1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/Analysis/BlockFrequencyInfo.h" 31 #include "llvm/Analysis/BranchProbabilityInfo.h" 32 #include "llvm/Analysis/ConstantFolding.h" 33 #include "llvm/Analysis/EHPersonalities.h" 34 #include "llvm/Analysis/Loads.h" 35 #include "llvm/Analysis/MemoryLocation.h" 36 #include "llvm/Analysis/ProfileSummaryInfo.h" 37 #include "llvm/Analysis/TargetLibraryInfo.h" 38 #include "llvm/Analysis/ValueTracking.h" 39 #include "llvm/Analysis/VectorUtils.h" 40 #include "llvm/CodeGen/Analysis.h" 41 #include "llvm/CodeGen/FunctionLoweringInfo.h" 42 #include "llvm/CodeGen/GCMetadata.h" 43 #include "llvm/CodeGen/ISDOpcodes.h" 44 #include "llvm/CodeGen/MachineBasicBlock.h" 45 #include "llvm/CodeGen/MachineFrameInfo.h" 46 #include "llvm/CodeGen/MachineFunction.h" 47 #include "llvm/CodeGen/MachineInstr.h" 48 #include "llvm/CodeGen/MachineInstrBuilder.h" 49 #include "llvm/CodeGen/MachineJumpTableInfo.h" 50 #include "llvm/CodeGen/MachineMemOperand.h" 51 #include "llvm/CodeGen/MachineModuleInfo.h" 52 #include "llvm/CodeGen/MachineOperand.h" 53 #include "llvm/CodeGen/MachineRegisterInfo.h" 54 #include "llvm/CodeGen/RuntimeLibcalls.h" 55 #include "llvm/CodeGen/SelectionDAG.h" 56 #include "llvm/CodeGen/SelectionDAGNodes.h" 57 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 58 #include "llvm/CodeGen/StackMaps.h" 59 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 60 #include "llvm/CodeGen/TargetFrameLowering.h" 61 #include "llvm/CodeGen/TargetInstrInfo.h" 62 #include "llvm/CodeGen/TargetLowering.h" 63 #include "llvm/CodeGen/TargetOpcodes.h" 64 #include "llvm/CodeGen/TargetRegisterInfo.h" 65 #include "llvm/CodeGen/TargetSubtargetInfo.h" 66 #include "llvm/CodeGen/ValueTypes.h" 67 #include "llvm/CodeGen/WinEHFuncInfo.h" 68 #include "llvm/IR/Argument.h" 69 #include "llvm/IR/Attributes.h" 70 #include "llvm/IR/BasicBlock.h" 71 #include "llvm/IR/CFG.h" 72 #include "llvm/IR/CallingConv.h" 73 #include "llvm/IR/Constant.h" 74 #include "llvm/IR/ConstantRange.h" 75 #include "llvm/IR/Constants.h" 76 #include "llvm/IR/DataLayout.h" 77 #include "llvm/IR/DebugInfoMetadata.h" 78 #include "llvm/IR/DebugLoc.h" 79 #include "llvm/IR/DerivedTypes.h" 80 #include "llvm/IR/Function.h" 81 #include "llvm/IR/GetElementPtrTypeIterator.h" 82 #include "llvm/IR/InlineAsm.h" 83 #include "llvm/IR/InstrTypes.h" 84 #include "llvm/IR/Instruction.h" 85 #include "llvm/IR/Instructions.h" 86 #include "llvm/IR/IntrinsicInst.h" 87 #include "llvm/IR/Intrinsics.h" 88 #include "llvm/IR/IntrinsicsAArch64.h" 89 #include "llvm/IR/IntrinsicsWebAssembly.h" 90 #include "llvm/IR/LLVMContext.h" 91 #include "llvm/IR/Metadata.h" 92 #include "llvm/IR/Module.h" 93 #include "llvm/IR/Operator.h" 94 #include "llvm/IR/PatternMatch.h" 95 #include "llvm/IR/Statepoint.h" 96 #include "llvm/IR/Type.h" 97 #include "llvm/IR/User.h" 98 #include "llvm/IR/Value.h" 99 #include "llvm/MC/MCContext.h" 100 #include "llvm/MC/MCSymbol.h" 101 #include "llvm/Support/AtomicOrdering.h" 102 #include "llvm/Support/BranchProbability.h" 103 #include "llvm/Support/Casting.h" 104 #include "llvm/Support/CodeGen.h" 105 #include "llvm/Support/CommandLine.h" 106 #include "llvm/Support/Compiler.h" 107 #include "llvm/Support/Debug.h" 108 #include "llvm/Support/ErrorHandling.h" 109 #include "llvm/Support/MachineValueType.h" 110 #include "llvm/Support/MathExtras.h" 111 #include "llvm/Support/raw_ostream.h" 112 #include "llvm/Target/TargetIntrinsicInfo.h" 113 #include "llvm/Target/TargetMachine.h" 114 #include "llvm/Target/TargetOptions.h" 115 #include "llvm/Transforms/Utils/Local.h" 116 #include <algorithm> 117 #include <cassert> 118 #include <cstddef> 119 #include <cstdint> 120 #include <cstring> 121 #include <iterator> 122 #include <limits> 123 #include <numeric> 124 #include <tuple> 125 #include <utility> 126 #include <vector> 127 128 using namespace llvm; 129 using namespace PatternMatch; 130 using namespace SwitchCG; 131 132 #define DEBUG_TYPE "isel" 133 134 /// LimitFloatPrecision - Generate low-precision inline sequences for 135 /// some float libcalls (6, 8 or 12 bits). 136 static unsigned LimitFloatPrecision; 137 138 static cl::opt<unsigned, true> 139 LimitFPPrecision("limit-float-precision", 140 cl::desc("Generate low-precision inline sequences " 141 "for some float libcalls"), 142 cl::location(LimitFloatPrecision), cl::Hidden, 143 cl::init(0)); 144 145 static cl::opt<unsigned> SwitchPeelThreshold( 146 "switch-peel-threshold", cl::Hidden, cl::init(66), 147 cl::desc("Set the case probability threshold for peeling the case from a " 148 "switch statement. A value greater than 100 will void this " 149 "optimization")); 150 151 // Limit the width of DAG chains. This is important in general to prevent 152 // DAG-based analysis from blowing up. For example, alias analysis and 153 // load clustering may not complete in reasonable time. It is difficult to 154 // recognize and avoid this situation within each individual analysis, and 155 // future analyses are likely to have the same behavior. Limiting DAG width is 156 // the safe approach and will be especially important with global DAGs. 157 // 158 // MaxParallelChains default is arbitrarily high to avoid affecting 159 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 160 // sequence over this should have been converted to llvm.memcpy by the 161 // frontend. It is easy to induce this behavior with .ll code such as: 162 // %buffer = alloca [4096 x i8] 163 // %data = load [4096 x i8]* %argPtr 164 // store [4096 x i8] %data, [4096 x i8]* %buffer 165 static const unsigned MaxParallelChains = 64; 166 167 // Return the calling convention if the Value passed requires ABI mangling as it 168 // is a parameter to a function or a return value from a function which is not 169 // an intrinsic. 170 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) { 171 if (auto *R = dyn_cast<ReturnInst>(V)) 172 return R->getParent()->getParent()->getCallingConv(); 173 174 if (auto *CI = dyn_cast<CallInst>(V)) { 175 const bool IsInlineAsm = CI->isInlineAsm(); 176 const bool IsIndirectFunctionCall = 177 !IsInlineAsm && !CI->getCalledFunction(); 178 179 // It is possible that the call instruction is an inline asm statement or an 180 // indirect function call in which case the return value of 181 // getCalledFunction() would be nullptr. 182 const bool IsInstrinsicCall = 183 !IsInlineAsm && !IsIndirectFunctionCall && 184 CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic; 185 186 if (!IsInlineAsm && !IsInstrinsicCall) 187 return CI->getCallingConv(); 188 } 189 190 return None; 191 } 192 193 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 194 const SDValue *Parts, unsigned NumParts, 195 MVT PartVT, EVT ValueVT, const Value *V, 196 Optional<CallingConv::ID> CC); 197 198 /// getCopyFromParts - Create a value that contains the specified legal parts 199 /// combined into the value they represent. If the parts combine to a type 200 /// larger than ValueVT then AssertOp can be used to specify whether the extra 201 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 202 /// (ISD::AssertSext). 203 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 204 const SDValue *Parts, unsigned NumParts, 205 MVT PartVT, EVT ValueVT, const Value *V, 206 Optional<CallingConv::ID> CC = None, 207 Optional<ISD::NodeType> AssertOp = None) { 208 if (ValueVT.isVector()) 209 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 210 CC); 211 212 assert(NumParts > 0 && "No parts to assemble!"); 213 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 214 SDValue Val = Parts[0]; 215 216 if (NumParts > 1) { 217 // Assemble the value from multiple parts. 218 if (ValueVT.isInteger()) { 219 unsigned PartBits = PartVT.getSizeInBits(); 220 unsigned ValueBits = ValueVT.getSizeInBits(); 221 222 // Assemble the power of 2 part. 223 unsigned RoundParts = 224 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 225 unsigned RoundBits = PartBits * RoundParts; 226 EVT RoundVT = RoundBits == ValueBits ? 227 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 228 SDValue Lo, Hi; 229 230 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 231 232 if (RoundParts > 2) { 233 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 234 PartVT, HalfVT, V); 235 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 236 RoundParts / 2, PartVT, HalfVT, V); 237 } else { 238 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 239 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 240 } 241 242 if (DAG.getDataLayout().isBigEndian()) 243 std::swap(Lo, Hi); 244 245 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 246 247 if (RoundParts < NumParts) { 248 // Assemble the trailing non-power-of-2 part. 249 unsigned OddParts = NumParts - RoundParts; 250 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 251 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 252 OddVT, V, CC); 253 254 // Combine the round and odd parts. 255 Lo = Val; 256 if (DAG.getDataLayout().isBigEndian()) 257 std::swap(Lo, Hi); 258 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 259 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 260 Hi = 261 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 262 DAG.getConstant(Lo.getValueSizeInBits(), DL, 263 TLI.getPointerTy(DAG.getDataLayout()))); 264 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 265 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 266 } 267 } else if (PartVT.isFloatingPoint()) { 268 // FP split into multiple FP parts (for ppcf128) 269 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 270 "Unexpected split"); 271 SDValue Lo, Hi; 272 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 273 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 274 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 275 std::swap(Lo, Hi); 276 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 277 } else { 278 // FP split into integer parts (soft fp) 279 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 280 !PartVT.isVector() && "Unexpected split"); 281 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 282 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 283 } 284 } 285 286 // There is now one part, held in Val. Correct it to match ValueVT. 287 // PartEVT is the type of the register class that holds the value. 288 // ValueVT is the type of the inline asm operation. 289 EVT PartEVT = Val.getValueType(); 290 291 if (PartEVT == ValueVT) 292 return Val; 293 294 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 295 ValueVT.bitsLT(PartEVT)) { 296 // For an FP value in an integer part, we need to truncate to the right 297 // width first. 298 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 299 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 300 } 301 302 // Handle types that have the same size. 303 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 304 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 305 306 // Handle types with different sizes. 307 if (PartEVT.isInteger() && ValueVT.isInteger()) { 308 if (ValueVT.bitsLT(PartEVT)) { 309 // For a truncate, see if we have any information to 310 // indicate whether the truncated bits will always be 311 // zero or sign-extension. 312 if (AssertOp.hasValue()) 313 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 314 DAG.getValueType(ValueVT)); 315 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 316 } 317 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 318 } 319 320 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 321 // FP_ROUND's are always exact here. 322 if (ValueVT.bitsLT(Val.getValueType())) 323 return DAG.getNode( 324 ISD::FP_ROUND, DL, ValueVT, Val, 325 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 326 327 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 328 } 329 330 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 331 // then truncating. 332 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 333 ValueVT.bitsLT(PartEVT)) { 334 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 335 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 336 } 337 338 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 339 } 340 341 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 342 const Twine &ErrMsg) { 343 const Instruction *I = dyn_cast_or_null<Instruction>(V); 344 if (!V) 345 return Ctx.emitError(ErrMsg); 346 347 const char *AsmError = ", possible invalid constraint for vector type"; 348 if (const CallInst *CI = dyn_cast<CallInst>(I)) 349 if (isa<InlineAsm>(CI->getCalledValue())) 350 return Ctx.emitError(I, ErrMsg + AsmError); 351 352 return Ctx.emitError(I, ErrMsg); 353 } 354 355 /// getCopyFromPartsVector - Create a value that contains the specified legal 356 /// parts combined into the value they represent. If the parts combine to a 357 /// type larger than ValueVT then AssertOp can be used to specify whether the 358 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 359 /// ValueVT (ISD::AssertSext). 360 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 361 const SDValue *Parts, unsigned NumParts, 362 MVT PartVT, EVT ValueVT, const Value *V, 363 Optional<CallingConv::ID> CallConv) { 364 assert(ValueVT.isVector() && "Not a vector value"); 365 assert(NumParts > 0 && "No parts to assemble!"); 366 const bool IsABIRegCopy = CallConv.hasValue(); 367 368 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 369 SDValue Val = Parts[0]; 370 371 // Handle a multi-element vector. 372 if (NumParts > 1) { 373 EVT IntermediateVT; 374 MVT RegisterVT; 375 unsigned NumIntermediates; 376 unsigned NumRegs; 377 378 if (IsABIRegCopy) { 379 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 380 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 381 NumIntermediates, RegisterVT); 382 } else { 383 NumRegs = 384 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 385 NumIntermediates, RegisterVT); 386 } 387 388 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 389 NumParts = NumRegs; // Silence a compiler warning. 390 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 391 assert(RegisterVT.getSizeInBits() == 392 Parts[0].getSimpleValueType().getSizeInBits() && 393 "Part type sizes don't match!"); 394 395 // Assemble the parts into intermediate operands. 396 SmallVector<SDValue, 8> Ops(NumIntermediates); 397 if (NumIntermediates == NumParts) { 398 // If the register was not expanded, truncate or copy the value, 399 // as appropriate. 400 for (unsigned i = 0; i != NumParts; ++i) 401 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 402 PartVT, IntermediateVT, V); 403 } else if (NumParts > 0) { 404 // If the intermediate type was expanded, build the intermediate 405 // operands from the parts. 406 assert(NumParts % NumIntermediates == 0 && 407 "Must expand into a divisible number of parts!"); 408 unsigned Factor = NumParts / NumIntermediates; 409 for (unsigned i = 0; i != NumIntermediates; ++i) 410 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 411 PartVT, IntermediateVT, V); 412 } 413 414 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 415 // intermediate operands. 416 EVT BuiltVectorTy = 417 IntermediateVT.isVector() 418 ? EVT::getVectorVT( 419 *DAG.getContext(), IntermediateVT.getScalarType(), 420 IntermediateVT.getVectorElementCount() * NumParts) 421 : EVT::getVectorVT(*DAG.getContext(), 422 IntermediateVT.getScalarType(), 423 NumIntermediates); 424 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 425 : ISD::BUILD_VECTOR, 426 DL, BuiltVectorTy, Ops); 427 } 428 429 // There is now one part, held in Val. Correct it to match ValueVT. 430 EVT PartEVT = Val.getValueType(); 431 432 if (PartEVT == ValueVT) 433 return Val; 434 435 if (PartEVT.isVector()) { 436 // If the element type of the source/dest vectors are the same, but the 437 // parts vector has more elements than the value vector, then we have a 438 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 439 // elements we want. 440 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 441 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 442 "Cannot narrow, it would be a lossy transformation"); 443 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 444 DAG.getVectorIdxConstant(0, DL)); 445 } 446 447 // Vector/Vector bitcast. 448 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 449 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 450 451 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 452 "Cannot handle this kind of promotion"); 453 // Promoted vector extract 454 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 455 456 } 457 458 // Trivial bitcast if the types are the same size and the destination 459 // vector type is legal. 460 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 461 TLI.isTypeLegal(ValueVT)) 462 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 463 464 if (ValueVT.getVectorNumElements() != 1) { 465 // Certain ABIs require that vectors are passed as integers. For vectors 466 // are the same size, this is an obvious bitcast. 467 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 468 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 469 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 470 // Bitcast Val back the original type and extract the corresponding 471 // vector we want. 472 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 473 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 474 ValueVT.getVectorElementType(), Elts); 475 Val = DAG.getBitcast(WiderVecType, Val); 476 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 477 DAG.getVectorIdxConstant(0, DL)); 478 } 479 480 diagnosePossiblyInvalidConstraint( 481 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 482 return DAG.getUNDEF(ValueVT); 483 } 484 485 // Handle cases such as i8 -> <1 x i1> 486 EVT ValueSVT = ValueVT.getVectorElementType(); 487 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 488 if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits()) 489 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 490 else 491 Val = ValueVT.isFloatingPoint() 492 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 493 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 494 } 495 496 return DAG.getBuildVector(ValueVT, DL, Val); 497 } 498 499 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 500 SDValue Val, SDValue *Parts, unsigned NumParts, 501 MVT PartVT, const Value *V, 502 Optional<CallingConv::ID> CallConv); 503 504 /// getCopyToParts - Create a series of nodes that contain the specified value 505 /// split into legal parts. If the parts contain more bits than Val, then, for 506 /// integers, ExtendKind can be used to specify how to generate the extra bits. 507 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 508 SDValue *Parts, unsigned NumParts, MVT PartVT, 509 const Value *V, 510 Optional<CallingConv::ID> CallConv = None, 511 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 512 EVT ValueVT = Val.getValueType(); 513 514 // Handle the vector case separately. 515 if (ValueVT.isVector()) 516 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 517 CallConv); 518 519 unsigned PartBits = PartVT.getSizeInBits(); 520 unsigned OrigNumParts = NumParts; 521 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 522 "Copying to an illegal type!"); 523 524 if (NumParts == 0) 525 return; 526 527 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 528 EVT PartEVT = PartVT; 529 if (PartEVT == ValueVT) { 530 assert(NumParts == 1 && "No-op copy with multiple parts!"); 531 Parts[0] = Val; 532 return; 533 } 534 535 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 536 // If the parts cover more bits than the value has, promote the value. 537 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 538 assert(NumParts == 1 && "Do not know what to promote to!"); 539 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 540 } else { 541 if (ValueVT.isFloatingPoint()) { 542 // FP values need to be bitcast, then extended if they are being put 543 // into a larger container. 544 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 545 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 546 } 547 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 548 ValueVT.isInteger() && 549 "Unknown mismatch!"); 550 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 551 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 552 if (PartVT == MVT::x86mmx) 553 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 554 } 555 } else if (PartBits == ValueVT.getSizeInBits()) { 556 // Different types of the same size. 557 assert(NumParts == 1 && PartEVT != ValueVT); 558 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 559 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 560 // If the parts cover less bits than value has, truncate the value. 561 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 562 ValueVT.isInteger() && 563 "Unknown mismatch!"); 564 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 565 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 566 if (PartVT == MVT::x86mmx) 567 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 568 } 569 570 // The value may have changed - recompute ValueVT. 571 ValueVT = Val.getValueType(); 572 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 573 "Failed to tile the value with PartVT!"); 574 575 if (NumParts == 1) { 576 if (PartEVT != ValueVT) { 577 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 578 "scalar-to-vector conversion failed"); 579 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 580 } 581 582 Parts[0] = Val; 583 return; 584 } 585 586 // Expand the value into multiple parts. 587 if (NumParts & (NumParts - 1)) { 588 // The number of parts is not a power of 2. Split off and copy the tail. 589 assert(PartVT.isInteger() && ValueVT.isInteger() && 590 "Do not know what to expand to!"); 591 unsigned RoundParts = 1 << Log2_32(NumParts); 592 unsigned RoundBits = RoundParts * PartBits; 593 unsigned OddParts = NumParts - RoundParts; 594 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 595 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false)); 596 597 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 598 CallConv); 599 600 if (DAG.getDataLayout().isBigEndian()) 601 // The odd parts were reversed by getCopyToParts - unreverse them. 602 std::reverse(Parts + RoundParts, Parts + NumParts); 603 604 NumParts = RoundParts; 605 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 606 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 607 } 608 609 // The number of parts is a power of 2. Repeatedly bisect the value using 610 // EXTRACT_ELEMENT. 611 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 612 EVT::getIntegerVT(*DAG.getContext(), 613 ValueVT.getSizeInBits()), 614 Val); 615 616 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 617 for (unsigned i = 0; i < NumParts; i += StepSize) { 618 unsigned ThisBits = StepSize * PartBits / 2; 619 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 620 SDValue &Part0 = Parts[i]; 621 SDValue &Part1 = Parts[i+StepSize/2]; 622 623 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 624 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 625 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 626 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 627 628 if (ThisBits == PartBits && ThisVT != PartVT) { 629 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 630 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 631 } 632 } 633 } 634 635 if (DAG.getDataLayout().isBigEndian()) 636 std::reverse(Parts, Parts + OrigNumParts); 637 } 638 639 static SDValue widenVectorToPartType(SelectionDAG &DAG, 640 SDValue Val, const SDLoc &DL, EVT PartVT) { 641 if (!PartVT.isVector()) 642 return SDValue(); 643 644 EVT ValueVT = Val.getValueType(); 645 unsigned PartNumElts = PartVT.getVectorNumElements(); 646 unsigned ValueNumElts = ValueVT.getVectorNumElements(); 647 if (PartNumElts > ValueNumElts && 648 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 649 EVT ElementVT = PartVT.getVectorElementType(); 650 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 651 // undef elements. 652 SmallVector<SDValue, 16> Ops; 653 DAG.ExtractVectorElements(Val, Ops); 654 SDValue EltUndef = DAG.getUNDEF(ElementVT); 655 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i) 656 Ops.push_back(EltUndef); 657 658 // FIXME: Use CONCAT for 2x -> 4x. 659 return DAG.getBuildVector(PartVT, DL, Ops); 660 } 661 662 return SDValue(); 663 } 664 665 /// getCopyToPartsVector - Create a series of nodes that contain the specified 666 /// value split into legal parts. 667 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 668 SDValue Val, SDValue *Parts, unsigned NumParts, 669 MVT PartVT, const Value *V, 670 Optional<CallingConv::ID> CallConv) { 671 EVT ValueVT = Val.getValueType(); 672 assert(ValueVT.isVector() && "Not a vector"); 673 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 674 const bool IsABIRegCopy = CallConv.hasValue(); 675 676 if (NumParts == 1) { 677 EVT PartEVT = PartVT; 678 if (PartEVT == ValueVT) { 679 // Nothing to do. 680 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 681 // Bitconvert vector->vector case. 682 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 683 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 684 Val = Widened; 685 } else if (PartVT.isVector() && 686 PartEVT.getVectorElementType().bitsGE( 687 ValueVT.getVectorElementType()) && 688 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 689 690 // Promoted vector extract 691 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 692 } else { 693 if (ValueVT.getVectorNumElements() == 1) { 694 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 695 DAG.getVectorIdxConstant(0, DL)); 696 } else { 697 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 698 "lossy conversion of vector to scalar type"); 699 EVT IntermediateType = 700 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 701 Val = DAG.getBitcast(IntermediateType, Val); 702 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 703 } 704 } 705 706 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 707 Parts[0] = Val; 708 return; 709 } 710 711 // Handle a multi-element vector. 712 EVT IntermediateVT; 713 MVT RegisterVT; 714 unsigned NumIntermediates; 715 unsigned NumRegs; 716 if (IsABIRegCopy) { 717 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 718 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 719 NumIntermediates, RegisterVT); 720 } else { 721 NumRegs = 722 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 723 NumIntermediates, RegisterVT); 724 } 725 726 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 727 NumParts = NumRegs; // Silence a compiler warning. 728 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 729 730 unsigned IntermediateNumElts = IntermediateVT.isVector() ? 731 IntermediateVT.getVectorNumElements() : 1; 732 733 // Convert the vector to the appropriate type if necessary. 734 unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts; 735 736 EVT BuiltVectorTy = EVT::getVectorVT( 737 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts); 738 if (ValueVT != BuiltVectorTy) { 739 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) 740 Val = Widened; 741 742 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 743 } 744 745 // Split the vector into intermediate operands. 746 SmallVector<SDValue, 8> Ops(NumIntermediates); 747 for (unsigned i = 0; i != NumIntermediates; ++i) { 748 if (IntermediateVT.isVector()) { 749 Ops[i] = 750 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 751 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 752 } else { 753 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 754 DAG.getVectorIdxConstant(i, DL)); 755 } 756 } 757 758 // Split the intermediate operands into legal parts. 759 if (NumParts == NumIntermediates) { 760 // If the register was not expanded, promote or copy the value, 761 // as appropriate. 762 for (unsigned i = 0; i != NumParts; ++i) 763 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 764 } else if (NumParts > 0) { 765 // If the intermediate type was expanded, split each the value into 766 // legal parts. 767 assert(NumIntermediates != 0 && "division by zero"); 768 assert(NumParts % NumIntermediates == 0 && 769 "Must expand into a divisible number of parts!"); 770 unsigned Factor = NumParts / NumIntermediates; 771 for (unsigned i = 0; i != NumIntermediates; ++i) 772 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 773 CallConv); 774 } 775 } 776 777 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 778 EVT valuevt, Optional<CallingConv::ID> CC) 779 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 780 RegCount(1, regs.size()), CallConv(CC) {} 781 782 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 783 const DataLayout &DL, unsigned Reg, Type *Ty, 784 Optional<CallingConv::ID> CC) { 785 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 786 787 CallConv = CC; 788 789 for (EVT ValueVT : ValueVTs) { 790 unsigned NumRegs = 791 isABIMangled() 792 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 793 : TLI.getNumRegisters(Context, ValueVT); 794 MVT RegisterVT = 795 isABIMangled() 796 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 797 : TLI.getRegisterType(Context, ValueVT); 798 for (unsigned i = 0; i != NumRegs; ++i) 799 Regs.push_back(Reg + i); 800 RegVTs.push_back(RegisterVT); 801 RegCount.push_back(NumRegs); 802 Reg += NumRegs; 803 } 804 } 805 806 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 807 FunctionLoweringInfo &FuncInfo, 808 const SDLoc &dl, SDValue &Chain, 809 SDValue *Flag, const Value *V) const { 810 // A Value with type {} or [0 x %t] needs no registers. 811 if (ValueVTs.empty()) 812 return SDValue(); 813 814 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 815 816 // Assemble the legal parts into the final values. 817 SmallVector<SDValue, 4> Values(ValueVTs.size()); 818 SmallVector<SDValue, 8> Parts; 819 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 820 // Copy the legal parts from the registers. 821 EVT ValueVT = ValueVTs[Value]; 822 unsigned NumRegs = RegCount[Value]; 823 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 824 *DAG.getContext(), 825 CallConv.getValue(), RegVTs[Value]) 826 : RegVTs[Value]; 827 828 Parts.resize(NumRegs); 829 for (unsigned i = 0; i != NumRegs; ++i) { 830 SDValue P; 831 if (!Flag) { 832 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 833 } else { 834 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 835 *Flag = P.getValue(2); 836 } 837 838 Chain = P.getValue(1); 839 Parts[i] = P; 840 841 // If the source register was virtual and if we know something about it, 842 // add an assert node. 843 if (!Register::isVirtualRegister(Regs[Part + i]) || 844 !RegisterVT.isInteger()) 845 continue; 846 847 const FunctionLoweringInfo::LiveOutInfo *LOI = 848 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 849 if (!LOI) 850 continue; 851 852 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 853 unsigned NumSignBits = LOI->NumSignBits; 854 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 855 856 if (NumZeroBits == RegSize) { 857 // The current value is a zero. 858 // Explicitly express that as it would be easier for 859 // optimizations to kick in. 860 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 861 continue; 862 } 863 864 // FIXME: We capture more information than the dag can represent. For 865 // now, just use the tightest assertzext/assertsext possible. 866 bool isSExt; 867 EVT FromVT(MVT::Other); 868 if (NumZeroBits) { 869 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 870 isSExt = false; 871 } else if (NumSignBits > 1) { 872 FromVT = 873 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 874 isSExt = true; 875 } else { 876 continue; 877 } 878 // Add an assertion node. 879 assert(FromVT != MVT::Other); 880 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 881 RegisterVT, P, DAG.getValueType(FromVT)); 882 } 883 884 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 885 RegisterVT, ValueVT, V, CallConv); 886 Part += NumRegs; 887 Parts.clear(); 888 } 889 890 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 891 } 892 893 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 894 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 895 const Value *V, 896 ISD::NodeType PreferredExtendType) const { 897 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 898 ISD::NodeType ExtendKind = PreferredExtendType; 899 900 // Get the list of the values's legal parts. 901 unsigned NumRegs = Regs.size(); 902 SmallVector<SDValue, 8> Parts(NumRegs); 903 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 904 unsigned NumParts = RegCount[Value]; 905 906 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 907 *DAG.getContext(), 908 CallConv.getValue(), RegVTs[Value]) 909 : RegVTs[Value]; 910 911 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 912 ExtendKind = ISD::ZERO_EXTEND; 913 914 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 915 NumParts, RegisterVT, V, CallConv, ExtendKind); 916 Part += NumParts; 917 } 918 919 // Copy the parts into the registers. 920 SmallVector<SDValue, 8> Chains(NumRegs); 921 for (unsigned i = 0; i != NumRegs; ++i) { 922 SDValue Part; 923 if (!Flag) { 924 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 925 } else { 926 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 927 *Flag = Part.getValue(1); 928 } 929 930 Chains[i] = Part.getValue(0); 931 } 932 933 if (NumRegs == 1 || Flag) 934 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 935 // flagged to it. That is the CopyToReg nodes and the user are considered 936 // a single scheduling unit. If we create a TokenFactor and return it as 937 // chain, then the TokenFactor is both a predecessor (operand) of the 938 // user as well as a successor (the TF operands are flagged to the user). 939 // c1, f1 = CopyToReg 940 // c2, f2 = CopyToReg 941 // c3 = TokenFactor c1, c2 942 // ... 943 // = op c3, ..., f2 944 Chain = Chains[NumRegs-1]; 945 else 946 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 947 } 948 949 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 950 unsigned MatchingIdx, const SDLoc &dl, 951 SelectionDAG &DAG, 952 std::vector<SDValue> &Ops) const { 953 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 954 955 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 956 if (HasMatching) 957 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 958 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 959 // Put the register class of the virtual registers in the flag word. That 960 // way, later passes can recompute register class constraints for inline 961 // assembly as well as normal instructions. 962 // Don't do this for tied operands that can use the regclass information 963 // from the def. 964 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 965 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 966 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 967 } 968 969 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 970 Ops.push_back(Res); 971 972 if (Code == InlineAsm::Kind_Clobber) { 973 // Clobbers should always have a 1:1 mapping with registers, and may 974 // reference registers that have illegal (e.g. vector) types. Hence, we 975 // shouldn't try to apply any sort of splitting logic to them. 976 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 977 "No 1:1 mapping from clobbers to regs?"); 978 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 979 (void)SP; 980 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 981 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 982 assert( 983 (Regs[I] != SP || 984 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 985 "If we clobbered the stack pointer, MFI should know about it."); 986 } 987 return; 988 } 989 990 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 991 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 992 MVT RegisterVT = RegVTs[Value]; 993 for (unsigned i = 0; i != NumRegs; ++i) { 994 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 995 unsigned TheReg = Regs[Reg++]; 996 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 997 } 998 } 999 } 1000 1001 SmallVector<std::pair<unsigned, unsigned>, 4> 1002 RegsForValue::getRegsAndSizes() const { 1003 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec; 1004 unsigned I = 0; 1005 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1006 unsigned RegCount = std::get<0>(CountAndVT); 1007 MVT RegisterVT = std::get<1>(CountAndVT); 1008 unsigned RegisterSize = RegisterVT.getSizeInBits(); 1009 for (unsigned E = I + RegCount; I != E; ++I) 1010 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1011 } 1012 return OutVec; 1013 } 1014 1015 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1016 const TargetLibraryInfo *li) { 1017 AA = aa; 1018 GFI = gfi; 1019 LibInfo = li; 1020 DL = &DAG.getDataLayout(); 1021 Context = DAG.getContext(); 1022 LPadToCallSiteMap.clear(); 1023 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1024 } 1025 1026 void SelectionDAGBuilder::clear() { 1027 NodeMap.clear(); 1028 UnusedArgNodeMap.clear(); 1029 PendingLoads.clear(); 1030 PendingExports.clear(); 1031 PendingConstrainedFP.clear(); 1032 PendingConstrainedFPStrict.clear(); 1033 CurInst = nullptr; 1034 HasTailCall = false; 1035 SDNodeOrder = LowestSDNodeOrder; 1036 StatepointLowering.clear(); 1037 } 1038 1039 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1040 DanglingDebugInfoMap.clear(); 1041 } 1042 1043 // Update DAG root to include dependencies on Pending chains. 1044 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1045 SDValue Root = DAG.getRoot(); 1046 1047 if (Pending.empty()) 1048 return Root; 1049 1050 // Add current root to PendingChains, unless we already indirectly 1051 // depend on it. 1052 if (Root.getOpcode() != ISD::EntryToken) { 1053 unsigned i = 0, e = Pending.size(); 1054 for (; i != e; ++i) { 1055 assert(Pending[i].getNode()->getNumOperands() > 1); 1056 if (Pending[i].getNode()->getOperand(0) == Root) 1057 break; // Don't add the root if we already indirectly depend on it. 1058 } 1059 1060 if (i == e) 1061 Pending.push_back(Root); 1062 } 1063 1064 if (Pending.size() == 1) 1065 Root = Pending[0]; 1066 else 1067 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1068 1069 DAG.setRoot(Root); 1070 Pending.clear(); 1071 return Root; 1072 } 1073 1074 SDValue SelectionDAGBuilder::getMemoryRoot() { 1075 return updateRoot(PendingLoads); 1076 } 1077 1078 SDValue SelectionDAGBuilder::getRoot() { 1079 // Chain up all pending constrained intrinsics together with all 1080 // pending loads, by simply appending them to PendingLoads and 1081 // then calling getMemoryRoot(). 1082 PendingLoads.reserve(PendingLoads.size() + 1083 PendingConstrainedFP.size() + 1084 PendingConstrainedFPStrict.size()); 1085 PendingLoads.append(PendingConstrainedFP.begin(), 1086 PendingConstrainedFP.end()); 1087 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1088 PendingConstrainedFPStrict.end()); 1089 PendingConstrainedFP.clear(); 1090 PendingConstrainedFPStrict.clear(); 1091 return getMemoryRoot(); 1092 } 1093 1094 SDValue SelectionDAGBuilder::getControlRoot() { 1095 // We need to emit pending fpexcept.strict constrained intrinsics, 1096 // so append them to the PendingExports list. 1097 PendingExports.append(PendingConstrainedFPStrict.begin(), 1098 PendingConstrainedFPStrict.end()); 1099 PendingConstrainedFPStrict.clear(); 1100 return updateRoot(PendingExports); 1101 } 1102 1103 void SelectionDAGBuilder::visit(const Instruction &I) { 1104 // Set up outgoing PHI node register values before emitting the terminator. 1105 if (I.isTerminator()) { 1106 HandlePHINodesInSuccessorBlocks(I.getParent()); 1107 } 1108 1109 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1110 if (!isa<DbgInfoIntrinsic>(I)) 1111 ++SDNodeOrder; 1112 1113 CurInst = &I; 1114 1115 visit(I.getOpcode(), I); 1116 1117 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) { 1118 // ConstrainedFPIntrinsics handle their own FMF. 1119 if (!isa<ConstrainedFPIntrinsic>(&I)) { 1120 // Propagate the fast-math-flags of this IR instruction to the DAG node that 1121 // maps to this instruction. 1122 // TODO: We could handle all flags (nsw, etc) here. 1123 // TODO: If an IR instruction maps to >1 node, only the final node will have 1124 // flags set. 1125 if (SDNode *Node = getNodeForIRValue(&I)) { 1126 SDNodeFlags IncomingFlags; 1127 IncomingFlags.copyFMF(*FPMO); 1128 if (!Node->getFlags().isDefined()) 1129 Node->setFlags(IncomingFlags); 1130 else 1131 Node->intersectFlagsWith(IncomingFlags); 1132 } 1133 } 1134 } 1135 1136 if (!I.isTerminator() && !HasTailCall && 1137 !isStatepoint(&I)) // statepoints handle their exports internally 1138 CopyToExportRegsIfNeeded(&I); 1139 1140 CurInst = nullptr; 1141 } 1142 1143 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1144 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1145 } 1146 1147 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1148 // Note: this doesn't use InstVisitor, because it has to work with 1149 // ConstantExpr's in addition to instructions. 1150 switch (Opcode) { 1151 default: llvm_unreachable("Unknown instruction type encountered!"); 1152 // Build the switch statement using the Instruction.def file. 1153 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1154 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1155 #include "llvm/IR/Instruction.def" 1156 } 1157 } 1158 1159 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1160 const DIExpression *Expr) { 1161 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1162 const DbgValueInst *DI = DDI.getDI(); 1163 DIVariable *DanglingVariable = DI->getVariable(); 1164 DIExpression *DanglingExpr = DI->getExpression(); 1165 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1166 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1167 return true; 1168 } 1169 return false; 1170 }; 1171 1172 for (auto &DDIMI : DanglingDebugInfoMap) { 1173 DanglingDebugInfoVector &DDIV = DDIMI.second; 1174 1175 // If debug info is to be dropped, run it through final checks to see 1176 // whether it can be salvaged. 1177 for (auto &DDI : DDIV) 1178 if (isMatchingDbgValue(DDI)) 1179 salvageUnresolvedDbgValue(DDI); 1180 1181 DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end()); 1182 } 1183 } 1184 1185 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1186 // generate the debug data structures now that we've seen its definition. 1187 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1188 SDValue Val) { 1189 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1190 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1191 return; 1192 1193 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1194 for (auto &DDI : DDIV) { 1195 const DbgValueInst *DI = DDI.getDI(); 1196 assert(DI && "Ill-formed DanglingDebugInfo"); 1197 DebugLoc dl = DDI.getdl(); 1198 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1199 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1200 DILocalVariable *Variable = DI->getVariable(); 1201 DIExpression *Expr = DI->getExpression(); 1202 assert(Variable->isValidLocationForIntrinsic(dl) && 1203 "Expected inlined-at fields to agree"); 1204 SDDbgValue *SDV; 1205 if (Val.getNode()) { 1206 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1207 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1208 // we couldn't resolve it directly when examining the DbgValue intrinsic 1209 // in the first place we should not be more successful here). Unless we 1210 // have some test case that prove this to be correct we should avoid 1211 // calling EmitFuncArgumentDbgValue here. 1212 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1213 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1214 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1215 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1216 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1217 // inserted after the definition of Val when emitting the instructions 1218 // after ISel. An alternative could be to teach 1219 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1220 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1221 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1222 << ValSDNodeOrder << "\n"); 1223 SDV = getDbgValue(Val, Variable, Expr, dl, 1224 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1225 DAG.AddDbgValue(SDV, Val.getNode(), false); 1226 } else 1227 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1228 << "in EmitFuncArgumentDbgValue\n"); 1229 } else { 1230 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1231 auto Undef = 1232 UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1233 auto SDV = 1234 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1235 DAG.AddDbgValue(SDV, nullptr, false); 1236 } 1237 } 1238 DDIV.clear(); 1239 } 1240 1241 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1242 Value *V = DDI.getDI()->getValue(); 1243 DILocalVariable *Var = DDI.getDI()->getVariable(); 1244 DIExpression *Expr = DDI.getDI()->getExpression(); 1245 DebugLoc DL = DDI.getdl(); 1246 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1247 unsigned SDOrder = DDI.getSDNodeOrder(); 1248 1249 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1250 // that DW_OP_stack_value is desired. 1251 assert(isa<DbgValueInst>(DDI.getDI())); 1252 bool StackValue = true; 1253 1254 // Can this Value can be encoded without any further work? 1255 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) 1256 return; 1257 1258 // Attempt to salvage back through as many instructions as possible. Bail if 1259 // a non-instruction is seen, such as a constant expression or global 1260 // variable. FIXME: Further work could recover those too. 1261 while (isa<Instruction>(V)) { 1262 Instruction &VAsInst = *cast<Instruction>(V); 1263 DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue); 1264 1265 // If we cannot salvage any further, and haven't yet found a suitable debug 1266 // expression, bail out. 1267 if (!NewExpr) 1268 break; 1269 1270 // New value and expr now represent this debuginfo. 1271 V = VAsInst.getOperand(0); 1272 Expr = NewExpr; 1273 1274 // Some kind of simplification occurred: check whether the operand of the 1275 // salvaged debug expression can be encoded in this DAG. 1276 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) { 1277 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1278 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1279 return; 1280 } 1281 } 1282 1283 // This was the final opportunity to salvage this debug information, and it 1284 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1285 // any earlier variable location. 1286 auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1287 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1288 DAG.AddDbgValue(SDV, nullptr, false); 1289 1290 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1291 << "\n"); 1292 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1293 << "\n"); 1294 } 1295 1296 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var, 1297 DIExpression *Expr, DebugLoc dl, 1298 DebugLoc InstDL, unsigned Order) { 1299 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1300 SDDbgValue *SDV; 1301 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1302 isa<ConstantPointerNull>(V)) { 1303 SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder); 1304 DAG.AddDbgValue(SDV, nullptr, false); 1305 return true; 1306 } 1307 1308 // If the Value is a frame index, we can create a FrameIndex debug value 1309 // without relying on the DAG at all. 1310 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1311 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1312 if (SI != FuncInfo.StaticAllocaMap.end()) { 1313 auto SDV = 1314 DAG.getFrameIndexDbgValue(Var, Expr, SI->second, 1315 /*IsIndirect*/ false, dl, SDNodeOrder); 1316 // Do not attach the SDNodeDbgValue to an SDNode: this variable location 1317 // is still available even if the SDNode gets optimized out. 1318 DAG.AddDbgValue(SDV, nullptr, false); 1319 return true; 1320 } 1321 } 1322 1323 // Do not use getValue() in here; we don't want to generate code at 1324 // this point if it hasn't been done yet. 1325 SDValue N = NodeMap[V]; 1326 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1327 N = UnusedArgNodeMap[V]; 1328 if (N.getNode()) { 1329 if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) 1330 return true; 1331 SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder); 1332 DAG.AddDbgValue(SDV, N.getNode(), false); 1333 return true; 1334 } 1335 1336 // Special rules apply for the first dbg.values of parameter variables in a 1337 // function. Identify them by the fact they reference Argument Values, that 1338 // they're parameters, and they are parameters of the current function. We 1339 // need to let them dangle until they get an SDNode. 1340 bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() && 1341 !InstDL.getInlinedAt(); 1342 if (!IsParamOfFunc) { 1343 // The value is not used in this block yet (or it would have an SDNode). 1344 // We still want the value to appear for the user if possible -- if it has 1345 // an associated VReg, we can refer to that instead. 1346 auto VMI = FuncInfo.ValueMap.find(V); 1347 if (VMI != FuncInfo.ValueMap.end()) { 1348 unsigned Reg = VMI->second; 1349 // If this is a PHI node, it may be split up into several MI PHI nodes 1350 // (in FunctionLoweringInfo::set). 1351 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1352 V->getType(), None); 1353 if (RFV.occupiesMultipleRegs()) { 1354 unsigned Offset = 0; 1355 unsigned BitsToDescribe = 0; 1356 if (auto VarSize = Var->getSizeInBits()) 1357 BitsToDescribe = *VarSize; 1358 if (auto Fragment = Expr->getFragmentInfo()) 1359 BitsToDescribe = Fragment->SizeInBits; 1360 for (auto RegAndSize : RFV.getRegsAndSizes()) { 1361 unsigned RegisterSize = RegAndSize.second; 1362 // Bail out if all bits are described already. 1363 if (Offset >= BitsToDescribe) 1364 break; 1365 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1366 ? BitsToDescribe - Offset 1367 : RegisterSize; 1368 auto FragmentExpr = DIExpression::createFragmentExpression( 1369 Expr, Offset, FragmentSize); 1370 if (!FragmentExpr) 1371 continue; 1372 SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first, 1373 false, dl, SDNodeOrder); 1374 DAG.AddDbgValue(SDV, nullptr, false); 1375 Offset += RegisterSize; 1376 } 1377 } else { 1378 SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder); 1379 DAG.AddDbgValue(SDV, nullptr, false); 1380 } 1381 return true; 1382 } 1383 } 1384 1385 return false; 1386 } 1387 1388 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1389 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1390 for (auto &Pair : DanglingDebugInfoMap) 1391 for (auto &DDI : Pair.second) 1392 salvageUnresolvedDbgValue(DDI); 1393 clearDanglingDebugInfo(); 1394 } 1395 1396 /// getCopyFromRegs - If there was virtual register allocated for the value V 1397 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1398 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1399 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1400 SDValue Result; 1401 1402 if (It != FuncInfo.ValueMap.end()) { 1403 Register InReg = It->second; 1404 1405 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1406 DAG.getDataLayout(), InReg, Ty, 1407 None); // This is not an ABI copy. 1408 SDValue Chain = DAG.getEntryNode(); 1409 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1410 V); 1411 resolveDanglingDebugInfo(V, Result); 1412 } 1413 1414 return Result; 1415 } 1416 1417 /// getValue - Return an SDValue for the given Value. 1418 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1419 // If we already have an SDValue for this value, use it. It's important 1420 // to do this first, so that we don't create a CopyFromReg if we already 1421 // have a regular SDValue. 1422 SDValue &N = NodeMap[V]; 1423 if (N.getNode()) return N; 1424 1425 // If there's a virtual register allocated and initialized for this 1426 // value, use it. 1427 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1428 return copyFromReg; 1429 1430 // Otherwise create a new SDValue and remember it. 1431 SDValue Val = getValueImpl(V); 1432 NodeMap[V] = Val; 1433 resolveDanglingDebugInfo(V, Val); 1434 return Val; 1435 } 1436 1437 /// getNonRegisterValue - Return an SDValue for the given Value, but 1438 /// don't look in FuncInfo.ValueMap for a virtual register. 1439 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1440 // If we already have an SDValue for this value, use it. 1441 SDValue &N = NodeMap[V]; 1442 if (N.getNode()) { 1443 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1444 // Remove the debug location from the node as the node is about to be used 1445 // in a location which may differ from the original debug location. This 1446 // is relevant to Constant and ConstantFP nodes because they can appear 1447 // as constant expressions inside PHI nodes. 1448 N->setDebugLoc(DebugLoc()); 1449 } 1450 return N; 1451 } 1452 1453 // Otherwise create a new SDValue and remember it. 1454 SDValue Val = getValueImpl(V); 1455 NodeMap[V] = Val; 1456 resolveDanglingDebugInfo(V, Val); 1457 return Val; 1458 } 1459 1460 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1461 /// Create an SDValue for the given value. 1462 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1463 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1464 1465 if (const Constant *C = dyn_cast<Constant>(V)) { 1466 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1467 1468 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1469 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1470 1471 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1472 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1473 1474 if (isa<ConstantPointerNull>(C)) { 1475 unsigned AS = V->getType()->getPointerAddressSpace(); 1476 return DAG.getConstant(0, getCurSDLoc(), 1477 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1478 } 1479 1480 if (match(C, m_VScale(DAG.getDataLayout()))) 1481 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1482 1483 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1484 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1485 1486 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1487 return DAG.getUNDEF(VT); 1488 1489 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1490 visit(CE->getOpcode(), *CE); 1491 SDValue N1 = NodeMap[V]; 1492 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1493 return N1; 1494 } 1495 1496 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1497 SmallVector<SDValue, 4> Constants; 1498 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1499 OI != OE; ++OI) { 1500 SDNode *Val = getValue(*OI).getNode(); 1501 // If the operand is an empty aggregate, there are no values. 1502 if (!Val) continue; 1503 // Add each leaf value from the operand to the Constants list 1504 // to form a flattened list of all the values. 1505 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1506 Constants.push_back(SDValue(Val, i)); 1507 } 1508 1509 return DAG.getMergeValues(Constants, getCurSDLoc()); 1510 } 1511 1512 if (const ConstantDataSequential *CDS = 1513 dyn_cast<ConstantDataSequential>(C)) { 1514 SmallVector<SDValue, 4> Ops; 1515 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1516 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1517 // Add each leaf value from the operand to the Constants list 1518 // to form a flattened list of all the values. 1519 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1520 Ops.push_back(SDValue(Val, i)); 1521 } 1522 1523 if (isa<ArrayType>(CDS->getType())) 1524 return DAG.getMergeValues(Ops, getCurSDLoc()); 1525 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1526 } 1527 1528 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1529 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1530 "Unknown struct or array constant!"); 1531 1532 SmallVector<EVT, 4> ValueVTs; 1533 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1534 unsigned NumElts = ValueVTs.size(); 1535 if (NumElts == 0) 1536 return SDValue(); // empty struct 1537 SmallVector<SDValue, 4> Constants(NumElts); 1538 for (unsigned i = 0; i != NumElts; ++i) { 1539 EVT EltVT = ValueVTs[i]; 1540 if (isa<UndefValue>(C)) 1541 Constants[i] = DAG.getUNDEF(EltVT); 1542 else if (EltVT.isFloatingPoint()) 1543 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1544 else 1545 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1546 } 1547 1548 return DAG.getMergeValues(Constants, getCurSDLoc()); 1549 } 1550 1551 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1552 return DAG.getBlockAddress(BA, VT); 1553 1554 VectorType *VecTy = cast<VectorType>(V->getType()); 1555 1556 // Now that we know the number and type of the elements, get that number of 1557 // elements into the Ops array based on what kind of constant it is. 1558 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1559 SmallVector<SDValue, 16> Ops; 1560 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1561 for (unsigned i = 0; i != NumElements; ++i) 1562 Ops.push_back(getValue(CV->getOperand(i))); 1563 1564 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1565 } else if (isa<ConstantAggregateZero>(C)) { 1566 EVT EltVT = 1567 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1568 1569 SDValue Op; 1570 if (EltVT.isFloatingPoint()) 1571 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1572 else 1573 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1574 1575 if (isa<ScalableVectorType>(VecTy)) 1576 return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op); 1577 else { 1578 SmallVector<SDValue, 16> Ops; 1579 Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op); 1580 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1581 } 1582 } 1583 llvm_unreachable("Unknown vector constant"); 1584 } 1585 1586 // If this is a static alloca, generate it as the frameindex instead of 1587 // computation. 1588 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1589 DenseMap<const AllocaInst*, int>::iterator SI = 1590 FuncInfo.StaticAllocaMap.find(AI); 1591 if (SI != FuncInfo.StaticAllocaMap.end()) 1592 return DAG.getFrameIndex(SI->second, 1593 TLI.getFrameIndexTy(DAG.getDataLayout())); 1594 } 1595 1596 // If this is an instruction which fast-isel has deferred, select it now. 1597 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1598 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1599 1600 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1601 Inst->getType(), getABIRegCopyCC(V)); 1602 SDValue Chain = DAG.getEntryNode(); 1603 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1604 } 1605 1606 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) { 1607 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1608 } 1609 llvm_unreachable("Can't get register for value!"); 1610 } 1611 1612 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1613 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1614 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1615 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1616 bool IsSEH = isAsynchronousEHPersonality(Pers); 1617 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1618 if (!IsSEH) 1619 CatchPadMBB->setIsEHScopeEntry(); 1620 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1621 if (IsMSVCCXX || IsCoreCLR) 1622 CatchPadMBB->setIsEHFuncletEntry(); 1623 } 1624 1625 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1626 // Update machine-CFG edge. 1627 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1628 FuncInfo.MBB->addSuccessor(TargetMBB); 1629 1630 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1631 bool IsSEH = isAsynchronousEHPersonality(Pers); 1632 if (IsSEH) { 1633 // If this is not a fall-through branch or optimizations are switched off, 1634 // emit the branch. 1635 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1636 TM.getOptLevel() == CodeGenOpt::None) 1637 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1638 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1639 return; 1640 } 1641 1642 // Figure out the funclet membership for the catchret's successor. 1643 // This will be used by the FuncletLayout pass to determine how to order the 1644 // BB's. 1645 // A 'catchret' returns to the outer scope's color. 1646 Value *ParentPad = I.getCatchSwitchParentPad(); 1647 const BasicBlock *SuccessorColor; 1648 if (isa<ConstantTokenNone>(ParentPad)) 1649 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1650 else 1651 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1652 assert(SuccessorColor && "No parent funclet for catchret!"); 1653 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1654 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1655 1656 // Create the terminator node. 1657 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1658 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1659 DAG.getBasicBlock(SuccessorColorMBB)); 1660 DAG.setRoot(Ret); 1661 } 1662 1663 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1664 // Don't emit any special code for the cleanuppad instruction. It just marks 1665 // the start of an EH scope/funclet. 1666 FuncInfo.MBB->setIsEHScopeEntry(); 1667 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1668 if (Pers != EHPersonality::Wasm_CXX) { 1669 FuncInfo.MBB->setIsEHFuncletEntry(); 1670 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1671 } 1672 } 1673 1674 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and 1675 // the control flow always stops at the single catch pad, as it does for a 1676 // cleanup pad. In case the exception caught is not of the types the catch pad 1677 // catches, it will be rethrown by a rethrow. 1678 static void findWasmUnwindDestinations( 1679 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1680 BranchProbability Prob, 1681 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1682 &UnwindDests) { 1683 while (EHPadBB) { 1684 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1685 if (isa<CleanupPadInst>(Pad)) { 1686 // Stop on cleanup pads. 1687 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1688 UnwindDests.back().first->setIsEHScopeEntry(); 1689 break; 1690 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1691 // Add the catchpad handlers to the possible destinations. We don't 1692 // continue to the unwind destination of the catchswitch for wasm. 1693 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1694 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1695 UnwindDests.back().first->setIsEHScopeEntry(); 1696 } 1697 break; 1698 } else { 1699 continue; 1700 } 1701 } 1702 } 1703 1704 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1705 /// many places it could ultimately go. In the IR, we have a single unwind 1706 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1707 /// This function skips over imaginary basic blocks that hold catchswitch 1708 /// instructions, and finds all the "real" machine 1709 /// basic block destinations. As those destinations may not be successors of 1710 /// EHPadBB, here we also calculate the edge probability to those destinations. 1711 /// The passed-in Prob is the edge probability to EHPadBB. 1712 static void findUnwindDestinations( 1713 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1714 BranchProbability Prob, 1715 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1716 &UnwindDests) { 1717 EHPersonality Personality = 1718 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1719 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1720 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1721 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1722 bool IsSEH = isAsynchronousEHPersonality(Personality); 1723 1724 if (IsWasmCXX) { 1725 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1726 assert(UnwindDests.size() <= 1 && 1727 "There should be at most one unwind destination for wasm"); 1728 return; 1729 } 1730 1731 while (EHPadBB) { 1732 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1733 BasicBlock *NewEHPadBB = nullptr; 1734 if (isa<LandingPadInst>(Pad)) { 1735 // Stop on landingpads. They are not funclets. 1736 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1737 break; 1738 } else if (isa<CleanupPadInst>(Pad)) { 1739 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1740 // personalities. 1741 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1742 UnwindDests.back().first->setIsEHScopeEntry(); 1743 UnwindDests.back().first->setIsEHFuncletEntry(); 1744 break; 1745 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1746 // Add the catchpad handlers to the possible destinations. 1747 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1748 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1749 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1750 if (IsMSVCCXX || IsCoreCLR) 1751 UnwindDests.back().first->setIsEHFuncletEntry(); 1752 if (!IsSEH) 1753 UnwindDests.back().first->setIsEHScopeEntry(); 1754 } 1755 NewEHPadBB = CatchSwitch->getUnwindDest(); 1756 } else { 1757 continue; 1758 } 1759 1760 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1761 if (BPI && NewEHPadBB) 1762 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1763 EHPadBB = NewEHPadBB; 1764 } 1765 } 1766 1767 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1768 // Update successor info. 1769 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1770 auto UnwindDest = I.getUnwindDest(); 1771 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1772 BranchProbability UnwindDestProb = 1773 (BPI && UnwindDest) 1774 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1775 : BranchProbability::getZero(); 1776 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1777 for (auto &UnwindDest : UnwindDests) { 1778 UnwindDest.first->setIsEHPad(); 1779 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1780 } 1781 FuncInfo.MBB->normalizeSuccProbs(); 1782 1783 // Create the terminator node. 1784 SDValue Ret = 1785 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1786 DAG.setRoot(Ret); 1787 } 1788 1789 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1790 report_fatal_error("visitCatchSwitch not yet implemented!"); 1791 } 1792 1793 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1794 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1795 auto &DL = DAG.getDataLayout(); 1796 SDValue Chain = getControlRoot(); 1797 SmallVector<ISD::OutputArg, 8> Outs; 1798 SmallVector<SDValue, 8> OutVals; 1799 1800 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1801 // lower 1802 // 1803 // %val = call <ty> @llvm.experimental.deoptimize() 1804 // ret <ty> %val 1805 // 1806 // differently. 1807 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1808 LowerDeoptimizingReturn(); 1809 return; 1810 } 1811 1812 if (!FuncInfo.CanLowerReturn) { 1813 unsigned DemoteReg = FuncInfo.DemoteRegister; 1814 const Function *F = I.getParent()->getParent(); 1815 1816 // Emit a store of the return value through the virtual register. 1817 // Leave Outs empty so that LowerReturn won't try to load return 1818 // registers the usual way. 1819 SmallVector<EVT, 1> PtrValueVTs; 1820 ComputeValueVTs(TLI, DL, 1821 F->getReturnType()->getPointerTo( 1822 DAG.getDataLayout().getAllocaAddrSpace()), 1823 PtrValueVTs); 1824 1825 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1826 DemoteReg, PtrValueVTs[0]); 1827 SDValue RetOp = getValue(I.getOperand(0)); 1828 1829 SmallVector<EVT, 4> ValueVTs, MemVTs; 1830 SmallVector<uint64_t, 4> Offsets; 1831 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1832 &Offsets); 1833 unsigned NumValues = ValueVTs.size(); 1834 1835 SmallVector<SDValue, 4> Chains(NumValues); 1836 for (unsigned i = 0; i != NumValues; ++i) { 1837 // An aggregate return value cannot wrap around the address space, so 1838 // offsets to its parts don't wrap either. 1839 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]); 1840 1841 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 1842 if (MemVTs[i] != ValueVTs[i]) 1843 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1844 Chains[i] = DAG.getStore(Chain, getCurSDLoc(), Val, 1845 // FIXME: better loc info would be nice. 1846 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1847 } 1848 1849 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1850 MVT::Other, Chains); 1851 } else if (I.getNumOperands() != 0) { 1852 SmallVector<EVT, 4> ValueVTs; 1853 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1854 unsigned NumValues = ValueVTs.size(); 1855 if (NumValues) { 1856 SDValue RetOp = getValue(I.getOperand(0)); 1857 1858 const Function *F = I.getParent()->getParent(); 1859 1860 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1861 I.getOperand(0)->getType(), F->getCallingConv(), 1862 /*IsVarArg*/ false); 1863 1864 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1865 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1866 Attribute::SExt)) 1867 ExtendKind = ISD::SIGN_EXTEND; 1868 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1869 Attribute::ZExt)) 1870 ExtendKind = ISD::ZERO_EXTEND; 1871 1872 LLVMContext &Context = F->getContext(); 1873 bool RetInReg = F->getAttributes().hasAttribute( 1874 AttributeList::ReturnIndex, Attribute::InReg); 1875 1876 for (unsigned j = 0; j != NumValues; ++j) { 1877 EVT VT = ValueVTs[j]; 1878 1879 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1880 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1881 1882 CallingConv::ID CC = F->getCallingConv(); 1883 1884 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1885 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1886 SmallVector<SDValue, 4> Parts(NumParts); 1887 getCopyToParts(DAG, getCurSDLoc(), 1888 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1889 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1890 1891 // 'inreg' on function refers to return value 1892 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1893 if (RetInReg) 1894 Flags.setInReg(); 1895 1896 if (I.getOperand(0)->getType()->isPointerTy()) { 1897 Flags.setPointer(); 1898 Flags.setPointerAddrSpace( 1899 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 1900 } 1901 1902 if (NeedsRegBlock) { 1903 Flags.setInConsecutiveRegs(); 1904 if (j == NumValues - 1) 1905 Flags.setInConsecutiveRegsLast(); 1906 } 1907 1908 // Propagate extension type if any 1909 if (ExtendKind == ISD::SIGN_EXTEND) 1910 Flags.setSExt(); 1911 else if (ExtendKind == ISD::ZERO_EXTEND) 1912 Flags.setZExt(); 1913 1914 for (unsigned i = 0; i < NumParts; ++i) { 1915 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1916 VT, /*isfixed=*/true, 0, 0)); 1917 OutVals.push_back(Parts[i]); 1918 } 1919 } 1920 } 1921 } 1922 1923 // Push in swifterror virtual register as the last element of Outs. This makes 1924 // sure swifterror virtual register will be returned in the swifterror 1925 // physical register. 1926 const Function *F = I.getParent()->getParent(); 1927 if (TLI.supportSwiftError() && 1928 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1929 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 1930 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1931 Flags.setSwiftError(); 1932 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1933 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1934 true /*isfixed*/, 1 /*origidx*/, 1935 0 /*partOffs*/)); 1936 // Create SDNode for the swifterror virtual register. 1937 OutVals.push_back( 1938 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 1939 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 1940 EVT(TLI.getPointerTy(DL)))); 1941 } 1942 1943 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1944 CallingConv::ID CallConv = 1945 DAG.getMachineFunction().getFunction().getCallingConv(); 1946 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1947 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1948 1949 // Verify that the target's LowerReturn behaved as expected. 1950 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1951 "LowerReturn didn't return a valid chain!"); 1952 1953 // Update the DAG with the new chain value resulting from return lowering. 1954 DAG.setRoot(Chain); 1955 } 1956 1957 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1958 /// created for it, emit nodes to copy the value into the virtual 1959 /// registers. 1960 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1961 // Skip empty types 1962 if (V->getType()->isEmptyTy()) 1963 return; 1964 1965 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 1966 if (VMI != FuncInfo.ValueMap.end()) { 1967 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1968 CopyValueToVirtualRegister(V, VMI->second); 1969 } 1970 } 1971 1972 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1973 /// the current basic block, add it to ValueMap now so that we'll get a 1974 /// CopyTo/FromReg. 1975 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1976 // No need to export constants. 1977 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1978 1979 // Already exported? 1980 if (FuncInfo.isExportedInst(V)) return; 1981 1982 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1983 CopyValueToVirtualRegister(V, Reg); 1984 } 1985 1986 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1987 const BasicBlock *FromBB) { 1988 // The operands of the setcc have to be in this block. We don't know 1989 // how to export them from some other block. 1990 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1991 // Can export from current BB. 1992 if (VI->getParent() == FromBB) 1993 return true; 1994 1995 // Is already exported, noop. 1996 return FuncInfo.isExportedInst(V); 1997 } 1998 1999 // If this is an argument, we can export it if the BB is the entry block or 2000 // if it is already exported. 2001 if (isa<Argument>(V)) { 2002 if (FromBB == &FromBB->getParent()->getEntryBlock()) 2003 return true; 2004 2005 // Otherwise, can only export this if it is already exported. 2006 return FuncInfo.isExportedInst(V); 2007 } 2008 2009 // Otherwise, constants can always be exported. 2010 return true; 2011 } 2012 2013 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2014 BranchProbability 2015 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2016 const MachineBasicBlock *Dst) const { 2017 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2018 const BasicBlock *SrcBB = Src->getBasicBlock(); 2019 const BasicBlock *DstBB = Dst->getBasicBlock(); 2020 if (!BPI) { 2021 // If BPI is not available, set the default probability as 1 / N, where N is 2022 // the number of successors. 2023 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2024 return BranchProbability(1, SuccSize); 2025 } 2026 return BPI->getEdgeProbability(SrcBB, DstBB); 2027 } 2028 2029 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2030 MachineBasicBlock *Dst, 2031 BranchProbability Prob) { 2032 if (!FuncInfo.BPI) 2033 Src->addSuccessorWithoutProb(Dst); 2034 else { 2035 if (Prob.isUnknown()) 2036 Prob = getEdgeProbability(Src, Dst); 2037 Src->addSuccessor(Dst, Prob); 2038 } 2039 } 2040 2041 static bool InBlock(const Value *V, const BasicBlock *BB) { 2042 if (const Instruction *I = dyn_cast<Instruction>(V)) 2043 return I->getParent() == BB; 2044 return true; 2045 } 2046 2047 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2048 /// This function emits a branch and is used at the leaves of an OR or an 2049 /// AND operator tree. 2050 void 2051 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2052 MachineBasicBlock *TBB, 2053 MachineBasicBlock *FBB, 2054 MachineBasicBlock *CurBB, 2055 MachineBasicBlock *SwitchBB, 2056 BranchProbability TProb, 2057 BranchProbability FProb, 2058 bool InvertCond) { 2059 const BasicBlock *BB = CurBB->getBasicBlock(); 2060 2061 // If the leaf of the tree is a comparison, merge the condition into 2062 // the caseblock. 2063 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2064 // The operands of the cmp have to be in this block. We don't know 2065 // how to export them from some other block. If this is the first block 2066 // of the sequence, no exporting is needed. 2067 if (CurBB == SwitchBB || 2068 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2069 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2070 ISD::CondCode Condition; 2071 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2072 ICmpInst::Predicate Pred = 2073 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2074 Condition = getICmpCondCode(Pred); 2075 } else { 2076 const FCmpInst *FC = cast<FCmpInst>(Cond); 2077 FCmpInst::Predicate Pred = 2078 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2079 Condition = getFCmpCondCode(Pred); 2080 if (TM.Options.NoNaNsFPMath) 2081 Condition = getFCmpCodeWithoutNaN(Condition); 2082 } 2083 2084 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2085 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2086 SL->SwitchCases.push_back(CB); 2087 return; 2088 } 2089 } 2090 2091 // Create a CaseBlock record representing this branch. 2092 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2093 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2094 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2095 SL->SwitchCases.push_back(CB); 2096 } 2097 2098 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2099 MachineBasicBlock *TBB, 2100 MachineBasicBlock *FBB, 2101 MachineBasicBlock *CurBB, 2102 MachineBasicBlock *SwitchBB, 2103 Instruction::BinaryOps Opc, 2104 BranchProbability TProb, 2105 BranchProbability FProb, 2106 bool InvertCond) { 2107 // Skip over not part of the tree and remember to invert op and operands at 2108 // next level. 2109 Value *NotCond; 2110 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2111 InBlock(NotCond, CurBB->getBasicBlock())) { 2112 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2113 !InvertCond); 2114 return; 2115 } 2116 2117 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2118 // Compute the effective opcode for Cond, taking into account whether it needs 2119 // to be inverted, e.g. 2120 // and (not (or A, B)), C 2121 // gets lowered as 2122 // and (and (not A, not B), C) 2123 unsigned BOpc = 0; 2124 if (BOp) { 2125 BOpc = BOp->getOpcode(); 2126 if (InvertCond) { 2127 if (BOpc == Instruction::And) 2128 BOpc = Instruction::Or; 2129 else if (BOpc == Instruction::Or) 2130 BOpc = Instruction::And; 2131 } 2132 } 2133 2134 // If this node is not part of the or/and tree, emit it as a branch. 2135 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 2136 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 2137 BOp->getParent() != CurBB->getBasicBlock() || 2138 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 2139 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 2140 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2141 TProb, FProb, InvertCond); 2142 return; 2143 } 2144 2145 // Create TmpBB after CurBB. 2146 MachineFunction::iterator BBI(CurBB); 2147 MachineFunction &MF = DAG.getMachineFunction(); 2148 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2149 CurBB->getParent()->insert(++BBI, TmpBB); 2150 2151 if (Opc == Instruction::Or) { 2152 // Codegen X | Y as: 2153 // BB1: 2154 // jmp_if_X TBB 2155 // jmp TmpBB 2156 // TmpBB: 2157 // jmp_if_Y TBB 2158 // jmp FBB 2159 // 2160 2161 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2162 // The requirement is that 2163 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2164 // = TrueProb for original BB. 2165 // Assuming the original probabilities are A and B, one choice is to set 2166 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2167 // A/(1+B) and 2B/(1+B). This choice assumes that 2168 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2169 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2170 // TmpBB, but the math is more complicated. 2171 2172 auto NewTrueProb = TProb / 2; 2173 auto NewFalseProb = TProb / 2 + FProb; 2174 // Emit the LHS condition. 2175 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 2176 NewTrueProb, NewFalseProb, InvertCond); 2177 2178 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2179 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2180 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2181 // Emit the RHS condition into TmpBB. 2182 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2183 Probs[0], Probs[1], InvertCond); 2184 } else { 2185 assert(Opc == Instruction::And && "Unknown merge op!"); 2186 // Codegen X & Y as: 2187 // BB1: 2188 // jmp_if_X TmpBB 2189 // jmp FBB 2190 // TmpBB: 2191 // jmp_if_Y TBB 2192 // jmp FBB 2193 // 2194 // This requires creation of TmpBB after CurBB. 2195 2196 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2197 // The requirement is that 2198 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2199 // = FalseProb for original BB. 2200 // Assuming the original probabilities are A and B, one choice is to set 2201 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2202 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2203 // TrueProb for BB1 * FalseProb for TmpBB. 2204 2205 auto NewTrueProb = TProb + FProb / 2; 2206 auto NewFalseProb = FProb / 2; 2207 // Emit the LHS condition. 2208 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 2209 NewTrueProb, NewFalseProb, InvertCond); 2210 2211 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2212 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2213 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2214 // Emit the RHS condition into TmpBB. 2215 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2216 Probs[0], Probs[1], InvertCond); 2217 } 2218 } 2219 2220 /// If the set of cases should be emitted as a series of branches, return true. 2221 /// If we should emit this as a bunch of and/or'd together conditions, return 2222 /// false. 2223 bool 2224 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2225 if (Cases.size() != 2) return true; 2226 2227 // If this is two comparisons of the same values or'd or and'd together, they 2228 // will get folded into a single comparison, so don't emit two blocks. 2229 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2230 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2231 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2232 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2233 return false; 2234 } 2235 2236 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2237 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2238 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2239 Cases[0].CC == Cases[1].CC && 2240 isa<Constant>(Cases[0].CmpRHS) && 2241 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2242 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2243 return false; 2244 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2245 return false; 2246 } 2247 2248 return true; 2249 } 2250 2251 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2252 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2253 2254 // Update machine-CFG edges. 2255 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2256 2257 if (I.isUnconditional()) { 2258 // Update machine-CFG edges. 2259 BrMBB->addSuccessor(Succ0MBB); 2260 2261 // If this is not a fall-through branch or optimizations are switched off, 2262 // emit the branch. 2263 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2264 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2265 MVT::Other, getControlRoot(), 2266 DAG.getBasicBlock(Succ0MBB))); 2267 2268 return; 2269 } 2270 2271 // If this condition is one of the special cases we handle, do special stuff 2272 // now. 2273 const Value *CondVal = I.getCondition(); 2274 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2275 2276 // If this is a series of conditions that are or'd or and'd together, emit 2277 // this as a sequence of branches instead of setcc's with and/or operations. 2278 // As long as jumps are not expensive, this should improve performance. 2279 // For example, instead of something like: 2280 // cmp A, B 2281 // C = seteq 2282 // cmp D, E 2283 // F = setle 2284 // or C, F 2285 // jnz foo 2286 // Emit: 2287 // cmp A, B 2288 // je foo 2289 // cmp D, E 2290 // jle foo 2291 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 2292 Instruction::BinaryOps Opcode = BOp->getOpcode(); 2293 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 2294 !I.hasMetadata(LLVMContext::MD_unpredictable) && 2295 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 2296 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 2297 Opcode, 2298 getEdgeProbability(BrMBB, Succ0MBB), 2299 getEdgeProbability(BrMBB, Succ1MBB), 2300 /*InvertCond=*/false); 2301 // If the compares in later blocks need to use values not currently 2302 // exported from this block, export them now. This block should always 2303 // be the first entry. 2304 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2305 2306 // Allow some cases to be rejected. 2307 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2308 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2309 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2310 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2311 } 2312 2313 // Emit the branch for this block. 2314 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2315 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2316 return; 2317 } 2318 2319 // Okay, we decided not to do this, remove any inserted MBB's and clear 2320 // SwitchCases. 2321 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2322 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2323 2324 SL->SwitchCases.clear(); 2325 } 2326 } 2327 2328 // Create a CaseBlock record representing this branch. 2329 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2330 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2331 2332 // Use visitSwitchCase to actually insert the fast branch sequence for this 2333 // cond branch. 2334 visitSwitchCase(CB, BrMBB); 2335 } 2336 2337 /// visitSwitchCase - Emits the necessary code to represent a single node in 2338 /// the binary search tree resulting from lowering a switch instruction. 2339 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2340 MachineBasicBlock *SwitchBB) { 2341 SDValue Cond; 2342 SDValue CondLHS = getValue(CB.CmpLHS); 2343 SDLoc dl = CB.DL; 2344 2345 if (CB.CC == ISD::SETTRUE) { 2346 // Branch or fall through to TrueBB. 2347 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2348 SwitchBB->normalizeSuccProbs(); 2349 if (CB.TrueBB != NextBlock(SwitchBB)) { 2350 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2351 DAG.getBasicBlock(CB.TrueBB))); 2352 } 2353 return; 2354 } 2355 2356 auto &TLI = DAG.getTargetLoweringInfo(); 2357 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2358 2359 // Build the setcc now. 2360 if (!CB.CmpMHS) { 2361 // Fold "(X == true)" to X and "(X == false)" to !X to 2362 // handle common cases produced by branch lowering. 2363 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2364 CB.CC == ISD::SETEQ) 2365 Cond = CondLHS; 2366 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2367 CB.CC == ISD::SETEQ) { 2368 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2369 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2370 } else { 2371 SDValue CondRHS = getValue(CB.CmpRHS); 2372 2373 // If a pointer's DAG type is larger than its memory type then the DAG 2374 // values are zero-extended. This breaks signed comparisons so truncate 2375 // back to the underlying type before doing the compare. 2376 if (CondLHS.getValueType() != MemVT) { 2377 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2378 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2379 } 2380 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2381 } 2382 } else { 2383 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2384 2385 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2386 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2387 2388 SDValue CmpOp = getValue(CB.CmpMHS); 2389 EVT VT = CmpOp.getValueType(); 2390 2391 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2392 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2393 ISD::SETLE); 2394 } else { 2395 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2396 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2397 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2398 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2399 } 2400 } 2401 2402 // Update successor info 2403 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2404 // TrueBB and FalseBB are always different unless the incoming IR is 2405 // degenerate. This only happens when running llc on weird IR. 2406 if (CB.TrueBB != CB.FalseBB) 2407 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2408 SwitchBB->normalizeSuccProbs(); 2409 2410 // If the lhs block is the next block, invert the condition so that we can 2411 // fall through to the lhs instead of the rhs block. 2412 if (CB.TrueBB == NextBlock(SwitchBB)) { 2413 std::swap(CB.TrueBB, CB.FalseBB); 2414 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2415 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2416 } 2417 2418 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2419 MVT::Other, getControlRoot(), Cond, 2420 DAG.getBasicBlock(CB.TrueBB)); 2421 2422 // Insert the false branch. Do this even if it's a fall through branch, 2423 // this makes it easier to do DAG optimizations which require inverting 2424 // the branch condition. 2425 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2426 DAG.getBasicBlock(CB.FalseBB)); 2427 2428 DAG.setRoot(BrCond); 2429 } 2430 2431 /// visitJumpTable - Emit JumpTable node in the current MBB 2432 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2433 // Emit the code for the jump table 2434 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2435 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2436 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2437 JT.Reg, PTy); 2438 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2439 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2440 MVT::Other, Index.getValue(1), 2441 Table, Index); 2442 DAG.setRoot(BrJumpTable); 2443 } 2444 2445 /// visitJumpTableHeader - This function emits necessary code to produce index 2446 /// in the JumpTable from switch case. 2447 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2448 JumpTableHeader &JTH, 2449 MachineBasicBlock *SwitchBB) { 2450 SDLoc dl = getCurSDLoc(); 2451 2452 // Subtract the lowest switch case value from the value being switched on. 2453 SDValue SwitchOp = getValue(JTH.SValue); 2454 EVT VT = SwitchOp.getValueType(); 2455 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2456 DAG.getConstant(JTH.First, dl, VT)); 2457 2458 // The SDNode we just created, which holds the value being switched on minus 2459 // the smallest case value, needs to be copied to a virtual register so it 2460 // can be used as an index into the jump table in a subsequent basic block. 2461 // This value may be smaller or larger than the target's pointer type, and 2462 // therefore require extension or truncating. 2463 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2464 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2465 2466 unsigned JumpTableReg = 2467 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2468 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2469 JumpTableReg, SwitchOp); 2470 JT.Reg = JumpTableReg; 2471 2472 if (!JTH.OmitRangeCheck) { 2473 // Emit the range check for the jump table, and branch to the default block 2474 // for the switch statement if the value being switched on exceeds the 2475 // largest case in the switch. 2476 SDValue CMP = DAG.getSetCC( 2477 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2478 Sub.getValueType()), 2479 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2480 2481 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2482 MVT::Other, CopyTo, CMP, 2483 DAG.getBasicBlock(JT.Default)); 2484 2485 // Avoid emitting unnecessary branches to the next block. 2486 if (JT.MBB != NextBlock(SwitchBB)) 2487 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2488 DAG.getBasicBlock(JT.MBB)); 2489 2490 DAG.setRoot(BrCond); 2491 } else { 2492 // Avoid emitting unnecessary branches to the next block. 2493 if (JT.MBB != NextBlock(SwitchBB)) 2494 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2495 DAG.getBasicBlock(JT.MBB))); 2496 else 2497 DAG.setRoot(CopyTo); 2498 } 2499 } 2500 2501 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2502 /// variable if there exists one. 2503 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2504 SDValue &Chain) { 2505 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2506 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2507 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2508 MachineFunction &MF = DAG.getMachineFunction(); 2509 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2510 MachineSDNode *Node = 2511 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2512 if (Global) { 2513 MachinePointerInfo MPInfo(Global); 2514 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2515 MachineMemOperand::MODereferenceable; 2516 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2517 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); 2518 DAG.setNodeMemRefs(Node, {MemRef}); 2519 } 2520 if (PtrTy != PtrMemTy) 2521 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2522 return SDValue(Node, 0); 2523 } 2524 2525 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2526 /// tail spliced into a stack protector check success bb. 2527 /// 2528 /// For a high level explanation of how this fits into the stack protector 2529 /// generation see the comment on the declaration of class 2530 /// StackProtectorDescriptor. 2531 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2532 MachineBasicBlock *ParentBB) { 2533 2534 // First create the loads to the guard/stack slot for the comparison. 2535 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2536 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2537 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2538 2539 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2540 int FI = MFI.getStackProtectorIndex(); 2541 2542 SDValue Guard; 2543 SDLoc dl = getCurSDLoc(); 2544 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2545 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2546 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2547 2548 // Generate code to load the content of the guard slot. 2549 SDValue GuardVal = DAG.getLoad( 2550 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2551 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2552 MachineMemOperand::MOVolatile); 2553 2554 if (TLI.useStackGuardXorFP()) 2555 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2556 2557 // Retrieve guard check function, nullptr if instrumentation is inlined. 2558 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2559 // The target provides a guard check function to validate the guard value. 2560 // Generate a call to that function with the content of the guard slot as 2561 // argument. 2562 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2563 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2564 2565 TargetLowering::ArgListTy Args; 2566 TargetLowering::ArgListEntry Entry; 2567 Entry.Node = GuardVal; 2568 Entry.Ty = FnTy->getParamType(0); 2569 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) 2570 Entry.IsInReg = true; 2571 Args.push_back(Entry); 2572 2573 TargetLowering::CallLoweringInfo CLI(DAG); 2574 CLI.setDebugLoc(getCurSDLoc()) 2575 .setChain(DAG.getEntryNode()) 2576 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2577 getValue(GuardCheckFn), std::move(Args)); 2578 2579 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2580 DAG.setRoot(Result.second); 2581 return; 2582 } 2583 2584 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2585 // Otherwise, emit a volatile load to retrieve the stack guard value. 2586 SDValue Chain = DAG.getEntryNode(); 2587 if (TLI.useLoadStackGuardNode()) { 2588 Guard = getLoadStackGuard(DAG, dl, Chain); 2589 } else { 2590 const Value *IRGuard = TLI.getSDagStackGuard(M); 2591 SDValue GuardPtr = getValue(IRGuard); 2592 2593 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2594 MachinePointerInfo(IRGuard, 0), Align, 2595 MachineMemOperand::MOVolatile); 2596 } 2597 2598 // Perform the comparison via a getsetcc. 2599 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2600 *DAG.getContext(), 2601 Guard.getValueType()), 2602 Guard, GuardVal, ISD::SETNE); 2603 2604 // If the guard/stackslot do not equal, branch to failure MBB. 2605 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2606 MVT::Other, GuardVal.getOperand(0), 2607 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2608 // Otherwise branch to success MBB. 2609 SDValue Br = DAG.getNode(ISD::BR, dl, 2610 MVT::Other, BrCond, 2611 DAG.getBasicBlock(SPD.getSuccessMBB())); 2612 2613 DAG.setRoot(Br); 2614 } 2615 2616 /// Codegen the failure basic block for a stack protector check. 2617 /// 2618 /// A failure stack protector machine basic block consists simply of a call to 2619 /// __stack_chk_fail(). 2620 /// 2621 /// For a high level explanation of how this fits into the stack protector 2622 /// generation see the comment on the declaration of class 2623 /// StackProtectorDescriptor. 2624 void 2625 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2626 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2627 TargetLowering::MakeLibCallOptions CallOptions; 2628 CallOptions.setDiscardResult(true); 2629 SDValue Chain = 2630 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2631 None, CallOptions, getCurSDLoc()).second; 2632 // On PS4, the "return address" must still be within the calling function, 2633 // even if it's at the very end, so emit an explicit TRAP here. 2634 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2635 if (TM.getTargetTriple().isPS4CPU()) 2636 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2637 2638 DAG.setRoot(Chain); 2639 } 2640 2641 /// visitBitTestHeader - This function emits necessary code to produce value 2642 /// suitable for "bit tests" 2643 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2644 MachineBasicBlock *SwitchBB) { 2645 SDLoc dl = getCurSDLoc(); 2646 2647 // Subtract the minimum value. 2648 SDValue SwitchOp = getValue(B.SValue); 2649 EVT VT = SwitchOp.getValueType(); 2650 SDValue RangeSub = 2651 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2652 2653 // Determine the type of the test operands. 2654 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2655 bool UsePtrType = false; 2656 if (!TLI.isTypeLegal(VT)) { 2657 UsePtrType = true; 2658 } else { 2659 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2660 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2661 // Switch table case range are encoded into series of masks. 2662 // Just use pointer type, it's guaranteed to fit. 2663 UsePtrType = true; 2664 break; 2665 } 2666 } 2667 SDValue Sub = RangeSub; 2668 if (UsePtrType) { 2669 VT = TLI.getPointerTy(DAG.getDataLayout()); 2670 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2671 } 2672 2673 B.RegVT = VT.getSimpleVT(); 2674 B.Reg = FuncInfo.CreateReg(B.RegVT); 2675 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2676 2677 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2678 2679 if (!B.OmitRangeCheck) 2680 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2681 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2682 SwitchBB->normalizeSuccProbs(); 2683 2684 SDValue Root = CopyTo; 2685 if (!B.OmitRangeCheck) { 2686 // Conditional branch to the default block. 2687 SDValue RangeCmp = DAG.getSetCC(dl, 2688 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2689 RangeSub.getValueType()), 2690 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2691 ISD::SETUGT); 2692 2693 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2694 DAG.getBasicBlock(B.Default)); 2695 } 2696 2697 // Avoid emitting unnecessary branches to the next block. 2698 if (MBB != NextBlock(SwitchBB)) 2699 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2700 2701 DAG.setRoot(Root); 2702 } 2703 2704 /// visitBitTestCase - this function produces one "bit test" 2705 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2706 MachineBasicBlock* NextMBB, 2707 BranchProbability BranchProbToNext, 2708 unsigned Reg, 2709 BitTestCase &B, 2710 MachineBasicBlock *SwitchBB) { 2711 SDLoc dl = getCurSDLoc(); 2712 MVT VT = BB.RegVT; 2713 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2714 SDValue Cmp; 2715 unsigned PopCount = countPopulation(B.Mask); 2716 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2717 if (PopCount == 1) { 2718 // Testing for a single bit; just compare the shift count with what it 2719 // would need to be to shift a 1 bit in that position. 2720 Cmp = DAG.getSetCC( 2721 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2722 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2723 ISD::SETEQ); 2724 } else if (PopCount == BB.Range) { 2725 // There is only one zero bit in the range, test for it directly. 2726 Cmp = DAG.getSetCC( 2727 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2728 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2729 ISD::SETNE); 2730 } else { 2731 // Make desired shift 2732 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2733 DAG.getConstant(1, dl, VT), ShiftOp); 2734 2735 // Emit bit tests and jumps 2736 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2737 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2738 Cmp = DAG.getSetCC( 2739 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2740 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2741 } 2742 2743 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2744 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2745 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2746 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2747 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2748 // one as they are relative probabilities (and thus work more like weights), 2749 // and hence we need to normalize them to let the sum of them become one. 2750 SwitchBB->normalizeSuccProbs(); 2751 2752 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2753 MVT::Other, getControlRoot(), 2754 Cmp, DAG.getBasicBlock(B.TargetBB)); 2755 2756 // Avoid emitting unnecessary branches to the next block. 2757 if (NextMBB != NextBlock(SwitchBB)) 2758 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2759 DAG.getBasicBlock(NextMBB)); 2760 2761 DAG.setRoot(BrAnd); 2762 } 2763 2764 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2765 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2766 2767 // Retrieve successors. Look through artificial IR level blocks like 2768 // catchswitch for successors. 2769 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2770 const BasicBlock *EHPadBB = I.getSuccessor(1); 2771 2772 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2773 // have to do anything here to lower funclet bundles. 2774 assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt, 2775 LLVMContext::OB_funclet, 2776 LLVMContext::OB_cfguardtarget}) && 2777 "Cannot lower invokes with arbitrary operand bundles yet!"); 2778 2779 const Value *Callee(I.getCalledValue()); 2780 const Function *Fn = dyn_cast<Function>(Callee); 2781 if (isa<InlineAsm>(Callee)) 2782 visitInlineAsm(I); 2783 else if (Fn && Fn->isIntrinsic()) { 2784 switch (Fn->getIntrinsicID()) { 2785 default: 2786 llvm_unreachable("Cannot invoke this intrinsic"); 2787 case Intrinsic::donothing: 2788 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2789 break; 2790 case Intrinsic::experimental_patchpoint_void: 2791 case Intrinsic::experimental_patchpoint_i64: 2792 visitPatchpoint(I, EHPadBB); 2793 break; 2794 case Intrinsic::experimental_gc_statepoint: 2795 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2796 break; 2797 case Intrinsic::wasm_rethrow_in_catch: { 2798 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2799 // special because it can be invoked, so we manually lower it to a DAG 2800 // node here. 2801 SmallVector<SDValue, 8> Ops; 2802 Ops.push_back(getRoot()); // inchain 2803 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2804 Ops.push_back( 2805 DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(), 2806 TLI.getPointerTy(DAG.getDataLayout()))); 2807 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2808 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2809 break; 2810 } 2811 } 2812 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2813 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2814 // Eventually we will support lowering the @llvm.experimental.deoptimize 2815 // intrinsic, and right now there are no plans to support other intrinsics 2816 // with deopt state. 2817 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2818 } else { 2819 LowerCallTo(I, getValue(Callee), false, EHPadBB); 2820 } 2821 2822 // If the value of the invoke is used outside of its defining block, make it 2823 // available as a virtual register. 2824 // We already took care of the exported value for the statepoint instruction 2825 // during call to the LowerStatepoint. 2826 if (!isStatepoint(I)) { 2827 CopyToExportRegsIfNeeded(&I); 2828 } 2829 2830 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2831 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2832 BranchProbability EHPadBBProb = 2833 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2834 : BranchProbability::getZero(); 2835 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2836 2837 // Update successor info. 2838 addSuccessorWithProb(InvokeMBB, Return); 2839 for (auto &UnwindDest : UnwindDests) { 2840 UnwindDest.first->setIsEHPad(); 2841 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2842 } 2843 InvokeMBB->normalizeSuccProbs(); 2844 2845 // Drop into normal successor. 2846 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2847 DAG.getBasicBlock(Return))); 2848 } 2849 2850 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2851 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2852 2853 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2854 // have to do anything here to lower funclet bundles. 2855 assert(!I.hasOperandBundlesOtherThan( 2856 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2857 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2858 2859 assert(isa<InlineAsm>(I.getCalledValue()) && 2860 "Only know how to handle inlineasm callbr"); 2861 visitInlineAsm(I); 2862 CopyToExportRegsIfNeeded(&I); 2863 2864 // Retrieve successors. 2865 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2866 Return->setInlineAsmBrDefaultTarget(); 2867 2868 // Update successor info. 2869 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 2870 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2871 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 2872 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 2873 CallBrMBB->addInlineAsmBrIndirectTarget(Target); 2874 } 2875 CallBrMBB->normalizeSuccProbs(); 2876 2877 // Drop into default successor. 2878 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2879 MVT::Other, getControlRoot(), 2880 DAG.getBasicBlock(Return))); 2881 } 2882 2883 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2884 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2885 } 2886 2887 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2888 assert(FuncInfo.MBB->isEHPad() && 2889 "Call to landingpad not in landing pad!"); 2890 2891 // If there aren't registers to copy the values into (e.g., during SjLj 2892 // exceptions), then don't bother to create these DAG nodes. 2893 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2894 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2895 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2896 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2897 return; 2898 2899 // If landingpad's return type is token type, we don't create DAG nodes 2900 // for its exception pointer and selector value. The extraction of exception 2901 // pointer or selector value from token type landingpads is not currently 2902 // supported. 2903 if (LP.getType()->isTokenTy()) 2904 return; 2905 2906 SmallVector<EVT, 2> ValueVTs; 2907 SDLoc dl = getCurSDLoc(); 2908 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2909 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2910 2911 // Get the two live-in registers as SDValues. The physregs have already been 2912 // copied into virtual registers. 2913 SDValue Ops[2]; 2914 if (FuncInfo.ExceptionPointerVirtReg) { 2915 Ops[0] = DAG.getZExtOrTrunc( 2916 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2917 FuncInfo.ExceptionPointerVirtReg, 2918 TLI.getPointerTy(DAG.getDataLayout())), 2919 dl, ValueVTs[0]); 2920 } else { 2921 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2922 } 2923 Ops[1] = DAG.getZExtOrTrunc( 2924 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2925 FuncInfo.ExceptionSelectorVirtReg, 2926 TLI.getPointerTy(DAG.getDataLayout())), 2927 dl, ValueVTs[1]); 2928 2929 // Merge into one. 2930 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2931 DAG.getVTList(ValueVTs), Ops); 2932 setValue(&LP, Res); 2933 } 2934 2935 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2936 MachineBasicBlock *Last) { 2937 // Update JTCases. 2938 for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i) 2939 if (SL->JTCases[i].first.HeaderBB == First) 2940 SL->JTCases[i].first.HeaderBB = Last; 2941 2942 // Update BitTestCases. 2943 for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i) 2944 if (SL->BitTestCases[i].Parent == First) 2945 SL->BitTestCases[i].Parent = Last; 2946 2947 // SelectionDAGISel::FinishBasicBlock will add PHI operands for the 2948 // successors of the fallthrough block. Here, we add PHI operands for the 2949 // successors of the INLINEASM_BR block itself. 2950 if (First->getFirstTerminator()->getOpcode() == TargetOpcode::INLINEASM_BR) 2951 for (std::pair<MachineInstr *, unsigned> &pair : FuncInfo.PHINodesToUpdate) 2952 if (First->isSuccessor(pair.first->getParent())) 2953 MachineInstrBuilder(*First->getParent(), pair.first) 2954 .addReg(pair.second) 2955 .addMBB(First); 2956 } 2957 2958 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2959 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2960 2961 // Update machine-CFG edges with unique successors. 2962 SmallSet<BasicBlock*, 32> Done; 2963 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2964 BasicBlock *BB = I.getSuccessor(i); 2965 bool Inserted = Done.insert(BB).second; 2966 if (!Inserted) 2967 continue; 2968 2969 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2970 addSuccessorWithProb(IndirectBrMBB, Succ); 2971 } 2972 IndirectBrMBB->normalizeSuccProbs(); 2973 2974 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2975 MVT::Other, getControlRoot(), 2976 getValue(I.getAddress()))); 2977 } 2978 2979 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2980 if (!DAG.getTarget().Options.TrapUnreachable) 2981 return; 2982 2983 // We may be able to ignore unreachable behind a noreturn call. 2984 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 2985 const BasicBlock &BB = *I.getParent(); 2986 if (&I != &BB.front()) { 2987 BasicBlock::const_iterator PredI = 2988 std::prev(BasicBlock::const_iterator(&I)); 2989 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 2990 if (Call->doesNotReturn()) 2991 return; 2992 } 2993 } 2994 } 2995 2996 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2997 } 2998 2999 void SelectionDAGBuilder::visitFSub(const User &I) { 3000 // -0.0 - X --> fneg 3001 Type *Ty = I.getType(); 3002 if (isa<Constant>(I.getOperand(0)) && 3003 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 3004 SDValue Op2 = getValue(I.getOperand(1)); 3005 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 3006 Op2.getValueType(), Op2)); 3007 return; 3008 } 3009 3010 visitBinary(I, ISD::FSUB); 3011 } 3012 3013 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3014 SDNodeFlags Flags; 3015 3016 SDValue Op = getValue(I.getOperand(0)); 3017 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3018 Op, Flags); 3019 setValue(&I, UnNodeValue); 3020 } 3021 3022 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3023 SDNodeFlags Flags; 3024 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3025 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3026 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3027 } 3028 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) { 3029 Flags.setExact(ExactOp->isExact()); 3030 } 3031 3032 SDValue Op1 = getValue(I.getOperand(0)); 3033 SDValue Op2 = getValue(I.getOperand(1)); 3034 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3035 Op1, Op2, Flags); 3036 setValue(&I, BinNodeValue); 3037 } 3038 3039 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3040 SDValue Op1 = getValue(I.getOperand(0)); 3041 SDValue Op2 = getValue(I.getOperand(1)); 3042 3043 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3044 Op1.getValueType(), DAG.getDataLayout()); 3045 3046 // Coerce the shift amount to the right type if we can. 3047 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3048 unsigned ShiftSize = ShiftTy.getSizeInBits(); 3049 unsigned Op2Size = Op2.getValueSizeInBits(); 3050 SDLoc DL = getCurSDLoc(); 3051 3052 // If the operand is smaller than the shift count type, promote it. 3053 if (ShiftSize > Op2Size) 3054 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 3055 3056 // If the operand is larger than the shift count type but the shift 3057 // count type has enough bits to represent any shift value, truncate 3058 // it now. This is a common case and it exposes the truncate to 3059 // optimization early. 3060 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 3061 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 3062 // Otherwise we'll need to temporarily settle for some other convenient 3063 // type. Type legalization will make adjustments once the shiftee is split. 3064 else 3065 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 3066 } 3067 3068 bool nuw = false; 3069 bool nsw = false; 3070 bool exact = false; 3071 3072 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3073 3074 if (const OverflowingBinaryOperator *OFBinOp = 3075 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3076 nuw = OFBinOp->hasNoUnsignedWrap(); 3077 nsw = OFBinOp->hasNoSignedWrap(); 3078 } 3079 if (const PossiblyExactOperator *ExactOp = 3080 dyn_cast<const PossiblyExactOperator>(&I)) 3081 exact = ExactOp->isExact(); 3082 } 3083 SDNodeFlags Flags; 3084 Flags.setExact(exact); 3085 Flags.setNoSignedWrap(nsw); 3086 Flags.setNoUnsignedWrap(nuw); 3087 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3088 Flags); 3089 setValue(&I, Res); 3090 } 3091 3092 void SelectionDAGBuilder::visitSDiv(const User &I) { 3093 SDValue Op1 = getValue(I.getOperand(0)); 3094 SDValue Op2 = getValue(I.getOperand(1)); 3095 3096 SDNodeFlags Flags; 3097 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3098 cast<PossiblyExactOperator>(&I)->isExact()); 3099 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3100 Op2, Flags)); 3101 } 3102 3103 void SelectionDAGBuilder::visitICmp(const User &I) { 3104 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3105 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3106 predicate = IC->getPredicate(); 3107 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3108 predicate = ICmpInst::Predicate(IC->getPredicate()); 3109 SDValue Op1 = getValue(I.getOperand(0)); 3110 SDValue Op2 = getValue(I.getOperand(1)); 3111 ISD::CondCode Opcode = getICmpCondCode(predicate); 3112 3113 auto &TLI = DAG.getTargetLoweringInfo(); 3114 EVT MemVT = 3115 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3116 3117 // If a pointer's DAG type is larger than its memory type then the DAG values 3118 // are zero-extended. This breaks signed comparisons so truncate back to the 3119 // underlying type before doing the compare. 3120 if (Op1.getValueType() != MemVT) { 3121 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3122 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3123 } 3124 3125 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3126 I.getType()); 3127 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3128 } 3129 3130 void SelectionDAGBuilder::visitFCmp(const User &I) { 3131 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3132 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3133 predicate = FC->getPredicate(); 3134 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3135 predicate = FCmpInst::Predicate(FC->getPredicate()); 3136 SDValue Op1 = getValue(I.getOperand(0)); 3137 SDValue Op2 = getValue(I.getOperand(1)); 3138 3139 ISD::CondCode Condition = getFCmpCondCode(predicate); 3140 auto *FPMO = dyn_cast<FPMathOperator>(&I); 3141 if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath) 3142 Condition = getFCmpCodeWithoutNaN(Condition); 3143 3144 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3145 I.getType()); 3146 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3147 } 3148 3149 // Check if the condition of the select has one use or two users that are both 3150 // selects with the same condition. 3151 static bool hasOnlySelectUsers(const Value *Cond) { 3152 return llvm::all_of(Cond->users(), [](const Value *V) { 3153 return isa<SelectInst>(V); 3154 }); 3155 } 3156 3157 void SelectionDAGBuilder::visitSelect(const User &I) { 3158 SmallVector<EVT, 4> ValueVTs; 3159 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3160 ValueVTs); 3161 unsigned NumValues = ValueVTs.size(); 3162 if (NumValues == 0) return; 3163 3164 SmallVector<SDValue, 4> Values(NumValues); 3165 SDValue Cond = getValue(I.getOperand(0)); 3166 SDValue LHSVal = getValue(I.getOperand(1)); 3167 SDValue RHSVal = getValue(I.getOperand(2)); 3168 SmallVector<SDValue, 1> BaseOps(1, Cond); 3169 ISD::NodeType OpCode = 3170 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3171 3172 bool IsUnaryAbs = false; 3173 3174 // Min/max matching is only viable if all output VTs are the same. 3175 if (is_splat(ValueVTs)) { 3176 EVT VT = ValueVTs[0]; 3177 LLVMContext &Ctx = *DAG.getContext(); 3178 auto &TLI = DAG.getTargetLoweringInfo(); 3179 3180 // We care about the legality of the operation after it has been type 3181 // legalized. 3182 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3183 VT = TLI.getTypeToTransformTo(Ctx, VT); 3184 3185 // If the vselect is legal, assume we want to leave this as a vector setcc + 3186 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3187 // min/max is legal on the scalar type. 3188 bool UseScalarMinMax = VT.isVector() && 3189 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3190 3191 Value *LHS, *RHS; 3192 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3193 ISD::NodeType Opc = ISD::DELETED_NODE; 3194 switch (SPR.Flavor) { 3195 case SPF_UMAX: Opc = ISD::UMAX; break; 3196 case SPF_UMIN: Opc = ISD::UMIN; break; 3197 case SPF_SMAX: Opc = ISD::SMAX; break; 3198 case SPF_SMIN: Opc = ISD::SMIN; break; 3199 case SPF_FMINNUM: 3200 switch (SPR.NaNBehavior) { 3201 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3202 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3203 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3204 case SPNB_RETURNS_ANY: { 3205 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3206 Opc = ISD::FMINNUM; 3207 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3208 Opc = ISD::FMINIMUM; 3209 else if (UseScalarMinMax) 3210 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3211 ISD::FMINNUM : ISD::FMINIMUM; 3212 break; 3213 } 3214 } 3215 break; 3216 case SPF_FMAXNUM: 3217 switch (SPR.NaNBehavior) { 3218 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3219 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3220 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3221 case SPNB_RETURNS_ANY: 3222 3223 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3224 Opc = ISD::FMAXNUM; 3225 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3226 Opc = ISD::FMAXIMUM; 3227 else if (UseScalarMinMax) 3228 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3229 ISD::FMAXNUM : ISD::FMAXIMUM; 3230 break; 3231 } 3232 break; 3233 case SPF_ABS: 3234 IsUnaryAbs = true; 3235 Opc = ISD::ABS; 3236 break; 3237 case SPF_NABS: 3238 // TODO: we need to produce sub(0, abs(X)). 3239 default: break; 3240 } 3241 3242 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3243 (TLI.isOperationLegalOrCustom(Opc, VT) || 3244 (UseScalarMinMax && 3245 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3246 // If the underlying comparison instruction is used by any other 3247 // instruction, the consumed instructions won't be destroyed, so it is 3248 // not profitable to convert to a min/max. 3249 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3250 OpCode = Opc; 3251 LHSVal = getValue(LHS); 3252 RHSVal = getValue(RHS); 3253 BaseOps.clear(); 3254 } 3255 3256 if (IsUnaryAbs) { 3257 OpCode = Opc; 3258 LHSVal = getValue(LHS); 3259 BaseOps.clear(); 3260 } 3261 } 3262 3263 if (IsUnaryAbs) { 3264 for (unsigned i = 0; i != NumValues; ++i) { 3265 Values[i] = 3266 DAG.getNode(OpCode, getCurSDLoc(), 3267 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), 3268 SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3269 } 3270 } else { 3271 for (unsigned i = 0; i != NumValues; ++i) { 3272 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3273 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3274 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3275 Values[i] = DAG.getNode( 3276 OpCode, getCurSDLoc(), 3277 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops); 3278 } 3279 } 3280 3281 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3282 DAG.getVTList(ValueVTs), Values)); 3283 } 3284 3285 void SelectionDAGBuilder::visitTrunc(const User &I) { 3286 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3287 SDValue N = getValue(I.getOperand(0)); 3288 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3289 I.getType()); 3290 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3291 } 3292 3293 void SelectionDAGBuilder::visitZExt(const User &I) { 3294 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3295 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3296 SDValue N = getValue(I.getOperand(0)); 3297 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3298 I.getType()); 3299 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3300 } 3301 3302 void SelectionDAGBuilder::visitSExt(const User &I) { 3303 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3304 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3305 SDValue N = getValue(I.getOperand(0)); 3306 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3307 I.getType()); 3308 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3309 } 3310 3311 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3312 // FPTrunc is never a no-op cast, no need to check 3313 SDValue N = getValue(I.getOperand(0)); 3314 SDLoc dl = getCurSDLoc(); 3315 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3316 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3317 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3318 DAG.getTargetConstant( 3319 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3320 } 3321 3322 void SelectionDAGBuilder::visitFPExt(const User &I) { 3323 // FPExt is never a no-op cast, no need to check 3324 SDValue N = getValue(I.getOperand(0)); 3325 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3326 I.getType()); 3327 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3328 } 3329 3330 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3331 // FPToUI is never a no-op cast, no need to check 3332 SDValue N = getValue(I.getOperand(0)); 3333 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3334 I.getType()); 3335 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3336 } 3337 3338 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3339 // FPToSI is never a no-op cast, no need to check 3340 SDValue N = getValue(I.getOperand(0)); 3341 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3342 I.getType()); 3343 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3344 } 3345 3346 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3347 // UIToFP is never a no-op cast, no need to check 3348 SDValue N = getValue(I.getOperand(0)); 3349 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3350 I.getType()); 3351 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3352 } 3353 3354 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3355 // SIToFP is never a no-op cast, no need to check 3356 SDValue N = getValue(I.getOperand(0)); 3357 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3358 I.getType()); 3359 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3360 } 3361 3362 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3363 // What to do depends on the size of the integer and the size of the pointer. 3364 // We can either truncate, zero extend, or no-op, accordingly. 3365 SDValue N = getValue(I.getOperand(0)); 3366 auto &TLI = DAG.getTargetLoweringInfo(); 3367 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3368 I.getType()); 3369 EVT PtrMemVT = 3370 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3371 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3372 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3373 setValue(&I, N); 3374 } 3375 3376 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3377 // What to do depends on the size of the integer and the size of the pointer. 3378 // We can either truncate, zero extend, or no-op, accordingly. 3379 SDValue N = getValue(I.getOperand(0)); 3380 auto &TLI = DAG.getTargetLoweringInfo(); 3381 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3382 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3383 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3384 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3385 setValue(&I, N); 3386 } 3387 3388 void SelectionDAGBuilder::visitBitCast(const User &I) { 3389 SDValue N = getValue(I.getOperand(0)); 3390 SDLoc dl = getCurSDLoc(); 3391 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3392 I.getType()); 3393 3394 // BitCast assures us that source and destination are the same size so this is 3395 // either a BITCAST or a no-op. 3396 if (DestVT != N.getValueType()) 3397 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3398 DestVT, N)); // convert types. 3399 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3400 // might fold any kind of constant expression to an integer constant and that 3401 // is not what we are looking for. Only recognize a bitcast of a genuine 3402 // constant integer as an opaque constant. 3403 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3404 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3405 /*isOpaque*/true)); 3406 else 3407 setValue(&I, N); // noop cast. 3408 } 3409 3410 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3411 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3412 const Value *SV = I.getOperand(0); 3413 SDValue N = getValue(SV); 3414 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3415 3416 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3417 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3418 3419 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3420 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3421 3422 setValue(&I, N); 3423 } 3424 3425 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3426 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3427 SDValue InVec = getValue(I.getOperand(0)); 3428 SDValue InVal = getValue(I.getOperand(1)); 3429 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3430 TLI.getVectorIdxTy(DAG.getDataLayout())); 3431 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3432 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3433 InVec, InVal, InIdx)); 3434 } 3435 3436 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3437 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3438 SDValue InVec = getValue(I.getOperand(0)); 3439 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3440 TLI.getVectorIdxTy(DAG.getDataLayout())); 3441 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3442 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3443 InVec, InIdx)); 3444 } 3445 3446 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3447 SDValue Src1 = getValue(I.getOperand(0)); 3448 SDValue Src2 = getValue(I.getOperand(1)); 3449 ArrayRef<int> Mask; 3450 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3451 Mask = SVI->getShuffleMask(); 3452 else 3453 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3454 SDLoc DL = getCurSDLoc(); 3455 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3456 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3457 EVT SrcVT = Src1.getValueType(); 3458 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3459 3460 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3461 VT.isScalableVector()) { 3462 // Canonical splat form of first element of first input vector. 3463 SDValue FirstElt = 3464 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3465 DAG.getVectorIdxConstant(0, DL)); 3466 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3467 return; 3468 } 3469 3470 // For now, we only handle splats for scalable vectors. 3471 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3472 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3473 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3474 3475 unsigned MaskNumElts = Mask.size(); 3476 3477 if (SrcNumElts == MaskNumElts) { 3478 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3479 return; 3480 } 3481 3482 // Normalize the shuffle vector since mask and vector length don't match. 3483 if (SrcNumElts < MaskNumElts) { 3484 // Mask is longer than the source vectors. We can use concatenate vector to 3485 // make the mask and vectors lengths match. 3486 3487 if (MaskNumElts % SrcNumElts == 0) { 3488 // Mask length is a multiple of the source vector length. 3489 // Check if the shuffle is some kind of concatenation of the input 3490 // vectors. 3491 unsigned NumConcat = MaskNumElts / SrcNumElts; 3492 bool IsConcat = true; 3493 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3494 for (unsigned i = 0; i != MaskNumElts; ++i) { 3495 int Idx = Mask[i]; 3496 if (Idx < 0) 3497 continue; 3498 // Ensure the indices in each SrcVT sized piece are sequential and that 3499 // the same source is used for the whole piece. 3500 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3501 (ConcatSrcs[i / SrcNumElts] >= 0 && 3502 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3503 IsConcat = false; 3504 break; 3505 } 3506 // Remember which source this index came from. 3507 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3508 } 3509 3510 // The shuffle is concatenating multiple vectors together. Just emit 3511 // a CONCAT_VECTORS operation. 3512 if (IsConcat) { 3513 SmallVector<SDValue, 8> ConcatOps; 3514 for (auto Src : ConcatSrcs) { 3515 if (Src < 0) 3516 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3517 else if (Src == 0) 3518 ConcatOps.push_back(Src1); 3519 else 3520 ConcatOps.push_back(Src2); 3521 } 3522 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3523 return; 3524 } 3525 } 3526 3527 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3528 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3529 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3530 PaddedMaskNumElts); 3531 3532 // Pad both vectors with undefs to make them the same length as the mask. 3533 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3534 3535 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3536 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3537 MOps1[0] = Src1; 3538 MOps2[0] = Src2; 3539 3540 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3541 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3542 3543 // Readjust mask for new input vector length. 3544 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3545 for (unsigned i = 0; i != MaskNumElts; ++i) { 3546 int Idx = Mask[i]; 3547 if (Idx >= (int)SrcNumElts) 3548 Idx -= SrcNumElts - PaddedMaskNumElts; 3549 MappedOps[i] = Idx; 3550 } 3551 3552 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3553 3554 // If the concatenated vector was padded, extract a subvector with the 3555 // correct number of elements. 3556 if (MaskNumElts != PaddedMaskNumElts) 3557 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3558 DAG.getVectorIdxConstant(0, DL)); 3559 3560 setValue(&I, Result); 3561 return; 3562 } 3563 3564 if (SrcNumElts > MaskNumElts) { 3565 // Analyze the access pattern of the vector to see if we can extract 3566 // two subvectors and do the shuffle. 3567 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3568 bool CanExtract = true; 3569 for (int Idx : Mask) { 3570 unsigned Input = 0; 3571 if (Idx < 0) 3572 continue; 3573 3574 if (Idx >= (int)SrcNumElts) { 3575 Input = 1; 3576 Idx -= SrcNumElts; 3577 } 3578 3579 // If all the indices come from the same MaskNumElts sized portion of 3580 // the sources we can use extract. Also make sure the extract wouldn't 3581 // extract past the end of the source. 3582 int NewStartIdx = alignDown(Idx, MaskNumElts); 3583 if (NewStartIdx + MaskNumElts > SrcNumElts || 3584 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3585 CanExtract = false; 3586 // Make sure we always update StartIdx as we use it to track if all 3587 // elements are undef. 3588 StartIdx[Input] = NewStartIdx; 3589 } 3590 3591 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3592 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3593 return; 3594 } 3595 if (CanExtract) { 3596 // Extract appropriate subvector and generate a vector shuffle 3597 for (unsigned Input = 0; Input < 2; ++Input) { 3598 SDValue &Src = Input == 0 ? Src1 : Src2; 3599 if (StartIdx[Input] < 0) 3600 Src = DAG.getUNDEF(VT); 3601 else { 3602 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3603 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3604 } 3605 } 3606 3607 // Calculate new mask. 3608 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3609 for (int &Idx : MappedOps) { 3610 if (Idx >= (int)SrcNumElts) 3611 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3612 else if (Idx >= 0) 3613 Idx -= StartIdx[0]; 3614 } 3615 3616 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3617 return; 3618 } 3619 } 3620 3621 // We can't use either concat vectors or extract subvectors so fall back to 3622 // replacing the shuffle with extract and build vector. 3623 // to insert and build vector. 3624 EVT EltVT = VT.getVectorElementType(); 3625 SmallVector<SDValue,8> Ops; 3626 for (int Idx : Mask) { 3627 SDValue Res; 3628 3629 if (Idx < 0) { 3630 Res = DAG.getUNDEF(EltVT); 3631 } else { 3632 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3633 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3634 3635 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3636 DAG.getVectorIdxConstant(Idx, DL)); 3637 } 3638 3639 Ops.push_back(Res); 3640 } 3641 3642 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3643 } 3644 3645 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3646 ArrayRef<unsigned> Indices; 3647 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3648 Indices = IV->getIndices(); 3649 else 3650 Indices = cast<ConstantExpr>(&I)->getIndices(); 3651 3652 const Value *Op0 = I.getOperand(0); 3653 const Value *Op1 = I.getOperand(1); 3654 Type *AggTy = I.getType(); 3655 Type *ValTy = Op1->getType(); 3656 bool IntoUndef = isa<UndefValue>(Op0); 3657 bool FromUndef = isa<UndefValue>(Op1); 3658 3659 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3660 3661 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3662 SmallVector<EVT, 4> AggValueVTs; 3663 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3664 SmallVector<EVT, 4> ValValueVTs; 3665 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3666 3667 unsigned NumAggValues = AggValueVTs.size(); 3668 unsigned NumValValues = ValValueVTs.size(); 3669 SmallVector<SDValue, 4> Values(NumAggValues); 3670 3671 // Ignore an insertvalue that produces an empty object 3672 if (!NumAggValues) { 3673 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3674 return; 3675 } 3676 3677 SDValue Agg = getValue(Op0); 3678 unsigned i = 0; 3679 // Copy the beginning value(s) from the original aggregate. 3680 for (; i != LinearIndex; ++i) 3681 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3682 SDValue(Agg.getNode(), Agg.getResNo() + i); 3683 // Copy values from the inserted value(s). 3684 if (NumValValues) { 3685 SDValue Val = getValue(Op1); 3686 for (; i != LinearIndex + NumValValues; ++i) 3687 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3688 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3689 } 3690 // Copy remaining value(s) from the original aggregate. 3691 for (; i != NumAggValues; ++i) 3692 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3693 SDValue(Agg.getNode(), Agg.getResNo() + i); 3694 3695 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3696 DAG.getVTList(AggValueVTs), Values)); 3697 } 3698 3699 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3700 ArrayRef<unsigned> Indices; 3701 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3702 Indices = EV->getIndices(); 3703 else 3704 Indices = cast<ConstantExpr>(&I)->getIndices(); 3705 3706 const Value *Op0 = I.getOperand(0); 3707 Type *AggTy = Op0->getType(); 3708 Type *ValTy = I.getType(); 3709 bool OutOfUndef = isa<UndefValue>(Op0); 3710 3711 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3712 3713 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3714 SmallVector<EVT, 4> ValValueVTs; 3715 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3716 3717 unsigned NumValValues = ValValueVTs.size(); 3718 3719 // Ignore a extractvalue that produces an empty object 3720 if (!NumValValues) { 3721 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3722 return; 3723 } 3724 3725 SmallVector<SDValue, 4> Values(NumValValues); 3726 3727 SDValue Agg = getValue(Op0); 3728 // Copy out the selected value(s). 3729 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3730 Values[i - LinearIndex] = 3731 OutOfUndef ? 3732 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3733 SDValue(Agg.getNode(), Agg.getResNo() + i); 3734 3735 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3736 DAG.getVTList(ValValueVTs), Values)); 3737 } 3738 3739 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3740 Value *Op0 = I.getOperand(0); 3741 // Note that the pointer operand may be a vector of pointers. Take the scalar 3742 // element which holds a pointer. 3743 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3744 SDValue N = getValue(Op0); 3745 SDLoc dl = getCurSDLoc(); 3746 auto &TLI = DAG.getTargetLoweringInfo(); 3747 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 3748 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 3749 3750 // Normalize Vector GEP - all scalar operands should be converted to the 3751 // splat vector. 3752 bool IsVectorGEP = I.getType()->isVectorTy(); 3753 ElementCount VectorElementCount = 3754 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 3755 : ElementCount(0, false); 3756 3757 if (IsVectorGEP && !N.getValueType().isVector()) { 3758 LLVMContext &Context = *DAG.getContext(); 3759 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 3760 if (VectorElementCount.Scalable) 3761 N = DAG.getSplatVector(VT, dl, N); 3762 else 3763 N = DAG.getSplatBuildVector(VT, dl, N); 3764 } 3765 3766 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3767 GTI != E; ++GTI) { 3768 const Value *Idx = GTI.getOperand(); 3769 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3770 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3771 if (Field) { 3772 // N = N + Offset 3773 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3774 3775 // In an inbounds GEP with an offset that is nonnegative even when 3776 // interpreted as signed, assume there is no unsigned overflow. 3777 SDNodeFlags Flags; 3778 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3779 Flags.setNoUnsignedWrap(true); 3780 3781 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3782 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3783 } 3784 } else { 3785 // IdxSize is the width of the arithmetic according to IR semantics. 3786 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 3787 // (and fix up the result later). 3788 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3789 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3790 TypeSize ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 3791 // We intentionally mask away the high bits here; ElementSize may not 3792 // fit in IdxTy. 3793 APInt ElementMul(IdxSize, ElementSize.getKnownMinSize()); 3794 bool ElementScalable = ElementSize.isScalable(); 3795 3796 // If this is a scalar constant or a splat vector of constants, 3797 // handle it quickly. 3798 const auto *C = dyn_cast<Constant>(Idx); 3799 if (C && isa<VectorType>(C->getType())) 3800 C = C->getSplatValue(); 3801 3802 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 3803 if (CI && CI->isZero()) 3804 continue; 3805 if (CI && !ElementScalable) { 3806 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 3807 LLVMContext &Context = *DAG.getContext(); 3808 SDValue OffsVal; 3809 if (IsVectorGEP) 3810 OffsVal = DAG.getConstant( 3811 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 3812 else 3813 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 3814 3815 // In an inbounds GEP with an offset that is nonnegative even when 3816 // interpreted as signed, assume there is no unsigned overflow. 3817 SDNodeFlags Flags; 3818 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3819 Flags.setNoUnsignedWrap(true); 3820 3821 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3822 3823 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3824 continue; 3825 } 3826 3827 // N = N + Idx * ElementMul; 3828 SDValue IdxN = getValue(Idx); 3829 3830 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 3831 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 3832 VectorElementCount); 3833 if (VectorElementCount.Scalable) 3834 IdxN = DAG.getSplatVector(VT, dl, IdxN); 3835 else 3836 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3837 } 3838 3839 // If the index is smaller or larger than intptr_t, truncate or extend 3840 // it. 3841 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3842 3843 if (ElementScalable) { 3844 EVT VScaleTy = N.getValueType().getScalarType(); 3845 SDValue VScale = DAG.getNode( 3846 ISD::VSCALE, dl, VScaleTy, 3847 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 3848 if (IsVectorGEP) 3849 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 3850 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 3851 } else { 3852 // If this is a multiply by a power of two, turn it into a shl 3853 // immediately. This is a very common case. 3854 if (ElementMul != 1) { 3855 if (ElementMul.isPowerOf2()) { 3856 unsigned Amt = ElementMul.logBase2(); 3857 IdxN = DAG.getNode(ISD::SHL, dl, 3858 N.getValueType(), IdxN, 3859 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3860 } else { 3861 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 3862 IdxN.getValueType()); 3863 IdxN = DAG.getNode(ISD::MUL, dl, 3864 N.getValueType(), IdxN, Scale); 3865 } 3866 } 3867 } 3868 3869 N = DAG.getNode(ISD::ADD, dl, 3870 N.getValueType(), N, IdxN); 3871 } 3872 } 3873 3874 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 3875 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 3876 3877 setValue(&I, N); 3878 } 3879 3880 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3881 // If this is a fixed sized alloca in the entry block of the function, 3882 // allocate it statically on the stack. 3883 if (FuncInfo.StaticAllocaMap.count(&I)) 3884 return; // getValue will auto-populate this. 3885 3886 SDLoc dl = getCurSDLoc(); 3887 Type *Ty = I.getAllocatedType(); 3888 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3889 auto &DL = DAG.getDataLayout(); 3890 uint64_t TySize = DL.getTypeAllocSize(Ty); 3891 MaybeAlign Alignment = max(DL.getPrefTypeAlign(Ty), I.getAlign()); 3892 3893 SDValue AllocSize = getValue(I.getArraySize()); 3894 3895 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3896 if (AllocSize.getValueType() != IntPtr) 3897 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3898 3899 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3900 AllocSize, 3901 DAG.getConstant(TySize, dl, IntPtr)); 3902 3903 // Handle alignment. If the requested alignment is less than or equal to 3904 // the stack alignment, ignore it. If the size is greater than or equal to 3905 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3906 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 3907 if (Alignment <= StackAlign) 3908 Alignment = None; 3909 3910 const uint64_t StackAlignMask = StackAlign.value() - 1U; 3911 // Round the size of the allocation up to the stack alignment size 3912 // by add SA-1 to the size. This doesn't overflow because we're computing 3913 // an address inside an alloca. 3914 SDNodeFlags Flags; 3915 Flags.setNoUnsignedWrap(true); 3916 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 3917 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 3918 3919 // Mask out the low bits for alignment purposes. 3920 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 3921 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 3922 3923 SDValue Ops[] = { 3924 getRoot(), AllocSize, 3925 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 3926 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3927 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3928 setValue(&I, DSA); 3929 DAG.setRoot(DSA.getValue(1)); 3930 3931 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3932 } 3933 3934 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3935 if (I.isAtomic()) 3936 return visitAtomicLoad(I); 3937 3938 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3939 const Value *SV = I.getOperand(0); 3940 if (TLI.supportSwiftError()) { 3941 // Swifterror values can come from either a function parameter with 3942 // swifterror attribute or an alloca with swifterror attribute. 3943 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3944 if (Arg->hasSwiftErrorAttr()) 3945 return visitLoadFromSwiftError(I); 3946 } 3947 3948 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3949 if (Alloca->isSwiftError()) 3950 return visitLoadFromSwiftError(I); 3951 } 3952 } 3953 3954 SDValue Ptr = getValue(SV); 3955 3956 Type *Ty = I.getType(); 3957 Align Alignment = DL->getValueOrABITypeAlignment(I.getAlign(), Ty); 3958 3959 AAMDNodes AAInfo; 3960 I.getAAMetadata(AAInfo); 3961 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3962 3963 SmallVector<EVT, 4> ValueVTs, MemVTs; 3964 SmallVector<uint64_t, 4> Offsets; 3965 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 3966 unsigned NumValues = ValueVTs.size(); 3967 if (NumValues == 0) 3968 return; 3969 3970 bool isVolatile = I.isVolatile(); 3971 3972 SDValue Root; 3973 bool ConstantMemory = false; 3974 if (isVolatile) 3975 // Serialize volatile loads with other side effects. 3976 Root = getRoot(); 3977 else if (NumValues > MaxParallelChains) 3978 Root = getMemoryRoot(); 3979 else if (AA && 3980 AA->pointsToConstantMemory(MemoryLocation( 3981 SV, 3982 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 3983 AAInfo))) { 3984 // Do not serialize (non-volatile) loads of constant memory with anything. 3985 Root = DAG.getEntryNode(); 3986 ConstantMemory = true; 3987 } else { 3988 // Do not serialize non-volatile loads against each other. 3989 Root = DAG.getRoot(); 3990 } 3991 3992 SDLoc dl = getCurSDLoc(); 3993 3994 if (isVolatile) 3995 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3996 3997 // An aggregate load cannot wrap around the address space, so offsets to its 3998 // parts don't wrap either. 3999 SDNodeFlags Flags; 4000 Flags.setNoUnsignedWrap(true); 4001 4002 SmallVector<SDValue, 4> Values(NumValues); 4003 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4004 EVT PtrVT = Ptr.getValueType(); 4005 4006 MachineMemOperand::Flags MMOFlags 4007 = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4008 4009 unsigned ChainI = 0; 4010 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4011 // Serializing loads here may result in excessive register pressure, and 4012 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4013 // could recover a bit by hoisting nodes upward in the chain by recognizing 4014 // they are side-effect free or do not alias. The optimizer should really 4015 // avoid this case by converting large object/array copies to llvm.memcpy 4016 // (MaxParallelChains should always remain as failsafe). 4017 if (ChainI == MaxParallelChains) { 4018 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4019 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4020 makeArrayRef(Chains.data(), ChainI)); 4021 Root = Chain; 4022 ChainI = 0; 4023 } 4024 SDValue A = DAG.getNode(ISD::ADD, dl, 4025 PtrVT, Ptr, 4026 DAG.getConstant(Offsets[i], dl, PtrVT), 4027 Flags); 4028 4029 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4030 MachinePointerInfo(SV, Offsets[i]), Alignment, 4031 MMOFlags, AAInfo, Ranges); 4032 Chains[ChainI] = L.getValue(1); 4033 4034 if (MemVTs[i] != ValueVTs[i]) 4035 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4036 4037 Values[i] = L; 4038 } 4039 4040 if (!ConstantMemory) { 4041 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4042 makeArrayRef(Chains.data(), ChainI)); 4043 if (isVolatile) 4044 DAG.setRoot(Chain); 4045 else 4046 PendingLoads.push_back(Chain); 4047 } 4048 4049 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4050 DAG.getVTList(ValueVTs), Values)); 4051 } 4052 4053 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4054 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4055 "call visitStoreToSwiftError when backend supports swifterror"); 4056 4057 SmallVector<EVT, 4> ValueVTs; 4058 SmallVector<uint64_t, 4> Offsets; 4059 const Value *SrcV = I.getOperand(0); 4060 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4061 SrcV->getType(), ValueVTs, &Offsets); 4062 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4063 "expect a single EVT for swifterror"); 4064 4065 SDValue Src = getValue(SrcV); 4066 // Create a virtual register, then update the virtual register. 4067 Register VReg = 4068 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4069 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4070 // Chain can be getRoot or getControlRoot. 4071 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4072 SDValue(Src.getNode(), Src.getResNo())); 4073 DAG.setRoot(CopyNode); 4074 } 4075 4076 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4077 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4078 "call visitLoadFromSwiftError when backend supports swifterror"); 4079 4080 assert(!I.isVolatile() && 4081 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4082 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4083 "Support volatile, non temporal, invariant for load_from_swift_error"); 4084 4085 const Value *SV = I.getOperand(0); 4086 Type *Ty = I.getType(); 4087 AAMDNodes AAInfo; 4088 I.getAAMetadata(AAInfo); 4089 assert( 4090 (!AA || 4091 !AA->pointsToConstantMemory(MemoryLocation( 4092 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4093 AAInfo))) && 4094 "load_from_swift_error should not be constant memory"); 4095 4096 SmallVector<EVT, 4> ValueVTs; 4097 SmallVector<uint64_t, 4> Offsets; 4098 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4099 ValueVTs, &Offsets); 4100 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4101 "expect a single EVT for swifterror"); 4102 4103 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4104 SDValue L = DAG.getCopyFromReg( 4105 getRoot(), getCurSDLoc(), 4106 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4107 4108 setValue(&I, L); 4109 } 4110 4111 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4112 if (I.isAtomic()) 4113 return visitAtomicStore(I); 4114 4115 const Value *SrcV = I.getOperand(0); 4116 const Value *PtrV = I.getOperand(1); 4117 4118 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4119 if (TLI.supportSwiftError()) { 4120 // Swifterror values can come from either a function parameter with 4121 // swifterror attribute or an alloca with swifterror attribute. 4122 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4123 if (Arg->hasSwiftErrorAttr()) 4124 return visitStoreToSwiftError(I); 4125 } 4126 4127 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4128 if (Alloca->isSwiftError()) 4129 return visitStoreToSwiftError(I); 4130 } 4131 } 4132 4133 SmallVector<EVT, 4> ValueVTs, MemVTs; 4134 SmallVector<uint64_t, 4> Offsets; 4135 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4136 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4137 unsigned NumValues = ValueVTs.size(); 4138 if (NumValues == 0) 4139 return; 4140 4141 // Get the lowered operands. Note that we do this after 4142 // checking if NumResults is zero, because with zero results 4143 // the operands won't have values in the map. 4144 SDValue Src = getValue(SrcV); 4145 SDValue Ptr = getValue(PtrV); 4146 4147 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4148 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4149 SDLoc dl = getCurSDLoc(); 4150 Align Alignment = 4151 DL->getValueOrABITypeAlignment(I.getAlign(), SrcV->getType()); 4152 AAMDNodes AAInfo; 4153 I.getAAMetadata(AAInfo); 4154 4155 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4156 4157 // An aggregate load cannot wrap around the address space, so offsets to its 4158 // parts don't wrap either. 4159 SDNodeFlags Flags; 4160 Flags.setNoUnsignedWrap(true); 4161 4162 unsigned ChainI = 0; 4163 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4164 // See visitLoad comments. 4165 if (ChainI == MaxParallelChains) { 4166 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4167 makeArrayRef(Chains.data(), ChainI)); 4168 Root = Chain; 4169 ChainI = 0; 4170 } 4171 SDValue Add = DAG.getMemBasePlusOffset(Ptr, Offsets[i], dl, Flags); 4172 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4173 if (MemVTs[i] != ValueVTs[i]) 4174 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4175 SDValue St = 4176 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4177 Alignment, MMOFlags, AAInfo); 4178 Chains[ChainI] = St; 4179 } 4180 4181 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4182 makeArrayRef(Chains.data(), ChainI)); 4183 DAG.setRoot(StoreNode); 4184 } 4185 4186 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4187 bool IsCompressing) { 4188 SDLoc sdl = getCurSDLoc(); 4189 4190 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4191 MaybeAlign &Alignment) { 4192 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4193 Src0 = I.getArgOperand(0); 4194 Ptr = I.getArgOperand(1); 4195 Alignment = 4196 MaybeAlign(cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()); 4197 Mask = I.getArgOperand(3); 4198 }; 4199 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4200 MaybeAlign &Alignment) { 4201 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4202 Src0 = I.getArgOperand(0); 4203 Ptr = I.getArgOperand(1); 4204 Mask = I.getArgOperand(2); 4205 Alignment = None; 4206 }; 4207 4208 Value *PtrOperand, *MaskOperand, *Src0Operand; 4209 MaybeAlign Alignment; 4210 if (IsCompressing) 4211 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4212 else 4213 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4214 4215 SDValue Ptr = getValue(PtrOperand); 4216 SDValue Src0 = getValue(Src0Operand); 4217 SDValue Mask = getValue(MaskOperand); 4218 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4219 4220 EVT VT = Src0.getValueType(); 4221 if (!Alignment) 4222 Alignment = DAG.getEVTAlign(VT); 4223 4224 AAMDNodes AAInfo; 4225 I.getAAMetadata(AAInfo); 4226 4227 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4228 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4229 // TODO: Make MachineMemOperands aware of scalable 4230 // vectors. 4231 VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo); 4232 SDValue StoreNode = 4233 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4234 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4235 DAG.setRoot(StoreNode); 4236 setValue(&I, StoreNode); 4237 } 4238 4239 // Get a uniform base for the Gather/Scatter intrinsic. 4240 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4241 // We try to represent it as a base pointer + vector of indices. 4242 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4243 // The first operand of the GEP may be a single pointer or a vector of pointers 4244 // Example: 4245 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4246 // or 4247 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4248 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4249 // 4250 // When the first GEP operand is a single pointer - it is the uniform base we 4251 // are looking for. If first operand of the GEP is a splat vector - we 4252 // extract the splat value and use it as a uniform base. 4253 // In all other cases the function returns 'false'. 4254 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4255 ISD::MemIndexType &IndexType, SDValue &Scale, 4256 SelectionDAGBuilder *SDB, const BasicBlock *CurBB) { 4257 SelectionDAG& DAG = SDB->DAG; 4258 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4259 const DataLayout &DL = DAG.getDataLayout(); 4260 4261 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 4262 4263 // Handle splat constant pointer. 4264 if (auto *C = dyn_cast<Constant>(Ptr)) { 4265 C = C->getSplatValue(); 4266 if (!C) 4267 return false; 4268 4269 Base = SDB->getValue(C); 4270 4271 unsigned NumElts = cast<VectorType>(Ptr->getType())->getNumElements(); 4272 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4273 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4274 IndexType = ISD::SIGNED_SCALED; 4275 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4276 return true; 4277 } 4278 4279 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4280 if (!GEP || GEP->getParent() != CurBB) 4281 return false; 4282 4283 if (GEP->getNumOperands() != 2) 4284 return false; 4285 4286 const Value *BasePtr = GEP->getPointerOperand(); 4287 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4288 4289 // Make sure the base is scalar and the index is a vector. 4290 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4291 return false; 4292 4293 Base = SDB->getValue(BasePtr); 4294 Index = SDB->getValue(IndexVal); 4295 IndexType = ISD::SIGNED_SCALED; 4296 Scale = DAG.getTargetConstant( 4297 DL.getTypeAllocSize(GEP->getResultElementType()), 4298 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4299 return true; 4300 } 4301 4302 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4303 SDLoc sdl = getCurSDLoc(); 4304 4305 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4306 const Value *Ptr = I.getArgOperand(1); 4307 SDValue Src0 = getValue(I.getArgOperand(0)); 4308 SDValue Mask = getValue(I.getArgOperand(3)); 4309 EVT VT = Src0.getValueType(); 4310 MaybeAlign Alignment(cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()); 4311 if (!Alignment) 4312 Alignment = DAG.getEVTAlign(VT); 4313 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4314 4315 AAMDNodes AAInfo; 4316 I.getAAMetadata(AAInfo); 4317 4318 SDValue Base; 4319 SDValue Index; 4320 ISD::MemIndexType IndexType; 4321 SDValue Scale; 4322 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4323 I.getParent()); 4324 4325 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4326 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4327 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4328 // TODO: Make MachineMemOperands aware of scalable 4329 // vectors. 4330 MemoryLocation::UnknownSize, *Alignment, AAInfo); 4331 if (!UniformBase) { 4332 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4333 Index = getValue(Ptr); 4334 IndexType = ISD::SIGNED_SCALED; 4335 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4336 } 4337 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4338 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4339 Ops, MMO, IndexType); 4340 DAG.setRoot(Scatter); 4341 setValue(&I, Scatter); 4342 } 4343 4344 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4345 SDLoc sdl = getCurSDLoc(); 4346 4347 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4348 MaybeAlign &Alignment) { 4349 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4350 Ptr = I.getArgOperand(0); 4351 Alignment = 4352 MaybeAlign(cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 4353 Mask = I.getArgOperand(2); 4354 Src0 = I.getArgOperand(3); 4355 }; 4356 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4357 MaybeAlign &Alignment) { 4358 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4359 Ptr = I.getArgOperand(0); 4360 Alignment = None; 4361 Mask = I.getArgOperand(1); 4362 Src0 = I.getArgOperand(2); 4363 }; 4364 4365 Value *PtrOperand, *MaskOperand, *Src0Operand; 4366 MaybeAlign Alignment; 4367 if (IsExpanding) 4368 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4369 else 4370 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4371 4372 SDValue Ptr = getValue(PtrOperand); 4373 SDValue Src0 = getValue(Src0Operand); 4374 SDValue Mask = getValue(MaskOperand); 4375 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4376 4377 EVT VT = Src0.getValueType(); 4378 if (!Alignment) 4379 Alignment = DAG.getEVTAlign(VT); 4380 4381 AAMDNodes AAInfo; 4382 I.getAAMetadata(AAInfo); 4383 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4384 4385 // Do not serialize masked loads of constant memory with anything. 4386 MemoryLocation ML; 4387 if (VT.isScalableVector()) 4388 ML = MemoryLocation(PtrOperand); 4389 else 4390 ML = MemoryLocation(PtrOperand, LocationSize::precise( 4391 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4392 AAInfo); 4393 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4394 4395 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4396 4397 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4398 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4399 // TODO: Make MachineMemOperands aware of scalable 4400 // vectors. 4401 VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo, Ranges); 4402 4403 SDValue Load = 4404 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4405 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4406 if (AddToChain) 4407 PendingLoads.push_back(Load.getValue(1)); 4408 setValue(&I, Load); 4409 } 4410 4411 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4412 SDLoc sdl = getCurSDLoc(); 4413 4414 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4415 const Value *Ptr = I.getArgOperand(0); 4416 SDValue Src0 = getValue(I.getArgOperand(3)); 4417 SDValue Mask = getValue(I.getArgOperand(2)); 4418 4419 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4420 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4421 MaybeAlign Alignment(cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 4422 if (!Alignment) 4423 Alignment = DAG.getEVTAlign(VT); 4424 4425 AAMDNodes AAInfo; 4426 I.getAAMetadata(AAInfo); 4427 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4428 4429 SDValue Root = DAG.getRoot(); 4430 SDValue Base; 4431 SDValue Index; 4432 ISD::MemIndexType IndexType; 4433 SDValue Scale; 4434 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4435 I.getParent()); 4436 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4437 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4438 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4439 // TODO: Make MachineMemOperands aware of scalable 4440 // vectors. 4441 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 4442 4443 if (!UniformBase) { 4444 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4445 Index = getValue(Ptr); 4446 IndexType = ISD::SIGNED_SCALED; 4447 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4448 } 4449 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4450 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4451 Ops, MMO, IndexType); 4452 4453 PendingLoads.push_back(Gather.getValue(1)); 4454 setValue(&I, Gather); 4455 } 4456 4457 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4458 SDLoc dl = getCurSDLoc(); 4459 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4460 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4461 SyncScope::ID SSID = I.getSyncScopeID(); 4462 4463 SDValue InChain = getRoot(); 4464 4465 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4466 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4467 4468 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4469 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4470 4471 MachineFunction &MF = DAG.getMachineFunction(); 4472 MachineMemOperand *MMO = MF.getMachineMemOperand( 4473 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4474 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, 4475 FailureOrdering); 4476 4477 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4478 dl, MemVT, VTs, InChain, 4479 getValue(I.getPointerOperand()), 4480 getValue(I.getCompareOperand()), 4481 getValue(I.getNewValOperand()), MMO); 4482 4483 SDValue OutChain = L.getValue(2); 4484 4485 setValue(&I, L); 4486 DAG.setRoot(OutChain); 4487 } 4488 4489 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4490 SDLoc dl = getCurSDLoc(); 4491 ISD::NodeType NT; 4492 switch (I.getOperation()) { 4493 default: llvm_unreachable("Unknown atomicrmw operation"); 4494 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4495 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4496 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4497 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4498 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4499 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4500 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4501 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4502 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4503 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4504 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4505 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4506 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4507 } 4508 AtomicOrdering Ordering = I.getOrdering(); 4509 SyncScope::ID SSID = I.getSyncScopeID(); 4510 4511 SDValue InChain = getRoot(); 4512 4513 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4514 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4515 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4516 4517 MachineFunction &MF = DAG.getMachineFunction(); 4518 MachineMemOperand *MMO = MF.getMachineMemOperand( 4519 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4520 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); 4521 4522 SDValue L = 4523 DAG.getAtomic(NT, dl, MemVT, InChain, 4524 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4525 MMO); 4526 4527 SDValue OutChain = L.getValue(1); 4528 4529 setValue(&I, L); 4530 DAG.setRoot(OutChain); 4531 } 4532 4533 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4534 SDLoc dl = getCurSDLoc(); 4535 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4536 SDValue Ops[3]; 4537 Ops[0] = getRoot(); 4538 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4539 TLI.getFenceOperandTy(DAG.getDataLayout())); 4540 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4541 TLI.getFenceOperandTy(DAG.getDataLayout())); 4542 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4543 } 4544 4545 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4546 SDLoc dl = getCurSDLoc(); 4547 AtomicOrdering Order = I.getOrdering(); 4548 SyncScope::ID SSID = I.getSyncScopeID(); 4549 4550 SDValue InChain = getRoot(); 4551 4552 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4553 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4554 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4555 4556 if (!TLI.supportsUnalignedAtomics() && 4557 I.getAlignment() < MemVT.getSizeInBits() / 8) 4558 report_fatal_error("Cannot generate unaligned atomic load"); 4559 4560 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4561 4562 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4563 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4564 *I.getAlign(), AAMDNodes(), nullptr, SSID, Order); 4565 4566 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4567 4568 SDValue Ptr = getValue(I.getPointerOperand()); 4569 4570 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4571 // TODO: Once this is better exercised by tests, it should be merged with 4572 // the normal path for loads to prevent future divergence. 4573 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4574 if (MemVT != VT) 4575 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4576 4577 setValue(&I, L); 4578 SDValue OutChain = L.getValue(1); 4579 if (!I.isUnordered()) 4580 DAG.setRoot(OutChain); 4581 else 4582 PendingLoads.push_back(OutChain); 4583 return; 4584 } 4585 4586 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4587 Ptr, MMO); 4588 4589 SDValue OutChain = L.getValue(1); 4590 if (MemVT != VT) 4591 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4592 4593 setValue(&I, L); 4594 DAG.setRoot(OutChain); 4595 } 4596 4597 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4598 SDLoc dl = getCurSDLoc(); 4599 4600 AtomicOrdering Ordering = I.getOrdering(); 4601 SyncScope::ID SSID = I.getSyncScopeID(); 4602 4603 SDValue InChain = getRoot(); 4604 4605 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4606 EVT MemVT = 4607 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4608 4609 if (I.getAlignment() < MemVT.getSizeInBits() / 8) 4610 report_fatal_error("Cannot generate unaligned atomic store"); 4611 4612 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4613 4614 MachineFunction &MF = DAG.getMachineFunction(); 4615 MachineMemOperand *MMO = MF.getMachineMemOperand( 4616 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4617 *I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); 4618 4619 SDValue Val = getValue(I.getValueOperand()); 4620 if (Val.getValueType() != MemVT) 4621 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4622 SDValue Ptr = getValue(I.getPointerOperand()); 4623 4624 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4625 // TODO: Once this is better exercised by tests, it should be merged with 4626 // the normal path for stores to prevent future divergence. 4627 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4628 DAG.setRoot(S); 4629 return; 4630 } 4631 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4632 Ptr, Val, MMO); 4633 4634 4635 DAG.setRoot(OutChain); 4636 } 4637 4638 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4639 /// node. 4640 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4641 unsigned Intrinsic) { 4642 // Ignore the callsite's attributes. A specific call site may be marked with 4643 // readnone, but the lowering code will expect the chain based on the 4644 // definition. 4645 const Function *F = I.getCalledFunction(); 4646 bool HasChain = !F->doesNotAccessMemory(); 4647 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4648 4649 // Build the operand list. 4650 SmallVector<SDValue, 8> Ops; 4651 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4652 if (OnlyLoad) { 4653 // We don't need to serialize loads against other loads. 4654 Ops.push_back(DAG.getRoot()); 4655 } else { 4656 Ops.push_back(getRoot()); 4657 } 4658 } 4659 4660 // Info is set by getTgtMemInstrinsic 4661 TargetLowering::IntrinsicInfo Info; 4662 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4663 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4664 DAG.getMachineFunction(), 4665 Intrinsic); 4666 4667 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4668 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4669 Info.opc == ISD::INTRINSIC_W_CHAIN) 4670 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4671 TLI.getPointerTy(DAG.getDataLayout()))); 4672 4673 // Add all operands of the call to the operand list. 4674 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4675 const Value *Arg = I.getArgOperand(i); 4676 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4677 Ops.push_back(getValue(Arg)); 4678 continue; 4679 } 4680 4681 // Use TargetConstant instead of a regular constant for immarg. 4682 EVT VT = TLI.getValueType(*DL, Arg->getType(), true); 4683 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4684 assert(CI->getBitWidth() <= 64 && 4685 "large intrinsic immediates not handled"); 4686 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4687 } else { 4688 Ops.push_back( 4689 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4690 } 4691 } 4692 4693 SmallVector<EVT, 4> ValueVTs; 4694 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4695 4696 if (HasChain) 4697 ValueVTs.push_back(MVT::Other); 4698 4699 SDVTList VTs = DAG.getVTList(ValueVTs); 4700 4701 // Create the node. 4702 SDValue Result; 4703 if (IsTgtIntrinsic) { 4704 // This is target intrinsic that touches memory 4705 AAMDNodes AAInfo; 4706 I.getAAMetadata(AAInfo); 4707 Result = 4708 DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, 4709 MachinePointerInfo(Info.ptrVal, Info.offset), 4710 Info.align, Info.flags, Info.size, AAInfo); 4711 } else if (!HasChain) { 4712 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4713 } else if (!I.getType()->isVoidTy()) { 4714 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4715 } else { 4716 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4717 } 4718 4719 if (HasChain) { 4720 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4721 if (OnlyLoad) 4722 PendingLoads.push_back(Chain); 4723 else 4724 DAG.setRoot(Chain); 4725 } 4726 4727 if (!I.getType()->isVoidTy()) { 4728 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4729 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4730 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4731 } else 4732 Result = lowerRangeToAssertZExt(DAG, I, Result); 4733 4734 setValue(&I, Result); 4735 } 4736 } 4737 4738 /// GetSignificand - Get the significand and build it into a floating-point 4739 /// number with exponent of 1: 4740 /// 4741 /// Op = (Op & 0x007fffff) | 0x3f800000; 4742 /// 4743 /// where Op is the hexadecimal representation of floating point value. 4744 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4745 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4746 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4747 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4748 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4749 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4750 } 4751 4752 /// GetExponent - Get the exponent: 4753 /// 4754 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4755 /// 4756 /// where Op is the hexadecimal representation of floating point value. 4757 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4758 const TargetLowering &TLI, const SDLoc &dl) { 4759 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4760 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4761 SDValue t1 = DAG.getNode( 4762 ISD::SRL, dl, MVT::i32, t0, 4763 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4764 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4765 DAG.getConstant(127, dl, MVT::i32)); 4766 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4767 } 4768 4769 /// getF32Constant - Get 32-bit floating point constant. 4770 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4771 const SDLoc &dl) { 4772 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4773 MVT::f32); 4774 } 4775 4776 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4777 SelectionDAG &DAG) { 4778 // TODO: What fast-math-flags should be set on the floating-point nodes? 4779 4780 // IntegerPartOfX = ((int32_t)(t0); 4781 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4782 4783 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4784 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4785 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4786 4787 // IntegerPartOfX <<= 23; 4788 IntegerPartOfX = DAG.getNode( 4789 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4790 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4791 DAG.getDataLayout()))); 4792 4793 SDValue TwoToFractionalPartOfX; 4794 if (LimitFloatPrecision <= 6) { 4795 // For floating-point precision of 6: 4796 // 4797 // TwoToFractionalPartOfX = 4798 // 0.997535578f + 4799 // (0.735607626f + 0.252464424f * x) * x; 4800 // 4801 // error 0.0144103317, which is 6 bits 4802 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4803 getF32Constant(DAG, 0x3e814304, dl)); 4804 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4805 getF32Constant(DAG, 0x3f3c50c8, dl)); 4806 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4807 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4808 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4809 } else if (LimitFloatPrecision <= 12) { 4810 // For floating-point precision of 12: 4811 // 4812 // TwoToFractionalPartOfX = 4813 // 0.999892986f + 4814 // (0.696457318f + 4815 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4816 // 4817 // error 0.000107046256, which is 13 to 14 bits 4818 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4819 getF32Constant(DAG, 0x3da235e3, dl)); 4820 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4821 getF32Constant(DAG, 0x3e65b8f3, dl)); 4822 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4823 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4824 getF32Constant(DAG, 0x3f324b07, dl)); 4825 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4826 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4827 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4828 } else { // LimitFloatPrecision <= 18 4829 // For floating-point precision of 18: 4830 // 4831 // TwoToFractionalPartOfX = 4832 // 0.999999982f + 4833 // (0.693148872f + 4834 // (0.240227044f + 4835 // (0.554906021e-1f + 4836 // (0.961591928e-2f + 4837 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4838 // error 2.47208000*10^(-7), which is better than 18 bits 4839 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4840 getF32Constant(DAG, 0x3924b03e, dl)); 4841 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4842 getF32Constant(DAG, 0x3ab24b87, dl)); 4843 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4844 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4845 getF32Constant(DAG, 0x3c1d8c17, dl)); 4846 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4847 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4848 getF32Constant(DAG, 0x3d634a1d, dl)); 4849 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4850 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4851 getF32Constant(DAG, 0x3e75fe14, dl)); 4852 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4853 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4854 getF32Constant(DAG, 0x3f317234, dl)); 4855 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4856 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4857 getF32Constant(DAG, 0x3f800000, dl)); 4858 } 4859 4860 // Add the exponent into the result in integer domain. 4861 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4862 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4863 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4864 } 4865 4866 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4867 /// limited-precision mode. 4868 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4869 const TargetLowering &TLI) { 4870 if (Op.getValueType() == MVT::f32 && 4871 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4872 4873 // Put the exponent in the right bit position for later addition to the 4874 // final result: 4875 // 4876 // t0 = Op * log2(e) 4877 4878 // TODO: What fast-math-flags should be set here? 4879 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4880 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 4881 return getLimitedPrecisionExp2(t0, dl, DAG); 4882 } 4883 4884 // No special expansion. 4885 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4886 } 4887 4888 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4889 /// limited-precision mode. 4890 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4891 const TargetLowering &TLI) { 4892 // TODO: What fast-math-flags should be set on the floating-point nodes? 4893 4894 if (Op.getValueType() == MVT::f32 && 4895 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4896 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4897 4898 // Scale the exponent by log(2). 4899 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4900 SDValue LogOfExponent = 4901 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4902 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 4903 4904 // Get the significand and build it into a floating-point number with 4905 // exponent of 1. 4906 SDValue X = GetSignificand(DAG, Op1, dl); 4907 4908 SDValue LogOfMantissa; 4909 if (LimitFloatPrecision <= 6) { 4910 // For floating-point precision of 6: 4911 // 4912 // LogofMantissa = 4913 // -1.1609546f + 4914 // (1.4034025f - 0.23903021f * x) * x; 4915 // 4916 // error 0.0034276066, which is better than 8 bits 4917 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4918 getF32Constant(DAG, 0xbe74c456, dl)); 4919 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4920 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4921 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4922 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4923 getF32Constant(DAG, 0x3f949a29, dl)); 4924 } else if (LimitFloatPrecision <= 12) { 4925 // For floating-point precision of 12: 4926 // 4927 // LogOfMantissa = 4928 // -1.7417939f + 4929 // (2.8212026f + 4930 // (-1.4699568f + 4931 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4932 // 4933 // error 0.000061011436, which is 14 bits 4934 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4935 getF32Constant(DAG, 0xbd67b6d6, dl)); 4936 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4937 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4938 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4939 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4940 getF32Constant(DAG, 0x3fbc278b, dl)); 4941 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4942 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4943 getF32Constant(DAG, 0x40348e95, dl)); 4944 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4945 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4946 getF32Constant(DAG, 0x3fdef31a, dl)); 4947 } else { // LimitFloatPrecision <= 18 4948 // For floating-point precision of 18: 4949 // 4950 // LogOfMantissa = 4951 // -2.1072184f + 4952 // (4.2372794f + 4953 // (-3.7029485f + 4954 // (2.2781945f + 4955 // (-0.87823314f + 4956 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4957 // 4958 // error 0.0000023660568, which is better than 18 bits 4959 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4960 getF32Constant(DAG, 0xbc91e5ac, dl)); 4961 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4962 getF32Constant(DAG, 0x3e4350aa, dl)); 4963 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4964 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4965 getF32Constant(DAG, 0x3f60d3e3, dl)); 4966 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4967 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4968 getF32Constant(DAG, 0x4011cdf0, dl)); 4969 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4970 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4971 getF32Constant(DAG, 0x406cfd1c, dl)); 4972 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4973 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4974 getF32Constant(DAG, 0x408797cb, dl)); 4975 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4976 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4977 getF32Constant(DAG, 0x4006dcab, dl)); 4978 } 4979 4980 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4981 } 4982 4983 // No special expansion. 4984 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4985 } 4986 4987 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4988 /// limited-precision mode. 4989 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4990 const TargetLowering &TLI) { 4991 // TODO: What fast-math-flags should be set on the floating-point nodes? 4992 4993 if (Op.getValueType() == MVT::f32 && 4994 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4995 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4996 4997 // Get the exponent. 4998 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4999 5000 // Get the significand and build it into a floating-point number with 5001 // exponent of 1. 5002 SDValue X = GetSignificand(DAG, Op1, dl); 5003 5004 // Different possible minimax approximations of significand in 5005 // floating-point for various degrees of accuracy over [1,2]. 5006 SDValue Log2ofMantissa; 5007 if (LimitFloatPrecision <= 6) { 5008 // For floating-point precision of 6: 5009 // 5010 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5011 // 5012 // error 0.0049451742, which is more than 7 bits 5013 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5014 getF32Constant(DAG, 0xbeb08fe0, dl)); 5015 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5016 getF32Constant(DAG, 0x40019463, dl)); 5017 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5018 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5019 getF32Constant(DAG, 0x3fd6633d, dl)); 5020 } else if (LimitFloatPrecision <= 12) { 5021 // For floating-point precision of 12: 5022 // 5023 // Log2ofMantissa = 5024 // -2.51285454f + 5025 // (4.07009056f + 5026 // (-2.12067489f + 5027 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5028 // 5029 // error 0.0000876136000, which is better than 13 bits 5030 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5031 getF32Constant(DAG, 0xbda7262e, dl)); 5032 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5033 getF32Constant(DAG, 0x3f25280b, dl)); 5034 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5035 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5036 getF32Constant(DAG, 0x4007b923, dl)); 5037 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5038 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5039 getF32Constant(DAG, 0x40823e2f, dl)); 5040 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5041 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5042 getF32Constant(DAG, 0x4020d29c, dl)); 5043 } else { // LimitFloatPrecision <= 18 5044 // For floating-point precision of 18: 5045 // 5046 // Log2ofMantissa = 5047 // -3.0400495f + 5048 // (6.1129976f + 5049 // (-5.3420409f + 5050 // (3.2865683f + 5051 // (-1.2669343f + 5052 // (0.27515199f - 5053 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5054 // 5055 // error 0.0000018516, which is better than 18 bits 5056 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5057 getF32Constant(DAG, 0xbcd2769e, dl)); 5058 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5059 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5060 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5061 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5062 getF32Constant(DAG, 0x3fa22ae7, dl)); 5063 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5064 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5065 getF32Constant(DAG, 0x40525723, dl)); 5066 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5067 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5068 getF32Constant(DAG, 0x40aaf200, dl)); 5069 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5070 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5071 getF32Constant(DAG, 0x40c39dad, dl)); 5072 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5073 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5074 getF32Constant(DAG, 0x4042902c, dl)); 5075 } 5076 5077 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5078 } 5079 5080 // No special expansion. 5081 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 5082 } 5083 5084 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5085 /// limited-precision mode. 5086 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5087 const TargetLowering &TLI) { 5088 // TODO: What fast-math-flags should be set on the floating-point nodes? 5089 5090 if (Op.getValueType() == MVT::f32 && 5091 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5092 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5093 5094 // Scale the exponent by log10(2) [0.30102999f]. 5095 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5096 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5097 getF32Constant(DAG, 0x3e9a209a, dl)); 5098 5099 // Get the significand and build it into a floating-point number with 5100 // exponent of 1. 5101 SDValue X = GetSignificand(DAG, Op1, dl); 5102 5103 SDValue Log10ofMantissa; 5104 if (LimitFloatPrecision <= 6) { 5105 // For floating-point precision of 6: 5106 // 5107 // Log10ofMantissa = 5108 // -0.50419619f + 5109 // (0.60948995f - 0.10380950f * x) * x; 5110 // 5111 // error 0.0014886165, which is 6 bits 5112 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5113 getF32Constant(DAG, 0xbdd49a13, dl)); 5114 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5115 getF32Constant(DAG, 0x3f1c0789, dl)); 5116 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5117 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5118 getF32Constant(DAG, 0x3f011300, dl)); 5119 } else if (LimitFloatPrecision <= 12) { 5120 // For floating-point precision of 12: 5121 // 5122 // Log10ofMantissa = 5123 // -0.64831180f + 5124 // (0.91751397f + 5125 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5126 // 5127 // error 0.00019228036, which is better than 12 bits 5128 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5129 getF32Constant(DAG, 0x3d431f31, dl)); 5130 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5131 getF32Constant(DAG, 0x3ea21fb2, dl)); 5132 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5133 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5134 getF32Constant(DAG, 0x3f6ae232, dl)); 5135 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5136 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5137 getF32Constant(DAG, 0x3f25f7c3, dl)); 5138 } else { // LimitFloatPrecision <= 18 5139 // For floating-point precision of 18: 5140 // 5141 // Log10ofMantissa = 5142 // -0.84299375f + 5143 // (1.5327582f + 5144 // (-1.0688956f + 5145 // (0.49102474f + 5146 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5147 // 5148 // error 0.0000037995730, which is better than 18 bits 5149 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5150 getF32Constant(DAG, 0x3c5d51ce, dl)); 5151 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5152 getF32Constant(DAG, 0x3e00685a, dl)); 5153 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5154 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5155 getF32Constant(DAG, 0x3efb6798, dl)); 5156 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5157 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5158 getF32Constant(DAG, 0x3f88d192, dl)); 5159 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5160 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5161 getF32Constant(DAG, 0x3fc4316c, dl)); 5162 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5163 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5164 getF32Constant(DAG, 0x3f57ce70, dl)); 5165 } 5166 5167 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5168 } 5169 5170 // No special expansion. 5171 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 5172 } 5173 5174 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5175 /// limited-precision mode. 5176 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5177 const TargetLowering &TLI) { 5178 if (Op.getValueType() == MVT::f32 && 5179 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5180 return getLimitedPrecisionExp2(Op, dl, DAG); 5181 5182 // No special expansion. 5183 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 5184 } 5185 5186 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5187 /// limited-precision mode with x == 10.0f. 5188 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5189 SelectionDAG &DAG, const TargetLowering &TLI) { 5190 bool IsExp10 = false; 5191 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5192 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5193 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5194 APFloat Ten(10.0f); 5195 IsExp10 = LHSC->isExactlyValue(Ten); 5196 } 5197 } 5198 5199 // TODO: What fast-math-flags should be set on the FMUL node? 5200 if (IsExp10) { 5201 // Put the exponent in the right bit position for later addition to the 5202 // final result: 5203 // 5204 // #define LOG2OF10 3.3219281f 5205 // t0 = Op * LOG2OF10; 5206 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5207 getF32Constant(DAG, 0x40549a78, dl)); 5208 return getLimitedPrecisionExp2(t0, dl, DAG); 5209 } 5210 5211 // No special expansion. 5212 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 5213 } 5214 5215 /// ExpandPowI - Expand a llvm.powi intrinsic. 5216 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5217 SelectionDAG &DAG) { 5218 // If RHS is a constant, we can expand this out to a multiplication tree, 5219 // otherwise we end up lowering to a call to __powidf2 (for example). When 5220 // optimizing for size, we only want to do this if the expansion would produce 5221 // a small number of multiplies, otherwise we do the full expansion. 5222 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5223 // Get the exponent as a positive value. 5224 unsigned Val = RHSC->getSExtValue(); 5225 if ((int)Val < 0) Val = -Val; 5226 5227 // powi(x, 0) -> 1.0 5228 if (Val == 0) 5229 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5230 5231 bool OptForSize = DAG.shouldOptForSize(); 5232 if (!OptForSize || 5233 // If optimizing for size, don't insert too many multiplies. 5234 // This inserts up to 5 multiplies. 5235 countPopulation(Val) + Log2_32(Val) < 7) { 5236 // We use the simple binary decomposition method to generate the multiply 5237 // sequence. There are more optimal ways to do this (for example, 5238 // powi(x,15) generates one more multiply than it should), but this has 5239 // the benefit of being both really simple and much better than a libcall. 5240 SDValue Res; // Logically starts equal to 1.0 5241 SDValue CurSquare = LHS; 5242 // TODO: Intrinsics should have fast-math-flags that propagate to these 5243 // nodes. 5244 while (Val) { 5245 if (Val & 1) { 5246 if (Res.getNode()) 5247 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 5248 else 5249 Res = CurSquare; // 1.0*CurSquare. 5250 } 5251 5252 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5253 CurSquare, CurSquare); 5254 Val >>= 1; 5255 } 5256 5257 // If the original was negative, invert the result, producing 1/(x*x*x). 5258 if (RHSC->getSExtValue() < 0) 5259 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5260 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5261 return Res; 5262 } 5263 } 5264 5265 // Otherwise, expand to a libcall. 5266 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5267 } 5268 5269 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5270 SDValue LHS, SDValue RHS, SDValue Scale, 5271 SelectionDAG &DAG, const TargetLowering &TLI) { 5272 EVT VT = LHS.getValueType(); 5273 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5274 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5275 LLVMContext &Ctx = *DAG.getContext(); 5276 5277 // If the type is legal but the operation isn't, this node might survive all 5278 // the way to operation legalization. If we end up there and we do not have 5279 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5280 // node. 5281 5282 // Coax the legalizer into expanding the node during type legalization instead 5283 // by bumping the size by one bit. This will force it to Promote, enabling the 5284 // early expansion and avoiding the need to expand later. 5285 5286 // We don't have to do this if Scale is 0; that can always be expanded, unless 5287 // it's a saturating signed operation. Those can experience true integer 5288 // division overflow, a case which we must avoid. 5289 5290 // FIXME: We wouldn't have to do this (or any of the early 5291 // expansion/promotion) if it was possible to expand a libcall of an 5292 // illegal type during operation legalization. But it's not, so things 5293 // get a bit hacky. 5294 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5295 if ((ScaleInt > 0 || (Saturating && Signed)) && 5296 (TLI.isTypeLegal(VT) || 5297 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5298 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5299 Opcode, VT, ScaleInt); 5300 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5301 EVT PromVT; 5302 if (VT.isScalarInteger()) 5303 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5304 else if (VT.isVector()) { 5305 PromVT = VT.getVectorElementType(); 5306 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5307 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5308 } else 5309 llvm_unreachable("Wrong VT for DIVFIX?"); 5310 if (Signed) { 5311 LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT); 5312 RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT); 5313 } else { 5314 LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT); 5315 RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT); 5316 } 5317 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5318 // For saturating operations, we need to shift up the LHS to get the 5319 // proper saturation width, and then shift down again afterwards. 5320 if (Saturating) 5321 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5322 DAG.getConstant(1, DL, ShiftTy)); 5323 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5324 if (Saturating) 5325 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5326 DAG.getConstant(1, DL, ShiftTy)); 5327 return DAG.getZExtOrTrunc(Res, DL, VT); 5328 } 5329 } 5330 5331 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5332 } 5333 5334 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5335 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5336 static void 5337 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 5338 const SDValue &N) { 5339 switch (N.getOpcode()) { 5340 case ISD::CopyFromReg: { 5341 SDValue Op = N.getOperand(1); 5342 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5343 Op.getValueType().getSizeInBits()); 5344 return; 5345 } 5346 case ISD::BITCAST: 5347 case ISD::AssertZext: 5348 case ISD::AssertSext: 5349 case ISD::TRUNCATE: 5350 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5351 return; 5352 case ISD::BUILD_PAIR: 5353 case ISD::BUILD_VECTOR: 5354 case ISD::CONCAT_VECTORS: 5355 for (SDValue Op : N->op_values()) 5356 getUnderlyingArgRegs(Regs, Op); 5357 return; 5358 default: 5359 return; 5360 } 5361 } 5362 5363 /// If the DbgValueInst is a dbg_value of a function argument, create the 5364 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5365 /// instruction selection, they will be inserted to the entry BB. 5366 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5367 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5368 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 5369 const Argument *Arg = dyn_cast<Argument>(V); 5370 if (!Arg) 5371 return false; 5372 5373 if (!IsDbgDeclare) { 5374 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5375 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5376 // the entry block. 5377 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5378 if (!IsInEntryBlock) 5379 return false; 5380 5381 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5382 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5383 // variable that also is a param. 5384 // 5385 // Although, if we are at the top of the entry block already, we can still 5386 // emit using ArgDbgValue. This might catch some situations when the 5387 // dbg.value refers to an argument that isn't used in the entry block, so 5388 // any CopyToReg node would be optimized out and the only way to express 5389 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5390 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5391 // we should only emit as ArgDbgValue if the Variable is an argument to the 5392 // current function, and the dbg.value intrinsic is found in the entry 5393 // block. 5394 bool VariableIsFunctionInputArg = Variable->isParameter() && 5395 !DL->getInlinedAt(); 5396 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5397 if (!IsInPrologue && !VariableIsFunctionInputArg) 5398 return false; 5399 5400 // Here we assume that a function argument on IR level only can be used to 5401 // describe one input parameter on source level. If we for example have 5402 // source code like this 5403 // 5404 // struct A { long x, y; }; 5405 // void foo(struct A a, long b) { 5406 // ... 5407 // b = a.x; 5408 // ... 5409 // } 5410 // 5411 // and IR like this 5412 // 5413 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5414 // entry: 5415 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5416 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5417 // call void @llvm.dbg.value(metadata i32 %b, "b", 5418 // ... 5419 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5420 // ... 5421 // 5422 // then the last dbg.value is describing a parameter "b" using a value that 5423 // is an argument. But since we already has used %a1 to describe a parameter 5424 // we should not handle that last dbg.value here (that would result in an 5425 // incorrect hoisting of the DBG_VALUE to the function entry). 5426 // Notice that we allow one dbg.value per IR level argument, to accommodate 5427 // for the situation with fragments above. 5428 if (VariableIsFunctionInputArg) { 5429 unsigned ArgNo = Arg->getArgNo(); 5430 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5431 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5432 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5433 return false; 5434 FuncInfo.DescribedArgs.set(ArgNo); 5435 } 5436 } 5437 5438 MachineFunction &MF = DAG.getMachineFunction(); 5439 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5440 5441 bool IsIndirect = false; 5442 Optional<MachineOperand> Op; 5443 // Some arguments' frame index is recorded during argument lowering. 5444 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5445 if (FI != std::numeric_limits<int>::max()) 5446 Op = MachineOperand::CreateFI(FI); 5447 5448 SmallVector<std::pair<unsigned, unsigned>, 8> ArgRegsAndSizes; 5449 if (!Op && N.getNode()) { 5450 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5451 Register Reg; 5452 if (ArgRegsAndSizes.size() == 1) 5453 Reg = ArgRegsAndSizes.front().first; 5454 5455 if (Reg && Reg.isVirtual()) { 5456 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5457 Register PR = RegInfo.getLiveInPhysReg(Reg); 5458 if (PR) 5459 Reg = PR; 5460 } 5461 if (Reg) { 5462 Op = MachineOperand::CreateReg(Reg, false); 5463 IsIndirect = IsDbgDeclare; 5464 } 5465 } 5466 5467 if (!Op && N.getNode()) { 5468 // Check if frame index is available. 5469 SDValue LCandidate = peekThroughBitcasts(N); 5470 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5471 if (FrameIndexSDNode *FINode = 5472 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5473 Op = MachineOperand::CreateFI(FINode->getIndex()); 5474 } 5475 5476 if (!Op) { 5477 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5478 auto splitMultiRegDbgValue 5479 = [&](ArrayRef<std::pair<unsigned, unsigned>> SplitRegs) { 5480 unsigned Offset = 0; 5481 for (auto RegAndSize : SplitRegs) { 5482 // If the expression is already a fragment, the current register 5483 // offset+size might extend beyond the fragment. In this case, only 5484 // the register bits that are inside the fragment are relevant. 5485 int RegFragmentSizeInBits = RegAndSize.second; 5486 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5487 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5488 // The register is entirely outside the expression fragment, 5489 // so is irrelevant for debug info. 5490 if (Offset >= ExprFragmentSizeInBits) 5491 break; 5492 // The register is partially outside the expression fragment, only 5493 // the low bits within the fragment are relevant for debug info. 5494 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5495 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5496 } 5497 } 5498 5499 auto FragmentExpr = DIExpression::createFragmentExpression( 5500 Expr, Offset, RegFragmentSizeInBits); 5501 Offset += RegAndSize.second; 5502 // If a valid fragment expression cannot be created, the variable's 5503 // correct value cannot be determined and so it is set as Undef. 5504 if (!FragmentExpr) { 5505 SDDbgValue *SDV = DAG.getConstantDbgValue( 5506 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5507 DAG.AddDbgValue(SDV, nullptr, false); 5508 continue; 5509 } 5510 assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?"); 5511 FuncInfo.ArgDbgValues.push_back( 5512 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, 5513 RegAndSize.first, Variable, *FragmentExpr)); 5514 } 5515 }; 5516 5517 // Check if ValueMap has reg number. 5518 DenseMap<const Value *, Register>::const_iterator 5519 VMI = FuncInfo.ValueMap.find(V); 5520 if (VMI != FuncInfo.ValueMap.end()) { 5521 const auto &TLI = DAG.getTargetLoweringInfo(); 5522 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5523 V->getType(), getABIRegCopyCC(V)); 5524 if (RFV.occupiesMultipleRegs()) { 5525 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5526 return true; 5527 } 5528 5529 Op = MachineOperand::CreateReg(VMI->second, false); 5530 IsIndirect = IsDbgDeclare; 5531 } else if (ArgRegsAndSizes.size() > 1) { 5532 // This was split due to the calling convention, and no virtual register 5533 // mapping exists for the value. 5534 splitMultiRegDbgValue(ArgRegsAndSizes); 5535 return true; 5536 } 5537 } 5538 5539 if (!Op) 5540 return false; 5541 5542 assert(Variable->isValidLocationForIntrinsic(DL) && 5543 "Expected inlined-at fields to agree"); 5544 IsIndirect = (Op->isReg()) ? IsIndirect : true; 5545 FuncInfo.ArgDbgValues.push_back( 5546 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 5547 *Op, Variable, Expr)); 5548 5549 return true; 5550 } 5551 5552 /// Return the appropriate SDDbgValue based on N. 5553 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5554 DILocalVariable *Variable, 5555 DIExpression *Expr, 5556 const DebugLoc &dl, 5557 unsigned DbgSDNodeOrder) { 5558 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5559 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5560 // stack slot locations. 5561 // 5562 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5563 // debug values here after optimization: 5564 // 5565 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5566 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5567 // 5568 // Both describe the direct values of their associated variables. 5569 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5570 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5571 } 5572 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5573 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5574 } 5575 5576 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5577 switch (Intrinsic) { 5578 case Intrinsic::smul_fix: 5579 return ISD::SMULFIX; 5580 case Intrinsic::umul_fix: 5581 return ISD::UMULFIX; 5582 case Intrinsic::smul_fix_sat: 5583 return ISD::SMULFIXSAT; 5584 case Intrinsic::umul_fix_sat: 5585 return ISD::UMULFIXSAT; 5586 case Intrinsic::sdiv_fix: 5587 return ISD::SDIVFIX; 5588 case Intrinsic::udiv_fix: 5589 return ISD::UDIVFIX; 5590 case Intrinsic::sdiv_fix_sat: 5591 return ISD::SDIVFIXSAT; 5592 case Intrinsic::udiv_fix_sat: 5593 return ISD::UDIVFIXSAT; 5594 default: 5595 llvm_unreachable("Unhandled fixed point intrinsic"); 5596 } 5597 } 5598 5599 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5600 const char *FunctionName) { 5601 assert(FunctionName && "FunctionName must not be nullptr"); 5602 SDValue Callee = DAG.getExternalSymbol( 5603 FunctionName, 5604 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5605 LowerCallTo(I, Callee, I.isTailCall()); 5606 } 5607 5608 /// Lower the call to the specified intrinsic function. 5609 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5610 unsigned Intrinsic) { 5611 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5612 SDLoc sdl = getCurSDLoc(); 5613 DebugLoc dl = getCurDebugLoc(); 5614 SDValue Res; 5615 5616 switch (Intrinsic) { 5617 default: 5618 // By default, turn this into a target intrinsic node. 5619 visitTargetIntrinsic(I, Intrinsic); 5620 return; 5621 case Intrinsic::vscale: { 5622 match(&I, m_VScale(DAG.getDataLayout())); 5623 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5624 setValue(&I, 5625 DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1))); 5626 return; 5627 } 5628 case Intrinsic::vastart: visitVAStart(I); return; 5629 case Intrinsic::vaend: visitVAEnd(I); return; 5630 case Intrinsic::vacopy: visitVACopy(I); return; 5631 case Intrinsic::returnaddress: 5632 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5633 TLI.getPointerTy(DAG.getDataLayout()), 5634 getValue(I.getArgOperand(0)))); 5635 return; 5636 case Intrinsic::addressofreturnaddress: 5637 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5638 TLI.getPointerTy(DAG.getDataLayout()))); 5639 return; 5640 case Intrinsic::sponentry: 5641 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5642 TLI.getFrameIndexTy(DAG.getDataLayout()))); 5643 return; 5644 case Intrinsic::frameaddress: 5645 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5646 TLI.getFrameIndexTy(DAG.getDataLayout()), 5647 getValue(I.getArgOperand(0)))); 5648 return; 5649 case Intrinsic::read_register: { 5650 Value *Reg = I.getArgOperand(0); 5651 SDValue Chain = getRoot(); 5652 SDValue RegName = 5653 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5654 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5655 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5656 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5657 setValue(&I, Res); 5658 DAG.setRoot(Res.getValue(1)); 5659 return; 5660 } 5661 case Intrinsic::write_register: { 5662 Value *Reg = I.getArgOperand(0); 5663 Value *RegValue = I.getArgOperand(1); 5664 SDValue Chain = getRoot(); 5665 SDValue RegName = 5666 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5667 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5668 RegName, getValue(RegValue))); 5669 return; 5670 } 5671 case Intrinsic::memcpy: { 5672 const auto &MCI = cast<MemCpyInst>(I); 5673 SDValue Op1 = getValue(I.getArgOperand(0)); 5674 SDValue Op2 = getValue(I.getArgOperand(1)); 5675 SDValue Op3 = getValue(I.getArgOperand(2)); 5676 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5677 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5678 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5679 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5680 bool isVol = MCI.isVolatile(); 5681 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5682 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5683 // node. 5684 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5685 SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5686 /* AlwaysInline */ false, isTC, 5687 MachinePointerInfo(I.getArgOperand(0)), 5688 MachinePointerInfo(I.getArgOperand(1))); 5689 updateDAGForMaybeTailCall(MC); 5690 return; 5691 } 5692 case Intrinsic::memcpy_inline: { 5693 const auto &MCI = cast<MemCpyInlineInst>(I); 5694 SDValue Dst = getValue(I.getArgOperand(0)); 5695 SDValue Src = getValue(I.getArgOperand(1)); 5696 SDValue Size = getValue(I.getArgOperand(2)); 5697 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 5698 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 5699 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5700 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5701 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5702 bool isVol = MCI.isVolatile(); 5703 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5704 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5705 // node. 5706 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 5707 /* AlwaysInline */ true, isTC, 5708 MachinePointerInfo(I.getArgOperand(0)), 5709 MachinePointerInfo(I.getArgOperand(1))); 5710 updateDAGForMaybeTailCall(MC); 5711 return; 5712 } 5713 case Intrinsic::memset: { 5714 const auto &MSI = cast<MemSetInst>(I); 5715 SDValue Op1 = getValue(I.getArgOperand(0)); 5716 SDValue Op2 = getValue(I.getArgOperand(1)); 5717 SDValue Op3 = getValue(I.getArgOperand(2)); 5718 // @llvm.memset defines 0 and 1 to both mean no alignment. 5719 Align Alignment = MSI.getDestAlign().valueOrOne(); 5720 bool isVol = MSI.isVolatile(); 5721 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5722 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5723 SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC, 5724 MachinePointerInfo(I.getArgOperand(0))); 5725 updateDAGForMaybeTailCall(MS); 5726 return; 5727 } 5728 case Intrinsic::memmove: { 5729 const auto &MMI = cast<MemMoveInst>(I); 5730 SDValue Op1 = getValue(I.getArgOperand(0)); 5731 SDValue Op2 = getValue(I.getArgOperand(1)); 5732 SDValue Op3 = getValue(I.getArgOperand(2)); 5733 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5734 Align DstAlign = MMI.getDestAlign().valueOrOne(); 5735 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 5736 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5737 bool isVol = MMI.isVolatile(); 5738 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5739 // FIXME: Support passing different dest/src alignments to the memmove DAG 5740 // node. 5741 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5742 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5743 isTC, MachinePointerInfo(I.getArgOperand(0)), 5744 MachinePointerInfo(I.getArgOperand(1))); 5745 updateDAGForMaybeTailCall(MM); 5746 return; 5747 } 5748 case Intrinsic::memcpy_element_unordered_atomic: { 5749 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5750 SDValue Dst = getValue(MI.getRawDest()); 5751 SDValue Src = getValue(MI.getRawSource()); 5752 SDValue Length = getValue(MI.getLength()); 5753 5754 unsigned DstAlign = MI.getDestAlignment(); 5755 unsigned SrcAlign = MI.getSourceAlignment(); 5756 Type *LengthTy = MI.getLength()->getType(); 5757 unsigned ElemSz = MI.getElementSizeInBytes(); 5758 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5759 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5760 SrcAlign, Length, LengthTy, ElemSz, isTC, 5761 MachinePointerInfo(MI.getRawDest()), 5762 MachinePointerInfo(MI.getRawSource())); 5763 updateDAGForMaybeTailCall(MC); 5764 return; 5765 } 5766 case Intrinsic::memmove_element_unordered_atomic: { 5767 auto &MI = cast<AtomicMemMoveInst>(I); 5768 SDValue Dst = getValue(MI.getRawDest()); 5769 SDValue Src = getValue(MI.getRawSource()); 5770 SDValue Length = getValue(MI.getLength()); 5771 5772 unsigned DstAlign = MI.getDestAlignment(); 5773 unsigned SrcAlign = MI.getSourceAlignment(); 5774 Type *LengthTy = MI.getLength()->getType(); 5775 unsigned ElemSz = MI.getElementSizeInBytes(); 5776 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5777 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5778 SrcAlign, Length, LengthTy, ElemSz, isTC, 5779 MachinePointerInfo(MI.getRawDest()), 5780 MachinePointerInfo(MI.getRawSource())); 5781 updateDAGForMaybeTailCall(MC); 5782 return; 5783 } 5784 case Intrinsic::memset_element_unordered_atomic: { 5785 auto &MI = cast<AtomicMemSetInst>(I); 5786 SDValue Dst = getValue(MI.getRawDest()); 5787 SDValue Val = getValue(MI.getValue()); 5788 SDValue Length = getValue(MI.getLength()); 5789 5790 unsigned DstAlign = MI.getDestAlignment(); 5791 Type *LengthTy = MI.getLength()->getType(); 5792 unsigned ElemSz = MI.getElementSizeInBytes(); 5793 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5794 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5795 LengthTy, ElemSz, isTC, 5796 MachinePointerInfo(MI.getRawDest())); 5797 updateDAGForMaybeTailCall(MC); 5798 return; 5799 } 5800 case Intrinsic::dbg_addr: 5801 case Intrinsic::dbg_declare: { 5802 const auto &DI = cast<DbgVariableIntrinsic>(I); 5803 DILocalVariable *Variable = DI.getVariable(); 5804 DIExpression *Expression = DI.getExpression(); 5805 dropDanglingDebugInfo(Variable, Expression); 5806 assert(Variable && "Missing variable"); 5807 LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI 5808 << "\n"); 5809 // Check if address has undef value. 5810 const Value *Address = DI.getVariableLocation(); 5811 if (!Address || isa<UndefValue>(Address) || 5812 (Address->use_empty() && !isa<Argument>(Address))) { 5813 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 5814 << " (bad/undef/unused-arg address)\n"); 5815 return; 5816 } 5817 5818 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5819 5820 // Check if this variable can be described by a frame index, typically 5821 // either as a static alloca or a byval parameter. 5822 int FI = std::numeric_limits<int>::max(); 5823 if (const auto *AI = 5824 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5825 if (AI->isStaticAlloca()) { 5826 auto I = FuncInfo.StaticAllocaMap.find(AI); 5827 if (I != FuncInfo.StaticAllocaMap.end()) 5828 FI = I->second; 5829 } 5830 } else if (const auto *Arg = dyn_cast<Argument>( 5831 Address->stripInBoundsConstantOffsets())) { 5832 FI = FuncInfo.getArgumentFrameIndex(Arg); 5833 } 5834 5835 // llvm.dbg.addr is control dependent and always generates indirect 5836 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5837 // the MachineFunction variable table. 5838 if (FI != std::numeric_limits<int>::max()) { 5839 if (Intrinsic == Intrinsic::dbg_addr) { 5840 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 5841 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder); 5842 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 5843 } else { 5844 LLVM_DEBUG(dbgs() << "Skipping " << DI 5845 << " (variable info stashed in MF side table)\n"); 5846 } 5847 return; 5848 } 5849 5850 SDValue &N = NodeMap[Address]; 5851 if (!N.getNode() && isa<Argument>(Address)) 5852 // Check unused arguments map. 5853 N = UnusedArgNodeMap[Address]; 5854 SDDbgValue *SDV; 5855 if (N.getNode()) { 5856 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5857 Address = BCI->getOperand(0); 5858 // Parameters are handled specially. 5859 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5860 if (isParameter && FINode) { 5861 // Byval parameter. We have a frame index at this point. 5862 SDV = 5863 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 5864 /*IsIndirect*/ true, dl, SDNodeOrder); 5865 } else if (isa<Argument>(Address)) { 5866 // Address is an argument, so try to emit its dbg value using 5867 // virtual register info from the FuncInfo.ValueMap. 5868 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5869 return; 5870 } else { 5871 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5872 true, dl, SDNodeOrder); 5873 } 5874 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5875 } else { 5876 // If Address is an argument then try to emit its dbg value using 5877 // virtual register info from the FuncInfo.ValueMap. 5878 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5879 N)) { 5880 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 5881 << " (could not emit func-arg dbg_value)\n"); 5882 } 5883 } 5884 return; 5885 } 5886 case Intrinsic::dbg_label: { 5887 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 5888 DILabel *Label = DI.getLabel(); 5889 assert(Label && "Missing label"); 5890 5891 SDDbgLabel *SDV; 5892 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 5893 DAG.AddDbgLabel(SDV); 5894 return; 5895 } 5896 case Intrinsic::dbg_value: { 5897 const DbgValueInst &DI = cast<DbgValueInst>(I); 5898 assert(DI.getVariable() && "Missing variable"); 5899 5900 DILocalVariable *Variable = DI.getVariable(); 5901 DIExpression *Expression = DI.getExpression(); 5902 dropDanglingDebugInfo(Variable, Expression); 5903 const Value *V = DI.getValue(); 5904 if (!V) 5905 return; 5906 5907 if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(), 5908 SDNodeOrder)) 5909 return; 5910 5911 // TODO: Dangling debug info will eventually either be resolved or produce 5912 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 5913 // between the original dbg.value location and its resolved DBG_VALUE, which 5914 // we should ideally fill with an extra Undef DBG_VALUE. 5915 5916 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder); 5917 return; 5918 } 5919 5920 case Intrinsic::eh_typeid_for: { 5921 // Find the type id for the given typeinfo. 5922 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5923 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5924 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5925 setValue(&I, Res); 5926 return; 5927 } 5928 5929 case Intrinsic::eh_return_i32: 5930 case Intrinsic::eh_return_i64: 5931 DAG.getMachineFunction().setCallsEHReturn(true); 5932 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5933 MVT::Other, 5934 getControlRoot(), 5935 getValue(I.getArgOperand(0)), 5936 getValue(I.getArgOperand(1)))); 5937 return; 5938 case Intrinsic::eh_unwind_init: 5939 DAG.getMachineFunction().setCallsUnwindInit(true); 5940 return; 5941 case Intrinsic::eh_dwarf_cfa: 5942 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5943 TLI.getPointerTy(DAG.getDataLayout()), 5944 getValue(I.getArgOperand(0)))); 5945 return; 5946 case Intrinsic::eh_sjlj_callsite: { 5947 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5948 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5949 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5950 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5951 5952 MMI.setCurrentCallSite(CI->getZExtValue()); 5953 return; 5954 } 5955 case Intrinsic::eh_sjlj_functioncontext: { 5956 // Get and store the index of the function context. 5957 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5958 AllocaInst *FnCtx = 5959 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5960 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5961 MFI.setFunctionContextIndex(FI); 5962 return; 5963 } 5964 case Intrinsic::eh_sjlj_setjmp: { 5965 SDValue Ops[2]; 5966 Ops[0] = getRoot(); 5967 Ops[1] = getValue(I.getArgOperand(0)); 5968 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5969 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5970 setValue(&I, Op.getValue(0)); 5971 DAG.setRoot(Op.getValue(1)); 5972 return; 5973 } 5974 case Intrinsic::eh_sjlj_longjmp: 5975 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5976 getRoot(), getValue(I.getArgOperand(0)))); 5977 return; 5978 case Intrinsic::eh_sjlj_setup_dispatch: 5979 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 5980 getRoot())); 5981 return; 5982 case Intrinsic::masked_gather: 5983 visitMaskedGather(I); 5984 return; 5985 case Intrinsic::masked_load: 5986 visitMaskedLoad(I); 5987 return; 5988 case Intrinsic::masked_scatter: 5989 visitMaskedScatter(I); 5990 return; 5991 case Intrinsic::masked_store: 5992 visitMaskedStore(I); 5993 return; 5994 case Intrinsic::masked_expandload: 5995 visitMaskedLoad(I, true /* IsExpanding */); 5996 return; 5997 case Intrinsic::masked_compressstore: 5998 visitMaskedStore(I, true /* IsCompressing */); 5999 return; 6000 case Intrinsic::powi: 6001 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6002 getValue(I.getArgOperand(1)), DAG)); 6003 return; 6004 case Intrinsic::log: 6005 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6006 return; 6007 case Intrinsic::log2: 6008 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6009 return; 6010 case Intrinsic::log10: 6011 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6012 return; 6013 case Intrinsic::exp: 6014 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6015 return; 6016 case Intrinsic::exp2: 6017 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6018 return; 6019 case Intrinsic::pow: 6020 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6021 getValue(I.getArgOperand(1)), DAG, TLI)); 6022 return; 6023 case Intrinsic::sqrt: 6024 case Intrinsic::fabs: 6025 case Intrinsic::sin: 6026 case Intrinsic::cos: 6027 case Intrinsic::floor: 6028 case Intrinsic::ceil: 6029 case Intrinsic::trunc: 6030 case Intrinsic::rint: 6031 case Intrinsic::nearbyint: 6032 case Intrinsic::round: 6033 case Intrinsic::canonicalize: { 6034 unsigned Opcode; 6035 switch (Intrinsic) { 6036 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6037 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6038 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6039 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6040 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6041 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6042 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6043 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6044 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6045 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6046 case Intrinsic::round: Opcode = ISD::FROUND; break; 6047 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6048 } 6049 6050 setValue(&I, DAG.getNode(Opcode, sdl, 6051 getValue(I.getArgOperand(0)).getValueType(), 6052 getValue(I.getArgOperand(0)))); 6053 return; 6054 } 6055 case Intrinsic::lround: 6056 case Intrinsic::llround: 6057 case Intrinsic::lrint: 6058 case Intrinsic::llrint: { 6059 unsigned Opcode; 6060 switch (Intrinsic) { 6061 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6062 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6063 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6064 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6065 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6066 } 6067 6068 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6069 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6070 getValue(I.getArgOperand(0)))); 6071 return; 6072 } 6073 case Intrinsic::minnum: 6074 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6075 getValue(I.getArgOperand(0)).getValueType(), 6076 getValue(I.getArgOperand(0)), 6077 getValue(I.getArgOperand(1)))); 6078 return; 6079 case Intrinsic::maxnum: 6080 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6081 getValue(I.getArgOperand(0)).getValueType(), 6082 getValue(I.getArgOperand(0)), 6083 getValue(I.getArgOperand(1)))); 6084 return; 6085 case Intrinsic::minimum: 6086 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6087 getValue(I.getArgOperand(0)).getValueType(), 6088 getValue(I.getArgOperand(0)), 6089 getValue(I.getArgOperand(1)))); 6090 return; 6091 case Intrinsic::maximum: 6092 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6093 getValue(I.getArgOperand(0)).getValueType(), 6094 getValue(I.getArgOperand(0)), 6095 getValue(I.getArgOperand(1)))); 6096 return; 6097 case Intrinsic::copysign: 6098 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6099 getValue(I.getArgOperand(0)).getValueType(), 6100 getValue(I.getArgOperand(0)), 6101 getValue(I.getArgOperand(1)))); 6102 return; 6103 case Intrinsic::fma: 6104 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6105 getValue(I.getArgOperand(0)).getValueType(), 6106 getValue(I.getArgOperand(0)), 6107 getValue(I.getArgOperand(1)), 6108 getValue(I.getArgOperand(2)))); 6109 return; 6110 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6111 case Intrinsic::INTRINSIC: 6112 #include "llvm/IR/ConstrainedOps.def" 6113 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6114 return; 6115 case Intrinsic::fmuladd: { 6116 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6117 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6118 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6119 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6120 getValue(I.getArgOperand(0)).getValueType(), 6121 getValue(I.getArgOperand(0)), 6122 getValue(I.getArgOperand(1)), 6123 getValue(I.getArgOperand(2)))); 6124 } else { 6125 // TODO: Intrinsic calls should have fast-math-flags. 6126 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 6127 getValue(I.getArgOperand(0)).getValueType(), 6128 getValue(I.getArgOperand(0)), 6129 getValue(I.getArgOperand(1))); 6130 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6131 getValue(I.getArgOperand(0)).getValueType(), 6132 Mul, 6133 getValue(I.getArgOperand(2))); 6134 setValue(&I, Add); 6135 } 6136 return; 6137 } 6138 case Intrinsic::convert_to_fp16: 6139 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6140 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6141 getValue(I.getArgOperand(0)), 6142 DAG.getTargetConstant(0, sdl, 6143 MVT::i32)))); 6144 return; 6145 case Intrinsic::convert_from_fp16: 6146 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6147 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6148 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6149 getValue(I.getArgOperand(0))))); 6150 return; 6151 case Intrinsic::pcmarker: { 6152 SDValue Tmp = getValue(I.getArgOperand(0)); 6153 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6154 return; 6155 } 6156 case Intrinsic::readcyclecounter: { 6157 SDValue Op = getRoot(); 6158 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6159 DAG.getVTList(MVT::i64, MVT::Other), Op); 6160 setValue(&I, Res); 6161 DAG.setRoot(Res.getValue(1)); 6162 return; 6163 } 6164 case Intrinsic::bitreverse: 6165 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6166 getValue(I.getArgOperand(0)).getValueType(), 6167 getValue(I.getArgOperand(0)))); 6168 return; 6169 case Intrinsic::bswap: 6170 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6171 getValue(I.getArgOperand(0)).getValueType(), 6172 getValue(I.getArgOperand(0)))); 6173 return; 6174 case Intrinsic::cttz: { 6175 SDValue Arg = getValue(I.getArgOperand(0)); 6176 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6177 EVT Ty = Arg.getValueType(); 6178 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6179 sdl, Ty, Arg)); 6180 return; 6181 } 6182 case Intrinsic::ctlz: { 6183 SDValue Arg = getValue(I.getArgOperand(0)); 6184 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6185 EVT Ty = Arg.getValueType(); 6186 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6187 sdl, Ty, Arg)); 6188 return; 6189 } 6190 case Intrinsic::ctpop: { 6191 SDValue Arg = getValue(I.getArgOperand(0)); 6192 EVT Ty = Arg.getValueType(); 6193 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6194 return; 6195 } 6196 case Intrinsic::fshl: 6197 case Intrinsic::fshr: { 6198 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6199 SDValue X = getValue(I.getArgOperand(0)); 6200 SDValue Y = getValue(I.getArgOperand(1)); 6201 SDValue Z = getValue(I.getArgOperand(2)); 6202 EVT VT = X.getValueType(); 6203 SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT); 6204 SDValue Zero = DAG.getConstant(0, sdl, VT); 6205 SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC); 6206 6207 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6208 if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) { 6209 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6210 return; 6211 } 6212 6213 // When X == Y, this is rotate. If the data type has a power-of-2 size, we 6214 // avoid the select that is necessary in the general case to filter out 6215 // the 0-shift possibility that leads to UB. 6216 if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) { 6217 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6218 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6219 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6220 return; 6221 } 6222 6223 // Some targets only rotate one way. Try the opposite direction. 6224 RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL; 6225 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6226 // Negate the shift amount because it is safe to ignore the high bits. 6227 SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6228 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt)); 6229 return; 6230 } 6231 6232 // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW)) 6233 // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW)) 6234 SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6235 SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC); 6236 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt); 6237 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt); 6238 setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY)); 6239 return; 6240 } 6241 6242 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 6243 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 6244 SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt); 6245 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt); 6246 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6247 SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY); 6248 6249 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 6250 // and that is undefined. We must compare and select to avoid UB. 6251 EVT CCVT = MVT::i1; 6252 if (VT.isVector()) 6253 CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements()); 6254 6255 // For fshl, 0-shift returns the 1st arg (X). 6256 // For fshr, 0-shift returns the 2nd arg (Y). 6257 SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ); 6258 setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or)); 6259 return; 6260 } 6261 case Intrinsic::sadd_sat: { 6262 SDValue Op1 = getValue(I.getArgOperand(0)); 6263 SDValue Op2 = getValue(I.getArgOperand(1)); 6264 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6265 return; 6266 } 6267 case Intrinsic::uadd_sat: { 6268 SDValue Op1 = getValue(I.getArgOperand(0)); 6269 SDValue Op2 = getValue(I.getArgOperand(1)); 6270 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6271 return; 6272 } 6273 case Intrinsic::ssub_sat: { 6274 SDValue Op1 = getValue(I.getArgOperand(0)); 6275 SDValue Op2 = getValue(I.getArgOperand(1)); 6276 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6277 return; 6278 } 6279 case Intrinsic::usub_sat: { 6280 SDValue Op1 = getValue(I.getArgOperand(0)); 6281 SDValue Op2 = getValue(I.getArgOperand(1)); 6282 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6283 return; 6284 } 6285 case Intrinsic::smul_fix: 6286 case Intrinsic::umul_fix: 6287 case Intrinsic::smul_fix_sat: 6288 case Intrinsic::umul_fix_sat: { 6289 SDValue Op1 = getValue(I.getArgOperand(0)); 6290 SDValue Op2 = getValue(I.getArgOperand(1)); 6291 SDValue Op3 = getValue(I.getArgOperand(2)); 6292 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6293 Op1.getValueType(), Op1, Op2, Op3)); 6294 return; 6295 } 6296 case Intrinsic::sdiv_fix: 6297 case Intrinsic::udiv_fix: 6298 case Intrinsic::sdiv_fix_sat: 6299 case Intrinsic::udiv_fix_sat: { 6300 SDValue Op1 = getValue(I.getArgOperand(0)); 6301 SDValue Op2 = getValue(I.getArgOperand(1)); 6302 SDValue Op3 = getValue(I.getArgOperand(2)); 6303 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6304 Op1, Op2, Op3, DAG, TLI)); 6305 return; 6306 } 6307 case Intrinsic::stacksave: { 6308 SDValue Op = getRoot(); 6309 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6310 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 6311 setValue(&I, Res); 6312 DAG.setRoot(Res.getValue(1)); 6313 return; 6314 } 6315 case Intrinsic::stackrestore: 6316 Res = getValue(I.getArgOperand(0)); 6317 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6318 return; 6319 case Intrinsic::get_dynamic_area_offset: { 6320 SDValue Op = getRoot(); 6321 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6322 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6323 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6324 // target. 6325 if (PtrTy.getSizeInBits() < ResTy.getSizeInBits()) 6326 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6327 " intrinsic!"); 6328 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6329 Op); 6330 DAG.setRoot(Op); 6331 setValue(&I, Res); 6332 return; 6333 } 6334 case Intrinsic::stackguard: { 6335 MachineFunction &MF = DAG.getMachineFunction(); 6336 const Module &M = *MF.getFunction().getParent(); 6337 SDValue Chain = getRoot(); 6338 if (TLI.useLoadStackGuardNode()) { 6339 Res = getLoadStackGuard(DAG, sdl, Chain); 6340 } else { 6341 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6342 const Value *Global = TLI.getSDagStackGuard(M); 6343 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 6344 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6345 MachinePointerInfo(Global, 0), Align, 6346 MachineMemOperand::MOVolatile); 6347 } 6348 if (TLI.useStackGuardXorFP()) 6349 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6350 DAG.setRoot(Chain); 6351 setValue(&I, Res); 6352 return; 6353 } 6354 case Intrinsic::stackprotector: { 6355 // Emit code into the DAG to store the stack guard onto the stack. 6356 MachineFunction &MF = DAG.getMachineFunction(); 6357 MachineFrameInfo &MFI = MF.getFrameInfo(); 6358 SDValue Src, Chain = getRoot(); 6359 6360 if (TLI.useLoadStackGuardNode()) 6361 Src = getLoadStackGuard(DAG, sdl, Chain); 6362 else 6363 Src = getValue(I.getArgOperand(0)); // The guard's value. 6364 6365 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6366 6367 int FI = FuncInfo.StaticAllocaMap[Slot]; 6368 MFI.setStackProtectorIndex(FI); 6369 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6370 6371 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6372 6373 // Store the stack protector onto the stack. 6374 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 6375 DAG.getMachineFunction(), FI), 6376 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 6377 setValue(&I, Res); 6378 DAG.setRoot(Res); 6379 return; 6380 } 6381 case Intrinsic::objectsize: 6382 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6383 6384 case Intrinsic::is_constant: 6385 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6386 6387 case Intrinsic::annotation: 6388 case Intrinsic::ptr_annotation: 6389 case Intrinsic::launder_invariant_group: 6390 case Intrinsic::strip_invariant_group: 6391 // Drop the intrinsic, but forward the value 6392 setValue(&I, getValue(I.getOperand(0))); 6393 return; 6394 case Intrinsic::assume: 6395 case Intrinsic::var_annotation: 6396 case Intrinsic::sideeffect: 6397 // Discard annotate attributes, assumptions, and artificial side-effects. 6398 return; 6399 6400 case Intrinsic::codeview_annotation: { 6401 // Emit a label associated with this metadata. 6402 MachineFunction &MF = DAG.getMachineFunction(); 6403 MCSymbol *Label = 6404 MF.getMMI().getContext().createTempSymbol("annotation", true); 6405 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6406 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6407 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6408 DAG.setRoot(Res); 6409 return; 6410 } 6411 6412 case Intrinsic::init_trampoline: { 6413 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6414 6415 SDValue Ops[6]; 6416 Ops[0] = getRoot(); 6417 Ops[1] = getValue(I.getArgOperand(0)); 6418 Ops[2] = getValue(I.getArgOperand(1)); 6419 Ops[3] = getValue(I.getArgOperand(2)); 6420 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6421 Ops[5] = DAG.getSrcValue(F); 6422 6423 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6424 6425 DAG.setRoot(Res); 6426 return; 6427 } 6428 case Intrinsic::adjust_trampoline: 6429 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6430 TLI.getPointerTy(DAG.getDataLayout()), 6431 getValue(I.getArgOperand(0)))); 6432 return; 6433 case Intrinsic::gcroot: { 6434 assert(DAG.getMachineFunction().getFunction().hasGC() && 6435 "only valid in functions with gc specified, enforced by Verifier"); 6436 assert(GFI && "implied by previous"); 6437 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6438 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6439 6440 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6441 GFI->addStackRoot(FI->getIndex(), TypeMap); 6442 return; 6443 } 6444 case Intrinsic::gcread: 6445 case Intrinsic::gcwrite: 6446 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6447 case Intrinsic::flt_rounds: 6448 Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot()); 6449 setValue(&I, Res); 6450 DAG.setRoot(Res.getValue(1)); 6451 return; 6452 6453 case Intrinsic::expect: 6454 // Just replace __builtin_expect(exp, c) with EXP. 6455 setValue(&I, getValue(I.getArgOperand(0))); 6456 return; 6457 6458 case Intrinsic::debugtrap: 6459 case Intrinsic::trap: { 6460 StringRef TrapFuncName = 6461 I.getAttributes() 6462 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 6463 .getValueAsString(); 6464 if (TrapFuncName.empty()) { 6465 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 6466 ISD::TRAP : ISD::DEBUGTRAP; 6467 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 6468 return; 6469 } 6470 TargetLowering::ArgListTy Args; 6471 6472 TargetLowering::CallLoweringInfo CLI(DAG); 6473 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6474 CallingConv::C, I.getType(), 6475 DAG.getExternalSymbol(TrapFuncName.data(), 6476 TLI.getPointerTy(DAG.getDataLayout())), 6477 std::move(Args)); 6478 6479 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6480 DAG.setRoot(Result.second); 6481 return; 6482 } 6483 6484 case Intrinsic::uadd_with_overflow: 6485 case Intrinsic::sadd_with_overflow: 6486 case Intrinsic::usub_with_overflow: 6487 case Intrinsic::ssub_with_overflow: 6488 case Intrinsic::umul_with_overflow: 6489 case Intrinsic::smul_with_overflow: { 6490 ISD::NodeType Op; 6491 switch (Intrinsic) { 6492 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6493 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6494 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6495 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6496 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6497 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6498 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6499 } 6500 SDValue Op1 = getValue(I.getArgOperand(0)); 6501 SDValue Op2 = getValue(I.getArgOperand(1)); 6502 6503 EVT ResultVT = Op1.getValueType(); 6504 EVT OverflowVT = MVT::i1; 6505 if (ResultVT.isVector()) 6506 OverflowVT = EVT::getVectorVT( 6507 *Context, OverflowVT, ResultVT.getVectorNumElements()); 6508 6509 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6510 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6511 return; 6512 } 6513 case Intrinsic::prefetch: { 6514 SDValue Ops[5]; 6515 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6516 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6517 Ops[0] = DAG.getRoot(); 6518 Ops[1] = getValue(I.getArgOperand(0)); 6519 Ops[2] = getValue(I.getArgOperand(1)); 6520 Ops[3] = getValue(I.getArgOperand(2)); 6521 Ops[4] = getValue(I.getArgOperand(3)); 6522 SDValue Result = DAG.getMemIntrinsicNode( 6523 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 6524 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 6525 /* align */ None, Flags); 6526 6527 // Chain the prefetch in parallell with any pending loads, to stay out of 6528 // the way of later optimizations. 6529 PendingLoads.push_back(Result); 6530 Result = getRoot(); 6531 DAG.setRoot(Result); 6532 return; 6533 } 6534 case Intrinsic::lifetime_start: 6535 case Intrinsic::lifetime_end: { 6536 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6537 // Stack coloring is not enabled in O0, discard region information. 6538 if (TM.getOptLevel() == CodeGenOpt::None) 6539 return; 6540 6541 const int64_t ObjectSize = 6542 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6543 Value *const ObjectPtr = I.getArgOperand(1); 6544 SmallVector<const Value *, 4> Allocas; 6545 GetUnderlyingObjects(ObjectPtr, Allocas, *DL); 6546 6547 for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(), 6548 E = Allocas.end(); Object != E; ++Object) { 6549 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 6550 6551 // Could not find an Alloca. 6552 if (!LifetimeObject) 6553 continue; 6554 6555 // First check that the Alloca is static, otherwise it won't have a 6556 // valid frame index. 6557 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6558 if (SI == FuncInfo.StaticAllocaMap.end()) 6559 return; 6560 6561 const int FrameIndex = SI->second; 6562 int64_t Offset; 6563 if (GetPointerBaseWithConstantOffset( 6564 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6565 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6566 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6567 Offset); 6568 DAG.setRoot(Res); 6569 } 6570 return; 6571 } 6572 case Intrinsic::invariant_start: 6573 // Discard region information. 6574 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6575 return; 6576 case Intrinsic::invariant_end: 6577 // Discard region information. 6578 return; 6579 case Intrinsic::clear_cache: 6580 /// FunctionName may be null. 6581 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6582 lowerCallToExternalSymbol(I, FunctionName); 6583 return; 6584 case Intrinsic::donothing: 6585 // ignore 6586 return; 6587 case Intrinsic::experimental_stackmap: 6588 visitStackmap(I); 6589 return; 6590 case Intrinsic::experimental_patchpoint_void: 6591 case Intrinsic::experimental_patchpoint_i64: 6592 visitPatchpoint(I); 6593 return; 6594 case Intrinsic::experimental_gc_statepoint: 6595 LowerStatepoint(ImmutableStatepoint(&I)); 6596 return; 6597 case Intrinsic::experimental_gc_result: 6598 visitGCResult(cast<GCResultInst>(I)); 6599 return; 6600 case Intrinsic::experimental_gc_relocate: 6601 visitGCRelocate(cast<GCRelocateInst>(I)); 6602 return; 6603 case Intrinsic::instrprof_increment: 6604 llvm_unreachable("instrprof failed to lower an increment"); 6605 case Intrinsic::instrprof_value_profile: 6606 llvm_unreachable("instrprof failed to lower a value profiling call"); 6607 case Intrinsic::localescape: { 6608 MachineFunction &MF = DAG.getMachineFunction(); 6609 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6610 6611 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6612 // is the same on all targets. 6613 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 6614 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6615 if (isa<ConstantPointerNull>(Arg)) 6616 continue; // Skip null pointers. They represent a hole in index space. 6617 AllocaInst *Slot = cast<AllocaInst>(Arg); 6618 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6619 "can only escape static allocas"); 6620 int FI = FuncInfo.StaticAllocaMap[Slot]; 6621 MCSymbol *FrameAllocSym = 6622 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6623 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6624 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6625 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6626 .addSym(FrameAllocSym) 6627 .addFrameIndex(FI); 6628 } 6629 6630 return; 6631 } 6632 6633 case Intrinsic::localrecover: { 6634 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6635 MachineFunction &MF = DAG.getMachineFunction(); 6636 6637 // Get the symbol that defines the frame offset. 6638 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6639 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6640 unsigned IdxVal = 6641 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6642 MCSymbol *FrameAllocSym = 6643 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6644 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6645 6646 Value *FP = I.getArgOperand(1); 6647 SDValue FPVal = getValue(FP); 6648 EVT PtrVT = FPVal.getValueType(); 6649 6650 // Create a MCSymbol for the label to avoid any target lowering 6651 // that would make this PC relative. 6652 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6653 SDValue OffsetVal = 6654 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6655 6656 // Add the offset to the FP. 6657 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 6658 setValue(&I, Add); 6659 6660 return; 6661 } 6662 6663 case Intrinsic::eh_exceptionpointer: 6664 case Intrinsic::eh_exceptioncode: { 6665 // Get the exception pointer vreg, copy from it, and resize it to fit. 6666 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6667 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6668 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6669 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6670 SDValue N = 6671 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6672 if (Intrinsic == Intrinsic::eh_exceptioncode) 6673 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6674 setValue(&I, N); 6675 return; 6676 } 6677 case Intrinsic::xray_customevent: { 6678 // Here we want to make sure that the intrinsic behaves as if it has a 6679 // specific calling convention, and only for x86_64. 6680 // FIXME: Support other platforms later. 6681 const auto &Triple = DAG.getTarget().getTargetTriple(); 6682 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6683 return; 6684 6685 SDLoc DL = getCurSDLoc(); 6686 SmallVector<SDValue, 8> Ops; 6687 6688 // We want to say that we always want the arguments in registers. 6689 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6690 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6691 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6692 SDValue Chain = getRoot(); 6693 Ops.push_back(LogEntryVal); 6694 Ops.push_back(StrSizeVal); 6695 Ops.push_back(Chain); 6696 6697 // We need to enforce the calling convention for the callsite, so that 6698 // argument ordering is enforced correctly, and that register allocation can 6699 // see that some registers may be assumed clobbered and have to preserve 6700 // them across calls to the intrinsic. 6701 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6702 DL, NodeTys, Ops); 6703 SDValue patchableNode = SDValue(MN, 0); 6704 DAG.setRoot(patchableNode); 6705 setValue(&I, patchableNode); 6706 return; 6707 } 6708 case Intrinsic::xray_typedevent: { 6709 // Here we want to make sure that the intrinsic behaves as if it has a 6710 // specific calling convention, and only for x86_64. 6711 // FIXME: Support other platforms later. 6712 const auto &Triple = DAG.getTarget().getTargetTriple(); 6713 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6714 return; 6715 6716 SDLoc DL = getCurSDLoc(); 6717 SmallVector<SDValue, 8> Ops; 6718 6719 // We want to say that we always want the arguments in registers. 6720 // It's unclear to me how manipulating the selection DAG here forces callers 6721 // to provide arguments in registers instead of on the stack. 6722 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6723 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6724 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6725 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6726 SDValue Chain = getRoot(); 6727 Ops.push_back(LogTypeId); 6728 Ops.push_back(LogEntryVal); 6729 Ops.push_back(StrSizeVal); 6730 Ops.push_back(Chain); 6731 6732 // We need to enforce the calling convention for the callsite, so that 6733 // argument ordering is enforced correctly, and that register allocation can 6734 // see that some registers may be assumed clobbered and have to preserve 6735 // them across calls to the intrinsic. 6736 MachineSDNode *MN = DAG.getMachineNode( 6737 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6738 SDValue patchableNode = SDValue(MN, 0); 6739 DAG.setRoot(patchableNode); 6740 setValue(&I, patchableNode); 6741 return; 6742 } 6743 case Intrinsic::experimental_deoptimize: 6744 LowerDeoptimizeCall(&I); 6745 return; 6746 6747 case Intrinsic::experimental_vector_reduce_v2_fadd: 6748 case Intrinsic::experimental_vector_reduce_v2_fmul: 6749 case Intrinsic::experimental_vector_reduce_add: 6750 case Intrinsic::experimental_vector_reduce_mul: 6751 case Intrinsic::experimental_vector_reduce_and: 6752 case Intrinsic::experimental_vector_reduce_or: 6753 case Intrinsic::experimental_vector_reduce_xor: 6754 case Intrinsic::experimental_vector_reduce_smax: 6755 case Intrinsic::experimental_vector_reduce_smin: 6756 case Intrinsic::experimental_vector_reduce_umax: 6757 case Intrinsic::experimental_vector_reduce_umin: 6758 case Intrinsic::experimental_vector_reduce_fmax: 6759 case Intrinsic::experimental_vector_reduce_fmin: 6760 visitVectorReduce(I, Intrinsic); 6761 return; 6762 6763 case Intrinsic::icall_branch_funnel: { 6764 SmallVector<SDValue, 16> Ops; 6765 Ops.push_back(getValue(I.getArgOperand(0))); 6766 6767 int64_t Offset; 6768 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6769 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6770 if (!Base) 6771 report_fatal_error( 6772 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6773 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6774 6775 struct BranchFunnelTarget { 6776 int64_t Offset; 6777 SDValue Target; 6778 }; 6779 SmallVector<BranchFunnelTarget, 8> Targets; 6780 6781 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6782 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6783 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6784 if (ElemBase != Base) 6785 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6786 "to the same GlobalValue"); 6787 6788 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6789 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6790 if (!GA) 6791 report_fatal_error( 6792 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6793 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6794 GA->getGlobal(), getCurSDLoc(), 6795 Val.getValueType(), GA->getOffset())}); 6796 } 6797 llvm::sort(Targets, 6798 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6799 return T1.Offset < T2.Offset; 6800 }); 6801 6802 for (auto &T : Targets) { 6803 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6804 Ops.push_back(T.Target); 6805 } 6806 6807 Ops.push_back(DAG.getRoot()); // Chain 6808 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6809 getCurSDLoc(), MVT::Other, Ops), 6810 0); 6811 DAG.setRoot(N); 6812 setValue(&I, N); 6813 HasTailCall = true; 6814 return; 6815 } 6816 6817 case Intrinsic::wasm_landingpad_index: 6818 // Information this intrinsic contained has been transferred to 6819 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 6820 // delete it now. 6821 return; 6822 6823 case Intrinsic::aarch64_settag: 6824 case Intrinsic::aarch64_settag_zero: { 6825 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6826 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 6827 SDValue Val = TSI.EmitTargetCodeForSetTag( 6828 DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)), 6829 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 6830 ZeroMemory); 6831 DAG.setRoot(Val); 6832 setValue(&I, Val); 6833 return; 6834 } 6835 case Intrinsic::ptrmask: { 6836 SDValue Ptr = getValue(I.getOperand(0)); 6837 SDValue Const = getValue(I.getOperand(1)); 6838 6839 EVT DestVT = 6840 EVT(DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6841 6842 setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), DestVT, Ptr, 6843 DAG.getZExtOrTrunc(Const, getCurSDLoc(), DestVT))); 6844 return; 6845 } 6846 } 6847 } 6848 6849 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6850 const ConstrainedFPIntrinsic &FPI) { 6851 SDLoc sdl = getCurSDLoc(); 6852 6853 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6854 SmallVector<EVT, 4> ValueVTs; 6855 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6856 ValueVTs.push_back(MVT::Other); // Out chain 6857 6858 // We do not need to serialize constrained FP intrinsics against 6859 // each other or against (nonvolatile) loads, so they can be 6860 // chained like loads. 6861 SDValue Chain = DAG.getRoot(); 6862 SmallVector<SDValue, 4> Opers; 6863 Opers.push_back(Chain); 6864 if (FPI.isUnaryOp()) { 6865 Opers.push_back(getValue(FPI.getArgOperand(0))); 6866 } else if (FPI.isTernaryOp()) { 6867 Opers.push_back(getValue(FPI.getArgOperand(0))); 6868 Opers.push_back(getValue(FPI.getArgOperand(1))); 6869 Opers.push_back(getValue(FPI.getArgOperand(2))); 6870 } else { 6871 Opers.push_back(getValue(FPI.getArgOperand(0))); 6872 Opers.push_back(getValue(FPI.getArgOperand(1))); 6873 } 6874 6875 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 6876 assert(Result.getNode()->getNumValues() == 2); 6877 6878 // Push node to the appropriate list so that future instructions can be 6879 // chained up correctly. 6880 SDValue OutChain = Result.getValue(1); 6881 switch (EB) { 6882 case fp::ExceptionBehavior::ebIgnore: 6883 // The only reason why ebIgnore nodes still need to be chained is that 6884 // they might depend on the current rounding mode, and therefore must 6885 // not be moved across instruction that may change that mode. 6886 LLVM_FALLTHROUGH; 6887 case fp::ExceptionBehavior::ebMayTrap: 6888 // These must not be moved across calls or instructions that may change 6889 // floating-point exception masks. 6890 PendingConstrainedFP.push_back(OutChain); 6891 break; 6892 case fp::ExceptionBehavior::ebStrict: 6893 // These must not be moved across calls or instructions that may change 6894 // floating-point exception masks or read floating-point exception flags. 6895 // In addition, they cannot be optimized out even if unused. 6896 PendingConstrainedFPStrict.push_back(OutChain); 6897 break; 6898 } 6899 }; 6900 6901 SDVTList VTs = DAG.getVTList(ValueVTs); 6902 fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue(); 6903 6904 SDNodeFlags Flags; 6905 if (EB == fp::ExceptionBehavior::ebIgnore) 6906 Flags.setNoFPExcept(true); 6907 6908 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 6909 Flags.copyFMF(*FPOp); 6910 6911 unsigned Opcode; 6912 switch (FPI.getIntrinsicID()) { 6913 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6914 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 6915 case Intrinsic::INTRINSIC: \ 6916 Opcode = ISD::STRICT_##DAGN; \ 6917 break; 6918 #include "llvm/IR/ConstrainedOps.def" 6919 case Intrinsic::experimental_constrained_fmuladd: { 6920 Opcode = ISD::STRICT_FMA; 6921 // Break fmuladd into fmul and fadd. 6922 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 6923 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), 6924 ValueVTs[0])) { 6925 Opers.pop_back(); 6926 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 6927 pushOutChain(Mul, EB); 6928 Opcode = ISD::STRICT_FADD; 6929 Opers.clear(); 6930 Opers.push_back(Mul.getValue(1)); 6931 Opers.push_back(Mul.getValue(0)); 6932 Opers.push_back(getValue(FPI.getArgOperand(2))); 6933 } 6934 break; 6935 } 6936 } 6937 6938 // A few strict DAG nodes carry additional operands that are not 6939 // set up by the default code above. 6940 switch (Opcode) { 6941 default: break; 6942 case ISD::STRICT_FP_ROUND: 6943 Opers.push_back( 6944 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 6945 break; 6946 case ISD::STRICT_FSETCC: 6947 case ISD::STRICT_FSETCCS: { 6948 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 6949 Opers.push_back(DAG.getCondCode(getFCmpCondCode(FPCmp->getPredicate()))); 6950 break; 6951 } 6952 } 6953 6954 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 6955 pushOutChain(Result, EB); 6956 6957 SDValue FPResult = Result.getValue(0); 6958 setValue(&FPI, FPResult); 6959 } 6960 6961 std::pair<SDValue, SDValue> 6962 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 6963 const BasicBlock *EHPadBB) { 6964 MachineFunction &MF = DAG.getMachineFunction(); 6965 MachineModuleInfo &MMI = MF.getMMI(); 6966 MCSymbol *BeginLabel = nullptr; 6967 6968 if (EHPadBB) { 6969 // Insert a label before the invoke call to mark the try range. This can be 6970 // used to detect deletion of the invoke via the MachineModuleInfo. 6971 BeginLabel = MMI.getContext().createTempSymbol(); 6972 6973 // For SjLj, keep track of which landing pads go with which invokes 6974 // so as to maintain the ordering of pads in the LSDA. 6975 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 6976 if (CallSiteIndex) { 6977 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 6978 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 6979 6980 // Now that the call site is handled, stop tracking it. 6981 MMI.setCurrentCallSite(0); 6982 } 6983 6984 // Both PendingLoads and PendingExports must be flushed here; 6985 // this call might not return. 6986 (void)getRoot(); 6987 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 6988 6989 CLI.setChain(getRoot()); 6990 } 6991 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6992 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6993 6994 assert((CLI.IsTailCall || Result.second.getNode()) && 6995 "Non-null chain expected with non-tail call!"); 6996 assert((Result.second.getNode() || !Result.first.getNode()) && 6997 "Null value expected with tail call!"); 6998 6999 if (!Result.second.getNode()) { 7000 // As a special case, a null chain means that a tail call has been emitted 7001 // and the DAG root is already updated. 7002 HasTailCall = true; 7003 7004 // Since there's no actual continuation from this block, nothing can be 7005 // relying on us setting vregs for them. 7006 PendingExports.clear(); 7007 } else { 7008 DAG.setRoot(Result.second); 7009 } 7010 7011 if (EHPadBB) { 7012 // Insert a label at the end of the invoke call to mark the try range. This 7013 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7014 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7015 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 7016 7017 // Inform MachineModuleInfo of range. 7018 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7019 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7020 // actually use outlined funclets and their LSDA info style. 7021 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7022 assert(CLI.CB); 7023 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 7024 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CB), BeginLabel, EndLabel); 7025 } else if (!isScopedEHPersonality(Pers)) { 7026 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7027 } 7028 } 7029 7030 return Result; 7031 } 7032 7033 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 7034 bool isTailCall, 7035 const BasicBlock *EHPadBB) { 7036 auto &DL = DAG.getDataLayout(); 7037 FunctionType *FTy = CB.getFunctionType(); 7038 Type *RetTy = CB.getType(); 7039 7040 TargetLowering::ArgListTy Args; 7041 Args.reserve(CB.arg_size()); 7042 7043 const Value *SwiftErrorVal = nullptr; 7044 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7045 7046 if (isTailCall) { 7047 // Avoid emitting tail calls in functions with the disable-tail-calls 7048 // attribute. 7049 auto *Caller = CB.getParent()->getParent(); 7050 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 7051 "true") 7052 isTailCall = false; 7053 7054 // We can't tail call inside a function with a swifterror argument. Lowering 7055 // does not support this yet. It would have to move into the swifterror 7056 // register before the call. 7057 if (TLI.supportSwiftError() && 7058 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7059 isTailCall = false; 7060 } 7061 7062 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 7063 TargetLowering::ArgListEntry Entry; 7064 const Value *V = *I; 7065 7066 // Skip empty types 7067 if (V->getType()->isEmptyTy()) 7068 continue; 7069 7070 SDValue ArgNode = getValue(V); 7071 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7072 7073 Entry.setAttributes(&CB, I - CB.arg_begin()); 7074 7075 // Use swifterror virtual register as input to the call. 7076 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7077 SwiftErrorVal = V; 7078 // We find the virtual register for the actual swifterror argument. 7079 // Instead of using the Value, we use the virtual register instead. 7080 Entry.Node = 7081 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 7082 EVT(TLI.getPointerTy(DL))); 7083 } 7084 7085 Args.push_back(Entry); 7086 7087 // If we have an explicit sret argument that is an Instruction, (i.e., it 7088 // might point to function-local memory), we can't meaningfully tail-call. 7089 if (Entry.IsSRet && isa<Instruction>(V)) 7090 isTailCall = false; 7091 } 7092 7093 // If call site has a cfguardtarget operand bundle, create and add an 7094 // additional ArgListEntry. 7095 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 7096 TargetLowering::ArgListEntry Entry; 7097 Value *V = Bundle->Inputs[0]; 7098 SDValue ArgNode = getValue(V); 7099 Entry.Node = ArgNode; 7100 Entry.Ty = V->getType(); 7101 Entry.IsCFGuardTarget = true; 7102 Args.push_back(Entry); 7103 } 7104 7105 // Check if target-independent constraints permit a tail call here. 7106 // Target-dependent constraints are checked within TLI->LowerCallTo. 7107 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 7108 isTailCall = false; 7109 7110 // Disable tail calls if there is an swifterror argument. Targets have not 7111 // been updated to support tail calls. 7112 if (TLI.supportSwiftError() && SwiftErrorVal) 7113 isTailCall = false; 7114 7115 TargetLowering::CallLoweringInfo CLI(DAG); 7116 CLI.setDebugLoc(getCurSDLoc()) 7117 .setChain(getRoot()) 7118 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 7119 .setTailCall(isTailCall) 7120 .setConvergent(CB.isConvergent()); 7121 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7122 7123 if (Result.first.getNode()) { 7124 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 7125 setValue(&CB, Result.first); 7126 } 7127 7128 // The last element of CLI.InVals has the SDValue for swifterror return. 7129 // Here we copy it to a virtual register and update SwiftErrorMap for 7130 // book-keeping. 7131 if (SwiftErrorVal && TLI.supportSwiftError()) { 7132 // Get the last element of InVals. 7133 SDValue Src = CLI.InVals.back(); 7134 Register VReg = 7135 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 7136 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7137 DAG.setRoot(CopyNode); 7138 } 7139 } 7140 7141 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7142 SelectionDAGBuilder &Builder) { 7143 // Check to see if this load can be trivially constant folded, e.g. if the 7144 // input is from a string literal. 7145 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7146 // Cast pointer to the type we really want to load. 7147 Type *LoadTy = 7148 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7149 if (LoadVT.isVector()) 7150 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7151 7152 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7153 PointerType::getUnqual(LoadTy)); 7154 7155 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 7156 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 7157 return Builder.getValue(LoadCst); 7158 } 7159 7160 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7161 // still constant memory, the input chain can be the entry node. 7162 SDValue Root; 7163 bool ConstantMemory = false; 7164 7165 // Do not serialize (non-volatile) loads of constant memory with anything. 7166 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7167 Root = Builder.DAG.getEntryNode(); 7168 ConstantMemory = true; 7169 } else { 7170 // Do not serialize non-volatile loads against each other. 7171 Root = Builder.DAG.getRoot(); 7172 } 7173 7174 SDValue Ptr = Builder.getValue(PtrVal); 7175 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 7176 Ptr, MachinePointerInfo(PtrVal), 7177 /* Alignment = */ 1); 7178 7179 if (!ConstantMemory) 7180 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7181 return LoadVal; 7182 } 7183 7184 /// Record the value for an instruction that produces an integer result, 7185 /// converting the type where necessary. 7186 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7187 SDValue Value, 7188 bool IsSigned) { 7189 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7190 I.getType(), true); 7191 if (IsSigned) 7192 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7193 else 7194 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7195 setValue(&I, Value); 7196 } 7197 7198 /// See if we can lower a memcmp call into an optimized form. If so, return 7199 /// true and lower it. Otherwise return false, and it will be lowered like a 7200 /// normal call. 7201 /// The caller already checked that \p I calls the appropriate LibFunc with a 7202 /// correct prototype. 7203 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 7204 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7205 const Value *Size = I.getArgOperand(2); 7206 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 7207 if (CSize && CSize->getZExtValue() == 0) { 7208 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7209 I.getType(), true); 7210 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7211 return true; 7212 } 7213 7214 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7215 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7216 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7217 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7218 if (Res.first.getNode()) { 7219 processIntegerCallValue(I, Res.first, true); 7220 PendingLoads.push_back(Res.second); 7221 return true; 7222 } 7223 7224 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7225 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7226 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7227 return false; 7228 7229 // If the target has a fast compare for the given size, it will return a 7230 // preferred load type for that size. Require that the load VT is legal and 7231 // that the target supports unaligned loads of that type. Otherwise, return 7232 // INVALID. 7233 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7234 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7235 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7236 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7237 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7238 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7239 // TODO: Check alignment of src and dest ptrs. 7240 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7241 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7242 if (!TLI.isTypeLegal(LVT) || 7243 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7244 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7245 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7246 } 7247 7248 return LVT; 7249 }; 7250 7251 // This turns into unaligned loads. We only do this if the target natively 7252 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7253 // we'll only produce a small number of byte loads. 7254 MVT LoadVT; 7255 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7256 switch (NumBitsToCompare) { 7257 default: 7258 return false; 7259 case 16: 7260 LoadVT = MVT::i16; 7261 break; 7262 case 32: 7263 LoadVT = MVT::i32; 7264 break; 7265 case 64: 7266 case 128: 7267 case 256: 7268 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7269 break; 7270 } 7271 7272 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7273 return false; 7274 7275 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7276 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7277 7278 // Bitcast to a wide integer type if the loads are vectors. 7279 if (LoadVT.isVector()) { 7280 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7281 LoadL = DAG.getBitcast(CmpVT, LoadL); 7282 LoadR = DAG.getBitcast(CmpVT, LoadR); 7283 } 7284 7285 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7286 processIntegerCallValue(I, Cmp, false); 7287 return true; 7288 } 7289 7290 /// See if we can lower a memchr call into an optimized form. If so, return 7291 /// true and lower it. Otherwise return false, and it will be lowered like a 7292 /// normal call. 7293 /// The caller already checked that \p I calls the appropriate LibFunc with a 7294 /// correct prototype. 7295 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 7296 const Value *Src = I.getArgOperand(0); 7297 const Value *Char = I.getArgOperand(1); 7298 const Value *Length = I.getArgOperand(2); 7299 7300 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7301 std::pair<SDValue, SDValue> Res = 7302 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 7303 getValue(Src), getValue(Char), getValue(Length), 7304 MachinePointerInfo(Src)); 7305 if (Res.first.getNode()) { 7306 setValue(&I, Res.first); 7307 PendingLoads.push_back(Res.second); 7308 return true; 7309 } 7310 7311 return false; 7312 } 7313 7314 /// See if we can lower a mempcpy call into an optimized form. If so, return 7315 /// true and lower it. Otherwise return false, and it will be lowered like a 7316 /// normal call. 7317 /// The caller already checked that \p I calls the appropriate LibFunc with a 7318 /// correct prototype. 7319 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 7320 SDValue Dst = getValue(I.getArgOperand(0)); 7321 SDValue Src = getValue(I.getArgOperand(1)); 7322 SDValue Size = getValue(I.getArgOperand(2)); 7323 7324 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 7325 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 7326 // DAG::getMemcpy needs Alignment to be defined. 7327 Align Alignment = std::min(DstAlign, SrcAlign); 7328 7329 bool isVol = false; 7330 SDLoc sdl = getCurSDLoc(); 7331 7332 // In the mempcpy context we need to pass in a false value for isTailCall 7333 // because the return pointer needs to be adjusted by the size of 7334 // the copied memory. 7335 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 7336 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false, 7337 /*isTailCall=*/false, 7338 MachinePointerInfo(I.getArgOperand(0)), 7339 MachinePointerInfo(I.getArgOperand(1))); 7340 assert(MC.getNode() != nullptr && 7341 "** memcpy should not be lowered as TailCall in mempcpy context **"); 7342 DAG.setRoot(MC); 7343 7344 // Check if Size needs to be truncated or extended. 7345 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 7346 7347 // Adjust return pointer to point just past the last dst byte. 7348 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 7349 Dst, Size); 7350 setValue(&I, DstPlusSize); 7351 return true; 7352 } 7353 7354 /// See if we can lower a strcpy call into an optimized form. If so, return 7355 /// true and lower it, otherwise return false and it will be lowered like a 7356 /// normal call. 7357 /// The caller already checked that \p I calls the appropriate LibFunc with a 7358 /// correct prototype. 7359 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 7360 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7361 7362 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7363 std::pair<SDValue, SDValue> Res = 7364 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 7365 getValue(Arg0), getValue(Arg1), 7366 MachinePointerInfo(Arg0), 7367 MachinePointerInfo(Arg1), isStpcpy); 7368 if (Res.first.getNode()) { 7369 setValue(&I, Res.first); 7370 DAG.setRoot(Res.second); 7371 return true; 7372 } 7373 7374 return false; 7375 } 7376 7377 /// See if we can lower a strcmp call into an optimized form. If so, return 7378 /// true and lower it, otherwise return false and it will be lowered like a 7379 /// normal call. 7380 /// The caller already checked that \p I calls the appropriate LibFunc with a 7381 /// correct prototype. 7382 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 7383 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7384 7385 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7386 std::pair<SDValue, SDValue> Res = 7387 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 7388 getValue(Arg0), getValue(Arg1), 7389 MachinePointerInfo(Arg0), 7390 MachinePointerInfo(Arg1)); 7391 if (Res.first.getNode()) { 7392 processIntegerCallValue(I, Res.first, true); 7393 PendingLoads.push_back(Res.second); 7394 return true; 7395 } 7396 7397 return false; 7398 } 7399 7400 /// See if we can lower a strlen call into an optimized form. If so, return 7401 /// true and lower it, otherwise return false and it will be lowered like a 7402 /// normal call. 7403 /// The caller already checked that \p I calls the appropriate LibFunc with a 7404 /// correct prototype. 7405 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 7406 const Value *Arg0 = I.getArgOperand(0); 7407 7408 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7409 std::pair<SDValue, SDValue> Res = 7410 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 7411 getValue(Arg0), MachinePointerInfo(Arg0)); 7412 if (Res.first.getNode()) { 7413 processIntegerCallValue(I, Res.first, false); 7414 PendingLoads.push_back(Res.second); 7415 return true; 7416 } 7417 7418 return false; 7419 } 7420 7421 /// See if we can lower a strnlen call into an optimized form. If so, return 7422 /// true and lower it, otherwise return false and it will be lowered like a 7423 /// normal call. 7424 /// The caller already checked that \p I calls the appropriate LibFunc with a 7425 /// correct prototype. 7426 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 7427 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7428 7429 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7430 std::pair<SDValue, SDValue> Res = 7431 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 7432 getValue(Arg0), getValue(Arg1), 7433 MachinePointerInfo(Arg0)); 7434 if (Res.first.getNode()) { 7435 processIntegerCallValue(I, Res.first, false); 7436 PendingLoads.push_back(Res.second); 7437 return true; 7438 } 7439 7440 return false; 7441 } 7442 7443 /// See if we can lower a unary floating-point operation into an SDNode with 7444 /// the specified Opcode. If so, return true and lower it, otherwise return 7445 /// false and it will be lowered like a normal call. 7446 /// The caller already checked that \p I calls the appropriate LibFunc with a 7447 /// correct prototype. 7448 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 7449 unsigned Opcode) { 7450 // We already checked this call's prototype; verify it doesn't modify errno. 7451 if (!I.onlyReadsMemory()) 7452 return false; 7453 7454 SDValue Tmp = getValue(I.getArgOperand(0)); 7455 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 7456 return true; 7457 } 7458 7459 /// See if we can lower a binary floating-point operation into an SDNode with 7460 /// the specified Opcode. If so, return true and lower it. Otherwise return 7461 /// false, and it will be lowered like a normal call. 7462 /// The caller already checked that \p I calls the appropriate LibFunc with a 7463 /// correct prototype. 7464 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 7465 unsigned Opcode) { 7466 // We already checked this call's prototype; verify it doesn't modify errno. 7467 if (!I.onlyReadsMemory()) 7468 return false; 7469 7470 SDValue Tmp0 = getValue(I.getArgOperand(0)); 7471 SDValue Tmp1 = getValue(I.getArgOperand(1)); 7472 EVT VT = Tmp0.getValueType(); 7473 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 7474 return true; 7475 } 7476 7477 void SelectionDAGBuilder::visitCall(const CallInst &I) { 7478 // Handle inline assembly differently. 7479 if (isa<InlineAsm>(I.getCalledValue())) { 7480 visitInlineAsm(I); 7481 return; 7482 } 7483 7484 if (Function *F = I.getCalledFunction()) { 7485 if (F->isDeclaration()) { 7486 // Is this an LLVM intrinsic or a target-specific intrinsic? 7487 unsigned IID = F->getIntrinsicID(); 7488 if (!IID) 7489 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 7490 IID = II->getIntrinsicID(F); 7491 7492 if (IID) { 7493 visitIntrinsicCall(I, IID); 7494 return; 7495 } 7496 } 7497 7498 // Check for well-known libc/libm calls. If the function is internal, it 7499 // can't be a library call. Don't do the check if marked as nobuiltin for 7500 // some reason or the call site requires strict floating point semantics. 7501 LibFunc Func; 7502 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 7503 F->hasName() && LibInfo->getLibFunc(*F, Func) && 7504 LibInfo->hasOptimizedCodeGen(Func)) { 7505 switch (Func) { 7506 default: break; 7507 case LibFunc_copysign: 7508 case LibFunc_copysignf: 7509 case LibFunc_copysignl: 7510 // We already checked this call's prototype; verify it doesn't modify 7511 // errno. 7512 if (I.onlyReadsMemory()) { 7513 SDValue LHS = getValue(I.getArgOperand(0)); 7514 SDValue RHS = getValue(I.getArgOperand(1)); 7515 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 7516 LHS.getValueType(), LHS, RHS)); 7517 return; 7518 } 7519 break; 7520 case LibFunc_fabs: 7521 case LibFunc_fabsf: 7522 case LibFunc_fabsl: 7523 if (visitUnaryFloatCall(I, ISD::FABS)) 7524 return; 7525 break; 7526 case LibFunc_fmin: 7527 case LibFunc_fminf: 7528 case LibFunc_fminl: 7529 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 7530 return; 7531 break; 7532 case LibFunc_fmax: 7533 case LibFunc_fmaxf: 7534 case LibFunc_fmaxl: 7535 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 7536 return; 7537 break; 7538 case LibFunc_sin: 7539 case LibFunc_sinf: 7540 case LibFunc_sinl: 7541 if (visitUnaryFloatCall(I, ISD::FSIN)) 7542 return; 7543 break; 7544 case LibFunc_cos: 7545 case LibFunc_cosf: 7546 case LibFunc_cosl: 7547 if (visitUnaryFloatCall(I, ISD::FCOS)) 7548 return; 7549 break; 7550 case LibFunc_sqrt: 7551 case LibFunc_sqrtf: 7552 case LibFunc_sqrtl: 7553 case LibFunc_sqrt_finite: 7554 case LibFunc_sqrtf_finite: 7555 case LibFunc_sqrtl_finite: 7556 if (visitUnaryFloatCall(I, ISD::FSQRT)) 7557 return; 7558 break; 7559 case LibFunc_floor: 7560 case LibFunc_floorf: 7561 case LibFunc_floorl: 7562 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 7563 return; 7564 break; 7565 case LibFunc_nearbyint: 7566 case LibFunc_nearbyintf: 7567 case LibFunc_nearbyintl: 7568 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 7569 return; 7570 break; 7571 case LibFunc_ceil: 7572 case LibFunc_ceilf: 7573 case LibFunc_ceill: 7574 if (visitUnaryFloatCall(I, ISD::FCEIL)) 7575 return; 7576 break; 7577 case LibFunc_rint: 7578 case LibFunc_rintf: 7579 case LibFunc_rintl: 7580 if (visitUnaryFloatCall(I, ISD::FRINT)) 7581 return; 7582 break; 7583 case LibFunc_round: 7584 case LibFunc_roundf: 7585 case LibFunc_roundl: 7586 if (visitUnaryFloatCall(I, ISD::FROUND)) 7587 return; 7588 break; 7589 case LibFunc_trunc: 7590 case LibFunc_truncf: 7591 case LibFunc_truncl: 7592 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 7593 return; 7594 break; 7595 case LibFunc_log2: 7596 case LibFunc_log2f: 7597 case LibFunc_log2l: 7598 if (visitUnaryFloatCall(I, ISD::FLOG2)) 7599 return; 7600 break; 7601 case LibFunc_exp2: 7602 case LibFunc_exp2f: 7603 case LibFunc_exp2l: 7604 if (visitUnaryFloatCall(I, ISD::FEXP2)) 7605 return; 7606 break; 7607 case LibFunc_memcmp: 7608 if (visitMemCmpCall(I)) 7609 return; 7610 break; 7611 case LibFunc_mempcpy: 7612 if (visitMemPCpyCall(I)) 7613 return; 7614 break; 7615 case LibFunc_memchr: 7616 if (visitMemChrCall(I)) 7617 return; 7618 break; 7619 case LibFunc_strcpy: 7620 if (visitStrCpyCall(I, false)) 7621 return; 7622 break; 7623 case LibFunc_stpcpy: 7624 if (visitStrCpyCall(I, true)) 7625 return; 7626 break; 7627 case LibFunc_strcmp: 7628 if (visitStrCmpCall(I)) 7629 return; 7630 break; 7631 case LibFunc_strlen: 7632 if (visitStrLenCall(I)) 7633 return; 7634 break; 7635 case LibFunc_strnlen: 7636 if (visitStrNLenCall(I)) 7637 return; 7638 break; 7639 } 7640 } 7641 } 7642 7643 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 7644 // have to do anything here to lower funclet bundles. 7645 // CFGuardTarget bundles are lowered in LowerCallTo. 7646 assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt, 7647 LLVMContext::OB_funclet, 7648 LLVMContext::OB_cfguardtarget}) && 7649 "Cannot lower calls with arbitrary operand bundles!"); 7650 7651 SDValue Callee = getValue(I.getCalledValue()); 7652 7653 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 7654 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 7655 else 7656 // Check if we can potentially perform a tail call. More detailed checking 7657 // is be done within LowerCallTo, after more information about the call is 7658 // known. 7659 LowerCallTo(I, Callee, I.isTailCall()); 7660 } 7661 7662 namespace { 7663 7664 /// AsmOperandInfo - This contains information for each constraint that we are 7665 /// lowering. 7666 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 7667 public: 7668 /// CallOperand - If this is the result output operand or a clobber 7669 /// this is null, otherwise it is the incoming operand to the CallInst. 7670 /// This gets modified as the asm is processed. 7671 SDValue CallOperand; 7672 7673 /// AssignedRegs - If this is a register or register class operand, this 7674 /// contains the set of register corresponding to the operand. 7675 RegsForValue AssignedRegs; 7676 7677 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 7678 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 7679 } 7680 7681 /// Whether or not this operand accesses memory 7682 bool hasMemory(const TargetLowering &TLI) const { 7683 // Indirect operand accesses access memory. 7684 if (isIndirect) 7685 return true; 7686 7687 for (const auto &Code : Codes) 7688 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 7689 return true; 7690 7691 return false; 7692 } 7693 7694 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 7695 /// corresponds to. If there is no Value* for this operand, it returns 7696 /// MVT::Other. 7697 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 7698 const DataLayout &DL) const { 7699 if (!CallOperandVal) return MVT::Other; 7700 7701 if (isa<BasicBlock>(CallOperandVal)) 7702 return TLI.getProgramPointerTy(DL); 7703 7704 llvm::Type *OpTy = CallOperandVal->getType(); 7705 7706 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 7707 // If this is an indirect operand, the operand is a pointer to the 7708 // accessed type. 7709 if (isIndirect) { 7710 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 7711 if (!PtrTy) 7712 report_fatal_error("Indirect operand for inline asm not a pointer!"); 7713 OpTy = PtrTy->getElementType(); 7714 } 7715 7716 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 7717 if (StructType *STy = dyn_cast<StructType>(OpTy)) 7718 if (STy->getNumElements() == 1) 7719 OpTy = STy->getElementType(0); 7720 7721 // If OpTy is not a single value, it may be a struct/union that we 7722 // can tile with integers. 7723 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7724 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7725 switch (BitSize) { 7726 default: break; 7727 case 1: 7728 case 8: 7729 case 16: 7730 case 32: 7731 case 64: 7732 case 128: 7733 OpTy = IntegerType::get(Context, BitSize); 7734 break; 7735 } 7736 } 7737 7738 return TLI.getValueType(DL, OpTy, true); 7739 } 7740 }; 7741 7742 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>; 7743 7744 } // end anonymous namespace 7745 7746 /// Make sure that the output operand \p OpInfo and its corresponding input 7747 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7748 /// out). 7749 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7750 SDISelAsmOperandInfo &MatchingOpInfo, 7751 SelectionDAG &DAG) { 7752 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7753 return; 7754 7755 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7756 const auto &TLI = DAG.getTargetLoweringInfo(); 7757 7758 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7759 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7760 OpInfo.ConstraintVT); 7761 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7762 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7763 MatchingOpInfo.ConstraintVT); 7764 if ((OpInfo.ConstraintVT.isInteger() != 7765 MatchingOpInfo.ConstraintVT.isInteger()) || 7766 (MatchRC.second != InputRC.second)) { 7767 // FIXME: error out in a more elegant fashion 7768 report_fatal_error("Unsupported asm: input constraint" 7769 " with a matching output constraint of" 7770 " incompatible type!"); 7771 } 7772 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 7773 } 7774 7775 /// Get a direct memory input to behave well as an indirect operand. 7776 /// This may introduce stores, hence the need for a \p Chain. 7777 /// \return The (possibly updated) chain. 7778 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 7779 SDISelAsmOperandInfo &OpInfo, 7780 SelectionDAG &DAG) { 7781 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7782 7783 // If we don't have an indirect input, put it in the constpool if we can, 7784 // otherwise spill it to a stack slot. 7785 // TODO: This isn't quite right. We need to handle these according to 7786 // the addressing mode that the constraint wants. Also, this may take 7787 // an additional register for the computation and we don't want that 7788 // either. 7789 7790 // If the operand is a float, integer, or vector constant, spill to a 7791 // constant pool entry to get its address. 7792 const Value *OpVal = OpInfo.CallOperandVal; 7793 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 7794 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 7795 OpInfo.CallOperand = DAG.getConstantPool( 7796 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 7797 return Chain; 7798 } 7799 7800 // Otherwise, create a stack slot and emit a store to it before the asm. 7801 Type *Ty = OpVal->getType(); 7802 auto &DL = DAG.getDataLayout(); 7803 uint64_t TySize = DL.getTypeAllocSize(Ty); 7804 unsigned Align = DL.getPrefTypeAlignment(Ty); 7805 MachineFunction &MF = DAG.getMachineFunction(); 7806 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7807 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 7808 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 7809 MachinePointerInfo::getFixedStack(MF, SSFI), 7810 TLI.getMemValueType(DL, Ty)); 7811 OpInfo.CallOperand = StackSlot; 7812 7813 return Chain; 7814 } 7815 7816 /// GetRegistersForValue - Assign registers (virtual or physical) for the 7817 /// specified operand. We prefer to assign virtual registers, to allow the 7818 /// register allocator to handle the assignment process. However, if the asm 7819 /// uses features that we can't model on machineinstrs, we have SDISel do the 7820 /// allocation. This produces generally horrible, but correct, code. 7821 /// 7822 /// OpInfo describes the operand 7823 /// RefOpInfo describes the matching operand if any, the operand otherwise 7824 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 7825 SDISelAsmOperandInfo &OpInfo, 7826 SDISelAsmOperandInfo &RefOpInfo) { 7827 LLVMContext &Context = *DAG.getContext(); 7828 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7829 7830 MachineFunction &MF = DAG.getMachineFunction(); 7831 SmallVector<unsigned, 4> Regs; 7832 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7833 7834 // No work to do for memory operations. 7835 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 7836 return; 7837 7838 // If this is a constraint for a single physreg, or a constraint for a 7839 // register class, find it. 7840 unsigned AssignedReg; 7841 const TargetRegisterClass *RC; 7842 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 7843 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 7844 // RC is unset only on failure. Return immediately. 7845 if (!RC) 7846 return; 7847 7848 // Get the actual register value type. This is important, because the user 7849 // may have asked for (e.g.) the AX register in i32 type. We need to 7850 // remember that AX is actually i16 to get the right extension. 7851 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 7852 7853 if (OpInfo.ConstraintVT != MVT::Other) { 7854 // If this is an FP operand in an integer register (or visa versa), or more 7855 // generally if the operand value disagrees with the register class we plan 7856 // to stick it in, fix the operand type. 7857 // 7858 // If this is an input value, the bitcast to the new type is done now. 7859 // Bitcast for output value is done at the end of visitInlineAsm(). 7860 if ((OpInfo.Type == InlineAsm::isOutput || 7861 OpInfo.Type == InlineAsm::isInput) && 7862 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 7863 // Try to convert to the first EVT that the reg class contains. If the 7864 // types are identical size, use a bitcast to convert (e.g. two differing 7865 // vector types). Note: output bitcast is done at the end of 7866 // visitInlineAsm(). 7867 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 7868 // Exclude indirect inputs while they are unsupported because the code 7869 // to perform the load is missing and thus OpInfo.CallOperand still 7870 // refers to the input address rather than the pointed-to value. 7871 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 7872 OpInfo.CallOperand = 7873 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 7874 OpInfo.ConstraintVT = RegVT; 7875 // If the operand is an FP value and we want it in integer registers, 7876 // use the corresponding integer type. This turns an f64 value into 7877 // i64, which can be passed with two i32 values on a 32-bit machine. 7878 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7879 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7880 if (OpInfo.Type == InlineAsm::isInput) 7881 OpInfo.CallOperand = 7882 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 7883 OpInfo.ConstraintVT = VT; 7884 } 7885 } 7886 } 7887 7888 // No need to allocate a matching input constraint since the constraint it's 7889 // matching to has already been allocated. 7890 if (OpInfo.isMatchingInputConstraint()) 7891 return; 7892 7893 EVT ValueVT = OpInfo.ConstraintVT; 7894 if (OpInfo.ConstraintVT == MVT::Other) 7895 ValueVT = RegVT; 7896 7897 // Initialize NumRegs. 7898 unsigned NumRegs = 1; 7899 if (OpInfo.ConstraintVT != MVT::Other) 7900 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 7901 7902 // If this is a constraint for a specific physical register, like {r17}, 7903 // assign it now. 7904 7905 // If this associated to a specific register, initialize iterator to correct 7906 // place. If virtual, make sure we have enough registers 7907 7908 // Initialize iterator if necessary 7909 TargetRegisterClass::iterator I = RC->begin(); 7910 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7911 7912 // Do not check for single registers. 7913 if (AssignedReg) { 7914 for (; *I != AssignedReg; ++I) 7915 assert(I != RC->end() && "AssignedReg should be member of RC"); 7916 } 7917 7918 for (; NumRegs; --NumRegs, ++I) { 7919 assert(I != RC->end() && "Ran out of registers to allocate!"); 7920 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 7921 Regs.push_back(R); 7922 } 7923 7924 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7925 } 7926 7927 static unsigned 7928 findMatchingInlineAsmOperand(unsigned OperandNo, 7929 const std::vector<SDValue> &AsmNodeOperands) { 7930 // Scan until we find the definition we already emitted of this operand. 7931 unsigned CurOp = InlineAsm::Op_FirstOperand; 7932 for (; OperandNo; --OperandNo) { 7933 // Advance to the next operand. 7934 unsigned OpFlag = 7935 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7936 assert((InlineAsm::isRegDefKind(OpFlag) || 7937 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 7938 InlineAsm::isMemKind(OpFlag)) && 7939 "Skipped past definitions?"); 7940 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 7941 } 7942 return CurOp; 7943 } 7944 7945 namespace { 7946 7947 class ExtraFlags { 7948 unsigned Flags = 0; 7949 7950 public: 7951 explicit ExtraFlags(const CallBase &Call) { 7952 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledValue()); 7953 if (IA->hasSideEffects()) 7954 Flags |= InlineAsm::Extra_HasSideEffects; 7955 if (IA->isAlignStack()) 7956 Flags |= InlineAsm::Extra_IsAlignStack; 7957 if (Call.isConvergent()) 7958 Flags |= InlineAsm::Extra_IsConvergent; 7959 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 7960 } 7961 7962 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 7963 // Ideally, we would only check against memory constraints. However, the 7964 // meaning of an Other constraint can be target-specific and we can't easily 7965 // reason about it. Therefore, be conservative and set MayLoad/MayStore 7966 // for Other constraints as well. 7967 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 7968 OpInfo.ConstraintType == TargetLowering::C_Other) { 7969 if (OpInfo.Type == InlineAsm::isInput) 7970 Flags |= InlineAsm::Extra_MayLoad; 7971 else if (OpInfo.Type == InlineAsm::isOutput) 7972 Flags |= InlineAsm::Extra_MayStore; 7973 else if (OpInfo.Type == InlineAsm::isClobber) 7974 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 7975 } 7976 } 7977 7978 unsigned get() const { return Flags; } 7979 }; 7980 7981 } // end anonymous namespace 7982 7983 /// visitInlineAsm - Handle a call to an InlineAsm object. 7984 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call) { 7985 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledValue()); 7986 7987 /// ConstraintOperands - Information about all of the constraints. 7988 SDISelAsmOperandInfoVector ConstraintOperands; 7989 7990 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7991 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 7992 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 7993 7994 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 7995 // AsmDialect, MayLoad, MayStore). 7996 bool HasSideEffect = IA->hasSideEffects(); 7997 ExtraFlags ExtraInfo(Call); 7998 7999 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 8000 unsigned ResNo = 0; // ResNo - The result number of the next output. 8001 unsigned NumMatchingOps = 0; 8002 for (auto &T : TargetConstraints) { 8003 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 8004 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8005 8006 // Compute the value type for each operand. 8007 if (OpInfo.Type == InlineAsm::isInput || 8008 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 8009 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 8010 8011 // Process the call argument. BasicBlocks are labels, currently appearing 8012 // only in asm's. 8013 if (isa<CallBrInst>(Call) && 8014 ArgNo - 1 >= (cast<CallBrInst>(&Call)->getNumArgOperands() - 8015 cast<CallBrInst>(&Call)->getNumIndirectDests() - 8016 NumMatchingOps) && 8017 (NumMatchingOps == 0 || 8018 ArgNo - 1 < (cast<CallBrInst>(&Call)->getNumArgOperands() - 8019 NumMatchingOps))) { 8020 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal); 8021 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true); 8022 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT); 8023 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 8024 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 8025 } else { 8026 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8027 } 8028 8029 OpInfo.ConstraintVT = 8030 OpInfo 8031 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 8032 .getSimpleVT(); 8033 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 8034 // The return value of the call is this value. As such, there is no 8035 // corresponding argument. 8036 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 8037 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 8038 OpInfo.ConstraintVT = TLI.getSimpleValueType( 8039 DAG.getDataLayout(), STy->getElementType(ResNo)); 8040 } else { 8041 assert(ResNo == 0 && "Asm only has one result!"); 8042 OpInfo.ConstraintVT = 8043 TLI.getSimpleValueType(DAG.getDataLayout(), Call.getType()); 8044 } 8045 ++ResNo; 8046 } else { 8047 OpInfo.ConstraintVT = MVT::Other; 8048 } 8049 8050 if (OpInfo.hasMatchingInput()) 8051 ++NumMatchingOps; 8052 8053 if (!HasSideEffect) 8054 HasSideEffect = OpInfo.hasMemory(TLI); 8055 8056 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8057 // FIXME: Could we compute this on OpInfo rather than T? 8058 8059 // Compute the constraint code and ConstraintType to use. 8060 TLI.ComputeConstraintToUse(T, SDValue()); 8061 8062 if (T.ConstraintType == TargetLowering::C_Immediate && 8063 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8064 // We've delayed emitting a diagnostic like the "n" constraint because 8065 // inlining could cause an integer showing up. 8066 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 8067 "' expects an integer constant " 8068 "expression"); 8069 8070 ExtraInfo.update(T); 8071 } 8072 8073 8074 // We won't need to flush pending loads if this asm doesn't touch 8075 // memory and is nonvolatile. 8076 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8077 8078 bool IsCallBr = isa<CallBrInst>(Call); 8079 if (IsCallBr) { 8080 // If this is a callbr we need to flush pending exports since inlineasm_br 8081 // is a terminator. We need to do this before nodes are glued to 8082 // the inlineasm_br node. 8083 Chain = getControlRoot(); 8084 } 8085 8086 // Second pass over the constraints: compute which constraint option to use. 8087 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8088 // If this is an output operand with a matching input operand, look up the 8089 // matching input. If their types mismatch, e.g. one is an integer, the 8090 // other is floating point, or their sizes are different, flag it as an 8091 // error. 8092 if (OpInfo.hasMatchingInput()) { 8093 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8094 patchMatchingInput(OpInfo, Input, DAG); 8095 } 8096 8097 // Compute the constraint code and ConstraintType to use. 8098 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8099 8100 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8101 OpInfo.Type == InlineAsm::isClobber) 8102 continue; 8103 8104 // If this is a memory input, and if the operand is not indirect, do what we 8105 // need to provide an address for the memory input. 8106 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8107 !OpInfo.isIndirect) { 8108 assert((OpInfo.isMultipleAlternative || 8109 (OpInfo.Type == InlineAsm::isInput)) && 8110 "Can only indirectify direct input operands!"); 8111 8112 // Memory operands really want the address of the value. 8113 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8114 8115 // There is no longer a Value* corresponding to this operand. 8116 OpInfo.CallOperandVal = nullptr; 8117 8118 // It is now an indirect operand. 8119 OpInfo.isIndirect = true; 8120 } 8121 8122 } 8123 8124 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8125 std::vector<SDValue> AsmNodeOperands; 8126 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8127 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8128 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 8129 8130 // If we have a !srcloc metadata node associated with it, we want to attach 8131 // this to the ultimately generated inline asm machineinstr. To do this, we 8132 // pass in the third operand as this (potentially null) inline asm MDNode. 8133 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 8134 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8135 8136 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8137 // bits as operand 3. 8138 AsmNodeOperands.push_back(DAG.getTargetConstant( 8139 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8140 8141 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8142 // this, assign virtual and physical registers for inputs and otput. 8143 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8144 // Assign Registers. 8145 SDISelAsmOperandInfo &RefOpInfo = 8146 OpInfo.isMatchingInputConstraint() 8147 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8148 : OpInfo; 8149 GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8150 8151 auto DetectWriteToReservedRegister = [&]() { 8152 const MachineFunction &MF = DAG.getMachineFunction(); 8153 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8154 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 8155 if (Register::isPhysicalRegister(Reg) && 8156 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 8157 const char *RegName = TRI.getName(Reg); 8158 emitInlineAsmError(Call, "write to reserved register '" + 8159 Twine(RegName) + "'"); 8160 return true; 8161 } 8162 } 8163 return false; 8164 }; 8165 8166 switch (OpInfo.Type) { 8167 case InlineAsm::isOutput: 8168 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8169 unsigned ConstraintID = 8170 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8171 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8172 "Failed to convert memory constraint code to constraint id."); 8173 8174 // Add information to the INLINEASM node to know about this output. 8175 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8176 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8177 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8178 MVT::i32)); 8179 AsmNodeOperands.push_back(OpInfo.CallOperand); 8180 } else { 8181 // Otherwise, this outputs to a register (directly for C_Register / 8182 // C_RegisterClass, and a target-defined fashion for 8183 // C_Immediate/C_Other). Find a register that we can use. 8184 if (OpInfo.AssignedRegs.Regs.empty()) { 8185 emitInlineAsmError( 8186 Call, "couldn't allocate output register for constraint '" + 8187 Twine(OpInfo.ConstraintCode) + "'"); 8188 return; 8189 } 8190 8191 if (DetectWriteToReservedRegister()) 8192 return; 8193 8194 // Add information to the INLINEASM node to know that this register is 8195 // set. 8196 OpInfo.AssignedRegs.AddInlineAsmOperands( 8197 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8198 : InlineAsm::Kind_RegDef, 8199 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8200 } 8201 break; 8202 8203 case InlineAsm::isInput: { 8204 SDValue InOperandVal = OpInfo.CallOperand; 8205 8206 if (OpInfo.isMatchingInputConstraint()) { 8207 // If this is required to match an output register we have already set, 8208 // just use its register. 8209 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8210 AsmNodeOperands); 8211 unsigned OpFlag = 8212 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8213 if (InlineAsm::isRegDefKind(OpFlag) || 8214 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8215 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8216 if (OpInfo.isIndirect) { 8217 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8218 emitInlineAsmError(Call, "inline asm not supported yet: " 8219 "don't know how to handle tied " 8220 "indirect register inputs"); 8221 return; 8222 } 8223 8224 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 8225 SmallVector<unsigned, 4> Regs; 8226 8227 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) { 8228 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8229 MachineRegisterInfo &RegInfo = 8230 DAG.getMachineFunction().getRegInfo(); 8231 for (unsigned i = 0; i != NumRegs; ++i) 8232 Regs.push_back(RegInfo.createVirtualRegister(RC)); 8233 } else { 8234 emitInlineAsmError(Call, 8235 "inline asm error: This value type register " 8236 "class is not natively supported!"); 8237 return; 8238 } 8239 8240 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8241 8242 SDLoc dl = getCurSDLoc(); 8243 // Use the produced MatchedRegs object to 8244 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call); 8245 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8246 true, OpInfo.getMatchedOperand(), dl, 8247 DAG, AsmNodeOperands); 8248 break; 8249 } 8250 8251 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8252 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8253 "Unexpected number of operands"); 8254 // Add information to the INLINEASM node to know about this input. 8255 // See InlineAsm.h isUseOperandTiedToDef. 8256 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8257 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8258 OpInfo.getMatchedOperand()); 8259 AsmNodeOperands.push_back(DAG.getTargetConstant( 8260 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8261 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8262 break; 8263 } 8264 8265 // Treat indirect 'X' constraint as memory. 8266 if (OpInfo.ConstraintType == TargetLowering::C_Other && 8267 OpInfo.isIndirect) 8268 OpInfo.ConstraintType = TargetLowering::C_Memory; 8269 8270 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 8271 OpInfo.ConstraintType == TargetLowering::C_Other) { 8272 std::vector<SDValue> Ops; 8273 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8274 Ops, DAG); 8275 if (Ops.empty()) { 8276 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 8277 if (isa<ConstantSDNode>(InOperandVal)) { 8278 emitInlineAsmError(Call, "value out of range for constraint '" + 8279 Twine(OpInfo.ConstraintCode) + "'"); 8280 return; 8281 } 8282 8283 emitInlineAsmError(Call, 8284 "invalid operand for inline asm constraint '" + 8285 Twine(OpInfo.ConstraintCode) + "'"); 8286 return; 8287 } 8288 8289 // Add information to the INLINEASM node to know about this input. 8290 unsigned ResOpType = 8291 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8292 AsmNodeOperands.push_back(DAG.getTargetConstant( 8293 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8294 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 8295 break; 8296 } 8297 8298 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8299 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 8300 assert(InOperandVal.getValueType() == 8301 TLI.getPointerTy(DAG.getDataLayout()) && 8302 "Memory operands expect pointer values"); 8303 8304 unsigned ConstraintID = 8305 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8306 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8307 "Failed to convert memory constraint code to constraint id."); 8308 8309 // Add information to the INLINEASM node to know about this input. 8310 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8311 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8312 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8313 getCurSDLoc(), 8314 MVT::i32)); 8315 AsmNodeOperands.push_back(InOperandVal); 8316 break; 8317 } 8318 8319 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 8320 OpInfo.ConstraintType == TargetLowering::C_Register) && 8321 "Unknown constraint type!"); 8322 8323 // TODO: Support this. 8324 if (OpInfo.isIndirect) { 8325 emitInlineAsmError( 8326 Call, "Don't know how to handle indirect register inputs yet " 8327 "for constraint '" + 8328 Twine(OpInfo.ConstraintCode) + "'"); 8329 return; 8330 } 8331 8332 // Copy the input into the appropriate registers. 8333 if (OpInfo.AssignedRegs.Regs.empty()) { 8334 emitInlineAsmError(Call, 8335 "couldn't allocate input reg for constraint '" + 8336 Twine(OpInfo.ConstraintCode) + "'"); 8337 return; 8338 } 8339 8340 if (DetectWriteToReservedRegister()) 8341 return; 8342 8343 SDLoc dl = getCurSDLoc(); 8344 8345 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 8346 &Call); 8347 8348 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 8349 dl, DAG, AsmNodeOperands); 8350 break; 8351 } 8352 case InlineAsm::isClobber: 8353 // Add the clobbered value to the operand list, so that the register 8354 // allocator is aware that the physreg got clobbered. 8355 if (!OpInfo.AssignedRegs.Regs.empty()) 8356 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 8357 false, 0, getCurSDLoc(), DAG, 8358 AsmNodeOperands); 8359 break; 8360 } 8361 } 8362 8363 // Finish up input operands. Set the input chain and add the flag last. 8364 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 8365 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 8366 8367 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 8368 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 8369 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 8370 Flag = Chain.getValue(1); 8371 8372 // Do additional work to generate outputs. 8373 8374 SmallVector<EVT, 1> ResultVTs; 8375 SmallVector<SDValue, 1> ResultValues; 8376 SmallVector<SDValue, 8> OutChains; 8377 8378 llvm::Type *CallResultType = Call.getType(); 8379 ArrayRef<Type *> ResultTypes; 8380 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 8381 ResultTypes = StructResult->elements(); 8382 else if (!CallResultType->isVoidTy()) 8383 ResultTypes = makeArrayRef(CallResultType); 8384 8385 auto CurResultType = ResultTypes.begin(); 8386 auto handleRegAssign = [&](SDValue V) { 8387 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 8388 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 8389 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 8390 ++CurResultType; 8391 // If the type of the inline asm call site return value is different but has 8392 // same size as the type of the asm output bitcast it. One example of this 8393 // is for vectors with different width / number of elements. This can 8394 // happen for register classes that can contain multiple different value 8395 // types. The preg or vreg allocated may not have the same VT as was 8396 // expected. 8397 // 8398 // This can also happen for a return value that disagrees with the register 8399 // class it is put in, eg. a double in a general-purpose register on a 8400 // 32-bit machine. 8401 if (ResultVT != V.getValueType() && 8402 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 8403 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 8404 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 8405 V.getValueType().isInteger()) { 8406 // If a result value was tied to an input value, the computed result 8407 // may have a wider width than the expected result. Extract the 8408 // relevant portion. 8409 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 8410 } 8411 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 8412 ResultVTs.push_back(ResultVT); 8413 ResultValues.push_back(V); 8414 }; 8415 8416 // Deal with output operands. 8417 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8418 if (OpInfo.Type == InlineAsm::isOutput) { 8419 SDValue Val; 8420 // Skip trivial output operands. 8421 if (OpInfo.AssignedRegs.Regs.empty()) 8422 continue; 8423 8424 switch (OpInfo.ConstraintType) { 8425 case TargetLowering::C_Register: 8426 case TargetLowering::C_RegisterClass: 8427 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 8428 Chain, &Flag, &Call); 8429 break; 8430 case TargetLowering::C_Immediate: 8431 case TargetLowering::C_Other: 8432 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 8433 OpInfo, DAG); 8434 break; 8435 case TargetLowering::C_Memory: 8436 break; // Already handled. 8437 case TargetLowering::C_Unknown: 8438 assert(false && "Unexpected unknown constraint"); 8439 } 8440 8441 // Indirect output manifest as stores. Record output chains. 8442 if (OpInfo.isIndirect) { 8443 const Value *Ptr = OpInfo.CallOperandVal; 8444 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 8445 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 8446 MachinePointerInfo(Ptr)); 8447 OutChains.push_back(Store); 8448 } else { 8449 // generate CopyFromRegs to associated registers. 8450 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 8451 if (Val.getOpcode() == ISD::MERGE_VALUES) { 8452 for (const SDValue &V : Val->op_values()) 8453 handleRegAssign(V); 8454 } else 8455 handleRegAssign(Val); 8456 } 8457 } 8458 } 8459 8460 // Set results. 8461 if (!ResultValues.empty()) { 8462 assert(CurResultType == ResultTypes.end() && 8463 "Mismatch in number of ResultTypes"); 8464 assert(ResultValues.size() == ResultTypes.size() && 8465 "Mismatch in number of output operands in asm result"); 8466 8467 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 8468 DAG.getVTList(ResultVTs), ResultValues); 8469 setValue(&Call, V); 8470 } 8471 8472 // Collect store chains. 8473 if (!OutChains.empty()) 8474 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 8475 8476 // Only Update Root if inline assembly has a memory effect. 8477 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr) 8478 DAG.setRoot(Chain); 8479 } 8480 8481 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 8482 const Twine &Message) { 8483 LLVMContext &Ctx = *DAG.getContext(); 8484 Ctx.emitError(&Call, Message); 8485 8486 // Make sure we leave the DAG in a valid state 8487 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8488 SmallVector<EVT, 1> ValueVTs; 8489 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 8490 8491 if (ValueVTs.empty()) 8492 return; 8493 8494 SmallVector<SDValue, 1> Ops; 8495 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 8496 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 8497 8498 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 8499 } 8500 8501 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 8502 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 8503 MVT::Other, getRoot(), 8504 getValue(I.getArgOperand(0)), 8505 DAG.getSrcValue(I.getArgOperand(0)))); 8506 } 8507 8508 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 8509 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8510 const DataLayout &DL = DAG.getDataLayout(); 8511 SDValue V = DAG.getVAArg( 8512 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 8513 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 8514 DL.getABITypeAlignment(I.getType())); 8515 DAG.setRoot(V.getValue(1)); 8516 8517 if (I.getType()->isPointerTy()) 8518 V = DAG.getPtrExtOrTrunc( 8519 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 8520 setValue(&I, V); 8521 } 8522 8523 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 8524 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 8525 MVT::Other, getRoot(), 8526 getValue(I.getArgOperand(0)), 8527 DAG.getSrcValue(I.getArgOperand(0)))); 8528 } 8529 8530 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 8531 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 8532 MVT::Other, getRoot(), 8533 getValue(I.getArgOperand(0)), 8534 getValue(I.getArgOperand(1)), 8535 DAG.getSrcValue(I.getArgOperand(0)), 8536 DAG.getSrcValue(I.getArgOperand(1)))); 8537 } 8538 8539 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 8540 const Instruction &I, 8541 SDValue Op) { 8542 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 8543 if (!Range) 8544 return Op; 8545 8546 ConstantRange CR = getConstantRangeFromMetadata(*Range); 8547 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 8548 return Op; 8549 8550 APInt Lo = CR.getUnsignedMin(); 8551 if (!Lo.isMinValue()) 8552 return Op; 8553 8554 APInt Hi = CR.getUnsignedMax(); 8555 unsigned Bits = std::max(Hi.getActiveBits(), 8556 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 8557 8558 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 8559 8560 SDLoc SL = getCurSDLoc(); 8561 8562 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 8563 DAG.getValueType(SmallVT)); 8564 unsigned NumVals = Op.getNode()->getNumValues(); 8565 if (NumVals == 1) 8566 return ZExt; 8567 8568 SmallVector<SDValue, 4> Ops; 8569 8570 Ops.push_back(ZExt); 8571 for (unsigned I = 1; I != NumVals; ++I) 8572 Ops.push_back(Op.getValue(I)); 8573 8574 return DAG.getMergeValues(Ops, SL); 8575 } 8576 8577 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 8578 /// the call being lowered. 8579 /// 8580 /// This is a helper for lowering intrinsics that follow a target calling 8581 /// convention or require stack pointer adjustment. Only a subset of the 8582 /// intrinsic's operands need to participate in the calling convention. 8583 void SelectionDAGBuilder::populateCallLoweringInfo( 8584 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 8585 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 8586 bool IsPatchPoint) { 8587 TargetLowering::ArgListTy Args; 8588 Args.reserve(NumArgs); 8589 8590 // Populate the argument list. 8591 // Attributes for args start at offset 1, after the return attribute. 8592 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 8593 ArgI != ArgE; ++ArgI) { 8594 const Value *V = Call->getOperand(ArgI); 8595 8596 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 8597 8598 TargetLowering::ArgListEntry Entry; 8599 Entry.Node = getValue(V); 8600 Entry.Ty = V->getType(); 8601 Entry.setAttributes(Call, ArgI); 8602 Args.push_back(Entry); 8603 } 8604 8605 CLI.setDebugLoc(getCurSDLoc()) 8606 .setChain(getRoot()) 8607 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 8608 .setDiscardResult(Call->use_empty()) 8609 .setIsPatchPoint(IsPatchPoint); 8610 } 8611 8612 /// Add a stack map intrinsic call's live variable operands to a stackmap 8613 /// or patchpoint target node's operand list. 8614 /// 8615 /// Constants are converted to TargetConstants purely as an optimization to 8616 /// avoid constant materialization and register allocation. 8617 /// 8618 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 8619 /// generate addess computation nodes, and so FinalizeISel can convert the 8620 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 8621 /// address materialization and register allocation, but may also be required 8622 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 8623 /// alloca in the entry block, then the runtime may assume that the alloca's 8624 /// StackMap location can be read immediately after compilation and that the 8625 /// location is valid at any point during execution (this is similar to the 8626 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 8627 /// only available in a register, then the runtime would need to trap when 8628 /// execution reaches the StackMap in order to read the alloca's location. 8629 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 8630 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 8631 SelectionDAGBuilder &Builder) { 8632 for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) { 8633 SDValue OpVal = Builder.getValue(Call.getArgOperand(i)); 8634 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 8635 Ops.push_back( 8636 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 8637 Ops.push_back( 8638 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 8639 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 8640 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 8641 Ops.push_back(Builder.DAG.getTargetFrameIndex( 8642 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 8643 } else 8644 Ops.push_back(OpVal); 8645 } 8646 } 8647 8648 /// Lower llvm.experimental.stackmap directly to its target opcode. 8649 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 8650 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 8651 // [live variables...]) 8652 8653 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 8654 8655 SDValue Chain, InFlag, Callee, NullPtr; 8656 SmallVector<SDValue, 32> Ops; 8657 8658 SDLoc DL = getCurSDLoc(); 8659 Callee = getValue(CI.getCalledValue()); 8660 NullPtr = DAG.getIntPtrConstant(0, DL, true); 8661 8662 // The stackmap intrinsic only records the live variables (the arguments 8663 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 8664 // intrinsic, this won't be lowered to a function call. This means we don't 8665 // have to worry about calling conventions and target specific lowering code. 8666 // Instead we perform the call lowering right here. 8667 // 8668 // chain, flag = CALLSEQ_START(chain, 0, 0) 8669 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 8670 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 8671 // 8672 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 8673 InFlag = Chain.getValue(1); 8674 8675 // Add the <id> and <numBytes> constants. 8676 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 8677 Ops.push_back(DAG.getTargetConstant( 8678 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 8679 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 8680 Ops.push_back(DAG.getTargetConstant( 8681 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 8682 MVT::i32)); 8683 8684 // Push live variables for the stack map. 8685 addStackMapLiveVars(CI, 2, DL, Ops, *this); 8686 8687 // We are not pushing any register mask info here on the operands list, 8688 // because the stackmap doesn't clobber anything. 8689 8690 // Push the chain and the glue flag. 8691 Ops.push_back(Chain); 8692 Ops.push_back(InFlag); 8693 8694 // Create the STACKMAP node. 8695 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8696 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 8697 Chain = SDValue(SM, 0); 8698 InFlag = Chain.getValue(1); 8699 8700 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 8701 8702 // Stackmaps don't generate values, so nothing goes into the NodeMap. 8703 8704 // Set the root to the target-lowered call chain. 8705 DAG.setRoot(Chain); 8706 8707 // Inform the Frame Information that we have a stackmap in this function. 8708 FuncInfo.MF->getFrameInfo().setHasStackMap(); 8709 } 8710 8711 /// Lower llvm.experimental.patchpoint directly to its target opcode. 8712 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 8713 const BasicBlock *EHPadBB) { 8714 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 8715 // i32 <numBytes>, 8716 // i8* <target>, 8717 // i32 <numArgs>, 8718 // [Args...], 8719 // [live variables...]) 8720 8721 CallingConv::ID CC = CB.getCallingConv(); 8722 bool IsAnyRegCC = CC == CallingConv::AnyReg; 8723 bool HasDef = !CB.getType()->isVoidTy(); 8724 SDLoc dl = getCurSDLoc(); 8725 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 8726 8727 // Handle immediate and symbolic callees. 8728 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 8729 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 8730 /*isTarget=*/true); 8731 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 8732 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 8733 SDLoc(SymbolicCallee), 8734 SymbolicCallee->getValueType(0)); 8735 8736 // Get the real number of arguments participating in the call <numArgs> 8737 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 8738 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 8739 8740 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 8741 // Intrinsics include all meta-operands up to but not including CC. 8742 unsigned NumMetaOpers = PatchPointOpers::CCPos; 8743 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 8744 "Not enough arguments provided to the patchpoint intrinsic"); 8745 8746 // For AnyRegCC the arguments are lowered later on manually. 8747 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 8748 Type *ReturnTy = 8749 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 8750 8751 TargetLowering::CallLoweringInfo CLI(DAG); 8752 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 8753 ReturnTy, true); 8754 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8755 8756 SDNode *CallEnd = Result.second.getNode(); 8757 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 8758 CallEnd = CallEnd->getOperand(0).getNode(); 8759 8760 /// Get a call instruction from the call sequence chain. 8761 /// Tail calls are not allowed. 8762 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 8763 "Expected a callseq node."); 8764 SDNode *Call = CallEnd->getOperand(0).getNode(); 8765 bool HasGlue = Call->getGluedNode(); 8766 8767 // Replace the target specific call node with the patchable intrinsic. 8768 SmallVector<SDValue, 8> Ops; 8769 8770 // Add the <id> and <numBytes> constants. 8771 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 8772 Ops.push_back(DAG.getTargetConstant( 8773 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 8774 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 8775 Ops.push_back(DAG.getTargetConstant( 8776 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 8777 MVT::i32)); 8778 8779 // Add the callee. 8780 Ops.push_back(Callee); 8781 8782 // Adjust <numArgs> to account for any arguments that have been passed on the 8783 // stack instead. 8784 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 8785 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 8786 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 8787 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 8788 8789 // Add the calling convention 8790 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 8791 8792 // Add the arguments we omitted previously. The register allocator should 8793 // place these in any free register. 8794 if (IsAnyRegCC) 8795 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 8796 Ops.push_back(getValue(CB.getArgOperand(i))); 8797 8798 // Push the arguments from the call instruction up to the register mask. 8799 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 8800 Ops.append(Call->op_begin() + 2, e); 8801 8802 // Push live variables for the stack map. 8803 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 8804 8805 // Push the register mask info. 8806 if (HasGlue) 8807 Ops.push_back(*(Call->op_end()-2)); 8808 else 8809 Ops.push_back(*(Call->op_end()-1)); 8810 8811 // Push the chain (this is originally the first operand of the call, but 8812 // becomes now the last or second to last operand). 8813 Ops.push_back(*(Call->op_begin())); 8814 8815 // Push the glue flag (last operand). 8816 if (HasGlue) 8817 Ops.push_back(*(Call->op_end()-1)); 8818 8819 SDVTList NodeTys; 8820 if (IsAnyRegCC && HasDef) { 8821 // Create the return types based on the intrinsic definition 8822 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8823 SmallVector<EVT, 3> ValueVTs; 8824 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 8825 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 8826 8827 // There is always a chain and a glue type at the end 8828 ValueVTs.push_back(MVT::Other); 8829 ValueVTs.push_back(MVT::Glue); 8830 NodeTys = DAG.getVTList(ValueVTs); 8831 } else 8832 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8833 8834 // Replace the target specific call node with a PATCHPOINT node. 8835 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 8836 dl, NodeTys, Ops); 8837 8838 // Update the NodeMap. 8839 if (HasDef) { 8840 if (IsAnyRegCC) 8841 setValue(&CB, SDValue(MN, 0)); 8842 else 8843 setValue(&CB, Result.first); 8844 } 8845 8846 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 8847 // call sequence. Furthermore the location of the chain and glue can change 8848 // when the AnyReg calling convention is used and the intrinsic returns a 8849 // value. 8850 if (IsAnyRegCC && HasDef) { 8851 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 8852 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 8853 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 8854 } else 8855 DAG.ReplaceAllUsesWith(Call, MN); 8856 DAG.DeleteNode(Call); 8857 8858 // Inform the Frame Information that we have a patchpoint in this function. 8859 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 8860 } 8861 8862 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 8863 unsigned Intrinsic) { 8864 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8865 SDValue Op1 = getValue(I.getArgOperand(0)); 8866 SDValue Op2; 8867 if (I.getNumArgOperands() > 1) 8868 Op2 = getValue(I.getArgOperand(1)); 8869 SDLoc dl = getCurSDLoc(); 8870 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8871 SDValue Res; 8872 FastMathFlags FMF; 8873 if (isa<FPMathOperator>(I)) 8874 FMF = I.getFastMathFlags(); 8875 8876 switch (Intrinsic) { 8877 case Intrinsic::experimental_vector_reduce_v2_fadd: 8878 if (FMF.allowReassoc()) 8879 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 8880 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2)); 8881 else 8882 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 8883 break; 8884 case Intrinsic::experimental_vector_reduce_v2_fmul: 8885 if (FMF.allowReassoc()) 8886 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 8887 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2)); 8888 else 8889 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 8890 break; 8891 case Intrinsic::experimental_vector_reduce_add: 8892 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 8893 break; 8894 case Intrinsic::experimental_vector_reduce_mul: 8895 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 8896 break; 8897 case Intrinsic::experimental_vector_reduce_and: 8898 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 8899 break; 8900 case Intrinsic::experimental_vector_reduce_or: 8901 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 8902 break; 8903 case Intrinsic::experimental_vector_reduce_xor: 8904 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 8905 break; 8906 case Intrinsic::experimental_vector_reduce_smax: 8907 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 8908 break; 8909 case Intrinsic::experimental_vector_reduce_smin: 8910 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 8911 break; 8912 case Intrinsic::experimental_vector_reduce_umax: 8913 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 8914 break; 8915 case Intrinsic::experimental_vector_reduce_umin: 8916 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 8917 break; 8918 case Intrinsic::experimental_vector_reduce_fmax: 8919 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1); 8920 break; 8921 case Intrinsic::experimental_vector_reduce_fmin: 8922 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1); 8923 break; 8924 default: 8925 llvm_unreachable("Unhandled vector reduce intrinsic"); 8926 } 8927 setValue(&I, Res); 8928 } 8929 8930 /// Returns an AttributeList representing the attributes applied to the return 8931 /// value of the given call. 8932 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 8933 SmallVector<Attribute::AttrKind, 2> Attrs; 8934 if (CLI.RetSExt) 8935 Attrs.push_back(Attribute::SExt); 8936 if (CLI.RetZExt) 8937 Attrs.push_back(Attribute::ZExt); 8938 if (CLI.IsInReg) 8939 Attrs.push_back(Attribute::InReg); 8940 8941 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 8942 Attrs); 8943 } 8944 8945 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 8946 /// implementation, which just calls LowerCall. 8947 /// FIXME: When all targets are 8948 /// migrated to using LowerCall, this hook should be integrated into SDISel. 8949 std::pair<SDValue, SDValue> 8950 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 8951 // Handle the incoming return values from the call. 8952 CLI.Ins.clear(); 8953 Type *OrigRetTy = CLI.RetTy; 8954 SmallVector<EVT, 4> RetTys; 8955 SmallVector<uint64_t, 4> Offsets; 8956 auto &DL = CLI.DAG.getDataLayout(); 8957 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 8958 8959 if (CLI.IsPostTypeLegalization) { 8960 // If we are lowering a libcall after legalization, split the return type. 8961 SmallVector<EVT, 4> OldRetTys; 8962 SmallVector<uint64_t, 4> OldOffsets; 8963 RetTys.swap(OldRetTys); 8964 Offsets.swap(OldOffsets); 8965 8966 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 8967 EVT RetVT = OldRetTys[i]; 8968 uint64_t Offset = OldOffsets[i]; 8969 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 8970 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 8971 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 8972 RetTys.append(NumRegs, RegisterVT); 8973 for (unsigned j = 0; j != NumRegs; ++j) 8974 Offsets.push_back(Offset + j * RegisterVTByteSZ); 8975 } 8976 } 8977 8978 SmallVector<ISD::OutputArg, 4> Outs; 8979 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 8980 8981 bool CanLowerReturn = 8982 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 8983 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 8984 8985 SDValue DemoteStackSlot; 8986 int DemoteStackIdx = -100; 8987 if (!CanLowerReturn) { 8988 // FIXME: equivalent assert? 8989 // assert(!CS.hasInAllocaArgument() && 8990 // "sret demotion is incompatible with inalloca"); 8991 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 8992 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 8993 MachineFunction &MF = CLI.DAG.getMachineFunction(); 8994 DemoteStackIdx = 8995 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 8996 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 8997 DL.getAllocaAddrSpace()); 8998 8999 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 9000 ArgListEntry Entry; 9001 Entry.Node = DemoteStackSlot; 9002 Entry.Ty = StackSlotPtrType; 9003 Entry.IsSExt = false; 9004 Entry.IsZExt = false; 9005 Entry.IsInReg = false; 9006 Entry.IsSRet = true; 9007 Entry.IsNest = false; 9008 Entry.IsByVal = false; 9009 Entry.IsReturned = false; 9010 Entry.IsSwiftSelf = false; 9011 Entry.IsSwiftError = false; 9012 Entry.IsCFGuardTarget = false; 9013 Entry.Alignment = Alignment; 9014 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 9015 CLI.NumFixedArgs += 1; 9016 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 9017 9018 // sret demotion isn't compatible with tail-calls, since the sret argument 9019 // points into the callers stack frame. 9020 CLI.IsTailCall = false; 9021 } else { 9022 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9023 CLI.RetTy, CLI.CallConv, CLI.IsVarArg); 9024 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9025 ISD::ArgFlagsTy Flags; 9026 if (NeedsRegBlock) { 9027 Flags.setInConsecutiveRegs(); 9028 if (I == RetTys.size() - 1) 9029 Flags.setInConsecutiveRegsLast(); 9030 } 9031 EVT VT = RetTys[I]; 9032 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9033 CLI.CallConv, VT); 9034 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9035 CLI.CallConv, VT); 9036 for (unsigned i = 0; i != NumRegs; ++i) { 9037 ISD::InputArg MyFlags; 9038 MyFlags.Flags = Flags; 9039 MyFlags.VT = RegisterVT; 9040 MyFlags.ArgVT = VT; 9041 MyFlags.Used = CLI.IsReturnValueUsed; 9042 if (CLI.RetTy->isPointerTy()) { 9043 MyFlags.Flags.setPointer(); 9044 MyFlags.Flags.setPointerAddrSpace( 9045 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9046 } 9047 if (CLI.RetSExt) 9048 MyFlags.Flags.setSExt(); 9049 if (CLI.RetZExt) 9050 MyFlags.Flags.setZExt(); 9051 if (CLI.IsInReg) 9052 MyFlags.Flags.setInReg(); 9053 CLI.Ins.push_back(MyFlags); 9054 } 9055 } 9056 } 9057 9058 // We push in swifterror return as the last element of CLI.Ins. 9059 ArgListTy &Args = CLI.getArgs(); 9060 if (supportSwiftError()) { 9061 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9062 if (Args[i].IsSwiftError) { 9063 ISD::InputArg MyFlags; 9064 MyFlags.VT = getPointerTy(DL); 9065 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9066 MyFlags.Flags.setSwiftError(); 9067 CLI.Ins.push_back(MyFlags); 9068 } 9069 } 9070 } 9071 9072 // Handle all of the outgoing arguments. 9073 CLI.Outs.clear(); 9074 CLI.OutVals.clear(); 9075 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9076 SmallVector<EVT, 4> ValueVTs; 9077 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9078 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9079 Type *FinalType = Args[i].Ty; 9080 if (Args[i].IsByVal) 9081 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 9082 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9083 FinalType, CLI.CallConv, CLI.IsVarArg); 9084 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9085 ++Value) { 9086 EVT VT = ValueVTs[Value]; 9087 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9088 SDValue Op = SDValue(Args[i].Node.getNode(), 9089 Args[i].Node.getResNo() + Value); 9090 ISD::ArgFlagsTy Flags; 9091 9092 // Certain targets (such as MIPS), may have a different ABI alignment 9093 // for a type depending on the context. Give the target a chance to 9094 // specify the alignment it wants. 9095 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 9096 9097 if (Args[i].Ty->isPointerTy()) { 9098 Flags.setPointer(); 9099 Flags.setPointerAddrSpace( 9100 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9101 } 9102 if (Args[i].IsZExt) 9103 Flags.setZExt(); 9104 if (Args[i].IsSExt) 9105 Flags.setSExt(); 9106 if (Args[i].IsInReg) { 9107 // If we are using vectorcall calling convention, a structure that is 9108 // passed InReg - is surely an HVA 9109 if (CLI.CallConv == CallingConv::X86_VectorCall && 9110 isa<StructType>(FinalType)) { 9111 // The first value of a structure is marked 9112 if (0 == Value) 9113 Flags.setHvaStart(); 9114 Flags.setHva(); 9115 } 9116 // Set InReg Flag 9117 Flags.setInReg(); 9118 } 9119 if (Args[i].IsSRet) 9120 Flags.setSRet(); 9121 if (Args[i].IsSwiftSelf) 9122 Flags.setSwiftSelf(); 9123 if (Args[i].IsSwiftError) 9124 Flags.setSwiftError(); 9125 if (Args[i].IsCFGuardTarget) 9126 Flags.setCFGuardTarget(); 9127 if (Args[i].IsByVal) 9128 Flags.setByVal(); 9129 if (Args[i].IsInAlloca) { 9130 Flags.setInAlloca(); 9131 // Set the byval flag for CCAssignFn callbacks that don't know about 9132 // inalloca. This way we can know how many bytes we should've allocated 9133 // and how many bytes a callee cleanup function will pop. If we port 9134 // inalloca to more targets, we'll have to add custom inalloca handling 9135 // in the various CC lowering callbacks. 9136 Flags.setByVal(); 9137 } 9138 if (Args[i].IsByVal || Args[i].IsInAlloca) { 9139 PointerType *Ty = cast<PointerType>(Args[i].Ty); 9140 Type *ElementTy = Ty->getElementType(); 9141 9142 unsigned FrameSize = DL.getTypeAllocSize( 9143 Args[i].ByValType ? Args[i].ByValType : ElementTy); 9144 Flags.setByValSize(FrameSize); 9145 9146 // info is not there but there are cases it cannot get right. 9147 Align FrameAlign; 9148 if (auto MA = Args[i].Alignment) 9149 FrameAlign = *MA; 9150 else 9151 FrameAlign = Align(getByValTypeAlignment(ElementTy, DL)); 9152 Flags.setByValAlign(FrameAlign); 9153 } 9154 if (Args[i].IsNest) 9155 Flags.setNest(); 9156 if (NeedsRegBlock) 9157 Flags.setInConsecutiveRegs(); 9158 Flags.setOrigAlign(OriginalAlignment); 9159 9160 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9161 CLI.CallConv, VT); 9162 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9163 CLI.CallConv, VT); 9164 SmallVector<SDValue, 4> Parts(NumParts); 9165 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 9166 9167 if (Args[i].IsSExt) 9168 ExtendKind = ISD::SIGN_EXTEND; 9169 else if (Args[i].IsZExt) 9170 ExtendKind = ISD::ZERO_EXTEND; 9171 9172 // Conservatively only handle 'returned' on non-vectors that can be lowered, 9173 // for now. 9174 if (Args[i].IsReturned && !Op.getValueType().isVector() && 9175 CanLowerReturn) { 9176 assert((CLI.RetTy == Args[i].Ty || 9177 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 9178 CLI.RetTy->getPointerAddressSpace() == 9179 Args[i].Ty->getPointerAddressSpace())) && 9180 RetTys.size() == NumValues && "unexpected use of 'returned'"); 9181 // Before passing 'returned' to the target lowering code, ensure that 9182 // either the register MVT and the actual EVT are the same size or that 9183 // the return value and argument are extended in the same way; in these 9184 // cases it's safe to pass the argument register value unchanged as the 9185 // return register value (although it's at the target's option whether 9186 // to do so) 9187 // TODO: allow code generation to take advantage of partially preserved 9188 // registers rather than clobbering the entire register when the 9189 // parameter extension method is not compatible with the return 9190 // extension method 9191 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 9192 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 9193 CLI.RetZExt == Args[i].IsZExt)) 9194 Flags.setReturned(); 9195 } 9196 9197 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 9198 CLI.CallConv, ExtendKind); 9199 9200 for (unsigned j = 0; j != NumParts; ++j) { 9201 // if it isn't first piece, alignment must be 1 9202 // For scalable vectors the scalable part is currently handled 9203 // by individual targets, so we just use the known minimum size here. 9204 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 9205 i < CLI.NumFixedArgs, i, 9206 j*Parts[j].getValueType().getStoreSize().getKnownMinSize()); 9207 if (NumParts > 1 && j == 0) 9208 MyFlags.Flags.setSplit(); 9209 else if (j != 0) { 9210 MyFlags.Flags.setOrigAlign(Align(1)); 9211 if (j == NumParts - 1) 9212 MyFlags.Flags.setSplitEnd(); 9213 } 9214 9215 CLI.Outs.push_back(MyFlags); 9216 CLI.OutVals.push_back(Parts[j]); 9217 } 9218 9219 if (NeedsRegBlock && Value == NumValues - 1) 9220 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 9221 } 9222 } 9223 9224 SmallVector<SDValue, 4> InVals; 9225 CLI.Chain = LowerCall(CLI, InVals); 9226 9227 // Update CLI.InVals to use outside of this function. 9228 CLI.InVals = InVals; 9229 9230 // Verify that the target's LowerCall behaved as expected. 9231 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 9232 "LowerCall didn't return a valid chain!"); 9233 assert((!CLI.IsTailCall || InVals.empty()) && 9234 "LowerCall emitted a return value for a tail call!"); 9235 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 9236 "LowerCall didn't emit the correct number of values!"); 9237 9238 // For a tail call, the return value is merely live-out and there aren't 9239 // any nodes in the DAG representing it. Return a special value to 9240 // indicate that a tail call has been emitted and no more Instructions 9241 // should be processed in the current block. 9242 if (CLI.IsTailCall) { 9243 CLI.DAG.setRoot(CLI.Chain); 9244 return std::make_pair(SDValue(), SDValue()); 9245 } 9246 9247 #ifndef NDEBUG 9248 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 9249 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 9250 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 9251 "LowerCall emitted a value with the wrong type!"); 9252 } 9253 #endif 9254 9255 SmallVector<SDValue, 4> ReturnValues; 9256 if (!CanLowerReturn) { 9257 // The instruction result is the result of loading from the 9258 // hidden sret parameter. 9259 SmallVector<EVT, 1> PVTs; 9260 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 9261 9262 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 9263 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 9264 EVT PtrVT = PVTs[0]; 9265 9266 unsigned NumValues = RetTys.size(); 9267 ReturnValues.resize(NumValues); 9268 SmallVector<SDValue, 4> Chains(NumValues); 9269 9270 // An aggregate return value cannot wrap around the address space, so 9271 // offsets to its parts don't wrap either. 9272 SDNodeFlags Flags; 9273 Flags.setNoUnsignedWrap(true); 9274 9275 for (unsigned i = 0; i < NumValues; ++i) { 9276 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 9277 CLI.DAG.getConstant(Offsets[i], CLI.DL, 9278 PtrVT), Flags); 9279 SDValue L = CLI.DAG.getLoad( 9280 RetTys[i], CLI.DL, CLI.Chain, Add, 9281 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 9282 DemoteStackIdx, Offsets[i]), 9283 /* Alignment = */ 1); 9284 ReturnValues[i] = L; 9285 Chains[i] = L.getValue(1); 9286 } 9287 9288 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 9289 } else { 9290 // Collect the legal value parts into potentially illegal values 9291 // that correspond to the original function's return values. 9292 Optional<ISD::NodeType> AssertOp; 9293 if (CLI.RetSExt) 9294 AssertOp = ISD::AssertSext; 9295 else if (CLI.RetZExt) 9296 AssertOp = ISD::AssertZext; 9297 unsigned CurReg = 0; 9298 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9299 EVT VT = RetTys[I]; 9300 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9301 CLI.CallConv, VT); 9302 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9303 CLI.CallConv, VT); 9304 9305 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 9306 NumRegs, RegisterVT, VT, nullptr, 9307 CLI.CallConv, AssertOp)); 9308 CurReg += NumRegs; 9309 } 9310 9311 // For a function returning void, there is no return value. We can't create 9312 // such a node, so we just return a null return value in that case. In 9313 // that case, nothing will actually look at the value. 9314 if (ReturnValues.empty()) 9315 return std::make_pair(SDValue(), CLI.Chain); 9316 } 9317 9318 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 9319 CLI.DAG.getVTList(RetTys), ReturnValues); 9320 return std::make_pair(Res, CLI.Chain); 9321 } 9322 9323 void TargetLowering::LowerOperationWrapper(SDNode *N, 9324 SmallVectorImpl<SDValue> &Results, 9325 SelectionDAG &DAG) const { 9326 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 9327 Results.push_back(Res); 9328 } 9329 9330 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9331 llvm_unreachable("LowerOperation not implemented for this target!"); 9332 } 9333 9334 void 9335 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 9336 SDValue Op = getNonRegisterValue(V); 9337 assert((Op.getOpcode() != ISD::CopyFromReg || 9338 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 9339 "Copy from a reg to the same reg!"); 9340 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 9341 9342 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9343 // If this is an InlineAsm we have to match the registers required, not the 9344 // notional registers required by the type. 9345 9346 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 9347 None); // This is not an ABI copy. 9348 SDValue Chain = DAG.getEntryNode(); 9349 9350 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 9351 FuncInfo.PreferredExtendType.end()) 9352 ? ISD::ANY_EXTEND 9353 : FuncInfo.PreferredExtendType[V]; 9354 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 9355 PendingExports.push_back(Chain); 9356 } 9357 9358 #include "llvm/CodeGen/SelectionDAGISel.h" 9359 9360 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 9361 /// entry block, return true. This includes arguments used by switches, since 9362 /// the switch may expand into multiple basic blocks. 9363 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 9364 // With FastISel active, we may be splitting blocks, so force creation 9365 // of virtual registers for all non-dead arguments. 9366 if (FastISel) 9367 return A->use_empty(); 9368 9369 const BasicBlock &Entry = A->getParent()->front(); 9370 for (const User *U : A->users()) 9371 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 9372 return false; // Use not in entry block. 9373 9374 return true; 9375 } 9376 9377 using ArgCopyElisionMapTy = 9378 DenseMap<const Argument *, 9379 std::pair<const AllocaInst *, const StoreInst *>>; 9380 9381 /// Scan the entry block of the function in FuncInfo for arguments that look 9382 /// like copies into a local alloca. Record any copied arguments in 9383 /// ArgCopyElisionCandidates. 9384 static void 9385 findArgumentCopyElisionCandidates(const DataLayout &DL, 9386 FunctionLoweringInfo *FuncInfo, 9387 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 9388 // Record the state of every static alloca used in the entry block. Argument 9389 // allocas are all used in the entry block, so we need approximately as many 9390 // entries as we have arguments. 9391 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 9392 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 9393 unsigned NumArgs = FuncInfo->Fn->arg_size(); 9394 StaticAllocas.reserve(NumArgs * 2); 9395 9396 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 9397 if (!V) 9398 return nullptr; 9399 V = V->stripPointerCasts(); 9400 const auto *AI = dyn_cast<AllocaInst>(V); 9401 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 9402 return nullptr; 9403 auto Iter = StaticAllocas.insert({AI, Unknown}); 9404 return &Iter.first->second; 9405 }; 9406 9407 // Look for stores of arguments to static allocas. Look through bitcasts and 9408 // GEPs to handle type coercions, as long as the alloca is fully initialized 9409 // by the store. Any non-store use of an alloca escapes it and any subsequent 9410 // unanalyzed store might write it. 9411 // FIXME: Handle structs initialized with multiple stores. 9412 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 9413 // Look for stores, and handle non-store uses conservatively. 9414 const auto *SI = dyn_cast<StoreInst>(&I); 9415 if (!SI) { 9416 // We will look through cast uses, so ignore them completely. 9417 if (I.isCast()) 9418 continue; 9419 // Ignore debug info intrinsics, they don't escape or store to allocas. 9420 if (isa<DbgInfoIntrinsic>(I)) 9421 continue; 9422 // This is an unknown instruction. Assume it escapes or writes to all 9423 // static alloca operands. 9424 for (const Use &U : I.operands()) { 9425 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 9426 *Info = StaticAllocaInfo::Clobbered; 9427 } 9428 continue; 9429 } 9430 9431 // If the stored value is a static alloca, mark it as escaped. 9432 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 9433 *Info = StaticAllocaInfo::Clobbered; 9434 9435 // Check if the destination is a static alloca. 9436 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 9437 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 9438 if (!Info) 9439 continue; 9440 const AllocaInst *AI = cast<AllocaInst>(Dst); 9441 9442 // Skip allocas that have been initialized or clobbered. 9443 if (*Info != StaticAllocaInfo::Unknown) 9444 continue; 9445 9446 // Check if the stored value is an argument, and that this store fully 9447 // initializes the alloca. Don't elide copies from the same argument twice. 9448 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 9449 const auto *Arg = dyn_cast<Argument>(Val); 9450 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 9451 Arg->getType()->isEmptyTy() || 9452 DL.getTypeStoreSize(Arg->getType()) != 9453 DL.getTypeAllocSize(AI->getAllocatedType()) || 9454 ArgCopyElisionCandidates.count(Arg)) { 9455 *Info = StaticAllocaInfo::Clobbered; 9456 continue; 9457 } 9458 9459 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 9460 << '\n'); 9461 9462 // Mark this alloca and store for argument copy elision. 9463 *Info = StaticAllocaInfo::Elidable; 9464 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 9465 9466 // Stop scanning if we've seen all arguments. This will happen early in -O0 9467 // builds, which is useful, because -O0 builds have large entry blocks and 9468 // many allocas. 9469 if (ArgCopyElisionCandidates.size() == NumArgs) 9470 break; 9471 } 9472 } 9473 9474 /// Try to elide argument copies from memory into a local alloca. Succeeds if 9475 /// ArgVal is a load from a suitable fixed stack object. 9476 static void tryToElideArgumentCopy( 9477 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 9478 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 9479 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 9480 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 9481 SDValue ArgVal, bool &ArgHasUses) { 9482 // Check if this is a load from a fixed stack object. 9483 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 9484 if (!LNode) 9485 return; 9486 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 9487 if (!FINode) 9488 return; 9489 9490 // Check that the fixed stack object is the right size and alignment. 9491 // Look at the alignment that the user wrote on the alloca instead of looking 9492 // at the stack object. 9493 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 9494 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 9495 const AllocaInst *AI = ArgCopyIter->second.first; 9496 int FixedIndex = FINode->getIndex(); 9497 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 9498 int OldIndex = AllocaIndex; 9499 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 9500 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 9501 LLVM_DEBUG( 9502 dbgs() << " argument copy elision failed due to bad fixed stack " 9503 "object size\n"); 9504 return; 9505 } 9506 Align RequiredAlignment = AI->getAlign().getValueOr( 9507 FuncInfo.MF->getDataLayout().getABITypeAlign(AI->getAllocatedType())); 9508 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 9509 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 9510 "greater than stack argument alignment (" 9511 << DebugStr(RequiredAlignment) << " vs " 9512 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 9513 return; 9514 } 9515 9516 // Perform the elision. Delete the old stack object and replace its only use 9517 // in the variable info map. Mark the stack object as mutable. 9518 LLVM_DEBUG({ 9519 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 9520 << " Replacing frame index " << OldIndex << " with " << FixedIndex 9521 << '\n'; 9522 }); 9523 MFI.RemoveStackObject(OldIndex); 9524 MFI.setIsImmutableObjectIndex(FixedIndex, false); 9525 AllocaIndex = FixedIndex; 9526 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 9527 Chains.push_back(ArgVal.getValue(1)); 9528 9529 // Avoid emitting code for the store implementing the copy. 9530 const StoreInst *SI = ArgCopyIter->second.second; 9531 ElidedArgCopyInstrs.insert(SI); 9532 9533 // Check for uses of the argument again so that we can avoid exporting ArgVal 9534 // if it is't used by anything other than the store. 9535 for (const Value *U : Arg.users()) { 9536 if (U != SI) { 9537 ArgHasUses = true; 9538 break; 9539 } 9540 } 9541 } 9542 9543 void SelectionDAGISel::LowerArguments(const Function &F) { 9544 SelectionDAG &DAG = SDB->DAG; 9545 SDLoc dl = SDB->getCurSDLoc(); 9546 const DataLayout &DL = DAG.getDataLayout(); 9547 SmallVector<ISD::InputArg, 16> Ins; 9548 9549 if (!FuncInfo->CanLowerReturn) { 9550 // Put in an sret pointer parameter before all the other parameters. 9551 SmallVector<EVT, 1> ValueVTs; 9552 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9553 F.getReturnType()->getPointerTo( 9554 DAG.getDataLayout().getAllocaAddrSpace()), 9555 ValueVTs); 9556 9557 // NOTE: Assuming that a pointer will never break down to more than one VT 9558 // or one register. 9559 ISD::ArgFlagsTy Flags; 9560 Flags.setSRet(); 9561 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 9562 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 9563 ISD::InputArg::NoArgIndex, 0); 9564 Ins.push_back(RetArg); 9565 } 9566 9567 // Look for stores of arguments to static allocas. Mark such arguments with a 9568 // flag to ask the target to give us the memory location of that argument if 9569 // available. 9570 ArgCopyElisionMapTy ArgCopyElisionCandidates; 9571 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 9572 ArgCopyElisionCandidates); 9573 9574 // Set up the incoming argument description vector. 9575 for (const Argument &Arg : F.args()) { 9576 unsigned ArgNo = Arg.getArgNo(); 9577 SmallVector<EVT, 4> ValueVTs; 9578 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9579 bool isArgValueUsed = !Arg.use_empty(); 9580 unsigned PartBase = 0; 9581 Type *FinalType = Arg.getType(); 9582 if (Arg.hasAttribute(Attribute::ByVal)) 9583 FinalType = Arg.getParamByValType(); 9584 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 9585 FinalType, F.getCallingConv(), F.isVarArg()); 9586 for (unsigned Value = 0, NumValues = ValueVTs.size(); 9587 Value != NumValues; ++Value) { 9588 EVT VT = ValueVTs[Value]; 9589 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 9590 ISD::ArgFlagsTy Flags; 9591 9592 // Certain targets (such as MIPS), may have a different ABI alignment 9593 // for a type depending on the context. Give the target a chance to 9594 // specify the alignment it wants. 9595 const Align OriginalAlignment( 9596 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 9597 9598 if (Arg.getType()->isPointerTy()) { 9599 Flags.setPointer(); 9600 Flags.setPointerAddrSpace( 9601 cast<PointerType>(Arg.getType())->getAddressSpace()); 9602 } 9603 if (Arg.hasAttribute(Attribute::ZExt)) 9604 Flags.setZExt(); 9605 if (Arg.hasAttribute(Attribute::SExt)) 9606 Flags.setSExt(); 9607 if (Arg.hasAttribute(Attribute::InReg)) { 9608 // If we are using vectorcall calling convention, a structure that is 9609 // passed InReg - is surely an HVA 9610 if (F.getCallingConv() == CallingConv::X86_VectorCall && 9611 isa<StructType>(Arg.getType())) { 9612 // The first value of a structure is marked 9613 if (0 == Value) 9614 Flags.setHvaStart(); 9615 Flags.setHva(); 9616 } 9617 // Set InReg Flag 9618 Flags.setInReg(); 9619 } 9620 if (Arg.hasAttribute(Attribute::StructRet)) 9621 Flags.setSRet(); 9622 if (Arg.hasAttribute(Attribute::SwiftSelf)) 9623 Flags.setSwiftSelf(); 9624 if (Arg.hasAttribute(Attribute::SwiftError)) 9625 Flags.setSwiftError(); 9626 if (Arg.hasAttribute(Attribute::ByVal)) 9627 Flags.setByVal(); 9628 if (Arg.hasAttribute(Attribute::InAlloca)) { 9629 Flags.setInAlloca(); 9630 // Set the byval flag for CCAssignFn callbacks that don't know about 9631 // inalloca. This way we can know how many bytes we should've allocated 9632 // and how many bytes a callee cleanup function will pop. If we port 9633 // inalloca to more targets, we'll have to add custom inalloca handling 9634 // in the various CC lowering callbacks. 9635 Flags.setByVal(); 9636 } 9637 if (F.getCallingConv() == CallingConv::X86_INTR) { 9638 // IA Interrupt passes frame (1st parameter) by value in the stack. 9639 if (ArgNo == 0) 9640 Flags.setByVal(); 9641 } 9642 if (Flags.isByVal() || Flags.isInAlloca()) { 9643 Type *ElementTy = Arg.getParamByValType(); 9644 9645 // For ByVal, size and alignment should be passed from FE. BE will 9646 // guess if this info is not there but there are cases it cannot get 9647 // right. 9648 unsigned FrameSize = DL.getTypeAllocSize(Arg.getParamByValType()); 9649 Flags.setByValSize(FrameSize); 9650 9651 unsigned FrameAlign; 9652 if (Arg.getParamAlignment()) 9653 FrameAlign = Arg.getParamAlignment(); 9654 else 9655 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 9656 Flags.setByValAlign(Align(FrameAlign)); 9657 } 9658 if (Arg.hasAttribute(Attribute::Nest)) 9659 Flags.setNest(); 9660 if (NeedsRegBlock) 9661 Flags.setInConsecutiveRegs(); 9662 Flags.setOrigAlign(OriginalAlignment); 9663 if (ArgCopyElisionCandidates.count(&Arg)) 9664 Flags.setCopyElisionCandidate(); 9665 if (Arg.hasAttribute(Attribute::Returned)) 9666 Flags.setReturned(); 9667 9668 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 9669 *CurDAG->getContext(), F.getCallingConv(), VT); 9670 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 9671 *CurDAG->getContext(), F.getCallingConv(), VT); 9672 for (unsigned i = 0; i != NumRegs; ++i) { 9673 // For scalable vectors, use the minimum size; individual targets 9674 // are responsible for handling scalable vector arguments and 9675 // return values. 9676 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 9677 ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize()); 9678 if (NumRegs > 1 && i == 0) 9679 MyFlags.Flags.setSplit(); 9680 // if it isn't first piece, alignment must be 1 9681 else if (i > 0) { 9682 MyFlags.Flags.setOrigAlign(Align(1)); 9683 if (i == NumRegs - 1) 9684 MyFlags.Flags.setSplitEnd(); 9685 } 9686 Ins.push_back(MyFlags); 9687 } 9688 if (NeedsRegBlock && Value == NumValues - 1) 9689 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 9690 PartBase += VT.getStoreSize().getKnownMinSize(); 9691 } 9692 } 9693 9694 // Call the target to set up the argument values. 9695 SmallVector<SDValue, 8> InVals; 9696 SDValue NewRoot = TLI->LowerFormalArguments( 9697 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 9698 9699 // Verify that the target's LowerFormalArguments behaved as expected. 9700 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 9701 "LowerFormalArguments didn't return a valid chain!"); 9702 assert(InVals.size() == Ins.size() && 9703 "LowerFormalArguments didn't emit the correct number of values!"); 9704 LLVM_DEBUG({ 9705 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 9706 assert(InVals[i].getNode() && 9707 "LowerFormalArguments emitted a null value!"); 9708 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 9709 "LowerFormalArguments emitted a value with the wrong type!"); 9710 } 9711 }); 9712 9713 // Update the DAG with the new chain value resulting from argument lowering. 9714 DAG.setRoot(NewRoot); 9715 9716 // Set up the argument values. 9717 unsigned i = 0; 9718 if (!FuncInfo->CanLowerReturn) { 9719 // Create a virtual register for the sret pointer, and put in a copy 9720 // from the sret argument into it. 9721 SmallVector<EVT, 1> ValueVTs; 9722 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9723 F.getReturnType()->getPointerTo( 9724 DAG.getDataLayout().getAllocaAddrSpace()), 9725 ValueVTs); 9726 MVT VT = ValueVTs[0].getSimpleVT(); 9727 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 9728 Optional<ISD::NodeType> AssertOp = None; 9729 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 9730 nullptr, F.getCallingConv(), AssertOp); 9731 9732 MachineFunction& MF = SDB->DAG.getMachineFunction(); 9733 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 9734 Register SRetReg = 9735 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 9736 FuncInfo->DemoteRegister = SRetReg; 9737 NewRoot = 9738 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 9739 DAG.setRoot(NewRoot); 9740 9741 // i indexes lowered arguments. Bump it past the hidden sret argument. 9742 ++i; 9743 } 9744 9745 SmallVector<SDValue, 4> Chains; 9746 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 9747 for (const Argument &Arg : F.args()) { 9748 SmallVector<SDValue, 4> ArgValues; 9749 SmallVector<EVT, 4> ValueVTs; 9750 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9751 unsigned NumValues = ValueVTs.size(); 9752 if (NumValues == 0) 9753 continue; 9754 9755 bool ArgHasUses = !Arg.use_empty(); 9756 9757 // Elide the copying store if the target loaded this argument from a 9758 // suitable fixed stack object. 9759 if (Ins[i].Flags.isCopyElisionCandidate()) { 9760 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 9761 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 9762 InVals[i], ArgHasUses); 9763 } 9764 9765 // If this argument is unused then remember its value. It is used to generate 9766 // debugging information. 9767 bool isSwiftErrorArg = 9768 TLI->supportSwiftError() && 9769 Arg.hasAttribute(Attribute::SwiftError); 9770 if (!ArgHasUses && !isSwiftErrorArg) { 9771 SDB->setUnusedArgValue(&Arg, InVals[i]); 9772 9773 // Also remember any frame index for use in FastISel. 9774 if (FrameIndexSDNode *FI = 9775 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 9776 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9777 } 9778 9779 for (unsigned Val = 0; Val != NumValues; ++Val) { 9780 EVT VT = ValueVTs[Val]; 9781 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 9782 F.getCallingConv(), VT); 9783 unsigned NumParts = TLI->getNumRegistersForCallingConv( 9784 *CurDAG->getContext(), F.getCallingConv(), VT); 9785 9786 // Even an apparent 'unused' swifterror argument needs to be returned. So 9787 // we do generate a copy for it that can be used on return from the 9788 // function. 9789 if (ArgHasUses || isSwiftErrorArg) { 9790 Optional<ISD::NodeType> AssertOp; 9791 if (Arg.hasAttribute(Attribute::SExt)) 9792 AssertOp = ISD::AssertSext; 9793 else if (Arg.hasAttribute(Attribute::ZExt)) 9794 AssertOp = ISD::AssertZext; 9795 9796 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 9797 PartVT, VT, nullptr, 9798 F.getCallingConv(), AssertOp)); 9799 } 9800 9801 i += NumParts; 9802 } 9803 9804 // We don't need to do anything else for unused arguments. 9805 if (ArgValues.empty()) 9806 continue; 9807 9808 // Note down frame index. 9809 if (FrameIndexSDNode *FI = 9810 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 9811 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9812 9813 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 9814 SDB->getCurSDLoc()); 9815 9816 SDB->setValue(&Arg, Res); 9817 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 9818 // We want to associate the argument with the frame index, among 9819 // involved operands, that correspond to the lowest address. The 9820 // getCopyFromParts function, called earlier, is swapping the order of 9821 // the operands to BUILD_PAIR depending on endianness. The result of 9822 // that swapping is that the least significant bits of the argument will 9823 // be in the first operand of the BUILD_PAIR node, and the most 9824 // significant bits will be in the second operand. 9825 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 9826 if (LoadSDNode *LNode = 9827 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 9828 if (FrameIndexSDNode *FI = 9829 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 9830 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9831 } 9832 9833 // Analyses past this point are naive and don't expect an assertion. 9834 if (Res.getOpcode() == ISD::AssertZext) 9835 Res = Res.getOperand(0); 9836 9837 // Update the SwiftErrorVRegDefMap. 9838 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 9839 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9840 if (Register::isVirtualRegister(Reg)) 9841 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 9842 Reg); 9843 } 9844 9845 // If this argument is live outside of the entry block, insert a copy from 9846 // wherever we got it to the vreg that other BB's will reference it as. 9847 if (Res.getOpcode() == ISD::CopyFromReg) { 9848 // If we can, though, try to skip creating an unnecessary vreg. 9849 // FIXME: This isn't very clean... it would be nice to make this more 9850 // general. 9851 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9852 if (Register::isVirtualRegister(Reg)) { 9853 FuncInfo->ValueMap[&Arg] = Reg; 9854 continue; 9855 } 9856 } 9857 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 9858 FuncInfo->InitializeRegForValue(&Arg); 9859 SDB->CopyToExportRegsIfNeeded(&Arg); 9860 } 9861 } 9862 9863 if (!Chains.empty()) { 9864 Chains.push_back(NewRoot); 9865 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 9866 } 9867 9868 DAG.setRoot(NewRoot); 9869 9870 assert(i == InVals.size() && "Argument register count mismatch!"); 9871 9872 // If any argument copy elisions occurred and we have debug info, update the 9873 // stale frame indices used in the dbg.declare variable info table. 9874 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 9875 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 9876 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 9877 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 9878 if (I != ArgCopyElisionFrameIndexMap.end()) 9879 VI.Slot = I->second; 9880 } 9881 } 9882 9883 // Finally, if the target has anything special to do, allow it to do so. 9884 emitFunctionEntryCode(); 9885 } 9886 9887 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 9888 /// ensure constants are generated when needed. Remember the virtual registers 9889 /// that need to be added to the Machine PHI nodes as input. We cannot just 9890 /// directly add them, because expansion might result in multiple MBB's for one 9891 /// BB. As such, the start of the BB might correspond to a different MBB than 9892 /// the end. 9893 void 9894 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 9895 const Instruction *TI = LLVMBB->getTerminator(); 9896 9897 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 9898 9899 // Check PHI nodes in successors that expect a value to be available from this 9900 // block. 9901 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 9902 const BasicBlock *SuccBB = TI->getSuccessor(succ); 9903 if (!isa<PHINode>(SuccBB->begin())) continue; 9904 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 9905 9906 // If this terminator has multiple identical successors (common for 9907 // switches), only handle each succ once. 9908 if (!SuccsHandled.insert(SuccMBB).second) 9909 continue; 9910 9911 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 9912 9913 // At this point we know that there is a 1-1 correspondence between LLVM PHI 9914 // nodes and Machine PHI nodes, but the incoming operands have not been 9915 // emitted yet. 9916 for (const PHINode &PN : SuccBB->phis()) { 9917 // Ignore dead phi's. 9918 if (PN.use_empty()) 9919 continue; 9920 9921 // Skip empty types 9922 if (PN.getType()->isEmptyTy()) 9923 continue; 9924 9925 unsigned Reg; 9926 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 9927 9928 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 9929 unsigned &RegOut = ConstantsOut[C]; 9930 if (RegOut == 0) { 9931 RegOut = FuncInfo.CreateRegs(C); 9932 CopyValueToVirtualRegister(C, RegOut); 9933 } 9934 Reg = RegOut; 9935 } else { 9936 DenseMap<const Value *, Register>::iterator I = 9937 FuncInfo.ValueMap.find(PHIOp); 9938 if (I != FuncInfo.ValueMap.end()) 9939 Reg = I->second; 9940 else { 9941 assert(isa<AllocaInst>(PHIOp) && 9942 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 9943 "Didn't codegen value into a register!??"); 9944 Reg = FuncInfo.CreateRegs(PHIOp); 9945 CopyValueToVirtualRegister(PHIOp, Reg); 9946 } 9947 } 9948 9949 // Remember that this register needs to added to the machine PHI node as 9950 // the input for this MBB. 9951 SmallVector<EVT, 4> ValueVTs; 9952 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9953 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 9954 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 9955 EVT VT = ValueVTs[vti]; 9956 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 9957 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 9958 FuncInfo.PHINodesToUpdate.push_back( 9959 std::make_pair(&*MBBI++, Reg + i)); 9960 Reg += NumRegisters; 9961 } 9962 } 9963 } 9964 9965 ConstantsOut.clear(); 9966 } 9967 9968 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 9969 /// is 0. 9970 MachineBasicBlock * 9971 SelectionDAGBuilder::StackProtectorDescriptor:: 9972 AddSuccessorMBB(const BasicBlock *BB, 9973 MachineBasicBlock *ParentMBB, 9974 bool IsLikely, 9975 MachineBasicBlock *SuccMBB) { 9976 // If SuccBB has not been created yet, create it. 9977 if (!SuccMBB) { 9978 MachineFunction *MF = ParentMBB->getParent(); 9979 MachineFunction::iterator BBI(ParentMBB); 9980 SuccMBB = MF->CreateMachineBasicBlock(BB); 9981 MF->insert(++BBI, SuccMBB); 9982 } 9983 // Add it as a successor of ParentMBB. 9984 ParentMBB->addSuccessor( 9985 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 9986 return SuccMBB; 9987 } 9988 9989 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 9990 MachineFunction::iterator I(MBB); 9991 if (++I == FuncInfo.MF->end()) 9992 return nullptr; 9993 return &*I; 9994 } 9995 9996 /// During lowering new call nodes can be created (such as memset, etc.). 9997 /// Those will become new roots of the current DAG, but complications arise 9998 /// when they are tail calls. In such cases, the call lowering will update 9999 /// the root, but the builder still needs to know that a tail call has been 10000 /// lowered in order to avoid generating an additional return. 10001 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 10002 // If the node is null, we do have a tail call. 10003 if (MaybeTC.getNode() != nullptr) 10004 DAG.setRoot(MaybeTC); 10005 else 10006 HasTailCall = true; 10007 } 10008 10009 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10010 MachineBasicBlock *SwitchMBB, 10011 MachineBasicBlock *DefaultMBB) { 10012 MachineFunction *CurMF = FuncInfo.MF; 10013 MachineBasicBlock *NextMBB = nullptr; 10014 MachineFunction::iterator BBI(W.MBB); 10015 if (++BBI != FuncInfo.MF->end()) 10016 NextMBB = &*BBI; 10017 10018 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10019 10020 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10021 10022 if (Size == 2 && W.MBB == SwitchMBB) { 10023 // If any two of the cases has the same destination, and if one value 10024 // is the same as the other, but has one bit unset that the other has set, 10025 // use bit manipulation to do two compares at once. For example: 10026 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10027 // TODO: This could be extended to merge any 2 cases in switches with 3 10028 // cases. 10029 // TODO: Handle cases where W.CaseBB != SwitchBB. 10030 CaseCluster &Small = *W.FirstCluster; 10031 CaseCluster &Big = *W.LastCluster; 10032 10033 if (Small.Low == Small.High && Big.Low == Big.High && 10034 Small.MBB == Big.MBB) { 10035 const APInt &SmallValue = Small.Low->getValue(); 10036 const APInt &BigValue = Big.Low->getValue(); 10037 10038 // Check that there is only one bit different. 10039 APInt CommonBit = BigValue ^ SmallValue; 10040 if (CommonBit.isPowerOf2()) { 10041 SDValue CondLHS = getValue(Cond); 10042 EVT VT = CondLHS.getValueType(); 10043 SDLoc DL = getCurSDLoc(); 10044 10045 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10046 DAG.getConstant(CommonBit, DL, VT)); 10047 SDValue Cond = DAG.getSetCC( 10048 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10049 ISD::SETEQ); 10050 10051 // Update successor info. 10052 // Both Small and Big will jump to Small.BB, so we sum up the 10053 // probabilities. 10054 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10055 if (BPI) 10056 addSuccessorWithProb( 10057 SwitchMBB, DefaultMBB, 10058 // The default destination is the first successor in IR. 10059 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10060 else 10061 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10062 10063 // Insert the true branch. 10064 SDValue BrCond = 10065 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10066 DAG.getBasicBlock(Small.MBB)); 10067 // Insert the false branch. 10068 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10069 DAG.getBasicBlock(DefaultMBB)); 10070 10071 DAG.setRoot(BrCond); 10072 return; 10073 } 10074 } 10075 } 10076 10077 if (TM.getOptLevel() != CodeGenOpt::None) { 10078 // Here, we order cases by probability so the most likely case will be 10079 // checked first. However, two clusters can have the same probability in 10080 // which case their relative ordering is non-deterministic. So we use Low 10081 // as a tie-breaker as clusters are guaranteed to never overlap. 10082 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10083 [](const CaseCluster &a, const CaseCluster &b) { 10084 return a.Prob != b.Prob ? 10085 a.Prob > b.Prob : 10086 a.Low->getValue().slt(b.Low->getValue()); 10087 }); 10088 10089 // Rearrange the case blocks so that the last one falls through if possible 10090 // without changing the order of probabilities. 10091 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10092 --I; 10093 if (I->Prob > W.LastCluster->Prob) 10094 break; 10095 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10096 std::swap(*I, *W.LastCluster); 10097 break; 10098 } 10099 } 10100 } 10101 10102 // Compute total probability. 10103 BranchProbability DefaultProb = W.DefaultProb; 10104 BranchProbability UnhandledProbs = DefaultProb; 10105 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10106 UnhandledProbs += I->Prob; 10107 10108 MachineBasicBlock *CurMBB = W.MBB; 10109 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10110 bool FallthroughUnreachable = false; 10111 MachineBasicBlock *Fallthrough; 10112 if (I == W.LastCluster) { 10113 // For the last cluster, fall through to the default destination. 10114 Fallthrough = DefaultMBB; 10115 FallthroughUnreachable = isa<UnreachableInst>( 10116 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 10117 } else { 10118 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10119 CurMF->insert(BBI, Fallthrough); 10120 // Put Cond in a virtual register to make it available from the new blocks. 10121 ExportFromCurrentBlock(Cond); 10122 } 10123 UnhandledProbs -= I->Prob; 10124 10125 switch (I->Kind) { 10126 case CC_JumpTable: { 10127 // FIXME: Optimize away range check based on pivot comparisons. 10128 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 10129 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 10130 10131 // The jump block hasn't been inserted yet; insert it here. 10132 MachineBasicBlock *JumpMBB = JT->MBB; 10133 CurMF->insert(BBI, JumpMBB); 10134 10135 auto JumpProb = I->Prob; 10136 auto FallthroughProb = UnhandledProbs; 10137 10138 // If the default statement is a target of the jump table, we evenly 10139 // distribute the default probability to successors of CurMBB. Also 10140 // update the probability on the edge from JumpMBB to Fallthrough. 10141 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10142 SE = JumpMBB->succ_end(); 10143 SI != SE; ++SI) { 10144 if (*SI == DefaultMBB) { 10145 JumpProb += DefaultProb / 2; 10146 FallthroughProb -= DefaultProb / 2; 10147 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10148 JumpMBB->normalizeSuccProbs(); 10149 break; 10150 } 10151 } 10152 10153 if (FallthroughUnreachable) { 10154 // Skip the range check if the fallthrough block is unreachable. 10155 JTH->OmitRangeCheck = true; 10156 } 10157 10158 if (!JTH->OmitRangeCheck) 10159 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10160 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10161 CurMBB->normalizeSuccProbs(); 10162 10163 // The jump table header will be inserted in our current block, do the 10164 // range check, and fall through to our fallthrough block. 10165 JTH->HeaderBB = CurMBB; 10166 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10167 10168 // If we're in the right place, emit the jump table header right now. 10169 if (CurMBB == SwitchMBB) { 10170 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10171 JTH->Emitted = true; 10172 } 10173 break; 10174 } 10175 case CC_BitTests: { 10176 // FIXME: Optimize away range check based on pivot comparisons. 10177 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 10178 10179 // The bit test blocks haven't been inserted yet; insert them here. 10180 for (BitTestCase &BTC : BTB->Cases) 10181 CurMF->insert(BBI, BTC.ThisBB); 10182 10183 // Fill in fields of the BitTestBlock. 10184 BTB->Parent = CurMBB; 10185 BTB->Default = Fallthrough; 10186 10187 BTB->DefaultProb = UnhandledProbs; 10188 // If the cases in bit test don't form a contiguous range, we evenly 10189 // distribute the probability on the edge to Fallthrough to two 10190 // successors of CurMBB. 10191 if (!BTB->ContiguousRange) { 10192 BTB->Prob += DefaultProb / 2; 10193 BTB->DefaultProb -= DefaultProb / 2; 10194 } 10195 10196 if (FallthroughUnreachable) { 10197 // Skip the range check if the fallthrough block is unreachable. 10198 BTB->OmitRangeCheck = true; 10199 } 10200 10201 // If we're in the right place, emit the bit test header right now. 10202 if (CurMBB == SwitchMBB) { 10203 visitBitTestHeader(*BTB, SwitchMBB); 10204 BTB->Emitted = true; 10205 } 10206 break; 10207 } 10208 case CC_Range: { 10209 const Value *RHS, *LHS, *MHS; 10210 ISD::CondCode CC; 10211 if (I->Low == I->High) { 10212 // Check Cond == I->Low. 10213 CC = ISD::SETEQ; 10214 LHS = Cond; 10215 RHS=I->Low; 10216 MHS = nullptr; 10217 } else { 10218 // Check I->Low <= Cond <= I->High. 10219 CC = ISD::SETLE; 10220 LHS = I->Low; 10221 MHS = Cond; 10222 RHS = I->High; 10223 } 10224 10225 // If Fallthrough is unreachable, fold away the comparison. 10226 if (FallthroughUnreachable) 10227 CC = ISD::SETTRUE; 10228 10229 // The false probability is the sum of all unhandled cases. 10230 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10231 getCurSDLoc(), I->Prob, UnhandledProbs); 10232 10233 if (CurMBB == SwitchMBB) 10234 visitSwitchCase(CB, SwitchMBB); 10235 else 10236 SL->SwitchCases.push_back(CB); 10237 10238 break; 10239 } 10240 } 10241 CurMBB = Fallthrough; 10242 } 10243 } 10244 10245 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10246 CaseClusterIt First, 10247 CaseClusterIt Last) { 10248 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10249 if (X.Prob != CC.Prob) 10250 return X.Prob > CC.Prob; 10251 10252 // Ties are broken by comparing the case value. 10253 return X.Low->getValue().slt(CC.Low->getValue()); 10254 }); 10255 } 10256 10257 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10258 const SwitchWorkListItem &W, 10259 Value *Cond, 10260 MachineBasicBlock *SwitchMBB) { 10261 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10262 "Clusters not sorted?"); 10263 10264 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10265 10266 // Balance the tree based on branch probabilities to create a near-optimal (in 10267 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10268 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10269 CaseClusterIt LastLeft = W.FirstCluster; 10270 CaseClusterIt FirstRight = W.LastCluster; 10271 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10272 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10273 10274 // Move LastLeft and FirstRight towards each other from opposite directions to 10275 // find a partitioning of the clusters which balances the probability on both 10276 // sides. If LeftProb and RightProb are equal, alternate which side is 10277 // taken to ensure 0-probability nodes are distributed evenly. 10278 unsigned I = 0; 10279 while (LastLeft + 1 < FirstRight) { 10280 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10281 LeftProb += (++LastLeft)->Prob; 10282 else 10283 RightProb += (--FirstRight)->Prob; 10284 I++; 10285 } 10286 10287 while (true) { 10288 // Our binary search tree differs from a typical BST in that ours can have up 10289 // to three values in each leaf. The pivot selection above doesn't take that 10290 // into account, which means the tree might require more nodes and be less 10291 // efficient. We compensate for this here. 10292 10293 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10294 unsigned NumRight = W.LastCluster - FirstRight + 1; 10295 10296 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10297 // If one side has less than 3 clusters, and the other has more than 3, 10298 // consider taking a cluster from the other side. 10299 10300 if (NumLeft < NumRight) { 10301 // Consider moving the first cluster on the right to the left side. 10302 CaseCluster &CC = *FirstRight; 10303 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10304 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10305 if (LeftSideRank <= RightSideRank) { 10306 // Moving the cluster to the left does not demote it. 10307 ++LastLeft; 10308 ++FirstRight; 10309 continue; 10310 } 10311 } else { 10312 assert(NumRight < NumLeft); 10313 // Consider moving the last element on the left to the right side. 10314 CaseCluster &CC = *LastLeft; 10315 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10316 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10317 if (RightSideRank <= LeftSideRank) { 10318 // Moving the cluster to the right does not demot it. 10319 --LastLeft; 10320 --FirstRight; 10321 continue; 10322 } 10323 } 10324 } 10325 break; 10326 } 10327 10328 assert(LastLeft + 1 == FirstRight); 10329 assert(LastLeft >= W.FirstCluster); 10330 assert(FirstRight <= W.LastCluster); 10331 10332 // Use the first element on the right as pivot since we will make less-than 10333 // comparisons against it. 10334 CaseClusterIt PivotCluster = FirstRight; 10335 assert(PivotCluster > W.FirstCluster); 10336 assert(PivotCluster <= W.LastCluster); 10337 10338 CaseClusterIt FirstLeft = W.FirstCluster; 10339 CaseClusterIt LastRight = W.LastCluster; 10340 10341 const ConstantInt *Pivot = PivotCluster->Low; 10342 10343 // New blocks will be inserted immediately after the current one. 10344 MachineFunction::iterator BBI(W.MBB); 10345 ++BBI; 10346 10347 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10348 // we can branch to its destination directly if it's squeezed exactly in 10349 // between the known lower bound and Pivot - 1. 10350 MachineBasicBlock *LeftMBB; 10351 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10352 FirstLeft->Low == W.GE && 10353 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10354 LeftMBB = FirstLeft->MBB; 10355 } else { 10356 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10357 FuncInfo.MF->insert(BBI, LeftMBB); 10358 WorkList.push_back( 10359 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10360 // Put Cond in a virtual register to make it available from the new blocks. 10361 ExportFromCurrentBlock(Cond); 10362 } 10363 10364 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10365 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10366 // directly if RHS.High equals the current upper bound. 10367 MachineBasicBlock *RightMBB; 10368 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10369 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10370 RightMBB = FirstRight->MBB; 10371 } else { 10372 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10373 FuncInfo.MF->insert(BBI, RightMBB); 10374 WorkList.push_back( 10375 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10376 // Put Cond in a virtual register to make it available from the new blocks. 10377 ExportFromCurrentBlock(Cond); 10378 } 10379 10380 // Create the CaseBlock record that will be used to lower the branch. 10381 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10382 getCurSDLoc(), LeftProb, RightProb); 10383 10384 if (W.MBB == SwitchMBB) 10385 visitSwitchCase(CB, SwitchMBB); 10386 else 10387 SL->SwitchCases.push_back(CB); 10388 } 10389 10390 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10391 // from the swith statement. 10392 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10393 BranchProbability PeeledCaseProb) { 10394 if (PeeledCaseProb == BranchProbability::getOne()) 10395 return BranchProbability::getZero(); 10396 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10397 10398 uint32_t Numerator = CaseProb.getNumerator(); 10399 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10400 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10401 } 10402 10403 // Try to peel the top probability case if it exceeds the threshold. 10404 // Return current MachineBasicBlock for the switch statement if the peeling 10405 // does not occur. 10406 // If the peeling is performed, return the newly created MachineBasicBlock 10407 // for the peeled switch statement. Also update Clusters to remove the peeled 10408 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10409 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10410 const SwitchInst &SI, CaseClusterVector &Clusters, 10411 BranchProbability &PeeledCaseProb) { 10412 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10413 // Don't perform if there is only one cluster or optimizing for size. 10414 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10415 TM.getOptLevel() == CodeGenOpt::None || 10416 SwitchMBB->getParent()->getFunction().hasMinSize()) 10417 return SwitchMBB; 10418 10419 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10420 unsigned PeeledCaseIndex = 0; 10421 bool SwitchPeeled = false; 10422 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10423 CaseCluster &CC = Clusters[Index]; 10424 if (CC.Prob < TopCaseProb) 10425 continue; 10426 TopCaseProb = CC.Prob; 10427 PeeledCaseIndex = Index; 10428 SwitchPeeled = true; 10429 } 10430 if (!SwitchPeeled) 10431 return SwitchMBB; 10432 10433 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10434 << TopCaseProb << "\n"); 10435 10436 // Record the MBB for the peeled switch statement. 10437 MachineFunction::iterator BBI(SwitchMBB); 10438 ++BBI; 10439 MachineBasicBlock *PeeledSwitchMBB = 10440 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10441 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10442 10443 ExportFromCurrentBlock(SI.getCondition()); 10444 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10445 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10446 nullptr, nullptr, TopCaseProb.getCompl()}; 10447 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10448 10449 Clusters.erase(PeeledCaseIt); 10450 for (CaseCluster &CC : Clusters) { 10451 LLVM_DEBUG( 10452 dbgs() << "Scale the probablity for one cluster, before scaling: " 10453 << CC.Prob << "\n"); 10454 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10455 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10456 } 10457 PeeledCaseProb = TopCaseProb; 10458 return PeeledSwitchMBB; 10459 } 10460 10461 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10462 // Extract cases from the switch. 10463 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10464 CaseClusterVector Clusters; 10465 Clusters.reserve(SI.getNumCases()); 10466 for (auto I : SI.cases()) { 10467 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10468 const ConstantInt *CaseVal = I.getCaseValue(); 10469 BranchProbability Prob = 10470 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10471 : BranchProbability(1, SI.getNumCases() + 1); 10472 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10473 } 10474 10475 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10476 10477 // Cluster adjacent cases with the same destination. We do this at all 10478 // optimization levels because it's cheap to do and will make codegen faster 10479 // if there are many clusters. 10480 sortAndRangeify(Clusters); 10481 10482 // The branch probablity of the peeled case. 10483 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10484 MachineBasicBlock *PeeledSwitchMBB = 10485 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10486 10487 // If there is only the default destination, jump there directly. 10488 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10489 if (Clusters.empty()) { 10490 assert(PeeledSwitchMBB == SwitchMBB); 10491 SwitchMBB->addSuccessor(DefaultMBB); 10492 if (DefaultMBB != NextBlock(SwitchMBB)) { 10493 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10494 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10495 } 10496 return; 10497 } 10498 10499 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 10500 SL->findBitTestClusters(Clusters, &SI); 10501 10502 LLVM_DEBUG({ 10503 dbgs() << "Case clusters: "; 10504 for (const CaseCluster &C : Clusters) { 10505 if (C.Kind == CC_JumpTable) 10506 dbgs() << "JT:"; 10507 if (C.Kind == CC_BitTests) 10508 dbgs() << "BT:"; 10509 10510 C.Low->getValue().print(dbgs(), true); 10511 if (C.Low != C.High) { 10512 dbgs() << '-'; 10513 C.High->getValue().print(dbgs(), true); 10514 } 10515 dbgs() << ' '; 10516 } 10517 dbgs() << '\n'; 10518 }); 10519 10520 assert(!Clusters.empty()); 10521 SwitchWorkList WorkList; 10522 CaseClusterIt First = Clusters.begin(); 10523 CaseClusterIt Last = Clusters.end() - 1; 10524 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10525 // Scale the branchprobability for DefaultMBB if the peel occurs and 10526 // DefaultMBB is not replaced. 10527 if (PeeledCaseProb != BranchProbability::getZero() && 10528 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10529 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10530 WorkList.push_back( 10531 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10532 10533 while (!WorkList.empty()) { 10534 SwitchWorkListItem W = WorkList.back(); 10535 WorkList.pop_back(); 10536 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10537 10538 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10539 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 10540 // For optimized builds, lower large range as a balanced binary tree. 10541 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10542 continue; 10543 } 10544 10545 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10546 } 10547 } 10548 10549 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 10550 SmallVector<EVT, 4> ValueVTs; 10551 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 10552 ValueVTs); 10553 unsigned NumValues = ValueVTs.size(); 10554 if (NumValues == 0) return; 10555 10556 SmallVector<SDValue, 4> Values(NumValues); 10557 SDValue Op = getValue(I.getOperand(0)); 10558 10559 for (unsigned i = 0; i != NumValues; ++i) 10560 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 10561 SDValue(Op.getNode(), Op.getResNo() + i)); 10562 10563 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 10564 DAG.getVTList(ValueVTs), Values)); 10565 } 10566