1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/APFloat.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/StringRef.h" 28 #include "llvm/ADT/Triple.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/Analysis/AliasAnalysis.h" 31 #include "llvm/Analysis/BranchProbabilityInfo.h" 32 #include "llvm/Analysis/ConstantFolding.h" 33 #include "llvm/Analysis/EHPersonalities.h" 34 #include "llvm/Analysis/Loads.h" 35 #include "llvm/Analysis/MemoryLocation.h" 36 #include "llvm/Analysis/TargetLibraryInfo.h" 37 #include "llvm/Analysis/ValueTracking.h" 38 #include "llvm/Analysis/VectorUtils.h" 39 #include "llvm/CodeGen/Analysis.h" 40 #include "llvm/CodeGen/FunctionLoweringInfo.h" 41 #include "llvm/CodeGen/GCMetadata.h" 42 #include "llvm/CodeGen/ISDOpcodes.h" 43 #include "llvm/CodeGen/MachineBasicBlock.h" 44 #include "llvm/CodeGen/MachineFrameInfo.h" 45 #include "llvm/CodeGen/MachineFunction.h" 46 #include "llvm/CodeGen/MachineInstr.h" 47 #include "llvm/CodeGen/MachineInstrBuilder.h" 48 #include "llvm/CodeGen/MachineJumpTableInfo.h" 49 #include "llvm/CodeGen/MachineMemOperand.h" 50 #include "llvm/CodeGen/MachineModuleInfo.h" 51 #include "llvm/CodeGen/MachineOperand.h" 52 #include "llvm/CodeGen/MachineRegisterInfo.h" 53 #include "llvm/CodeGen/RuntimeLibcalls.h" 54 #include "llvm/CodeGen/SelectionDAG.h" 55 #include "llvm/CodeGen/SelectionDAGNodes.h" 56 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 57 #include "llvm/CodeGen/StackMaps.h" 58 #include "llvm/CodeGen/TargetFrameLowering.h" 59 #include "llvm/CodeGen/TargetInstrInfo.h" 60 #include "llvm/CodeGen/TargetLowering.h" 61 #include "llvm/CodeGen/TargetOpcodes.h" 62 #include "llvm/CodeGen/TargetRegisterInfo.h" 63 #include "llvm/CodeGen/TargetSubtargetInfo.h" 64 #include "llvm/CodeGen/ValueTypes.h" 65 #include "llvm/CodeGen/WinEHFuncInfo.h" 66 #include "llvm/IR/Argument.h" 67 #include "llvm/IR/Attributes.h" 68 #include "llvm/IR/BasicBlock.h" 69 #include "llvm/IR/CFG.h" 70 #include "llvm/IR/CallSite.h" 71 #include "llvm/IR/CallingConv.h" 72 #include "llvm/IR/Constant.h" 73 #include "llvm/IR/ConstantRange.h" 74 #include "llvm/IR/Constants.h" 75 #include "llvm/IR/DataLayout.h" 76 #include "llvm/IR/DebugInfoMetadata.h" 77 #include "llvm/IR/DebugLoc.h" 78 #include "llvm/IR/DerivedTypes.h" 79 #include "llvm/IR/Function.h" 80 #include "llvm/IR/GetElementPtrTypeIterator.h" 81 #include "llvm/IR/InlineAsm.h" 82 #include "llvm/IR/InstrTypes.h" 83 #include "llvm/IR/Instruction.h" 84 #include "llvm/IR/Instructions.h" 85 #include "llvm/IR/IntrinsicInst.h" 86 #include "llvm/IR/Intrinsics.h" 87 #include "llvm/IR/LLVMContext.h" 88 #include "llvm/IR/Metadata.h" 89 #include "llvm/IR/Module.h" 90 #include "llvm/IR/Operator.h" 91 #include "llvm/IR/Statepoint.h" 92 #include "llvm/IR/Type.h" 93 #include "llvm/IR/User.h" 94 #include "llvm/IR/Value.h" 95 #include "llvm/MC/MCContext.h" 96 #include "llvm/MC/MCSymbol.h" 97 #include "llvm/Support/AtomicOrdering.h" 98 #include "llvm/Support/BranchProbability.h" 99 #include "llvm/Support/Casting.h" 100 #include "llvm/Support/CodeGen.h" 101 #include "llvm/Support/CommandLine.h" 102 #include "llvm/Support/Compiler.h" 103 #include "llvm/Support/Debug.h" 104 #include "llvm/Support/ErrorHandling.h" 105 #include "llvm/Support/MachineValueType.h" 106 #include "llvm/Support/MathExtras.h" 107 #include "llvm/Support/raw_ostream.h" 108 #include "llvm/Target/TargetIntrinsicInfo.h" 109 #include "llvm/Target/TargetMachine.h" 110 #include "llvm/Target/TargetOptions.h" 111 #include <algorithm> 112 #include <cassert> 113 #include <cstddef> 114 #include <cstdint> 115 #include <cstring> 116 #include <iterator> 117 #include <limits> 118 #include <numeric> 119 #include <tuple> 120 #include <utility> 121 #include <vector> 122 123 using namespace llvm; 124 125 #define DEBUG_TYPE "isel" 126 127 /// LimitFloatPrecision - Generate low-precision inline sequences for 128 /// some float libcalls (6, 8 or 12 bits). 129 static unsigned LimitFloatPrecision; 130 131 static cl::opt<unsigned, true> 132 LimitFPPrecision("limit-float-precision", 133 cl::desc("Generate low-precision inline sequences " 134 "for some float libcalls"), 135 cl::location(LimitFloatPrecision), cl::Hidden, 136 cl::init(0)); 137 138 static cl::opt<unsigned> SwitchPeelThreshold( 139 "switch-peel-threshold", cl::Hidden, cl::init(66), 140 cl::desc("Set the case probability threshold for peeling the case from a " 141 "switch statement. A value greater than 100 will void this " 142 "optimization")); 143 144 // Limit the width of DAG chains. This is important in general to prevent 145 // DAG-based analysis from blowing up. For example, alias analysis and 146 // load clustering may not complete in reasonable time. It is difficult to 147 // recognize and avoid this situation within each individual analysis, and 148 // future analyses are likely to have the same behavior. Limiting DAG width is 149 // the safe approach and will be especially important with global DAGs. 150 // 151 // MaxParallelChains default is arbitrarily high to avoid affecting 152 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 153 // sequence over this should have been converted to llvm.memcpy by the 154 // frontend. It is easy to induce this behavior with .ll code such as: 155 // %buffer = alloca [4096 x i8] 156 // %data = load [4096 x i8]* %argPtr 157 // store [4096 x i8] %data, [4096 x i8]* %buffer 158 static const unsigned MaxParallelChains = 64; 159 160 // Return the calling convention if the Value passed requires ABI mangling as it 161 // is a parameter to a function or a return value from a function which is not 162 // an intrinsic. 163 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) { 164 if (auto *R = dyn_cast<ReturnInst>(V)) 165 return R->getParent()->getParent()->getCallingConv(); 166 167 if (auto *CI = dyn_cast<CallInst>(V)) { 168 const bool IsInlineAsm = CI->isInlineAsm(); 169 const bool IsIndirectFunctionCall = 170 !IsInlineAsm && !CI->getCalledFunction(); 171 172 // It is possible that the call instruction is an inline asm statement or an 173 // indirect function call in which case the return value of 174 // getCalledFunction() would be nullptr. 175 const bool IsInstrinsicCall = 176 !IsInlineAsm && !IsIndirectFunctionCall && 177 CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic; 178 179 if (!IsInlineAsm && !IsInstrinsicCall) 180 return CI->getCallingConv(); 181 } 182 183 return None; 184 } 185 186 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 187 const SDValue *Parts, unsigned NumParts, 188 MVT PartVT, EVT ValueVT, const Value *V, 189 Optional<CallingConv::ID> CC); 190 191 /// getCopyFromParts - Create a value that contains the specified legal parts 192 /// combined into the value they represent. If the parts combine to a type 193 /// larger than ValueVT then AssertOp can be used to specify whether the extra 194 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 195 /// (ISD::AssertSext). 196 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 197 const SDValue *Parts, unsigned NumParts, 198 MVT PartVT, EVT ValueVT, const Value *V, 199 Optional<CallingConv::ID> CC = None, 200 Optional<ISD::NodeType> AssertOp = None) { 201 if (ValueVT.isVector()) 202 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 203 CC); 204 205 assert(NumParts > 0 && "No parts to assemble!"); 206 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 207 SDValue Val = Parts[0]; 208 209 if (NumParts > 1) { 210 // Assemble the value from multiple parts. 211 if (ValueVT.isInteger()) { 212 unsigned PartBits = PartVT.getSizeInBits(); 213 unsigned ValueBits = ValueVT.getSizeInBits(); 214 215 // Assemble the power of 2 part. 216 unsigned RoundParts = NumParts & (NumParts - 1) ? 217 1 << Log2_32(NumParts) : NumParts; 218 unsigned RoundBits = PartBits * RoundParts; 219 EVT RoundVT = RoundBits == ValueBits ? 220 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 221 SDValue Lo, Hi; 222 223 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 224 225 if (RoundParts > 2) { 226 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 227 PartVT, HalfVT, V); 228 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 229 RoundParts / 2, PartVT, HalfVT, V); 230 } else { 231 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 232 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 233 } 234 235 if (DAG.getDataLayout().isBigEndian()) 236 std::swap(Lo, Hi); 237 238 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 239 240 if (RoundParts < NumParts) { 241 // Assemble the trailing non-power-of-2 part. 242 unsigned OddParts = NumParts - RoundParts; 243 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 244 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 245 OddVT, V, CC); 246 247 // Combine the round and odd parts. 248 Lo = Val; 249 if (DAG.getDataLayout().isBigEndian()) 250 std::swap(Lo, Hi); 251 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 252 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 253 Hi = 254 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 255 DAG.getConstant(Lo.getValueSizeInBits(), DL, 256 TLI.getPointerTy(DAG.getDataLayout()))); 257 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 258 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 259 } 260 } else if (PartVT.isFloatingPoint()) { 261 // FP split into multiple FP parts (for ppcf128) 262 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 263 "Unexpected split"); 264 SDValue Lo, Hi; 265 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 266 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 267 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 268 std::swap(Lo, Hi); 269 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 270 } else { 271 // FP split into integer parts (soft fp) 272 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 273 !PartVT.isVector() && "Unexpected split"); 274 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 275 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 276 } 277 } 278 279 // There is now one part, held in Val. Correct it to match ValueVT. 280 // PartEVT is the type of the register class that holds the value. 281 // ValueVT is the type of the inline asm operation. 282 EVT PartEVT = Val.getValueType(); 283 284 if (PartEVT == ValueVT) 285 return Val; 286 287 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 288 ValueVT.bitsLT(PartEVT)) { 289 // For an FP value in an integer part, we need to truncate to the right 290 // width first. 291 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 292 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 293 } 294 295 // Handle types that have the same size. 296 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 297 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 298 299 // Handle types with different sizes. 300 if (PartEVT.isInteger() && ValueVT.isInteger()) { 301 if (ValueVT.bitsLT(PartEVT)) { 302 // For a truncate, see if we have any information to 303 // indicate whether the truncated bits will always be 304 // zero or sign-extension. 305 if (AssertOp.hasValue()) 306 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 307 DAG.getValueType(ValueVT)); 308 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 309 } 310 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 311 } 312 313 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 314 // FP_ROUND's are always exact here. 315 if (ValueVT.bitsLT(Val.getValueType())) 316 return DAG.getNode( 317 ISD::FP_ROUND, DL, ValueVT, Val, 318 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 319 320 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 321 } 322 323 llvm_unreachable("Unknown mismatch!"); 324 } 325 326 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 327 const Twine &ErrMsg) { 328 const Instruction *I = dyn_cast_or_null<Instruction>(V); 329 if (!V) 330 return Ctx.emitError(ErrMsg); 331 332 const char *AsmError = ", possible invalid constraint for vector type"; 333 if (const CallInst *CI = dyn_cast<CallInst>(I)) 334 if (isa<InlineAsm>(CI->getCalledValue())) 335 return Ctx.emitError(I, ErrMsg + AsmError); 336 337 return Ctx.emitError(I, ErrMsg); 338 } 339 340 /// getCopyFromPartsVector - Create a value that contains the specified legal 341 /// parts combined into the value they represent. If the parts combine to a 342 /// type larger than ValueVT then AssertOp can be used to specify whether the 343 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 344 /// ValueVT (ISD::AssertSext). 345 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 346 const SDValue *Parts, unsigned NumParts, 347 MVT PartVT, EVT ValueVT, const Value *V, 348 Optional<CallingConv::ID> CallConv) { 349 assert(ValueVT.isVector() && "Not a vector value"); 350 assert(NumParts > 0 && "No parts to assemble!"); 351 const bool IsABIRegCopy = CallConv.hasValue(); 352 353 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 354 SDValue Val = Parts[0]; 355 356 // Handle a multi-element vector. 357 if (NumParts > 1) { 358 EVT IntermediateVT; 359 MVT RegisterVT; 360 unsigned NumIntermediates; 361 unsigned NumRegs; 362 363 if (IsABIRegCopy) { 364 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 365 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 366 NumIntermediates, RegisterVT); 367 } else { 368 NumRegs = 369 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 370 NumIntermediates, RegisterVT); 371 } 372 373 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 374 NumParts = NumRegs; // Silence a compiler warning. 375 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 376 assert(RegisterVT.getSizeInBits() == 377 Parts[0].getSimpleValueType().getSizeInBits() && 378 "Part type sizes don't match!"); 379 380 // Assemble the parts into intermediate operands. 381 SmallVector<SDValue, 8> Ops(NumIntermediates); 382 if (NumIntermediates == NumParts) { 383 // If the register was not expanded, truncate or copy the value, 384 // as appropriate. 385 for (unsigned i = 0; i != NumParts; ++i) 386 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 387 PartVT, IntermediateVT, V); 388 } else if (NumParts > 0) { 389 // If the intermediate type was expanded, build the intermediate 390 // operands from the parts. 391 assert(NumParts % NumIntermediates == 0 && 392 "Must expand into a divisible number of parts!"); 393 unsigned Factor = NumParts / NumIntermediates; 394 for (unsigned i = 0; i != NumIntermediates; ++i) 395 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 396 PartVT, IntermediateVT, V); 397 } 398 399 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 400 // intermediate operands. 401 EVT BuiltVectorTy = 402 EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(), 403 (IntermediateVT.isVector() 404 ? IntermediateVT.getVectorNumElements() * NumParts 405 : NumIntermediates)); 406 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 407 : ISD::BUILD_VECTOR, 408 DL, BuiltVectorTy, Ops); 409 } 410 411 // There is now one part, held in Val. Correct it to match ValueVT. 412 EVT PartEVT = Val.getValueType(); 413 414 if (PartEVT == ValueVT) 415 return Val; 416 417 if (PartEVT.isVector()) { 418 // If the element type of the source/dest vectors are the same, but the 419 // parts vector has more elements than the value vector, then we have a 420 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 421 // elements we want. 422 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 423 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 424 "Cannot narrow, it would be a lossy transformation"); 425 return DAG.getNode( 426 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 427 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 428 } 429 430 // Vector/Vector bitcast. 431 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 432 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 433 434 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 435 "Cannot handle this kind of promotion"); 436 // Promoted vector extract 437 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 438 439 } 440 441 // Trivial bitcast if the types are the same size and the destination 442 // vector type is legal. 443 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 444 TLI.isTypeLegal(ValueVT)) 445 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 446 447 if (ValueVT.getVectorNumElements() != 1) { 448 // Certain ABIs require that vectors are passed as integers. For vectors 449 // are the same size, this is an obvious bitcast. 450 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 451 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 452 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 453 // Bitcast Val back the original type and extract the corresponding 454 // vector we want. 455 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 456 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 457 ValueVT.getVectorElementType(), Elts); 458 Val = DAG.getBitcast(WiderVecType, Val); 459 return DAG.getNode( 460 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 461 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 462 } 463 464 diagnosePossiblyInvalidConstraint( 465 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 466 return DAG.getUNDEF(ValueVT); 467 } 468 469 // Handle cases such as i8 -> <1 x i1> 470 EVT ValueSVT = ValueVT.getVectorElementType(); 471 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) 472 Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 473 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 474 475 return DAG.getBuildVector(ValueVT, DL, Val); 476 } 477 478 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 479 SDValue Val, SDValue *Parts, unsigned NumParts, 480 MVT PartVT, const Value *V, 481 Optional<CallingConv::ID> CallConv); 482 483 /// getCopyToParts - Create a series of nodes that contain the specified value 484 /// split into legal parts. If the parts contain more bits than Val, then, for 485 /// integers, ExtendKind can be used to specify how to generate the extra bits. 486 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 487 SDValue *Parts, unsigned NumParts, MVT PartVT, 488 const Value *V, 489 Optional<CallingConv::ID> CallConv = None, 490 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 491 EVT ValueVT = Val.getValueType(); 492 493 // Handle the vector case separately. 494 if (ValueVT.isVector()) 495 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 496 CallConv); 497 498 unsigned PartBits = PartVT.getSizeInBits(); 499 unsigned OrigNumParts = NumParts; 500 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 501 "Copying to an illegal type!"); 502 503 if (NumParts == 0) 504 return; 505 506 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 507 EVT PartEVT = PartVT; 508 if (PartEVT == ValueVT) { 509 assert(NumParts == 1 && "No-op copy with multiple parts!"); 510 Parts[0] = Val; 511 return; 512 } 513 514 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 515 // If the parts cover more bits than the value has, promote the value. 516 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 517 assert(NumParts == 1 && "Do not know what to promote to!"); 518 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 519 } else { 520 if (ValueVT.isFloatingPoint()) { 521 // FP values need to be bitcast, then extended if they are being put 522 // into a larger container. 523 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 524 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 525 } 526 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 527 ValueVT.isInteger() && 528 "Unknown mismatch!"); 529 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 530 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 531 if (PartVT == MVT::x86mmx) 532 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 533 } 534 } else if (PartBits == ValueVT.getSizeInBits()) { 535 // Different types of the same size. 536 assert(NumParts == 1 && PartEVT != ValueVT); 537 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 538 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 539 // If the parts cover less bits than value has, truncate the value. 540 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 541 ValueVT.isInteger() && 542 "Unknown mismatch!"); 543 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 544 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 545 if (PartVT == MVT::x86mmx) 546 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 547 } 548 549 // The value may have changed - recompute ValueVT. 550 ValueVT = Val.getValueType(); 551 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 552 "Failed to tile the value with PartVT!"); 553 554 if (NumParts == 1) { 555 if (PartEVT != ValueVT) { 556 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 557 "scalar-to-vector conversion failed"); 558 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 559 } 560 561 Parts[0] = Val; 562 return; 563 } 564 565 // Expand the value into multiple parts. 566 if (NumParts & (NumParts - 1)) { 567 // The number of parts is not a power of 2. Split off and copy the tail. 568 assert(PartVT.isInteger() && ValueVT.isInteger() && 569 "Do not know what to expand to!"); 570 unsigned RoundParts = 1 << Log2_32(NumParts); 571 unsigned RoundBits = RoundParts * PartBits; 572 unsigned OddParts = NumParts - RoundParts; 573 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 574 DAG.getIntPtrConstant(RoundBits, DL)); 575 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 576 CallConv); 577 578 if (DAG.getDataLayout().isBigEndian()) 579 // The odd parts were reversed by getCopyToParts - unreverse them. 580 std::reverse(Parts + RoundParts, Parts + NumParts); 581 582 NumParts = RoundParts; 583 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 584 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 585 } 586 587 // The number of parts is a power of 2. Repeatedly bisect the value using 588 // EXTRACT_ELEMENT. 589 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 590 EVT::getIntegerVT(*DAG.getContext(), 591 ValueVT.getSizeInBits()), 592 Val); 593 594 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 595 for (unsigned i = 0; i < NumParts; i += StepSize) { 596 unsigned ThisBits = StepSize * PartBits / 2; 597 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 598 SDValue &Part0 = Parts[i]; 599 SDValue &Part1 = Parts[i+StepSize/2]; 600 601 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 602 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 603 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 604 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 605 606 if (ThisBits == PartBits && ThisVT != PartVT) { 607 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 608 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 609 } 610 } 611 } 612 613 if (DAG.getDataLayout().isBigEndian()) 614 std::reverse(Parts, Parts + OrigNumParts); 615 } 616 617 static SDValue widenVectorToPartType(SelectionDAG &DAG, 618 SDValue Val, const SDLoc &DL, EVT PartVT) { 619 if (!PartVT.isVector()) 620 return SDValue(); 621 622 EVT ValueVT = Val.getValueType(); 623 unsigned PartNumElts = PartVT.getVectorNumElements(); 624 unsigned ValueNumElts = ValueVT.getVectorNumElements(); 625 if (PartNumElts > ValueNumElts && 626 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 627 EVT ElementVT = PartVT.getVectorElementType(); 628 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 629 // undef elements. 630 SmallVector<SDValue, 16> Ops; 631 DAG.ExtractVectorElements(Val, Ops); 632 SDValue EltUndef = DAG.getUNDEF(ElementVT); 633 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i) 634 Ops.push_back(EltUndef); 635 636 // FIXME: Use CONCAT for 2x -> 4x. 637 return DAG.getBuildVector(PartVT, DL, Ops); 638 } 639 640 return SDValue(); 641 } 642 643 /// getCopyToPartsVector - Create a series of nodes that contain the specified 644 /// value split into legal parts. 645 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 646 SDValue Val, SDValue *Parts, unsigned NumParts, 647 MVT PartVT, const Value *V, 648 Optional<CallingConv::ID> CallConv) { 649 EVT ValueVT = Val.getValueType(); 650 assert(ValueVT.isVector() && "Not a vector"); 651 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 652 const bool IsABIRegCopy = CallConv.hasValue(); 653 654 if (NumParts == 1) { 655 EVT PartEVT = PartVT; 656 if (PartEVT == ValueVT) { 657 // Nothing to do. 658 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 659 // Bitconvert vector->vector case. 660 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 661 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 662 Val = Widened; 663 } else if (PartVT.isVector() && 664 PartEVT.getVectorElementType().bitsGE( 665 ValueVT.getVectorElementType()) && 666 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 667 668 // Promoted vector extract 669 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 670 } else { 671 if (ValueVT.getVectorNumElements() == 1) { 672 Val = DAG.getNode( 673 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 674 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 675 } else { 676 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 677 "lossy conversion of vector to scalar type"); 678 EVT IntermediateType = 679 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 680 Val = DAG.getBitcast(IntermediateType, Val); 681 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 682 } 683 } 684 685 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 686 Parts[0] = Val; 687 return; 688 } 689 690 // Handle a multi-element vector. 691 EVT IntermediateVT; 692 MVT RegisterVT; 693 unsigned NumIntermediates; 694 unsigned NumRegs; 695 if (IsABIRegCopy) { 696 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 697 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 698 NumIntermediates, RegisterVT); 699 } else { 700 NumRegs = 701 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 702 NumIntermediates, RegisterVT); 703 } 704 705 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 706 NumParts = NumRegs; // Silence a compiler warning. 707 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 708 709 unsigned IntermediateNumElts = IntermediateVT.isVector() ? 710 IntermediateVT.getVectorNumElements() : 1; 711 712 // Convert the vector to the appropiate type if necessary. 713 unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts; 714 715 EVT BuiltVectorTy = EVT::getVectorVT( 716 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts); 717 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 718 if (ValueVT != BuiltVectorTy) { 719 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) 720 Val = Widened; 721 722 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 723 } 724 725 // Split the vector into intermediate operands. 726 SmallVector<SDValue, 8> Ops(NumIntermediates); 727 for (unsigned i = 0; i != NumIntermediates; ++i) { 728 if (IntermediateVT.isVector()) { 729 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 730 DAG.getConstant(i * IntermediateNumElts, DL, IdxVT)); 731 } else { 732 Ops[i] = DAG.getNode( 733 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 734 DAG.getConstant(i, DL, IdxVT)); 735 } 736 } 737 738 // Split the intermediate operands into legal parts. 739 if (NumParts == NumIntermediates) { 740 // If the register was not expanded, promote or copy the value, 741 // as appropriate. 742 for (unsigned i = 0; i != NumParts; ++i) 743 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 744 } else if (NumParts > 0) { 745 // If the intermediate type was expanded, split each the value into 746 // legal parts. 747 assert(NumIntermediates != 0 && "division by zero"); 748 assert(NumParts % NumIntermediates == 0 && 749 "Must expand into a divisible number of parts!"); 750 unsigned Factor = NumParts / NumIntermediates; 751 for (unsigned i = 0; i != NumIntermediates; ++i) 752 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 753 CallConv); 754 } 755 } 756 757 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 758 EVT valuevt, Optional<CallingConv::ID> CC) 759 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 760 RegCount(1, regs.size()), CallConv(CC) {} 761 762 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 763 const DataLayout &DL, unsigned Reg, Type *Ty, 764 Optional<CallingConv::ID> CC) { 765 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 766 767 CallConv = CC; 768 769 for (EVT ValueVT : ValueVTs) { 770 unsigned NumRegs = 771 isABIMangled() 772 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 773 : TLI.getNumRegisters(Context, ValueVT); 774 MVT RegisterVT = 775 isABIMangled() 776 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 777 : TLI.getRegisterType(Context, ValueVT); 778 for (unsigned i = 0; i != NumRegs; ++i) 779 Regs.push_back(Reg + i); 780 RegVTs.push_back(RegisterVT); 781 RegCount.push_back(NumRegs); 782 Reg += NumRegs; 783 } 784 } 785 786 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 787 FunctionLoweringInfo &FuncInfo, 788 const SDLoc &dl, SDValue &Chain, 789 SDValue *Flag, const Value *V) const { 790 // A Value with type {} or [0 x %t] needs no registers. 791 if (ValueVTs.empty()) 792 return SDValue(); 793 794 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 795 796 // Assemble the legal parts into the final values. 797 SmallVector<SDValue, 4> Values(ValueVTs.size()); 798 SmallVector<SDValue, 8> Parts; 799 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 800 // Copy the legal parts from the registers. 801 EVT ValueVT = ValueVTs[Value]; 802 unsigned NumRegs = RegCount[Value]; 803 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 804 *DAG.getContext(), 805 CallConv.getValue(), RegVTs[Value]) 806 : RegVTs[Value]; 807 808 Parts.resize(NumRegs); 809 for (unsigned i = 0; i != NumRegs; ++i) { 810 SDValue P; 811 if (!Flag) { 812 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 813 } else { 814 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 815 *Flag = P.getValue(2); 816 } 817 818 Chain = P.getValue(1); 819 Parts[i] = P; 820 821 // If the source register was virtual and if we know something about it, 822 // add an assert node. 823 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 824 !RegisterVT.isInteger() || RegisterVT.isVector()) 825 continue; 826 827 const FunctionLoweringInfo::LiveOutInfo *LOI = 828 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 829 if (!LOI) 830 continue; 831 832 unsigned RegSize = RegisterVT.getSizeInBits(); 833 unsigned NumSignBits = LOI->NumSignBits; 834 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 835 836 if (NumZeroBits == RegSize) { 837 // The current value is a zero. 838 // Explicitly express that as it would be easier for 839 // optimizations to kick in. 840 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 841 continue; 842 } 843 844 // FIXME: We capture more information than the dag can represent. For 845 // now, just use the tightest assertzext/assertsext possible. 846 bool isSExt; 847 EVT FromVT(MVT::Other); 848 if (NumZeroBits) { 849 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 850 isSExt = false; 851 } else if (NumSignBits > 1) { 852 FromVT = 853 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 854 isSExt = true; 855 } else { 856 continue; 857 } 858 // Add an assertion node. 859 assert(FromVT != MVT::Other); 860 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 861 RegisterVT, P, DAG.getValueType(FromVT)); 862 } 863 864 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 865 RegisterVT, ValueVT, V, CallConv); 866 Part += NumRegs; 867 Parts.clear(); 868 } 869 870 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 871 } 872 873 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 874 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 875 const Value *V, 876 ISD::NodeType PreferredExtendType) const { 877 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 878 ISD::NodeType ExtendKind = PreferredExtendType; 879 880 // Get the list of the values's legal parts. 881 unsigned NumRegs = Regs.size(); 882 SmallVector<SDValue, 8> Parts(NumRegs); 883 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 884 unsigned NumParts = RegCount[Value]; 885 886 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 887 *DAG.getContext(), 888 CallConv.getValue(), RegVTs[Value]) 889 : RegVTs[Value]; 890 891 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 892 ExtendKind = ISD::ZERO_EXTEND; 893 894 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 895 NumParts, RegisterVT, V, CallConv, ExtendKind); 896 Part += NumParts; 897 } 898 899 // Copy the parts into the registers. 900 SmallVector<SDValue, 8> Chains(NumRegs); 901 for (unsigned i = 0; i != NumRegs; ++i) { 902 SDValue Part; 903 if (!Flag) { 904 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 905 } else { 906 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 907 *Flag = Part.getValue(1); 908 } 909 910 Chains[i] = Part.getValue(0); 911 } 912 913 if (NumRegs == 1 || Flag) 914 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 915 // flagged to it. That is the CopyToReg nodes and the user are considered 916 // a single scheduling unit. If we create a TokenFactor and return it as 917 // chain, then the TokenFactor is both a predecessor (operand) of the 918 // user as well as a successor (the TF operands are flagged to the user). 919 // c1, f1 = CopyToReg 920 // c2, f2 = CopyToReg 921 // c3 = TokenFactor c1, c2 922 // ... 923 // = op c3, ..., f2 924 Chain = Chains[NumRegs-1]; 925 else 926 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 927 } 928 929 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 930 unsigned MatchingIdx, const SDLoc &dl, 931 SelectionDAG &DAG, 932 std::vector<SDValue> &Ops) const { 933 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 934 935 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 936 if (HasMatching) 937 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 938 else if (!Regs.empty() && 939 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 940 // Put the register class of the virtual registers in the flag word. That 941 // way, later passes can recompute register class constraints for inline 942 // assembly as well as normal instructions. 943 // Don't do this for tied operands that can use the regclass information 944 // from the def. 945 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 946 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 947 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 948 } 949 950 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 951 Ops.push_back(Res); 952 953 if (Code == InlineAsm::Kind_Clobber) { 954 // Clobbers should always have a 1:1 mapping with registers, and may 955 // reference registers that have illegal (e.g. vector) types. Hence, we 956 // shouldn't try to apply any sort of splitting logic to them. 957 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 958 "No 1:1 mapping from clobbers to regs?"); 959 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 960 (void)SP; 961 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 962 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 963 assert( 964 (Regs[I] != SP || 965 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 966 "If we clobbered the stack pointer, MFI should know about it."); 967 } 968 return; 969 } 970 971 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 972 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 973 MVT RegisterVT = RegVTs[Value]; 974 for (unsigned i = 0; i != NumRegs; ++i) { 975 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 976 unsigned TheReg = Regs[Reg++]; 977 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 978 } 979 } 980 } 981 982 SmallVector<std::pair<unsigned, unsigned>, 4> 983 RegsForValue::getRegsAndSizes() const { 984 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec; 985 unsigned I = 0; 986 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 987 unsigned RegCount = std::get<0>(CountAndVT); 988 MVT RegisterVT = std::get<1>(CountAndVT); 989 unsigned RegisterSize = RegisterVT.getSizeInBits(); 990 for (unsigned E = I + RegCount; I != E; ++I) 991 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 992 } 993 return OutVec; 994 } 995 996 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 997 const TargetLibraryInfo *li) { 998 AA = aa; 999 GFI = gfi; 1000 LibInfo = li; 1001 DL = &DAG.getDataLayout(); 1002 Context = DAG.getContext(); 1003 LPadToCallSiteMap.clear(); 1004 } 1005 1006 void SelectionDAGBuilder::clear() { 1007 NodeMap.clear(); 1008 UnusedArgNodeMap.clear(); 1009 PendingLoads.clear(); 1010 PendingExports.clear(); 1011 CurInst = nullptr; 1012 HasTailCall = false; 1013 SDNodeOrder = LowestSDNodeOrder; 1014 StatepointLowering.clear(); 1015 } 1016 1017 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1018 DanglingDebugInfoMap.clear(); 1019 } 1020 1021 SDValue SelectionDAGBuilder::getRoot() { 1022 if (PendingLoads.empty()) 1023 return DAG.getRoot(); 1024 1025 if (PendingLoads.size() == 1) { 1026 SDValue Root = PendingLoads[0]; 1027 DAG.setRoot(Root); 1028 PendingLoads.clear(); 1029 return Root; 1030 } 1031 1032 // Otherwise, we have to make a token factor node. 1033 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 1034 PendingLoads); 1035 PendingLoads.clear(); 1036 DAG.setRoot(Root); 1037 return Root; 1038 } 1039 1040 SDValue SelectionDAGBuilder::getControlRoot() { 1041 SDValue Root = DAG.getRoot(); 1042 1043 if (PendingExports.empty()) 1044 return Root; 1045 1046 // Turn all of the CopyToReg chains into one factored node. 1047 if (Root.getOpcode() != ISD::EntryToken) { 1048 unsigned i = 0, e = PendingExports.size(); 1049 for (; i != e; ++i) { 1050 assert(PendingExports[i].getNode()->getNumOperands() > 1); 1051 if (PendingExports[i].getNode()->getOperand(0) == Root) 1052 break; // Don't add the root if we already indirectly depend on it. 1053 } 1054 1055 if (i == e) 1056 PendingExports.push_back(Root); 1057 } 1058 1059 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 1060 PendingExports); 1061 PendingExports.clear(); 1062 DAG.setRoot(Root); 1063 return Root; 1064 } 1065 1066 void SelectionDAGBuilder::visit(const Instruction &I) { 1067 // Set up outgoing PHI node register values before emitting the terminator. 1068 if (I.isTerminator()) { 1069 HandlePHINodesInSuccessorBlocks(I.getParent()); 1070 } 1071 1072 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1073 if (!isa<DbgInfoIntrinsic>(I)) 1074 ++SDNodeOrder; 1075 1076 CurInst = &I; 1077 1078 visit(I.getOpcode(), I); 1079 1080 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) { 1081 // Propagate the fast-math-flags of this IR instruction to the DAG node that 1082 // maps to this instruction. 1083 // TODO: We could handle all flags (nsw, etc) here. 1084 // TODO: If an IR instruction maps to >1 node, only the final node will have 1085 // flags set. 1086 if (SDNode *Node = getNodeForIRValue(&I)) { 1087 SDNodeFlags IncomingFlags; 1088 IncomingFlags.copyFMF(*FPMO); 1089 if (!Node->getFlags().isDefined()) 1090 Node->setFlags(IncomingFlags); 1091 else 1092 Node->intersectFlagsWith(IncomingFlags); 1093 } 1094 } 1095 1096 if (!I.isTerminator() && !HasTailCall && 1097 !isStatepoint(&I)) // statepoints handle their exports internally 1098 CopyToExportRegsIfNeeded(&I); 1099 1100 CurInst = nullptr; 1101 } 1102 1103 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1104 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1105 } 1106 1107 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1108 // Note: this doesn't use InstVisitor, because it has to work with 1109 // ConstantExpr's in addition to instructions. 1110 switch (Opcode) { 1111 default: llvm_unreachable("Unknown instruction type encountered!"); 1112 // Build the switch statement using the Instruction.def file. 1113 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1114 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1115 #include "llvm/IR/Instruction.def" 1116 } 1117 } 1118 1119 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1120 const DIExpression *Expr) { 1121 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1122 const DbgValueInst *DI = DDI.getDI(); 1123 DIVariable *DanglingVariable = DI->getVariable(); 1124 DIExpression *DanglingExpr = DI->getExpression(); 1125 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1126 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1127 return true; 1128 } 1129 return false; 1130 }; 1131 1132 for (auto &DDIMI : DanglingDebugInfoMap) { 1133 DanglingDebugInfoVector &DDIV = DDIMI.second; 1134 DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end()); 1135 } 1136 } 1137 1138 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1139 // generate the debug data structures now that we've seen its definition. 1140 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1141 SDValue Val) { 1142 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1143 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1144 return; 1145 1146 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1147 for (auto &DDI : DDIV) { 1148 const DbgValueInst *DI = DDI.getDI(); 1149 assert(DI && "Ill-formed DanglingDebugInfo"); 1150 DebugLoc dl = DDI.getdl(); 1151 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1152 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1153 DILocalVariable *Variable = DI->getVariable(); 1154 DIExpression *Expr = DI->getExpression(); 1155 assert(Variable->isValidLocationForIntrinsic(dl) && 1156 "Expected inlined-at fields to agree"); 1157 SDDbgValue *SDV; 1158 if (Val.getNode()) { 1159 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1160 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1161 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1162 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1163 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1164 // inserted after the definition of Val when emitting the instructions 1165 // after ISel. An alternative could be to teach 1166 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1167 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1168 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1169 << ValSDNodeOrder << "\n"); 1170 SDV = getDbgValue(Val, Variable, Expr, dl, 1171 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1172 DAG.AddDbgValue(SDV, Val.getNode(), false); 1173 } else 1174 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1175 << "in EmitFuncArgumentDbgValue\n"); 1176 } else 1177 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1178 } 1179 DDIV.clear(); 1180 } 1181 1182 /// getCopyFromRegs - If there was virtual register allocated for the value V 1183 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1184 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1185 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1186 SDValue Result; 1187 1188 if (It != FuncInfo.ValueMap.end()) { 1189 unsigned InReg = It->second; 1190 1191 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1192 DAG.getDataLayout(), InReg, Ty, 1193 None); // This is not an ABI copy. 1194 SDValue Chain = DAG.getEntryNode(); 1195 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1196 V); 1197 resolveDanglingDebugInfo(V, Result); 1198 } 1199 1200 return Result; 1201 } 1202 1203 /// getValue - Return an SDValue for the given Value. 1204 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1205 // If we already have an SDValue for this value, use it. It's important 1206 // to do this first, so that we don't create a CopyFromReg if we already 1207 // have a regular SDValue. 1208 SDValue &N = NodeMap[V]; 1209 if (N.getNode()) return N; 1210 1211 // If there's a virtual register allocated and initialized for this 1212 // value, use it. 1213 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1214 return copyFromReg; 1215 1216 // Otherwise create a new SDValue and remember it. 1217 SDValue Val = getValueImpl(V); 1218 NodeMap[V] = Val; 1219 resolveDanglingDebugInfo(V, Val); 1220 return Val; 1221 } 1222 1223 // Return true if SDValue exists for the given Value 1224 bool SelectionDAGBuilder::findValue(const Value *V) const { 1225 return (NodeMap.find(V) != NodeMap.end()) || 1226 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1227 } 1228 1229 /// getNonRegisterValue - Return an SDValue for the given Value, but 1230 /// don't look in FuncInfo.ValueMap for a virtual register. 1231 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1232 // If we already have an SDValue for this value, use it. 1233 SDValue &N = NodeMap[V]; 1234 if (N.getNode()) { 1235 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1236 // Remove the debug location from the node as the node is about to be used 1237 // in a location which may differ from the original debug location. This 1238 // is relevant to Constant and ConstantFP nodes because they can appear 1239 // as constant expressions inside PHI nodes. 1240 N->setDebugLoc(DebugLoc()); 1241 } 1242 return N; 1243 } 1244 1245 // Otherwise create a new SDValue and remember it. 1246 SDValue Val = getValueImpl(V); 1247 NodeMap[V] = Val; 1248 resolveDanglingDebugInfo(V, Val); 1249 return Val; 1250 } 1251 1252 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1253 /// Create an SDValue for the given value. 1254 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1255 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1256 1257 if (const Constant *C = dyn_cast<Constant>(V)) { 1258 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1259 1260 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1261 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1262 1263 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1264 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1265 1266 if (isa<ConstantPointerNull>(C)) { 1267 unsigned AS = V->getType()->getPointerAddressSpace(); 1268 return DAG.getConstant(0, getCurSDLoc(), 1269 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1270 } 1271 1272 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1273 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1274 1275 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1276 return DAG.getUNDEF(VT); 1277 1278 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1279 visit(CE->getOpcode(), *CE); 1280 SDValue N1 = NodeMap[V]; 1281 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1282 return N1; 1283 } 1284 1285 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1286 SmallVector<SDValue, 4> Constants; 1287 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1288 OI != OE; ++OI) { 1289 SDNode *Val = getValue(*OI).getNode(); 1290 // If the operand is an empty aggregate, there are no values. 1291 if (!Val) continue; 1292 // Add each leaf value from the operand to the Constants list 1293 // to form a flattened list of all the values. 1294 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1295 Constants.push_back(SDValue(Val, i)); 1296 } 1297 1298 return DAG.getMergeValues(Constants, getCurSDLoc()); 1299 } 1300 1301 if (const ConstantDataSequential *CDS = 1302 dyn_cast<ConstantDataSequential>(C)) { 1303 SmallVector<SDValue, 4> Ops; 1304 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1305 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1306 // Add each leaf value from the operand to the Constants list 1307 // to form a flattened list of all the values. 1308 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1309 Ops.push_back(SDValue(Val, i)); 1310 } 1311 1312 if (isa<ArrayType>(CDS->getType())) 1313 return DAG.getMergeValues(Ops, getCurSDLoc()); 1314 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1315 } 1316 1317 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1318 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1319 "Unknown struct or array constant!"); 1320 1321 SmallVector<EVT, 4> ValueVTs; 1322 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1323 unsigned NumElts = ValueVTs.size(); 1324 if (NumElts == 0) 1325 return SDValue(); // empty struct 1326 SmallVector<SDValue, 4> Constants(NumElts); 1327 for (unsigned i = 0; i != NumElts; ++i) { 1328 EVT EltVT = ValueVTs[i]; 1329 if (isa<UndefValue>(C)) 1330 Constants[i] = DAG.getUNDEF(EltVT); 1331 else if (EltVT.isFloatingPoint()) 1332 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1333 else 1334 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1335 } 1336 1337 return DAG.getMergeValues(Constants, getCurSDLoc()); 1338 } 1339 1340 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1341 return DAG.getBlockAddress(BA, VT); 1342 1343 VectorType *VecTy = cast<VectorType>(V->getType()); 1344 unsigned NumElements = VecTy->getNumElements(); 1345 1346 // Now that we know the number and type of the elements, get that number of 1347 // elements into the Ops array based on what kind of constant it is. 1348 SmallVector<SDValue, 16> Ops; 1349 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1350 for (unsigned i = 0; i != NumElements; ++i) 1351 Ops.push_back(getValue(CV->getOperand(i))); 1352 } else { 1353 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1354 EVT EltVT = 1355 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1356 1357 SDValue Op; 1358 if (EltVT.isFloatingPoint()) 1359 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1360 else 1361 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1362 Ops.assign(NumElements, Op); 1363 } 1364 1365 // Create a BUILD_VECTOR node. 1366 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1367 } 1368 1369 // If this is a static alloca, generate it as the frameindex instead of 1370 // computation. 1371 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1372 DenseMap<const AllocaInst*, int>::iterator SI = 1373 FuncInfo.StaticAllocaMap.find(AI); 1374 if (SI != FuncInfo.StaticAllocaMap.end()) 1375 return DAG.getFrameIndex(SI->second, 1376 TLI.getFrameIndexTy(DAG.getDataLayout())); 1377 } 1378 1379 // If this is an instruction which fast-isel has deferred, select it now. 1380 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1381 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1382 1383 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1384 Inst->getType(), getABIRegCopyCC(V)); 1385 SDValue Chain = DAG.getEntryNode(); 1386 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1387 } 1388 1389 llvm_unreachable("Can't get register for value!"); 1390 } 1391 1392 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1393 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1394 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1395 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1396 bool IsSEH = isAsynchronousEHPersonality(Pers); 1397 bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX; 1398 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1399 if (!IsSEH) 1400 CatchPadMBB->setIsEHScopeEntry(); 1401 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1402 if (IsMSVCCXX || IsCoreCLR) 1403 CatchPadMBB->setIsEHFuncletEntry(); 1404 // Wasm does not need catchpads anymore 1405 if (!IsWasmCXX) 1406 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, 1407 getControlRoot())); 1408 } 1409 1410 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1411 // Update machine-CFG edge. 1412 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1413 FuncInfo.MBB->addSuccessor(TargetMBB); 1414 1415 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1416 bool IsSEH = isAsynchronousEHPersonality(Pers); 1417 if (IsSEH) { 1418 // If this is not a fall-through branch or optimizations are switched off, 1419 // emit the branch. 1420 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1421 TM.getOptLevel() == CodeGenOpt::None) 1422 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1423 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1424 return; 1425 } 1426 1427 // Figure out the funclet membership for the catchret's successor. 1428 // This will be used by the FuncletLayout pass to determine how to order the 1429 // BB's. 1430 // A 'catchret' returns to the outer scope's color. 1431 Value *ParentPad = I.getCatchSwitchParentPad(); 1432 const BasicBlock *SuccessorColor; 1433 if (isa<ConstantTokenNone>(ParentPad)) 1434 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1435 else 1436 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1437 assert(SuccessorColor && "No parent funclet for catchret!"); 1438 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1439 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1440 1441 // Create the terminator node. 1442 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1443 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1444 DAG.getBasicBlock(SuccessorColorMBB)); 1445 DAG.setRoot(Ret); 1446 } 1447 1448 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1449 // Don't emit any special code for the cleanuppad instruction. It just marks 1450 // the start of an EH scope/funclet. 1451 FuncInfo.MBB->setIsEHScopeEntry(); 1452 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1453 if (Pers != EHPersonality::Wasm_CXX) { 1454 FuncInfo.MBB->setIsEHFuncletEntry(); 1455 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1456 } 1457 } 1458 1459 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1460 /// many places it could ultimately go. In the IR, we have a single unwind 1461 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1462 /// This function skips over imaginary basic blocks that hold catchswitch 1463 /// instructions, and finds all the "real" machine 1464 /// basic block destinations. As those destinations may not be successors of 1465 /// EHPadBB, here we also calculate the edge probability to those destinations. 1466 /// The passed-in Prob is the edge probability to EHPadBB. 1467 static void findUnwindDestinations( 1468 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1469 BranchProbability Prob, 1470 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1471 &UnwindDests) { 1472 EHPersonality Personality = 1473 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1474 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1475 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1476 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1477 bool IsSEH = isAsynchronousEHPersonality(Personality); 1478 1479 while (EHPadBB) { 1480 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1481 BasicBlock *NewEHPadBB = nullptr; 1482 if (isa<LandingPadInst>(Pad)) { 1483 // Stop on landingpads. They are not funclets. 1484 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1485 break; 1486 } else if (isa<CleanupPadInst>(Pad)) { 1487 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1488 // personalities. 1489 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1490 UnwindDests.back().first->setIsEHScopeEntry(); 1491 if (!IsWasmCXX) 1492 UnwindDests.back().first->setIsEHFuncletEntry(); 1493 break; 1494 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1495 // Add the catchpad handlers to the possible destinations. 1496 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1497 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1498 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1499 if (IsMSVCCXX || IsCoreCLR) 1500 UnwindDests.back().first->setIsEHFuncletEntry(); 1501 if (!IsSEH) 1502 UnwindDests.back().first->setIsEHScopeEntry(); 1503 } 1504 NewEHPadBB = CatchSwitch->getUnwindDest(); 1505 } else { 1506 continue; 1507 } 1508 1509 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1510 if (BPI && NewEHPadBB) 1511 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1512 EHPadBB = NewEHPadBB; 1513 } 1514 } 1515 1516 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1517 // Update successor info. 1518 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1519 auto UnwindDest = I.getUnwindDest(); 1520 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1521 BranchProbability UnwindDestProb = 1522 (BPI && UnwindDest) 1523 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1524 : BranchProbability::getZero(); 1525 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1526 for (auto &UnwindDest : UnwindDests) { 1527 UnwindDest.first->setIsEHPad(); 1528 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1529 } 1530 FuncInfo.MBB->normalizeSuccProbs(); 1531 1532 // Create the terminator node. 1533 SDValue Ret = 1534 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1535 DAG.setRoot(Ret); 1536 } 1537 1538 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1539 report_fatal_error("visitCatchSwitch not yet implemented!"); 1540 } 1541 1542 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1543 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1544 auto &DL = DAG.getDataLayout(); 1545 SDValue Chain = getControlRoot(); 1546 SmallVector<ISD::OutputArg, 8> Outs; 1547 SmallVector<SDValue, 8> OutVals; 1548 1549 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1550 // lower 1551 // 1552 // %val = call <ty> @llvm.experimental.deoptimize() 1553 // ret <ty> %val 1554 // 1555 // differently. 1556 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1557 LowerDeoptimizingReturn(); 1558 return; 1559 } 1560 1561 if (!FuncInfo.CanLowerReturn) { 1562 unsigned DemoteReg = FuncInfo.DemoteRegister; 1563 const Function *F = I.getParent()->getParent(); 1564 1565 // Emit a store of the return value through the virtual register. 1566 // Leave Outs empty so that LowerReturn won't try to load return 1567 // registers the usual way. 1568 SmallVector<EVT, 1> PtrValueVTs; 1569 ComputeValueVTs(TLI, DL, 1570 F->getReturnType()->getPointerTo( 1571 DAG.getDataLayout().getAllocaAddrSpace()), 1572 PtrValueVTs); 1573 1574 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1575 DemoteReg, PtrValueVTs[0]); 1576 SDValue RetOp = getValue(I.getOperand(0)); 1577 1578 SmallVector<EVT, 4> ValueVTs; 1579 SmallVector<uint64_t, 4> Offsets; 1580 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1581 unsigned NumValues = ValueVTs.size(); 1582 1583 SmallVector<SDValue, 4> Chains(NumValues); 1584 for (unsigned i = 0; i != NumValues; ++i) { 1585 // An aggregate return value cannot wrap around the address space, so 1586 // offsets to its parts don't wrap either. 1587 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]); 1588 Chains[i] = DAG.getStore( 1589 Chain, getCurSDLoc(), SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1590 // FIXME: better loc info would be nice. 1591 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1592 } 1593 1594 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1595 MVT::Other, Chains); 1596 } else if (I.getNumOperands() != 0) { 1597 SmallVector<EVT, 4> ValueVTs; 1598 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1599 unsigned NumValues = ValueVTs.size(); 1600 if (NumValues) { 1601 SDValue RetOp = getValue(I.getOperand(0)); 1602 1603 const Function *F = I.getParent()->getParent(); 1604 1605 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1606 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1607 Attribute::SExt)) 1608 ExtendKind = ISD::SIGN_EXTEND; 1609 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1610 Attribute::ZExt)) 1611 ExtendKind = ISD::ZERO_EXTEND; 1612 1613 LLVMContext &Context = F->getContext(); 1614 bool RetInReg = F->getAttributes().hasAttribute( 1615 AttributeList::ReturnIndex, Attribute::InReg); 1616 1617 for (unsigned j = 0; j != NumValues; ++j) { 1618 EVT VT = ValueVTs[j]; 1619 1620 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1621 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1622 1623 CallingConv::ID CC = F->getCallingConv(); 1624 1625 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1626 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1627 SmallVector<SDValue, 4> Parts(NumParts); 1628 getCopyToParts(DAG, getCurSDLoc(), 1629 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1630 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1631 1632 // 'inreg' on function refers to return value 1633 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1634 if (RetInReg) 1635 Flags.setInReg(); 1636 1637 // Propagate extension type if any 1638 if (ExtendKind == ISD::SIGN_EXTEND) 1639 Flags.setSExt(); 1640 else if (ExtendKind == ISD::ZERO_EXTEND) 1641 Flags.setZExt(); 1642 1643 for (unsigned i = 0; i < NumParts; ++i) { 1644 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1645 VT, /*isfixed=*/true, 0, 0)); 1646 OutVals.push_back(Parts[i]); 1647 } 1648 } 1649 } 1650 } 1651 1652 // Push in swifterror virtual register as the last element of Outs. This makes 1653 // sure swifterror virtual register will be returned in the swifterror 1654 // physical register. 1655 const Function *F = I.getParent()->getParent(); 1656 if (TLI.supportSwiftError() && 1657 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1658 assert(FuncInfo.SwiftErrorArg && "Need a swift error argument"); 1659 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1660 Flags.setSwiftError(); 1661 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1662 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1663 true /*isfixed*/, 1 /*origidx*/, 1664 0 /*partOffs*/)); 1665 // Create SDNode for the swifterror virtual register. 1666 OutVals.push_back( 1667 DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt( 1668 &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first, 1669 EVT(TLI.getPointerTy(DL)))); 1670 } 1671 1672 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1673 CallingConv::ID CallConv = 1674 DAG.getMachineFunction().getFunction().getCallingConv(); 1675 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1676 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1677 1678 // Verify that the target's LowerReturn behaved as expected. 1679 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1680 "LowerReturn didn't return a valid chain!"); 1681 1682 // Update the DAG with the new chain value resulting from return lowering. 1683 DAG.setRoot(Chain); 1684 } 1685 1686 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1687 /// created for it, emit nodes to copy the value into the virtual 1688 /// registers. 1689 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1690 // Skip empty types 1691 if (V->getType()->isEmptyTy()) 1692 return; 1693 1694 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1695 if (VMI != FuncInfo.ValueMap.end()) { 1696 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1697 CopyValueToVirtualRegister(V, VMI->second); 1698 } 1699 } 1700 1701 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1702 /// the current basic block, add it to ValueMap now so that we'll get a 1703 /// CopyTo/FromReg. 1704 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1705 // No need to export constants. 1706 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1707 1708 // Already exported? 1709 if (FuncInfo.isExportedInst(V)) return; 1710 1711 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1712 CopyValueToVirtualRegister(V, Reg); 1713 } 1714 1715 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1716 const BasicBlock *FromBB) { 1717 // The operands of the setcc have to be in this block. We don't know 1718 // how to export them from some other block. 1719 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1720 // Can export from current BB. 1721 if (VI->getParent() == FromBB) 1722 return true; 1723 1724 // Is already exported, noop. 1725 return FuncInfo.isExportedInst(V); 1726 } 1727 1728 // If this is an argument, we can export it if the BB is the entry block or 1729 // if it is already exported. 1730 if (isa<Argument>(V)) { 1731 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1732 return true; 1733 1734 // Otherwise, can only export this if it is already exported. 1735 return FuncInfo.isExportedInst(V); 1736 } 1737 1738 // Otherwise, constants can always be exported. 1739 return true; 1740 } 1741 1742 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1743 BranchProbability 1744 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1745 const MachineBasicBlock *Dst) const { 1746 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1747 const BasicBlock *SrcBB = Src->getBasicBlock(); 1748 const BasicBlock *DstBB = Dst->getBasicBlock(); 1749 if (!BPI) { 1750 // If BPI is not available, set the default probability as 1 / N, where N is 1751 // the number of successors. 1752 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 1753 return BranchProbability(1, SuccSize); 1754 } 1755 return BPI->getEdgeProbability(SrcBB, DstBB); 1756 } 1757 1758 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1759 MachineBasicBlock *Dst, 1760 BranchProbability Prob) { 1761 if (!FuncInfo.BPI) 1762 Src->addSuccessorWithoutProb(Dst); 1763 else { 1764 if (Prob.isUnknown()) 1765 Prob = getEdgeProbability(Src, Dst); 1766 Src->addSuccessor(Dst, Prob); 1767 } 1768 } 1769 1770 static bool InBlock(const Value *V, const BasicBlock *BB) { 1771 if (const Instruction *I = dyn_cast<Instruction>(V)) 1772 return I->getParent() == BB; 1773 return true; 1774 } 1775 1776 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1777 /// This function emits a branch and is used at the leaves of an OR or an 1778 /// AND operator tree. 1779 void 1780 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1781 MachineBasicBlock *TBB, 1782 MachineBasicBlock *FBB, 1783 MachineBasicBlock *CurBB, 1784 MachineBasicBlock *SwitchBB, 1785 BranchProbability TProb, 1786 BranchProbability FProb, 1787 bool InvertCond) { 1788 const BasicBlock *BB = CurBB->getBasicBlock(); 1789 1790 // If the leaf of the tree is a comparison, merge the condition into 1791 // the caseblock. 1792 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1793 // The operands of the cmp have to be in this block. We don't know 1794 // how to export them from some other block. If this is the first block 1795 // of the sequence, no exporting is needed. 1796 if (CurBB == SwitchBB || 1797 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1798 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1799 ISD::CondCode Condition; 1800 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1801 ICmpInst::Predicate Pred = 1802 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 1803 Condition = getICmpCondCode(Pred); 1804 } else { 1805 const FCmpInst *FC = cast<FCmpInst>(Cond); 1806 FCmpInst::Predicate Pred = 1807 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 1808 Condition = getFCmpCondCode(Pred); 1809 if (TM.Options.NoNaNsFPMath) 1810 Condition = getFCmpCodeWithoutNaN(Condition); 1811 } 1812 1813 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1814 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 1815 SwitchCases.push_back(CB); 1816 return; 1817 } 1818 } 1819 1820 // Create a CaseBlock record representing this branch. 1821 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 1822 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 1823 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 1824 SwitchCases.push_back(CB); 1825 } 1826 1827 /// FindMergedConditions - If Cond is an expression like 1828 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1829 MachineBasicBlock *TBB, 1830 MachineBasicBlock *FBB, 1831 MachineBasicBlock *CurBB, 1832 MachineBasicBlock *SwitchBB, 1833 Instruction::BinaryOps Opc, 1834 BranchProbability TProb, 1835 BranchProbability FProb, 1836 bool InvertCond) { 1837 // Skip over not part of the tree and remember to invert op and operands at 1838 // next level. 1839 if (BinaryOperator::isNot(Cond) && Cond->hasOneUse()) { 1840 const Value *CondOp = BinaryOperator::getNotArgument(Cond); 1841 if (InBlock(CondOp, CurBB->getBasicBlock())) { 1842 FindMergedConditions(CondOp, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 1843 !InvertCond); 1844 return; 1845 } 1846 } 1847 1848 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1849 // Compute the effective opcode for Cond, taking into account whether it needs 1850 // to be inverted, e.g. 1851 // and (not (or A, B)), C 1852 // gets lowered as 1853 // and (and (not A, not B), C) 1854 unsigned BOpc = 0; 1855 if (BOp) { 1856 BOpc = BOp->getOpcode(); 1857 if (InvertCond) { 1858 if (BOpc == Instruction::And) 1859 BOpc = Instruction::Or; 1860 else if (BOpc == Instruction::Or) 1861 BOpc = Instruction::And; 1862 } 1863 } 1864 1865 // If this node is not part of the or/and tree, emit it as a branch. 1866 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1867 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 1868 BOp->getParent() != CurBB->getBasicBlock() || 1869 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1870 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1871 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1872 TProb, FProb, InvertCond); 1873 return; 1874 } 1875 1876 // Create TmpBB after CurBB. 1877 MachineFunction::iterator BBI(CurBB); 1878 MachineFunction &MF = DAG.getMachineFunction(); 1879 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1880 CurBB->getParent()->insert(++BBI, TmpBB); 1881 1882 if (Opc == Instruction::Or) { 1883 // Codegen X | Y as: 1884 // BB1: 1885 // jmp_if_X TBB 1886 // jmp TmpBB 1887 // TmpBB: 1888 // jmp_if_Y TBB 1889 // jmp FBB 1890 // 1891 1892 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1893 // The requirement is that 1894 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1895 // = TrueProb for original BB. 1896 // Assuming the original probabilities are A and B, one choice is to set 1897 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 1898 // A/(1+B) and 2B/(1+B). This choice assumes that 1899 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1900 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1901 // TmpBB, but the math is more complicated. 1902 1903 auto NewTrueProb = TProb / 2; 1904 auto NewFalseProb = TProb / 2 + FProb; 1905 // Emit the LHS condition. 1906 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1907 NewTrueProb, NewFalseProb, InvertCond); 1908 1909 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 1910 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 1911 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1912 // Emit the RHS condition into TmpBB. 1913 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1914 Probs[0], Probs[1], InvertCond); 1915 } else { 1916 assert(Opc == Instruction::And && "Unknown merge op!"); 1917 // Codegen X & Y as: 1918 // BB1: 1919 // jmp_if_X TmpBB 1920 // jmp FBB 1921 // TmpBB: 1922 // jmp_if_Y TBB 1923 // jmp FBB 1924 // 1925 // This requires creation of TmpBB after CurBB. 1926 1927 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1928 // The requirement is that 1929 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1930 // = FalseProb for original BB. 1931 // Assuming the original probabilities are A and B, one choice is to set 1932 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 1933 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 1934 // TrueProb for BB1 * FalseProb for TmpBB. 1935 1936 auto NewTrueProb = TProb + FProb / 2; 1937 auto NewFalseProb = FProb / 2; 1938 // Emit the LHS condition. 1939 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1940 NewTrueProb, NewFalseProb, InvertCond); 1941 1942 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 1943 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 1944 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1945 // Emit the RHS condition into TmpBB. 1946 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1947 Probs[0], Probs[1], InvertCond); 1948 } 1949 } 1950 1951 /// If the set of cases should be emitted as a series of branches, return true. 1952 /// If we should emit this as a bunch of and/or'd together conditions, return 1953 /// false. 1954 bool 1955 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1956 if (Cases.size() != 2) return true; 1957 1958 // If this is two comparisons of the same values or'd or and'd together, they 1959 // will get folded into a single comparison, so don't emit two blocks. 1960 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1961 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1962 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1963 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1964 return false; 1965 } 1966 1967 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1968 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1969 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1970 Cases[0].CC == Cases[1].CC && 1971 isa<Constant>(Cases[0].CmpRHS) && 1972 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1973 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1974 return false; 1975 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1976 return false; 1977 } 1978 1979 return true; 1980 } 1981 1982 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1983 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1984 1985 // Update machine-CFG edges. 1986 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1987 1988 if (I.isUnconditional()) { 1989 // Update machine-CFG edges. 1990 BrMBB->addSuccessor(Succ0MBB); 1991 1992 // If this is not a fall-through branch or optimizations are switched off, 1993 // emit the branch. 1994 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1995 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1996 MVT::Other, getControlRoot(), 1997 DAG.getBasicBlock(Succ0MBB))); 1998 1999 return; 2000 } 2001 2002 // If this condition is one of the special cases we handle, do special stuff 2003 // now. 2004 const Value *CondVal = I.getCondition(); 2005 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2006 2007 // If this is a series of conditions that are or'd or and'd together, emit 2008 // this as a sequence of branches instead of setcc's with and/or operations. 2009 // As long as jumps are not expensive, this should improve performance. 2010 // For example, instead of something like: 2011 // cmp A, B 2012 // C = seteq 2013 // cmp D, E 2014 // F = setle 2015 // or C, F 2016 // jnz foo 2017 // Emit: 2018 // cmp A, B 2019 // je foo 2020 // cmp D, E 2021 // jle foo 2022 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 2023 Instruction::BinaryOps Opcode = BOp->getOpcode(); 2024 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 2025 !I.getMetadata(LLVMContext::MD_unpredictable) && 2026 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 2027 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 2028 Opcode, 2029 getEdgeProbability(BrMBB, Succ0MBB), 2030 getEdgeProbability(BrMBB, Succ1MBB), 2031 /*InvertCond=*/false); 2032 // If the compares in later blocks need to use values not currently 2033 // exported from this block, export them now. This block should always 2034 // be the first entry. 2035 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2036 2037 // Allow some cases to be rejected. 2038 if (ShouldEmitAsBranches(SwitchCases)) { 2039 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 2040 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 2041 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 2042 } 2043 2044 // Emit the branch for this block. 2045 visitSwitchCase(SwitchCases[0], BrMBB); 2046 SwitchCases.erase(SwitchCases.begin()); 2047 return; 2048 } 2049 2050 // Okay, we decided not to do this, remove any inserted MBB's and clear 2051 // SwitchCases. 2052 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 2053 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 2054 2055 SwitchCases.clear(); 2056 } 2057 } 2058 2059 // Create a CaseBlock record representing this branch. 2060 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2061 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2062 2063 // Use visitSwitchCase to actually insert the fast branch sequence for this 2064 // cond branch. 2065 visitSwitchCase(CB, BrMBB); 2066 } 2067 2068 /// visitSwitchCase - Emits the necessary code to represent a single node in 2069 /// the binary search tree resulting from lowering a switch instruction. 2070 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2071 MachineBasicBlock *SwitchBB) { 2072 SDValue Cond; 2073 SDValue CondLHS = getValue(CB.CmpLHS); 2074 SDLoc dl = CB.DL; 2075 2076 // Build the setcc now. 2077 if (!CB.CmpMHS) { 2078 // Fold "(X == true)" to X and "(X == false)" to !X to 2079 // handle common cases produced by branch lowering. 2080 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2081 CB.CC == ISD::SETEQ) 2082 Cond = CondLHS; 2083 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2084 CB.CC == ISD::SETEQ) { 2085 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2086 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2087 } else 2088 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 2089 } else { 2090 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2091 2092 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2093 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2094 2095 SDValue CmpOp = getValue(CB.CmpMHS); 2096 EVT VT = CmpOp.getValueType(); 2097 2098 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2099 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2100 ISD::SETLE); 2101 } else { 2102 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2103 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2104 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2105 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2106 } 2107 } 2108 2109 // Update successor info 2110 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2111 // TrueBB and FalseBB are always different unless the incoming IR is 2112 // degenerate. This only happens when running llc on weird IR. 2113 if (CB.TrueBB != CB.FalseBB) 2114 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2115 SwitchBB->normalizeSuccProbs(); 2116 2117 // If the lhs block is the next block, invert the condition so that we can 2118 // fall through to the lhs instead of the rhs block. 2119 if (CB.TrueBB == NextBlock(SwitchBB)) { 2120 std::swap(CB.TrueBB, CB.FalseBB); 2121 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2122 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2123 } 2124 2125 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2126 MVT::Other, getControlRoot(), Cond, 2127 DAG.getBasicBlock(CB.TrueBB)); 2128 2129 // Insert the false branch. Do this even if it's a fall through branch, 2130 // this makes it easier to do DAG optimizations which require inverting 2131 // the branch condition. 2132 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2133 DAG.getBasicBlock(CB.FalseBB)); 2134 2135 DAG.setRoot(BrCond); 2136 } 2137 2138 /// visitJumpTable - Emit JumpTable node in the current MBB 2139 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 2140 // Emit the code for the jump table 2141 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2142 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2143 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2144 JT.Reg, PTy); 2145 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2146 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2147 MVT::Other, Index.getValue(1), 2148 Table, Index); 2149 DAG.setRoot(BrJumpTable); 2150 } 2151 2152 /// visitJumpTableHeader - This function emits necessary code to produce index 2153 /// in the JumpTable from switch case. 2154 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 2155 JumpTableHeader &JTH, 2156 MachineBasicBlock *SwitchBB) { 2157 SDLoc dl = getCurSDLoc(); 2158 2159 // Subtract the lowest switch case value from the value being switched on and 2160 // conditional branch to default mbb if the result is greater than the 2161 // difference between smallest and largest cases. 2162 SDValue SwitchOp = getValue(JTH.SValue); 2163 EVT VT = SwitchOp.getValueType(); 2164 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2165 DAG.getConstant(JTH.First, dl, VT)); 2166 2167 // The SDNode we just created, which holds the value being switched on minus 2168 // the smallest case value, needs to be copied to a virtual register so it 2169 // can be used as an index into the jump table in a subsequent basic block. 2170 // This value may be smaller or larger than the target's pointer type, and 2171 // therefore require extension or truncating. 2172 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2173 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2174 2175 unsigned JumpTableReg = 2176 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2177 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2178 JumpTableReg, SwitchOp); 2179 JT.Reg = JumpTableReg; 2180 2181 // Emit the range check for the jump table, and branch to the default block 2182 // for the switch statement if the value being switched on exceeds the largest 2183 // case in the switch. 2184 SDValue CMP = DAG.getSetCC( 2185 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2186 Sub.getValueType()), 2187 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2188 2189 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2190 MVT::Other, CopyTo, CMP, 2191 DAG.getBasicBlock(JT.Default)); 2192 2193 // Avoid emitting unnecessary branches to the next block. 2194 if (JT.MBB != NextBlock(SwitchBB)) 2195 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2196 DAG.getBasicBlock(JT.MBB)); 2197 2198 DAG.setRoot(BrCond); 2199 } 2200 2201 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2202 /// variable if there exists one. 2203 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2204 SDValue &Chain) { 2205 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2206 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2207 MachineFunction &MF = DAG.getMachineFunction(); 2208 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2209 MachineSDNode *Node = 2210 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2211 if (Global) { 2212 MachinePointerInfo MPInfo(Global); 2213 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2214 MachineMemOperand::MODereferenceable; 2215 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2216 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy)); 2217 DAG.setNodeMemRefs(Node, {MemRef}); 2218 } 2219 return SDValue(Node, 0); 2220 } 2221 2222 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2223 /// tail spliced into a stack protector check success bb. 2224 /// 2225 /// For a high level explanation of how this fits into the stack protector 2226 /// generation see the comment on the declaration of class 2227 /// StackProtectorDescriptor. 2228 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2229 MachineBasicBlock *ParentBB) { 2230 2231 // First create the loads to the guard/stack slot for the comparison. 2232 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2233 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2234 2235 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2236 int FI = MFI.getStackProtectorIndex(); 2237 2238 SDValue Guard; 2239 SDLoc dl = getCurSDLoc(); 2240 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2241 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2242 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2243 2244 // Generate code to load the content of the guard slot. 2245 SDValue GuardVal = DAG.getLoad( 2246 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 2247 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2248 MachineMemOperand::MOVolatile); 2249 2250 if (TLI.useStackGuardXorFP()) 2251 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2252 2253 // Retrieve guard check function, nullptr if instrumentation is inlined. 2254 if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) { 2255 // The target provides a guard check function to validate the guard value. 2256 // Generate a call to that function with the content of the guard slot as 2257 // argument. 2258 auto *Fn = cast<Function>(GuardCheck); 2259 FunctionType *FnTy = Fn->getFunctionType(); 2260 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2261 2262 TargetLowering::ArgListTy Args; 2263 TargetLowering::ArgListEntry Entry; 2264 Entry.Node = GuardVal; 2265 Entry.Ty = FnTy->getParamType(0); 2266 if (Fn->hasAttribute(1, Attribute::AttrKind::InReg)) 2267 Entry.IsInReg = true; 2268 Args.push_back(Entry); 2269 2270 TargetLowering::CallLoweringInfo CLI(DAG); 2271 CLI.setDebugLoc(getCurSDLoc()) 2272 .setChain(DAG.getEntryNode()) 2273 .setCallee(Fn->getCallingConv(), FnTy->getReturnType(), 2274 getValue(GuardCheck), std::move(Args)); 2275 2276 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2277 DAG.setRoot(Result.second); 2278 return; 2279 } 2280 2281 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2282 // Otherwise, emit a volatile load to retrieve the stack guard value. 2283 SDValue Chain = DAG.getEntryNode(); 2284 if (TLI.useLoadStackGuardNode()) { 2285 Guard = getLoadStackGuard(DAG, dl, Chain); 2286 } else { 2287 const Value *IRGuard = TLI.getSDagStackGuard(M); 2288 SDValue GuardPtr = getValue(IRGuard); 2289 2290 Guard = 2291 DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0), 2292 Align, MachineMemOperand::MOVolatile); 2293 } 2294 2295 // Perform the comparison via a subtract/getsetcc. 2296 EVT VT = Guard.getValueType(); 2297 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal); 2298 2299 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2300 *DAG.getContext(), 2301 Sub.getValueType()), 2302 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2303 2304 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2305 // branch to failure MBB. 2306 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2307 MVT::Other, GuardVal.getOperand(0), 2308 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2309 // Otherwise branch to success MBB. 2310 SDValue Br = DAG.getNode(ISD::BR, dl, 2311 MVT::Other, BrCond, 2312 DAG.getBasicBlock(SPD.getSuccessMBB())); 2313 2314 DAG.setRoot(Br); 2315 } 2316 2317 /// Codegen the failure basic block for a stack protector check. 2318 /// 2319 /// A failure stack protector machine basic block consists simply of a call to 2320 /// __stack_chk_fail(). 2321 /// 2322 /// For a high level explanation of how this fits into the stack protector 2323 /// generation see the comment on the declaration of class 2324 /// StackProtectorDescriptor. 2325 void 2326 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2327 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2328 SDValue Chain = 2329 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2330 None, false, getCurSDLoc(), false, false).second; 2331 DAG.setRoot(Chain); 2332 } 2333 2334 /// visitBitTestHeader - This function emits necessary code to produce value 2335 /// suitable for "bit tests" 2336 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2337 MachineBasicBlock *SwitchBB) { 2338 SDLoc dl = getCurSDLoc(); 2339 2340 // Subtract the minimum value 2341 SDValue SwitchOp = getValue(B.SValue); 2342 EVT VT = SwitchOp.getValueType(); 2343 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2344 DAG.getConstant(B.First, dl, VT)); 2345 2346 // Check range 2347 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2348 SDValue RangeCmp = DAG.getSetCC( 2349 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2350 Sub.getValueType()), 2351 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2352 2353 // Determine the type of the test operands. 2354 bool UsePtrType = false; 2355 if (!TLI.isTypeLegal(VT)) 2356 UsePtrType = true; 2357 else { 2358 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2359 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2360 // Switch table case range are encoded into series of masks. 2361 // Just use pointer type, it's guaranteed to fit. 2362 UsePtrType = true; 2363 break; 2364 } 2365 } 2366 if (UsePtrType) { 2367 VT = TLI.getPointerTy(DAG.getDataLayout()); 2368 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2369 } 2370 2371 B.RegVT = VT.getSimpleVT(); 2372 B.Reg = FuncInfo.CreateReg(B.RegVT); 2373 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2374 2375 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2376 2377 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2378 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2379 SwitchBB->normalizeSuccProbs(); 2380 2381 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2382 MVT::Other, CopyTo, RangeCmp, 2383 DAG.getBasicBlock(B.Default)); 2384 2385 // Avoid emitting unnecessary branches to the next block. 2386 if (MBB != NextBlock(SwitchBB)) 2387 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2388 DAG.getBasicBlock(MBB)); 2389 2390 DAG.setRoot(BrRange); 2391 } 2392 2393 /// visitBitTestCase - this function produces one "bit test" 2394 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2395 MachineBasicBlock* NextMBB, 2396 BranchProbability BranchProbToNext, 2397 unsigned Reg, 2398 BitTestCase &B, 2399 MachineBasicBlock *SwitchBB) { 2400 SDLoc dl = getCurSDLoc(); 2401 MVT VT = BB.RegVT; 2402 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2403 SDValue Cmp; 2404 unsigned PopCount = countPopulation(B.Mask); 2405 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2406 if (PopCount == 1) { 2407 // Testing for a single bit; just compare the shift count with what it 2408 // would need to be to shift a 1 bit in that position. 2409 Cmp = DAG.getSetCC( 2410 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2411 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2412 ISD::SETEQ); 2413 } else if (PopCount == BB.Range) { 2414 // There is only one zero bit in the range, test for it directly. 2415 Cmp = DAG.getSetCC( 2416 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2417 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2418 ISD::SETNE); 2419 } else { 2420 // Make desired shift 2421 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2422 DAG.getConstant(1, dl, VT), ShiftOp); 2423 2424 // Emit bit tests and jumps 2425 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2426 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2427 Cmp = DAG.getSetCC( 2428 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2429 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2430 } 2431 2432 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2433 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2434 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2435 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2436 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2437 // one as they are relative probabilities (and thus work more like weights), 2438 // and hence we need to normalize them to let the sum of them become one. 2439 SwitchBB->normalizeSuccProbs(); 2440 2441 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2442 MVT::Other, getControlRoot(), 2443 Cmp, DAG.getBasicBlock(B.TargetBB)); 2444 2445 // Avoid emitting unnecessary branches to the next block. 2446 if (NextMBB != NextBlock(SwitchBB)) 2447 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2448 DAG.getBasicBlock(NextMBB)); 2449 2450 DAG.setRoot(BrAnd); 2451 } 2452 2453 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2454 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2455 2456 // Retrieve successors. Look through artificial IR level blocks like 2457 // catchswitch for successors. 2458 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2459 const BasicBlock *EHPadBB = I.getSuccessor(1); 2460 2461 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2462 // have to do anything here to lower funclet bundles. 2463 assert(!I.hasOperandBundlesOtherThan( 2464 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2465 "Cannot lower invokes with arbitrary operand bundles yet!"); 2466 2467 const Value *Callee(I.getCalledValue()); 2468 const Function *Fn = dyn_cast<Function>(Callee); 2469 if (isa<InlineAsm>(Callee)) 2470 visitInlineAsm(&I); 2471 else if (Fn && Fn->isIntrinsic()) { 2472 switch (Fn->getIntrinsicID()) { 2473 default: 2474 llvm_unreachable("Cannot invoke this intrinsic"); 2475 case Intrinsic::donothing: 2476 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2477 break; 2478 case Intrinsic::experimental_patchpoint_void: 2479 case Intrinsic::experimental_patchpoint_i64: 2480 visitPatchpoint(&I, EHPadBB); 2481 break; 2482 case Intrinsic::experimental_gc_statepoint: 2483 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2484 break; 2485 } 2486 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2487 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2488 // Eventually we will support lowering the @llvm.experimental.deoptimize 2489 // intrinsic, and right now there are no plans to support other intrinsics 2490 // with deopt state. 2491 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2492 } else { 2493 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2494 } 2495 2496 // If the value of the invoke is used outside of its defining block, make it 2497 // available as a virtual register. 2498 // We already took care of the exported value for the statepoint instruction 2499 // during call to the LowerStatepoint. 2500 if (!isStatepoint(I)) { 2501 CopyToExportRegsIfNeeded(&I); 2502 } 2503 2504 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2505 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2506 BranchProbability EHPadBBProb = 2507 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2508 : BranchProbability::getZero(); 2509 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2510 2511 // Update successor info. 2512 addSuccessorWithProb(InvokeMBB, Return); 2513 for (auto &UnwindDest : UnwindDests) { 2514 UnwindDest.first->setIsEHPad(); 2515 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2516 } 2517 InvokeMBB->normalizeSuccProbs(); 2518 2519 // Drop into normal successor. 2520 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2521 MVT::Other, getControlRoot(), 2522 DAG.getBasicBlock(Return))); 2523 } 2524 2525 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2526 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2527 } 2528 2529 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2530 assert(FuncInfo.MBB->isEHPad() && 2531 "Call to landingpad not in landing pad!"); 2532 2533 // If there aren't registers to copy the values into (e.g., during SjLj 2534 // exceptions), then don't bother to create these DAG nodes. 2535 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2536 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2537 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2538 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2539 return; 2540 2541 // If landingpad's return type is token type, we don't create DAG nodes 2542 // for its exception pointer and selector value. The extraction of exception 2543 // pointer or selector value from token type landingpads is not currently 2544 // supported. 2545 if (LP.getType()->isTokenTy()) 2546 return; 2547 2548 SmallVector<EVT, 2> ValueVTs; 2549 SDLoc dl = getCurSDLoc(); 2550 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2551 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2552 2553 // Get the two live-in registers as SDValues. The physregs have already been 2554 // copied into virtual registers. 2555 SDValue Ops[2]; 2556 if (FuncInfo.ExceptionPointerVirtReg) { 2557 Ops[0] = DAG.getZExtOrTrunc( 2558 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2559 FuncInfo.ExceptionPointerVirtReg, 2560 TLI.getPointerTy(DAG.getDataLayout())), 2561 dl, ValueVTs[0]); 2562 } else { 2563 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2564 } 2565 Ops[1] = DAG.getZExtOrTrunc( 2566 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2567 FuncInfo.ExceptionSelectorVirtReg, 2568 TLI.getPointerTy(DAG.getDataLayout())), 2569 dl, ValueVTs[1]); 2570 2571 // Merge into one. 2572 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2573 DAG.getVTList(ValueVTs), Ops); 2574 setValue(&LP, Res); 2575 } 2576 2577 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2578 #ifndef NDEBUG 2579 for (const CaseCluster &CC : Clusters) 2580 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2581 #endif 2582 2583 llvm::sort(Clusters, [](const CaseCluster &a, const CaseCluster &b) { 2584 return a.Low->getValue().slt(b.Low->getValue()); 2585 }); 2586 2587 // Merge adjacent clusters with the same destination. 2588 const unsigned N = Clusters.size(); 2589 unsigned DstIndex = 0; 2590 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2591 CaseCluster &CC = Clusters[SrcIndex]; 2592 const ConstantInt *CaseVal = CC.Low; 2593 MachineBasicBlock *Succ = CC.MBB; 2594 2595 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2596 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2597 // If this case has the same successor and is a neighbour, merge it into 2598 // the previous cluster. 2599 Clusters[DstIndex - 1].High = CaseVal; 2600 Clusters[DstIndex - 1].Prob += CC.Prob; 2601 } else { 2602 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2603 sizeof(Clusters[SrcIndex])); 2604 } 2605 } 2606 Clusters.resize(DstIndex); 2607 } 2608 2609 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2610 MachineBasicBlock *Last) { 2611 // Update JTCases. 2612 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2613 if (JTCases[i].first.HeaderBB == First) 2614 JTCases[i].first.HeaderBB = Last; 2615 2616 // Update BitTestCases. 2617 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2618 if (BitTestCases[i].Parent == First) 2619 BitTestCases[i].Parent = Last; 2620 } 2621 2622 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2623 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2624 2625 // Update machine-CFG edges with unique successors. 2626 SmallSet<BasicBlock*, 32> Done; 2627 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2628 BasicBlock *BB = I.getSuccessor(i); 2629 bool Inserted = Done.insert(BB).second; 2630 if (!Inserted) 2631 continue; 2632 2633 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2634 addSuccessorWithProb(IndirectBrMBB, Succ); 2635 } 2636 IndirectBrMBB->normalizeSuccProbs(); 2637 2638 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2639 MVT::Other, getControlRoot(), 2640 getValue(I.getAddress()))); 2641 } 2642 2643 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2644 if (!DAG.getTarget().Options.TrapUnreachable) 2645 return; 2646 2647 // We may be able to ignore unreachable behind a noreturn call. 2648 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 2649 const BasicBlock &BB = *I.getParent(); 2650 if (&I != &BB.front()) { 2651 BasicBlock::const_iterator PredI = 2652 std::prev(BasicBlock::const_iterator(&I)); 2653 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 2654 if (Call->doesNotReturn()) 2655 return; 2656 } 2657 } 2658 } 2659 2660 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2661 } 2662 2663 void SelectionDAGBuilder::visitFSub(const User &I) { 2664 // -0.0 - X --> fneg 2665 Type *Ty = I.getType(); 2666 if (isa<Constant>(I.getOperand(0)) && 2667 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2668 SDValue Op2 = getValue(I.getOperand(1)); 2669 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2670 Op2.getValueType(), Op2)); 2671 return; 2672 } 2673 2674 visitBinary(I, ISD::FSUB); 2675 } 2676 2677 /// Checks if the given instruction performs a vector reduction, in which case 2678 /// we have the freedom to alter the elements in the result as long as the 2679 /// reduction of them stays unchanged. 2680 static bool isVectorReductionOp(const User *I) { 2681 const Instruction *Inst = dyn_cast<Instruction>(I); 2682 if (!Inst || !Inst->getType()->isVectorTy()) 2683 return false; 2684 2685 auto OpCode = Inst->getOpcode(); 2686 switch (OpCode) { 2687 case Instruction::Add: 2688 case Instruction::Mul: 2689 case Instruction::And: 2690 case Instruction::Or: 2691 case Instruction::Xor: 2692 break; 2693 case Instruction::FAdd: 2694 case Instruction::FMul: 2695 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2696 if (FPOp->getFastMathFlags().isFast()) 2697 break; 2698 LLVM_FALLTHROUGH; 2699 default: 2700 return false; 2701 } 2702 2703 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 2704 // Ensure the reduction size is a power of 2. 2705 if (!isPowerOf2_32(ElemNum)) 2706 return false; 2707 2708 unsigned ElemNumToReduce = ElemNum; 2709 2710 // Do DFS search on the def-use chain from the given instruction. We only 2711 // allow four kinds of operations during the search until we reach the 2712 // instruction that extracts the first element from the vector: 2713 // 2714 // 1. The reduction operation of the same opcode as the given instruction. 2715 // 2716 // 2. PHI node. 2717 // 2718 // 3. ShuffleVector instruction together with a reduction operation that 2719 // does a partial reduction. 2720 // 2721 // 4. ExtractElement that extracts the first element from the vector, and we 2722 // stop searching the def-use chain here. 2723 // 2724 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 2725 // from 1-3 to the stack to continue the DFS. The given instruction is not 2726 // a reduction operation if we meet any other instructions other than those 2727 // listed above. 2728 2729 SmallVector<const User *, 16> UsersToVisit{Inst}; 2730 SmallPtrSet<const User *, 16> Visited; 2731 bool ReduxExtracted = false; 2732 2733 while (!UsersToVisit.empty()) { 2734 auto User = UsersToVisit.back(); 2735 UsersToVisit.pop_back(); 2736 if (!Visited.insert(User).second) 2737 continue; 2738 2739 for (const auto &U : User->users()) { 2740 auto Inst = dyn_cast<Instruction>(U); 2741 if (!Inst) 2742 return false; 2743 2744 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 2745 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2746 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast()) 2747 return false; 2748 UsersToVisit.push_back(U); 2749 } else if (const ShuffleVectorInst *ShufInst = 2750 dyn_cast<ShuffleVectorInst>(U)) { 2751 // Detect the following pattern: A ShuffleVector instruction together 2752 // with a reduction that do partial reduction on the first and second 2753 // ElemNumToReduce / 2 elements, and store the result in 2754 // ElemNumToReduce / 2 elements in another vector. 2755 2756 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 2757 if (ResultElements < ElemNum) 2758 return false; 2759 2760 if (ElemNumToReduce == 1) 2761 return false; 2762 if (!isa<UndefValue>(U->getOperand(1))) 2763 return false; 2764 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 2765 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 2766 return false; 2767 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 2768 if (ShufInst->getMaskValue(i) != -1) 2769 return false; 2770 2771 // There is only one user of this ShuffleVector instruction, which 2772 // must be a reduction operation. 2773 if (!U->hasOneUse()) 2774 return false; 2775 2776 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 2777 if (!U2 || U2->getOpcode() != OpCode) 2778 return false; 2779 2780 // Check operands of the reduction operation. 2781 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 2782 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 2783 UsersToVisit.push_back(U2); 2784 ElemNumToReduce /= 2; 2785 } else 2786 return false; 2787 } else if (isa<ExtractElementInst>(U)) { 2788 // At this moment we should have reduced all elements in the vector. 2789 if (ElemNumToReduce != 1) 2790 return false; 2791 2792 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 2793 if (!Val || !Val->isZero()) 2794 return false; 2795 2796 ReduxExtracted = true; 2797 } else 2798 return false; 2799 } 2800 } 2801 return ReduxExtracted; 2802 } 2803 2804 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 2805 SDNodeFlags Flags; 2806 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 2807 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 2808 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 2809 } 2810 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) { 2811 Flags.setExact(ExactOp->isExact()); 2812 } 2813 if (isVectorReductionOp(&I)) { 2814 Flags.setVectorReduction(true); 2815 LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 2816 } 2817 2818 SDValue Op1 = getValue(I.getOperand(0)); 2819 SDValue Op2 = getValue(I.getOperand(1)); 2820 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 2821 Op1, Op2, Flags); 2822 setValue(&I, BinNodeValue); 2823 } 2824 2825 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2826 SDValue Op1 = getValue(I.getOperand(0)); 2827 SDValue Op2 = getValue(I.getOperand(1)); 2828 2829 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2830 Op1.getValueType(), DAG.getDataLayout()); 2831 2832 // Coerce the shift amount to the right type if we can. 2833 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2834 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2835 unsigned Op2Size = Op2.getValueSizeInBits(); 2836 SDLoc DL = getCurSDLoc(); 2837 2838 // If the operand is smaller than the shift count type, promote it. 2839 if (ShiftSize > Op2Size) 2840 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2841 2842 // If the operand is larger than the shift count type but the shift 2843 // count type has enough bits to represent any shift value, truncate 2844 // it now. This is a common case and it exposes the truncate to 2845 // optimization early. 2846 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 2847 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2848 // Otherwise we'll need to temporarily settle for some other convenient 2849 // type. Type legalization will make adjustments once the shiftee is split. 2850 else 2851 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2852 } 2853 2854 bool nuw = false; 2855 bool nsw = false; 2856 bool exact = false; 2857 2858 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2859 2860 if (const OverflowingBinaryOperator *OFBinOp = 2861 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2862 nuw = OFBinOp->hasNoUnsignedWrap(); 2863 nsw = OFBinOp->hasNoSignedWrap(); 2864 } 2865 if (const PossiblyExactOperator *ExactOp = 2866 dyn_cast<const PossiblyExactOperator>(&I)) 2867 exact = ExactOp->isExact(); 2868 } 2869 SDNodeFlags Flags; 2870 Flags.setExact(exact); 2871 Flags.setNoSignedWrap(nsw); 2872 Flags.setNoUnsignedWrap(nuw); 2873 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2874 Flags); 2875 setValue(&I, Res); 2876 } 2877 2878 void SelectionDAGBuilder::visitSDiv(const User &I) { 2879 SDValue Op1 = getValue(I.getOperand(0)); 2880 SDValue Op2 = getValue(I.getOperand(1)); 2881 2882 SDNodeFlags Flags; 2883 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2884 cast<PossiblyExactOperator>(&I)->isExact()); 2885 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2886 Op2, Flags)); 2887 } 2888 2889 void SelectionDAGBuilder::visitICmp(const User &I) { 2890 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2891 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2892 predicate = IC->getPredicate(); 2893 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2894 predicate = ICmpInst::Predicate(IC->getPredicate()); 2895 SDValue Op1 = getValue(I.getOperand(0)); 2896 SDValue Op2 = getValue(I.getOperand(1)); 2897 ISD::CondCode Opcode = getICmpCondCode(predicate); 2898 2899 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2900 I.getType()); 2901 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2902 } 2903 2904 void SelectionDAGBuilder::visitFCmp(const User &I) { 2905 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2906 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2907 predicate = FC->getPredicate(); 2908 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2909 predicate = FCmpInst::Predicate(FC->getPredicate()); 2910 SDValue Op1 = getValue(I.getOperand(0)); 2911 SDValue Op2 = getValue(I.getOperand(1)); 2912 2913 ISD::CondCode Condition = getFCmpCondCode(predicate); 2914 auto *FPMO = dyn_cast<FPMathOperator>(&I); 2915 if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath) 2916 Condition = getFCmpCodeWithoutNaN(Condition); 2917 2918 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2919 I.getType()); 2920 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2921 } 2922 2923 // Check if the condition of the select has one use or two users that are both 2924 // selects with the same condition. 2925 static bool hasOnlySelectUsers(const Value *Cond) { 2926 return llvm::all_of(Cond->users(), [](const Value *V) { 2927 return isa<SelectInst>(V); 2928 }); 2929 } 2930 2931 void SelectionDAGBuilder::visitSelect(const User &I) { 2932 SmallVector<EVT, 4> ValueVTs; 2933 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2934 ValueVTs); 2935 unsigned NumValues = ValueVTs.size(); 2936 if (NumValues == 0) return; 2937 2938 SmallVector<SDValue, 4> Values(NumValues); 2939 SDValue Cond = getValue(I.getOperand(0)); 2940 SDValue LHSVal = getValue(I.getOperand(1)); 2941 SDValue RHSVal = getValue(I.getOperand(2)); 2942 auto BaseOps = {Cond}; 2943 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2944 ISD::VSELECT : ISD::SELECT; 2945 2946 // Min/max matching is only viable if all output VTs are the same. 2947 if (is_splat(ValueVTs)) { 2948 EVT VT = ValueVTs[0]; 2949 LLVMContext &Ctx = *DAG.getContext(); 2950 auto &TLI = DAG.getTargetLoweringInfo(); 2951 2952 // We care about the legality of the operation after it has been type 2953 // legalized. 2954 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 2955 VT != TLI.getTypeToTransformTo(Ctx, VT)) 2956 VT = TLI.getTypeToTransformTo(Ctx, VT); 2957 2958 // If the vselect is legal, assume we want to leave this as a vector setcc + 2959 // vselect. Otherwise, if this is going to be scalarized, we want to see if 2960 // min/max is legal on the scalar type. 2961 bool UseScalarMinMax = VT.isVector() && 2962 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 2963 2964 Value *LHS, *RHS; 2965 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2966 ISD::NodeType Opc = ISD::DELETED_NODE; 2967 switch (SPR.Flavor) { 2968 case SPF_UMAX: Opc = ISD::UMAX; break; 2969 case SPF_UMIN: Opc = ISD::UMIN; break; 2970 case SPF_SMAX: Opc = ISD::SMAX; break; 2971 case SPF_SMIN: Opc = ISD::SMIN; break; 2972 case SPF_FMINNUM: 2973 switch (SPR.NaNBehavior) { 2974 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2975 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2976 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2977 case SPNB_RETURNS_ANY: { 2978 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 2979 Opc = ISD::FMINNUM; 2980 else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)) 2981 Opc = ISD::FMINNAN; 2982 else if (UseScalarMinMax) 2983 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 2984 ISD::FMINNUM : ISD::FMINNAN; 2985 break; 2986 } 2987 } 2988 break; 2989 case SPF_FMAXNUM: 2990 switch (SPR.NaNBehavior) { 2991 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2992 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2993 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2994 case SPNB_RETURNS_ANY: 2995 2996 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 2997 Opc = ISD::FMAXNUM; 2998 else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)) 2999 Opc = ISD::FMAXNAN; 3000 else if (UseScalarMinMax) 3001 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3002 ISD::FMAXNUM : ISD::FMAXNAN; 3003 break; 3004 } 3005 break; 3006 default: break; 3007 } 3008 3009 if (Opc != ISD::DELETED_NODE && 3010 (TLI.isOperationLegalOrCustom(Opc, VT) || 3011 (UseScalarMinMax && 3012 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3013 // If the underlying comparison instruction is used by any other 3014 // instruction, the consumed instructions won't be destroyed, so it is 3015 // not profitable to convert to a min/max. 3016 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3017 OpCode = Opc; 3018 LHSVal = getValue(LHS); 3019 RHSVal = getValue(RHS); 3020 BaseOps = {}; 3021 } 3022 } 3023 3024 for (unsigned i = 0; i != NumValues; ++i) { 3025 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3026 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3027 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3028 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 3029 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 3030 Ops); 3031 } 3032 3033 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3034 DAG.getVTList(ValueVTs), Values)); 3035 } 3036 3037 void SelectionDAGBuilder::visitTrunc(const User &I) { 3038 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3039 SDValue N = getValue(I.getOperand(0)); 3040 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3041 I.getType()); 3042 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3043 } 3044 3045 void SelectionDAGBuilder::visitZExt(const User &I) { 3046 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3047 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3048 SDValue N = getValue(I.getOperand(0)); 3049 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3050 I.getType()); 3051 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3052 } 3053 3054 void SelectionDAGBuilder::visitSExt(const User &I) { 3055 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3056 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3057 SDValue N = getValue(I.getOperand(0)); 3058 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3059 I.getType()); 3060 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3061 } 3062 3063 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3064 // FPTrunc is never a no-op cast, no need to check 3065 SDValue N = getValue(I.getOperand(0)); 3066 SDLoc dl = getCurSDLoc(); 3067 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3068 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3069 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3070 DAG.getTargetConstant( 3071 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3072 } 3073 3074 void SelectionDAGBuilder::visitFPExt(const User &I) { 3075 // FPExt is never a no-op cast, no need to check 3076 SDValue N = getValue(I.getOperand(0)); 3077 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3078 I.getType()); 3079 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3080 } 3081 3082 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3083 // FPToUI is never a no-op cast, no need to check 3084 SDValue N = getValue(I.getOperand(0)); 3085 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3086 I.getType()); 3087 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3088 } 3089 3090 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3091 // FPToSI is never a no-op cast, no need to check 3092 SDValue N = getValue(I.getOperand(0)); 3093 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3094 I.getType()); 3095 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3096 } 3097 3098 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3099 // UIToFP is never a no-op cast, no need to check 3100 SDValue N = getValue(I.getOperand(0)); 3101 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3102 I.getType()); 3103 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3104 } 3105 3106 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3107 // SIToFP is never a no-op cast, no need to check 3108 SDValue N = getValue(I.getOperand(0)); 3109 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3110 I.getType()); 3111 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3112 } 3113 3114 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3115 // What to do depends on the size of the integer and the size of the pointer. 3116 // We can either truncate, zero extend, or no-op, accordingly. 3117 SDValue N = getValue(I.getOperand(0)); 3118 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3119 I.getType()); 3120 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3121 } 3122 3123 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3124 // What to do depends on the size of the integer and the size of the pointer. 3125 // We can either truncate, zero extend, or no-op, accordingly. 3126 SDValue N = getValue(I.getOperand(0)); 3127 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3128 I.getType()); 3129 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3130 } 3131 3132 void SelectionDAGBuilder::visitBitCast(const User &I) { 3133 SDValue N = getValue(I.getOperand(0)); 3134 SDLoc dl = getCurSDLoc(); 3135 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3136 I.getType()); 3137 3138 // BitCast assures us that source and destination are the same size so this is 3139 // either a BITCAST or a no-op. 3140 if (DestVT != N.getValueType()) 3141 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3142 DestVT, N)); // convert types. 3143 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3144 // might fold any kind of constant expression to an integer constant and that 3145 // is not what we are looking for. Only recognize a bitcast of a genuine 3146 // constant integer as an opaque constant. 3147 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3148 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3149 /*isOpaque*/true)); 3150 else 3151 setValue(&I, N); // noop cast. 3152 } 3153 3154 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3155 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3156 const Value *SV = I.getOperand(0); 3157 SDValue N = getValue(SV); 3158 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3159 3160 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3161 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3162 3163 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3164 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3165 3166 setValue(&I, N); 3167 } 3168 3169 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3170 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3171 SDValue InVec = getValue(I.getOperand(0)); 3172 SDValue InVal = getValue(I.getOperand(1)); 3173 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3174 TLI.getVectorIdxTy(DAG.getDataLayout())); 3175 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3176 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3177 InVec, InVal, InIdx)); 3178 } 3179 3180 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3181 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3182 SDValue InVec = getValue(I.getOperand(0)); 3183 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3184 TLI.getVectorIdxTy(DAG.getDataLayout())); 3185 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3186 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3187 InVec, InIdx)); 3188 } 3189 3190 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3191 SDValue Src1 = getValue(I.getOperand(0)); 3192 SDValue Src2 = getValue(I.getOperand(1)); 3193 SDLoc DL = getCurSDLoc(); 3194 3195 SmallVector<int, 8> Mask; 3196 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3197 unsigned MaskNumElts = Mask.size(); 3198 3199 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3200 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3201 EVT SrcVT = Src1.getValueType(); 3202 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3203 3204 if (SrcNumElts == MaskNumElts) { 3205 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3206 return; 3207 } 3208 3209 // Normalize the shuffle vector since mask and vector length don't match. 3210 if (SrcNumElts < MaskNumElts) { 3211 // Mask is longer than the source vectors. We can use concatenate vector to 3212 // make the mask and vectors lengths match. 3213 3214 if (MaskNumElts % SrcNumElts == 0) { 3215 // Mask length is a multiple of the source vector length. 3216 // Check if the shuffle is some kind of concatenation of the input 3217 // vectors. 3218 unsigned NumConcat = MaskNumElts / SrcNumElts; 3219 bool IsConcat = true; 3220 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3221 for (unsigned i = 0; i != MaskNumElts; ++i) { 3222 int Idx = Mask[i]; 3223 if (Idx < 0) 3224 continue; 3225 // Ensure the indices in each SrcVT sized piece are sequential and that 3226 // the same source is used for the whole piece. 3227 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3228 (ConcatSrcs[i / SrcNumElts] >= 0 && 3229 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3230 IsConcat = false; 3231 break; 3232 } 3233 // Remember which source this index came from. 3234 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3235 } 3236 3237 // The shuffle is concatenating multiple vectors together. Just emit 3238 // a CONCAT_VECTORS operation. 3239 if (IsConcat) { 3240 SmallVector<SDValue, 8> ConcatOps; 3241 for (auto Src : ConcatSrcs) { 3242 if (Src < 0) 3243 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3244 else if (Src == 0) 3245 ConcatOps.push_back(Src1); 3246 else 3247 ConcatOps.push_back(Src2); 3248 } 3249 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3250 return; 3251 } 3252 } 3253 3254 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3255 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3256 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3257 PaddedMaskNumElts); 3258 3259 // Pad both vectors with undefs to make them the same length as the mask. 3260 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3261 3262 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3263 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3264 MOps1[0] = Src1; 3265 MOps2[0] = Src2; 3266 3267 Src1 = Src1.isUndef() 3268 ? DAG.getUNDEF(PaddedVT) 3269 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3270 Src2 = Src2.isUndef() 3271 ? DAG.getUNDEF(PaddedVT) 3272 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3273 3274 // Readjust mask for new input vector length. 3275 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3276 for (unsigned i = 0; i != MaskNumElts; ++i) { 3277 int Idx = Mask[i]; 3278 if (Idx >= (int)SrcNumElts) 3279 Idx -= SrcNumElts - PaddedMaskNumElts; 3280 MappedOps[i] = Idx; 3281 } 3282 3283 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3284 3285 // If the concatenated vector was padded, extract a subvector with the 3286 // correct number of elements. 3287 if (MaskNumElts != PaddedMaskNumElts) 3288 Result = DAG.getNode( 3289 ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3290 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3291 3292 setValue(&I, Result); 3293 return; 3294 } 3295 3296 if (SrcNumElts > MaskNumElts) { 3297 // Analyze the access pattern of the vector to see if we can extract 3298 // two subvectors and do the shuffle. 3299 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3300 bool CanExtract = true; 3301 for (int Idx : Mask) { 3302 unsigned Input = 0; 3303 if (Idx < 0) 3304 continue; 3305 3306 if (Idx >= (int)SrcNumElts) { 3307 Input = 1; 3308 Idx -= SrcNumElts; 3309 } 3310 3311 // If all the indices come from the same MaskNumElts sized portion of 3312 // the sources we can use extract. Also make sure the extract wouldn't 3313 // extract past the end of the source. 3314 int NewStartIdx = alignDown(Idx, MaskNumElts); 3315 if (NewStartIdx + MaskNumElts > SrcNumElts || 3316 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3317 CanExtract = false; 3318 // Make sure we always update StartIdx as we use it to track if all 3319 // elements are undef. 3320 StartIdx[Input] = NewStartIdx; 3321 } 3322 3323 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3324 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3325 return; 3326 } 3327 if (CanExtract) { 3328 // Extract appropriate subvector and generate a vector shuffle 3329 for (unsigned Input = 0; Input < 2; ++Input) { 3330 SDValue &Src = Input == 0 ? Src1 : Src2; 3331 if (StartIdx[Input] < 0) 3332 Src = DAG.getUNDEF(VT); 3333 else { 3334 Src = DAG.getNode( 3335 ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3336 DAG.getConstant(StartIdx[Input], DL, 3337 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3338 } 3339 } 3340 3341 // Calculate new mask. 3342 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3343 for (int &Idx : MappedOps) { 3344 if (Idx >= (int)SrcNumElts) 3345 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3346 else if (Idx >= 0) 3347 Idx -= StartIdx[0]; 3348 } 3349 3350 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3351 return; 3352 } 3353 } 3354 3355 // We can't use either concat vectors or extract subvectors so fall back to 3356 // replacing the shuffle with extract and build vector. 3357 // to insert and build vector. 3358 EVT EltVT = VT.getVectorElementType(); 3359 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3360 SmallVector<SDValue,8> Ops; 3361 for (int Idx : Mask) { 3362 SDValue Res; 3363 3364 if (Idx < 0) { 3365 Res = DAG.getUNDEF(EltVT); 3366 } else { 3367 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3368 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3369 3370 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3371 EltVT, Src, DAG.getConstant(Idx, DL, IdxVT)); 3372 } 3373 3374 Ops.push_back(Res); 3375 } 3376 3377 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3378 } 3379 3380 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3381 ArrayRef<unsigned> Indices; 3382 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3383 Indices = IV->getIndices(); 3384 else 3385 Indices = cast<ConstantExpr>(&I)->getIndices(); 3386 3387 const Value *Op0 = I.getOperand(0); 3388 const Value *Op1 = I.getOperand(1); 3389 Type *AggTy = I.getType(); 3390 Type *ValTy = Op1->getType(); 3391 bool IntoUndef = isa<UndefValue>(Op0); 3392 bool FromUndef = isa<UndefValue>(Op1); 3393 3394 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3395 3396 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3397 SmallVector<EVT, 4> AggValueVTs; 3398 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3399 SmallVector<EVT, 4> ValValueVTs; 3400 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3401 3402 unsigned NumAggValues = AggValueVTs.size(); 3403 unsigned NumValValues = ValValueVTs.size(); 3404 SmallVector<SDValue, 4> Values(NumAggValues); 3405 3406 // Ignore an insertvalue that produces an empty object 3407 if (!NumAggValues) { 3408 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3409 return; 3410 } 3411 3412 SDValue Agg = getValue(Op0); 3413 unsigned i = 0; 3414 // Copy the beginning value(s) from the original aggregate. 3415 for (; i != LinearIndex; ++i) 3416 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3417 SDValue(Agg.getNode(), Agg.getResNo() + i); 3418 // Copy values from the inserted value(s). 3419 if (NumValValues) { 3420 SDValue Val = getValue(Op1); 3421 for (; i != LinearIndex + NumValValues; ++i) 3422 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3423 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3424 } 3425 // Copy remaining value(s) from the original aggregate. 3426 for (; i != NumAggValues; ++i) 3427 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3428 SDValue(Agg.getNode(), Agg.getResNo() + i); 3429 3430 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3431 DAG.getVTList(AggValueVTs), Values)); 3432 } 3433 3434 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3435 ArrayRef<unsigned> Indices; 3436 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3437 Indices = EV->getIndices(); 3438 else 3439 Indices = cast<ConstantExpr>(&I)->getIndices(); 3440 3441 const Value *Op0 = I.getOperand(0); 3442 Type *AggTy = Op0->getType(); 3443 Type *ValTy = I.getType(); 3444 bool OutOfUndef = isa<UndefValue>(Op0); 3445 3446 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3447 3448 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3449 SmallVector<EVT, 4> ValValueVTs; 3450 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3451 3452 unsigned NumValValues = ValValueVTs.size(); 3453 3454 // Ignore a extractvalue that produces an empty object 3455 if (!NumValValues) { 3456 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3457 return; 3458 } 3459 3460 SmallVector<SDValue, 4> Values(NumValValues); 3461 3462 SDValue Agg = getValue(Op0); 3463 // Copy out the selected value(s). 3464 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3465 Values[i - LinearIndex] = 3466 OutOfUndef ? 3467 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3468 SDValue(Agg.getNode(), Agg.getResNo() + i); 3469 3470 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3471 DAG.getVTList(ValValueVTs), Values)); 3472 } 3473 3474 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3475 Value *Op0 = I.getOperand(0); 3476 // Note that the pointer operand may be a vector of pointers. Take the scalar 3477 // element which holds a pointer. 3478 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3479 SDValue N = getValue(Op0); 3480 SDLoc dl = getCurSDLoc(); 3481 3482 // Normalize Vector GEP - all scalar operands should be converted to the 3483 // splat vector. 3484 unsigned VectorWidth = I.getType()->isVectorTy() ? 3485 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 3486 3487 if (VectorWidth && !N.getValueType().isVector()) { 3488 LLVMContext &Context = *DAG.getContext(); 3489 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); 3490 N = DAG.getSplatBuildVector(VT, dl, N); 3491 } 3492 3493 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3494 GTI != E; ++GTI) { 3495 const Value *Idx = GTI.getOperand(); 3496 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3497 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3498 if (Field) { 3499 // N = N + Offset 3500 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3501 3502 // In an inbounds GEP with an offset that is nonnegative even when 3503 // interpreted as signed, assume there is no unsigned overflow. 3504 SDNodeFlags Flags; 3505 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3506 Flags.setNoUnsignedWrap(true); 3507 3508 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3509 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3510 } 3511 } else { 3512 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3513 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3514 APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3515 3516 // If this is a scalar constant or a splat vector of constants, 3517 // handle it quickly. 3518 const auto *CI = dyn_cast<ConstantInt>(Idx); 3519 if (!CI && isa<ConstantDataVector>(Idx) && 3520 cast<ConstantDataVector>(Idx)->getSplatValue()) 3521 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3522 3523 if (CI) { 3524 if (CI->isZero()) 3525 continue; 3526 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize); 3527 LLVMContext &Context = *DAG.getContext(); 3528 SDValue OffsVal = VectorWidth ? 3529 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) : 3530 DAG.getConstant(Offs, dl, IdxTy); 3531 3532 // In an inbouds GEP with an offset that is nonnegative even when 3533 // interpreted as signed, assume there is no unsigned overflow. 3534 SDNodeFlags Flags; 3535 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3536 Flags.setNoUnsignedWrap(true); 3537 3538 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3539 continue; 3540 } 3541 3542 // N = N + Idx * ElementSize; 3543 SDValue IdxN = getValue(Idx); 3544 3545 if (!IdxN.getValueType().isVector() && VectorWidth) { 3546 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth); 3547 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3548 } 3549 3550 // If the index is smaller or larger than intptr_t, truncate or extend 3551 // it. 3552 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3553 3554 // If this is a multiply by a power of two, turn it into a shl 3555 // immediately. This is a very common case. 3556 if (ElementSize != 1) { 3557 if (ElementSize.isPowerOf2()) { 3558 unsigned Amt = ElementSize.logBase2(); 3559 IdxN = DAG.getNode(ISD::SHL, dl, 3560 N.getValueType(), IdxN, 3561 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3562 } else { 3563 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3564 IdxN = DAG.getNode(ISD::MUL, dl, 3565 N.getValueType(), IdxN, Scale); 3566 } 3567 } 3568 3569 N = DAG.getNode(ISD::ADD, dl, 3570 N.getValueType(), N, IdxN); 3571 } 3572 } 3573 3574 setValue(&I, N); 3575 } 3576 3577 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3578 // If this is a fixed sized alloca in the entry block of the function, 3579 // allocate it statically on the stack. 3580 if (FuncInfo.StaticAllocaMap.count(&I)) 3581 return; // getValue will auto-populate this. 3582 3583 SDLoc dl = getCurSDLoc(); 3584 Type *Ty = I.getAllocatedType(); 3585 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3586 auto &DL = DAG.getDataLayout(); 3587 uint64_t TySize = DL.getTypeAllocSize(Ty); 3588 unsigned Align = 3589 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3590 3591 SDValue AllocSize = getValue(I.getArraySize()); 3592 3593 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3594 if (AllocSize.getValueType() != IntPtr) 3595 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3596 3597 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3598 AllocSize, 3599 DAG.getConstant(TySize, dl, IntPtr)); 3600 3601 // Handle alignment. If the requested alignment is less than or equal to 3602 // the stack alignment, ignore it. If the size is greater than or equal to 3603 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3604 unsigned StackAlign = 3605 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3606 if (Align <= StackAlign) 3607 Align = 0; 3608 3609 // Round the size of the allocation up to the stack alignment size 3610 // by add SA-1 to the size. This doesn't overflow because we're computing 3611 // an address inside an alloca. 3612 SDNodeFlags Flags; 3613 Flags.setNoUnsignedWrap(true); 3614 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 3615 DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags); 3616 3617 // Mask out the low bits for alignment purposes. 3618 AllocSize = 3619 DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 3620 DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr)); 3621 3622 SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)}; 3623 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3624 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3625 setValue(&I, DSA); 3626 DAG.setRoot(DSA.getValue(1)); 3627 3628 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3629 } 3630 3631 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3632 if (I.isAtomic()) 3633 return visitAtomicLoad(I); 3634 3635 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3636 const Value *SV = I.getOperand(0); 3637 if (TLI.supportSwiftError()) { 3638 // Swifterror values can come from either a function parameter with 3639 // swifterror attribute or an alloca with swifterror attribute. 3640 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3641 if (Arg->hasSwiftErrorAttr()) 3642 return visitLoadFromSwiftError(I); 3643 } 3644 3645 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3646 if (Alloca->isSwiftError()) 3647 return visitLoadFromSwiftError(I); 3648 } 3649 } 3650 3651 SDValue Ptr = getValue(SV); 3652 3653 Type *Ty = I.getType(); 3654 3655 bool isVolatile = I.isVolatile(); 3656 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3657 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 3658 bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout()); 3659 unsigned Alignment = I.getAlignment(); 3660 3661 AAMDNodes AAInfo; 3662 I.getAAMetadata(AAInfo); 3663 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3664 3665 SmallVector<EVT, 4> ValueVTs; 3666 SmallVector<uint64_t, 4> Offsets; 3667 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3668 unsigned NumValues = ValueVTs.size(); 3669 if (NumValues == 0) 3670 return; 3671 3672 SDValue Root; 3673 bool ConstantMemory = false; 3674 if (isVolatile || NumValues > MaxParallelChains) 3675 // Serialize volatile loads with other side effects. 3676 Root = getRoot(); 3677 else if (AA && AA->pointsToConstantMemory(MemoryLocation( 3678 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3679 // Do not serialize (non-volatile) loads of constant memory with anything. 3680 Root = DAG.getEntryNode(); 3681 ConstantMemory = true; 3682 } else { 3683 // Do not serialize non-volatile loads against each other. 3684 Root = DAG.getRoot(); 3685 } 3686 3687 SDLoc dl = getCurSDLoc(); 3688 3689 if (isVolatile) 3690 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3691 3692 // An aggregate load cannot wrap around the address space, so offsets to its 3693 // parts don't wrap either. 3694 SDNodeFlags Flags; 3695 Flags.setNoUnsignedWrap(true); 3696 3697 SmallVector<SDValue, 4> Values(NumValues); 3698 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3699 EVT PtrVT = Ptr.getValueType(); 3700 unsigned ChainI = 0; 3701 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3702 // Serializing loads here may result in excessive register pressure, and 3703 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3704 // could recover a bit by hoisting nodes upward in the chain by recognizing 3705 // they are side-effect free or do not alias. The optimizer should really 3706 // avoid this case by converting large object/array copies to llvm.memcpy 3707 // (MaxParallelChains should always remain as failsafe). 3708 if (ChainI == MaxParallelChains) { 3709 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3710 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3711 makeArrayRef(Chains.data(), ChainI)); 3712 Root = Chain; 3713 ChainI = 0; 3714 } 3715 SDValue A = DAG.getNode(ISD::ADD, dl, 3716 PtrVT, Ptr, 3717 DAG.getConstant(Offsets[i], dl, PtrVT), 3718 Flags); 3719 auto MMOFlags = MachineMemOperand::MONone; 3720 if (isVolatile) 3721 MMOFlags |= MachineMemOperand::MOVolatile; 3722 if (isNonTemporal) 3723 MMOFlags |= MachineMemOperand::MONonTemporal; 3724 if (isInvariant) 3725 MMOFlags |= MachineMemOperand::MOInvariant; 3726 if (isDereferenceable) 3727 MMOFlags |= MachineMemOperand::MODereferenceable; 3728 MMOFlags |= TLI.getMMOFlags(I); 3729 3730 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A, 3731 MachinePointerInfo(SV, Offsets[i]), Alignment, 3732 MMOFlags, AAInfo, Ranges); 3733 3734 Values[i] = L; 3735 Chains[ChainI] = L.getValue(1); 3736 } 3737 3738 if (!ConstantMemory) { 3739 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3740 makeArrayRef(Chains.data(), ChainI)); 3741 if (isVolatile) 3742 DAG.setRoot(Chain); 3743 else 3744 PendingLoads.push_back(Chain); 3745 } 3746 3747 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3748 DAG.getVTList(ValueVTs), Values)); 3749 } 3750 3751 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 3752 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 3753 "call visitStoreToSwiftError when backend supports swifterror"); 3754 3755 SmallVector<EVT, 4> ValueVTs; 3756 SmallVector<uint64_t, 4> Offsets; 3757 const Value *SrcV = I.getOperand(0); 3758 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3759 SrcV->getType(), ValueVTs, &Offsets); 3760 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3761 "expect a single EVT for swifterror"); 3762 3763 SDValue Src = getValue(SrcV); 3764 // Create a virtual register, then update the virtual register. 3765 unsigned VReg; bool CreatedVReg; 3766 std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I); 3767 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 3768 // Chain can be getRoot or getControlRoot. 3769 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 3770 SDValue(Src.getNode(), Src.getResNo())); 3771 DAG.setRoot(CopyNode); 3772 if (CreatedVReg) 3773 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg); 3774 } 3775 3776 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 3777 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 3778 "call visitLoadFromSwiftError when backend supports swifterror"); 3779 3780 assert(!I.isVolatile() && 3781 I.getMetadata(LLVMContext::MD_nontemporal) == nullptr && 3782 I.getMetadata(LLVMContext::MD_invariant_load) == nullptr && 3783 "Support volatile, non temporal, invariant for load_from_swift_error"); 3784 3785 const Value *SV = I.getOperand(0); 3786 Type *Ty = I.getType(); 3787 AAMDNodes AAInfo; 3788 I.getAAMetadata(AAInfo); 3789 assert((!AA || !AA->pointsToConstantMemory(MemoryLocation( 3790 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) && 3791 "load_from_swift_error should not be constant memory"); 3792 3793 SmallVector<EVT, 4> ValueVTs; 3794 SmallVector<uint64_t, 4> Offsets; 3795 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 3796 ValueVTs, &Offsets); 3797 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3798 "expect a single EVT for swifterror"); 3799 3800 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 3801 SDValue L = DAG.getCopyFromReg( 3802 getRoot(), getCurSDLoc(), 3803 FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first, 3804 ValueVTs[0]); 3805 3806 setValue(&I, L); 3807 } 3808 3809 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3810 if (I.isAtomic()) 3811 return visitAtomicStore(I); 3812 3813 const Value *SrcV = I.getOperand(0); 3814 const Value *PtrV = I.getOperand(1); 3815 3816 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3817 if (TLI.supportSwiftError()) { 3818 // Swifterror values can come from either a function parameter with 3819 // swifterror attribute or an alloca with swifterror attribute. 3820 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 3821 if (Arg->hasSwiftErrorAttr()) 3822 return visitStoreToSwiftError(I); 3823 } 3824 3825 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 3826 if (Alloca->isSwiftError()) 3827 return visitStoreToSwiftError(I); 3828 } 3829 } 3830 3831 SmallVector<EVT, 4> ValueVTs; 3832 SmallVector<uint64_t, 4> Offsets; 3833 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3834 SrcV->getType(), ValueVTs, &Offsets); 3835 unsigned NumValues = ValueVTs.size(); 3836 if (NumValues == 0) 3837 return; 3838 3839 // Get the lowered operands. Note that we do this after 3840 // checking if NumResults is zero, because with zero results 3841 // the operands won't have values in the map. 3842 SDValue Src = getValue(SrcV); 3843 SDValue Ptr = getValue(PtrV); 3844 3845 SDValue Root = getRoot(); 3846 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3847 SDLoc dl = getCurSDLoc(); 3848 EVT PtrVT = Ptr.getValueType(); 3849 unsigned Alignment = I.getAlignment(); 3850 AAMDNodes AAInfo; 3851 I.getAAMetadata(AAInfo); 3852 3853 auto MMOFlags = MachineMemOperand::MONone; 3854 if (I.isVolatile()) 3855 MMOFlags |= MachineMemOperand::MOVolatile; 3856 if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr) 3857 MMOFlags |= MachineMemOperand::MONonTemporal; 3858 MMOFlags |= TLI.getMMOFlags(I); 3859 3860 // An aggregate load cannot wrap around the address space, so offsets to its 3861 // parts don't wrap either. 3862 SDNodeFlags Flags; 3863 Flags.setNoUnsignedWrap(true); 3864 3865 unsigned ChainI = 0; 3866 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3867 // See visitLoad comments. 3868 if (ChainI == MaxParallelChains) { 3869 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3870 makeArrayRef(Chains.data(), ChainI)); 3871 Root = Chain; 3872 ChainI = 0; 3873 } 3874 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3875 DAG.getConstant(Offsets[i], dl, PtrVT), Flags); 3876 SDValue St = DAG.getStore( 3877 Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add, 3878 MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo); 3879 Chains[ChainI] = St; 3880 } 3881 3882 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3883 makeArrayRef(Chains.data(), ChainI)); 3884 DAG.setRoot(StoreNode); 3885 } 3886 3887 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 3888 bool IsCompressing) { 3889 SDLoc sdl = getCurSDLoc(); 3890 3891 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3892 unsigned& Alignment) { 3893 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3894 Src0 = I.getArgOperand(0); 3895 Ptr = I.getArgOperand(1); 3896 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 3897 Mask = I.getArgOperand(3); 3898 }; 3899 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3900 unsigned& Alignment) { 3901 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 3902 Src0 = I.getArgOperand(0); 3903 Ptr = I.getArgOperand(1); 3904 Mask = I.getArgOperand(2); 3905 Alignment = 0; 3906 }; 3907 3908 Value *PtrOperand, *MaskOperand, *Src0Operand; 3909 unsigned Alignment; 3910 if (IsCompressing) 3911 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3912 else 3913 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3914 3915 SDValue Ptr = getValue(PtrOperand); 3916 SDValue Src0 = getValue(Src0Operand); 3917 SDValue Mask = getValue(MaskOperand); 3918 3919 EVT VT = Src0.getValueType(); 3920 if (!Alignment) 3921 Alignment = DAG.getEVTAlignment(VT); 3922 3923 AAMDNodes AAInfo; 3924 I.getAAMetadata(AAInfo); 3925 3926 MachineMemOperand *MMO = 3927 DAG.getMachineFunction(). 3928 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3929 MachineMemOperand::MOStore, VT.getStoreSize(), 3930 Alignment, AAInfo); 3931 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3932 MMO, false /* Truncating */, 3933 IsCompressing); 3934 DAG.setRoot(StoreNode); 3935 setValue(&I, StoreNode); 3936 } 3937 3938 // Get a uniform base for the Gather/Scatter intrinsic. 3939 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3940 // We try to represent it as a base pointer + vector of indices. 3941 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3942 // The first operand of the GEP may be a single pointer or a vector of pointers 3943 // Example: 3944 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3945 // or 3946 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3947 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3948 // 3949 // When the first GEP operand is a single pointer - it is the uniform base we 3950 // are looking for. If first operand of the GEP is a splat vector - we 3951 // extract the splat value and use it as a uniform base. 3952 // In all other cases the function returns 'false'. 3953 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index, 3954 SDValue &Scale, SelectionDAGBuilder* SDB) { 3955 SelectionDAG& DAG = SDB->DAG; 3956 LLVMContext &Context = *DAG.getContext(); 3957 3958 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3959 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3960 if (!GEP) 3961 return false; 3962 3963 const Value *GEPPtr = GEP->getPointerOperand(); 3964 if (!GEPPtr->getType()->isVectorTy()) 3965 Ptr = GEPPtr; 3966 else if (!(Ptr = getSplatValue(GEPPtr))) 3967 return false; 3968 3969 unsigned FinalIndex = GEP->getNumOperands() - 1; 3970 Value *IndexVal = GEP->getOperand(FinalIndex); 3971 3972 // Ensure all the other indices are 0. 3973 for (unsigned i = 1; i < FinalIndex; ++i) { 3974 auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i)); 3975 if (!C || !C->isZero()) 3976 return false; 3977 } 3978 3979 // The operands of the GEP may be defined in another basic block. 3980 // In this case we'll not find nodes for the operands. 3981 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3982 return false; 3983 3984 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3985 const DataLayout &DL = DAG.getDataLayout(); 3986 Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()), 3987 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 3988 Base = SDB->getValue(Ptr); 3989 Index = SDB->getValue(IndexVal); 3990 3991 if (!Index.getValueType().isVector()) { 3992 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3993 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3994 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 3995 } 3996 return true; 3997 } 3998 3999 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4000 SDLoc sdl = getCurSDLoc(); 4001 4002 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 4003 const Value *Ptr = I.getArgOperand(1); 4004 SDValue Src0 = getValue(I.getArgOperand(0)); 4005 SDValue Mask = getValue(I.getArgOperand(3)); 4006 EVT VT = Src0.getValueType(); 4007 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 4008 if (!Alignment) 4009 Alignment = DAG.getEVTAlignment(VT); 4010 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4011 4012 AAMDNodes AAInfo; 4013 I.getAAMetadata(AAInfo); 4014 4015 SDValue Base; 4016 SDValue Index; 4017 SDValue Scale; 4018 const Value *BasePtr = Ptr; 4019 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); 4020 4021 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 4022 MachineMemOperand *MMO = DAG.getMachineFunction(). 4023 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 4024 MachineMemOperand::MOStore, VT.getStoreSize(), 4025 Alignment, AAInfo); 4026 if (!UniformBase) { 4027 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4028 Index = getValue(Ptr); 4029 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4030 } 4031 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale }; 4032 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4033 Ops, MMO); 4034 DAG.setRoot(Scatter); 4035 setValue(&I, Scatter); 4036 } 4037 4038 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4039 SDLoc sdl = getCurSDLoc(); 4040 4041 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4042 unsigned& Alignment) { 4043 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4044 Ptr = I.getArgOperand(0); 4045 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4046 Mask = I.getArgOperand(2); 4047 Src0 = I.getArgOperand(3); 4048 }; 4049 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4050 unsigned& Alignment) { 4051 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4052 Ptr = I.getArgOperand(0); 4053 Alignment = 0; 4054 Mask = I.getArgOperand(1); 4055 Src0 = I.getArgOperand(2); 4056 }; 4057 4058 Value *PtrOperand, *MaskOperand, *Src0Operand; 4059 unsigned Alignment; 4060 if (IsExpanding) 4061 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4062 else 4063 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4064 4065 SDValue Ptr = getValue(PtrOperand); 4066 SDValue Src0 = getValue(Src0Operand); 4067 SDValue Mask = getValue(MaskOperand); 4068 4069 EVT VT = Src0.getValueType(); 4070 if (!Alignment) 4071 Alignment = DAG.getEVTAlignment(VT); 4072 4073 AAMDNodes AAInfo; 4074 I.getAAMetadata(AAInfo); 4075 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4076 4077 // Do not serialize masked loads of constant memory with anything. 4078 bool AddToChain = !AA || !AA->pointsToConstantMemory(MemoryLocation( 4079 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), AAInfo)); 4080 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4081 4082 MachineMemOperand *MMO = 4083 DAG.getMachineFunction(). 4084 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4085 MachineMemOperand::MOLoad, VT.getStoreSize(), 4086 Alignment, AAInfo, Ranges); 4087 4088 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 4089 ISD::NON_EXTLOAD, IsExpanding); 4090 if (AddToChain) 4091 PendingLoads.push_back(Load.getValue(1)); 4092 setValue(&I, Load); 4093 } 4094 4095 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4096 SDLoc sdl = getCurSDLoc(); 4097 4098 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4099 const Value *Ptr = I.getArgOperand(0); 4100 SDValue Src0 = getValue(I.getArgOperand(3)); 4101 SDValue Mask = getValue(I.getArgOperand(2)); 4102 4103 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4104 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4105 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 4106 if (!Alignment) 4107 Alignment = DAG.getEVTAlignment(VT); 4108 4109 AAMDNodes AAInfo; 4110 I.getAAMetadata(AAInfo); 4111 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4112 4113 SDValue Root = DAG.getRoot(); 4114 SDValue Base; 4115 SDValue Index; 4116 SDValue Scale; 4117 const Value *BasePtr = Ptr; 4118 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); 4119 bool ConstantMemory = false; 4120 if (UniformBase && 4121 AA && AA->pointsToConstantMemory(MemoryLocation( 4122 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 4123 AAInfo))) { 4124 // Do not serialize (non-volatile) loads of constant memory with anything. 4125 Root = DAG.getEntryNode(); 4126 ConstantMemory = true; 4127 } 4128 4129 MachineMemOperand *MMO = 4130 DAG.getMachineFunction(). 4131 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 4132 MachineMemOperand::MOLoad, VT.getStoreSize(), 4133 Alignment, AAInfo, Ranges); 4134 4135 if (!UniformBase) { 4136 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4137 Index = getValue(Ptr); 4138 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4139 } 4140 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4141 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4142 Ops, MMO); 4143 4144 SDValue OutChain = Gather.getValue(1); 4145 if (!ConstantMemory) 4146 PendingLoads.push_back(OutChain); 4147 setValue(&I, Gather); 4148 } 4149 4150 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4151 SDLoc dl = getCurSDLoc(); 4152 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 4153 AtomicOrdering FailureOrder = I.getFailureOrdering(); 4154 SyncScope::ID SSID = I.getSyncScopeID(); 4155 4156 SDValue InChain = getRoot(); 4157 4158 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4159 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4160 SDValue L = DAG.getAtomicCmpSwap( 4161 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 4162 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 4163 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 4164 /*Alignment=*/ 0, SuccessOrder, FailureOrder, SSID); 4165 4166 SDValue OutChain = L.getValue(2); 4167 4168 setValue(&I, L); 4169 DAG.setRoot(OutChain); 4170 } 4171 4172 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4173 SDLoc dl = getCurSDLoc(); 4174 ISD::NodeType NT; 4175 switch (I.getOperation()) { 4176 default: llvm_unreachable("Unknown atomicrmw operation"); 4177 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4178 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4179 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4180 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4181 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4182 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4183 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4184 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4185 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4186 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4187 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4188 } 4189 AtomicOrdering Order = I.getOrdering(); 4190 SyncScope::ID SSID = I.getSyncScopeID(); 4191 4192 SDValue InChain = getRoot(); 4193 4194 SDValue L = 4195 DAG.getAtomic(NT, dl, 4196 getValue(I.getValOperand()).getSimpleValueType(), 4197 InChain, 4198 getValue(I.getPointerOperand()), 4199 getValue(I.getValOperand()), 4200 I.getPointerOperand(), 4201 /* Alignment=*/ 0, Order, SSID); 4202 4203 SDValue OutChain = L.getValue(1); 4204 4205 setValue(&I, L); 4206 DAG.setRoot(OutChain); 4207 } 4208 4209 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4210 SDLoc dl = getCurSDLoc(); 4211 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4212 SDValue Ops[3]; 4213 Ops[0] = getRoot(); 4214 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl, 4215 TLI.getFenceOperandTy(DAG.getDataLayout())); 4216 Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl, 4217 TLI.getFenceOperandTy(DAG.getDataLayout())); 4218 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4219 } 4220 4221 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4222 SDLoc dl = getCurSDLoc(); 4223 AtomicOrdering Order = I.getOrdering(); 4224 SyncScope::ID SSID = I.getSyncScopeID(); 4225 4226 SDValue InChain = getRoot(); 4227 4228 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4229 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4230 4231 if (!TLI.supportsUnalignedAtomics() && 4232 I.getAlignment() < VT.getStoreSize()) 4233 report_fatal_error("Cannot generate unaligned atomic load"); 4234 4235 MachineMemOperand *MMO = 4236 DAG.getMachineFunction(). 4237 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4238 MachineMemOperand::MOVolatile | 4239 MachineMemOperand::MOLoad, 4240 VT.getStoreSize(), 4241 I.getAlignment() ? I.getAlignment() : 4242 DAG.getEVTAlignment(VT), 4243 AAMDNodes(), nullptr, SSID, Order); 4244 4245 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4246 SDValue L = 4247 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 4248 getValue(I.getPointerOperand()), MMO); 4249 4250 SDValue OutChain = L.getValue(1); 4251 4252 setValue(&I, L); 4253 DAG.setRoot(OutChain); 4254 } 4255 4256 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4257 SDLoc dl = getCurSDLoc(); 4258 4259 AtomicOrdering Order = I.getOrdering(); 4260 SyncScope::ID SSID = I.getSyncScopeID(); 4261 4262 SDValue InChain = getRoot(); 4263 4264 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4265 EVT VT = 4266 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4267 4268 if (I.getAlignment() < VT.getStoreSize()) 4269 report_fatal_error("Cannot generate unaligned atomic store"); 4270 4271 SDValue OutChain = 4272 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 4273 InChain, 4274 getValue(I.getPointerOperand()), 4275 getValue(I.getValueOperand()), 4276 I.getPointerOperand(), I.getAlignment(), 4277 Order, SSID); 4278 4279 DAG.setRoot(OutChain); 4280 } 4281 4282 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4283 /// node. 4284 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4285 unsigned Intrinsic) { 4286 // Ignore the callsite's attributes. A specific call site may be marked with 4287 // readnone, but the lowering code will expect the chain based on the 4288 // definition. 4289 const Function *F = I.getCalledFunction(); 4290 bool HasChain = !F->doesNotAccessMemory(); 4291 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4292 4293 // Build the operand list. 4294 SmallVector<SDValue, 8> Ops; 4295 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4296 if (OnlyLoad) { 4297 // We don't need to serialize loads against other loads. 4298 Ops.push_back(DAG.getRoot()); 4299 } else { 4300 Ops.push_back(getRoot()); 4301 } 4302 } 4303 4304 // Info is set by getTgtMemInstrinsic 4305 TargetLowering::IntrinsicInfo Info; 4306 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4307 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4308 DAG.getMachineFunction(), 4309 Intrinsic); 4310 4311 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4312 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4313 Info.opc == ISD::INTRINSIC_W_CHAIN) 4314 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4315 TLI.getPointerTy(DAG.getDataLayout()))); 4316 4317 // Add all operands of the call to the operand list. 4318 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4319 SDValue Op = getValue(I.getArgOperand(i)); 4320 Ops.push_back(Op); 4321 } 4322 4323 SmallVector<EVT, 4> ValueVTs; 4324 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4325 4326 if (HasChain) 4327 ValueVTs.push_back(MVT::Other); 4328 4329 SDVTList VTs = DAG.getVTList(ValueVTs); 4330 4331 // Create the node. 4332 SDValue Result; 4333 if (IsTgtIntrinsic) { 4334 // This is target intrinsic that touches memory 4335 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, 4336 Ops, Info.memVT, 4337 MachinePointerInfo(Info.ptrVal, Info.offset), Info.align, 4338 Info.flags, Info.size); 4339 } else if (!HasChain) { 4340 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4341 } else if (!I.getType()->isVoidTy()) { 4342 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4343 } else { 4344 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4345 } 4346 4347 if (HasChain) { 4348 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4349 if (OnlyLoad) 4350 PendingLoads.push_back(Chain); 4351 else 4352 DAG.setRoot(Chain); 4353 } 4354 4355 if (!I.getType()->isVoidTy()) { 4356 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4357 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4358 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4359 } else 4360 Result = lowerRangeToAssertZExt(DAG, I, Result); 4361 4362 setValue(&I, Result); 4363 } 4364 } 4365 4366 /// GetSignificand - Get the significand and build it into a floating-point 4367 /// number with exponent of 1: 4368 /// 4369 /// Op = (Op & 0x007fffff) | 0x3f800000; 4370 /// 4371 /// where Op is the hexadecimal representation of floating point value. 4372 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4373 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4374 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4375 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4376 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4377 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4378 } 4379 4380 /// GetExponent - Get the exponent: 4381 /// 4382 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4383 /// 4384 /// where Op is the hexadecimal representation of floating point value. 4385 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4386 const TargetLowering &TLI, const SDLoc &dl) { 4387 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4388 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4389 SDValue t1 = DAG.getNode( 4390 ISD::SRL, dl, MVT::i32, t0, 4391 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4392 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4393 DAG.getConstant(127, dl, MVT::i32)); 4394 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4395 } 4396 4397 /// getF32Constant - Get 32-bit floating point constant. 4398 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4399 const SDLoc &dl) { 4400 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4401 MVT::f32); 4402 } 4403 4404 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4405 SelectionDAG &DAG) { 4406 // TODO: What fast-math-flags should be set on the floating-point nodes? 4407 4408 // IntegerPartOfX = ((int32_t)(t0); 4409 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4410 4411 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4412 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4413 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4414 4415 // IntegerPartOfX <<= 23; 4416 IntegerPartOfX = DAG.getNode( 4417 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4418 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4419 DAG.getDataLayout()))); 4420 4421 SDValue TwoToFractionalPartOfX; 4422 if (LimitFloatPrecision <= 6) { 4423 // For floating-point precision of 6: 4424 // 4425 // TwoToFractionalPartOfX = 4426 // 0.997535578f + 4427 // (0.735607626f + 0.252464424f * x) * x; 4428 // 4429 // error 0.0144103317, which is 6 bits 4430 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4431 getF32Constant(DAG, 0x3e814304, dl)); 4432 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4433 getF32Constant(DAG, 0x3f3c50c8, dl)); 4434 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4435 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4436 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4437 } else if (LimitFloatPrecision <= 12) { 4438 // For floating-point precision of 12: 4439 // 4440 // TwoToFractionalPartOfX = 4441 // 0.999892986f + 4442 // (0.696457318f + 4443 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4444 // 4445 // error 0.000107046256, which is 13 to 14 bits 4446 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4447 getF32Constant(DAG, 0x3da235e3, dl)); 4448 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4449 getF32Constant(DAG, 0x3e65b8f3, dl)); 4450 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4451 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4452 getF32Constant(DAG, 0x3f324b07, dl)); 4453 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4454 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4455 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4456 } else { // LimitFloatPrecision <= 18 4457 // For floating-point precision of 18: 4458 // 4459 // TwoToFractionalPartOfX = 4460 // 0.999999982f + 4461 // (0.693148872f + 4462 // (0.240227044f + 4463 // (0.554906021e-1f + 4464 // (0.961591928e-2f + 4465 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4466 // error 2.47208000*10^(-7), which is better than 18 bits 4467 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4468 getF32Constant(DAG, 0x3924b03e, dl)); 4469 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4470 getF32Constant(DAG, 0x3ab24b87, dl)); 4471 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4472 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4473 getF32Constant(DAG, 0x3c1d8c17, dl)); 4474 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4475 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4476 getF32Constant(DAG, 0x3d634a1d, dl)); 4477 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4478 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4479 getF32Constant(DAG, 0x3e75fe14, dl)); 4480 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4481 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4482 getF32Constant(DAG, 0x3f317234, dl)); 4483 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4484 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4485 getF32Constant(DAG, 0x3f800000, dl)); 4486 } 4487 4488 // Add the exponent into the result in integer domain. 4489 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4490 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4491 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4492 } 4493 4494 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4495 /// limited-precision mode. 4496 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4497 const TargetLowering &TLI) { 4498 if (Op.getValueType() == MVT::f32 && 4499 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4500 4501 // Put the exponent in the right bit position for later addition to the 4502 // final result: 4503 // 4504 // #define LOG2OFe 1.4426950f 4505 // t0 = Op * LOG2OFe 4506 4507 // TODO: What fast-math-flags should be set here? 4508 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4509 getF32Constant(DAG, 0x3fb8aa3b, dl)); 4510 return getLimitedPrecisionExp2(t0, dl, DAG); 4511 } 4512 4513 // No special expansion. 4514 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4515 } 4516 4517 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4518 /// limited-precision mode. 4519 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4520 const TargetLowering &TLI) { 4521 // TODO: What fast-math-flags should be set on the floating-point nodes? 4522 4523 if (Op.getValueType() == MVT::f32 && 4524 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4525 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4526 4527 // Scale the exponent by log(2) [0.69314718f]. 4528 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4529 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4530 getF32Constant(DAG, 0x3f317218, dl)); 4531 4532 // Get the significand and build it into a floating-point number with 4533 // exponent of 1. 4534 SDValue X = GetSignificand(DAG, Op1, dl); 4535 4536 SDValue LogOfMantissa; 4537 if (LimitFloatPrecision <= 6) { 4538 // For floating-point precision of 6: 4539 // 4540 // LogofMantissa = 4541 // -1.1609546f + 4542 // (1.4034025f - 0.23903021f * x) * x; 4543 // 4544 // error 0.0034276066, which is better than 8 bits 4545 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4546 getF32Constant(DAG, 0xbe74c456, dl)); 4547 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4548 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4549 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4550 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4551 getF32Constant(DAG, 0x3f949a29, dl)); 4552 } else if (LimitFloatPrecision <= 12) { 4553 // For floating-point precision of 12: 4554 // 4555 // LogOfMantissa = 4556 // -1.7417939f + 4557 // (2.8212026f + 4558 // (-1.4699568f + 4559 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4560 // 4561 // error 0.000061011436, which is 14 bits 4562 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4563 getF32Constant(DAG, 0xbd67b6d6, dl)); 4564 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4565 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4566 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4567 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4568 getF32Constant(DAG, 0x3fbc278b, dl)); 4569 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4570 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4571 getF32Constant(DAG, 0x40348e95, dl)); 4572 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4573 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4574 getF32Constant(DAG, 0x3fdef31a, dl)); 4575 } else { // LimitFloatPrecision <= 18 4576 // For floating-point precision of 18: 4577 // 4578 // LogOfMantissa = 4579 // -2.1072184f + 4580 // (4.2372794f + 4581 // (-3.7029485f + 4582 // (2.2781945f + 4583 // (-0.87823314f + 4584 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4585 // 4586 // error 0.0000023660568, which is better than 18 bits 4587 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4588 getF32Constant(DAG, 0xbc91e5ac, dl)); 4589 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4590 getF32Constant(DAG, 0x3e4350aa, dl)); 4591 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4592 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4593 getF32Constant(DAG, 0x3f60d3e3, dl)); 4594 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4595 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4596 getF32Constant(DAG, 0x4011cdf0, dl)); 4597 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4598 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4599 getF32Constant(DAG, 0x406cfd1c, dl)); 4600 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4601 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4602 getF32Constant(DAG, 0x408797cb, dl)); 4603 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4604 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4605 getF32Constant(DAG, 0x4006dcab, dl)); 4606 } 4607 4608 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4609 } 4610 4611 // No special expansion. 4612 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4613 } 4614 4615 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4616 /// limited-precision mode. 4617 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4618 const TargetLowering &TLI) { 4619 // TODO: What fast-math-flags should be set on the floating-point nodes? 4620 4621 if (Op.getValueType() == MVT::f32 && 4622 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4623 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4624 4625 // Get the exponent. 4626 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4627 4628 // Get the significand and build it into a floating-point number with 4629 // exponent of 1. 4630 SDValue X = GetSignificand(DAG, Op1, dl); 4631 4632 // Different possible minimax approximations of significand in 4633 // floating-point for various degrees of accuracy over [1,2]. 4634 SDValue Log2ofMantissa; 4635 if (LimitFloatPrecision <= 6) { 4636 // For floating-point precision of 6: 4637 // 4638 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4639 // 4640 // error 0.0049451742, which is more than 7 bits 4641 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4642 getF32Constant(DAG, 0xbeb08fe0, dl)); 4643 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4644 getF32Constant(DAG, 0x40019463, dl)); 4645 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4646 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4647 getF32Constant(DAG, 0x3fd6633d, dl)); 4648 } else if (LimitFloatPrecision <= 12) { 4649 // For floating-point precision of 12: 4650 // 4651 // Log2ofMantissa = 4652 // -2.51285454f + 4653 // (4.07009056f + 4654 // (-2.12067489f + 4655 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4656 // 4657 // error 0.0000876136000, which is better than 13 bits 4658 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4659 getF32Constant(DAG, 0xbda7262e, dl)); 4660 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4661 getF32Constant(DAG, 0x3f25280b, dl)); 4662 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4663 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4664 getF32Constant(DAG, 0x4007b923, dl)); 4665 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4666 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4667 getF32Constant(DAG, 0x40823e2f, dl)); 4668 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4669 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4670 getF32Constant(DAG, 0x4020d29c, dl)); 4671 } else { // LimitFloatPrecision <= 18 4672 // For floating-point precision of 18: 4673 // 4674 // Log2ofMantissa = 4675 // -3.0400495f + 4676 // (6.1129976f + 4677 // (-5.3420409f + 4678 // (3.2865683f + 4679 // (-1.2669343f + 4680 // (0.27515199f - 4681 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4682 // 4683 // error 0.0000018516, which is better than 18 bits 4684 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4685 getF32Constant(DAG, 0xbcd2769e, dl)); 4686 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4687 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4688 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4689 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4690 getF32Constant(DAG, 0x3fa22ae7, dl)); 4691 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4692 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4693 getF32Constant(DAG, 0x40525723, dl)); 4694 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4695 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4696 getF32Constant(DAG, 0x40aaf200, dl)); 4697 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4698 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4699 getF32Constant(DAG, 0x40c39dad, dl)); 4700 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4701 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4702 getF32Constant(DAG, 0x4042902c, dl)); 4703 } 4704 4705 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4706 } 4707 4708 // No special expansion. 4709 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4710 } 4711 4712 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4713 /// limited-precision mode. 4714 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4715 const TargetLowering &TLI) { 4716 // TODO: What fast-math-flags should be set on the floating-point nodes? 4717 4718 if (Op.getValueType() == MVT::f32 && 4719 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4720 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4721 4722 // Scale the exponent by log10(2) [0.30102999f]. 4723 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4724 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4725 getF32Constant(DAG, 0x3e9a209a, dl)); 4726 4727 // Get the significand and build it into a floating-point number with 4728 // exponent of 1. 4729 SDValue X = GetSignificand(DAG, Op1, dl); 4730 4731 SDValue Log10ofMantissa; 4732 if (LimitFloatPrecision <= 6) { 4733 // For floating-point precision of 6: 4734 // 4735 // Log10ofMantissa = 4736 // -0.50419619f + 4737 // (0.60948995f - 0.10380950f * x) * x; 4738 // 4739 // error 0.0014886165, which is 6 bits 4740 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4741 getF32Constant(DAG, 0xbdd49a13, dl)); 4742 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4743 getF32Constant(DAG, 0x3f1c0789, dl)); 4744 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4745 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4746 getF32Constant(DAG, 0x3f011300, dl)); 4747 } else if (LimitFloatPrecision <= 12) { 4748 // For floating-point precision of 12: 4749 // 4750 // Log10ofMantissa = 4751 // -0.64831180f + 4752 // (0.91751397f + 4753 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4754 // 4755 // error 0.00019228036, which is better than 12 bits 4756 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4757 getF32Constant(DAG, 0x3d431f31, dl)); 4758 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4759 getF32Constant(DAG, 0x3ea21fb2, dl)); 4760 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4761 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4762 getF32Constant(DAG, 0x3f6ae232, dl)); 4763 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4764 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4765 getF32Constant(DAG, 0x3f25f7c3, dl)); 4766 } else { // LimitFloatPrecision <= 18 4767 // For floating-point precision of 18: 4768 // 4769 // Log10ofMantissa = 4770 // -0.84299375f + 4771 // (1.5327582f + 4772 // (-1.0688956f + 4773 // (0.49102474f + 4774 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4775 // 4776 // error 0.0000037995730, which is better than 18 bits 4777 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4778 getF32Constant(DAG, 0x3c5d51ce, dl)); 4779 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4780 getF32Constant(DAG, 0x3e00685a, dl)); 4781 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4782 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4783 getF32Constant(DAG, 0x3efb6798, dl)); 4784 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4785 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4786 getF32Constant(DAG, 0x3f88d192, dl)); 4787 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4788 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4789 getF32Constant(DAG, 0x3fc4316c, dl)); 4790 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4791 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4792 getF32Constant(DAG, 0x3f57ce70, dl)); 4793 } 4794 4795 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4796 } 4797 4798 // No special expansion. 4799 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4800 } 4801 4802 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4803 /// limited-precision mode. 4804 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4805 const TargetLowering &TLI) { 4806 if (Op.getValueType() == MVT::f32 && 4807 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4808 return getLimitedPrecisionExp2(Op, dl, DAG); 4809 4810 // No special expansion. 4811 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4812 } 4813 4814 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4815 /// limited-precision mode with x == 10.0f. 4816 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 4817 SelectionDAG &DAG, const TargetLowering &TLI) { 4818 bool IsExp10 = false; 4819 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4820 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4821 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4822 APFloat Ten(10.0f); 4823 IsExp10 = LHSC->isExactlyValue(Ten); 4824 } 4825 } 4826 4827 // TODO: What fast-math-flags should be set on the FMUL node? 4828 if (IsExp10) { 4829 // Put the exponent in the right bit position for later addition to the 4830 // final result: 4831 // 4832 // #define LOG2OF10 3.3219281f 4833 // t0 = Op * LOG2OF10; 4834 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4835 getF32Constant(DAG, 0x40549a78, dl)); 4836 return getLimitedPrecisionExp2(t0, dl, DAG); 4837 } 4838 4839 // No special expansion. 4840 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4841 } 4842 4843 /// ExpandPowI - Expand a llvm.powi intrinsic. 4844 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 4845 SelectionDAG &DAG) { 4846 // If RHS is a constant, we can expand this out to a multiplication tree, 4847 // otherwise we end up lowering to a call to __powidf2 (for example). When 4848 // optimizing for size, we only want to do this if the expansion would produce 4849 // a small number of multiplies, otherwise we do the full expansion. 4850 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4851 // Get the exponent as a positive value. 4852 unsigned Val = RHSC->getSExtValue(); 4853 if ((int)Val < 0) Val = -Val; 4854 4855 // powi(x, 0) -> 1.0 4856 if (Val == 0) 4857 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4858 4859 const Function &F = DAG.getMachineFunction().getFunction(); 4860 if (!F.optForSize() || 4861 // If optimizing for size, don't insert too many multiplies. 4862 // This inserts up to 5 multiplies. 4863 countPopulation(Val) + Log2_32(Val) < 7) { 4864 // We use the simple binary decomposition method to generate the multiply 4865 // sequence. There are more optimal ways to do this (for example, 4866 // powi(x,15) generates one more multiply than it should), but this has 4867 // the benefit of being both really simple and much better than a libcall. 4868 SDValue Res; // Logically starts equal to 1.0 4869 SDValue CurSquare = LHS; 4870 // TODO: Intrinsics should have fast-math-flags that propagate to these 4871 // nodes. 4872 while (Val) { 4873 if (Val & 1) { 4874 if (Res.getNode()) 4875 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4876 else 4877 Res = CurSquare; // 1.0*CurSquare. 4878 } 4879 4880 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4881 CurSquare, CurSquare); 4882 Val >>= 1; 4883 } 4884 4885 // If the original was negative, invert the result, producing 1/(x*x*x). 4886 if (RHSC->getSExtValue() < 0) 4887 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4888 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4889 return Res; 4890 } 4891 } 4892 4893 // Otherwise, expand to a libcall. 4894 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4895 } 4896 4897 // getUnderlyingArgReg - Find underlying register used for a truncated or 4898 // bitcasted argument. 4899 static unsigned getUnderlyingArgReg(const SDValue &N) { 4900 switch (N.getOpcode()) { 4901 case ISD::CopyFromReg: 4902 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4903 case ISD::BITCAST: 4904 case ISD::AssertZext: 4905 case ISD::AssertSext: 4906 case ISD::TRUNCATE: 4907 return getUnderlyingArgReg(N.getOperand(0)); 4908 default: 4909 return 0; 4910 } 4911 } 4912 4913 /// If the DbgValueInst is a dbg_value of a function argument, create the 4914 /// corresponding DBG_VALUE machine instruction for it now. At the end of 4915 /// instruction selection, they will be inserted to the entry BB. 4916 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4917 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4918 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 4919 const Argument *Arg = dyn_cast<Argument>(V); 4920 if (!Arg) 4921 return false; 4922 4923 MachineFunction &MF = DAG.getMachineFunction(); 4924 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4925 4926 bool IsIndirect = false; 4927 Optional<MachineOperand> Op; 4928 // Some arguments' frame index is recorded during argument lowering. 4929 int FI = FuncInfo.getArgumentFrameIndex(Arg); 4930 if (FI != std::numeric_limits<int>::max()) 4931 Op = MachineOperand::CreateFI(FI); 4932 4933 if (!Op && N.getNode()) { 4934 unsigned Reg = getUnderlyingArgReg(N); 4935 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4936 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4937 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4938 if (PR) 4939 Reg = PR; 4940 } 4941 if (Reg) { 4942 Op = MachineOperand::CreateReg(Reg, false); 4943 IsIndirect = IsDbgDeclare; 4944 } 4945 } 4946 4947 if (!Op && N.getNode()) 4948 // Check if frame index is available. 4949 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4950 if (FrameIndexSDNode *FINode = 4951 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4952 Op = MachineOperand::CreateFI(FINode->getIndex()); 4953 4954 if (!Op) { 4955 // Check if ValueMap has reg number. 4956 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4957 if (VMI != FuncInfo.ValueMap.end()) { 4958 const auto &TLI = DAG.getTargetLoweringInfo(); 4959 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 4960 V->getType(), getABIRegCopyCC(V)); 4961 if (RFV.occupiesMultipleRegs()) { 4962 unsigned Offset = 0; 4963 for (auto RegAndSize : RFV.getRegsAndSizes()) { 4964 Op = MachineOperand::CreateReg(RegAndSize.first, false); 4965 auto FragmentExpr = DIExpression::createFragmentExpression( 4966 Expr, Offset, RegAndSize.second); 4967 if (!FragmentExpr) 4968 continue; 4969 FuncInfo.ArgDbgValues.push_back( 4970 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, 4971 Op->getReg(), Variable, *FragmentExpr)); 4972 Offset += RegAndSize.second; 4973 } 4974 return true; 4975 } 4976 Op = MachineOperand::CreateReg(VMI->second, false); 4977 IsIndirect = IsDbgDeclare; 4978 } 4979 } 4980 4981 if (!Op) 4982 return false; 4983 4984 assert(Variable->isValidLocationForIntrinsic(DL) && 4985 "Expected inlined-at fields to agree"); 4986 IsIndirect = (Op->isReg()) ? IsIndirect : true; 4987 FuncInfo.ArgDbgValues.push_back( 4988 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4989 *Op, Variable, Expr)); 4990 4991 return true; 4992 } 4993 4994 /// Return the appropriate SDDbgValue based on N. 4995 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 4996 DILocalVariable *Variable, 4997 DIExpression *Expr, 4998 const DebugLoc &dl, 4999 unsigned DbgSDNodeOrder) { 5000 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5001 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5002 // stack slot locations. 5003 // 5004 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5005 // debug values here after optimization: 5006 // 5007 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5008 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5009 // 5010 // Both describe the direct values of their associated variables. 5011 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5012 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5013 } 5014 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5015 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5016 } 5017 5018 // VisualStudio defines setjmp as _setjmp 5019 #if defined(_MSC_VER) && defined(setjmp) && \ 5020 !defined(setjmp_undefined_for_msvc) 5021 # pragma push_macro("setjmp") 5022 # undef setjmp 5023 # define setjmp_undefined_for_msvc 5024 #endif 5025 5026 /// Lower the call to the specified intrinsic function. If we want to emit this 5027 /// as a call to a named external function, return the name. Otherwise, lower it 5028 /// and return null. 5029 const char * 5030 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 5031 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5032 SDLoc sdl = getCurSDLoc(); 5033 DebugLoc dl = getCurDebugLoc(); 5034 SDValue Res; 5035 5036 switch (Intrinsic) { 5037 default: 5038 // By default, turn this into a target intrinsic node. 5039 visitTargetIntrinsic(I, Intrinsic); 5040 return nullptr; 5041 case Intrinsic::vastart: visitVAStart(I); return nullptr; 5042 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 5043 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 5044 case Intrinsic::returnaddress: 5045 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5046 TLI.getPointerTy(DAG.getDataLayout()), 5047 getValue(I.getArgOperand(0)))); 5048 return nullptr; 5049 case Intrinsic::addressofreturnaddress: 5050 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5051 TLI.getPointerTy(DAG.getDataLayout()))); 5052 return nullptr; 5053 case Intrinsic::frameaddress: 5054 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5055 TLI.getPointerTy(DAG.getDataLayout()), 5056 getValue(I.getArgOperand(0)))); 5057 return nullptr; 5058 case Intrinsic::read_register: { 5059 Value *Reg = I.getArgOperand(0); 5060 SDValue Chain = getRoot(); 5061 SDValue RegName = 5062 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5063 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5064 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5065 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5066 setValue(&I, Res); 5067 DAG.setRoot(Res.getValue(1)); 5068 return nullptr; 5069 } 5070 case Intrinsic::write_register: { 5071 Value *Reg = I.getArgOperand(0); 5072 Value *RegValue = I.getArgOperand(1); 5073 SDValue Chain = getRoot(); 5074 SDValue RegName = 5075 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5076 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5077 RegName, getValue(RegValue))); 5078 return nullptr; 5079 } 5080 case Intrinsic::setjmp: 5081 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 5082 case Intrinsic::longjmp: 5083 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 5084 case Intrinsic::memcpy: { 5085 const auto &MCI = cast<MemCpyInst>(I); 5086 SDValue Op1 = getValue(I.getArgOperand(0)); 5087 SDValue Op2 = getValue(I.getArgOperand(1)); 5088 SDValue Op3 = getValue(I.getArgOperand(2)); 5089 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5090 unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1); 5091 unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1); 5092 unsigned Align = MinAlign(DstAlign, SrcAlign); 5093 bool isVol = MCI.isVolatile(); 5094 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5095 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5096 // node. 5097 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5098 false, isTC, 5099 MachinePointerInfo(I.getArgOperand(0)), 5100 MachinePointerInfo(I.getArgOperand(1))); 5101 updateDAGForMaybeTailCall(MC); 5102 return nullptr; 5103 } 5104 case Intrinsic::memset: { 5105 const auto &MSI = cast<MemSetInst>(I); 5106 SDValue Op1 = getValue(I.getArgOperand(0)); 5107 SDValue Op2 = getValue(I.getArgOperand(1)); 5108 SDValue Op3 = getValue(I.getArgOperand(2)); 5109 // @llvm.memset defines 0 and 1 to both mean no alignment. 5110 unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1); 5111 bool isVol = MSI.isVolatile(); 5112 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5113 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5114 isTC, MachinePointerInfo(I.getArgOperand(0))); 5115 updateDAGForMaybeTailCall(MS); 5116 return nullptr; 5117 } 5118 case Intrinsic::memmove: { 5119 const auto &MMI = cast<MemMoveInst>(I); 5120 SDValue Op1 = getValue(I.getArgOperand(0)); 5121 SDValue Op2 = getValue(I.getArgOperand(1)); 5122 SDValue Op3 = getValue(I.getArgOperand(2)); 5123 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5124 unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1); 5125 unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1); 5126 unsigned Align = MinAlign(DstAlign, SrcAlign); 5127 bool isVol = MMI.isVolatile(); 5128 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5129 // FIXME: Support passing different dest/src alignments to the memmove DAG 5130 // node. 5131 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5132 isTC, MachinePointerInfo(I.getArgOperand(0)), 5133 MachinePointerInfo(I.getArgOperand(1))); 5134 updateDAGForMaybeTailCall(MM); 5135 return nullptr; 5136 } 5137 case Intrinsic::memcpy_element_unordered_atomic: { 5138 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5139 SDValue Dst = getValue(MI.getRawDest()); 5140 SDValue Src = getValue(MI.getRawSource()); 5141 SDValue Length = getValue(MI.getLength()); 5142 5143 unsigned DstAlign = MI.getDestAlignment(); 5144 unsigned SrcAlign = MI.getSourceAlignment(); 5145 Type *LengthTy = MI.getLength()->getType(); 5146 unsigned ElemSz = MI.getElementSizeInBytes(); 5147 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5148 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5149 SrcAlign, Length, LengthTy, ElemSz, isTC, 5150 MachinePointerInfo(MI.getRawDest()), 5151 MachinePointerInfo(MI.getRawSource())); 5152 updateDAGForMaybeTailCall(MC); 5153 return nullptr; 5154 } 5155 case Intrinsic::memmove_element_unordered_atomic: { 5156 auto &MI = cast<AtomicMemMoveInst>(I); 5157 SDValue Dst = getValue(MI.getRawDest()); 5158 SDValue Src = getValue(MI.getRawSource()); 5159 SDValue Length = getValue(MI.getLength()); 5160 5161 unsigned DstAlign = MI.getDestAlignment(); 5162 unsigned SrcAlign = MI.getSourceAlignment(); 5163 Type *LengthTy = MI.getLength()->getType(); 5164 unsigned ElemSz = MI.getElementSizeInBytes(); 5165 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5166 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5167 SrcAlign, Length, LengthTy, ElemSz, isTC, 5168 MachinePointerInfo(MI.getRawDest()), 5169 MachinePointerInfo(MI.getRawSource())); 5170 updateDAGForMaybeTailCall(MC); 5171 return nullptr; 5172 } 5173 case Intrinsic::memset_element_unordered_atomic: { 5174 auto &MI = cast<AtomicMemSetInst>(I); 5175 SDValue Dst = getValue(MI.getRawDest()); 5176 SDValue Val = getValue(MI.getValue()); 5177 SDValue Length = getValue(MI.getLength()); 5178 5179 unsigned DstAlign = MI.getDestAlignment(); 5180 Type *LengthTy = MI.getLength()->getType(); 5181 unsigned ElemSz = MI.getElementSizeInBytes(); 5182 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5183 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5184 LengthTy, ElemSz, isTC, 5185 MachinePointerInfo(MI.getRawDest())); 5186 updateDAGForMaybeTailCall(MC); 5187 return nullptr; 5188 } 5189 case Intrinsic::dbg_addr: 5190 case Intrinsic::dbg_declare: { 5191 const auto &DI = cast<DbgVariableIntrinsic>(I); 5192 DILocalVariable *Variable = DI.getVariable(); 5193 DIExpression *Expression = DI.getExpression(); 5194 dropDanglingDebugInfo(Variable, Expression); 5195 assert(Variable && "Missing variable"); 5196 5197 // Check if address has undef value. 5198 const Value *Address = DI.getVariableLocation(); 5199 if (!Address || isa<UndefValue>(Address) || 5200 (Address->use_empty() && !isa<Argument>(Address))) { 5201 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5202 return nullptr; 5203 } 5204 5205 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5206 5207 // Check if this variable can be described by a frame index, typically 5208 // either as a static alloca or a byval parameter. 5209 int FI = std::numeric_limits<int>::max(); 5210 if (const auto *AI = 5211 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5212 if (AI->isStaticAlloca()) { 5213 auto I = FuncInfo.StaticAllocaMap.find(AI); 5214 if (I != FuncInfo.StaticAllocaMap.end()) 5215 FI = I->second; 5216 } 5217 } else if (const auto *Arg = dyn_cast<Argument>( 5218 Address->stripInBoundsConstantOffsets())) { 5219 FI = FuncInfo.getArgumentFrameIndex(Arg); 5220 } 5221 5222 // llvm.dbg.addr is control dependent and always generates indirect 5223 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5224 // the MachineFunction variable table. 5225 if (FI != std::numeric_limits<int>::max()) { 5226 if (Intrinsic == Intrinsic::dbg_addr) { 5227 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 5228 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder); 5229 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 5230 } 5231 return nullptr; 5232 } 5233 5234 SDValue &N = NodeMap[Address]; 5235 if (!N.getNode() && isa<Argument>(Address)) 5236 // Check unused arguments map. 5237 N = UnusedArgNodeMap[Address]; 5238 SDDbgValue *SDV; 5239 if (N.getNode()) { 5240 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5241 Address = BCI->getOperand(0); 5242 // Parameters are handled specially. 5243 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5244 if (isParameter && FINode) { 5245 // Byval parameter. We have a frame index at this point. 5246 SDV = 5247 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 5248 /*IsIndirect*/ true, dl, SDNodeOrder); 5249 } else if (isa<Argument>(Address)) { 5250 // Address is an argument, so try to emit its dbg value using 5251 // virtual register info from the FuncInfo.ValueMap. 5252 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5253 return nullptr; 5254 } else { 5255 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5256 true, dl, SDNodeOrder); 5257 } 5258 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5259 } else { 5260 // If Address is an argument then try to emit its dbg value using 5261 // virtual register info from the FuncInfo.ValueMap. 5262 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5263 N)) { 5264 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5265 } 5266 } 5267 return nullptr; 5268 } 5269 case Intrinsic::dbg_label: { 5270 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 5271 DILabel *Label = DI.getLabel(); 5272 assert(Label && "Missing label"); 5273 5274 SDDbgLabel *SDV; 5275 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 5276 DAG.AddDbgLabel(SDV); 5277 return nullptr; 5278 } 5279 case Intrinsic::dbg_value: { 5280 const DbgValueInst &DI = cast<DbgValueInst>(I); 5281 assert(DI.getVariable() && "Missing variable"); 5282 5283 DILocalVariable *Variable = DI.getVariable(); 5284 DIExpression *Expression = DI.getExpression(); 5285 dropDanglingDebugInfo(Variable, Expression); 5286 const Value *V = DI.getValue(); 5287 if (!V) 5288 return nullptr; 5289 5290 SDDbgValue *SDV; 5291 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 5292 SDV = DAG.getConstantDbgValue(Variable, Expression, V, dl, SDNodeOrder); 5293 DAG.AddDbgValue(SDV, nullptr, false); 5294 return nullptr; 5295 } 5296 5297 // Do not use getValue() in here; we don't want to generate code at 5298 // this point if it hasn't been done yet. 5299 SDValue N = NodeMap[V]; 5300 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 5301 N = UnusedArgNodeMap[V]; 5302 if (N.getNode()) { 5303 if (EmitFuncArgumentDbgValue(V, Variable, Expression, dl, false, N)) 5304 return nullptr; 5305 SDV = getDbgValue(N, Variable, Expression, dl, SDNodeOrder); 5306 DAG.AddDbgValue(SDV, N.getNode(), false); 5307 return nullptr; 5308 } 5309 5310 // PHI nodes have already been selected, so we should know which VReg that 5311 // is assigns to already. 5312 if (isa<PHINode>(V)) { 5313 auto VMI = FuncInfo.ValueMap.find(V); 5314 if (VMI != FuncInfo.ValueMap.end()) { 5315 unsigned Reg = VMI->second; 5316 // The PHI node may be split up into several MI PHI nodes (in 5317 // FunctionLoweringInfo::set). 5318 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 5319 V->getType(), None); 5320 if (RFV.occupiesMultipleRegs()) { 5321 unsigned Offset = 0; 5322 unsigned BitsToDescribe = 0; 5323 if (auto VarSize = Variable->getSizeInBits()) 5324 BitsToDescribe = *VarSize; 5325 if (auto Fragment = Expression->getFragmentInfo()) 5326 BitsToDescribe = Fragment->SizeInBits; 5327 for (auto RegAndSize : RFV.getRegsAndSizes()) { 5328 unsigned RegisterSize = RegAndSize.second; 5329 // Bail out if all bits are described already. 5330 if (Offset >= BitsToDescribe) 5331 break; 5332 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 5333 ? BitsToDescribe - Offset 5334 : RegisterSize; 5335 auto FragmentExpr = DIExpression::createFragmentExpression( 5336 Expression, Offset, FragmentSize); 5337 if (!FragmentExpr) 5338 continue; 5339 SDV = DAG.getVRegDbgValue(Variable, *FragmentExpr, RegAndSize.first, 5340 false, dl, SDNodeOrder); 5341 DAG.AddDbgValue(SDV, nullptr, false); 5342 Offset += RegisterSize; 5343 } 5344 } else { 5345 SDV = DAG.getVRegDbgValue(Variable, Expression, Reg, false, dl, 5346 SDNodeOrder); 5347 DAG.AddDbgValue(SDV, nullptr, false); 5348 } 5349 return nullptr; 5350 } 5351 } 5352 5353 // TODO: When we get here we will either drop the dbg.value completely, or 5354 // we try to move it forward by letting it dangle for awhile. So we should 5355 // probably add an extra DbgValue to the DAG here, with a reference to 5356 // "noreg", to indicate that we have lost the debug location for the 5357 // variable. 5358 5359 if (!V->use_empty() ) { 5360 // Do not call getValue(V) yet, as we don't want to generate code. 5361 // Remember it for later. 5362 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder); 5363 return nullptr; 5364 } 5365 5366 LLVM_DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 5367 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 5368 return nullptr; 5369 } 5370 5371 case Intrinsic::eh_typeid_for: { 5372 // Find the type id for the given typeinfo. 5373 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5374 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5375 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5376 setValue(&I, Res); 5377 return nullptr; 5378 } 5379 5380 case Intrinsic::eh_return_i32: 5381 case Intrinsic::eh_return_i64: 5382 DAG.getMachineFunction().setCallsEHReturn(true); 5383 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5384 MVT::Other, 5385 getControlRoot(), 5386 getValue(I.getArgOperand(0)), 5387 getValue(I.getArgOperand(1)))); 5388 return nullptr; 5389 case Intrinsic::eh_unwind_init: 5390 DAG.getMachineFunction().setCallsUnwindInit(true); 5391 return nullptr; 5392 case Intrinsic::eh_dwarf_cfa: 5393 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5394 TLI.getPointerTy(DAG.getDataLayout()), 5395 getValue(I.getArgOperand(0)))); 5396 return nullptr; 5397 case Intrinsic::eh_sjlj_callsite: { 5398 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5399 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5400 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5401 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5402 5403 MMI.setCurrentCallSite(CI->getZExtValue()); 5404 return nullptr; 5405 } 5406 case Intrinsic::eh_sjlj_functioncontext: { 5407 // Get and store the index of the function context. 5408 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5409 AllocaInst *FnCtx = 5410 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5411 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5412 MFI.setFunctionContextIndex(FI); 5413 return nullptr; 5414 } 5415 case Intrinsic::eh_sjlj_setjmp: { 5416 SDValue Ops[2]; 5417 Ops[0] = getRoot(); 5418 Ops[1] = getValue(I.getArgOperand(0)); 5419 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5420 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5421 setValue(&I, Op.getValue(0)); 5422 DAG.setRoot(Op.getValue(1)); 5423 return nullptr; 5424 } 5425 case Intrinsic::eh_sjlj_longjmp: 5426 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5427 getRoot(), getValue(I.getArgOperand(0)))); 5428 return nullptr; 5429 case Intrinsic::eh_sjlj_setup_dispatch: 5430 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 5431 getRoot())); 5432 return nullptr; 5433 case Intrinsic::masked_gather: 5434 visitMaskedGather(I); 5435 return nullptr; 5436 case Intrinsic::masked_load: 5437 visitMaskedLoad(I); 5438 return nullptr; 5439 case Intrinsic::masked_scatter: 5440 visitMaskedScatter(I); 5441 return nullptr; 5442 case Intrinsic::masked_store: 5443 visitMaskedStore(I); 5444 return nullptr; 5445 case Intrinsic::masked_expandload: 5446 visitMaskedLoad(I, true /* IsExpanding */); 5447 return nullptr; 5448 case Intrinsic::masked_compressstore: 5449 visitMaskedStore(I, true /* IsCompressing */); 5450 return nullptr; 5451 case Intrinsic::x86_mmx_pslli_w: 5452 case Intrinsic::x86_mmx_pslli_d: 5453 case Intrinsic::x86_mmx_pslli_q: 5454 case Intrinsic::x86_mmx_psrli_w: 5455 case Intrinsic::x86_mmx_psrli_d: 5456 case Intrinsic::x86_mmx_psrli_q: 5457 case Intrinsic::x86_mmx_psrai_w: 5458 case Intrinsic::x86_mmx_psrai_d: { 5459 SDValue ShAmt = getValue(I.getArgOperand(1)); 5460 if (isa<ConstantSDNode>(ShAmt)) { 5461 visitTargetIntrinsic(I, Intrinsic); 5462 return nullptr; 5463 } 5464 unsigned NewIntrinsic = 0; 5465 EVT ShAmtVT = MVT::v2i32; 5466 switch (Intrinsic) { 5467 case Intrinsic::x86_mmx_pslli_w: 5468 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5469 break; 5470 case Intrinsic::x86_mmx_pslli_d: 5471 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5472 break; 5473 case Intrinsic::x86_mmx_pslli_q: 5474 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5475 break; 5476 case Intrinsic::x86_mmx_psrli_w: 5477 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5478 break; 5479 case Intrinsic::x86_mmx_psrli_d: 5480 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5481 break; 5482 case Intrinsic::x86_mmx_psrli_q: 5483 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5484 break; 5485 case Intrinsic::x86_mmx_psrai_w: 5486 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5487 break; 5488 case Intrinsic::x86_mmx_psrai_d: 5489 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5490 break; 5491 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5492 } 5493 5494 // The vector shift intrinsics with scalars uses 32b shift amounts but 5495 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5496 // to be zero. 5497 // We must do this early because v2i32 is not a legal type. 5498 SDValue ShOps[2]; 5499 ShOps[0] = ShAmt; 5500 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 5501 ShAmt = DAG.getBuildVector(ShAmtVT, sdl, ShOps); 5502 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5503 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5504 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5505 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 5506 getValue(I.getArgOperand(0)), ShAmt); 5507 setValue(&I, Res); 5508 return nullptr; 5509 } 5510 case Intrinsic::powi: 5511 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5512 getValue(I.getArgOperand(1)), DAG)); 5513 return nullptr; 5514 case Intrinsic::log: 5515 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5516 return nullptr; 5517 case Intrinsic::log2: 5518 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5519 return nullptr; 5520 case Intrinsic::log10: 5521 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5522 return nullptr; 5523 case Intrinsic::exp: 5524 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5525 return nullptr; 5526 case Intrinsic::exp2: 5527 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5528 return nullptr; 5529 case Intrinsic::pow: 5530 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5531 getValue(I.getArgOperand(1)), DAG, TLI)); 5532 return nullptr; 5533 case Intrinsic::sqrt: 5534 case Intrinsic::fabs: 5535 case Intrinsic::sin: 5536 case Intrinsic::cos: 5537 case Intrinsic::floor: 5538 case Intrinsic::ceil: 5539 case Intrinsic::trunc: 5540 case Intrinsic::rint: 5541 case Intrinsic::nearbyint: 5542 case Intrinsic::round: 5543 case Intrinsic::canonicalize: { 5544 unsigned Opcode; 5545 switch (Intrinsic) { 5546 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5547 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5548 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5549 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5550 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5551 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5552 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5553 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5554 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5555 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5556 case Intrinsic::round: Opcode = ISD::FROUND; break; 5557 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 5558 } 5559 5560 setValue(&I, DAG.getNode(Opcode, sdl, 5561 getValue(I.getArgOperand(0)).getValueType(), 5562 getValue(I.getArgOperand(0)))); 5563 return nullptr; 5564 } 5565 case Intrinsic::minnum: { 5566 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5567 unsigned Opc = 5568 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT) 5569 ? ISD::FMINNAN 5570 : ISD::FMINNUM; 5571 setValue(&I, DAG.getNode(Opc, sdl, VT, 5572 getValue(I.getArgOperand(0)), 5573 getValue(I.getArgOperand(1)))); 5574 return nullptr; 5575 } 5576 case Intrinsic::maxnum: { 5577 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5578 unsigned Opc = 5579 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT) 5580 ? ISD::FMAXNAN 5581 : ISD::FMAXNUM; 5582 setValue(&I, DAG.getNode(Opc, sdl, VT, 5583 getValue(I.getArgOperand(0)), 5584 getValue(I.getArgOperand(1)))); 5585 return nullptr; 5586 } 5587 case Intrinsic::minimum: 5588 setValue(&I, DAG.getNode(ISD::FMINNAN, sdl, 5589 getValue(I.getArgOperand(0)).getValueType(), 5590 getValue(I.getArgOperand(0)), 5591 getValue(I.getArgOperand(1)))); 5592 return nullptr; 5593 case Intrinsic::maximum: 5594 setValue(&I, DAG.getNode(ISD::FMAXNAN, sdl, 5595 getValue(I.getArgOperand(0)).getValueType(), 5596 getValue(I.getArgOperand(0)), 5597 getValue(I.getArgOperand(1)))); 5598 return nullptr; 5599 case Intrinsic::copysign: 5600 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5601 getValue(I.getArgOperand(0)).getValueType(), 5602 getValue(I.getArgOperand(0)), 5603 getValue(I.getArgOperand(1)))); 5604 return nullptr; 5605 case Intrinsic::fma: 5606 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5607 getValue(I.getArgOperand(0)).getValueType(), 5608 getValue(I.getArgOperand(0)), 5609 getValue(I.getArgOperand(1)), 5610 getValue(I.getArgOperand(2)))); 5611 return nullptr; 5612 case Intrinsic::experimental_constrained_fadd: 5613 case Intrinsic::experimental_constrained_fsub: 5614 case Intrinsic::experimental_constrained_fmul: 5615 case Intrinsic::experimental_constrained_fdiv: 5616 case Intrinsic::experimental_constrained_frem: 5617 case Intrinsic::experimental_constrained_fma: 5618 case Intrinsic::experimental_constrained_sqrt: 5619 case Intrinsic::experimental_constrained_pow: 5620 case Intrinsic::experimental_constrained_powi: 5621 case Intrinsic::experimental_constrained_sin: 5622 case Intrinsic::experimental_constrained_cos: 5623 case Intrinsic::experimental_constrained_exp: 5624 case Intrinsic::experimental_constrained_exp2: 5625 case Intrinsic::experimental_constrained_log: 5626 case Intrinsic::experimental_constrained_log10: 5627 case Intrinsic::experimental_constrained_log2: 5628 case Intrinsic::experimental_constrained_rint: 5629 case Intrinsic::experimental_constrained_nearbyint: 5630 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 5631 return nullptr; 5632 case Intrinsic::fmuladd: { 5633 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5634 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5635 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 5636 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5637 getValue(I.getArgOperand(0)).getValueType(), 5638 getValue(I.getArgOperand(0)), 5639 getValue(I.getArgOperand(1)), 5640 getValue(I.getArgOperand(2)))); 5641 } else { 5642 // TODO: Intrinsic calls should have fast-math-flags. 5643 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5644 getValue(I.getArgOperand(0)).getValueType(), 5645 getValue(I.getArgOperand(0)), 5646 getValue(I.getArgOperand(1))); 5647 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5648 getValue(I.getArgOperand(0)).getValueType(), 5649 Mul, 5650 getValue(I.getArgOperand(2))); 5651 setValue(&I, Add); 5652 } 5653 return nullptr; 5654 } 5655 case Intrinsic::convert_to_fp16: 5656 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5657 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5658 getValue(I.getArgOperand(0)), 5659 DAG.getTargetConstant(0, sdl, 5660 MVT::i32)))); 5661 return nullptr; 5662 case Intrinsic::convert_from_fp16: 5663 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 5664 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5665 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5666 getValue(I.getArgOperand(0))))); 5667 return nullptr; 5668 case Intrinsic::pcmarker: { 5669 SDValue Tmp = getValue(I.getArgOperand(0)); 5670 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5671 return nullptr; 5672 } 5673 case Intrinsic::readcyclecounter: { 5674 SDValue Op = getRoot(); 5675 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5676 DAG.getVTList(MVT::i64, MVT::Other), Op); 5677 setValue(&I, Res); 5678 DAG.setRoot(Res.getValue(1)); 5679 return nullptr; 5680 } 5681 case Intrinsic::bitreverse: 5682 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 5683 getValue(I.getArgOperand(0)).getValueType(), 5684 getValue(I.getArgOperand(0)))); 5685 return nullptr; 5686 case Intrinsic::bswap: 5687 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5688 getValue(I.getArgOperand(0)).getValueType(), 5689 getValue(I.getArgOperand(0)))); 5690 return nullptr; 5691 case Intrinsic::cttz: { 5692 SDValue Arg = getValue(I.getArgOperand(0)); 5693 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5694 EVT Ty = Arg.getValueType(); 5695 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5696 sdl, Ty, Arg)); 5697 return nullptr; 5698 } 5699 case Intrinsic::ctlz: { 5700 SDValue Arg = getValue(I.getArgOperand(0)); 5701 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5702 EVT Ty = Arg.getValueType(); 5703 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5704 sdl, Ty, Arg)); 5705 return nullptr; 5706 } 5707 case Intrinsic::ctpop: { 5708 SDValue Arg = getValue(I.getArgOperand(0)); 5709 EVT Ty = Arg.getValueType(); 5710 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5711 return nullptr; 5712 } 5713 case Intrinsic::fshl: 5714 case Intrinsic::fshr: { 5715 bool IsFSHL = Intrinsic == Intrinsic::fshl; 5716 SDValue X = getValue(I.getArgOperand(0)); 5717 SDValue Y = getValue(I.getArgOperand(1)); 5718 SDValue Z = getValue(I.getArgOperand(2)); 5719 EVT VT = X.getValueType(); 5720 SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT); 5721 SDValue Zero = DAG.getConstant(0, sdl, VT); 5722 SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC); 5723 5724 // When X == Y, this is rotate. If the data type has a power-of-2 size, we 5725 // avoid the select that is necessary in the general case to filter out 5726 // the 0-shift possibility that leads to UB. 5727 if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) { 5728 // TODO: This should also be done if the operation is custom, but we have 5729 // to make sure targets are handling the modulo shift amount as expected. 5730 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 5731 if (TLI.isOperationLegal(RotateOpcode, VT)) { 5732 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 5733 return nullptr; 5734 } 5735 5736 // Some targets only rotate one way. Try the opposite direction. 5737 RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL; 5738 if (TLI.isOperationLegal(RotateOpcode, VT)) { 5739 // Negate the shift amount because it is safe to ignore the high bits. 5740 SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 5741 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt)); 5742 return nullptr; 5743 } 5744 5745 // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW)) 5746 // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW)) 5747 SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 5748 SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC); 5749 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt); 5750 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt); 5751 setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY)); 5752 return nullptr; 5753 } 5754 5755 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 5756 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 5757 SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt); 5758 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt); 5759 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt); 5760 SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY); 5761 5762 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 5763 // and that is undefined. We must compare and select to avoid UB. 5764 EVT CCVT = MVT::i1; 5765 if (VT.isVector()) 5766 CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements()); 5767 5768 // For fshl, 0-shift returns the 1st arg (X). 5769 // For fshr, 0-shift returns the 2nd arg (Y). 5770 SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ); 5771 setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or)); 5772 return nullptr; 5773 } 5774 case Intrinsic::stacksave: { 5775 SDValue Op = getRoot(); 5776 Res = DAG.getNode( 5777 ISD::STACKSAVE, sdl, 5778 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 5779 setValue(&I, Res); 5780 DAG.setRoot(Res.getValue(1)); 5781 return nullptr; 5782 } 5783 case Intrinsic::stackrestore: 5784 Res = getValue(I.getArgOperand(0)); 5785 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5786 return nullptr; 5787 case Intrinsic::get_dynamic_area_offset: { 5788 SDValue Op = getRoot(); 5789 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5790 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5791 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 5792 // target. 5793 if (PtrTy != ResTy) 5794 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 5795 " intrinsic!"); 5796 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 5797 Op); 5798 DAG.setRoot(Op); 5799 setValue(&I, Res); 5800 return nullptr; 5801 } 5802 case Intrinsic::stackguard: { 5803 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5804 MachineFunction &MF = DAG.getMachineFunction(); 5805 const Module &M = *MF.getFunction().getParent(); 5806 SDValue Chain = getRoot(); 5807 if (TLI.useLoadStackGuardNode()) { 5808 Res = getLoadStackGuard(DAG, sdl, Chain); 5809 } else { 5810 const Value *Global = TLI.getSDagStackGuard(M); 5811 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 5812 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 5813 MachinePointerInfo(Global, 0), Align, 5814 MachineMemOperand::MOVolatile); 5815 } 5816 if (TLI.useStackGuardXorFP()) 5817 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 5818 DAG.setRoot(Chain); 5819 setValue(&I, Res); 5820 return nullptr; 5821 } 5822 case Intrinsic::stackprotector: { 5823 // Emit code into the DAG to store the stack guard onto the stack. 5824 MachineFunction &MF = DAG.getMachineFunction(); 5825 MachineFrameInfo &MFI = MF.getFrameInfo(); 5826 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5827 SDValue Src, Chain = getRoot(); 5828 5829 if (TLI.useLoadStackGuardNode()) 5830 Src = getLoadStackGuard(DAG, sdl, Chain); 5831 else 5832 Src = getValue(I.getArgOperand(0)); // The guard's value. 5833 5834 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5835 5836 int FI = FuncInfo.StaticAllocaMap[Slot]; 5837 MFI.setStackProtectorIndex(FI); 5838 5839 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5840 5841 // Store the stack protector onto the stack. 5842 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 5843 DAG.getMachineFunction(), FI), 5844 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 5845 setValue(&I, Res); 5846 DAG.setRoot(Res); 5847 return nullptr; 5848 } 5849 case Intrinsic::objectsize: { 5850 // If we don't know by now, we're never going to know. 5851 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5852 5853 assert(CI && "Non-constant type in __builtin_object_size?"); 5854 5855 SDValue Arg = getValue(I.getCalledValue()); 5856 EVT Ty = Arg.getValueType(); 5857 5858 if (CI->isZero()) 5859 Res = DAG.getConstant(-1ULL, sdl, Ty); 5860 else 5861 Res = DAG.getConstant(0, sdl, Ty); 5862 5863 setValue(&I, Res); 5864 return nullptr; 5865 } 5866 case Intrinsic::annotation: 5867 case Intrinsic::ptr_annotation: 5868 case Intrinsic::launder_invariant_group: 5869 case Intrinsic::strip_invariant_group: 5870 // Drop the intrinsic, but forward the value 5871 setValue(&I, getValue(I.getOperand(0))); 5872 return nullptr; 5873 case Intrinsic::assume: 5874 case Intrinsic::var_annotation: 5875 case Intrinsic::sideeffect: 5876 // Discard annotate attributes, assumptions, and artificial side-effects. 5877 return nullptr; 5878 5879 case Intrinsic::codeview_annotation: { 5880 // Emit a label associated with this metadata. 5881 MachineFunction &MF = DAG.getMachineFunction(); 5882 MCSymbol *Label = 5883 MF.getMMI().getContext().createTempSymbol("annotation", true); 5884 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 5885 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 5886 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 5887 DAG.setRoot(Res); 5888 return nullptr; 5889 } 5890 5891 case Intrinsic::init_trampoline: { 5892 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5893 5894 SDValue Ops[6]; 5895 Ops[0] = getRoot(); 5896 Ops[1] = getValue(I.getArgOperand(0)); 5897 Ops[2] = getValue(I.getArgOperand(1)); 5898 Ops[3] = getValue(I.getArgOperand(2)); 5899 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5900 Ops[5] = DAG.getSrcValue(F); 5901 5902 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5903 5904 DAG.setRoot(Res); 5905 return nullptr; 5906 } 5907 case Intrinsic::adjust_trampoline: 5908 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5909 TLI.getPointerTy(DAG.getDataLayout()), 5910 getValue(I.getArgOperand(0)))); 5911 return nullptr; 5912 case Intrinsic::gcroot: { 5913 assert(DAG.getMachineFunction().getFunction().hasGC() && 5914 "only valid in functions with gc specified, enforced by Verifier"); 5915 assert(GFI && "implied by previous"); 5916 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5917 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5918 5919 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5920 GFI->addStackRoot(FI->getIndex(), TypeMap); 5921 return nullptr; 5922 } 5923 case Intrinsic::gcread: 5924 case Intrinsic::gcwrite: 5925 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5926 case Intrinsic::flt_rounds: 5927 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5928 return nullptr; 5929 5930 case Intrinsic::expect: 5931 // Just replace __builtin_expect(exp, c) with EXP. 5932 setValue(&I, getValue(I.getArgOperand(0))); 5933 return nullptr; 5934 5935 case Intrinsic::debugtrap: 5936 case Intrinsic::trap: { 5937 StringRef TrapFuncName = 5938 I.getAttributes() 5939 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 5940 .getValueAsString(); 5941 if (TrapFuncName.empty()) { 5942 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5943 ISD::TRAP : ISD::DEBUGTRAP; 5944 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5945 return nullptr; 5946 } 5947 TargetLowering::ArgListTy Args; 5948 5949 TargetLowering::CallLoweringInfo CLI(DAG); 5950 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 5951 CallingConv::C, I.getType(), 5952 DAG.getExternalSymbol(TrapFuncName.data(), 5953 TLI.getPointerTy(DAG.getDataLayout())), 5954 std::move(Args)); 5955 5956 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5957 DAG.setRoot(Result.second); 5958 return nullptr; 5959 } 5960 5961 case Intrinsic::uadd_with_overflow: 5962 case Intrinsic::sadd_with_overflow: 5963 case Intrinsic::usub_with_overflow: 5964 case Intrinsic::ssub_with_overflow: 5965 case Intrinsic::umul_with_overflow: 5966 case Intrinsic::smul_with_overflow: { 5967 ISD::NodeType Op; 5968 switch (Intrinsic) { 5969 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5970 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5971 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5972 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5973 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5974 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5975 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5976 } 5977 SDValue Op1 = getValue(I.getArgOperand(0)); 5978 SDValue Op2 = getValue(I.getArgOperand(1)); 5979 5980 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5981 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5982 return nullptr; 5983 } 5984 case Intrinsic::prefetch: { 5985 SDValue Ops[5]; 5986 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5987 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 5988 Ops[0] = DAG.getRoot(); 5989 Ops[1] = getValue(I.getArgOperand(0)); 5990 Ops[2] = getValue(I.getArgOperand(1)); 5991 Ops[3] = getValue(I.getArgOperand(2)); 5992 Ops[4] = getValue(I.getArgOperand(3)); 5993 SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5994 DAG.getVTList(MVT::Other), Ops, 5995 EVT::getIntegerVT(*Context, 8), 5996 MachinePointerInfo(I.getArgOperand(0)), 5997 0, /* align */ 5998 Flags); 5999 6000 // Chain the prefetch in parallell with any pending loads, to stay out of 6001 // the way of later optimizations. 6002 PendingLoads.push_back(Result); 6003 Result = getRoot(); 6004 DAG.setRoot(Result); 6005 return nullptr; 6006 } 6007 case Intrinsic::lifetime_start: 6008 case Intrinsic::lifetime_end: { 6009 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6010 // Stack coloring is not enabled in O0, discard region information. 6011 if (TM.getOptLevel() == CodeGenOpt::None) 6012 return nullptr; 6013 6014 SmallVector<Value *, 4> Allocas; 6015 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 6016 6017 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 6018 E = Allocas.end(); Object != E; ++Object) { 6019 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 6020 6021 // Could not find an Alloca. 6022 if (!LifetimeObject) 6023 continue; 6024 6025 // First check that the Alloca is static, otherwise it won't have a 6026 // valid frame index. 6027 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6028 if (SI == FuncInfo.StaticAllocaMap.end()) 6029 return nullptr; 6030 6031 int FI = SI->second; 6032 6033 SDValue Ops[2]; 6034 Ops[0] = getRoot(); 6035 Ops[1] = 6036 DAG.getFrameIndex(FI, TLI.getFrameIndexTy(DAG.getDataLayout()), true); 6037 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 6038 6039 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 6040 DAG.setRoot(Res); 6041 } 6042 return nullptr; 6043 } 6044 case Intrinsic::invariant_start: 6045 // Discard region information. 6046 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6047 return nullptr; 6048 case Intrinsic::invariant_end: 6049 // Discard region information. 6050 return nullptr; 6051 case Intrinsic::clear_cache: 6052 return TLI.getClearCacheBuiltinName(); 6053 case Intrinsic::donothing: 6054 // ignore 6055 return nullptr; 6056 case Intrinsic::experimental_stackmap: 6057 visitStackmap(I); 6058 return nullptr; 6059 case Intrinsic::experimental_patchpoint_void: 6060 case Intrinsic::experimental_patchpoint_i64: 6061 visitPatchpoint(&I); 6062 return nullptr; 6063 case Intrinsic::experimental_gc_statepoint: 6064 LowerStatepoint(ImmutableStatepoint(&I)); 6065 return nullptr; 6066 case Intrinsic::experimental_gc_result: 6067 visitGCResult(cast<GCResultInst>(I)); 6068 return nullptr; 6069 case Intrinsic::experimental_gc_relocate: 6070 visitGCRelocate(cast<GCRelocateInst>(I)); 6071 return nullptr; 6072 case Intrinsic::instrprof_increment: 6073 llvm_unreachable("instrprof failed to lower an increment"); 6074 case Intrinsic::instrprof_value_profile: 6075 llvm_unreachable("instrprof failed to lower a value profiling call"); 6076 case Intrinsic::localescape: { 6077 MachineFunction &MF = DAG.getMachineFunction(); 6078 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6079 6080 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6081 // is the same on all targets. 6082 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 6083 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6084 if (isa<ConstantPointerNull>(Arg)) 6085 continue; // Skip null pointers. They represent a hole in index space. 6086 AllocaInst *Slot = cast<AllocaInst>(Arg); 6087 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6088 "can only escape static allocas"); 6089 int FI = FuncInfo.StaticAllocaMap[Slot]; 6090 MCSymbol *FrameAllocSym = 6091 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6092 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6093 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6094 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6095 .addSym(FrameAllocSym) 6096 .addFrameIndex(FI); 6097 } 6098 6099 return nullptr; 6100 } 6101 6102 case Intrinsic::localrecover: { 6103 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6104 MachineFunction &MF = DAG.getMachineFunction(); 6105 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 6106 6107 // Get the symbol that defines the frame offset. 6108 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6109 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6110 unsigned IdxVal = 6111 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6112 MCSymbol *FrameAllocSym = 6113 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6114 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6115 6116 // Create a MCSymbol for the label to avoid any target lowering 6117 // that would make this PC relative. 6118 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6119 SDValue OffsetVal = 6120 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6121 6122 // Add the offset to the FP. 6123 Value *FP = I.getArgOperand(1); 6124 SDValue FPVal = getValue(FP); 6125 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 6126 setValue(&I, Add); 6127 6128 return nullptr; 6129 } 6130 6131 case Intrinsic::eh_exceptionpointer: 6132 case Intrinsic::eh_exceptioncode: { 6133 // Get the exception pointer vreg, copy from it, and resize it to fit. 6134 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6135 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6136 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6137 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6138 SDValue N = 6139 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6140 if (Intrinsic == Intrinsic::eh_exceptioncode) 6141 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6142 setValue(&I, N); 6143 return nullptr; 6144 } 6145 case Intrinsic::xray_customevent: { 6146 // Here we want to make sure that the intrinsic behaves as if it has a 6147 // specific calling convention, and only for x86_64. 6148 // FIXME: Support other platforms later. 6149 const auto &Triple = DAG.getTarget().getTargetTriple(); 6150 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6151 return nullptr; 6152 6153 SDLoc DL = getCurSDLoc(); 6154 SmallVector<SDValue, 8> Ops; 6155 6156 // We want to say that we always want the arguments in registers. 6157 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6158 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6159 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6160 SDValue Chain = getRoot(); 6161 Ops.push_back(LogEntryVal); 6162 Ops.push_back(StrSizeVal); 6163 Ops.push_back(Chain); 6164 6165 // We need to enforce the calling convention for the callsite, so that 6166 // argument ordering is enforced correctly, and that register allocation can 6167 // see that some registers may be assumed clobbered and have to preserve 6168 // them across calls to the intrinsic. 6169 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6170 DL, NodeTys, Ops); 6171 SDValue patchableNode = SDValue(MN, 0); 6172 DAG.setRoot(patchableNode); 6173 setValue(&I, patchableNode); 6174 return nullptr; 6175 } 6176 case Intrinsic::xray_typedevent: { 6177 // Here we want to make sure that the intrinsic behaves as if it has a 6178 // specific calling convention, and only for x86_64. 6179 // FIXME: Support other platforms later. 6180 const auto &Triple = DAG.getTarget().getTargetTriple(); 6181 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6182 return nullptr; 6183 6184 SDLoc DL = getCurSDLoc(); 6185 SmallVector<SDValue, 8> Ops; 6186 6187 // We want to say that we always want the arguments in registers. 6188 // It's unclear to me how manipulating the selection DAG here forces callers 6189 // to provide arguments in registers instead of on the stack. 6190 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6191 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6192 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6193 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6194 SDValue Chain = getRoot(); 6195 Ops.push_back(LogTypeId); 6196 Ops.push_back(LogEntryVal); 6197 Ops.push_back(StrSizeVal); 6198 Ops.push_back(Chain); 6199 6200 // We need to enforce the calling convention for the callsite, so that 6201 // argument ordering is enforced correctly, and that register allocation can 6202 // see that some registers may be assumed clobbered and have to preserve 6203 // them across calls to the intrinsic. 6204 MachineSDNode *MN = DAG.getMachineNode( 6205 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6206 SDValue patchableNode = SDValue(MN, 0); 6207 DAG.setRoot(patchableNode); 6208 setValue(&I, patchableNode); 6209 return nullptr; 6210 } 6211 case Intrinsic::experimental_deoptimize: 6212 LowerDeoptimizeCall(&I); 6213 return nullptr; 6214 6215 case Intrinsic::experimental_vector_reduce_fadd: 6216 case Intrinsic::experimental_vector_reduce_fmul: 6217 case Intrinsic::experimental_vector_reduce_add: 6218 case Intrinsic::experimental_vector_reduce_mul: 6219 case Intrinsic::experimental_vector_reduce_and: 6220 case Intrinsic::experimental_vector_reduce_or: 6221 case Intrinsic::experimental_vector_reduce_xor: 6222 case Intrinsic::experimental_vector_reduce_smax: 6223 case Intrinsic::experimental_vector_reduce_smin: 6224 case Intrinsic::experimental_vector_reduce_umax: 6225 case Intrinsic::experimental_vector_reduce_umin: 6226 case Intrinsic::experimental_vector_reduce_fmax: 6227 case Intrinsic::experimental_vector_reduce_fmin: 6228 visitVectorReduce(I, Intrinsic); 6229 return nullptr; 6230 6231 case Intrinsic::icall_branch_funnel: { 6232 SmallVector<SDValue, 16> Ops; 6233 Ops.push_back(DAG.getRoot()); 6234 Ops.push_back(getValue(I.getArgOperand(0))); 6235 6236 int64_t Offset; 6237 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6238 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6239 if (!Base) 6240 report_fatal_error( 6241 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6242 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6243 6244 struct BranchFunnelTarget { 6245 int64_t Offset; 6246 SDValue Target; 6247 }; 6248 SmallVector<BranchFunnelTarget, 8> Targets; 6249 6250 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6251 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6252 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6253 if (ElemBase != Base) 6254 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6255 "to the same GlobalValue"); 6256 6257 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6258 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6259 if (!GA) 6260 report_fatal_error( 6261 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6262 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6263 GA->getGlobal(), getCurSDLoc(), 6264 Val.getValueType(), GA->getOffset())}); 6265 } 6266 llvm::sort(Targets, 6267 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6268 return T1.Offset < T2.Offset; 6269 }); 6270 6271 for (auto &T : Targets) { 6272 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6273 Ops.push_back(T.Target); 6274 } 6275 6276 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6277 getCurSDLoc(), MVT::Other, Ops), 6278 0); 6279 DAG.setRoot(N); 6280 setValue(&I, N); 6281 HasTailCall = true; 6282 return nullptr; 6283 } 6284 6285 case Intrinsic::wasm_landingpad_index: 6286 // Information this intrinsic contained has been transferred to 6287 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 6288 // delete it now. 6289 return nullptr; 6290 } 6291 } 6292 6293 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6294 const ConstrainedFPIntrinsic &FPI) { 6295 SDLoc sdl = getCurSDLoc(); 6296 unsigned Opcode; 6297 switch (FPI.getIntrinsicID()) { 6298 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6299 case Intrinsic::experimental_constrained_fadd: 6300 Opcode = ISD::STRICT_FADD; 6301 break; 6302 case Intrinsic::experimental_constrained_fsub: 6303 Opcode = ISD::STRICT_FSUB; 6304 break; 6305 case Intrinsic::experimental_constrained_fmul: 6306 Opcode = ISD::STRICT_FMUL; 6307 break; 6308 case Intrinsic::experimental_constrained_fdiv: 6309 Opcode = ISD::STRICT_FDIV; 6310 break; 6311 case Intrinsic::experimental_constrained_frem: 6312 Opcode = ISD::STRICT_FREM; 6313 break; 6314 case Intrinsic::experimental_constrained_fma: 6315 Opcode = ISD::STRICT_FMA; 6316 break; 6317 case Intrinsic::experimental_constrained_sqrt: 6318 Opcode = ISD::STRICT_FSQRT; 6319 break; 6320 case Intrinsic::experimental_constrained_pow: 6321 Opcode = ISD::STRICT_FPOW; 6322 break; 6323 case Intrinsic::experimental_constrained_powi: 6324 Opcode = ISD::STRICT_FPOWI; 6325 break; 6326 case Intrinsic::experimental_constrained_sin: 6327 Opcode = ISD::STRICT_FSIN; 6328 break; 6329 case Intrinsic::experimental_constrained_cos: 6330 Opcode = ISD::STRICT_FCOS; 6331 break; 6332 case Intrinsic::experimental_constrained_exp: 6333 Opcode = ISD::STRICT_FEXP; 6334 break; 6335 case Intrinsic::experimental_constrained_exp2: 6336 Opcode = ISD::STRICT_FEXP2; 6337 break; 6338 case Intrinsic::experimental_constrained_log: 6339 Opcode = ISD::STRICT_FLOG; 6340 break; 6341 case Intrinsic::experimental_constrained_log10: 6342 Opcode = ISD::STRICT_FLOG10; 6343 break; 6344 case Intrinsic::experimental_constrained_log2: 6345 Opcode = ISD::STRICT_FLOG2; 6346 break; 6347 case Intrinsic::experimental_constrained_rint: 6348 Opcode = ISD::STRICT_FRINT; 6349 break; 6350 case Intrinsic::experimental_constrained_nearbyint: 6351 Opcode = ISD::STRICT_FNEARBYINT; 6352 break; 6353 } 6354 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6355 SDValue Chain = getRoot(); 6356 SmallVector<EVT, 4> ValueVTs; 6357 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6358 ValueVTs.push_back(MVT::Other); // Out chain 6359 6360 SDVTList VTs = DAG.getVTList(ValueVTs); 6361 SDValue Result; 6362 if (FPI.isUnaryOp()) 6363 Result = DAG.getNode(Opcode, sdl, VTs, 6364 { Chain, getValue(FPI.getArgOperand(0)) }); 6365 else if (FPI.isTernaryOp()) 6366 Result = DAG.getNode(Opcode, sdl, VTs, 6367 { Chain, getValue(FPI.getArgOperand(0)), 6368 getValue(FPI.getArgOperand(1)), 6369 getValue(FPI.getArgOperand(2)) }); 6370 else 6371 Result = DAG.getNode(Opcode, sdl, VTs, 6372 { Chain, getValue(FPI.getArgOperand(0)), 6373 getValue(FPI.getArgOperand(1)) }); 6374 6375 assert(Result.getNode()->getNumValues() == 2); 6376 SDValue OutChain = Result.getValue(1); 6377 DAG.setRoot(OutChain); 6378 SDValue FPResult = Result.getValue(0); 6379 setValue(&FPI, FPResult); 6380 } 6381 6382 std::pair<SDValue, SDValue> 6383 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 6384 const BasicBlock *EHPadBB) { 6385 MachineFunction &MF = DAG.getMachineFunction(); 6386 MachineModuleInfo &MMI = MF.getMMI(); 6387 MCSymbol *BeginLabel = nullptr; 6388 6389 if (EHPadBB) { 6390 // Insert a label before the invoke call to mark the try range. This can be 6391 // used to detect deletion of the invoke via the MachineModuleInfo. 6392 BeginLabel = MMI.getContext().createTempSymbol(); 6393 6394 // For SjLj, keep track of which landing pads go with which invokes 6395 // so as to maintain the ordering of pads in the LSDA. 6396 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 6397 if (CallSiteIndex) { 6398 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 6399 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 6400 6401 // Now that the call site is handled, stop tracking it. 6402 MMI.setCurrentCallSite(0); 6403 } 6404 6405 // Both PendingLoads and PendingExports must be flushed here; 6406 // this call might not return. 6407 (void)getRoot(); 6408 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 6409 6410 CLI.setChain(getRoot()); 6411 } 6412 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6413 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6414 6415 assert((CLI.IsTailCall || Result.second.getNode()) && 6416 "Non-null chain expected with non-tail call!"); 6417 assert((Result.second.getNode() || !Result.first.getNode()) && 6418 "Null value expected with tail call!"); 6419 6420 if (!Result.second.getNode()) { 6421 // As a special case, a null chain means that a tail call has been emitted 6422 // and the DAG root is already updated. 6423 HasTailCall = true; 6424 6425 // Since there's no actual continuation from this block, nothing can be 6426 // relying on us setting vregs for them. 6427 PendingExports.clear(); 6428 } else { 6429 DAG.setRoot(Result.second); 6430 } 6431 6432 if (EHPadBB) { 6433 // Insert a label at the end of the invoke call to mark the try range. This 6434 // can be used to detect deletion of the invoke via the MachineModuleInfo. 6435 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 6436 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 6437 6438 // Inform MachineModuleInfo of range. 6439 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 6440 // There is a platform (e.g. wasm) that uses funclet style IR but does not 6441 // actually use outlined funclets and their LSDA info style. 6442 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 6443 assert(CLI.CS); 6444 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 6445 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()), 6446 BeginLabel, EndLabel); 6447 } else if (!isScopedEHPersonality(Pers)) { 6448 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 6449 } 6450 } 6451 6452 return Result; 6453 } 6454 6455 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 6456 bool isTailCall, 6457 const BasicBlock *EHPadBB) { 6458 auto &DL = DAG.getDataLayout(); 6459 FunctionType *FTy = CS.getFunctionType(); 6460 Type *RetTy = CS.getType(); 6461 6462 TargetLowering::ArgListTy Args; 6463 Args.reserve(CS.arg_size()); 6464 6465 const Value *SwiftErrorVal = nullptr; 6466 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6467 6468 // We can't tail call inside a function with a swifterror argument. Lowering 6469 // does not support this yet. It would have to move into the swifterror 6470 // register before the call. 6471 auto *Caller = CS.getInstruction()->getParent()->getParent(); 6472 if (TLI.supportSwiftError() && 6473 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 6474 isTailCall = false; 6475 6476 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 6477 i != e; ++i) { 6478 TargetLowering::ArgListEntry Entry; 6479 const Value *V = *i; 6480 6481 // Skip empty types 6482 if (V->getType()->isEmptyTy()) 6483 continue; 6484 6485 SDValue ArgNode = getValue(V); 6486 Entry.Node = ArgNode; Entry.Ty = V->getType(); 6487 6488 Entry.setAttributes(&CS, i - CS.arg_begin()); 6489 6490 // Use swifterror virtual register as input to the call. 6491 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 6492 SwiftErrorVal = V; 6493 // We find the virtual register for the actual swifterror argument. 6494 // Instead of using the Value, we use the virtual register instead. 6495 Entry.Node = DAG.getRegister(FuncInfo 6496 .getOrCreateSwiftErrorVRegUseAt( 6497 CS.getInstruction(), FuncInfo.MBB, V) 6498 .first, 6499 EVT(TLI.getPointerTy(DL))); 6500 } 6501 6502 Args.push_back(Entry); 6503 6504 // If we have an explicit sret argument that is an Instruction, (i.e., it 6505 // might point to function-local memory), we can't meaningfully tail-call. 6506 if (Entry.IsSRet && isa<Instruction>(V)) 6507 isTailCall = false; 6508 } 6509 6510 // Check if target-independent constraints permit a tail call here. 6511 // Target-dependent constraints are checked within TLI->LowerCallTo. 6512 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 6513 isTailCall = false; 6514 6515 // Disable tail calls if there is an swifterror argument. Targets have not 6516 // been updated to support tail calls. 6517 if (TLI.supportSwiftError() && SwiftErrorVal) 6518 isTailCall = false; 6519 6520 TargetLowering::CallLoweringInfo CLI(DAG); 6521 CLI.setDebugLoc(getCurSDLoc()) 6522 .setChain(getRoot()) 6523 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 6524 .setTailCall(isTailCall) 6525 .setConvergent(CS.isConvergent()); 6526 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 6527 6528 if (Result.first.getNode()) { 6529 const Instruction *Inst = CS.getInstruction(); 6530 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 6531 setValue(Inst, Result.first); 6532 } 6533 6534 // The last element of CLI.InVals has the SDValue for swifterror return. 6535 // Here we copy it to a virtual register and update SwiftErrorMap for 6536 // book-keeping. 6537 if (SwiftErrorVal && TLI.supportSwiftError()) { 6538 // Get the last element of InVals. 6539 SDValue Src = CLI.InVals.back(); 6540 unsigned VReg; bool CreatedVReg; 6541 std::tie(VReg, CreatedVReg) = 6542 FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction()); 6543 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 6544 // We update the virtual register for the actual swifterror argument. 6545 if (CreatedVReg) 6546 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg); 6547 DAG.setRoot(CopyNode); 6548 } 6549 } 6550 6551 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 6552 SelectionDAGBuilder &Builder) { 6553 // Check to see if this load can be trivially constant folded, e.g. if the 6554 // input is from a string literal. 6555 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 6556 // Cast pointer to the type we really want to load. 6557 Type *LoadTy = 6558 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 6559 if (LoadVT.isVector()) 6560 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 6561 6562 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 6563 PointerType::getUnqual(LoadTy)); 6564 6565 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 6566 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 6567 return Builder.getValue(LoadCst); 6568 } 6569 6570 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 6571 // still constant memory, the input chain can be the entry node. 6572 SDValue Root; 6573 bool ConstantMemory = false; 6574 6575 // Do not serialize (non-volatile) loads of constant memory with anything. 6576 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 6577 Root = Builder.DAG.getEntryNode(); 6578 ConstantMemory = true; 6579 } else { 6580 // Do not serialize non-volatile loads against each other. 6581 Root = Builder.DAG.getRoot(); 6582 } 6583 6584 SDValue Ptr = Builder.getValue(PtrVal); 6585 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 6586 Ptr, MachinePointerInfo(PtrVal), 6587 /* Alignment = */ 1); 6588 6589 if (!ConstantMemory) 6590 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 6591 return LoadVal; 6592 } 6593 6594 /// Record the value for an instruction that produces an integer result, 6595 /// converting the type where necessary. 6596 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 6597 SDValue Value, 6598 bool IsSigned) { 6599 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6600 I.getType(), true); 6601 if (IsSigned) 6602 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 6603 else 6604 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 6605 setValue(&I, Value); 6606 } 6607 6608 /// See if we can lower a memcmp call into an optimized form. If so, return 6609 /// true and lower it. Otherwise return false, and it will be lowered like a 6610 /// normal call. 6611 /// The caller already checked that \p I calls the appropriate LibFunc with a 6612 /// correct prototype. 6613 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 6614 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 6615 const Value *Size = I.getArgOperand(2); 6616 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 6617 if (CSize && CSize->getZExtValue() == 0) { 6618 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6619 I.getType(), true); 6620 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 6621 return true; 6622 } 6623 6624 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6625 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 6626 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 6627 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 6628 if (Res.first.getNode()) { 6629 processIntegerCallValue(I, Res.first, true); 6630 PendingLoads.push_back(Res.second); 6631 return true; 6632 } 6633 6634 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 6635 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 6636 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 6637 return false; 6638 6639 // If the target has a fast compare for the given size, it will return a 6640 // preferred load type for that size. Require that the load VT is legal and 6641 // that the target supports unaligned loads of that type. Otherwise, return 6642 // INVALID. 6643 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 6644 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6645 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 6646 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 6647 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 6648 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 6649 // TODO: Check alignment of src and dest ptrs. 6650 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 6651 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 6652 if (!TLI.isTypeLegal(LVT) || 6653 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 6654 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 6655 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 6656 } 6657 6658 return LVT; 6659 }; 6660 6661 // This turns into unaligned loads. We only do this if the target natively 6662 // supports the MVT we'll be loading or if it is small enough (<= 4) that 6663 // we'll only produce a small number of byte loads. 6664 MVT LoadVT; 6665 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 6666 switch (NumBitsToCompare) { 6667 default: 6668 return false; 6669 case 16: 6670 LoadVT = MVT::i16; 6671 break; 6672 case 32: 6673 LoadVT = MVT::i32; 6674 break; 6675 case 64: 6676 case 128: 6677 case 256: 6678 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 6679 break; 6680 } 6681 6682 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 6683 return false; 6684 6685 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 6686 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 6687 6688 // Bitcast to a wide integer type if the loads are vectors. 6689 if (LoadVT.isVector()) { 6690 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 6691 LoadL = DAG.getBitcast(CmpVT, LoadL); 6692 LoadR = DAG.getBitcast(CmpVT, LoadR); 6693 } 6694 6695 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 6696 processIntegerCallValue(I, Cmp, false); 6697 return true; 6698 } 6699 6700 /// See if we can lower a memchr call into an optimized form. If so, return 6701 /// true and lower it. Otherwise return false, and it will be lowered like a 6702 /// normal call. 6703 /// The caller already checked that \p I calls the appropriate LibFunc with a 6704 /// correct prototype. 6705 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 6706 const Value *Src = I.getArgOperand(0); 6707 const Value *Char = I.getArgOperand(1); 6708 const Value *Length = I.getArgOperand(2); 6709 6710 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6711 std::pair<SDValue, SDValue> Res = 6712 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 6713 getValue(Src), getValue(Char), getValue(Length), 6714 MachinePointerInfo(Src)); 6715 if (Res.first.getNode()) { 6716 setValue(&I, Res.first); 6717 PendingLoads.push_back(Res.second); 6718 return true; 6719 } 6720 6721 return false; 6722 } 6723 6724 /// See if we can lower a mempcpy call into an optimized form. If so, return 6725 /// true and lower it. Otherwise return false, and it will be lowered like a 6726 /// normal call. 6727 /// The caller already checked that \p I calls the appropriate LibFunc with a 6728 /// correct prototype. 6729 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 6730 SDValue Dst = getValue(I.getArgOperand(0)); 6731 SDValue Src = getValue(I.getArgOperand(1)); 6732 SDValue Size = getValue(I.getArgOperand(2)); 6733 6734 unsigned DstAlign = DAG.InferPtrAlignment(Dst); 6735 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 6736 unsigned Align = std::min(DstAlign, SrcAlign); 6737 if (Align == 0) // Alignment of one or both could not be inferred. 6738 Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved. 6739 6740 bool isVol = false; 6741 SDLoc sdl = getCurSDLoc(); 6742 6743 // In the mempcpy context we need to pass in a false value for isTailCall 6744 // because the return pointer needs to be adjusted by the size of 6745 // the copied memory. 6746 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol, 6747 false, /*isTailCall=*/false, 6748 MachinePointerInfo(I.getArgOperand(0)), 6749 MachinePointerInfo(I.getArgOperand(1))); 6750 assert(MC.getNode() != nullptr && 6751 "** memcpy should not be lowered as TailCall in mempcpy context **"); 6752 DAG.setRoot(MC); 6753 6754 // Check if Size needs to be truncated or extended. 6755 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 6756 6757 // Adjust return pointer to point just past the last dst byte. 6758 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 6759 Dst, Size); 6760 setValue(&I, DstPlusSize); 6761 return true; 6762 } 6763 6764 /// See if we can lower a strcpy call into an optimized form. If so, return 6765 /// true and lower it, otherwise return false and it will be lowered like a 6766 /// normal call. 6767 /// The caller already checked that \p I calls the appropriate LibFunc with a 6768 /// correct prototype. 6769 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 6770 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6771 6772 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6773 std::pair<SDValue, SDValue> Res = 6774 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 6775 getValue(Arg0), getValue(Arg1), 6776 MachinePointerInfo(Arg0), 6777 MachinePointerInfo(Arg1), isStpcpy); 6778 if (Res.first.getNode()) { 6779 setValue(&I, Res.first); 6780 DAG.setRoot(Res.second); 6781 return true; 6782 } 6783 6784 return false; 6785 } 6786 6787 /// See if we can lower a strcmp call into an optimized form. If so, return 6788 /// true and lower it, otherwise return false and it will be lowered like a 6789 /// normal call. 6790 /// The caller already checked that \p I calls the appropriate LibFunc with a 6791 /// correct prototype. 6792 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 6793 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6794 6795 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6796 std::pair<SDValue, SDValue> Res = 6797 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 6798 getValue(Arg0), getValue(Arg1), 6799 MachinePointerInfo(Arg0), 6800 MachinePointerInfo(Arg1)); 6801 if (Res.first.getNode()) { 6802 processIntegerCallValue(I, Res.first, true); 6803 PendingLoads.push_back(Res.second); 6804 return true; 6805 } 6806 6807 return false; 6808 } 6809 6810 /// See if we can lower a strlen call into an optimized form. If so, return 6811 /// true and lower it, otherwise return false and it will be lowered like a 6812 /// normal call. 6813 /// The caller already checked that \p I calls the appropriate LibFunc with a 6814 /// correct prototype. 6815 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 6816 const Value *Arg0 = I.getArgOperand(0); 6817 6818 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6819 std::pair<SDValue, SDValue> Res = 6820 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 6821 getValue(Arg0), MachinePointerInfo(Arg0)); 6822 if (Res.first.getNode()) { 6823 processIntegerCallValue(I, Res.first, false); 6824 PendingLoads.push_back(Res.second); 6825 return true; 6826 } 6827 6828 return false; 6829 } 6830 6831 /// See if we can lower a strnlen call into an optimized form. If so, return 6832 /// true and lower it, otherwise return false and it will be lowered like a 6833 /// normal call. 6834 /// The caller already checked that \p I calls the appropriate LibFunc with a 6835 /// correct prototype. 6836 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 6837 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6838 6839 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6840 std::pair<SDValue, SDValue> Res = 6841 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 6842 getValue(Arg0), getValue(Arg1), 6843 MachinePointerInfo(Arg0)); 6844 if (Res.first.getNode()) { 6845 processIntegerCallValue(I, Res.first, false); 6846 PendingLoads.push_back(Res.second); 6847 return true; 6848 } 6849 6850 return false; 6851 } 6852 6853 /// See if we can lower a unary floating-point operation into an SDNode with 6854 /// the specified Opcode. If so, return true and lower it, otherwise return 6855 /// false and it will be lowered like a normal call. 6856 /// The caller already checked that \p I calls the appropriate LibFunc with a 6857 /// correct prototype. 6858 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 6859 unsigned Opcode) { 6860 // We already checked this call's prototype; verify it doesn't modify errno. 6861 if (!I.onlyReadsMemory()) 6862 return false; 6863 6864 SDValue Tmp = getValue(I.getArgOperand(0)); 6865 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 6866 return true; 6867 } 6868 6869 /// See if we can lower a binary floating-point operation into an SDNode with 6870 /// the specified Opcode. If so, return true and lower it. Otherwise return 6871 /// false, and it will be lowered like a normal call. 6872 /// The caller already checked that \p I calls the appropriate LibFunc with a 6873 /// correct prototype. 6874 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 6875 unsigned Opcode) { 6876 // We already checked this call's prototype; verify it doesn't modify errno. 6877 if (!I.onlyReadsMemory()) 6878 return false; 6879 6880 SDValue Tmp0 = getValue(I.getArgOperand(0)); 6881 SDValue Tmp1 = getValue(I.getArgOperand(1)); 6882 EVT VT = Tmp0.getValueType(); 6883 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 6884 return true; 6885 } 6886 6887 void SelectionDAGBuilder::visitCall(const CallInst &I) { 6888 // Handle inline assembly differently. 6889 if (isa<InlineAsm>(I.getCalledValue())) { 6890 visitInlineAsm(&I); 6891 return; 6892 } 6893 6894 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6895 computeUsesVAFloatArgument(I, MMI); 6896 6897 const char *RenameFn = nullptr; 6898 if (Function *F = I.getCalledFunction()) { 6899 if (F->isDeclaration()) { 6900 // Is this an LLVM intrinsic or a target-specific intrinsic? 6901 unsigned IID = F->getIntrinsicID(); 6902 if (!IID) 6903 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 6904 IID = II->getIntrinsicID(F); 6905 6906 if (IID) { 6907 RenameFn = visitIntrinsicCall(I, IID); 6908 if (!RenameFn) 6909 return; 6910 } 6911 } 6912 6913 // Check for well-known libc/libm calls. If the function is internal, it 6914 // can't be a library call. Don't do the check if marked as nobuiltin for 6915 // some reason or the call site requires strict floating point semantics. 6916 LibFunc Func; 6917 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 6918 F->hasName() && LibInfo->getLibFunc(*F, Func) && 6919 LibInfo->hasOptimizedCodeGen(Func)) { 6920 switch (Func) { 6921 default: break; 6922 case LibFunc_copysign: 6923 case LibFunc_copysignf: 6924 case LibFunc_copysignl: 6925 // We already checked this call's prototype; verify it doesn't modify 6926 // errno. 6927 if (I.onlyReadsMemory()) { 6928 SDValue LHS = getValue(I.getArgOperand(0)); 6929 SDValue RHS = getValue(I.getArgOperand(1)); 6930 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 6931 LHS.getValueType(), LHS, RHS)); 6932 return; 6933 } 6934 break; 6935 case LibFunc_fabs: 6936 case LibFunc_fabsf: 6937 case LibFunc_fabsl: 6938 if (visitUnaryFloatCall(I, ISD::FABS)) 6939 return; 6940 break; 6941 case LibFunc_fmin: 6942 case LibFunc_fminf: 6943 case LibFunc_fminl: 6944 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 6945 return; 6946 break; 6947 case LibFunc_fmax: 6948 case LibFunc_fmaxf: 6949 case LibFunc_fmaxl: 6950 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 6951 return; 6952 break; 6953 case LibFunc_sin: 6954 case LibFunc_sinf: 6955 case LibFunc_sinl: 6956 if (visitUnaryFloatCall(I, ISD::FSIN)) 6957 return; 6958 break; 6959 case LibFunc_cos: 6960 case LibFunc_cosf: 6961 case LibFunc_cosl: 6962 if (visitUnaryFloatCall(I, ISD::FCOS)) 6963 return; 6964 break; 6965 case LibFunc_sqrt: 6966 case LibFunc_sqrtf: 6967 case LibFunc_sqrtl: 6968 case LibFunc_sqrt_finite: 6969 case LibFunc_sqrtf_finite: 6970 case LibFunc_sqrtl_finite: 6971 if (visitUnaryFloatCall(I, ISD::FSQRT)) 6972 return; 6973 break; 6974 case LibFunc_floor: 6975 case LibFunc_floorf: 6976 case LibFunc_floorl: 6977 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 6978 return; 6979 break; 6980 case LibFunc_nearbyint: 6981 case LibFunc_nearbyintf: 6982 case LibFunc_nearbyintl: 6983 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 6984 return; 6985 break; 6986 case LibFunc_ceil: 6987 case LibFunc_ceilf: 6988 case LibFunc_ceill: 6989 if (visitUnaryFloatCall(I, ISD::FCEIL)) 6990 return; 6991 break; 6992 case LibFunc_rint: 6993 case LibFunc_rintf: 6994 case LibFunc_rintl: 6995 if (visitUnaryFloatCall(I, ISD::FRINT)) 6996 return; 6997 break; 6998 case LibFunc_round: 6999 case LibFunc_roundf: 7000 case LibFunc_roundl: 7001 if (visitUnaryFloatCall(I, ISD::FROUND)) 7002 return; 7003 break; 7004 case LibFunc_trunc: 7005 case LibFunc_truncf: 7006 case LibFunc_truncl: 7007 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 7008 return; 7009 break; 7010 case LibFunc_log2: 7011 case LibFunc_log2f: 7012 case LibFunc_log2l: 7013 if (visitUnaryFloatCall(I, ISD::FLOG2)) 7014 return; 7015 break; 7016 case LibFunc_exp2: 7017 case LibFunc_exp2f: 7018 case LibFunc_exp2l: 7019 if (visitUnaryFloatCall(I, ISD::FEXP2)) 7020 return; 7021 break; 7022 case LibFunc_memcmp: 7023 if (visitMemCmpCall(I)) 7024 return; 7025 break; 7026 case LibFunc_mempcpy: 7027 if (visitMemPCpyCall(I)) 7028 return; 7029 break; 7030 case LibFunc_memchr: 7031 if (visitMemChrCall(I)) 7032 return; 7033 break; 7034 case LibFunc_strcpy: 7035 if (visitStrCpyCall(I, false)) 7036 return; 7037 break; 7038 case LibFunc_stpcpy: 7039 if (visitStrCpyCall(I, true)) 7040 return; 7041 break; 7042 case LibFunc_strcmp: 7043 if (visitStrCmpCall(I)) 7044 return; 7045 break; 7046 case LibFunc_strlen: 7047 if (visitStrLenCall(I)) 7048 return; 7049 break; 7050 case LibFunc_strnlen: 7051 if (visitStrNLenCall(I)) 7052 return; 7053 break; 7054 } 7055 } 7056 } 7057 7058 SDValue Callee; 7059 if (!RenameFn) 7060 Callee = getValue(I.getCalledValue()); 7061 else 7062 Callee = DAG.getExternalSymbol( 7063 RenameFn, 7064 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 7065 7066 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 7067 // have to do anything here to lower funclet bundles. 7068 assert(!I.hasOperandBundlesOtherThan( 7069 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 7070 "Cannot lower calls with arbitrary operand bundles!"); 7071 7072 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 7073 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 7074 else 7075 // Check if we can potentially perform a tail call. More detailed checking 7076 // is be done within LowerCallTo, after more information about the call is 7077 // known. 7078 LowerCallTo(&I, Callee, I.isTailCall()); 7079 } 7080 7081 namespace { 7082 7083 /// AsmOperandInfo - This contains information for each constraint that we are 7084 /// lowering. 7085 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 7086 public: 7087 /// CallOperand - If this is the result output operand or a clobber 7088 /// this is null, otherwise it is the incoming operand to the CallInst. 7089 /// This gets modified as the asm is processed. 7090 SDValue CallOperand; 7091 7092 /// AssignedRegs - If this is a register or register class operand, this 7093 /// contains the set of register corresponding to the operand. 7094 RegsForValue AssignedRegs; 7095 7096 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 7097 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 7098 } 7099 7100 /// Whether or not this operand accesses memory 7101 bool hasMemory(const TargetLowering &TLI) const { 7102 // Indirect operand accesses access memory. 7103 if (isIndirect) 7104 return true; 7105 7106 for (const auto &Code : Codes) 7107 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 7108 return true; 7109 7110 return false; 7111 } 7112 7113 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 7114 /// corresponds to. If there is no Value* for this operand, it returns 7115 /// MVT::Other. 7116 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 7117 const DataLayout &DL) const { 7118 if (!CallOperandVal) return MVT::Other; 7119 7120 if (isa<BasicBlock>(CallOperandVal)) 7121 return TLI.getPointerTy(DL); 7122 7123 llvm::Type *OpTy = CallOperandVal->getType(); 7124 7125 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 7126 // If this is an indirect operand, the operand is a pointer to the 7127 // accessed type. 7128 if (isIndirect) { 7129 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 7130 if (!PtrTy) 7131 report_fatal_error("Indirect operand for inline asm not a pointer!"); 7132 OpTy = PtrTy->getElementType(); 7133 } 7134 7135 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 7136 if (StructType *STy = dyn_cast<StructType>(OpTy)) 7137 if (STy->getNumElements() == 1) 7138 OpTy = STy->getElementType(0); 7139 7140 // If OpTy is not a single value, it may be a struct/union that we 7141 // can tile with integers. 7142 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7143 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7144 switch (BitSize) { 7145 default: break; 7146 case 1: 7147 case 8: 7148 case 16: 7149 case 32: 7150 case 64: 7151 case 128: 7152 OpTy = IntegerType::get(Context, BitSize); 7153 break; 7154 } 7155 } 7156 7157 return TLI.getValueType(DL, OpTy, true); 7158 } 7159 }; 7160 7161 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>; 7162 7163 } // end anonymous namespace 7164 7165 /// Make sure that the output operand \p OpInfo and its corresponding input 7166 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7167 /// out). 7168 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7169 SDISelAsmOperandInfo &MatchingOpInfo, 7170 SelectionDAG &DAG) { 7171 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7172 return; 7173 7174 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7175 const auto &TLI = DAG.getTargetLoweringInfo(); 7176 7177 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7178 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7179 OpInfo.ConstraintVT); 7180 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7181 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7182 MatchingOpInfo.ConstraintVT); 7183 if ((OpInfo.ConstraintVT.isInteger() != 7184 MatchingOpInfo.ConstraintVT.isInteger()) || 7185 (MatchRC.second != InputRC.second)) { 7186 // FIXME: error out in a more elegant fashion 7187 report_fatal_error("Unsupported asm: input constraint" 7188 " with a matching output constraint of" 7189 " incompatible type!"); 7190 } 7191 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 7192 } 7193 7194 /// Get a direct memory input to behave well as an indirect operand. 7195 /// This may introduce stores, hence the need for a \p Chain. 7196 /// \return The (possibly updated) chain. 7197 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 7198 SDISelAsmOperandInfo &OpInfo, 7199 SelectionDAG &DAG) { 7200 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7201 7202 // If we don't have an indirect input, put it in the constpool if we can, 7203 // otherwise spill it to a stack slot. 7204 // TODO: This isn't quite right. We need to handle these according to 7205 // the addressing mode that the constraint wants. Also, this may take 7206 // an additional register for the computation and we don't want that 7207 // either. 7208 7209 // If the operand is a float, integer, or vector constant, spill to a 7210 // constant pool entry to get its address. 7211 const Value *OpVal = OpInfo.CallOperandVal; 7212 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 7213 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 7214 OpInfo.CallOperand = DAG.getConstantPool( 7215 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 7216 return Chain; 7217 } 7218 7219 // Otherwise, create a stack slot and emit a store to it before the asm. 7220 Type *Ty = OpVal->getType(); 7221 auto &DL = DAG.getDataLayout(); 7222 uint64_t TySize = DL.getTypeAllocSize(Ty); 7223 unsigned Align = DL.getPrefTypeAlignment(Ty); 7224 MachineFunction &MF = DAG.getMachineFunction(); 7225 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7226 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 7227 Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot, 7228 MachinePointerInfo::getFixedStack(MF, SSFI)); 7229 OpInfo.CallOperand = StackSlot; 7230 7231 return Chain; 7232 } 7233 7234 /// GetRegistersForValue - Assign registers (virtual or physical) for the 7235 /// specified operand. We prefer to assign virtual registers, to allow the 7236 /// register allocator to handle the assignment process. However, if the asm 7237 /// uses features that we can't model on machineinstrs, we have SDISel do the 7238 /// allocation. This produces generally horrible, but correct, code. 7239 /// 7240 /// OpInfo describes the operand 7241 /// RefOpInfo describes the matching operand if any, the operand otherwise 7242 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI, 7243 const SDLoc &DL, SDISelAsmOperandInfo &OpInfo, 7244 SDISelAsmOperandInfo &RefOpInfo) { 7245 LLVMContext &Context = *DAG.getContext(); 7246 7247 MachineFunction &MF = DAG.getMachineFunction(); 7248 SmallVector<unsigned, 4> Regs; 7249 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7250 7251 // If this is a constraint for a single physreg, or a constraint for a 7252 // register class, find it. 7253 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 7254 TLI.getRegForInlineAsmConstraint(&TRI, RefOpInfo.ConstraintCode, 7255 RefOpInfo.ConstraintVT); 7256 7257 unsigned NumRegs = 1; 7258 if (OpInfo.ConstraintVT != MVT::Other) { 7259 // If this is an FP operand in an integer register (or visa versa), or more 7260 // generally if the operand value disagrees with the register class we plan 7261 // to stick it in, fix the operand type. 7262 // 7263 // If this is an input value, the bitcast to the new type is done now. 7264 // Bitcast for output value is done at the end of visitInlineAsm(). 7265 if ((OpInfo.Type == InlineAsm::isOutput || 7266 OpInfo.Type == InlineAsm::isInput) && 7267 PhysReg.second && 7268 !TRI.isTypeLegalForClass(*PhysReg.second, OpInfo.ConstraintVT)) { 7269 // Try to convert to the first EVT that the reg class contains. If the 7270 // types are identical size, use a bitcast to convert (e.g. two differing 7271 // vector types). Note: output bitcast is done at the end of 7272 // visitInlineAsm(). 7273 MVT RegVT = *TRI.legalclasstypes_begin(*PhysReg.second); 7274 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 7275 // Exclude indirect inputs while they are unsupported because the code 7276 // to perform the load is missing and thus OpInfo.CallOperand still 7277 // refers to the input address rather than the pointed-to value. 7278 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 7279 OpInfo.CallOperand = 7280 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 7281 OpInfo.ConstraintVT = RegVT; 7282 // If the operand is an FP value and we want it in integer registers, 7283 // use the corresponding integer type. This turns an f64 value into 7284 // i64, which can be passed with two i32 values on a 32-bit machine. 7285 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7286 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7287 if (OpInfo.Type == InlineAsm::isInput) 7288 OpInfo.CallOperand = 7289 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 7290 OpInfo.ConstraintVT = RegVT; 7291 } 7292 } 7293 7294 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 7295 } 7296 7297 // No need to allocate a matching input constraint since the constraint it's 7298 // matching to has already been allocated. 7299 if (OpInfo.isMatchingInputConstraint()) 7300 return; 7301 7302 MVT RegVT; 7303 EVT ValueVT = OpInfo.ConstraintVT; 7304 7305 // If this is a constraint for a specific physical register, like {r17}, 7306 // assign it now. 7307 if (unsigned AssignedReg = PhysReg.first) { 7308 const TargetRegisterClass *RC = PhysReg.second; 7309 if (OpInfo.ConstraintVT == MVT::Other) 7310 ValueVT = *TRI.legalclasstypes_begin(*RC); 7311 7312 // Get the actual register value type. This is important, because the user 7313 // may have asked for (e.g.) the AX register in i32 type. We need to 7314 // remember that AX is actually i16 to get the right extension. 7315 RegVT = *TRI.legalclasstypes_begin(*RC); 7316 7317 // This is an explicit reference to a physical register. 7318 Regs.push_back(AssignedReg); 7319 7320 // If this is an expanded reference, add the rest of the regs to Regs. 7321 if (NumRegs != 1) { 7322 TargetRegisterClass::iterator I = RC->begin(); 7323 for (; *I != AssignedReg; ++I) 7324 assert(I != RC->end() && "Didn't find reg!"); 7325 7326 // Already added the first reg. 7327 --NumRegs; ++I; 7328 for (; NumRegs; --NumRegs, ++I) { 7329 assert(I != RC->end() && "Ran out of registers to allocate!"); 7330 Regs.push_back(*I); 7331 } 7332 } 7333 7334 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7335 return; 7336 } 7337 7338 // Otherwise, if this was a reference to an LLVM register class, create vregs 7339 // for this reference. 7340 if (const TargetRegisterClass *RC = PhysReg.second) { 7341 RegVT = *TRI.legalclasstypes_begin(*RC); 7342 if (OpInfo.ConstraintVT == MVT::Other) 7343 ValueVT = RegVT; 7344 7345 // Create the appropriate number of virtual registers. 7346 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7347 for (; NumRegs; --NumRegs) 7348 Regs.push_back(RegInfo.createVirtualRegister(RC)); 7349 7350 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7351 return; 7352 } 7353 7354 // Otherwise, we couldn't allocate enough registers for this. 7355 } 7356 7357 static unsigned 7358 findMatchingInlineAsmOperand(unsigned OperandNo, 7359 const std::vector<SDValue> &AsmNodeOperands) { 7360 // Scan until we find the definition we already emitted of this operand. 7361 unsigned CurOp = InlineAsm::Op_FirstOperand; 7362 for (; OperandNo; --OperandNo) { 7363 // Advance to the next operand. 7364 unsigned OpFlag = 7365 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7366 assert((InlineAsm::isRegDefKind(OpFlag) || 7367 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 7368 InlineAsm::isMemKind(OpFlag)) && 7369 "Skipped past definitions?"); 7370 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 7371 } 7372 return CurOp; 7373 } 7374 7375 /// Fill \p Regs with \p NumRegs new virtual registers of type \p RegVT 7376 /// \return true if it has succeeded, false otherwise 7377 static bool createVirtualRegs(SmallVector<unsigned, 4> &Regs, unsigned NumRegs, 7378 MVT RegVT, SelectionDAG &DAG) { 7379 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7380 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 7381 for (unsigned i = 0, e = NumRegs; i != e; ++i) { 7382 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 7383 Regs.push_back(RegInfo.createVirtualRegister(RC)); 7384 else 7385 return false; 7386 } 7387 return true; 7388 } 7389 7390 namespace { 7391 7392 class ExtraFlags { 7393 unsigned Flags = 0; 7394 7395 public: 7396 explicit ExtraFlags(ImmutableCallSite CS) { 7397 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7398 if (IA->hasSideEffects()) 7399 Flags |= InlineAsm::Extra_HasSideEffects; 7400 if (IA->isAlignStack()) 7401 Flags |= InlineAsm::Extra_IsAlignStack; 7402 if (CS.isConvergent()) 7403 Flags |= InlineAsm::Extra_IsConvergent; 7404 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 7405 } 7406 7407 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 7408 // Ideally, we would only check against memory constraints. However, the 7409 // meaning of an Other constraint can be target-specific and we can't easily 7410 // reason about it. Therefore, be conservative and set MayLoad/MayStore 7411 // for Other constraints as well. 7412 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 7413 OpInfo.ConstraintType == TargetLowering::C_Other) { 7414 if (OpInfo.Type == InlineAsm::isInput) 7415 Flags |= InlineAsm::Extra_MayLoad; 7416 else if (OpInfo.Type == InlineAsm::isOutput) 7417 Flags |= InlineAsm::Extra_MayStore; 7418 else if (OpInfo.Type == InlineAsm::isClobber) 7419 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 7420 } 7421 } 7422 7423 unsigned get() const { return Flags; } 7424 }; 7425 7426 } // end anonymous namespace 7427 7428 /// visitInlineAsm - Handle a call to an InlineAsm object. 7429 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 7430 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7431 7432 /// ConstraintOperands - Information about all of the constraints. 7433 SDISelAsmOperandInfoVector ConstraintOperands; 7434 7435 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7436 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 7437 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 7438 7439 bool hasMemory = false; 7440 7441 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 7442 ExtraFlags ExtraInfo(CS); 7443 7444 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 7445 unsigned ResNo = 0; // ResNo - The result number of the next output. 7446 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 7447 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 7448 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 7449 7450 MVT OpVT = MVT::Other; 7451 7452 // Compute the value type for each operand. 7453 if (OpInfo.Type == InlineAsm::isInput || 7454 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 7455 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 7456 7457 // Process the call argument. BasicBlocks are labels, currently appearing 7458 // only in asm's. 7459 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 7460 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 7461 } else { 7462 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 7463 } 7464 7465 OpVT = 7466 OpInfo 7467 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 7468 .getSimpleVT(); 7469 } 7470 7471 if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 7472 // The return value of the call is this value. As such, there is no 7473 // corresponding argument. 7474 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7475 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 7476 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 7477 STy->getElementType(ResNo)); 7478 } else { 7479 assert(ResNo == 0 && "Asm only has one result!"); 7480 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 7481 } 7482 ++ResNo; 7483 } 7484 7485 OpInfo.ConstraintVT = OpVT; 7486 7487 if (!hasMemory) 7488 hasMemory = OpInfo.hasMemory(TLI); 7489 7490 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 7491 // FIXME: Could we compute this on OpInfo rather than TargetConstraints[i]? 7492 auto TargetConstraint = TargetConstraints[i]; 7493 7494 // Compute the constraint code and ConstraintType to use. 7495 TLI.ComputeConstraintToUse(TargetConstraint, SDValue()); 7496 7497 ExtraInfo.update(TargetConstraint); 7498 } 7499 7500 SDValue Chain, Flag; 7501 7502 // We won't need to flush pending loads if this asm doesn't touch 7503 // memory and is nonvolatile. 7504 if (hasMemory || IA->hasSideEffects()) 7505 Chain = getRoot(); 7506 else 7507 Chain = DAG.getRoot(); 7508 7509 // Second pass over the constraints: compute which constraint option to use 7510 // and assign registers to constraints that want a specific physreg. 7511 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7512 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7513 7514 // If this is an output operand with a matching input operand, look up the 7515 // matching input. If their types mismatch, e.g. one is an integer, the 7516 // other is floating point, or their sizes are different, flag it as an 7517 // error. 7518 if (OpInfo.hasMatchingInput()) { 7519 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 7520 patchMatchingInput(OpInfo, Input, DAG); 7521 } 7522 7523 // Compute the constraint code and ConstraintType to use. 7524 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 7525 7526 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7527 OpInfo.Type == InlineAsm::isClobber) 7528 continue; 7529 7530 // If this is a memory input, and if the operand is not indirect, do what we 7531 // need to provide an address for the memory input. 7532 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7533 !OpInfo.isIndirect) { 7534 assert((OpInfo.isMultipleAlternative || 7535 (OpInfo.Type == InlineAsm::isInput)) && 7536 "Can only indirectify direct input operands!"); 7537 7538 // Memory operands really want the address of the value. 7539 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 7540 7541 // There is no longer a Value* corresponding to this operand. 7542 OpInfo.CallOperandVal = nullptr; 7543 7544 // It is now an indirect operand. 7545 OpInfo.isIndirect = true; 7546 } 7547 7548 // If this constraint is for a specific register, allocate it before 7549 // anything else. 7550 SDISelAsmOperandInfo &RefOpInfo = 7551 OpInfo.isMatchingInputConstraint() 7552 ? ConstraintOperands[OpInfo.getMatchedOperand()] 7553 : ConstraintOperands[i]; 7554 if (RefOpInfo.ConstraintType == TargetLowering::C_Register) 7555 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo, RefOpInfo); 7556 } 7557 7558 // Third pass - Loop over all of the operands, assigning virtual or physregs 7559 // to register class operands. 7560 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7561 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7562 SDISelAsmOperandInfo &RefOpInfo = 7563 OpInfo.isMatchingInputConstraint() 7564 ? ConstraintOperands[OpInfo.getMatchedOperand()] 7565 : ConstraintOperands[i]; 7566 7567 // C_Register operands have already been allocated, Other/Memory don't need 7568 // to be. 7569 if (RefOpInfo.ConstraintType == TargetLowering::C_RegisterClass) 7570 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo, RefOpInfo); 7571 } 7572 7573 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 7574 std::vector<SDValue> AsmNodeOperands; 7575 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 7576 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 7577 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 7578 7579 // If we have a !srcloc metadata node associated with it, we want to attach 7580 // this to the ultimately generated inline asm machineinstr. To do this, we 7581 // pass in the third operand as this (potentially null) inline asm MDNode. 7582 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 7583 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 7584 7585 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 7586 // bits as operand 3. 7587 AsmNodeOperands.push_back(DAG.getTargetConstant( 7588 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7589 7590 // Loop over all of the inputs, copying the operand values into the 7591 // appropriate registers and processing the output regs. 7592 RegsForValue RetValRegs; 7593 7594 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 7595 std::vector<std::pair<RegsForValue, Value *>> IndirectStoresToEmit; 7596 7597 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7598 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7599 7600 switch (OpInfo.Type) { 7601 case InlineAsm::isOutput: 7602 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 7603 OpInfo.ConstraintType != TargetLowering::C_Register) { 7604 // Memory output, or 'other' output (e.g. 'X' constraint). 7605 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 7606 7607 unsigned ConstraintID = 7608 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7609 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7610 "Failed to convert memory constraint code to constraint id."); 7611 7612 // Add information to the INLINEASM node to know about this output. 7613 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7614 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 7615 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 7616 MVT::i32)); 7617 AsmNodeOperands.push_back(OpInfo.CallOperand); 7618 break; 7619 } 7620 7621 // Otherwise, this is a register or register class output. 7622 7623 // Copy the output from the appropriate register. Find a register that 7624 // we can use. 7625 if (OpInfo.AssignedRegs.Regs.empty()) { 7626 emitInlineAsmError( 7627 CS, "couldn't allocate output register for constraint '" + 7628 Twine(OpInfo.ConstraintCode) + "'"); 7629 return; 7630 } 7631 7632 // If this is an indirect operand, store through the pointer after the 7633 // asm. 7634 if (OpInfo.isIndirect) { 7635 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 7636 OpInfo.CallOperandVal)); 7637 } else { 7638 // This is the result value of the call. 7639 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7640 // Concatenate this output onto the outputs list. 7641 RetValRegs.append(OpInfo.AssignedRegs); 7642 } 7643 7644 // Add information to the INLINEASM node to know that this register is 7645 // set. 7646 OpInfo.AssignedRegs 7647 .AddInlineAsmOperands(OpInfo.isEarlyClobber 7648 ? InlineAsm::Kind_RegDefEarlyClobber 7649 : InlineAsm::Kind_RegDef, 7650 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 7651 break; 7652 7653 case InlineAsm::isInput: { 7654 SDValue InOperandVal = OpInfo.CallOperand; 7655 7656 if (OpInfo.isMatchingInputConstraint()) { 7657 // If this is required to match an output register we have already set, 7658 // just use its register. 7659 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 7660 AsmNodeOperands); 7661 unsigned OpFlag = 7662 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7663 if (InlineAsm::isRegDefKind(OpFlag) || 7664 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 7665 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 7666 if (OpInfo.isIndirect) { 7667 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 7668 emitInlineAsmError(CS, "inline asm not supported yet:" 7669 " don't know how to handle tied " 7670 "indirect register inputs"); 7671 return; 7672 } 7673 7674 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 7675 SmallVector<unsigned, 4> Regs; 7676 7677 if (!createVirtualRegs(Regs, 7678 InlineAsm::getNumOperandRegisters(OpFlag), 7679 RegVT, DAG)) { 7680 emitInlineAsmError(CS, "inline asm error: This value type register " 7681 "class is not natively supported!"); 7682 return; 7683 } 7684 7685 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 7686 7687 SDLoc dl = getCurSDLoc(); 7688 // Use the produced MatchedRegs object to 7689 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 7690 CS.getInstruction()); 7691 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 7692 true, OpInfo.getMatchedOperand(), dl, 7693 DAG, AsmNodeOperands); 7694 break; 7695 } 7696 7697 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 7698 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 7699 "Unexpected number of operands"); 7700 // Add information to the INLINEASM node to know about this input. 7701 // See InlineAsm.h isUseOperandTiedToDef. 7702 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 7703 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 7704 OpInfo.getMatchedOperand()); 7705 AsmNodeOperands.push_back(DAG.getTargetConstant( 7706 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7707 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 7708 break; 7709 } 7710 7711 // Treat indirect 'X' constraint as memory. 7712 if (OpInfo.ConstraintType == TargetLowering::C_Other && 7713 OpInfo.isIndirect) 7714 OpInfo.ConstraintType = TargetLowering::C_Memory; 7715 7716 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 7717 std::vector<SDValue> Ops; 7718 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 7719 Ops, DAG); 7720 if (Ops.empty()) { 7721 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 7722 Twine(OpInfo.ConstraintCode) + "'"); 7723 return; 7724 } 7725 7726 // Add information to the INLINEASM node to know about this input. 7727 unsigned ResOpType = 7728 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 7729 AsmNodeOperands.push_back(DAG.getTargetConstant( 7730 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7731 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 7732 break; 7733 } 7734 7735 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 7736 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 7737 assert(InOperandVal.getValueType() == 7738 TLI.getPointerTy(DAG.getDataLayout()) && 7739 "Memory operands expect pointer values"); 7740 7741 unsigned ConstraintID = 7742 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7743 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7744 "Failed to convert memory constraint code to constraint id."); 7745 7746 // Add information to the INLINEASM node to know about this input. 7747 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7748 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 7749 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 7750 getCurSDLoc(), 7751 MVT::i32)); 7752 AsmNodeOperands.push_back(InOperandVal); 7753 break; 7754 } 7755 7756 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 7757 OpInfo.ConstraintType == TargetLowering::C_Register) && 7758 "Unknown constraint type!"); 7759 7760 // TODO: Support this. 7761 if (OpInfo.isIndirect) { 7762 emitInlineAsmError( 7763 CS, "Don't know how to handle indirect register inputs yet " 7764 "for constraint '" + 7765 Twine(OpInfo.ConstraintCode) + "'"); 7766 return; 7767 } 7768 7769 // Copy the input into the appropriate registers. 7770 if (OpInfo.AssignedRegs.Regs.empty()) { 7771 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 7772 Twine(OpInfo.ConstraintCode) + "'"); 7773 return; 7774 } 7775 7776 SDLoc dl = getCurSDLoc(); 7777 7778 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 7779 Chain, &Flag, CS.getInstruction()); 7780 7781 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 7782 dl, DAG, AsmNodeOperands); 7783 break; 7784 } 7785 case InlineAsm::isClobber: 7786 // Add the clobbered value to the operand list, so that the register 7787 // allocator is aware that the physreg got clobbered. 7788 if (!OpInfo.AssignedRegs.Regs.empty()) 7789 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 7790 false, 0, getCurSDLoc(), DAG, 7791 AsmNodeOperands); 7792 break; 7793 } 7794 } 7795 7796 // Finish up input operands. Set the input chain and add the flag last. 7797 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 7798 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 7799 7800 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 7801 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 7802 Flag = Chain.getValue(1); 7803 7804 // If this asm returns a register value, copy the result from that register 7805 // and set it as the value of the call. 7806 if (!RetValRegs.Regs.empty()) { 7807 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7808 Chain, &Flag, CS.getInstruction()); 7809 7810 llvm::Type *CSResultType = CS.getType(); 7811 unsigned numRet; 7812 ArrayRef<Type *> ResultTypes; 7813 SmallVector<SDValue, 1> ResultValues(1); 7814 if (CSResultType->isSingleValueType()) { 7815 numRet = 1; 7816 ResultValues[0] = Val; 7817 ResultTypes = makeArrayRef(CSResultType); 7818 } else { 7819 numRet = CSResultType->getNumContainedTypes(); 7820 assert(Val->getNumOperands() == numRet && 7821 "Mismatch in number of output operands in asm result"); 7822 ResultTypes = CSResultType->subtypes(); 7823 ArrayRef<SDUse> ValueUses = Val->ops(); 7824 ResultValues.resize(numRet); 7825 std::transform(ValueUses.begin(), ValueUses.end(), ResultValues.begin(), 7826 [](const SDUse &u) -> SDValue { return u.get(); }); 7827 } 7828 SmallVector<EVT, 1> ResultVTs(numRet); 7829 for (unsigned i = 0; i < numRet; i++) { 7830 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), ResultTypes[i]); 7831 SDValue Val = ResultValues[i]; 7832 assert(ResultTypes[i]->isSized() && "Unexpected unsized type"); 7833 // If the type of the inline asm call site return value is different but 7834 // has same size as the type of the asm output bitcast it. One example 7835 // of this is for vectors with different width / number of elements. 7836 // This can happen for register classes that can contain multiple 7837 // different value types. The preg or vreg allocated may not have the 7838 // same VT as was expected. 7839 // 7840 // This can also happen for a return value that disagrees with the 7841 // register class it is put in, eg. a double in a general-purpose 7842 // register on a 32-bit machine. 7843 if (ResultVT != Val.getValueType() && 7844 ResultVT.getSizeInBits() == Val.getValueSizeInBits()) 7845 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, Val); 7846 else if (ResultVT != Val.getValueType() && ResultVT.isInteger() && 7847 Val.getValueType().isInteger()) { 7848 // If a result value was tied to an input value, the computed result 7849 // may have a wider width than the expected result. Extract the 7850 // relevant portion. 7851 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, Val); 7852 } 7853 7854 assert(ResultVT == Val.getValueType() && "Asm result value mismatch!"); 7855 ResultVTs[i] = ResultVT; 7856 ResultValues[i] = Val; 7857 } 7858 7859 Val = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 7860 DAG.getVTList(ResultVTs), ResultValues); 7861 setValue(CS.getInstruction(), Val); 7862 // Don't need to use this as a chain in this case. 7863 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 7864 return; 7865 } 7866 7867 std::vector<std::pair<SDValue, const Value *>> StoresToEmit; 7868 7869 // Process indirect outputs, first output all of the flagged copies out of 7870 // physregs. 7871 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 7872 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 7873 const Value *Ptr = IndirectStoresToEmit[i].second; 7874 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7875 Chain, &Flag, IA); 7876 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 7877 } 7878 7879 // Emit the non-flagged stores from the physregs. 7880 SmallVector<SDValue, 8> OutChains; 7881 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 7882 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), StoresToEmit[i].first, 7883 getValue(StoresToEmit[i].second), 7884 MachinePointerInfo(StoresToEmit[i].second)); 7885 OutChains.push_back(Val); 7886 } 7887 7888 if (!OutChains.empty()) 7889 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 7890 7891 DAG.setRoot(Chain); 7892 } 7893 7894 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 7895 const Twine &Message) { 7896 LLVMContext &Ctx = *DAG.getContext(); 7897 Ctx.emitError(CS.getInstruction(), Message); 7898 7899 // Make sure we leave the DAG in a valid state 7900 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7901 SmallVector<EVT, 1> ValueVTs; 7902 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 7903 7904 if (ValueVTs.empty()) 7905 return; 7906 7907 SmallVector<SDValue, 1> Ops; 7908 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 7909 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 7910 7911 setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc())); 7912 } 7913 7914 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 7915 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 7916 MVT::Other, getRoot(), 7917 getValue(I.getArgOperand(0)), 7918 DAG.getSrcValue(I.getArgOperand(0)))); 7919 } 7920 7921 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 7922 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7923 const DataLayout &DL = DAG.getDataLayout(); 7924 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 7925 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 7926 DAG.getSrcValue(I.getOperand(0)), 7927 DL.getABITypeAlignment(I.getType())); 7928 setValue(&I, V); 7929 DAG.setRoot(V.getValue(1)); 7930 } 7931 7932 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 7933 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 7934 MVT::Other, getRoot(), 7935 getValue(I.getArgOperand(0)), 7936 DAG.getSrcValue(I.getArgOperand(0)))); 7937 } 7938 7939 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 7940 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 7941 MVT::Other, getRoot(), 7942 getValue(I.getArgOperand(0)), 7943 getValue(I.getArgOperand(1)), 7944 DAG.getSrcValue(I.getArgOperand(0)), 7945 DAG.getSrcValue(I.getArgOperand(1)))); 7946 } 7947 7948 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 7949 const Instruction &I, 7950 SDValue Op) { 7951 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 7952 if (!Range) 7953 return Op; 7954 7955 ConstantRange CR = getConstantRangeFromMetadata(*Range); 7956 if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet()) 7957 return Op; 7958 7959 APInt Lo = CR.getUnsignedMin(); 7960 if (!Lo.isMinValue()) 7961 return Op; 7962 7963 APInt Hi = CR.getUnsignedMax(); 7964 unsigned Bits = Hi.getActiveBits(); 7965 7966 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 7967 7968 SDLoc SL = getCurSDLoc(); 7969 7970 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 7971 DAG.getValueType(SmallVT)); 7972 unsigned NumVals = Op.getNode()->getNumValues(); 7973 if (NumVals == 1) 7974 return ZExt; 7975 7976 SmallVector<SDValue, 4> Ops; 7977 7978 Ops.push_back(ZExt); 7979 for (unsigned I = 1; I != NumVals; ++I) 7980 Ops.push_back(Op.getValue(I)); 7981 7982 return DAG.getMergeValues(Ops, SL); 7983 } 7984 7985 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 7986 /// the call being lowered. 7987 /// 7988 /// This is a helper for lowering intrinsics that follow a target calling 7989 /// convention or require stack pointer adjustment. Only a subset of the 7990 /// intrinsic's operands need to participate in the calling convention. 7991 void SelectionDAGBuilder::populateCallLoweringInfo( 7992 TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS, 7993 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 7994 bool IsPatchPoint) { 7995 TargetLowering::ArgListTy Args; 7996 Args.reserve(NumArgs); 7997 7998 // Populate the argument list. 7999 // Attributes for args start at offset 1, after the return attribute. 8000 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 8001 ArgI != ArgE; ++ArgI) { 8002 const Value *V = CS->getOperand(ArgI); 8003 8004 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 8005 8006 TargetLowering::ArgListEntry Entry; 8007 Entry.Node = getValue(V); 8008 Entry.Ty = V->getType(); 8009 Entry.setAttributes(&CS, ArgI); 8010 Args.push_back(Entry); 8011 } 8012 8013 CLI.setDebugLoc(getCurSDLoc()) 8014 .setChain(getRoot()) 8015 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args)) 8016 .setDiscardResult(CS->use_empty()) 8017 .setIsPatchPoint(IsPatchPoint); 8018 } 8019 8020 /// Add a stack map intrinsic call's live variable operands to a stackmap 8021 /// or patchpoint target node's operand list. 8022 /// 8023 /// Constants are converted to TargetConstants purely as an optimization to 8024 /// avoid constant materialization and register allocation. 8025 /// 8026 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 8027 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 8028 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 8029 /// address materialization and register allocation, but may also be required 8030 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 8031 /// alloca in the entry block, then the runtime may assume that the alloca's 8032 /// StackMap location can be read immediately after compilation and that the 8033 /// location is valid at any point during execution (this is similar to the 8034 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 8035 /// only available in a register, then the runtime would need to trap when 8036 /// execution reaches the StackMap in order to read the alloca's location. 8037 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 8038 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 8039 SelectionDAGBuilder &Builder) { 8040 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 8041 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 8042 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 8043 Ops.push_back( 8044 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 8045 Ops.push_back( 8046 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 8047 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 8048 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 8049 Ops.push_back(Builder.DAG.getTargetFrameIndex( 8050 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 8051 } else 8052 Ops.push_back(OpVal); 8053 } 8054 } 8055 8056 /// Lower llvm.experimental.stackmap directly to its target opcode. 8057 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 8058 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 8059 // [live variables...]) 8060 8061 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 8062 8063 SDValue Chain, InFlag, Callee, NullPtr; 8064 SmallVector<SDValue, 32> Ops; 8065 8066 SDLoc DL = getCurSDLoc(); 8067 Callee = getValue(CI.getCalledValue()); 8068 NullPtr = DAG.getIntPtrConstant(0, DL, true); 8069 8070 // The stackmap intrinsic only records the live variables (the arguemnts 8071 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 8072 // intrinsic, this won't be lowered to a function call. This means we don't 8073 // have to worry about calling conventions and target specific lowering code. 8074 // Instead we perform the call lowering right here. 8075 // 8076 // chain, flag = CALLSEQ_START(chain, 0, 0) 8077 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 8078 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 8079 // 8080 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 8081 InFlag = Chain.getValue(1); 8082 8083 // Add the <id> and <numBytes> constants. 8084 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 8085 Ops.push_back(DAG.getTargetConstant( 8086 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 8087 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 8088 Ops.push_back(DAG.getTargetConstant( 8089 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 8090 MVT::i32)); 8091 8092 // Push live variables for the stack map. 8093 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 8094 8095 // We are not pushing any register mask info here on the operands list, 8096 // because the stackmap doesn't clobber anything. 8097 8098 // Push the chain and the glue flag. 8099 Ops.push_back(Chain); 8100 Ops.push_back(InFlag); 8101 8102 // Create the STACKMAP node. 8103 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8104 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 8105 Chain = SDValue(SM, 0); 8106 InFlag = Chain.getValue(1); 8107 8108 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 8109 8110 // Stackmaps don't generate values, so nothing goes into the NodeMap. 8111 8112 // Set the root to the target-lowered call chain. 8113 DAG.setRoot(Chain); 8114 8115 // Inform the Frame Information that we have a stackmap in this function. 8116 FuncInfo.MF->getFrameInfo().setHasStackMap(); 8117 } 8118 8119 /// Lower llvm.experimental.patchpoint directly to its target opcode. 8120 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 8121 const BasicBlock *EHPadBB) { 8122 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 8123 // i32 <numBytes>, 8124 // i8* <target>, 8125 // i32 <numArgs>, 8126 // [Args...], 8127 // [live variables...]) 8128 8129 CallingConv::ID CC = CS.getCallingConv(); 8130 bool IsAnyRegCC = CC == CallingConv::AnyReg; 8131 bool HasDef = !CS->getType()->isVoidTy(); 8132 SDLoc dl = getCurSDLoc(); 8133 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 8134 8135 // Handle immediate and symbolic callees. 8136 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 8137 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 8138 /*isTarget=*/true); 8139 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 8140 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 8141 SDLoc(SymbolicCallee), 8142 SymbolicCallee->getValueType(0)); 8143 8144 // Get the real number of arguments participating in the call <numArgs> 8145 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 8146 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 8147 8148 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 8149 // Intrinsics include all meta-operands up to but not including CC. 8150 unsigned NumMetaOpers = PatchPointOpers::CCPos; 8151 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 8152 "Not enough arguments provided to the patchpoint intrinsic"); 8153 8154 // For AnyRegCC the arguments are lowered later on manually. 8155 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 8156 Type *ReturnTy = 8157 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 8158 8159 TargetLowering::CallLoweringInfo CLI(DAG); 8160 populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 8161 true); 8162 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8163 8164 SDNode *CallEnd = Result.second.getNode(); 8165 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 8166 CallEnd = CallEnd->getOperand(0).getNode(); 8167 8168 /// Get a call instruction from the call sequence chain. 8169 /// Tail calls are not allowed. 8170 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 8171 "Expected a callseq node."); 8172 SDNode *Call = CallEnd->getOperand(0).getNode(); 8173 bool HasGlue = Call->getGluedNode(); 8174 8175 // Replace the target specific call node with the patchable intrinsic. 8176 SmallVector<SDValue, 8> Ops; 8177 8178 // Add the <id> and <numBytes> constants. 8179 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 8180 Ops.push_back(DAG.getTargetConstant( 8181 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 8182 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 8183 Ops.push_back(DAG.getTargetConstant( 8184 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 8185 MVT::i32)); 8186 8187 // Add the callee. 8188 Ops.push_back(Callee); 8189 8190 // Adjust <numArgs> to account for any arguments that have been passed on the 8191 // stack instead. 8192 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 8193 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 8194 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 8195 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 8196 8197 // Add the calling convention 8198 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 8199 8200 // Add the arguments we omitted previously. The register allocator should 8201 // place these in any free register. 8202 if (IsAnyRegCC) 8203 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 8204 Ops.push_back(getValue(CS.getArgument(i))); 8205 8206 // Push the arguments from the call instruction up to the register mask. 8207 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 8208 Ops.append(Call->op_begin() + 2, e); 8209 8210 // Push live variables for the stack map. 8211 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 8212 8213 // Push the register mask info. 8214 if (HasGlue) 8215 Ops.push_back(*(Call->op_end()-2)); 8216 else 8217 Ops.push_back(*(Call->op_end()-1)); 8218 8219 // Push the chain (this is originally the first operand of the call, but 8220 // becomes now the last or second to last operand). 8221 Ops.push_back(*(Call->op_begin())); 8222 8223 // Push the glue flag (last operand). 8224 if (HasGlue) 8225 Ops.push_back(*(Call->op_end()-1)); 8226 8227 SDVTList NodeTys; 8228 if (IsAnyRegCC && HasDef) { 8229 // Create the return types based on the intrinsic definition 8230 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8231 SmallVector<EVT, 3> ValueVTs; 8232 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8233 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 8234 8235 // There is always a chain and a glue type at the end 8236 ValueVTs.push_back(MVT::Other); 8237 ValueVTs.push_back(MVT::Glue); 8238 NodeTys = DAG.getVTList(ValueVTs); 8239 } else 8240 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8241 8242 // Replace the target specific call node with a PATCHPOINT node. 8243 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 8244 dl, NodeTys, Ops); 8245 8246 // Update the NodeMap. 8247 if (HasDef) { 8248 if (IsAnyRegCC) 8249 setValue(CS.getInstruction(), SDValue(MN, 0)); 8250 else 8251 setValue(CS.getInstruction(), Result.first); 8252 } 8253 8254 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 8255 // call sequence. Furthermore the location of the chain and glue can change 8256 // when the AnyReg calling convention is used and the intrinsic returns a 8257 // value. 8258 if (IsAnyRegCC && HasDef) { 8259 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 8260 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 8261 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 8262 } else 8263 DAG.ReplaceAllUsesWith(Call, MN); 8264 DAG.DeleteNode(Call); 8265 8266 // Inform the Frame Information that we have a patchpoint in this function. 8267 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 8268 } 8269 8270 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 8271 unsigned Intrinsic) { 8272 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8273 SDValue Op1 = getValue(I.getArgOperand(0)); 8274 SDValue Op2; 8275 if (I.getNumArgOperands() > 1) 8276 Op2 = getValue(I.getArgOperand(1)); 8277 SDLoc dl = getCurSDLoc(); 8278 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8279 SDValue Res; 8280 FastMathFlags FMF; 8281 if (isa<FPMathOperator>(I)) 8282 FMF = I.getFastMathFlags(); 8283 8284 switch (Intrinsic) { 8285 case Intrinsic::experimental_vector_reduce_fadd: 8286 if (FMF.isFast()) 8287 Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2); 8288 else 8289 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 8290 break; 8291 case Intrinsic::experimental_vector_reduce_fmul: 8292 if (FMF.isFast()) 8293 Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2); 8294 else 8295 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 8296 break; 8297 case Intrinsic::experimental_vector_reduce_add: 8298 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 8299 break; 8300 case Intrinsic::experimental_vector_reduce_mul: 8301 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 8302 break; 8303 case Intrinsic::experimental_vector_reduce_and: 8304 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 8305 break; 8306 case Intrinsic::experimental_vector_reduce_or: 8307 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 8308 break; 8309 case Intrinsic::experimental_vector_reduce_xor: 8310 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 8311 break; 8312 case Intrinsic::experimental_vector_reduce_smax: 8313 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 8314 break; 8315 case Intrinsic::experimental_vector_reduce_smin: 8316 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 8317 break; 8318 case Intrinsic::experimental_vector_reduce_umax: 8319 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 8320 break; 8321 case Intrinsic::experimental_vector_reduce_umin: 8322 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 8323 break; 8324 case Intrinsic::experimental_vector_reduce_fmax: 8325 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1); 8326 break; 8327 case Intrinsic::experimental_vector_reduce_fmin: 8328 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1); 8329 break; 8330 default: 8331 llvm_unreachable("Unhandled vector reduce intrinsic"); 8332 } 8333 setValue(&I, Res); 8334 } 8335 8336 /// Returns an AttributeList representing the attributes applied to the return 8337 /// value of the given call. 8338 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 8339 SmallVector<Attribute::AttrKind, 2> Attrs; 8340 if (CLI.RetSExt) 8341 Attrs.push_back(Attribute::SExt); 8342 if (CLI.RetZExt) 8343 Attrs.push_back(Attribute::ZExt); 8344 if (CLI.IsInReg) 8345 Attrs.push_back(Attribute::InReg); 8346 8347 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 8348 Attrs); 8349 } 8350 8351 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 8352 /// implementation, which just calls LowerCall. 8353 /// FIXME: When all targets are 8354 /// migrated to using LowerCall, this hook should be integrated into SDISel. 8355 std::pair<SDValue, SDValue> 8356 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 8357 // Handle the incoming return values from the call. 8358 CLI.Ins.clear(); 8359 Type *OrigRetTy = CLI.RetTy; 8360 SmallVector<EVT, 4> RetTys; 8361 SmallVector<uint64_t, 4> Offsets; 8362 auto &DL = CLI.DAG.getDataLayout(); 8363 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 8364 8365 if (CLI.IsPostTypeLegalization) { 8366 // If we are lowering a libcall after legalization, split the return type. 8367 SmallVector<EVT, 4> OldRetTys = std::move(RetTys); 8368 SmallVector<uint64_t, 4> OldOffsets = std::move(Offsets); 8369 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 8370 EVT RetVT = OldRetTys[i]; 8371 uint64_t Offset = OldOffsets[i]; 8372 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 8373 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 8374 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 8375 RetTys.append(NumRegs, RegisterVT); 8376 for (unsigned j = 0; j != NumRegs; ++j) 8377 Offsets.push_back(Offset + j * RegisterVTByteSZ); 8378 } 8379 } 8380 8381 SmallVector<ISD::OutputArg, 4> Outs; 8382 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 8383 8384 bool CanLowerReturn = 8385 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 8386 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 8387 8388 SDValue DemoteStackSlot; 8389 int DemoteStackIdx = -100; 8390 if (!CanLowerReturn) { 8391 // FIXME: equivalent assert? 8392 // assert(!CS.hasInAllocaArgument() && 8393 // "sret demotion is incompatible with inalloca"); 8394 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 8395 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 8396 MachineFunction &MF = CLI.DAG.getMachineFunction(); 8397 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 8398 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 8399 DL.getAllocaAddrSpace()); 8400 8401 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 8402 ArgListEntry Entry; 8403 Entry.Node = DemoteStackSlot; 8404 Entry.Ty = StackSlotPtrType; 8405 Entry.IsSExt = false; 8406 Entry.IsZExt = false; 8407 Entry.IsInReg = false; 8408 Entry.IsSRet = true; 8409 Entry.IsNest = false; 8410 Entry.IsByVal = false; 8411 Entry.IsReturned = false; 8412 Entry.IsSwiftSelf = false; 8413 Entry.IsSwiftError = false; 8414 Entry.Alignment = Align; 8415 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 8416 CLI.NumFixedArgs += 1; 8417 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 8418 8419 // sret demotion isn't compatible with tail-calls, since the sret argument 8420 // points into the callers stack frame. 8421 CLI.IsTailCall = false; 8422 } else { 8423 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 8424 EVT VT = RetTys[I]; 8425 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 8426 CLI.CallConv, VT); 8427 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 8428 CLI.CallConv, VT); 8429 for (unsigned i = 0; i != NumRegs; ++i) { 8430 ISD::InputArg MyFlags; 8431 MyFlags.VT = RegisterVT; 8432 MyFlags.ArgVT = VT; 8433 MyFlags.Used = CLI.IsReturnValueUsed; 8434 if (CLI.RetSExt) 8435 MyFlags.Flags.setSExt(); 8436 if (CLI.RetZExt) 8437 MyFlags.Flags.setZExt(); 8438 if (CLI.IsInReg) 8439 MyFlags.Flags.setInReg(); 8440 CLI.Ins.push_back(MyFlags); 8441 } 8442 } 8443 } 8444 8445 // We push in swifterror return as the last element of CLI.Ins. 8446 ArgListTy &Args = CLI.getArgs(); 8447 if (supportSwiftError()) { 8448 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8449 if (Args[i].IsSwiftError) { 8450 ISD::InputArg MyFlags; 8451 MyFlags.VT = getPointerTy(DL); 8452 MyFlags.ArgVT = EVT(getPointerTy(DL)); 8453 MyFlags.Flags.setSwiftError(); 8454 CLI.Ins.push_back(MyFlags); 8455 } 8456 } 8457 } 8458 8459 // Handle all of the outgoing arguments. 8460 CLI.Outs.clear(); 8461 CLI.OutVals.clear(); 8462 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8463 SmallVector<EVT, 4> ValueVTs; 8464 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 8465 // FIXME: Split arguments if CLI.IsPostTypeLegalization 8466 Type *FinalType = Args[i].Ty; 8467 if (Args[i].IsByVal) 8468 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 8469 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 8470 FinalType, CLI.CallConv, CLI.IsVarArg); 8471 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 8472 ++Value) { 8473 EVT VT = ValueVTs[Value]; 8474 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 8475 SDValue Op = SDValue(Args[i].Node.getNode(), 8476 Args[i].Node.getResNo() + Value); 8477 ISD::ArgFlagsTy Flags; 8478 8479 // Certain targets (such as MIPS), may have a different ABI alignment 8480 // for a type depending on the context. Give the target a chance to 8481 // specify the alignment it wants. 8482 unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL); 8483 8484 if (Args[i].IsZExt) 8485 Flags.setZExt(); 8486 if (Args[i].IsSExt) 8487 Flags.setSExt(); 8488 if (Args[i].IsInReg) { 8489 // If we are using vectorcall calling convention, a structure that is 8490 // passed InReg - is surely an HVA 8491 if (CLI.CallConv == CallingConv::X86_VectorCall && 8492 isa<StructType>(FinalType)) { 8493 // The first value of a structure is marked 8494 if (0 == Value) 8495 Flags.setHvaStart(); 8496 Flags.setHva(); 8497 } 8498 // Set InReg Flag 8499 Flags.setInReg(); 8500 } 8501 if (Args[i].IsSRet) 8502 Flags.setSRet(); 8503 if (Args[i].IsSwiftSelf) 8504 Flags.setSwiftSelf(); 8505 if (Args[i].IsSwiftError) 8506 Flags.setSwiftError(); 8507 if (Args[i].IsByVal) 8508 Flags.setByVal(); 8509 if (Args[i].IsInAlloca) { 8510 Flags.setInAlloca(); 8511 // Set the byval flag for CCAssignFn callbacks that don't know about 8512 // inalloca. This way we can know how many bytes we should've allocated 8513 // and how many bytes a callee cleanup function will pop. If we port 8514 // inalloca to more targets, we'll have to add custom inalloca handling 8515 // in the various CC lowering callbacks. 8516 Flags.setByVal(); 8517 } 8518 if (Args[i].IsByVal || Args[i].IsInAlloca) { 8519 PointerType *Ty = cast<PointerType>(Args[i].Ty); 8520 Type *ElementTy = Ty->getElementType(); 8521 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 8522 // For ByVal, alignment should come from FE. BE will guess if this 8523 // info is not there but there are cases it cannot get right. 8524 unsigned FrameAlign; 8525 if (Args[i].Alignment) 8526 FrameAlign = Args[i].Alignment; 8527 else 8528 FrameAlign = getByValTypeAlignment(ElementTy, DL); 8529 Flags.setByValAlign(FrameAlign); 8530 } 8531 if (Args[i].IsNest) 8532 Flags.setNest(); 8533 if (NeedsRegBlock) 8534 Flags.setInConsecutiveRegs(); 8535 Flags.setOrigAlign(OriginalAlignment); 8536 8537 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 8538 CLI.CallConv, VT); 8539 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 8540 CLI.CallConv, VT); 8541 SmallVector<SDValue, 4> Parts(NumParts); 8542 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 8543 8544 if (Args[i].IsSExt) 8545 ExtendKind = ISD::SIGN_EXTEND; 8546 else if (Args[i].IsZExt) 8547 ExtendKind = ISD::ZERO_EXTEND; 8548 8549 // Conservatively only handle 'returned' on non-vectors that can be lowered, 8550 // for now. 8551 if (Args[i].IsReturned && !Op.getValueType().isVector() && 8552 CanLowerReturn) { 8553 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 8554 "unexpected use of 'returned'"); 8555 // Before passing 'returned' to the target lowering code, ensure that 8556 // either the register MVT and the actual EVT are the same size or that 8557 // the return value and argument are extended in the same way; in these 8558 // cases it's safe to pass the argument register value unchanged as the 8559 // return register value (although it's at the target's option whether 8560 // to do so) 8561 // TODO: allow code generation to take advantage of partially preserved 8562 // registers rather than clobbering the entire register when the 8563 // parameter extension method is not compatible with the return 8564 // extension method 8565 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 8566 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 8567 CLI.RetZExt == Args[i].IsZExt)) 8568 Flags.setReturned(); 8569 } 8570 8571 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 8572 CLI.CS.getInstruction(), CLI.CallConv, ExtendKind); 8573 8574 for (unsigned j = 0; j != NumParts; ++j) { 8575 // if it isn't first piece, alignment must be 1 8576 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 8577 i < CLI.NumFixedArgs, 8578 i, j*Parts[j].getValueType().getStoreSize()); 8579 if (NumParts > 1 && j == 0) 8580 MyFlags.Flags.setSplit(); 8581 else if (j != 0) { 8582 MyFlags.Flags.setOrigAlign(1); 8583 if (j == NumParts - 1) 8584 MyFlags.Flags.setSplitEnd(); 8585 } 8586 8587 CLI.Outs.push_back(MyFlags); 8588 CLI.OutVals.push_back(Parts[j]); 8589 } 8590 8591 if (NeedsRegBlock && Value == NumValues - 1) 8592 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 8593 } 8594 } 8595 8596 SmallVector<SDValue, 4> InVals; 8597 CLI.Chain = LowerCall(CLI, InVals); 8598 8599 // Update CLI.InVals to use outside of this function. 8600 CLI.InVals = InVals; 8601 8602 // Verify that the target's LowerCall behaved as expected. 8603 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 8604 "LowerCall didn't return a valid chain!"); 8605 assert((!CLI.IsTailCall || InVals.empty()) && 8606 "LowerCall emitted a return value for a tail call!"); 8607 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 8608 "LowerCall didn't emit the correct number of values!"); 8609 8610 // For a tail call, the return value is merely live-out and there aren't 8611 // any nodes in the DAG representing it. Return a special value to 8612 // indicate that a tail call has been emitted and no more Instructions 8613 // should be processed in the current block. 8614 if (CLI.IsTailCall) { 8615 CLI.DAG.setRoot(CLI.Chain); 8616 return std::make_pair(SDValue(), SDValue()); 8617 } 8618 8619 #ifndef NDEBUG 8620 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 8621 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 8622 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 8623 "LowerCall emitted a value with the wrong type!"); 8624 } 8625 #endif 8626 8627 SmallVector<SDValue, 4> ReturnValues; 8628 if (!CanLowerReturn) { 8629 // The instruction result is the result of loading from the 8630 // hidden sret parameter. 8631 SmallVector<EVT, 1> PVTs; 8632 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 8633 8634 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 8635 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 8636 EVT PtrVT = PVTs[0]; 8637 8638 unsigned NumValues = RetTys.size(); 8639 ReturnValues.resize(NumValues); 8640 SmallVector<SDValue, 4> Chains(NumValues); 8641 8642 // An aggregate return value cannot wrap around the address space, so 8643 // offsets to its parts don't wrap either. 8644 SDNodeFlags Flags; 8645 Flags.setNoUnsignedWrap(true); 8646 8647 for (unsigned i = 0; i < NumValues; ++i) { 8648 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 8649 CLI.DAG.getConstant(Offsets[i], CLI.DL, 8650 PtrVT), Flags); 8651 SDValue L = CLI.DAG.getLoad( 8652 RetTys[i], CLI.DL, CLI.Chain, Add, 8653 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 8654 DemoteStackIdx, Offsets[i]), 8655 /* Alignment = */ 1); 8656 ReturnValues[i] = L; 8657 Chains[i] = L.getValue(1); 8658 } 8659 8660 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 8661 } else { 8662 // Collect the legal value parts into potentially illegal values 8663 // that correspond to the original function's return values. 8664 Optional<ISD::NodeType> AssertOp; 8665 if (CLI.RetSExt) 8666 AssertOp = ISD::AssertSext; 8667 else if (CLI.RetZExt) 8668 AssertOp = ISD::AssertZext; 8669 unsigned CurReg = 0; 8670 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 8671 EVT VT = RetTys[I]; 8672 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 8673 CLI.CallConv, VT); 8674 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 8675 CLI.CallConv, VT); 8676 8677 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 8678 NumRegs, RegisterVT, VT, nullptr, 8679 CLI.CallConv, AssertOp)); 8680 CurReg += NumRegs; 8681 } 8682 8683 // For a function returning void, there is no return value. We can't create 8684 // such a node, so we just return a null return value in that case. In 8685 // that case, nothing will actually look at the value. 8686 if (ReturnValues.empty()) 8687 return std::make_pair(SDValue(), CLI.Chain); 8688 } 8689 8690 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 8691 CLI.DAG.getVTList(RetTys), ReturnValues); 8692 return std::make_pair(Res, CLI.Chain); 8693 } 8694 8695 void TargetLowering::LowerOperationWrapper(SDNode *N, 8696 SmallVectorImpl<SDValue> &Results, 8697 SelectionDAG &DAG) const { 8698 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 8699 Results.push_back(Res); 8700 } 8701 8702 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 8703 llvm_unreachable("LowerOperation not implemented for this target!"); 8704 } 8705 8706 void 8707 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 8708 SDValue Op = getNonRegisterValue(V); 8709 assert((Op.getOpcode() != ISD::CopyFromReg || 8710 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 8711 "Copy from a reg to the same reg!"); 8712 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 8713 8714 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8715 // If this is an InlineAsm we have to match the registers required, not the 8716 // notional registers required by the type. 8717 8718 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 8719 None); // This is not an ABI copy. 8720 SDValue Chain = DAG.getEntryNode(); 8721 8722 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 8723 FuncInfo.PreferredExtendType.end()) 8724 ? ISD::ANY_EXTEND 8725 : FuncInfo.PreferredExtendType[V]; 8726 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 8727 PendingExports.push_back(Chain); 8728 } 8729 8730 #include "llvm/CodeGen/SelectionDAGISel.h" 8731 8732 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 8733 /// entry block, return true. This includes arguments used by switches, since 8734 /// the switch may expand into multiple basic blocks. 8735 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 8736 // With FastISel active, we may be splitting blocks, so force creation 8737 // of virtual registers for all non-dead arguments. 8738 if (FastISel) 8739 return A->use_empty(); 8740 8741 const BasicBlock &Entry = A->getParent()->front(); 8742 for (const User *U : A->users()) 8743 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 8744 return false; // Use not in entry block. 8745 8746 return true; 8747 } 8748 8749 using ArgCopyElisionMapTy = 8750 DenseMap<const Argument *, 8751 std::pair<const AllocaInst *, const StoreInst *>>; 8752 8753 /// Scan the entry block of the function in FuncInfo for arguments that look 8754 /// like copies into a local alloca. Record any copied arguments in 8755 /// ArgCopyElisionCandidates. 8756 static void 8757 findArgumentCopyElisionCandidates(const DataLayout &DL, 8758 FunctionLoweringInfo *FuncInfo, 8759 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 8760 // Record the state of every static alloca used in the entry block. Argument 8761 // allocas are all used in the entry block, so we need approximately as many 8762 // entries as we have arguments. 8763 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 8764 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 8765 unsigned NumArgs = FuncInfo->Fn->arg_size(); 8766 StaticAllocas.reserve(NumArgs * 2); 8767 8768 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 8769 if (!V) 8770 return nullptr; 8771 V = V->stripPointerCasts(); 8772 const auto *AI = dyn_cast<AllocaInst>(V); 8773 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 8774 return nullptr; 8775 auto Iter = StaticAllocas.insert({AI, Unknown}); 8776 return &Iter.first->second; 8777 }; 8778 8779 // Look for stores of arguments to static allocas. Look through bitcasts and 8780 // GEPs to handle type coercions, as long as the alloca is fully initialized 8781 // by the store. Any non-store use of an alloca escapes it and any subsequent 8782 // unanalyzed store might write it. 8783 // FIXME: Handle structs initialized with multiple stores. 8784 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 8785 // Look for stores, and handle non-store uses conservatively. 8786 const auto *SI = dyn_cast<StoreInst>(&I); 8787 if (!SI) { 8788 // We will look through cast uses, so ignore them completely. 8789 if (I.isCast()) 8790 continue; 8791 // Ignore debug info intrinsics, they don't escape or store to allocas. 8792 if (isa<DbgInfoIntrinsic>(I)) 8793 continue; 8794 // This is an unknown instruction. Assume it escapes or writes to all 8795 // static alloca operands. 8796 for (const Use &U : I.operands()) { 8797 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 8798 *Info = StaticAllocaInfo::Clobbered; 8799 } 8800 continue; 8801 } 8802 8803 // If the stored value is a static alloca, mark it as escaped. 8804 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 8805 *Info = StaticAllocaInfo::Clobbered; 8806 8807 // Check if the destination is a static alloca. 8808 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 8809 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 8810 if (!Info) 8811 continue; 8812 const AllocaInst *AI = cast<AllocaInst>(Dst); 8813 8814 // Skip allocas that have been initialized or clobbered. 8815 if (*Info != StaticAllocaInfo::Unknown) 8816 continue; 8817 8818 // Check if the stored value is an argument, and that this store fully 8819 // initializes the alloca. Don't elide copies from the same argument twice. 8820 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 8821 const auto *Arg = dyn_cast<Argument>(Val); 8822 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 8823 Arg->getType()->isEmptyTy() || 8824 DL.getTypeStoreSize(Arg->getType()) != 8825 DL.getTypeAllocSize(AI->getAllocatedType()) || 8826 ArgCopyElisionCandidates.count(Arg)) { 8827 *Info = StaticAllocaInfo::Clobbered; 8828 continue; 8829 } 8830 8831 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 8832 << '\n'); 8833 8834 // Mark this alloca and store for argument copy elision. 8835 *Info = StaticAllocaInfo::Elidable; 8836 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 8837 8838 // Stop scanning if we've seen all arguments. This will happen early in -O0 8839 // builds, which is useful, because -O0 builds have large entry blocks and 8840 // many allocas. 8841 if (ArgCopyElisionCandidates.size() == NumArgs) 8842 break; 8843 } 8844 } 8845 8846 /// Try to elide argument copies from memory into a local alloca. Succeeds if 8847 /// ArgVal is a load from a suitable fixed stack object. 8848 static void tryToElideArgumentCopy( 8849 FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains, 8850 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 8851 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 8852 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 8853 SDValue ArgVal, bool &ArgHasUses) { 8854 // Check if this is a load from a fixed stack object. 8855 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 8856 if (!LNode) 8857 return; 8858 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 8859 if (!FINode) 8860 return; 8861 8862 // Check that the fixed stack object is the right size and alignment. 8863 // Look at the alignment that the user wrote on the alloca instead of looking 8864 // at the stack object. 8865 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 8866 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 8867 const AllocaInst *AI = ArgCopyIter->second.first; 8868 int FixedIndex = FINode->getIndex(); 8869 int &AllocaIndex = FuncInfo->StaticAllocaMap[AI]; 8870 int OldIndex = AllocaIndex; 8871 MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo(); 8872 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 8873 LLVM_DEBUG( 8874 dbgs() << " argument copy elision failed due to bad fixed stack " 8875 "object size\n"); 8876 return; 8877 } 8878 unsigned RequiredAlignment = AI->getAlignment(); 8879 if (!RequiredAlignment) { 8880 RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment( 8881 AI->getAllocatedType()); 8882 } 8883 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) { 8884 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 8885 "greater than stack argument alignment (" 8886 << RequiredAlignment << " vs " 8887 << MFI.getObjectAlignment(FixedIndex) << ")\n"); 8888 return; 8889 } 8890 8891 // Perform the elision. Delete the old stack object and replace its only use 8892 // in the variable info map. Mark the stack object as mutable. 8893 LLVM_DEBUG({ 8894 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 8895 << " Replacing frame index " << OldIndex << " with " << FixedIndex 8896 << '\n'; 8897 }); 8898 MFI.RemoveStackObject(OldIndex); 8899 MFI.setIsImmutableObjectIndex(FixedIndex, false); 8900 AllocaIndex = FixedIndex; 8901 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 8902 Chains.push_back(ArgVal.getValue(1)); 8903 8904 // Avoid emitting code for the store implementing the copy. 8905 const StoreInst *SI = ArgCopyIter->second.second; 8906 ElidedArgCopyInstrs.insert(SI); 8907 8908 // Check for uses of the argument again so that we can avoid exporting ArgVal 8909 // if it is't used by anything other than the store. 8910 for (const Value *U : Arg.users()) { 8911 if (U != SI) { 8912 ArgHasUses = true; 8913 break; 8914 } 8915 } 8916 } 8917 8918 void SelectionDAGISel::LowerArguments(const Function &F) { 8919 SelectionDAG &DAG = SDB->DAG; 8920 SDLoc dl = SDB->getCurSDLoc(); 8921 const DataLayout &DL = DAG.getDataLayout(); 8922 SmallVector<ISD::InputArg, 16> Ins; 8923 8924 if (!FuncInfo->CanLowerReturn) { 8925 // Put in an sret pointer parameter before all the other parameters. 8926 SmallVector<EVT, 1> ValueVTs; 8927 ComputeValueVTs(*TLI, DAG.getDataLayout(), 8928 F.getReturnType()->getPointerTo( 8929 DAG.getDataLayout().getAllocaAddrSpace()), 8930 ValueVTs); 8931 8932 // NOTE: Assuming that a pointer will never break down to more than one VT 8933 // or one register. 8934 ISD::ArgFlagsTy Flags; 8935 Flags.setSRet(); 8936 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 8937 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 8938 ISD::InputArg::NoArgIndex, 0); 8939 Ins.push_back(RetArg); 8940 } 8941 8942 // Look for stores of arguments to static allocas. Mark such arguments with a 8943 // flag to ask the target to give us the memory location of that argument if 8944 // available. 8945 ArgCopyElisionMapTy ArgCopyElisionCandidates; 8946 findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates); 8947 8948 // Set up the incoming argument description vector. 8949 for (const Argument &Arg : F.args()) { 8950 unsigned ArgNo = Arg.getArgNo(); 8951 SmallVector<EVT, 4> ValueVTs; 8952 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 8953 bool isArgValueUsed = !Arg.use_empty(); 8954 unsigned PartBase = 0; 8955 Type *FinalType = Arg.getType(); 8956 if (Arg.hasAttribute(Attribute::ByVal)) 8957 FinalType = cast<PointerType>(FinalType)->getElementType(); 8958 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 8959 FinalType, F.getCallingConv(), F.isVarArg()); 8960 for (unsigned Value = 0, NumValues = ValueVTs.size(); 8961 Value != NumValues; ++Value) { 8962 EVT VT = ValueVTs[Value]; 8963 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 8964 ISD::ArgFlagsTy Flags; 8965 8966 // Certain targets (such as MIPS), may have a different ABI alignment 8967 // for a type depending on the context. Give the target a chance to 8968 // specify the alignment it wants. 8969 unsigned OriginalAlignment = 8970 TLI->getABIAlignmentForCallingConv(ArgTy, DL); 8971 8972 if (Arg.hasAttribute(Attribute::ZExt)) 8973 Flags.setZExt(); 8974 if (Arg.hasAttribute(Attribute::SExt)) 8975 Flags.setSExt(); 8976 if (Arg.hasAttribute(Attribute::InReg)) { 8977 // If we are using vectorcall calling convention, a structure that is 8978 // passed InReg - is surely an HVA 8979 if (F.getCallingConv() == CallingConv::X86_VectorCall && 8980 isa<StructType>(Arg.getType())) { 8981 // The first value of a structure is marked 8982 if (0 == Value) 8983 Flags.setHvaStart(); 8984 Flags.setHva(); 8985 } 8986 // Set InReg Flag 8987 Flags.setInReg(); 8988 } 8989 if (Arg.hasAttribute(Attribute::StructRet)) 8990 Flags.setSRet(); 8991 if (Arg.hasAttribute(Attribute::SwiftSelf)) 8992 Flags.setSwiftSelf(); 8993 if (Arg.hasAttribute(Attribute::SwiftError)) 8994 Flags.setSwiftError(); 8995 if (Arg.hasAttribute(Attribute::ByVal)) 8996 Flags.setByVal(); 8997 if (Arg.hasAttribute(Attribute::InAlloca)) { 8998 Flags.setInAlloca(); 8999 // Set the byval flag for CCAssignFn callbacks that don't know about 9000 // inalloca. This way we can know how many bytes we should've allocated 9001 // and how many bytes a callee cleanup function will pop. If we port 9002 // inalloca to more targets, we'll have to add custom inalloca handling 9003 // in the various CC lowering callbacks. 9004 Flags.setByVal(); 9005 } 9006 if (F.getCallingConv() == CallingConv::X86_INTR) { 9007 // IA Interrupt passes frame (1st parameter) by value in the stack. 9008 if (ArgNo == 0) 9009 Flags.setByVal(); 9010 } 9011 if (Flags.isByVal() || Flags.isInAlloca()) { 9012 PointerType *Ty = cast<PointerType>(Arg.getType()); 9013 Type *ElementTy = Ty->getElementType(); 9014 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 9015 // For ByVal, alignment should be passed from FE. BE will guess if 9016 // this info is not there but there are cases it cannot get right. 9017 unsigned FrameAlign; 9018 if (Arg.getParamAlignment()) 9019 FrameAlign = Arg.getParamAlignment(); 9020 else 9021 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 9022 Flags.setByValAlign(FrameAlign); 9023 } 9024 if (Arg.hasAttribute(Attribute::Nest)) 9025 Flags.setNest(); 9026 if (NeedsRegBlock) 9027 Flags.setInConsecutiveRegs(); 9028 Flags.setOrigAlign(OriginalAlignment); 9029 if (ArgCopyElisionCandidates.count(&Arg)) 9030 Flags.setCopyElisionCandidate(); 9031 9032 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 9033 *CurDAG->getContext(), F.getCallingConv(), VT); 9034 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 9035 *CurDAG->getContext(), F.getCallingConv(), VT); 9036 for (unsigned i = 0; i != NumRegs; ++i) { 9037 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 9038 ArgNo, PartBase+i*RegisterVT.getStoreSize()); 9039 if (NumRegs > 1 && i == 0) 9040 MyFlags.Flags.setSplit(); 9041 // if it isn't first piece, alignment must be 1 9042 else if (i > 0) { 9043 MyFlags.Flags.setOrigAlign(1); 9044 if (i == NumRegs - 1) 9045 MyFlags.Flags.setSplitEnd(); 9046 } 9047 Ins.push_back(MyFlags); 9048 } 9049 if (NeedsRegBlock && Value == NumValues - 1) 9050 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 9051 PartBase += VT.getStoreSize(); 9052 } 9053 } 9054 9055 // Call the target to set up the argument values. 9056 SmallVector<SDValue, 8> InVals; 9057 SDValue NewRoot = TLI->LowerFormalArguments( 9058 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 9059 9060 // Verify that the target's LowerFormalArguments behaved as expected. 9061 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 9062 "LowerFormalArguments didn't return a valid chain!"); 9063 assert(InVals.size() == Ins.size() && 9064 "LowerFormalArguments didn't emit the correct number of values!"); 9065 LLVM_DEBUG({ 9066 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 9067 assert(InVals[i].getNode() && 9068 "LowerFormalArguments emitted a null value!"); 9069 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 9070 "LowerFormalArguments emitted a value with the wrong type!"); 9071 } 9072 }); 9073 9074 // Update the DAG with the new chain value resulting from argument lowering. 9075 DAG.setRoot(NewRoot); 9076 9077 // Set up the argument values. 9078 unsigned i = 0; 9079 if (!FuncInfo->CanLowerReturn) { 9080 // Create a virtual register for the sret pointer, and put in a copy 9081 // from the sret argument into it. 9082 SmallVector<EVT, 1> ValueVTs; 9083 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9084 F.getReturnType()->getPointerTo( 9085 DAG.getDataLayout().getAllocaAddrSpace()), 9086 ValueVTs); 9087 MVT VT = ValueVTs[0].getSimpleVT(); 9088 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 9089 Optional<ISD::NodeType> AssertOp = None; 9090 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 9091 nullptr, F.getCallingConv(), AssertOp); 9092 9093 MachineFunction& MF = SDB->DAG.getMachineFunction(); 9094 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 9095 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 9096 FuncInfo->DemoteRegister = SRetReg; 9097 NewRoot = 9098 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 9099 DAG.setRoot(NewRoot); 9100 9101 // i indexes lowered arguments. Bump it past the hidden sret argument. 9102 ++i; 9103 } 9104 9105 SmallVector<SDValue, 4> Chains; 9106 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 9107 for (const Argument &Arg : F.args()) { 9108 SmallVector<SDValue, 4> ArgValues; 9109 SmallVector<EVT, 4> ValueVTs; 9110 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9111 unsigned NumValues = ValueVTs.size(); 9112 if (NumValues == 0) 9113 continue; 9114 9115 bool ArgHasUses = !Arg.use_empty(); 9116 9117 // Elide the copying store if the target loaded this argument from a 9118 // suitable fixed stack object. 9119 if (Ins[i].Flags.isCopyElisionCandidate()) { 9120 tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 9121 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 9122 InVals[i], ArgHasUses); 9123 } 9124 9125 // If this argument is unused then remember its value. It is used to generate 9126 // debugging information. 9127 bool isSwiftErrorArg = 9128 TLI->supportSwiftError() && 9129 Arg.hasAttribute(Attribute::SwiftError); 9130 if (!ArgHasUses && !isSwiftErrorArg) { 9131 SDB->setUnusedArgValue(&Arg, InVals[i]); 9132 9133 // Also remember any frame index for use in FastISel. 9134 if (FrameIndexSDNode *FI = 9135 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 9136 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9137 } 9138 9139 for (unsigned Val = 0; Val != NumValues; ++Val) { 9140 EVT VT = ValueVTs[Val]; 9141 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 9142 F.getCallingConv(), VT); 9143 unsigned NumParts = TLI->getNumRegistersForCallingConv( 9144 *CurDAG->getContext(), F.getCallingConv(), VT); 9145 9146 // Even an apparant 'unused' swifterror argument needs to be returned. So 9147 // we do generate a copy for it that can be used on return from the 9148 // function. 9149 if (ArgHasUses || isSwiftErrorArg) { 9150 Optional<ISD::NodeType> AssertOp; 9151 if (Arg.hasAttribute(Attribute::SExt)) 9152 AssertOp = ISD::AssertSext; 9153 else if (Arg.hasAttribute(Attribute::ZExt)) 9154 AssertOp = ISD::AssertZext; 9155 9156 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 9157 PartVT, VT, nullptr, 9158 F.getCallingConv(), AssertOp)); 9159 } 9160 9161 i += NumParts; 9162 } 9163 9164 // We don't need to do anything else for unused arguments. 9165 if (ArgValues.empty()) 9166 continue; 9167 9168 // Note down frame index. 9169 if (FrameIndexSDNode *FI = 9170 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 9171 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9172 9173 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 9174 SDB->getCurSDLoc()); 9175 9176 SDB->setValue(&Arg, Res); 9177 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 9178 // We want to associate the argument with the frame index, among 9179 // involved operands, that correspond to the lowest address. The 9180 // getCopyFromParts function, called earlier, is swapping the order of 9181 // the operands to BUILD_PAIR depending on endianness. The result of 9182 // that swapping is that the least significant bits of the argument will 9183 // be in the first operand of the BUILD_PAIR node, and the most 9184 // significant bits will be in the second operand. 9185 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 9186 if (LoadSDNode *LNode = 9187 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 9188 if (FrameIndexSDNode *FI = 9189 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 9190 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9191 } 9192 9193 // Update the SwiftErrorVRegDefMap. 9194 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 9195 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9196 if (TargetRegisterInfo::isVirtualRegister(Reg)) 9197 FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, 9198 FuncInfo->SwiftErrorArg, Reg); 9199 } 9200 9201 // If this argument is live outside of the entry block, insert a copy from 9202 // wherever we got it to the vreg that other BB's will reference it as. 9203 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 9204 // If we can, though, try to skip creating an unnecessary vreg. 9205 // FIXME: This isn't very clean... it would be nice to make this more 9206 // general. It's also subtly incompatible with the hacks FastISel 9207 // uses with vregs. 9208 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9209 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 9210 FuncInfo->ValueMap[&Arg] = Reg; 9211 continue; 9212 } 9213 } 9214 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 9215 FuncInfo->InitializeRegForValue(&Arg); 9216 SDB->CopyToExportRegsIfNeeded(&Arg); 9217 } 9218 } 9219 9220 if (!Chains.empty()) { 9221 Chains.push_back(NewRoot); 9222 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 9223 } 9224 9225 DAG.setRoot(NewRoot); 9226 9227 assert(i == InVals.size() && "Argument register count mismatch!"); 9228 9229 // If any argument copy elisions occurred and we have debug info, update the 9230 // stale frame indices used in the dbg.declare variable info table. 9231 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 9232 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 9233 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 9234 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 9235 if (I != ArgCopyElisionFrameIndexMap.end()) 9236 VI.Slot = I->second; 9237 } 9238 } 9239 9240 // Finally, if the target has anything special to do, allow it to do so. 9241 EmitFunctionEntryCode(); 9242 } 9243 9244 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 9245 /// ensure constants are generated when needed. Remember the virtual registers 9246 /// that need to be added to the Machine PHI nodes as input. We cannot just 9247 /// directly add them, because expansion might result in multiple MBB's for one 9248 /// BB. As such, the start of the BB might correspond to a different MBB than 9249 /// the end. 9250 void 9251 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 9252 const Instruction *TI = LLVMBB->getTerminator(); 9253 9254 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 9255 9256 // Check PHI nodes in successors that expect a value to be available from this 9257 // block. 9258 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 9259 const BasicBlock *SuccBB = TI->getSuccessor(succ); 9260 if (!isa<PHINode>(SuccBB->begin())) continue; 9261 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 9262 9263 // If this terminator has multiple identical successors (common for 9264 // switches), only handle each succ once. 9265 if (!SuccsHandled.insert(SuccMBB).second) 9266 continue; 9267 9268 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 9269 9270 // At this point we know that there is a 1-1 correspondence between LLVM PHI 9271 // nodes and Machine PHI nodes, but the incoming operands have not been 9272 // emitted yet. 9273 for (const PHINode &PN : SuccBB->phis()) { 9274 // Ignore dead phi's. 9275 if (PN.use_empty()) 9276 continue; 9277 9278 // Skip empty types 9279 if (PN.getType()->isEmptyTy()) 9280 continue; 9281 9282 unsigned Reg; 9283 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 9284 9285 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 9286 unsigned &RegOut = ConstantsOut[C]; 9287 if (RegOut == 0) { 9288 RegOut = FuncInfo.CreateRegs(C->getType()); 9289 CopyValueToVirtualRegister(C, RegOut); 9290 } 9291 Reg = RegOut; 9292 } else { 9293 DenseMap<const Value *, unsigned>::iterator I = 9294 FuncInfo.ValueMap.find(PHIOp); 9295 if (I != FuncInfo.ValueMap.end()) 9296 Reg = I->second; 9297 else { 9298 assert(isa<AllocaInst>(PHIOp) && 9299 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 9300 "Didn't codegen value into a register!??"); 9301 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 9302 CopyValueToVirtualRegister(PHIOp, Reg); 9303 } 9304 } 9305 9306 // Remember that this register needs to added to the machine PHI node as 9307 // the input for this MBB. 9308 SmallVector<EVT, 4> ValueVTs; 9309 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9310 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 9311 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 9312 EVT VT = ValueVTs[vti]; 9313 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 9314 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 9315 FuncInfo.PHINodesToUpdate.push_back( 9316 std::make_pair(&*MBBI++, Reg + i)); 9317 Reg += NumRegisters; 9318 } 9319 } 9320 } 9321 9322 ConstantsOut.clear(); 9323 } 9324 9325 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 9326 /// is 0. 9327 MachineBasicBlock * 9328 SelectionDAGBuilder::StackProtectorDescriptor:: 9329 AddSuccessorMBB(const BasicBlock *BB, 9330 MachineBasicBlock *ParentMBB, 9331 bool IsLikely, 9332 MachineBasicBlock *SuccMBB) { 9333 // If SuccBB has not been created yet, create it. 9334 if (!SuccMBB) { 9335 MachineFunction *MF = ParentMBB->getParent(); 9336 MachineFunction::iterator BBI(ParentMBB); 9337 SuccMBB = MF->CreateMachineBasicBlock(BB); 9338 MF->insert(++BBI, SuccMBB); 9339 } 9340 // Add it as a successor of ParentMBB. 9341 ParentMBB->addSuccessor( 9342 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 9343 return SuccMBB; 9344 } 9345 9346 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 9347 MachineFunction::iterator I(MBB); 9348 if (++I == FuncInfo.MF->end()) 9349 return nullptr; 9350 return &*I; 9351 } 9352 9353 /// During lowering new call nodes can be created (such as memset, etc.). 9354 /// Those will become new roots of the current DAG, but complications arise 9355 /// when they are tail calls. In such cases, the call lowering will update 9356 /// the root, but the builder still needs to know that a tail call has been 9357 /// lowered in order to avoid generating an additional return. 9358 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 9359 // If the node is null, we do have a tail call. 9360 if (MaybeTC.getNode() != nullptr) 9361 DAG.setRoot(MaybeTC); 9362 else 9363 HasTailCall = true; 9364 } 9365 9366 uint64_t 9367 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters, 9368 unsigned First, unsigned Last) const { 9369 assert(Last >= First); 9370 const APInt &LowCase = Clusters[First].Low->getValue(); 9371 const APInt &HighCase = Clusters[Last].High->getValue(); 9372 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 9373 9374 // FIXME: A range of consecutive cases has 100% density, but only requires one 9375 // comparison to lower. We should discriminate against such consecutive ranges 9376 // in jump tables. 9377 9378 return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1; 9379 } 9380 9381 uint64_t SelectionDAGBuilder::getJumpTableNumCases( 9382 const SmallVectorImpl<unsigned> &TotalCases, unsigned First, 9383 unsigned Last) const { 9384 assert(Last >= First); 9385 assert(TotalCases[Last] >= TotalCases[First]); 9386 uint64_t NumCases = 9387 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 9388 return NumCases; 9389 } 9390 9391 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters, 9392 unsigned First, unsigned Last, 9393 const SwitchInst *SI, 9394 MachineBasicBlock *DefaultMBB, 9395 CaseCluster &JTCluster) { 9396 assert(First <= Last); 9397 9398 auto Prob = BranchProbability::getZero(); 9399 unsigned NumCmps = 0; 9400 std::vector<MachineBasicBlock*> Table; 9401 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 9402 9403 // Initialize probabilities in JTProbs. 9404 for (unsigned I = First; I <= Last; ++I) 9405 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 9406 9407 for (unsigned I = First; I <= Last; ++I) { 9408 assert(Clusters[I].Kind == CC_Range); 9409 Prob += Clusters[I].Prob; 9410 const APInt &Low = Clusters[I].Low->getValue(); 9411 const APInt &High = Clusters[I].High->getValue(); 9412 NumCmps += (Low == High) ? 1 : 2; 9413 if (I != First) { 9414 // Fill the gap between this and the previous cluster. 9415 const APInt &PreviousHigh = Clusters[I - 1].High->getValue(); 9416 assert(PreviousHigh.slt(Low)); 9417 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 9418 for (uint64_t J = 0; J < Gap; J++) 9419 Table.push_back(DefaultMBB); 9420 } 9421 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 9422 for (uint64_t J = 0; J < ClusterSize; ++J) 9423 Table.push_back(Clusters[I].MBB); 9424 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 9425 } 9426 9427 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9428 unsigned NumDests = JTProbs.size(); 9429 if (TLI.isSuitableForBitTests( 9430 NumDests, NumCmps, Clusters[First].Low->getValue(), 9431 Clusters[Last].High->getValue(), DAG.getDataLayout())) { 9432 // Clusters[First..Last] should be lowered as bit tests instead. 9433 return false; 9434 } 9435 9436 // Create the MBB that will load from and jump through the table. 9437 // Note: We create it here, but it's not inserted into the function yet. 9438 MachineFunction *CurMF = FuncInfo.MF; 9439 MachineBasicBlock *JumpTableMBB = 9440 CurMF->CreateMachineBasicBlock(SI->getParent()); 9441 9442 // Add successors. Note: use table order for determinism. 9443 SmallPtrSet<MachineBasicBlock *, 8> Done; 9444 for (MachineBasicBlock *Succ : Table) { 9445 if (Done.count(Succ)) 9446 continue; 9447 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 9448 Done.insert(Succ); 9449 } 9450 JumpTableMBB->normalizeSuccProbs(); 9451 9452 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 9453 ->createJumpTableIndex(Table); 9454 9455 // Set up the jump table info. 9456 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 9457 JumpTableHeader JTH(Clusters[First].Low->getValue(), 9458 Clusters[Last].High->getValue(), SI->getCondition(), 9459 nullptr, false); 9460 JTCases.emplace_back(std::move(JTH), std::move(JT)); 9461 9462 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 9463 JTCases.size() - 1, Prob); 9464 return true; 9465 } 9466 9467 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 9468 const SwitchInst *SI, 9469 MachineBasicBlock *DefaultMBB) { 9470 #ifndef NDEBUG 9471 // Clusters must be non-empty, sorted, and only contain Range clusters. 9472 assert(!Clusters.empty()); 9473 for (CaseCluster &C : Clusters) 9474 assert(C.Kind == CC_Range); 9475 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 9476 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 9477 #endif 9478 9479 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9480 if (!TLI.areJTsAllowed(SI->getParent()->getParent())) 9481 return; 9482 9483 const int64_t N = Clusters.size(); 9484 const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries(); 9485 const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2; 9486 9487 if (N < 2 || N < MinJumpTableEntries) 9488 return; 9489 9490 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 9491 SmallVector<unsigned, 8> TotalCases(N); 9492 for (unsigned i = 0; i < N; ++i) { 9493 const APInt &Hi = Clusters[i].High->getValue(); 9494 const APInt &Lo = Clusters[i].Low->getValue(); 9495 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 9496 if (i != 0) 9497 TotalCases[i] += TotalCases[i - 1]; 9498 } 9499 9500 // Cheap case: the whole range may be suitable for jump table. 9501 uint64_t Range = getJumpTableRange(Clusters,0, N - 1); 9502 uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1); 9503 assert(NumCases < UINT64_MAX / 100); 9504 assert(Range >= NumCases); 9505 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 9506 CaseCluster JTCluster; 9507 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 9508 Clusters[0] = JTCluster; 9509 Clusters.resize(1); 9510 return; 9511 } 9512 } 9513 9514 // The algorithm below is not suitable for -O0. 9515 if (TM.getOptLevel() == CodeGenOpt::None) 9516 return; 9517 9518 // Split Clusters into minimum number of dense partitions. The algorithm uses 9519 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 9520 // for the Case Statement'" (1994), but builds the MinPartitions array in 9521 // reverse order to make it easier to reconstruct the partitions in ascending 9522 // order. In the choice between two optimal partitionings, it picks the one 9523 // which yields more jump tables. 9524 9525 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 9526 SmallVector<unsigned, 8> MinPartitions(N); 9527 // LastElement[i] is the last element of the partition starting at i. 9528 SmallVector<unsigned, 8> LastElement(N); 9529 // PartitionsScore[i] is used to break ties when choosing between two 9530 // partitionings resulting in the same number of partitions. 9531 SmallVector<unsigned, 8> PartitionsScore(N); 9532 // For PartitionsScore, a small number of comparisons is considered as good as 9533 // a jump table and a single comparison is considered better than a jump 9534 // table. 9535 enum PartitionScores : unsigned { 9536 NoTable = 0, 9537 Table = 1, 9538 FewCases = 1, 9539 SingleCase = 2 9540 }; 9541 9542 // Base case: There is only one way to partition Clusters[N-1]. 9543 MinPartitions[N - 1] = 1; 9544 LastElement[N - 1] = N - 1; 9545 PartitionsScore[N - 1] = PartitionScores::SingleCase; 9546 9547 // Note: loop indexes are signed to avoid underflow. 9548 for (int64_t i = N - 2; i >= 0; i--) { 9549 // Find optimal partitioning of Clusters[i..N-1]. 9550 // Baseline: Put Clusters[i] into a partition on its own. 9551 MinPartitions[i] = MinPartitions[i + 1] + 1; 9552 LastElement[i] = i; 9553 PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase; 9554 9555 // Search for a solution that results in fewer partitions. 9556 for (int64_t j = N - 1; j > i; j--) { 9557 // Try building a partition from Clusters[i..j]. 9558 uint64_t Range = getJumpTableRange(Clusters, i, j); 9559 uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j); 9560 assert(NumCases < UINT64_MAX / 100); 9561 assert(Range >= NumCases); 9562 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 9563 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 9564 unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1]; 9565 int64_t NumEntries = j - i + 1; 9566 9567 if (NumEntries == 1) 9568 Score += PartitionScores::SingleCase; 9569 else if (NumEntries <= SmallNumberOfEntries) 9570 Score += PartitionScores::FewCases; 9571 else if (NumEntries >= MinJumpTableEntries) 9572 Score += PartitionScores::Table; 9573 9574 // If this leads to fewer partitions, or to the same number of 9575 // partitions with better score, it is a better partitioning. 9576 if (NumPartitions < MinPartitions[i] || 9577 (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) { 9578 MinPartitions[i] = NumPartitions; 9579 LastElement[i] = j; 9580 PartitionsScore[i] = Score; 9581 } 9582 } 9583 } 9584 } 9585 9586 // Iterate over the partitions, replacing some with jump tables in-place. 9587 unsigned DstIndex = 0; 9588 for (unsigned First = 0, Last; First < N; First = Last + 1) { 9589 Last = LastElement[First]; 9590 assert(Last >= First); 9591 assert(DstIndex <= First); 9592 unsigned NumClusters = Last - First + 1; 9593 9594 CaseCluster JTCluster; 9595 if (NumClusters >= MinJumpTableEntries && 9596 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 9597 Clusters[DstIndex++] = JTCluster; 9598 } else { 9599 for (unsigned I = First; I <= Last; ++I) 9600 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 9601 } 9602 } 9603 Clusters.resize(DstIndex); 9604 } 9605 9606 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 9607 unsigned First, unsigned Last, 9608 const SwitchInst *SI, 9609 CaseCluster &BTCluster) { 9610 assert(First <= Last); 9611 if (First == Last) 9612 return false; 9613 9614 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 9615 unsigned NumCmps = 0; 9616 for (int64_t I = First; I <= Last; ++I) { 9617 assert(Clusters[I].Kind == CC_Range); 9618 Dests.set(Clusters[I].MBB->getNumber()); 9619 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 9620 } 9621 unsigned NumDests = Dests.count(); 9622 9623 APInt Low = Clusters[First].Low->getValue(); 9624 APInt High = Clusters[Last].High->getValue(); 9625 assert(Low.slt(High)); 9626 9627 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9628 const DataLayout &DL = DAG.getDataLayout(); 9629 if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL)) 9630 return false; 9631 9632 APInt LowBound; 9633 APInt CmpRange; 9634 9635 const int BitWidth = TLI.getPointerTy(DL).getSizeInBits(); 9636 assert(TLI.rangeFitsInWord(Low, High, DL) && 9637 "Case range must fit in bit mask!"); 9638 9639 // Check if the clusters cover a contiguous range such that no value in the 9640 // range will jump to the default statement. 9641 bool ContiguousRange = true; 9642 for (int64_t I = First + 1; I <= Last; ++I) { 9643 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 9644 ContiguousRange = false; 9645 break; 9646 } 9647 } 9648 9649 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 9650 // Optimize the case where all the case values fit in a word without having 9651 // to subtract minValue. In this case, we can optimize away the subtraction. 9652 LowBound = APInt::getNullValue(Low.getBitWidth()); 9653 CmpRange = High; 9654 ContiguousRange = false; 9655 } else { 9656 LowBound = Low; 9657 CmpRange = High - Low; 9658 } 9659 9660 CaseBitsVector CBV; 9661 auto TotalProb = BranchProbability::getZero(); 9662 for (unsigned i = First; i <= Last; ++i) { 9663 // Find the CaseBits for this destination. 9664 unsigned j; 9665 for (j = 0; j < CBV.size(); ++j) 9666 if (CBV[j].BB == Clusters[i].MBB) 9667 break; 9668 if (j == CBV.size()) 9669 CBV.push_back( 9670 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 9671 CaseBits *CB = &CBV[j]; 9672 9673 // Update Mask, Bits and ExtraProb. 9674 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 9675 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 9676 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 9677 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 9678 CB->Bits += Hi - Lo + 1; 9679 CB->ExtraProb += Clusters[i].Prob; 9680 TotalProb += Clusters[i].Prob; 9681 } 9682 9683 BitTestInfo BTI; 9684 llvm::sort(CBV, [](const CaseBits &a, const CaseBits &b) { 9685 // Sort by probability first, number of bits second, bit mask third. 9686 if (a.ExtraProb != b.ExtraProb) 9687 return a.ExtraProb > b.ExtraProb; 9688 if (a.Bits != b.Bits) 9689 return a.Bits > b.Bits; 9690 return a.Mask < b.Mask; 9691 }); 9692 9693 for (auto &CB : CBV) { 9694 MachineBasicBlock *BitTestBB = 9695 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 9696 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 9697 } 9698 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 9699 SI->getCondition(), -1U, MVT::Other, false, 9700 ContiguousRange, nullptr, nullptr, std::move(BTI), 9701 TotalProb); 9702 9703 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 9704 BitTestCases.size() - 1, TotalProb); 9705 return true; 9706 } 9707 9708 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 9709 const SwitchInst *SI) { 9710 // Partition Clusters into as few subsets as possible, where each subset has a 9711 // range that fits in a machine word and has <= 3 unique destinations. 9712 9713 #ifndef NDEBUG 9714 // Clusters must be sorted and contain Range or JumpTable clusters. 9715 assert(!Clusters.empty()); 9716 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 9717 for (const CaseCluster &C : Clusters) 9718 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 9719 for (unsigned i = 1; i < Clusters.size(); ++i) 9720 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 9721 #endif 9722 9723 // The algorithm below is not suitable for -O0. 9724 if (TM.getOptLevel() == CodeGenOpt::None) 9725 return; 9726 9727 // If target does not have legal shift left, do not emit bit tests at all. 9728 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9729 const DataLayout &DL = DAG.getDataLayout(); 9730 9731 EVT PTy = TLI.getPointerTy(DL); 9732 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 9733 return; 9734 9735 int BitWidth = PTy.getSizeInBits(); 9736 const int64_t N = Clusters.size(); 9737 9738 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 9739 SmallVector<unsigned, 8> MinPartitions(N); 9740 // LastElement[i] is the last element of the partition starting at i. 9741 SmallVector<unsigned, 8> LastElement(N); 9742 9743 // FIXME: This might not be the best algorithm for finding bit test clusters. 9744 9745 // Base case: There is only one way to partition Clusters[N-1]. 9746 MinPartitions[N - 1] = 1; 9747 LastElement[N - 1] = N - 1; 9748 9749 // Note: loop indexes are signed to avoid underflow. 9750 for (int64_t i = N - 2; i >= 0; --i) { 9751 // Find optimal partitioning of Clusters[i..N-1]. 9752 // Baseline: Put Clusters[i] into a partition on its own. 9753 MinPartitions[i] = MinPartitions[i + 1] + 1; 9754 LastElement[i] = i; 9755 9756 // Search for a solution that results in fewer partitions. 9757 // Note: the search is limited by BitWidth, reducing time complexity. 9758 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 9759 // Try building a partition from Clusters[i..j]. 9760 9761 // Check the range. 9762 if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(), 9763 Clusters[j].High->getValue(), DL)) 9764 continue; 9765 9766 // Check nbr of destinations and cluster types. 9767 // FIXME: This works, but doesn't seem very efficient. 9768 bool RangesOnly = true; 9769 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 9770 for (int64_t k = i; k <= j; k++) { 9771 if (Clusters[k].Kind != CC_Range) { 9772 RangesOnly = false; 9773 break; 9774 } 9775 Dests.set(Clusters[k].MBB->getNumber()); 9776 } 9777 if (!RangesOnly || Dests.count() > 3) 9778 break; 9779 9780 // Check if it's a better partition. 9781 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 9782 if (NumPartitions < MinPartitions[i]) { 9783 // Found a better partition. 9784 MinPartitions[i] = NumPartitions; 9785 LastElement[i] = j; 9786 } 9787 } 9788 } 9789 9790 // Iterate over the partitions, replacing with bit-test clusters in-place. 9791 unsigned DstIndex = 0; 9792 for (unsigned First = 0, Last; First < N; First = Last + 1) { 9793 Last = LastElement[First]; 9794 assert(First <= Last); 9795 assert(DstIndex <= First); 9796 9797 CaseCluster BitTestCluster; 9798 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 9799 Clusters[DstIndex++] = BitTestCluster; 9800 } else { 9801 size_t NumClusters = Last - First + 1; 9802 std::memmove(&Clusters[DstIndex], &Clusters[First], 9803 sizeof(Clusters[0]) * NumClusters); 9804 DstIndex += NumClusters; 9805 } 9806 } 9807 Clusters.resize(DstIndex); 9808 } 9809 9810 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 9811 MachineBasicBlock *SwitchMBB, 9812 MachineBasicBlock *DefaultMBB) { 9813 MachineFunction *CurMF = FuncInfo.MF; 9814 MachineBasicBlock *NextMBB = nullptr; 9815 MachineFunction::iterator BBI(W.MBB); 9816 if (++BBI != FuncInfo.MF->end()) 9817 NextMBB = &*BBI; 9818 9819 unsigned Size = W.LastCluster - W.FirstCluster + 1; 9820 9821 BranchProbabilityInfo *BPI = FuncInfo.BPI; 9822 9823 if (Size == 2 && W.MBB == SwitchMBB) { 9824 // If any two of the cases has the same destination, and if one value 9825 // is the same as the other, but has one bit unset that the other has set, 9826 // use bit manipulation to do two compares at once. For example: 9827 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 9828 // TODO: This could be extended to merge any 2 cases in switches with 3 9829 // cases. 9830 // TODO: Handle cases where W.CaseBB != SwitchBB. 9831 CaseCluster &Small = *W.FirstCluster; 9832 CaseCluster &Big = *W.LastCluster; 9833 9834 if (Small.Low == Small.High && Big.Low == Big.High && 9835 Small.MBB == Big.MBB) { 9836 const APInt &SmallValue = Small.Low->getValue(); 9837 const APInt &BigValue = Big.Low->getValue(); 9838 9839 // Check that there is only one bit different. 9840 APInt CommonBit = BigValue ^ SmallValue; 9841 if (CommonBit.isPowerOf2()) { 9842 SDValue CondLHS = getValue(Cond); 9843 EVT VT = CondLHS.getValueType(); 9844 SDLoc DL = getCurSDLoc(); 9845 9846 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 9847 DAG.getConstant(CommonBit, DL, VT)); 9848 SDValue Cond = DAG.getSetCC( 9849 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 9850 ISD::SETEQ); 9851 9852 // Update successor info. 9853 // Both Small and Big will jump to Small.BB, so we sum up the 9854 // probabilities. 9855 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 9856 if (BPI) 9857 addSuccessorWithProb( 9858 SwitchMBB, DefaultMBB, 9859 // The default destination is the first successor in IR. 9860 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 9861 else 9862 addSuccessorWithProb(SwitchMBB, DefaultMBB); 9863 9864 // Insert the true branch. 9865 SDValue BrCond = 9866 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 9867 DAG.getBasicBlock(Small.MBB)); 9868 // Insert the false branch. 9869 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 9870 DAG.getBasicBlock(DefaultMBB)); 9871 9872 DAG.setRoot(BrCond); 9873 return; 9874 } 9875 } 9876 } 9877 9878 if (TM.getOptLevel() != CodeGenOpt::None) { 9879 // Here, we order cases by probability so the most likely case will be 9880 // checked first. However, two clusters can have the same probability in 9881 // which case their relative ordering is non-deterministic. So we use Low 9882 // as a tie-breaker as clusters are guaranteed to never overlap. 9883 llvm::sort(W.FirstCluster, W.LastCluster + 1, 9884 [](const CaseCluster &a, const CaseCluster &b) { 9885 return a.Prob != b.Prob ? 9886 a.Prob > b.Prob : 9887 a.Low->getValue().slt(b.Low->getValue()); 9888 }); 9889 9890 // Rearrange the case blocks so that the last one falls through if possible 9891 // without changing the order of probabilities. 9892 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 9893 --I; 9894 if (I->Prob > W.LastCluster->Prob) 9895 break; 9896 if (I->Kind == CC_Range && I->MBB == NextMBB) { 9897 std::swap(*I, *W.LastCluster); 9898 break; 9899 } 9900 } 9901 } 9902 9903 // Compute total probability. 9904 BranchProbability DefaultProb = W.DefaultProb; 9905 BranchProbability UnhandledProbs = DefaultProb; 9906 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 9907 UnhandledProbs += I->Prob; 9908 9909 MachineBasicBlock *CurMBB = W.MBB; 9910 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 9911 MachineBasicBlock *Fallthrough; 9912 if (I == W.LastCluster) { 9913 // For the last cluster, fall through to the default destination. 9914 Fallthrough = DefaultMBB; 9915 } else { 9916 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 9917 CurMF->insert(BBI, Fallthrough); 9918 // Put Cond in a virtual register to make it available from the new blocks. 9919 ExportFromCurrentBlock(Cond); 9920 } 9921 UnhandledProbs -= I->Prob; 9922 9923 switch (I->Kind) { 9924 case CC_JumpTable: { 9925 // FIXME: Optimize away range check based on pivot comparisons. 9926 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 9927 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 9928 9929 // The jump block hasn't been inserted yet; insert it here. 9930 MachineBasicBlock *JumpMBB = JT->MBB; 9931 CurMF->insert(BBI, JumpMBB); 9932 9933 auto JumpProb = I->Prob; 9934 auto FallthroughProb = UnhandledProbs; 9935 9936 // If the default statement is a target of the jump table, we evenly 9937 // distribute the default probability to successors of CurMBB. Also 9938 // update the probability on the edge from JumpMBB to Fallthrough. 9939 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 9940 SE = JumpMBB->succ_end(); 9941 SI != SE; ++SI) { 9942 if (*SI == DefaultMBB) { 9943 JumpProb += DefaultProb / 2; 9944 FallthroughProb -= DefaultProb / 2; 9945 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 9946 JumpMBB->normalizeSuccProbs(); 9947 break; 9948 } 9949 } 9950 9951 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 9952 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 9953 CurMBB->normalizeSuccProbs(); 9954 9955 // The jump table header will be inserted in our current block, do the 9956 // range check, and fall through to our fallthrough block. 9957 JTH->HeaderBB = CurMBB; 9958 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 9959 9960 // If we're in the right place, emit the jump table header right now. 9961 if (CurMBB == SwitchMBB) { 9962 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 9963 JTH->Emitted = true; 9964 } 9965 break; 9966 } 9967 case CC_BitTests: { 9968 // FIXME: Optimize away range check based on pivot comparisons. 9969 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 9970 9971 // The bit test blocks haven't been inserted yet; insert them here. 9972 for (BitTestCase &BTC : BTB->Cases) 9973 CurMF->insert(BBI, BTC.ThisBB); 9974 9975 // Fill in fields of the BitTestBlock. 9976 BTB->Parent = CurMBB; 9977 BTB->Default = Fallthrough; 9978 9979 BTB->DefaultProb = UnhandledProbs; 9980 // If the cases in bit test don't form a contiguous range, we evenly 9981 // distribute the probability on the edge to Fallthrough to two 9982 // successors of CurMBB. 9983 if (!BTB->ContiguousRange) { 9984 BTB->Prob += DefaultProb / 2; 9985 BTB->DefaultProb -= DefaultProb / 2; 9986 } 9987 9988 // If we're in the right place, emit the bit test header right now. 9989 if (CurMBB == SwitchMBB) { 9990 visitBitTestHeader(*BTB, SwitchMBB); 9991 BTB->Emitted = true; 9992 } 9993 break; 9994 } 9995 case CC_Range: { 9996 const Value *RHS, *LHS, *MHS; 9997 ISD::CondCode CC; 9998 if (I->Low == I->High) { 9999 // Check Cond == I->Low. 10000 CC = ISD::SETEQ; 10001 LHS = Cond; 10002 RHS=I->Low; 10003 MHS = nullptr; 10004 } else { 10005 // Check I->Low <= Cond <= I->High. 10006 CC = ISD::SETLE; 10007 LHS = I->Low; 10008 MHS = Cond; 10009 RHS = I->High; 10010 } 10011 10012 // The false probability is the sum of all unhandled cases. 10013 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10014 getCurSDLoc(), I->Prob, UnhandledProbs); 10015 10016 if (CurMBB == SwitchMBB) 10017 visitSwitchCase(CB, SwitchMBB); 10018 else 10019 SwitchCases.push_back(CB); 10020 10021 break; 10022 } 10023 } 10024 CurMBB = Fallthrough; 10025 } 10026 } 10027 10028 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10029 CaseClusterIt First, 10030 CaseClusterIt Last) { 10031 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10032 if (X.Prob != CC.Prob) 10033 return X.Prob > CC.Prob; 10034 10035 // Ties are broken by comparing the case value. 10036 return X.Low->getValue().slt(CC.Low->getValue()); 10037 }); 10038 } 10039 10040 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10041 const SwitchWorkListItem &W, 10042 Value *Cond, 10043 MachineBasicBlock *SwitchMBB) { 10044 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10045 "Clusters not sorted?"); 10046 10047 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10048 10049 // Balance the tree based on branch probabilities to create a near-optimal (in 10050 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10051 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10052 CaseClusterIt LastLeft = W.FirstCluster; 10053 CaseClusterIt FirstRight = W.LastCluster; 10054 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10055 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10056 10057 // Move LastLeft and FirstRight towards each other from opposite directions to 10058 // find a partitioning of the clusters which balances the probability on both 10059 // sides. If LeftProb and RightProb are equal, alternate which side is 10060 // taken to ensure 0-probability nodes are distributed evenly. 10061 unsigned I = 0; 10062 while (LastLeft + 1 < FirstRight) { 10063 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10064 LeftProb += (++LastLeft)->Prob; 10065 else 10066 RightProb += (--FirstRight)->Prob; 10067 I++; 10068 } 10069 10070 while (true) { 10071 // Our binary search tree differs from a typical BST in that ours can have up 10072 // to three values in each leaf. The pivot selection above doesn't take that 10073 // into account, which means the tree might require more nodes and be less 10074 // efficient. We compensate for this here. 10075 10076 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10077 unsigned NumRight = W.LastCluster - FirstRight + 1; 10078 10079 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10080 // If one side has less than 3 clusters, and the other has more than 3, 10081 // consider taking a cluster from the other side. 10082 10083 if (NumLeft < NumRight) { 10084 // Consider moving the first cluster on the right to the left side. 10085 CaseCluster &CC = *FirstRight; 10086 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10087 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10088 if (LeftSideRank <= RightSideRank) { 10089 // Moving the cluster to the left does not demote it. 10090 ++LastLeft; 10091 ++FirstRight; 10092 continue; 10093 } 10094 } else { 10095 assert(NumRight < NumLeft); 10096 // Consider moving the last element on the left to the right side. 10097 CaseCluster &CC = *LastLeft; 10098 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10099 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10100 if (RightSideRank <= LeftSideRank) { 10101 // Moving the cluster to the right does not demot it. 10102 --LastLeft; 10103 --FirstRight; 10104 continue; 10105 } 10106 } 10107 } 10108 break; 10109 } 10110 10111 assert(LastLeft + 1 == FirstRight); 10112 assert(LastLeft >= W.FirstCluster); 10113 assert(FirstRight <= W.LastCluster); 10114 10115 // Use the first element on the right as pivot since we will make less-than 10116 // comparisons against it. 10117 CaseClusterIt PivotCluster = FirstRight; 10118 assert(PivotCluster > W.FirstCluster); 10119 assert(PivotCluster <= W.LastCluster); 10120 10121 CaseClusterIt FirstLeft = W.FirstCluster; 10122 CaseClusterIt LastRight = W.LastCluster; 10123 10124 const ConstantInt *Pivot = PivotCluster->Low; 10125 10126 // New blocks will be inserted immediately after the current one. 10127 MachineFunction::iterator BBI(W.MBB); 10128 ++BBI; 10129 10130 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10131 // we can branch to its destination directly if it's squeezed exactly in 10132 // between the known lower bound and Pivot - 1. 10133 MachineBasicBlock *LeftMBB; 10134 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10135 FirstLeft->Low == W.GE && 10136 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10137 LeftMBB = FirstLeft->MBB; 10138 } else { 10139 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10140 FuncInfo.MF->insert(BBI, LeftMBB); 10141 WorkList.push_back( 10142 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10143 // Put Cond in a virtual register to make it available from the new blocks. 10144 ExportFromCurrentBlock(Cond); 10145 } 10146 10147 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10148 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10149 // directly if RHS.High equals the current upper bound. 10150 MachineBasicBlock *RightMBB; 10151 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10152 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10153 RightMBB = FirstRight->MBB; 10154 } else { 10155 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10156 FuncInfo.MF->insert(BBI, RightMBB); 10157 WorkList.push_back( 10158 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10159 // Put Cond in a virtual register to make it available from the new blocks. 10160 ExportFromCurrentBlock(Cond); 10161 } 10162 10163 // Create the CaseBlock record that will be used to lower the branch. 10164 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10165 getCurSDLoc(), LeftProb, RightProb); 10166 10167 if (W.MBB == SwitchMBB) 10168 visitSwitchCase(CB, SwitchMBB); 10169 else 10170 SwitchCases.push_back(CB); 10171 } 10172 10173 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10174 // from the swith statement. 10175 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10176 BranchProbability PeeledCaseProb) { 10177 if (PeeledCaseProb == BranchProbability::getOne()) 10178 return BranchProbability::getZero(); 10179 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10180 10181 uint32_t Numerator = CaseProb.getNumerator(); 10182 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10183 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10184 } 10185 10186 // Try to peel the top probability case if it exceeds the threshold. 10187 // Return current MachineBasicBlock for the switch statement if the peeling 10188 // does not occur. 10189 // If the peeling is performed, return the newly created MachineBasicBlock 10190 // for the peeled switch statement. Also update Clusters to remove the peeled 10191 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10192 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10193 const SwitchInst &SI, CaseClusterVector &Clusters, 10194 BranchProbability &PeeledCaseProb) { 10195 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10196 // Don't perform if there is only one cluster or optimizing for size. 10197 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10198 TM.getOptLevel() == CodeGenOpt::None || 10199 SwitchMBB->getParent()->getFunction().optForMinSize()) 10200 return SwitchMBB; 10201 10202 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10203 unsigned PeeledCaseIndex = 0; 10204 bool SwitchPeeled = false; 10205 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10206 CaseCluster &CC = Clusters[Index]; 10207 if (CC.Prob < TopCaseProb) 10208 continue; 10209 TopCaseProb = CC.Prob; 10210 PeeledCaseIndex = Index; 10211 SwitchPeeled = true; 10212 } 10213 if (!SwitchPeeled) 10214 return SwitchMBB; 10215 10216 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10217 << TopCaseProb << "\n"); 10218 10219 // Record the MBB for the peeled switch statement. 10220 MachineFunction::iterator BBI(SwitchMBB); 10221 ++BBI; 10222 MachineBasicBlock *PeeledSwitchMBB = 10223 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10224 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10225 10226 ExportFromCurrentBlock(SI.getCondition()); 10227 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10228 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10229 nullptr, nullptr, TopCaseProb.getCompl()}; 10230 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10231 10232 Clusters.erase(PeeledCaseIt); 10233 for (CaseCluster &CC : Clusters) { 10234 LLVM_DEBUG( 10235 dbgs() << "Scale the probablity for one cluster, before scaling: " 10236 << CC.Prob << "\n"); 10237 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10238 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10239 } 10240 PeeledCaseProb = TopCaseProb; 10241 return PeeledSwitchMBB; 10242 } 10243 10244 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10245 // Extract cases from the switch. 10246 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10247 CaseClusterVector Clusters; 10248 Clusters.reserve(SI.getNumCases()); 10249 for (auto I : SI.cases()) { 10250 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10251 const ConstantInt *CaseVal = I.getCaseValue(); 10252 BranchProbability Prob = 10253 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10254 : BranchProbability(1, SI.getNumCases() + 1); 10255 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10256 } 10257 10258 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10259 10260 // Cluster adjacent cases with the same destination. We do this at all 10261 // optimization levels because it's cheap to do and will make codegen faster 10262 // if there are many clusters. 10263 sortAndRangeify(Clusters); 10264 10265 if (TM.getOptLevel() != CodeGenOpt::None) { 10266 // Replace an unreachable default with the most popular destination. 10267 // FIXME: Exploit unreachable default more aggressively. 10268 bool UnreachableDefault = 10269 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 10270 if (UnreachableDefault && !Clusters.empty()) { 10271 DenseMap<const BasicBlock *, unsigned> Popularity; 10272 unsigned MaxPop = 0; 10273 const BasicBlock *MaxBB = nullptr; 10274 for (auto I : SI.cases()) { 10275 const BasicBlock *BB = I.getCaseSuccessor(); 10276 if (++Popularity[BB] > MaxPop) { 10277 MaxPop = Popularity[BB]; 10278 MaxBB = BB; 10279 } 10280 } 10281 // Set new default. 10282 assert(MaxPop > 0 && MaxBB); 10283 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 10284 10285 // Remove cases that were pointing to the destination that is now the 10286 // default. 10287 CaseClusterVector New; 10288 New.reserve(Clusters.size()); 10289 for (CaseCluster &CC : Clusters) { 10290 if (CC.MBB != DefaultMBB) 10291 New.push_back(CC); 10292 } 10293 Clusters = std::move(New); 10294 } 10295 } 10296 10297 // The branch probablity of the peeled case. 10298 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10299 MachineBasicBlock *PeeledSwitchMBB = 10300 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10301 10302 // If there is only the default destination, jump there directly. 10303 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10304 if (Clusters.empty()) { 10305 assert(PeeledSwitchMBB == SwitchMBB); 10306 SwitchMBB->addSuccessor(DefaultMBB); 10307 if (DefaultMBB != NextBlock(SwitchMBB)) { 10308 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10309 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10310 } 10311 return; 10312 } 10313 10314 findJumpTables(Clusters, &SI, DefaultMBB); 10315 findBitTestClusters(Clusters, &SI); 10316 10317 LLVM_DEBUG({ 10318 dbgs() << "Case clusters: "; 10319 for (const CaseCluster &C : Clusters) { 10320 if (C.Kind == CC_JumpTable) 10321 dbgs() << "JT:"; 10322 if (C.Kind == CC_BitTests) 10323 dbgs() << "BT:"; 10324 10325 C.Low->getValue().print(dbgs(), true); 10326 if (C.Low != C.High) { 10327 dbgs() << '-'; 10328 C.High->getValue().print(dbgs(), true); 10329 } 10330 dbgs() << ' '; 10331 } 10332 dbgs() << '\n'; 10333 }); 10334 10335 assert(!Clusters.empty()); 10336 SwitchWorkList WorkList; 10337 CaseClusterIt First = Clusters.begin(); 10338 CaseClusterIt Last = Clusters.end() - 1; 10339 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10340 // Scale the branchprobability for DefaultMBB if the peel occurs and 10341 // DefaultMBB is not replaced. 10342 if (PeeledCaseProb != BranchProbability::getZero() && 10343 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10344 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10345 WorkList.push_back( 10346 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10347 10348 while (!WorkList.empty()) { 10349 SwitchWorkListItem W = WorkList.back(); 10350 WorkList.pop_back(); 10351 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10352 10353 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10354 !DefaultMBB->getParent()->getFunction().optForMinSize()) { 10355 // For optimized builds, lower large range as a balanced binary tree. 10356 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10357 continue; 10358 } 10359 10360 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10361 } 10362 } 10363