); 4715 DAG.setRoot(OutChain); 4716 } 4717 4718 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4719 SDLoc dl = getCurSDLoc(); 4720 ISD::NodeType NT; 4721 switch (I.getOperation()) { 4722 default: llvm_unreachable("Unknown atomicrmw operation"); 4723 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4724 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4725 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4726 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4727 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4728 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4729 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4730 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4731 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4732 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4733 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4734 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4735 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4736 case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break; 4737 case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break; 4738 case AtomicRMWInst::UIncWrap: 4739 NT = ISD::ATOMIC_LOAD_UINC_WRAP; 4740 break; 4741 case AtomicRMWInst::UDecWrap: 4742 NT = ISD::ATOMIC_LOAD_UDEC_WRAP; 4743 break; 4744 } 4745 AtomicOrdering Ordering = I.getOrdering(); 4746 SyncScope::ID SSID = I.getSyncScopeID(); 4747 4748 SDValue InChain = getRoot(); 4749 4750 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4751 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4752 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4753 4754 MachineFunction &MF = DAG.getMachineFunction(); 4755 MachineMemOperand *MMO = MF.getMachineMemOperand( 4756 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4757 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); 4758 4759 SDValue L = 4760 DAG.getAtomic(NT, dl, MemVT, InChain, 4761 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4762 MMO); 4763 4764 SDValue OutChain = L.getValue(1); 4765 4766 setValue(&I, L); 4767 DAG.setRoot(OutChain); 4768 } 4769 4770 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4771 SDLoc dl = getCurSDLoc(); 4772 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4773 SDValue Ops[3]; 4774 Ops[0] = getRoot(); 4775 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4776 TLI.getFenceOperandTy(DAG.getDataLayout())); 4777 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4778 TLI.getFenceOperandTy(DAG.getDataLayout())); 4779 SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops); 4780 setValue(&I, N); 4781 DAG.setRoot(N); 4782 } 4783 4784 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4785 SDLoc dl = getCurSDLoc(); 4786 AtomicOrdering Order = I.getOrdering(); 4787 SyncScope::ID SSID = I.getSyncScopeID(); 4788 4789 SDValue InChain = getRoot(); 4790 4791 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4792 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4793 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4794 4795 if (!TLI.supportsUnalignedAtomics() && 4796 I.getAlign().value() < MemVT.getSizeInBits() / 8) 4797 report_fatal_error("Cannot generate unaligned atomic load"); 4798 4799 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 4800 4801 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4802 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4803 I.getAlign(), AAMDNodes(), nullptr, SSID, Order); 4804 4805 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4806 4807 SDValue Ptr = getValue(I.getPointerOperand()); 4808 4809 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4810 // TODO: Once this is better exercised by tests, it should be merged with 4811 // the normal path for loads to prevent future divergence. 4812 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4813 if (MemVT != VT) 4814 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4815 4816 setValue(&I, L); 4817 SDValue OutChain = L.getValue(1); 4818 if (!I.isUnordered()) 4819 DAG.setRoot(OutChain); 4820 else 4821 PendingLoads.push_back(OutChain); 4822 return; 4823 } 4824 4825 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4826 Ptr, MMO); 4827 4828 SDValue OutChain = L.getValue(1); 4829 if (MemVT != VT) 4830 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4831 4832 setValue(&I, L); 4833 DAG.setRoot(OutChain); 4834 } 4835 4836 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4837 SDLoc dl = getCurSDLoc(); 4838 4839 AtomicOrdering Ordering = I.getOrdering(); 4840 SyncScope::ID SSID = I.getSyncScopeID(); 4841 4842 SDValue InChain = getRoot(); 4843 4844 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4845 EVT MemVT = 4846 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4847 4848 if (!TLI.supportsUnalignedAtomics() && 4849 I.getAlign().value() < MemVT.getSizeInBits() / 8) 4850 report_fatal_error("Cannot generate unaligned atomic store"); 4851 4852 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4853 4854 MachineFunction &MF = DAG.getMachineFunction(); 4855 MachineMemOperand *MMO = MF.getMachineMemOperand( 4856 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4857 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); 4858 4859 SDValue Val = getValue(I.getValueOperand()); 4860 if (Val.getValueType() != MemVT) 4861 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4862 SDValue Ptr = getValue(I.getPointerOperand()); 4863 4864 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4865 // TODO: Once this is better exercised by tests, it should be merged with 4866 // the normal path for stores to prevent future divergence. 4867 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4868 setValue(&I, S); 4869 DAG.setRoot(S); 4870 return; 4871 } 4872 SDValue OutChain = 4873 DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, Val, Ptr, MMO); 4874 4875 setValue(&I, OutChain); 4876 DAG.setRoot(OutChain); 4877 } 4878 4879 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4880 /// node. 4881 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4882 unsigned Intrinsic) { 4883 // Ignore the callsite's attributes. A specific call site may be marked with 4884 // readnone, but the lowering code will expect the chain based on the 4885 // definition. 4886 const Function *F = I.getCalledFunction(); 4887 bool HasChain = !F->doesNotAccessMemory(); 4888 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4889 4890 // Build the operand list. 4891 SmallVector<SDValue, 8> Ops; 4892 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4893 if (OnlyLoad) { 4894 // We don't need to serialize loads against other loads. 4895 Ops.push_back(DAG.getRoot()); 4896 } else { 4897 Ops.push_back(getRoot()); 4898 } 4899 } 4900 4901 // Info is set by getTgtMemIntrinsic 4902 TargetLowering::IntrinsicInfo Info; 4903 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4904 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4905 DAG.getMachineFunction(), 4906 Intrinsic); 4907 4908 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4909 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4910 Info.opc == ISD::INTRINSIC_W_CHAIN) 4911 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4912 TLI.getPointerTy(DAG.getDataLayout()))); 4913 4914 // Add all operands of the call to the operand list. 4915 for (unsigned i = 0, e = I.arg_size(); i != e; ++i) { 4916 const Value *Arg = I.getArgOperand(i); 4917 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4918 Ops.push_back(getValue(Arg)); 4919 continue; 4920 } 4921 4922 // Use TargetConstant instead of a regular constant for immarg. 4923 EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true); 4924 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4925 assert(CI->getBitWidth() <= 64 && 4926 "large intrinsic immediates not handled"); 4927 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4928 } else { 4929 Ops.push_back( 4930 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4931 } 4932 } 4933 4934 SmallVector<EVT, 4> ValueVTs; 4935 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4936 4937 if (HasChain) 4938 ValueVTs.push_back(MVT::Other); 4939 4940 SDVTList VTs = DAG.getVTList(ValueVTs); 4941 4942 // Propagate fast-math-flags from IR to node(s). 4943 SDNodeFlags Flags; 4944 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 4945 Flags.copyFMF(*FPMO); 4946 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 4947 4948 // Create the node. 4949 SDValue Result; 4950 // In some cases, custom collection of operands from CallInst I may be needed. 4951 TLI.CollectTargetIntrinsicOperands(I, Ops, DAG); 4952 if (IsTgtIntrinsic) { 4953 // This is target intrinsic that touches memory 4954 // 4955 // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic 4956 // didn't yield anything useful. 4957 MachinePointerInfo MPI; 4958 if (Info.ptrVal) 4959 MPI = MachinePointerInfo(Info.ptrVal, Info.offset); 4960 else if (Info.fallbackAddressSpace) 4961 MPI = MachinePointerInfo(*Info.fallbackAddressSpace); 4962 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, 4963 Info.memVT, MPI, Info.align, Info.flags, 4964 Info.size, I.getAAMetadata()); 4965 } else if (!HasChain) { 4966 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4967 } else if (!I.getType()->isVoidTy()) { 4968 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4969 } else { 4970 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4971 } 4972 4973 if (HasChain) { 4974 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4975 if (OnlyLoad) 4976 PendingLoads.push_back(Chain); 4977 else 4978 DAG.setRoot(Chain); 4979 } 4980 4981 if (!I.getType()->isVoidTy()) { 4982 if (!isa<VectorType>(I.getType())) 4983 Result = lowerRangeToAssertZExt(DAG, I, Result); 4984 4985 MaybeAlign Alignment = I.getRetAlign(); 4986 4987 // Insert `assertalign` node if there's an alignment. 4988 if (InsertAssertAlign && Alignment) { 4989 Result = 4990 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 4991 } 4992 4993 setValue(&I, Result); 4994 } 4995 } 4996 4997 /// GetSignificand - Get the significand and build it into a floating-point 4998 /// number with exponent of 1: 4999 /// 5000 /// Op = (Op & 0x007fffff) | 0x3f800000; 5001 /// 5002 /// where Op is the hexadecimal representation of floating point value. 5003 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 5004 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 5005 DAG.getConstant(0x007fffff, dl, MVT::i32)); 5006 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 5007 DAG.getConstant(0x3f800000, dl, MVT::i32)); 5008 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 5009 } 5010 5011 /// GetExponent - Get the exponent: 5012 /// 5013 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 5014 /// 5015 /// where Op is the hexadecimal representation of floating point value. 5016 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 5017 const TargetLowering &TLI, const SDLoc &dl) { 5018 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 5019 DAG.getConstant(0x7f800000, dl, MVT::i32)); 5020 SDValue t1 = DAG.getNode( 5021 ISD::SRL, dl, MVT::i32, t0, 5022 DAG.getConstant(23, dl, 5023 TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout()))); 5024 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 5025 DAG.getConstant(127, dl, MVT::i32)); 5026 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 5027 } 5028 5029 /// getF32Constant - Get 32-bit floating point constant. 5030 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 5031 const SDLoc &dl) { 5032 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 5033 MVT::f32); 5034 } 5035 5036 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 5037 SelectionDAG &DAG) { 5038 // TODO: What fast-math-flags should be set on the floating-point nodes? 5039 5040 // IntegerPartOfX = ((int32_t)(t0); 5041 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 5042 5043 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 5044 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 5045 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 5046 5047 // IntegerPartOfX <<= 23; 5048 IntegerPartOfX = 5049 DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 5050 DAG.getConstant(23, dl, 5051 DAG.getTargetLoweringInfo().getShiftAmountTy( 5052 MVT::i32, DAG.getDataLayout()))); 5053 5054 SDValue TwoToFractionalPartOfX; 5055 if (LimitFloatPrecision <= 6) { 5056 // For floating-point precision of 6: 5057 // 5058 // TwoToFractionalPartOfX = 5059 // 0.997535578f + 5060 // (0.735607626f + 0.252464424f * x) * x; 5061 // 5062 // error 0.0144103317, which is 6 bits 5063 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5064 getF32Constant(DAG, 0x3e814304, dl)); 5065 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5066 getF32Constant(DAG, 0x3f3c50c8, dl)); 5067 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5068 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5069 getF32Constant(DAG, 0x3f7f5e7e, dl)); 5070 } else if (LimitFloatPrecision <= 12) { 5071 // For floating-point precision of 12: 5072 // 5073 // TwoToFractionalPartOfX = 5074 // 0.999892986f + 5075 // (0.696457318f + 5076 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 5077 // 5078 // error 0.000107046256, which is 13 to 14 bits 5079 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5080 getF32Constant(DAG, 0x3da235e3, dl)); 5081 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5082 getF32Constant(DAG, 0x3e65b8f3, dl)); 5083 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5084 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5085 getF32Constant(DAG, 0x3f324b07, dl)); 5086 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5087 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5088 getF32Constant(DAG, 0x3f7ff8fd, dl)); 5089 } else { // LimitFloatPrecision <= 18 5090 // For floating-point precision of 18: 5091 // 5092 // TwoToFractionalPartOfX = 5093 // 0.999999982f + 5094 // (0.693148872f + 5095 // (0.240227044f + 5096 // (0.554906021e-1f + 5097 // (0.961591928e-2f + 5098 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 5099 // error 2.47208000*10^(-7), which is better than 18 bits 5100 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5101 getF32Constant(DAG, 0x3924b03e, dl)); 5102 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5103 getF32Constant(DAG, 0x3ab24b87, dl)); 5104 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5105 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5106 getF32Constant(DAG, 0x3c1d8c17, dl)); 5107 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5108 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5109 getF32Constant(DAG, 0x3d634a1d, dl)); 5110 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5111 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5112 getF32Constant(DAG, 0x3e75fe14, dl)); 5113 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5114 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 5115 getF32Constant(DAG, 0x3f317234, dl)); 5116 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 5117 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 5118 getF32Constant(DAG, 0x3f800000, dl)); 5119 } 5120 5121 // Add the exponent into the result in integer domain. 5122 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 5123 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 5124 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 5125 } 5126 5127 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 5128 /// limited-precision mode. 5129 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5130 const TargetLowering &TLI, SDNodeFlags Flags) { 5131 if (Op.getValueType() == MVT::f32 && 5132 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5133 5134 // Put the exponent in the right bit position for later addition to the 5135 // final result: 5136 // 5137 // t0 = Op * log2(e) 5138 5139 // TODO: What fast-math-flags should be set here? 5140 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5141 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5142 return getLimitedPrecisionExp2(t0, dl, DAG); 5143 } 5144 5145 // No special expansion. 5146 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 5147 } 5148 5149 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5150 /// limited-precision mode. 5151 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5152 const TargetLowering &TLI, SDNodeFlags Flags) { 5153 // TODO: What fast-math-flags should be set on the floating-point nodes? 5154 5155 if (Op.getValueType() == MVT::f32 && 5156 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5157 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5158 5159 // Scale the exponent by log(2). 5160 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5161 SDValue LogOfExponent = 5162 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5163 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5164 5165 // Get the significand and build it into a floating-point number with 5166 // exponent of 1. 5167 SDValue X = GetSignificand(DAG, Op1, dl); 5168 5169 SDValue LogOfMantissa; 5170 if (LimitFloatPrecision <= 6) { 5171 // For floating-point precision of 6: 5172 // 5173 // LogofMantissa = 5174 // -1.1609546f + 5175 // (1.4034025f - 0.23903021f * x) * x; 5176 // 5177 // error 0.0034276066, which is better than 8 bits 5178 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5179 getF32Constant(DAG, 0xbe74c456, dl)); 5180 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5181 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5182 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5183 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5184 getF32Constant(DAG, 0x3f949a29, dl)); 5185 } else if (LimitFloatPrecision <= 12) { 5186 // For floating-point precision of 12: 5187 // 5188 // LogOfMantissa = 5189 // -1.7417939f + 5190 // (2.8212026f + 5191 // (-1.4699568f + 5192 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5193 // 5194 // error 0.000061011436, which is 14 bits 5195 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5196 getF32Constant(DAG, 0xbd67b6d6, dl)); 5197 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5198 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5199 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5200 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5201 getF32Constant(DAG, 0x3fbc278b, dl)); 5202 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5203 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5204 getF32Constant(DAG, 0x40348e95, dl)); 5205 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5206 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5207 getF32Constant(DAG, 0x3fdef31a, dl)); 5208 } else { // LimitFloatPrecision <= 18 5209 // For floating-point precision of 18: 5210 // 5211 // LogOfMantissa = 5212 // -2.1072184f + 5213 // (4.2372794f + 5214 // (-3.7029485f + 5215 // (2.2781945f + 5216 // (-0.87823314f + 5217 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5218 // 5219 // error 0.0000023660568, which is better than 18 bits 5220 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5221 getF32Constant(DAG, 0xbc91e5ac, dl)); 5222 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5223 getF32Constant(DAG, 0x3e4350aa, dl)); 5224 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5225 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5226 getF32Constant(DAG, 0x3f60d3e3, dl)); 5227 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5228 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5229 getF32Constant(DAG, 0x4011cdf0, dl)); 5230 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5231 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5232 getF32Constant(DAG, 0x406cfd1c, dl)); 5233 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5234 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5235 getF32Constant(DAG, 0x408797cb, dl)); 5236 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5237 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5238 getF32Constant(DAG, 0x4006dcab, dl)); 5239 } 5240 5241 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5242 } 5243 5244 // No special expansion. 5245 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 5246 } 5247 5248 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5249 /// limited-precision mode. 5250 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5251 const TargetLowering &TLI, SDNodeFlags Flags) { 5252 // TODO: What fast-math-flags should be set on the floating-point nodes? 5253 5254 if (Op.getValueType() == MVT::f32 && 5255 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5256 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5257 5258 // Get the exponent. 5259 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5260 5261 // Get the significand and build it into a floating-point number with 5262 // exponent of 1. 5263 SDValue X = GetSignificand(DAG, Op1, dl); 5264 5265 // Different possible minimax approximations of significand in 5266 // floating-point for various degrees of accuracy over [1,2]. 5267 SDValue Log2ofMantissa; 5268 if (LimitFloatPrecision <= 6) { 5269 // For floating-point precision of 6: 5270 // 5271 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5272 // 5273 // error 0.0049451742, which is more than 7 bits 5274 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5275 getF32Constant(DAG, 0xbeb08fe0, dl)); 5276 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5277 getF32Constant(DAG, 0x40019463, dl)); 5278 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5279 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5280 getF32Constant(DAG, 0x3fd6633d, dl)); 5281 } else if (LimitFloatPrecision <= 12) { 5282 // For floating-point precision of 12: 5283 // 5284 // Log2ofMantissa = 5285 // -2.51285454f + 5286 // (4.07009056f + 5287 // (-2.12067489f + 5288 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5289 // 5290 // error 0.0000876136000, which is better than 13 bits 5291 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5292 getF32Constant(DAG, 0xbda7262e, dl)); 5293 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5294 getF32Constant(DAG, 0x3f25280b, dl)); 5295 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5296 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5297 getF32Constant(DAG, 0x4007b923, dl)); 5298 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5299 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5300 getF32Constant(DAG, 0x40823e2f, dl)); 5301 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5302 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5303 getF32Constant(DAG, 0x4020d29c, dl)); 5304 } else { // LimitFloatPrecision <= 18 5305 // For floating-point precision of 18: 5306 // 5307 // Log2ofMantissa = 5308 // -3.0400495f + 5309 // (6.1129976f + 5310 // (-5.3420409f + 5311 // (3.2865683f + 5312 // (-1.2669343f + 5313 // (0.27515199f - 5314 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5315 // 5316 // error 0.0000018516, which is better than 18 bits 5317 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5318 getF32Constant(DAG, 0xbcd2769e, dl)); 5319 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5320 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5321 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5322 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5323 getF32Constant(DAG, 0x3fa22ae7, dl)); 5324 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5325 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5326 getF32Constant(DAG, 0x40525723, dl)); 5327 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5328 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5329 getF32Constant(DAG, 0x40aaf200, dl)); 5330 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5331 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5332 getF32Constant(DAG, 0x40c39dad, dl)); 5333 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5334 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5335 getF32Constant(DAG, 0x4042902c, dl)); 5336 } 5337 5338 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5339 } 5340 5341 // No special expansion. 5342 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5343 } 5344 5345 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5346 /// limited-precision mode. 5347 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5348 const TargetLowering &TLI, SDNodeFlags Flags) { 5349 // TODO: What fast-math-flags should be set on the floating-point nodes? 5350 5351 if (Op.getValueType() == MVT::f32 && 5352 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5353 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5354 5355 // Scale the exponent by log10(2) [0.30102999f]. 5356 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5357 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5358 getF32Constant(DAG, 0x3e9a209a, dl)); 5359 5360 // Get the significand and build it into a floating-point number with 5361 // exponent of 1. 5362 SDValue X = GetSignificand(DAG, Op1, dl); 5363 5364 SDValue Log10ofMantissa; 5365 if (LimitFloatPrecision <= 6) { 5366 // For floating-point precision of 6: 5367 // 5368 // Log10ofMantissa = 5369 // -0.50419619f + 5370 // (0.60948995f - 0.10380950f * x) * x; 5371 // 5372 // error 0.0014886165, which is 6 bits 5373 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5374 getF32Constant(DAG, 0xbdd49a13, dl)); 5375 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5376 getF32Constant(DAG, 0x3f1c0789, dl)); 5377 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5378 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5379 getF32Constant(DAG, 0x3f011300, dl)); 5380 } else if (LimitFloatPrecision <= 12) { 5381 // For floating-point precision of 12: 5382 // 5383 // Log10ofMantissa = 5384 // -0.64831180f + 5385 // (0.91751397f + 5386 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5387 // 5388 // error 0.00019228036, which is better than 12 bits 5389 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5390 getF32Constant(DAG, 0x3d431f31, dl)); 5391 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5392 getF32Constant(DAG, 0x3ea21fb2, dl)); 5393 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5394 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5395 getF32Constant(DAG, 0x3f6ae232, dl)); 5396 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5397 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5398 getF32Constant(DAG, 0x3f25f7c3, dl)); 5399 } else { // LimitFloatPrecision <= 18 5400 // For floating-point precision of 18: 5401 // 5402 // Log10ofMantissa = 5403 // -0.84299375f + 5404 // (1.5327582f + 5405 // (-1.0688956f + 5406 // (0.49102474f + 5407 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5408 // 5409 // error 0.0000037995730, which is better than 18 bits 5410 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5411 getF32Constant(DAG, 0x3c5d51ce, dl)); 5412 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5413 getF32Constant(DAG, 0x3e00685a, dl)); 5414 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5415 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5416 getF32Constant(DAG, 0x3efb6798, dl)); 5417 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5418 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5419 getF32Constant(DAG, 0x3f88d192, dl)); 5420 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5421 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5422 getF32Constant(DAG, 0x3fc4316c, dl)); 5423 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5424 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5425 getF32Constant(DAG, 0x3f57ce70, dl)); 5426 } 5427 5428 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5429 } 5430 5431 // No special expansion. 5432 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5433 } 5434 5435 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5436 /// limited-precision mode. 5437 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5438 const TargetLowering &TLI, SDNodeFlags Flags) { 5439 if (Op.getValueType() == MVT::f32 && 5440 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5441 return getLimitedPrecisionExp2(Op, dl, DAG); 5442 5443 // No special expansion. 5444 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5445 } 5446 5447 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5448 /// limited-precision mode with x == 10.0f. 5449 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5450 SelectionDAG &DAG, const TargetLowering &TLI, 5451 SDNodeFlags Flags) { 5452 bool IsExp10 = false; 5453 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5454 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5455 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5456 APFloat Ten(10.0f); 5457 IsExp10 = LHSC->isExactlyValue(Ten); 5458 } 5459 } 5460 5461 // TODO: What fast-math-flags should be set on the FMUL node? 5462 if (IsExp10) { 5463 // Put the exponent in the right bit position for later addition to the 5464 // final result: 5465 // 5466 // #define LOG2OF10 3.3219281f 5467 // t0 = Op * LOG2OF10; 5468 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5469 getF32Constant(DAG, 0x40549a78, dl)); 5470 return getLimitedPrecisionExp2(t0, dl, DAG); 5471 } 5472 5473 // No special expansion. 5474 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5475 } 5476 5477 /// ExpandPowI - Expand a llvm.powi intrinsic. 5478 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5479 SelectionDAG &DAG) { 5480 // If RHS is a constant, we can expand this out to a multiplication tree if 5481 // it's beneficial on the target, otherwise we end up lowering to a call to 5482 // __powidf2 (for example). 5483 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5484 unsigned Val = RHSC->getSExtValue(); 5485 5486 // powi(x, 0) -> 1.0 5487 if (Val == 0) 5488 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5489 5490 if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI( 5491 Val, DAG.shouldOptForSize())) { 5492 // Get the exponent as a positive value. 5493 if ((int)Val < 0) 5494 Val = -Val; 5495 // We use the simple binary decomposition method to generate the multiply 5496 // sequence. There are more optimal ways to do this (for example, 5497 // powi(x,15) generates one more multiply than it should), but this has 5498 // the benefit of being both really simple and much better than a libcall. 5499 SDValue Res; // Logically starts equal to 1.0 5500 SDValue CurSquare = LHS; 5501 // TODO: Intrinsics should have fast-math-flags that propagate to these 5502 // nodes. 5503 while (Val) { 5504 if (Val & 1) { 5505 if (Res.getNode()) 5506 Res = 5507 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare); 5508 else 5509 Res = CurSquare; // 1.0*CurSquare. 5510 } 5511 5512 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5513 CurSquare, CurSquare); 5514 Val >>= 1; 5515 } 5516 5517 // If the original was negative, invert the result, producing 1/(x*x*x). 5518 if (RHSC->getSExtValue() < 0) 5519 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5520 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5521 return Res; 5522 } 5523 } 5524 5525 // Otherwise, expand to a libcall. 5526 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5527 } 5528 5529 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5530 SDValue LHS, SDValue RHS, SDValue Scale, 5531 SelectionDAG &DAG, const TargetLowering &TLI) { 5532 EVT VT = LHS.getValueType(); 5533 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5534 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5535 LLVMContext &Ctx = *DAG.getContext(); 5536 5537 // If the type is legal but the operation isn't, this node might survive all 5538 // the way to operation legalization. If we end up there and we do not have 5539 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5540 // node. 5541 5542 // Coax the legalizer into expanding the node during type legalization instead 5543 // by bumping the size by one bit. This will force it to Promote, enabling the 5544 // early expansion and avoiding the need to expand later. 5545 5546 // We don't have to do this if Scale is 0; that can always be expanded, unless 5547 // it's a saturating signed operation. Those can experience true integer 5548 // division overflow, a case which we must avoid. 5549 5550 // FIXME: We wouldn't have to do this (or any of the early 5551 // expansion/promotion) if it was possible to expand a libcall of an 5552 // illegal type during operation legalization. But it's not, so things 5553 // get a bit hacky. 5554 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5555 if ((ScaleInt > 0 || (Saturating && Signed)) && 5556 (TLI.isTypeLegal(VT) || 5557 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5558 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5559 Opcode, VT, ScaleInt); 5560 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5561 EVT PromVT; 5562 if (VT.isScalarInteger()) 5563 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5564 else if (VT.isVector()) { 5565 PromVT = VT.getVectorElementType(); 5566 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5567 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5568 } else 5569 llvm_unreachable("Wrong VT for DIVFIX?"); 5570 LHS = DAG.getExtOrTrunc(Signed, LHS, DL, PromVT); 5571 RHS = DAG.getExtOrTrunc(Signed, RHS, DL, PromVT); 5572 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5573 // For saturating operations, we need to shift up the LHS to get the 5574 // proper saturation width, and then shift down again afterwards. 5575 if (Saturating) 5576 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5577 DAG.getConstant(1, DL, ShiftTy)); 5578 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5579 if (Saturating) 5580 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5581 DAG.getConstant(1, DL, ShiftTy)); 5582 return DAG.getZExtOrTrunc(Res, DL, VT); 5583 } 5584 } 5585 5586 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5587 } 5588 5589 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5590 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5591 static void 5592 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs, 5593 const SDValue &N) { 5594 switch (N.getOpcode()) { 5595 case ISD::CopyFromReg: { 5596 SDValue Op = N.getOperand(1); 5597 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5598 Op.getValueType().getSizeInBits()); 5599 return; 5600 } 5601 case ISD::BITCAST: 5602 case ISD::AssertZext: 5603 case ISD::AssertSext: 5604 case ISD::TRUNCATE: 5605 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5606 return; 5607 case ISD::BUILD_PAIR: 5608 case ISD::BUILD_VECTOR: 5609 case ISD::CONCAT_VECTORS: 5610 for (SDValue Op : N->op_values()) 5611 getUnderlyingArgRegs(Regs, Op); 5612 return; 5613 default: 5614 return; 5615 } 5616 } 5617 5618 /// If the DbgValueInst is a dbg_value of a function argument, create the 5619 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5620 /// instruction selection, they will be inserted to the entry BB. 5621 /// We don't currently support this for variadic dbg_values, as they shouldn't 5622 /// appear for function arguments or in the prologue. 5623 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5624 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5625 DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) { 5626 const Argument *Arg = dyn_cast<Argument>(V); 5627 if (!Arg) 5628 return false; 5629 5630 MachineFunction &MF = DAG.getMachineFunction(); 5631 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5632 5633 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind 5634 // we've been asked to pursue. 5635 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr, 5636 bool Indirect) { 5637 if (Reg.isVirtual() && MF.useDebugInstrRef()) { 5638 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF 5639 // pointing at the VReg, which will be patched up later. 5640 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF); 5641 SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg( 5642 /* Reg */ Reg, /* isDef */ false, /* isImp */ false, 5643 /* isKill */ false, /* isDead */ false, 5644 /* isUndef */ false, /* isEarlyClobber */ false, 5645 /* SubReg */ 0, /* isDebug */ true)}); 5646 5647 auto *NewDIExpr = FragExpr; 5648 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into 5649 // the DIExpression. 5650 if (Indirect) 5651 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore); 5652 SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0}); 5653 NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops); 5654 return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr); 5655 } else { 5656 // Create a completely standard DBG_VALUE. 5657 auto &Inst = TII->get(TargetOpcode::DBG_VALUE); 5658 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr); 5659 } 5660 }; 5661 5662 if (Kind == FuncArgumentDbgValueKind::Value) { 5663 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5664 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5665 // the entry block. 5666 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5667 if (!IsInEntryBlock) 5668 return false; 5669 5670 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5671 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5672 // variable that also is a param. 5673 // 5674 // Although, if we are at the top of the entry block already, we can still 5675 // emit using ArgDbgValue. This might catch some situations when the 5676 // dbg.value refers to an argument that isn't used in the entry block, so 5677 // any CopyToReg node would be optimized out and the only way to express 5678 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5679 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5680 // we should only emit as ArgDbgValue if the Variable is an argument to the 5681 // current function, and the dbg.value intrinsic is found in the entry 5682 // block. 5683 bool VariableIsFunctionInputArg = Variable->isParameter() && 5684 !DL->getInlinedAt(); 5685 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5686 if (!IsInPrologue && !VariableIsFunctionInputArg) 5687 return false; 5688 5689 // Here we assume that a function argument on IR level only can be used to 5690 // describe one input parameter on source level. If we for example have 5691 // source code like this 5692 // 5693 // struct A { long x, y; }; 5694 // void foo(struct A a, long b) { 5695 // ... 5696 // b = a.x; 5697 // ... 5698 // } 5699 // 5700 // and IR like this 5701 // 5702 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5703 // entry: 5704 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5705 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5706 // call void @llvm.dbg.value(metadata i32 %b, "b", 5707 // ... 5708 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5709 // ... 5710 // 5711 // then the last dbg.value is describing a parameter "b" using a value that 5712 // is an argument. But since we already has used %a1 to describe a parameter 5713 // we should not handle that last dbg.value here (that would result in an 5714 // incorrect hoisting of the DBG_VALUE to the function entry). 5715 // Notice that we allow one dbg.value per IR level argument, to accommodate 5716 // for the situation with fragments above. 5717 if (VariableIsFunctionInputArg) { 5718 unsigned ArgNo = Arg->getArgNo(); 5719 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5720 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5721 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5722 return false; 5723 FuncInfo.DescribedArgs.set(ArgNo); 5724 } 5725 } 5726 5727 bool IsIndirect = false; 5728 std::optional<MachineOperand> Op; 5729 // Some arguments' frame index is recorded during argument lowering. 5730 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5731 if (FI != std::numeric_limits<int>::max()) 5732 Op = MachineOperand::CreateFI(FI); 5733 5734 SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes; 5735 if (!Op && N.getNode()) { 5736 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5737 Register Reg; 5738 if (ArgRegsAndSizes.size() == 1) 5739 Reg = ArgRegsAndSizes.front().first; 5740 5741 if (Reg && Reg.isVirtual()) { 5742 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5743 Register PR = RegInfo.getLiveInPhysReg(Reg); 5744 if (PR) 5745 Reg = PR; 5746 } 5747 if (Reg) { 5748 Op = MachineOperand::CreateReg(Reg, false); 5749 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 5750 } 5751 } 5752 5753 if (!Op && N.getNode()) { 5754 // Check if frame index is available. 5755 SDValue LCandidate = peekThroughBitcasts(N); 5756 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5757 if (FrameIndexSDNode *FINode = 5758 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5759 Op = MachineOperand::CreateFI(FINode->getIndex()); 5760 } 5761 5762 if (!Op) { 5763 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5764 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>> 5765 SplitRegs) { 5766 unsigned Offset = 0; 5767 for (const auto &RegAndSize : SplitRegs) { 5768 // If the expression is already a fragment, the current register 5769 // offset+size might extend beyond the fragment. In this case, only 5770 // the register bits that are inside the fragment are relevant. 5771 int RegFragmentSizeInBits = RegAndSize.second; 5772 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5773 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5774 // The register is entirely outside the expression fragment, 5775 // so is irrelevant for debug info. 5776 if (Offset >= ExprFragmentSizeInBits) 5777 break; 5778 // The register is partially outside the expression fragment, only 5779 // the low bits within the fragment are relevant for debug info. 5780 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5781 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5782 } 5783 } 5784 5785 auto FragmentExpr = DIExpression::createFragmentExpression( 5786 Expr, Offset, RegFragmentSizeInBits); 5787 Offset += RegAndSize.second; 5788 // If a valid fragment expression cannot be created, the variable's 5789 // correct value cannot be determined and so it is set as Undef. 5790 if (!FragmentExpr) { 5791 SDDbgValue *SDV = DAG.getConstantDbgValue( 5792 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5793 DAG.AddDbgValue(SDV, false); 5794 continue; 5795 } 5796 MachineInstr *NewMI = 5797 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, 5798 Kind != FuncArgumentDbgValueKind::Value); 5799 FuncInfo.ArgDbgValues.push_back(NewMI); 5800 } 5801 }; 5802 5803 // Check if ValueMap has reg number. 5804 DenseMap<const Value *, Register>::const_iterator 5805 VMI = FuncInfo.ValueMap.find(V); 5806 if (VMI != FuncInfo.ValueMap.end()) { 5807 const auto &TLI = DAG.getTargetLoweringInfo(); 5808 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5809 V->getType(), std::nullopt); 5810 if (RFV.occupiesMultipleRegs()) { 5811 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5812 return true; 5813 } 5814 5815 Op = MachineOperand::CreateReg(VMI->second, false); 5816 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 5817 } else if (ArgRegsAndSizes.size() > 1) { 5818 // This was split due to the calling convention, and no virtual register 5819 // mapping exists for the value. 5820 splitMultiRegDbgValue(ArgRegsAndSizes); 5821 return true; 5822 } 5823 } 5824 5825 if (!Op) 5826 return false; 5827 5828 assert(Variable->isValidLocationForIntrinsic(DL) && 5829 "Expected inlined-at fields to agree"); 5830 MachineInstr *NewMI = nullptr; 5831 5832 if (Op->isReg()) 5833 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect); 5834 else 5835 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op, 5836 Variable, Expr); 5837 5838 // Otherwise, use ArgDbgValues. 5839 FuncInfo.ArgDbgValues.push_back(NewMI); 5840 return true; 5841 } 5842 5843 /// Return the appropriate SDDbgValue based on N. 5844 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5845 DILocalVariable *Variable, 5846 DIExpression *Expr, 5847 const DebugLoc &dl, 5848 unsigned DbgSDNodeOrder) { 5849 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5850 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5851 // stack slot locations. 5852 // 5853 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5854 // debug values here after optimization: 5855 // 5856 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5857 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5858 // 5859 // Both describe the direct values of their associated variables. 5860 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5861 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5862 } 5863 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5864 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5865 } 5866 5867 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5868 switch (Intrinsic) { 5869 case Intrinsic::smul_fix: 5870 return ISD::SMULFIX; 5871 case Intrinsic::umul_fix: 5872 return ISD::UMULFIX; 5873 case Intrinsic::smul_fix_sat: 5874 return ISD::SMULFIXSAT; 5875 case Intrinsic::umul_fix_sat: 5876 return ISD::UMULFIXSAT; 5877 case Intrinsic::sdiv_fix: 5878 return ISD::SDIVFIX; 5879 case Intrinsic::udiv_fix: 5880 return ISD::UDIVFIX; 5881 case Intrinsic::sdiv_fix_sat: 5882 return ISD::SDIVFIXSAT; 5883 case Intrinsic::udiv_fix_sat: 5884 return ISD::UDIVFIXSAT; 5885 default: 5886 llvm_unreachable("Unhandled fixed point intrinsic"); 5887 } 5888 } 5889 5890 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5891 const char *FunctionName) { 5892 assert(FunctionName && "FunctionName must not be nullptr"); 5893 SDValue Callee = DAG.getExternalSymbol( 5894 FunctionName, 5895 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5896 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 5897 } 5898 5899 /// Given a @llvm.call.preallocated.setup, return the corresponding 5900 /// preallocated call. 5901 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 5902 assert(cast<CallBase>(PreallocatedSetup) 5903 ->getCalledFunction() 5904 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 5905 "expected call_preallocated_setup Value"); 5906 for (const auto *U : PreallocatedSetup->users()) { 5907 auto *UseCall = cast<CallBase>(U); 5908 const Function *Fn = UseCall->getCalledFunction(); 5909 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 5910 return UseCall; 5911 } 5912 } 5913 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 5914 } 5915 5916 /// If DI is a debug value with an EntryValue expression, lower it using the 5917 /// corresponding physical register of the associated Argument value 5918 /// (guaranteed to exist by the verifier). 5919 bool SelectionDAGBuilder::visitEntryValueDbgValue(const DbgValueInst &DI) { 5920 DILocalVariable *Variable = DI.getVariable(); 5921 DIExpression *Expr = DI.getExpression(); 5922 if (!Expr->isEntryValue() || !hasSingleElement(DI.getValues())) 5923 return false; 5924 5925 // These properties are guaranteed by the verifier. 5926 Argument *Arg = cast<Argument>(DI.getValue(0)); 5927 assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync)); 5928 5929 auto ArgIt = FuncInfo.ValueMap.find(Arg); 5930 if (ArgIt == FuncInfo.ValueMap.end()) { 5931 LLVM_DEBUG( 5932 dbgs() << "Dropping dbg.value: expression is entry_value but " 5933 "couldn't find an associated register for the Argument\n"); 5934 return true; 5935 } 5936 Register ArgVReg = ArgIt->getSecond(); 5937 5938 for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins()) 5939 if (ArgVReg == VirtReg || ArgVReg == PhysReg) { 5940 SDDbgValue *SDV = 5941 DAG.getVRegDbgValue(Variable, Expr, PhysReg, false /*IsIndidrect*/, 5942 DI.getDebugLoc(), SDNodeOrder); 5943 DAG.AddDbgValue(SDV, false /*treat as dbg.declare byval parameter*/); 5944 return true; 5945 } 5946 LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but " 5947 "couldn't find a physical register\n"); 5948 return true; 5949 } 5950 5951 /// Lower the call to the specified intrinsic function. 5952 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5953 unsigned Intrinsic) { 5954 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5955 SDLoc sdl = getCurSDLoc(); 5956 DebugLoc dl = getCurDebugLoc(); 5957 SDValue Res; 5958 5959 SDNodeFlags Flags; 5960 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 5961 Flags.copyFMF(*FPOp); 5962 5963 switch (Intrinsic) { 5964 default: 5965 // By default, turn this into a target intrinsic node. 5966 visitTargetIntrinsic(I, Intrinsic); 5967 return; 5968 case Intrinsic::vscale: { 5969 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5970 setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1))); 5971 return; 5972 } 5973 case Intrinsic::vastart: visitVAStart(I); return; 5974 case Intrinsic::vaend: visitVAEnd(I); return; 5975 case Intrinsic::vacopy: visitVACopy(I); return; 5976 case Intrinsic::returnaddress: 5977 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5978 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5979 getValue(I.getArgOperand(0)))); 5980 return; 5981 case Intrinsic::addressofreturnaddress: 5982 setValue(&I, 5983 DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5984 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 5985 return; 5986 case Intrinsic::sponentry: 5987 setValue(&I, 5988 DAG.getNode(ISD::SPONENTRY, sdl, 5989 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 5990 return; 5991 case Intrinsic::frameaddress: 5992 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5993 TLI.getFrameIndexTy(DAG.getDataLayout()), 5994 getValue(I.getArgOperand(0)))); 5995 return; 5996 case Intrinsic::read_volatile_register: 5997 case Intrinsic::read_register: { 5998 Value *Reg = I.getArgOperand(0); 5999 SDValue Chain = getRoot(); 6000 SDValue RegName = 6001 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 6002 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6003 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 6004 DAG.getVTList(VT, MVT::Other), Chain, RegName); 6005 setValue(&I, Res); 6006 DAG.setRoot(Res.getValue(1)); 6007 return; 6008 } 6009 case Intrinsic::write_register: { 6010 Value *Reg = I.getArgOperand(0); 6011 Value *RegValue = I.getArgOperand(1); 6012 SDValue Chain = getRoot(); 6013 SDValue RegName = 6014 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 6015 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 6016 RegName, getValue(RegValue))); 6017 return; 6018 } 6019 case Intrinsic::memcpy: { 6020 const auto &MCI = cast<MemCpyInst>(I); 6021 SDValue Op1 = getValue(I.getArgOperand(0)); 6022 SDValue Op2 = getValue(I.getArgOperand(1)); 6023 SDValue Op3 = getValue(I.getArgOperand(2)); 6024 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 6025 Align DstAlign = MCI.getDestAlign().valueOrOne(); 6026 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 6027 Align Alignment = std::min(DstAlign, SrcAlign); 6028 bool isVol = MCI.isVolatile(); 6029 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6030 // FIXME: Support passing different dest/src alignments to the memcpy DAG 6031 // node. 6032 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6033 SDValue MC = DAG.getMemcpy( 6034 Root, sdl, Op1, Op2, Op3, Alignment, isVol, 6035 /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)), 6036 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 6037 updateDAGForMaybeTailCall(MC); 6038 return; 6039 } 6040 case Intrinsic::memcpy_inline: { 6041 const auto &MCI = cast<MemCpyInlineInst>(I); 6042 SDValue Dst = getValue(I.getArgOperand(0)); 6043 SDValue Src = getValue(I.getArgOperand(1)); 6044 SDValue Size = getValue(I.getArgOperand(2)); 6045 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 6046 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 6047 Align DstAlign = MCI.getDestAlign().valueOrOne(); 6048 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 6049 Align Alignment = std::min(DstAlign, SrcAlign); 6050 bool isVol = MCI.isVolatile(); 6051 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6052 // FIXME: Support passing different dest/src alignments to the memcpy DAG 6053 // node. 6054 SDValue MC = DAG.getMemcpy( 6055 getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 6056 /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)), 6057 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 6058 updateDAGForMaybeTailCall(MC); 6059 return; 6060 } 6061 case Intrinsic::memset: { 6062 const auto &MSI = cast<MemSetInst>(I); 6063 SDValue Op1 = getValue(I.getArgOperand(0)); 6064 SDValue Op2 = getValue(I.getArgOperand(1)); 6065 SDValue Op3 = getValue(I.getArgOperand(2)); 6066 // @llvm.memset defines 0 and 1 to both mean no alignment. 6067 Align Alignment = MSI.getDestAlign().valueOrOne(); 6068 bool isVol = MSI.isVolatile(); 6069 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6070 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6071 SDValue MS = DAG.getMemset( 6072 Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false, 6073 isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata()); 6074 updateDAGForMaybeTailCall(MS); 6075 return; 6076 } 6077 case Intrinsic::memset_inline: { 6078 const auto &MSII = cast<MemSetInlineInst>(I); 6079 SDValue Dst = getValue(I.getArgOperand(0)); 6080 SDValue Value = getValue(I.getArgOperand(1)); 6081 SDValue Size = getValue(I.getArgOperand(2)); 6082 assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size"); 6083 // @llvm.memset defines 0 and 1 to both mean no alignment. 6084 Align DstAlign = MSII.getDestAlign().valueOrOne(); 6085 bool isVol = MSII.isVolatile(); 6086 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6087 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6088 SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol, 6089 /* AlwaysInline */ true, isTC, 6090 MachinePointerInfo(I.getArgOperand(0)), 6091 I.getAAMetadata()); 6092 updateDAGForMaybeTailCall(MC); 6093 return; 6094 } 6095 case Intrinsic::memmove: { 6096 const auto &MMI = cast<MemMoveInst>(I); 6097 SDValue Op1 = getValue(I.getArgOperand(0)); 6098 SDValue Op2 = getValue(I.getArgOperand(1)); 6099 SDValue Op3 = getValue(I.getArgOperand(2)); 6100 // @llvm.memmove defines 0 and 1 to both mean no alignment. 6101 Align DstAlign = MMI.getDestAlign().valueOrOne(); 6102 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 6103 Align Alignment = std::min(DstAlign, SrcAlign); 6104 bool isVol = MMI.isVolatile(); 6105 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6106 // FIXME: Support passing different dest/src alignments to the memmove DAG 6107 // node. 6108 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6109 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 6110 isTC, MachinePointerInfo(I.getArgOperand(0)), 6111 MachinePointerInfo(I.getArgOperand(1)), 6112 I.getAAMetadata(), AA); 6113 updateDAGForMaybeTailCall(MM); 6114 return; 6115 } 6116 case Intrinsic::memcpy_element_unordered_atomic: { 6117 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 6118 SDValue Dst = getValue(MI.getRawDest()); 6119 SDValue Src = getValue(MI.getRawSource()); 6120 SDValue Length = getValue(MI.getLength()); 6121 6122 Type *LengthTy = MI.getLength()->getType(); 6123 unsigned ElemSz = MI.getElementSizeInBytes(); 6124 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6125 SDValue MC = 6126 DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6127 isTC, MachinePointerInfo(MI.getRawDest()), 6128 MachinePointerInfo(MI.getRawSource())); 6129 updateDAGForMaybeTailCall(MC); 6130 return; 6131 } 6132 case Intrinsic::memmove_element_unordered_atomic: { 6133 auto &MI = cast<AtomicMemMoveInst>(I); 6134 SDValue Dst = getValue(MI.getRawDest()); 6135 SDValue Src = getValue(MI.getRawSource()); 6136 SDValue Length = getValue(MI.getLength()); 6137 6138 Type *LengthTy = MI.getLength()->getType(); 6139 unsigned ElemSz = MI.getElementSizeInBytes(); 6140 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6141 SDValue MC = 6142 DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6143 isTC, MachinePointerInfo(MI.getRawDest()), 6144 MachinePointerInfo(MI.getRawSource())); 6145 updateDAGForMaybeTailCall(MC); 6146 return; 6147 } 6148 case Intrinsic::memset_element_unordered_atomic: { 6149 auto &MI = cast<AtomicMemSetInst>(I); 6150 SDValue Dst = getValue(MI.getRawDest()); 6151 SDValue Val = getValue(MI.getValue()); 6152 SDValue Length = getValue(MI.getLength()); 6153 6154 Type *LengthTy = MI.getLength()->getType(); 6155 unsigned ElemSz = MI.getElementSizeInBytes(); 6156 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6157 SDValue MC = 6158 DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz, 6159 isTC, MachinePointerInfo(MI.getRawDest())); 6160 updateDAGForMaybeTailCall(MC); 6161 return; 6162 } 6163 case Intrinsic::call_preallocated_setup: { 6164 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 6165 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6166 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 6167 getRoot(), SrcValue); 6168 setValue(&I, Res); 6169 DAG.setRoot(Res); 6170 return; 6171 } 6172 case Intrinsic::call_preallocated_arg: { 6173 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 6174 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6175 SDValue Ops[3]; 6176 Ops[0] = getRoot(); 6177 Ops[1] = SrcValue; 6178 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 6179 MVT::i32); // arg index 6180 SDValue Res = DAG.getNode( 6181 ISD::PREALLOCATED_ARG, sdl, 6182 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 6183 setValue(&I, Res); 6184 DAG.setRoot(Res.getValue(1)); 6185 return; 6186 } 6187 case Intrinsic::dbg_declare: { 6188 const auto &DI = cast<DbgDeclareInst>(I); 6189 // Debug intrinsics are handled separately in assignment tracking mode. 6190 // Some intrinsics are handled right after Argument lowering. 6191 if (AssignmentTrackingEnabled || 6192 FuncInfo.PreprocessedDbgDeclares.count(&DI)) 6193 return; 6194 // Assume dbg.declare can not currently use DIArgList, i.e. 6195 // it is non-variadic. 6196 assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList"); 6197 DILocalVariable *Variable = DI.getVariable(); 6198 DIExpression *Expression = DI.getExpression(); 6199 dropDanglingDebugInfo(Variable, Expression); 6200 assert(Variable && "Missing variable"); 6201 LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI 6202 << "\n"); 6203 // Check if address has undef value. 6204 const Value *Address = DI.getVariableLocationOp(0); 6205 if (!Address || isa<UndefValue>(Address) || 6206 (Address->use_empty() && !isa<Argument>(Address))) { 6207 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6208 << " (bad/undef/unused-arg address)\n"); 6209 return; 6210 } 6211 6212 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 6213 6214 SDValue &N = NodeMap[Address]; 6215 if (!N.getNode() && isa<Argument>(Address)) 6216 // Check unused arguments map. 6217 N = UnusedArgNodeMap[Address]; 6218 SDDbgValue *SDV; 6219 if (N.getNode()) { 6220 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 6221 Address = BCI->getOperand(0); 6222 // Parameters are handled specially. 6223 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 6224 if (isParameter && FINode) { 6225 // Byval parameter. We have a frame index at this point. 6226 SDV = 6227 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 6228 /*IsIndirect*/ true, dl, SDNodeOrder); 6229 } else if (isa<Argument>(Address)) { 6230 // Address is an argument, so try to emit its dbg value using 6231 // virtual register info from the FuncInfo.ValueMap. 6232 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 6233 FuncArgumentDbgValueKind::Declare, N); 6234 return; 6235 } else { 6236 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 6237 true, dl, SDNodeOrder); 6238 } 6239 DAG.AddDbgValue(SDV, isParameter); 6240 } else { 6241 // If Address is an argument then try to emit its dbg value using 6242 // virtual register info from the FuncInfo.ValueMap. 6243 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 6244 FuncArgumentDbgValueKind::Declare, N)) { 6245 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6246 << " (could not emit func-arg dbg_value)\n"); 6247 } 6248 } 6249 return; 6250 } 6251 case Intrinsic::dbg_label: { 6252 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6253 DILabel *Label = DI.getLabel(); 6254 assert(Label && "Missing label"); 6255 6256 SDDbgLabel *SDV; 6257 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6258 DAG.AddDbgLabel(SDV); 6259 return; 6260 } 6261 case Intrinsic::dbg_assign: { 6262 // Debug intrinsics are handled seperately in assignment tracking mode. 6263 if (AssignmentTrackingEnabled) 6264 return; 6265 // If assignment tracking hasn't been enabled then fall through and treat 6266 // the dbg.assign as a dbg.value. 6267 [[fallthrough]]; 6268 } 6269 case Intrinsic::dbg_value: { 6270 // Debug intrinsics are handled seperately in assignment tracking mode. 6271 if (AssignmentTrackingEnabled) 6272 return; 6273 const DbgValueInst &DI = cast<DbgValueInst>(I); 6274 assert(DI.getVariable() && "Missing variable"); 6275 6276 DILocalVariable *Variable = DI.getVariable(); 6277 DIExpression *Expression = DI.getExpression(); 6278 dropDanglingDebugInfo(Variable, Expression); 6279 6280 if (visitEntryValueDbgValue(DI)) 6281 return; 6282 6283 if (DI.isKillLocation()) { 6284 handleKillDebugValue(Variable, Expression, DI.getDebugLoc(), SDNodeOrder); 6285 return; 6286 } 6287 6288 SmallVector<Value *, 4> Values(DI.getValues()); 6289 if (Values.empty()) 6290 return; 6291 6292 bool IsVariadic = DI.hasArgList(); 6293 if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(), 6294 SDNodeOrder, IsVariadic)) 6295 addDanglingDebugInfo(&DI, SDNodeOrder); 6296 return; 6297 } 6298 6299 case Intrinsic::eh_typeid_for: { 6300 // Find the type id for the given typeinfo. 6301 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6302 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6303 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6304 setValue(&I, Res); 6305 return; 6306 } 6307 6308 case Intrinsic::eh_return_i32: 6309 case Intrinsic::eh_return_i64: 6310 DAG.getMachineFunction().setCallsEHReturn(true); 6311 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6312 MVT::Other, 6313 getControlRoot(), 6314 getValue(I.getArgOperand(0)), 6315 getValue(I.getArgOperand(1)))); 6316 return; 6317 case Intrinsic::eh_unwind_init: 6318 DAG.getMachineFunction().setCallsUnwindInit(true); 6319 return; 6320 case Intrinsic::eh_dwarf_cfa: 6321 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6322 TLI.getPointerTy(DAG.getDataLayout()), 6323 getValue(I.getArgOperand(0)))); 6324 return; 6325 case Intrinsic::eh_sjlj_callsite: { 6326 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6327 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0)); 6328 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6329 6330 MMI.setCurrentCallSite(CI->getZExtValue()); 6331 return; 6332 } 6333 case Intrinsic::eh_sjlj_functioncontext: { 6334 // Get and store the index of the function context. 6335 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6336 AllocaInst *FnCtx = 6337 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6338 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6339 MFI.setFunctionContextIndex(FI); 6340 return; 6341 } 6342 case Intrinsic::eh_sjlj_setjmp: { 6343 SDValue Ops[2]; 6344 Ops[0] = getRoot(); 6345 Ops[1] = getValue(I.getArgOperand(0)); 6346 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6347 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6348 setValue(&I, Op.getValue(0)); 6349 DAG.setRoot(Op.getValue(1)); 6350 return; 6351 } 6352 case Intrinsic::eh_sjlj_longjmp: 6353 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6354 getRoot(), getValue(I.getArgOperand(0)))); 6355 return; 6356 case Intrinsic::eh_sjlj_setup_dispatch: 6357 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6358 getRoot())); 6359 return; 6360 case Intrinsic::masked_gather: 6361 visitMaskedGather(I); 6362 return; 6363 case Intrinsic::masked_load: 6364 visitMaskedLoad(I); 6365 return; 6366 case Intrinsic::masked_scatter: 6367 visitMaskedScatter(I); 6368 return; 6369 case Intrinsic::masked_store: 6370 visitMaskedStore(I); 6371 return; 6372 case Intrinsic::masked_expandload: 6373 visitMaskedLoad(I, true /* IsExpanding */); 6374 return; 6375 case Intrinsic::masked_compressstore: 6376 visitMaskedStore(I, true /* IsCompressing */); 6377 return; 6378 case Intrinsic::powi: 6379 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6380 getValue(I.getArgOperand(1)), DAG)); 6381 return; 6382 case Intrinsic::log: 6383 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6384 return; 6385 case Intrinsic::log2: 6386 setValue(&I, 6387 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6388 return; 6389 case Intrinsic::log10: 6390 setValue(&I, 6391 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6392 return; 6393 case Intrinsic::exp: 6394 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6395 return; 6396 case Intrinsic::exp2: 6397 setValue(&I, 6398 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6399 return; 6400 case Intrinsic::pow: 6401 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6402 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6403 return; 6404 case Intrinsic::sqrt: 6405 case Intrinsic::fabs: 6406 case Intrinsic::sin: 6407 case Intrinsic::cos: 6408 case Intrinsic::exp10: 6409 case Intrinsic::floor: 6410 case Intrinsic::ceil: 6411 case Intrinsic::trunc: 6412 case Intrinsic::rint: 6413 case Intrinsic::nearbyint: 6414 case Intrinsic::round: 6415 case Intrinsic::roundeven: 6416 case Intrinsic::canonicalize: { 6417 unsigned Opcode; 6418 switch (Intrinsic) { 6419 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6420 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6421 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6422 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6423 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6424 case Intrinsic::exp10: Opcode = ISD::FEXP10; break; 6425 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6426 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6427 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6428 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6429 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6430 case Intrinsic::round: Opcode = ISD::FROUND; break; 6431 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6432 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6433 } 6434 6435 setValue(&I, DAG.getNode(Opcode, sdl, 6436 getValue(I.getArgOperand(0)).getValueType(), 6437 getValue(I.getArgOperand(0)), Flags)); 6438 return; 6439 } 6440 case Intrinsic::lround: 6441 case Intrinsic::llround: 6442 case Intrinsic::lrint: 6443 case Intrinsic::llrint: { 6444 unsigned Opcode; 6445 switch (Intrinsic) { 6446 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6447 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6448 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6449 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6450 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6451 } 6452 6453 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6454 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6455 getValue(I.getArgOperand(0)))); 6456 return; 6457 } 6458 case Intrinsic::minnum: 6459 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6460 getValue(I.getArgOperand(0)).getValueType(), 6461 getValue(I.getArgOperand(0)), 6462 getValue(I.getArgOperand(1)), Flags)); 6463 return; 6464 case Intrinsic::maxnum: 6465 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6466 getValue(I.getArgOperand(0)).getValueType(), 6467 getValue(I.getArgOperand(0)), 6468 getValue(I.getArgOperand(1)), Flags)); 6469 return; 6470 case Intrinsic::minimum: 6471 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6472 getValue(I.getArgOperand(0)).getValueType(), 6473 getValue(I.getArgOperand(0)), 6474 getValue(I.getArgOperand(1)), Flags)); 6475 return; 6476 case Intrinsic::maximum: 6477 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6478 getValue(I.getArgOperand(0)).getValueType(), 6479 getValue(I.getArgOperand(0)), 6480 getValue(I.getArgOperand(1)), Flags)); 6481 return; 6482 case Intrinsic::copysign: 6483 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6484 getValue(I.getArgOperand(0)).getValueType(), 6485 getValue(I.getArgOperand(0)), 6486 getValue(I.getArgOperand(1)), Flags)); 6487 return; 6488 case Intrinsic::ldexp: 6489 setValue(&I, DAG.getNode(ISD::FLDEXP, sdl, 6490 getValue(I.getArgOperand(0)).getValueType(), 6491 getValue(I.getArgOperand(0)), 6492 getValue(I.getArgOperand(1)), Flags)); 6493 return; 6494 case Intrinsic::frexp: { 6495 SmallVector<EVT, 2> ValueVTs; 6496 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 6497 SDVTList VTs = DAG.getVTList(ValueVTs); 6498 setValue(&I, 6499 DAG.getNode(ISD::FFREXP, sdl, VTs, getValue(I.getArgOperand(0)))); 6500 return; 6501 } 6502 case Intrinsic::arithmetic_fence: { 6503 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl, 6504 getValue(I.getArgOperand(0)).getValueType(), 6505 getValue(I.getArgOperand(0)), Flags)); 6506 return; 6507 } 6508 case Intrinsic::fma: 6509 setValue(&I, DAG.getNode( 6510 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 6511 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 6512 getValue(I.getArgOperand(2)), Flags)); 6513 return; 6514 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6515 case Intrinsic::INTRINSIC: 6516 #include "llvm/IR/ConstrainedOps.def" 6517 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6518 return; 6519 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 6520 #include "llvm/IR/VPIntrinsics.def" 6521 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I)); 6522 return; 6523 case Intrinsic::fptrunc_round: { 6524 // Get the last argument, the metadata and convert it to an integer in the 6525 // call 6526 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata(); 6527 std::optional<RoundingMode> RoundMode = 6528 convertStrToRoundingMode(cast<MDString>(MD)->getString()); 6529 6530 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6531 6532 // Propagate fast-math-flags from IR to node(s). 6533 SDNodeFlags Flags; 6534 Flags.copyFMF(*cast<FPMathOperator>(&I)); 6535 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 6536 6537 SDValue Result; 6538 Result = DAG.getNode( 6539 ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)), 6540 DAG.getTargetConstant((int)*RoundMode, sdl, 6541 TLI.getPointerTy(DAG.getDataLayout()))); 6542 setValue(&I, Result); 6543 6544 return; 6545 } 6546 case Intrinsic::fmuladd: { 6547 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6548 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6549 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6550 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6551 getValue(I.getArgOperand(0)).getValueType(), 6552 getValue(I.getArgOperand(0)), 6553 getValue(I.getArgOperand(1)), 6554 getValue(I.getArgOperand(2)), Flags)); 6555 } else { 6556 // TODO: Intrinsic calls should have fast-math-flags. 6557 SDValue Mul = DAG.getNode( 6558 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 6559 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 6560 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6561 getValue(I.getArgOperand(0)).getValueType(), 6562 Mul, getValue(I.getArgOperand(2)), Flags); 6563 setValue(&I, Add); 6564 } 6565 return; 6566 } 6567 case Intrinsic::convert_to_fp16: 6568 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6569 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6570 getValue(I.getArgOperand(0)), 6571 DAG.getTargetConstant(0, sdl, 6572 MVT::i32)))); 6573 return; 6574 case Intrinsic::convert_from_fp16: 6575 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6576 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6577 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6578 getValue(I.getArgOperand(0))))); 6579 return; 6580 case Intrinsic::fptosi_sat: { 6581 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6582 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT, 6583 getValue(I.getArgOperand(0)), 6584 DAG.getValueType(VT.getScalarType()))); 6585 return; 6586 } 6587 case Intrinsic::fptoui_sat: { 6588 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6589 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT, 6590 getValue(I.getArgOperand(0)), 6591 DAG.getValueType(VT.getScalarType()))); 6592 return; 6593 } 6594 case Intrinsic::set_rounding: 6595 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other, 6596 {getRoot(), getValue(I.getArgOperand(0))}); 6597 setValue(&I, Res); 6598 DAG.setRoot(Res.getValue(0)); 6599 return; 6600 case Intrinsic::is_fpclass: { 6601 const DataLayout DLayout = DAG.getDataLayout(); 6602 EVT DestVT = TLI.getValueType(DLayout, I.getType()); 6603 EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType()); 6604 FPClassTest Test = static_cast<FPClassTest>( 6605 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 6606 MachineFunction &MF = DAG.getMachineFunction(); 6607 const Function &F = MF.getFunction(); 6608 SDValue Op = getValue(I.getArgOperand(0)); 6609 SDNodeFlags Flags; 6610 Flags.setNoFPExcept( 6611 !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP)); 6612 // If ISD::IS_FPCLASS should be expanded, do it right now, because the 6613 // expansion can use illegal types. Making expansion early allows 6614 // legalizing these types prior to selection. 6615 if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) { 6616 SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG); 6617 setValue(&I, Result); 6618 return; 6619 } 6620 6621 SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32); 6622 SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags); 6623 setValue(&I, V); 6624 return; 6625 } 6626 case Intrinsic::get_fpenv: { 6627 const DataLayout DLayout = DAG.getDataLayout(); 6628 EVT EnvVT = TLI.getValueType(DLayout, I.getType()); 6629 Align TempAlign = DAG.getEVTAlign(EnvVT); 6630 SDValue Chain = getRoot(); 6631 // Use GET_FPENV if it is legal or custom. Otherwise use memory-based node 6632 // and temporary storage in stack. 6633 if (TLI.isOperationLegalOrCustom(ISD::GET_FPENV, EnvVT)) { 6634 Res = DAG.getNode( 6635 ISD::GET_FPENV, sdl, 6636 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6637 MVT::Other), 6638 Chain); 6639 } else { 6640 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value()); 6641 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex(); 6642 auto MPI = 6643 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 6644 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 6645 MPI, MachineMemOperand::MOStore, MemoryLocation::UnknownSize, 6646 TempAlign); 6647 Chain = DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO); 6648 Res = DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI); 6649 } 6650 setValue(&I, Res); 6651 DAG.setRoot(Res.getValue(1)); 6652 return; 6653 } 6654 case Intrinsic::set_fpenv: { 6655 const DataLayout DLayout = DAG.getDataLayout(); 6656 SDValue Env = getValue(I.getArgOperand(0)); 6657 EVT EnvVT = Env.getValueType(); 6658 Align TempAlign = DAG.getEVTAlign(EnvVT); 6659 SDValue Chain = getRoot(); 6660 // If SET_FPENV is custom or legal, use it. Otherwise use loading 6661 // environment from memory. 6662 if (TLI.isOperationLegalOrCustom(ISD::SET_FPENV, EnvVT)) { 6663 Chain = DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env); 6664 } else { 6665 // Allocate space in stack, copy environment bits into it and use this 6666 // memory in SET_FPENV_MEM. 6667 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value()); 6668 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex(); 6669 auto MPI = 6670 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 6671 Chain = DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign, 6672 MachineMemOperand::MOStore); 6673 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 6674 MPI, MachineMemOperand::MOLoad, MemoryLocation::UnknownSize, 6675 TempAlign); 6676 Chain = DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO); 6677 } 6678 DAG.setRoot(Chain); 6679 return; 6680 } 6681 case Intrinsic::reset_fpenv: 6682 DAG.setRoot(DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other, getRoot())); 6683 return; 6684 case Intrinsic::get_fpmode: 6685 Res = DAG.getNode( 6686 ISD::GET_FPMODE, sdl, 6687 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6688 MVT::Other), 6689 DAG.getRoot()); 6690 setValue(&I, Res); 6691 DAG.setRoot(Res.getValue(1)); 6692 return; 6693 case Intrinsic::set_fpmode: 6694 Res = DAG.getNode(ISD::SET_FPMODE, sdl, MVT::Other, {DAG.getRoot()}, 6695 getValue(I.getArgOperand(0))); 6696 DAG.setRoot(Res); 6697 return; 6698 case Intrinsic::reset_fpmode: { 6699 Res = DAG.getNode(ISD::RESET_FPMODE, sdl, MVT::Other, getRoot()); 6700 DAG.setRoot(Res); 6701 return; 6702 } 6703 case Intrinsic::pcmarker: { 6704 SDValue Tmp = getValue(I.getArgOperand(0)); 6705 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6706 return; 6707 } 6708 case Intrinsic::readcyclecounter: { 6709 SDValue Op = getRoot(); 6710 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6711 DAG.getVTList(MVT::i64, MVT::Other), Op); 6712 setValue(&I, Res); 6713 DAG.setRoot(Res.getValue(1)); 6714 return; 6715 } 6716 case Intrinsic::bitreverse: 6717 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6718 getValue(I.getArgOperand(0)).getValueType(), 6719 getValue(I.getArgOperand(0)))); 6720 return; 6721 case Intrinsic::bswap: 6722 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6723 getValue(I.getArgOperand(0)).getValueType(), 6724 getValue(I.getArgOperand(0)))); 6725 return; 6726 case Intrinsic::cttz: { 6727 SDValue Arg = getValue(I.getArgOperand(0)); 6728 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6729 EVT Ty = Arg.getValueType(); 6730 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6731 sdl, Ty, Arg)); 6732 return; 6733 } 6734 case Intrinsic::ctlz: { 6735 SDValue Arg = getValue(I.getArgOperand(0)); 6736 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6737 EVT Ty = Arg.getValueType(); 6738 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6739 sdl, Ty, Arg)); 6740 return; 6741 } 6742 case Intrinsic::ctpop: { 6743 SDValue Arg = getValue(I.getArgOperand(0)); 6744 EVT Ty = Arg.getValueType(); 6745 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6746 return; 6747 } 6748 case Intrinsic::fshl: 6749 case Intrinsic::fshr: { 6750 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6751 SDValue X = getValue(I.getArgOperand(0)); 6752 SDValue Y = getValue(I.getArgOperand(1)); 6753 SDValue Z = getValue(I.getArgOperand(2)); 6754 EVT VT = X.getValueType(); 6755 6756 if (X == Y) { 6757 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6758 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6759 } else { 6760 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6761 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6762 } 6763 return; 6764 } 6765 case Intrinsic::sadd_sat: { 6766 SDValue Op1 = getValue(I.getArgOperand(0)); 6767 SDValue Op2 = getValue(I.getArgOperand(1)); 6768 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6769 return; 6770 } 6771 case Intrinsic::uadd_sat: { 6772 SDValue Op1 = getValue(I.getArgOperand(0)); 6773 SDValue Op2 = getValue(I.getArgOperand(1)); 6774 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6775 return; 6776 } 6777 case Intrinsic::ssub_sat: { 6778 SDValue Op1 = getValue(I.getArgOperand(0)); 6779 SDValue Op2 = getValue(I.getArgOperand(1)); 6780 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6781 return; 6782 } 6783 case Intrinsic::usub_sat: { 6784 SDValue Op1 = getValue(I.getArgOperand(0)); 6785 SDValue Op2 = getValue(I.getArgOperand(1)); 6786 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6787 return; 6788 } 6789 case Intrinsic::sshl_sat: { 6790 SDValue Op1 = getValue(I.getArgOperand(0)); 6791 SDValue Op2 = getValue(I.getArgOperand(1)); 6792 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6793 return; 6794 } 6795 case Intrinsic::ushl_sat: { 6796 SDValue Op1 = getValue(I.getArgOperand(0)); 6797 SDValue Op2 = getValue(I.getArgOperand(1)); 6798 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6799 return; 6800 } 6801 case Intrinsic::smul_fix: 6802 case Intrinsic::umul_fix: 6803 case Intrinsic::smul_fix_sat: 6804 case Intrinsic::umul_fix_sat: { 6805 SDValue Op1 = getValue(I.getArgOperand(0)); 6806 SDValue Op2 = getValue(I.getArgOperand(1)); 6807 SDValue Op3 = getValue(I.getArgOperand(2)); 6808 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6809 Op1.getValueType(), Op1, Op2, Op3)); 6810 return; 6811 } 6812 case Intrinsic::sdiv_fix: 6813 case Intrinsic::udiv_fix: 6814 case Intrinsic::sdiv_fix_sat: 6815 case Intrinsic::udiv_fix_sat: { 6816 SDValue Op1 = getValue(I.getArgOperand(0)); 6817 SDValue Op2 = getValue(I.getArgOperand(1)); 6818 SDValue Op3 = getValue(I.getArgOperand(2)); 6819 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6820 Op1, Op2, Op3, DAG, TLI)); 6821 return; 6822 } 6823 case Intrinsic::smax: { 6824 SDValue Op1 = getValue(I.getArgOperand(0)); 6825 SDValue Op2 = getValue(I.getArgOperand(1)); 6826 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 6827 return; 6828 } 6829 case Intrinsic::smin: { 6830 SDValue Op1 = getValue(I.getArgOperand(0)); 6831 SDValue Op2 = getValue(I.getArgOperand(1)); 6832 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 6833 return; 6834 } 6835 case Intrinsic::umax: { 6836 SDValue Op1 = getValue(I.getArgOperand(0)); 6837 SDValue Op2 = getValue(I.getArgOperand(1)); 6838 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 6839 return; 6840 } 6841 case Intrinsic::umin: { 6842 SDValue Op1 = getValue(I.getArgOperand(0)); 6843 SDValue Op2 = getValue(I.getArgOperand(1)); 6844 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 6845 return; 6846 } 6847 case Intrinsic::abs: { 6848 // TODO: Preserve "int min is poison" arg in SDAG? 6849 SDValue Op1 = getValue(I.getArgOperand(0)); 6850 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 6851 return; 6852 } 6853 case Intrinsic::stacksave: { 6854 SDValue Op = getRoot(); 6855 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6856 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 6857 setValue(&I, Res); 6858 DAG.setRoot(Res.getValue(1)); 6859 return; 6860 } 6861 case Intrinsic::stackrestore: 6862 Res = getValue(I.getArgOperand(0)); 6863 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6864 return; 6865 case Intrinsic::get_dynamic_area_offset: { 6866 SDValue Op = getRoot(); 6867 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6868 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6869 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6870 // target. 6871 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) 6872 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6873 " intrinsic!"); 6874 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6875 Op); 6876 DAG.setRoot(Op); 6877 setValue(&I, Res); 6878 return; 6879 } 6880 case Intrinsic::stackguard: { 6881 MachineFunction &MF = DAG.getMachineFunction(); 6882 const Module &M = *MF.getFunction().getParent(); 6883 SDValue Chain = getRoot(); 6884 if (TLI.useLoadStackGuardNode()) { 6885 Res = getLoadStackGuard(DAG, sdl, Chain); 6886 } else { 6887 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6888 const Value *Global = TLI.getSDagStackGuard(M); 6889 Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType()); 6890 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6891 MachinePointerInfo(Global, 0), Align, 6892 MachineMemOperand::MOVolatile); 6893 } 6894 if (TLI.useStackGuardXorFP()) 6895 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6896 DAG.setRoot(Chain); 6897 setValue(&I, Res); 6898 return; 6899 } 6900 case Intrinsic::stackprotector: { 6901 // Emit code into the DAG to store the stack guard onto the stack. 6902 MachineFunction &MF = DAG.getMachineFunction(); 6903 MachineFrameInfo &MFI = MF.getFrameInfo(); 6904 SDValue Src, Chain = getRoot(); 6905 6906 if (TLI.useLoadStackGuardNode()) 6907 Src = getLoadStackGuard(DAG, sdl, Chain); 6908 else 6909 Src = getValue(I.getArgOperand(0)); // The guard's value. 6910 6911 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6912 6913 int FI = FuncInfo.StaticAllocaMap[Slot]; 6914 MFI.setStackProtectorIndex(FI); 6915 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6916 6917 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6918 6919 // Store the stack protector onto the stack. 6920 Res = DAG.getStore( 6921 Chain, sdl, Src, FIN, 6922 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 6923 MaybeAlign(), MachineMemOperand::MOVolatile); 6924 setValue(&I, Res); 6925 DAG.setRoot(Res); 6926 return; 6927 } 6928 case Intrinsic::objectsize: 6929 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6930 6931 case Intrinsic::is_constant: 6932 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6933 6934 case Intrinsic::annotation: 6935 case Intrinsic::ptr_annotation: 6936 case Intrinsic::launder_invariant_group: 6937 case Intrinsic::strip_invariant_group: 6938 // Drop the intrinsic, but forward the value 6939 setValue(&I, getValue(I.getOperand(0))); 6940 return; 6941 6942 case Intrinsic::assume: 6943 case Intrinsic::experimental_noalias_scope_decl: 6944 case Intrinsic::var_annotation: 6945 case Intrinsic::sideeffect: 6946 // Discard annotate attributes, noalias scope declarations, assumptions, and 6947 // artificial side-effects. 6948 return; 6949 6950 case Intrinsic::codeview_annotation: { 6951 // Emit a label associated with this metadata. 6952 MachineFunction &MF = DAG.getMachineFunction(); 6953 MCSymbol *Label = 6954 MF.getMMI().getContext().createTempSymbol("annotation", true); 6955 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6956 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6957 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6958 DAG.setRoot(Res); 6959 return; 6960 } 6961 6962 case Intrinsic::init_trampoline: { 6963 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6964 6965 SDValue Ops[6]; 6966 Ops[0] = getRoot(); 6967 Ops[1] = getValue(I.getArgOperand(0)); 6968 Ops[2] = getValue(I.getArgOperand(1)); 6969 Ops[3] = getValue(I.getArgOperand(2)); 6970 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6971 Ops[5] = DAG.getSrcValue(F); 6972 6973 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6974 6975 DAG.setRoot(Res); 6976 return; 6977 } 6978 case Intrinsic::adjust_trampoline: 6979 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6980 TLI.getPointerTy(DAG.getDataLayout()), 6981 getValue(I.getArgOperand(0)))); 6982 return; 6983 case Intrinsic::gcroot: { 6984 assert(DAG.getMachineFunction().getFunction().hasGC() && 6985 "only valid in functions with gc specified, enforced by Verifier"); 6986 assert(GFI && "implied by previous"); 6987 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6988 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6989 6990 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6991 GFI->addStackRoot(FI->getIndex(), TypeMap); 6992 return; 6993 } 6994 case Intrinsic::gcread: 6995 case Intrinsic::gcwrite: 6996 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6997 case Intrinsic::get_rounding: 6998 Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot()); 6999 setValue(&I, Res); 7000 DAG.setRoot(Res.getValue(1)); 7001 return; 7002 7003 case Intrinsic::expect: 7004 // Just replace __builtin_expect(exp, c) with EXP. 7005 setValue(&I, getValue(I.getArgOperand(0))); 7006 return; 7007 7008 case Intrinsic::ubsantrap: 7009 case Intrinsic::debugtrap: 7010 case Intrinsic::trap: { 7011 StringRef TrapFuncName = 7012 I.getAttributes().getFnAttr("trap-func-name").getValueAsString(); 7013 if (TrapFuncName.empty()) { 7014 switch (Intrinsic) { 7015 case Intrinsic::trap: 7016 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot())); 7017 break; 7018 case Intrinsic::debugtrap: 7019 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot())); 7020 break; 7021 case Intrinsic::ubsantrap: 7022 DAG.setRoot(DAG.getNode( 7023 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(), 7024 DAG.getTargetConstant( 7025 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl, 7026 MVT::i32))); 7027 break; 7028 default: llvm_unreachable("unknown trap intrinsic"); 7029 } 7030 return; 7031 } 7032 TargetLowering::ArgListTy Args; 7033 if (Intrinsic == Intrinsic::ubsantrap) { 7034 Args.push_back(TargetLoweringBase::ArgListEntry()); 7035 Args[0].Val = I.getArgOperand(0); 7036 Args[0].Node = getValue(Args[0].Val); 7037 Args[0].Ty = Args[0].Val->getType(); 7038 } 7039 7040 TargetLowering::CallLoweringInfo CLI(DAG); 7041 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 7042 CallingConv::C, I.getType(), 7043 DAG.getExternalSymbol(TrapFuncName.data(), 7044 TLI.getPointerTy(DAG.getDataLayout())), 7045 std::move(Args)); 7046 7047 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7048 DAG.setRoot(Result.second); 7049 return; 7050 } 7051 7052 case Intrinsic::uadd_with_overflow: 7053 case Intrinsic::sadd_with_overflow: 7054 case Intrinsic::usub_with_overflow: 7055 case Intrinsic::ssub_with_overflow: 7056 case Intrinsic::umul_with_overflow: 7057 case Intrinsic::smul_with_overflow: { 7058 ISD::NodeType Op; 7059 switch (Intrinsic) { 7060 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7061 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 7062 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 7063 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 7064 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 7065 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 7066 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 7067 } 7068 SDValue Op1 = getValue(I.getArgOperand(0)); 7069 SDValue Op2 = getValue(I.getArgOperand(1)); 7070 7071 EVT ResultVT = Op1.getValueType(); 7072 EVT OverflowVT = MVT::i1; 7073 if (ResultVT.isVector()) 7074 OverflowVT = EVT::getVectorVT( 7075 *Context, OverflowVT, ResultVT.getVectorElementCount()); 7076 7077 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 7078 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 7079 return; 7080 } 7081 case Intrinsic::prefetch: { 7082 SDValue Ops[5]; 7083 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 7084 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 7085 Ops[0] = DAG.getRoot(); 7086 Ops[1] = getValue(I.getArgOperand(0)); 7087 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 7088 MVT::i32); 7089 Ops[3] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(2)), sdl, 7090 MVT::i32); 7091 Ops[4] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(3)), sdl, 7092 MVT::i32); 7093 SDValue Result = DAG.getMemIntrinsicNode( 7094 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 7095 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 7096 /* align */ std::nullopt, Flags); 7097 7098 // Chain the prefetch in parallell with any pending loads, to stay out of 7099 // the way of later optimizations. 7100 PendingLoads.push_back(Result); 7101 Result = getRoot(); 7102 DAG.setRoot(Result); 7103 return; 7104 } 7105 case Intrinsic::lifetime_start: 7106 case Intrinsic::lifetime_end: { 7107 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 7108 // Stack coloring is not enabled in O0, discard region information. 7109 if (TM.getOptLevel() == CodeGenOptLevel::None) 7110 return; 7111 7112 const int64_t ObjectSize = 7113 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 7114 Value *const ObjectPtr = I.getArgOperand(1); 7115 SmallVector<const Value *, 4> Allocas; 7116 getUnderlyingObjects(ObjectPtr, Allocas); 7117 7118 for (const Value *Alloca : Allocas) { 7119 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca); 7120 7121 // Could not find an Alloca. 7122 if (!LifetimeObject) 7123 continue; 7124 7125 // First check that the Alloca is static, otherwise it won't have a 7126 // valid frame index. 7127 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 7128 if (SI == FuncInfo.StaticAllocaMap.end()) 7129 return; 7130 7131 const int FrameIndex = SI->second; 7132 int64_t Offset; 7133 if (GetPointerBaseWithConstantOffset( 7134 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 7135 Offset = -1; // Cannot determine offset from alloca to lifetime object. 7136 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 7137 Offset); 7138 DAG.setRoot(Res); 7139 } 7140 return; 7141 } 7142 case Intrinsic::pseudoprobe: { 7143 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 7144 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 7145 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 7146 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr); 7147 DAG.setRoot(Res); 7148 return; 7149 } 7150 case Intrinsic::invariant_start: 7151 // Discard region information. 7152 setValue(&I, 7153 DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType()))); 7154 return; 7155 case Intrinsic::invariant_end: 7156 // Discard region information. 7157 return; 7158 case Intrinsic::clear_cache: 7159 /// FunctionName may be null. 7160 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 7161 lowerCallToExternalSymbol(I, FunctionName); 7162 return; 7163 case Intrinsic::donothing: 7164 case Intrinsic::seh_try_begin: 7165 case Intrinsic::seh_scope_begin: 7166 case Intrinsic::seh_try_end: 7167 case Intrinsic::seh_scope_end: 7168 // ignore 7169 return; 7170 case Intrinsic::experimental_stackmap: 7171 visitStackmap(I); 7172 return; 7173 case Intrinsic::experimental_patchpoint_void: 7174 case Intrinsic::experimental_patchpoint_i64: 7175 visitPatchpoint(I); 7176 return; 7177 case Intrinsic::experimental_gc_statepoint: 7178 LowerStatepoint(cast<GCStatepointInst>(I)); 7179 return; 7180 case Intrinsic::experimental_gc_result: 7181 visitGCResult(cast<GCResultInst>(I)); 7182 return; 7183 case Intrinsic::experimental_gc_relocate: 7184 visitGCRelocate(cast<GCRelocateInst>(I)); 7185 return; 7186 case Intrinsic::instrprof_cover: 7187 llvm_unreachable("instrprof failed to lower a cover"); 7188 case Intrinsic::instrprof_increment: 7189 llvm_unreachable("instrprof failed to lower an increment"); 7190 case Intrinsic::instrprof_timestamp: 7191 llvm_unreachable("instrprof failed to lower a timestamp"); 7192 case Intrinsic::instrprof_value_profile: 7193 llvm_unreachable("instrprof failed to lower a value profiling call"); 7194 case Intrinsic::localescape: { 7195 MachineFunction &MF = DAG.getMachineFunction(); 7196 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 7197 7198 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 7199 // is the same on all targets. 7200 for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) { 7201 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 7202 if (isa<ConstantPointerNull>(Arg)) 7203 continue; // Skip null pointers. They represent a hole in index space. 7204 AllocaInst *Slot = cast<AllocaInst>(Arg); 7205 assert(FuncInfo.StaticAllocaMap.count(Slot) && 7206 "can only escape static allocas"); 7207 int FI = FuncInfo.StaticAllocaMap[Slot]; 7208 MCSymbol *FrameAllocSym = 7209 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 7210 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 7211 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 7212 TII->get(TargetOpcode::LOCAL_ESCAPE)) 7213 .addSym(FrameAllocSym) 7214 .addFrameIndex(FI); 7215 } 7216 7217 return; 7218 } 7219 7220 case Intrinsic::localrecover: { 7221 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 7222 MachineFunction &MF = DAG.getMachineFunction(); 7223 7224 // Get the symbol that defines the frame offset. 7225 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 7226 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 7227 unsigned IdxVal = 7228 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 7229 MCSymbol *FrameAllocSym = 7230 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 7231 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 7232 7233 Value *FP = I.getArgOperand(1); 7234 SDValue FPVal = getValue(FP); 7235 EVT PtrVT = FPVal.getValueType(); 7236 7237 // Create a MCSymbol for the label to avoid any target lowering 7238 // that would make this PC relative. 7239 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 7240 SDValue OffsetVal = 7241 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 7242 7243 // Add the offset to the FP. 7244 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 7245 setValue(&I, Add); 7246 7247 return; 7248 } 7249 7250 case Intrinsic::eh_exceptionpointer: 7251 case Intrinsic::eh_exceptioncode: { 7252 // Get the exception pointer vreg, copy from it, and resize it to fit. 7253 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 7254 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 7255 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 7256 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 7257 SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT); 7258 if (Intrinsic == Intrinsic::eh_exceptioncode) 7259 N = DAG.getZExtOrTrunc(N, sdl, MVT::i32); 7260 setValue(&I, N); 7261 return; 7262 } 7263 case Intrinsic::xray_customevent: { 7264 // Here we want to make sure that the intrinsic behaves as if it has a 7265 // specific calling convention. 7266 const auto &Triple = DAG.getTarget().getTargetTriple(); 7267 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 7268 return; 7269 7270 SmallVector<SDValue, 8> Ops; 7271 7272 // We want to say that we always want the arguments in registers. 7273 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 7274 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 7275 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7276 SDValue Chain = getRoot(); 7277 Ops.push_back(LogEntryVal); 7278 Ops.push_back(StrSizeVal); 7279 Ops.push_back(Chain); 7280 7281 // We need to enforce the calling convention for the callsite, so that 7282 // argument ordering is enforced correctly, and that register allocation can 7283 // see that some registers may be assumed clobbered and have to preserve 7284 // them across calls to the intrinsic. 7285 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 7286 sdl, NodeTys, Ops); 7287 SDValue patchableNode = SDValue(MN, 0); 7288 DAG.setRoot(patchableNode); 7289 setValue(&I, patchableNode); 7290 return; 7291 } 7292 case Intrinsic::xray_typedevent: { 7293 // Here we want to make sure that the intrinsic behaves as if it has a 7294 // specific calling convention. 7295 const auto &Triple = DAG.getTarget().getTargetTriple(); 7296 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 7297 return; 7298 7299 SmallVector<SDValue, 8> Ops; 7300 7301 // We want to say that we always want the arguments in registers. 7302 // It's unclear to me how manipulating the selection DAG here forces callers 7303 // to provide arguments in registers instead of on the stack. 7304 SDValue LogTypeId = getValue(I.getArgOperand(0)); 7305 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 7306 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 7307 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7308 SDValue Chain = getRoot(); 7309 Ops.push_back(LogTypeId); 7310 Ops.push_back(LogEntryVal); 7311 Ops.push_back(StrSizeVal); 7312 Ops.push_back(Chain); 7313 7314 // We need to enforce the calling convention for the callsite, so that 7315 // argument ordering is enforced correctly, and that register allocation can 7316 // see that some registers may be assumed clobbered and have to preserve 7317 // them across calls to the intrinsic. 7318 MachineSDNode *MN = DAG.getMachineNode( 7319 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops); 7320 SDValue patchableNode = SDValue(MN, 0); 7321 DAG.setRoot(patchableNode); 7322 setValue(&I, patchableNode); 7323 return; 7324 } 7325 case Intrinsic::experimental_deoptimize: 7326 LowerDeoptimizeCall(&I); 7327 return; 7328 case Intrinsic::experimental_stepvector: 7329 visitStepVector(I); 7330 return; 7331 case Intrinsic::vector_reduce_fadd: 7332 case Intrinsic::vector_reduce_fmul: 7333 case Intrinsic::vector_reduce_add: 7334 case Intrinsic::vector_reduce_mul: 7335 case Intrinsic::vector_reduce_and: 7336 case Intrinsic::vector_reduce_or: 7337 case Intrinsic::vector_reduce_xor: 7338 case Intrinsic::vector_reduce_smax: 7339 case Intrinsic::vector_reduce_smin: 7340 case Intrinsic::vector_reduce_umax: 7341 case Intrinsic::vector_reduce_umin: 7342 case Intrinsic::vector_reduce_fmax: 7343 case Intrinsic::vector_reduce_fmin: 7344 case Intrinsic::vector_reduce_fmaximum: 7345 case Intrinsic::vector_reduce_fminimum: 7346 visitVectorReduce(I, Intrinsic); 7347 return; 7348 7349 case Intrinsic::icall_branch_funnel: { 7350 SmallVector<SDValue, 16> Ops; 7351 Ops.push_back(getValue(I.getArgOperand(0))); 7352 7353 int64_t Offset; 7354 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7355 I.getArgOperand(1), Offset, DAG.getDataLayout())); 7356 if (!Base) 7357 report_fatal_error( 7358 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7359 Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0)); 7360 7361 struct BranchFunnelTarget { 7362 int64_t Offset; 7363 SDValue Target; 7364 }; 7365 SmallVector<BranchFunnelTarget, 8> Targets; 7366 7367 for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) { 7368 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7369 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 7370 if (ElemBase != Base) 7371 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 7372 "to the same GlobalValue"); 7373 7374 SDValue Val = getValue(I.getArgOperand(Op + 1)); 7375 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 7376 if (!GA) 7377 report_fatal_error( 7378 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7379 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 7380 GA->getGlobal(), sdl, Val.getValueType(), 7381 GA->getOffset())}); 7382 } 7383 llvm::sort(Targets, 7384 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 7385 return T1.Offset < T2.Offset; 7386 }); 7387 7388 for (auto &T : Targets) { 7389 Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32)); 7390 Ops.push_back(T.Target); 7391 } 7392 7393 Ops.push_back(DAG.getRoot()); // Chain 7394 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl, 7395 MVT::Other, Ops), 7396 0); 7397 DAG.setRoot(N); 7398 setValue(&I, N); 7399 HasTailCall = true; 7400 return; 7401 } 7402 7403 case Intrinsic::wasm_landingpad_index: 7404 // Information this intrinsic contained has been transferred to 7405 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 7406 // delete it now. 7407 return; 7408 7409 case Intrinsic::aarch64_settag: 7410 case Intrinsic::aarch64_settag_zero: { 7411 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7412 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 7413 SDValue Val = TSI.EmitTargetCodeForSetTag( 7414 DAG, sdl, getRoot(), getValue(I.getArgOperand(0)), 7415 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 7416 ZeroMemory); 7417 DAG.setRoot(Val); 7418 setValue(&I, Val); 7419 return; 7420 } 7421 case Intrinsic::ptrmask: { 7422 SDValue Ptr = getValue(I.getOperand(0)); 7423 SDValue Const = getValue(I.getOperand(1)); 7424 7425 EVT PtrVT = Ptr.getValueType(); 7426 setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, 7427 DAG.getZExtOrTrunc(Const, sdl, PtrVT))); 7428 return; 7429 } 7430 case Intrinsic::threadlocal_address: { 7431 setValue(&I, getValue(I.getOperand(0))); 7432 return; 7433 } 7434 case Intrinsic::get_active_lane_mask: { 7435 EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7436 SDValue Index = getValue(I.getOperand(0)); 7437 EVT ElementVT = Index.getValueType(); 7438 7439 if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) { 7440 visitTargetIntrinsic(I, Intrinsic); 7441 return; 7442 } 7443 7444 SDValue TripCount = getValue(I.getOperand(1)); 7445 EVT VecTy = EVT::getVectorVT(*DAG.getContext(), ElementVT, 7446 CCVT.getVectorElementCount()); 7447 7448 SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index); 7449 SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount); 7450 SDValue VectorStep = DAG.getStepVector(sdl, VecTy); 7451 SDValue VectorInduction = DAG.getNode( 7452 ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep); 7453 SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction, 7454 VectorTripCount, ISD::CondCode::SETULT); 7455 setValue(&I, SetCC); 7456 return; 7457 } 7458 case Intrinsic::experimental_get_vector_length: { 7459 assert(cast<ConstantInt>(I.getOperand(1))->getSExtValue() > 0 && 7460 "Expected positive VF"); 7461 unsigned VF = cast<ConstantInt>(I.getOperand(1))->getZExtValue(); 7462 bool IsScalable = cast<ConstantInt>(I.getOperand(2))->isOne(); 7463 7464 SDValue Count = getValue(I.getOperand(0)); 7465 EVT CountVT = Count.getValueType(); 7466 7467 if (!TLI.shouldExpandGetVectorLength(CountVT, VF, IsScalable)) { 7468 visitTargetIntrinsic(I, Intrinsic); 7469 return; 7470 } 7471 7472 // Expand to a umin between the trip count and the maximum elements the type 7473 // can hold. 7474 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7475 7476 // Extend the trip count to at least the result VT. 7477 if (CountVT.bitsLT(VT)) { 7478 Count = DAG.getNode(ISD::ZERO_EXTEND, sdl, VT, Count); 7479 CountVT = VT; 7480 } 7481 7482 SDValue MaxEVL = DAG.getElementCount(sdl, CountVT, 7483 ElementCount::get(VF, IsScalable)); 7484 7485 SDValue UMin = DAG.getNode(ISD::UMIN, sdl, CountVT, Count, MaxEVL); 7486 // Clip to the result type if needed. 7487 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, sdl, VT, UMin); 7488 7489 setValue(&I, Trunc); 7490 return; 7491 } 7492 case Intrinsic::vector_insert: { 7493 SDValue Vec = getValue(I.getOperand(0)); 7494 SDValue SubVec = getValue(I.getOperand(1)); 7495 SDValue Index = getValue(I.getOperand(2)); 7496 7497 // The intrinsic's index type is i64, but the SDNode requires an index type 7498 // suitable for the target. Convert the index as required. 7499 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7500 if (Index.getValueType() != VectorIdxTy) 7501 Index = DAG.getVectorIdxConstant( 7502 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7503 7504 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7505 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec, 7506 Index)); 7507 return; 7508 } 7509 case Intrinsic::vector_extract: { 7510 SDValue Vec = getValue(I.getOperand(0)); 7511 SDValue Index = getValue(I.getOperand(1)); 7512 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7513 7514 // The intrinsic's index type is i64, but the SDNode requires an index type 7515 // suitable for the target. Convert the index as required. 7516 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7517 if (Index.getValueType() != VectorIdxTy) 7518 Index = DAG.getVectorIdxConstant( 7519 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7520 7521 setValue(&I, 7522 DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index)); 7523 return; 7524 } 7525 case Intrinsic::experimental_vector_reverse: 7526 visitVectorReverse(I); 7527 return; 7528 case Intrinsic::experimental_vector_splice: 7529 visitVectorSplice(I); 7530 return; 7531 case Intrinsic::callbr_landingpad: 7532 visitCallBrLandingPad(I); 7533 return; 7534 case Intrinsic::experimental_vector_interleave2: 7535 visitVectorInterleave(I); 7536 return; 7537 case Intrinsic::experimental_vector_deinterleave2: 7538 visitVectorDeinterleave(I); 7539 return; 7540 } 7541 } 7542 7543 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 7544 const ConstrainedFPIntrinsic &FPI) { 7545 SDLoc sdl = getCurSDLoc(); 7546 7547 // We do not need to serialize constrained FP intrinsics against 7548 // each other or against (nonvolatile) loads, so they can be 7549 // chained like loads. 7550 SDValue Chain = DAG.getRoot(); 7551 SmallVector<SDValue, 4> Opers; 7552 Opers.push_back(Chain); 7553 if (FPI.isUnaryOp()) { 7554 Opers.push_back(getValue(FPI.getArgOperand(0))); 7555 } else if (FPI.isTernaryOp()) { 7556 Opers.push_back(getValue(FPI.getArgOperand(0))); 7557 Opers.push_back(getValue(FPI.getArgOperand(1))); 7558 Opers.push_back(getValue(FPI.getArgOperand(2))); 7559 } else { 7560 Opers.push_back(getValue(FPI.getArgOperand(0))); 7561 Opers.push_back(getValue(FPI.getArgOperand(1))); 7562 } 7563 7564 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 7565 assert(Result.getNode()->getNumValues() == 2); 7566 7567 // Push node to the appropriate list so that future instructions can be 7568 // chained up correctly. 7569 SDValue OutChain = Result.getValue(1); 7570 switch (EB) { 7571 case fp::ExceptionBehavior::ebIgnore: 7572 // The only reason why ebIgnore nodes still need to be chained is that 7573 // they might depend on the current rounding mode, and therefore must 7574 // not be moved across instruction that may change that mode. 7575 [[fallthrough]]; 7576 case fp::ExceptionBehavior::ebMayTrap: 7577 // These must not be moved across calls or instructions that may change 7578 // floating-point exception masks. 7579 PendingConstrainedFP.push_back(OutChain); 7580 break; 7581 case fp::ExceptionBehavior::ebStrict: 7582 // These must not be moved across calls or instructions that may change 7583 // floating-point exception masks or read floating-point exception flags. 7584 // In addition, they cannot be optimized out even if unused. 7585 PendingConstrainedFPStrict.push_back(OutChain); 7586 break; 7587 } 7588 }; 7589 7590 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7591 EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType()); 7592 SDVTList VTs = DAG.getVTList(VT, MVT::Other); 7593 fp::ExceptionBehavior EB = *FPI.getExceptionBehavior(); 7594 7595 SDNodeFlags Flags; 7596 if (EB == fp::ExceptionBehavior::ebIgnore) 7597 Flags.setNoFPExcept(true); 7598 7599 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 7600 Flags.copyFMF(*FPOp); 7601 7602 unsigned Opcode; 7603 switch (FPI.getIntrinsicID()) { 7604 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7605 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7606 case Intrinsic::INTRINSIC: \ 7607 Opcode = ISD::STRICT_##DAGN; \ 7608 break; 7609 #include "llvm/IR/ConstrainedOps.def" 7610 case Intrinsic::experimental_constrained_fmuladd: { 7611 Opcode = ISD::STRICT_FMA; 7612 // Break fmuladd into fmul and fadd. 7613 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 7614 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 7615 Opers.pop_back(); 7616 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 7617 pushOutChain(Mul, EB); 7618 Opcode = ISD::STRICT_FADD; 7619 Opers.clear(); 7620 Opers.push_back(Mul.getValue(1)); 7621 Opers.push_back(Mul.getValue(0)); 7622 Opers.push_back(getValue(FPI.getArgOperand(2))); 7623 } 7624 break; 7625 } 7626 } 7627 7628 // A few strict DAG nodes carry additional operands that are not 7629 // set up by the default code above. 7630 switch (Opcode) { 7631 default: break; 7632 case ISD::STRICT_FP_ROUND: 7633 Opers.push_back( 7634 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 7635 break; 7636 case ISD::STRICT_FSETCC: 7637 case ISD::STRICT_FSETCCS: { 7638 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 7639 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate()); 7640 if (TM.Options.NoNaNsFPMath) 7641 Condition = getFCmpCodeWithoutNaN(Condition); 7642 Opers.push_back(DAG.getCondCode(Condition)); 7643 break; 7644 } 7645 } 7646 7647 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 7648 pushOutChain(Result, EB); 7649 7650 SDValue FPResult = Result.getValue(0); 7651 setValue(&FPI, FPResult); 7652 } 7653 7654 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) { 7655 std::optional<unsigned> ResOPC; 7656 switch (VPIntrin.getIntrinsicID()) { 7657 case Intrinsic::vp_ctlz: { 7658 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 7659 ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ; 7660 break; 7661 } 7662 case Intrinsic::vp_cttz: { 7663 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 7664 ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ; 7665 break; 7666 } 7667 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \ 7668 case Intrinsic::VPID: \ 7669 ResOPC = ISD::VPSD; \ 7670 break; 7671 #include "llvm/IR/VPIntrinsics.def" 7672 } 7673 7674 if (!ResOPC) 7675 llvm_unreachable( 7676 "Inconsistency: no SDNode available for this VPIntrinsic!"); 7677 7678 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD || 7679 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) { 7680 if (VPIntrin.getFastMathFlags().allowReassoc()) 7681 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD 7682 : ISD::VP_REDUCE_FMUL; 7683 } 7684 7685 return *ResOPC; 7686 } 7687 7688 void SelectionDAGBuilder::visitVPLoad( 7689 const VPIntrinsic &VPIntrin, EVT VT, 7690 const SmallVectorImpl<SDValue> &OpValues) { 7691 SDLoc DL = getCurSDLoc(); 7692 Value *PtrOperand = VPIntrin.getArgOperand(0); 7693 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7694 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7695 const MDNode *Ranges = getRangeMetadata(VPIntrin); 7696 SDValue LD; 7697 // Do not serialize variable-length loads of constant memory with 7698 // anything. 7699 if (!Alignment) 7700 Alignment = DAG.getEVTAlign(VT); 7701 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 7702 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7703 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7704 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7705 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7706 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7707 LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2], 7708 MMO, false /*IsExpanding */); 7709 if (AddToChain) 7710 PendingLoads.push_back(LD.getValue(1)); 7711 setValue(&VPIntrin, LD); 7712 } 7713 7714 void SelectionDAGBuilder::visitVPGather( 7715 const VPIntrinsic &VPIntrin, EVT VT, 7716 const SmallVectorImpl<SDValue> &OpValues) { 7717 SDLoc DL = getCurSDLoc(); 7718 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7719 Value *PtrOperand = VPIntrin.getArgOperand(0); 7720 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7721 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7722 const MDNode *Ranges = getRangeMetadata(VPIntrin); 7723 SDValue LD; 7724 if (!Alignment) 7725 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7726 unsigned AS = 7727 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7728 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7729 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 7730 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7731 SDValue Base, Index, Scale; 7732 ISD::MemIndexType IndexType; 7733 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7734 this, VPIntrin.getParent(), 7735 VT.getScalarStoreSize()); 7736 if (!UniformBase) { 7737 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7738 Index = getValue(PtrOperand); 7739 IndexType = ISD::SIGNED_SCALED; 7740 Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7741 } 7742 EVT IdxVT = Index.getValueType(); 7743 EVT EltTy = IdxVT.getVectorElementType(); 7744 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7745 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7746 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7747 } 7748 LD = DAG.getGatherVP( 7749 DAG.getVTList(VT, MVT::Other), VT, DL, 7750 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO, 7751 IndexType); 7752 PendingLoads.push_back(LD.getValue(1)); 7753 setValue(&VPIntrin, LD); 7754 } 7755 7756 void SelectionDAGBuilder::visitVPStore( 7757 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 7758 SDLoc DL = getCurSDLoc(); 7759 Value *PtrOperand = VPIntrin.getArgOperand(1); 7760 EVT VT = OpValues[0].getValueType(); 7761 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7762 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7763 SDValue ST; 7764 if (!Alignment) 7765 Alignment = DAG.getEVTAlign(VT); 7766 SDValue Ptr = OpValues[1]; 7767 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 7768 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7769 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7770 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7771 ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset, 7772 OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED, 7773 /* IsTruncating */ false, /*IsCompressing*/ false); 7774 DAG.setRoot(ST); 7775 setValue(&VPIntrin, ST); 7776 } 7777 7778 void SelectionDAGBuilder::visitVPScatter( 7779 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 7780 SDLoc DL = getCurSDLoc(); 7781 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7782 Value *PtrOperand = VPIntrin.getArgOperand(1); 7783 EVT VT = OpValues[0].getValueType(); 7784 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7785 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7786 SDValue ST; 7787 if (!Alignment) 7788 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7789 unsigned AS = 7790 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7791 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7792 MachinePointerInfo(AS), MachineMemOperand::MOStore, 7793 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7794 SDValue Base, Index, Scale; 7795 ISD::MemIndexType IndexType; 7796 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7797 this, VPIntrin.getParent(), 7798 VT.getScalarStoreSize()); 7799 if (!UniformBase) { 7800 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7801 Index = getValue(PtrOperand); 7802 IndexType = ISD::SIGNED_SCALED; 7803 Scale = 7804 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7805 } 7806 EVT IdxVT = Index.getValueType(); 7807 EVT EltTy = IdxVT.getVectorElementType(); 7808 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7809 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7810 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7811 } 7812 ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL, 7813 {getMemoryRoot(), OpValues[0], Base, Index, Scale, 7814 OpValues[2], OpValues[3]}, 7815 MMO, IndexType); 7816 DAG.setRoot(ST); 7817 setValue(&VPIntrin, ST); 7818 } 7819 7820 void SelectionDAGBuilder::visitVPStridedLoad( 7821 const VPIntrinsic &VPIntrin, EVT VT, 7822 const SmallVectorImpl<SDValue> &OpValues) { 7823 SDLoc DL = getCurSDLoc(); 7824 Value *PtrOperand = VPIntrin.getArgOperand(0); 7825 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7826 if (!Alignment) 7827 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7828 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7829 const MDNode *Ranges = getRangeMetadata(VPIntrin); 7830 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 7831 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7832 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7833 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7834 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7835 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7836 7837 SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], 7838 OpValues[2], OpValues[3], MMO, 7839 false /*IsExpanding*/); 7840 7841 if (AddToChain) 7842 PendingLoads.push_back(LD.getValue(1)); 7843 setValue(&VPIntrin, LD); 7844 } 7845 7846 void SelectionDAGBuilder::visitVPStridedStore( 7847 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 7848 SDLoc DL = getCurSDLoc(); 7849 Value *PtrOperand = VPIntrin.getArgOperand(1); 7850 EVT VT = OpValues[0].getValueType(); 7851 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7852 if (!Alignment) 7853 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7854 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7855 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7856 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7857 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7858 7859 SDValue ST = DAG.getStridedStoreVP( 7860 getMemoryRoot(), DL, OpValues[0], OpValues[1], 7861 DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3], 7862 OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false, 7863 /*IsCompressing*/ false); 7864 7865 DAG.setRoot(ST); 7866 setValue(&VPIntrin, ST); 7867 } 7868 7869 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) { 7870 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7871 SDLoc DL = getCurSDLoc(); 7872 7873 ISD::CondCode Condition; 7874 CmpInst::Predicate CondCode = VPIntrin.getPredicate(); 7875 bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy(); 7876 if (IsFP) { 7877 // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan) 7878 // flags, but calls that don't return floating-point types can't be 7879 // FPMathOperators, like vp.fcmp. This affects constrained fcmp too. 7880 Condition = getFCmpCondCode(CondCode); 7881 if (TM.Options.NoNaNsFPMath) 7882 Condition = getFCmpCodeWithoutNaN(Condition); 7883 } else { 7884 Condition = getICmpCondCode(CondCode); 7885 } 7886 7887 SDValue Op1 = getValue(VPIntrin.getOperand(0)); 7888 SDValue Op2 = getValue(VPIntrin.getOperand(1)); 7889 // #2 is the condition code 7890 SDValue MaskOp = getValue(VPIntrin.getOperand(3)); 7891 SDValue EVL = getValue(VPIntrin.getOperand(4)); 7892 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 7893 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 7894 "Unexpected target EVL type"); 7895 EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL); 7896 7897 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7898 VPIntrin.getType()); 7899 setValue(&VPIntrin, 7900 DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL)); 7901 } 7902 7903 void SelectionDAGBuilder::visitVectorPredicationIntrinsic( 7904 const VPIntrinsic &VPIntrin) { 7905 SDLoc DL = getCurSDLoc(); 7906 unsigned Opcode = getISDForVPIntrinsic(VPIntrin); 7907 7908 auto IID = VPIntrin.getIntrinsicID(); 7909 7910 if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin)) 7911 return visitVPCmp(*CmpI); 7912 7913 SmallVector<EVT, 4> ValueVTs; 7914 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7915 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs); 7916 SDVTList VTs = DAG.getVTList(ValueVTs); 7917 7918 auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID); 7919 7920 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 7921 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 7922 "Unexpected target EVL type"); 7923 7924 // Request operands. 7925 SmallVector<SDValue, 7> OpValues; 7926 for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) { 7927 auto Op = getValue(VPIntrin.getArgOperand(I)); 7928 if (I == EVLParamPos) 7929 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op); 7930 OpValues.push_back(Op); 7931 } 7932 7933 switch (Opcode) { 7934 default: { 7935 SDNodeFlags SDFlags; 7936 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 7937 SDFlags.copyFMF(*FPMO); 7938 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags); 7939 setValue(&VPIntrin, Result); 7940 break; 7941 } 7942 case ISD::VP_LOAD: 7943 visitVPLoad(VPIntrin, ValueVTs[0], OpValues); 7944 break; 7945 case ISD::VP_GATHER: 7946 visitVPGather(VPIntrin, ValueVTs[0], OpValues); 7947 break; 7948 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: 7949 visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues); 7950 break; 7951 case ISD::VP_STORE: 7952 visitVPStore(VPIntrin, OpValues); 7953 break; 7954 case ISD::VP_SCATTER: 7955 visitVPScatter(VPIntrin, OpValues); 7956 break; 7957 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: 7958 visitVPStridedStore(VPIntrin, OpValues); 7959 break; 7960 case ISD::VP_FMULADD: { 7961 assert(OpValues.size() == 5 && "Unexpected number of operands"); 7962 SDNodeFlags SDFlags; 7963 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 7964 SDFlags.copyFMF(*FPMO); 7965 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 7966 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) { 7967 setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags)); 7968 } else { 7969 SDValue Mul = DAG.getNode( 7970 ISD::VP_FMUL, DL, VTs, 7971 {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags); 7972 SDValue Add = 7973 DAG.getNode(ISD::VP_FADD, DL, VTs, 7974 {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags); 7975 setValue(&VPIntrin, Add); 7976 } 7977 break; 7978 } 7979 case ISD::VP_IS_FPCLASS: { 7980 const DataLayout DLayout = DAG.getDataLayout(); 7981 EVT DestVT = TLI.getValueType(DLayout, VPIntrin.getType()); 7982 auto Constant = cast<ConstantSDNode>(OpValues[1])->getZExtValue(); 7983 SDValue Check = DAG.getTargetConstant(Constant, DL, MVT::i32); 7984 SDValue V = DAG.getNode(ISD::VP_IS_FPCLASS, DL, DestVT, 7985 {OpValues[0], Check, OpValues[2], OpValues[3]}); 7986 setValue(&VPIntrin, V); 7987 return; 7988 } 7989 case ISD::VP_INTTOPTR: { 7990 SDValue N = OpValues[0]; 7991 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType()); 7992 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType()); 7993 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 7994 OpValues[2]); 7995 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 7996 OpValues[2]); 7997 setValue(&VPIntrin, N); 7998 break; 7999 } 8000 case ISD::VP_PTRTOINT: { 8001 SDValue N = OpValues[0]; 8002 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8003 VPIntrin.getType()); 8004 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), 8005 VPIntrin.getOperand(0)->getType()); 8006 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 8007 OpValues[2]); 8008 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 8009 OpValues[2]); 8010 setValue(&VPIntrin, N); 8011 break; 8012 } 8013 case ISD::VP_ABS: 8014 case ISD::VP_CTLZ: 8015 case ISD::VP_CTLZ_ZERO_UNDEF: 8016 case ISD::VP_CTTZ: 8017 case ISD::VP_CTTZ_ZERO_UNDEF: { 8018 SDValue Result = 8019 DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]}); 8020 setValue(&VPIntrin, Result); 8021 break; 8022 } 8023 } 8024 } 8025 8026 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain, 8027 const BasicBlock *EHPadBB, 8028 MCSymbol *&BeginLabel) { 8029 MachineFunction &MF = DAG.getMachineFunction(); 8030 MachineModuleInfo &MMI = MF.getMMI(); 8031 8032 // Insert a label before the invoke call to mark the try range. This can be 8033 // used to detect deletion of the invoke via the MachineModuleInfo. 8034 BeginLabel = MMI.getContext().createTempSymbol(); 8035 8036 // For SjLj, keep track of which landing pads go with which invokes 8037 // so as to maintain the ordering of pads in the LSDA. 8038 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 8039 if (CallSiteIndex) { 8040 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 8041 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 8042 8043 // Now that the call site is handled, stop tracking it. 8044 MMI.setCurrentCallSite(0); 8045 } 8046 8047 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel); 8048 } 8049 8050 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II, 8051 const BasicBlock *EHPadBB, 8052 MCSymbol *BeginLabel) { 8053 assert(BeginLabel && "BeginLabel should've been set"); 8054 8055 MachineFunction &MF = DAG.getMachineFunction(); 8056 MachineModuleInfo &MMI = MF.getMMI(); 8057 8058 // Insert a label at the end of the invoke call to mark the try range. This 8059 // can be used to detect deletion of the invoke via the MachineModuleInfo. 8060 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 8061 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel); 8062 8063 // Inform MachineModuleInfo of range. 8064 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 8065 // There is a platform (e.g. wasm) that uses funclet style IR but does not 8066 // actually use outlined funclets and their LSDA info style. 8067 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 8068 assert(II && "II should've been set"); 8069 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); 8070 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel); 8071 } else if (!isScopedEHPersonality(Pers)) { 8072 assert(EHPadBB); 8073 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 8074 } 8075 8076 return Chain; 8077 } 8078 8079 std::pair<SDValue, SDValue> 8080 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 8081 const BasicBlock *EHPadBB) { 8082 MCSymbol *BeginLabel = nullptr; 8083 8084 if (EHPadBB) { 8085 // Both PendingLoads and PendingExports must be flushed here; 8086 // this call might not return. 8087 (void)getRoot(); 8088 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel)); 8089 CLI.setChain(getRoot()); 8090 } 8091 8092 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8093 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 8094 8095 assert((CLI.IsTailCall || Result.second.getNode()) && 8096 "Non-null chain expected with non-tail call!"); 8097 assert((Result.second.getNode() || !Result.first.getNode()) && 8098 "Null value expected with tail call!"); 8099 8100 if (!Result.second.getNode()) { 8101 // As a special case, a null chain means that a tail call has been emitted 8102 // and the DAG root is already updated. 8103 HasTailCall = true; 8104 8105 // Since there's no actual continuation from this block, nothing can be 8106 // relying on us setting vregs for them. 8107 PendingExports.clear(); 8108 } else { 8109 DAG.setRoot(Result.second); 8110 } 8111 8112 if (EHPadBB) { 8113 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB, 8114 BeginLabel)); 8115 } 8116 8117 return Result; 8118 } 8119 8120 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 8121 bool isTailCall, 8122 bool isMustTailCall, 8123 const BasicBlock *EHPadBB) { 8124 auto &DL = DAG.getDataLayout(); 8125 FunctionType *FTy = CB.getFunctionType(); 8126 Type *RetTy = CB.getType(); 8127 8128 TargetLowering::ArgListTy Args; 8129 Args.reserve(CB.arg_size()); 8130 8131 const Value *SwiftErrorVal = nullptr; 8132 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8133 8134 if (isTailCall) { 8135 // Avoid emitting tail calls in functions with the disable-tail-calls 8136 // attribute. 8137 auto *Caller = CB.getParent()->getParent(); 8138 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 8139 "true" && !isMustTailCall) 8140 isTailCall = false; 8141 8142 // We can't tail call inside a function with a swifterror argument. Lowering 8143 // does not support this yet. It would have to move into the swifterror 8144 // register before the call. 8145 if (TLI.supportSwiftError() && 8146 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 8147 isTailCall = false; 8148 } 8149 8150 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 8151 TargetLowering::ArgListEntry Entry; 8152 const Value *V = *I; 8153 8154 // Skip empty types 8155 if (V->getType()->isEmptyTy()) 8156 continue; 8157 8158 SDValue ArgNode = getValue(V); 8159 Entry.Node = ArgNode; Entry.Ty = V->getType(); 8160 8161 Entry.setAttributes(&CB, I - CB.arg_begin()); 8162 8163 // Use swifterror virtual register as input to the call. 8164 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 8165 SwiftErrorVal = V; 8166 // We find the virtual register for the actual swifterror argument. 8167 // Instead of using the Value, we use the virtual register instead. 8168 Entry.Node = 8169 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 8170 EVT(TLI.getPointerTy(DL))); 8171 } 8172 8173 Args.push_back(Entry); 8174 8175 // If we have an explicit sret argument that is an Instruction, (i.e., it 8176 // might point to function-local memory), we can't meaningfully tail-call. 8177 if (Entry.IsSRet && isa<Instruction>(V)) 8178 isTailCall = false; 8179 } 8180 8181 // If call site has a cfguardtarget operand bundle, create and add an 8182 // additional ArgListEntry. 8183 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 8184 TargetLowering::ArgListEntry Entry; 8185 Value *V = Bundle->Inputs[0]; 8186 SDValue ArgNode = getValue(V); 8187 Entry.Node = ArgNode; 8188 Entry.Ty = V->getType(); 8189 Entry.IsCFGuardTarget = true; 8190 Args.push_back(Entry); 8191 } 8192 8193 // Check if target-independent constraints permit a tail call here. 8194 // Target-dependent constraints are checked within TLI->LowerCallTo. 8195 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 8196 isTailCall = false; 8197 8198 // Disable tail calls if there is an swifterror argument. Targets have not 8199 // been updated to support tail calls. 8200 if (TLI.supportSwiftError() && SwiftErrorVal) 8201 isTailCall = false; 8202 8203 ConstantInt *CFIType = nullptr; 8204 if (CB.isIndirectCall()) { 8205 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) { 8206 if (!TLI.supportKCFIBundles()) 8207 report_fatal_error( 8208 "Target doesn't support calls with kcfi operand bundles."); 8209 CFIType = cast<ConstantInt>(Bundle->Inputs[0]); 8210 assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type"); 8211 } 8212 } 8213 8214 TargetLowering::CallLoweringInfo CLI(DAG); 8215 CLI.setDebugLoc(getCurSDLoc()) 8216 .setChain(getRoot()) 8217 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 8218 .setTailCall(isTailCall) 8219 .setConvergent(CB.isConvergent()) 8220 .setIsPreallocated( 8221 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0) 8222 .setCFIType(CFIType); 8223 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8224 8225 if (Result.first.getNode()) { 8226 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 8227 setValue(&CB, Result.first); 8228 } 8229 8230 // The last element of CLI.InVals has the SDValue for swifterror return. 8231 // Here we copy it to a virtual register and update SwiftErrorMap for 8232 // book-keeping. 8233 if (SwiftErrorVal && TLI.supportSwiftError()) { 8234 // Get the last element of InVals. 8235 SDValue Src = CLI.InVals.back(); 8236 Register VReg = 8237 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 8238 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 8239 DAG.setRoot(CopyNode); 8240 } 8241 } 8242 8243 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 8244 SelectionDAGBuilder &Builder) { 8245 // Check to see if this load can be trivially constant folded, e.g. if the 8246 // input is from a string literal. 8247 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 8248 // Cast pointer to the type we really want to load. 8249 Type *LoadTy = 8250 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 8251 if (LoadVT.isVector()) 8252 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 8253 8254 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 8255 PointerType::getUnqual(LoadTy)); 8256 8257 if (const Constant *LoadCst = 8258 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 8259 LoadTy, Builder.DAG.getDataLayout())) 8260 return Builder.getValue(LoadCst); 8261 } 8262 8263 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 8264 // still constant memory, the input chain can be the entry node. 8265 SDValue Root; 8266 bool ConstantMemory = false; 8267 8268 // Do not serialize (non-volatile) loads of constant memory with anything. 8269 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 8270 Root = Builder.DAG.getEntryNode(); 8271 ConstantMemory = true; 8272 } else { 8273 // Do not serialize non-volatile loads against each other. 8274 Root = Builder.DAG.getRoot(); 8275 } 8276 8277 SDValue Ptr = Builder.getValue(PtrVal); 8278 SDValue LoadVal = 8279 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 8280 MachinePointerInfo(PtrVal), Align(1)); 8281 8282 if (!ConstantMemory) 8283 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 8284 return LoadVal; 8285 } 8286 8287 /// Record the value for an instruction that produces an integer result, 8288 /// converting the type where necessary. 8289 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 8290 SDValue Value, 8291 bool IsSigned) { 8292 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8293 I.getType(), true); 8294 Value = DAG.getExtOrTrunc(IsSigned, Value, getCurSDLoc(), VT); 8295 setValue(&I, Value); 8296 } 8297 8298 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 8299 /// true and lower it. Otherwise return false, and it will be lowered like a 8300 /// normal call. 8301 /// The caller already checked that \p I calls the appropriate LibFunc with a 8302 /// correct prototype. 8303 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 8304 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 8305 const Value *Size = I.getArgOperand(2); 8306 const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size)); 8307 if (CSize && CSize->getZExtValue() == 0) { 8308 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8309 I.getType(), true); 8310 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 8311 return true; 8312 } 8313 8314 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8315 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 8316 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 8317 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 8318 if (Res.first.getNode()) { 8319 processIntegerCallValue(I, Res.first, true); 8320 PendingLoads.push_back(Res.second); 8321 return true; 8322 } 8323 8324 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 8325 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 8326 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 8327 return false; 8328 8329 // If the target has a fast compare for the given size, it will return a 8330 // preferred load type for that size. Require that the load VT is legal and 8331 // that the target supports unaligned loads of that type. Otherwise, return 8332 // INVALID. 8333 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 8334 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8335 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 8336 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 8337 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 8338 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 8339 // TODO: Check alignment of src and dest ptrs. 8340 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 8341 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 8342 if (!TLI.isTypeLegal(LVT) || 8343 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 8344 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 8345 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 8346 } 8347 8348 return LVT; 8349 }; 8350 8351 // This turns into unaligned loads. We only do this if the target natively 8352 // supports the MVT we'll be loading or if it is small enough (<= 4) that 8353 // we'll only produce a small number of byte loads. 8354 MVT LoadVT; 8355 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 8356 switch (NumBitsToCompare) { 8357 default: 8358 return false; 8359 case 16: 8360 LoadVT = MVT::i16; 8361 break; 8362 case 32: 8363 LoadVT = MVT::i32; 8364 break; 8365 case 64: 8366 case 128: 8367 case 256: 8368 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 8369 break; 8370 } 8371 8372 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 8373 return false; 8374 8375 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 8376 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 8377 8378 // Bitcast to a wide integer type if the loads are vectors. 8379 if (LoadVT.isVector()) { 8380 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 8381 LoadL = DAG.getBitcast(CmpVT, LoadL); 8382 LoadR = DAG.getBitcast(CmpVT, LoadR); 8383 } 8384 8385 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 8386 processIntegerCallValue(I, Cmp, false); 8387 return true; 8388 } 8389 8390 /// See if we can lower a memchr call into an optimized form. If so, return 8391 /// true and lower it. Otherwise return false, and it will be lowered like a 8392 /// normal call. 8393 /// The caller already checked that \p I calls the appropriate LibFunc with a 8394 /// correct prototype. 8395 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 8396 const Value *Src = I.getArgOperand(0); 8397 const Value *Char = I.getArgOperand(1); 8398 const Value *Length = I.getArgOperand(2); 8399 8400 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8401 std::pair<SDValue, SDValue> Res = 8402 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 8403 getValue(Src), getValue(Char), getValue(Length), 8404 MachinePointerInfo(Src)); 8405 if (Res.first.getNode()) { 8406 setValue(&I, Res.first); 8407 PendingLoads.push_back(Res.second); 8408 return true; 8409 } 8410 8411 return false; 8412 } 8413 8414 /// See if we can lower a mempcpy call into an optimized form. If so, return 8415 /// true and lower it. Otherwise return false, and it will be lowered like a 8416 /// normal call. 8417 /// The caller already checked that \p I calls the appropriate LibFunc with a 8418 /// correct prototype. 8419 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 8420 SDValue Dst = getValue(I.getArgOperand(0)); 8421 SDValue Src = getValue(I.getArgOperand(1)); 8422 SDValue Size = getValue(I.getArgOperand(2)); 8423 8424 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 8425 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 8426 // DAG::getMemcpy needs Alignment to be defined. 8427 Align Alignment = std::min(DstAlign, SrcAlign); 8428 8429 SDLoc sdl = getCurSDLoc(); 8430 8431 // In the mempcpy context we need to pass in a false value for isTailCall 8432 // because the return pointer needs to be adjusted by the size of 8433 // the copied memory. 8434 SDValue Root = getMemoryRoot(); 8435 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, false, false, 8436 /*isTailCall=*/false, 8437 MachinePointerInfo(I.getArgOperand(0)), 8438 MachinePointerInfo(I.getArgOperand(1)), 8439 I.getAAMetadata()); 8440 assert(MC.getNode() != nullptr && 8441 "** memcpy should not be lowered as TailCall in mempcpy context **"); 8442 DAG.setRoot(MC); 8443 8444 // Check if Size needs to be truncated or extended. 8445 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 8446 8447 // Adjust return pointer to point just past the last dst byte. 8448 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 8449 Dst, Size); 8450 setValue(&I, DstPlusSize); 8451 return true; 8452 } 8453 8454 /// See if we can lower a strcpy call into an optimized form. If so, return 8455 /// true and lower it, otherwise return false and it will be lowered like a 8456 /// normal call. 8457 /// The caller already checked that \p I calls the appropriate LibFunc with a 8458 /// correct prototype. 8459 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 8460 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8461 8462 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8463 std::pair<SDValue, SDValue> Res = 8464 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 8465 getValue(Arg0), getValue(Arg1), 8466 MachinePointerInfo(Arg0), 8467 MachinePointerInfo(Arg1), isStpcpy); 8468 if (Res.first.getNode()) { 8469 setValue(&I, Res.first); 8470 DAG.setRoot(Res.second); 8471 return true; 8472 } 8473 8474 return false; 8475 } 8476 8477 /// See if we can lower a strcmp call into an optimized form. If so, return 8478 /// true and lower it, otherwise return false and it will be lowered like a 8479 /// normal call. 8480 /// The caller already checked that \p I calls the appropriate LibFunc with a 8481 /// correct prototype. 8482 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 8483 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8484 8485 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8486 std::pair<SDValue, SDValue> Res = 8487 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 8488 getValue(Arg0), getValue(Arg1), 8489 MachinePointerInfo(Arg0), 8490 MachinePointerInfo(Arg1)); 8491 if (Res.first.getNode()) { 8492 processIntegerCallValue(I, Res.first, true); 8493 PendingLoads.push_back(Res.second); 8494 return true; 8495 } 8496 8497 return false; 8498 } 8499 8500 /// See if we can lower a strlen call into an optimized form. If so, return 8501 /// true and lower it, otherwise return false and it will be lowered like a 8502 /// normal call. 8503 /// The caller already checked that \p I calls the appropriate LibFunc with a 8504 /// correct prototype. 8505 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 8506 const Value *Arg0 = I.getArgOperand(0); 8507 8508 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8509 std::pair<SDValue, SDValue> Res = 8510 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 8511 getValue(Arg0), MachinePointerInfo(Arg0)); 8512 if (Res.first.getNode()) { 8513 processIntegerCallValue(I, Res.first, false); 8514 PendingLoads.push_back(Res.second); 8515 return true; 8516 } 8517 8518 return false; 8519 } 8520 8521 /// See if we can lower a strnlen call into an optimized form. If so, return 8522 /// true and lower it, otherwise return false and it will be lowered like a 8523 /// normal call. 8524 /// The caller already checked that \p I calls the appropriate LibFunc with a 8525 /// correct prototype. 8526 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 8527 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8528 8529 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8530 std::pair<SDValue, SDValue> Res = 8531 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 8532 getValue(Arg0), getValue(Arg1), 8533 MachinePointerInfo(Arg0)); 8534 if (Res.first.getNode()) { 8535 processIntegerCallValue(I, Res.first, false); 8536 PendingLoads.push_back(Res.second); 8537 return true; 8538 } 8539 8540 return false; 8541 } 8542 8543 /// See if we can lower a unary floating-point operation into an SDNode with 8544 /// the specified Opcode. If so, return true and lower it, otherwise return 8545 /// false and it will be lowered like a normal call. 8546 /// The caller already checked that \p I calls the appropriate LibFunc with a 8547 /// correct prototype. 8548 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 8549 unsigned Opcode) { 8550 // We already checked this call's prototype; verify it doesn't modify errno. 8551 if (!I.onlyReadsMemory()) 8552 return false; 8553 8554 SDNodeFlags Flags; 8555 Flags.copyFMF(cast<FPMathOperator>(I)); 8556 8557 SDValue Tmp = getValue(I.getArgOperand(0)); 8558 setValue(&I, 8559 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 8560 return true; 8561 } 8562 8563 /// See if we can lower a binary floating-point operation into an SDNode with 8564 /// the specified Opcode. If so, return true and lower it. Otherwise return 8565 /// false, and it will be lowered like a normal call. 8566 /// The caller already checked that \p I calls the appropriate LibFunc with a 8567 /// correct prototype. 8568 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 8569 unsigned Opcode) { 8570 // We already checked this call's prototype; verify it doesn't modify errno. 8571 if (!I.onlyReadsMemory()) 8572 return false; 8573 8574 SDNodeFlags Flags; 8575 Flags.copyFMF(cast<FPMathOperator>(I)); 8576 8577 SDValue Tmp0 = getValue(I.getArgOperand(0)); 8578 SDValue Tmp1 = getValue(I.getArgOperand(1)); 8579 EVT VT = Tmp0.getValueType(); 8580 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 8581 return true; 8582 } 8583 8584 void SelectionDAGBuilder::visitCall(const CallInst &I) { 8585 // Handle inline assembly differently. 8586 if (I.isInlineAsm()) { 8587 visitInlineAsm(I); 8588 return; 8589 } 8590 8591 diagnoseDontCall(I); 8592 8593 if (Function *F = I.getCalledFunction()) { 8594 if (F->isDeclaration()) { 8595 // Is this an LLVM intrinsic or a target-specific intrinsic? 8596 unsigned IID = F->getIntrinsicID(); 8597 if (!IID) 8598 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 8599 IID = II->getIntrinsicID(F); 8600 8601 if (IID) { 8602 visitIntrinsicCall(I, IID); 8603 return; 8604 } 8605 } 8606 8607 // Check for well-known libc/libm calls. If the function is internal, it 8608 // can't be a library call. Don't do the check if marked as nobuiltin for 8609 // some reason or the call site requires strict floating point semantics. 8610 LibFunc Func; 8611 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 8612 F->hasName() && LibInfo->getLibFunc(*F, Func) && 8613 LibInfo->hasOptimizedCodeGen(Func)) { 8614 switch (Func) { 8615 default: break; 8616 case LibFunc_bcmp: 8617 if (visitMemCmpBCmpCall(I)) 8618 return; 8619 break; 8620 case LibFunc_copysign: 8621 case LibFunc_copysignf: 8622 case LibFunc_copysignl: 8623 // We already checked this call's prototype; verify it doesn't modify 8624 // errno. 8625 if (I.onlyReadsMemory()) { 8626 SDValue LHS = getValue(I.getArgOperand(0)); 8627 SDValue RHS = getValue(I.getArgOperand(1)); 8628 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 8629 LHS.getValueType(), LHS, RHS)); 8630 return; 8631 } 8632 break; 8633 case LibFunc_fabs: 8634 case LibFunc_fabsf: 8635 case LibFunc_fabsl: 8636 if (visitUnaryFloatCall(I, ISD::FABS)) 8637 return; 8638 break; 8639 case LibFunc_fmin: 8640 case LibFunc_fminf: 8641 case LibFunc_fminl: 8642 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 8643 return; 8644 break; 8645 case LibFunc_fmax: 8646 case LibFunc_fmaxf: 8647 case LibFunc_fmaxl: 8648 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 8649 return; 8650 break; 8651 case LibFunc_sin: 8652 case LibFunc_sinf: 8653 case LibFunc_sinl: 8654 if (visitUnaryFloatCall(I, ISD::FSIN)) 8655 return; 8656 break; 8657 case LibFunc_cos: 8658 case LibFunc_cosf: 8659 case LibFunc_cosl: 8660 if (visitUnaryFloatCall(I, ISD::FCOS)) 8661 return; 8662 break; 8663 case LibFunc_sqrt: 8664 case LibFunc_sqrtf: 8665 case LibFunc_sqrtl: 8666 case LibFunc_sqrt_finite: 8667 case LibFunc_sqrtf_finite: 8668 case LibFunc_sqrtl_finite: 8669 if (visitUnaryFloatCall(I, ISD::FSQRT)) 8670 return; 8671 break; 8672 case LibFunc_floor: 8673 case LibFunc_floorf: 8674 case LibFunc_floorl: 8675 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 8676 return; 8677 break; 8678 case LibFunc_nearbyint: 8679 case LibFunc_nearbyintf: 8680 case LibFunc_nearbyintl: 8681 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 8682 return; 8683 break; 8684 case LibFunc_ceil: 8685 case LibFunc_ceilf: 8686 case LibFunc_ceill: 8687 if (visitUnaryFloatCall(I, ISD::FCEIL)) 8688 return; 8689 break; 8690 case LibFunc_rint: 8691 case LibFunc_rintf: 8692 case LibFunc_rintl: 8693 if (visitUnaryFloatCall(I, ISD::FRINT)) 8694 return; 8695 break; 8696 case LibFunc_round: 8697 case LibFunc_roundf: 8698 case LibFunc_roundl: 8699 if (visitUnaryFloatCall(I, ISD::FROUND)) 8700 return; 8701 break; 8702 case LibFunc_trunc: 8703 case LibFunc_truncf: 8704 case LibFunc_truncl: 8705 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 8706 return; 8707 break; 8708 case LibFunc_log2: 8709 case LibFunc_log2f: 8710 case LibFunc_log2l: 8711 if (visitUnaryFloatCall(I, ISD::FLOG2)) 8712 return; 8713 break; 8714 case LibFunc_exp2: 8715 case LibFunc_exp2f: 8716 case LibFunc_exp2l: 8717 if (visitUnaryFloatCall(I, ISD::FEXP2)) 8718 return; 8719 break; 8720 case LibFunc_exp10: 8721 case LibFunc_exp10f: 8722 case LibFunc_exp10l: 8723 if (visitUnaryFloatCall(I, ISD::FEXP10)) 8724 return; 8725 break; 8726 case LibFunc_ldexp: 8727 case LibFunc_ldexpf: 8728 case LibFunc_ldexpl: 8729 if (visitBinaryFloatCall(I, ISD::FLDEXP)) 8730 return; 8731 break; 8732 case LibFunc_memcmp: 8733 if (visitMemCmpBCmpCall(I)) 8734 return; 8735 break; 8736 case LibFunc_mempcpy: 8737 if (visitMemPCpyCall(I)) 8738 return; 8739 break; 8740 case LibFunc_memchr: 8741 if (visitMemChrCall(I)) 8742 return; 8743 break; 8744 case LibFunc_strcpy: 8745 if (visitStrCpyCall(I, false)) 8746 return; 8747 break; 8748 case LibFunc_stpcpy: 8749 if (visitStrCpyCall(I, true)) 8750 return; 8751 break; 8752 case LibFunc_strcmp: 8753 if (visitStrCmpCall(I)) 8754 return; 8755 break; 8756 case LibFunc_strlen: 8757 if (visitStrLenCall(I)) 8758 return; 8759 break; 8760 case LibFunc_strnlen: 8761 if (visitStrNLenCall(I)) 8762 return; 8763 break; 8764 } 8765 } 8766 } 8767 8768 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 8769 // have to do anything here to lower funclet bundles. 8770 // CFGuardTarget bundles are lowered in LowerCallTo. 8771 assert(!I.hasOperandBundlesOtherThan( 8772 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 8773 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated, 8774 LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi}) && 8775 "Cannot lower calls with arbitrary operand bundles!"); 8776 8777 SDValue Callee = getValue(I.getCalledOperand()); 8778 8779 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 8780 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 8781 else 8782 // Check if we can potentially perform a tail call. More detailed checking 8783 // is be done within LowerCallTo, after more information about the call is 8784 // known. 8785 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 8786 } 8787 8788 namespace { 8789 8790 /// AsmOperandInfo - This contains information for each constraint that we are 8791 /// lowering. 8792 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 8793 public: 8794 /// CallOperand - If this is the result output operand or a clobber 8795 /// this is null, otherwise it is the incoming operand to the CallInst. 8796 /// This gets modified as the asm is processed. 8797 SDValue CallOperand; 8798 8799 /// AssignedRegs - If this is a register or register class operand, this 8800 /// contains the set of register corresponding to the operand. 8801 RegsForValue AssignedRegs; 8802 8803 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 8804 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 8805 } 8806 8807 /// Whether or not this operand accesses memory 8808 bool hasMemory(const TargetLowering &TLI) const { 8809 // Indirect operand accesses access memory. 8810 if (isIndirect) 8811 return true; 8812 8813 for (const auto &Code : Codes) 8814 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 8815 return true; 8816 8817 return false; 8818 } 8819 }; 8820 8821 8822 } // end anonymous namespace 8823 8824 /// Make sure that the output operand \p OpInfo and its corresponding input 8825 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 8826 /// out). 8827 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 8828 SDISelAsmOperandInfo &MatchingOpInfo, 8829 SelectionDAG &DAG) { 8830 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 8831 return; 8832 8833 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 8834 const auto &TLI = DAG.getTargetLoweringInfo(); 8835 8836 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 8837 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 8838 OpInfo.ConstraintVT); 8839 std::pair<unsigned, const TargetRegisterClass *> InputRC = 8840 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 8841 MatchingOpInfo.ConstraintVT); 8842 if ((OpInfo.ConstraintVT.isInteger() != 8843 MatchingOpInfo.ConstraintVT.isInteger()) || 8844 (MatchRC.second != InputRC.second)) { 8845 // FIXME: error out in a more elegant fashion 8846 report_fatal_error("Unsupported asm: input constraint" 8847 " with a matching output constraint of" 8848 " incompatible type!"); 8849 } 8850 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 8851 } 8852 8853 /// Get a direct memory input to behave well as an indirect operand. 8854 /// This may introduce stores, hence the need for a \p Chain. 8855 /// \return The (possibly updated) chain. 8856 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 8857 SDISelAsmOperandInfo &OpInfo, 8858 SelectionDAG &DAG) { 8859 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8860 8861 // If we don't have an indirect input, put it in the constpool if we can, 8862 // otherwise spill it to a stack slot. 8863 // TODO: This isn't quite right. We need to handle these according to 8864 // the addressing mode that the constraint wants. Also, this may take 8865 // an additional register for the computation and we don't want that 8866 // either. 8867 8868 // If the operand is a float, integer, or vector constant, spill to a 8869 // constant pool entry to get its address. 8870 const Value *OpVal = OpInfo.CallOperandVal; 8871 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 8872 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 8873 OpInfo.CallOperand = DAG.getConstantPool( 8874 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 8875 return Chain; 8876 } 8877 8878 // Otherwise, create a stack slot and emit a store to it before the asm. 8879 Type *Ty = OpVal->getType(); 8880 auto &DL = DAG.getDataLayout(); 8881 uint64_t TySize = DL.getTypeAllocSize(Ty); 8882 MachineFunction &MF = DAG.getMachineFunction(); 8883 int SSFI = MF.getFrameInfo().CreateStackObject( 8884 TySize, DL.getPrefTypeAlign(Ty), false); 8885 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 8886 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 8887 MachinePointerInfo::getFixedStack(MF, SSFI), 8888 TLI.getMemValueType(DL, Ty)); 8889 OpInfo.CallOperand = StackSlot; 8890 8891 return Chain; 8892 } 8893 8894 /// GetRegistersForValue - Assign registers (virtual or physical) for the 8895 /// specified operand. We prefer to assign virtual registers, to allow the 8896 /// register allocator to handle the assignment process. However, if the asm 8897 /// uses features that we can't model on machineinstrs, we have SDISel do the 8898 /// allocation. This produces generally horrible, but correct, code. 8899 /// 8900 /// OpInfo describes the operand 8901 /// RefOpInfo describes the matching operand if any, the operand otherwise 8902 static std::optional<unsigned> 8903 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 8904 SDISelAsmOperandInfo &OpInfo, 8905 SDISelAsmOperandInfo &RefOpInfo) { 8906 LLVMContext &Context = *DAG.getContext(); 8907 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8908 8909 MachineFunction &MF = DAG.getMachineFunction(); 8910 SmallVector<unsigned, 4> Regs; 8911 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8912 8913 // No work to do for memory/address operands. 8914 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8915 OpInfo.ConstraintType == TargetLowering::C_Address) 8916 return std::nullopt; 8917 8918 // If this is a constraint for a single physreg, or a constraint for a 8919 // register class, find it. 8920 unsigned AssignedReg; 8921 const TargetRegisterClass *RC; 8922 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 8923 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 8924 // RC is unset only on failure. Return immediately. 8925 if (!RC) 8926 return std::nullopt; 8927 8928 // Get the actual register value type. This is important, because the user 8929 // may have asked for (e.g.) the AX register in i32 type. We need to 8930 // remember that AX is actually i16 to get the right extension. 8931 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 8932 8933 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) { 8934 // If this is an FP operand in an integer register (or visa versa), or more 8935 // generally if the operand value disagrees with the register class we plan 8936 // to stick it in, fix the operand type. 8937 // 8938 // If this is an input value, the bitcast to the new type is done now. 8939 // Bitcast for output value is done at the end of visitInlineAsm(). 8940 if ((OpInfo.Type == InlineAsm::isOutput || 8941 OpInfo.Type == InlineAsm::isInput) && 8942 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 8943 // Try to convert to the first EVT that the reg class contains. If the 8944 // types are identical size, use a bitcast to convert (e.g. two differing 8945 // vector types). Note: output bitcast is done at the end of 8946 // visitInlineAsm(). 8947 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 8948 // Exclude indirect inputs while they are unsupported because the code 8949 // to perform the load is missing and thus OpInfo.CallOperand still 8950 // refers to the input address rather than the pointed-to value. 8951 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 8952 OpInfo.CallOperand = 8953 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 8954 OpInfo.ConstraintVT = RegVT; 8955 // If the operand is an FP value and we want it in integer registers, 8956 // use the corresponding integer type. This turns an f64 value into 8957 // i64, which can be passed with two i32 values on a 32-bit machine. 8958 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 8959 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 8960 if (OpInfo.Type == InlineAsm::isInput) 8961 OpInfo.CallOperand = 8962 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 8963 OpInfo.ConstraintVT = VT; 8964 } 8965 } 8966 } 8967 8968 // No need to allocate a matching input constraint since the constraint it's 8969 // matching to has already been allocated. 8970 if (OpInfo.isMatchingInputConstraint()) 8971 return std::nullopt; 8972 8973 EVT ValueVT = OpInfo.ConstraintVT; 8974 if (OpInfo.ConstraintVT == MVT::Other) 8975 ValueVT = RegVT; 8976 8977 // Initialize NumRegs. 8978 unsigned NumRegs = 1; 8979 if (OpInfo.ConstraintVT != MVT::Other) 8980 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT); 8981 8982 // If this is a constraint for a specific physical register, like {r17}, 8983 // assign it now. 8984 8985 // If this associated to a specific register, initialize iterator to correct 8986 // place. If virtual, make sure we have enough registers 8987 8988 // Initialize iterator if necessary 8989 TargetRegisterClass::iterator I = RC->begin(); 8990 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8991 8992 // Do not check for single registers. 8993 if (AssignedReg) { 8994 I = std::find(I, RC->end(), AssignedReg); 8995 if (I == RC->end()) { 8996 // RC does not contain the selected register, which indicates a 8997 // mismatch between the register and the required type/bitwidth. 8998 return {AssignedReg}; 8999 } 9000 } 9001 9002 for (; NumRegs; --NumRegs, ++I) { 9003 assert(I != RC->end() && "Ran out of registers to allocate!"); 9004 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 9005 Regs.push_back(R); 9006 } 9007 9008 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 9009 return std::nullopt; 9010 } 9011 9012 static unsigned 9013 findMatchingInlineAsmOperand(unsigned OperandNo, 9014 const std::vector<SDValue> &AsmNodeOperands) { 9015 // Scan until we find the definition we already emitted of this operand. 9016 unsigned CurOp = InlineAsm::Op_FirstOperand; 9017 for (; OperandNo; --OperandNo) { 9018 // Advance to the next operand. 9019 unsigned OpFlag = 9020 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 9021 const InlineAsm::Flag F(OpFlag); 9022 assert( 9023 (F.isRegDefKind() || F.isRegDefEarlyClobberKind() || F.isMemKind()) && 9024 "Skipped past definitions?"); 9025 CurOp += F.getNumOperandRegisters() + 1; 9026 } 9027 return CurOp; 9028 } 9029 9030 namespace { 9031 9032 class ExtraFlags { 9033 unsigned Flags = 0; 9034 9035 public: 9036 explicit ExtraFlags(const CallBase &Call) { 9037 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 9038 if (IA->hasSideEffects()) 9039 Flags |= InlineAsm::Extra_HasSideEffects; 9040 if (IA->isAlignStack()) 9041 Flags |= InlineAsm::Extra_IsAlignStack; 9042 if (Call.isConvergent()) 9043 Flags |= InlineAsm::Extra_IsConvergent; 9044 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 9045 } 9046 9047 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 9048 // Ideally, we would only check against memory constraints. However, the 9049 // meaning of an Other constraint can be target-specific and we can't easily 9050 // reason about it. Therefore, be conservative and set MayLoad/MayStore 9051 // for Other constraints as well. 9052 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 9053 OpInfo.ConstraintType == TargetLowering::C_Other) { 9054 if (OpInfo.Type == InlineAsm::isInput) 9055 Flags |= InlineAsm::Extra_MayLoad; 9056 else if (OpInfo.Type == InlineAsm::isOutput) 9057 Flags |= InlineAsm::Extra_MayStore; 9058 else if (OpInfo.Type == InlineAsm::isClobber) 9059 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 9060 } 9061 } 9062 9063 unsigned get() const { return Flags; } 9064 }; 9065 9066 } // end anonymous namespace 9067 9068 static bool isFunction(SDValue Op) { 9069 if (Op && Op.getOpcode() == ISD::GlobalAddress) { 9070 if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 9071 auto Fn = dyn_cast_or_null<Function>(GA->getGlobal()); 9072 9073 // In normal "call dllimport func" instruction (non-inlineasm) it force 9074 // indirect access by specifing call opcode. And usually specially print 9075 // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can 9076 // not do in this way now. (In fact, this is similar with "Data Access" 9077 // action). So here we ignore dllimport function. 9078 if (Fn && !Fn->hasDLLImportStorageClass()) 9079 return true; 9080 } 9081 } 9082 return false; 9083 } 9084 9085 /// visitInlineAsm - Handle a call to an InlineAsm object. 9086 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call, 9087 const BasicBlock *EHPadBB) { 9088 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 9089 9090 /// ConstraintOperands - Information about all of the constraints. 9091 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 9092 9093 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9094 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 9095 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 9096 9097 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 9098 // AsmDialect, MayLoad, MayStore). 9099 bool HasSideEffect = IA->hasSideEffects(); 9100 ExtraFlags ExtraInfo(Call); 9101 9102 for (auto &T : TargetConstraints) { 9103 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 9104 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 9105 9106 if (OpInfo.CallOperandVal) 9107 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 9108 9109 if (!HasSideEffect) 9110 HasSideEffect = OpInfo.hasMemory(TLI); 9111 9112 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 9113 // FIXME: Could we compute this on OpInfo rather than T? 9114 9115 // Compute the constraint code and ConstraintType to use. 9116 TLI.ComputeConstraintToUse(T, SDValue()); 9117 9118 if (T.ConstraintType == TargetLowering::C_Immediate && 9119 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 9120 // We've delayed emitting a diagnostic like the "n" constraint because 9121 // inlining could cause an integer showing up. 9122 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 9123 "' expects an integer constant " 9124 "expression"); 9125 9126 ExtraInfo.update(T); 9127 } 9128 9129 // We won't need to flush pending loads if this asm doesn't touch 9130 // memory and is nonvolatile. 9131 SDValue Glue, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 9132 9133 bool EmitEHLabels = isa<InvokeInst>(Call); 9134 if (EmitEHLabels) { 9135 assert(EHPadBB && "InvokeInst must have an EHPadBB"); 9136 } 9137 bool IsCallBr = isa<CallBrInst>(Call); 9138 9139 if (IsCallBr || EmitEHLabels) { 9140 // If this is a callbr or invoke we need to flush pending exports since 9141 // inlineasm_br and invoke are terminators. 9142 // We need to do this before nodes are glued to the inlineasm_br node. 9143 Chain = getControlRoot(); 9144 } 9145 9146 MCSymbol *BeginLabel = nullptr; 9147 if (EmitEHLabels) { 9148 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel); 9149 } 9150 9151 int OpNo = -1; 9152 SmallVector<StringRef> AsmStrs; 9153 IA->collectAsmStrs(AsmStrs); 9154 9155 // Second pass over the constraints: compute which constraint option to use. 9156 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9157 if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput) 9158 OpNo++; 9159 9160 // If this is an output operand with a matching input operand, look up the 9161 // matching input. If their types mismatch, e.g. one is an integer, the 9162 // other is floating point, or their sizes are different, flag it as an 9163 // error. 9164 if (OpInfo.hasMatchingInput()) { 9165 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 9166 patchMatchingInput(OpInfo, Input, DAG); 9167 } 9168 9169 // Compute the constraint code and ConstraintType to use. 9170 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 9171 9172 if ((OpInfo.ConstraintType == TargetLowering::C_Memory && 9173 OpInfo.Type == InlineAsm::isClobber) || 9174 OpInfo.ConstraintType == TargetLowering::C_Address) 9175 continue; 9176 9177 // In Linux PIC model, there are 4 cases about value/label addressing: 9178 // 9179 // 1: Function call or Label jmp inside the module. 9180 // 2: Data access (such as global variable, static variable) inside module. 9181 // 3: Function call or Label jmp outside the module. 9182 // 4: Data access (such as global variable) outside the module. 9183 // 9184 // Due to current llvm inline asm architecture designed to not "recognize" 9185 // the asm code, there are quite troubles for us to treat mem addressing 9186 // differently for same value/adress used in different instuctions. 9187 // For example, in pic model, call a func may in plt way or direclty 9188 // pc-related, but lea/mov a function adress may use got. 9189 // 9190 // Here we try to "recognize" function call for the case 1 and case 3 in 9191 // inline asm. And try to adjust the constraint for them. 9192 // 9193 // TODO: Due to current inline asm didn't encourage to jmp to the outsider 9194 // label, so here we don't handle jmp function label now, but we need to 9195 // enhance it (especilly in PIC model) if we meet meaningful requirements. 9196 if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) && 9197 TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) && 9198 TM.getCodeModel() != CodeModel::Large) { 9199 OpInfo.isIndirect = false; 9200 OpInfo.ConstraintType = TargetLowering::C_Address; 9201 } 9202 9203 // If this is a memory input, and if the operand is not indirect, do what we 9204 // need to provide an address for the memory input. 9205 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 9206 !OpInfo.isIndirect) { 9207 assert((OpInfo.isMultipleAlternative || 9208 (OpInfo.Type == InlineAsm::isInput)) && 9209 "Can only indirectify direct input operands!"); 9210 9211 // Memory operands really want the address of the value. 9212 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 9213 9214 // There is no longer a Value* corresponding to this operand. 9215 OpInfo.CallOperandVal = nullptr; 9216 9217 // It is now an indirect operand. 9218 OpInfo.isIndirect = true; 9219 } 9220 9221 } 9222 9223 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 9224 std::vector<SDValue> AsmNodeOperands; 9225 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 9226 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 9227 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 9228 9229 // If we have a !srcloc metadata node associated with it, we want to attach 9230 // this to the ultimately generated inline asm machineinstr. To do this, we 9231 // pass in the third operand as this (potentially null) inline asm MDNode. 9232 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 9233 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 9234 9235 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 9236 // bits as operand 3. 9237 AsmNodeOperands.push_back(DAG.getTargetConstant( 9238 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9239 9240 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 9241 // this, assign virtual and physical registers for inputs and otput. 9242 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9243 // Assign Registers. 9244 SDISelAsmOperandInfo &RefOpInfo = 9245 OpInfo.isMatchingInputConstraint() 9246 ? ConstraintOperands[OpInfo.getMatchedOperand()] 9247 : OpInfo; 9248 const auto RegError = 9249 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 9250 if (RegError) { 9251 const MachineFunction &MF = DAG.getMachineFunction(); 9252 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9253 const char *RegName = TRI.getName(*RegError); 9254 emitInlineAsmError(Call, "register '" + Twine(RegName) + 9255 "' allocated for constraint '" + 9256 Twine(OpInfo.ConstraintCode) + 9257 "' does not match required type"); 9258 return; 9259 } 9260 9261 auto DetectWriteToReservedRegister = [&]() { 9262 const MachineFunction &MF = DAG.getMachineFunction(); 9263 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9264 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 9265 if (Register::isPhysicalRegister(Reg) && 9266 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 9267 const char *RegName = TRI.getName(Reg); 9268 emitInlineAsmError(Call, "write to reserved register '" + 9269 Twine(RegName) + "'"); 9270 return true; 9271 } 9272 } 9273 return false; 9274 }; 9275 assert((OpInfo.ConstraintType != TargetLowering::C_Address || 9276 (OpInfo.Type == InlineAsm::isInput && 9277 !OpInfo.isMatchingInputConstraint())) && 9278 "Only address as input operand is allowed."); 9279 9280 switch (OpInfo.Type) { 9281 case InlineAsm::isOutput: 9282 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 9283 const InlineAsm::ConstraintCode ConstraintID = 9284 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9285 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 9286 "Failed to convert memory constraint code to constraint id."); 9287 9288 // Add information to the INLINEASM node to know about this output. 9289 InlineAsm::Flag OpFlags(InlineAsm::Kind::Mem, 1); 9290 OpFlags.setMemConstraint(ConstraintID); 9291 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 9292 MVT::i32)); 9293 AsmNodeOperands.push_back(OpInfo.CallOperand); 9294 } else { 9295 // Otherwise, this outputs to a register (directly for C_Register / 9296 // C_RegisterClass, and a target-defined fashion for 9297 // C_Immediate/C_Other). Find a register that we can use. 9298 if (OpInfo.AssignedRegs.Regs.empty()) { 9299 emitInlineAsmError( 9300 Call, "couldn't allocate output register for constraint '" + 9301 Twine(OpInfo.ConstraintCode) + "'"); 9302 return; 9303 } 9304 9305 if (DetectWriteToReservedRegister()) 9306 return; 9307 9308 // Add information to the INLINEASM node to know that this register is 9309 // set. 9310 OpInfo.AssignedRegs.AddInlineAsmOperands( 9311 OpInfo.isEarlyClobber ? InlineAsm::Kind::RegDefEarlyClobber 9312 : InlineAsm::Kind::RegDef, 9313 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 9314 } 9315 break; 9316 9317 case InlineAsm::isInput: 9318 case InlineAsm::isLabel: { 9319 SDValue InOperandVal = OpInfo.CallOperand; 9320 9321 if (OpInfo.isMatchingInputConstraint()) { 9322 // If this is required to match an output register we have already set, 9323 // just use its register. 9324 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 9325 AsmNodeOperands); 9326 InlineAsm::Flag Flag( 9327 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue()); 9328 if (Flag.isRegDefKind() || Flag.isRegDefEarlyClobberKind()) { 9329 if (OpInfo.isIndirect) { 9330 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 9331 emitInlineAsmError(Call, "inline asm not supported yet: " 9332 "don't know how to handle tied " 9333 "indirect register inputs"); 9334 return; 9335 } 9336 9337 SmallVector<unsigned, 4> Regs; 9338 MachineFunction &MF = DAG.getMachineFunction(); 9339 MachineRegisterInfo &MRI = MF.getRegInfo(); 9340 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9341 auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]); 9342 Register TiedReg = R->getReg(); 9343 MVT RegVT = R->getSimpleValueType(0); 9344 const TargetRegisterClass *RC = 9345 TiedReg.isVirtual() ? MRI.getRegClass(TiedReg) 9346 : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT) 9347 : TRI.getMinimalPhysRegClass(TiedReg); 9348 for (unsigned i = 0, e = Flag.getNumOperandRegisters(); i != e; ++i) 9349 Regs.push_back(MRI.createVirtualRegister(RC)); 9350 9351 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 9352 9353 SDLoc dl = getCurSDLoc(); 9354 // Use the produced MatchedRegs object to 9355 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, &Call); 9356 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, true, 9357 OpInfo.getMatchedOperand(), dl, DAG, 9358 AsmNodeOperands); 9359 break; 9360 } 9361 9362 assert(Flag.isMemKind() && "Unknown matching constraint!"); 9363 assert(Flag.getNumOperandRegisters() == 1 && 9364 "Unexpected number of operands"); 9365 // Add information to the INLINEASM node to know about this input. 9366 // See InlineAsm.h isUseOperandTiedToDef. 9367 Flag.clearMemConstraint(); 9368 Flag.setMatchingOp(OpInfo.getMatchedOperand()); 9369 AsmNodeOperands.push_back(DAG.getTargetConstant( 9370 Flag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9371 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 9372 break; 9373 } 9374 9375 // Treat indirect 'X' constraint as memory. 9376 if (OpInfo.ConstraintType == TargetLowering::C_Other && 9377 OpInfo.isIndirect) 9378 OpInfo.ConstraintType = TargetLowering::C_Memory; 9379 9380 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 9381 OpInfo.ConstraintType == TargetLowering::C_Other) { 9382 std::vector<SDValue> Ops; 9383 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 9384 Ops, DAG); 9385 if (Ops.empty()) { 9386 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 9387 if (isa<ConstantSDNode>(InOperandVal)) { 9388 emitInlineAsmError(Call, "value out of range for constraint '" + 9389 Twine(OpInfo.ConstraintCode) + "'"); 9390 return; 9391 } 9392 9393 emitInlineAsmError(Call, 9394 "invalid operand for inline asm constraint '" + 9395 Twine(OpInfo.ConstraintCode) + "'"); 9396 return; 9397 } 9398 9399 // Add information to the INLINEASM node to know about this input. 9400 InlineAsm::Flag ResOpType(InlineAsm::Kind::Imm, Ops.size()); 9401 AsmNodeOperands.push_back(DAG.getTargetConstant( 9402 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9403 llvm::append_range(AsmNodeOperands, Ops); 9404 break; 9405 } 9406 9407 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 9408 assert((OpInfo.isIndirect || 9409 OpInfo.ConstraintType != TargetLowering::C_Memory) && 9410 "Operand must be indirect to be a mem!"); 9411 assert(InOperandVal.getValueType() == 9412 TLI.getPointerTy(DAG.getDataLayout()) && 9413 "Memory operands expect pointer values"); 9414 9415 const InlineAsm::ConstraintCode ConstraintID = 9416 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9417 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 9418 "Failed to convert memory constraint code to constraint id."); 9419 9420 // Add information to the INLINEASM node to know about this input. 9421 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1); 9422 ResOpType.setMemConstraint(ConstraintID); 9423 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 9424 getCurSDLoc(), 9425 MVT::i32)); 9426 AsmNodeOperands.push_back(InOperandVal); 9427 break; 9428 } 9429 9430 if (OpInfo.ConstraintType == TargetLowering::C_Address) { 9431 const InlineAsm::ConstraintCode ConstraintID = 9432 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9433 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 9434 "Failed to convert memory constraint code to constraint id."); 9435 9436 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1); 9437 9438 SDValue AsmOp = InOperandVal; 9439 if (isFunction(InOperandVal)) { 9440 auto *GA = cast<GlobalAddressSDNode>(InOperandVal); 9441 ResOpType = InlineAsm::Flag(InlineAsm::Kind::Func, 1); 9442 AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(), 9443 InOperandVal.getValueType(), 9444 GA->getOffset()); 9445 } 9446 9447 // Add information to the INLINEASM node to know about this input. 9448 ResOpType.setMemConstraint(ConstraintID); 9449 9450 AsmNodeOperands.push_back( 9451 DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32)); 9452 9453 AsmNodeOperands.push_back(AsmOp); 9454 break; 9455 } 9456 9457 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 9458 OpInfo.ConstraintType == TargetLowering::C_Register) && 9459 "Unknown constraint type!"); 9460 9461 // TODO: Support this. 9462 if (OpInfo.isIndirect) { 9463 emitInlineAsmError( 9464 Call, "Don't know how to handle indirect register inputs yet " 9465 "for constraint '" + 9466 Twine(OpInfo.ConstraintCode) + "'"); 9467 return; 9468 } 9469 9470 // Copy the input into the appropriate registers. 9471 if (OpInfo.AssignedRegs.Regs.empty()) { 9472 emitInlineAsmError(Call, 9473 "couldn't allocate input reg for constraint '" + 9474 Twine(OpInfo.ConstraintCode) + "'"); 9475 return; 9476 } 9477 9478 if (DetectWriteToReservedRegister()) 9479 return; 9480 9481 SDLoc dl = getCurSDLoc(); 9482 9483 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, 9484 &Call); 9485 9486 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, false, 9487 0, dl, DAG, AsmNodeOperands); 9488 break; 9489 } 9490 case InlineAsm::isClobber: 9491 // Add the clobbered value to the operand list, so that the register 9492 // allocator is aware that the physreg got clobbered. 9493 if (!OpInfo.AssignedRegs.Regs.empty()) 9494 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::Clobber, 9495 false, 0, getCurSDLoc(), DAG, 9496 AsmNodeOperands); 9497 break; 9498 } 9499 } 9500 9501 // Finish up input operands. Set the input chain and add the flag last. 9502 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 9503 if (Glue.getNode()) AsmNodeOperands.push_back(Glue); 9504 9505 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 9506 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 9507 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 9508 Glue = Chain.getValue(1); 9509 9510 // Do additional work to generate outputs. 9511 9512 SmallVector<EVT, 1> ResultVTs; 9513 SmallVector<SDValue, 1> ResultValues; 9514 SmallVector<SDValue, 8> OutChains; 9515 9516 llvm::Type *CallResultType = Call.getType(); 9517 ArrayRef<Type *> ResultTypes; 9518 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 9519 ResultTypes = StructResult->elements(); 9520 else if (!CallResultType->isVoidTy()) 9521 ResultTypes = ArrayRef(CallResultType); 9522 9523 auto CurResultType = ResultTypes.begin(); 9524 auto handleRegAssign = [&](SDValue V) { 9525 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 9526 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 9527 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 9528 ++CurResultType; 9529 // If the type of the inline asm call site return value is different but has 9530 // same size as the type of the asm output bitcast it. One example of this 9531 // is for vectors with different width / number of elements. This can 9532 // happen for register classes that can contain multiple different value 9533 // types. The preg or vreg allocated may not have the same VT as was 9534 // expected. 9535 // 9536 // This can also happen for a return value that disagrees with the register 9537 // class it is put in, eg. a double in a general-purpose register on a 9538 // 32-bit machine. 9539 if (ResultVT != V.getValueType() && 9540 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 9541 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 9542 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 9543 V.getValueType().isInteger()) { 9544 // If a result value was tied to an input value, the computed result 9545 // may have a wider width than the expected result. Extract the 9546 // relevant portion. 9547 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 9548 } 9549 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 9550 ResultVTs.push_back(ResultVT); 9551 ResultValues.push_back(V); 9552 }; 9553 9554 // Deal with output operands. 9555 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9556 if (OpInfo.Type == InlineAsm::isOutput) { 9557 SDValue Val; 9558 // Skip trivial output operands. 9559 if (OpInfo.AssignedRegs.Regs.empty()) 9560 continue; 9561 9562 switch (OpInfo.ConstraintType) { 9563 case TargetLowering::C_Register: 9564 case TargetLowering::C_RegisterClass: 9565 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 9566 Chain, &Glue, &Call); 9567 break; 9568 case TargetLowering::C_Immediate: 9569 case TargetLowering::C_Other: 9570 Val = TLI.LowerAsmOutputForConstraint(Chain, Glue, getCurSDLoc(), 9571 OpInfo, DAG); 9572 break; 9573 case TargetLowering::C_Memory: 9574 break; // Already handled. 9575 case TargetLowering::C_Address: 9576 break; // Silence warning. 9577 case TargetLowering::C_Unknown: 9578 assert(false && "Unexpected unknown constraint"); 9579 } 9580 9581 // Indirect output manifest as stores. Record output chains. 9582 if (OpInfo.isIndirect) { 9583 const Value *Ptr = OpInfo.CallOperandVal; 9584 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 9585 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 9586 MachinePointerInfo(Ptr)); 9587 OutChains.push_back(Store); 9588 } else { 9589 // generate CopyFromRegs to associated registers. 9590 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 9591 if (Val.getOpcode() == ISD::MERGE_VALUES) { 9592 for (const SDValue &V : Val->op_values()) 9593 handleRegAssign(V); 9594 } else 9595 handleRegAssign(Val); 9596 } 9597 } 9598 } 9599 9600 // Set results. 9601 if (!ResultValues.empty()) { 9602 assert(CurResultType == ResultTypes.end() && 9603 "Mismatch in number of ResultTypes"); 9604 assert(ResultValues.size() == ResultTypes.size() && 9605 "Mismatch in number of output operands in asm result"); 9606 9607 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 9608 DAG.getVTList(ResultVTs), ResultValues); 9609 setValue(&Call, V); 9610 } 9611 9612 // Collect store chains. 9613 if (!OutChains.empty()) 9614 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 9615 9616 if (EmitEHLabels) { 9617 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel); 9618 } 9619 9620 // Only Update Root if inline assembly has a memory effect. 9621 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr || 9622 EmitEHLabels) 9623 DAG.setRoot(Chain); 9624 } 9625 9626 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 9627 const Twine &Message) { 9628 LLVMContext &Ctx = *DAG.getContext(); 9629 Ctx.emitError(&Call, Message); 9630 9631 // Make sure we leave the DAG in a valid state 9632 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9633 SmallVector<EVT, 1> ValueVTs; 9634 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 9635 9636 if (ValueVTs.empty()) 9637 return; 9638 9639 SmallVector<SDValue, 1> Ops; 9640 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 9641 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 9642 9643 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 9644 } 9645 9646 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 9647 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 9648 MVT::Other, getRoot(), 9649 getValue(I.getArgOperand(0)), 9650 DAG.getSrcValue(I.getArgOperand(0)))); 9651 } 9652 9653 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 9654 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9655 const DataLayout &DL = DAG.getDataLayout(); 9656 SDValue V = DAG.getVAArg( 9657 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 9658 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 9659 DL.getABITypeAlign(I.getType()).value()); 9660 DAG.setRoot(V.getValue(1)); 9661 9662 if (I.getType()->isPointerTy()) 9663 V = DAG.getPtrExtOrTrunc( 9664 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 9665 setValue(&I, V); 9666 } 9667 9668 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 9669 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 9670 MVT::Other, getRoot(), 9671 getValue(I.getArgOperand(0)), 9672 DAG.getSrcValue(I.getArgOperand(0)))); 9673 } 9674 9675 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 9676 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 9677 MVT::Other, getRoot(), 9678 getValue(I.getArgOperand(0)), 9679 getValue(I.getArgOperand(1)), 9680 DAG.getSrcValue(I.getArgOperand(0)), 9681 DAG.getSrcValue(I.getArgOperand(1)))); 9682 } 9683 9684 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 9685 const Instruction &I, 9686 SDValue Op) { 9687 const MDNode *Range = getRangeMetadata(I); 9688 if (!Range) 9689 return Op; 9690 9691 ConstantRange CR = getConstantRangeFromMetadata(*Range); 9692 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 9693 return Op; 9694 9695 APInt Lo = CR.getUnsignedMin(); 9696 if (!Lo.isMinValue()) 9697 return Op; 9698 9699 APInt Hi = CR.getUnsignedMax(); 9700 unsigned Bits = std::max(Hi.getActiveBits(), 9701 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 9702 9703 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 9704 9705 SDLoc SL = getCurSDLoc(); 9706 9707 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 9708 DAG.getValueType(SmallVT)); 9709 unsigned NumVals = Op.getNode()->getNumValues(); 9710 if (NumVals == 1) 9711 return ZExt; 9712 9713 SmallVector<SDValue, 4> Ops; 9714 9715 Ops.push_back(ZExt); 9716 for (unsigned I = 1; I != NumVals; ++I) 9717 Ops.push_back(Op.getValue(I)); 9718 9719 return DAG.getMergeValues(Ops, SL); 9720 } 9721 9722 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 9723 /// the call being lowered. 9724 /// 9725 /// This is a helper for lowering intrinsics that follow a target calling 9726 /// convention or require stack pointer adjustment. Only a subset of the 9727 /// intrinsic's operands need to participate in the calling convention. 9728 void SelectionDAGBuilder::populateCallLoweringInfo( 9729 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 9730 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 9731 AttributeSet RetAttrs, bool IsPatchPoint) { 9732 TargetLowering::ArgListTy Args; 9733 Args.reserve(NumArgs); 9734 9735 // Populate the argument list. 9736 // Attributes for args start at offset 1, after the return attribute. 9737 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 9738 ArgI != ArgE; ++ArgI) { 9739 const Value *V = Call->getOperand(ArgI); 9740 9741 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 9742 9743 TargetLowering::ArgListEntry Entry; 9744 Entry.Node = getValue(V); 9745 Entry.Ty = V->getType(); 9746 Entry.setAttributes(Call, ArgI); 9747 Args.push_back(Entry); 9748 } 9749 9750 CLI.setDebugLoc(getCurSDLoc()) 9751 .setChain(getRoot()) 9752 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args), 9753 RetAttrs) 9754 .setDiscardResult(Call->use_empty()) 9755 .setIsPatchPoint(IsPatchPoint) 9756 .setIsPreallocated( 9757 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 9758 } 9759 9760 /// Add a stack map intrinsic call's live variable operands to a stackmap 9761 /// or patchpoint target node's operand list. 9762 /// 9763 /// Constants are converted to TargetConstants purely as an optimization to 9764 /// avoid constant materialization and register allocation. 9765 /// 9766 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 9767 /// generate addess computation nodes, and so FinalizeISel can convert the 9768 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 9769 /// address materialization and register allocation, but may also be required 9770 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 9771 /// alloca in the entry block, then the runtime may assume that the alloca's 9772 /// StackMap location can be read immediately after compilation and that the 9773 /// location is valid at any point during execution (this is similar to the 9774 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 9775 /// only available in a register, then the runtime would need to trap when 9776 /// execution reaches the StackMap in order to read the alloca's location. 9777 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 9778 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 9779 SelectionDAGBuilder &Builder) { 9780 SelectionDAG &DAG = Builder.DAG; 9781 for (unsigned I = StartIdx; I < Call.arg_size(); I++) { 9782 SDValue Op = Builder.getValue(Call.getArgOperand(I)); 9783 9784 // Things on the stack are pointer-typed, meaning that they are already 9785 // legal and can be emitted directly to target nodes. 9786 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) { 9787 Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType())); 9788 } else { 9789 // Otherwise emit a target independent node to be legalised. 9790 Ops.push_back(Builder.getValue(Call.getArgOperand(I))); 9791 } 9792 } 9793 } 9794 9795 /// Lower llvm.experimental.stackmap. 9796 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 9797 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 9798 // [live variables...]) 9799 9800 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 9801 9802 SDValue Chain, InGlue, Callee; 9803 SmallVector<SDValue, 32> Ops; 9804 9805 SDLoc DL = getCurSDLoc(); 9806 Callee = getValue(CI.getCalledOperand()); 9807 9808 // The stackmap intrinsic only records the live variables (the arguments 9809 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 9810 // intrinsic, this won't be lowered to a function call. This means we don't 9811 // have to worry about calling conventions and target specific lowering code. 9812 // Instead we perform the call lowering right here. 9813 // 9814 // chain, flag = CALLSEQ_START(chain, 0, 0) 9815 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 9816 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 9817 // 9818 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 9819 InGlue = Chain.getValue(1); 9820 9821 // Add the STACKMAP operands, starting with DAG house-keeping. 9822 Ops.push_back(Chain); 9823 Ops.push_back(InGlue); 9824 9825 // Add the <id>, <numShadowBytes> operands. 9826 // 9827 // These do not require legalisation, and can be emitted directly to target 9828 // constant nodes. 9829 SDValue ID = getValue(CI.getArgOperand(0)); 9830 assert(ID.getValueType() == MVT::i64); 9831 SDValue IDConst = DAG.getTargetConstant( 9832 cast<ConstantSDNode>(ID)->getZExtValue(), DL, ID.getValueType()); 9833 Ops.push_back(IDConst); 9834 9835 SDValue Shad = getValue(CI.getArgOperand(1)); 9836 assert(Shad.getValueType() == MVT::i32); 9837 SDValue ShadConst = DAG.getTargetConstant( 9838 cast<ConstantSDNode>(Shad)->getZExtValue(), DL, Shad.getValueType()); 9839 Ops.push_back(ShadConst); 9840 9841 // Add the live variables. 9842 addStackMapLiveVars(CI, 2, DL, Ops, *this); 9843 9844 // Create the STACKMAP node. 9845 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9846 Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops); 9847 InGlue = Chain.getValue(1); 9848 9849 Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL); 9850 9851 // Stackmaps don't generate values, so nothing goes into the NodeMap. 9852 9853 // Set the root to the target-lowered call chain. 9854 DAG.setRoot(Chain); 9855 9856 // Inform the Frame Information that we have a stackmap in this function. 9857 FuncInfo.MF->getFrameInfo().setHasStackMap(); 9858 } 9859 9860 /// Lower llvm.experimental.patchpoint directly to its target opcode. 9861 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 9862 const BasicBlock *EHPadBB) { 9863 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 9864 // i32 <numBytes>, 9865 // i8* <target>, 9866 // i32 <numArgs>, 9867 // [Args...], 9868 // [live variables...]) 9869 9870 CallingConv::ID CC = CB.getCallingConv(); 9871 bool IsAnyRegCC = CC == CallingConv::AnyReg; 9872 bool HasDef = !CB.getType()->isVoidTy(); 9873 SDLoc dl = getCurSDLoc(); 9874 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 9875 9876 // Handle immediate and symbolic callees. 9877 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 9878 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 9879 /*isTarget=*/true); 9880 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 9881 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 9882 SDLoc(SymbolicCallee), 9883 SymbolicCallee->getValueType(0)); 9884 9885 // Get the real number of arguments participating in the call <numArgs> 9886 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 9887 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 9888 9889 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 9890 // Intrinsics include all meta-operands up to but not including CC. 9891 unsigned NumMetaOpers = PatchPointOpers::CCPos; 9892 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 9893 "Not enough arguments provided to the patchpoint intrinsic"); 9894 9895 // For AnyRegCC the arguments are lowered later on manually. 9896 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 9897 Type *ReturnTy = 9898 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 9899 9900 TargetLowering::CallLoweringInfo CLI(DAG); 9901 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 9902 ReturnTy, CB.getAttributes().getRetAttrs(), true); 9903 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 9904 9905 SDNode *CallEnd = Result.second.getNode(); 9906 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 9907 CallEnd = CallEnd->getOperand(0).getNode(); 9908 9909 /// Get a call instruction from the call sequence chain. 9910 /// Tail calls are not allowed. 9911 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 9912 "Expected a callseq node."); 9913 SDNode *Call = CallEnd->getOperand(0).getNode(); 9914 bool HasGlue = Call->getGluedNode(); 9915 9916 // Replace the target specific call node with the patchable intrinsic. 9917 SmallVector<SDValue, 8> Ops; 9918 9919 // Push the chain. 9920 Ops.push_back(*(Call->op_begin())); 9921 9922 // Optionally, push the glue (if any). 9923 if (HasGlue) 9924 Ops.push_back(*(Call->op_end() - 1)); 9925 9926 // Push the register mask info. 9927 if (HasGlue) 9928 Ops.push_back(*(Call->op_end() - 2)); 9929 else 9930 Ops.push_back(*(Call->op_end() - 1)); 9931 9932 // Add the <id> and <numBytes> constants. 9933 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 9934 Ops.push_back(DAG.getTargetConstant( 9935 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 9936 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 9937 Ops.push_back(DAG.getTargetConstant( 9938 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 9939 MVT::i32)); 9940 9941 // Add the callee. 9942 Ops.push_back(Callee); 9943 9944 // Adjust <numArgs> to account for any arguments that have been passed on the 9945 // stack instead. 9946 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 9947 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 9948 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 9949 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 9950 9951 // Add the calling convention 9952 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 9953 9954 // Add the arguments we omitted previously. The register allocator should 9955 // place these in any free register. 9956 if (IsAnyRegCC) 9957 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 9958 Ops.push_back(getValue(CB.getArgOperand(i))); 9959 9960 // Push the arguments from the call instruction. 9961 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 9962 Ops.append(Call->op_begin() + 2, e); 9963 9964 // Push live variables for the stack map. 9965 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 9966 9967 SDVTList NodeTys; 9968 if (IsAnyRegCC && HasDef) { 9969 // Create the return types based on the intrinsic definition 9970 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9971 SmallVector<EVT, 3> ValueVTs; 9972 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 9973 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 9974 9975 // There is always a chain and a glue type at the end 9976 ValueVTs.push_back(MVT::Other); 9977 ValueVTs.push_back(MVT::Glue); 9978 NodeTys = DAG.getVTList(ValueVTs); 9979 } else 9980 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9981 9982 // Replace the target specific call node with a PATCHPOINT node. 9983 SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops); 9984 9985 // Update the NodeMap. 9986 if (HasDef) { 9987 if (IsAnyRegCC) 9988 setValue(&CB, SDValue(PPV.getNode(), 0)); 9989 else 9990 setValue(&CB, Result.first); 9991 } 9992 9993 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 9994 // call sequence. Furthermore the location of the chain and glue can change 9995 // when the AnyReg calling convention is used and the intrinsic returns a 9996 // value. 9997 if (IsAnyRegCC && HasDef) { 9998 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 9999 SDValue To[] = {PPV.getValue(1), PPV.getValue(2)}; 10000 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 10001 } else 10002 DAG.ReplaceAllUsesWith(Call, PPV.getNode()); 10003 DAG.DeleteNode(Call); 10004 10005 // Inform the Frame Information that we have a patchpoint in this function. 10006 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 10007 } 10008 10009 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 10010 unsigned Intrinsic) { 10011 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10012 SDValue Op1 = getValue(I.getArgOperand(0)); 10013 SDValue Op2; 10014 if (I.arg_size() > 1) 10015 Op2 = getValue(I.getArgOperand(1)); 10016 SDLoc dl = getCurSDLoc(); 10017 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 10018 SDValue Res; 10019 SDNodeFlags SDFlags; 10020 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 10021 SDFlags.copyFMF(*FPMO); 10022 10023 switch (Intrinsic) { 10024 case Intrinsic::vector_reduce_fadd: 10025 if (SDFlags.hasAllowReassociation()) 10026 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 10027 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 10028 SDFlags); 10029 else 10030 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); 10031 break; 10032 case Intrinsic::vector_reduce_fmul: 10033 if (SDFlags.hasAllowReassociation()) 10034 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 10035 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 10036 SDFlags); 10037 else 10038 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); 10039 break; 10040 case Intrinsic::vector_reduce_add: 10041 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 10042 break; 10043 case Intrinsic::vector_reduce_mul: 10044 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 10045 break; 10046 case Intrinsic::vector_reduce_and: 10047 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 10048 break; 10049 case Intrinsic::vector_reduce_or: 10050 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 10051 break; 10052 case Intrinsic::vector_reduce_xor: 10053 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 10054 break; 10055 case Intrinsic::vector_reduce_smax: 10056 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 10057 break; 10058 case Intrinsic::vector_reduce_smin: 10059 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 10060 break; 10061 case Intrinsic::vector_reduce_umax: 10062 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 10063 break; 10064 case Intrinsic::vector_reduce_umin: 10065 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 10066 break; 10067 case Intrinsic::vector_reduce_fmax: 10068 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 10069 break; 10070 case Intrinsic::vector_reduce_fmin: 10071 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 10072 break; 10073 case Intrinsic::vector_reduce_fmaximum: 10074 Res = DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags); 10075 break; 10076 case Intrinsic::vector_reduce_fminimum: 10077 Res = DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags); 10078 break; 10079 default: 10080 llvm_unreachable("Unhandled vector reduce intrinsic"); 10081 } 10082 setValue(&I, Res); 10083 } 10084 10085 /// Returns an AttributeList representing the attributes applied to the return 10086 /// value of the given call. 10087 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 10088 SmallVector<Attribute::AttrKind, 2> Attrs; 10089 if (CLI.RetSExt) 10090 Attrs.push_back(Attribute::SExt); 10091 if (CLI.RetZExt) 10092 Attrs.push_back(Attribute::ZExt); 10093 if (CLI.IsInReg) 10094 Attrs.push_back(Attribute::InReg); 10095 10096 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 10097 Attrs); 10098 } 10099 10100 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 10101 /// implementation, which just calls LowerCall. 10102 /// FIXME: When all targets are 10103 /// migrated to using LowerCall, this hook should be integrated into SDISel. 10104 std::pair<SDValue, SDValue> 10105 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 10106 // Handle the incoming return values from the call. 10107 CLI.Ins.clear(); 10108 Type *OrigRetTy = CLI.RetTy; 10109 SmallVector<EVT, 4> RetTys; 10110 SmallVector<uint64_t, 4> Offsets; 10111 auto &DL = CLI.DAG.getDataLayout(); 10112 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets, 0); 10113 10114 if (CLI.IsPostTypeLegalization) { 10115 // If we are lowering a libcall after legalization, split the return type. 10116 SmallVector<EVT, 4> OldRetTys; 10117 SmallVector<uint64_t, 4> OldOffsets; 10118 RetTys.swap(OldRetTys); 10119 Offsets.swap(OldOffsets); 10120 10121 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 10122 EVT RetVT = OldRetTys[i]; 10123 uint64_t Offset = OldOffsets[i]; 10124 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 10125 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 10126 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 10127 RetTys.append(NumRegs, RegisterVT); 10128 for (unsigned j = 0; j != NumRegs; ++j) 10129 Offsets.push_back(Offset + j * RegisterVTByteSZ); 10130 } 10131 } 10132 10133 SmallVector<ISD::OutputArg, 4> Outs; 10134 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 10135 10136 bool CanLowerReturn = 10137 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 10138 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 10139 10140 SDValue DemoteStackSlot; 10141 int DemoteStackIdx = -100; 10142 if (!CanLowerReturn) { 10143 // FIXME: equivalent assert? 10144 // assert(!CS.hasInAllocaArgument() && 10145 // "sret demotion is incompatible with inalloca"); 10146 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 10147 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 10148 MachineFunction &MF = CLI.DAG.getMachineFunction(); 10149 DemoteStackIdx = 10150 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 10151 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 10152 DL.getAllocaAddrSpace()); 10153 10154 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 10155 ArgListEntry Entry; 10156 Entry.Node = DemoteStackSlot; 10157 Entry.Ty = StackSlotPtrType; 10158 Entry.IsSExt = false; 10159 Entry.IsZExt = false; 10160 Entry.IsInReg = false; 10161 Entry.IsSRet = true; 10162 Entry.IsNest = false; 10163 Entry.IsByVal = false; 10164 Entry.IsByRef = false; 10165 Entry.IsReturned = false; 10166 Entry.IsSwiftSelf = false; 10167 Entry.IsSwiftAsync = false; 10168 Entry.IsSwiftError = false; 10169 Entry.IsCFGuardTarget = false; 10170 Entry.Alignment = Alignment; 10171 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 10172 CLI.NumFixedArgs += 1; 10173 CLI.getArgs()[0].IndirectType = CLI.RetTy; 10174 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 10175 10176 // sret demotion isn't compatible with tail-calls, since the sret argument 10177 // points into the callers stack frame. 10178 CLI.IsTailCall = false; 10179 } else { 10180 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 10181 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL); 10182 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 10183 ISD::ArgFlagsTy Flags; 10184 if (NeedsRegBlock) { 10185 Flags.setInConsecutiveRegs(); 10186 if (I == RetTys.size() - 1) 10187 Flags.setInConsecutiveRegsLast(); 10188 } 10189 EVT VT = RetTys[I]; 10190 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10191 CLI.CallConv, VT); 10192 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10193 CLI.CallConv, VT); 10194 for (unsigned i = 0; i != NumRegs; ++i) { 10195 ISD::InputArg MyFlags; 10196 MyFlags.Flags = Flags; 10197 MyFlags.VT = RegisterVT; 10198 MyFlags.ArgVT = VT; 10199 MyFlags.Used = CLI.IsReturnValueUsed; 10200 if (CLI.RetTy->isPointerTy()) { 10201 MyFlags.Flags.setPointer(); 10202 MyFlags.Flags.setPointerAddrSpace( 10203 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 10204 } 10205 if (CLI.RetSExt) 10206 MyFlags.Flags.setSExt(); 10207 if (CLI.RetZExt) 10208 MyFlags.Flags.setZExt(); 10209 if (CLI.IsInReg) 10210 MyFlags.Flags.setInReg(); 10211 CLI.Ins.push_back(MyFlags); 10212 } 10213 } 10214 } 10215 10216 // We push in swifterror return as the last element of CLI.Ins. 10217 ArgListTy &Args = CLI.getArgs(); 10218 if (supportSwiftError()) { 10219 for (const ArgListEntry &Arg : Args) { 10220 if (Arg.IsSwiftError) { 10221 ISD::InputArg MyFlags; 10222 MyFlags.VT = getPointerTy(DL); 10223 MyFlags.ArgVT = EVT(getPointerTy(DL)); 10224 MyFlags.Flags.setSwiftError(); 10225 CLI.Ins.push_back(MyFlags); 10226 } 10227 } 10228 } 10229 10230 // Handle all of the outgoing arguments. 10231 CLI.Outs.clear(); 10232 CLI.OutVals.clear(); 10233 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 10234 SmallVector<EVT, 4> ValueVTs; 10235 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 10236 // FIXME: Split arguments if CLI.IsPostTypeLegalization 10237 Type *FinalType = Args[i].Ty; 10238 if (Args[i].IsByVal) 10239 FinalType = Args[i].IndirectType; 10240 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 10241 FinalType, CLI.CallConv, CLI.IsVarArg, DL); 10242 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 10243 ++Value) { 10244 EVT VT = ValueVTs[Value]; 10245 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 10246 SDValue Op = SDValue(Args[i].Node.getNode(), 10247 Args[i].Node.getResNo() + Value); 10248 ISD::ArgFlagsTy Flags; 10249 10250 // Certain targets (such as MIPS), may have a different ABI alignment 10251 // for a type depending on the context. Give the target a chance to 10252 // specify the alignment it wants. 10253 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 10254 Flags.setOrigAlign(OriginalAlignment); 10255 10256 if (Args[i].Ty->isPointerTy()) { 10257 Flags.setPointer(); 10258 Flags.setPointerAddrSpace( 10259 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 10260 } 10261 if (Args[i].IsZExt) 10262 Flags.setZExt(); 10263 if (Args[i].IsSExt) 10264 Flags.setSExt(); 10265 if (Args[i].IsInReg) { 10266 // If we are using vectorcall calling convention, a structure that is 10267 // passed InReg - is surely an HVA 10268 if (CLI.CallConv == CallingConv::X86_VectorCall && 10269 isa<StructType>(FinalType)) { 10270 // The first value of a structure is marked 10271 if (0 == Value) 10272 Flags.setHvaStart(); 10273 Flags.setHva(); 10274 } 10275 // Set InReg Flag 10276 Flags.setInReg(); 10277 } 10278 if (Args[i].IsSRet) 10279 Flags.setSRet(); 10280 if (Args[i].IsSwiftSelf) 10281 Flags.setSwiftSelf(); 10282 if (Args[i].IsSwiftAsync) 10283 Flags.setSwiftAsync(); 10284 if (Args[i].IsSwiftError) 10285 Flags.setSwiftError(); 10286 if (Args[i].IsCFGuardTarget) 10287 Flags.setCFGuardTarget(); 10288 if (Args[i].IsByVal) 10289 Flags.setByVal(); 10290 if (Args[i].IsByRef) 10291 Flags.setByRef(); 10292 if (Args[i].IsPreallocated) { 10293 Flags.setPreallocated(); 10294 // Set the byval flag for CCAssignFn callbacks that don't know about 10295 // preallocated. This way we can know how many bytes we should've 10296 // allocated and how many bytes a callee cleanup function will pop. If 10297 // we port preallocated to more targets, we'll have to add custom 10298 // preallocated handling in the various CC lowering callbacks. 10299 Flags.setByVal(); 10300 } 10301 if (Args[i].IsInAlloca) { 10302 Flags.setInAlloca(); 10303 // Set the byval flag for CCAssignFn callbacks that don't know about 10304 // inalloca. This way we can know how many bytes we should've allocated 10305 // and how many bytes a callee cleanup function will pop. If we port 10306 // inalloca to more targets, we'll have to add custom inalloca handling 10307 // in the various CC lowering callbacks. 10308 Flags.setByVal(); 10309 } 10310 Align MemAlign; 10311 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 10312 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType); 10313 Flags.setByValSize(FrameSize); 10314 10315 // info is not there but there are cases it cannot get right. 10316 if (auto MA = Args[i].Alignment) 10317 MemAlign = *MA; 10318 else 10319 MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL)); 10320 } else if (auto MA = Args[i].Alignment) { 10321 MemAlign = *MA; 10322 } else { 10323 MemAlign = OriginalAlignment; 10324 } 10325 Flags.setMemAlign(MemAlign); 10326 if (Args[i].IsNest) 10327 Flags.setNest(); 10328 if (NeedsRegBlock) 10329 Flags.setInConsecutiveRegs(); 10330 10331 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10332 CLI.CallConv, VT); 10333 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10334 CLI.CallConv, VT); 10335 SmallVector<SDValue, 4> Parts(NumParts); 10336 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 10337 10338 if (Args[i].IsSExt) 10339 ExtendKind = ISD::SIGN_EXTEND; 10340 else if (Args[i].IsZExt) 10341 ExtendKind = ISD::ZERO_EXTEND; 10342 10343 // Conservatively only handle 'returned' on non-vectors that can be lowered, 10344 // for now. 10345 if (Args[i].IsReturned && !Op.getValueType().isVector() && 10346 CanLowerReturn) { 10347 assert((CLI.RetTy == Args[i].Ty || 10348 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 10349 CLI.RetTy->getPointerAddressSpace() == 10350 Args[i].Ty->getPointerAddressSpace())) && 10351 RetTys.size() == NumValues && "unexpected use of 'returned'"); 10352 // Before passing 'returned' to the target lowering code, ensure that 10353 // either the register MVT and the actual EVT are the same size or that 10354 // the return value and argument are extended in the same way; in these 10355 // cases it's safe to pass the argument register value unchanged as the 10356 // return register value (although it's at the target's option whether 10357 // to do so) 10358 // TODO: allow code generation to take advantage of partially preserved 10359 // registers rather than clobbering the entire register when the 10360 // parameter extension method is not compatible with the return 10361 // extension method 10362 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 10363 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 10364 CLI.RetZExt == Args[i].IsZExt)) 10365 Flags.setReturned(); 10366 } 10367 10368 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 10369 CLI.CallConv, ExtendKind); 10370 10371 for (unsigned j = 0; j != NumParts; ++j) { 10372 // if it isn't first piece, alignment must be 1 10373 // For scalable vectors the scalable part is currently handled 10374 // by individual targets, so we just use the known minimum size here. 10375 ISD::OutputArg MyFlags( 10376 Flags, Parts[j].getValueType().getSimpleVT(), VT, 10377 i < CLI.NumFixedArgs, i, 10378 j * Parts[j].getValueType().getStoreSize().getKnownMinValue()); 10379 if (NumParts > 1 && j == 0) 10380 MyFlags.Flags.setSplit(); 10381 else if (j != 0) { 10382 MyFlags.Flags.setOrigAlign(Align(1)); 10383 if (j == NumParts - 1) 10384 MyFlags.Flags.setSplitEnd(); 10385 } 10386 10387 CLI.Outs.push_back(MyFlags); 10388 CLI.OutVals.push_back(Parts[j]); 10389 } 10390 10391 if (NeedsRegBlock && Value == NumValues - 1) 10392 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 10393 } 10394 } 10395 10396 SmallVector<SDValue, 4> InVals; 10397 CLI.Chain = LowerCall(CLI, InVals); 10398 10399 // Update CLI.InVals to use outside of this function. 10400 CLI.InVals = InVals; 10401 10402 // Verify that the target's LowerCall behaved as expected. 10403 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 10404 "LowerCall didn't return a valid chain!"); 10405 assert((!CLI.IsTailCall || InVals.empty()) && 10406 "LowerCall emitted a return value for a tail call!"); 10407 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 10408 "LowerCall didn't emit the correct number of values!"); 10409 10410 // For a tail call, the return value is merely live-out and there aren't 10411 // any nodes in the DAG representing it. Return a special value to 10412 // indicate that a tail call has been emitted and no more Instructions 10413 // should be processed in the current block. 10414 if (CLI.IsTailCall) { 10415 CLI.DAG.setRoot(CLI.Chain); 10416 return std::make_pair(SDValue(), SDValue()); 10417 } 10418 10419 #ifndef NDEBUG 10420 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 10421 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 10422 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 10423 "LowerCall emitted a value with the wrong type!"); 10424 } 10425 #endif 10426 10427 SmallVector<SDValue, 4> ReturnValues; 10428 if (!CanLowerReturn) { 10429 // The instruction result is the result of loading from the 10430 // hidden sret parameter. 10431 SmallVector<EVT, 1> PVTs; 10432 Type *PtrRetTy = 10433 PointerType::get(OrigRetTy->getContext(), DL.getAllocaAddrSpace()); 10434 10435 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 10436 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 10437 EVT PtrVT = PVTs[0]; 10438 10439 unsigned NumValues = RetTys.size(); 10440 ReturnValues.resize(NumValues); 10441 SmallVector<SDValue, 4> Chains(NumValues); 10442 10443 // An aggregate return value cannot wrap around the address space, so 10444 // offsets to its parts don't wrap either. 10445 SDNodeFlags Flags; 10446 Flags.setNoUnsignedWrap(true); 10447 10448 MachineFunction &MF = CLI.DAG.getMachineFunction(); 10449 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 10450 for (unsigned i = 0; i < NumValues; ++i) { 10451 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 10452 CLI.DAG.getConstant(Offsets[i], CLI.DL, 10453 PtrVT), Flags); 10454 SDValue L = CLI.DAG.getLoad( 10455 RetTys[i], CLI.DL, CLI.Chain, Add, 10456 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 10457 DemoteStackIdx, Offsets[i]), 10458 HiddenSRetAlign); 10459 ReturnValues[i] = L; 10460 Chains[i] = L.getValue(1); 10461 } 10462 10463 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 10464 } else { 10465 // Collect the legal value parts into potentially illegal values 10466 // that correspond to the original function's return values. 10467 std::optional<ISD::NodeType> AssertOp; 10468 if (CLI.RetSExt) 10469 AssertOp = ISD::AssertSext; 10470 else if (CLI.RetZExt) 10471 AssertOp = ISD::AssertZext; 10472 unsigned CurReg = 0; 10473 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 10474 EVT VT = RetTys[I]; 10475 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10476 CLI.CallConv, VT); 10477 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10478 CLI.CallConv, VT); 10479 10480 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 10481 NumRegs, RegisterVT, VT, nullptr, 10482 CLI.CallConv, AssertOp)); 10483 CurReg += NumRegs; 10484 } 10485 10486 // For a function returning void, there is no return value. We can't create 10487 // such a node, so we just return a null return value in that case. In 10488 // that case, nothing will actually look at the value. 10489 if (ReturnValues.empty()) 10490 return std::make_pair(SDValue(), CLI.Chain); 10491 } 10492 10493 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 10494 CLI.DAG.getVTList(RetTys), ReturnValues); 10495 return std::make_pair(Res, CLI.Chain); 10496 } 10497 10498 /// Places new result values for the node in Results (their number 10499 /// and types must exactly match those of the original return values of 10500 /// the node), or leaves Results empty, which indicates that the node is not 10501 /// to be custom lowered after all. 10502 void TargetLowering::LowerOperationWrapper(SDNode *N, 10503 SmallVectorImpl<SDValue> &Results, 10504 SelectionDAG &DAG) const { 10505 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 10506 10507 if (!Res.getNode()) 10508 return; 10509 10510 // If the original node has one result, take the return value from 10511 // LowerOperation as is. It might not be result number 0. 10512 if (N->getNumValues() == 1) { 10513 Results.push_back(Res); 10514 return; 10515 } 10516 10517 // If the original node has multiple results, then the return node should 10518 // have the same number of results. 10519 assert((N->getNumValues() == Res->getNumValues()) && 10520 "Lowering returned the wrong number of results!"); 10521 10522 // Places new result values base on N result number. 10523 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 10524 Results.push_back(Res.getValue(I)); 10525 } 10526 10527 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10528 llvm_unreachable("LowerOperation not implemented for this target!"); 10529 } 10530 10531 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, 10532 unsigned Reg, 10533 ISD::NodeType ExtendType) { 10534 SDValue Op = getNonRegisterValue(V); 10535 assert((Op.getOpcode() != ISD::CopyFromReg || 10536 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 10537 "Copy from a reg to the same reg!"); 10538 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 10539 10540 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10541 // If this is an InlineAsm we have to match the registers required, not the 10542 // notional registers required by the type. 10543 10544 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 10545 std::nullopt); // This is not an ABI copy. 10546 SDValue Chain = DAG.getEntryNode(); 10547 10548 if (ExtendType == ISD::ANY_EXTEND) { 10549 auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V); 10550 if (PreferredExtendIt != FuncInfo.PreferredExtendType.end()) 10551 ExtendType = PreferredExtendIt->second; 10552 } 10553 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 10554 PendingExports.push_back(Chain); 10555 } 10556 10557 #include "llvm/CodeGen/SelectionDAGISel.h" 10558 10559 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 10560 /// entry block, return true. This includes arguments used by switches, since 10561 /// the switch may expand into multiple basic blocks. 10562 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 10563 // With FastISel active, we may be splitting blocks, so force creation 10564 // of virtual registers for all non-dead arguments. 10565 if (FastISel) 10566 return A->use_empty(); 10567 10568 const BasicBlock &Entry = A->getParent()->front(); 10569 for (const User *U : A->users()) 10570 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 10571 return false; // Use not in entry block. 10572 10573 return true; 10574 } 10575 10576 using ArgCopyElisionMapTy = 10577 DenseMap<const Argument *, 10578 std::pair<const AllocaInst *, const StoreInst *>>; 10579 10580 /// Scan the entry block of the function in FuncInfo for arguments that look 10581 /// like copies into a local alloca. Record any copied arguments in 10582 /// ArgCopyElisionCandidates. 10583 static void 10584 findArgumentCopyElisionCandidates(const DataLayout &DL, 10585 FunctionLoweringInfo *FuncInfo, 10586 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 10587 // Record the state of every static alloca used in the entry block. Argument 10588 // allocas are all used in the entry block, so we need approximately as many 10589 // entries as we have arguments. 10590 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 10591 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 10592 unsigned NumArgs = FuncInfo->Fn->arg_size(); 10593 StaticAllocas.reserve(NumArgs * 2); 10594 10595 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 10596 if (!V) 10597 return nullptr; 10598 V = V->stripPointerCasts(); 10599 const auto *AI = dyn_cast<AllocaInst>(V); 10600 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 10601 return nullptr; 10602 auto Iter = StaticAllocas.insert({AI, Unknown}); 10603 return &Iter.first->second; 10604 }; 10605 10606 // Look for stores of arguments to static allocas. Look through bitcasts and 10607 // GEPs to handle type coercions, as long as the alloca is fully initialized 10608 // by the store. Any non-store use of an alloca escapes it and any subsequent 10609 // unanalyzed store might write it. 10610 // FIXME: Handle structs initialized with multiple stores. 10611 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 10612 // Look for stores, and handle non-store uses conservatively. 10613 const auto *SI = dyn_cast<StoreInst>(&I); 10614 if (!SI) { 10615 // We will look through cast uses, so ignore them completely. 10616 if (I.isCast()) 10617 continue; 10618 // Ignore debug info and pseudo op intrinsics, they don't escape or store 10619 // to allocas. 10620 if (I.isDebugOrPseudoInst()) 10621 continue; 10622 // This is an unknown instruction. Assume it escapes or writes to all 10623 // static alloca operands. 10624 for (const Use &U : I.operands()) { 10625 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 10626 *Info = StaticAllocaInfo::Clobbered; 10627 } 10628 continue; 10629 } 10630 10631 // If the stored value is a static alloca, mark it as escaped. 10632 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 10633 *Info = StaticAllocaInfo::Clobbered; 10634 10635 // Check if the destination is a static alloca. 10636 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 10637 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 10638 if (!Info) 10639 continue; 10640 const AllocaInst *AI = cast<AllocaInst>(Dst); 10641 10642 // Skip allocas that have been initialized or clobbered. 10643 if (*Info != StaticAllocaInfo::Unknown) 10644 continue; 10645 10646 // Check if the stored value is an argument, and that this store fully 10647 // initializes the alloca. 10648 // If the argument type has padding bits we can't directly forward a pointer 10649 // as the upper bits may contain garbage. 10650 // Don't elide copies from the same argument twice. 10651 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 10652 const auto *Arg = dyn_cast<Argument>(Val); 10653 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 10654 Arg->getType()->isEmptyTy() || 10655 DL.getTypeStoreSize(Arg->getType()) != 10656 DL.getTypeAllocSize(AI->getAllocatedType()) || 10657 !DL.typeSizeEqualsStoreSize(Arg->getType()) || 10658 ArgCopyElisionCandidates.count(Arg)) { 10659 *Info = StaticAllocaInfo::Clobbered; 10660 continue; 10661 } 10662 10663 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 10664 << '\n'); 10665 10666 // Mark this alloca and store for argument copy elision. 10667 *Info = StaticAllocaInfo::Elidable; 10668 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 10669 10670 // Stop scanning if we've seen all arguments. This will happen early in -O0 10671 // builds, which is useful, because -O0 builds have large entry blocks and 10672 // many allocas. 10673 if (ArgCopyElisionCandidates.size() == NumArgs) 10674 break; 10675 } 10676 } 10677 10678 /// Try to elide argument copies from memory into a local alloca. Succeeds if 10679 /// ArgVal is a load from a suitable fixed stack object. 10680 static void tryToElideArgumentCopy( 10681 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 10682 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 10683 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 10684 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 10685 ArrayRef<SDValue> ArgVals, bool &ArgHasUses) { 10686 // Check if this is a load from a fixed stack object. 10687 auto *LNode = dyn_cast<LoadSDNode>(ArgVals[0]); 10688 if (!LNode) 10689 return; 10690 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 10691 if (!FINode) 10692 return; 10693 10694 // Check that the fixed stack object is the right size and alignment. 10695 // Look at the alignment that the user wrote on the alloca instead of looking 10696 // at the stack object. 10697 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 10698 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 10699 const AllocaInst *AI = ArgCopyIter->second.first; 10700 int FixedIndex = FINode->getIndex(); 10701 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 10702 int OldIndex = AllocaIndex; 10703 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 10704 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 10705 LLVM_DEBUG( 10706 dbgs() << " argument copy elision failed due to bad fixed stack " 10707 "object size\n"); 10708 return; 10709 } 10710 Align RequiredAlignment = AI->getAlign(); 10711 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 10712 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 10713 "greater than stack argument alignment (" 10714 << DebugStr(RequiredAlignment) << " vs " 10715 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 10716 return; 10717 } 10718 10719 // Perform the elision. Delete the old stack object and replace its only use 10720 // in the variable info map. Mark the stack object as mutable. 10721 LLVM_DEBUG({ 10722 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 10723 << " Replacing frame index " << OldIndex << " with " << FixedIndex 10724 << '\n'; 10725 }); 10726 MFI.RemoveStackObject(OldIndex); 10727 MFI.setIsImmutableObjectIndex(FixedIndex, false); 10728 AllocaIndex = FixedIndex; 10729 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 10730 for (SDValue ArgVal : ArgVals) 10731 Chains.push_back(ArgVal.getValue(1)); 10732 10733 // Avoid emitting code for the store implementing the copy. 10734 const StoreInst *SI = ArgCopyIter->second.second; 10735 ElidedArgCopyInstrs.insert(SI); 10736 10737 // Check for uses of the argument again so that we can avoid exporting ArgVal 10738 // if it is't used by anything other than the store. 10739 for (const Value *U : Arg.users()) { 10740 if (U != SI) { 10741 ArgHasUses = true; 10742 break; 10743 } 10744 } 10745 } 10746 10747 void SelectionDAGISel::LowerArguments(const Function &F) { 10748 SelectionDAG &DAG = SDB->DAG; 10749 SDLoc dl = SDB->getCurSDLoc(); 10750 const DataLayout &DL = DAG.getDataLayout(); 10751 SmallVector<ISD::InputArg, 16> Ins; 10752 10753 // In Naked functions we aren't going to save any registers. 10754 if (F.hasFnAttribute(Attribute::Naked)) 10755 return; 10756 10757 if (!FuncInfo->CanLowerReturn) { 10758 // Put in an sret pointer parameter before all the other parameters. 10759 SmallVector<EVT, 1> ValueVTs; 10760 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10761 PointerType::get(F.getContext(), 10762 DAG.getDataLayout().getAllocaAddrSpace()), 10763 ValueVTs); 10764 10765 // NOTE: Assuming that a pointer will never break down to more than one VT 10766 // or one register. 10767 ISD::ArgFlagsTy Flags; 10768 Flags.setSRet(); 10769 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 10770 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 10771 ISD::InputArg::NoArgIndex, 0); 10772 Ins.push_back(RetArg); 10773 } 10774 10775 // Look for stores of arguments to static allocas. Mark such arguments with a 10776 // flag to ask the target to give us the memory location of that argument if 10777 // available. 10778 ArgCopyElisionMapTy ArgCopyElisionCandidates; 10779 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 10780 ArgCopyElisionCandidates); 10781 10782 // Set up the incoming argument description vector. 10783 for (const Argument &Arg : F.args()) { 10784 unsigned ArgNo = Arg.getArgNo(); 10785 SmallVector<EVT, 4> ValueVTs; 10786 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10787 bool isArgValueUsed = !Arg.use_empty(); 10788 unsigned PartBase = 0; 10789 Type *FinalType = Arg.getType(); 10790 if (Arg.hasAttribute(Attribute::ByVal)) 10791 FinalType = Arg.getParamByValType(); 10792 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 10793 FinalType, F.getCallingConv(), F.isVarArg(), DL); 10794 for (unsigned Value = 0, NumValues = ValueVTs.size(); 10795 Value != NumValues; ++Value) { 10796 EVT VT = ValueVTs[Value]; 10797 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 10798 ISD::ArgFlagsTy Flags; 10799 10800 10801 if (Arg.getType()->isPointerTy()) { 10802 Flags.setPointer(); 10803 Flags.setPointerAddrSpace( 10804 cast<PointerType>(Arg.getType())->getAddressSpace()); 10805 } 10806 if (Arg.hasAttribute(Attribute::ZExt)) 10807 Flags.setZExt(); 10808 if (Arg.hasAttribute(Attribute::SExt)) 10809 Flags.setSExt(); 10810 if (Arg.hasAttribute(Attribute::InReg)) { 10811 // If we are using vectorcall calling convention, a structure that is 10812 // passed InReg - is surely an HVA 10813 if (F.getCallingConv() == CallingConv::X86_VectorCall && 10814 isa<StructType>(Arg.getType())) { 10815 // The first value of a structure is marked 10816 if (0 == Value) 10817 Flags.setHvaStart(); 10818 Flags.setHva(); 10819 } 10820 // Set InReg Flag 10821 Flags.setInReg(); 10822 } 10823 if (Arg.hasAttribute(Attribute::StructRet)) 10824 Flags.setSRet(); 10825 if (Arg.hasAttribute(Attribute::SwiftSelf)) 10826 Flags.setSwiftSelf(); 10827 if (Arg.hasAttribute(Attribute::SwiftAsync)) 10828 Flags.setSwiftAsync(); 10829 if (Arg.hasAttribute(Attribute::SwiftError)) 10830 Flags.setSwiftError(); 10831 if (Arg.hasAttribute(Attribute::ByVal)) 10832 Flags.setByVal(); 10833 if (Arg.hasAttribute(Attribute::ByRef)) 10834 Flags.setByRef(); 10835 if (Arg.hasAttribute(Attribute::InAlloca)) { 10836 Flags.setInAlloca(); 10837 // Set the byval flag for CCAssignFn callbacks that don't know about 10838 // inalloca. This way we can know how many bytes we should've allocated 10839 // and how many bytes a callee cleanup function will pop. If we port 10840 // inalloca to more targets, we'll have to add custom inalloca handling 10841 // in the various CC lowering callbacks. 10842 Flags.setByVal(); 10843 } 10844 if (Arg.hasAttribute(Attribute::Preallocated)) { 10845 Flags.setPreallocated(); 10846 // Set the byval flag for CCAssignFn callbacks that don't know about 10847 // preallocated. This way we can know how many bytes we should've 10848 // allocated and how many bytes a callee cleanup function will pop. If 10849 // we port preallocated to more targets, we'll have to add custom 10850 // preallocated handling in the various CC lowering callbacks. 10851 Flags.setByVal(); 10852 } 10853 10854 // Certain targets (such as MIPS), may have a different ABI alignment 10855 // for a type depending on the context. Give the target a chance to 10856 // specify the alignment it wants. 10857 const Align OriginalAlignment( 10858 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 10859 Flags.setOrigAlign(OriginalAlignment); 10860 10861 Align MemAlign; 10862 Type *ArgMemTy = nullptr; 10863 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 10864 Flags.isByRef()) { 10865 if (!ArgMemTy) 10866 ArgMemTy = Arg.getPointeeInMemoryValueType(); 10867 10868 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 10869 10870 // For in-memory arguments, size and alignment should be passed from FE. 10871 // BE will guess if this info is not there but there are cases it cannot 10872 // get right. 10873 if (auto ParamAlign = Arg.getParamStackAlign()) 10874 MemAlign = *ParamAlign; 10875 else if ((ParamAlign = Arg.getParamAlign())) 10876 MemAlign = *ParamAlign; 10877 else 10878 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 10879 if (Flags.isByRef()) 10880 Flags.setByRefSize(MemSize); 10881 else 10882 Flags.setByValSize(MemSize); 10883 } else if (auto ParamAlign = Arg.getParamStackAlign()) { 10884 MemAlign = *ParamAlign; 10885 } else { 10886 MemAlign = OriginalAlignment; 10887 } 10888 Flags.setMemAlign(MemAlign); 10889 10890 if (Arg.hasAttribute(Attribute::Nest)) 10891 Flags.setNest(); 10892 if (NeedsRegBlock) 10893 Flags.setInConsecutiveRegs(); 10894 if (ArgCopyElisionCandidates.count(&Arg)) 10895 Flags.setCopyElisionCandidate(); 10896 if (Arg.hasAttribute(Attribute::Returned)) 10897 Flags.setReturned(); 10898 10899 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 10900 *CurDAG->getContext(), F.getCallingConv(), VT); 10901 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 10902 *CurDAG->getContext(), F.getCallingConv(), VT); 10903 for (unsigned i = 0; i != NumRegs; ++i) { 10904 // For scalable vectors, use the minimum size; individual targets 10905 // are responsible for handling scalable vector arguments and 10906 // return values. 10907 ISD::InputArg MyFlags( 10908 Flags, RegisterVT, VT, isArgValueUsed, ArgNo, 10909 PartBase + i * RegisterVT.getStoreSize().getKnownMinValue()); 10910 if (NumRegs > 1 && i == 0) 10911 MyFlags.Flags.setSplit(); 10912 // if it isn't first piece, alignment must be 1 10913 else if (i > 0) { 10914 MyFlags.Flags.setOrigAlign(Align(1)); 10915 if (i == NumRegs - 1) 10916 MyFlags.Flags.setSplitEnd(); 10917 } 10918 Ins.push_back(MyFlags); 10919 } 10920 if (NeedsRegBlock && Value == NumValues - 1) 10921 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 10922 PartBase += VT.getStoreSize().getKnownMinValue(); 10923 } 10924 } 10925 10926 // Call the target to set up the argument values. 10927 SmallVector<SDValue, 8> InVals; 10928 SDValue NewRoot = TLI->LowerFormalArguments( 10929 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 10930 10931 // Verify that the target's LowerFormalArguments behaved as expected. 10932 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 10933 "LowerFormalArguments didn't return a valid chain!"); 10934 assert(InVals.size() == Ins.size() && 10935 "LowerFormalArguments didn't emit the correct number of values!"); 10936 LLVM_DEBUG({ 10937 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 10938 assert(InVals[i].getNode() && 10939 "LowerFormalArguments emitted a null value!"); 10940 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 10941 "LowerFormalArguments emitted a value with the wrong type!"); 10942 } 10943 }); 10944 10945 // Update the DAG with the new chain value resulting from argument lowering. 10946 DAG.setRoot(NewRoot); 10947 10948 // Set up the argument values. 10949 unsigned i = 0; 10950 if (!FuncInfo->CanLowerReturn) { 10951 // Create a virtual register for the sret pointer, and put in a copy 10952 // from the sret argument into it. 10953 SmallVector<EVT, 1> ValueVTs; 10954 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10955 PointerType::get(F.getContext(), 10956 DAG.getDataLayout().getAllocaAddrSpace()), 10957 ValueVTs); 10958 MVT VT = ValueVTs[0].getSimpleVT(); 10959 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 10960 std::optional<ISD::NodeType> AssertOp; 10961 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 10962 nullptr, F.getCallingConv(), AssertOp); 10963 10964 MachineFunction& MF = SDB->DAG.getMachineFunction(); 10965 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 10966 Register SRetReg = 10967 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 10968 FuncInfo->DemoteRegister = SRetReg; 10969 NewRoot = 10970 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 10971 DAG.setRoot(NewRoot); 10972 10973 // i indexes lowered arguments. Bump it past the hidden sret argument. 10974 ++i; 10975 } 10976 10977 SmallVector<SDValue, 4> Chains; 10978 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 10979 for (const Argument &Arg : F.args()) { 10980 SmallVector<SDValue, 4> ArgValues; 10981 SmallVector<EVT, 4> ValueVTs; 10982 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10983 unsigned NumValues = ValueVTs.size(); 10984 if (NumValues == 0) 10985 continue; 10986 10987 bool ArgHasUses = !Arg.use_empty(); 10988 10989 // Elide the copying store if the target loaded this argument from a 10990 // suitable fixed stack object. 10991 if (Ins[i].Flags.isCopyElisionCandidate()) { 10992 unsigned NumParts = 0; 10993 for (EVT VT : ValueVTs) 10994 NumParts += TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), 10995 F.getCallingConv(), VT); 10996 10997 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 10998 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 10999 ArrayRef(&InVals[i], NumParts), ArgHasUses); 11000 } 11001 11002 // If this argument is unused then remember its value. It is used to generate 11003 // debugging information. 11004 bool isSwiftErrorArg = 11005 TLI->supportSwiftError() && 11006 Arg.hasAttribute(Attribute::SwiftError); 11007 if (!ArgHasUses && !isSwiftErrorArg) { 11008 SDB->setUnusedArgValue(&Arg, InVals[i]); 11009 11010 // Also remember any frame index for use in FastISel. 11011 if (FrameIndexSDNode *FI = 11012 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 11013 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11014 } 11015 11016 for (unsigned Val = 0; Val != NumValues; ++Val) { 11017 EVT VT = ValueVTs[Val]; 11018 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 11019 F.getCallingConv(), VT); 11020 unsigned NumParts = TLI->getNumRegistersForCallingConv( 11021 *CurDAG->getContext(), F.getCallingConv(), VT); 11022 11023 // Even an apparent 'unused' swifterror argument needs to be returned. So 11024 // we do generate a copy for it that can be used on return from the 11025 // function. 11026 if (ArgHasUses || isSwiftErrorArg) { 11027 std::optional<ISD::NodeType> AssertOp; 11028 if (Arg.hasAttribute(Attribute::SExt)) 11029 AssertOp = ISD::AssertSext; 11030 else if (Arg.hasAttribute(Attribute::ZExt)) 11031 AssertOp = ISD::AssertZext; 11032 11033 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 11034 PartVT, VT, nullptr, 11035 F.getCallingConv(), AssertOp)); 11036 } 11037 11038 i += NumParts; 11039 } 11040 11041 // We don't need to do anything else for unused arguments. 11042 if (ArgValues.empty()) 11043 continue; 11044 11045 // Note down frame index. 11046 if (FrameIndexSDNode *FI = 11047 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 11048 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11049 11050 SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues), 11051 SDB->getCurSDLoc()); 11052 11053 SDB->setValue(&Arg, Res); 11054 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 11055 // We want to associate the argument with the frame index, among 11056 // involved operands, that correspond to the lowest address. The 11057 // getCopyFromParts function, called earlier, is swapping the order of 11058 // the operands to BUILD_PAIR depending on endianness. The result of 11059 // that swapping is that the least significant bits of the argument will 11060 // be in the first operand of the BUILD_PAIR node, and the most 11061 // significant bits will be in the second operand. 11062 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 11063 if (LoadSDNode *LNode = 11064 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 11065 if (FrameIndexSDNode *FI = 11066 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 11067 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11068 } 11069 11070 // Analyses past this point are naive and don't expect an assertion. 11071 if (Res.getOpcode() == ISD::AssertZext) 11072 Res = Res.getOperand(0); 11073 11074 // Update the SwiftErrorVRegDefMap. 11075 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 11076 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 11077 if (Register::isVirtualRegister(Reg)) 11078 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 11079 Reg); 11080 } 11081 11082 // If this argument is live outside of the entry block, insert a copy from 11083 // wherever we got it to the vreg that other BB's will reference it as. 11084 if (Res.getOpcode() == ISD::CopyFromReg) { 11085 // If we can, though, try to skip creating an unnecessary vreg. 11086 // FIXME: This isn't very clean... it would be nice to make this more 11087 // general. 11088 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 11089 if (Register::isVirtualRegister(Reg)) { 11090 FuncInfo->ValueMap[&Arg] = Reg; 11091 continue; 11092 } 11093 } 11094 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 11095 FuncInfo->InitializeRegForValue(&Arg); 11096 SDB->CopyToExportRegsIfNeeded(&Arg); 11097 } 11098 } 11099 11100 if (!Chains.empty()) { 11101 Chains.push_back(NewRoot); 11102 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 11103 } 11104 11105 DAG.setRoot(NewRoot); 11106 11107 assert(i == InVals.size() && "Argument register count mismatch!"); 11108 11109 // If any argument copy elisions occurred and we have debug info, update the 11110 // stale frame indices used in the dbg.declare variable info table. 11111 if (!ArgCopyElisionFrameIndexMap.empty()) { 11112 for (MachineFunction::VariableDbgInfo &VI : 11113 MF->getInStackSlotVariableDbgInfo()) { 11114 auto I = ArgCopyElisionFrameIndexMap.find(VI.getStackSlot()); 11115 if (I != ArgCopyElisionFrameIndexMap.end()) 11116 VI.updateStackSlot(I->second); 11117 } 11118 } 11119 11120 // Finally, if the target has anything special to do, allow it to do so. 11121 emitFunctionEntryCode(); 11122 } 11123 11124 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 11125 /// ensure constants are generated when needed. Remember the virtual registers 11126 /// that need to be added to the Machine PHI nodes as input. We cannot just 11127 /// directly add them, because expansion might result in multiple MBB's for one 11128 /// BB. As such, the start of the BB might correspond to a different MBB than 11129 /// the end. 11130 void 11131 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 11132 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11133 11134 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 11135 11136 // Check PHI nodes in successors that expect a value to be available from this 11137 // block. 11138 for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) { 11139 if (!isa<PHINode>(SuccBB->begin())) continue; 11140 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 11141 11142 // If this terminator has multiple identical successors (common for 11143 // switches), only handle each succ once. 11144 if (!SuccsHandled.insert(SuccMBB).second) 11145 continue; 11146 11147 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 11148 11149 // At this point we know that there is a 1-1 correspondence between LLVM PHI 11150 // nodes and Machine PHI nodes, but the incoming operands have not been 11151 // emitted yet. 11152 for (const PHINode &PN : SuccBB->phis()) { 11153 // Ignore dead phi's. 11154 if (PN.use_empty()) 11155 continue; 11156 11157 // Skip empty types 11158 if (PN.getType()->isEmptyTy()) 11159 continue; 11160 11161 unsigned Reg; 11162 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 11163 11164 if (const auto *C = dyn_cast<Constant>(PHIOp)) { 11165 unsigned &RegOut = ConstantsOut[C]; 11166 if (RegOut == 0) { 11167 RegOut = FuncInfo.CreateRegs(C); 11168 // We need to zero/sign extend ConstantInt phi operands to match 11169 // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo. 11170 ISD::NodeType ExtendType = ISD::ANY_EXTEND; 11171 if (auto *CI = dyn_cast<ConstantInt>(C)) 11172 ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND 11173 : ISD::ZERO_EXTEND; 11174 CopyValueToVirtualRegister(C, RegOut, ExtendType); 11175 } 11176 Reg = RegOut; 11177 } else { 11178 DenseMap<const Value *, Register>::iterator I = 11179 FuncInfo.ValueMap.find(PHIOp); 11180 if (I != FuncInfo.ValueMap.end()) 11181 Reg = I->second; 11182 else { 11183 assert(isa<AllocaInst>(PHIOp) && 11184 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 11185 "Didn't codegen value into a register!??"); 11186 Reg = FuncInfo.CreateRegs(PHIOp); 11187 CopyValueToVirtualRegister(PHIOp, Reg); 11188 } 11189 } 11190 11191 // Remember that this register needs to added to the machine PHI node as 11192 // the input for this MBB. 11193 SmallVector<EVT, 4> ValueVTs; 11194 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 11195 for (EVT VT : ValueVTs) { 11196 const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 11197 for (unsigned i = 0; i != NumRegisters; ++i) 11198 FuncInfo.PHINodesToUpdate.push_back( 11199 std::make_pair(&*MBBI++, Reg + i)); 11200 Reg += NumRegisters; 11201 } 11202 } 11203 } 11204 11205 ConstantsOut.clear(); 11206 } 11207 11208 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 11209 MachineFunction::iterator I(MBB); 11210 if (++I == FuncInfo.MF->end()) 11211 return nullptr; 11212 return &*I; 11213 } 11214 11215 /// During lowering new call nodes can be created (such as memset, etc.). 11216 /// Those will become new roots of the current DAG, but complications arise 11217 /// when they are tail calls. In such cases, the call lowering will update 11218 /// the root, but the builder still needs to know that a tail call has been 11219 /// lowered in order to avoid generating an additional return. 11220 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 11221 // If the node is null, we do have a tail call. 11222 if (MaybeTC.getNode() != nullptr) 11223 DAG.setRoot(MaybeTC); 11224 else 11225 HasTailCall = true; 11226 } 11227 11228 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 11229 MachineBasicBlock *SwitchMBB, 11230 MachineBasicBlock *DefaultMBB) { 11231 MachineFunction *CurMF = FuncInfo.MF; 11232 MachineBasicBlock *NextMBB = nullptr; 11233 MachineFunction::iterator BBI(W.MBB); 11234 if (++BBI != FuncInfo.MF->end()) 11235 NextMBB = &*BBI; 11236 11237 unsigned Size = W.LastCluster - W.FirstCluster + 1; 11238 11239 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11240 11241 if (Size == 2 && W.MBB == SwitchMBB) { 11242 // If any two of the cases has the same destination, and if one value 11243 // is the same as the other, but has one bit unset that the other has set, 11244 // use bit manipulation to do two compares at once. For example: 11245 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 11246 // TODO: This could be extended to merge any 2 cases in switches with 3 11247 // cases. 11248 // TODO: Handle cases where W.CaseBB != SwitchBB. 11249 CaseCluster &Small = *W.FirstCluster; 11250 CaseCluster &Big = *W.LastCluster; 11251 11252 if (Small.Low == Small.High && Big.Low == Big.High && 11253 Small.MBB == Big.MBB) { 11254 const APInt &SmallValue = Small.Low->getValue(); 11255 const APInt &BigValue = Big.Low->getValue(); 11256 11257 // Check that there is only one bit different. 11258 APInt CommonBit = BigValue ^ SmallValue; 11259 if (CommonBit.isPowerOf2()) { 11260 SDValue CondLHS = getValue(Cond); 11261 EVT VT = CondLHS.getValueType(); 11262 SDLoc DL = getCurSDLoc(); 11263 11264 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 11265 DAG.getConstant(CommonBit, DL, VT)); 11266 SDValue Cond = DAG.getSetCC( 11267 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 11268 ISD::SETEQ); 11269 11270 // Update successor info. 11271 // Both Small and Big will jump to Small.BB, so we sum up the 11272 // probabilities. 11273 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 11274 if (BPI) 11275 addSuccessorWithProb( 11276 SwitchMBB, DefaultMBB, 11277 // The default destination is the first successor in IR. 11278 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 11279 else 11280 addSuccessorWithProb(SwitchMBB, DefaultMBB); 11281 11282 // Insert the true branch. 11283 SDValue BrCond = 11284 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 11285 DAG.getBasicBlock(Small.MBB)); 11286 // Insert the false branch. 11287 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 11288 DAG.getBasicBlock(DefaultMBB)); 11289 11290 DAG.setRoot(BrCond); 11291 return; 11292 } 11293 } 11294 } 11295 11296 if (TM.getOptLevel() != CodeGenOptLevel::None) { 11297 // Here, we order cases by probability so the most likely case will be 11298 // checked first. However, two clusters can have the same probability in 11299 // which case their relative ordering is non-deterministic. So we use Low 11300 // as a tie-breaker as clusters are guaranteed to never overlap. 11301 llvm::sort(W.FirstCluster, W.LastCluster + 1, 11302 [](const CaseCluster &a, const CaseCluster &b) { 11303 return a.Prob != b.Prob ? 11304 a.Prob > b.Prob : 11305 a.Low->getValue().slt(b.Low->getValue()); 11306 }); 11307 11308 // Rearrange the case blocks so that the last one falls through if possible 11309 // without changing the order of probabilities. 11310 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 11311 --I; 11312 if (I->Prob > W.LastCluster->Prob) 11313 break; 11314 if (I->Kind == CC_Range && I->MBB == NextMBB) { 11315 std::swap(*I, *W.LastCluster); 11316 break; 11317 } 11318 } 11319 } 11320 11321 // Compute total probability. 11322 BranchProbability DefaultProb = W.DefaultProb; 11323 BranchProbability UnhandledProbs = DefaultProb; 11324 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 11325 UnhandledProbs += I->Prob; 11326 11327 MachineBasicBlock *CurMBB = W.MBB; 11328 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 11329 bool FallthroughUnreachable = false; 11330 MachineBasicBlock *Fallthrough; 11331 if (I == W.LastCluster) { 11332 // For the last cluster, fall through to the default destination. 11333 Fallthrough = DefaultMBB; 11334 FallthroughUnreachable = isa<UnreachableInst>( 11335 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 11336 } else { 11337 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 11338 CurMF->insert(BBI, Fallthrough); 11339 // Put Cond in a virtual register to make it available from the new blocks. 11340 ExportFromCurrentBlock(Cond); 11341 } 11342 UnhandledProbs -= I->Prob; 11343 11344 switch (I->Kind) { 11345 case CC_JumpTable: { 11346 // FIXME: Optimize away range check based on pivot comparisons. 11347 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 11348 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 11349 11350 // The jump block hasn't been inserted yet; insert it here. 11351 MachineBasicBlock *JumpMBB = JT->MBB; 11352 CurMF->insert(BBI, JumpMBB); 11353 11354 auto JumpProb = I->Prob; 11355 auto FallthroughProb = UnhandledProbs; 11356 11357 // If the default statement is a target of the jump table, we evenly 11358 // distribute the default probability to successors of CurMBB. Also 11359 // update the probability on the edge from JumpMBB to Fallthrough. 11360 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 11361 SE = JumpMBB->succ_end(); 11362 SI != SE; ++SI) { 11363 if (*SI == DefaultMBB) { 11364 JumpProb += DefaultProb / 2; 11365 FallthroughProb -= DefaultProb / 2; 11366 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 11367 JumpMBB->normalizeSuccProbs(); 11368 break; 11369 } 11370 } 11371 11372 // If the default clause is unreachable, propagate that knowledge into 11373 // JTH->FallthroughUnreachable which will use it to suppress the range 11374 // check. 11375 // 11376 // However, don't do this if we're doing branch target enforcement, 11377 // because a table branch _without_ a range check can be a tempting JOP 11378 // gadget - out-of-bounds inputs that are impossible in correct 11379 // execution become possible again if an attacker can influence the 11380 // control flow. So if an attacker doesn't already have a BTI bypass 11381 // available, we don't want them to be able to get one out of this 11382 // table branch. 11383 if (FallthroughUnreachable) { 11384 Function &CurFunc = CurMF->getFunction(); 11385 bool HasBranchTargetEnforcement = false; 11386 if (CurFunc.hasFnAttribute("branch-target-enforcement")) { 11387 HasBranchTargetEnforcement = 11388 CurFunc.getFnAttribute("branch-target-enforcement") 11389 .getValueAsBool(); 11390 } else { 11391 HasBranchTargetEnforcement = 11392 CurMF->getMMI().getModule()->getModuleFlag( 11393 "branch-target-enforcement"); 11394 } 11395 if (!HasBranchTargetEnforcement) 11396 JTH->FallthroughUnreachable = true; 11397 } 11398 11399 if (!JTH->FallthroughUnreachable) 11400 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 11401 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 11402 CurMBB->normalizeSuccProbs(); 11403 11404 // The jump table header will be inserted in our current block, do the 11405 // range check, and fall through to our fallthrough block. 11406 JTH->HeaderBB = CurMBB; 11407 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 11408 11409 // If we're in the right place, emit the jump table header right now. 11410 if (CurMBB == SwitchMBB) { 11411 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 11412 JTH->Emitted = true; 11413 } 11414 break; 11415 } 11416 case CC_BitTests: { 11417 // FIXME: Optimize away range check based on pivot comparisons. 11418 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 11419 11420 // The bit test blocks haven't been inserted yet; insert them here. 11421 for (BitTestCase &BTC : BTB->Cases) 11422 CurMF->insert(BBI, BTC.ThisBB); 11423 11424 // Fill in fields of the BitTestBlock. 11425 BTB->Parent = CurMBB; 11426 BTB->Default = Fallthrough; 11427 11428 BTB->DefaultProb = UnhandledProbs; 11429 // If the cases in bit test don't form a contiguous range, we evenly 11430 // distribute the probability on the edge to Fallthrough to two 11431 // successors of CurMBB. 11432 if (!BTB->ContiguousRange) { 11433 BTB->Prob += DefaultProb / 2; 11434 BTB->DefaultProb -= DefaultProb / 2; 11435 } 11436 11437 if (FallthroughUnreachable) 11438 BTB->FallthroughUnreachable = true; 11439 11440 // If we're in the right place, emit the bit test header right now. 11441 if (CurMBB == SwitchMBB) { 11442 visitBitTestHeader(*BTB, SwitchMBB); 11443 BTB->Emitted = true; 11444 } 11445 break; 11446 } 11447 case CC_Range: { 11448 const Value *RHS, *LHS, *MHS; 11449 ISD::CondCode CC; 11450 if (I->Low == I->High) { 11451 // Check Cond == I->Low. 11452 CC = ISD::SETEQ; 11453 LHS = Cond; 11454 RHS=I->Low; 11455 MHS = nullptr; 11456 } else { 11457 // Check I->Low <= Cond <= I->High. 11458 CC = ISD::SETLE; 11459 LHS = I->Low; 11460 MHS = Cond; 11461 RHS = I->High; 11462 } 11463 11464 // If Fallthrough is unreachable, fold away the comparison. 11465 if (FallthroughUnreachable) 11466 CC = ISD::SETTRUE; 11467 11468 // The false probability is the sum of all unhandled cases. 11469 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 11470 getCurSDLoc(), I->Prob, UnhandledProbs); 11471 11472 if (CurMBB == SwitchMBB) 11473 visitSwitchCase(CB, SwitchMBB); 11474 else 11475 SL->SwitchCases.push_back(CB); 11476 11477 break; 11478 } 11479 } 11480 CurMBB = Fallthrough; 11481 } 11482 } 11483 11484 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 11485 CaseClusterIt First, 11486 CaseClusterIt Last) { 11487 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 11488 if (X.Prob != CC.Prob) 11489 return X.Prob > CC.Prob; 11490 11491 // Ties are broken by comparing the case value. 11492 return X.Low->getValue().slt(CC.Low->getValue()); 11493 }); 11494 } 11495 11496 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 11497 const SwitchWorkListItem &W, 11498 Value *Cond, 11499 MachineBasicBlock *SwitchMBB) { 11500 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 11501 "Clusters not sorted?"); 11502 11503 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 11504 11505 // Balance the tree based on branch probabilities to create a near-optimal (in 11506 // terms of search time given key frequency) binary search tree. See e.g. Kurt 11507 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 11508 CaseClusterIt LastLeft = W.FirstCluster; 11509 CaseClusterIt FirstRight = W.LastCluster; 11510 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 11511 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 11512 11513 // Move LastLeft and FirstRight towards each other from opposite directions to 11514 // find a partitioning of the clusters which balances the probability on both 11515 // sides. If LeftProb and RightProb are equal, alternate which side is 11516 // taken to ensure 0-probability nodes are distributed evenly. 11517 unsigned I = 0; 11518 while (LastLeft + 1 < FirstRight) { 11519 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 11520 LeftProb += (++LastLeft)->Prob; 11521 else 11522 RightProb += (--FirstRight)->Prob; 11523 I++; 11524 } 11525 11526 while (true) { 11527 // Our binary search tree differs from a typical BST in that ours can have up 11528 // to three values in each leaf. The pivot selection above doesn't take that 11529 // into account, which means the tree might require more nodes and be less 11530 // efficient. We compensate for this here. 11531 11532 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 11533 unsigned NumRight = W.LastCluster - FirstRight + 1; 11534 11535 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 11536 // If one side has less than 3 clusters, and the other has more than 3, 11537 // consider taking a cluster from the other side. 11538 11539 if (NumLeft < NumRight) { 11540 // Consider moving the first cluster on the right to the left side. 11541 CaseCluster &CC = *FirstRight; 11542 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 11543 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 11544 if (LeftSideRank <= RightSideRank) { 11545 // Moving the cluster to the left does not demote it. 11546 ++LastLeft; 11547 ++FirstRight; 11548 continue; 11549 } 11550 } else { 11551 assert(NumRight < NumLeft); 11552 // Consider moving the last element on the left to the right side. 11553 CaseCluster &CC = *LastLeft; 11554 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 11555 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 11556 if (RightSideRank <= LeftSideRank) { 11557 // Moving the cluster to the right does not demot it. 11558 --LastLeft; 11559 --FirstRight; 11560 continue; 11561 } 11562 } 11563 } 11564 break; 11565 } 11566 11567 assert(LastLeft + 1 == FirstRight); 11568 assert(LastLeft >= W.FirstCluster); 11569 assert(FirstRight <= W.LastCluster); 11570 11571 // Use the first element on the right as pivot since we will make less-than 11572 // comparisons against it. 11573 CaseClusterIt PivotCluster = FirstRight; 11574 assert(PivotCluster > W.FirstCluster); 11575 assert(PivotCluster <= W.LastCluster); 11576 11577 CaseClusterIt FirstLeft = W.FirstCluster; 11578 CaseClusterIt LastRight = W.LastCluster; 11579 11580 const ConstantInt *Pivot = PivotCluster->Low; 11581 11582 // New blocks will be inserted immediately after the current one. 11583 MachineFunction::iterator BBI(W.MBB); 11584 ++BBI; 11585 11586 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 11587 // we can branch to its destination directly if it's squeezed exactly in 11588 // between the known lower bound and Pivot - 1. 11589 MachineBasicBlock *LeftMBB; 11590 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 11591 FirstLeft->Low == W.GE && 11592 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 11593 LeftMBB = FirstLeft->MBB; 11594 } else { 11595 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11596 FuncInfo.MF->insert(BBI, LeftMBB); 11597 WorkList.push_back( 11598 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 11599 // Put Cond in a virtual register to make it available from the new blocks. 11600 ExportFromCurrentBlock(Cond); 11601 } 11602 11603 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 11604 // single cluster, RHS.Low == Pivot, and we can branch to its destination 11605 // directly if RHS.High equals the current upper bound. 11606 MachineBasicBlock *RightMBB; 11607 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 11608 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 11609 RightMBB = FirstRight->MBB; 11610 } else { 11611 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11612 FuncInfo.MF->insert(BBI, RightMBB); 11613 WorkList.push_back( 11614 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 11615 // Put Cond in a virtual register to make it available from the new blocks. 11616 ExportFromCurrentBlock(Cond); 11617 } 11618 11619 // Create the CaseBlock record that will be used to lower the branch. 11620 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 11621 getCurSDLoc(), LeftProb, RightProb); 11622 11623 if (W.MBB == SwitchMBB) 11624 visitSwitchCase(CB, SwitchMBB); 11625 else 11626 SL->SwitchCases.push_back(CB); 11627 } 11628 11629 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 11630 // from the swith statement. 11631 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 11632 BranchProbability PeeledCaseProb) { 11633 if (PeeledCaseProb == BranchProbability::getOne()) 11634 return BranchProbability::getZero(); 11635 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 11636 11637 uint32_t Numerator = CaseProb.getNumerator(); 11638 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 11639 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 11640 } 11641 11642 // Try to peel the top probability case if it exceeds the threshold. 11643 // Return current MachineBasicBlock for the switch statement if the peeling 11644 // does not occur. 11645 // If the peeling is performed, return the newly created MachineBasicBlock 11646 // for the peeled switch statement. Also update Clusters to remove the peeled 11647 // case. PeeledCaseProb is the BranchProbability for the peeled case. 11648 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 11649 const SwitchInst &SI, CaseClusterVector &Clusters, 11650 BranchProbability &PeeledCaseProb) { 11651 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11652 // Don't perform if there is only one cluster or optimizing for size. 11653 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 11654 TM.getOptLevel() == CodeGenOptLevel::None || 11655 SwitchMBB->getParent()->getFunction().hasMinSize()) 11656 return SwitchMBB; 11657 11658 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 11659 unsigned PeeledCaseIndex = 0; 11660 bool SwitchPeeled = false; 11661 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 11662 CaseCluster &CC = Clusters[Index]; 11663 if (CC.Prob < TopCaseProb) 11664 continue; 11665 TopCaseProb = CC.Prob; 11666 PeeledCaseIndex = Index; 11667 SwitchPeeled = true; 11668 } 11669 if (!SwitchPeeled) 11670 return SwitchMBB; 11671 11672 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 11673 << TopCaseProb << "\n"); 11674 11675 // Record the MBB for the peeled switch statement. 11676 MachineFunction::iterator BBI(SwitchMBB); 11677 ++BBI; 11678 MachineBasicBlock *PeeledSwitchMBB = 11679 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 11680 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 11681 11682 ExportFromCurrentBlock(SI.getCondition()); 11683 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 11684 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 11685 nullptr, nullptr, TopCaseProb.getCompl()}; 11686 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 11687 11688 Clusters.erase(PeeledCaseIt); 11689 for (CaseCluster &CC : Clusters) { 11690 LLVM_DEBUG( 11691 dbgs() << "Scale the probablity for one cluster, before scaling: " 11692 << CC.Prob << "\n"); 11693 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 11694 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 11695 } 11696 PeeledCaseProb = TopCaseProb; 11697 return PeeledSwitchMBB; 11698 } 11699 11700 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 11701 // Extract cases from the switch. 11702 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11703 CaseClusterVector Clusters; 11704 Clusters.reserve(SI.getNumCases()); 11705 for (auto I : SI.cases()) { 11706 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 11707 const ConstantInt *CaseVal = I.getCaseValue(); 11708 BranchProbability Prob = 11709 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 11710 : BranchProbability(1, SI.getNumCases() + 1); 11711 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 11712 } 11713 11714 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 11715 11716 // Cluster adjacent cases with the same destination. We do this at all 11717 // optimization levels because it's cheap to do and will make codegen faster 11718 // if there are many clusters. 11719 sortAndRangeify(Clusters); 11720 11721 // The branch probablity of the peeled case. 11722 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 11723 MachineBasicBlock *PeeledSwitchMBB = 11724 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 11725 11726 // If there is only the default destination, jump there directly. 11727 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11728 if (Clusters.empty()) { 11729 assert(PeeledSwitchMBB == SwitchMBB); 11730 SwitchMBB->addSuccessor(DefaultMBB); 11731 if (DefaultMBB != NextBlock(SwitchMBB)) { 11732 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 11733 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 11734 } 11735 return; 11736 } 11737 11738 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 11739 SL->findBitTestClusters(Clusters, &SI); 11740 11741 LLVM_DEBUG({ 11742 dbgs() << "Case clusters: "; 11743 for (const CaseCluster &C : Clusters) { 11744 if (C.Kind == CC_JumpTable) 11745 dbgs() << "JT:"; 11746 if (C.Kind == CC_BitTests) 11747 dbgs() << "BT:"; 11748 11749 C.Low->getValue().print(dbgs(), true); 11750 if (C.Low != C.High) { 11751 dbgs() << '-'; 11752 C.High->getValue().print(dbgs(), true); 11753 } 11754 dbgs() << ' '; 11755 } 11756 dbgs() << '\n'; 11757 }); 11758 11759 assert(!Clusters.empty()); 11760 SwitchWorkList WorkList; 11761 CaseClusterIt First = Clusters.begin(); 11762 CaseClusterIt Last = Clusters.end() - 1; 11763 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 11764 // Scale the branchprobability for DefaultMBB if the peel occurs and 11765 // DefaultMBB is not replaced. 11766 if (PeeledCaseProb != BranchProbability::getZero() && 11767 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 11768 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 11769 WorkList.push_back( 11770 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 11771 11772 while (!WorkList.empty()) { 11773 SwitchWorkListItem W = WorkList.pop_back_val(); 11774 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 11775 11776 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOptLevel::None && 11777 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 11778 // For optimized builds, lower large range as a balanced binary tree. 11779 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 11780 continue; 11781 } 11782 11783 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 11784 } 11785 } 11786 11787 void SelectionDAGBuilder::visitStepVector(const CallInst &I) { 11788 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11789 auto DL = getCurSDLoc(); 11790 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11791 setValue(&I, DAG.getStepVector(DL, ResultVT)); 11792 } 11793 11794 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) { 11795 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11796 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11797 11798 SDLoc DL = getCurSDLoc(); 11799 SDValue V = getValue(I.getOperand(0)); 11800 assert(VT == V.getValueType() && "Malformed vector.reverse!"); 11801 11802 if (VT.isScalableVector()) { 11803 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V)); 11804 return; 11805 } 11806 11807 // Use VECTOR_SHUFFLE for the fixed-length vector 11808 // to maintain existing behavior. 11809 SmallVector<int, 8> Mask; 11810 unsigned NumElts = VT.getVectorMinNumElements(); 11811 for (unsigned i = 0; i != NumElts; ++i) 11812 Mask.push_back(NumElts - 1 - i); 11813 11814 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask)); 11815 } 11816 11817 void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I) { 11818 auto DL = getCurSDLoc(); 11819 SDValue InVec = getValue(I.getOperand(0)); 11820 EVT OutVT = 11821 InVec.getValueType().getHalfNumVectorElementsVT(*DAG.getContext()); 11822 11823 unsigned OutNumElts = OutVT.getVectorMinNumElements(); 11824 11825 // ISD Node needs the input vectors split into two equal parts 11826 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec, 11827 DAG.getVectorIdxConstant(0, DL)); 11828 SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec, 11829 DAG.getVectorIdxConstant(OutNumElts, DL)); 11830 11831 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing 11832 // legalisation and combines. 11833 if (OutVT.isFixedLengthVector()) { 11834 SDValue Even = DAG.getVectorShuffle(OutVT, DL, Lo, Hi, 11835 createStrideMask(0, 2, OutNumElts)); 11836 SDValue Odd = DAG.getVectorShuffle(OutVT, DL, Lo, Hi, 11837 createStrideMask(1, 2, OutNumElts)); 11838 SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc()); 11839 setValue(&I, Res); 11840 return; 11841 } 11842 11843 SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL, 11844 DAG.getVTList(OutVT, OutVT), Lo, Hi); 11845 setValue(&I, Res); 11846 } 11847 11848 void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I) { 11849 auto DL = getCurSDLoc(); 11850 EVT InVT = getValue(I.getOperand(0)).getValueType(); 11851 SDValue InVec0 = getValue(I.getOperand(0)); 11852 SDValue InVec1 = getValue(I.getOperand(1)); 11853 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11854 EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11855 11856 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing 11857 // legalisation and combines. 11858 if (OutVT.isFixedLengthVector()) { 11859 unsigned NumElts = InVT.getVectorMinNumElements(); 11860 SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVec0, InVec1); 11861 setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT), 11862 createInterleaveMask(NumElts, 2))); 11863 return; 11864 } 11865 11866 SDValue Res = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL, 11867 DAG.getVTList(InVT, InVT), InVec0, InVec1); 11868 Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Res.getValue(0), 11869 Res.getValue(1)); 11870 setValue(&I, Res); 11871 } 11872 11873 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 11874 SmallVector<EVT, 4> ValueVTs; 11875 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 11876 ValueVTs); 11877 unsigned NumValues = ValueVTs.size(); 11878 if (NumValues == 0) return; 11879 11880 SmallVector<SDValue, 4> Values(NumValues); 11881 SDValue Op = getValue(I.getOperand(0)); 11882 11883 for (unsigned i = 0; i != NumValues; ++i) 11884 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 11885 SDValue(Op.getNode(), Op.getResNo() + i)); 11886 11887 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 11888 DAG.getVTList(ValueVTs), Values)); 11889 } 11890 11891 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) { 11892 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11893 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11894 11895 SDLoc DL = getCurSDLoc(); 11896 SDValue V1 = getValue(I.getOperand(0)); 11897 SDValue V2 = getValue(I.getOperand(1)); 11898 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue(); 11899 11900 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node. 11901 if (VT.isScalableVector()) { 11902 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 11903 setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2, 11904 DAG.getConstant(Imm, DL, IdxVT))); 11905 return; 11906 } 11907 11908 unsigned NumElts = VT.getVectorNumElements(); 11909 11910 uint64_t Idx = (NumElts + Imm) % NumElts; 11911 11912 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors. 11913 SmallVector<int, 8> Mask; 11914 for (unsigned i = 0; i < NumElts; ++i) 11915 Mask.push_back(Idx + i); 11916 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask)); 11917 } 11918 11919 // Consider the following MIR after SelectionDAG, which produces output in 11920 // phyregs in the first case or virtregs in the second case. 11921 // 11922 // INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx 11923 // %5:gr32 = COPY $ebx 11924 // %6:gr32 = COPY $edx 11925 // %1:gr32 = COPY %6:gr32 11926 // %0:gr32 = COPY %5:gr32 11927 // 11928 // INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32 11929 // %1:gr32 = COPY %6:gr32 11930 // %0:gr32 = COPY %5:gr32 11931 // 11932 // Given %0, we'd like to return $ebx in the first case and %5 in the second. 11933 // Given %1, we'd like to return $edx in the first case and %6 in the second. 11934 // 11935 // If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap 11936 // to a single virtreg (such as %0). The remaining outputs monotonically 11937 // increase in virtreg number from there. If a callbr has no outputs, then it 11938 // should not have a corresponding callbr landingpad; in fact, the callbr 11939 // landingpad would not even be able to refer to such a callbr. 11940 static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg) { 11941 MachineInstr *MI = MRI.def_begin(Reg)->getParent(); 11942 // There is definitely at least one copy. 11943 assert(MI->getOpcode() == TargetOpcode::COPY && 11944 "start of copy chain MUST be COPY"); 11945 Reg = MI->getOperand(1).getReg(); 11946 MI = MRI.def_begin(Reg)->getParent(); 11947 // There may be an optional second copy. 11948 if (MI->getOpcode() == TargetOpcode::COPY) { 11949 assert(Reg.isVirtual() && "expected COPY of virtual register"); 11950 Reg = MI->getOperand(1).getReg(); 11951 assert(Reg.isPhysical() && "expected COPY of physical register"); 11952 MI = MRI.def_begin(Reg)->getParent(); 11953 } 11954 // The start of the chain must be an INLINEASM_BR. 11955 assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR && 11956 "end of copy chain MUST be INLINEASM_BR"); 11957 return Reg; 11958 } 11959 11960 // We must do this walk rather than the simpler 11961 // setValue(&I, getCopyFromRegs(CBR, CBR->getType())); 11962 // otherwise we will end up with copies of virtregs only valid along direct 11963 // edges. 11964 void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) { 11965 SmallVector<EVT, 8> ResultVTs; 11966 SmallVector<SDValue, 8> ResultValues; 11967 const auto *CBR = 11968 cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator()); 11969 11970 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11971 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 11972 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 11973 11974 unsigned InitialDef = FuncInfo.ValueMap[CBR]; 11975 SDValue Chain = DAG.getRoot(); 11976 11977 // Re-parse the asm constraints string. 11978 TargetLowering::AsmOperandInfoVector TargetConstraints = 11979 TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR); 11980 for (auto &T : TargetConstraints) { 11981 SDISelAsmOperandInfo OpInfo(T); 11982 if (OpInfo.Type != InlineAsm::isOutput) 11983 continue; 11984 11985 // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the 11986 // individual constraint. 11987 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 11988 11989 switch (OpInfo.ConstraintType) { 11990 case TargetLowering::C_Register: 11991 case TargetLowering::C_RegisterClass: { 11992 // Fill in OpInfo.AssignedRegs.Regs. 11993 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo); 11994 11995 // getRegistersForValue may produce 1 to many registers based on whether 11996 // the OpInfo.ConstraintVT is legal on the target or not. 11997 for (size_t i = 0, e = OpInfo.AssignedRegs.Regs.size(); i != e; ++i) { 11998 Register OriginalDef = FollowCopyChain(MRI, InitialDef++); 11999 if (Register::isPhysicalRegister(OriginalDef)) 12000 FuncInfo.MBB->addLiveIn(OriginalDef); 12001 // Update the assigned registers to use the original defs. 12002 OpInfo.AssignedRegs.Regs[i] = OriginalDef; 12003 } 12004 12005 SDValue V = OpInfo.AssignedRegs.getCopyFromRegs( 12006 DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR); 12007 ResultValues.push_back(V); 12008 ResultVTs.push_back(OpInfo.ConstraintVT); 12009 break; 12010 } 12011 case TargetLowering::C_Other: { 12012 SDValue Flag; 12013 SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 12014 OpInfo, DAG); 12015 ++InitialDef; 12016 ResultValues.push_back(V); 12017 ResultVTs.push_back(OpInfo.ConstraintVT); 12018 break; 12019 } 12020 default: 12021 break; 12022 } 12023 } 12024 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 12025 DAG.getVTList(ResultVTs), ResultValues); 12026 setValue(&I, V); 12027 } 12028