1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/Analysis/VectorUtils.h" 26 #include "llvm/CodeGen/FastISel.h" 27 #include "llvm/CodeGen/FunctionLoweringInfo.h" 28 #include "llvm/CodeGen/GCMetadata.h" 29 #include "llvm/CodeGen/GCStrategy.h" 30 #include "llvm/CodeGen/MachineFrameInfo.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineJumpTableInfo.h" 34 #include "llvm/CodeGen/MachineModuleInfo.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/SelectionDAG.h" 37 #include "llvm/CodeGen/StackMaps.h" 38 #include "llvm/CodeGen/WinEHFuncInfo.h" 39 #include "llvm/IR/CallingConv.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfo.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/Statepoint.h" 53 #include "llvm/MC/MCSymbol.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Target/TargetFrameLowering.h" 60 #include "llvm/Target/TargetInstrInfo.h" 61 #include "llvm/Target/TargetIntrinsicInfo.h" 62 #include "llvm/Target/TargetLowering.h" 63 #include "llvm/Target/TargetOptions.h" 64 #include "llvm/Target/TargetSelectionDAGInfo.h" 65 #include "llvm/Target/TargetSubtargetInfo.h" 66 #include <algorithm> 67 using namespace llvm; 68 69 #define DEBUG_TYPE "isel" 70 71 /// LimitFloatPrecision - Generate low-precision inline sequences for 72 /// some float libcalls (6, 8 or 12 bits). 73 static unsigned LimitFloatPrecision; 74 75 static cl::opt<unsigned, true> 76 LimitFPPrecision("limit-float-precision", 77 cl::desc("Generate low-precision inline sequences " 78 "for some float libcalls"), 79 cl::location(LimitFloatPrecision), 80 cl::init(0)); 81 82 static cl::opt<bool> 83 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden, 84 cl::desc("Enable fast-math-flags for DAG nodes")); 85 86 // Limit the width of DAG chains. This is important in general to prevent 87 // DAG-based analysis from blowing up. For example, alias analysis and 88 // load clustering may not complete in reasonable time. It is difficult to 89 // recognize and avoid this situation within each individual analysis, and 90 // future analyses are likely to have the same behavior. Limiting DAG width is 91 // the safe approach and will be especially important with global DAGs. 92 // 93 // MaxParallelChains default is arbitrarily high to avoid affecting 94 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 95 // sequence over this should have been converted to llvm.memcpy by the 96 // frontend. It easy to induce this behavior with .ll code such as: 97 // %buffer = alloca [4096 x i8] 98 // %data = load [4096 x i8]* %argPtr 99 // store [4096 x i8] %data, [4096 x i8]* %buffer 100 static const unsigned MaxParallelChains = 64; 101 102 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 103 const SDValue *Parts, unsigned NumParts, 104 MVT PartVT, EVT ValueVT, const Value *V); 105 106 /// getCopyFromParts - Create a value that contains the specified legal parts 107 /// combined into the value they represent. If the parts combine to a type 108 /// larger then ValueVT then AssertOp can be used to specify whether the extra 109 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 110 /// (ISD::AssertSext). 111 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 112 const SDValue *Parts, 113 unsigned NumParts, MVT PartVT, EVT ValueVT, 114 const Value *V, 115 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 116 if (ValueVT.isVector()) 117 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 118 PartVT, ValueVT, V); 119 120 assert(NumParts > 0 && "No parts to assemble!"); 121 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 122 SDValue Val = Parts[0]; 123 124 if (NumParts > 1) { 125 // Assemble the value from multiple parts. 126 if (ValueVT.isInteger()) { 127 unsigned PartBits = PartVT.getSizeInBits(); 128 unsigned ValueBits = ValueVT.getSizeInBits(); 129 130 // Assemble the power of 2 part. 131 unsigned RoundParts = NumParts & (NumParts - 1) ? 132 1 << Log2_32(NumParts) : NumParts; 133 unsigned RoundBits = PartBits * RoundParts; 134 EVT RoundVT = RoundBits == ValueBits ? 135 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 136 SDValue Lo, Hi; 137 138 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 139 140 if (RoundParts > 2) { 141 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 142 PartVT, HalfVT, V); 143 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 144 RoundParts / 2, PartVT, HalfVT, V); 145 } else { 146 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 147 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 148 } 149 150 if (DAG.getDataLayout().isBigEndian()) 151 std::swap(Lo, Hi); 152 153 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 154 155 if (RoundParts < NumParts) { 156 // Assemble the trailing non-power-of-2 part. 157 unsigned OddParts = NumParts - RoundParts; 158 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 159 Hi = getCopyFromParts(DAG, DL, 160 Parts + RoundParts, OddParts, PartVT, OddVT, V); 161 162 // Combine the round and odd parts. 163 Lo = Val; 164 if (DAG.getDataLayout().isBigEndian()) 165 std::swap(Lo, Hi); 166 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 167 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 168 Hi = 169 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 170 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 171 TLI.getPointerTy(DAG.getDataLayout()))); 172 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 173 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 174 } 175 } else if (PartVT.isFloatingPoint()) { 176 // FP split into multiple FP parts (for ppcf128) 177 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 178 "Unexpected split"); 179 SDValue Lo, Hi; 180 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 181 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 182 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 183 std::swap(Lo, Hi); 184 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 185 } else { 186 // FP split into integer parts (soft fp) 187 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 188 !PartVT.isVector() && "Unexpected split"); 189 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 190 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 191 } 192 } 193 194 // There is now one part, held in Val. Correct it to match ValueVT. 195 EVT PartEVT = Val.getValueType(); 196 197 if (PartEVT == ValueVT) 198 return Val; 199 200 if (PartEVT.isInteger() && ValueVT.isInteger()) { 201 if (ValueVT.bitsLT(PartEVT)) { 202 // For a truncate, see if we have any information to 203 // indicate whether the truncated bits will always be 204 // zero or sign-extension. 205 if (AssertOp != ISD::DELETED_NODE) 206 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 207 DAG.getValueType(ValueVT)); 208 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 209 } 210 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 211 } 212 213 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 214 // FP_ROUND's are always exact here. 215 if (ValueVT.bitsLT(Val.getValueType())) 216 return DAG.getNode( 217 ISD::FP_ROUND, DL, ValueVT, Val, 218 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 219 220 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 221 } 222 223 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 224 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 225 226 llvm_unreachable("Unknown mismatch!"); 227 } 228 229 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 230 const Twine &ErrMsg) { 231 const Instruction *I = dyn_cast_or_null<Instruction>(V); 232 if (!V) 233 return Ctx.emitError(ErrMsg); 234 235 const char *AsmError = ", possible invalid constraint for vector type"; 236 if (const CallInst *CI = dyn_cast<CallInst>(I)) 237 if (isa<InlineAsm>(CI->getCalledValue())) 238 return Ctx.emitError(I, ErrMsg + AsmError); 239 240 return Ctx.emitError(I, ErrMsg); 241 } 242 243 /// getCopyFromPartsVector - Create a value that contains the specified legal 244 /// parts combined into the value they represent. If the parts combine to a 245 /// type larger then ValueVT then AssertOp can be used to specify whether the 246 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 247 /// ValueVT (ISD::AssertSext). 248 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 249 const SDValue *Parts, unsigned NumParts, 250 MVT PartVT, EVT ValueVT, const Value *V) { 251 assert(ValueVT.isVector() && "Not a vector value"); 252 assert(NumParts > 0 && "No parts to assemble!"); 253 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 254 SDValue Val = Parts[0]; 255 256 // Handle a multi-element vector. 257 if (NumParts > 1) { 258 EVT IntermediateVT; 259 MVT RegisterVT; 260 unsigned NumIntermediates; 261 unsigned NumRegs = 262 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 263 NumIntermediates, RegisterVT); 264 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 265 NumParts = NumRegs; // Silence a compiler warning. 266 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 267 assert(RegisterVT.getSizeInBits() == 268 Parts[0].getSimpleValueType().getSizeInBits() && 269 "Part type sizes don't match!"); 270 271 // Assemble the parts into intermediate operands. 272 SmallVector<SDValue, 8> Ops(NumIntermediates); 273 if (NumIntermediates == NumParts) { 274 // If the register was not expanded, truncate or copy the value, 275 // as appropriate. 276 for (unsigned i = 0; i != NumParts; ++i) 277 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 278 PartVT, IntermediateVT, V); 279 } else if (NumParts > 0) { 280 // If the intermediate type was expanded, build the intermediate 281 // operands from the parts. 282 assert(NumParts % NumIntermediates == 0 && 283 "Must expand into a divisible number of parts!"); 284 unsigned Factor = NumParts / NumIntermediates; 285 for (unsigned i = 0; i != NumIntermediates; ++i) 286 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 287 PartVT, IntermediateVT, V); 288 } 289 290 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 291 // intermediate operands. 292 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 293 : ISD::BUILD_VECTOR, 294 DL, ValueVT, Ops); 295 } 296 297 // There is now one part, held in Val. Correct it to match ValueVT. 298 EVT PartEVT = Val.getValueType(); 299 300 if (PartEVT == ValueVT) 301 return Val; 302 303 if (PartEVT.isVector()) { 304 // If the element type of the source/dest vectors are the same, but the 305 // parts vector has more elements than the value vector, then we have a 306 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 307 // elements we want. 308 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 309 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 310 "Cannot narrow, it would be a lossy transformation"); 311 return DAG.getNode( 312 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 313 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 314 } 315 316 // Vector/Vector bitcast. 317 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 318 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 319 320 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 321 "Cannot handle this kind of promotion"); 322 // Promoted vector extract 323 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 324 325 } 326 327 // Trivial bitcast if the types are the same size and the destination 328 // vector type is legal. 329 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 330 TLI.isTypeLegal(ValueVT)) 331 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 332 333 // Handle cases such as i8 -> <1 x i1> 334 if (ValueVT.getVectorNumElements() != 1) { 335 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 336 "non-trivial scalar-to-vector conversion"); 337 return DAG.getUNDEF(ValueVT); 338 } 339 340 if (ValueVT.getVectorNumElements() == 1 && 341 ValueVT.getVectorElementType() != PartEVT) 342 Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType()); 343 344 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 345 } 346 347 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 348 SDValue Val, SDValue *Parts, unsigned NumParts, 349 MVT PartVT, const Value *V); 350 351 /// getCopyToParts - Create a series of nodes that contain the specified value 352 /// split into legal parts. If the parts contain more bits than Val, then, for 353 /// integers, ExtendKind can be used to specify how to generate the extra bits. 354 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 355 SDValue Val, SDValue *Parts, unsigned NumParts, 356 MVT PartVT, const Value *V, 357 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 358 EVT ValueVT = Val.getValueType(); 359 360 // Handle the vector case separately. 361 if (ValueVT.isVector()) 362 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 363 364 unsigned PartBits = PartVT.getSizeInBits(); 365 unsigned OrigNumParts = NumParts; 366 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 367 "Copying to an illegal type!"); 368 369 if (NumParts == 0) 370 return; 371 372 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 373 EVT PartEVT = PartVT; 374 if (PartEVT == ValueVT) { 375 assert(NumParts == 1 && "No-op copy with multiple parts!"); 376 Parts[0] = Val; 377 return; 378 } 379 380 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 381 // If the parts cover more bits than the value has, promote the value. 382 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 383 assert(NumParts == 1 && "Do not know what to promote to!"); 384 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 385 } else { 386 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 387 ValueVT.isInteger() && 388 "Unknown mismatch!"); 389 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 390 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 391 if (PartVT == MVT::x86mmx) 392 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 393 } 394 } else if (PartBits == ValueVT.getSizeInBits()) { 395 // Different types of the same size. 396 assert(NumParts == 1 && PartEVT != ValueVT); 397 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 398 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 399 // If the parts cover less bits than value has, truncate the value. 400 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 401 ValueVT.isInteger() && 402 "Unknown mismatch!"); 403 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 404 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 405 if (PartVT == MVT::x86mmx) 406 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 407 } 408 409 // The value may have changed - recompute ValueVT. 410 ValueVT = Val.getValueType(); 411 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 412 "Failed to tile the value with PartVT!"); 413 414 if (NumParts == 1) { 415 if (PartEVT != ValueVT) 416 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 417 "scalar-to-vector conversion failed"); 418 419 Parts[0] = Val; 420 return; 421 } 422 423 // Expand the value into multiple parts. 424 if (NumParts & (NumParts - 1)) { 425 // The number of parts is not a power of 2. Split off and copy the tail. 426 assert(PartVT.isInteger() && ValueVT.isInteger() && 427 "Do not know what to expand to!"); 428 unsigned RoundParts = 1 << Log2_32(NumParts); 429 unsigned RoundBits = RoundParts * PartBits; 430 unsigned OddParts = NumParts - RoundParts; 431 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 432 DAG.getIntPtrConstant(RoundBits, DL)); 433 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 434 435 if (DAG.getDataLayout().isBigEndian()) 436 // The odd parts were reversed by getCopyToParts - unreverse them. 437 std::reverse(Parts + RoundParts, Parts + NumParts); 438 439 NumParts = RoundParts; 440 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 441 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 442 } 443 444 // The number of parts is a power of 2. Repeatedly bisect the value using 445 // EXTRACT_ELEMENT. 446 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 447 EVT::getIntegerVT(*DAG.getContext(), 448 ValueVT.getSizeInBits()), 449 Val); 450 451 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 452 for (unsigned i = 0; i < NumParts; i += StepSize) { 453 unsigned ThisBits = StepSize * PartBits / 2; 454 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 455 SDValue &Part0 = Parts[i]; 456 SDValue &Part1 = Parts[i+StepSize/2]; 457 458 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 459 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 460 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 461 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 462 463 if (ThisBits == PartBits && ThisVT != PartVT) { 464 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 465 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 466 } 467 } 468 } 469 470 if (DAG.getDataLayout().isBigEndian()) 471 std::reverse(Parts, Parts + OrigNumParts); 472 } 473 474 475 /// getCopyToPartsVector - Create a series of nodes that contain the specified 476 /// value split into legal parts. 477 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 478 SDValue Val, SDValue *Parts, unsigned NumParts, 479 MVT PartVT, const Value *V) { 480 EVT ValueVT = Val.getValueType(); 481 assert(ValueVT.isVector() && "Not a vector"); 482 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 483 484 if (NumParts == 1) { 485 EVT PartEVT = PartVT; 486 if (PartEVT == ValueVT) { 487 // Nothing to do. 488 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 489 // Bitconvert vector->vector case. 490 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 491 } else if (PartVT.isVector() && 492 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 493 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 494 EVT ElementVT = PartVT.getVectorElementType(); 495 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 496 // undef elements. 497 SmallVector<SDValue, 16> Ops; 498 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 499 Ops.push_back(DAG.getNode( 500 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 501 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 502 503 for (unsigned i = ValueVT.getVectorNumElements(), 504 e = PartVT.getVectorNumElements(); i != e; ++i) 505 Ops.push_back(DAG.getUNDEF(ElementVT)); 506 507 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 508 509 // FIXME: Use CONCAT for 2x -> 4x. 510 511 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 512 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 513 } else if (PartVT.isVector() && 514 PartEVT.getVectorElementType().bitsGE( 515 ValueVT.getVectorElementType()) && 516 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 517 518 // Promoted vector extract 519 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 520 } else{ 521 // Vector -> scalar conversion. 522 assert(ValueVT.getVectorNumElements() == 1 && 523 "Only trivial vector-to-scalar conversions should get here!"); 524 Val = DAG.getNode( 525 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 526 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 527 528 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 529 } 530 531 Parts[0] = Val; 532 return; 533 } 534 535 // Handle a multi-element vector. 536 EVT IntermediateVT; 537 MVT RegisterVT; 538 unsigned NumIntermediates; 539 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 540 IntermediateVT, 541 NumIntermediates, RegisterVT); 542 unsigned NumElements = ValueVT.getVectorNumElements(); 543 544 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 545 NumParts = NumRegs; // Silence a compiler warning. 546 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 547 548 // Split the vector into intermediate operands. 549 SmallVector<SDValue, 8> Ops(NumIntermediates); 550 for (unsigned i = 0; i != NumIntermediates; ++i) { 551 if (IntermediateVT.isVector()) 552 Ops[i] = 553 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 554 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 555 TLI.getVectorIdxTy(DAG.getDataLayout()))); 556 else 557 Ops[i] = DAG.getNode( 558 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 559 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 560 } 561 562 // Split the intermediate operands into legal parts. 563 if (NumParts == NumIntermediates) { 564 // If the register was not expanded, promote or copy the value, 565 // as appropriate. 566 for (unsigned i = 0; i != NumParts; ++i) 567 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 568 } else if (NumParts > 0) { 569 // If the intermediate type was expanded, split each the value into 570 // legal parts. 571 assert(NumIntermediates != 0 && "division by zero"); 572 assert(NumParts % NumIntermediates == 0 && 573 "Must expand into a divisible number of parts!"); 574 unsigned Factor = NumParts / NumIntermediates; 575 for (unsigned i = 0; i != NumIntermediates; ++i) 576 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 577 } 578 } 579 580 RegsForValue::RegsForValue() {} 581 582 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 583 EVT valuevt) 584 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 585 586 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 587 const DataLayout &DL, unsigned Reg, Type *Ty) { 588 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 589 590 for (EVT ValueVT : ValueVTs) { 591 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); 592 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); 593 for (unsigned i = 0; i != NumRegs; ++i) 594 Regs.push_back(Reg + i); 595 RegVTs.push_back(RegisterVT); 596 Reg += NumRegs; 597 } 598 } 599 600 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 601 /// this value and returns the result as a ValueVT value. This uses 602 /// Chain/Flag as the input and updates them for the output Chain/Flag. 603 /// If the Flag pointer is NULL, no flag is used. 604 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 605 FunctionLoweringInfo &FuncInfo, 606 SDLoc dl, 607 SDValue &Chain, SDValue *Flag, 608 const Value *V) const { 609 // A Value with type {} or [0 x %t] needs no registers. 610 if (ValueVTs.empty()) 611 return SDValue(); 612 613 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 614 615 // Assemble the legal parts into the final values. 616 SmallVector<SDValue, 4> Values(ValueVTs.size()); 617 SmallVector<SDValue, 8> Parts; 618 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 619 // Copy the legal parts from the registers. 620 EVT ValueVT = ValueVTs[Value]; 621 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 622 MVT RegisterVT = RegVTs[Value]; 623 624 Parts.resize(NumRegs); 625 for (unsigned i = 0; i != NumRegs; ++i) { 626 SDValue P; 627 if (!Flag) { 628 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 629 } else { 630 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 631 *Flag = P.getValue(2); 632 } 633 634 Chain = P.getValue(1); 635 Parts[i] = P; 636 637 // If the source register was virtual and if we know something about it, 638 // add an assert node. 639 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 640 !RegisterVT.isInteger() || RegisterVT.isVector()) 641 continue; 642 643 const FunctionLoweringInfo::LiveOutInfo *LOI = 644 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 645 if (!LOI) 646 continue; 647 648 unsigned RegSize = RegisterVT.getSizeInBits(); 649 unsigned NumSignBits = LOI->NumSignBits; 650 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 651 652 if (NumZeroBits == RegSize) { 653 // The current value is a zero. 654 // Explicitly express that as it would be easier for 655 // optimizations to kick in. 656 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 657 continue; 658 } 659 660 // FIXME: We capture more information than the dag can represent. For 661 // now, just use the tightest assertzext/assertsext possible. 662 bool isSExt = true; 663 EVT FromVT(MVT::Other); 664 if (NumSignBits == RegSize) 665 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 666 else if (NumZeroBits >= RegSize-1) 667 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 668 else if (NumSignBits > RegSize-8) 669 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 670 else if (NumZeroBits >= RegSize-8) 671 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 672 else if (NumSignBits > RegSize-16) 673 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 674 else if (NumZeroBits >= RegSize-16) 675 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 676 else if (NumSignBits > RegSize-32) 677 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 678 else if (NumZeroBits >= RegSize-32) 679 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 680 else 681 continue; 682 683 // Add an assertion node. 684 assert(FromVT != MVT::Other); 685 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 686 RegisterVT, P, DAG.getValueType(FromVT)); 687 } 688 689 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 690 NumRegs, RegisterVT, ValueVT, V); 691 Part += NumRegs; 692 Parts.clear(); 693 } 694 695 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 696 } 697 698 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 699 /// specified value into the registers specified by this object. This uses 700 /// Chain/Flag as the input and updates them for the output Chain/Flag. 701 /// If the Flag pointer is NULL, no flag is used. 702 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 703 SDValue &Chain, SDValue *Flag, const Value *V, 704 ISD::NodeType PreferredExtendType) const { 705 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 706 ISD::NodeType ExtendKind = PreferredExtendType; 707 708 // Get the list of the values's legal parts. 709 unsigned NumRegs = Regs.size(); 710 SmallVector<SDValue, 8> Parts(NumRegs); 711 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 712 EVT ValueVT = ValueVTs[Value]; 713 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 714 MVT RegisterVT = RegVTs[Value]; 715 716 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 717 ExtendKind = ISD::ZERO_EXTEND; 718 719 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 720 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 721 Part += NumParts; 722 } 723 724 // Copy the parts into the registers. 725 SmallVector<SDValue, 8> Chains(NumRegs); 726 for (unsigned i = 0; i != NumRegs; ++i) { 727 SDValue Part; 728 if (!Flag) { 729 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 730 } else { 731 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 732 *Flag = Part.getValue(1); 733 } 734 735 Chains[i] = Part.getValue(0); 736 } 737 738 if (NumRegs == 1 || Flag) 739 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 740 // flagged to it. That is the CopyToReg nodes and the user are considered 741 // a single scheduling unit. If we create a TokenFactor and return it as 742 // chain, then the TokenFactor is both a predecessor (operand) of the 743 // user as well as a successor (the TF operands are flagged to the user). 744 // c1, f1 = CopyToReg 745 // c2, f2 = CopyToReg 746 // c3 = TokenFactor c1, c2 747 // ... 748 // = op c3, ..., f2 749 Chain = Chains[NumRegs-1]; 750 else 751 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 752 } 753 754 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 755 /// operand list. This adds the code marker and includes the number of 756 /// values added into it. 757 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 758 unsigned MatchingIdx, SDLoc dl, 759 SelectionDAG &DAG, 760 std::vector<SDValue> &Ops) const { 761 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 762 763 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 764 if (HasMatching) 765 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 766 else if (!Regs.empty() && 767 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 768 // Put the register class of the virtual registers in the flag word. That 769 // way, later passes can recompute register class constraints for inline 770 // assembly as well as normal instructions. 771 // Don't do this for tied operands that can use the regclass information 772 // from the def. 773 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 774 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 775 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 776 } 777 778 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 779 Ops.push_back(Res); 780 781 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 782 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 783 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 784 MVT RegisterVT = RegVTs[Value]; 785 for (unsigned i = 0; i != NumRegs; ++i) { 786 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 787 unsigned TheReg = Regs[Reg++]; 788 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 789 790 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 791 // If we clobbered the stack pointer, MFI should know about it. 792 assert(DAG.getMachineFunction().getFrameInfo()-> 793 hasOpaqueSPAdjustment()); 794 } 795 } 796 } 797 } 798 799 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 800 const TargetLibraryInfo *li) { 801 AA = &aa; 802 GFI = gfi; 803 LibInfo = li; 804 DL = &DAG.getDataLayout(); 805 Context = DAG.getContext(); 806 LPadToCallSiteMap.clear(); 807 } 808 809 /// clear - Clear out the current SelectionDAG and the associated 810 /// state and prepare this SelectionDAGBuilder object to be used 811 /// for a new block. This doesn't clear out information about 812 /// additional blocks that are needed to complete switch lowering 813 /// or PHI node updating; that information is cleared out as it is 814 /// consumed. 815 void SelectionDAGBuilder::clear() { 816 NodeMap.clear(); 817 UnusedArgNodeMap.clear(); 818 PendingLoads.clear(); 819 PendingExports.clear(); 820 CurInst = nullptr; 821 HasTailCall = false; 822 SDNodeOrder = LowestSDNodeOrder; 823 StatepointLowering.clear(); 824 } 825 826 /// clearDanglingDebugInfo - Clear the dangling debug information 827 /// map. This function is separated from the clear so that debug 828 /// information that is dangling in a basic block can be properly 829 /// resolved in a different basic block. This allows the 830 /// SelectionDAG to resolve dangling debug information attached 831 /// to PHI nodes. 832 void SelectionDAGBuilder::clearDanglingDebugInfo() { 833 DanglingDebugInfoMap.clear(); 834 } 835 836 /// getRoot - Return the current virtual root of the Selection DAG, 837 /// flushing any PendingLoad items. This must be done before emitting 838 /// a store or any other node that may need to be ordered after any 839 /// prior load instructions. 840 /// 841 SDValue SelectionDAGBuilder::getRoot() { 842 if (PendingLoads.empty()) 843 return DAG.getRoot(); 844 845 if (PendingLoads.size() == 1) { 846 SDValue Root = PendingLoads[0]; 847 DAG.setRoot(Root); 848 PendingLoads.clear(); 849 return Root; 850 } 851 852 // Otherwise, we have to make a token factor node. 853 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 854 PendingLoads); 855 PendingLoads.clear(); 856 DAG.setRoot(Root); 857 return Root; 858 } 859 860 /// getControlRoot - Similar to getRoot, but instead of flushing all the 861 /// PendingLoad items, flush all the PendingExports items. It is necessary 862 /// to do this before emitting a terminator instruction. 863 /// 864 SDValue SelectionDAGBuilder::getControlRoot() { 865 SDValue Root = DAG.getRoot(); 866 867 if (PendingExports.empty()) 868 return Root; 869 870 // Turn all of the CopyToReg chains into one factored node. 871 if (Root.getOpcode() != ISD::EntryToken) { 872 unsigned i = 0, e = PendingExports.size(); 873 for (; i != e; ++i) { 874 assert(PendingExports[i].getNode()->getNumOperands() > 1); 875 if (PendingExports[i].getNode()->getOperand(0) == Root) 876 break; // Don't add the root if we already indirectly depend on it. 877 } 878 879 if (i == e) 880 PendingExports.push_back(Root); 881 } 882 883 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 884 PendingExports); 885 PendingExports.clear(); 886 DAG.setRoot(Root); 887 return Root; 888 } 889 890 void SelectionDAGBuilder::visit(const Instruction &I) { 891 // Set up outgoing PHI node register values before emitting the terminator. 892 if (isa<TerminatorInst>(&I)) 893 HandlePHINodesInSuccessorBlocks(I.getParent()); 894 895 ++SDNodeOrder; 896 897 CurInst = &I; 898 899 visit(I.getOpcode(), I); 900 901 if (!isa<TerminatorInst>(&I) && !HasTailCall) 902 CopyToExportRegsIfNeeded(&I); 903 904 CurInst = nullptr; 905 } 906 907 void SelectionDAGBuilder::visitPHI(const PHINode &) { 908 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 909 } 910 911 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 912 // Note: this doesn't use InstVisitor, because it has to work with 913 // ConstantExpr's in addition to instructions. 914 switch (Opcode) { 915 default: llvm_unreachable("Unknown instruction type encountered!"); 916 // Build the switch statement using the Instruction.def file. 917 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 918 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 919 #include "llvm/IR/Instruction.def" 920 } 921 } 922 923 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 924 // generate the debug data structures now that we've seen its definition. 925 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 926 SDValue Val) { 927 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 928 if (DDI.getDI()) { 929 const DbgValueInst *DI = DDI.getDI(); 930 DebugLoc dl = DDI.getdl(); 931 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 932 DILocalVariable *Variable = DI->getVariable(); 933 DIExpression *Expr = DI->getExpression(); 934 assert(Variable->isValidLocationForIntrinsic(dl) && 935 "Expected inlined-at fields to agree"); 936 uint64_t Offset = DI->getOffset(); 937 // A dbg.value for an alloca is always indirect. 938 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 939 SDDbgValue *SDV; 940 if (Val.getNode()) { 941 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect, 942 Val)) { 943 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 944 IsIndirect, Offset, dl, DbgSDNodeOrder); 945 DAG.AddDbgValue(SDV, Val.getNode(), false); 946 } 947 } else 948 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 949 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 950 } 951 } 952 953 /// getCopyFromRegs - If there was virtual register allocated for the value V 954 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 955 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 956 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 957 SDValue Result; 958 959 if (It != FuncInfo.ValueMap.end()) { 960 unsigned InReg = It->second; 961 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 962 DAG.getDataLayout(), InReg, Ty); 963 SDValue Chain = DAG.getEntryNode(); 964 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 965 resolveDanglingDebugInfo(V, Result); 966 } 967 968 return Result; 969 } 970 971 /// getValue - Return an SDValue for the given Value. 972 SDValue SelectionDAGBuilder::getValue(const Value *V) { 973 // If we already have an SDValue for this value, use it. It's important 974 // to do this first, so that we don't create a CopyFromReg if we already 975 // have a regular SDValue. 976 SDValue &N = NodeMap[V]; 977 if (N.getNode()) return N; 978 979 // If there's a virtual register allocated and initialized for this 980 // value, use it. 981 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 982 if (copyFromReg.getNode()) { 983 return copyFromReg; 984 } 985 986 // Otherwise create a new SDValue and remember it. 987 SDValue Val = getValueImpl(V); 988 NodeMap[V] = Val; 989 resolveDanglingDebugInfo(V, Val); 990 return Val; 991 } 992 993 // Return true if SDValue exists for the given Value 994 bool SelectionDAGBuilder::findValue(const Value *V) const { 995 return (NodeMap.find(V) != NodeMap.end()) || 996 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 997 } 998 999 /// getNonRegisterValue - Return an SDValue for the given Value, but 1000 /// don't look in FuncInfo.ValueMap for a virtual register. 1001 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1002 // If we already have an SDValue for this value, use it. 1003 SDValue &N = NodeMap[V]; 1004 if (N.getNode()) { 1005 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1006 // Remove the debug location from the node as the node is about to be used 1007 // in a location which may differ from the original debug location. This 1008 // is relevant to Constant and ConstantFP nodes because they can appear 1009 // as constant expressions inside PHI nodes. 1010 N->setDebugLoc(DebugLoc()); 1011 } 1012 return N; 1013 } 1014 1015 // Otherwise create a new SDValue and remember it. 1016 SDValue Val = getValueImpl(V); 1017 NodeMap[V] = Val; 1018 resolveDanglingDebugInfo(V, Val); 1019 return Val; 1020 } 1021 1022 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1023 /// Create an SDValue for the given value. 1024 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1025 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1026 1027 if (const Constant *C = dyn_cast<Constant>(V)) { 1028 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1029 1030 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1031 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1032 1033 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1034 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1035 1036 if (isa<ConstantPointerNull>(C)) { 1037 unsigned AS = V->getType()->getPointerAddressSpace(); 1038 return DAG.getConstant(0, getCurSDLoc(), 1039 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1040 } 1041 1042 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1043 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1044 1045 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1046 return DAG.getUNDEF(VT); 1047 1048 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1049 visit(CE->getOpcode(), *CE); 1050 SDValue N1 = NodeMap[V]; 1051 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1052 return N1; 1053 } 1054 1055 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1056 SmallVector<SDValue, 4> Constants; 1057 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1058 OI != OE; ++OI) { 1059 SDNode *Val = getValue(*OI).getNode(); 1060 // If the operand is an empty aggregate, there are no values. 1061 if (!Val) continue; 1062 // Add each leaf value from the operand to the Constants list 1063 // to form a flattened list of all the values. 1064 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1065 Constants.push_back(SDValue(Val, i)); 1066 } 1067 1068 return DAG.getMergeValues(Constants, getCurSDLoc()); 1069 } 1070 1071 if (const ConstantDataSequential *CDS = 1072 dyn_cast<ConstantDataSequential>(C)) { 1073 SmallVector<SDValue, 4> Ops; 1074 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1075 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1076 // Add each leaf value from the operand to the Constants list 1077 // to form a flattened list of all the values. 1078 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1079 Ops.push_back(SDValue(Val, i)); 1080 } 1081 1082 if (isa<ArrayType>(CDS->getType())) 1083 return DAG.getMergeValues(Ops, getCurSDLoc()); 1084 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1085 VT, Ops); 1086 } 1087 1088 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1089 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1090 "Unknown struct or array constant!"); 1091 1092 SmallVector<EVT, 4> ValueVTs; 1093 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1094 unsigned NumElts = ValueVTs.size(); 1095 if (NumElts == 0) 1096 return SDValue(); // empty struct 1097 SmallVector<SDValue, 4> Constants(NumElts); 1098 for (unsigned i = 0; i != NumElts; ++i) { 1099 EVT EltVT = ValueVTs[i]; 1100 if (isa<UndefValue>(C)) 1101 Constants[i] = DAG.getUNDEF(EltVT); 1102 else if (EltVT.isFloatingPoint()) 1103 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1104 else 1105 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1106 } 1107 1108 return DAG.getMergeValues(Constants, getCurSDLoc()); 1109 } 1110 1111 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1112 return DAG.getBlockAddress(BA, VT); 1113 1114 VectorType *VecTy = cast<VectorType>(V->getType()); 1115 unsigned NumElements = VecTy->getNumElements(); 1116 1117 // Now that we know the number and type of the elements, get that number of 1118 // elements into the Ops array based on what kind of constant it is. 1119 SmallVector<SDValue, 16> Ops; 1120 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1121 for (unsigned i = 0; i != NumElements; ++i) 1122 Ops.push_back(getValue(CV->getOperand(i))); 1123 } else { 1124 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1125 EVT EltVT = 1126 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1127 1128 SDValue Op; 1129 if (EltVT.isFloatingPoint()) 1130 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1131 else 1132 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1133 Ops.assign(NumElements, Op); 1134 } 1135 1136 // Create a BUILD_VECTOR node. 1137 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1138 } 1139 1140 // If this is a static alloca, generate it as the frameindex instead of 1141 // computation. 1142 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1143 DenseMap<const AllocaInst*, int>::iterator SI = 1144 FuncInfo.StaticAllocaMap.find(AI); 1145 if (SI != FuncInfo.StaticAllocaMap.end()) 1146 return DAG.getFrameIndex(SI->second, 1147 TLI.getPointerTy(DAG.getDataLayout())); 1148 } 1149 1150 // If this is an instruction which fast-isel has deferred, select it now. 1151 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1152 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1153 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1154 Inst->getType()); 1155 SDValue Chain = DAG.getEntryNode(); 1156 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1157 } 1158 1159 llvm_unreachable("Can't get register for value!"); 1160 } 1161 1162 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1163 llvm_unreachable("should never codegen catchpads"); 1164 } 1165 1166 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1167 // Update machine-CFG edge. 1168 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1169 FuncInfo.MBB->addSuccessor(TargetMBB); 1170 1171 // Create the terminator node. 1172 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1173 getControlRoot(), DAG.getBasicBlock(TargetMBB)); 1174 DAG.setRoot(Ret); 1175 } 1176 1177 void SelectionDAGBuilder::visitCatchEndPad(const CatchEndPadInst &I) { 1178 llvm_unreachable("should never codegen catchendpads"); 1179 } 1180 1181 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1182 // Don't emit any special code for the cleanuppad instruction. It just marks 1183 // the start of a funclet. 1184 FuncInfo.MBB->setIsEHFuncletEntry(); 1185 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1186 } 1187 1188 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1189 /// many places it could ultimately go. In the IR, we have a single unwind 1190 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1191 /// This function skips over imaginary basic blocks that hold catchpad, 1192 /// terminatepad, or catchendpad instructions, and finds all the "real" machine 1193 /// basic block destinations. 1194 static void 1195 findUnwindDestinations(FunctionLoweringInfo &FuncInfo, 1196 const BasicBlock *EHPadBB, 1197 SmallVectorImpl<MachineBasicBlock *> &UnwindDests) { 1198 bool IsMSVCCXX = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()) == 1199 EHPersonality::MSVC_CXX; 1200 while (EHPadBB) { 1201 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1202 if (isa<LandingPadInst>(Pad)) { 1203 // Stop on landingpads. They are not funclets. 1204 UnwindDests.push_back(FuncInfo.MBBMap[EHPadBB]); 1205 break; 1206 } else if (isa<CleanupPadInst>(Pad) || isa<LandingPadInst>(Pad)) { 1207 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1208 // personalities. 1209 UnwindDests.push_back(FuncInfo.MBBMap[EHPadBB]); 1210 UnwindDests.back()->setIsEHFuncletEntry(); 1211 break; 1212 } else if (const auto *CPI = dyn_cast<CatchPadInst>(Pad)) { 1213 // Add the catchpad handler to the possible destinations. 1214 UnwindDests.push_back(FuncInfo.MBBMap[CPI->getNormalDest()]); 1215 // In MSVC C++, catchblocks are funclets and need prologues. 1216 if (IsMSVCCXX) 1217 UnwindDests.back()->setIsEHFuncletEntry(); 1218 EHPadBB = CPI->getUnwindDest(); 1219 } else if (const auto *CEPI = dyn_cast<CatchEndPadInst>(Pad)) { 1220 EHPadBB = CEPI->getUnwindDest(); 1221 } else if (const auto *CEPI = dyn_cast<CleanupEndPadInst>(Pad)) { 1222 EHPadBB = CEPI->getUnwindDest(); 1223 } 1224 } 1225 } 1226 1227 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1228 // Update successor info. 1229 // FIXME: The weights for catchpads will be wrong. 1230 SmallVector<MachineBasicBlock *, 1> UnwindDests; 1231 findUnwindDestinations(FuncInfo, I.getUnwindDest(), UnwindDests); 1232 for (MachineBasicBlock *UnwindDest : UnwindDests) { 1233 UnwindDest->setIsEHPad(); 1234 addSuccessorWithWeight(FuncInfo.MBB, UnwindDest); 1235 } 1236 1237 // Create the terminator node. 1238 SDValue Ret = 1239 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1240 DAG.setRoot(Ret); 1241 } 1242 1243 void SelectionDAGBuilder::visitCleanupEndPad(const CleanupEndPadInst &I) { 1244 report_fatal_error("visitCleanupEndPad not yet implemented!"); 1245 } 1246 1247 void SelectionDAGBuilder::visitTerminatePad(const TerminatePadInst &TPI) { 1248 report_fatal_error("visitTerminatePad not yet implemented!"); 1249 } 1250 1251 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1252 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1253 auto &DL = DAG.getDataLayout(); 1254 SDValue Chain = getControlRoot(); 1255 SmallVector<ISD::OutputArg, 8> Outs; 1256 SmallVector<SDValue, 8> OutVals; 1257 1258 if (!FuncInfo.CanLowerReturn) { 1259 unsigned DemoteReg = FuncInfo.DemoteRegister; 1260 const Function *F = I.getParent()->getParent(); 1261 1262 // Emit a store of the return value through the virtual register. 1263 // Leave Outs empty so that LowerReturn won't try to load return 1264 // registers the usual way. 1265 SmallVector<EVT, 1> PtrValueVTs; 1266 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1267 PtrValueVTs); 1268 1269 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1270 SDValue RetOp = getValue(I.getOperand(0)); 1271 1272 SmallVector<EVT, 4> ValueVTs; 1273 SmallVector<uint64_t, 4> Offsets; 1274 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1275 unsigned NumValues = ValueVTs.size(); 1276 1277 SmallVector<SDValue, 4> Chains(NumValues); 1278 for (unsigned i = 0; i != NumValues; ++i) { 1279 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1280 RetPtr.getValueType(), RetPtr, 1281 DAG.getIntPtrConstant(Offsets[i], 1282 getCurSDLoc())); 1283 Chains[i] = 1284 DAG.getStore(Chain, getCurSDLoc(), 1285 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1286 // FIXME: better loc info would be nice. 1287 Add, MachinePointerInfo(), false, false, 0); 1288 } 1289 1290 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1291 MVT::Other, Chains); 1292 } else if (I.getNumOperands() != 0) { 1293 SmallVector<EVT, 4> ValueVTs; 1294 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1295 unsigned NumValues = ValueVTs.size(); 1296 if (NumValues) { 1297 SDValue RetOp = getValue(I.getOperand(0)); 1298 1299 const Function *F = I.getParent()->getParent(); 1300 1301 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1302 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1303 Attribute::SExt)) 1304 ExtendKind = ISD::SIGN_EXTEND; 1305 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1306 Attribute::ZExt)) 1307 ExtendKind = ISD::ZERO_EXTEND; 1308 1309 LLVMContext &Context = F->getContext(); 1310 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1311 Attribute::InReg); 1312 1313 for (unsigned j = 0; j != NumValues; ++j) { 1314 EVT VT = ValueVTs[j]; 1315 1316 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1317 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1318 1319 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1320 MVT PartVT = TLI.getRegisterType(Context, VT); 1321 SmallVector<SDValue, 4> Parts(NumParts); 1322 getCopyToParts(DAG, getCurSDLoc(), 1323 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1324 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1325 1326 // 'inreg' on function refers to return value 1327 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1328 if (RetInReg) 1329 Flags.setInReg(); 1330 1331 // Propagate extension type if any 1332 if (ExtendKind == ISD::SIGN_EXTEND) 1333 Flags.setSExt(); 1334 else if (ExtendKind == ISD::ZERO_EXTEND) 1335 Flags.setZExt(); 1336 1337 for (unsigned i = 0; i < NumParts; ++i) { 1338 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1339 VT, /*isfixed=*/true, 0, 0)); 1340 OutVals.push_back(Parts[i]); 1341 } 1342 } 1343 } 1344 } 1345 1346 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1347 CallingConv::ID CallConv = 1348 DAG.getMachineFunction().getFunction()->getCallingConv(); 1349 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1350 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1351 1352 // Verify that the target's LowerReturn behaved as expected. 1353 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1354 "LowerReturn didn't return a valid chain!"); 1355 1356 // Update the DAG with the new chain value resulting from return lowering. 1357 DAG.setRoot(Chain); 1358 } 1359 1360 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1361 /// created for it, emit nodes to copy the value into the virtual 1362 /// registers. 1363 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1364 // Skip empty types 1365 if (V->getType()->isEmptyTy()) 1366 return; 1367 1368 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1369 if (VMI != FuncInfo.ValueMap.end()) { 1370 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1371 CopyValueToVirtualRegister(V, VMI->second); 1372 } 1373 } 1374 1375 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1376 /// the current basic block, add it to ValueMap now so that we'll get a 1377 /// CopyTo/FromReg. 1378 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1379 // No need to export constants. 1380 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1381 1382 // Already exported? 1383 if (FuncInfo.isExportedInst(V)) return; 1384 1385 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1386 CopyValueToVirtualRegister(V, Reg); 1387 } 1388 1389 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1390 const BasicBlock *FromBB) { 1391 // The operands of the setcc have to be in this block. We don't know 1392 // how to export them from some other block. 1393 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1394 // Can export from current BB. 1395 if (VI->getParent() == FromBB) 1396 return true; 1397 1398 // Is already exported, noop. 1399 return FuncInfo.isExportedInst(V); 1400 } 1401 1402 // If this is an argument, we can export it if the BB is the entry block or 1403 // if it is already exported. 1404 if (isa<Argument>(V)) { 1405 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1406 return true; 1407 1408 // Otherwise, can only export this if it is already exported. 1409 return FuncInfo.isExportedInst(V); 1410 } 1411 1412 // Otherwise, constants can always be exported. 1413 return true; 1414 } 1415 1416 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1417 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1418 const MachineBasicBlock *Dst) const { 1419 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1420 if (!BPI) 1421 return 0; 1422 const BasicBlock *SrcBB = Src->getBasicBlock(); 1423 const BasicBlock *DstBB = Dst->getBasicBlock(); 1424 return BPI->getEdgeWeight(SrcBB, DstBB); 1425 } 1426 1427 void SelectionDAGBuilder:: 1428 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1429 uint32_t Weight /* = 0 */) { 1430 if (!Weight) 1431 Weight = getEdgeWeight(Src, Dst); 1432 Src->addSuccessor(Dst, Weight); 1433 } 1434 1435 1436 static bool InBlock(const Value *V, const BasicBlock *BB) { 1437 if (const Instruction *I = dyn_cast<Instruction>(V)) 1438 return I->getParent() == BB; 1439 return true; 1440 } 1441 1442 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1443 /// This function emits a branch and is used at the leaves of an OR or an 1444 /// AND operator tree. 1445 /// 1446 void 1447 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1448 MachineBasicBlock *TBB, 1449 MachineBasicBlock *FBB, 1450 MachineBasicBlock *CurBB, 1451 MachineBasicBlock *SwitchBB, 1452 uint32_t TWeight, 1453 uint32_t FWeight) { 1454 const BasicBlock *BB = CurBB->getBasicBlock(); 1455 1456 // If the leaf of the tree is a comparison, merge the condition into 1457 // the caseblock. 1458 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1459 // The operands of the cmp have to be in this block. We don't know 1460 // how to export them from some other block. If this is the first block 1461 // of the sequence, no exporting is needed. 1462 if (CurBB == SwitchBB || 1463 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1464 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1465 ISD::CondCode Condition; 1466 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1467 Condition = getICmpCondCode(IC->getPredicate()); 1468 } else { 1469 const FCmpInst *FC = cast<FCmpInst>(Cond); 1470 Condition = getFCmpCondCode(FC->getPredicate()); 1471 if (TM.Options.NoNaNsFPMath) 1472 Condition = getFCmpCodeWithoutNaN(Condition); 1473 } 1474 1475 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1476 TBB, FBB, CurBB, TWeight, FWeight); 1477 SwitchCases.push_back(CB); 1478 return; 1479 } 1480 } 1481 1482 // Create a CaseBlock record representing this branch. 1483 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1484 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1485 SwitchCases.push_back(CB); 1486 } 1487 1488 /// Scale down both weights to fit into uint32_t. 1489 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1490 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1491 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1492 NewTrue = NewTrue / Scale; 1493 NewFalse = NewFalse / Scale; 1494 } 1495 1496 /// FindMergedConditions - If Cond is an expression like 1497 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1498 MachineBasicBlock *TBB, 1499 MachineBasicBlock *FBB, 1500 MachineBasicBlock *CurBB, 1501 MachineBasicBlock *SwitchBB, 1502 Instruction::BinaryOps Opc, 1503 uint32_t TWeight, 1504 uint32_t FWeight) { 1505 // If this node is not part of the or/and tree, emit it as a branch. 1506 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1507 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1508 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1509 BOp->getParent() != CurBB->getBasicBlock() || 1510 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1511 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1512 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1513 TWeight, FWeight); 1514 return; 1515 } 1516 1517 // Create TmpBB after CurBB. 1518 MachineFunction::iterator BBI = CurBB; 1519 MachineFunction &MF = DAG.getMachineFunction(); 1520 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1521 CurBB->getParent()->insert(++BBI, TmpBB); 1522 1523 if (Opc == Instruction::Or) { 1524 // Codegen X | Y as: 1525 // BB1: 1526 // jmp_if_X TBB 1527 // jmp TmpBB 1528 // TmpBB: 1529 // jmp_if_Y TBB 1530 // jmp FBB 1531 // 1532 1533 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1534 // The requirement is that 1535 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1536 // = TrueProb for original BB. 1537 // Assuming the original weights are A and B, one choice is to set BB1's 1538 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1539 // assumes that 1540 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1541 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1542 // TmpBB, but the math is more complicated. 1543 1544 uint64_t NewTrueWeight = TWeight; 1545 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1546 ScaleWeights(NewTrueWeight, NewFalseWeight); 1547 // Emit the LHS condition. 1548 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1549 NewTrueWeight, NewFalseWeight); 1550 1551 NewTrueWeight = TWeight; 1552 NewFalseWeight = 2 * (uint64_t)FWeight; 1553 ScaleWeights(NewTrueWeight, NewFalseWeight); 1554 // Emit the RHS condition into TmpBB. 1555 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1556 NewTrueWeight, NewFalseWeight); 1557 } else { 1558 assert(Opc == Instruction::And && "Unknown merge op!"); 1559 // Codegen X & Y as: 1560 // BB1: 1561 // jmp_if_X TmpBB 1562 // jmp FBB 1563 // TmpBB: 1564 // jmp_if_Y TBB 1565 // jmp FBB 1566 // 1567 // This requires creation of TmpBB after CurBB. 1568 1569 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1570 // The requirement is that 1571 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1572 // = FalseProb for original BB. 1573 // Assuming the original weights are A and B, one choice is to set BB1's 1574 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1575 // assumes that 1576 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1577 1578 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1579 uint64_t NewFalseWeight = FWeight; 1580 ScaleWeights(NewTrueWeight, NewFalseWeight); 1581 // Emit the LHS condition. 1582 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1583 NewTrueWeight, NewFalseWeight); 1584 1585 NewTrueWeight = 2 * (uint64_t)TWeight; 1586 NewFalseWeight = FWeight; 1587 ScaleWeights(NewTrueWeight, NewFalseWeight); 1588 // Emit the RHS condition into TmpBB. 1589 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1590 NewTrueWeight, NewFalseWeight); 1591 } 1592 } 1593 1594 /// If the set of cases should be emitted as a series of branches, return true. 1595 /// If we should emit this as a bunch of and/or'd together conditions, return 1596 /// false. 1597 bool 1598 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1599 if (Cases.size() != 2) return true; 1600 1601 // If this is two comparisons of the same values or'd or and'd together, they 1602 // will get folded into a single comparison, so don't emit two blocks. 1603 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1604 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1605 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1606 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1607 return false; 1608 } 1609 1610 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1611 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1612 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1613 Cases[0].CC == Cases[1].CC && 1614 isa<Constant>(Cases[0].CmpRHS) && 1615 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1616 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1617 return false; 1618 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1619 return false; 1620 } 1621 1622 return true; 1623 } 1624 1625 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1626 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1627 1628 // Update machine-CFG edges. 1629 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1630 1631 if (I.isUnconditional()) { 1632 // Update machine-CFG edges. 1633 BrMBB->addSuccessor(Succ0MBB); 1634 1635 // If this is not a fall-through branch or optimizations are switched off, 1636 // emit the branch. 1637 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1638 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1639 MVT::Other, getControlRoot(), 1640 DAG.getBasicBlock(Succ0MBB))); 1641 1642 return; 1643 } 1644 1645 // If this condition is one of the special cases we handle, do special stuff 1646 // now. 1647 const Value *CondVal = I.getCondition(); 1648 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1649 1650 // If this is a series of conditions that are or'd or and'd together, emit 1651 // this as a sequence of branches instead of setcc's with and/or operations. 1652 // As long as jumps are not expensive, this should improve performance. 1653 // For example, instead of something like: 1654 // cmp A, B 1655 // C = seteq 1656 // cmp D, E 1657 // F = setle 1658 // or C, F 1659 // jnz foo 1660 // Emit: 1661 // cmp A, B 1662 // je foo 1663 // cmp D, E 1664 // jle foo 1665 // 1666 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1667 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1668 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1669 !I.getMetadata(LLVMContext::MD_unpredictable) && 1670 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1671 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1672 Opcode, getEdgeWeight(BrMBB, Succ0MBB), 1673 getEdgeWeight(BrMBB, Succ1MBB)); 1674 // If the compares in later blocks need to use values not currently 1675 // exported from this block, export them now. This block should always 1676 // be the first entry. 1677 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1678 1679 // Allow some cases to be rejected. 1680 if (ShouldEmitAsBranches(SwitchCases)) { 1681 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1682 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1683 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1684 } 1685 1686 // Emit the branch for this block. 1687 visitSwitchCase(SwitchCases[0], BrMBB); 1688 SwitchCases.erase(SwitchCases.begin()); 1689 return; 1690 } 1691 1692 // Okay, we decided not to do this, remove any inserted MBB's and clear 1693 // SwitchCases. 1694 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1695 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1696 1697 SwitchCases.clear(); 1698 } 1699 } 1700 1701 // Create a CaseBlock record representing this branch. 1702 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1703 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1704 1705 // Use visitSwitchCase to actually insert the fast branch sequence for this 1706 // cond branch. 1707 visitSwitchCase(CB, BrMBB); 1708 } 1709 1710 /// visitSwitchCase - Emits the necessary code to represent a single node in 1711 /// the binary search tree resulting from lowering a switch instruction. 1712 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1713 MachineBasicBlock *SwitchBB) { 1714 SDValue Cond; 1715 SDValue CondLHS = getValue(CB.CmpLHS); 1716 SDLoc dl = getCurSDLoc(); 1717 1718 // Build the setcc now. 1719 if (!CB.CmpMHS) { 1720 // Fold "(X == true)" to X and "(X == false)" to !X to 1721 // handle common cases produced by branch lowering. 1722 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1723 CB.CC == ISD::SETEQ) 1724 Cond = CondLHS; 1725 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1726 CB.CC == ISD::SETEQ) { 1727 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1728 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1729 } else 1730 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1731 } else { 1732 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1733 1734 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1735 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1736 1737 SDValue CmpOp = getValue(CB.CmpMHS); 1738 EVT VT = CmpOp.getValueType(); 1739 1740 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1741 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1742 ISD::SETLE); 1743 } else { 1744 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1745 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1746 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1747 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1748 } 1749 } 1750 1751 // Update successor info 1752 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1753 // TrueBB and FalseBB are always different unless the incoming IR is 1754 // degenerate. This only happens when running llc on weird IR. 1755 if (CB.TrueBB != CB.FalseBB) 1756 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1757 1758 // If the lhs block is the next block, invert the condition so that we can 1759 // fall through to the lhs instead of the rhs block. 1760 if (CB.TrueBB == NextBlock(SwitchBB)) { 1761 std::swap(CB.TrueBB, CB.FalseBB); 1762 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1763 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1764 } 1765 1766 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1767 MVT::Other, getControlRoot(), Cond, 1768 DAG.getBasicBlock(CB.TrueBB)); 1769 1770 // Insert the false branch. Do this even if it's a fall through branch, 1771 // this makes it easier to do DAG optimizations which require inverting 1772 // the branch condition. 1773 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1774 DAG.getBasicBlock(CB.FalseBB)); 1775 1776 DAG.setRoot(BrCond); 1777 } 1778 1779 /// visitJumpTable - Emit JumpTable node in the current MBB 1780 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1781 // Emit the code for the jump table 1782 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1783 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1784 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1785 JT.Reg, PTy); 1786 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1787 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1788 MVT::Other, Index.getValue(1), 1789 Table, Index); 1790 DAG.setRoot(BrJumpTable); 1791 } 1792 1793 /// visitJumpTableHeader - This function emits necessary code to produce index 1794 /// in the JumpTable from switch case. 1795 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1796 JumpTableHeader &JTH, 1797 MachineBasicBlock *SwitchBB) { 1798 SDLoc dl = getCurSDLoc(); 1799 1800 // Subtract the lowest switch case value from the value being switched on and 1801 // conditional branch to default mbb if the result is greater than the 1802 // difference between smallest and largest cases. 1803 SDValue SwitchOp = getValue(JTH.SValue); 1804 EVT VT = SwitchOp.getValueType(); 1805 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1806 DAG.getConstant(JTH.First, dl, VT)); 1807 1808 // The SDNode we just created, which holds the value being switched on minus 1809 // the smallest case value, needs to be copied to a virtual register so it 1810 // can be used as an index into the jump table in a subsequent basic block. 1811 // This value may be smaller or larger than the target's pointer type, and 1812 // therefore require extension or truncating. 1813 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1814 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 1815 1816 unsigned JumpTableReg = 1817 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 1818 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1819 JumpTableReg, SwitchOp); 1820 JT.Reg = JumpTableReg; 1821 1822 // Emit the range check for the jump table, and branch to the default block 1823 // for the switch statement if the value being switched on exceeds the largest 1824 // case in the switch. 1825 SDValue CMP = DAG.getSetCC( 1826 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1827 Sub.getValueType()), 1828 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 1829 1830 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1831 MVT::Other, CopyTo, CMP, 1832 DAG.getBasicBlock(JT.Default)); 1833 1834 // Avoid emitting unnecessary branches to the next block. 1835 if (JT.MBB != NextBlock(SwitchBB)) 1836 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1837 DAG.getBasicBlock(JT.MBB)); 1838 1839 DAG.setRoot(BrCond); 1840 } 1841 1842 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1843 /// tail spliced into a stack protector check success bb. 1844 /// 1845 /// For a high level explanation of how this fits into the stack protector 1846 /// generation see the comment on the declaration of class 1847 /// StackProtectorDescriptor. 1848 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1849 MachineBasicBlock *ParentBB) { 1850 1851 // First create the loads to the guard/stack slot for the comparison. 1852 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1853 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 1854 1855 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1856 int FI = MFI->getStackProtectorIndex(); 1857 1858 const Value *IRGuard = SPD.getGuard(); 1859 SDValue GuardPtr = getValue(IRGuard); 1860 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1861 1862 unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType()); 1863 1864 SDValue Guard; 1865 SDLoc dl = getCurSDLoc(); 1866 1867 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1868 // guard value from the virtual register holding the value. Otherwise, emit a 1869 // volatile load to retrieve the stack guard value. 1870 unsigned GuardReg = SPD.getGuardReg(); 1871 1872 if (GuardReg && TLI.useLoadStackGuardNode()) 1873 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 1874 PtrTy); 1875 else 1876 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1877 GuardPtr, MachinePointerInfo(IRGuard, 0), 1878 true, false, false, Align); 1879 1880 SDValue StackSlot = DAG.getLoad( 1881 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 1882 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true, 1883 false, false, Align); 1884 1885 // Perform the comparison via a subtract/getsetcc. 1886 EVT VT = Guard.getValueType(); 1887 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 1888 1889 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 1890 *DAG.getContext(), 1891 Sub.getValueType()), 1892 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 1893 1894 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1895 // branch to failure MBB. 1896 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1897 MVT::Other, StackSlot.getOperand(0), 1898 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1899 // Otherwise branch to success MBB. 1900 SDValue Br = DAG.getNode(ISD::BR, dl, 1901 MVT::Other, BrCond, 1902 DAG.getBasicBlock(SPD.getSuccessMBB())); 1903 1904 DAG.setRoot(Br); 1905 } 1906 1907 /// Codegen the failure basic block for a stack protector check. 1908 /// 1909 /// A failure stack protector machine basic block consists simply of a call to 1910 /// __stack_chk_fail(). 1911 /// 1912 /// For a high level explanation of how this fits into the stack protector 1913 /// generation see the comment on the declaration of class 1914 /// StackProtectorDescriptor. 1915 void 1916 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1917 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1918 SDValue Chain = 1919 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1920 nullptr, 0, false, getCurSDLoc(), false, false).second; 1921 DAG.setRoot(Chain); 1922 } 1923 1924 /// visitBitTestHeader - This function emits necessary code to produce value 1925 /// suitable for "bit tests" 1926 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1927 MachineBasicBlock *SwitchBB) { 1928 SDLoc dl = getCurSDLoc(); 1929 1930 // Subtract the minimum value 1931 SDValue SwitchOp = getValue(B.SValue); 1932 EVT VT = SwitchOp.getValueType(); 1933 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1934 DAG.getConstant(B.First, dl, VT)); 1935 1936 // Check range 1937 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1938 SDValue RangeCmp = DAG.getSetCC( 1939 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1940 Sub.getValueType()), 1941 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 1942 1943 // Determine the type of the test operands. 1944 bool UsePtrType = false; 1945 if (!TLI.isTypeLegal(VT)) 1946 UsePtrType = true; 1947 else { 1948 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1949 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1950 // Switch table case range are encoded into series of masks. 1951 // Just use pointer type, it's guaranteed to fit. 1952 UsePtrType = true; 1953 break; 1954 } 1955 } 1956 if (UsePtrType) { 1957 VT = TLI.getPointerTy(DAG.getDataLayout()); 1958 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 1959 } 1960 1961 B.RegVT = VT.getSimpleVT(); 1962 B.Reg = FuncInfo.CreateReg(B.RegVT); 1963 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 1964 1965 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1966 1967 addSuccessorWithWeight(SwitchBB, B.Default, B.DefaultWeight); 1968 addSuccessorWithWeight(SwitchBB, MBB, B.Weight); 1969 1970 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 1971 MVT::Other, CopyTo, RangeCmp, 1972 DAG.getBasicBlock(B.Default)); 1973 1974 // Avoid emitting unnecessary branches to the next block. 1975 if (MBB != NextBlock(SwitchBB)) 1976 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 1977 DAG.getBasicBlock(MBB)); 1978 1979 DAG.setRoot(BrRange); 1980 } 1981 1982 /// visitBitTestCase - this function produces one "bit test" 1983 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1984 MachineBasicBlock* NextMBB, 1985 uint32_t BranchWeightToNext, 1986 unsigned Reg, 1987 BitTestCase &B, 1988 MachineBasicBlock *SwitchBB) { 1989 SDLoc dl = getCurSDLoc(); 1990 MVT VT = BB.RegVT; 1991 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 1992 SDValue Cmp; 1993 unsigned PopCount = countPopulation(B.Mask); 1994 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1995 if (PopCount == 1) { 1996 // Testing for a single bit; just compare the shift count with what it 1997 // would need to be to shift a 1 bit in that position. 1998 Cmp = DAG.getSetCC( 1999 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2000 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2001 ISD::SETEQ); 2002 } else if (PopCount == BB.Range) { 2003 // There is only one zero bit in the range, test for it directly. 2004 Cmp = DAG.getSetCC( 2005 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2006 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2007 ISD::SETNE); 2008 } else { 2009 // Make desired shift 2010 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2011 DAG.getConstant(1, dl, VT), ShiftOp); 2012 2013 // Emit bit tests and jumps 2014 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2015 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2016 Cmp = DAG.getSetCC( 2017 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2018 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2019 } 2020 2021 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 2022 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 2023 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 2024 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 2025 2026 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2027 MVT::Other, getControlRoot(), 2028 Cmp, DAG.getBasicBlock(B.TargetBB)); 2029 2030 // Avoid emitting unnecessary branches to the next block. 2031 if (NextMBB != NextBlock(SwitchBB)) 2032 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2033 DAG.getBasicBlock(NextMBB)); 2034 2035 DAG.setRoot(BrAnd); 2036 } 2037 2038 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2039 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2040 2041 // Retrieve successors. Look through artificial IR level blocks like catchpads 2042 // and catchendpads for successors. 2043 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2044 const BasicBlock *EHPadBB = I.getSuccessor(1); 2045 2046 const Value *Callee(I.getCalledValue()); 2047 const Function *Fn = dyn_cast<Function>(Callee); 2048 if (isa<InlineAsm>(Callee)) 2049 visitInlineAsm(&I); 2050 else if (Fn && Fn->isIntrinsic()) { 2051 switch (Fn->getIntrinsicID()) { 2052 default: 2053 llvm_unreachable("Cannot invoke this intrinsic"); 2054 case Intrinsic::donothing: 2055 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2056 break; 2057 case Intrinsic::experimental_patchpoint_void: 2058 case Intrinsic::experimental_patchpoint_i64: 2059 visitPatchpoint(&I, EHPadBB); 2060 break; 2061 case Intrinsic::experimental_gc_statepoint: 2062 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2063 break; 2064 } 2065 } else 2066 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2067 2068 // If the value of the invoke is used outside of its defining block, make it 2069 // available as a virtual register. 2070 // We already took care of the exported value for the statepoint instruction 2071 // during call to the LowerStatepoint. 2072 if (!isStatepoint(I)) { 2073 CopyToExportRegsIfNeeded(&I); 2074 } 2075 2076 SmallVector<MachineBasicBlock *, 1> UnwindDests; 2077 findUnwindDestinations(FuncInfo, EHPadBB, UnwindDests); 2078 2079 // Update successor info. 2080 // FIXME: The weights for catchpads will be wrong. 2081 addSuccessorWithWeight(InvokeMBB, Return); 2082 for (MachineBasicBlock *UnwindDest : UnwindDests) { 2083 UnwindDest->setIsEHPad(); 2084 addSuccessorWithWeight(InvokeMBB, UnwindDest); 2085 } 2086 2087 // Drop into normal successor. 2088 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2089 MVT::Other, getControlRoot(), 2090 DAG.getBasicBlock(Return))); 2091 } 2092 2093 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2094 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2095 } 2096 2097 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2098 assert(FuncInfo.MBB->isEHPad() && 2099 "Call to landingpad not in landing pad!"); 2100 2101 MachineBasicBlock *MBB = FuncInfo.MBB; 2102 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2103 AddLandingPadInfo(LP, MMI, MBB); 2104 2105 // If there aren't registers to copy the values into (e.g., during SjLj 2106 // exceptions), then don't bother to create these DAG nodes. 2107 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2108 if (TLI.getExceptionPointerRegister() == 0 && 2109 TLI.getExceptionSelectorRegister() == 0) 2110 return; 2111 2112 SmallVector<EVT, 2> ValueVTs; 2113 SDLoc dl = getCurSDLoc(); 2114 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2115 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2116 2117 // Get the two live-in registers as SDValues. The physregs have already been 2118 // copied into virtual registers. 2119 SDValue Ops[2]; 2120 if (FuncInfo.ExceptionPointerVirtReg) { 2121 Ops[0] = DAG.getZExtOrTrunc( 2122 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2123 FuncInfo.ExceptionPointerVirtReg, 2124 TLI.getPointerTy(DAG.getDataLayout())), 2125 dl, ValueVTs[0]); 2126 } else { 2127 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2128 } 2129 Ops[1] = DAG.getZExtOrTrunc( 2130 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2131 FuncInfo.ExceptionSelectorVirtReg, 2132 TLI.getPointerTy(DAG.getDataLayout())), 2133 dl, ValueVTs[1]); 2134 2135 // Merge into one. 2136 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2137 DAG.getVTList(ValueVTs), Ops); 2138 setValue(&LP, Res); 2139 } 2140 2141 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2142 #ifndef NDEBUG 2143 for (const CaseCluster &CC : Clusters) 2144 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2145 #endif 2146 2147 std::sort(Clusters.begin(), Clusters.end(), 2148 [](const CaseCluster &a, const CaseCluster &b) { 2149 return a.Low->getValue().slt(b.Low->getValue()); 2150 }); 2151 2152 // Merge adjacent clusters with the same destination. 2153 const unsigned N = Clusters.size(); 2154 unsigned DstIndex = 0; 2155 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2156 CaseCluster &CC = Clusters[SrcIndex]; 2157 const ConstantInt *CaseVal = CC.Low; 2158 MachineBasicBlock *Succ = CC.MBB; 2159 2160 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2161 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2162 // If this case has the same successor and is a neighbour, merge it into 2163 // the previous cluster. 2164 Clusters[DstIndex - 1].High = CaseVal; 2165 Clusters[DstIndex - 1].Weight += CC.Weight; 2166 assert(Clusters[DstIndex - 1].Weight >= CC.Weight && "Weight overflow!"); 2167 } else { 2168 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2169 sizeof(Clusters[SrcIndex])); 2170 } 2171 } 2172 Clusters.resize(DstIndex); 2173 } 2174 2175 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2176 MachineBasicBlock *Last) { 2177 // Update JTCases. 2178 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2179 if (JTCases[i].first.HeaderBB == First) 2180 JTCases[i].first.HeaderBB = Last; 2181 2182 // Update BitTestCases. 2183 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2184 if (BitTestCases[i].Parent == First) 2185 BitTestCases[i].Parent = Last; 2186 } 2187 2188 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2189 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2190 2191 // Update machine-CFG edges with unique successors. 2192 SmallSet<BasicBlock*, 32> Done; 2193 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2194 BasicBlock *BB = I.getSuccessor(i); 2195 bool Inserted = Done.insert(BB).second; 2196 if (!Inserted) 2197 continue; 2198 2199 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2200 addSuccessorWithWeight(IndirectBrMBB, Succ); 2201 } 2202 2203 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2204 MVT::Other, getControlRoot(), 2205 getValue(I.getAddress()))); 2206 } 2207 2208 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2209 if (DAG.getTarget().Options.TrapUnreachable) 2210 DAG.setRoot( 2211 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2212 } 2213 2214 void SelectionDAGBuilder::visitFSub(const User &I) { 2215 // -0.0 - X --> fneg 2216 Type *Ty = I.getType(); 2217 if (isa<Constant>(I.getOperand(0)) && 2218 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2219 SDValue Op2 = getValue(I.getOperand(1)); 2220 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2221 Op2.getValueType(), Op2)); 2222 return; 2223 } 2224 2225 visitBinary(I, ISD::FSUB); 2226 } 2227 2228 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2229 SDValue Op1 = getValue(I.getOperand(0)); 2230 SDValue Op2 = getValue(I.getOperand(1)); 2231 2232 bool nuw = false; 2233 bool nsw = false; 2234 bool exact = false; 2235 FastMathFlags FMF; 2236 2237 if (const OverflowingBinaryOperator *OFBinOp = 2238 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2239 nuw = OFBinOp->hasNoUnsignedWrap(); 2240 nsw = OFBinOp->hasNoSignedWrap(); 2241 } 2242 if (const PossiblyExactOperator *ExactOp = 2243 dyn_cast<const PossiblyExactOperator>(&I)) 2244 exact = ExactOp->isExact(); 2245 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2246 FMF = FPOp->getFastMathFlags(); 2247 2248 SDNodeFlags Flags; 2249 Flags.setExact(exact); 2250 Flags.setNoSignedWrap(nsw); 2251 Flags.setNoUnsignedWrap(nuw); 2252 if (EnableFMFInDAG) { 2253 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2254 Flags.setNoInfs(FMF.noInfs()); 2255 Flags.setNoNaNs(FMF.noNaNs()); 2256 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2257 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2258 } 2259 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2260 Op1, Op2, &Flags); 2261 setValue(&I, BinNodeValue); 2262 } 2263 2264 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2265 SDValue Op1 = getValue(I.getOperand(0)); 2266 SDValue Op2 = getValue(I.getOperand(1)); 2267 2268 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2269 Op2.getValueType(), DAG.getDataLayout()); 2270 2271 // Coerce the shift amount to the right type if we can. 2272 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2273 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2274 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2275 SDLoc DL = getCurSDLoc(); 2276 2277 // If the operand is smaller than the shift count type, promote it. 2278 if (ShiftSize > Op2Size) 2279 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2280 2281 // If the operand is larger than the shift count type but the shift 2282 // count type has enough bits to represent any shift value, truncate 2283 // it now. This is a common case and it exposes the truncate to 2284 // optimization early. 2285 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2286 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2287 // Otherwise we'll need to temporarily settle for some other convenient 2288 // type. Type legalization will make adjustments once the shiftee is split. 2289 else 2290 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2291 } 2292 2293 bool nuw = false; 2294 bool nsw = false; 2295 bool exact = false; 2296 2297 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2298 2299 if (const OverflowingBinaryOperator *OFBinOp = 2300 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2301 nuw = OFBinOp->hasNoUnsignedWrap(); 2302 nsw = OFBinOp->hasNoSignedWrap(); 2303 } 2304 if (const PossiblyExactOperator *ExactOp = 2305 dyn_cast<const PossiblyExactOperator>(&I)) 2306 exact = ExactOp->isExact(); 2307 } 2308 SDNodeFlags Flags; 2309 Flags.setExact(exact); 2310 Flags.setNoSignedWrap(nsw); 2311 Flags.setNoUnsignedWrap(nuw); 2312 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2313 &Flags); 2314 setValue(&I, Res); 2315 } 2316 2317 void SelectionDAGBuilder::visitSDiv(const User &I) { 2318 SDValue Op1 = getValue(I.getOperand(0)); 2319 SDValue Op2 = getValue(I.getOperand(1)); 2320 2321 SDNodeFlags Flags; 2322 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2323 cast<PossiblyExactOperator>(&I)->isExact()); 2324 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2325 Op2, &Flags)); 2326 } 2327 2328 void SelectionDAGBuilder::visitICmp(const User &I) { 2329 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2330 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2331 predicate = IC->getPredicate(); 2332 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2333 predicate = ICmpInst::Predicate(IC->getPredicate()); 2334 SDValue Op1 = getValue(I.getOperand(0)); 2335 SDValue Op2 = getValue(I.getOperand(1)); 2336 ISD::CondCode Opcode = getICmpCondCode(predicate); 2337 2338 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2339 I.getType()); 2340 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2341 } 2342 2343 void SelectionDAGBuilder::visitFCmp(const User &I) { 2344 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2345 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2346 predicate = FC->getPredicate(); 2347 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2348 predicate = FCmpInst::Predicate(FC->getPredicate()); 2349 SDValue Op1 = getValue(I.getOperand(0)); 2350 SDValue Op2 = getValue(I.getOperand(1)); 2351 ISD::CondCode Condition = getFCmpCondCode(predicate); 2352 2353 // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them. 2354 // FIXME: We should propagate the fast-math-flags to the DAG node itself for 2355 // further optimization, but currently FMF is only applicable to binary nodes. 2356 if (TM.Options.NoNaNsFPMath) 2357 Condition = getFCmpCodeWithoutNaN(Condition); 2358 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2359 I.getType()); 2360 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2361 } 2362 2363 void SelectionDAGBuilder::visitSelect(const User &I) { 2364 SmallVector<EVT, 4> ValueVTs; 2365 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2366 ValueVTs); 2367 unsigned NumValues = ValueVTs.size(); 2368 if (NumValues == 0) return; 2369 2370 SmallVector<SDValue, 4> Values(NumValues); 2371 SDValue Cond = getValue(I.getOperand(0)); 2372 SDValue LHSVal = getValue(I.getOperand(1)); 2373 SDValue RHSVal = getValue(I.getOperand(2)); 2374 auto BaseOps = {Cond}; 2375 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2376 ISD::VSELECT : ISD::SELECT; 2377 2378 // Min/max matching is only viable if all output VTs are the same. 2379 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2380 EVT VT = ValueVTs[0]; 2381 LLVMContext &Ctx = *DAG.getContext(); 2382 auto &TLI = DAG.getTargetLoweringInfo(); 2383 while (TLI.getTypeAction(Ctx, VT) == TargetLoweringBase::TypeSplitVector) 2384 VT = TLI.getTypeToTransformTo(Ctx, VT); 2385 2386 Value *LHS, *RHS; 2387 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2388 ISD::NodeType Opc = ISD::DELETED_NODE; 2389 switch (SPR.Flavor) { 2390 case SPF_UMAX: Opc = ISD::UMAX; break; 2391 case SPF_UMIN: Opc = ISD::UMIN; break; 2392 case SPF_SMAX: Opc = ISD::SMAX; break; 2393 case SPF_SMIN: Opc = ISD::SMIN; break; 2394 case SPF_FMINNUM: 2395 switch (SPR.NaNBehavior) { 2396 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2397 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2398 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2399 case SPNB_RETURNS_ANY: 2400 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) ? ISD::FMINNUM 2401 : ISD::FMINNAN; 2402 break; 2403 } 2404 break; 2405 case SPF_FMAXNUM: 2406 switch (SPR.NaNBehavior) { 2407 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2408 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2409 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2410 case SPNB_RETURNS_ANY: 2411 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) ? ISD::FMAXNUM 2412 : ISD::FMAXNAN; 2413 break; 2414 } 2415 break; 2416 default: break; 2417 } 2418 2419 if (Opc != ISD::DELETED_NODE && TLI.isOperationLegalOrCustom(Opc, VT) && 2420 // If the underlying comparison instruction is used by any other instruction, 2421 // the consumed instructions won't be destroyed, so it is not profitable 2422 // to convert to a min/max. 2423 cast<SelectInst>(&I)->getCondition()->hasOneUse()) { 2424 OpCode = Opc; 2425 LHSVal = getValue(LHS); 2426 RHSVal = getValue(RHS); 2427 BaseOps = {}; 2428 } 2429 } 2430 2431 for (unsigned i = 0; i != NumValues; ++i) { 2432 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2433 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2434 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2435 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2436 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2437 Ops); 2438 } 2439 2440 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2441 DAG.getVTList(ValueVTs), Values)); 2442 } 2443 2444 void SelectionDAGBuilder::visitTrunc(const User &I) { 2445 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2446 SDValue N = getValue(I.getOperand(0)); 2447 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2448 I.getType()); 2449 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2450 } 2451 2452 void SelectionDAGBuilder::visitZExt(const User &I) { 2453 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2454 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2455 SDValue N = getValue(I.getOperand(0)); 2456 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2457 I.getType()); 2458 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2459 } 2460 2461 void SelectionDAGBuilder::visitSExt(const User &I) { 2462 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2463 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2464 SDValue N = getValue(I.getOperand(0)); 2465 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2466 I.getType()); 2467 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2468 } 2469 2470 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2471 // FPTrunc is never a no-op cast, no need to check 2472 SDValue N = getValue(I.getOperand(0)); 2473 SDLoc dl = getCurSDLoc(); 2474 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2475 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2476 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2477 DAG.getTargetConstant( 2478 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2479 } 2480 2481 void SelectionDAGBuilder::visitFPExt(const User &I) { 2482 // FPExt is never a no-op cast, no need to check 2483 SDValue N = getValue(I.getOperand(0)); 2484 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2485 I.getType()); 2486 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2487 } 2488 2489 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2490 // FPToUI is never a no-op cast, no need to check 2491 SDValue N = getValue(I.getOperand(0)); 2492 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2493 I.getType()); 2494 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2495 } 2496 2497 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2498 // FPToSI is never a no-op cast, no need to check 2499 SDValue N = getValue(I.getOperand(0)); 2500 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2501 I.getType()); 2502 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2503 } 2504 2505 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2506 // UIToFP is never a no-op cast, no need to check 2507 SDValue N = getValue(I.getOperand(0)); 2508 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2509 I.getType()); 2510 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2511 } 2512 2513 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2514 // SIToFP is never a no-op cast, no need to check 2515 SDValue N = getValue(I.getOperand(0)); 2516 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2517 I.getType()); 2518 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2519 } 2520 2521 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2522 // What to do depends on the size of the integer and the size of the pointer. 2523 // We can either truncate, zero extend, or no-op, accordingly. 2524 SDValue N = getValue(I.getOperand(0)); 2525 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2526 I.getType()); 2527 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2528 } 2529 2530 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2531 // What to do depends on the size of the integer and the size of the pointer. 2532 // We can either truncate, zero extend, or no-op, accordingly. 2533 SDValue N = getValue(I.getOperand(0)); 2534 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2535 I.getType()); 2536 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2537 } 2538 2539 void SelectionDAGBuilder::visitBitCast(const User &I) { 2540 SDValue N = getValue(I.getOperand(0)); 2541 SDLoc dl = getCurSDLoc(); 2542 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2543 I.getType()); 2544 2545 // BitCast assures us that source and destination are the same size so this is 2546 // either a BITCAST or a no-op. 2547 if (DestVT != N.getValueType()) 2548 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2549 DestVT, N)); // convert types. 2550 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2551 // might fold any kind of constant expression to an integer constant and that 2552 // is not what we are looking for. Only regcognize a bitcast of a genuine 2553 // constant integer as an opaque constant. 2554 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2555 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2556 /*isOpaque*/true)); 2557 else 2558 setValue(&I, N); // noop cast. 2559 } 2560 2561 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2562 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2563 const Value *SV = I.getOperand(0); 2564 SDValue N = getValue(SV); 2565 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2566 2567 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2568 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2569 2570 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2571 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2572 2573 setValue(&I, N); 2574 } 2575 2576 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2577 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2578 SDValue InVec = getValue(I.getOperand(0)); 2579 SDValue InVal = getValue(I.getOperand(1)); 2580 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 2581 TLI.getVectorIdxTy(DAG.getDataLayout())); 2582 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2583 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2584 InVec, InVal, InIdx)); 2585 } 2586 2587 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2588 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2589 SDValue InVec = getValue(I.getOperand(0)); 2590 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 2591 TLI.getVectorIdxTy(DAG.getDataLayout())); 2592 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2593 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2594 InVec, InIdx)); 2595 } 2596 2597 // Utility for visitShuffleVector - Return true if every element in Mask, 2598 // beginning from position Pos and ending in Pos+Size, falls within the 2599 // specified sequential range [L, L+Pos). or is undef. 2600 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2601 unsigned Pos, unsigned Size, int Low) { 2602 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2603 if (Mask[i] >= 0 && Mask[i] != Low) 2604 return false; 2605 return true; 2606 } 2607 2608 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2609 SDValue Src1 = getValue(I.getOperand(0)); 2610 SDValue Src2 = getValue(I.getOperand(1)); 2611 2612 SmallVector<int, 8> Mask; 2613 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2614 unsigned MaskNumElts = Mask.size(); 2615 2616 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2617 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2618 EVT SrcVT = Src1.getValueType(); 2619 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2620 2621 if (SrcNumElts == MaskNumElts) { 2622 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2623 &Mask[0])); 2624 return; 2625 } 2626 2627 // Normalize the shuffle vector since mask and vector length don't match. 2628 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2629 // Mask is longer than the source vectors and is a multiple of the source 2630 // vectors. We can use concatenate vector to make the mask and vectors 2631 // lengths match. 2632 if (SrcNumElts*2 == MaskNumElts) { 2633 // First check for Src1 in low and Src2 in high 2634 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2635 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2636 // The shuffle is concatenating two vectors together. 2637 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2638 VT, Src1, Src2)); 2639 return; 2640 } 2641 // Then check for Src2 in low and Src1 in high 2642 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2643 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2644 // The shuffle is concatenating two vectors together. 2645 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2646 VT, Src2, Src1)); 2647 return; 2648 } 2649 } 2650 2651 // Pad both vectors with undefs to make them the same length as the mask. 2652 unsigned NumConcat = MaskNumElts / SrcNumElts; 2653 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2654 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2655 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2656 2657 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2658 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2659 MOps1[0] = Src1; 2660 MOps2[0] = Src2; 2661 2662 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2663 getCurSDLoc(), VT, MOps1); 2664 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2665 getCurSDLoc(), VT, MOps2); 2666 2667 // Readjust mask for new input vector length. 2668 SmallVector<int, 8> MappedOps; 2669 for (unsigned i = 0; i != MaskNumElts; ++i) { 2670 int Idx = Mask[i]; 2671 if (Idx >= (int)SrcNumElts) 2672 Idx -= SrcNumElts - MaskNumElts; 2673 MappedOps.push_back(Idx); 2674 } 2675 2676 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2677 &MappedOps[0])); 2678 return; 2679 } 2680 2681 if (SrcNumElts > MaskNumElts) { 2682 // Analyze the access pattern of the vector to see if we can extract 2683 // two subvectors and do the shuffle. The analysis is done by calculating 2684 // the range of elements the mask access on both vectors. 2685 int MinRange[2] = { static_cast<int>(SrcNumElts), 2686 static_cast<int>(SrcNumElts)}; 2687 int MaxRange[2] = {-1, -1}; 2688 2689 for (unsigned i = 0; i != MaskNumElts; ++i) { 2690 int Idx = Mask[i]; 2691 unsigned Input = 0; 2692 if (Idx < 0) 2693 continue; 2694 2695 if (Idx >= (int)SrcNumElts) { 2696 Input = 1; 2697 Idx -= SrcNumElts; 2698 } 2699 if (Idx > MaxRange[Input]) 2700 MaxRange[Input] = Idx; 2701 if (Idx < MinRange[Input]) 2702 MinRange[Input] = Idx; 2703 } 2704 2705 // Check if the access is smaller than the vector size and can we find 2706 // a reasonable extract index. 2707 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2708 // Extract. 2709 int StartIdx[2]; // StartIdx to extract from 2710 for (unsigned Input = 0; Input < 2; ++Input) { 2711 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2712 RangeUse[Input] = 0; // Unused 2713 StartIdx[Input] = 0; 2714 continue; 2715 } 2716 2717 // Find a good start index that is a multiple of the mask length. Then 2718 // see if the rest of the elements are in range. 2719 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2720 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2721 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2722 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2723 } 2724 2725 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2726 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2727 return; 2728 } 2729 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2730 // Extract appropriate subvector and generate a vector shuffle 2731 for (unsigned Input = 0; Input < 2; ++Input) { 2732 SDValue &Src = Input == 0 ? Src1 : Src2; 2733 if (RangeUse[Input] == 0) 2734 Src = DAG.getUNDEF(VT); 2735 else { 2736 SDLoc dl = getCurSDLoc(); 2737 Src = DAG.getNode( 2738 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 2739 DAG.getConstant(StartIdx[Input], dl, 2740 TLI.getVectorIdxTy(DAG.getDataLayout()))); 2741 } 2742 } 2743 2744 // Calculate new mask. 2745 SmallVector<int, 8> MappedOps; 2746 for (unsigned i = 0; i != MaskNumElts; ++i) { 2747 int Idx = Mask[i]; 2748 if (Idx >= 0) { 2749 if (Idx < (int)SrcNumElts) 2750 Idx -= StartIdx[0]; 2751 else 2752 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2753 } 2754 MappedOps.push_back(Idx); 2755 } 2756 2757 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2758 &MappedOps[0])); 2759 return; 2760 } 2761 } 2762 2763 // We can't use either concat vectors or extract subvectors so fall back to 2764 // replacing the shuffle with extract and build vector. 2765 // to insert and build vector. 2766 EVT EltVT = VT.getVectorElementType(); 2767 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 2768 SDLoc dl = getCurSDLoc(); 2769 SmallVector<SDValue,8> Ops; 2770 for (unsigned i = 0; i != MaskNumElts; ++i) { 2771 int Idx = Mask[i]; 2772 SDValue Res; 2773 2774 if (Idx < 0) { 2775 Res = DAG.getUNDEF(EltVT); 2776 } else { 2777 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2778 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2779 2780 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 2781 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 2782 } 2783 2784 Ops.push_back(Res); 2785 } 2786 2787 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 2788 } 2789 2790 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2791 const Value *Op0 = I.getOperand(0); 2792 const Value *Op1 = I.getOperand(1); 2793 Type *AggTy = I.getType(); 2794 Type *ValTy = Op1->getType(); 2795 bool IntoUndef = isa<UndefValue>(Op0); 2796 bool FromUndef = isa<UndefValue>(Op1); 2797 2798 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2799 2800 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2801 SmallVector<EVT, 4> AggValueVTs; 2802 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 2803 SmallVector<EVT, 4> ValValueVTs; 2804 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2805 2806 unsigned NumAggValues = AggValueVTs.size(); 2807 unsigned NumValValues = ValValueVTs.size(); 2808 SmallVector<SDValue, 4> Values(NumAggValues); 2809 2810 // Ignore an insertvalue that produces an empty object 2811 if (!NumAggValues) { 2812 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2813 return; 2814 } 2815 2816 SDValue Agg = getValue(Op0); 2817 unsigned i = 0; 2818 // Copy the beginning value(s) from the original aggregate. 2819 for (; i != LinearIndex; ++i) 2820 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2821 SDValue(Agg.getNode(), Agg.getResNo() + i); 2822 // Copy values from the inserted value(s). 2823 if (NumValValues) { 2824 SDValue Val = getValue(Op1); 2825 for (; i != LinearIndex + NumValValues; ++i) 2826 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2827 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2828 } 2829 // Copy remaining value(s) from the original aggregate. 2830 for (; i != NumAggValues; ++i) 2831 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2832 SDValue(Agg.getNode(), Agg.getResNo() + i); 2833 2834 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2835 DAG.getVTList(AggValueVTs), Values)); 2836 } 2837 2838 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2839 const Value *Op0 = I.getOperand(0); 2840 Type *AggTy = Op0->getType(); 2841 Type *ValTy = I.getType(); 2842 bool OutOfUndef = isa<UndefValue>(Op0); 2843 2844 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2845 2846 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2847 SmallVector<EVT, 4> ValValueVTs; 2848 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2849 2850 unsigned NumValValues = ValValueVTs.size(); 2851 2852 // Ignore a extractvalue that produces an empty object 2853 if (!NumValValues) { 2854 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2855 return; 2856 } 2857 2858 SmallVector<SDValue, 4> Values(NumValValues); 2859 2860 SDValue Agg = getValue(Op0); 2861 // Copy out the selected value(s). 2862 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2863 Values[i - LinearIndex] = 2864 OutOfUndef ? 2865 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2866 SDValue(Agg.getNode(), Agg.getResNo() + i); 2867 2868 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2869 DAG.getVTList(ValValueVTs), Values)); 2870 } 2871 2872 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2873 Value *Op0 = I.getOperand(0); 2874 // Note that the pointer operand may be a vector of pointers. Take the scalar 2875 // element which holds a pointer. 2876 Type *Ty = Op0->getType()->getScalarType(); 2877 unsigned AS = Ty->getPointerAddressSpace(); 2878 SDValue N = getValue(Op0); 2879 SDLoc dl = getCurSDLoc(); 2880 2881 // Normalize Vector GEP - all scalar operands should be converted to the 2882 // splat vector. 2883 unsigned VectorWidth = I.getType()->isVectorTy() ? 2884 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 2885 2886 if (VectorWidth && !N.getValueType().isVector()) { 2887 MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth); 2888 SmallVector<SDValue, 16> Ops(VectorWidth, N); 2889 N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 2890 } 2891 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2892 OI != E; ++OI) { 2893 const Value *Idx = *OI; 2894 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 2895 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 2896 if (Field) { 2897 // N = N + Offset 2898 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 2899 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 2900 DAG.getConstant(Offset, dl, N.getValueType())); 2901 } 2902 2903 Ty = StTy->getElementType(Field); 2904 } else { 2905 Ty = cast<SequentialType>(Ty)->getElementType(); 2906 MVT PtrTy = 2907 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 2908 unsigned PtrSize = PtrTy.getSizeInBits(); 2909 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 2910 2911 // If this is a scalar constant or a splat vector of constants, 2912 // handle it quickly. 2913 const auto *CI = dyn_cast<ConstantInt>(Idx); 2914 if (!CI && isa<ConstantDataVector>(Idx) && 2915 cast<ConstantDataVector>(Idx)->getSplatValue()) 2916 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 2917 2918 if (CI) { 2919 if (CI->isZero()) 2920 continue; 2921 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 2922 SDValue OffsVal = VectorWidth ? 2923 DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) : 2924 DAG.getConstant(Offs, dl, PtrTy); 2925 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal); 2926 continue; 2927 } 2928 2929 // N = N + Idx * ElementSize; 2930 SDValue IdxN = getValue(Idx); 2931 2932 if (!IdxN.getValueType().isVector() && VectorWidth) { 2933 MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth); 2934 SmallVector<SDValue, 16> Ops(VectorWidth, IdxN); 2935 IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 2936 } 2937 // If the index is smaller or larger than intptr_t, truncate or extend 2938 // it. 2939 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 2940 2941 // If this is a multiply by a power of two, turn it into a shl 2942 // immediately. This is a very common case. 2943 if (ElementSize != 1) { 2944 if (ElementSize.isPowerOf2()) { 2945 unsigned Amt = ElementSize.logBase2(); 2946 IdxN = DAG.getNode(ISD::SHL, dl, 2947 N.getValueType(), IdxN, 2948 DAG.getConstant(Amt, dl, IdxN.getValueType())); 2949 } else { 2950 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 2951 IdxN = DAG.getNode(ISD::MUL, dl, 2952 N.getValueType(), IdxN, Scale); 2953 } 2954 } 2955 2956 N = DAG.getNode(ISD::ADD, dl, 2957 N.getValueType(), N, IdxN); 2958 } 2959 } 2960 2961 setValue(&I, N); 2962 } 2963 2964 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 2965 // If this is a fixed sized alloca in the entry block of the function, 2966 // allocate it statically on the stack. 2967 if (FuncInfo.StaticAllocaMap.count(&I)) 2968 return; // getValue will auto-populate this. 2969 2970 SDLoc dl = getCurSDLoc(); 2971 Type *Ty = I.getAllocatedType(); 2972 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2973 auto &DL = DAG.getDataLayout(); 2974 uint64_t TySize = DL.getTypeAllocSize(Ty); 2975 unsigned Align = 2976 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 2977 2978 SDValue AllocSize = getValue(I.getArraySize()); 2979 2980 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 2981 if (AllocSize.getValueType() != IntPtr) 2982 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 2983 2984 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 2985 AllocSize, 2986 DAG.getConstant(TySize, dl, IntPtr)); 2987 2988 // Handle alignment. If the requested alignment is less than or equal to 2989 // the stack alignment, ignore it. If the size is greater than or equal to 2990 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 2991 unsigned StackAlign = 2992 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 2993 if (Align <= StackAlign) 2994 Align = 0; 2995 2996 // Round the size of the allocation up to the stack alignment size 2997 // by add SA-1 to the size. 2998 AllocSize = DAG.getNode(ISD::ADD, dl, 2999 AllocSize.getValueType(), AllocSize, 3000 DAG.getIntPtrConstant(StackAlign - 1, dl)); 3001 3002 // Mask out the low bits for alignment purposes. 3003 AllocSize = DAG.getNode(ISD::AND, dl, 3004 AllocSize.getValueType(), AllocSize, 3005 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 3006 dl)); 3007 3008 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 3009 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3010 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3011 setValue(&I, DSA); 3012 DAG.setRoot(DSA.getValue(1)); 3013 3014 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3015 } 3016 3017 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3018 if (I.isAtomic()) 3019 return visitAtomicLoad(I); 3020 3021 const Value *SV = I.getOperand(0); 3022 SDValue Ptr = getValue(SV); 3023 3024 Type *Ty = I.getType(); 3025 3026 bool isVolatile = I.isVolatile(); 3027 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3028 3029 // The IR notion of invariant_load only guarantees that all *non-faulting* 3030 // invariant loads result in the same value. The MI notion of invariant load 3031 // guarantees that the load can be legally moved to any location within its 3032 // containing function. The MI notion of invariant_load is stronger than the 3033 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load 3034 // with a guarantee that the location being loaded from is dereferenceable 3035 // throughout the function's lifetime. 3036 3037 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr && 3038 isDereferenceablePointer(SV, DAG.getDataLayout()); 3039 unsigned Alignment = I.getAlignment(); 3040 3041 AAMDNodes AAInfo; 3042 I.getAAMetadata(AAInfo); 3043 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3044 3045 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3046 SmallVector<EVT, 4> ValueVTs; 3047 SmallVector<uint64_t, 4> Offsets; 3048 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3049 unsigned NumValues = ValueVTs.size(); 3050 if (NumValues == 0) 3051 return; 3052 3053 SDValue Root; 3054 bool ConstantMemory = false; 3055 if (isVolatile || NumValues > MaxParallelChains) 3056 // Serialize volatile loads with other side effects. 3057 Root = getRoot(); 3058 else if (AA->pointsToConstantMemory(MemoryLocation( 3059 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3060 // Do not serialize (non-volatile) loads of constant memory with anything. 3061 Root = DAG.getEntryNode(); 3062 ConstantMemory = true; 3063 } else { 3064 // Do not serialize non-volatile loads against each other. 3065 Root = DAG.getRoot(); 3066 } 3067 3068 SDLoc dl = getCurSDLoc(); 3069 3070 if (isVolatile) 3071 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3072 3073 SmallVector<SDValue, 4> Values(NumValues); 3074 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3075 EVT PtrVT = Ptr.getValueType(); 3076 unsigned ChainI = 0; 3077 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3078 // Serializing loads here may result in excessive register pressure, and 3079 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3080 // could recover a bit by hoisting nodes upward in the chain by recognizing 3081 // they are side-effect free or do not alias. The optimizer should really 3082 // avoid this case by converting large object/array copies to llvm.memcpy 3083 // (MaxParallelChains should always remain as failsafe). 3084 if (ChainI == MaxParallelChains) { 3085 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3086 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3087 makeArrayRef(Chains.data(), ChainI)); 3088 Root = Chain; 3089 ChainI = 0; 3090 } 3091 SDValue A = DAG.getNode(ISD::ADD, dl, 3092 PtrVT, Ptr, 3093 DAG.getConstant(Offsets[i], dl, PtrVT)); 3094 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 3095 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3096 isNonTemporal, isInvariant, Alignment, AAInfo, 3097 Ranges); 3098 3099 Values[i] = L; 3100 Chains[ChainI] = L.getValue(1); 3101 } 3102 3103 if (!ConstantMemory) { 3104 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3105 makeArrayRef(Chains.data(), ChainI)); 3106 if (isVolatile) 3107 DAG.setRoot(Chain); 3108 else 3109 PendingLoads.push_back(Chain); 3110 } 3111 3112 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3113 DAG.getVTList(ValueVTs), Values)); 3114 } 3115 3116 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3117 if (I.isAtomic()) 3118 return visitAtomicStore(I); 3119 3120 const Value *SrcV = I.getOperand(0); 3121 const Value *PtrV = I.getOperand(1); 3122 3123 SmallVector<EVT, 4> ValueVTs; 3124 SmallVector<uint64_t, 4> Offsets; 3125 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3126 SrcV->getType(), ValueVTs, &Offsets); 3127 unsigned NumValues = ValueVTs.size(); 3128 if (NumValues == 0) 3129 return; 3130 3131 // Get the lowered operands. Note that we do this after 3132 // checking if NumResults is zero, because with zero results 3133 // the operands won't have values in the map. 3134 SDValue Src = getValue(SrcV); 3135 SDValue Ptr = getValue(PtrV); 3136 3137 SDValue Root = getRoot(); 3138 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3139 EVT PtrVT = Ptr.getValueType(); 3140 bool isVolatile = I.isVolatile(); 3141 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3142 unsigned Alignment = I.getAlignment(); 3143 SDLoc dl = getCurSDLoc(); 3144 3145 AAMDNodes AAInfo; 3146 I.getAAMetadata(AAInfo); 3147 3148 unsigned ChainI = 0; 3149 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3150 // See visitLoad comments. 3151 if (ChainI == MaxParallelChains) { 3152 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3153 makeArrayRef(Chains.data(), ChainI)); 3154 Root = Chain; 3155 ChainI = 0; 3156 } 3157 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3158 DAG.getConstant(Offsets[i], dl, PtrVT)); 3159 SDValue St = DAG.getStore(Root, dl, 3160 SDValue(Src.getNode(), Src.getResNo() + i), 3161 Add, MachinePointerInfo(PtrV, Offsets[i]), 3162 isVolatile, isNonTemporal, Alignment, AAInfo); 3163 Chains[ChainI] = St; 3164 } 3165 3166 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3167 makeArrayRef(Chains.data(), ChainI)); 3168 DAG.setRoot(StoreNode); 3169 } 3170 3171 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3172 SDLoc sdl = getCurSDLoc(); 3173 3174 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3175 Value *PtrOperand = I.getArgOperand(1); 3176 SDValue Ptr = getValue(PtrOperand); 3177 SDValue Src0 = getValue(I.getArgOperand(0)); 3178 SDValue Mask = getValue(I.getArgOperand(3)); 3179 EVT VT = Src0.getValueType(); 3180 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3181 if (!Alignment) 3182 Alignment = DAG.getEVTAlignment(VT); 3183 3184 AAMDNodes AAInfo; 3185 I.getAAMetadata(AAInfo); 3186 3187 MachineMemOperand *MMO = 3188 DAG.getMachineFunction(). 3189 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3190 MachineMemOperand::MOStore, VT.getStoreSize(), 3191 Alignment, AAInfo); 3192 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3193 MMO, false); 3194 DAG.setRoot(StoreNode); 3195 setValue(&I, StoreNode); 3196 } 3197 3198 // Get a uniform base for the Gather/Scatter intrinsic. 3199 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3200 // We try to represent it as a base pointer + vector of indices. 3201 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3202 // The first operand of the GEP may be a single pointer or a vector of pointers 3203 // Example: 3204 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3205 // or 3206 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3207 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3208 // 3209 // When the first GEP operand is a single pointer - it is the uniform base we 3210 // are looking for. If first operand of the GEP is a splat vector - we 3211 // extract the spalt value and use it as a uniform base. 3212 // In all other cases the function returns 'false'. 3213 // 3214 static bool getUniformBase(Value *& Ptr, SDValue& Base, SDValue& Index, 3215 SelectionDAGBuilder* SDB) { 3216 3217 SelectionDAG& DAG = SDB->DAG; 3218 LLVMContext &Context = *DAG.getContext(); 3219 3220 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3221 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3222 if (!GEP || GEP->getNumOperands() > 2) 3223 return false; 3224 3225 Value *GEPPtr = GEP->getPointerOperand(); 3226 if (!GEPPtr->getType()->isVectorTy()) 3227 Ptr = GEPPtr; 3228 else if (!(Ptr = getSplatValue(GEPPtr))) 3229 return false; 3230 3231 Value *IndexVal = GEP->getOperand(1); 3232 3233 // The operands of the GEP may be defined in another basic block. 3234 // In this case we'll not find nodes for the operands. 3235 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3236 return false; 3237 3238 Base = SDB->getValue(Ptr); 3239 Index = SDB->getValue(IndexVal); 3240 3241 // Suppress sign extension. 3242 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3243 if (SDB->findValue(Sext->getOperand(0))) { 3244 IndexVal = Sext->getOperand(0); 3245 Index = SDB->getValue(IndexVal); 3246 } 3247 } 3248 if (!Index.getValueType().isVector()) { 3249 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3250 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3251 SmallVector<SDValue, 16> Ops(GEPWidth, Index); 3252 Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops); 3253 } 3254 return true; 3255 } 3256 3257 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3258 SDLoc sdl = getCurSDLoc(); 3259 3260 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3261 Value *Ptr = I.getArgOperand(1); 3262 SDValue Src0 = getValue(I.getArgOperand(0)); 3263 SDValue Mask = getValue(I.getArgOperand(3)); 3264 EVT VT = Src0.getValueType(); 3265 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3266 if (!Alignment) 3267 Alignment = DAG.getEVTAlignment(VT); 3268 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3269 3270 AAMDNodes AAInfo; 3271 I.getAAMetadata(AAInfo); 3272 3273 SDValue Base; 3274 SDValue Index; 3275 Value *BasePtr = Ptr; 3276 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3277 3278 Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3279 MachineMemOperand *MMO = DAG.getMachineFunction(). 3280 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3281 MachineMemOperand::MOStore, VT.getStoreSize(), 3282 Alignment, AAInfo); 3283 if (!UniformBase) { 3284 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3285 Index = getValue(Ptr); 3286 } 3287 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3288 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3289 Ops, MMO); 3290 DAG.setRoot(Scatter); 3291 setValue(&I, Scatter); 3292 } 3293 3294 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3295 SDLoc sdl = getCurSDLoc(); 3296 3297 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3298 Value *PtrOperand = I.getArgOperand(0); 3299 SDValue Ptr = getValue(PtrOperand); 3300 SDValue Src0 = getValue(I.getArgOperand(3)); 3301 SDValue Mask = getValue(I.getArgOperand(2)); 3302 3303 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3304 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3305 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3306 if (!Alignment) 3307 Alignment = DAG.getEVTAlignment(VT); 3308 3309 AAMDNodes AAInfo; 3310 I.getAAMetadata(AAInfo); 3311 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3312 3313 SDValue InChain = DAG.getRoot(); 3314 if (AA->pointsToConstantMemory(MemoryLocation( 3315 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3316 AAInfo))) { 3317 // Do not serialize (non-volatile) loads of constant memory with anything. 3318 InChain = DAG.getEntryNode(); 3319 } 3320 3321 MachineMemOperand *MMO = 3322 DAG.getMachineFunction(). 3323 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3324 MachineMemOperand::MOLoad, VT.getStoreSize(), 3325 Alignment, AAInfo, Ranges); 3326 3327 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3328 ISD::NON_EXTLOAD); 3329 SDValue OutChain = Load.getValue(1); 3330 DAG.setRoot(OutChain); 3331 setValue(&I, Load); 3332 } 3333 3334 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3335 SDLoc sdl = getCurSDLoc(); 3336 3337 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3338 Value *Ptr = I.getArgOperand(0); 3339 SDValue Src0 = getValue(I.getArgOperand(3)); 3340 SDValue Mask = getValue(I.getArgOperand(2)); 3341 3342 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3343 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3344 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3345 if (!Alignment) 3346 Alignment = DAG.getEVTAlignment(VT); 3347 3348 AAMDNodes AAInfo; 3349 I.getAAMetadata(AAInfo); 3350 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3351 3352 SDValue Root = DAG.getRoot(); 3353 SDValue Base; 3354 SDValue Index; 3355 Value *BasePtr = Ptr; 3356 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3357 bool ConstantMemory = false; 3358 if (UniformBase && 3359 AA->pointsToConstantMemory(MemoryLocation( 3360 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3361 AAInfo))) { 3362 // Do not serialize (non-volatile) loads of constant memory with anything. 3363 Root = DAG.getEntryNode(); 3364 ConstantMemory = true; 3365 } 3366 3367 MachineMemOperand *MMO = 3368 DAG.getMachineFunction(). 3369 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3370 MachineMemOperand::MOLoad, VT.getStoreSize(), 3371 Alignment, AAInfo, Ranges); 3372 3373 if (!UniformBase) { 3374 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3375 Index = getValue(Ptr); 3376 } 3377 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3378 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3379 Ops, MMO); 3380 3381 SDValue OutChain = Gather.getValue(1); 3382 if (!ConstantMemory) 3383 PendingLoads.push_back(OutChain); 3384 setValue(&I, Gather); 3385 } 3386 3387 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3388 SDLoc dl = getCurSDLoc(); 3389 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3390 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3391 SynchronizationScope Scope = I.getSynchScope(); 3392 3393 SDValue InChain = getRoot(); 3394 3395 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3396 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3397 SDValue L = DAG.getAtomicCmpSwap( 3398 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3399 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3400 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3401 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3402 3403 SDValue OutChain = L.getValue(2); 3404 3405 setValue(&I, L); 3406 DAG.setRoot(OutChain); 3407 } 3408 3409 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3410 SDLoc dl = getCurSDLoc(); 3411 ISD::NodeType NT; 3412 switch (I.getOperation()) { 3413 default: llvm_unreachable("Unknown atomicrmw operation"); 3414 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3415 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3416 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3417 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3418 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3419 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3420 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3421 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3422 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3423 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3424 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3425 } 3426 AtomicOrdering Order = I.getOrdering(); 3427 SynchronizationScope Scope = I.getSynchScope(); 3428 3429 SDValue InChain = getRoot(); 3430 3431 SDValue L = 3432 DAG.getAtomic(NT, dl, 3433 getValue(I.getValOperand()).getSimpleValueType(), 3434 InChain, 3435 getValue(I.getPointerOperand()), 3436 getValue(I.getValOperand()), 3437 I.getPointerOperand(), 3438 /* Alignment=*/ 0, Order, Scope); 3439 3440 SDValue OutChain = L.getValue(1); 3441 3442 setValue(&I, L); 3443 DAG.setRoot(OutChain); 3444 } 3445 3446 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3447 SDLoc dl = getCurSDLoc(); 3448 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3449 SDValue Ops[3]; 3450 Ops[0] = getRoot(); 3451 Ops[1] = DAG.getConstant(I.getOrdering(), dl, 3452 TLI.getPointerTy(DAG.getDataLayout())); 3453 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, 3454 TLI.getPointerTy(DAG.getDataLayout())); 3455 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3456 } 3457 3458 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3459 SDLoc dl = getCurSDLoc(); 3460 AtomicOrdering Order = I.getOrdering(); 3461 SynchronizationScope Scope = I.getSynchScope(); 3462 3463 SDValue InChain = getRoot(); 3464 3465 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3466 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3467 3468 if (I.getAlignment() < VT.getSizeInBits() / 8) 3469 report_fatal_error("Cannot generate unaligned atomic load"); 3470 3471 MachineMemOperand *MMO = 3472 DAG.getMachineFunction(). 3473 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3474 MachineMemOperand::MOVolatile | 3475 MachineMemOperand::MOLoad, 3476 VT.getStoreSize(), 3477 I.getAlignment() ? I.getAlignment() : 3478 DAG.getEVTAlignment(VT)); 3479 3480 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3481 SDValue L = 3482 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3483 getValue(I.getPointerOperand()), MMO, 3484 Order, Scope); 3485 3486 SDValue OutChain = L.getValue(1); 3487 3488 setValue(&I, L); 3489 DAG.setRoot(OutChain); 3490 } 3491 3492 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3493 SDLoc dl = getCurSDLoc(); 3494 3495 AtomicOrdering Order = I.getOrdering(); 3496 SynchronizationScope Scope = I.getSynchScope(); 3497 3498 SDValue InChain = getRoot(); 3499 3500 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3501 EVT VT = 3502 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 3503 3504 if (I.getAlignment() < VT.getSizeInBits() / 8) 3505 report_fatal_error("Cannot generate unaligned atomic store"); 3506 3507 SDValue OutChain = 3508 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3509 InChain, 3510 getValue(I.getPointerOperand()), 3511 getValue(I.getValueOperand()), 3512 I.getPointerOperand(), I.getAlignment(), 3513 Order, Scope); 3514 3515 DAG.setRoot(OutChain); 3516 } 3517 3518 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3519 /// node. 3520 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3521 unsigned Intrinsic) { 3522 bool HasChain = !I.doesNotAccessMemory(); 3523 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3524 3525 // Build the operand list. 3526 SmallVector<SDValue, 8> Ops; 3527 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3528 if (OnlyLoad) { 3529 // We don't need to serialize loads against other loads. 3530 Ops.push_back(DAG.getRoot()); 3531 } else { 3532 Ops.push_back(getRoot()); 3533 } 3534 } 3535 3536 // Info is set by getTgtMemInstrinsic 3537 TargetLowering::IntrinsicInfo Info; 3538 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3539 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3540 3541 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3542 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3543 Info.opc == ISD::INTRINSIC_W_CHAIN) 3544 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 3545 TLI.getPointerTy(DAG.getDataLayout()))); 3546 3547 // Add all operands of the call to the operand list. 3548 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3549 SDValue Op = getValue(I.getArgOperand(i)); 3550 Ops.push_back(Op); 3551 } 3552 3553 SmallVector<EVT, 4> ValueVTs; 3554 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 3555 3556 if (HasChain) 3557 ValueVTs.push_back(MVT::Other); 3558 3559 SDVTList VTs = DAG.getVTList(ValueVTs); 3560 3561 // Create the node. 3562 SDValue Result; 3563 if (IsTgtIntrinsic) { 3564 // This is target intrinsic that touches memory 3565 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3566 VTs, Ops, Info.memVT, 3567 MachinePointerInfo(Info.ptrVal, Info.offset), 3568 Info.align, Info.vol, 3569 Info.readMem, Info.writeMem, Info.size); 3570 } else if (!HasChain) { 3571 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3572 } else if (!I.getType()->isVoidTy()) { 3573 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3574 } else { 3575 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3576 } 3577 3578 if (HasChain) { 3579 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3580 if (OnlyLoad) 3581 PendingLoads.push_back(Chain); 3582 else 3583 DAG.setRoot(Chain); 3584 } 3585 3586 if (!I.getType()->isVoidTy()) { 3587 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3588 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 3589 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3590 } 3591 3592 setValue(&I, Result); 3593 } 3594 } 3595 3596 /// GetSignificand - Get the significand and build it into a floating-point 3597 /// number with exponent of 1: 3598 /// 3599 /// Op = (Op & 0x007fffff) | 0x3f800000; 3600 /// 3601 /// where Op is the hexadecimal representation of floating point value. 3602 static SDValue 3603 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3604 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3605 DAG.getConstant(0x007fffff, dl, MVT::i32)); 3606 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3607 DAG.getConstant(0x3f800000, dl, MVT::i32)); 3608 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3609 } 3610 3611 /// GetExponent - Get the exponent: 3612 /// 3613 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3614 /// 3615 /// where Op is the hexadecimal representation of floating point value. 3616 static SDValue 3617 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3618 SDLoc dl) { 3619 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3620 DAG.getConstant(0x7f800000, dl, MVT::i32)); 3621 SDValue t1 = DAG.getNode( 3622 ISD::SRL, dl, MVT::i32, t0, 3623 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 3624 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3625 DAG.getConstant(127, dl, MVT::i32)); 3626 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3627 } 3628 3629 /// getF32Constant - Get 32-bit floating point constant. 3630 static SDValue 3631 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 3632 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 3633 MVT::f32); 3634 } 3635 3636 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3637 SelectionDAG &DAG) { 3638 // TODO: What fast-math-flags should be set on the floating-point nodes? 3639 3640 // IntegerPartOfX = ((int32_t)(t0); 3641 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3642 3643 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3644 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3645 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3646 3647 // IntegerPartOfX <<= 23; 3648 IntegerPartOfX = DAG.getNode( 3649 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3650 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 3651 DAG.getDataLayout()))); 3652 3653 SDValue TwoToFractionalPartOfX; 3654 if (LimitFloatPrecision <= 6) { 3655 // For floating-point precision of 6: 3656 // 3657 // TwoToFractionalPartOfX = 3658 // 0.997535578f + 3659 // (0.735607626f + 0.252464424f * x) * x; 3660 // 3661 // error 0.0144103317, which is 6 bits 3662 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3663 getF32Constant(DAG, 0x3e814304, dl)); 3664 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3665 getF32Constant(DAG, 0x3f3c50c8, dl)); 3666 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3667 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3668 getF32Constant(DAG, 0x3f7f5e7e, dl)); 3669 } else if (LimitFloatPrecision <= 12) { 3670 // For floating-point precision of 12: 3671 // 3672 // TwoToFractionalPartOfX = 3673 // 0.999892986f + 3674 // (0.696457318f + 3675 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3676 // 3677 // error 0.000107046256, which is 13 to 14 bits 3678 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3679 getF32Constant(DAG, 0x3da235e3, dl)); 3680 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3681 getF32Constant(DAG, 0x3e65b8f3, dl)); 3682 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3683 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3684 getF32Constant(DAG, 0x3f324b07, dl)); 3685 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3686 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3687 getF32Constant(DAG, 0x3f7ff8fd, dl)); 3688 } else { // LimitFloatPrecision <= 18 3689 // For floating-point precision of 18: 3690 // 3691 // TwoToFractionalPartOfX = 3692 // 0.999999982f + 3693 // (0.693148872f + 3694 // (0.240227044f + 3695 // (0.554906021e-1f + 3696 // (0.961591928e-2f + 3697 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3698 // error 2.47208000*10^(-7), which is better than 18 bits 3699 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3700 getF32Constant(DAG, 0x3924b03e, dl)); 3701 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3702 getF32Constant(DAG, 0x3ab24b87, dl)); 3703 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3704 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3705 getF32Constant(DAG, 0x3c1d8c17, dl)); 3706 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3707 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3708 getF32Constant(DAG, 0x3d634a1d, dl)); 3709 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3710 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3711 getF32Constant(DAG, 0x3e75fe14, dl)); 3712 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3713 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3714 getF32Constant(DAG, 0x3f317234, dl)); 3715 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3716 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3717 getF32Constant(DAG, 0x3f800000, dl)); 3718 } 3719 3720 // Add the exponent into the result in integer domain. 3721 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 3722 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3723 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 3724 } 3725 3726 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3727 /// limited-precision mode. 3728 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3729 const TargetLowering &TLI) { 3730 if (Op.getValueType() == MVT::f32 && 3731 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3732 3733 // Put the exponent in the right bit position for later addition to the 3734 // final result: 3735 // 3736 // #define LOG2OFe 1.4426950f 3737 // t0 = Op * LOG2OFe 3738 3739 // TODO: What fast-math-flags should be set here? 3740 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3741 getF32Constant(DAG, 0x3fb8aa3b, dl)); 3742 return getLimitedPrecisionExp2(t0, dl, DAG); 3743 } 3744 3745 // No special expansion. 3746 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3747 } 3748 3749 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3750 /// limited-precision mode. 3751 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3752 const TargetLowering &TLI) { 3753 3754 // TODO: What fast-math-flags should be set on the floating-point nodes? 3755 3756 if (Op.getValueType() == MVT::f32 && 3757 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3758 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3759 3760 // Scale the exponent by log(2) [0.69314718f]. 3761 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3762 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3763 getF32Constant(DAG, 0x3f317218, dl)); 3764 3765 // Get the significand and build it into a floating-point number with 3766 // exponent of 1. 3767 SDValue X = GetSignificand(DAG, Op1, dl); 3768 3769 SDValue LogOfMantissa; 3770 if (LimitFloatPrecision <= 6) { 3771 // For floating-point precision of 6: 3772 // 3773 // LogofMantissa = 3774 // -1.1609546f + 3775 // (1.4034025f - 0.23903021f * x) * x; 3776 // 3777 // error 0.0034276066, which is better than 8 bits 3778 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3779 getF32Constant(DAG, 0xbe74c456, dl)); 3780 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3781 getF32Constant(DAG, 0x3fb3a2b1, dl)); 3782 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3783 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3784 getF32Constant(DAG, 0x3f949a29, dl)); 3785 } else if (LimitFloatPrecision <= 12) { 3786 // For floating-point precision of 12: 3787 // 3788 // LogOfMantissa = 3789 // -1.7417939f + 3790 // (2.8212026f + 3791 // (-1.4699568f + 3792 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3793 // 3794 // error 0.000061011436, which is 14 bits 3795 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3796 getF32Constant(DAG, 0xbd67b6d6, dl)); 3797 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3798 getF32Constant(DAG, 0x3ee4f4b8, dl)); 3799 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3800 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3801 getF32Constant(DAG, 0x3fbc278b, dl)); 3802 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3803 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3804 getF32Constant(DAG, 0x40348e95, dl)); 3805 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3806 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3807 getF32Constant(DAG, 0x3fdef31a, dl)); 3808 } else { // LimitFloatPrecision <= 18 3809 // For floating-point precision of 18: 3810 // 3811 // LogOfMantissa = 3812 // -2.1072184f + 3813 // (4.2372794f + 3814 // (-3.7029485f + 3815 // (2.2781945f + 3816 // (-0.87823314f + 3817 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3818 // 3819 // error 0.0000023660568, which is better than 18 bits 3820 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3821 getF32Constant(DAG, 0xbc91e5ac, dl)); 3822 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3823 getF32Constant(DAG, 0x3e4350aa, dl)); 3824 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3825 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3826 getF32Constant(DAG, 0x3f60d3e3, dl)); 3827 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3828 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3829 getF32Constant(DAG, 0x4011cdf0, dl)); 3830 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3831 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3832 getF32Constant(DAG, 0x406cfd1c, dl)); 3833 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3834 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3835 getF32Constant(DAG, 0x408797cb, dl)); 3836 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3837 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3838 getF32Constant(DAG, 0x4006dcab, dl)); 3839 } 3840 3841 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3842 } 3843 3844 // No special expansion. 3845 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3846 } 3847 3848 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3849 /// limited-precision mode. 3850 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3851 const TargetLowering &TLI) { 3852 3853 // TODO: What fast-math-flags should be set on the floating-point nodes? 3854 3855 if (Op.getValueType() == MVT::f32 && 3856 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3857 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3858 3859 // Get the exponent. 3860 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3861 3862 // Get the significand and build it into a floating-point number with 3863 // exponent of 1. 3864 SDValue X = GetSignificand(DAG, Op1, dl); 3865 3866 // Different possible minimax approximations of significand in 3867 // floating-point for various degrees of accuracy over [1,2]. 3868 SDValue Log2ofMantissa; 3869 if (LimitFloatPrecision <= 6) { 3870 // For floating-point precision of 6: 3871 // 3872 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3873 // 3874 // error 0.0049451742, which is more than 7 bits 3875 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3876 getF32Constant(DAG, 0xbeb08fe0, dl)); 3877 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3878 getF32Constant(DAG, 0x40019463, dl)); 3879 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3880 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3881 getF32Constant(DAG, 0x3fd6633d, dl)); 3882 } else if (LimitFloatPrecision <= 12) { 3883 // For floating-point precision of 12: 3884 // 3885 // Log2ofMantissa = 3886 // -2.51285454f + 3887 // (4.07009056f + 3888 // (-2.12067489f + 3889 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3890 // 3891 // error 0.0000876136000, which is better than 13 bits 3892 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3893 getF32Constant(DAG, 0xbda7262e, dl)); 3894 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3895 getF32Constant(DAG, 0x3f25280b, dl)); 3896 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3897 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3898 getF32Constant(DAG, 0x4007b923, dl)); 3899 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3900 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3901 getF32Constant(DAG, 0x40823e2f, dl)); 3902 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3903 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3904 getF32Constant(DAG, 0x4020d29c, dl)); 3905 } else { // LimitFloatPrecision <= 18 3906 // For floating-point precision of 18: 3907 // 3908 // Log2ofMantissa = 3909 // -3.0400495f + 3910 // (6.1129976f + 3911 // (-5.3420409f + 3912 // (3.2865683f + 3913 // (-1.2669343f + 3914 // (0.27515199f - 3915 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3916 // 3917 // error 0.0000018516, which is better than 18 bits 3918 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3919 getF32Constant(DAG, 0xbcd2769e, dl)); 3920 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3921 getF32Constant(DAG, 0x3e8ce0b9, dl)); 3922 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3923 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3924 getF32Constant(DAG, 0x3fa22ae7, dl)); 3925 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3926 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3927 getF32Constant(DAG, 0x40525723, dl)); 3928 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3929 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3930 getF32Constant(DAG, 0x40aaf200, dl)); 3931 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3932 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3933 getF32Constant(DAG, 0x40c39dad, dl)); 3934 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3935 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3936 getF32Constant(DAG, 0x4042902c, dl)); 3937 } 3938 3939 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 3940 } 3941 3942 // No special expansion. 3943 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 3944 } 3945 3946 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 3947 /// limited-precision mode. 3948 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3949 const TargetLowering &TLI) { 3950 3951 // TODO: What fast-math-flags should be set on the floating-point nodes? 3952 3953 if (Op.getValueType() == MVT::f32 && 3954 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3955 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3956 3957 // Scale the exponent by log10(2) [0.30102999f]. 3958 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3959 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3960 getF32Constant(DAG, 0x3e9a209a, dl)); 3961 3962 // Get the significand and build it into a floating-point number with 3963 // exponent of 1. 3964 SDValue X = GetSignificand(DAG, Op1, dl); 3965 3966 SDValue Log10ofMantissa; 3967 if (LimitFloatPrecision <= 6) { 3968 // For floating-point precision of 6: 3969 // 3970 // Log10ofMantissa = 3971 // -0.50419619f + 3972 // (0.60948995f - 0.10380950f * x) * x; 3973 // 3974 // error 0.0014886165, which is 6 bits 3975 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3976 getF32Constant(DAG, 0xbdd49a13, dl)); 3977 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3978 getF32Constant(DAG, 0x3f1c0789, dl)); 3979 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3980 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3981 getF32Constant(DAG, 0x3f011300, dl)); 3982 } else if (LimitFloatPrecision <= 12) { 3983 // For floating-point precision of 12: 3984 // 3985 // Log10ofMantissa = 3986 // -0.64831180f + 3987 // (0.91751397f + 3988 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3989 // 3990 // error 0.00019228036, which is better than 12 bits 3991 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3992 getF32Constant(DAG, 0x3d431f31, dl)); 3993 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3994 getF32Constant(DAG, 0x3ea21fb2, dl)); 3995 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3996 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3997 getF32Constant(DAG, 0x3f6ae232, dl)); 3998 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3999 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4000 getF32Constant(DAG, 0x3f25f7c3, dl)); 4001 } else { // LimitFloatPrecision <= 18 4002 // For floating-point precision of 18: 4003 // 4004 // Log10ofMantissa = 4005 // -0.84299375f + 4006 // (1.5327582f + 4007 // (-1.0688956f + 4008 // (0.49102474f + 4009 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4010 // 4011 // error 0.0000037995730, which is better than 18 bits 4012 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4013 getF32Constant(DAG, 0x3c5d51ce, dl)); 4014 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4015 getF32Constant(DAG, 0x3e00685a, dl)); 4016 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4017 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4018 getF32Constant(DAG, 0x3efb6798, dl)); 4019 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4020 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4021 getF32Constant(DAG, 0x3f88d192, dl)); 4022 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4023 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4024 getF32Constant(DAG, 0x3fc4316c, dl)); 4025 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4026 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4027 getF32Constant(DAG, 0x3f57ce70, dl)); 4028 } 4029 4030 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4031 } 4032 4033 // No special expansion. 4034 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4035 } 4036 4037 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4038 /// limited-precision mode. 4039 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4040 const TargetLowering &TLI) { 4041 if (Op.getValueType() == MVT::f32 && 4042 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4043 return getLimitedPrecisionExp2(Op, dl, DAG); 4044 4045 // No special expansion. 4046 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4047 } 4048 4049 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4050 /// limited-precision mode with x == 10.0f. 4051 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4052 SelectionDAG &DAG, const TargetLowering &TLI) { 4053 bool IsExp10 = false; 4054 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4055 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4056 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4057 APFloat Ten(10.0f); 4058 IsExp10 = LHSC->isExactlyValue(Ten); 4059 } 4060 } 4061 4062 // TODO: What fast-math-flags should be set on the FMUL node? 4063 if (IsExp10) { 4064 // Put the exponent in the right bit position for later addition to the 4065 // final result: 4066 // 4067 // #define LOG2OF10 3.3219281f 4068 // t0 = Op * LOG2OF10; 4069 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4070 getF32Constant(DAG, 0x40549a78, dl)); 4071 return getLimitedPrecisionExp2(t0, dl, DAG); 4072 } 4073 4074 // No special expansion. 4075 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4076 } 4077 4078 4079 /// ExpandPowI - Expand a llvm.powi intrinsic. 4080 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4081 SelectionDAG &DAG) { 4082 // If RHS is a constant, we can expand this out to a multiplication tree, 4083 // otherwise we end up lowering to a call to __powidf2 (for example). When 4084 // optimizing for size, we only want to do this if the expansion would produce 4085 // a small number of multiplies, otherwise we do the full expansion. 4086 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4087 // Get the exponent as a positive value. 4088 unsigned Val = RHSC->getSExtValue(); 4089 if ((int)Val < 0) Val = -Val; 4090 4091 // powi(x, 0) -> 1.0 4092 if (Val == 0) 4093 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4094 4095 const Function *F = DAG.getMachineFunction().getFunction(); 4096 if (!F->optForSize() || 4097 // If optimizing for size, don't insert too many multiplies. 4098 // This inserts up to 5 multiplies. 4099 countPopulation(Val) + Log2_32(Val) < 7) { 4100 // We use the simple binary decomposition method to generate the multiply 4101 // sequence. There are more optimal ways to do this (for example, 4102 // powi(x,15) generates one more multiply than it should), but this has 4103 // the benefit of being both really simple and much better than a libcall. 4104 SDValue Res; // Logically starts equal to 1.0 4105 SDValue CurSquare = LHS; 4106 // TODO: Intrinsics should have fast-math-flags that propagate to these 4107 // nodes. 4108 while (Val) { 4109 if (Val & 1) { 4110 if (Res.getNode()) 4111 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4112 else 4113 Res = CurSquare; // 1.0*CurSquare. 4114 } 4115 4116 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4117 CurSquare, CurSquare); 4118 Val >>= 1; 4119 } 4120 4121 // If the original was negative, invert the result, producing 1/(x*x*x). 4122 if (RHSC->getSExtValue() < 0) 4123 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4124 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4125 return Res; 4126 } 4127 } 4128 4129 // Otherwise, expand to a libcall. 4130 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4131 } 4132 4133 // getTruncatedArgReg - Find underlying register used for an truncated 4134 // argument. 4135 static unsigned getTruncatedArgReg(const SDValue &N) { 4136 if (N.getOpcode() != ISD::TRUNCATE) 4137 return 0; 4138 4139 const SDValue &Ext = N.getOperand(0); 4140 if (Ext.getOpcode() == ISD::AssertZext || 4141 Ext.getOpcode() == ISD::AssertSext) { 4142 const SDValue &CFR = Ext.getOperand(0); 4143 if (CFR.getOpcode() == ISD::CopyFromReg) 4144 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4145 if (CFR.getOpcode() == ISD::TRUNCATE) 4146 return getTruncatedArgReg(CFR); 4147 } 4148 return 0; 4149 } 4150 4151 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4152 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4153 /// At the end of instruction selection, they will be inserted to the entry BB. 4154 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4155 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4156 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4157 const Argument *Arg = dyn_cast<Argument>(V); 4158 if (!Arg) 4159 return false; 4160 4161 MachineFunction &MF = DAG.getMachineFunction(); 4162 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4163 4164 // Ignore inlined function arguments here. 4165 // 4166 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4167 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4168 return false; 4169 4170 Optional<MachineOperand> Op; 4171 // Some arguments' frame index is recorded during argument lowering. 4172 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4173 Op = MachineOperand::CreateFI(FI); 4174 4175 if (!Op && N.getNode()) { 4176 unsigned Reg; 4177 if (N.getOpcode() == ISD::CopyFromReg) 4178 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4179 else 4180 Reg = getTruncatedArgReg(N); 4181 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4182 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4183 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4184 if (PR) 4185 Reg = PR; 4186 } 4187 if (Reg) 4188 Op = MachineOperand::CreateReg(Reg, false); 4189 } 4190 4191 if (!Op) { 4192 // Check if ValueMap has reg number. 4193 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4194 if (VMI != FuncInfo.ValueMap.end()) 4195 Op = MachineOperand::CreateReg(VMI->second, false); 4196 } 4197 4198 if (!Op && N.getNode()) 4199 // Check if frame index is available. 4200 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4201 if (FrameIndexSDNode *FINode = 4202 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4203 Op = MachineOperand::CreateFI(FINode->getIndex()); 4204 4205 if (!Op) 4206 return false; 4207 4208 assert(Variable->isValidLocationForIntrinsic(DL) && 4209 "Expected inlined-at fields to agree"); 4210 if (Op->isReg()) 4211 FuncInfo.ArgDbgValues.push_back( 4212 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4213 Op->getReg(), Offset, Variable, Expr)); 4214 else 4215 FuncInfo.ArgDbgValues.push_back( 4216 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4217 .addOperand(*Op) 4218 .addImm(Offset) 4219 .addMetadata(Variable) 4220 .addMetadata(Expr)); 4221 4222 return true; 4223 } 4224 4225 // VisualStudio defines setjmp as _setjmp 4226 #if defined(_MSC_VER) && defined(setjmp) && \ 4227 !defined(setjmp_undefined_for_msvc) 4228 # pragma push_macro("setjmp") 4229 # undef setjmp 4230 # define setjmp_undefined_for_msvc 4231 #endif 4232 4233 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4234 /// we want to emit this as a call to a named external function, return the name 4235 /// otherwise lower it and return null. 4236 const char * 4237 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4238 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4239 SDLoc sdl = getCurSDLoc(); 4240 DebugLoc dl = getCurDebugLoc(); 4241 SDValue Res; 4242 4243 switch (Intrinsic) { 4244 default: 4245 // By default, turn this into a target intrinsic node. 4246 visitTargetIntrinsic(I, Intrinsic); 4247 return nullptr; 4248 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4249 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4250 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4251 case Intrinsic::returnaddress: 4252 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4253 TLI.getPointerTy(DAG.getDataLayout()), 4254 getValue(I.getArgOperand(0)))); 4255 return nullptr; 4256 case Intrinsic::frameaddress: 4257 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4258 TLI.getPointerTy(DAG.getDataLayout()), 4259 getValue(I.getArgOperand(0)))); 4260 return nullptr; 4261 case Intrinsic::read_register: { 4262 Value *Reg = I.getArgOperand(0); 4263 SDValue Chain = getRoot(); 4264 SDValue RegName = 4265 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4266 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4267 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4268 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4269 setValue(&I, Res); 4270 DAG.setRoot(Res.getValue(1)); 4271 return nullptr; 4272 } 4273 case Intrinsic::write_register: { 4274 Value *Reg = I.getArgOperand(0); 4275 Value *RegValue = I.getArgOperand(1); 4276 SDValue Chain = getRoot(); 4277 SDValue RegName = 4278 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4279 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4280 RegName, getValue(RegValue))); 4281 return nullptr; 4282 } 4283 case Intrinsic::setjmp: 4284 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4285 case Intrinsic::longjmp: 4286 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4287 case Intrinsic::memcpy: { 4288 // FIXME: this definition of "user defined address space" is x86-specific 4289 // Assert for address < 256 since we support only user defined address 4290 // spaces. 4291 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4292 < 256 && 4293 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4294 < 256 && 4295 "Unknown address space"); 4296 SDValue Op1 = getValue(I.getArgOperand(0)); 4297 SDValue Op2 = getValue(I.getArgOperand(1)); 4298 SDValue Op3 = getValue(I.getArgOperand(2)); 4299 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4300 if (!Align) 4301 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4302 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4303 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4304 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4305 false, isTC, 4306 MachinePointerInfo(I.getArgOperand(0)), 4307 MachinePointerInfo(I.getArgOperand(1))); 4308 updateDAGForMaybeTailCall(MC); 4309 return nullptr; 4310 } 4311 case Intrinsic::memset: { 4312 // FIXME: this definition of "user defined address space" is x86-specific 4313 // Assert for address < 256 since we support only user defined address 4314 // spaces. 4315 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4316 < 256 && 4317 "Unknown address space"); 4318 SDValue Op1 = getValue(I.getArgOperand(0)); 4319 SDValue Op2 = getValue(I.getArgOperand(1)); 4320 SDValue Op3 = getValue(I.getArgOperand(2)); 4321 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4322 if (!Align) 4323 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4324 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4325 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4326 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4327 isTC, MachinePointerInfo(I.getArgOperand(0))); 4328 updateDAGForMaybeTailCall(MS); 4329 return nullptr; 4330 } 4331 case Intrinsic::memmove: { 4332 // FIXME: this definition of "user defined address space" is x86-specific 4333 // Assert for address < 256 since we support only user defined address 4334 // spaces. 4335 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4336 < 256 && 4337 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4338 < 256 && 4339 "Unknown address space"); 4340 SDValue Op1 = getValue(I.getArgOperand(0)); 4341 SDValue Op2 = getValue(I.getArgOperand(1)); 4342 SDValue Op3 = getValue(I.getArgOperand(2)); 4343 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4344 if (!Align) 4345 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4346 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4347 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4348 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4349 isTC, MachinePointerInfo(I.getArgOperand(0)), 4350 MachinePointerInfo(I.getArgOperand(1))); 4351 updateDAGForMaybeTailCall(MM); 4352 return nullptr; 4353 } 4354 case Intrinsic::dbg_declare: { 4355 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4356 DILocalVariable *Variable = DI.getVariable(); 4357 DIExpression *Expression = DI.getExpression(); 4358 const Value *Address = DI.getAddress(); 4359 assert(Variable && "Missing variable"); 4360 if (!Address) { 4361 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4362 return nullptr; 4363 } 4364 4365 // Check if address has undef value. 4366 if (isa<UndefValue>(Address) || 4367 (Address->use_empty() && !isa<Argument>(Address))) { 4368 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4369 return nullptr; 4370 } 4371 4372 SDValue &N = NodeMap[Address]; 4373 if (!N.getNode() && isa<Argument>(Address)) 4374 // Check unused arguments map. 4375 N = UnusedArgNodeMap[Address]; 4376 SDDbgValue *SDV; 4377 if (N.getNode()) { 4378 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4379 Address = BCI->getOperand(0); 4380 // Parameters are handled specially. 4381 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 4382 4383 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4384 4385 if (isParameter && !AI) { 4386 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4387 if (FINode) 4388 // Byval parameter. We have a frame index at this point. 4389 SDV = DAG.getFrameIndexDbgValue( 4390 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4391 else { 4392 // Address is an argument, so try to emit its dbg value using 4393 // virtual register info from the FuncInfo.ValueMap. 4394 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4395 N); 4396 return nullptr; 4397 } 4398 } else { 4399 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4400 true, 0, dl, SDNodeOrder); 4401 } 4402 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4403 } else { 4404 // If Address is an argument then try to emit its dbg value using 4405 // virtual register info from the FuncInfo.ValueMap. 4406 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4407 N)) { 4408 // If variable is pinned by a alloca in dominating bb then 4409 // use StaticAllocaMap. 4410 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4411 if (AI->getParent() != DI.getParent()) { 4412 DenseMap<const AllocaInst*, int>::iterator SI = 4413 FuncInfo.StaticAllocaMap.find(AI); 4414 if (SI != FuncInfo.StaticAllocaMap.end()) { 4415 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4416 0, dl, SDNodeOrder); 4417 DAG.AddDbgValue(SDV, nullptr, false); 4418 return nullptr; 4419 } 4420 } 4421 } 4422 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4423 } 4424 } 4425 return nullptr; 4426 } 4427 case Intrinsic::dbg_value: { 4428 const DbgValueInst &DI = cast<DbgValueInst>(I); 4429 assert(DI.getVariable() && "Missing variable"); 4430 4431 DILocalVariable *Variable = DI.getVariable(); 4432 DIExpression *Expression = DI.getExpression(); 4433 uint64_t Offset = DI.getOffset(); 4434 const Value *V = DI.getValue(); 4435 if (!V) 4436 return nullptr; 4437 4438 SDDbgValue *SDV; 4439 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4440 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4441 SDNodeOrder); 4442 DAG.AddDbgValue(SDV, nullptr, false); 4443 } else { 4444 // Do not use getValue() in here; we don't want to generate code at 4445 // this point if it hasn't been done yet. 4446 SDValue N = NodeMap[V]; 4447 if (!N.getNode() && isa<Argument>(V)) 4448 // Check unused arguments map. 4449 N = UnusedArgNodeMap[V]; 4450 if (N.getNode()) { 4451 // A dbg.value for an alloca is always indirect. 4452 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4453 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4454 IsIndirect, N)) { 4455 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4456 IsIndirect, Offset, dl, SDNodeOrder); 4457 DAG.AddDbgValue(SDV, N.getNode(), false); 4458 } 4459 } else if (!V->use_empty() ) { 4460 // Do not call getValue(V) yet, as we don't want to generate code. 4461 // Remember it for later. 4462 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4463 DanglingDebugInfoMap[V] = DDI; 4464 } else { 4465 // We may expand this to cover more cases. One case where we have no 4466 // data available is an unreferenced parameter. 4467 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4468 } 4469 } 4470 4471 // Build a debug info table entry. 4472 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4473 V = BCI->getOperand(0); 4474 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4475 // Don't handle byval struct arguments or VLAs, for example. 4476 if (!AI) { 4477 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4478 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4479 return nullptr; 4480 } 4481 DenseMap<const AllocaInst*, int>::iterator SI = 4482 FuncInfo.StaticAllocaMap.find(AI); 4483 if (SI == FuncInfo.StaticAllocaMap.end()) 4484 return nullptr; // VLAs. 4485 return nullptr; 4486 } 4487 4488 case Intrinsic::eh_typeid_for: { 4489 // Find the type id for the given typeinfo. 4490 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4491 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4492 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4493 setValue(&I, Res); 4494 return nullptr; 4495 } 4496 4497 case Intrinsic::eh_return_i32: 4498 case Intrinsic::eh_return_i64: 4499 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4500 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4501 MVT::Other, 4502 getControlRoot(), 4503 getValue(I.getArgOperand(0)), 4504 getValue(I.getArgOperand(1)))); 4505 return nullptr; 4506 case Intrinsic::eh_unwind_init: 4507 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4508 return nullptr; 4509 case Intrinsic::eh_dwarf_cfa: { 4510 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4511 TLI.getPointerTy(DAG.getDataLayout())); 4512 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4513 CfaArg.getValueType(), 4514 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4515 CfaArg.getValueType()), 4516 CfaArg); 4517 SDValue FA = DAG.getNode( 4518 ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()), 4519 DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 4520 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4521 FA, Offset)); 4522 return nullptr; 4523 } 4524 case Intrinsic::eh_sjlj_callsite: { 4525 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4526 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4527 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4528 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4529 4530 MMI.setCurrentCallSite(CI->getZExtValue()); 4531 return nullptr; 4532 } 4533 case Intrinsic::eh_sjlj_functioncontext: { 4534 // Get and store the index of the function context. 4535 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4536 AllocaInst *FnCtx = 4537 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4538 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4539 MFI->setFunctionContextIndex(FI); 4540 return nullptr; 4541 } 4542 case Intrinsic::eh_sjlj_setjmp: { 4543 SDValue Ops[2]; 4544 Ops[0] = getRoot(); 4545 Ops[1] = getValue(I.getArgOperand(0)); 4546 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4547 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4548 setValue(&I, Op.getValue(0)); 4549 DAG.setRoot(Op.getValue(1)); 4550 return nullptr; 4551 } 4552 case Intrinsic::eh_sjlj_longjmp: { 4553 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4554 getRoot(), getValue(I.getArgOperand(0)))); 4555 return nullptr; 4556 } 4557 case Intrinsic::eh_sjlj_setup_dispatch: { 4558 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 4559 getRoot())); 4560 return nullptr; 4561 } 4562 4563 case Intrinsic::masked_gather: 4564 visitMaskedGather(I); 4565 return nullptr; 4566 case Intrinsic::masked_load: 4567 visitMaskedLoad(I); 4568 return nullptr; 4569 case Intrinsic::masked_scatter: 4570 visitMaskedScatter(I); 4571 return nullptr; 4572 case Intrinsic::masked_store: 4573 visitMaskedStore(I); 4574 return nullptr; 4575 case Intrinsic::x86_mmx_pslli_w: 4576 case Intrinsic::x86_mmx_pslli_d: 4577 case Intrinsic::x86_mmx_pslli_q: 4578 case Intrinsic::x86_mmx_psrli_w: 4579 case Intrinsic::x86_mmx_psrli_d: 4580 case Intrinsic::x86_mmx_psrli_q: 4581 case Intrinsic::x86_mmx_psrai_w: 4582 case Intrinsic::x86_mmx_psrai_d: { 4583 SDValue ShAmt = getValue(I.getArgOperand(1)); 4584 if (isa<ConstantSDNode>(ShAmt)) { 4585 visitTargetIntrinsic(I, Intrinsic); 4586 return nullptr; 4587 } 4588 unsigned NewIntrinsic = 0; 4589 EVT ShAmtVT = MVT::v2i32; 4590 switch (Intrinsic) { 4591 case Intrinsic::x86_mmx_pslli_w: 4592 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4593 break; 4594 case Intrinsic::x86_mmx_pslli_d: 4595 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4596 break; 4597 case Intrinsic::x86_mmx_pslli_q: 4598 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4599 break; 4600 case Intrinsic::x86_mmx_psrli_w: 4601 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4602 break; 4603 case Intrinsic::x86_mmx_psrli_d: 4604 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4605 break; 4606 case Intrinsic::x86_mmx_psrli_q: 4607 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4608 break; 4609 case Intrinsic::x86_mmx_psrai_w: 4610 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4611 break; 4612 case Intrinsic::x86_mmx_psrai_d: 4613 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4614 break; 4615 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4616 } 4617 4618 // The vector shift intrinsics with scalars uses 32b shift amounts but 4619 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4620 // to be zero. 4621 // We must do this early because v2i32 is not a legal type. 4622 SDValue ShOps[2]; 4623 ShOps[0] = ShAmt; 4624 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 4625 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4626 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4627 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4628 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4629 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 4630 getValue(I.getArgOperand(0)), ShAmt); 4631 setValue(&I, Res); 4632 return nullptr; 4633 } 4634 case Intrinsic::convertff: 4635 case Intrinsic::convertfsi: 4636 case Intrinsic::convertfui: 4637 case Intrinsic::convertsif: 4638 case Intrinsic::convertuif: 4639 case Intrinsic::convertss: 4640 case Intrinsic::convertsu: 4641 case Intrinsic::convertus: 4642 case Intrinsic::convertuu: { 4643 ISD::CvtCode Code = ISD::CVT_INVALID; 4644 switch (Intrinsic) { 4645 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4646 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4647 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4648 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4649 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4650 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4651 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4652 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4653 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4654 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4655 } 4656 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4657 const Value *Op1 = I.getArgOperand(0); 4658 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4659 DAG.getValueType(DestVT), 4660 DAG.getValueType(getValue(Op1).getValueType()), 4661 getValue(I.getArgOperand(1)), 4662 getValue(I.getArgOperand(2)), 4663 Code); 4664 setValue(&I, Res); 4665 return nullptr; 4666 } 4667 case Intrinsic::powi: 4668 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4669 getValue(I.getArgOperand(1)), DAG)); 4670 return nullptr; 4671 case Intrinsic::log: 4672 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4673 return nullptr; 4674 case Intrinsic::log2: 4675 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4676 return nullptr; 4677 case Intrinsic::log10: 4678 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4679 return nullptr; 4680 case Intrinsic::exp: 4681 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4682 return nullptr; 4683 case Intrinsic::exp2: 4684 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4685 return nullptr; 4686 case Intrinsic::pow: 4687 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4688 getValue(I.getArgOperand(1)), DAG, TLI)); 4689 return nullptr; 4690 case Intrinsic::sqrt: 4691 case Intrinsic::fabs: 4692 case Intrinsic::sin: 4693 case Intrinsic::cos: 4694 case Intrinsic::floor: 4695 case Intrinsic::ceil: 4696 case Intrinsic::trunc: 4697 case Intrinsic::rint: 4698 case Intrinsic::nearbyint: 4699 case Intrinsic::round: { 4700 unsigned Opcode; 4701 switch (Intrinsic) { 4702 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4703 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4704 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4705 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4706 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4707 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4708 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4709 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4710 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4711 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4712 case Intrinsic::round: Opcode = ISD::FROUND; break; 4713 } 4714 4715 setValue(&I, DAG.getNode(Opcode, sdl, 4716 getValue(I.getArgOperand(0)).getValueType(), 4717 getValue(I.getArgOperand(0)))); 4718 return nullptr; 4719 } 4720 case Intrinsic::minnum: 4721 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4722 getValue(I.getArgOperand(0)).getValueType(), 4723 getValue(I.getArgOperand(0)), 4724 getValue(I.getArgOperand(1)))); 4725 return nullptr; 4726 case Intrinsic::maxnum: 4727 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4728 getValue(I.getArgOperand(0)).getValueType(), 4729 getValue(I.getArgOperand(0)), 4730 getValue(I.getArgOperand(1)))); 4731 return nullptr; 4732 case Intrinsic::copysign: 4733 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4734 getValue(I.getArgOperand(0)).getValueType(), 4735 getValue(I.getArgOperand(0)), 4736 getValue(I.getArgOperand(1)))); 4737 return nullptr; 4738 case Intrinsic::fma: 4739 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4740 getValue(I.getArgOperand(0)).getValueType(), 4741 getValue(I.getArgOperand(0)), 4742 getValue(I.getArgOperand(1)), 4743 getValue(I.getArgOperand(2)))); 4744 return nullptr; 4745 case Intrinsic::fmuladd: { 4746 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4747 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4748 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 4749 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4750 getValue(I.getArgOperand(0)).getValueType(), 4751 getValue(I.getArgOperand(0)), 4752 getValue(I.getArgOperand(1)), 4753 getValue(I.getArgOperand(2)))); 4754 } else { 4755 // TODO: Intrinsic calls should have fast-math-flags. 4756 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4757 getValue(I.getArgOperand(0)).getValueType(), 4758 getValue(I.getArgOperand(0)), 4759 getValue(I.getArgOperand(1))); 4760 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4761 getValue(I.getArgOperand(0)).getValueType(), 4762 Mul, 4763 getValue(I.getArgOperand(2))); 4764 setValue(&I, Add); 4765 } 4766 return nullptr; 4767 } 4768 case Intrinsic::convert_to_fp16: 4769 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 4770 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 4771 getValue(I.getArgOperand(0)), 4772 DAG.getTargetConstant(0, sdl, 4773 MVT::i32)))); 4774 return nullptr; 4775 case Intrinsic::convert_from_fp16: 4776 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 4777 TLI.getValueType(DAG.getDataLayout(), I.getType()), 4778 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 4779 getValue(I.getArgOperand(0))))); 4780 return nullptr; 4781 case Intrinsic::pcmarker: { 4782 SDValue Tmp = getValue(I.getArgOperand(0)); 4783 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4784 return nullptr; 4785 } 4786 case Intrinsic::readcyclecounter: { 4787 SDValue Op = getRoot(); 4788 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4789 DAG.getVTList(MVT::i64, MVT::Other), Op); 4790 setValue(&I, Res); 4791 DAG.setRoot(Res.getValue(1)); 4792 return nullptr; 4793 } 4794 case Intrinsic::bswap: 4795 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4796 getValue(I.getArgOperand(0)).getValueType(), 4797 getValue(I.getArgOperand(0)))); 4798 return nullptr; 4799 case Intrinsic::uabsdiff: 4800 setValue(&I, DAG.getNode(ISD::UABSDIFF, sdl, 4801 getValue(I.getArgOperand(0)).getValueType(), 4802 getValue(I.getArgOperand(0)), 4803 getValue(I.getArgOperand(1)))); 4804 return nullptr; 4805 case Intrinsic::sabsdiff: 4806 setValue(&I, DAG.getNode(ISD::SABSDIFF, sdl, 4807 getValue(I.getArgOperand(0)).getValueType(), 4808 getValue(I.getArgOperand(0)), 4809 getValue(I.getArgOperand(1)))); 4810 return nullptr; 4811 case Intrinsic::cttz: { 4812 SDValue Arg = getValue(I.getArgOperand(0)); 4813 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4814 EVT Ty = Arg.getValueType(); 4815 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4816 sdl, Ty, Arg)); 4817 return nullptr; 4818 } 4819 case Intrinsic::ctlz: { 4820 SDValue Arg = getValue(I.getArgOperand(0)); 4821 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4822 EVT Ty = Arg.getValueType(); 4823 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4824 sdl, Ty, Arg)); 4825 return nullptr; 4826 } 4827 case Intrinsic::ctpop: { 4828 SDValue Arg = getValue(I.getArgOperand(0)); 4829 EVT Ty = Arg.getValueType(); 4830 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4831 return nullptr; 4832 } 4833 case Intrinsic::stacksave: { 4834 SDValue Op = getRoot(); 4835 Res = DAG.getNode( 4836 ISD::STACKSAVE, sdl, 4837 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 4838 setValue(&I, Res); 4839 DAG.setRoot(Res.getValue(1)); 4840 return nullptr; 4841 } 4842 case Intrinsic::stackrestore: { 4843 Res = getValue(I.getArgOperand(0)); 4844 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 4845 return nullptr; 4846 } 4847 case Intrinsic::stackprotector: { 4848 // Emit code into the DAG to store the stack guard onto the stack. 4849 MachineFunction &MF = DAG.getMachineFunction(); 4850 MachineFrameInfo *MFI = MF.getFrameInfo(); 4851 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 4852 SDValue Src, Chain = getRoot(); 4853 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 4854 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 4855 4856 // See if Ptr is a bitcast. If it is, look through it and see if we can get 4857 // global variable __stack_chk_guard. 4858 if (!GV) 4859 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 4860 if (BC->getOpcode() == Instruction::BitCast) 4861 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 4862 4863 if (GV && TLI.useLoadStackGuardNode()) { 4864 // Emit a LOAD_STACK_GUARD node. 4865 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 4866 sdl, PtrTy, Chain); 4867 MachinePointerInfo MPInfo(GV); 4868 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 4869 unsigned Flags = MachineMemOperand::MOLoad | 4870 MachineMemOperand::MOInvariant; 4871 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 4872 PtrTy.getSizeInBits() / 8, 4873 DAG.getEVTAlignment(PtrTy)); 4874 Node->setMemRefs(MemRefs, MemRefs + 1); 4875 4876 // Copy the guard value to a virtual register so that it can be 4877 // retrieved in the epilogue. 4878 Src = SDValue(Node, 0); 4879 const TargetRegisterClass *RC = 4880 TLI.getRegClassFor(Src.getSimpleValueType()); 4881 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 4882 4883 SPDescriptor.setGuardReg(Reg); 4884 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 4885 } else { 4886 Src = getValue(I.getArgOperand(0)); // The guard's value. 4887 } 4888 4889 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4890 4891 int FI = FuncInfo.StaticAllocaMap[Slot]; 4892 MFI->setStackProtectorIndex(FI); 4893 4894 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4895 4896 // Store the stack protector onto the stack. 4897 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 4898 DAG.getMachineFunction(), FI), 4899 true, false, 0); 4900 setValue(&I, Res); 4901 DAG.setRoot(Res); 4902 return nullptr; 4903 } 4904 case Intrinsic::objectsize: { 4905 // If we don't know by now, we're never going to know. 4906 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4907 4908 assert(CI && "Non-constant type in __builtin_object_size?"); 4909 4910 SDValue Arg = getValue(I.getCalledValue()); 4911 EVT Ty = Arg.getValueType(); 4912 4913 if (CI->isZero()) 4914 Res = DAG.getConstant(-1ULL, sdl, Ty); 4915 else 4916 Res = DAG.getConstant(0, sdl, Ty); 4917 4918 setValue(&I, Res); 4919 return nullptr; 4920 } 4921 case Intrinsic::annotation: 4922 case Intrinsic::ptr_annotation: 4923 // Drop the intrinsic, but forward the value 4924 setValue(&I, getValue(I.getOperand(0))); 4925 return nullptr; 4926 case Intrinsic::assume: 4927 case Intrinsic::var_annotation: 4928 // Discard annotate attributes and assumptions 4929 return nullptr; 4930 4931 case Intrinsic::init_trampoline: { 4932 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 4933 4934 SDValue Ops[6]; 4935 Ops[0] = getRoot(); 4936 Ops[1] = getValue(I.getArgOperand(0)); 4937 Ops[2] = getValue(I.getArgOperand(1)); 4938 Ops[3] = getValue(I.getArgOperand(2)); 4939 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 4940 Ops[5] = DAG.getSrcValue(F); 4941 4942 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 4943 4944 DAG.setRoot(Res); 4945 return nullptr; 4946 } 4947 case Intrinsic::adjust_trampoline: { 4948 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 4949 TLI.getPointerTy(DAG.getDataLayout()), 4950 getValue(I.getArgOperand(0)))); 4951 return nullptr; 4952 } 4953 case Intrinsic::gcroot: 4954 if (GFI) { 4955 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 4956 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 4957 4958 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4959 GFI->addStackRoot(FI->getIndex(), TypeMap); 4960 } 4961 return nullptr; 4962 case Intrinsic::gcread: 4963 case Intrinsic::gcwrite: 4964 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4965 case Intrinsic::flt_rounds: 4966 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 4967 return nullptr; 4968 4969 case Intrinsic::expect: { 4970 // Just replace __builtin_expect(exp, c) with EXP. 4971 setValue(&I, getValue(I.getArgOperand(0))); 4972 return nullptr; 4973 } 4974 4975 case Intrinsic::debugtrap: 4976 case Intrinsic::trap: { 4977 StringRef TrapFuncName = 4978 I.getAttributes() 4979 .getAttribute(AttributeSet::FunctionIndex, "trap-func-name") 4980 .getValueAsString(); 4981 if (TrapFuncName.empty()) { 4982 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 4983 ISD::TRAP : ISD::DEBUGTRAP; 4984 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 4985 return nullptr; 4986 } 4987 TargetLowering::ArgListTy Args; 4988 4989 TargetLowering::CallLoweringInfo CLI(DAG); 4990 CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee( 4991 CallingConv::C, I.getType(), 4992 DAG.getExternalSymbol(TrapFuncName.data(), 4993 TLI.getPointerTy(DAG.getDataLayout())), 4994 std::move(Args), 0); 4995 4996 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 4997 DAG.setRoot(Result.second); 4998 return nullptr; 4999 } 5000 5001 case Intrinsic::uadd_with_overflow: 5002 case Intrinsic::sadd_with_overflow: 5003 case Intrinsic::usub_with_overflow: 5004 case Intrinsic::ssub_with_overflow: 5005 case Intrinsic::umul_with_overflow: 5006 case Intrinsic::smul_with_overflow: { 5007 ISD::NodeType Op; 5008 switch (Intrinsic) { 5009 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5010 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5011 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5012 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5013 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5014 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5015 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5016 } 5017 SDValue Op1 = getValue(I.getArgOperand(0)); 5018 SDValue Op2 = getValue(I.getArgOperand(1)); 5019 5020 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5021 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5022 return nullptr; 5023 } 5024 case Intrinsic::prefetch: { 5025 SDValue Ops[5]; 5026 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5027 Ops[0] = getRoot(); 5028 Ops[1] = getValue(I.getArgOperand(0)); 5029 Ops[2] = getValue(I.getArgOperand(1)); 5030 Ops[3] = getValue(I.getArgOperand(2)); 5031 Ops[4] = getValue(I.getArgOperand(3)); 5032 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5033 DAG.getVTList(MVT::Other), Ops, 5034 EVT::getIntegerVT(*Context, 8), 5035 MachinePointerInfo(I.getArgOperand(0)), 5036 0, /* align */ 5037 false, /* volatile */ 5038 rw==0, /* read */ 5039 rw==1)); /* write */ 5040 return nullptr; 5041 } 5042 case Intrinsic::lifetime_start: 5043 case Intrinsic::lifetime_end: { 5044 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5045 // Stack coloring is not enabled in O0, discard region information. 5046 if (TM.getOptLevel() == CodeGenOpt::None) 5047 return nullptr; 5048 5049 SmallVector<Value *, 4> Allocas; 5050 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5051 5052 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5053 E = Allocas.end(); Object != E; ++Object) { 5054 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5055 5056 // Could not find an Alloca. 5057 if (!LifetimeObject) 5058 continue; 5059 5060 // First check that the Alloca is static, otherwise it won't have a 5061 // valid frame index. 5062 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5063 if (SI == FuncInfo.StaticAllocaMap.end()) 5064 return nullptr; 5065 5066 int FI = SI->second; 5067 5068 SDValue Ops[2]; 5069 Ops[0] = getRoot(); 5070 Ops[1] = 5071 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true); 5072 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5073 5074 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5075 DAG.setRoot(Res); 5076 } 5077 return nullptr; 5078 } 5079 case Intrinsic::invariant_start: 5080 // Discard region information. 5081 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5082 return nullptr; 5083 case Intrinsic::invariant_end: 5084 // Discard region information. 5085 return nullptr; 5086 case Intrinsic::stackprotectorcheck: { 5087 // Do not actually emit anything for this basic block. Instead we initialize 5088 // the stack protector descriptor and export the guard variable so we can 5089 // access it in FinishBasicBlock. 5090 const BasicBlock *BB = I.getParent(); 5091 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5092 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5093 5094 // Flush our exports since we are going to process a terminator. 5095 (void)getControlRoot(); 5096 return nullptr; 5097 } 5098 case Intrinsic::clear_cache: 5099 return TLI.getClearCacheBuiltinName(); 5100 case Intrinsic::eh_actions: 5101 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5102 return nullptr; 5103 case Intrinsic::donothing: 5104 // ignore 5105 return nullptr; 5106 case Intrinsic::experimental_stackmap: { 5107 visitStackmap(I); 5108 return nullptr; 5109 } 5110 case Intrinsic::experimental_patchpoint_void: 5111 case Intrinsic::experimental_patchpoint_i64: { 5112 visitPatchpoint(&I); 5113 return nullptr; 5114 } 5115 case Intrinsic::experimental_gc_statepoint: { 5116 visitStatepoint(I); 5117 return nullptr; 5118 } 5119 case Intrinsic::experimental_gc_result_int: 5120 case Intrinsic::experimental_gc_result_float: 5121 case Intrinsic::experimental_gc_result_ptr: 5122 case Intrinsic::experimental_gc_result: { 5123 visitGCResult(I); 5124 return nullptr; 5125 } 5126 case Intrinsic::experimental_gc_relocate: { 5127 visitGCRelocate(I); 5128 return nullptr; 5129 } 5130 case Intrinsic::instrprof_increment: 5131 llvm_unreachable("instrprof failed to lower an increment"); 5132 5133 case Intrinsic::localescape: { 5134 MachineFunction &MF = DAG.getMachineFunction(); 5135 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5136 5137 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5138 // is the same on all targets. 5139 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5140 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5141 if (isa<ConstantPointerNull>(Arg)) 5142 continue; // Skip null pointers. They represent a hole in index space. 5143 AllocaInst *Slot = cast<AllocaInst>(Arg); 5144 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5145 "can only escape static allocas"); 5146 int FI = FuncInfo.StaticAllocaMap[Slot]; 5147 MCSymbol *FrameAllocSym = 5148 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5149 GlobalValue::getRealLinkageName(MF.getName()), Idx); 5150 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5151 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5152 .addSym(FrameAllocSym) 5153 .addFrameIndex(FI); 5154 } 5155 5156 return nullptr; 5157 } 5158 5159 case Intrinsic::localrecover: { 5160 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5161 MachineFunction &MF = DAG.getMachineFunction(); 5162 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5163 5164 // Get the symbol that defines the frame offset. 5165 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5166 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5167 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5168 MCSymbol *FrameAllocSym = 5169 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5170 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5171 5172 // Create a MCSymbol for the label to avoid any target lowering 5173 // that would make this PC relative. 5174 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5175 SDValue OffsetVal = 5176 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5177 5178 // Add the offset to the FP. 5179 Value *FP = I.getArgOperand(1); 5180 SDValue FPVal = getValue(FP); 5181 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5182 setValue(&I, Add); 5183 5184 return nullptr; 5185 } 5186 case Intrinsic::eh_begincatch: 5187 case Intrinsic::eh_endcatch: 5188 llvm_unreachable("begin/end catch intrinsics not lowered in codegen"); 5189 case Intrinsic::eh_exceptioncode: { 5190 unsigned Reg = TLI.getExceptionPointerRegister(); 5191 assert(Reg && "cannot get exception code on this platform"); 5192 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5193 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5194 assert(FuncInfo.MBB->isEHPad() && "eh.exceptioncode in non-lpad"); 5195 unsigned VReg = FuncInfo.MBB->addLiveIn(Reg, PtrRC); 5196 SDValue N = 5197 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5198 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5199 setValue(&I, N); 5200 return nullptr; 5201 } 5202 } 5203 } 5204 5205 std::pair<SDValue, SDValue> 5206 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5207 const BasicBlock *EHPadBB) { 5208 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5209 MCSymbol *BeginLabel = nullptr; 5210 5211 if (EHPadBB) { 5212 // Insert a label before the invoke call to mark the try range. This can be 5213 // used to detect deletion of the invoke via the MachineModuleInfo. 5214 BeginLabel = MMI.getContext().createTempSymbol(); 5215 5216 // For SjLj, keep track of which landing pads go with which invokes 5217 // so as to maintain the ordering of pads in the LSDA. 5218 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5219 if (CallSiteIndex) { 5220 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5221 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 5222 5223 // Now that the call site is handled, stop tracking it. 5224 MMI.setCurrentCallSite(0); 5225 } 5226 5227 // Both PendingLoads and PendingExports must be flushed here; 5228 // this call might not return. 5229 (void)getRoot(); 5230 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5231 5232 CLI.setChain(getRoot()); 5233 } 5234 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5235 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5236 5237 assert((CLI.IsTailCall || Result.second.getNode()) && 5238 "Non-null chain expected with non-tail call!"); 5239 assert((Result.second.getNode() || !Result.first.getNode()) && 5240 "Null value expected with tail call!"); 5241 5242 if (!Result.second.getNode()) { 5243 // As a special case, a null chain means that a tail call has been emitted 5244 // and the DAG root is already updated. 5245 HasTailCall = true; 5246 5247 // Since there's no actual continuation from this block, nothing can be 5248 // relying on us setting vregs for them. 5249 PendingExports.clear(); 5250 } else { 5251 DAG.setRoot(Result.second); 5252 } 5253 5254 if (EHPadBB) { 5255 // Insert a label at the end of the invoke call to mark the try range. This 5256 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5257 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5258 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5259 5260 // Inform MachineModuleInfo of range. 5261 if (MMI.hasEHFunclets()) { 5262 WinEHFuncInfo &EHInfo = 5263 MMI.getWinEHFuncInfo(DAG.getMachineFunction().getFunction()); 5264 EHInfo.addIPToStateRange(EHPadBB, BeginLabel, EndLabel); 5265 } else { 5266 MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 5267 } 5268 } 5269 5270 return Result; 5271 } 5272 5273 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5274 bool isTailCall, 5275 const BasicBlock *EHPadBB) { 5276 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5277 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5278 Type *RetTy = FTy->getReturnType(); 5279 5280 TargetLowering::ArgListTy Args; 5281 TargetLowering::ArgListEntry Entry; 5282 Args.reserve(CS.arg_size()); 5283 5284 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5285 i != e; ++i) { 5286 const Value *V = *i; 5287 5288 // Skip empty types 5289 if (V->getType()->isEmptyTy()) 5290 continue; 5291 5292 SDValue ArgNode = getValue(V); 5293 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5294 5295 // Skip the first return-type Attribute to get to params. 5296 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5297 Args.push_back(Entry); 5298 5299 // If we have an explicit sret argument that is an Instruction, (i.e., it 5300 // might point to function-local memory), we can't meaningfully tail-call. 5301 if (Entry.isSRet && isa<Instruction>(V)) 5302 isTailCall = false; 5303 } 5304 5305 // Check if target-independent constraints permit a tail call here. 5306 // Target-dependent constraints are checked within TLI->LowerCallTo. 5307 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5308 isTailCall = false; 5309 5310 TargetLowering::CallLoweringInfo CLI(DAG); 5311 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5312 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5313 .setTailCall(isTailCall); 5314 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 5315 5316 if (Result.first.getNode()) 5317 setValue(CS.getInstruction(), Result.first); 5318 } 5319 5320 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5321 /// value is equal or not-equal to zero. 5322 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5323 for (const User *U : V->users()) { 5324 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5325 if (IC->isEquality()) 5326 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5327 if (C->isNullValue()) 5328 continue; 5329 // Unknown instruction. 5330 return false; 5331 } 5332 return true; 5333 } 5334 5335 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5336 Type *LoadTy, 5337 SelectionDAGBuilder &Builder) { 5338 5339 // Check to see if this load can be trivially constant folded, e.g. if the 5340 // input is from a string literal. 5341 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5342 // Cast pointer to the type we really want to load. 5343 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5344 PointerType::getUnqual(LoadTy)); 5345 5346 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5347 const_cast<Constant *>(LoadInput), *Builder.DL)) 5348 return Builder.getValue(LoadCst); 5349 } 5350 5351 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5352 // still constant memory, the input chain can be the entry node. 5353 SDValue Root; 5354 bool ConstantMemory = false; 5355 5356 // Do not serialize (non-volatile) loads of constant memory with anything. 5357 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5358 Root = Builder.DAG.getEntryNode(); 5359 ConstantMemory = true; 5360 } else { 5361 // Do not serialize non-volatile loads against each other. 5362 Root = Builder.DAG.getRoot(); 5363 } 5364 5365 SDValue Ptr = Builder.getValue(PtrVal); 5366 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5367 Ptr, MachinePointerInfo(PtrVal), 5368 false /*volatile*/, 5369 false /*nontemporal*/, 5370 false /*isinvariant*/, 1 /* align=1 */); 5371 5372 if (!ConstantMemory) 5373 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5374 return LoadVal; 5375 } 5376 5377 /// processIntegerCallValue - Record the value for an instruction that 5378 /// produces an integer result, converting the type where necessary. 5379 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5380 SDValue Value, 5381 bool IsSigned) { 5382 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5383 I.getType(), true); 5384 if (IsSigned) 5385 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5386 else 5387 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5388 setValue(&I, Value); 5389 } 5390 5391 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5392 /// If so, return true and lower it, otherwise return false and it will be 5393 /// lowered like a normal call. 5394 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5395 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5396 if (I.getNumArgOperands() != 3) 5397 return false; 5398 5399 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5400 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5401 !I.getArgOperand(2)->getType()->isIntegerTy() || 5402 !I.getType()->isIntegerTy()) 5403 return false; 5404 5405 const Value *Size = I.getArgOperand(2); 5406 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5407 if (CSize && CSize->getZExtValue() == 0) { 5408 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5409 I.getType(), true); 5410 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5411 return true; 5412 } 5413 5414 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5415 std::pair<SDValue, SDValue> Res = 5416 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5417 getValue(LHS), getValue(RHS), getValue(Size), 5418 MachinePointerInfo(LHS), 5419 MachinePointerInfo(RHS)); 5420 if (Res.first.getNode()) { 5421 processIntegerCallValue(I, Res.first, true); 5422 PendingLoads.push_back(Res.second); 5423 return true; 5424 } 5425 5426 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5427 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5428 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5429 bool ActuallyDoIt = true; 5430 MVT LoadVT; 5431 Type *LoadTy; 5432 switch (CSize->getZExtValue()) { 5433 default: 5434 LoadVT = MVT::Other; 5435 LoadTy = nullptr; 5436 ActuallyDoIt = false; 5437 break; 5438 case 2: 5439 LoadVT = MVT::i16; 5440 LoadTy = Type::getInt16Ty(CSize->getContext()); 5441 break; 5442 case 4: 5443 LoadVT = MVT::i32; 5444 LoadTy = Type::getInt32Ty(CSize->getContext()); 5445 break; 5446 case 8: 5447 LoadVT = MVT::i64; 5448 LoadTy = Type::getInt64Ty(CSize->getContext()); 5449 break; 5450 /* 5451 case 16: 5452 LoadVT = MVT::v4i32; 5453 LoadTy = Type::getInt32Ty(CSize->getContext()); 5454 LoadTy = VectorType::get(LoadTy, 4); 5455 break; 5456 */ 5457 } 5458 5459 // This turns into unaligned loads. We only do this if the target natively 5460 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5461 // we'll only produce a small number of byte loads. 5462 5463 // Require that we can find a legal MVT, and only do this if the target 5464 // supports unaligned loads of that type. Expanding into byte loads would 5465 // bloat the code. 5466 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5467 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5468 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5469 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5470 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5471 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5472 // TODO: Check alignment of src and dest ptrs. 5473 if (!TLI.isTypeLegal(LoadVT) || 5474 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5475 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5476 ActuallyDoIt = false; 5477 } 5478 5479 if (ActuallyDoIt) { 5480 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5481 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5482 5483 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5484 ISD::SETNE); 5485 processIntegerCallValue(I, Res, false); 5486 return true; 5487 } 5488 } 5489 5490 5491 return false; 5492 } 5493 5494 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5495 /// form. If so, return true and lower it, otherwise return false and it 5496 /// will be lowered like a normal call. 5497 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5498 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5499 if (I.getNumArgOperands() != 3) 5500 return false; 5501 5502 const Value *Src = I.getArgOperand(0); 5503 const Value *Char = I.getArgOperand(1); 5504 const Value *Length = I.getArgOperand(2); 5505 if (!Src->getType()->isPointerTy() || 5506 !Char->getType()->isIntegerTy() || 5507 !Length->getType()->isIntegerTy() || 5508 !I.getType()->isPointerTy()) 5509 return false; 5510 5511 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5512 std::pair<SDValue, SDValue> Res = 5513 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5514 getValue(Src), getValue(Char), getValue(Length), 5515 MachinePointerInfo(Src)); 5516 if (Res.first.getNode()) { 5517 setValue(&I, Res.first); 5518 PendingLoads.push_back(Res.second); 5519 return true; 5520 } 5521 5522 return false; 5523 } 5524 5525 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5526 /// optimized form. If so, return true and lower it, otherwise return false 5527 /// and it will be lowered like a normal call. 5528 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5529 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5530 if (I.getNumArgOperands() != 2) 5531 return false; 5532 5533 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5534 if (!Arg0->getType()->isPointerTy() || 5535 !Arg1->getType()->isPointerTy() || 5536 !I.getType()->isPointerTy()) 5537 return false; 5538 5539 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5540 std::pair<SDValue, SDValue> Res = 5541 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5542 getValue(Arg0), getValue(Arg1), 5543 MachinePointerInfo(Arg0), 5544 MachinePointerInfo(Arg1), isStpcpy); 5545 if (Res.first.getNode()) { 5546 setValue(&I, Res.first); 5547 DAG.setRoot(Res.second); 5548 return true; 5549 } 5550 5551 return false; 5552 } 5553 5554 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5555 /// If so, return true and lower it, otherwise return false and it will be 5556 /// lowered like a normal call. 5557 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5558 // Verify that the prototype makes sense. int strcmp(void*,void*) 5559 if (I.getNumArgOperands() != 2) 5560 return false; 5561 5562 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5563 if (!Arg0->getType()->isPointerTy() || 5564 !Arg1->getType()->isPointerTy() || 5565 !I.getType()->isIntegerTy()) 5566 return false; 5567 5568 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5569 std::pair<SDValue, SDValue> Res = 5570 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5571 getValue(Arg0), getValue(Arg1), 5572 MachinePointerInfo(Arg0), 5573 MachinePointerInfo(Arg1)); 5574 if (Res.first.getNode()) { 5575 processIntegerCallValue(I, Res.first, true); 5576 PendingLoads.push_back(Res.second); 5577 return true; 5578 } 5579 5580 return false; 5581 } 5582 5583 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5584 /// form. If so, return true and lower it, otherwise return false and it 5585 /// will be lowered like a normal call. 5586 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5587 // Verify that the prototype makes sense. size_t strlen(char *) 5588 if (I.getNumArgOperands() != 1) 5589 return false; 5590 5591 const Value *Arg0 = I.getArgOperand(0); 5592 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5593 return false; 5594 5595 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5596 std::pair<SDValue, SDValue> Res = 5597 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5598 getValue(Arg0), MachinePointerInfo(Arg0)); 5599 if (Res.first.getNode()) { 5600 processIntegerCallValue(I, Res.first, false); 5601 PendingLoads.push_back(Res.second); 5602 return true; 5603 } 5604 5605 return false; 5606 } 5607 5608 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5609 /// form. If so, return true and lower it, otherwise return false and it 5610 /// will be lowered like a normal call. 5611 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5612 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5613 if (I.getNumArgOperands() != 2) 5614 return false; 5615 5616 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5617 if (!Arg0->getType()->isPointerTy() || 5618 !Arg1->getType()->isIntegerTy() || 5619 !I.getType()->isIntegerTy()) 5620 return false; 5621 5622 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5623 std::pair<SDValue, SDValue> Res = 5624 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5625 getValue(Arg0), getValue(Arg1), 5626 MachinePointerInfo(Arg0)); 5627 if (Res.first.getNode()) { 5628 processIntegerCallValue(I, Res.first, false); 5629 PendingLoads.push_back(Res.second); 5630 return true; 5631 } 5632 5633 return false; 5634 } 5635 5636 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5637 /// operation (as expected), translate it to an SDNode with the specified opcode 5638 /// and return true. 5639 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5640 unsigned Opcode) { 5641 // Sanity check that it really is a unary floating-point call. 5642 if (I.getNumArgOperands() != 1 || 5643 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5644 I.getType() != I.getArgOperand(0)->getType() || 5645 !I.onlyReadsMemory()) 5646 return false; 5647 5648 SDValue Tmp = getValue(I.getArgOperand(0)); 5649 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5650 return true; 5651 } 5652 5653 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5654 /// operation (as expected), translate it to an SDNode with the specified opcode 5655 /// and return true. 5656 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5657 unsigned Opcode) { 5658 // Sanity check that it really is a binary floating-point call. 5659 if (I.getNumArgOperands() != 2 || 5660 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5661 I.getType() != I.getArgOperand(0)->getType() || 5662 I.getType() != I.getArgOperand(1)->getType() || 5663 !I.onlyReadsMemory()) 5664 return false; 5665 5666 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5667 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5668 EVT VT = Tmp0.getValueType(); 5669 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5670 return true; 5671 } 5672 5673 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5674 // Handle inline assembly differently. 5675 if (isa<InlineAsm>(I.getCalledValue())) { 5676 visitInlineAsm(&I); 5677 return; 5678 } 5679 5680 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5681 ComputeUsesVAFloatArgument(I, &MMI); 5682 5683 const char *RenameFn = nullptr; 5684 if (Function *F = I.getCalledFunction()) { 5685 if (F->isDeclaration()) { 5686 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5687 if (unsigned IID = II->getIntrinsicID(F)) { 5688 RenameFn = visitIntrinsicCall(I, IID); 5689 if (!RenameFn) 5690 return; 5691 } 5692 } 5693 if (Intrinsic::ID IID = F->getIntrinsicID()) { 5694 RenameFn = visitIntrinsicCall(I, IID); 5695 if (!RenameFn) 5696 return; 5697 } 5698 } 5699 5700 // Check for well-known libc/libm calls. If the function is internal, it 5701 // can't be a library call. 5702 LibFunc::Func Func; 5703 if (!F->hasLocalLinkage() && F->hasName() && 5704 LibInfo->getLibFunc(F->getName(), Func) && 5705 LibInfo->hasOptimizedCodeGen(Func)) { 5706 switch (Func) { 5707 default: break; 5708 case LibFunc::copysign: 5709 case LibFunc::copysignf: 5710 case LibFunc::copysignl: 5711 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5712 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5713 I.getType() == I.getArgOperand(0)->getType() && 5714 I.getType() == I.getArgOperand(1)->getType() && 5715 I.onlyReadsMemory()) { 5716 SDValue LHS = getValue(I.getArgOperand(0)); 5717 SDValue RHS = getValue(I.getArgOperand(1)); 5718 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5719 LHS.getValueType(), LHS, RHS)); 5720 return; 5721 } 5722 break; 5723 case LibFunc::fabs: 5724 case LibFunc::fabsf: 5725 case LibFunc::fabsl: 5726 if (visitUnaryFloatCall(I, ISD::FABS)) 5727 return; 5728 break; 5729 case LibFunc::fmin: 5730 case LibFunc::fminf: 5731 case LibFunc::fminl: 5732 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5733 return; 5734 break; 5735 case LibFunc::fmax: 5736 case LibFunc::fmaxf: 5737 case LibFunc::fmaxl: 5738 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5739 return; 5740 break; 5741 case LibFunc::sin: 5742 case LibFunc::sinf: 5743 case LibFunc::sinl: 5744 if (visitUnaryFloatCall(I, ISD::FSIN)) 5745 return; 5746 break; 5747 case LibFunc::cos: 5748 case LibFunc::cosf: 5749 case LibFunc::cosl: 5750 if (visitUnaryFloatCall(I, ISD::FCOS)) 5751 return; 5752 break; 5753 case LibFunc::sqrt: 5754 case LibFunc::sqrtf: 5755 case LibFunc::sqrtl: 5756 case LibFunc::sqrt_finite: 5757 case LibFunc::sqrtf_finite: 5758 case LibFunc::sqrtl_finite: 5759 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5760 return; 5761 break; 5762 case LibFunc::floor: 5763 case LibFunc::floorf: 5764 case LibFunc::floorl: 5765 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5766 return; 5767 break; 5768 case LibFunc::nearbyint: 5769 case LibFunc::nearbyintf: 5770 case LibFunc::nearbyintl: 5771 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5772 return; 5773 break; 5774 case LibFunc::ceil: 5775 case LibFunc::ceilf: 5776 case LibFunc::ceill: 5777 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5778 return; 5779 break; 5780 case LibFunc::rint: 5781 case LibFunc::rintf: 5782 case LibFunc::rintl: 5783 if (visitUnaryFloatCall(I, ISD::FRINT)) 5784 return; 5785 break; 5786 case LibFunc::round: 5787 case LibFunc::roundf: 5788 case LibFunc::roundl: 5789 if (visitUnaryFloatCall(I, ISD::FROUND)) 5790 return; 5791 break; 5792 case LibFunc::trunc: 5793 case LibFunc::truncf: 5794 case LibFunc::truncl: 5795 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5796 return; 5797 break; 5798 case LibFunc::log2: 5799 case LibFunc::log2f: 5800 case LibFunc::log2l: 5801 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5802 return; 5803 break; 5804 case LibFunc::exp2: 5805 case LibFunc::exp2f: 5806 case LibFunc::exp2l: 5807 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5808 return; 5809 break; 5810 case LibFunc::memcmp: 5811 if (visitMemCmpCall(I)) 5812 return; 5813 break; 5814 case LibFunc::memchr: 5815 if (visitMemChrCall(I)) 5816 return; 5817 break; 5818 case LibFunc::strcpy: 5819 if (visitStrCpyCall(I, false)) 5820 return; 5821 break; 5822 case LibFunc::stpcpy: 5823 if (visitStrCpyCall(I, true)) 5824 return; 5825 break; 5826 case LibFunc::strcmp: 5827 if (visitStrCmpCall(I)) 5828 return; 5829 break; 5830 case LibFunc::strlen: 5831 if (visitStrLenCall(I)) 5832 return; 5833 break; 5834 case LibFunc::strnlen: 5835 if (visitStrNLenCall(I)) 5836 return; 5837 break; 5838 } 5839 } 5840 } 5841 5842 SDValue Callee; 5843 if (!RenameFn) 5844 Callee = getValue(I.getCalledValue()); 5845 else 5846 Callee = DAG.getExternalSymbol( 5847 RenameFn, 5848 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5849 5850 // Check if we can potentially perform a tail call. More detailed checking is 5851 // be done within LowerCallTo, after more information about the call is known. 5852 LowerCallTo(&I, Callee, I.isTailCall()); 5853 } 5854 5855 namespace { 5856 5857 /// AsmOperandInfo - This contains information for each constraint that we are 5858 /// lowering. 5859 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5860 public: 5861 /// CallOperand - If this is the result output operand or a clobber 5862 /// this is null, otherwise it is the incoming operand to the CallInst. 5863 /// This gets modified as the asm is processed. 5864 SDValue CallOperand; 5865 5866 /// AssignedRegs - If this is a register or register class operand, this 5867 /// contains the set of register corresponding to the operand. 5868 RegsForValue AssignedRegs; 5869 5870 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5871 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 5872 } 5873 5874 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5875 /// corresponds to. If there is no Value* for this operand, it returns 5876 /// MVT::Other. 5877 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 5878 const DataLayout &DL) const { 5879 if (!CallOperandVal) return MVT::Other; 5880 5881 if (isa<BasicBlock>(CallOperandVal)) 5882 return TLI.getPointerTy(DL); 5883 5884 llvm::Type *OpTy = CallOperandVal->getType(); 5885 5886 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5887 // If this is an indirect operand, the operand is a pointer to the 5888 // accessed type. 5889 if (isIndirect) { 5890 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5891 if (!PtrTy) 5892 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5893 OpTy = PtrTy->getElementType(); 5894 } 5895 5896 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5897 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5898 if (STy->getNumElements() == 1) 5899 OpTy = STy->getElementType(0); 5900 5901 // If OpTy is not a single value, it may be a struct/union that we 5902 // can tile with integers. 5903 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5904 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 5905 switch (BitSize) { 5906 default: break; 5907 case 1: 5908 case 8: 5909 case 16: 5910 case 32: 5911 case 64: 5912 case 128: 5913 OpTy = IntegerType::get(Context, BitSize); 5914 break; 5915 } 5916 } 5917 5918 return TLI.getValueType(DL, OpTy, true); 5919 } 5920 }; 5921 5922 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5923 5924 } // end anonymous namespace 5925 5926 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5927 /// specified operand. We prefer to assign virtual registers, to allow the 5928 /// register allocator to handle the assignment process. However, if the asm 5929 /// uses features that we can't model on machineinstrs, we have SDISel do the 5930 /// allocation. This produces generally horrible, but correct, code. 5931 /// 5932 /// OpInfo describes the operand. 5933 /// 5934 static void GetRegistersForValue(SelectionDAG &DAG, 5935 const TargetLowering &TLI, 5936 SDLoc DL, 5937 SDISelAsmOperandInfo &OpInfo) { 5938 LLVMContext &Context = *DAG.getContext(); 5939 5940 MachineFunction &MF = DAG.getMachineFunction(); 5941 SmallVector<unsigned, 4> Regs; 5942 5943 // If this is a constraint for a single physreg, or a constraint for a 5944 // register class, find it. 5945 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 5946 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 5947 OpInfo.ConstraintCode, 5948 OpInfo.ConstraintVT); 5949 5950 unsigned NumRegs = 1; 5951 if (OpInfo.ConstraintVT != MVT::Other) { 5952 // If this is a FP input in an integer register (or visa versa) insert a bit 5953 // cast of the input value. More generally, handle any case where the input 5954 // value disagrees with the register class we plan to stick this in. 5955 if (OpInfo.Type == InlineAsm::isInput && 5956 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5957 // Try to convert to the first EVT that the reg class contains. If the 5958 // types are identical size, use a bitcast to convert (e.g. two differing 5959 // vector types). 5960 MVT RegVT = *PhysReg.second->vt_begin(); 5961 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 5962 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5963 RegVT, OpInfo.CallOperand); 5964 OpInfo.ConstraintVT = RegVT; 5965 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5966 // If the input is a FP value and we want it in FP registers, do a 5967 // bitcast to the corresponding integer type. This turns an f64 value 5968 // into i64, which can be passed with two i32 values on a 32-bit 5969 // machine. 5970 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 5971 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5972 RegVT, OpInfo.CallOperand); 5973 OpInfo.ConstraintVT = RegVT; 5974 } 5975 } 5976 5977 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5978 } 5979 5980 MVT RegVT; 5981 EVT ValueVT = OpInfo.ConstraintVT; 5982 5983 // If this is a constraint for a specific physical register, like {r17}, 5984 // assign it now. 5985 if (unsigned AssignedReg = PhysReg.first) { 5986 const TargetRegisterClass *RC = PhysReg.second; 5987 if (OpInfo.ConstraintVT == MVT::Other) 5988 ValueVT = *RC->vt_begin(); 5989 5990 // Get the actual register value type. This is important, because the user 5991 // may have asked for (e.g.) the AX register in i32 type. We need to 5992 // remember that AX is actually i16 to get the right extension. 5993 RegVT = *RC->vt_begin(); 5994 5995 // This is a explicit reference to a physical register. 5996 Regs.push_back(AssignedReg); 5997 5998 // If this is an expanded reference, add the rest of the regs to Regs. 5999 if (NumRegs != 1) { 6000 TargetRegisterClass::iterator I = RC->begin(); 6001 for (; *I != AssignedReg; ++I) 6002 assert(I != RC->end() && "Didn't find reg!"); 6003 6004 // Already added the first reg. 6005 --NumRegs; ++I; 6006 for (; NumRegs; --NumRegs, ++I) { 6007 assert(I != RC->end() && "Ran out of registers to allocate!"); 6008 Regs.push_back(*I); 6009 } 6010 } 6011 6012 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6013 return; 6014 } 6015 6016 // Otherwise, if this was a reference to an LLVM register class, create vregs 6017 // for this reference. 6018 if (const TargetRegisterClass *RC = PhysReg.second) { 6019 RegVT = *RC->vt_begin(); 6020 if (OpInfo.ConstraintVT == MVT::Other) 6021 ValueVT = RegVT; 6022 6023 // Create the appropriate number of virtual registers. 6024 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6025 for (; NumRegs; --NumRegs) 6026 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6027 6028 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6029 return; 6030 } 6031 6032 // Otherwise, we couldn't allocate enough registers for this. 6033 } 6034 6035 /// visitInlineAsm - Handle a call to an InlineAsm object. 6036 /// 6037 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6038 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6039 6040 /// ConstraintOperands - Information about all of the constraints. 6041 SDISelAsmOperandInfoVector ConstraintOperands; 6042 6043 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6044 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 6045 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 6046 6047 bool hasMemory = false; 6048 6049 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6050 unsigned ResNo = 0; // ResNo - The result number of the next output. 6051 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6052 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6053 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6054 6055 MVT OpVT = MVT::Other; 6056 6057 // Compute the value type for each operand. 6058 switch (OpInfo.Type) { 6059 case InlineAsm::isOutput: 6060 // Indirect outputs just consume an argument. 6061 if (OpInfo.isIndirect) { 6062 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6063 break; 6064 } 6065 6066 // The return value of the call is this value. As such, there is no 6067 // corresponding argument. 6068 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6069 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6070 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 6071 STy->getElementType(ResNo)); 6072 } else { 6073 assert(ResNo == 0 && "Asm only has one result!"); 6074 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 6075 } 6076 ++ResNo; 6077 break; 6078 case InlineAsm::isInput: 6079 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6080 break; 6081 case InlineAsm::isClobber: 6082 // Nothing to do. 6083 break; 6084 } 6085 6086 // If this is an input or an indirect output, process the call argument. 6087 // BasicBlocks are labels, currently appearing only in asm's. 6088 if (OpInfo.CallOperandVal) { 6089 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6090 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6091 } else { 6092 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6093 } 6094 6095 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 6096 DAG.getDataLayout()).getSimpleVT(); 6097 } 6098 6099 OpInfo.ConstraintVT = OpVT; 6100 6101 // Indirect operand accesses access memory. 6102 if (OpInfo.isIndirect) 6103 hasMemory = true; 6104 else { 6105 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6106 TargetLowering::ConstraintType 6107 CType = TLI.getConstraintType(OpInfo.Codes[j]); 6108 if (CType == TargetLowering::C_Memory) { 6109 hasMemory = true; 6110 break; 6111 } 6112 } 6113 } 6114 } 6115 6116 SDValue Chain, Flag; 6117 6118 // We won't need to flush pending loads if this asm doesn't touch 6119 // memory and is nonvolatile. 6120 if (hasMemory || IA->hasSideEffects()) 6121 Chain = getRoot(); 6122 else 6123 Chain = DAG.getRoot(); 6124 6125 // Second pass over the constraints: compute which constraint option to use 6126 // and assign registers to constraints that want a specific physreg. 6127 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6128 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6129 6130 // If this is an output operand with a matching input operand, look up the 6131 // matching input. If their types mismatch, e.g. one is an integer, the 6132 // other is floating point, or their sizes are different, flag it as an 6133 // error. 6134 if (OpInfo.hasMatchingInput()) { 6135 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6136 6137 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6138 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6139 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6140 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6141 OpInfo.ConstraintVT); 6142 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6143 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 6144 Input.ConstraintVT); 6145 if ((OpInfo.ConstraintVT.isInteger() != 6146 Input.ConstraintVT.isInteger()) || 6147 (MatchRC.second != InputRC.second)) { 6148 report_fatal_error("Unsupported asm: input constraint" 6149 " with a matching output constraint of" 6150 " incompatible type!"); 6151 } 6152 Input.ConstraintVT = OpInfo.ConstraintVT; 6153 } 6154 } 6155 6156 // Compute the constraint code and ConstraintType to use. 6157 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6158 6159 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6160 OpInfo.Type == InlineAsm::isClobber) 6161 continue; 6162 6163 // If this is a memory input, and if the operand is not indirect, do what we 6164 // need to to provide an address for the memory input. 6165 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6166 !OpInfo.isIndirect) { 6167 assert((OpInfo.isMultipleAlternative || 6168 (OpInfo.Type == InlineAsm::isInput)) && 6169 "Can only indirectify direct input operands!"); 6170 6171 // Memory operands really want the address of the value. If we don't have 6172 // an indirect input, put it in the constpool if we can, otherwise spill 6173 // it to a stack slot. 6174 // TODO: This isn't quite right. We need to handle these according to 6175 // the addressing mode that the constraint wants. Also, this may take 6176 // an additional register for the computation and we don't want that 6177 // either. 6178 6179 // If the operand is a float, integer, or vector constant, spill to a 6180 // constant pool entry to get its address. 6181 const Value *OpVal = OpInfo.CallOperandVal; 6182 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6183 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6184 OpInfo.CallOperand = DAG.getConstantPool( 6185 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6186 } else { 6187 // Otherwise, create a stack slot and emit a store to it before the 6188 // asm. 6189 Type *Ty = OpVal->getType(); 6190 auto &DL = DAG.getDataLayout(); 6191 uint64_t TySize = DL.getTypeAllocSize(Ty); 6192 unsigned Align = DL.getPrefTypeAlignment(Ty); 6193 MachineFunction &MF = DAG.getMachineFunction(); 6194 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6195 SDValue StackSlot = 6196 DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout())); 6197 Chain = DAG.getStore( 6198 Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot, 6199 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), 6200 false, false, 0); 6201 OpInfo.CallOperand = StackSlot; 6202 } 6203 6204 // There is no longer a Value* corresponding to this operand. 6205 OpInfo.CallOperandVal = nullptr; 6206 6207 // It is now an indirect operand. 6208 OpInfo.isIndirect = true; 6209 } 6210 6211 // If this constraint is for a specific register, allocate it before 6212 // anything else. 6213 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6214 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6215 } 6216 6217 // Second pass - Loop over all of the operands, assigning virtual or physregs 6218 // to register class operands. 6219 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6220 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6221 6222 // C_Register operands have already been allocated, Other/Memory don't need 6223 // to be. 6224 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6225 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6226 } 6227 6228 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6229 std::vector<SDValue> AsmNodeOperands; 6230 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6231 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 6232 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 6233 6234 // If we have a !srcloc metadata node associated with it, we want to attach 6235 // this to the ultimately generated inline asm machineinstr. To do this, we 6236 // pass in the third operand as this (potentially null) inline asm MDNode. 6237 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6238 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6239 6240 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6241 // bits as operand 3. 6242 unsigned ExtraInfo = 0; 6243 if (IA->hasSideEffects()) 6244 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6245 if (IA->isAlignStack()) 6246 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6247 // Set the asm dialect. 6248 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6249 6250 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6251 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6252 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6253 6254 // Compute the constraint code and ConstraintType to use. 6255 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6256 6257 // Ideally, we would only check against memory constraints. However, the 6258 // meaning of an other constraint can be target-specific and we can't easily 6259 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6260 // for other constriants as well. 6261 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6262 OpInfo.ConstraintType == TargetLowering::C_Other) { 6263 if (OpInfo.Type == InlineAsm::isInput) 6264 ExtraInfo |= InlineAsm::Extra_MayLoad; 6265 else if (OpInfo.Type == InlineAsm::isOutput) 6266 ExtraInfo |= InlineAsm::Extra_MayStore; 6267 else if (OpInfo.Type == InlineAsm::isClobber) 6268 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6269 } 6270 } 6271 6272 AsmNodeOperands.push_back(DAG.getTargetConstant( 6273 ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6274 6275 // Loop over all of the inputs, copying the operand values into the 6276 // appropriate registers and processing the output regs. 6277 RegsForValue RetValRegs; 6278 6279 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6280 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6281 6282 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6283 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6284 6285 switch (OpInfo.Type) { 6286 case InlineAsm::isOutput: { 6287 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6288 OpInfo.ConstraintType != TargetLowering::C_Register) { 6289 // Memory output, or 'other' output (e.g. 'X' constraint). 6290 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6291 6292 unsigned ConstraintID = 6293 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6294 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6295 "Failed to convert memory constraint code to constraint id."); 6296 6297 // Add information to the INLINEASM node to know about this output. 6298 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6299 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6300 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6301 MVT::i32)); 6302 AsmNodeOperands.push_back(OpInfo.CallOperand); 6303 break; 6304 } 6305 6306 // Otherwise, this is a register or register class output. 6307 6308 // Copy the output from the appropriate register. Find a register that 6309 // we can use. 6310 if (OpInfo.AssignedRegs.Regs.empty()) { 6311 LLVMContext &Ctx = *DAG.getContext(); 6312 Ctx.emitError(CS.getInstruction(), 6313 "couldn't allocate output register for constraint '" + 6314 Twine(OpInfo.ConstraintCode) + "'"); 6315 return; 6316 } 6317 6318 // If this is an indirect operand, store through the pointer after the 6319 // asm. 6320 if (OpInfo.isIndirect) { 6321 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6322 OpInfo.CallOperandVal)); 6323 } else { 6324 // This is the result value of the call. 6325 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6326 // Concatenate this output onto the outputs list. 6327 RetValRegs.append(OpInfo.AssignedRegs); 6328 } 6329 6330 // Add information to the INLINEASM node to know that this register is 6331 // set. 6332 OpInfo.AssignedRegs 6333 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6334 ? InlineAsm::Kind_RegDefEarlyClobber 6335 : InlineAsm::Kind_RegDef, 6336 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6337 break; 6338 } 6339 case InlineAsm::isInput: { 6340 SDValue InOperandVal = OpInfo.CallOperand; 6341 6342 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6343 // If this is required to match an output register we have already set, 6344 // just use its register. 6345 unsigned OperandNo = OpInfo.getMatchedOperand(); 6346 6347 // Scan until we find the definition we already emitted of this operand. 6348 // When we find it, create a RegsForValue operand. 6349 unsigned CurOp = InlineAsm::Op_FirstOperand; 6350 for (; OperandNo; --OperandNo) { 6351 // Advance to the next operand. 6352 unsigned OpFlag = 6353 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6354 assert((InlineAsm::isRegDefKind(OpFlag) || 6355 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6356 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6357 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6358 } 6359 6360 unsigned OpFlag = 6361 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6362 if (InlineAsm::isRegDefKind(OpFlag) || 6363 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6364 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6365 if (OpInfo.isIndirect) { 6366 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6367 LLVMContext &Ctx = *DAG.getContext(); 6368 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6369 " don't know how to handle tied " 6370 "indirect register inputs"); 6371 return; 6372 } 6373 6374 RegsForValue MatchedRegs; 6375 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6376 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6377 MatchedRegs.RegVTs.push_back(RegVT); 6378 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6379 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6380 i != e; ++i) { 6381 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6382 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6383 else { 6384 LLVMContext &Ctx = *DAG.getContext(); 6385 Ctx.emitError(CS.getInstruction(), 6386 "inline asm error: This value" 6387 " type register class is not natively supported!"); 6388 return; 6389 } 6390 } 6391 SDLoc dl = getCurSDLoc(); 6392 // Use the produced MatchedRegs object to 6393 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6394 Chain, &Flag, CS.getInstruction()); 6395 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6396 true, OpInfo.getMatchedOperand(), dl, 6397 DAG, AsmNodeOperands); 6398 break; 6399 } 6400 6401 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6402 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6403 "Unexpected number of operands"); 6404 // Add information to the INLINEASM node to know about this input. 6405 // See InlineAsm.h isUseOperandTiedToDef. 6406 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6407 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6408 OpInfo.getMatchedOperand()); 6409 AsmNodeOperands.push_back(DAG.getTargetConstant( 6410 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6411 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6412 break; 6413 } 6414 6415 // Treat indirect 'X' constraint as memory. 6416 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6417 OpInfo.isIndirect) 6418 OpInfo.ConstraintType = TargetLowering::C_Memory; 6419 6420 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6421 std::vector<SDValue> Ops; 6422 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6423 Ops, DAG); 6424 if (Ops.empty()) { 6425 LLVMContext &Ctx = *DAG.getContext(); 6426 Ctx.emitError(CS.getInstruction(), 6427 "invalid operand for inline asm constraint '" + 6428 Twine(OpInfo.ConstraintCode) + "'"); 6429 return; 6430 } 6431 6432 // Add information to the INLINEASM node to know about this input. 6433 unsigned ResOpType = 6434 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6435 AsmNodeOperands.push_back(DAG.getTargetConstant( 6436 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6437 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6438 break; 6439 } 6440 6441 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6442 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6443 assert(InOperandVal.getValueType() == 6444 TLI.getPointerTy(DAG.getDataLayout()) && 6445 "Memory operands expect pointer values"); 6446 6447 unsigned ConstraintID = 6448 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6449 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6450 "Failed to convert memory constraint code to constraint id."); 6451 6452 // Add information to the INLINEASM node to know about this input. 6453 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6454 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6455 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6456 getCurSDLoc(), 6457 MVT::i32)); 6458 AsmNodeOperands.push_back(InOperandVal); 6459 break; 6460 } 6461 6462 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6463 OpInfo.ConstraintType == TargetLowering::C_Register) && 6464 "Unknown constraint type!"); 6465 6466 // TODO: Support this. 6467 if (OpInfo.isIndirect) { 6468 LLVMContext &Ctx = *DAG.getContext(); 6469 Ctx.emitError(CS.getInstruction(), 6470 "Don't know how to handle indirect register inputs yet " 6471 "for constraint '" + 6472 Twine(OpInfo.ConstraintCode) + "'"); 6473 return; 6474 } 6475 6476 // Copy the input into the appropriate registers. 6477 if (OpInfo.AssignedRegs.Regs.empty()) { 6478 LLVMContext &Ctx = *DAG.getContext(); 6479 Ctx.emitError(CS.getInstruction(), 6480 "couldn't allocate input reg for constraint '" + 6481 Twine(OpInfo.ConstraintCode) + "'"); 6482 return; 6483 } 6484 6485 SDLoc dl = getCurSDLoc(); 6486 6487 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6488 Chain, &Flag, CS.getInstruction()); 6489 6490 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6491 dl, DAG, AsmNodeOperands); 6492 break; 6493 } 6494 case InlineAsm::isClobber: { 6495 // Add the clobbered value to the operand list, so that the register 6496 // allocator is aware that the physreg got clobbered. 6497 if (!OpInfo.AssignedRegs.Regs.empty()) 6498 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6499 false, 0, getCurSDLoc(), DAG, 6500 AsmNodeOperands); 6501 break; 6502 } 6503 } 6504 } 6505 6506 // Finish up input operands. Set the input chain and add the flag last. 6507 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6508 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6509 6510 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6511 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6512 Flag = Chain.getValue(1); 6513 6514 // If this asm returns a register value, copy the result from that register 6515 // and set it as the value of the call. 6516 if (!RetValRegs.Regs.empty()) { 6517 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6518 Chain, &Flag, CS.getInstruction()); 6519 6520 // FIXME: Why don't we do this for inline asms with MRVs? 6521 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6522 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 6523 6524 // If any of the results of the inline asm is a vector, it may have the 6525 // wrong width/num elts. This can happen for register classes that can 6526 // contain multiple different value types. The preg or vreg allocated may 6527 // not have the same VT as was expected. Convert it to the right type 6528 // with bit_convert. 6529 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6530 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6531 ResultType, Val); 6532 6533 } else if (ResultType != Val.getValueType() && 6534 ResultType.isInteger() && Val.getValueType().isInteger()) { 6535 // If a result value was tied to an input value, the computed result may 6536 // have a wider width than the expected result. Extract the relevant 6537 // portion. 6538 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6539 } 6540 6541 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6542 } 6543 6544 setValue(CS.getInstruction(), Val); 6545 // Don't need to use this as a chain in this case. 6546 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6547 return; 6548 } 6549 6550 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6551 6552 // Process indirect outputs, first output all of the flagged copies out of 6553 // physregs. 6554 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6555 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6556 const Value *Ptr = IndirectStoresToEmit[i].second; 6557 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6558 Chain, &Flag, IA); 6559 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6560 } 6561 6562 // Emit the non-flagged stores from the physregs. 6563 SmallVector<SDValue, 8> OutChains; 6564 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6565 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6566 StoresToEmit[i].first, 6567 getValue(StoresToEmit[i].second), 6568 MachinePointerInfo(StoresToEmit[i].second), 6569 false, false, 0); 6570 OutChains.push_back(Val); 6571 } 6572 6573 if (!OutChains.empty()) 6574 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6575 6576 DAG.setRoot(Chain); 6577 } 6578 6579 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6580 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6581 MVT::Other, getRoot(), 6582 getValue(I.getArgOperand(0)), 6583 DAG.getSrcValue(I.getArgOperand(0)))); 6584 } 6585 6586 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6587 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6588 const DataLayout &DL = DAG.getDataLayout(); 6589 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6590 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 6591 DAG.getSrcValue(I.getOperand(0)), 6592 DL.getABITypeAlignment(I.getType())); 6593 setValue(&I, V); 6594 DAG.setRoot(V.getValue(1)); 6595 } 6596 6597 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6598 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6599 MVT::Other, getRoot(), 6600 getValue(I.getArgOperand(0)), 6601 DAG.getSrcValue(I.getArgOperand(0)))); 6602 } 6603 6604 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6605 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6606 MVT::Other, getRoot(), 6607 getValue(I.getArgOperand(0)), 6608 getValue(I.getArgOperand(1)), 6609 DAG.getSrcValue(I.getArgOperand(0)), 6610 DAG.getSrcValue(I.getArgOperand(1)))); 6611 } 6612 6613 /// \brief Lower an argument list according to the target calling convention. 6614 /// 6615 /// \return A tuple of <return-value, token-chain> 6616 /// 6617 /// This is a helper for lowering intrinsics that follow a target calling 6618 /// convention or require stack pointer adjustment. Only a subset of the 6619 /// intrinsic's operands need to participate in the calling convention. 6620 std::pair<SDValue, SDValue> SelectionDAGBuilder::lowerCallOperands( 6621 ImmutableCallSite CS, unsigned ArgIdx, unsigned NumArgs, SDValue Callee, 6622 Type *ReturnTy, const BasicBlock *EHPadBB, bool IsPatchPoint) { 6623 TargetLowering::ArgListTy Args; 6624 Args.reserve(NumArgs); 6625 6626 // Populate the argument list. 6627 // Attributes for args start at offset 1, after the return attribute. 6628 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6629 ArgI != ArgE; ++ArgI) { 6630 const Value *V = CS->getOperand(ArgI); 6631 6632 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6633 6634 TargetLowering::ArgListEntry Entry; 6635 Entry.Node = getValue(V); 6636 Entry.Ty = V->getType(); 6637 Entry.setAttributes(&CS, AttrI); 6638 Args.push_back(Entry); 6639 } 6640 6641 TargetLowering::CallLoweringInfo CLI(DAG); 6642 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6643 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs) 6644 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6645 6646 return lowerInvokable(CLI, EHPadBB); 6647 } 6648 6649 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6650 /// or patchpoint target node's operand list. 6651 /// 6652 /// Constants are converted to TargetConstants purely as an optimization to 6653 /// avoid constant materialization and register allocation. 6654 /// 6655 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6656 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6657 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6658 /// address materialization and register allocation, but may also be required 6659 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6660 /// alloca in the entry block, then the runtime may assume that the alloca's 6661 /// StackMap location can be read immediately after compilation and that the 6662 /// location is valid at any point during execution (this is similar to the 6663 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6664 /// only available in a register, then the runtime would need to trap when 6665 /// execution reaches the StackMap in order to read the alloca's location. 6666 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6667 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 6668 SelectionDAGBuilder &Builder) { 6669 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6670 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6671 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6672 Ops.push_back( 6673 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 6674 Ops.push_back( 6675 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 6676 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6677 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6678 Ops.push_back(Builder.DAG.getTargetFrameIndex( 6679 FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout()))); 6680 } else 6681 Ops.push_back(OpVal); 6682 } 6683 } 6684 6685 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6686 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6687 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6688 // [live variables...]) 6689 6690 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6691 6692 SDValue Chain, InFlag, Callee, NullPtr; 6693 SmallVector<SDValue, 32> Ops; 6694 6695 SDLoc DL = getCurSDLoc(); 6696 Callee = getValue(CI.getCalledValue()); 6697 NullPtr = DAG.getIntPtrConstant(0, DL, true); 6698 6699 // The stackmap intrinsic only records the live variables (the arguemnts 6700 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6701 // intrinsic, this won't be lowered to a function call. This means we don't 6702 // have to worry about calling conventions and target specific lowering code. 6703 // Instead we perform the call lowering right here. 6704 // 6705 // chain, flag = CALLSEQ_START(chain, 0) 6706 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6707 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6708 // 6709 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6710 InFlag = Chain.getValue(1); 6711 6712 // Add the <id> and <numBytes> constants. 6713 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6714 Ops.push_back(DAG.getTargetConstant( 6715 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 6716 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6717 Ops.push_back(DAG.getTargetConstant( 6718 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 6719 MVT::i32)); 6720 6721 // Push live variables for the stack map. 6722 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 6723 6724 // We are not pushing any register mask info here on the operands list, 6725 // because the stackmap doesn't clobber anything. 6726 6727 // Push the chain and the glue flag. 6728 Ops.push_back(Chain); 6729 Ops.push_back(InFlag); 6730 6731 // Create the STACKMAP node. 6732 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6733 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6734 Chain = SDValue(SM, 0); 6735 InFlag = Chain.getValue(1); 6736 6737 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6738 6739 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6740 6741 // Set the root to the target-lowered call chain. 6742 DAG.setRoot(Chain); 6743 6744 // Inform the Frame Information that we have a stackmap in this function. 6745 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6746 } 6747 6748 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6749 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6750 const BasicBlock *EHPadBB) { 6751 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6752 // i32 <numBytes>, 6753 // i8* <target>, 6754 // i32 <numArgs>, 6755 // [Args...], 6756 // [live variables...]) 6757 6758 CallingConv::ID CC = CS.getCallingConv(); 6759 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6760 bool HasDef = !CS->getType()->isVoidTy(); 6761 SDLoc dl = getCurSDLoc(); 6762 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 6763 6764 // Handle immediate and symbolic callees. 6765 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 6766 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 6767 /*isTarget=*/true); 6768 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 6769 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 6770 SDLoc(SymbolicCallee), 6771 SymbolicCallee->getValueType(0)); 6772 6773 // Get the real number of arguments participating in the call <numArgs> 6774 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6775 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6776 6777 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6778 // Intrinsics include all meta-operands up to but not including CC. 6779 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6780 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 6781 "Not enough arguments provided to the patchpoint intrinsic"); 6782 6783 // For AnyRegCC the arguments are lowered later on manually. 6784 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 6785 Type *ReturnTy = 6786 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6787 std::pair<SDValue, SDValue> Result = lowerCallOperands( 6788 CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, EHPadBB, true); 6789 6790 SDNode *CallEnd = Result.second.getNode(); 6791 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6792 CallEnd = CallEnd->getOperand(0).getNode(); 6793 6794 /// Get a call instruction from the call sequence chain. 6795 /// Tail calls are not allowed. 6796 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6797 "Expected a callseq node."); 6798 SDNode *Call = CallEnd->getOperand(0).getNode(); 6799 bool HasGlue = Call->getGluedNode(); 6800 6801 // Replace the target specific call node with the patchable intrinsic. 6802 SmallVector<SDValue, 8> Ops; 6803 6804 // Add the <id> and <numBytes> constants. 6805 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 6806 Ops.push_back(DAG.getTargetConstant( 6807 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 6808 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 6809 Ops.push_back(DAG.getTargetConstant( 6810 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 6811 MVT::i32)); 6812 6813 // Add the callee. 6814 Ops.push_back(Callee); 6815 6816 // Adjust <numArgs> to account for any arguments that have been passed on the 6817 // stack instead. 6818 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6819 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 6820 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 6821 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 6822 6823 // Add the calling convention 6824 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 6825 6826 // Add the arguments we omitted previously. The register allocator should 6827 // place these in any free register. 6828 if (IsAnyRegCC) 6829 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6830 Ops.push_back(getValue(CS.getArgument(i))); 6831 6832 // Push the arguments from the call instruction up to the register mask. 6833 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 6834 Ops.append(Call->op_begin() + 2, e); 6835 6836 // Push live variables for the stack map. 6837 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 6838 6839 // Push the register mask info. 6840 if (HasGlue) 6841 Ops.push_back(*(Call->op_end()-2)); 6842 else 6843 Ops.push_back(*(Call->op_end()-1)); 6844 6845 // Push the chain (this is originally the first operand of the call, but 6846 // becomes now the last or second to last operand). 6847 Ops.push_back(*(Call->op_begin())); 6848 6849 // Push the glue flag (last operand). 6850 if (HasGlue) 6851 Ops.push_back(*(Call->op_end()-1)); 6852 6853 SDVTList NodeTys; 6854 if (IsAnyRegCC && HasDef) { 6855 // Create the return types based on the intrinsic definition 6856 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6857 SmallVector<EVT, 3> ValueVTs; 6858 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 6859 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 6860 6861 // There is always a chain and a glue type at the end 6862 ValueVTs.push_back(MVT::Other); 6863 ValueVTs.push_back(MVT::Glue); 6864 NodeTys = DAG.getVTList(ValueVTs); 6865 } else 6866 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6867 6868 // Replace the target specific call node with a PATCHPOINT node. 6869 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 6870 dl, NodeTys, Ops); 6871 6872 // Update the NodeMap. 6873 if (HasDef) { 6874 if (IsAnyRegCC) 6875 setValue(CS.getInstruction(), SDValue(MN, 0)); 6876 else 6877 setValue(CS.getInstruction(), Result.first); 6878 } 6879 6880 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 6881 // call sequence. Furthermore the location of the chain and glue can change 6882 // when the AnyReg calling convention is used and the intrinsic returns a 6883 // value. 6884 if (IsAnyRegCC && HasDef) { 6885 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 6886 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 6887 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 6888 } else 6889 DAG.ReplaceAllUsesWith(Call, MN); 6890 DAG.DeleteNode(Call); 6891 6892 // Inform the Frame Information that we have a patchpoint in this function. 6893 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 6894 } 6895 6896 /// Returns an AttributeSet representing the attributes applied to the return 6897 /// value of the given call. 6898 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 6899 SmallVector<Attribute::AttrKind, 2> Attrs; 6900 if (CLI.RetSExt) 6901 Attrs.push_back(Attribute::SExt); 6902 if (CLI.RetZExt) 6903 Attrs.push_back(Attribute::ZExt); 6904 if (CLI.IsInReg) 6905 Attrs.push_back(Attribute::InReg); 6906 6907 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 6908 Attrs); 6909 } 6910 6911 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6912 /// implementation, which just calls LowerCall. 6913 /// FIXME: When all targets are 6914 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6915 std::pair<SDValue, SDValue> 6916 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6917 // Handle the incoming return values from the call. 6918 CLI.Ins.clear(); 6919 Type *OrigRetTy = CLI.RetTy; 6920 SmallVector<EVT, 4> RetTys; 6921 SmallVector<uint64_t, 4> Offsets; 6922 auto &DL = CLI.DAG.getDataLayout(); 6923 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 6924 6925 SmallVector<ISD::OutputArg, 4> Outs; 6926 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 6927 6928 bool CanLowerReturn = 6929 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 6930 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 6931 6932 SDValue DemoteStackSlot; 6933 int DemoteStackIdx = -100; 6934 if (!CanLowerReturn) { 6935 // FIXME: equivalent assert? 6936 // assert(!CS.hasInAllocaArgument() && 6937 // "sret demotion is incompatible with inalloca"); 6938 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 6939 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 6940 MachineFunction &MF = CLI.DAG.getMachineFunction(); 6941 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6942 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 6943 6944 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL)); 6945 ArgListEntry Entry; 6946 Entry.Node = DemoteStackSlot; 6947 Entry.Ty = StackSlotPtrType; 6948 Entry.isSExt = false; 6949 Entry.isZExt = false; 6950 Entry.isInReg = false; 6951 Entry.isSRet = true; 6952 Entry.isNest = false; 6953 Entry.isByVal = false; 6954 Entry.isReturned = false; 6955 Entry.Alignment = Align; 6956 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 6957 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 6958 6959 // sret demotion isn't compatible with tail-calls, since the sret argument 6960 // points into the callers stack frame. 6961 CLI.IsTailCall = false; 6962 } else { 6963 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6964 EVT VT = RetTys[I]; 6965 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6966 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6967 for (unsigned i = 0; i != NumRegs; ++i) { 6968 ISD::InputArg MyFlags; 6969 MyFlags.VT = RegisterVT; 6970 MyFlags.ArgVT = VT; 6971 MyFlags.Used = CLI.IsReturnValueUsed; 6972 if (CLI.RetSExt) 6973 MyFlags.Flags.setSExt(); 6974 if (CLI.RetZExt) 6975 MyFlags.Flags.setZExt(); 6976 if (CLI.IsInReg) 6977 MyFlags.Flags.setInReg(); 6978 CLI.Ins.push_back(MyFlags); 6979 } 6980 } 6981 } 6982 6983 // Handle all of the outgoing arguments. 6984 CLI.Outs.clear(); 6985 CLI.OutVals.clear(); 6986 ArgListTy &Args = CLI.getArgs(); 6987 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6988 SmallVector<EVT, 4> ValueVTs; 6989 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 6990 Type *FinalType = Args[i].Ty; 6991 if (Args[i].isByVal) 6992 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 6993 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 6994 FinalType, CLI.CallConv, CLI.IsVarArg); 6995 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 6996 ++Value) { 6997 EVT VT = ValueVTs[Value]; 6998 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 6999 SDValue Op = SDValue(Args[i].Node.getNode(), 7000 Args[i].Node.getResNo() + Value); 7001 ISD::ArgFlagsTy Flags; 7002 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7003 7004 if (Args[i].isZExt) 7005 Flags.setZExt(); 7006 if (Args[i].isSExt) 7007 Flags.setSExt(); 7008 if (Args[i].isInReg) 7009 Flags.setInReg(); 7010 if (Args[i].isSRet) 7011 Flags.setSRet(); 7012 if (Args[i].isByVal) 7013 Flags.setByVal(); 7014 if (Args[i].isInAlloca) { 7015 Flags.setInAlloca(); 7016 // Set the byval flag for CCAssignFn callbacks that don't know about 7017 // inalloca. This way we can know how many bytes we should've allocated 7018 // and how many bytes a callee cleanup function will pop. If we port 7019 // inalloca to more targets, we'll have to add custom inalloca handling 7020 // in the various CC lowering callbacks. 7021 Flags.setByVal(); 7022 } 7023 if (Args[i].isByVal || Args[i].isInAlloca) { 7024 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7025 Type *ElementTy = Ty->getElementType(); 7026 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7027 // For ByVal, alignment should come from FE. BE will guess if this 7028 // info is not there but there are cases it cannot get right. 7029 unsigned FrameAlign; 7030 if (Args[i].Alignment) 7031 FrameAlign = Args[i].Alignment; 7032 else 7033 FrameAlign = getByValTypeAlignment(ElementTy, DL); 7034 Flags.setByValAlign(FrameAlign); 7035 } 7036 if (Args[i].isNest) 7037 Flags.setNest(); 7038 if (NeedsRegBlock) 7039 Flags.setInConsecutiveRegs(); 7040 Flags.setOrigAlign(OriginalAlignment); 7041 7042 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7043 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7044 SmallVector<SDValue, 4> Parts(NumParts); 7045 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7046 7047 if (Args[i].isSExt) 7048 ExtendKind = ISD::SIGN_EXTEND; 7049 else if (Args[i].isZExt) 7050 ExtendKind = ISD::ZERO_EXTEND; 7051 7052 // Conservatively only handle 'returned' on non-vectors for now 7053 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7054 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7055 "unexpected use of 'returned'"); 7056 // Before passing 'returned' to the target lowering code, ensure that 7057 // either the register MVT and the actual EVT are the same size or that 7058 // the return value and argument are extended in the same way; in these 7059 // cases it's safe to pass the argument register value unchanged as the 7060 // return register value (although it's at the target's option whether 7061 // to do so) 7062 // TODO: allow code generation to take advantage of partially preserved 7063 // registers rather than clobbering the entire register when the 7064 // parameter extension method is not compatible with the return 7065 // extension method 7066 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7067 (ExtendKind != ISD::ANY_EXTEND && 7068 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7069 Flags.setReturned(); 7070 } 7071 7072 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7073 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7074 7075 for (unsigned j = 0; j != NumParts; ++j) { 7076 // if it isn't first piece, alignment must be 1 7077 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7078 i < CLI.NumFixedArgs, 7079 i, j*Parts[j].getValueType().getStoreSize()); 7080 if (NumParts > 1 && j == 0) 7081 MyFlags.Flags.setSplit(); 7082 else if (j != 0) 7083 MyFlags.Flags.setOrigAlign(1); 7084 7085 CLI.Outs.push_back(MyFlags); 7086 CLI.OutVals.push_back(Parts[j]); 7087 } 7088 7089 if (NeedsRegBlock && Value == NumValues - 1) 7090 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 7091 } 7092 } 7093 7094 SmallVector<SDValue, 4> InVals; 7095 CLI.Chain = LowerCall(CLI, InVals); 7096 7097 // Verify that the target's LowerCall behaved as expected. 7098 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7099 "LowerCall didn't return a valid chain!"); 7100 assert((!CLI.IsTailCall || InVals.empty()) && 7101 "LowerCall emitted a return value for a tail call!"); 7102 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7103 "LowerCall didn't emit the correct number of values!"); 7104 7105 // For a tail call, the return value is merely live-out and there aren't 7106 // any nodes in the DAG representing it. Return a special value to 7107 // indicate that a tail call has been emitted and no more Instructions 7108 // should be processed in the current block. 7109 if (CLI.IsTailCall) { 7110 CLI.DAG.setRoot(CLI.Chain); 7111 return std::make_pair(SDValue(), SDValue()); 7112 } 7113 7114 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7115 assert(InVals[i].getNode() && 7116 "LowerCall emitted a null value!"); 7117 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7118 "LowerCall emitted a value with the wrong type!"); 7119 }); 7120 7121 SmallVector<SDValue, 4> ReturnValues; 7122 if (!CanLowerReturn) { 7123 // The instruction result is the result of loading from the 7124 // hidden sret parameter. 7125 SmallVector<EVT, 1> PVTs; 7126 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7127 7128 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 7129 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7130 EVT PtrVT = PVTs[0]; 7131 7132 unsigned NumValues = RetTys.size(); 7133 ReturnValues.resize(NumValues); 7134 SmallVector<SDValue, 4> Chains(NumValues); 7135 7136 for (unsigned i = 0; i < NumValues; ++i) { 7137 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7138 CLI.DAG.getConstant(Offsets[i], CLI.DL, 7139 PtrVT)); 7140 SDValue L = CLI.DAG.getLoad( 7141 RetTys[i], CLI.DL, CLI.Chain, Add, 7142 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 7143 DemoteStackIdx, Offsets[i]), 7144 false, false, false, 1); 7145 ReturnValues[i] = L; 7146 Chains[i] = L.getValue(1); 7147 } 7148 7149 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7150 } else { 7151 // Collect the legal value parts into potentially illegal values 7152 // that correspond to the original function's return values. 7153 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7154 if (CLI.RetSExt) 7155 AssertOp = ISD::AssertSext; 7156 else if (CLI.RetZExt) 7157 AssertOp = ISD::AssertZext; 7158 unsigned CurReg = 0; 7159 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7160 EVT VT = RetTys[I]; 7161 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7162 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7163 7164 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7165 NumRegs, RegisterVT, VT, nullptr, 7166 AssertOp)); 7167 CurReg += NumRegs; 7168 } 7169 7170 // For a function returning void, there is no return value. We can't create 7171 // such a node, so we just return a null return value in that case. In 7172 // that case, nothing will actually look at the value. 7173 if (ReturnValues.empty()) 7174 return std::make_pair(SDValue(), CLI.Chain); 7175 } 7176 7177 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7178 CLI.DAG.getVTList(RetTys), ReturnValues); 7179 return std::make_pair(Res, CLI.Chain); 7180 } 7181 7182 void TargetLowering::LowerOperationWrapper(SDNode *N, 7183 SmallVectorImpl<SDValue> &Results, 7184 SelectionDAG &DAG) const { 7185 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7186 if (Res.getNode()) 7187 Results.push_back(Res); 7188 } 7189 7190 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7191 llvm_unreachable("LowerOperation not implemented for this target!"); 7192 } 7193 7194 void 7195 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7196 SDValue Op = getNonRegisterValue(V); 7197 assert((Op.getOpcode() != ISD::CopyFromReg || 7198 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7199 "Copy from a reg to the same reg!"); 7200 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7201 7202 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7203 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 7204 V->getType()); 7205 SDValue Chain = DAG.getEntryNode(); 7206 7207 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7208 FuncInfo.PreferredExtendType.end()) 7209 ? ISD::ANY_EXTEND 7210 : FuncInfo.PreferredExtendType[V]; 7211 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7212 PendingExports.push_back(Chain); 7213 } 7214 7215 #include "llvm/CodeGen/SelectionDAGISel.h" 7216 7217 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7218 /// entry block, return true. This includes arguments used by switches, since 7219 /// the switch may expand into multiple basic blocks. 7220 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7221 // With FastISel active, we may be splitting blocks, so force creation 7222 // of virtual registers for all non-dead arguments. 7223 if (FastISel) 7224 return A->use_empty(); 7225 7226 const BasicBlock *Entry = A->getParent()->begin(); 7227 for (const User *U : A->users()) 7228 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7229 return false; // Use not in entry block. 7230 7231 return true; 7232 } 7233 7234 void SelectionDAGISel::LowerArguments(const Function &F) { 7235 SelectionDAG &DAG = SDB->DAG; 7236 SDLoc dl = SDB->getCurSDLoc(); 7237 const DataLayout &DL = DAG.getDataLayout(); 7238 SmallVector<ISD::InputArg, 16> Ins; 7239 7240 if (!FuncInfo->CanLowerReturn) { 7241 // Put in an sret pointer parameter before all the other parameters. 7242 SmallVector<EVT, 1> ValueVTs; 7243 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7244 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7245 7246 // NOTE: Assuming that a pointer will never break down to more than one VT 7247 // or one register. 7248 ISD::ArgFlagsTy Flags; 7249 Flags.setSRet(); 7250 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7251 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7252 ISD::InputArg::NoArgIndex, 0); 7253 Ins.push_back(RetArg); 7254 } 7255 7256 // Set up the incoming argument description vector. 7257 unsigned Idx = 1; 7258 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7259 I != E; ++I, ++Idx) { 7260 SmallVector<EVT, 4> ValueVTs; 7261 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7262 bool isArgValueUsed = !I->use_empty(); 7263 unsigned PartBase = 0; 7264 Type *FinalType = I->getType(); 7265 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7266 FinalType = cast<PointerType>(FinalType)->getElementType(); 7267 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7268 FinalType, F.getCallingConv(), F.isVarArg()); 7269 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7270 Value != NumValues; ++Value) { 7271 EVT VT = ValueVTs[Value]; 7272 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7273 ISD::ArgFlagsTy Flags; 7274 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7275 7276 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7277 Flags.setZExt(); 7278 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7279 Flags.setSExt(); 7280 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7281 Flags.setInReg(); 7282 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7283 Flags.setSRet(); 7284 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7285 Flags.setByVal(); 7286 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7287 Flags.setInAlloca(); 7288 // Set the byval flag for CCAssignFn callbacks that don't know about 7289 // inalloca. This way we can know how many bytes we should've allocated 7290 // and how many bytes a callee cleanup function will pop. If we port 7291 // inalloca to more targets, we'll have to add custom inalloca handling 7292 // in the various CC lowering callbacks. 7293 Flags.setByVal(); 7294 } 7295 if (Flags.isByVal() || Flags.isInAlloca()) { 7296 PointerType *Ty = cast<PointerType>(I->getType()); 7297 Type *ElementTy = Ty->getElementType(); 7298 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7299 // For ByVal, alignment should be passed from FE. BE will guess if 7300 // this info is not there but there are cases it cannot get right. 7301 unsigned FrameAlign; 7302 if (F.getParamAlignment(Idx)) 7303 FrameAlign = F.getParamAlignment(Idx); 7304 else 7305 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 7306 Flags.setByValAlign(FrameAlign); 7307 } 7308 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7309 Flags.setNest(); 7310 if (NeedsRegBlock) 7311 Flags.setInConsecutiveRegs(); 7312 Flags.setOrigAlign(OriginalAlignment); 7313 7314 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7315 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7316 for (unsigned i = 0; i != NumRegs; ++i) { 7317 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7318 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7319 if (NumRegs > 1 && i == 0) 7320 MyFlags.Flags.setSplit(); 7321 // if it isn't first piece, alignment must be 1 7322 else if (i > 0) 7323 MyFlags.Flags.setOrigAlign(1); 7324 Ins.push_back(MyFlags); 7325 } 7326 if (NeedsRegBlock && Value == NumValues - 1) 7327 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7328 PartBase += VT.getStoreSize(); 7329 } 7330 } 7331 7332 // Call the target to set up the argument values. 7333 SmallVector<SDValue, 8> InVals; 7334 SDValue NewRoot = TLI->LowerFormalArguments( 7335 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7336 7337 // Verify that the target's LowerFormalArguments behaved as expected. 7338 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7339 "LowerFormalArguments didn't return a valid chain!"); 7340 assert(InVals.size() == Ins.size() && 7341 "LowerFormalArguments didn't emit the correct number of values!"); 7342 DEBUG({ 7343 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7344 assert(InVals[i].getNode() && 7345 "LowerFormalArguments emitted a null value!"); 7346 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7347 "LowerFormalArguments emitted a value with the wrong type!"); 7348 } 7349 }); 7350 7351 // Update the DAG with the new chain value resulting from argument lowering. 7352 DAG.setRoot(NewRoot); 7353 7354 // Set up the argument values. 7355 unsigned i = 0; 7356 Idx = 1; 7357 if (!FuncInfo->CanLowerReturn) { 7358 // Create a virtual register for the sret pointer, and put in a copy 7359 // from the sret argument into it. 7360 SmallVector<EVT, 1> ValueVTs; 7361 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7362 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7363 MVT VT = ValueVTs[0].getSimpleVT(); 7364 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7365 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7366 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7367 RegVT, VT, nullptr, AssertOp); 7368 7369 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7370 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7371 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7372 FuncInfo->DemoteRegister = SRetReg; 7373 NewRoot = 7374 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7375 DAG.setRoot(NewRoot); 7376 7377 // i indexes lowered arguments. Bump it past the hidden sret argument. 7378 // Idx indexes LLVM arguments. Don't touch it. 7379 ++i; 7380 } 7381 7382 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7383 ++I, ++Idx) { 7384 SmallVector<SDValue, 4> ArgValues; 7385 SmallVector<EVT, 4> ValueVTs; 7386 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7387 unsigned NumValues = ValueVTs.size(); 7388 7389 // If this argument is unused then remember its value. It is used to generate 7390 // debugging information. 7391 if (I->use_empty() && NumValues) { 7392 SDB->setUnusedArgValue(I, InVals[i]); 7393 7394 // Also remember any frame index for use in FastISel. 7395 if (FrameIndexSDNode *FI = 7396 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7397 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7398 } 7399 7400 for (unsigned Val = 0; Val != NumValues; ++Val) { 7401 EVT VT = ValueVTs[Val]; 7402 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7403 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7404 7405 if (!I->use_empty()) { 7406 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7407 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7408 AssertOp = ISD::AssertSext; 7409 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7410 AssertOp = ISD::AssertZext; 7411 7412 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7413 NumParts, PartVT, VT, 7414 nullptr, AssertOp)); 7415 } 7416 7417 i += NumParts; 7418 } 7419 7420 // We don't need to do anything else for unused arguments. 7421 if (ArgValues.empty()) 7422 continue; 7423 7424 // Note down frame index. 7425 if (FrameIndexSDNode *FI = 7426 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7427 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7428 7429 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7430 SDB->getCurSDLoc()); 7431 7432 SDB->setValue(I, Res); 7433 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7434 if (LoadSDNode *LNode = 7435 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7436 if (FrameIndexSDNode *FI = 7437 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7438 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7439 } 7440 7441 // If this argument is live outside of the entry block, insert a copy from 7442 // wherever we got it to the vreg that other BB's will reference it as. 7443 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7444 // If we can, though, try to skip creating an unnecessary vreg. 7445 // FIXME: This isn't very clean... it would be nice to make this more 7446 // general. It's also subtly incompatible with the hacks FastISel 7447 // uses with vregs. 7448 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7449 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7450 FuncInfo->ValueMap[I] = Reg; 7451 continue; 7452 } 7453 } 7454 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7455 FuncInfo->InitializeRegForValue(I); 7456 SDB->CopyToExportRegsIfNeeded(I); 7457 } 7458 } 7459 7460 assert(i == InVals.size() && "Argument register count mismatch!"); 7461 7462 // Finally, if the target has anything special to do, allow it to do so. 7463 EmitFunctionEntryCode(); 7464 } 7465 7466 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7467 /// ensure constants are generated when needed. Remember the virtual registers 7468 /// that need to be added to the Machine PHI nodes as input. We cannot just 7469 /// directly add them, because expansion might result in multiple MBB's for one 7470 /// BB. As such, the start of the BB might correspond to a different MBB than 7471 /// the end. 7472 /// 7473 void 7474 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7475 const TerminatorInst *TI = LLVMBB->getTerminator(); 7476 7477 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7478 7479 // Check PHI nodes in successors that expect a value to be available from this 7480 // block. 7481 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7482 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7483 if (!isa<PHINode>(SuccBB->begin())) continue; 7484 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7485 7486 // If this terminator has multiple identical successors (common for 7487 // switches), only handle each succ once. 7488 if (!SuccsHandled.insert(SuccMBB).second) 7489 continue; 7490 7491 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7492 7493 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7494 // nodes and Machine PHI nodes, but the incoming operands have not been 7495 // emitted yet. 7496 for (BasicBlock::const_iterator I = SuccBB->begin(); 7497 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7498 // Ignore dead phi's. 7499 if (PN->use_empty()) continue; 7500 7501 // Skip empty types 7502 if (PN->getType()->isEmptyTy()) 7503 continue; 7504 7505 unsigned Reg; 7506 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7507 7508 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7509 unsigned &RegOut = ConstantsOut[C]; 7510 if (RegOut == 0) { 7511 RegOut = FuncInfo.CreateRegs(C->getType()); 7512 CopyValueToVirtualRegister(C, RegOut); 7513 } 7514 Reg = RegOut; 7515 } else { 7516 DenseMap<const Value *, unsigned>::iterator I = 7517 FuncInfo.ValueMap.find(PHIOp); 7518 if (I != FuncInfo.ValueMap.end()) 7519 Reg = I->second; 7520 else { 7521 assert(isa<AllocaInst>(PHIOp) && 7522 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7523 "Didn't codegen value into a register!??"); 7524 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7525 CopyValueToVirtualRegister(PHIOp, Reg); 7526 } 7527 } 7528 7529 // Remember that this register needs to added to the machine PHI node as 7530 // the input for this MBB. 7531 SmallVector<EVT, 4> ValueVTs; 7532 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7533 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 7534 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7535 EVT VT = ValueVTs[vti]; 7536 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7537 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7538 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7539 Reg += NumRegisters; 7540 } 7541 } 7542 } 7543 7544 ConstantsOut.clear(); 7545 } 7546 7547 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7548 /// is 0. 7549 MachineBasicBlock * 7550 SelectionDAGBuilder::StackProtectorDescriptor:: 7551 AddSuccessorMBB(const BasicBlock *BB, 7552 MachineBasicBlock *ParentMBB, 7553 bool IsLikely, 7554 MachineBasicBlock *SuccMBB) { 7555 // If SuccBB has not been created yet, create it. 7556 if (!SuccMBB) { 7557 MachineFunction *MF = ParentMBB->getParent(); 7558 MachineFunction::iterator BBI = ParentMBB; 7559 SuccMBB = MF->CreateMachineBasicBlock(BB); 7560 MF->insert(++BBI, SuccMBB); 7561 } 7562 // Add it as a successor of ParentMBB. 7563 ParentMBB->addSuccessor( 7564 SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely)); 7565 return SuccMBB; 7566 } 7567 7568 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7569 MachineFunction::iterator I = MBB; 7570 if (++I == FuncInfo.MF->end()) 7571 return nullptr; 7572 return I; 7573 } 7574 7575 /// During lowering new call nodes can be created (such as memset, etc.). 7576 /// Those will become new roots of the current DAG, but complications arise 7577 /// when they are tail calls. In such cases, the call lowering will update 7578 /// the root, but the builder still needs to know that a tail call has been 7579 /// lowered in order to avoid generating an additional return. 7580 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7581 // If the node is null, we do have a tail call. 7582 if (MaybeTC.getNode() != nullptr) 7583 DAG.setRoot(MaybeTC); 7584 else 7585 HasTailCall = true; 7586 } 7587 7588 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7589 unsigned *TotalCases, unsigned First, 7590 unsigned Last) { 7591 assert(Last >= First); 7592 assert(TotalCases[Last] >= TotalCases[First]); 7593 7594 APInt LowCase = Clusters[First].Low->getValue(); 7595 APInt HighCase = Clusters[Last].High->getValue(); 7596 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7597 7598 // FIXME: A range of consecutive cases has 100% density, but only requires one 7599 // comparison to lower. We should discriminate against such consecutive ranges 7600 // in jump tables. 7601 7602 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7603 uint64_t Range = Diff + 1; 7604 7605 uint64_t NumCases = 7606 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7607 7608 assert(NumCases < UINT64_MAX / 100); 7609 assert(Range >= NumCases); 7610 7611 return NumCases * 100 >= Range * MinJumpTableDensity; 7612 } 7613 7614 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7615 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7616 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7617 } 7618 7619 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7620 unsigned First, unsigned Last, 7621 const SwitchInst *SI, 7622 MachineBasicBlock *DefaultMBB, 7623 CaseCluster &JTCluster) { 7624 assert(First <= Last); 7625 7626 uint32_t Weight = 0; 7627 unsigned NumCmps = 0; 7628 std::vector<MachineBasicBlock*> Table; 7629 DenseMap<MachineBasicBlock*, uint32_t> JTWeights; 7630 for (unsigned I = First; I <= Last; ++I) { 7631 assert(Clusters[I].Kind == CC_Range); 7632 Weight += Clusters[I].Weight; 7633 assert(Weight >= Clusters[I].Weight && "Weight overflow!"); 7634 APInt Low = Clusters[I].Low->getValue(); 7635 APInt High = Clusters[I].High->getValue(); 7636 NumCmps += (Low == High) ? 1 : 2; 7637 if (I != First) { 7638 // Fill the gap between this and the previous cluster. 7639 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7640 assert(PreviousHigh.slt(Low)); 7641 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7642 for (uint64_t J = 0; J < Gap; J++) 7643 Table.push_back(DefaultMBB); 7644 } 7645 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7646 for (uint64_t J = 0; J < ClusterSize; ++J) 7647 Table.push_back(Clusters[I].MBB); 7648 JTWeights[Clusters[I].MBB] += Clusters[I].Weight; 7649 } 7650 7651 unsigned NumDests = JTWeights.size(); 7652 if (isSuitableForBitTests(NumDests, NumCmps, 7653 Clusters[First].Low->getValue(), 7654 Clusters[Last].High->getValue())) { 7655 // Clusters[First..Last] should be lowered as bit tests instead. 7656 return false; 7657 } 7658 7659 // Create the MBB that will load from and jump through the table. 7660 // Note: We create it here, but it's not inserted into the function yet. 7661 MachineFunction *CurMF = FuncInfo.MF; 7662 MachineBasicBlock *JumpTableMBB = 7663 CurMF->CreateMachineBasicBlock(SI->getParent()); 7664 7665 // Add successors. Note: use table order for determinism. 7666 SmallPtrSet<MachineBasicBlock *, 8> Done; 7667 for (MachineBasicBlock *Succ : Table) { 7668 if (Done.count(Succ)) 7669 continue; 7670 addSuccessorWithWeight(JumpTableMBB, Succ, JTWeights[Succ]); 7671 Done.insert(Succ); 7672 } 7673 7674 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7675 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 7676 ->createJumpTableIndex(Table); 7677 7678 // Set up the jump table info. 7679 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 7680 JumpTableHeader JTH(Clusters[First].Low->getValue(), 7681 Clusters[Last].High->getValue(), SI->getCondition(), 7682 nullptr, false); 7683 JTCases.emplace_back(std::move(JTH), std::move(JT)); 7684 7685 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 7686 JTCases.size() - 1, Weight); 7687 return true; 7688 } 7689 7690 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 7691 const SwitchInst *SI, 7692 MachineBasicBlock *DefaultMBB) { 7693 #ifndef NDEBUG 7694 // Clusters must be non-empty, sorted, and only contain Range clusters. 7695 assert(!Clusters.empty()); 7696 for (CaseCluster &C : Clusters) 7697 assert(C.Kind == CC_Range); 7698 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 7699 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 7700 #endif 7701 7702 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7703 if (!areJTsAllowed(TLI)) 7704 return; 7705 7706 const int64_t N = Clusters.size(); 7707 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 7708 7709 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 7710 SmallVector<unsigned, 8> TotalCases(N); 7711 7712 for (unsigned i = 0; i < N; ++i) { 7713 APInt Hi = Clusters[i].High->getValue(); 7714 APInt Lo = Clusters[i].Low->getValue(); 7715 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 7716 if (i != 0) 7717 TotalCases[i] += TotalCases[i - 1]; 7718 } 7719 7720 if (N >= MinJumpTableSize && isDense(Clusters, &TotalCases[0], 0, N - 1)) { 7721 // Cheap case: the whole range might be suitable for jump table. 7722 CaseCluster JTCluster; 7723 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 7724 Clusters[0] = JTCluster; 7725 Clusters.resize(1); 7726 return; 7727 } 7728 } 7729 7730 // The algorithm below is not suitable for -O0. 7731 if (TM.getOptLevel() == CodeGenOpt::None) 7732 return; 7733 7734 // Split Clusters into minimum number of dense partitions. The algorithm uses 7735 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 7736 // for the Case Statement'" (1994), but builds the MinPartitions array in 7737 // reverse order to make it easier to reconstruct the partitions in ascending 7738 // order. In the choice between two optimal partitionings, it picks the one 7739 // which yields more jump tables. 7740 7741 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7742 SmallVector<unsigned, 8> MinPartitions(N); 7743 // LastElement[i] is the last element of the partition starting at i. 7744 SmallVector<unsigned, 8> LastElement(N); 7745 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 7746 SmallVector<unsigned, 8> NumTables(N); 7747 7748 // Base case: There is only one way to partition Clusters[N-1]. 7749 MinPartitions[N - 1] = 1; 7750 LastElement[N - 1] = N - 1; 7751 assert(MinJumpTableSize > 1); 7752 NumTables[N - 1] = 0; 7753 7754 // Note: loop indexes are signed to avoid underflow. 7755 for (int64_t i = N - 2; i >= 0; i--) { 7756 // Find optimal partitioning of Clusters[i..N-1]. 7757 // Baseline: Put Clusters[i] into a partition on its own. 7758 MinPartitions[i] = MinPartitions[i + 1] + 1; 7759 LastElement[i] = i; 7760 NumTables[i] = NumTables[i + 1]; 7761 7762 // Search for a solution that results in fewer partitions. 7763 for (int64_t j = N - 1; j > i; j--) { 7764 // Try building a partition from Clusters[i..j]. 7765 if (isDense(Clusters, &TotalCases[0], i, j)) { 7766 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7767 bool IsTable = j - i + 1 >= MinJumpTableSize; 7768 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 7769 7770 // If this j leads to fewer partitions, or same number of partitions 7771 // with more lookup tables, it is a better partitioning. 7772 if (NumPartitions < MinPartitions[i] || 7773 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 7774 MinPartitions[i] = NumPartitions; 7775 LastElement[i] = j; 7776 NumTables[i] = Tables; 7777 } 7778 } 7779 } 7780 } 7781 7782 // Iterate over the partitions, replacing some with jump tables in-place. 7783 unsigned DstIndex = 0; 7784 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7785 Last = LastElement[First]; 7786 assert(Last >= First); 7787 assert(DstIndex <= First); 7788 unsigned NumClusters = Last - First + 1; 7789 7790 CaseCluster JTCluster; 7791 if (NumClusters >= MinJumpTableSize && 7792 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 7793 Clusters[DstIndex++] = JTCluster; 7794 } else { 7795 for (unsigned I = First; I <= Last; ++I) 7796 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7797 } 7798 } 7799 Clusters.resize(DstIndex); 7800 } 7801 7802 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 7803 // FIXME: Using the pointer type doesn't seem ideal. 7804 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); 7805 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 7806 return Range <= BW; 7807 } 7808 7809 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 7810 unsigned NumCmps, 7811 const APInt &Low, 7812 const APInt &High) { 7813 // FIXME: I don't think NumCmps is the correct metric: a single case and a 7814 // range of cases both require only one branch to lower. Just looking at the 7815 // number of clusters and destinations should be enough to decide whether to 7816 // build bit tests. 7817 7818 // To lower a range with bit tests, the range must fit the bitwidth of a 7819 // machine word. 7820 if (!rangeFitsInWord(Low, High)) 7821 return false; 7822 7823 // Decide whether it's profitable to lower this range with bit tests. Each 7824 // destination requires a bit test and branch, and there is an overall range 7825 // check branch. For a small number of clusters, separate comparisons might be 7826 // cheaper, and for many destinations, splitting the range might be better. 7827 return (NumDests == 1 && NumCmps >= 3) || 7828 (NumDests == 2 && NumCmps >= 5) || 7829 (NumDests == 3 && NumCmps >= 6); 7830 } 7831 7832 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 7833 unsigned First, unsigned Last, 7834 const SwitchInst *SI, 7835 CaseCluster &BTCluster) { 7836 assert(First <= Last); 7837 if (First == Last) 7838 return false; 7839 7840 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7841 unsigned NumCmps = 0; 7842 for (int64_t I = First; I <= Last; ++I) { 7843 assert(Clusters[I].Kind == CC_Range); 7844 Dests.set(Clusters[I].MBB->getNumber()); 7845 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 7846 } 7847 unsigned NumDests = Dests.count(); 7848 7849 APInt Low = Clusters[First].Low->getValue(); 7850 APInt High = Clusters[Last].High->getValue(); 7851 assert(Low.slt(High)); 7852 7853 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 7854 return false; 7855 7856 APInt LowBound; 7857 APInt CmpRange; 7858 7859 const int BitWidth = DAG.getTargetLoweringInfo() 7860 .getPointerTy(DAG.getDataLayout()) 7861 .getSizeInBits(); 7862 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 7863 7864 // Check if the clusters cover a contiguous range such that no value in the 7865 // range will jump to the default statement. 7866 bool ContiguousRange = true; 7867 for (int64_t I = First + 1; I <= Last; ++I) { 7868 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 7869 ContiguousRange = false; 7870 break; 7871 } 7872 } 7873 7874 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 7875 // Optimize the case where all the case values fit in a word without having 7876 // to subtract minValue. In this case, we can optimize away the subtraction. 7877 LowBound = APInt::getNullValue(Low.getBitWidth()); 7878 CmpRange = High; 7879 ContiguousRange = false; 7880 } else { 7881 LowBound = Low; 7882 CmpRange = High - Low; 7883 } 7884 7885 CaseBitsVector CBV; 7886 uint32_t TotalWeight = 0; 7887 for (unsigned i = First; i <= Last; ++i) { 7888 // Find the CaseBits for this destination. 7889 unsigned j; 7890 for (j = 0; j < CBV.size(); ++j) 7891 if (CBV[j].BB == Clusters[i].MBB) 7892 break; 7893 if (j == CBV.size()) 7894 CBV.push_back(CaseBits(0, Clusters[i].MBB, 0, 0)); 7895 CaseBits *CB = &CBV[j]; 7896 7897 // Update Mask, Bits and ExtraWeight. 7898 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 7899 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 7900 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 7901 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 7902 CB->Bits += Hi - Lo + 1; 7903 CB->ExtraWeight += Clusters[i].Weight; 7904 TotalWeight += Clusters[i].Weight; 7905 assert(TotalWeight >= Clusters[i].Weight && "Weight overflow!"); 7906 } 7907 7908 BitTestInfo BTI; 7909 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 7910 // Sort by weight first, number of bits second. 7911 if (a.ExtraWeight != b.ExtraWeight) 7912 return a.ExtraWeight > b.ExtraWeight; 7913 return a.Bits > b.Bits; 7914 }); 7915 7916 for (auto &CB : CBV) { 7917 MachineBasicBlock *BitTestBB = 7918 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 7919 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraWeight)); 7920 } 7921 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 7922 SI->getCondition(), -1U, MVT::Other, false, 7923 ContiguousRange, nullptr, nullptr, std::move(BTI), 7924 TotalWeight); 7925 7926 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 7927 BitTestCases.size() - 1, TotalWeight); 7928 return true; 7929 } 7930 7931 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 7932 const SwitchInst *SI) { 7933 // Partition Clusters into as few subsets as possible, where each subset has a 7934 // range that fits in a machine word and has <= 3 unique destinations. 7935 7936 #ifndef NDEBUG 7937 // Clusters must be sorted and contain Range or JumpTable clusters. 7938 assert(!Clusters.empty()); 7939 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 7940 for (const CaseCluster &C : Clusters) 7941 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 7942 for (unsigned i = 1; i < Clusters.size(); ++i) 7943 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 7944 #endif 7945 7946 // The algorithm below is not suitable for -O0. 7947 if (TM.getOptLevel() == CodeGenOpt::None) 7948 return; 7949 7950 // If target does not have legal shift left, do not emit bit tests at all. 7951 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7952 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 7953 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 7954 return; 7955 7956 int BitWidth = PTy.getSizeInBits(); 7957 const int64_t N = Clusters.size(); 7958 7959 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7960 SmallVector<unsigned, 8> MinPartitions(N); 7961 // LastElement[i] is the last element of the partition starting at i. 7962 SmallVector<unsigned, 8> LastElement(N); 7963 7964 // FIXME: This might not be the best algorithm for finding bit test clusters. 7965 7966 // Base case: There is only one way to partition Clusters[N-1]. 7967 MinPartitions[N - 1] = 1; 7968 LastElement[N - 1] = N - 1; 7969 7970 // Note: loop indexes are signed to avoid underflow. 7971 for (int64_t i = N - 2; i >= 0; --i) { 7972 // Find optimal partitioning of Clusters[i..N-1]. 7973 // Baseline: Put Clusters[i] into a partition on its own. 7974 MinPartitions[i] = MinPartitions[i + 1] + 1; 7975 LastElement[i] = i; 7976 7977 // Search for a solution that results in fewer partitions. 7978 // Note: the search is limited by BitWidth, reducing time complexity. 7979 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 7980 // Try building a partition from Clusters[i..j]. 7981 7982 // Check the range. 7983 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 7984 Clusters[j].High->getValue())) 7985 continue; 7986 7987 // Check nbr of destinations and cluster types. 7988 // FIXME: This works, but doesn't seem very efficient. 7989 bool RangesOnly = true; 7990 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7991 for (int64_t k = i; k <= j; k++) { 7992 if (Clusters[k].Kind != CC_Range) { 7993 RangesOnly = false; 7994 break; 7995 } 7996 Dests.set(Clusters[k].MBB->getNumber()); 7997 } 7998 if (!RangesOnly || Dests.count() > 3) 7999 break; 8000 8001 // Check if it's a better partition. 8002 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 8003 if (NumPartitions < MinPartitions[i]) { 8004 // Found a better partition. 8005 MinPartitions[i] = NumPartitions; 8006 LastElement[i] = j; 8007 } 8008 } 8009 } 8010 8011 // Iterate over the partitions, replacing with bit-test clusters in-place. 8012 unsigned DstIndex = 0; 8013 for (unsigned First = 0, Last; First < N; First = Last + 1) { 8014 Last = LastElement[First]; 8015 assert(First <= Last); 8016 assert(DstIndex <= First); 8017 8018 CaseCluster BitTestCluster; 8019 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 8020 Clusters[DstIndex++] = BitTestCluster; 8021 } else { 8022 size_t NumClusters = Last - First + 1; 8023 std::memmove(&Clusters[DstIndex], &Clusters[First], 8024 sizeof(Clusters[0]) * NumClusters); 8025 DstIndex += NumClusters; 8026 } 8027 } 8028 Clusters.resize(DstIndex); 8029 } 8030 8031 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 8032 MachineBasicBlock *SwitchMBB, 8033 MachineBasicBlock *DefaultMBB) { 8034 MachineFunction *CurMF = FuncInfo.MF; 8035 MachineBasicBlock *NextMBB = nullptr; 8036 MachineFunction::iterator BBI = W.MBB; 8037 if (++BBI != FuncInfo.MF->end()) 8038 NextMBB = BBI; 8039 8040 unsigned Size = W.LastCluster - W.FirstCluster + 1; 8041 8042 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8043 8044 if (Size == 2 && W.MBB == SwitchMBB) { 8045 // If any two of the cases has the same destination, and if one value 8046 // is the same as the other, but has one bit unset that the other has set, 8047 // use bit manipulation to do two compares at once. For example: 8048 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 8049 // TODO: This could be extended to merge any 2 cases in switches with 3 8050 // cases. 8051 // TODO: Handle cases where W.CaseBB != SwitchBB. 8052 CaseCluster &Small = *W.FirstCluster; 8053 CaseCluster &Big = *W.LastCluster; 8054 8055 if (Small.Low == Small.High && Big.Low == Big.High && 8056 Small.MBB == Big.MBB) { 8057 const APInt &SmallValue = Small.Low->getValue(); 8058 const APInt &BigValue = Big.Low->getValue(); 8059 8060 // Check that there is only one bit different. 8061 APInt CommonBit = BigValue ^ SmallValue; 8062 if (CommonBit.isPowerOf2()) { 8063 SDValue CondLHS = getValue(Cond); 8064 EVT VT = CondLHS.getValueType(); 8065 SDLoc DL = getCurSDLoc(); 8066 8067 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 8068 DAG.getConstant(CommonBit, DL, VT)); 8069 SDValue Cond = DAG.getSetCC( 8070 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 8071 ISD::SETEQ); 8072 8073 // Update successor info. 8074 // Both Small and Big will jump to Small.BB, so we sum up the weights. 8075 addSuccessorWithWeight(SwitchMBB, Small.MBB, Small.Weight + Big.Weight); 8076 addSuccessorWithWeight( 8077 SwitchMBB, DefaultMBB, 8078 // The default destination is the first successor in IR. 8079 BPI ? BPI->getEdgeWeight(SwitchMBB->getBasicBlock(), (unsigned)0) 8080 : 0); 8081 8082 // Insert the true branch. 8083 SDValue BrCond = 8084 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 8085 DAG.getBasicBlock(Small.MBB)); 8086 // Insert the false branch. 8087 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 8088 DAG.getBasicBlock(DefaultMBB)); 8089 8090 DAG.setRoot(BrCond); 8091 return; 8092 } 8093 } 8094 } 8095 8096 if (TM.getOptLevel() != CodeGenOpt::None) { 8097 // Order cases by weight so the most likely case will be checked first. 8098 std::sort(W.FirstCluster, W.LastCluster + 1, 8099 [](const CaseCluster &a, const CaseCluster &b) { 8100 return a.Weight > b.Weight; 8101 }); 8102 8103 // Rearrange the case blocks so that the last one falls through if possible 8104 // without without changing the order of weights. 8105 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 8106 --I; 8107 if (I->Weight > W.LastCluster->Weight) 8108 break; 8109 if (I->Kind == CC_Range && I->MBB == NextMBB) { 8110 std::swap(*I, *W.LastCluster); 8111 break; 8112 } 8113 } 8114 } 8115 8116 // Compute total weight. 8117 uint32_t DefaultWeight = W.DefaultWeight; 8118 uint32_t UnhandledWeights = DefaultWeight; 8119 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) { 8120 UnhandledWeights += I->Weight; 8121 assert(UnhandledWeights >= I->Weight && "Weight overflow!"); 8122 } 8123 8124 MachineBasicBlock *CurMBB = W.MBB; 8125 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 8126 MachineBasicBlock *Fallthrough; 8127 if (I == W.LastCluster) { 8128 // For the last cluster, fall through to the default destination. 8129 Fallthrough = DefaultMBB; 8130 } else { 8131 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 8132 CurMF->insert(BBI, Fallthrough); 8133 // Put Cond in a virtual register to make it available from the new blocks. 8134 ExportFromCurrentBlock(Cond); 8135 } 8136 UnhandledWeights -= I->Weight; 8137 8138 switch (I->Kind) { 8139 case CC_JumpTable: { 8140 // FIXME: Optimize away range check based on pivot comparisons. 8141 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 8142 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 8143 8144 // The jump block hasn't been inserted yet; insert it here. 8145 MachineBasicBlock *JumpMBB = JT->MBB; 8146 CurMF->insert(BBI, JumpMBB); 8147 8148 uint32_t JumpWeight = I->Weight; 8149 uint32_t FallthroughWeight = UnhandledWeights; 8150 8151 // If the default statement is a target of the jump table, we evenly 8152 // distribute the default weight to successors of CurMBB. Also update 8153 // the weight on the edge from JumpMBB to Fallthrough. 8154 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 8155 SE = JumpMBB->succ_end(); 8156 SI != SE; ++SI) { 8157 if (*SI == DefaultMBB) { 8158 JumpWeight += DefaultWeight / 2; 8159 FallthroughWeight -= DefaultWeight / 2; 8160 JumpMBB->setSuccWeight(SI, DefaultWeight / 2); 8161 break; 8162 } 8163 } 8164 8165 addSuccessorWithWeight(CurMBB, Fallthrough, FallthroughWeight); 8166 addSuccessorWithWeight(CurMBB, JumpMBB, JumpWeight); 8167 8168 // The jump table header will be inserted in our current block, do the 8169 // range check, and fall through to our fallthrough block. 8170 JTH->HeaderBB = CurMBB; 8171 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 8172 8173 // If we're in the right place, emit the jump table header right now. 8174 if (CurMBB == SwitchMBB) { 8175 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 8176 JTH->Emitted = true; 8177 } 8178 break; 8179 } 8180 case CC_BitTests: { 8181 // FIXME: Optimize away range check based on pivot comparisons. 8182 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 8183 8184 // The bit test blocks haven't been inserted yet; insert them here. 8185 for (BitTestCase &BTC : BTB->Cases) 8186 CurMF->insert(BBI, BTC.ThisBB); 8187 8188 // Fill in fields of the BitTestBlock. 8189 BTB->Parent = CurMBB; 8190 BTB->Default = Fallthrough; 8191 8192 BTB->DefaultWeight = UnhandledWeights; 8193 // If the cases in bit test don't form a contiguous range, we evenly 8194 // distribute the weight on the edge to Fallthrough to two successors 8195 // of CurMBB. 8196 if (!BTB->ContiguousRange) { 8197 BTB->Weight += DefaultWeight / 2; 8198 BTB->DefaultWeight -= DefaultWeight / 2; 8199 } 8200 8201 // If we're in the right place, emit the bit test header right now. 8202 if (CurMBB == SwitchMBB) { 8203 visitBitTestHeader(*BTB, SwitchMBB); 8204 BTB->Emitted = true; 8205 } 8206 break; 8207 } 8208 case CC_Range: { 8209 const Value *RHS, *LHS, *MHS; 8210 ISD::CondCode CC; 8211 if (I->Low == I->High) { 8212 // Check Cond == I->Low. 8213 CC = ISD::SETEQ; 8214 LHS = Cond; 8215 RHS=I->Low; 8216 MHS = nullptr; 8217 } else { 8218 // Check I->Low <= Cond <= I->High. 8219 CC = ISD::SETLE; 8220 LHS = I->Low; 8221 MHS = Cond; 8222 RHS = I->High; 8223 } 8224 8225 // The false weight is the sum of all unhandled cases. 8226 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Weight, 8227 UnhandledWeights); 8228 8229 if (CurMBB == SwitchMBB) 8230 visitSwitchCase(CB, SwitchMBB); 8231 else 8232 SwitchCases.push_back(CB); 8233 8234 break; 8235 } 8236 } 8237 CurMBB = Fallthrough; 8238 } 8239 } 8240 8241 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 8242 CaseClusterIt First, 8243 CaseClusterIt Last) { 8244 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 8245 if (X.Weight != CC.Weight) 8246 return X.Weight > CC.Weight; 8247 8248 // Ties are broken by comparing the case value. 8249 return X.Low->getValue().slt(CC.Low->getValue()); 8250 }); 8251 } 8252 8253 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 8254 const SwitchWorkListItem &W, 8255 Value *Cond, 8256 MachineBasicBlock *SwitchMBB) { 8257 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 8258 "Clusters not sorted?"); 8259 8260 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 8261 8262 // Balance the tree based on branch weights to create a near-optimal (in terms 8263 // of search time given key frequency) binary search tree. See e.g. Kurt 8264 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 8265 CaseClusterIt LastLeft = W.FirstCluster; 8266 CaseClusterIt FirstRight = W.LastCluster; 8267 uint32_t LeftWeight = LastLeft->Weight + W.DefaultWeight / 2; 8268 uint32_t RightWeight = FirstRight->Weight + W.DefaultWeight / 2; 8269 8270 // Move LastLeft and FirstRight towards each other from opposite directions to 8271 // find a partitioning of the clusters which balances the weight on both 8272 // sides. If LeftWeight and RightWeight are equal, alternate which side is 8273 // taken to ensure 0-weight nodes are distributed evenly. 8274 unsigned I = 0; 8275 while (LastLeft + 1 < FirstRight) { 8276 if (LeftWeight < RightWeight || (LeftWeight == RightWeight && (I & 1))) 8277 LeftWeight += (++LastLeft)->Weight; 8278 else 8279 RightWeight += (--FirstRight)->Weight; 8280 I++; 8281 } 8282 8283 for (;;) { 8284 // Our binary search tree differs from a typical BST in that ours can have up 8285 // to three values in each leaf. The pivot selection above doesn't take that 8286 // into account, which means the tree might require more nodes and be less 8287 // efficient. We compensate for this here. 8288 8289 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 8290 unsigned NumRight = W.LastCluster - FirstRight + 1; 8291 8292 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 8293 // If one side has less than 3 clusters, and the other has more than 3, 8294 // consider taking a cluster from the other side. 8295 8296 if (NumLeft < NumRight) { 8297 // Consider moving the first cluster on the right to the left side. 8298 CaseCluster &CC = *FirstRight; 8299 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8300 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8301 if (LeftSideRank <= RightSideRank) { 8302 // Moving the cluster to the left does not demote it. 8303 ++LastLeft; 8304 ++FirstRight; 8305 continue; 8306 } 8307 } else { 8308 assert(NumRight < NumLeft); 8309 // Consider moving the last element on the left to the right side. 8310 CaseCluster &CC = *LastLeft; 8311 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8312 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8313 if (RightSideRank <= LeftSideRank) { 8314 // Moving the cluster to the right does not demot it. 8315 --LastLeft; 8316 --FirstRight; 8317 continue; 8318 } 8319 } 8320 } 8321 break; 8322 } 8323 8324 assert(LastLeft + 1 == FirstRight); 8325 assert(LastLeft >= W.FirstCluster); 8326 assert(FirstRight <= W.LastCluster); 8327 8328 // Use the first element on the right as pivot since we will make less-than 8329 // comparisons against it. 8330 CaseClusterIt PivotCluster = FirstRight; 8331 assert(PivotCluster > W.FirstCluster); 8332 assert(PivotCluster <= W.LastCluster); 8333 8334 CaseClusterIt FirstLeft = W.FirstCluster; 8335 CaseClusterIt LastRight = W.LastCluster; 8336 8337 const ConstantInt *Pivot = PivotCluster->Low; 8338 8339 // New blocks will be inserted immediately after the current one. 8340 MachineFunction::iterator BBI = W.MBB; 8341 ++BBI; 8342 8343 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8344 // we can branch to its destination directly if it's squeezed exactly in 8345 // between the known lower bound and Pivot - 1. 8346 MachineBasicBlock *LeftMBB; 8347 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8348 FirstLeft->Low == W.GE && 8349 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8350 LeftMBB = FirstLeft->MBB; 8351 } else { 8352 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8353 FuncInfo.MF->insert(BBI, LeftMBB); 8354 WorkList.push_back( 8355 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultWeight / 2}); 8356 // Put Cond in a virtual register to make it available from the new blocks. 8357 ExportFromCurrentBlock(Cond); 8358 } 8359 8360 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8361 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8362 // directly if RHS.High equals the current upper bound. 8363 MachineBasicBlock *RightMBB; 8364 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8365 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8366 RightMBB = FirstRight->MBB; 8367 } else { 8368 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8369 FuncInfo.MF->insert(BBI, RightMBB); 8370 WorkList.push_back( 8371 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultWeight / 2}); 8372 // Put Cond in a virtual register to make it available from the new blocks. 8373 ExportFromCurrentBlock(Cond); 8374 } 8375 8376 // Create the CaseBlock record that will be used to lower the branch. 8377 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8378 LeftWeight, RightWeight); 8379 8380 if (W.MBB == SwitchMBB) 8381 visitSwitchCase(CB, SwitchMBB); 8382 else 8383 SwitchCases.push_back(CB); 8384 } 8385 8386 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8387 // Extract cases from the switch. 8388 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8389 CaseClusterVector Clusters; 8390 Clusters.reserve(SI.getNumCases()); 8391 for (auto I : SI.cases()) { 8392 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8393 const ConstantInt *CaseVal = I.getCaseValue(); 8394 uint32_t Weight = 8395 BPI ? BPI->getEdgeWeight(SI.getParent(), I.getSuccessorIndex()) : 0; 8396 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Weight)); 8397 } 8398 8399 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8400 8401 // Cluster adjacent cases with the same destination. We do this at all 8402 // optimization levels because it's cheap to do and will make codegen faster 8403 // if there are many clusters. 8404 sortAndRangeify(Clusters); 8405 8406 if (TM.getOptLevel() != CodeGenOpt::None) { 8407 // Replace an unreachable default with the most popular destination. 8408 // FIXME: Exploit unreachable default more aggressively. 8409 bool UnreachableDefault = 8410 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8411 if (UnreachableDefault && !Clusters.empty()) { 8412 DenseMap<const BasicBlock *, unsigned> Popularity; 8413 unsigned MaxPop = 0; 8414 const BasicBlock *MaxBB = nullptr; 8415 for (auto I : SI.cases()) { 8416 const BasicBlock *BB = I.getCaseSuccessor(); 8417 if (++Popularity[BB] > MaxPop) { 8418 MaxPop = Popularity[BB]; 8419 MaxBB = BB; 8420 } 8421 } 8422 // Set new default. 8423 assert(MaxPop > 0 && MaxBB); 8424 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8425 8426 // Remove cases that were pointing to the destination that is now the 8427 // default. 8428 CaseClusterVector New; 8429 New.reserve(Clusters.size()); 8430 for (CaseCluster &CC : Clusters) { 8431 if (CC.MBB != DefaultMBB) 8432 New.push_back(CC); 8433 } 8434 Clusters = std::move(New); 8435 } 8436 } 8437 8438 // If there is only the default destination, jump there directly. 8439 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 8440 if (Clusters.empty()) { 8441 SwitchMBB->addSuccessor(DefaultMBB); 8442 if (DefaultMBB != NextBlock(SwitchMBB)) { 8443 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 8444 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 8445 } 8446 return; 8447 } 8448 8449 findJumpTables(Clusters, &SI, DefaultMBB); 8450 findBitTestClusters(Clusters, &SI); 8451 8452 DEBUG({ 8453 dbgs() << "Case clusters: "; 8454 for (const CaseCluster &C : Clusters) { 8455 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 8456 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 8457 8458 C.Low->getValue().print(dbgs(), true); 8459 if (C.Low != C.High) { 8460 dbgs() << '-'; 8461 C.High->getValue().print(dbgs(), true); 8462 } 8463 dbgs() << ' '; 8464 } 8465 dbgs() << '\n'; 8466 }); 8467 8468 assert(!Clusters.empty()); 8469 SwitchWorkList WorkList; 8470 CaseClusterIt First = Clusters.begin(); 8471 CaseClusterIt Last = Clusters.end() - 1; 8472 uint32_t DefaultWeight = getEdgeWeight(SwitchMBB, DefaultMBB); 8473 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultWeight}); 8474 8475 while (!WorkList.empty()) { 8476 SwitchWorkListItem W = WorkList.back(); 8477 WorkList.pop_back(); 8478 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 8479 8480 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 8481 // For optimized builds, lower large range as a balanced binary tree. 8482 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 8483 continue; 8484 } 8485 8486 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 8487 } 8488 } 8489