xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 0844ff2aa7f9e884d4d0b83e6cfdd945072cca93)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SelectionDAGBuilder.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/BranchProbabilityInfo.h"
31 #include "llvm/Analysis/ConstantFolding.h"
32 #include "llvm/Analysis/EHPersonalities.h"
33 #include "llvm/Analysis/Loads.h"
34 #include "llvm/Analysis/MemoryLocation.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/Analysis/VectorUtils.h"
38 #include "llvm/CodeGen/Analysis.h"
39 #include "llvm/CodeGen/FunctionLoweringInfo.h"
40 #include "llvm/CodeGen/GCMetadata.h"
41 #include "llvm/CodeGen/ISDOpcodes.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineInstr.h"
46 #include "llvm/CodeGen/MachineInstrBuilder.h"
47 #include "llvm/CodeGen/MachineJumpTableInfo.h"
48 #include "llvm/CodeGen/MachineMemOperand.h"
49 #include "llvm/CodeGen/MachineModuleInfo.h"
50 #include "llvm/CodeGen/MachineOperand.h"
51 #include "llvm/CodeGen/MachineRegisterInfo.h"
52 #include "llvm/CodeGen/MachineValueType.h"
53 #include "llvm/CodeGen/RuntimeLibcalls.h"
54 #include "llvm/CodeGen/SelectionDAG.h"
55 #include "llvm/CodeGen/SelectionDAGNodes.h"
56 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
57 #include "llvm/CodeGen/StackMaps.h"
58 #include "llvm/CodeGen/TargetFrameLowering.h"
59 #include "llvm/CodeGen/TargetInstrInfo.h"
60 #include "llvm/CodeGen/ValueTypes.h"
61 #include "llvm/CodeGen/WinEHFuncInfo.h"
62 #include "llvm/IR/Argument.h"
63 #include "llvm/IR/Attributes.h"
64 #include "llvm/IR/BasicBlock.h"
65 #include "llvm/IR/CFG.h"
66 #include "llvm/IR/CallSite.h"
67 #include "llvm/IR/CallingConv.h"
68 #include "llvm/IR/Constant.h"
69 #include "llvm/IR/ConstantRange.h"
70 #include "llvm/IR/Constants.h"
71 #include "llvm/IR/DataLayout.h"
72 #include "llvm/IR/DebugInfoMetadata.h"
73 #include "llvm/IR/DebugLoc.h"
74 #include "llvm/IR/DerivedTypes.h"
75 #include "llvm/IR/Function.h"
76 #include "llvm/IR/GetElementPtrTypeIterator.h"
77 #include "llvm/IR/InlineAsm.h"
78 #include "llvm/IR/InstrTypes.h"
79 #include "llvm/IR/Instruction.h"
80 #include "llvm/IR/Instructions.h"
81 #include "llvm/IR/IntrinsicInst.h"
82 #include "llvm/IR/Intrinsics.h"
83 #include "llvm/IR/LLVMContext.h"
84 #include "llvm/IR/Metadata.h"
85 #include "llvm/IR/Module.h"
86 #include "llvm/IR/Operator.h"
87 #include "llvm/IR/Statepoint.h"
88 #include "llvm/IR/Type.h"
89 #include "llvm/IR/User.h"
90 #include "llvm/IR/Value.h"
91 #include "llvm/MC/MCContext.h"
92 #include "llvm/MC/MCSymbol.h"
93 #include "llvm/Support/AtomicOrdering.h"
94 #include "llvm/Support/BranchProbability.h"
95 #include "llvm/Support/Casting.h"
96 #include "llvm/Support/CodeGen.h"
97 #include "llvm/Support/CommandLine.h"
98 #include "llvm/Support/Compiler.h"
99 #include "llvm/Support/Debug.h"
100 #include "llvm/Support/ErrorHandling.h"
101 #include "llvm/Support/MathExtras.h"
102 #include "llvm/Support/raw_ostream.h"
103 #include "llvm/Target/TargetIntrinsicInfo.h"
104 #include "llvm/Target/TargetLowering.h"
105 #include "llvm/Target/TargetMachine.h"
106 #include "llvm/Target/TargetOpcodes.h"
107 #include "llvm/Target/TargetOptions.h"
108 #include "llvm/Target/TargetRegisterInfo.h"
109 #include "llvm/Target/TargetSubtargetInfo.h"
110 #include <algorithm>
111 #include <cassert>
112 #include <cstddef>
113 #include <cstdint>
114 #include <cstring>
115 #include <iterator>
116 #include <limits>
117 #include <numeric>
118 #include <tuple>
119 #include <utility>
120 #include <vector>
121 
122 using namespace llvm;
123 
124 #define DEBUG_TYPE "isel"
125 
126 /// LimitFloatPrecision - Generate low-precision inline sequences for
127 /// some float libcalls (6, 8 or 12 bits).
128 static unsigned LimitFloatPrecision;
129 
130 static cl::opt<unsigned, true>
131 LimitFPPrecision("limit-float-precision",
132                  cl::desc("Generate low-precision inline sequences "
133                           "for some float libcalls"),
134                  cl::location(LimitFloatPrecision),
135                  cl::init(0));
136 
137 static cl::opt<unsigned> SwitchPeelThreshold(
138     "switch-peel-threshold", cl::Hidden, cl::init(66),
139     cl::desc("Set the case probability threshold for peeling the case from a "
140              "switch statement. A value greater than 100 will void this "
141              "optimization"));
142 
143 // Limit the width of DAG chains. This is important in general to prevent
144 // DAG-based analysis from blowing up. For example, alias analysis and
145 // load clustering may not complete in reasonable time. It is difficult to
146 // recognize and avoid this situation within each individual analysis, and
147 // future analyses are likely to have the same behavior. Limiting DAG width is
148 // the safe approach and will be especially important with global DAGs.
149 //
150 // MaxParallelChains default is arbitrarily high to avoid affecting
151 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
152 // sequence over this should have been converted to llvm.memcpy by the
153 // frontend. It is easy to induce this behavior with .ll code such as:
154 // %buffer = alloca [4096 x i8]
155 // %data = load [4096 x i8]* %argPtr
156 // store [4096 x i8] %data, [4096 x i8]* %buffer
157 static const unsigned MaxParallelChains = 64;
158 
159 // True if the Value passed requires ABI mangling as it is a parameter to a
160 // function or a return value from a function which is not an intrinsic.
161 static bool isABIRegCopy(const Value *V) {
162   const bool IsRetInst = V && isa<ReturnInst>(V);
163   const bool IsCallInst = V && isa<CallInst>(V);
164   const bool IsInLineAsm =
165       IsCallInst && static_cast<const CallInst *>(V)->isInlineAsm();
166   const bool IsIndirectFunctionCall =
167       IsCallInst && !IsInLineAsm &&
168       !static_cast<const CallInst *>(V)->getCalledFunction();
169   // It is possible that the call instruction is an inline asm statement or an
170   // indirect function call in which case the return value of
171   // getCalledFunction() would be nullptr.
172   const bool IsInstrinsicCall =
173       IsCallInst && !IsInLineAsm && !IsIndirectFunctionCall &&
174       static_cast<const CallInst *>(V)->getCalledFunction()->getIntrinsicID() !=
175           Intrinsic::not_intrinsic;
176 
177   return IsRetInst || (IsCallInst && (!IsInLineAsm && !IsInstrinsicCall));
178 }
179 
180 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
181                                       const SDValue *Parts, unsigned NumParts,
182                                       MVT PartVT, EVT ValueVT, const Value *V,
183                                       bool IsABIRegCopy);
184 
185 /// getCopyFromParts - Create a value that contains the specified legal parts
186 /// combined into the value they represent.  If the parts combine to a type
187 /// larger than ValueVT then AssertOp can be used to specify whether the extra
188 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
189 /// (ISD::AssertSext).
190 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
191                                 const SDValue *Parts, unsigned NumParts,
192                                 MVT PartVT, EVT ValueVT, const Value *V,
193                                 Optional<ISD::NodeType> AssertOp = None,
194                                 bool IsABIRegCopy = false) {
195   if (ValueVT.isVector())
196     return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
197                                   PartVT, ValueVT, V, IsABIRegCopy);
198 
199   assert(NumParts > 0 && "No parts to assemble!");
200   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
201   SDValue Val = Parts[0];
202 
203   if (NumParts > 1) {
204     // Assemble the value from multiple parts.
205     if (ValueVT.isInteger()) {
206       unsigned PartBits = PartVT.getSizeInBits();
207       unsigned ValueBits = ValueVT.getSizeInBits();
208 
209       // Assemble the power of 2 part.
210       unsigned RoundParts = NumParts & (NumParts - 1) ?
211         1 << Log2_32(NumParts) : NumParts;
212       unsigned RoundBits = PartBits * RoundParts;
213       EVT RoundVT = RoundBits == ValueBits ?
214         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
215       SDValue Lo, Hi;
216 
217       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
218 
219       if (RoundParts > 2) {
220         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
221                               PartVT, HalfVT, V);
222         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
223                               RoundParts / 2, PartVT, HalfVT, V);
224       } else {
225         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
226         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
227       }
228 
229       if (DAG.getDataLayout().isBigEndian())
230         std::swap(Lo, Hi);
231 
232       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
233 
234       if (RoundParts < NumParts) {
235         // Assemble the trailing non-power-of-2 part.
236         unsigned OddParts = NumParts - RoundParts;
237         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
238         Hi = getCopyFromParts(DAG, DL,
239                               Parts + RoundParts, OddParts, PartVT, OddVT, V);
240 
241         // Combine the round and odd parts.
242         Lo = Val;
243         if (DAG.getDataLayout().isBigEndian())
244           std::swap(Lo, Hi);
245         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
246         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
247         Hi =
248             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
249                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
250                                         TLI.getPointerTy(DAG.getDataLayout())));
251         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
252         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
253       }
254     } else if (PartVT.isFloatingPoint()) {
255       // FP split into multiple FP parts (for ppcf128)
256       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
257              "Unexpected split");
258       SDValue Lo, Hi;
259       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
260       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
261       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
262         std::swap(Lo, Hi);
263       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
264     } else {
265       // FP split into integer parts (soft fp)
266       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
267              !PartVT.isVector() && "Unexpected split");
268       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
269       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
270     }
271   }
272 
273   // There is now one part, held in Val.  Correct it to match ValueVT.
274   // PartEVT is the type of the register class that holds the value.
275   // ValueVT is the type of the inline asm operation.
276   EVT PartEVT = Val.getValueType();
277 
278   if (PartEVT == ValueVT)
279     return Val;
280 
281   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
282       ValueVT.bitsLT(PartEVT)) {
283     // For an FP value in an integer part, we need to truncate to the right
284     // width first.
285     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
286     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
287   }
288 
289   // Handle types that have the same size.
290   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
291     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
292 
293   // Handle types with different sizes.
294   if (PartEVT.isInteger() && ValueVT.isInteger()) {
295     if (ValueVT.bitsLT(PartEVT)) {
296       // For a truncate, see if we have any information to
297       // indicate whether the truncated bits will always be
298       // zero or sign-extension.
299       if (AssertOp.hasValue())
300         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
301                           DAG.getValueType(ValueVT));
302       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
303     }
304     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
305   }
306 
307   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
308     // FP_ROUND's are always exact here.
309     if (ValueVT.bitsLT(Val.getValueType()))
310       return DAG.getNode(
311           ISD::FP_ROUND, DL, ValueVT, Val,
312           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
313 
314     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
315   }
316 
317   llvm_unreachable("Unknown mismatch!");
318 }
319 
320 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
321                                               const Twine &ErrMsg) {
322   const Instruction *I = dyn_cast_or_null<Instruction>(V);
323   if (!V)
324     return Ctx.emitError(ErrMsg);
325 
326   const char *AsmError = ", possible invalid constraint for vector type";
327   if (const CallInst *CI = dyn_cast<CallInst>(I))
328     if (isa<InlineAsm>(CI->getCalledValue()))
329       return Ctx.emitError(I, ErrMsg + AsmError);
330 
331   return Ctx.emitError(I, ErrMsg);
332 }
333 
334 /// getCopyFromPartsVector - Create a value that contains the specified legal
335 /// parts combined into the value they represent.  If the parts combine to a
336 /// type larger than ValueVT then AssertOp can be used to specify whether the
337 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
338 /// ValueVT (ISD::AssertSext).
339 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
340                                       const SDValue *Parts, unsigned NumParts,
341                                       MVT PartVT, EVT ValueVT, const Value *V,
342                                       bool IsABIRegCopy) {
343   assert(ValueVT.isVector() && "Not a vector value");
344   assert(NumParts > 0 && "No parts to assemble!");
345   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
346   SDValue Val = Parts[0];
347 
348   // Handle a multi-element vector.
349   if (NumParts > 1) {
350     EVT IntermediateVT;
351     MVT RegisterVT;
352     unsigned NumIntermediates;
353     unsigned NumRegs;
354 
355     if (IsABIRegCopy) {
356       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
357           *DAG.getContext(), ValueVT, IntermediateVT, NumIntermediates,
358           RegisterVT);
359     } else {
360       NumRegs =
361           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
362                                      NumIntermediates, RegisterVT);
363     }
364 
365     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
366     NumParts = NumRegs; // Silence a compiler warning.
367     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
368     assert(RegisterVT.getSizeInBits() ==
369            Parts[0].getSimpleValueType().getSizeInBits() &&
370            "Part type sizes don't match!");
371 
372     // Assemble the parts into intermediate operands.
373     SmallVector<SDValue, 8> Ops(NumIntermediates);
374     if (NumIntermediates == NumParts) {
375       // If the register was not expanded, truncate or copy the value,
376       // as appropriate.
377       for (unsigned i = 0; i != NumParts; ++i)
378         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
379                                   PartVT, IntermediateVT, V);
380     } else if (NumParts > 0) {
381       // If the intermediate type was expanded, build the intermediate
382       // operands from the parts.
383       assert(NumParts % NumIntermediates == 0 &&
384              "Must expand into a divisible number of parts!");
385       unsigned Factor = NumParts / NumIntermediates;
386       for (unsigned i = 0; i != NumIntermediates; ++i)
387         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
388                                   PartVT, IntermediateVT, V);
389     }
390 
391     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
392     // intermediate operands.
393     EVT BuiltVectorTy =
394         EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(),
395                          (IntermediateVT.isVector()
396                               ? IntermediateVT.getVectorNumElements() * NumParts
397                               : NumIntermediates));
398     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
399                                                 : ISD::BUILD_VECTOR,
400                       DL, BuiltVectorTy, Ops);
401   }
402 
403   // There is now one part, held in Val.  Correct it to match ValueVT.
404   EVT PartEVT = Val.getValueType();
405 
406   if (PartEVT == ValueVT)
407     return Val;
408 
409   if (PartEVT.isVector()) {
410     // If the element type of the source/dest vectors are the same, but the
411     // parts vector has more elements than the value vector, then we have a
412     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
413     // elements we want.
414     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
415       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
416              "Cannot narrow, it would be a lossy transformation");
417       return DAG.getNode(
418           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
419           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
420     }
421 
422     // Vector/Vector bitcast.
423     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
424       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
425 
426     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
427       "Cannot handle this kind of promotion");
428     // Promoted vector extract
429     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
430 
431   }
432 
433   // Trivial bitcast if the types are the same size and the destination
434   // vector type is legal.
435   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
436       TLI.isTypeLegal(ValueVT))
437     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
438 
439   if (ValueVT.getVectorNumElements() != 1) {
440      // Certain ABIs require that vectors are passed as integers. For vectors
441      // are the same size, this is an obvious bitcast.
442      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
443        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
444      } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) {
445        // Bitcast Val back the original type and extract the corresponding
446        // vector we want.
447        unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
448        EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
449                                            ValueVT.getVectorElementType(), Elts);
450        Val = DAG.getBitcast(WiderVecType, Val);
451        return DAG.getNode(
452            ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
453            DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
454      }
455 
456      diagnosePossiblyInvalidConstraint(
457          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
458      return DAG.getUNDEF(ValueVT);
459   }
460 
461   // Handle cases such as i8 -> <1 x i1>
462   EVT ValueSVT = ValueVT.getVectorElementType();
463   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT)
464     Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
465                                     : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
466 
467   return DAG.getBuildVector(ValueVT, DL, Val);
468 }
469 
470 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
471                                  SDValue Val, SDValue *Parts, unsigned NumParts,
472                                  MVT PartVT, const Value *V, bool IsABIRegCopy);
473 
474 /// getCopyToParts - Create a series of nodes that contain the specified value
475 /// split into legal parts.  If the parts contain more bits than Val, then, for
476 /// integers, ExtendKind can be used to specify how to generate the extra bits.
477 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
478                            SDValue *Parts, unsigned NumParts, MVT PartVT,
479                            const Value *V,
480                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND,
481                            bool IsABIRegCopy = false) {
482   EVT ValueVT = Val.getValueType();
483 
484   // Handle the vector case separately.
485   if (ValueVT.isVector())
486     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
487                                 IsABIRegCopy);
488 
489   unsigned PartBits = PartVT.getSizeInBits();
490   unsigned OrigNumParts = NumParts;
491   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
492          "Copying to an illegal type!");
493 
494   if (NumParts == 0)
495     return;
496 
497   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
498   EVT PartEVT = PartVT;
499   if (PartEVT == ValueVT) {
500     assert(NumParts == 1 && "No-op copy with multiple parts!");
501     Parts[0] = Val;
502     return;
503   }
504 
505   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
506     // If the parts cover more bits than the value has, promote the value.
507     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
508       assert(NumParts == 1 && "Do not know what to promote to!");
509       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
510     } else {
511       if (ValueVT.isFloatingPoint()) {
512         // FP values need to be bitcast, then extended if they are being put
513         // into a larger container.
514         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
515         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
516       }
517       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
518              ValueVT.isInteger() &&
519              "Unknown mismatch!");
520       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
521       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
522       if (PartVT == MVT::x86mmx)
523         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
524     }
525   } else if (PartBits == ValueVT.getSizeInBits()) {
526     // Different types of the same size.
527     assert(NumParts == 1 && PartEVT != ValueVT);
528     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
529   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
530     // If the parts cover less bits than value has, truncate the value.
531     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
532            ValueVT.isInteger() &&
533            "Unknown mismatch!");
534     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
535     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
536     if (PartVT == MVT::x86mmx)
537       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
538   }
539 
540   // The value may have changed - recompute ValueVT.
541   ValueVT = Val.getValueType();
542   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
543          "Failed to tile the value with PartVT!");
544 
545   if (NumParts == 1) {
546     if (PartEVT != ValueVT) {
547       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
548                                         "scalar-to-vector conversion failed");
549       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
550     }
551 
552     Parts[0] = Val;
553     return;
554   }
555 
556   // Expand the value into multiple parts.
557   if (NumParts & (NumParts - 1)) {
558     // The number of parts is not a power of 2.  Split off and copy the tail.
559     assert(PartVT.isInteger() && ValueVT.isInteger() &&
560            "Do not know what to expand to!");
561     unsigned RoundParts = 1 << Log2_32(NumParts);
562     unsigned RoundBits = RoundParts * PartBits;
563     unsigned OddParts = NumParts - RoundParts;
564     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
565                                  DAG.getIntPtrConstant(RoundBits, DL));
566     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
567 
568     if (DAG.getDataLayout().isBigEndian())
569       // The odd parts were reversed by getCopyToParts - unreverse them.
570       std::reverse(Parts + RoundParts, Parts + NumParts);
571 
572     NumParts = RoundParts;
573     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
574     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
575   }
576 
577   // The number of parts is a power of 2.  Repeatedly bisect the value using
578   // EXTRACT_ELEMENT.
579   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
580                          EVT::getIntegerVT(*DAG.getContext(),
581                                            ValueVT.getSizeInBits()),
582                          Val);
583 
584   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
585     for (unsigned i = 0; i < NumParts; i += StepSize) {
586       unsigned ThisBits = StepSize * PartBits / 2;
587       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
588       SDValue &Part0 = Parts[i];
589       SDValue &Part1 = Parts[i+StepSize/2];
590 
591       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
592                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
593       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
594                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
595 
596       if (ThisBits == PartBits && ThisVT != PartVT) {
597         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
598         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
599       }
600     }
601   }
602 
603   if (DAG.getDataLayout().isBigEndian())
604     std::reverse(Parts, Parts + OrigNumParts);
605 }
606 
607 
608 /// getCopyToPartsVector - Create a series of nodes that contain the specified
609 /// value split into legal parts.
610 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
611                                  SDValue Val, SDValue *Parts, unsigned NumParts,
612                                  MVT PartVT, const Value *V,
613                                  bool IsABIRegCopy) {
614   EVT ValueVT = Val.getValueType();
615   assert(ValueVT.isVector() && "Not a vector");
616   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
617 
618   if (NumParts == 1) {
619     EVT PartEVT = PartVT;
620     if (PartEVT == ValueVT) {
621       // Nothing to do.
622     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
623       // Bitconvert vector->vector case.
624       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
625     } else if (PartVT.isVector() &&
626                PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
627                PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
628       EVT ElementVT = PartVT.getVectorElementType();
629       // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
630       // undef elements.
631       SmallVector<SDValue, 16> Ops;
632       for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
633         Ops.push_back(DAG.getNode(
634             ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val,
635             DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))));
636 
637       for (unsigned i = ValueVT.getVectorNumElements(),
638            e = PartVT.getVectorNumElements(); i != e; ++i)
639         Ops.push_back(DAG.getUNDEF(ElementVT));
640 
641       Val = DAG.getBuildVector(PartVT, DL, Ops);
642 
643       // FIXME: Use CONCAT for 2x -> 4x.
644 
645       //SDValue UndefElts = DAG.getUNDEF(VectorTy);
646       //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
647     } else if (PartVT.isVector() &&
648                PartEVT.getVectorElementType().bitsGE(
649                  ValueVT.getVectorElementType()) &&
650                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
651 
652       // Promoted vector extract
653       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
654     } else {
655       if (ValueVT.getVectorNumElements() == 1) {
656         Val = DAG.getNode(
657             ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
658             DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
659       } else {
660         assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
661                "lossy conversion of vector to scalar type");
662         EVT IntermediateType =
663             EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
664         Val = DAG.getBitcast(IntermediateType, Val);
665         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
666       }
667     }
668 
669     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
670     Parts[0] = Val;
671     return;
672   }
673 
674   // Handle a multi-element vector.
675   EVT IntermediateVT;
676   MVT RegisterVT;
677   unsigned NumIntermediates;
678   unsigned NumRegs;
679   if (IsABIRegCopy) {
680     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
681         *DAG.getContext(), ValueVT, IntermediateVT, NumIntermediates,
682         RegisterVT);
683   } else {
684     NumRegs =
685         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
686                                    NumIntermediates, RegisterVT);
687   }
688   unsigned NumElements = ValueVT.getVectorNumElements();
689 
690   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
691   NumParts = NumRegs; // Silence a compiler warning.
692   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
693 
694   // Convert the vector to the appropiate type if necessary.
695   unsigned DestVectorNoElts =
696       NumIntermediates *
697       (IntermediateVT.isVector() ? IntermediateVT.getVectorNumElements() : 1);
698   EVT BuiltVectorTy = EVT::getVectorVT(
699       *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts);
700   if (Val.getValueType() != BuiltVectorTy)
701     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
702 
703   // Split the vector into intermediate operands.
704   SmallVector<SDValue, 8> Ops(NumIntermediates);
705   for (unsigned i = 0; i != NumIntermediates; ++i) {
706     if (IntermediateVT.isVector())
707       Ops[i] =
708           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
709                       DAG.getConstant(i * (NumElements / NumIntermediates), DL,
710                                       TLI.getVectorIdxTy(DAG.getDataLayout())));
711     else
712       Ops[i] = DAG.getNode(
713           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
714           DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
715   }
716 
717   // Split the intermediate operands into legal parts.
718   if (NumParts == NumIntermediates) {
719     // If the register was not expanded, promote or copy the value,
720     // as appropriate.
721     for (unsigned i = 0; i != NumParts; ++i)
722       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
723   } else if (NumParts > 0) {
724     // If the intermediate type was expanded, split each the value into
725     // legal parts.
726     assert(NumIntermediates != 0 && "division by zero");
727     assert(NumParts % NumIntermediates == 0 &&
728            "Must expand into a divisible number of parts!");
729     unsigned Factor = NumParts / NumIntermediates;
730     for (unsigned i = 0; i != NumIntermediates; ++i)
731       getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
732   }
733 }
734 
735 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
736                            EVT valuevt, bool IsABIMangledValue)
737     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
738       RegCount(1, regs.size()), IsABIMangled(IsABIMangledValue) {}
739 
740 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
741                            const DataLayout &DL, unsigned Reg, Type *Ty,
742                            bool IsABIMangledValue) {
743   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
744 
745   IsABIMangled = IsABIMangledValue;
746 
747   for (EVT ValueVT : ValueVTs) {
748     unsigned NumRegs = IsABIMangledValue
749                            ? TLI.getNumRegistersForCallingConv(Context, ValueVT)
750                            : TLI.getNumRegisters(Context, ValueVT);
751     MVT RegisterVT = IsABIMangledValue
752                          ? TLI.getRegisterTypeForCallingConv(Context, ValueVT)
753                          : TLI.getRegisterType(Context, ValueVT);
754     for (unsigned i = 0; i != NumRegs; ++i)
755       Regs.push_back(Reg + i);
756     RegVTs.push_back(RegisterVT);
757     RegCount.push_back(NumRegs);
758     Reg += NumRegs;
759   }
760 }
761 
762 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
763                                       FunctionLoweringInfo &FuncInfo,
764                                       const SDLoc &dl, SDValue &Chain,
765                                       SDValue *Flag, const Value *V) const {
766   // A Value with type {} or [0 x %t] needs no registers.
767   if (ValueVTs.empty())
768     return SDValue();
769 
770   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
771 
772   // Assemble the legal parts into the final values.
773   SmallVector<SDValue, 4> Values(ValueVTs.size());
774   SmallVector<SDValue, 8> Parts;
775   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
776     // Copy the legal parts from the registers.
777     EVT ValueVT = ValueVTs[Value];
778     unsigned NumRegs = RegCount[Value];
779     MVT RegisterVT = IsABIMangled
780                          ? TLI.getRegisterTypeForCallingConv(RegVTs[Value])
781                          : RegVTs[Value];
782 
783     Parts.resize(NumRegs);
784     for (unsigned i = 0; i != NumRegs; ++i) {
785       SDValue P;
786       if (!Flag) {
787         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
788       } else {
789         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
790         *Flag = P.getValue(2);
791       }
792 
793       Chain = P.getValue(1);
794       Parts[i] = P;
795 
796       // If the source register was virtual and if we know something about it,
797       // add an assert node.
798       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
799           !RegisterVT.isInteger() || RegisterVT.isVector())
800         continue;
801 
802       const FunctionLoweringInfo::LiveOutInfo *LOI =
803         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
804       if (!LOI)
805         continue;
806 
807       unsigned RegSize = RegisterVT.getSizeInBits();
808       unsigned NumSignBits = LOI->NumSignBits;
809       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
810 
811       if (NumZeroBits == RegSize) {
812         // The current value is a zero.
813         // Explicitly express that as it would be easier for
814         // optimizations to kick in.
815         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
816         continue;
817       }
818 
819       // FIXME: We capture more information than the dag can represent.  For
820       // now, just use the tightest assertzext/assertsext possible.
821       bool isSExt = true;
822       EVT FromVT(MVT::Other);
823       if (NumSignBits == RegSize) {
824         isSExt = true;   // ASSERT SEXT 1
825         FromVT = MVT::i1;
826       } else if (NumZeroBits >= RegSize - 1) {
827         isSExt = false;  // ASSERT ZEXT 1
828         FromVT = MVT::i1;
829       } else if (NumSignBits > RegSize - 8) {
830         isSExt = true;   // ASSERT SEXT 8
831         FromVT = MVT::i8;
832       } else if (NumZeroBits >= RegSize - 8) {
833         isSExt = false;  // ASSERT ZEXT 8
834         FromVT = MVT::i8;
835       } else if (NumSignBits > RegSize - 16) {
836         isSExt = true;   // ASSERT SEXT 16
837         FromVT = MVT::i16;
838       } else if (NumZeroBits >= RegSize - 16) {
839         isSExt = false;  // ASSERT ZEXT 16
840         FromVT = MVT::i16;
841       } else if (NumSignBits > RegSize - 32) {
842         isSExt = true;   // ASSERT SEXT 32
843         FromVT = MVT::i32;
844       } else if (NumZeroBits >= RegSize - 32) {
845         isSExt = false;  // ASSERT ZEXT 32
846         FromVT = MVT::i32;
847       } else {
848         continue;
849       }
850       // Add an assertion node.
851       assert(FromVT != MVT::Other);
852       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
853                              RegisterVT, P, DAG.getValueType(FromVT));
854     }
855 
856     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
857                                      NumRegs, RegisterVT, ValueVT, V);
858     Part += NumRegs;
859     Parts.clear();
860   }
861 
862   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
863 }
864 
865 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
866                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
867                                  const Value *V,
868                                  ISD::NodeType PreferredExtendType) const {
869   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
870   ISD::NodeType ExtendKind = PreferredExtendType;
871 
872   // Get the list of the values's legal parts.
873   unsigned NumRegs = Regs.size();
874   SmallVector<SDValue, 8> Parts(NumRegs);
875   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
876     unsigned NumParts = RegCount[Value];
877 
878     MVT RegisterVT = IsABIMangled
879                          ? TLI.getRegisterTypeForCallingConv(RegVTs[Value])
880                          : RegVTs[Value];
881 
882     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
883       ExtendKind = ISD::ZERO_EXTEND;
884 
885     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
886                    &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
887     Part += NumParts;
888   }
889 
890   // Copy the parts into the registers.
891   SmallVector<SDValue, 8> Chains(NumRegs);
892   for (unsigned i = 0; i != NumRegs; ++i) {
893     SDValue Part;
894     if (!Flag) {
895       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
896     } else {
897       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
898       *Flag = Part.getValue(1);
899     }
900 
901     Chains[i] = Part.getValue(0);
902   }
903 
904   if (NumRegs == 1 || Flag)
905     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
906     // flagged to it. That is the CopyToReg nodes and the user are considered
907     // a single scheduling unit. If we create a TokenFactor and return it as
908     // chain, then the TokenFactor is both a predecessor (operand) of the
909     // user as well as a successor (the TF operands are flagged to the user).
910     // c1, f1 = CopyToReg
911     // c2, f2 = CopyToReg
912     // c3     = TokenFactor c1, c2
913     // ...
914     //        = op c3, ..., f2
915     Chain = Chains[NumRegs-1];
916   else
917     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
918 }
919 
920 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
921                                         unsigned MatchingIdx, const SDLoc &dl,
922                                         SelectionDAG &DAG,
923                                         std::vector<SDValue> &Ops) const {
924   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
925 
926   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
927   if (HasMatching)
928     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
929   else if (!Regs.empty() &&
930            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
931     // Put the register class of the virtual registers in the flag word.  That
932     // way, later passes can recompute register class constraints for inline
933     // assembly as well as normal instructions.
934     // Don't do this for tied operands that can use the regclass information
935     // from the def.
936     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
937     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
938     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
939   }
940 
941   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
942   Ops.push_back(Res);
943 
944   if (Code == InlineAsm::Kind_Clobber) {
945     // Clobbers should always have a 1:1 mapping with registers, and may
946     // reference registers that have illegal (e.g. vector) types. Hence, we
947     // shouldn't try to apply any sort of splitting logic to them.
948     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
949            "No 1:1 mapping from clobbers to regs?");
950     unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
951     (void)SP;
952     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
953       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
954       assert(
955           (Regs[I] != SP ||
956            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
957           "If we clobbered the stack pointer, MFI should know about it.");
958     }
959     return;
960   }
961 
962   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
963     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
964     MVT RegisterVT = RegVTs[Value];
965     for (unsigned i = 0; i != NumRegs; ++i) {
966       assert(Reg < Regs.size() && "Mismatch in # registers expected");
967       unsigned TheReg = Regs[Reg++];
968       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
969     }
970   }
971 }
972 
973 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
974                                const TargetLibraryInfo *li) {
975   AA = aa;
976   GFI = gfi;
977   LibInfo = li;
978   DL = &DAG.getDataLayout();
979   Context = DAG.getContext();
980   LPadToCallSiteMap.clear();
981 }
982 
983 void SelectionDAGBuilder::clear() {
984   NodeMap.clear();
985   UnusedArgNodeMap.clear();
986   PendingLoads.clear();
987   PendingExports.clear();
988   CurInst = nullptr;
989   HasTailCall = false;
990   SDNodeOrder = LowestSDNodeOrder;
991   StatepointLowering.clear();
992 }
993 
994 void SelectionDAGBuilder::clearDanglingDebugInfo() {
995   DanglingDebugInfoMap.clear();
996 }
997 
998 SDValue SelectionDAGBuilder::getRoot() {
999   if (PendingLoads.empty())
1000     return DAG.getRoot();
1001 
1002   if (PendingLoads.size() == 1) {
1003     SDValue Root = PendingLoads[0];
1004     DAG.setRoot(Root);
1005     PendingLoads.clear();
1006     return Root;
1007   }
1008 
1009   // Otherwise, we have to make a token factor node.
1010   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
1011                              PendingLoads);
1012   PendingLoads.clear();
1013   DAG.setRoot(Root);
1014   return Root;
1015 }
1016 
1017 SDValue SelectionDAGBuilder::getControlRoot() {
1018   SDValue Root = DAG.getRoot();
1019 
1020   if (PendingExports.empty())
1021     return Root;
1022 
1023   // Turn all of the CopyToReg chains into one factored node.
1024   if (Root.getOpcode() != ISD::EntryToken) {
1025     unsigned i = 0, e = PendingExports.size();
1026     for (; i != e; ++i) {
1027       assert(PendingExports[i].getNode()->getNumOperands() > 1);
1028       if (PendingExports[i].getNode()->getOperand(0) == Root)
1029         break;  // Don't add the root if we already indirectly depend on it.
1030     }
1031 
1032     if (i == e)
1033       PendingExports.push_back(Root);
1034   }
1035 
1036   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
1037                      PendingExports);
1038   PendingExports.clear();
1039   DAG.setRoot(Root);
1040   return Root;
1041 }
1042 
1043 void SelectionDAGBuilder::visit(const Instruction &I) {
1044   // Set up outgoing PHI node register values before emitting the terminator.
1045   if (isa<TerminatorInst>(&I)) {
1046     HandlePHINodesInSuccessorBlocks(I.getParent());
1047   }
1048 
1049   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1050   if (!isa<DbgInfoIntrinsic>(I))
1051     ++SDNodeOrder;
1052 
1053   CurInst = &I;
1054 
1055   visit(I.getOpcode(), I);
1056 
1057   if (!isa<TerminatorInst>(&I) && !HasTailCall &&
1058       !isStatepoint(&I)) // statepoints handle their exports internally
1059     CopyToExportRegsIfNeeded(&I);
1060 
1061   CurInst = nullptr;
1062 }
1063 
1064 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1065   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1066 }
1067 
1068 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1069   // Note: this doesn't use InstVisitor, because it has to work with
1070   // ConstantExpr's in addition to instructions.
1071   switch (Opcode) {
1072   default: llvm_unreachable("Unknown instruction type encountered!");
1073     // Build the switch statement using the Instruction.def file.
1074 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1075     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1076 #include "llvm/IR/Instruction.def"
1077   }
1078 }
1079 
1080 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1081 // generate the debug data structures now that we've seen its definition.
1082 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1083                                                    SDValue Val) {
1084   DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
1085   if (DDI.getDI()) {
1086     const DbgValueInst *DI = DDI.getDI();
1087     DebugLoc dl = DDI.getdl();
1088     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1089     DILocalVariable *Variable = DI->getVariable();
1090     DIExpression *Expr = DI->getExpression();
1091     assert(Variable->isValidLocationForIntrinsic(dl) &&
1092            "Expected inlined-at fields to agree");
1093     SDDbgValue *SDV;
1094     if (Val.getNode()) {
1095       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1096         SDV = getDbgValue(Val, Variable, Expr, dl, DbgSDNodeOrder);
1097         DAG.AddDbgValue(SDV, Val.getNode(), false);
1098       }
1099     } else
1100       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1101     DanglingDebugInfoMap[V] = DanglingDebugInfo();
1102   }
1103 }
1104 
1105 /// getCopyFromRegs - If there was virtual register allocated for the value V
1106 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1107 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1108   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1109   SDValue Result;
1110 
1111   if (It != FuncInfo.ValueMap.end()) {
1112     unsigned InReg = It->second;
1113 
1114     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1115                      DAG.getDataLayout(), InReg, Ty, isABIRegCopy(V));
1116     SDValue Chain = DAG.getEntryNode();
1117     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1118                                  V);
1119     resolveDanglingDebugInfo(V, Result);
1120   }
1121 
1122   return Result;
1123 }
1124 
1125 /// getValue - Return an SDValue for the given Value.
1126 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1127   // If we already have an SDValue for this value, use it. It's important
1128   // to do this first, so that we don't create a CopyFromReg if we already
1129   // have a regular SDValue.
1130   SDValue &N = NodeMap[V];
1131   if (N.getNode()) return N;
1132 
1133   // If there's a virtual register allocated and initialized for this
1134   // value, use it.
1135   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1136     return copyFromReg;
1137 
1138   // Otherwise create a new SDValue and remember it.
1139   SDValue Val = getValueImpl(V);
1140   NodeMap[V] = Val;
1141   resolveDanglingDebugInfo(V, Val);
1142   return Val;
1143 }
1144 
1145 // Return true if SDValue exists for the given Value
1146 bool SelectionDAGBuilder::findValue(const Value *V) const {
1147   return (NodeMap.find(V) != NodeMap.end()) ||
1148     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1149 }
1150 
1151 /// getNonRegisterValue - Return an SDValue for the given Value, but
1152 /// don't look in FuncInfo.ValueMap for a virtual register.
1153 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1154   // If we already have an SDValue for this value, use it.
1155   SDValue &N = NodeMap[V];
1156   if (N.getNode()) {
1157     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1158       // Remove the debug location from the node as the node is about to be used
1159       // in a location which may differ from the original debug location.  This
1160       // is relevant to Constant and ConstantFP nodes because they can appear
1161       // as constant expressions inside PHI nodes.
1162       N->setDebugLoc(DebugLoc());
1163     }
1164     return N;
1165   }
1166 
1167   // Otherwise create a new SDValue and remember it.
1168   SDValue Val = getValueImpl(V);
1169   NodeMap[V] = Val;
1170   resolveDanglingDebugInfo(V, Val);
1171   return Val;
1172 }
1173 
1174 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1175 /// Create an SDValue for the given value.
1176 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1177   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1178 
1179   if (const Constant *C = dyn_cast<Constant>(V)) {
1180     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1181 
1182     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1183       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1184 
1185     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1186       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1187 
1188     if (isa<ConstantPointerNull>(C)) {
1189       unsigned AS = V->getType()->getPointerAddressSpace();
1190       return DAG.getConstant(0, getCurSDLoc(),
1191                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1192     }
1193 
1194     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1195       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1196 
1197     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1198       return DAG.getUNDEF(VT);
1199 
1200     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1201       visit(CE->getOpcode(), *CE);
1202       SDValue N1 = NodeMap[V];
1203       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1204       return N1;
1205     }
1206 
1207     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1208       SmallVector<SDValue, 4> Constants;
1209       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1210            OI != OE; ++OI) {
1211         SDNode *Val = getValue(*OI).getNode();
1212         // If the operand is an empty aggregate, there are no values.
1213         if (!Val) continue;
1214         // Add each leaf value from the operand to the Constants list
1215         // to form a flattened list of all the values.
1216         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1217           Constants.push_back(SDValue(Val, i));
1218       }
1219 
1220       return DAG.getMergeValues(Constants, getCurSDLoc());
1221     }
1222 
1223     if (const ConstantDataSequential *CDS =
1224           dyn_cast<ConstantDataSequential>(C)) {
1225       SmallVector<SDValue, 4> Ops;
1226       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1227         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1228         // Add each leaf value from the operand to the Constants list
1229         // to form a flattened list of all the values.
1230         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1231           Ops.push_back(SDValue(Val, i));
1232       }
1233 
1234       if (isa<ArrayType>(CDS->getType()))
1235         return DAG.getMergeValues(Ops, getCurSDLoc());
1236       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1237     }
1238 
1239     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1240       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1241              "Unknown struct or array constant!");
1242 
1243       SmallVector<EVT, 4> ValueVTs;
1244       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1245       unsigned NumElts = ValueVTs.size();
1246       if (NumElts == 0)
1247         return SDValue(); // empty struct
1248       SmallVector<SDValue, 4> Constants(NumElts);
1249       for (unsigned i = 0; i != NumElts; ++i) {
1250         EVT EltVT = ValueVTs[i];
1251         if (isa<UndefValue>(C))
1252           Constants[i] = DAG.getUNDEF(EltVT);
1253         else if (EltVT.isFloatingPoint())
1254           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1255         else
1256           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1257       }
1258 
1259       return DAG.getMergeValues(Constants, getCurSDLoc());
1260     }
1261 
1262     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1263       return DAG.getBlockAddress(BA, VT);
1264 
1265     VectorType *VecTy = cast<VectorType>(V->getType());
1266     unsigned NumElements = VecTy->getNumElements();
1267 
1268     // Now that we know the number and type of the elements, get that number of
1269     // elements into the Ops array based on what kind of constant it is.
1270     SmallVector<SDValue, 16> Ops;
1271     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1272       for (unsigned i = 0; i != NumElements; ++i)
1273         Ops.push_back(getValue(CV->getOperand(i)));
1274     } else {
1275       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1276       EVT EltVT =
1277           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1278 
1279       SDValue Op;
1280       if (EltVT.isFloatingPoint())
1281         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1282       else
1283         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1284       Ops.assign(NumElements, Op);
1285     }
1286 
1287     // Create a BUILD_VECTOR node.
1288     return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1289   }
1290 
1291   // If this is a static alloca, generate it as the frameindex instead of
1292   // computation.
1293   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1294     DenseMap<const AllocaInst*, int>::iterator SI =
1295       FuncInfo.StaticAllocaMap.find(AI);
1296     if (SI != FuncInfo.StaticAllocaMap.end())
1297       return DAG.getFrameIndex(SI->second,
1298                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1299   }
1300 
1301   // If this is an instruction which fast-isel has deferred, select it now.
1302   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1303     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1304 
1305     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1306                      Inst->getType(), isABIRegCopy(V));
1307     SDValue Chain = DAG.getEntryNode();
1308     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1309   }
1310 
1311   llvm_unreachable("Can't get register for value!");
1312 }
1313 
1314 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1315   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1316   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1317   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1318   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1319   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1320   if (IsMSVCCXX || IsCoreCLR)
1321     CatchPadMBB->setIsEHFuncletEntry();
1322 
1323   DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot()));
1324 }
1325 
1326 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1327   // Update machine-CFG edge.
1328   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1329   FuncInfo.MBB->addSuccessor(TargetMBB);
1330 
1331   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1332   bool IsSEH = isAsynchronousEHPersonality(Pers);
1333   if (IsSEH) {
1334     // If this is not a fall-through branch or optimizations are switched off,
1335     // emit the branch.
1336     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1337         TM.getOptLevel() == CodeGenOpt::None)
1338       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1339                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1340     return;
1341   }
1342 
1343   // Figure out the funclet membership for the catchret's successor.
1344   // This will be used by the FuncletLayout pass to determine how to order the
1345   // BB's.
1346   // A 'catchret' returns to the outer scope's color.
1347   Value *ParentPad = I.getCatchSwitchParentPad();
1348   const BasicBlock *SuccessorColor;
1349   if (isa<ConstantTokenNone>(ParentPad))
1350     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1351   else
1352     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1353   assert(SuccessorColor && "No parent funclet for catchret!");
1354   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1355   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1356 
1357   // Create the terminator node.
1358   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1359                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1360                             DAG.getBasicBlock(SuccessorColorMBB));
1361   DAG.setRoot(Ret);
1362 }
1363 
1364 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1365   // Don't emit any special code for the cleanuppad instruction. It just marks
1366   // the start of a funclet.
1367   FuncInfo.MBB->setIsEHFuncletEntry();
1368   FuncInfo.MBB->setIsCleanupFuncletEntry();
1369 }
1370 
1371 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1372 /// many places it could ultimately go. In the IR, we have a single unwind
1373 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1374 /// This function skips over imaginary basic blocks that hold catchswitch
1375 /// instructions, and finds all the "real" machine
1376 /// basic block destinations. As those destinations may not be successors of
1377 /// EHPadBB, here we also calculate the edge probability to those destinations.
1378 /// The passed-in Prob is the edge probability to EHPadBB.
1379 static void findUnwindDestinations(
1380     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1381     BranchProbability Prob,
1382     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1383         &UnwindDests) {
1384   EHPersonality Personality =
1385     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1386   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1387   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1388 
1389   while (EHPadBB) {
1390     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1391     BasicBlock *NewEHPadBB = nullptr;
1392     if (isa<LandingPadInst>(Pad)) {
1393       // Stop on landingpads. They are not funclets.
1394       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1395       break;
1396     } else if (isa<CleanupPadInst>(Pad)) {
1397       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1398       // personalities.
1399       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1400       UnwindDests.back().first->setIsEHFuncletEntry();
1401       break;
1402     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1403       // Add the catchpad handlers to the possible destinations.
1404       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1405         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1406         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1407         if (IsMSVCCXX || IsCoreCLR)
1408           UnwindDests.back().first->setIsEHFuncletEntry();
1409       }
1410       NewEHPadBB = CatchSwitch->getUnwindDest();
1411     } else {
1412       continue;
1413     }
1414 
1415     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1416     if (BPI && NewEHPadBB)
1417       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1418     EHPadBB = NewEHPadBB;
1419   }
1420 }
1421 
1422 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1423   // Update successor info.
1424   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1425   auto UnwindDest = I.getUnwindDest();
1426   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1427   BranchProbability UnwindDestProb =
1428       (BPI && UnwindDest)
1429           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1430           : BranchProbability::getZero();
1431   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1432   for (auto &UnwindDest : UnwindDests) {
1433     UnwindDest.first->setIsEHPad();
1434     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1435   }
1436   FuncInfo.MBB->normalizeSuccProbs();
1437 
1438   // Create the terminator node.
1439   SDValue Ret =
1440       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1441   DAG.setRoot(Ret);
1442 }
1443 
1444 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1445   report_fatal_error("visitCatchSwitch not yet implemented!");
1446 }
1447 
1448 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1449   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1450   auto &DL = DAG.getDataLayout();
1451   SDValue Chain = getControlRoot();
1452   SmallVector<ISD::OutputArg, 8> Outs;
1453   SmallVector<SDValue, 8> OutVals;
1454 
1455   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1456   // lower
1457   //
1458   //   %val = call <ty> @llvm.experimental.deoptimize()
1459   //   ret <ty> %val
1460   //
1461   // differently.
1462   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1463     LowerDeoptimizingReturn();
1464     return;
1465   }
1466 
1467   if (!FuncInfo.CanLowerReturn) {
1468     unsigned DemoteReg = FuncInfo.DemoteRegister;
1469     const Function *F = I.getParent()->getParent();
1470 
1471     // Emit a store of the return value through the virtual register.
1472     // Leave Outs empty so that LowerReturn won't try to load return
1473     // registers the usual way.
1474     SmallVector<EVT, 1> PtrValueVTs;
1475     ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()),
1476                     PtrValueVTs);
1477 
1478     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1479                                         DemoteReg, PtrValueVTs[0]);
1480     SDValue RetOp = getValue(I.getOperand(0));
1481 
1482     SmallVector<EVT, 4> ValueVTs;
1483     SmallVector<uint64_t, 4> Offsets;
1484     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1485     unsigned NumValues = ValueVTs.size();
1486 
1487     // An aggregate return value cannot wrap around the address space, so
1488     // offsets to its parts don't wrap either.
1489     SDNodeFlags Flags;
1490     Flags.setNoUnsignedWrap(true);
1491 
1492     SmallVector<SDValue, 4> Chains(NumValues);
1493     for (unsigned i = 0; i != NumValues; ++i) {
1494       SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(),
1495                                 RetPtr.getValueType(), RetPtr,
1496                                 DAG.getIntPtrConstant(Offsets[i],
1497                                                       getCurSDLoc()),
1498                                 Flags);
1499       Chains[i] = DAG.getStore(Chain, getCurSDLoc(),
1500                                SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1501                                // FIXME: better loc info would be nice.
1502                                Add, MachinePointerInfo());
1503     }
1504 
1505     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1506                         MVT::Other, Chains);
1507   } else if (I.getNumOperands() != 0) {
1508     SmallVector<EVT, 4> ValueVTs;
1509     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1510     unsigned NumValues = ValueVTs.size();
1511     if (NumValues) {
1512       SDValue RetOp = getValue(I.getOperand(0));
1513 
1514       const Function *F = I.getParent()->getParent();
1515 
1516       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1517       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1518                                           Attribute::SExt))
1519         ExtendKind = ISD::SIGN_EXTEND;
1520       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1521                                                Attribute::ZExt))
1522         ExtendKind = ISD::ZERO_EXTEND;
1523 
1524       LLVMContext &Context = F->getContext();
1525       bool RetInReg = F->getAttributes().hasAttribute(
1526           AttributeList::ReturnIndex, Attribute::InReg);
1527 
1528       for (unsigned j = 0; j != NumValues; ++j) {
1529         EVT VT = ValueVTs[j];
1530 
1531         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1532           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1533 
1534         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, VT);
1535         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, VT);
1536         SmallVector<SDValue, 4> Parts(NumParts);
1537         getCopyToParts(DAG, getCurSDLoc(),
1538                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1539                        &Parts[0], NumParts, PartVT, &I, ExtendKind, true);
1540 
1541         // 'inreg' on function refers to return value
1542         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1543         if (RetInReg)
1544           Flags.setInReg();
1545 
1546         // Propagate extension type if any
1547         if (ExtendKind == ISD::SIGN_EXTEND)
1548           Flags.setSExt();
1549         else if (ExtendKind == ISD::ZERO_EXTEND)
1550           Flags.setZExt();
1551 
1552         for (unsigned i = 0; i < NumParts; ++i) {
1553           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1554                                         VT, /*isfixed=*/true, 0, 0));
1555           OutVals.push_back(Parts[i]);
1556         }
1557       }
1558     }
1559   }
1560 
1561   // Push in swifterror virtual register as the last element of Outs. This makes
1562   // sure swifterror virtual register will be returned in the swifterror
1563   // physical register.
1564   const Function *F = I.getParent()->getParent();
1565   if (TLI.supportSwiftError() &&
1566       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1567     assert(FuncInfo.SwiftErrorArg && "Need a swift error argument");
1568     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1569     Flags.setSwiftError();
1570     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1571                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1572                                   true /*isfixed*/, 1 /*origidx*/,
1573                                   0 /*partOffs*/));
1574     // Create SDNode for the swifterror virtual register.
1575     OutVals.push_back(
1576         DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt(
1577                             &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first,
1578                         EVT(TLI.getPointerTy(DL))));
1579   }
1580 
1581   bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1582   CallingConv::ID CallConv =
1583     DAG.getMachineFunction().getFunction()->getCallingConv();
1584   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1585       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1586 
1587   // Verify that the target's LowerReturn behaved as expected.
1588   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1589          "LowerReturn didn't return a valid chain!");
1590 
1591   // Update the DAG with the new chain value resulting from return lowering.
1592   DAG.setRoot(Chain);
1593 }
1594 
1595 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1596 /// created for it, emit nodes to copy the value into the virtual
1597 /// registers.
1598 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1599   // Skip empty types
1600   if (V->getType()->isEmptyTy())
1601     return;
1602 
1603   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1604   if (VMI != FuncInfo.ValueMap.end()) {
1605     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1606     CopyValueToVirtualRegister(V, VMI->second);
1607   }
1608 }
1609 
1610 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1611 /// the current basic block, add it to ValueMap now so that we'll get a
1612 /// CopyTo/FromReg.
1613 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1614   // No need to export constants.
1615   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1616 
1617   // Already exported?
1618   if (FuncInfo.isExportedInst(V)) return;
1619 
1620   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1621   CopyValueToVirtualRegister(V, Reg);
1622 }
1623 
1624 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1625                                                      const BasicBlock *FromBB) {
1626   // The operands of the setcc have to be in this block.  We don't know
1627   // how to export them from some other block.
1628   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1629     // Can export from current BB.
1630     if (VI->getParent() == FromBB)
1631       return true;
1632 
1633     // Is already exported, noop.
1634     return FuncInfo.isExportedInst(V);
1635   }
1636 
1637   // If this is an argument, we can export it if the BB is the entry block or
1638   // if it is already exported.
1639   if (isa<Argument>(V)) {
1640     if (FromBB == &FromBB->getParent()->getEntryBlock())
1641       return true;
1642 
1643     // Otherwise, can only export this if it is already exported.
1644     return FuncInfo.isExportedInst(V);
1645   }
1646 
1647   // Otherwise, constants can always be exported.
1648   return true;
1649 }
1650 
1651 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1652 BranchProbability
1653 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1654                                         const MachineBasicBlock *Dst) const {
1655   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1656   const BasicBlock *SrcBB = Src->getBasicBlock();
1657   const BasicBlock *DstBB = Dst->getBasicBlock();
1658   if (!BPI) {
1659     // If BPI is not available, set the default probability as 1 / N, where N is
1660     // the number of successors.
1661     auto SuccSize = std::max<uint32_t>(
1662         std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1);
1663     return BranchProbability(1, SuccSize);
1664   }
1665   return BPI->getEdgeProbability(SrcBB, DstBB);
1666 }
1667 
1668 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
1669                                                MachineBasicBlock *Dst,
1670                                                BranchProbability Prob) {
1671   if (!FuncInfo.BPI)
1672     Src->addSuccessorWithoutProb(Dst);
1673   else {
1674     if (Prob.isUnknown())
1675       Prob = getEdgeProbability(Src, Dst);
1676     Src->addSuccessor(Dst, Prob);
1677   }
1678 }
1679 
1680 static bool InBlock(const Value *V, const BasicBlock *BB) {
1681   if (const Instruction *I = dyn_cast<Instruction>(V))
1682     return I->getParent() == BB;
1683   return true;
1684 }
1685 
1686 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1687 /// This function emits a branch and is used at the leaves of an OR or an
1688 /// AND operator tree.
1689 void
1690 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1691                                                   MachineBasicBlock *TBB,
1692                                                   MachineBasicBlock *FBB,
1693                                                   MachineBasicBlock *CurBB,
1694                                                   MachineBasicBlock *SwitchBB,
1695                                                   BranchProbability TProb,
1696                                                   BranchProbability FProb,
1697                                                   bool InvertCond) {
1698   const BasicBlock *BB = CurBB->getBasicBlock();
1699 
1700   // If the leaf of the tree is a comparison, merge the condition into
1701   // the caseblock.
1702   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1703     // The operands of the cmp have to be in this block.  We don't know
1704     // how to export them from some other block.  If this is the first block
1705     // of the sequence, no exporting is needed.
1706     if (CurBB == SwitchBB ||
1707         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1708          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1709       ISD::CondCode Condition;
1710       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1711         ICmpInst::Predicate Pred =
1712             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
1713         Condition = getICmpCondCode(Pred);
1714       } else {
1715         const FCmpInst *FC = cast<FCmpInst>(Cond);
1716         FCmpInst::Predicate Pred =
1717             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
1718         Condition = getFCmpCondCode(Pred);
1719         if (TM.Options.NoNaNsFPMath)
1720           Condition = getFCmpCodeWithoutNaN(Condition);
1721       }
1722 
1723       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
1724                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
1725       SwitchCases.push_back(CB);
1726       return;
1727     }
1728   }
1729 
1730   // Create a CaseBlock record representing this branch.
1731   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
1732   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
1733                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
1734   SwitchCases.push_back(CB);
1735 }
1736 
1737 /// FindMergedConditions - If Cond is an expression like
1738 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1739                                                MachineBasicBlock *TBB,
1740                                                MachineBasicBlock *FBB,
1741                                                MachineBasicBlock *CurBB,
1742                                                MachineBasicBlock *SwitchBB,
1743                                                Instruction::BinaryOps Opc,
1744                                                BranchProbability TProb,
1745                                                BranchProbability FProb,
1746                                                bool InvertCond) {
1747   // Skip over not part of the tree and remember to invert op and operands at
1748   // next level.
1749   if (BinaryOperator::isNot(Cond) && Cond->hasOneUse()) {
1750     const Value *CondOp = BinaryOperator::getNotArgument(Cond);
1751     if (InBlock(CondOp, CurBB->getBasicBlock())) {
1752       FindMergedConditions(CondOp, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
1753                            !InvertCond);
1754       return;
1755     }
1756   }
1757 
1758   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1759   // Compute the effective opcode for Cond, taking into account whether it needs
1760   // to be inverted, e.g.
1761   //   and (not (or A, B)), C
1762   // gets lowered as
1763   //   and (and (not A, not B), C)
1764   unsigned BOpc = 0;
1765   if (BOp) {
1766     BOpc = BOp->getOpcode();
1767     if (InvertCond) {
1768       if (BOpc == Instruction::And)
1769         BOpc = Instruction::Or;
1770       else if (BOpc == Instruction::Or)
1771         BOpc = Instruction::And;
1772     }
1773   }
1774 
1775   // If this node is not part of the or/and tree, emit it as a branch.
1776   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1777       BOpc != Opc || !BOp->hasOneUse() ||
1778       BOp->getParent() != CurBB->getBasicBlock() ||
1779       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1780       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1781     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
1782                                  TProb, FProb, InvertCond);
1783     return;
1784   }
1785 
1786   //  Create TmpBB after CurBB.
1787   MachineFunction::iterator BBI(CurBB);
1788   MachineFunction &MF = DAG.getMachineFunction();
1789   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1790   CurBB->getParent()->insert(++BBI, TmpBB);
1791 
1792   if (Opc == Instruction::Or) {
1793     // Codegen X | Y as:
1794     // BB1:
1795     //   jmp_if_X TBB
1796     //   jmp TmpBB
1797     // TmpBB:
1798     //   jmp_if_Y TBB
1799     //   jmp FBB
1800     //
1801 
1802     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1803     // The requirement is that
1804     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
1805     //     = TrueProb for original BB.
1806     // Assuming the original probabilities are A and B, one choice is to set
1807     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
1808     // A/(1+B) and 2B/(1+B). This choice assumes that
1809     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
1810     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
1811     // TmpBB, but the math is more complicated.
1812 
1813     auto NewTrueProb = TProb / 2;
1814     auto NewFalseProb = TProb / 2 + FProb;
1815     // Emit the LHS condition.
1816     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
1817                          NewTrueProb, NewFalseProb, InvertCond);
1818 
1819     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
1820     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
1821     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1822     // Emit the RHS condition into TmpBB.
1823     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1824                          Probs[0], Probs[1], InvertCond);
1825   } else {
1826     assert(Opc == Instruction::And && "Unknown merge op!");
1827     // Codegen X & Y as:
1828     // BB1:
1829     //   jmp_if_X TmpBB
1830     //   jmp FBB
1831     // TmpBB:
1832     //   jmp_if_Y TBB
1833     //   jmp FBB
1834     //
1835     //  This requires creation of TmpBB after CurBB.
1836 
1837     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1838     // The requirement is that
1839     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
1840     //     = FalseProb for original BB.
1841     // Assuming the original probabilities are A and B, one choice is to set
1842     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
1843     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
1844     // TrueProb for BB1 * FalseProb for TmpBB.
1845 
1846     auto NewTrueProb = TProb + FProb / 2;
1847     auto NewFalseProb = FProb / 2;
1848     // Emit the LHS condition.
1849     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
1850                          NewTrueProb, NewFalseProb, InvertCond);
1851 
1852     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
1853     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
1854     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1855     // Emit the RHS condition into TmpBB.
1856     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1857                          Probs[0], Probs[1], InvertCond);
1858   }
1859 }
1860 
1861 /// If the set of cases should be emitted as a series of branches, return true.
1862 /// If we should emit this as a bunch of and/or'd together conditions, return
1863 /// false.
1864 bool
1865 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1866   if (Cases.size() != 2) return true;
1867 
1868   // If this is two comparisons of the same values or'd or and'd together, they
1869   // will get folded into a single comparison, so don't emit two blocks.
1870   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1871        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1872       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1873        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1874     return false;
1875   }
1876 
1877   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1878   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1879   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1880       Cases[0].CC == Cases[1].CC &&
1881       isa<Constant>(Cases[0].CmpRHS) &&
1882       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1883     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1884       return false;
1885     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1886       return false;
1887   }
1888 
1889   return true;
1890 }
1891 
1892 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1893   MachineBasicBlock *BrMBB = FuncInfo.MBB;
1894 
1895   // Update machine-CFG edges.
1896   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1897 
1898   if (I.isUnconditional()) {
1899     // Update machine-CFG edges.
1900     BrMBB->addSuccessor(Succ0MBB);
1901 
1902     // If this is not a fall-through branch or optimizations are switched off,
1903     // emit the branch.
1904     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
1905       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1906                               MVT::Other, getControlRoot(),
1907                               DAG.getBasicBlock(Succ0MBB)));
1908 
1909     return;
1910   }
1911 
1912   // If this condition is one of the special cases we handle, do special stuff
1913   // now.
1914   const Value *CondVal = I.getCondition();
1915   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1916 
1917   // If this is a series of conditions that are or'd or and'd together, emit
1918   // this as a sequence of branches instead of setcc's with and/or operations.
1919   // As long as jumps are not expensive, this should improve performance.
1920   // For example, instead of something like:
1921   //     cmp A, B
1922   //     C = seteq
1923   //     cmp D, E
1924   //     F = setle
1925   //     or C, F
1926   //     jnz foo
1927   // Emit:
1928   //     cmp A, B
1929   //     je foo
1930   //     cmp D, E
1931   //     jle foo
1932   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1933     Instruction::BinaryOps Opcode = BOp->getOpcode();
1934     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
1935         !I.getMetadata(LLVMContext::MD_unpredictable) &&
1936         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
1937       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1938                            Opcode,
1939                            getEdgeProbability(BrMBB, Succ0MBB),
1940                            getEdgeProbability(BrMBB, Succ1MBB),
1941                            /*InvertCond=*/false);
1942       // If the compares in later blocks need to use values not currently
1943       // exported from this block, export them now.  This block should always
1944       // be the first entry.
1945       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1946 
1947       // Allow some cases to be rejected.
1948       if (ShouldEmitAsBranches(SwitchCases)) {
1949         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1950           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1951           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1952         }
1953 
1954         // Emit the branch for this block.
1955         visitSwitchCase(SwitchCases[0], BrMBB);
1956         SwitchCases.erase(SwitchCases.begin());
1957         return;
1958       }
1959 
1960       // Okay, we decided not to do this, remove any inserted MBB's and clear
1961       // SwitchCases.
1962       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1963         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1964 
1965       SwitchCases.clear();
1966     }
1967   }
1968 
1969   // Create a CaseBlock record representing this branch.
1970   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1971                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
1972 
1973   // Use visitSwitchCase to actually insert the fast branch sequence for this
1974   // cond branch.
1975   visitSwitchCase(CB, BrMBB);
1976 }
1977 
1978 /// visitSwitchCase - Emits the necessary code to represent a single node in
1979 /// the binary search tree resulting from lowering a switch instruction.
1980 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1981                                           MachineBasicBlock *SwitchBB) {
1982   SDValue Cond;
1983   SDValue CondLHS = getValue(CB.CmpLHS);
1984   SDLoc dl = CB.DL;
1985 
1986   // Build the setcc now.
1987   if (!CB.CmpMHS) {
1988     // Fold "(X == true)" to X and "(X == false)" to !X to
1989     // handle common cases produced by branch lowering.
1990     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1991         CB.CC == ISD::SETEQ)
1992       Cond = CondLHS;
1993     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1994              CB.CC == ISD::SETEQ) {
1995       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
1996       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1997     } else
1998       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1999   } else {
2000     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2001 
2002     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2003     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2004 
2005     SDValue CmpOp = getValue(CB.CmpMHS);
2006     EVT VT = CmpOp.getValueType();
2007 
2008     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2009       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2010                           ISD::SETLE);
2011     } else {
2012       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2013                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2014       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2015                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2016     }
2017   }
2018 
2019   // Update successor info
2020   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2021   // TrueBB and FalseBB are always different unless the incoming IR is
2022   // degenerate. This only happens when running llc on weird IR.
2023   if (CB.TrueBB != CB.FalseBB)
2024     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2025   SwitchBB->normalizeSuccProbs();
2026 
2027   // If the lhs block is the next block, invert the condition so that we can
2028   // fall through to the lhs instead of the rhs block.
2029   if (CB.TrueBB == NextBlock(SwitchBB)) {
2030     std::swap(CB.TrueBB, CB.FalseBB);
2031     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2032     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2033   }
2034 
2035   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2036                                MVT::Other, getControlRoot(), Cond,
2037                                DAG.getBasicBlock(CB.TrueBB));
2038 
2039   // Insert the false branch. Do this even if it's a fall through branch,
2040   // this makes it easier to do DAG optimizations which require inverting
2041   // the branch condition.
2042   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2043                        DAG.getBasicBlock(CB.FalseBB));
2044 
2045   DAG.setRoot(BrCond);
2046 }
2047 
2048 /// visitJumpTable - Emit JumpTable node in the current MBB
2049 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
2050   // Emit the code for the jump table
2051   assert(JT.Reg != -1U && "Should lower JT Header first!");
2052   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2053   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2054                                      JT.Reg, PTy);
2055   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2056   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2057                                     MVT::Other, Index.getValue(1),
2058                                     Table, Index);
2059   DAG.setRoot(BrJumpTable);
2060 }
2061 
2062 /// visitJumpTableHeader - This function emits necessary code to produce index
2063 /// in the JumpTable from switch case.
2064 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
2065                                                JumpTableHeader &JTH,
2066                                                MachineBasicBlock *SwitchBB) {
2067   SDLoc dl = getCurSDLoc();
2068 
2069   // Subtract the lowest switch case value from the value being switched on and
2070   // conditional branch to default mbb if the result is greater than the
2071   // difference between smallest and largest cases.
2072   SDValue SwitchOp = getValue(JTH.SValue);
2073   EVT VT = SwitchOp.getValueType();
2074   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2075                             DAG.getConstant(JTH.First, dl, VT));
2076 
2077   // The SDNode we just created, which holds the value being switched on minus
2078   // the smallest case value, needs to be copied to a virtual register so it
2079   // can be used as an index into the jump table in a subsequent basic block.
2080   // This value may be smaller or larger than the target's pointer type, and
2081   // therefore require extension or truncating.
2082   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2083   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2084 
2085   unsigned JumpTableReg =
2086       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2087   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2088                                     JumpTableReg, SwitchOp);
2089   JT.Reg = JumpTableReg;
2090 
2091   // Emit the range check for the jump table, and branch to the default block
2092   // for the switch statement if the value being switched on exceeds the largest
2093   // case in the switch.
2094   SDValue CMP = DAG.getSetCC(
2095       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2096                                  Sub.getValueType()),
2097       Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2098 
2099   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2100                                MVT::Other, CopyTo, CMP,
2101                                DAG.getBasicBlock(JT.Default));
2102 
2103   // Avoid emitting unnecessary branches to the next block.
2104   if (JT.MBB != NextBlock(SwitchBB))
2105     BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2106                          DAG.getBasicBlock(JT.MBB));
2107 
2108   DAG.setRoot(BrCond);
2109 }
2110 
2111 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2112 /// variable if there exists one.
2113 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2114                                  SDValue &Chain) {
2115   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2116   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2117   MachineFunction &MF = DAG.getMachineFunction();
2118   Value *Global = TLI.getSDagStackGuard(*MF.getFunction()->getParent());
2119   MachineSDNode *Node =
2120       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2121   if (Global) {
2122     MachinePointerInfo MPInfo(Global);
2123     MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1);
2124     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2125                  MachineMemOperand::MODereferenceable;
2126     *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, PtrTy.getSizeInBits() / 8,
2127                                        DAG.getEVTAlignment(PtrTy));
2128     Node->setMemRefs(MemRefs, MemRefs + 1);
2129   }
2130   return SDValue(Node, 0);
2131 }
2132 
2133 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2134 /// tail spliced into a stack protector check success bb.
2135 ///
2136 /// For a high level explanation of how this fits into the stack protector
2137 /// generation see the comment on the declaration of class
2138 /// StackProtectorDescriptor.
2139 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2140                                                   MachineBasicBlock *ParentBB) {
2141 
2142   // First create the loads to the guard/stack slot for the comparison.
2143   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2144   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2145 
2146   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2147   int FI = MFI.getStackProtectorIndex();
2148 
2149   SDValue Guard;
2150   SDLoc dl = getCurSDLoc();
2151   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2152   const Module &M = *ParentBB->getParent()->getFunction()->getParent();
2153   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2154 
2155   // Generate code to load the content of the guard slot.
2156   SDValue StackSlot = DAG.getLoad(
2157       PtrTy, dl, DAG.getEntryNode(), StackSlotPtr,
2158       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2159       MachineMemOperand::MOVolatile);
2160 
2161   // Retrieve guard check function, nullptr if instrumentation is inlined.
2162   if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) {
2163     // The target provides a guard check function to validate the guard value.
2164     // Generate a call to that function with the content of the guard slot as
2165     // argument.
2166     auto *Fn = cast<Function>(GuardCheck);
2167     FunctionType *FnTy = Fn->getFunctionType();
2168     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2169 
2170     TargetLowering::ArgListTy Args;
2171     TargetLowering::ArgListEntry Entry;
2172     Entry.Node = StackSlot;
2173     Entry.Ty = FnTy->getParamType(0);
2174     if (Fn->hasAttribute(1, Attribute::AttrKind::InReg))
2175       Entry.IsInReg = true;
2176     Args.push_back(Entry);
2177 
2178     TargetLowering::CallLoweringInfo CLI(DAG);
2179     CLI.setDebugLoc(getCurSDLoc())
2180       .setChain(DAG.getEntryNode())
2181       .setCallee(Fn->getCallingConv(), FnTy->getReturnType(),
2182                  getValue(GuardCheck), std::move(Args));
2183 
2184     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2185     DAG.setRoot(Result.second);
2186     return;
2187   }
2188 
2189   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2190   // Otherwise, emit a volatile load to retrieve the stack guard value.
2191   SDValue Chain = DAG.getEntryNode();
2192   if (TLI.useLoadStackGuardNode()) {
2193     Guard = getLoadStackGuard(DAG, dl, Chain);
2194   } else {
2195     const Value *IRGuard = TLI.getSDagStackGuard(M);
2196     SDValue GuardPtr = getValue(IRGuard);
2197 
2198     Guard =
2199         DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0),
2200                     Align, MachineMemOperand::MOVolatile);
2201   }
2202 
2203   // Perform the comparison via a subtract/getsetcc.
2204   EVT VT = Guard.getValueType();
2205   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot);
2206 
2207   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2208                                                         *DAG.getContext(),
2209                                                         Sub.getValueType()),
2210                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2211 
2212   // If the sub is not 0, then we know the guard/stackslot do not equal, so
2213   // branch to failure MBB.
2214   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2215                                MVT::Other, StackSlot.getOperand(0),
2216                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2217   // Otherwise branch to success MBB.
2218   SDValue Br = DAG.getNode(ISD::BR, dl,
2219                            MVT::Other, BrCond,
2220                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2221 
2222   DAG.setRoot(Br);
2223 }
2224 
2225 /// Codegen the failure basic block for a stack protector check.
2226 ///
2227 /// A failure stack protector machine basic block consists simply of a call to
2228 /// __stack_chk_fail().
2229 ///
2230 /// For a high level explanation of how this fits into the stack protector
2231 /// generation see the comment on the declaration of class
2232 /// StackProtectorDescriptor.
2233 void
2234 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2235   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2236   SDValue Chain =
2237       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2238                       None, false, getCurSDLoc(), false, false).second;
2239   DAG.setRoot(Chain);
2240 }
2241 
2242 /// visitBitTestHeader - This function emits necessary code to produce value
2243 /// suitable for "bit tests"
2244 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2245                                              MachineBasicBlock *SwitchBB) {
2246   SDLoc dl = getCurSDLoc();
2247 
2248   // Subtract the minimum value
2249   SDValue SwitchOp = getValue(B.SValue);
2250   EVT VT = SwitchOp.getValueType();
2251   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2252                             DAG.getConstant(B.First, dl, VT));
2253 
2254   // Check range
2255   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2256   SDValue RangeCmp = DAG.getSetCC(
2257       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2258                                  Sub.getValueType()),
2259       Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2260 
2261   // Determine the type of the test operands.
2262   bool UsePtrType = false;
2263   if (!TLI.isTypeLegal(VT))
2264     UsePtrType = true;
2265   else {
2266     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2267       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2268         // Switch table case range are encoded into series of masks.
2269         // Just use pointer type, it's guaranteed to fit.
2270         UsePtrType = true;
2271         break;
2272       }
2273   }
2274   if (UsePtrType) {
2275     VT = TLI.getPointerTy(DAG.getDataLayout());
2276     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2277   }
2278 
2279   B.RegVT = VT.getSimpleVT();
2280   B.Reg = FuncInfo.CreateReg(B.RegVT);
2281   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2282 
2283   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2284 
2285   addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2286   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2287   SwitchBB->normalizeSuccProbs();
2288 
2289   SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2290                                 MVT::Other, CopyTo, RangeCmp,
2291                                 DAG.getBasicBlock(B.Default));
2292 
2293   // Avoid emitting unnecessary branches to the next block.
2294   if (MBB != NextBlock(SwitchBB))
2295     BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2296                           DAG.getBasicBlock(MBB));
2297 
2298   DAG.setRoot(BrRange);
2299 }
2300 
2301 /// visitBitTestCase - this function produces one "bit test"
2302 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2303                                            MachineBasicBlock* NextMBB,
2304                                            BranchProbability BranchProbToNext,
2305                                            unsigned Reg,
2306                                            BitTestCase &B,
2307                                            MachineBasicBlock *SwitchBB) {
2308   SDLoc dl = getCurSDLoc();
2309   MVT VT = BB.RegVT;
2310   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2311   SDValue Cmp;
2312   unsigned PopCount = countPopulation(B.Mask);
2313   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2314   if (PopCount == 1) {
2315     // Testing for a single bit; just compare the shift count with what it
2316     // would need to be to shift a 1 bit in that position.
2317     Cmp = DAG.getSetCC(
2318         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2319         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2320         ISD::SETEQ);
2321   } else if (PopCount == BB.Range) {
2322     // There is only one zero bit in the range, test for it directly.
2323     Cmp = DAG.getSetCC(
2324         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2325         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2326         ISD::SETNE);
2327   } else {
2328     // Make desired shift
2329     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2330                                     DAG.getConstant(1, dl, VT), ShiftOp);
2331 
2332     // Emit bit tests and jumps
2333     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2334                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2335     Cmp = DAG.getSetCC(
2336         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2337         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2338   }
2339 
2340   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2341   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2342   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2343   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2344   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2345   // one as they are relative probabilities (and thus work more like weights),
2346   // and hence we need to normalize them to let the sum of them become one.
2347   SwitchBB->normalizeSuccProbs();
2348 
2349   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2350                               MVT::Other, getControlRoot(),
2351                               Cmp, DAG.getBasicBlock(B.TargetBB));
2352 
2353   // Avoid emitting unnecessary branches to the next block.
2354   if (NextMBB != NextBlock(SwitchBB))
2355     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2356                         DAG.getBasicBlock(NextMBB));
2357 
2358   DAG.setRoot(BrAnd);
2359 }
2360 
2361 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2362   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2363 
2364   // Retrieve successors. Look through artificial IR level blocks like
2365   // catchswitch for successors.
2366   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2367   const BasicBlock *EHPadBB = I.getSuccessor(1);
2368 
2369   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2370   // have to do anything here to lower funclet bundles.
2371   assert(!I.hasOperandBundlesOtherThan(
2372              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2373          "Cannot lower invokes with arbitrary operand bundles yet!");
2374 
2375   const Value *Callee(I.getCalledValue());
2376   const Function *Fn = dyn_cast<Function>(Callee);
2377   if (isa<InlineAsm>(Callee))
2378     visitInlineAsm(&I);
2379   else if (Fn && Fn->isIntrinsic()) {
2380     switch (Fn->getIntrinsicID()) {
2381     default:
2382       llvm_unreachable("Cannot invoke this intrinsic");
2383     case Intrinsic::donothing:
2384       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2385       break;
2386     case Intrinsic::experimental_patchpoint_void:
2387     case Intrinsic::experimental_patchpoint_i64:
2388       visitPatchpoint(&I, EHPadBB);
2389       break;
2390     case Intrinsic::experimental_gc_statepoint:
2391       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2392       break;
2393     }
2394   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2395     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2396     // Eventually we will support lowering the @llvm.experimental.deoptimize
2397     // intrinsic, and right now there are no plans to support other intrinsics
2398     // with deopt state.
2399     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2400   } else {
2401     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2402   }
2403 
2404   // If the value of the invoke is used outside of its defining block, make it
2405   // available as a virtual register.
2406   // We already took care of the exported value for the statepoint instruction
2407   // during call to the LowerStatepoint.
2408   if (!isStatepoint(I)) {
2409     CopyToExportRegsIfNeeded(&I);
2410   }
2411 
2412   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2413   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2414   BranchProbability EHPadBBProb =
2415       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2416           : BranchProbability::getZero();
2417   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2418 
2419   // Update successor info.
2420   addSuccessorWithProb(InvokeMBB, Return);
2421   for (auto &UnwindDest : UnwindDests) {
2422     UnwindDest.first->setIsEHPad();
2423     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2424   }
2425   InvokeMBB->normalizeSuccProbs();
2426 
2427   // Drop into normal successor.
2428   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2429                           MVT::Other, getControlRoot(),
2430                           DAG.getBasicBlock(Return)));
2431 }
2432 
2433 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2434   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2435 }
2436 
2437 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2438   assert(FuncInfo.MBB->isEHPad() &&
2439          "Call to landingpad not in landing pad!");
2440 
2441   MachineBasicBlock *MBB = FuncInfo.MBB;
2442   addLandingPadInfo(LP, *MBB);
2443 
2444   // If there aren't registers to copy the values into (e.g., during SjLj
2445   // exceptions), then don't bother to create these DAG nodes.
2446   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2447   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2448   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2449       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2450     return;
2451 
2452   // If landingpad's return type is token type, we don't create DAG nodes
2453   // for its exception pointer and selector value. The extraction of exception
2454   // pointer or selector value from token type landingpads is not currently
2455   // supported.
2456   if (LP.getType()->isTokenTy())
2457     return;
2458 
2459   SmallVector<EVT, 2> ValueVTs;
2460   SDLoc dl = getCurSDLoc();
2461   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2462   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2463 
2464   // Get the two live-in registers as SDValues. The physregs have already been
2465   // copied into virtual registers.
2466   SDValue Ops[2];
2467   if (FuncInfo.ExceptionPointerVirtReg) {
2468     Ops[0] = DAG.getZExtOrTrunc(
2469         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2470                            FuncInfo.ExceptionPointerVirtReg,
2471                            TLI.getPointerTy(DAG.getDataLayout())),
2472         dl, ValueVTs[0]);
2473   } else {
2474     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2475   }
2476   Ops[1] = DAG.getZExtOrTrunc(
2477       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2478                          FuncInfo.ExceptionSelectorVirtReg,
2479                          TLI.getPointerTy(DAG.getDataLayout())),
2480       dl, ValueVTs[1]);
2481 
2482   // Merge into one.
2483   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2484                             DAG.getVTList(ValueVTs), Ops);
2485   setValue(&LP, Res);
2486 }
2487 
2488 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2489 #ifndef NDEBUG
2490   for (const CaseCluster &CC : Clusters)
2491     assert(CC.Low == CC.High && "Input clusters must be single-case");
2492 #endif
2493 
2494   std::sort(Clusters.begin(), Clusters.end(),
2495             [](const CaseCluster &a, const CaseCluster &b) {
2496     return a.Low->getValue().slt(b.Low->getValue());
2497   });
2498 
2499   // Merge adjacent clusters with the same destination.
2500   const unsigned N = Clusters.size();
2501   unsigned DstIndex = 0;
2502   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2503     CaseCluster &CC = Clusters[SrcIndex];
2504     const ConstantInt *CaseVal = CC.Low;
2505     MachineBasicBlock *Succ = CC.MBB;
2506 
2507     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2508         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2509       // If this case has the same successor and is a neighbour, merge it into
2510       // the previous cluster.
2511       Clusters[DstIndex - 1].High = CaseVal;
2512       Clusters[DstIndex - 1].Prob += CC.Prob;
2513     } else {
2514       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2515                    sizeof(Clusters[SrcIndex]));
2516     }
2517   }
2518   Clusters.resize(DstIndex);
2519 }
2520 
2521 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2522                                            MachineBasicBlock *Last) {
2523   // Update JTCases.
2524   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2525     if (JTCases[i].first.HeaderBB == First)
2526       JTCases[i].first.HeaderBB = Last;
2527 
2528   // Update BitTestCases.
2529   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2530     if (BitTestCases[i].Parent == First)
2531       BitTestCases[i].Parent = Last;
2532 }
2533 
2534 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2535   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2536 
2537   // Update machine-CFG edges with unique successors.
2538   SmallSet<BasicBlock*, 32> Done;
2539   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2540     BasicBlock *BB = I.getSuccessor(i);
2541     bool Inserted = Done.insert(BB).second;
2542     if (!Inserted)
2543         continue;
2544 
2545     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2546     addSuccessorWithProb(IndirectBrMBB, Succ);
2547   }
2548   IndirectBrMBB->normalizeSuccProbs();
2549 
2550   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2551                           MVT::Other, getControlRoot(),
2552                           getValue(I.getAddress())));
2553 }
2554 
2555 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2556   if (DAG.getTarget().Options.TrapUnreachable)
2557     DAG.setRoot(
2558         DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2559 }
2560 
2561 void SelectionDAGBuilder::visitFSub(const User &I) {
2562   // -0.0 - X --> fneg
2563   Type *Ty = I.getType();
2564   if (isa<Constant>(I.getOperand(0)) &&
2565       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2566     SDValue Op2 = getValue(I.getOperand(1));
2567     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2568                              Op2.getValueType(), Op2));
2569     return;
2570   }
2571 
2572   visitBinary(I, ISD::FSUB);
2573 }
2574 
2575 /// Checks if the given instruction performs a vector reduction, in which case
2576 /// we have the freedom to alter the elements in the result as long as the
2577 /// reduction of them stays unchanged.
2578 static bool isVectorReductionOp(const User *I) {
2579   const Instruction *Inst = dyn_cast<Instruction>(I);
2580   if (!Inst || !Inst->getType()->isVectorTy())
2581     return false;
2582 
2583   auto OpCode = Inst->getOpcode();
2584   switch (OpCode) {
2585   case Instruction::Add:
2586   case Instruction::Mul:
2587   case Instruction::And:
2588   case Instruction::Or:
2589   case Instruction::Xor:
2590     break;
2591   case Instruction::FAdd:
2592   case Instruction::FMul:
2593     if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2594       if (FPOp->getFastMathFlags().isFast())
2595         break;
2596     LLVM_FALLTHROUGH;
2597   default:
2598     return false;
2599   }
2600 
2601   unsigned ElemNum = Inst->getType()->getVectorNumElements();
2602   unsigned ElemNumToReduce = ElemNum;
2603 
2604   // Do DFS search on the def-use chain from the given instruction. We only
2605   // allow four kinds of operations during the search until we reach the
2606   // instruction that extracts the first element from the vector:
2607   //
2608   //   1. The reduction operation of the same opcode as the given instruction.
2609   //
2610   //   2. PHI node.
2611   //
2612   //   3. ShuffleVector instruction together with a reduction operation that
2613   //      does a partial reduction.
2614   //
2615   //   4. ExtractElement that extracts the first element from the vector, and we
2616   //      stop searching the def-use chain here.
2617   //
2618   // 3 & 4 above perform a reduction on all elements of the vector. We push defs
2619   // from 1-3 to the stack to continue the DFS. The given instruction is not
2620   // a reduction operation if we meet any other instructions other than those
2621   // listed above.
2622 
2623   SmallVector<const User *, 16> UsersToVisit{Inst};
2624   SmallPtrSet<const User *, 16> Visited;
2625   bool ReduxExtracted = false;
2626 
2627   while (!UsersToVisit.empty()) {
2628     auto User = UsersToVisit.back();
2629     UsersToVisit.pop_back();
2630     if (!Visited.insert(User).second)
2631       continue;
2632 
2633     for (const auto &U : User->users()) {
2634       auto Inst = dyn_cast<Instruction>(U);
2635       if (!Inst)
2636         return false;
2637 
2638       if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
2639         if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2640           if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast())
2641             return false;
2642         UsersToVisit.push_back(U);
2643       } else if (const ShuffleVectorInst *ShufInst =
2644                      dyn_cast<ShuffleVectorInst>(U)) {
2645         // Detect the following pattern: A ShuffleVector instruction together
2646         // with a reduction that do partial reduction on the first and second
2647         // ElemNumToReduce / 2 elements, and store the result in
2648         // ElemNumToReduce / 2 elements in another vector.
2649 
2650         unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
2651         if (ResultElements < ElemNum)
2652           return false;
2653 
2654         if (ElemNumToReduce == 1)
2655           return false;
2656         if (!isa<UndefValue>(U->getOperand(1)))
2657           return false;
2658         for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
2659           if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
2660             return false;
2661         for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
2662           if (ShufInst->getMaskValue(i) != -1)
2663             return false;
2664 
2665         // There is only one user of this ShuffleVector instruction, which
2666         // must be a reduction operation.
2667         if (!U->hasOneUse())
2668           return false;
2669 
2670         auto U2 = dyn_cast<Instruction>(*U->user_begin());
2671         if (!U2 || U2->getOpcode() != OpCode)
2672           return false;
2673 
2674         // Check operands of the reduction operation.
2675         if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
2676             (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
2677           UsersToVisit.push_back(U2);
2678           ElemNumToReduce /= 2;
2679         } else
2680           return false;
2681       } else if (isa<ExtractElementInst>(U)) {
2682         // At this moment we should have reduced all elements in the vector.
2683         if (ElemNumToReduce != 1)
2684           return false;
2685 
2686         const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
2687         if (!Val || Val->getZExtValue() != 0)
2688           return false;
2689 
2690         ReduxExtracted = true;
2691       } else
2692         return false;
2693     }
2694   }
2695   return ReduxExtracted;
2696 }
2697 
2698 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2699   SDValue Op1 = getValue(I.getOperand(0));
2700   SDValue Op2 = getValue(I.getOperand(1));
2701 
2702   bool nuw = false;
2703   bool nsw = false;
2704   bool exact = false;
2705   bool vec_redux = false;
2706   FastMathFlags FMF;
2707 
2708   if (const OverflowingBinaryOperator *OFBinOp =
2709           dyn_cast<const OverflowingBinaryOperator>(&I)) {
2710     nuw = OFBinOp->hasNoUnsignedWrap();
2711     nsw = OFBinOp->hasNoSignedWrap();
2712   }
2713   if (const PossiblyExactOperator *ExactOp =
2714           dyn_cast<const PossiblyExactOperator>(&I))
2715     exact = ExactOp->isExact();
2716   if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I))
2717     FMF = FPOp->getFastMathFlags();
2718 
2719   if (isVectorReductionOp(&I)) {
2720     vec_redux = true;
2721     DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
2722   }
2723 
2724   SDNodeFlags Flags;
2725   Flags.setExact(exact);
2726   Flags.setNoSignedWrap(nsw);
2727   Flags.setNoUnsignedWrap(nuw);
2728   Flags.setVectorReduction(vec_redux);
2729   Flags.setAllowReciprocal(FMF.allowReciprocal());
2730   Flags.setAllowContract(FMF.allowContract());
2731   Flags.setNoInfs(FMF.noInfs());
2732   Flags.setNoNaNs(FMF.noNaNs());
2733   Flags.setNoSignedZeros(FMF.noSignedZeros());
2734   Flags.setUnsafeAlgebra(FMF.isFast());
2735 
2736   SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(),
2737                                      Op1, Op2, Flags);
2738   setValue(&I, BinNodeValue);
2739 }
2740 
2741 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2742   SDValue Op1 = getValue(I.getOperand(0));
2743   SDValue Op2 = getValue(I.getOperand(1));
2744 
2745   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
2746       Op2.getValueType(), DAG.getDataLayout());
2747 
2748   // Coerce the shift amount to the right type if we can.
2749   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2750     unsigned ShiftSize = ShiftTy.getSizeInBits();
2751     unsigned Op2Size = Op2.getValueSizeInBits();
2752     SDLoc DL = getCurSDLoc();
2753 
2754     // If the operand is smaller than the shift count type, promote it.
2755     if (ShiftSize > Op2Size)
2756       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2757 
2758     // If the operand is larger than the shift count type but the shift
2759     // count type has enough bits to represent any shift value, truncate
2760     // it now. This is a common case and it exposes the truncate to
2761     // optimization early.
2762     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
2763       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2764     // Otherwise we'll need to temporarily settle for some other convenient
2765     // type.  Type legalization will make adjustments once the shiftee is split.
2766     else
2767       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2768   }
2769 
2770   bool nuw = false;
2771   bool nsw = false;
2772   bool exact = false;
2773 
2774   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
2775 
2776     if (const OverflowingBinaryOperator *OFBinOp =
2777             dyn_cast<const OverflowingBinaryOperator>(&I)) {
2778       nuw = OFBinOp->hasNoUnsignedWrap();
2779       nsw = OFBinOp->hasNoSignedWrap();
2780     }
2781     if (const PossiblyExactOperator *ExactOp =
2782             dyn_cast<const PossiblyExactOperator>(&I))
2783       exact = ExactOp->isExact();
2784   }
2785   SDNodeFlags Flags;
2786   Flags.setExact(exact);
2787   Flags.setNoSignedWrap(nsw);
2788   Flags.setNoUnsignedWrap(nuw);
2789   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
2790                             Flags);
2791   setValue(&I, Res);
2792 }
2793 
2794 void SelectionDAGBuilder::visitSDiv(const User &I) {
2795   SDValue Op1 = getValue(I.getOperand(0));
2796   SDValue Op2 = getValue(I.getOperand(1));
2797 
2798   SDNodeFlags Flags;
2799   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
2800                  cast<PossiblyExactOperator>(&I)->isExact());
2801   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
2802                            Op2, Flags));
2803 }
2804 
2805 void SelectionDAGBuilder::visitICmp(const User &I) {
2806   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2807   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2808     predicate = IC->getPredicate();
2809   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2810     predicate = ICmpInst::Predicate(IC->getPredicate());
2811   SDValue Op1 = getValue(I.getOperand(0));
2812   SDValue Op2 = getValue(I.getOperand(1));
2813   ISD::CondCode Opcode = getICmpCondCode(predicate);
2814 
2815   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2816                                                         I.getType());
2817   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2818 }
2819 
2820 void SelectionDAGBuilder::visitFCmp(const User &I) {
2821   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2822   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2823     predicate = FC->getPredicate();
2824   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2825     predicate = FCmpInst::Predicate(FC->getPredicate());
2826   SDValue Op1 = getValue(I.getOperand(0));
2827   SDValue Op2 = getValue(I.getOperand(1));
2828   ISD::CondCode Condition = getFCmpCondCode(predicate);
2829 
2830   // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them.
2831   // FIXME: We should propagate the fast-math-flags to the DAG node itself for
2832   // further optimization, but currently FMF is only applicable to binary nodes.
2833   if (TM.Options.NoNaNsFPMath)
2834     Condition = getFCmpCodeWithoutNaN(Condition);
2835   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2836                                                         I.getType());
2837   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2838 }
2839 
2840 // Check if the condition of the select has one use or two users that are both
2841 // selects with the same condition.
2842 static bool hasOnlySelectUsers(const Value *Cond) {
2843   return llvm::all_of(Cond->users(), [](const Value *V) {
2844     return isa<SelectInst>(V);
2845   });
2846 }
2847 
2848 void SelectionDAGBuilder::visitSelect(const User &I) {
2849   SmallVector<EVT, 4> ValueVTs;
2850   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
2851                   ValueVTs);
2852   unsigned NumValues = ValueVTs.size();
2853   if (NumValues == 0) return;
2854 
2855   SmallVector<SDValue, 4> Values(NumValues);
2856   SDValue Cond     = getValue(I.getOperand(0));
2857   SDValue LHSVal   = getValue(I.getOperand(1));
2858   SDValue RHSVal   = getValue(I.getOperand(2));
2859   auto BaseOps = {Cond};
2860   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2861     ISD::VSELECT : ISD::SELECT;
2862 
2863   // Min/max matching is only viable if all output VTs are the same.
2864   if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) {
2865     EVT VT = ValueVTs[0];
2866     LLVMContext &Ctx = *DAG.getContext();
2867     auto &TLI = DAG.getTargetLoweringInfo();
2868 
2869     // We care about the legality of the operation after it has been type
2870     // legalized.
2871     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
2872            VT != TLI.getTypeToTransformTo(Ctx, VT))
2873       VT = TLI.getTypeToTransformTo(Ctx, VT);
2874 
2875     // If the vselect is legal, assume we want to leave this as a vector setcc +
2876     // vselect. Otherwise, if this is going to be scalarized, we want to see if
2877     // min/max is legal on the scalar type.
2878     bool UseScalarMinMax = VT.isVector() &&
2879       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
2880 
2881     Value *LHS, *RHS;
2882     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
2883     ISD::NodeType Opc = ISD::DELETED_NODE;
2884     switch (SPR.Flavor) {
2885     case SPF_UMAX:    Opc = ISD::UMAX; break;
2886     case SPF_UMIN:    Opc = ISD::UMIN; break;
2887     case SPF_SMAX:    Opc = ISD::SMAX; break;
2888     case SPF_SMIN:    Opc = ISD::SMIN; break;
2889     case SPF_FMINNUM:
2890       switch (SPR.NaNBehavior) {
2891       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2892       case SPNB_RETURNS_NAN:   Opc = ISD::FMINNAN; break;
2893       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
2894       case SPNB_RETURNS_ANY: {
2895         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
2896           Opc = ISD::FMINNUM;
2897         else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT))
2898           Opc = ISD::FMINNAN;
2899         else if (UseScalarMinMax)
2900           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
2901             ISD::FMINNUM : ISD::FMINNAN;
2902         break;
2903       }
2904       }
2905       break;
2906     case SPF_FMAXNUM:
2907       switch (SPR.NaNBehavior) {
2908       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2909       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXNAN; break;
2910       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
2911       case SPNB_RETURNS_ANY:
2912 
2913         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
2914           Opc = ISD::FMAXNUM;
2915         else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT))
2916           Opc = ISD::FMAXNAN;
2917         else if (UseScalarMinMax)
2918           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
2919             ISD::FMAXNUM : ISD::FMAXNAN;
2920         break;
2921       }
2922       break;
2923     default: break;
2924     }
2925 
2926     if (Opc != ISD::DELETED_NODE &&
2927         (TLI.isOperationLegalOrCustom(Opc, VT) ||
2928          (UseScalarMinMax &&
2929           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
2930         // If the underlying comparison instruction is used by any other
2931         // instruction, the consumed instructions won't be destroyed, so it is
2932         // not profitable to convert to a min/max.
2933         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
2934       OpCode = Opc;
2935       LHSVal = getValue(LHS);
2936       RHSVal = getValue(RHS);
2937       BaseOps = {};
2938     }
2939   }
2940 
2941   for (unsigned i = 0; i != NumValues; ++i) {
2942     SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
2943     Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
2944     Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
2945     Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
2946                             LHSVal.getNode()->getValueType(LHSVal.getResNo()+i),
2947                             Ops);
2948   }
2949 
2950   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2951                            DAG.getVTList(ValueVTs), Values));
2952 }
2953 
2954 void SelectionDAGBuilder::visitTrunc(const User &I) {
2955   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2956   SDValue N = getValue(I.getOperand(0));
2957   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2958                                                         I.getType());
2959   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
2960 }
2961 
2962 void SelectionDAGBuilder::visitZExt(const User &I) {
2963   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2964   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2965   SDValue N = getValue(I.getOperand(0));
2966   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2967                                                         I.getType());
2968   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
2969 }
2970 
2971 void SelectionDAGBuilder::visitSExt(const User &I) {
2972   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2973   // SExt also can't be a cast to bool for same reason. So, nothing much to do
2974   SDValue N = getValue(I.getOperand(0));
2975   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2976                                                         I.getType());
2977   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
2978 }
2979 
2980 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2981   // FPTrunc is never a no-op cast, no need to check
2982   SDValue N = getValue(I.getOperand(0));
2983   SDLoc dl = getCurSDLoc();
2984   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2985   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2986   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
2987                            DAG.getTargetConstant(
2988                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
2989 }
2990 
2991 void SelectionDAGBuilder::visitFPExt(const User &I) {
2992   // FPExt is never a no-op cast, no need to check
2993   SDValue N = getValue(I.getOperand(0));
2994   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2995                                                         I.getType());
2996   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
2997 }
2998 
2999 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3000   // FPToUI is never a no-op cast, no need to check
3001   SDValue N = getValue(I.getOperand(0));
3002   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3003                                                         I.getType());
3004   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3005 }
3006 
3007 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3008   // FPToSI is never a no-op cast, no need to check
3009   SDValue N = getValue(I.getOperand(0));
3010   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3011                                                         I.getType());
3012   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3013 }
3014 
3015 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3016   // UIToFP is never a no-op cast, no need to check
3017   SDValue N = getValue(I.getOperand(0));
3018   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3019                                                         I.getType());
3020   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3021 }
3022 
3023 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3024   // SIToFP is never a no-op cast, no need to check
3025   SDValue N = getValue(I.getOperand(0));
3026   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3027                                                         I.getType());
3028   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3029 }
3030 
3031 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3032   // What to do depends on the size of the integer and the size of the pointer.
3033   // We can either truncate, zero extend, or no-op, accordingly.
3034   SDValue N = getValue(I.getOperand(0));
3035   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3036                                                         I.getType());
3037   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3038 }
3039 
3040 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3041   // What to do depends on the size of the integer and the size of the pointer.
3042   // We can either truncate, zero extend, or no-op, accordingly.
3043   SDValue N = getValue(I.getOperand(0));
3044   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3045                                                         I.getType());
3046   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3047 }
3048 
3049 void SelectionDAGBuilder::visitBitCast(const User &I) {
3050   SDValue N = getValue(I.getOperand(0));
3051   SDLoc dl = getCurSDLoc();
3052   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3053                                                         I.getType());
3054 
3055   // BitCast assures us that source and destination are the same size so this is
3056   // either a BITCAST or a no-op.
3057   if (DestVT != N.getValueType())
3058     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3059                              DestVT, N)); // convert types.
3060   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3061   // might fold any kind of constant expression to an integer constant and that
3062   // is not what we are looking for. Only recognize a bitcast of a genuine
3063   // constant integer as an opaque constant.
3064   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3065     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3066                                  /*isOpaque*/true));
3067   else
3068     setValue(&I, N);            // noop cast.
3069 }
3070 
3071 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3072   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3073   const Value *SV = I.getOperand(0);
3074   SDValue N = getValue(SV);
3075   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3076 
3077   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3078   unsigned DestAS = I.getType()->getPointerAddressSpace();
3079 
3080   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3081     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3082 
3083   setValue(&I, N);
3084 }
3085 
3086 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3087   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3088   SDValue InVec = getValue(I.getOperand(0));
3089   SDValue InVal = getValue(I.getOperand(1));
3090   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3091                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3092   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3093                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3094                            InVec, InVal, InIdx));
3095 }
3096 
3097 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3098   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3099   SDValue InVec = getValue(I.getOperand(0));
3100   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3101                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3102   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3103                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3104                            InVec, InIdx));
3105 }
3106 
3107 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3108   SDValue Src1 = getValue(I.getOperand(0));
3109   SDValue Src2 = getValue(I.getOperand(1));
3110   SDLoc DL = getCurSDLoc();
3111 
3112   SmallVector<int, 8> Mask;
3113   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
3114   unsigned MaskNumElts = Mask.size();
3115 
3116   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3117   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3118   EVT SrcVT = Src1.getValueType();
3119   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3120 
3121   if (SrcNumElts == MaskNumElts) {
3122     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3123     return;
3124   }
3125 
3126   // Normalize the shuffle vector since mask and vector length don't match.
3127   if (SrcNumElts < MaskNumElts) {
3128     // Mask is longer than the source vectors. We can use concatenate vector to
3129     // make the mask and vectors lengths match.
3130 
3131     if (MaskNumElts % SrcNumElts == 0) {
3132       // Mask length is a multiple of the source vector length.
3133       // Check if the shuffle is some kind of concatenation of the input
3134       // vectors.
3135       unsigned NumConcat = MaskNumElts / SrcNumElts;
3136       bool IsConcat = true;
3137       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3138       for (unsigned i = 0; i != MaskNumElts; ++i) {
3139         int Idx = Mask[i];
3140         if (Idx < 0)
3141           continue;
3142         // Ensure the indices in each SrcVT sized piece are sequential and that
3143         // the same source is used for the whole piece.
3144         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3145             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3146              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3147           IsConcat = false;
3148           break;
3149         }
3150         // Remember which source this index came from.
3151         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3152       }
3153 
3154       // The shuffle is concatenating multiple vectors together. Just emit
3155       // a CONCAT_VECTORS operation.
3156       if (IsConcat) {
3157         SmallVector<SDValue, 8> ConcatOps;
3158         for (auto Src : ConcatSrcs) {
3159           if (Src < 0)
3160             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3161           else if (Src == 0)
3162             ConcatOps.push_back(Src1);
3163           else
3164             ConcatOps.push_back(Src2);
3165         }
3166         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3167         return;
3168       }
3169     }
3170 
3171     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3172     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3173     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3174                                     PaddedMaskNumElts);
3175 
3176     // Pad both vectors with undefs to make them the same length as the mask.
3177     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3178 
3179     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3180     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3181     MOps1[0] = Src1;
3182     MOps2[0] = Src2;
3183 
3184     Src1 = Src1.isUndef()
3185                ? DAG.getUNDEF(PaddedVT)
3186                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3187     Src2 = Src2.isUndef()
3188                ? DAG.getUNDEF(PaddedVT)
3189                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3190 
3191     // Readjust mask for new input vector length.
3192     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3193     for (unsigned i = 0; i != MaskNumElts; ++i) {
3194       int Idx = Mask[i];
3195       if (Idx >= (int)SrcNumElts)
3196         Idx -= SrcNumElts - PaddedMaskNumElts;
3197       MappedOps[i] = Idx;
3198     }
3199 
3200     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3201 
3202     // If the concatenated vector was padded, extract a subvector with the
3203     // correct number of elements.
3204     if (MaskNumElts != PaddedMaskNumElts)
3205       Result = DAG.getNode(
3206           ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3207           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
3208 
3209     setValue(&I, Result);
3210     return;
3211   }
3212 
3213   if (SrcNumElts > MaskNumElts) {
3214     // Analyze the access pattern of the vector to see if we can extract
3215     // two subvectors and do the shuffle.
3216     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3217     bool CanExtract = true;
3218     for (int Idx : Mask) {
3219       unsigned Input = 0;
3220       if (Idx < 0)
3221         continue;
3222 
3223       if (Idx >= (int)SrcNumElts) {
3224         Input = 1;
3225         Idx -= SrcNumElts;
3226       }
3227 
3228       // If all the indices come from the same MaskNumElts sized portion of
3229       // the sources we can use extract. Also make sure the extract wouldn't
3230       // extract past the end of the source.
3231       int NewStartIdx = alignDown(Idx, MaskNumElts);
3232       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3233           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3234         CanExtract = false;
3235       // Make sure we always update StartIdx as we use it to track if all
3236       // elements are undef.
3237       StartIdx[Input] = NewStartIdx;
3238     }
3239 
3240     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3241       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3242       return;
3243     }
3244     if (CanExtract) {
3245       // Extract appropriate subvector and generate a vector shuffle
3246       for (unsigned Input = 0; Input < 2; ++Input) {
3247         SDValue &Src = Input == 0 ? Src1 : Src2;
3248         if (StartIdx[Input] < 0)
3249           Src = DAG.getUNDEF(VT);
3250         else {
3251           Src = DAG.getNode(
3252               ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3253               DAG.getConstant(StartIdx[Input], DL,
3254                               TLI.getVectorIdxTy(DAG.getDataLayout())));
3255         }
3256       }
3257 
3258       // Calculate new mask.
3259       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3260       for (int &Idx : MappedOps) {
3261         if (Idx >= (int)SrcNumElts)
3262           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3263         else if (Idx >= 0)
3264           Idx -= StartIdx[0];
3265       }
3266 
3267       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3268       return;
3269     }
3270   }
3271 
3272   // We can't use either concat vectors or extract subvectors so fall back to
3273   // replacing the shuffle with extract and build vector.
3274   // to insert and build vector.
3275   EVT EltVT = VT.getVectorElementType();
3276   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3277   SmallVector<SDValue,8> Ops;
3278   for (int Idx : Mask) {
3279     SDValue Res;
3280 
3281     if (Idx < 0) {
3282       Res = DAG.getUNDEF(EltVT);
3283     } else {
3284       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3285       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3286 
3287       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3288                         EltVT, Src, DAG.getConstant(Idx, DL, IdxVT));
3289     }
3290 
3291     Ops.push_back(Res);
3292   }
3293 
3294   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3295 }
3296 
3297 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3298   ArrayRef<unsigned> Indices;
3299   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3300     Indices = IV->getIndices();
3301   else
3302     Indices = cast<ConstantExpr>(&I)->getIndices();
3303 
3304   const Value *Op0 = I.getOperand(0);
3305   const Value *Op1 = I.getOperand(1);
3306   Type *AggTy = I.getType();
3307   Type *ValTy = Op1->getType();
3308   bool IntoUndef = isa<UndefValue>(Op0);
3309   bool FromUndef = isa<UndefValue>(Op1);
3310 
3311   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3312 
3313   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3314   SmallVector<EVT, 4> AggValueVTs;
3315   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3316   SmallVector<EVT, 4> ValValueVTs;
3317   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3318 
3319   unsigned NumAggValues = AggValueVTs.size();
3320   unsigned NumValValues = ValValueVTs.size();
3321   SmallVector<SDValue, 4> Values(NumAggValues);
3322 
3323   // Ignore an insertvalue that produces an empty object
3324   if (!NumAggValues) {
3325     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3326     return;
3327   }
3328 
3329   SDValue Agg = getValue(Op0);
3330   unsigned i = 0;
3331   // Copy the beginning value(s) from the original aggregate.
3332   for (; i != LinearIndex; ++i)
3333     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3334                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3335   // Copy values from the inserted value(s).
3336   if (NumValValues) {
3337     SDValue Val = getValue(Op1);
3338     for (; i != LinearIndex + NumValValues; ++i)
3339       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3340                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3341   }
3342   // Copy remaining value(s) from the original aggregate.
3343   for (; i != NumAggValues; ++i)
3344     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3345                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3346 
3347   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3348                            DAG.getVTList(AggValueVTs), Values));
3349 }
3350 
3351 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3352   ArrayRef<unsigned> Indices;
3353   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3354     Indices = EV->getIndices();
3355   else
3356     Indices = cast<ConstantExpr>(&I)->getIndices();
3357 
3358   const Value *Op0 = I.getOperand(0);
3359   Type *AggTy = Op0->getType();
3360   Type *ValTy = I.getType();
3361   bool OutOfUndef = isa<UndefValue>(Op0);
3362 
3363   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3364 
3365   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3366   SmallVector<EVT, 4> ValValueVTs;
3367   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3368 
3369   unsigned NumValValues = ValValueVTs.size();
3370 
3371   // Ignore a extractvalue that produces an empty object
3372   if (!NumValValues) {
3373     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3374     return;
3375   }
3376 
3377   SmallVector<SDValue, 4> Values(NumValValues);
3378 
3379   SDValue Agg = getValue(Op0);
3380   // Copy out the selected value(s).
3381   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3382     Values[i - LinearIndex] =
3383       OutOfUndef ?
3384         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3385         SDValue(Agg.getNode(), Agg.getResNo() + i);
3386 
3387   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3388                            DAG.getVTList(ValValueVTs), Values));
3389 }
3390 
3391 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3392   Value *Op0 = I.getOperand(0);
3393   // Note that the pointer operand may be a vector of pointers. Take the scalar
3394   // element which holds a pointer.
3395   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3396   SDValue N = getValue(Op0);
3397   SDLoc dl = getCurSDLoc();
3398 
3399   // Normalize Vector GEP - all scalar operands should be converted to the
3400   // splat vector.
3401   unsigned VectorWidth = I.getType()->isVectorTy() ?
3402     cast<VectorType>(I.getType())->getVectorNumElements() : 0;
3403 
3404   if (VectorWidth && !N.getValueType().isVector()) {
3405     LLVMContext &Context = *DAG.getContext();
3406     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth);
3407     N = DAG.getSplatBuildVector(VT, dl, N);
3408   }
3409 
3410   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3411        GTI != E; ++GTI) {
3412     const Value *Idx = GTI.getOperand();
3413     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3414       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3415       if (Field) {
3416         // N = N + Offset
3417         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3418 
3419         // In an inbounds GEP with an offset that is nonnegative even when
3420         // interpreted as signed, assume there is no unsigned overflow.
3421         SDNodeFlags Flags;
3422         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3423           Flags.setNoUnsignedWrap(true);
3424 
3425         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3426                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3427       }
3428     } else {
3429       MVT PtrTy =
3430           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS);
3431       unsigned PtrSize = PtrTy.getSizeInBits();
3432       APInt ElementSize(PtrSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3433 
3434       // If this is a scalar constant or a splat vector of constants,
3435       // handle it quickly.
3436       const auto *CI = dyn_cast<ConstantInt>(Idx);
3437       if (!CI && isa<ConstantDataVector>(Idx) &&
3438           cast<ConstantDataVector>(Idx)->getSplatValue())
3439         CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3440 
3441       if (CI) {
3442         if (CI->isZero())
3443           continue;
3444         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize);
3445         LLVMContext &Context = *DAG.getContext();
3446         SDValue OffsVal = VectorWidth ?
3447           DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, PtrTy, VectorWidth)) :
3448           DAG.getConstant(Offs, dl, PtrTy);
3449 
3450         // In an inbouds GEP with an offset that is nonnegative even when
3451         // interpreted as signed, assume there is no unsigned overflow.
3452         SDNodeFlags Flags;
3453         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3454           Flags.setNoUnsignedWrap(true);
3455 
3456         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3457         continue;
3458       }
3459 
3460       // N = N + Idx * ElementSize;
3461       SDValue IdxN = getValue(Idx);
3462 
3463       if (!IdxN.getValueType().isVector() && VectorWidth) {
3464         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth);
3465         IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3466       }
3467 
3468       // If the index is smaller or larger than intptr_t, truncate or extend
3469       // it.
3470       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3471 
3472       // If this is a multiply by a power of two, turn it into a shl
3473       // immediately.  This is a very common case.
3474       if (ElementSize != 1) {
3475         if (ElementSize.isPowerOf2()) {
3476           unsigned Amt = ElementSize.logBase2();
3477           IdxN = DAG.getNode(ISD::SHL, dl,
3478                              N.getValueType(), IdxN,
3479                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3480         } else {
3481           SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
3482           IdxN = DAG.getNode(ISD::MUL, dl,
3483                              N.getValueType(), IdxN, Scale);
3484         }
3485       }
3486 
3487       N = DAG.getNode(ISD::ADD, dl,
3488                       N.getValueType(), N, IdxN);
3489     }
3490   }
3491 
3492   setValue(&I, N);
3493 }
3494 
3495 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3496   // If this is a fixed sized alloca in the entry block of the function,
3497   // allocate it statically on the stack.
3498   if (FuncInfo.StaticAllocaMap.count(&I))
3499     return;   // getValue will auto-populate this.
3500 
3501   SDLoc dl = getCurSDLoc();
3502   Type *Ty = I.getAllocatedType();
3503   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3504   auto &DL = DAG.getDataLayout();
3505   uint64_t TySize = DL.getTypeAllocSize(Ty);
3506   unsigned Align =
3507       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3508 
3509   SDValue AllocSize = getValue(I.getArraySize());
3510 
3511   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3512   if (AllocSize.getValueType() != IntPtr)
3513     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3514 
3515   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3516                           AllocSize,
3517                           DAG.getConstant(TySize, dl, IntPtr));
3518 
3519   // Handle alignment.  If the requested alignment is less than or equal to
3520   // the stack alignment, ignore it.  If the size is greater than or equal to
3521   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3522   unsigned StackAlign =
3523       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3524   if (Align <= StackAlign)
3525     Align = 0;
3526 
3527   // Round the size of the allocation up to the stack alignment size
3528   // by add SA-1 to the size. This doesn't overflow because we're computing
3529   // an address inside an alloca.
3530   SDNodeFlags Flags;
3531   Flags.setNoUnsignedWrap(true);
3532   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
3533                           DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags);
3534 
3535   // Mask out the low bits for alignment purposes.
3536   AllocSize =
3537       DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
3538                   DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr));
3539 
3540   SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)};
3541   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3542   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3543   setValue(&I, DSA);
3544   DAG.setRoot(DSA.getValue(1));
3545 
3546   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3547 }
3548 
3549 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3550   if (I.isAtomic())
3551     return visitAtomicLoad(I);
3552 
3553   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3554   const Value *SV = I.getOperand(0);
3555   if (TLI.supportSwiftError()) {
3556     // Swifterror values can come from either a function parameter with
3557     // swifterror attribute or an alloca with swifterror attribute.
3558     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3559       if (Arg->hasSwiftErrorAttr())
3560         return visitLoadFromSwiftError(I);
3561     }
3562 
3563     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3564       if (Alloca->isSwiftError())
3565         return visitLoadFromSwiftError(I);
3566     }
3567   }
3568 
3569   SDValue Ptr = getValue(SV);
3570 
3571   Type *Ty = I.getType();
3572 
3573   bool isVolatile = I.isVolatile();
3574   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3575   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr;
3576   bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout());
3577   unsigned Alignment = I.getAlignment();
3578 
3579   AAMDNodes AAInfo;
3580   I.getAAMetadata(AAInfo);
3581   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3582 
3583   SmallVector<EVT, 4> ValueVTs;
3584   SmallVector<uint64_t, 4> Offsets;
3585   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets);
3586   unsigned NumValues = ValueVTs.size();
3587   if (NumValues == 0)
3588     return;
3589 
3590   SDValue Root;
3591   bool ConstantMemory = false;
3592   if (isVolatile || NumValues > MaxParallelChains)
3593     // Serialize volatile loads with other side effects.
3594     Root = getRoot();
3595   else if (AA && AA->pointsToConstantMemory(MemoryLocation(
3596                SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) {
3597     // Do not serialize (non-volatile) loads of constant memory with anything.
3598     Root = DAG.getEntryNode();
3599     ConstantMemory = true;
3600   } else {
3601     // Do not serialize non-volatile loads against each other.
3602     Root = DAG.getRoot();
3603   }
3604 
3605   SDLoc dl = getCurSDLoc();
3606 
3607   if (isVolatile)
3608     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3609 
3610   // An aggregate load cannot wrap around the address space, so offsets to its
3611   // parts don't wrap either.
3612   SDNodeFlags Flags;
3613   Flags.setNoUnsignedWrap(true);
3614 
3615   SmallVector<SDValue, 4> Values(NumValues);
3616   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3617   EVT PtrVT = Ptr.getValueType();
3618   unsigned ChainI = 0;
3619   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3620     // Serializing loads here may result in excessive register pressure, and
3621     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3622     // could recover a bit by hoisting nodes upward in the chain by recognizing
3623     // they are side-effect free or do not alias. The optimizer should really
3624     // avoid this case by converting large object/array copies to llvm.memcpy
3625     // (MaxParallelChains should always remain as failsafe).
3626     if (ChainI == MaxParallelChains) {
3627       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3628       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3629                                   makeArrayRef(Chains.data(), ChainI));
3630       Root = Chain;
3631       ChainI = 0;
3632     }
3633     SDValue A = DAG.getNode(ISD::ADD, dl,
3634                             PtrVT, Ptr,
3635                             DAG.getConstant(Offsets[i], dl, PtrVT),
3636                             Flags);
3637     auto MMOFlags = MachineMemOperand::MONone;
3638     if (isVolatile)
3639       MMOFlags |= MachineMemOperand::MOVolatile;
3640     if (isNonTemporal)
3641       MMOFlags |= MachineMemOperand::MONonTemporal;
3642     if (isInvariant)
3643       MMOFlags |= MachineMemOperand::MOInvariant;
3644     if (isDereferenceable)
3645       MMOFlags |= MachineMemOperand::MODereferenceable;
3646     MMOFlags |= TLI.getMMOFlags(I);
3647 
3648     SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A,
3649                             MachinePointerInfo(SV, Offsets[i]), Alignment,
3650                             MMOFlags, AAInfo, Ranges);
3651 
3652     Values[i] = L;
3653     Chains[ChainI] = L.getValue(1);
3654   }
3655 
3656   if (!ConstantMemory) {
3657     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3658                                 makeArrayRef(Chains.data(), ChainI));
3659     if (isVolatile)
3660       DAG.setRoot(Chain);
3661     else
3662       PendingLoads.push_back(Chain);
3663   }
3664 
3665   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
3666                            DAG.getVTList(ValueVTs), Values));
3667 }
3668 
3669 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
3670   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
3671          "call visitStoreToSwiftError when backend supports swifterror");
3672 
3673   SmallVector<EVT, 4> ValueVTs;
3674   SmallVector<uint64_t, 4> Offsets;
3675   const Value *SrcV = I.getOperand(0);
3676   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3677                   SrcV->getType(), ValueVTs, &Offsets);
3678   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3679          "expect a single EVT for swifterror");
3680 
3681   SDValue Src = getValue(SrcV);
3682   // Create a virtual register, then update the virtual register.
3683   unsigned VReg; bool CreatedVReg;
3684   std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I);
3685   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
3686   // Chain can be getRoot or getControlRoot.
3687   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
3688                                       SDValue(Src.getNode(), Src.getResNo()));
3689   DAG.setRoot(CopyNode);
3690   if (CreatedVReg)
3691     FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg);
3692 }
3693 
3694 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
3695   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
3696          "call visitLoadFromSwiftError when backend supports swifterror");
3697 
3698   assert(!I.isVolatile() &&
3699          I.getMetadata(LLVMContext::MD_nontemporal) == nullptr &&
3700          I.getMetadata(LLVMContext::MD_invariant_load) == nullptr &&
3701          "Support volatile, non temporal, invariant for load_from_swift_error");
3702 
3703   const Value *SV = I.getOperand(0);
3704   Type *Ty = I.getType();
3705   AAMDNodes AAInfo;
3706   I.getAAMetadata(AAInfo);
3707   assert((!AA || !AA->pointsToConstantMemory(MemoryLocation(
3708              SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) &&
3709          "load_from_swift_error should not be constant memory");
3710 
3711   SmallVector<EVT, 4> ValueVTs;
3712   SmallVector<uint64_t, 4> Offsets;
3713   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
3714                   ValueVTs, &Offsets);
3715   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3716          "expect a single EVT for swifterror");
3717 
3718   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
3719   SDValue L = DAG.getCopyFromReg(
3720       getRoot(), getCurSDLoc(),
3721       FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first,
3722       ValueVTs[0]);
3723 
3724   setValue(&I, L);
3725 }
3726 
3727 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3728   if (I.isAtomic())
3729     return visitAtomicStore(I);
3730 
3731   const Value *SrcV = I.getOperand(0);
3732   const Value *PtrV = I.getOperand(1);
3733 
3734   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3735   if (TLI.supportSwiftError()) {
3736     // Swifterror values can come from either a function parameter with
3737     // swifterror attribute or an alloca with swifterror attribute.
3738     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
3739       if (Arg->hasSwiftErrorAttr())
3740         return visitStoreToSwiftError(I);
3741     }
3742 
3743     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
3744       if (Alloca->isSwiftError())
3745         return visitStoreToSwiftError(I);
3746     }
3747   }
3748 
3749   SmallVector<EVT, 4> ValueVTs;
3750   SmallVector<uint64_t, 4> Offsets;
3751   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3752                   SrcV->getType(), ValueVTs, &Offsets);
3753   unsigned NumValues = ValueVTs.size();
3754   if (NumValues == 0)
3755     return;
3756 
3757   // Get the lowered operands. Note that we do this after
3758   // checking if NumResults is zero, because with zero results
3759   // the operands won't have values in the map.
3760   SDValue Src = getValue(SrcV);
3761   SDValue Ptr = getValue(PtrV);
3762 
3763   SDValue Root = getRoot();
3764   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3765   SDLoc dl = getCurSDLoc();
3766   EVT PtrVT = Ptr.getValueType();
3767   unsigned Alignment = I.getAlignment();
3768   AAMDNodes AAInfo;
3769   I.getAAMetadata(AAInfo);
3770 
3771   auto MMOFlags = MachineMemOperand::MONone;
3772   if (I.isVolatile())
3773     MMOFlags |= MachineMemOperand::MOVolatile;
3774   if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr)
3775     MMOFlags |= MachineMemOperand::MONonTemporal;
3776   MMOFlags |= TLI.getMMOFlags(I);
3777 
3778   // An aggregate load cannot wrap around the address space, so offsets to its
3779   // parts don't wrap either.
3780   SDNodeFlags Flags;
3781   Flags.setNoUnsignedWrap(true);
3782 
3783   unsigned ChainI = 0;
3784   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3785     // See visitLoad comments.
3786     if (ChainI == MaxParallelChains) {
3787       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3788                                   makeArrayRef(Chains.data(), ChainI));
3789       Root = Chain;
3790       ChainI = 0;
3791     }
3792     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
3793                               DAG.getConstant(Offsets[i], dl, PtrVT), Flags);
3794     SDValue St = DAG.getStore(
3795         Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add,
3796         MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo);
3797     Chains[ChainI] = St;
3798   }
3799 
3800   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3801                                   makeArrayRef(Chains.data(), ChainI));
3802   DAG.setRoot(StoreNode);
3803 }
3804 
3805 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
3806                                            bool IsCompressing) {
3807   SDLoc sdl = getCurSDLoc();
3808 
3809   auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3810                            unsigned& Alignment) {
3811     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
3812     Src0 = I.getArgOperand(0);
3813     Ptr = I.getArgOperand(1);
3814     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
3815     Mask = I.getArgOperand(3);
3816   };
3817   auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3818                            unsigned& Alignment) {
3819     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
3820     Src0 = I.getArgOperand(0);
3821     Ptr = I.getArgOperand(1);
3822     Mask = I.getArgOperand(2);
3823     Alignment = 0;
3824   };
3825 
3826   Value  *PtrOperand, *MaskOperand, *Src0Operand;
3827   unsigned Alignment;
3828   if (IsCompressing)
3829     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3830   else
3831     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3832 
3833   SDValue Ptr = getValue(PtrOperand);
3834   SDValue Src0 = getValue(Src0Operand);
3835   SDValue Mask = getValue(MaskOperand);
3836 
3837   EVT VT = Src0.getValueType();
3838   if (!Alignment)
3839     Alignment = DAG.getEVTAlignment(VT);
3840 
3841   AAMDNodes AAInfo;
3842   I.getAAMetadata(AAInfo);
3843 
3844   MachineMemOperand *MMO =
3845     DAG.getMachineFunction().
3846     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3847                           MachineMemOperand::MOStore,  VT.getStoreSize(),
3848                           Alignment, AAInfo);
3849   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
3850                                          MMO, false /* Truncating */,
3851                                          IsCompressing);
3852   DAG.setRoot(StoreNode);
3853   setValue(&I, StoreNode);
3854 }
3855 
3856 // Get a uniform base for the Gather/Scatter intrinsic.
3857 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
3858 // We try to represent it as a base pointer + vector of indices.
3859 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
3860 // The first operand of the GEP may be a single pointer or a vector of pointers
3861 // Example:
3862 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
3863 //  or
3864 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
3865 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
3866 //
3867 // When the first GEP operand is a single pointer - it is the uniform base we
3868 // are looking for. If first operand of the GEP is a splat vector - we
3869 // extract the splat value and use it as a uniform base.
3870 // In all other cases the function returns 'false'.
3871 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index,
3872                            SelectionDAGBuilder* SDB) {
3873   SelectionDAG& DAG = SDB->DAG;
3874   LLVMContext &Context = *DAG.getContext();
3875 
3876   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
3877   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3878   if (!GEP)
3879     return false;
3880 
3881   const Value *GEPPtr = GEP->getPointerOperand();
3882   if (!GEPPtr->getType()->isVectorTy())
3883     Ptr = GEPPtr;
3884   else if (!(Ptr = getSplatValue(GEPPtr)))
3885     return false;
3886 
3887   unsigned FinalIndex = GEP->getNumOperands() - 1;
3888   Value *IndexVal = GEP->getOperand(FinalIndex);
3889 
3890   // Ensure all the other indices are 0.
3891   for (unsigned i = 1; i < FinalIndex; ++i) {
3892     auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i));
3893     if (!C || !C->isZero())
3894       return false;
3895   }
3896 
3897   // The operands of the GEP may be defined in another basic block.
3898   // In this case we'll not find nodes for the operands.
3899   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
3900     return false;
3901 
3902   Base = SDB->getValue(Ptr);
3903   Index = SDB->getValue(IndexVal);
3904 
3905   // Suppress sign extension.
3906   if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) {
3907     if (SDB->findValue(Sext->getOperand(0))) {
3908       IndexVal = Sext->getOperand(0);
3909       Index = SDB->getValue(IndexVal);
3910     }
3911   }
3912   if (!Index.getValueType().isVector()) {
3913     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
3914     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
3915     Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index);
3916   }
3917   return true;
3918 }
3919 
3920 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
3921   SDLoc sdl = getCurSDLoc();
3922 
3923   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
3924   const Value *Ptr = I.getArgOperand(1);
3925   SDValue Src0 = getValue(I.getArgOperand(0));
3926   SDValue Mask = getValue(I.getArgOperand(3));
3927   EVT VT = Src0.getValueType();
3928   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3929   if (!Alignment)
3930     Alignment = DAG.getEVTAlignment(VT);
3931   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3932 
3933   AAMDNodes AAInfo;
3934   I.getAAMetadata(AAInfo);
3935 
3936   SDValue Base;
3937   SDValue Index;
3938   const Value *BasePtr = Ptr;
3939   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3940 
3941   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
3942   MachineMemOperand *MMO = DAG.getMachineFunction().
3943     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
3944                          MachineMemOperand::MOStore,  VT.getStoreSize(),
3945                          Alignment, AAInfo);
3946   if (!UniformBase) {
3947     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3948     Index = getValue(Ptr);
3949   }
3950   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index };
3951   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
3952                                          Ops, MMO);
3953   DAG.setRoot(Scatter);
3954   setValue(&I, Scatter);
3955 }
3956 
3957 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
3958   SDLoc sdl = getCurSDLoc();
3959 
3960   auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3961                            unsigned& Alignment) {
3962     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
3963     Ptr = I.getArgOperand(0);
3964     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
3965     Mask = I.getArgOperand(2);
3966     Src0 = I.getArgOperand(3);
3967   };
3968   auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3969                            unsigned& Alignment) {
3970     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
3971     Ptr = I.getArgOperand(0);
3972     Alignment = 0;
3973     Mask = I.getArgOperand(1);
3974     Src0 = I.getArgOperand(2);
3975   };
3976 
3977   Value  *PtrOperand, *MaskOperand, *Src0Operand;
3978   unsigned Alignment;
3979   if (IsExpanding)
3980     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3981   else
3982     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3983 
3984   SDValue Ptr = getValue(PtrOperand);
3985   SDValue Src0 = getValue(Src0Operand);
3986   SDValue Mask = getValue(MaskOperand);
3987 
3988   EVT VT = Src0.getValueType();
3989   if (!Alignment)
3990     Alignment = DAG.getEVTAlignment(VT);
3991 
3992   AAMDNodes AAInfo;
3993   I.getAAMetadata(AAInfo);
3994   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3995 
3996   // Do not serialize masked loads of constant memory with anything.
3997   bool AddToChain = !AA || !AA->pointsToConstantMemory(MemoryLocation(
3998       PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), AAInfo));
3999   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4000 
4001   MachineMemOperand *MMO =
4002     DAG.getMachineFunction().
4003     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4004                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
4005                           Alignment, AAInfo, Ranges);
4006 
4007   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
4008                                    ISD::NON_EXTLOAD, IsExpanding);
4009   if (AddToChain) {
4010     SDValue OutChain = Load.getValue(1);
4011     DAG.setRoot(OutChain);
4012   }
4013   setValue(&I, Load);
4014 }
4015 
4016 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4017   SDLoc sdl = getCurSDLoc();
4018 
4019   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4020   const Value *Ptr = I.getArgOperand(0);
4021   SDValue Src0 = getValue(I.getArgOperand(3));
4022   SDValue Mask = getValue(I.getArgOperand(2));
4023 
4024   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4025   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4026   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
4027   if (!Alignment)
4028     Alignment = DAG.getEVTAlignment(VT);
4029 
4030   AAMDNodes AAInfo;
4031   I.getAAMetadata(AAInfo);
4032   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4033 
4034   SDValue Root = DAG.getRoot();
4035   SDValue Base;
4036   SDValue Index;
4037   const Value *BasePtr = Ptr;
4038   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
4039   bool ConstantMemory = false;
4040   if (UniformBase &&
4041       AA && AA->pointsToConstantMemory(MemoryLocation(
4042           BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()),
4043           AAInfo))) {
4044     // Do not serialize (non-volatile) loads of constant memory with anything.
4045     Root = DAG.getEntryNode();
4046     ConstantMemory = true;
4047   }
4048 
4049   MachineMemOperand *MMO =
4050     DAG.getMachineFunction().
4051     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
4052                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
4053                          Alignment, AAInfo, Ranges);
4054 
4055   if (!UniformBase) {
4056     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4057     Index = getValue(Ptr);
4058   }
4059   SDValue Ops[] = { Root, Src0, Mask, Base, Index };
4060   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4061                                        Ops, MMO);
4062 
4063   SDValue OutChain = Gather.getValue(1);
4064   if (!ConstantMemory)
4065     PendingLoads.push_back(OutChain);
4066   setValue(&I, Gather);
4067 }
4068 
4069 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4070   SDLoc dl = getCurSDLoc();
4071   AtomicOrdering SuccessOrder = I.getSuccessOrdering();
4072   AtomicOrdering FailureOrder = I.getFailureOrdering();
4073   SyncScope::ID SSID = I.getSyncScopeID();
4074 
4075   SDValue InChain = getRoot();
4076 
4077   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4078   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4079   SDValue L = DAG.getAtomicCmpSwap(
4080       ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
4081       getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
4082       getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
4083       /*Alignment=*/ 0, SuccessOrder, FailureOrder, SSID);
4084 
4085   SDValue OutChain = L.getValue(2);
4086 
4087   setValue(&I, L);
4088   DAG.setRoot(OutChain);
4089 }
4090 
4091 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4092   SDLoc dl = getCurSDLoc();
4093   ISD::NodeType NT;
4094   switch (I.getOperation()) {
4095   default: llvm_unreachable("Unknown atomicrmw operation");
4096   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4097   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4098   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4099   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4100   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4101   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4102   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4103   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4104   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4105   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4106   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4107   }
4108   AtomicOrdering Order = I.getOrdering();
4109   SyncScope::ID SSID = I.getSyncScopeID();
4110 
4111   SDValue InChain = getRoot();
4112 
4113   SDValue L =
4114     DAG.getAtomic(NT, dl,
4115                   getValue(I.getValOperand()).getSimpleValueType(),
4116                   InChain,
4117                   getValue(I.getPointerOperand()),
4118                   getValue(I.getValOperand()),
4119                   I.getPointerOperand(),
4120                   /* Alignment=*/ 0, Order, SSID);
4121 
4122   SDValue OutChain = L.getValue(1);
4123 
4124   setValue(&I, L);
4125   DAG.setRoot(OutChain);
4126 }
4127 
4128 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4129   SDLoc dl = getCurSDLoc();
4130   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4131   SDValue Ops[3];
4132   Ops[0] = getRoot();
4133   Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl,
4134                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4135   Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl,
4136                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4137   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4138 }
4139 
4140 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4141   SDLoc dl = getCurSDLoc();
4142   AtomicOrdering Order = I.getOrdering();
4143   SyncScope::ID SSID = I.getSyncScopeID();
4144 
4145   SDValue InChain = getRoot();
4146 
4147   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4148   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4149 
4150   if (I.getAlignment() < VT.getSizeInBits() / 8)
4151     report_fatal_error("Cannot generate unaligned atomic load");
4152 
4153   MachineMemOperand *MMO =
4154       DAG.getMachineFunction().
4155       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4156                            MachineMemOperand::MOVolatile |
4157                            MachineMemOperand::MOLoad,
4158                            VT.getStoreSize(),
4159                            I.getAlignment() ? I.getAlignment() :
4160                                               DAG.getEVTAlignment(VT),
4161                            AAMDNodes(), nullptr, SSID, Order);
4162 
4163   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4164   SDValue L =
4165       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
4166                     getValue(I.getPointerOperand()), MMO);
4167 
4168   SDValue OutChain = L.getValue(1);
4169 
4170   setValue(&I, L);
4171   DAG.setRoot(OutChain);
4172 }
4173 
4174 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4175   SDLoc dl = getCurSDLoc();
4176 
4177   AtomicOrdering Order = I.getOrdering();
4178   SyncScope::ID SSID = I.getSyncScopeID();
4179 
4180   SDValue InChain = getRoot();
4181 
4182   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4183   EVT VT =
4184       TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4185 
4186   if (I.getAlignment() < VT.getSizeInBits() / 8)
4187     report_fatal_error("Cannot generate unaligned atomic store");
4188 
4189   SDValue OutChain =
4190     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
4191                   InChain,
4192                   getValue(I.getPointerOperand()),
4193                   getValue(I.getValueOperand()),
4194                   I.getPointerOperand(), I.getAlignment(),
4195                   Order, SSID);
4196 
4197   DAG.setRoot(OutChain);
4198 }
4199 
4200 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4201 /// node.
4202 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4203                                                unsigned Intrinsic) {
4204   // Ignore the callsite's attributes. A specific call site may be marked with
4205   // readnone, but the lowering code will expect the chain based on the
4206   // definition.
4207   const Function *F = I.getCalledFunction();
4208   bool HasChain = !F->doesNotAccessMemory();
4209   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4210 
4211   // Build the operand list.
4212   SmallVector<SDValue, 8> Ops;
4213   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4214     if (OnlyLoad) {
4215       // We don't need to serialize loads against other loads.
4216       Ops.push_back(DAG.getRoot());
4217     } else {
4218       Ops.push_back(getRoot());
4219     }
4220   }
4221 
4222   // Info is set by getTgtMemInstrinsic
4223   TargetLowering::IntrinsicInfo Info;
4224   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4225   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
4226 
4227   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4228   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4229       Info.opc == ISD::INTRINSIC_W_CHAIN)
4230     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4231                                         TLI.getPointerTy(DAG.getDataLayout())));
4232 
4233   // Add all operands of the call to the operand list.
4234   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4235     SDValue Op = getValue(I.getArgOperand(i));
4236     Ops.push_back(Op);
4237   }
4238 
4239   SmallVector<EVT, 4> ValueVTs;
4240   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4241 
4242   if (HasChain)
4243     ValueVTs.push_back(MVT::Other);
4244 
4245   SDVTList VTs = DAG.getVTList(ValueVTs);
4246 
4247   // Create the node.
4248   SDValue Result;
4249   if (IsTgtIntrinsic) {
4250     // This is target intrinsic that touches memory
4251     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(),
4252                                      VTs, Ops, Info.memVT,
4253                                    MachinePointerInfo(Info.ptrVal, Info.offset),
4254                                      Info.align, Info.vol,
4255                                      Info.readMem, Info.writeMem, Info.size);
4256   } else if (!HasChain) {
4257     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4258   } else if (!I.getType()->isVoidTy()) {
4259     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4260   } else {
4261     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4262   }
4263 
4264   if (HasChain) {
4265     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4266     if (OnlyLoad)
4267       PendingLoads.push_back(Chain);
4268     else
4269       DAG.setRoot(Chain);
4270   }
4271 
4272   if (!I.getType()->isVoidTy()) {
4273     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4274       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4275       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4276     } else
4277       Result = lowerRangeToAssertZExt(DAG, I, Result);
4278 
4279     setValue(&I, Result);
4280   }
4281 }
4282 
4283 /// GetSignificand - Get the significand and build it into a floating-point
4284 /// number with exponent of 1:
4285 ///
4286 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4287 ///
4288 /// where Op is the hexadecimal representation of floating point value.
4289 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4290   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4291                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4292   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4293                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4294   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4295 }
4296 
4297 /// GetExponent - Get the exponent:
4298 ///
4299 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4300 ///
4301 /// where Op is the hexadecimal representation of floating point value.
4302 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4303                            const TargetLowering &TLI, const SDLoc &dl) {
4304   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4305                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4306   SDValue t1 = DAG.getNode(
4307       ISD::SRL, dl, MVT::i32, t0,
4308       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4309   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4310                            DAG.getConstant(127, dl, MVT::i32));
4311   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4312 }
4313 
4314 /// getF32Constant - Get 32-bit floating point constant.
4315 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4316                               const SDLoc &dl) {
4317   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4318                            MVT::f32);
4319 }
4320 
4321 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4322                                        SelectionDAG &DAG) {
4323   // TODO: What fast-math-flags should be set on the floating-point nodes?
4324 
4325   //   IntegerPartOfX = ((int32_t)(t0);
4326   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4327 
4328   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4329   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4330   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4331 
4332   //   IntegerPartOfX <<= 23;
4333   IntegerPartOfX = DAG.getNode(
4334       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4335       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4336                                   DAG.getDataLayout())));
4337 
4338   SDValue TwoToFractionalPartOfX;
4339   if (LimitFloatPrecision <= 6) {
4340     // For floating-point precision of 6:
4341     //
4342     //   TwoToFractionalPartOfX =
4343     //     0.997535578f +
4344     //       (0.735607626f + 0.252464424f * x) * x;
4345     //
4346     // error 0.0144103317, which is 6 bits
4347     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4348                              getF32Constant(DAG, 0x3e814304, dl));
4349     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4350                              getF32Constant(DAG, 0x3f3c50c8, dl));
4351     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4352     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4353                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4354   } else if (LimitFloatPrecision <= 12) {
4355     // For floating-point precision of 12:
4356     //
4357     //   TwoToFractionalPartOfX =
4358     //     0.999892986f +
4359     //       (0.696457318f +
4360     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4361     //
4362     // error 0.000107046256, which is 13 to 14 bits
4363     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4364                              getF32Constant(DAG, 0x3da235e3, dl));
4365     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4366                              getF32Constant(DAG, 0x3e65b8f3, dl));
4367     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4368     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4369                              getF32Constant(DAG, 0x3f324b07, dl));
4370     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4371     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4372                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4373   } else { // LimitFloatPrecision <= 18
4374     // For floating-point precision of 18:
4375     //
4376     //   TwoToFractionalPartOfX =
4377     //     0.999999982f +
4378     //       (0.693148872f +
4379     //         (0.240227044f +
4380     //           (0.554906021e-1f +
4381     //             (0.961591928e-2f +
4382     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4383     // error 2.47208000*10^(-7), which is better than 18 bits
4384     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4385                              getF32Constant(DAG, 0x3924b03e, dl));
4386     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4387                              getF32Constant(DAG, 0x3ab24b87, dl));
4388     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4389     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4390                              getF32Constant(DAG, 0x3c1d8c17, dl));
4391     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4392     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4393                              getF32Constant(DAG, 0x3d634a1d, dl));
4394     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4395     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4396                              getF32Constant(DAG, 0x3e75fe14, dl));
4397     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4398     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4399                               getF32Constant(DAG, 0x3f317234, dl));
4400     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4401     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4402                                          getF32Constant(DAG, 0x3f800000, dl));
4403   }
4404 
4405   // Add the exponent into the result in integer domain.
4406   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4407   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4408                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4409 }
4410 
4411 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4412 /// limited-precision mode.
4413 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4414                          const TargetLowering &TLI) {
4415   if (Op.getValueType() == MVT::f32 &&
4416       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4417 
4418     // Put the exponent in the right bit position for later addition to the
4419     // final result:
4420     //
4421     //   #define LOG2OFe 1.4426950f
4422     //   t0 = Op * LOG2OFe
4423 
4424     // TODO: What fast-math-flags should be set here?
4425     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4426                              getF32Constant(DAG, 0x3fb8aa3b, dl));
4427     return getLimitedPrecisionExp2(t0, dl, DAG);
4428   }
4429 
4430   // No special expansion.
4431   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4432 }
4433 
4434 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4435 /// limited-precision mode.
4436 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4437                          const TargetLowering &TLI) {
4438   // TODO: What fast-math-flags should be set on the floating-point nodes?
4439 
4440   if (Op.getValueType() == MVT::f32 &&
4441       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4442     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4443 
4444     // Scale the exponent by log(2) [0.69314718f].
4445     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4446     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4447                                         getF32Constant(DAG, 0x3f317218, dl));
4448 
4449     // Get the significand and build it into a floating-point number with
4450     // exponent of 1.
4451     SDValue X = GetSignificand(DAG, Op1, dl);
4452 
4453     SDValue LogOfMantissa;
4454     if (LimitFloatPrecision <= 6) {
4455       // For floating-point precision of 6:
4456       //
4457       //   LogofMantissa =
4458       //     -1.1609546f +
4459       //       (1.4034025f - 0.23903021f * x) * x;
4460       //
4461       // error 0.0034276066, which is better than 8 bits
4462       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4463                                getF32Constant(DAG, 0xbe74c456, dl));
4464       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4465                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4466       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4467       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4468                                   getF32Constant(DAG, 0x3f949a29, dl));
4469     } else if (LimitFloatPrecision <= 12) {
4470       // For floating-point precision of 12:
4471       //
4472       //   LogOfMantissa =
4473       //     -1.7417939f +
4474       //       (2.8212026f +
4475       //         (-1.4699568f +
4476       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4477       //
4478       // error 0.000061011436, which is 14 bits
4479       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4480                                getF32Constant(DAG, 0xbd67b6d6, dl));
4481       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4482                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4483       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4484       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4485                                getF32Constant(DAG, 0x3fbc278b, dl));
4486       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4487       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4488                                getF32Constant(DAG, 0x40348e95, dl));
4489       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4490       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4491                                   getF32Constant(DAG, 0x3fdef31a, dl));
4492     } else { // LimitFloatPrecision <= 18
4493       // For floating-point precision of 18:
4494       //
4495       //   LogOfMantissa =
4496       //     -2.1072184f +
4497       //       (4.2372794f +
4498       //         (-3.7029485f +
4499       //           (2.2781945f +
4500       //             (-0.87823314f +
4501       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4502       //
4503       // error 0.0000023660568, which is better than 18 bits
4504       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4505                                getF32Constant(DAG, 0xbc91e5ac, dl));
4506       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4507                                getF32Constant(DAG, 0x3e4350aa, dl));
4508       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4509       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4510                                getF32Constant(DAG, 0x3f60d3e3, dl));
4511       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4512       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4513                                getF32Constant(DAG, 0x4011cdf0, dl));
4514       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4515       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4516                                getF32Constant(DAG, 0x406cfd1c, dl));
4517       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4518       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4519                                getF32Constant(DAG, 0x408797cb, dl));
4520       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4521       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4522                                   getF32Constant(DAG, 0x4006dcab, dl));
4523     }
4524 
4525     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4526   }
4527 
4528   // No special expansion.
4529   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4530 }
4531 
4532 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4533 /// limited-precision mode.
4534 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4535                           const TargetLowering &TLI) {
4536   // TODO: What fast-math-flags should be set on the floating-point nodes?
4537 
4538   if (Op.getValueType() == MVT::f32 &&
4539       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4540     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4541 
4542     // Get the exponent.
4543     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4544 
4545     // Get the significand and build it into a floating-point number with
4546     // exponent of 1.
4547     SDValue X = GetSignificand(DAG, Op1, dl);
4548 
4549     // Different possible minimax approximations of significand in
4550     // floating-point for various degrees of accuracy over [1,2].
4551     SDValue Log2ofMantissa;
4552     if (LimitFloatPrecision <= 6) {
4553       // For floating-point precision of 6:
4554       //
4555       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4556       //
4557       // error 0.0049451742, which is more than 7 bits
4558       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4559                                getF32Constant(DAG, 0xbeb08fe0, dl));
4560       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4561                                getF32Constant(DAG, 0x40019463, dl));
4562       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4563       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4564                                    getF32Constant(DAG, 0x3fd6633d, dl));
4565     } else if (LimitFloatPrecision <= 12) {
4566       // For floating-point precision of 12:
4567       //
4568       //   Log2ofMantissa =
4569       //     -2.51285454f +
4570       //       (4.07009056f +
4571       //         (-2.12067489f +
4572       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4573       //
4574       // error 0.0000876136000, which is better than 13 bits
4575       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4576                                getF32Constant(DAG, 0xbda7262e, dl));
4577       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4578                                getF32Constant(DAG, 0x3f25280b, dl));
4579       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4580       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4581                                getF32Constant(DAG, 0x4007b923, dl));
4582       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4583       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4584                                getF32Constant(DAG, 0x40823e2f, dl));
4585       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4586       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4587                                    getF32Constant(DAG, 0x4020d29c, dl));
4588     } else { // LimitFloatPrecision <= 18
4589       // For floating-point precision of 18:
4590       //
4591       //   Log2ofMantissa =
4592       //     -3.0400495f +
4593       //       (6.1129976f +
4594       //         (-5.3420409f +
4595       //           (3.2865683f +
4596       //             (-1.2669343f +
4597       //               (0.27515199f -
4598       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4599       //
4600       // error 0.0000018516, which is better than 18 bits
4601       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4602                                getF32Constant(DAG, 0xbcd2769e, dl));
4603       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4604                                getF32Constant(DAG, 0x3e8ce0b9, dl));
4605       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4606       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4607                                getF32Constant(DAG, 0x3fa22ae7, dl));
4608       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4609       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4610                                getF32Constant(DAG, 0x40525723, dl));
4611       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4612       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4613                                getF32Constant(DAG, 0x40aaf200, dl));
4614       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4615       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4616                                getF32Constant(DAG, 0x40c39dad, dl));
4617       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4618       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4619                                    getF32Constant(DAG, 0x4042902c, dl));
4620     }
4621 
4622     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4623   }
4624 
4625   // No special expansion.
4626   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4627 }
4628 
4629 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4630 /// limited-precision mode.
4631 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4632                            const TargetLowering &TLI) {
4633   // TODO: What fast-math-flags should be set on the floating-point nodes?
4634 
4635   if (Op.getValueType() == MVT::f32 &&
4636       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4637     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4638 
4639     // Scale the exponent by log10(2) [0.30102999f].
4640     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4641     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4642                                         getF32Constant(DAG, 0x3e9a209a, dl));
4643 
4644     // Get the significand and build it into a floating-point number with
4645     // exponent of 1.
4646     SDValue X = GetSignificand(DAG, Op1, dl);
4647 
4648     SDValue Log10ofMantissa;
4649     if (LimitFloatPrecision <= 6) {
4650       // For floating-point precision of 6:
4651       //
4652       //   Log10ofMantissa =
4653       //     -0.50419619f +
4654       //       (0.60948995f - 0.10380950f * x) * x;
4655       //
4656       // error 0.0014886165, which is 6 bits
4657       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4658                                getF32Constant(DAG, 0xbdd49a13, dl));
4659       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4660                                getF32Constant(DAG, 0x3f1c0789, dl));
4661       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4662       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4663                                     getF32Constant(DAG, 0x3f011300, dl));
4664     } else if (LimitFloatPrecision <= 12) {
4665       // For floating-point precision of 12:
4666       //
4667       //   Log10ofMantissa =
4668       //     -0.64831180f +
4669       //       (0.91751397f +
4670       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4671       //
4672       // error 0.00019228036, which is better than 12 bits
4673       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4674                                getF32Constant(DAG, 0x3d431f31, dl));
4675       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4676                                getF32Constant(DAG, 0x3ea21fb2, dl));
4677       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4678       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4679                                getF32Constant(DAG, 0x3f6ae232, dl));
4680       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4681       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4682                                     getF32Constant(DAG, 0x3f25f7c3, dl));
4683     } else { // LimitFloatPrecision <= 18
4684       // For floating-point precision of 18:
4685       //
4686       //   Log10ofMantissa =
4687       //     -0.84299375f +
4688       //       (1.5327582f +
4689       //         (-1.0688956f +
4690       //           (0.49102474f +
4691       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4692       //
4693       // error 0.0000037995730, which is better than 18 bits
4694       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4695                                getF32Constant(DAG, 0x3c5d51ce, dl));
4696       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4697                                getF32Constant(DAG, 0x3e00685a, dl));
4698       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4699       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4700                                getF32Constant(DAG, 0x3efb6798, dl));
4701       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4702       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4703                                getF32Constant(DAG, 0x3f88d192, dl));
4704       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4705       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4706                                getF32Constant(DAG, 0x3fc4316c, dl));
4707       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4708       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4709                                     getF32Constant(DAG, 0x3f57ce70, dl));
4710     }
4711 
4712     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4713   }
4714 
4715   // No special expansion.
4716   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4717 }
4718 
4719 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4720 /// limited-precision mode.
4721 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4722                           const TargetLowering &TLI) {
4723   if (Op.getValueType() == MVT::f32 &&
4724       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
4725     return getLimitedPrecisionExp2(Op, dl, DAG);
4726 
4727   // No special expansion.
4728   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4729 }
4730 
4731 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4732 /// limited-precision mode with x == 10.0f.
4733 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
4734                          SelectionDAG &DAG, const TargetLowering &TLI) {
4735   bool IsExp10 = false;
4736   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
4737       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4738     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4739       APFloat Ten(10.0f);
4740       IsExp10 = LHSC->isExactlyValue(Ten);
4741     }
4742   }
4743 
4744   // TODO: What fast-math-flags should be set on the FMUL node?
4745   if (IsExp10) {
4746     // Put the exponent in the right bit position for later addition to the
4747     // final result:
4748     //
4749     //   #define LOG2OF10 3.3219281f
4750     //   t0 = Op * LOG2OF10;
4751     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4752                              getF32Constant(DAG, 0x40549a78, dl));
4753     return getLimitedPrecisionExp2(t0, dl, DAG);
4754   }
4755 
4756   // No special expansion.
4757   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4758 }
4759 
4760 /// ExpandPowI - Expand a llvm.powi intrinsic.
4761 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
4762                           SelectionDAG &DAG) {
4763   // If RHS is a constant, we can expand this out to a multiplication tree,
4764   // otherwise we end up lowering to a call to __powidf2 (for example).  When
4765   // optimizing for size, we only want to do this if the expansion would produce
4766   // a small number of multiplies, otherwise we do the full expansion.
4767   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4768     // Get the exponent as a positive value.
4769     unsigned Val = RHSC->getSExtValue();
4770     if ((int)Val < 0) Val = -Val;
4771 
4772     // powi(x, 0) -> 1.0
4773     if (Val == 0)
4774       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
4775 
4776     const Function *F = DAG.getMachineFunction().getFunction();
4777     if (!F->optForSize() ||
4778         // If optimizing for size, don't insert too many multiplies.
4779         // This inserts up to 5 multiplies.
4780         countPopulation(Val) + Log2_32(Val) < 7) {
4781       // We use the simple binary decomposition method to generate the multiply
4782       // sequence.  There are more optimal ways to do this (for example,
4783       // powi(x,15) generates one more multiply than it should), but this has
4784       // the benefit of being both really simple and much better than a libcall.
4785       SDValue Res;  // Logically starts equal to 1.0
4786       SDValue CurSquare = LHS;
4787       // TODO: Intrinsics should have fast-math-flags that propagate to these
4788       // nodes.
4789       while (Val) {
4790         if (Val & 1) {
4791           if (Res.getNode())
4792             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4793           else
4794             Res = CurSquare;  // 1.0*CurSquare.
4795         }
4796 
4797         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4798                                 CurSquare, CurSquare);
4799         Val >>= 1;
4800       }
4801 
4802       // If the original was negative, invert the result, producing 1/(x*x*x).
4803       if (RHSC->getSExtValue() < 0)
4804         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4805                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
4806       return Res;
4807     }
4808   }
4809 
4810   // Otherwise, expand to a libcall.
4811   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4812 }
4813 
4814 // getUnderlyingArgReg - Find underlying register used for a truncated or
4815 // bitcasted argument.
4816 static unsigned getUnderlyingArgReg(const SDValue &N) {
4817   switch (N.getOpcode()) {
4818   case ISD::CopyFromReg:
4819     return cast<RegisterSDNode>(N.getOperand(1))->getReg();
4820   case ISD::BITCAST:
4821   case ISD::AssertZext:
4822   case ISD::AssertSext:
4823   case ISD::TRUNCATE:
4824     return getUnderlyingArgReg(N.getOperand(0));
4825   default:
4826     return 0;
4827   }
4828 }
4829 
4830 /// If the DbgValueInst is a dbg_value of a function argument, create the
4831 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
4832 /// instruction selection, they will be inserted to the entry BB.
4833 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
4834     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
4835     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
4836   const Argument *Arg = dyn_cast<Argument>(V);
4837   if (!Arg)
4838     return false;
4839 
4840   MachineFunction &MF = DAG.getMachineFunction();
4841   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
4842 
4843   bool IsIndirect = false;
4844   Optional<MachineOperand> Op;
4845   // Some arguments' frame index is recorded during argument lowering.
4846   int FI = FuncInfo.getArgumentFrameIndex(Arg);
4847   if (FI != std::numeric_limits<int>::max())
4848     Op = MachineOperand::CreateFI(FI);
4849 
4850   if (!Op && N.getNode()) {
4851     unsigned Reg = getUnderlyingArgReg(N);
4852     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4853       MachineRegisterInfo &RegInfo = MF.getRegInfo();
4854       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4855       if (PR)
4856         Reg = PR;
4857     }
4858     if (Reg) {
4859       Op = MachineOperand::CreateReg(Reg, false);
4860       IsIndirect = IsDbgDeclare;
4861     }
4862   }
4863 
4864   if (!Op) {
4865     // Check if ValueMap has reg number.
4866     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4867     if (VMI != FuncInfo.ValueMap.end()) {
4868       const auto &TLI = DAG.getTargetLoweringInfo();
4869       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
4870                        V->getType(), isABIRegCopy(V));
4871       unsigned NumRegs =
4872           std::accumulate(RFV.RegCount.begin(), RFV.RegCount.end(), 0);
4873       if (NumRegs > 1) {
4874         unsigned I = 0;
4875         unsigned Offset = 0;
4876         auto RegisterVT = RFV.RegVTs.begin();
4877         for (auto RegCount : RFV.RegCount) {
4878           unsigned RegisterSize = (RegisterVT++)->getSizeInBits();
4879           for (unsigned E = I + RegCount; I != E; ++I) {
4880             // The vregs are guaranteed to be allocated in sequence.
4881             Op = MachineOperand::CreateReg(VMI->second + I, false);
4882             auto FragmentExpr = DIExpression::createFragmentExpression(
4883                 Expr, Offset, RegisterSize);
4884             if (!FragmentExpr)
4885               continue;
4886             FuncInfo.ArgDbgValues.push_back(
4887                 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
4888                         Op->getReg(), Variable, *FragmentExpr));
4889             Offset += RegisterSize;
4890           }
4891         }
4892         return true;
4893       }
4894       Op = MachineOperand::CreateReg(VMI->second, false);
4895       IsIndirect = IsDbgDeclare;
4896     }
4897   }
4898 
4899   if (!Op && N.getNode())
4900     // Check if frame index is available.
4901     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4902       if (FrameIndexSDNode *FINode =
4903           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4904         Op = MachineOperand::CreateFI(FINode->getIndex());
4905 
4906   if (!Op)
4907     return false;
4908 
4909   assert(Variable->isValidLocationForIntrinsic(DL) &&
4910          "Expected inlined-at fields to agree");
4911   if (Op->isReg())
4912     FuncInfo.ArgDbgValues.push_back(
4913         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
4914                 Op->getReg(), Variable, Expr));
4915   else
4916     FuncInfo.ArgDbgValues.push_back(
4917         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE))
4918             .add(*Op)
4919             .addImm(0)
4920             .addMetadata(Variable)
4921             .addMetadata(Expr));
4922 
4923   return true;
4924 }
4925 
4926 /// Return the appropriate SDDbgValue based on N.
4927 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
4928                                              DILocalVariable *Variable,
4929                                              DIExpression *Expr,
4930                                              const DebugLoc &dl,
4931                                              unsigned DbgSDNodeOrder) {
4932   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
4933     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
4934     // stack slot locations as such instead of as indirectly addressed
4935     // locations.
4936     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), dl,
4937                                      DbgSDNodeOrder);
4938   }
4939   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), false, dl,
4940                          DbgSDNodeOrder);
4941 }
4942 
4943 // VisualStudio defines setjmp as _setjmp
4944 #if defined(_MSC_VER) && defined(setjmp) && \
4945                          !defined(setjmp_undefined_for_msvc)
4946 #  pragma push_macro("setjmp")
4947 #  undef setjmp
4948 #  define setjmp_undefined_for_msvc
4949 #endif
4950 
4951 /// Lower the call to the specified intrinsic function. If we want to emit this
4952 /// as a call to a named external function, return the name. Otherwise, lower it
4953 /// and return null.
4954 const char *
4955 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4956   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4957   SDLoc sdl = getCurSDLoc();
4958   DebugLoc dl = getCurDebugLoc();
4959   SDValue Res;
4960 
4961   switch (Intrinsic) {
4962   default:
4963     // By default, turn this into a target intrinsic node.
4964     visitTargetIntrinsic(I, Intrinsic);
4965     return nullptr;
4966   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
4967   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
4968   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
4969   case Intrinsic::returnaddress:
4970     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
4971                              TLI.getPointerTy(DAG.getDataLayout()),
4972                              getValue(I.getArgOperand(0))));
4973     return nullptr;
4974   case Intrinsic::addressofreturnaddress:
4975     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
4976                              TLI.getPointerTy(DAG.getDataLayout())));
4977     return nullptr;
4978   case Intrinsic::frameaddress:
4979     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
4980                              TLI.getPointerTy(DAG.getDataLayout()),
4981                              getValue(I.getArgOperand(0))));
4982     return nullptr;
4983   case Intrinsic::read_register: {
4984     Value *Reg = I.getArgOperand(0);
4985     SDValue Chain = getRoot();
4986     SDValue RegName =
4987         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4988     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4989     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
4990       DAG.getVTList(VT, MVT::Other), Chain, RegName);
4991     setValue(&I, Res);
4992     DAG.setRoot(Res.getValue(1));
4993     return nullptr;
4994   }
4995   case Intrinsic::write_register: {
4996     Value *Reg = I.getArgOperand(0);
4997     Value *RegValue = I.getArgOperand(1);
4998     SDValue Chain = getRoot();
4999     SDValue RegName =
5000         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5001     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5002                             RegName, getValue(RegValue)));
5003     return nullptr;
5004   }
5005   case Intrinsic::setjmp:
5006     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
5007   case Intrinsic::longjmp:
5008     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
5009   case Intrinsic::memcpy: {
5010     SDValue Op1 = getValue(I.getArgOperand(0));
5011     SDValue Op2 = getValue(I.getArgOperand(1));
5012     SDValue Op3 = getValue(I.getArgOperand(2));
5013     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
5014     if (!Align)
5015       Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5016     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
5017     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5018     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5019                                false, isTC,
5020                                MachinePointerInfo(I.getArgOperand(0)),
5021                                MachinePointerInfo(I.getArgOperand(1)));
5022     updateDAGForMaybeTailCall(MC);
5023     return nullptr;
5024   }
5025   case Intrinsic::memset: {
5026     SDValue Op1 = getValue(I.getArgOperand(0));
5027     SDValue Op2 = getValue(I.getArgOperand(1));
5028     SDValue Op3 = getValue(I.getArgOperand(2));
5029     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
5030     if (!Align)
5031       Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
5032     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
5033     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5034     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5035                                isTC, MachinePointerInfo(I.getArgOperand(0)));
5036     updateDAGForMaybeTailCall(MS);
5037     return nullptr;
5038   }
5039   case Intrinsic::memmove: {
5040     SDValue Op1 = getValue(I.getArgOperand(0));
5041     SDValue Op2 = getValue(I.getArgOperand(1));
5042     SDValue Op3 = getValue(I.getArgOperand(2));
5043     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
5044     if (!Align)
5045       Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
5046     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
5047     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5048     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5049                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5050                                 MachinePointerInfo(I.getArgOperand(1)));
5051     updateDAGForMaybeTailCall(MM);
5052     return nullptr;
5053   }
5054   case Intrinsic::memcpy_element_unordered_atomic: {
5055     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5056     SDValue Dst = getValue(MI.getRawDest());
5057     SDValue Src = getValue(MI.getRawSource());
5058     SDValue Length = getValue(MI.getLength());
5059 
5060     // Emit a library call.
5061     TargetLowering::ArgListTy Args;
5062     TargetLowering::ArgListEntry Entry;
5063     Entry.Ty = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
5064     Entry.Node = Dst;
5065     Args.push_back(Entry);
5066 
5067     Entry.Node = Src;
5068     Args.push_back(Entry);
5069 
5070     Entry.Ty = MI.getLength()->getType();
5071     Entry.Node = Length;
5072     Args.push_back(Entry);
5073 
5074     uint64_t ElementSizeConstant = MI.getElementSizeInBytes();
5075     RTLIB::Libcall LibraryCall =
5076         RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElementSizeConstant);
5077     if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
5078       report_fatal_error("Unsupported element size");
5079 
5080     TargetLowering::CallLoweringInfo CLI(DAG);
5081     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
5082         TLI.getLibcallCallingConv(LibraryCall),
5083         Type::getVoidTy(*DAG.getContext()),
5084         DAG.getExternalSymbol(TLI.getLibcallName(LibraryCall),
5085                               TLI.getPointerTy(DAG.getDataLayout())),
5086         std::move(Args));
5087 
5088     std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
5089     DAG.setRoot(CallResult.second);
5090     return nullptr;
5091   }
5092   case Intrinsic::memmove_element_unordered_atomic: {
5093     auto &MI = cast<AtomicMemMoveInst>(I);
5094     SDValue Dst = getValue(MI.getRawDest());
5095     SDValue Src = getValue(MI.getRawSource());
5096     SDValue Length = getValue(MI.getLength());
5097 
5098     // Emit a library call.
5099     TargetLowering::ArgListTy Args;
5100     TargetLowering::ArgListEntry Entry;
5101     Entry.Ty = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
5102     Entry.Node = Dst;
5103     Args.push_back(Entry);
5104 
5105     Entry.Node = Src;
5106     Args.push_back(Entry);
5107 
5108     Entry.Ty = MI.getLength()->getType();
5109     Entry.Node = Length;
5110     Args.push_back(Entry);
5111 
5112     uint64_t ElementSizeConstant = MI.getElementSizeInBytes();
5113     RTLIB::Libcall LibraryCall =
5114         RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElementSizeConstant);
5115     if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
5116       report_fatal_error("Unsupported element size");
5117 
5118     TargetLowering::CallLoweringInfo CLI(DAG);
5119     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
5120         TLI.getLibcallCallingConv(LibraryCall),
5121         Type::getVoidTy(*DAG.getContext()),
5122         DAG.getExternalSymbol(TLI.getLibcallName(LibraryCall),
5123                               TLI.getPointerTy(DAG.getDataLayout())),
5124         std::move(Args));
5125 
5126     std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
5127     DAG.setRoot(CallResult.second);
5128     return nullptr;
5129   }
5130   case Intrinsic::memset_element_unordered_atomic: {
5131     auto &MI = cast<AtomicMemSetInst>(I);
5132     SDValue Dst = getValue(MI.getRawDest());
5133     SDValue Val = getValue(MI.getValue());
5134     SDValue Length = getValue(MI.getLength());
5135 
5136     // Emit a library call.
5137     TargetLowering::ArgListTy Args;
5138     TargetLowering::ArgListEntry Entry;
5139     Entry.Ty = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
5140     Entry.Node = Dst;
5141     Args.push_back(Entry);
5142 
5143     Entry.Ty = Type::getInt8Ty(*DAG.getContext());
5144     Entry.Node = Val;
5145     Args.push_back(Entry);
5146 
5147     Entry.Ty = MI.getLength()->getType();
5148     Entry.Node = Length;
5149     Args.push_back(Entry);
5150 
5151     uint64_t ElementSizeConstant = MI.getElementSizeInBytes();
5152     RTLIB::Libcall LibraryCall =
5153         RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElementSizeConstant);
5154     if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
5155       report_fatal_error("Unsupported element size");
5156 
5157     TargetLowering::CallLoweringInfo CLI(DAG);
5158     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
5159         TLI.getLibcallCallingConv(LibraryCall),
5160         Type::getVoidTy(*DAG.getContext()),
5161         DAG.getExternalSymbol(TLI.getLibcallName(LibraryCall),
5162                               TLI.getPointerTy(DAG.getDataLayout())),
5163         std::move(Args));
5164 
5165     std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
5166     DAG.setRoot(CallResult.second);
5167     return nullptr;
5168   }
5169   case Intrinsic::dbg_addr:
5170   case Intrinsic::dbg_declare: {
5171     const DbgInfoIntrinsic &DI = cast<DbgInfoIntrinsic>(I);
5172     DILocalVariable *Variable = DI.getVariable();
5173     DIExpression *Expression = DI.getExpression();
5174     assert(Variable && "Missing variable");
5175 
5176     // Check if address has undef value.
5177     const Value *Address = DI.getVariableLocation();
5178     if (!Address || isa<UndefValue>(Address) ||
5179         (Address->use_empty() && !isa<Argument>(Address))) {
5180       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5181       return nullptr;
5182     }
5183 
5184     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5185 
5186     // Check if this variable can be described by a frame index, typically
5187     // either as a static alloca or a byval parameter.
5188     int FI = std::numeric_limits<int>::max();
5189     if (const auto *AI =
5190             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5191       if (AI->isStaticAlloca()) {
5192         auto I = FuncInfo.StaticAllocaMap.find(AI);
5193         if (I != FuncInfo.StaticAllocaMap.end())
5194           FI = I->second;
5195       }
5196     } else if (const auto *Arg = dyn_cast<Argument>(
5197                    Address->stripInBoundsConstantOffsets())) {
5198       FI = FuncInfo.getArgumentFrameIndex(Arg);
5199     }
5200 
5201     // llvm.dbg.addr is control dependent and always generates indirect
5202     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5203     // the MachineFunction variable table.
5204     if (FI != std::numeric_limits<int>::max()) {
5205       if (Intrinsic == Intrinsic::dbg_addr)
5206         DAG.AddDbgValue(DAG.getFrameIndexDbgValue(Variable, Expression, FI, dl,
5207                                                   SDNodeOrder),
5208                         getRoot().getNode(), isParameter);
5209       return nullptr;
5210     }
5211 
5212     SDValue &N = NodeMap[Address];
5213     if (!N.getNode() && isa<Argument>(Address))
5214       // Check unused arguments map.
5215       N = UnusedArgNodeMap[Address];
5216     SDDbgValue *SDV;
5217     if (N.getNode()) {
5218       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5219         Address = BCI->getOperand(0);
5220       // Parameters are handled specially.
5221       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5222       if (isParameter && FINode) {
5223         // Byval parameter. We have a frame index at this point.
5224         SDV = DAG.getFrameIndexDbgValue(Variable, Expression,
5225                                         FINode->getIndex(), dl, SDNodeOrder);
5226       } else if (isa<Argument>(Address)) {
5227         // Address is an argument, so try to emit its dbg value using
5228         // virtual register info from the FuncInfo.ValueMap.
5229         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
5230         return nullptr;
5231       } else {
5232         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5233                               true, dl, SDNodeOrder);
5234       }
5235       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5236     } else {
5237       // If Address is an argument then try to emit its dbg value using
5238       // virtual register info from the FuncInfo.ValueMap.
5239       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
5240                                     N)) {
5241         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5242       }
5243     }
5244     return nullptr;
5245   }
5246   case Intrinsic::dbg_value: {
5247     const DbgValueInst &DI = cast<DbgValueInst>(I);
5248     assert(DI.getVariable() && "Missing variable");
5249 
5250     DILocalVariable *Variable = DI.getVariable();
5251     DIExpression *Expression = DI.getExpression();
5252     const Value *V = DI.getValue();
5253     if (!V)
5254       return nullptr;
5255 
5256     SDDbgValue *SDV;
5257     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
5258       SDV = DAG.getConstantDbgValue(Variable, Expression, V, dl, SDNodeOrder);
5259       DAG.AddDbgValue(SDV, nullptr, false);
5260       return nullptr;
5261     }
5262 
5263     // Do not use getValue() in here; we don't want to generate code at
5264     // this point if it hasn't been done yet.
5265     SDValue N = NodeMap[V];
5266     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
5267       N = UnusedArgNodeMap[V];
5268     if (N.getNode()) {
5269       if (EmitFuncArgumentDbgValue(V, Variable, Expression, dl, false, N))
5270         return nullptr;
5271       SDV = getDbgValue(N, Variable, Expression, dl, SDNodeOrder);
5272       DAG.AddDbgValue(SDV, N.getNode(), false);
5273       return nullptr;
5274     }
5275 
5276     if (!V->use_empty() ) {
5277       // Do not call getValue(V) yet, as we don't want to generate code.
5278       // Remember it for later.
5279       DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
5280       DanglingDebugInfoMap[V] = DDI;
5281       return nullptr;
5282     }
5283 
5284     DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
5285     DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
5286     return nullptr;
5287   }
5288 
5289   case Intrinsic::eh_typeid_for: {
5290     // Find the type id for the given typeinfo.
5291     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5292     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5293     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5294     setValue(&I, Res);
5295     return nullptr;
5296   }
5297 
5298   case Intrinsic::eh_return_i32:
5299   case Intrinsic::eh_return_i64:
5300     DAG.getMachineFunction().setCallsEHReturn(true);
5301     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5302                             MVT::Other,
5303                             getControlRoot(),
5304                             getValue(I.getArgOperand(0)),
5305                             getValue(I.getArgOperand(1))));
5306     return nullptr;
5307   case Intrinsic::eh_unwind_init:
5308     DAG.getMachineFunction().setCallsUnwindInit(true);
5309     return nullptr;
5310   case Intrinsic::eh_dwarf_cfa:
5311     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
5312                              TLI.getPointerTy(DAG.getDataLayout()),
5313                              getValue(I.getArgOperand(0))));
5314     return nullptr;
5315   case Intrinsic::eh_sjlj_callsite: {
5316     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5317     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5318     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5319     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5320 
5321     MMI.setCurrentCallSite(CI->getZExtValue());
5322     return nullptr;
5323   }
5324   case Intrinsic::eh_sjlj_functioncontext: {
5325     // Get and store the index of the function context.
5326     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5327     AllocaInst *FnCtx =
5328       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
5329     int FI = FuncInfo.StaticAllocaMap[FnCtx];
5330     MFI.setFunctionContextIndex(FI);
5331     return nullptr;
5332   }
5333   case Intrinsic::eh_sjlj_setjmp: {
5334     SDValue Ops[2];
5335     Ops[0] = getRoot();
5336     Ops[1] = getValue(I.getArgOperand(0));
5337     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
5338                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
5339     setValue(&I, Op.getValue(0));
5340     DAG.setRoot(Op.getValue(1));
5341     return nullptr;
5342   }
5343   case Intrinsic::eh_sjlj_longjmp:
5344     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
5345                             getRoot(), getValue(I.getArgOperand(0))));
5346     return nullptr;
5347   case Intrinsic::eh_sjlj_setup_dispatch:
5348     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
5349                             getRoot()));
5350     return nullptr;
5351   case Intrinsic::masked_gather:
5352     visitMaskedGather(I);
5353     return nullptr;
5354   case Intrinsic::masked_load:
5355     visitMaskedLoad(I);
5356     return nullptr;
5357   case Intrinsic::masked_scatter:
5358     visitMaskedScatter(I);
5359     return nullptr;
5360   case Intrinsic::masked_store:
5361     visitMaskedStore(I);
5362     return nullptr;
5363   case Intrinsic::masked_expandload:
5364     visitMaskedLoad(I, true /* IsExpanding */);
5365     return nullptr;
5366   case Intrinsic::masked_compressstore:
5367     visitMaskedStore(I, true /* IsCompressing */);
5368     return nullptr;
5369   case Intrinsic::x86_mmx_pslli_w:
5370   case Intrinsic::x86_mmx_pslli_d:
5371   case Intrinsic::x86_mmx_pslli_q:
5372   case Intrinsic::x86_mmx_psrli_w:
5373   case Intrinsic::x86_mmx_psrli_d:
5374   case Intrinsic::x86_mmx_psrli_q:
5375   case Intrinsic::x86_mmx_psrai_w:
5376   case Intrinsic::x86_mmx_psrai_d: {
5377     SDValue ShAmt = getValue(I.getArgOperand(1));
5378     if (isa<ConstantSDNode>(ShAmt)) {
5379       visitTargetIntrinsic(I, Intrinsic);
5380       return nullptr;
5381     }
5382     unsigned NewIntrinsic = 0;
5383     EVT ShAmtVT = MVT::v2i32;
5384     switch (Intrinsic) {
5385     case Intrinsic::x86_mmx_pslli_w:
5386       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
5387       break;
5388     case Intrinsic::x86_mmx_pslli_d:
5389       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
5390       break;
5391     case Intrinsic::x86_mmx_pslli_q:
5392       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
5393       break;
5394     case Intrinsic::x86_mmx_psrli_w:
5395       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
5396       break;
5397     case Intrinsic::x86_mmx_psrli_d:
5398       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
5399       break;
5400     case Intrinsic::x86_mmx_psrli_q:
5401       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
5402       break;
5403     case Intrinsic::x86_mmx_psrai_w:
5404       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
5405       break;
5406     case Intrinsic::x86_mmx_psrai_d:
5407       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
5408       break;
5409     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5410     }
5411 
5412     // The vector shift intrinsics with scalars uses 32b shift amounts but
5413     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
5414     // to be zero.
5415     // We must do this early because v2i32 is not a legal type.
5416     SDValue ShOps[2];
5417     ShOps[0] = ShAmt;
5418     ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
5419     ShAmt =  DAG.getBuildVector(ShAmtVT, sdl, ShOps);
5420     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5421     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
5422     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
5423                        DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
5424                        getValue(I.getArgOperand(0)), ShAmt);
5425     setValue(&I, Res);
5426     return nullptr;
5427   }
5428   case Intrinsic::powi:
5429     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5430                             getValue(I.getArgOperand(1)), DAG));
5431     return nullptr;
5432   case Intrinsic::log:
5433     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5434     return nullptr;
5435   case Intrinsic::log2:
5436     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5437     return nullptr;
5438   case Intrinsic::log10:
5439     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5440     return nullptr;
5441   case Intrinsic::exp:
5442     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5443     return nullptr;
5444   case Intrinsic::exp2:
5445     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5446     return nullptr;
5447   case Intrinsic::pow:
5448     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
5449                            getValue(I.getArgOperand(1)), DAG, TLI));
5450     return nullptr;
5451   case Intrinsic::sqrt:
5452   case Intrinsic::fabs:
5453   case Intrinsic::sin:
5454   case Intrinsic::cos:
5455   case Intrinsic::floor:
5456   case Intrinsic::ceil:
5457   case Intrinsic::trunc:
5458   case Intrinsic::rint:
5459   case Intrinsic::nearbyint:
5460   case Intrinsic::round:
5461   case Intrinsic::canonicalize: {
5462     unsigned Opcode;
5463     switch (Intrinsic) {
5464     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5465     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
5466     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
5467     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
5468     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
5469     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
5470     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
5471     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
5472     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
5473     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
5474     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
5475     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
5476     }
5477 
5478     setValue(&I, DAG.getNode(Opcode, sdl,
5479                              getValue(I.getArgOperand(0)).getValueType(),
5480                              getValue(I.getArgOperand(0))));
5481     return nullptr;
5482   }
5483   case Intrinsic::minnum: {
5484     auto VT = getValue(I.getArgOperand(0)).getValueType();
5485     unsigned Opc =
5486         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)
5487             ? ISD::FMINNAN
5488             : ISD::FMINNUM;
5489     setValue(&I, DAG.getNode(Opc, sdl, VT,
5490                              getValue(I.getArgOperand(0)),
5491                              getValue(I.getArgOperand(1))));
5492     return nullptr;
5493   }
5494   case Intrinsic::maxnum: {
5495     auto VT = getValue(I.getArgOperand(0)).getValueType();
5496     unsigned Opc =
5497         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)
5498             ? ISD::FMAXNAN
5499             : ISD::FMAXNUM;
5500     setValue(&I, DAG.getNode(Opc, sdl, VT,
5501                              getValue(I.getArgOperand(0)),
5502                              getValue(I.getArgOperand(1))));
5503     return nullptr;
5504   }
5505   case Intrinsic::copysign:
5506     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5507                              getValue(I.getArgOperand(0)).getValueType(),
5508                              getValue(I.getArgOperand(0)),
5509                              getValue(I.getArgOperand(1))));
5510     return nullptr;
5511   case Intrinsic::fma:
5512     setValue(&I, DAG.getNode(ISD::FMA, sdl,
5513                              getValue(I.getArgOperand(0)).getValueType(),
5514                              getValue(I.getArgOperand(0)),
5515                              getValue(I.getArgOperand(1)),
5516                              getValue(I.getArgOperand(2))));
5517     return nullptr;
5518   case Intrinsic::experimental_constrained_fadd:
5519   case Intrinsic::experimental_constrained_fsub:
5520   case Intrinsic::experimental_constrained_fmul:
5521   case Intrinsic::experimental_constrained_fdiv:
5522   case Intrinsic::experimental_constrained_frem:
5523   case Intrinsic::experimental_constrained_fma:
5524   case Intrinsic::experimental_constrained_sqrt:
5525   case Intrinsic::experimental_constrained_pow:
5526   case Intrinsic::experimental_constrained_powi:
5527   case Intrinsic::experimental_constrained_sin:
5528   case Intrinsic::experimental_constrained_cos:
5529   case Intrinsic::experimental_constrained_exp:
5530   case Intrinsic::experimental_constrained_exp2:
5531   case Intrinsic::experimental_constrained_log:
5532   case Intrinsic::experimental_constrained_log10:
5533   case Intrinsic::experimental_constrained_log2:
5534   case Intrinsic::experimental_constrained_rint:
5535   case Intrinsic::experimental_constrained_nearbyint:
5536     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
5537     return nullptr;
5538   case Intrinsic::fmuladd: {
5539     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5540     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
5541         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
5542       setValue(&I, DAG.getNode(ISD::FMA, sdl,
5543                                getValue(I.getArgOperand(0)).getValueType(),
5544                                getValue(I.getArgOperand(0)),
5545                                getValue(I.getArgOperand(1)),
5546                                getValue(I.getArgOperand(2))));
5547     } else {
5548       // TODO: Intrinsic calls should have fast-math-flags.
5549       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
5550                                 getValue(I.getArgOperand(0)).getValueType(),
5551                                 getValue(I.getArgOperand(0)),
5552                                 getValue(I.getArgOperand(1)));
5553       SDValue Add = DAG.getNode(ISD::FADD, sdl,
5554                                 getValue(I.getArgOperand(0)).getValueType(),
5555                                 Mul,
5556                                 getValue(I.getArgOperand(2)));
5557       setValue(&I, Add);
5558     }
5559     return nullptr;
5560   }
5561   case Intrinsic::convert_to_fp16:
5562     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
5563                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
5564                                          getValue(I.getArgOperand(0)),
5565                                          DAG.getTargetConstant(0, sdl,
5566                                                                MVT::i32))));
5567     return nullptr;
5568   case Intrinsic::convert_from_fp16:
5569     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
5570                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5571                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
5572                                          getValue(I.getArgOperand(0)))));
5573     return nullptr;
5574   case Intrinsic::pcmarker: {
5575     SDValue Tmp = getValue(I.getArgOperand(0));
5576     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
5577     return nullptr;
5578   }
5579   case Intrinsic::readcyclecounter: {
5580     SDValue Op = getRoot();
5581     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
5582                       DAG.getVTList(MVT::i64, MVT::Other), Op);
5583     setValue(&I, Res);
5584     DAG.setRoot(Res.getValue(1));
5585     return nullptr;
5586   }
5587   case Intrinsic::bitreverse:
5588     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
5589                              getValue(I.getArgOperand(0)).getValueType(),
5590                              getValue(I.getArgOperand(0))));
5591     return nullptr;
5592   case Intrinsic::bswap:
5593     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
5594                              getValue(I.getArgOperand(0)).getValueType(),
5595                              getValue(I.getArgOperand(0))));
5596     return nullptr;
5597   case Intrinsic::cttz: {
5598     SDValue Arg = getValue(I.getArgOperand(0));
5599     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5600     EVT Ty = Arg.getValueType();
5601     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
5602                              sdl, Ty, Arg));
5603     return nullptr;
5604   }
5605   case Intrinsic::ctlz: {
5606     SDValue Arg = getValue(I.getArgOperand(0));
5607     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5608     EVT Ty = Arg.getValueType();
5609     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
5610                              sdl, Ty, Arg));
5611     return nullptr;
5612   }
5613   case Intrinsic::ctpop: {
5614     SDValue Arg = getValue(I.getArgOperand(0));
5615     EVT Ty = Arg.getValueType();
5616     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
5617     return nullptr;
5618   }
5619   case Intrinsic::stacksave: {
5620     SDValue Op = getRoot();
5621     Res = DAG.getNode(
5622         ISD::STACKSAVE, sdl,
5623         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
5624     setValue(&I, Res);
5625     DAG.setRoot(Res.getValue(1));
5626     return nullptr;
5627   }
5628   case Intrinsic::stackrestore:
5629     Res = getValue(I.getArgOperand(0));
5630     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
5631     return nullptr;
5632   case Intrinsic::get_dynamic_area_offset: {
5633     SDValue Op = getRoot();
5634     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5635     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
5636     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
5637     // target.
5638     if (PtrTy != ResTy)
5639       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
5640                          " intrinsic!");
5641     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
5642                       Op);
5643     DAG.setRoot(Op);
5644     setValue(&I, Res);
5645     return nullptr;
5646   }
5647   case Intrinsic::stackguard: {
5648     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5649     MachineFunction &MF = DAG.getMachineFunction();
5650     const Module &M = *MF.getFunction()->getParent();
5651     SDValue Chain = getRoot();
5652     if (TLI.useLoadStackGuardNode()) {
5653       Res = getLoadStackGuard(DAG, sdl, Chain);
5654     } else {
5655       const Value *Global = TLI.getSDagStackGuard(M);
5656       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
5657       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
5658                         MachinePointerInfo(Global, 0), Align,
5659                         MachineMemOperand::MOVolatile);
5660     }
5661     DAG.setRoot(Chain);
5662     setValue(&I, Res);
5663     return nullptr;
5664   }
5665   case Intrinsic::stackprotector: {
5666     // Emit code into the DAG to store the stack guard onto the stack.
5667     MachineFunction &MF = DAG.getMachineFunction();
5668     MachineFrameInfo &MFI = MF.getFrameInfo();
5669     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5670     SDValue Src, Chain = getRoot();
5671 
5672     if (TLI.useLoadStackGuardNode())
5673       Src = getLoadStackGuard(DAG, sdl, Chain);
5674     else
5675       Src = getValue(I.getArgOperand(0));   // The guard's value.
5676 
5677     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5678 
5679     int FI = FuncInfo.StaticAllocaMap[Slot];
5680     MFI.setStackProtectorIndex(FI);
5681 
5682     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5683 
5684     // Store the stack protector onto the stack.
5685     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
5686                                                  DAG.getMachineFunction(), FI),
5687                        /* Alignment = */ 0, MachineMemOperand::MOVolatile);
5688     setValue(&I, Res);
5689     DAG.setRoot(Res);
5690     return nullptr;
5691   }
5692   case Intrinsic::objectsize: {
5693     // If we don't know by now, we're never going to know.
5694     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5695 
5696     assert(CI && "Non-constant type in __builtin_object_size?");
5697 
5698     SDValue Arg = getValue(I.getCalledValue());
5699     EVT Ty = Arg.getValueType();
5700 
5701     if (CI->isZero())
5702       Res = DAG.getConstant(-1ULL, sdl, Ty);
5703     else
5704       Res = DAG.getConstant(0, sdl, Ty);
5705 
5706     setValue(&I, Res);
5707     return nullptr;
5708   }
5709   case Intrinsic::annotation:
5710   case Intrinsic::ptr_annotation:
5711   case Intrinsic::invariant_group_barrier:
5712     // Drop the intrinsic, but forward the value
5713     setValue(&I, getValue(I.getOperand(0)));
5714     return nullptr;
5715   case Intrinsic::assume:
5716   case Intrinsic::var_annotation:
5717   case Intrinsic::sideeffect:
5718     // Discard annotate attributes, assumptions, and artificial side-effects.
5719     return nullptr;
5720 
5721   case Intrinsic::codeview_annotation: {
5722     // Emit a label associated with this metadata.
5723     MachineFunction &MF = DAG.getMachineFunction();
5724     MCSymbol *Label =
5725         MF.getMMI().getContext().createTempSymbol("annotation", true);
5726     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
5727     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
5728     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
5729     DAG.setRoot(Res);
5730     return nullptr;
5731   }
5732 
5733   case Intrinsic::init_trampoline: {
5734     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5735 
5736     SDValue Ops[6];
5737     Ops[0] = getRoot();
5738     Ops[1] = getValue(I.getArgOperand(0));
5739     Ops[2] = getValue(I.getArgOperand(1));
5740     Ops[3] = getValue(I.getArgOperand(2));
5741     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5742     Ops[5] = DAG.getSrcValue(F);
5743 
5744     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
5745 
5746     DAG.setRoot(Res);
5747     return nullptr;
5748   }
5749   case Intrinsic::adjust_trampoline:
5750     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5751                              TLI.getPointerTy(DAG.getDataLayout()),
5752                              getValue(I.getArgOperand(0))));
5753     return nullptr;
5754   case Intrinsic::gcroot: {
5755     MachineFunction &MF = DAG.getMachineFunction();
5756     const Function *F = MF.getFunction();
5757     (void)F;
5758     assert(F->hasGC() &&
5759            "only valid in functions with gc specified, enforced by Verifier");
5760     assert(GFI && "implied by previous");
5761     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5762     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5763 
5764     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5765     GFI->addStackRoot(FI->getIndex(), TypeMap);
5766     return nullptr;
5767   }
5768   case Intrinsic::gcread:
5769   case Intrinsic::gcwrite:
5770     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5771   case Intrinsic::flt_rounds:
5772     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5773     return nullptr;
5774 
5775   case Intrinsic::expect:
5776     // Just replace __builtin_expect(exp, c) with EXP.
5777     setValue(&I, getValue(I.getArgOperand(0)));
5778     return nullptr;
5779 
5780   case Intrinsic::debugtrap:
5781   case Intrinsic::trap: {
5782     StringRef TrapFuncName =
5783         I.getAttributes()
5784             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
5785             .getValueAsString();
5786     if (TrapFuncName.empty()) {
5787       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5788         ISD::TRAP : ISD::DEBUGTRAP;
5789       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5790       return nullptr;
5791     }
5792     TargetLowering::ArgListTy Args;
5793 
5794     TargetLowering::CallLoweringInfo CLI(DAG);
5795     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
5796         CallingConv::C, I.getType(),
5797         DAG.getExternalSymbol(TrapFuncName.data(),
5798                               TLI.getPointerTy(DAG.getDataLayout())),
5799         std::move(Args));
5800 
5801     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5802     DAG.setRoot(Result.second);
5803     return nullptr;
5804   }
5805 
5806   case Intrinsic::uadd_with_overflow:
5807   case Intrinsic::sadd_with_overflow:
5808   case Intrinsic::usub_with_overflow:
5809   case Intrinsic::ssub_with_overflow:
5810   case Intrinsic::umul_with_overflow:
5811   case Intrinsic::smul_with_overflow: {
5812     ISD::NodeType Op;
5813     switch (Intrinsic) {
5814     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5815     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5816     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5817     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5818     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5819     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5820     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5821     }
5822     SDValue Op1 = getValue(I.getArgOperand(0));
5823     SDValue Op2 = getValue(I.getArgOperand(1));
5824 
5825     SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5826     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5827     return nullptr;
5828   }
5829   case Intrinsic::prefetch: {
5830     SDValue Ops[5];
5831     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5832     Ops[0] = getRoot();
5833     Ops[1] = getValue(I.getArgOperand(0));
5834     Ops[2] = getValue(I.getArgOperand(1));
5835     Ops[3] = getValue(I.getArgOperand(2));
5836     Ops[4] = getValue(I.getArgOperand(3));
5837     DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5838                                         DAG.getVTList(MVT::Other), Ops,
5839                                         EVT::getIntegerVT(*Context, 8),
5840                                         MachinePointerInfo(I.getArgOperand(0)),
5841                                         0, /* align */
5842                                         false, /* volatile */
5843                                         rw==0, /* read */
5844                                         rw==1)); /* write */
5845     return nullptr;
5846   }
5847   case Intrinsic::lifetime_start:
5848   case Intrinsic::lifetime_end: {
5849     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5850     // Stack coloring is not enabled in O0, discard region information.
5851     if (TM.getOptLevel() == CodeGenOpt::None)
5852       return nullptr;
5853 
5854     SmallVector<Value *, 4> Allocas;
5855     GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL);
5856 
5857     for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
5858            E = Allocas.end(); Object != E; ++Object) {
5859       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5860 
5861       // Could not find an Alloca.
5862       if (!LifetimeObject)
5863         continue;
5864 
5865       // First check that the Alloca is static, otherwise it won't have a
5866       // valid frame index.
5867       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
5868       if (SI == FuncInfo.StaticAllocaMap.end())
5869         return nullptr;
5870 
5871       int FI = SI->second;
5872 
5873       SDValue Ops[2];
5874       Ops[0] = getRoot();
5875       Ops[1] =
5876           DAG.getFrameIndex(FI, TLI.getFrameIndexTy(DAG.getDataLayout()), true);
5877       unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5878 
5879       Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops);
5880       DAG.setRoot(Res);
5881     }
5882     return nullptr;
5883   }
5884   case Intrinsic::invariant_start:
5885     // Discard region information.
5886     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
5887     return nullptr;
5888   case Intrinsic::invariant_end:
5889     // Discard region information.
5890     return nullptr;
5891   case Intrinsic::clear_cache:
5892     return TLI.getClearCacheBuiltinName();
5893   case Intrinsic::donothing:
5894     // ignore
5895     return nullptr;
5896   case Intrinsic::experimental_stackmap:
5897     visitStackmap(I);
5898     return nullptr;
5899   case Intrinsic::experimental_patchpoint_void:
5900   case Intrinsic::experimental_patchpoint_i64:
5901     visitPatchpoint(&I);
5902     return nullptr;
5903   case Intrinsic::experimental_gc_statepoint:
5904     LowerStatepoint(ImmutableStatepoint(&I));
5905     return nullptr;
5906   case Intrinsic::experimental_gc_result:
5907     visitGCResult(cast<GCResultInst>(I));
5908     return nullptr;
5909   case Intrinsic::experimental_gc_relocate:
5910     visitGCRelocate(cast<GCRelocateInst>(I));
5911     return nullptr;
5912   case Intrinsic::instrprof_increment:
5913     llvm_unreachable("instrprof failed to lower an increment");
5914   case Intrinsic::instrprof_value_profile:
5915     llvm_unreachable("instrprof failed to lower a value profiling call");
5916   case Intrinsic::localescape: {
5917     MachineFunction &MF = DAG.getMachineFunction();
5918     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5919 
5920     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
5921     // is the same on all targets.
5922     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
5923       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
5924       if (isa<ConstantPointerNull>(Arg))
5925         continue; // Skip null pointers. They represent a hole in index space.
5926       AllocaInst *Slot = cast<AllocaInst>(Arg);
5927       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
5928              "can only escape static allocas");
5929       int FI = FuncInfo.StaticAllocaMap[Slot];
5930       MCSymbol *FrameAllocSym =
5931           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5932               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
5933       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
5934               TII->get(TargetOpcode::LOCAL_ESCAPE))
5935           .addSym(FrameAllocSym)
5936           .addFrameIndex(FI);
5937     }
5938 
5939     return nullptr;
5940   }
5941 
5942   case Intrinsic::localrecover: {
5943     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
5944     MachineFunction &MF = DAG.getMachineFunction();
5945     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
5946 
5947     // Get the symbol that defines the frame offset.
5948     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
5949     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
5950     unsigned IdxVal =
5951         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
5952     MCSymbol *FrameAllocSym =
5953         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5954             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
5955 
5956     // Create a MCSymbol for the label to avoid any target lowering
5957     // that would make this PC relative.
5958     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
5959     SDValue OffsetVal =
5960         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
5961 
5962     // Add the offset to the FP.
5963     Value *FP = I.getArgOperand(1);
5964     SDValue FPVal = getValue(FP);
5965     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
5966     setValue(&I, Add);
5967 
5968     return nullptr;
5969   }
5970 
5971   case Intrinsic::eh_exceptionpointer:
5972   case Intrinsic::eh_exceptioncode: {
5973     // Get the exception pointer vreg, copy from it, and resize it to fit.
5974     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
5975     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
5976     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
5977     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
5978     SDValue N =
5979         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
5980     if (Intrinsic == Intrinsic::eh_exceptioncode)
5981       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
5982     setValue(&I, N);
5983     return nullptr;
5984   }
5985   case Intrinsic::xray_customevent: {
5986     // Here we want to make sure that the intrinsic behaves as if it has a
5987     // specific calling convention, and only for x86_64.
5988     // FIXME: Support other platforms later.
5989     const auto &Triple = DAG.getTarget().getTargetTriple();
5990     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
5991       return nullptr;
5992 
5993     SDLoc DL = getCurSDLoc();
5994     SmallVector<SDValue, 8> Ops;
5995 
5996     // We want to say that we always want the arguments in registers.
5997     SDValue LogEntryVal = getValue(I.getArgOperand(0));
5998     SDValue StrSizeVal = getValue(I.getArgOperand(1));
5999     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6000     SDValue Chain = getRoot();
6001     Ops.push_back(LogEntryVal);
6002     Ops.push_back(StrSizeVal);
6003     Ops.push_back(Chain);
6004 
6005     // We need to enforce the calling convention for the callsite, so that
6006     // argument ordering is enforced correctly, and that register allocation can
6007     // see that some registers may be assumed clobbered and have to preserve
6008     // them across calls to the intrinsic.
6009     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6010                                            DL, NodeTys, Ops);
6011     SDValue patchableNode = SDValue(MN, 0);
6012     DAG.setRoot(patchableNode);
6013     setValue(&I, patchableNode);
6014     return nullptr;
6015   }
6016   case Intrinsic::experimental_deoptimize:
6017     LowerDeoptimizeCall(&I);
6018     return nullptr;
6019 
6020   case Intrinsic::experimental_vector_reduce_fadd:
6021   case Intrinsic::experimental_vector_reduce_fmul:
6022   case Intrinsic::experimental_vector_reduce_add:
6023   case Intrinsic::experimental_vector_reduce_mul:
6024   case Intrinsic::experimental_vector_reduce_and:
6025   case Intrinsic::experimental_vector_reduce_or:
6026   case Intrinsic::experimental_vector_reduce_xor:
6027   case Intrinsic::experimental_vector_reduce_smax:
6028   case Intrinsic::experimental_vector_reduce_smin:
6029   case Intrinsic::experimental_vector_reduce_umax:
6030   case Intrinsic::experimental_vector_reduce_umin:
6031   case Intrinsic::experimental_vector_reduce_fmax:
6032   case Intrinsic::experimental_vector_reduce_fmin:
6033     visitVectorReduce(I, Intrinsic);
6034     return nullptr;
6035   }
6036 }
6037 
6038 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6039     const ConstrainedFPIntrinsic &FPI) {
6040   SDLoc sdl = getCurSDLoc();
6041   unsigned Opcode;
6042   switch (FPI.getIntrinsicID()) {
6043   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6044   case Intrinsic::experimental_constrained_fadd:
6045     Opcode = ISD::STRICT_FADD;
6046     break;
6047   case Intrinsic::experimental_constrained_fsub:
6048     Opcode = ISD::STRICT_FSUB;
6049     break;
6050   case Intrinsic::experimental_constrained_fmul:
6051     Opcode = ISD::STRICT_FMUL;
6052     break;
6053   case Intrinsic::experimental_constrained_fdiv:
6054     Opcode = ISD::STRICT_FDIV;
6055     break;
6056   case Intrinsic::experimental_constrained_frem:
6057     Opcode = ISD::STRICT_FREM;
6058     break;
6059   case Intrinsic::experimental_constrained_fma:
6060     Opcode = ISD::STRICT_FMA;
6061     break;
6062   case Intrinsic::experimental_constrained_sqrt:
6063     Opcode = ISD::STRICT_FSQRT;
6064     break;
6065   case Intrinsic::experimental_constrained_pow:
6066     Opcode = ISD::STRICT_FPOW;
6067     break;
6068   case Intrinsic::experimental_constrained_powi:
6069     Opcode = ISD::STRICT_FPOWI;
6070     break;
6071   case Intrinsic::experimental_constrained_sin:
6072     Opcode = ISD::STRICT_FSIN;
6073     break;
6074   case Intrinsic::experimental_constrained_cos:
6075     Opcode = ISD::STRICT_FCOS;
6076     break;
6077   case Intrinsic::experimental_constrained_exp:
6078     Opcode = ISD::STRICT_FEXP;
6079     break;
6080   case Intrinsic::experimental_constrained_exp2:
6081     Opcode = ISD::STRICT_FEXP2;
6082     break;
6083   case Intrinsic::experimental_constrained_log:
6084     Opcode = ISD::STRICT_FLOG;
6085     break;
6086   case Intrinsic::experimental_constrained_log10:
6087     Opcode = ISD::STRICT_FLOG10;
6088     break;
6089   case Intrinsic::experimental_constrained_log2:
6090     Opcode = ISD::STRICT_FLOG2;
6091     break;
6092   case Intrinsic::experimental_constrained_rint:
6093     Opcode = ISD::STRICT_FRINT;
6094     break;
6095   case Intrinsic::experimental_constrained_nearbyint:
6096     Opcode = ISD::STRICT_FNEARBYINT;
6097     break;
6098   }
6099   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6100   SDValue Chain = getRoot();
6101   SmallVector<EVT, 4> ValueVTs;
6102   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
6103   ValueVTs.push_back(MVT::Other); // Out chain
6104 
6105   SDVTList VTs = DAG.getVTList(ValueVTs);
6106   SDValue Result;
6107   if (FPI.isUnaryOp())
6108     Result = DAG.getNode(Opcode, sdl, VTs,
6109                          { Chain, getValue(FPI.getArgOperand(0)) });
6110   else if (FPI.isTernaryOp())
6111     Result = DAG.getNode(Opcode, sdl, VTs,
6112                          { Chain, getValue(FPI.getArgOperand(0)),
6113                                   getValue(FPI.getArgOperand(1)),
6114                                   getValue(FPI.getArgOperand(2)) });
6115   else
6116     Result = DAG.getNode(Opcode, sdl, VTs,
6117                          { Chain, getValue(FPI.getArgOperand(0)),
6118                            getValue(FPI.getArgOperand(1))  });
6119 
6120   assert(Result.getNode()->getNumValues() == 2);
6121   SDValue OutChain = Result.getValue(1);
6122   DAG.setRoot(OutChain);
6123   SDValue FPResult = Result.getValue(0);
6124   setValue(&FPI, FPResult);
6125 }
6126 
6127 std::pair<SDValue, SDValue>
6128 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
6129                                     const BasicBlock *EHPadBB) {
6130   MachineFunction &MF = DAG.getMachineFunction();
6131   MachineModuleInfo &MMI = MF.getMMI();
6132   MCSymbol *BeginLabel = nullptr;
6133 
6134   if (EHPadBB) {
6135     // Insert a label before the invoke call to mark the try range.  This can be
6136     // used to detect deletion of the invoke via the MachineModuleInfo.
6137     BeginLabel = MMI.getContext().createTempSymbol();
6138 
6139     // For SjLj, keep track of which landing pads go with which invokes
6140     // so as to maintain the ordering of pads in the LSDA.
6141     unsigned CallSiteIndex = MMI.getCurrentCallSite();
6142     if (CallSiteIndex) {
6143       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
6144       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
6145 
6146       // Now that the call site is handled, stop tracking it.
6147       MMI.setCurrentCallSite(0);
6148     }
6149 
6150     // Both PendingLoads and PendingExports must be flushed here;
6151     // this call might not return.
6152     (void)getRoot();
6153     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
6154 
6155     CLI.setChain(getRoot());
6156   }
6157   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6158   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6159 
6160   assert((CLI.IsTailCall || Result.second.getNode()) &&
6161          "Non-null chain expected with non-tail call!");
6162   assert((Result.second.getNode() || !Result.first.getNode()) &&
6163          "Null value expected with tail call!");
6164 
6165   if (!Result.second.getNode()) {
6166     // As a special case, a null chain means that a tail call has been emitted
6167     // and the DAG root is already updated.
6168     HasTailCall = true;
6169 
6170     // Since there's no actual continuation from this block, nothing can be
6171     // relying on us setting vregs for them.
6172     PendingExports.clear();
6173   } else {
6174     DAG.setRoot(Result.second);
6175   }
6176 
6177   if (EHPadBB) {
6178     // Insert a label at the end of the invoke call to mark the try range.  This
6179     // can be used to detect deletion of the invoke via the MachineModuleInfo.
6180     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
6181     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
6182 
6183     // Inform MachineModuleInfo of range.
6184     if (MF.hasEHFunclets()) {
6185       assert(CLI.CS);
6186       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
6187       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()),
6188                                 BeginLabel, EndLabel);
6189     } else {
6190       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
6191     }
6192   }
6193 
6194   return Result;
6195 }
6196 
6197 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
6198                                       bool isTailCall,
6199                                       const BasicBlock *EHPadBB) {
6200   auto &DL = DAG.getDataLayout();
6201   FunctionType *FTy = CS.getFunctionType();
6202   Type *RetTy = CS.getType();
6203 
6204   TargetLowering::ArgListTy Args;
6205   Args.reserve(CS.arg_size());
6206 
6207   const Value *SwiftErrorVal = nullptr;
6208   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6209 
6210   // We can't tail call inside a function with a swifterror argument. Lowering
6211   // does not support this yet. It would have to move into the swifterror
6212   // register before the call.
6213   auto *Caller = CS.getInstruction()->getParent()->getParent();
6214   if (TLI.supportSwiftError() &&
6215       Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
6216     isTailCall = false;
6217 
6218   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
6219        i != e; ++i) {
6220     TargetLowering::ArgListEntry Entry;
6221     const Value *V = *i;
6222 
6223     // Skip empty types
6224     if (V->getType()->isEmptyTy())
6225       continue;
6226 
6227     SDValue ArgNode = getValue(V);
6228     Entry.Node = ArgNode; Entry.Ty = V->getType();
6229 
6230     Entry.setAttributes(&CS, i - CS.arg_begin());
6231 
6232     // Use swifterror virtual register as input to the call.
6233     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
6234       SwiftErrorVal = V;
6235       // We find the virtual register for the actual swifterror argument.
6236       // Instead of using the Value, we use the virtual register instead.
6237       Entry.Node = DAG.getRegister(FuncInfo
6238                                        .getOrCreateSwiftErrorVRegUseAt(
6239                                            CS.getInstruction(), FuncInfo.MBB, V)
6240                                        .first,
6241                                    EVT(TLI.getPointerTy(DL)));
6242     }
6243 
6244     Args.push_back(Entry);
6245 
6246     // If we have an explicit sret argument that is an Instruction, (i.e., it
6247     // might point to function-local memory), we can't meaningfully tail-call.
6248     if (Entry.IsSRet && isa<Instruction>(V))
6249       isTailCall = false;
6250   }
6251 
6252   // Check if target-independent constraints permit a tail call here.
6253   // Target-dependent constraints are checked within TLI->LowerCallTo.
6254   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
6255     isTailCall = false;
6256 
6257   // Disable tail calls if there is an swifterror argument. Targets have not
6258   // been updated to support tail calls.
6259   if (TLI.supportSwiftError() && SwiftErrorVal)
6260     isTailCall = false;
6261 
6262   TargetLowering::CallLoweringInfo CLI(DAG);
6263   CLI.setDebugLoc(getCurSDLoc())
6264       .setChain(getRoot())
6265       .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
6266       .setTailCall(isTailCall)
6267       .setConvergent(CS.isConvergent());
6268   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
6269 
6270   if (Result.first.getNode()) {
6271     const Instruction *Inst = CS.getInstruction();
6272     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
6273     setValue(Inst, Result.first);
6274   }
6275 
6276   // The last element of CLI.InVals has the SDValue for swifterror return.
6277   // Here we copy it to a virtual register and update SwiftErrorMap for
6278   // book-keeping.
6279   if (SwiftErrorVal && TLI.supportSwiftError()) {
6280     // Get the last element of InVals.
6281     SDValue Src = CLI.InVals.back();
6282     unsigned VReg; bool CreatedVReg;
6283     std::tie(VReg, CreatedVReg) =
6284         FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction());
6285     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
6286     // We update the virtual register for the actual swifterror argument.
6287     if (CreatedVReg)
6288       FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg);
6289     DAG.setRoot(CopyNode);
6290   }
6291 }
6292 
6293 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
6294                              SelectionDAGBuilder &Builder) {
6295   // Check to see if this load can be trivially constant folded, e.g. if the
6296   // input is from a string literal.
6297   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
6298     // Cast pointer to the type we really want to load.
6299     Type *LoadTy =
6300         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
6301     if (LoadVT.isVector())
6302       LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements());
6303 
6304     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
6305                                          PointerType::getUnqual(LoadTy));
6306 
6307     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
6308             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
6309       return Builder.getValue(LoadCst);
6310   }
6311 
6312   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
6313   // still constant memory, the input chain can be the entry node.
6314   SDValue Root;
6315   bool ConstantMemory = false;
6316 
6317   // Do not serialize (non-volatile) loads of constant memory with anything.
6318   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
6319     Root = Builder.DAG.getEntryNode();
6320     ConstantMemory = true;
6321   } else {
6322     // Do not serialize non-volatile loads against each other.
6323     Root = Builder.DAG.getRoot();
6324   }
6325 
6326   SDValue Ptr = Builder.getValue(PtrVal);
6327   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
6328                                         Ptr, MachinePointerInfo(PtrVal),
6329                                         /* Alignment = */ 1);
6330 
6331   if (!ConstantMemory)
6332     Builder.PendingLoads.push_back(LoadVal.getValue(1));
6333   return LoadVal;
6334 }
6335 
6336 /// Record the value for an instruction that produces an integer result,
6337 /// converting the type where necessary.
6338 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
6339                                                   SDValue Value,
6340                                                   bool IsSigned) {
6341   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
6342                                                     I.getType(), true);
6343   if (IsSigned)
6344     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
6345   else
6346     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
6347   setValue(&I, Value);
6348 }
6349 
6350 /// See if we can lower a memcmp call into an optimized form. If so, return
6351 /// true and lower it. Otherwise return false, and it will be lowered like a
6352 /// normal call.
6353 /// The caller already checked that \p I calls the appropriate LibFunc with a
6354 /// correct prototype.
6355 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
6356   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
6357   const Value *Size = I.getArgOperand(2);
6358   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
6359   if (CSize && CSize->getZExtValue() == 0) {
6360     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
6361                                                           I.getType(), true);
6362     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
6363     return true;
6364   }
6365 
6366   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6367   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
6368       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
6369       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
6370   if (Res.first.getNode()) {
6371     processIntegerCallValue(I, Res.first, true);
6372     PendingLoads.push_back(Res.second);
6373     return true;
6374   }
6375 
6376   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
6377   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
6378   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
6379     return false;
6380 
6381   // If the target has a fast compare for the given size, it will return a
6382   // preferred load type for that size. Require that the load VT is legal and
6383   // that the target supports unaligned loads of that type. Otherwise, return
6384   // INVALID.
6385   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
6386     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6387     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
6388     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
6389       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
6390       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
6391       // TODO: Check alignment of src and dest ptrs.
6392       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
6393       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
6394       if (!TLI.isTypeLegal(LVT) ||
6395           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
6396           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
6397         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
6398     }
6399 
6400     return LVT;
6401   };
6402 
6403   // This turns into unaligned loads. We only do this if the target natively
6404   // supports the MVT we'll be loading or if it is small enough (<= 4) that
6405   // we'll only produce a small number of byte loads.
6406   MVT LoadVT;
6407   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
6408   switch (NumBitsToCompare) {
6409   default:
6410     return false;
6411   case 16:
6412     LoadVT = MVT::i16;
6413     break;
6414   case 32:
6415     LoadVT = MVT::i32;
6416     break;
6417   case 64:
6418   case 128:
6419   case 256:
6420     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
6421     break;
6422   }
6423 
6424   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
6425     return false;
6426 
6427   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
6428   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
6429 
6430   // Bitcast to a wide integer type if the loads are vectors.
6431   if (LoadVT.isVector()) {
6432     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
6433     LoadL = DAG.getBitcast(CmpVT, LoadL);
6434     LoadR = DAG.getBitcast(CmpVT, LoadR);
6435   }
6436 
6437   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
6438   processIntegerCallValue(I, Cmp, false);
6439   return true;
6440 }
6441 
6442 /// See if we can lower a memchr call into an optimized form. If so, return
6443 /// true and lower it. Otherwise return false, and it will be lowered like a
6444 /// normal call.
6445 /// The caller already checked that \p I calls the appropriate LibFunc with a
6446 /// correct prototype.
6447 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
6448   const Value *Src = I.getArgOperand(0);
6449   const Value *Char = I.getArgOperand(1);
6450   const Value *Length = I.getArgOperand(2);
6451 
6452   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6453   std::pair<SDValue, SDValue> Res =
6454     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
6455                                 getValue(Src), getValue(Char), getValue(Length),
6456                                 MachinePointerInfo(Src));
6457   if (Res.first.getNode()) {
6458     setValue(&I, Res.first);
6459     PendingLoads.push_back(Res.second);
6460     return true;
6461   }
6462 
6463   return false;
6464 }
6465 
6466 /// See if we can lower a mempcpy call into an optimized form. If so, return
6467 /// true and lower it. Otherwise return false, and it will be lowered like a
6468 /// normal call.
6469 /// The caller already checked that \p I calls the appropriate LibFunc with a
6470 /// correct prototype.
6471 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
6472   SDValue Dst = getValue(I.getArgOperand(0));
6473   SDValue Src = getValue(I.getArgOperand(1));
6474   SDValue Size = getValue(I.getArgOperand(2));
6475 
6476   unsigned DstAlign = DAG.InferPtrAlignment(Dst);
6477   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
6478   unsigned Align = std::min(DstAlign, SrcAlign);
6479   if (Align == 0) // Alignment of one or both could not be inferred.
6480     Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved.
6481 
6482   bool isVol = false;
6483   SDLoc sdl = getCurSDLoc();
6484 
6485   // In the mempcpy context we need to pass in a false value for isTailCall
6486   // because the return pointer needs to be adjusted by the size of
6487   // the copied memory.
6488   SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol,
6489                              false, /*isTailCall=*/false,
6490                              MachinePointerInfo(I.getArgOperand(0)),
6491                              MachinePointerInfo(I.getArgOperand(1)));
6492   assert(MC.getNode() != nullptr &&
6493          "** memcpy should not be lowered as TailCall in mempcpy context **");
6494   DAG.setRoot(MC);
6495 
6496   // Check if Size needs to be truncated or extended.
6497   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
6498 
6499   // Adjust return pointer to point just past the last dst byte.
6500   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
6501                                     Dst, Size);
6502   setValue(&I, DstPlusSize);
6503   return true;
6504 }
6505 
6506 /// See if we can lower a strcpy call into an optimized form.  If so, return
6507 /// true and lower it, otherwise return false and it will be lowered like a
6508 /// normal call.
6509 /// The caller already checked that \p I calls the appropriate LibFunc with a
6510 /// correct prototype.
6511 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
6512   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6513 
6514   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6515   std::pair<SDValue, SDValue> Res =
6516     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
6517                                 getValue(Arg0), getValue(Arg1),
6518                                 MachinePointerInfo(Arg0),
6519                                 MachinePointerInfo(Arg1), isStpcpy);
6520   if (Res.first.getNode()) {
6521     setValue(&I, Res.first);
6522     DAG.setRoot(Res.second);
6523     return true;
6524   }
6525 
6526   return false;
6527 }
6528 
6529 /// See if we can lower a strcmp call into an optimized form.  If so, return
6530 /// true and lower it, otherwise return false and it will be lowered like a
6531 /// normal call.
6532 /// The caller already checked that \p I calls the appropriate LibFunc with a
6533 /// correct prototype.
6534 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
6535   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6536 
6537   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6538   std::pair<SDValue, SDValue> Res =
6539     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
6540                                 getValue(Arg0), getValue(Arg1),
6541                                 MachinePointerInfo(Arg0),
6542                                 MachinePointerInfo(Arg1));
6543   if (Res.first.getNode()) {
6544     processIntegerCallValue(I, Res.first, true);
6545     PendingLoads.push_back(Res.second);
6546     return true;
6547   }
6548 
6549   return false;
6550 }
6551 
6552 /// See if we can lower a strlen call into an optimized form.  If so, return
6553 /// true and lower it, otherwise return false and it will be lowered like a
6554 /// normal call.
6555 /// The caller already checked that \p I calls the appropriate LibFunc with a
6556 /// correct prototype.
6557 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
6558   const Value *Arg0 = I.getArgOperand(0);
6559 
6560   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6561   std::pair<SDValue, SDValue> Res =
6562     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
6563                                 getValue(Arg0), MachinePointerInfo(Arg0));
6564   if (Res.first.getNode()) {
6565     processIntegerCallValue(I, Res.first, false);
6566     PendingLoads.push_back(Res.second);
6567     return true;
6568   }
6569 
6570   return false;
6571 }
6572 
6573 /// See if we can lower a strnlen call into an optimized form.  If so, return
6574 /// true and lower it, otherwise return false and it will be lowered like a
6575 /// normal call.
6576 /// The caller already checked that \p I calls the appropriate LibFunc with a
6577 /// correct prototype.
6578 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
6579   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6580 
6581   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6582   std::pair<SDValue, SDValue> Res =
6583     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
6584                                  getValue(Arg0), getValue(Arg1),
6585                                  MachinePointerInfo(Arg0));
6586   if (Res.first.getNode()) {
6587     processIntegerCallValue(I, Res.first, false);
6588     PendingLoads.push_back(Res.second);
6589     return true;
6590   }
6591 
6592   return false;
6593 }
6594 
6595 /// See if we can lower a unary floating-point operation into an SDNode with
6596 /// the specified Opcode.  If so, return true and lower it, otherwise return
6597 /// false and it will be lowered like a normal call.
6598 /// The caller already checked that \p I calls the appropriate LibFunc with a
6599 /// correct prototype.
6600 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
6601                                               unsigned Opcode) {
6602   // We already checked this call's prototype; verify it doesn't modify errno.
6603   if (!I.onlyReadsMemory())
6604     return false;
6605 
6606   SDValue Tmp = getValue(I.getArgOperand(0));
6607   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
6608   return true;
6609 }
6610 
6611 /// See if we can lower a binary floating-point operation into an SDNode with
6612 /// the specified Opcode. If so, return true and lower it. Otherwise return
6613 /// false, and it will be lowered like a normal call.
6614 /// The caller already checked that \p I calls the appropriate LibFunc with a
6615 /// correct prototype.
6616 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
6617                                                unsigned Opcode) {
6618   // We already checked this call's prototype; verify it doesn't modify errno.
6619   if (!I.onlyReadsMemory())
6620     return false;
6621 
6622   SDValue Tmp0 = getValue(I.getArgOperand(0));
6623   SDValue Tmp1 = getValue(I.getArgOperand(1));
6624   EVT VT = Tmp0.getValueType();
6625   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
6626   return true;
6627 }
6628 
6629 void SelectionDAGBuilder::visitCall(const CallInst &I) {
6630   // Handle inline assembly differently.
6631   if (isa<InlineAsm>(I.getCalledValue())) {
6632     visitInlineAsm(&I);
6633     return;
6634   }
6635 
6636   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6637   computeUsesVAFloatArgument(I, MMI);
6638 
6639   const char *RenameFn = nullptr;
6640   if (Function *F = I.getCalledFunction()) {
6641     if (F->isDeclaration()) {
6642       if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
6643         if (unsigned IID = II->getIntrinsicID(F)) {
6644           RenameFn = visitIntrinsicCall(I, IID);
6645           if (!RenameFn)
6646             return;
6647         }
6648       }
6649       if (Intrinsic::ID IID = F->getIntrinsicID()) {
6650         RenameFn = visitIntrinsicCall(I, IID);
6651         if (!RenameFn)
6652           return;
6653       }
6654     }
6655 
6656     // Check for well-known libc/libm calls.  If the function is internal, it
6657     // can't be a library call.  Don't do the check if marked as nobuiltin for
6658     // some reason or the call site requires strict floating point semantics.
6659     LibFunc Func;
6660     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
6661         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
6662         LibInfo->hasOptimizedCodeGen(Func)) {
6663       switch (Func) {
6664       default: break;
6665       case LibFunc_copysign:
6666       case LibFunc_copysignf:
6667       case LibFunc_copysignl:
6668         // We already checked this call's prototype; verify it doesn't modify
6669         // errno.
6670         if (I.onlyReadsMemory()) {
6671           SDValue LHS = getValue(I.getArgOperand(0));
6672           SDValue RHS = getValue(I.getArgOperand(1));
6673           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
6674                                    LHS.getValueType(), LHS, RHS));
6675           return;
6676         }
6677         break;
6678       case LibFunc_fabs:
6679       case LibFunc_fabsf:
6680       case LibFunc_fabsl:
6681         if (visitUnaryFloatCall(I, ISD::FABS))
6682           return;
6683         break;
6684       case LibFunc_fmin:
6685       case LibFunc_fminf:
6686       case LibFunc_fminl:
6687         if (visitBinaryFloatCall(I, ISD::FMINNUM))
6688           return;
6689         break;
6690       case LibFunc_fmax:
6691       case LibFunc_fmaxf:
6692       case LibFunc_fmaxl:
6693         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
6694           return;
6695         break;
6696       case LibFunc_sin:
6697       case LibFunc_sinf:
6698       case LibFunc_sinl:
6699         if (visitUnaryFloatCall(I, ISD::FSIN))
6700           return;
6701         break;
6702       case LibFunc_cos:
6703       case LibFunc_cosf:
6704       case LibFunc_cosl:
6705         if (visitUnaryFloatCall(I, ISD::FCOS))
6706           return;
6707         break;
6708       case LibFunc_sqrt:
6709       case LibFunc_sqrtf:
6710       case LibFunc_sqrtl:
6711       case LibFunc_sqrt_finite:
6712       case LibFunc_sqrtf_finite:
6713       case LibFunc_sqrtl_finite:
6714         if (visitUnaryFloatCall(I, ISD::FSQRT))
6715           return;
6716         break;
6717       case LibFunc_floor:
6718       case LibFunc_floorf:
6719       case LibFunc_floorl:
6720         if (visitUnaryFloatCall(I, ISD::FFLOOR))
6721           return;
6722         break;
6723       case LibFunc_nearbyint:
6724       case LibFunc_nearbyintf:
6725       case LibFunc_nearbyintl:
6726         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
6727           return;
6728         break;
6729       case LibFunc_ceil:
6730       case LibFunc_ceilf:
6731       case LibFunc_ceill:
6732         if (visitUnaryFloatCall(I, ISD::FCEIL))
6733           return;
6734         break;
6735       case LibFunc_rint:
6736       case LibFunc_rintf:
6737       case LibFunc_rintl:
6738         if (visitUnaryFloatCall(I, ISD::FRINT))
6739           return;
6740         break;
6741       case LibFunc_round:
6742       case LibFunc_roundf:
6743       case LibFunc_roundl:
6744         if (visitUnaryFloatCall(I, ISD::FROUND))
6745           return;
6746         break;
6747       case LibFunc_trunc:
6748       case LibFunc_truncf:
6749       case LibFunc_truncl:
6750         if (visitUnaryFloatCall(I, ISD::FTRUNC))
6751           return;
6752         break;
6753       case LibFunc_log2:
6754       case LibFunc_log2f:
6755       case LibFunc_log2l:
6756         if (visitUnaryFloatCall(I, ISD::FLOG2))
6757           return;
6758         break;
6759       case LibFunc_exp2:
6760       case LibFunc_exp2f:
6761       case LibFunc_exp2l:
6762         if (visitUnaryFloatCall(I, ISD::FEXP2))
6763           return;
6764         break;
6765       case LibFunc_memcmp:
6766         if (visitMemCmpCall(I))
6767           return;
6768         break;
6769       case LibFunc_mempcpy:
6770         if (visitMemPCpyCall(I))
6771           return;
6772         break;
6773       case LibFunc_memchr:
6774         if (visitMemChrCall(I))
6775           return;
6776         break;
6777       case LibFunc_strcpy:
6778         if (visitStrCpyCall(I, false))
6779           return;
6780         break;
6781       case LibFunc_stpcpy:
6782         if (visitStrCpyCall(I, true))
6783           return;
6784         break;
6785       case LibFunc_strcmp:
6786         if (visitStrCmpCall(I))
6787           return;
6788         break;
6789       case LibFunc_strlen:
6790         if (visitStrLenCall(I))
6791           return;
6792         break;
6793       case LibFunc_strnlen:
6794         if (visitStrNLenCall(I))
6795           return;
6796         break;
6797       }
6798     }
6799   }
6800 
6801   SDValue Callee;
6802   if (!RenameFn)
6803     Callee = getValue(I.getCalledValue());
6804   else
6805     Callee = DAG.getExternalSymbol(
6806         RenameFn,
6807         DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
6808 
6809   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
6810   // have to do anything here to lower funclet bundles.
6811   assert(!I.hasOperandBundlesOtherThan(
6812              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
6813          "Cannot lower calls with arbitrary operand bundles!");
6814 
6815   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
6816     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
6817   else
6818     // Check if we can potentially perform a tail call. More detailed checking
6819     // is be done within LowerCallTo, after more information about the call is
6820     // known.
6821     LowerCallTo(&I, Callee, I.isTailCall());
6822 }
6823 
6824 namespace {
6825 
6826 /// AsmOperandInfo - This contains information for each constraint that we are
6827 /// lowering.
6828 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
6829 public:
6830   /// CallOperand - If this is the result output operand or a clobber
6831   /// this is null, otherwise it is the incoming operand to the CallInst.
6832   /// This gets modified as the asm is processed.
6833   SDValue CallOperand;
6834 
6835   /// AssignedRegs - If this is a register or register class operand, this
6836   /// contains the set of register corresponding to the operand.
6837   RegsForValue AssignedRegs;
6838 
6839   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
6840     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
6841   }
6842 
6843   /// Whether or not this operand accesses memory
6844   bool hasMemory(const TargetLowering &TLI) const {
6845     // Indirect operand accesses access memory.
6846     if (isIndirect)
6847       return true;
6848 
6849     for (const auto &Code : Codes)
6850       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
6851         return true;
6852 
6853     return false;
6854   }
6855 
6856   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
6857   /// corresponds to.  If there is no Value* for this operand, it returns
6858   /// MVT::Other.
6859   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
6860                            const DataLayout &DL) const {
6861     if (!CallOperandVal) return MVT::Other;
6862 
6863     if (isa<BasicBlock>(CallOperandVal))
6864       return TLI.getPointerTy(DL);
6865 
6866     llvm::Type *OpTy = CallOperandVal->getType();
6867 
6868     // FIXME: code duplicated from TargetLowering::ParseConstraints().
6869     // If this is an indirect operand, the operand is a pointer to the
6870     // accessed type.
6871     if (isIndirect) {
6872       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
6873       if (!PtrTy)
6874         report_fatal_error("Indirect operand for inline asm not a pointer!");
6875       OpTy = PtrTy->getElementType();
6876     }
6877 
6878     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
6879     if (StructType *STy = dyn_cast<StructType>(OpTy))
6880       if (STy->getNumElements() == 1)
6881         OpTy = STy->getElementType(0);
6882 
6883     // If OpTy is not a single value, it may be a struct/union that we
6884     // can tile with integers.
6885     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
6886       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
6887       switch (BitSize) {
6888       default: break;
6889       case 1:
6890       case 8:
6891       case 16:
6892       case 32:
6893       case 64:
6894       case 128:
6895         OpTy = IntegerType::get(Context, BitSize);
6896         break;
6897       }
6898     }
6899 
6900     return TLI.getValueType(DL, OpTy, true);
6901   }
6902 };
6903 
6904 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>;
6905 
6906 } // end anonymous namespace
6907 
6908 /// Make sure that the output operand \p OpInfo and its corresponding input
6909 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
6910 /// out).
6911 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
6912                                SDISelAsmOperandInfo &MatchingOpInfo,
6913                                SelectionDAG &DAG) {
6914   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
6915     return;
6916 
6917   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
6918   const auto &TLI = DAG.getTargetLoweringInfo();
6919 
6920   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
6921       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
6922                                        OpInfo.ConstraintVT);
6923   std::pair<unsigned, const TargetRegisterClass *> InputRC =
6924       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
6925                                        MatchingOpInfo.ConstraintVT);
6926   if ((OpInfo.ConstraintVT.isInteger() !=
6927        MatchingOpInfo.ConstraintVT.isInteger()) ||
6928       (MatchRC.second != InputRC.second)) {
6929     // FIXME: error out in a more elegant fashion
6930     report_fatal_error("Unsupported asm: input constraint"
6931                        " with a matching output constraint of"
6932                        " incompatible type!");
6933   }
6934   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
6935 }
6936 
6937 /// Get a direct memory input to behave well as an indirect operand.
6938 /// This may introduce stores, hence the need for a \p Chain.
6939 /// \return The (possibly updated) chain.
6940 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
6941                                         SDISelAsmOperandInfo &OpInfo,
6942                                         SelectionDAG &DAG) {
6943   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6944 
6945   // If we don't have an indirect input, put it in the constpool if we can,
6946   // otherwise spill it to a stack slot.
6947   // TODO: This isn't quite right. We need to handle these according to
6948   // the addressing mode that the constraint wants. Also, this may take
6949   // an additional register for the computation and we don't want that
6950   // either.
6951 
6952   // If the operand is a float, integer, or vector constant, spill to a
6953   // constant pool entry to get its address.
6954   const Value *OpVal = OpInfo.CallOperandVal;
6955   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
6956       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
6957     OpInfo.CallOperand = DAG.getConstantPool(
6958         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
6959     return Chain;
6960   }
6961 
6962   // Otherwise, create a stack slot and emit a store to it before the asm.
6963   Type *Ty = OpVal->getType();
6964   auto &DL = DAG.getDataLayout();
6965   uint64_t TySize = DL.getTypeAllocSize(Ty);
6966   unsigned Align = DL.getPrefTypeAlignment(Ty);
6967   MachineFunction &MF = DAG.getMachineFunction();
6968   int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
6969   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
6970   Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot,
6971                        MachinePointerInfo::getFixedStack(MF, SSFI));
6972   OpInfo.CallOperand = StackSlot;
6973 
6974   return Chain;
6975 }
6976 
6977 /// GetRegistersForValue - Assign registers (virtual or physical) for the
6978 /// specified operand.  We prefer to assign virtual registers, to allow the
6979 /// register allocator to handle the assignment process.  However, if the asm
6980 /// uses features that we can't model on machineinstrs, we have SDISel do the
6981 /// allocation.  This produces generally horrible, but correct, code.
6982 ///
6983 ///   OpInfo describes the operand.
6984 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI,
6985                                  const SDLoc &DL,
6986                                  SDISelAsmOperandInfo &OpInfo) {
6987   LLVMContext &Context = *DAG.getContext();
6988 
6989   MachineFunction &MF = DAG.getMachineFunction();
6990   SmallVector<unsigned, 4> Regs;
6991   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
6992 
6993   // If this is a constraint for a single physreg, or a constraint for a
6994   // register class, find it.
6995   std::pair<unsigned, const TargetRegisterClass *> PhysReg =
6996       TLI.getRegForInlineAsmConstraint(&TRI, OpInfo.ConstraintCode,
6997                                        OpInfo.ConstraintVT);
6998 
6999   unsigned NumRegs = 1;
7000   if (OpInfo.ConstraintVT != MVT::Other) {
7001     // If this is a FP input in an integer register (or visa versa) insert a bit
7002     // cast of the input value.  More generally, handle any case where the input
7003     // value disagrees with the register class we plan to stick this in.
7004     if (OpInfo.Type == InlineAsm::isInput && PhysReg.second &&
7005         !TRI.isTypeLegalForClass(*PhysReg.second, OpInfo.ConstraintVT)) {
7006       // Try to convert to the first EVT that the reg class contains.  If the
7007       // types are identical size, use a bitcast to convert (e.g. two differing
7008       // vector types).
7009       MVT RegVT = *TRI.legalclasstypes_begin(*PhysReg.second);
7010       if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) {
7011         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
7012                                          RegVT, OpInfo.CallOperand);
7013         OpInfo.ConstraintVT = RegVT;
7014       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
7015         // If the input is a FP value and we want it in FP registers, do a
7016         // bitcast to the corresponding integer type.  This turns an f64 value
7017         // into i64, which can be passed with two i32 values on a 32-bit
7018         // machine.
7019         RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
7020         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
7021                                          RegVT, OpInfo.CallOperand);
7022         OpInfo.ConstraintVT = RegVT;
7023       }
7024     }
7025 
7026     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
7027   }
7028 
7029   MVT RegVT;
7030   EVT ValueVT = OpInfo.ConstraintVT;
7031 
7032   // If this is a constraint for a specific physical register, like {r17},
7033   // assign it now.
7034   if (unsigned AssignedReg = PhysReg.first) {
7035     const TargetRegisterClass *RC = PhysReg.second;
7036     if (OpInfo.ConstraintVT == MVT::Other)
7037       ValueVT = *TRI.legalclasstypes_begin(*RC);
7038 
7039     // Get the actual register value type.  This is important, because the user
7040     // may have asked for (e.g.) the AX register in i32 type.  We need to
7041     // remember that AX is actually i16 to get the right extension.
7042     RegVT = *TRI.legalclasstypes_begin(*RC);
7043 
7044     // This is a explicit reference to a physical register.
7045     Regs.push_back(AssignedReg);
7046 
7047     // If this is an expanded reference, add the rest of the regs to Regs.
7048     if (NumRegs != 1) {
7049       TargetRegisterClass::iterator I = RC->begin();
7050       for (; *I != AssignedReg; ++I)
7051         assert(I != RC->end() && "Didn't find reg!");
7052 
7053       // Already added the first reg.
7054       --NumRegs; ++I;
7055       for (; NumRegs; --NumRegs, ++I) {
7056         assert(I != RC->end() && "Ran out of registers to allocate!");
7057         Regs.push_back(*I);
7058       }
7059     }
7060 
7061     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7062     return;
7063   }
7064 
7065   // Otherwise, if this was a reference to an LLVM register class, create vregs
7066   // for this reference.
7067   if (const TargetRegisterClass *RC = PhysReg.second) {
7068     RegVT = *TRI.legalclasstypes_begin(*RC);
7069     if (OpInfo.ConstraintVT == MVT::Other)
7070       ValueVT = RegVT;
7071 
7072     // Create the appropriate number of virtual registers.
7073     MachineRegisterInfo &RegInfo = MF.getRegInfo();
7074     for (; NumRegs; --NumRegs)
7075       Regs.push_back(RegInfo.createVirtualRegister(RC));
7076 
7077     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7078     return;
7079   }
7080 
7081   // Otherwise, we couldn't allocate enough registers for this.
7082 }
7083 
7084 static unsigned
7085 findMatchingInlineAsmOperand(unsigned OperandNo,
7086                              const std::vector<SDValue> &AsmNodeOperands) {
7087   // Scan until we find the definition we already emitted of this operand.
7088   unsigned CurOp = InlineAsm::Op_FirstOperand;
7089   for (; OperandNo; --OperandNo) {
7090     // Advance to the next operand.
7091     unsigned OpFlag =
7092         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7093     assert((InlineAsm::isRegDefKind(OpFlag) ||
7094             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
7095             InlineAsm::isMemKind(OpFlag)) &&
7096            "Skipped past definitions?");
7097     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
7098   }
7099   return CurOp;
7100 }
7101 
7102 /// Fill \p Regs with \p NumRegs new virtual registers of type \p RegVT
7103 /// \return true if it has succeeded, false otherwise
7104 static bool createVirtualRegs(SmallVector<unsigned, 4> &Regs, unsigned NumRegs,
7105                               MVT RegVT, SelectionDAG &DAG) {
7106   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7107   MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
7108   for (unsigned i = 0, e = NumRegs; i != e; ++i) {
7109     if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT))
7110       Regs.push_back(RegInfo.createVirtualRegister(RC));
7111     else
7112       return false;
7113   }
7114   return true;
7115 }
7116 
7117 namespace {
7118 
7119 class ExtraFlags {
7120   unsigned Flags = 0;
7121 
7122 public:
7123   explicit ExtraFlags(ImmutableCallSite CS) {
7124     const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7125     if (IA->hasSideEffects())
7126       Flags |= InlineAsm::Extra_HasSideEffects;
7127     if (IA->isAlignStack())
7128       Flags |= InlineAsm::Extra_IsAlignStack;
7129     if (CS.isConvergent())
7130       Flags |= InlineAsm::Extra_IsConvergent;
7131     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
7132   }
7133 
7134   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
7135     // Ideally, we would only check against memory constraints.  However, the
7136     // meaning of an Other constraint can be target-specific and we can't easily
7137     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
7138     // for Other constraints as well.
7139     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
7140         OpInfo.ConstraintType == TargetLowering::C_Other) {
7141       if (OpInfo.Type == InlineAsm::isInput)
7142         Flags |= InlineAsm::Extra_MayLoad;
7143       else if (OpInfo.Type == InlineAsm::isOutput)
7144         Flags |= InlineAsm::Extra_MayStore;
7145       else if (OpInfo.Type == InlineAsm::isClobber)
7146         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
7147     }
7148   }
7149 
7150   unsigned get() const { return Flags; }
7151 };
7152 
7153 } // end anonymous namespace
7154 
7155 /// visitInlineAsm - Handle a call to an InlineAsm object.
7156 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
7157   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7158 
7159   /// ConstraintOperands - Information about all of the constraints.
7160   SDISelAsmOperandInfoVector ConstraintOperands;
7161 
7162   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7163   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
7164       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
7165 
7166   bool hasMemory = false;
7167 
7168   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
7169   ExtraFlags ExtraInfo(CS);
7170 
7171   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
7172   unsigned ResNo = 0;   // ResNo - The result number of the next output.
7173   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
7174     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
7175     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
7176 
7177     MVT OpVT = MVT::Other;
7178 
7179     // Compute the value type for each operand.
7180     if (OpInfo.Type == InlineAsm::isInput ||
7181         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
7182       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
7183 
7184       // Process the call argument. BasicBlocks are labels, currently appearing
7185       // only in asm's.
7186       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
7187         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
7188       } else {
7189         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
7190       }
7191 
7192       OpVT =
7193           OpInfo
7194               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
7195               .getSimpleVT();
7196     }
7197 
7198     if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
7199       // The return value of the call is this value.  As such, there is no
7200       // corresponding argument.
7201       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
7202       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
7203         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(),
7204                                       STy->getElementType(ResNo));
7205       } else {
7206         assert(ResNo == 0 && "Asm only has one result!");
7207         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
7208       }
7209       ++ResNo;
7210     }
7211 
7212     OpInfo.ConstraintVT = OpVT;
7213 
7214     if (!hasMemory)
7215       hasMemory = OpInfo.hasMemory(TLI);
7216 
7217     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
7218     // FIXME: Could we compute this on OpInfo rather than TargetConstraints[i]?
7219     auto TargetConstraint = TargetConstraints[i];
7220 
7221     // Compute the constraint code and ConstraintType to use.
7222     TLI.ComputeConstraintToUse(TargetConstraint, SDValue());
7223 
7224     ExtraInfo.update(TargetConstraint);
7225   }
7226 
7227   SDValue Chain, Flag;
7228 
7229   // We won't need to flush pending loads if this asm doesn't touch
7230   // memory and is nonvolatile.
7231   if (hasMemory || IA->hasSideEffects())
7232     Chain = getRoot();
7233   else
7234     Chain = DAG.getRoot();
7235 
7236   // Second pass over the constraints: compute which constraint option to use
7237   // and assign registers to constraints that want a specific physreg.
7238   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
7239     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
7240 
7241     // If this is an output operand with a matching input operand, look up the
7242     // matching input. If their types mismatch, e.g. one is an integer, the
7243     // other is floating point, or their sizes are different, flag it as an
7244     // error.
7245     if (OpInfo.hasMatchingInput()) {
7246       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
7247       patchMatchingInput(OpInfo, Input, DAG);
7248     }
7249 
7250     // Compute the constraint code and ConstraintType to use.
7251     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
7252 
7253     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7254         OpInfo.Type == InlineAsm::isClobber)
7255       continue;
7256 
7257     // If this is a memory input, and if the operand is not indirect, do what we
7258     // need to to provide an address for the memory input.
7259     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7260         !OpInfo.isIndirect) {
7261       assert((OpInfo.isMultipleAlternative ||
7262               (OpInfo.Type == InlineAsm::isInput)) &&
7263              "Can only indirectify direct input operands!");
7264 
7265       // Memory operands really want the address of the value.
7266       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
7267 
7268       // There is no longer a Value* corresponding to this operand.
7269       OpInfo.CallOperandVal = nullptr;
7270 
7271       // It is now an indirect operand.
7272       OpInfo.isIndirect = true;
7273     }
7274 
7275     // If this constraint is for a specific register, allocate it before
7276     // anything else.
7277     if (OpInfo.ConstraintType == TargetLowering::C_Register)
7278       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
7279   }
7280 
7281   // Third pass - Loop over all of the operands, assigning virtual or physregs
7282   // to register class operands.
7283   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
7284     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
7285 
7286     // C_Register operands have already been allocated, Other/Memory don't need
7287     // to be.
7288     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
7289       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
7290   }
7291 
7292   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
7293   std::vector<SDValue> AsmNodeOperands;
7294   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
7295   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
7296       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
7297 
7298   // If we have a !srcloc metadata node associated with it, we want to attach
7299   // this to the ultimately generated inline asm machineinstr.  To do this, we
7300   // pass in the third operand as this (potentially null) inline asm MDNode.
7301   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
7302   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
7303 
7304   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
7305   // bits as operand 3.
7306   AsmNodeOperands.push_back(DAG.getTargetConstant(
7307       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7308 
7309   // Loop over all of the inputs, copying the operand values into the
7310   // appropriate registers and processing the output regs.
7311   RegsForValue RetValRegs;
7312 
7313   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
7314   std::vector<std::pair<RegsForValue, Value *>> IndirectStoresToEmit;
7315 
7316   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
7317     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
7318 
7319     switch (OpInfo.Type) {
7320     case InlineAsm::isOutput:
7321       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
7322           OpInfo.ConstraintType != TargetLowering::C_Register) {
7323         // Memory output, or 'other' output (e.g. 'X' constraint).
7324         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
7325 
7326         unsigned ConstraintID =
7327             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7328         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7329                "Failed to convert memory constraint code to constraint id.");
7330 
7331         // Add information to the INLINEASM node to know about this output.
7332         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7333         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
7334         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
7335                                                         MVT::i32));
7336         AsmNodeOperands.push_back(OpInfo.CallOperand);
7337         break;
7338       }
7339 
7340       // Otherwise, this is a register or register class output.
7341 
7342       // Copy the output from the appropriate register.  Find a register that
7343       // we can use.
7344       if (OpInfo.AssignedRegs.Regs.empty()) {
7345         emitInlineAsmError(
7346             CS, "couldn't allocate output register for constraint '" +
7347                     Twine(OpInfo.ConstraintCode) + "'");
7348         return;
7349       }
7350 
7351       // If this is an indirect operand, store through the pointer after the
7352       // asm.
7353       if (OpInfo.isIndirect) {
7354         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
7355                                                       OpInfo.CallOperandVal));
7356       } else {
7357         // This is the result value of the call.
7358         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
7359         // Concatenate this output onto the outputs list.
7360         RetValRegs.append(OpInfo.AssignedRegs);
7361       }
7362 
7363       // Add information to the INLINEASM node to know that this register is
7364       // set.
7365       OpInfo.AssignedRegs
7366           .AddInlineAsmOperands(OpInfo.isEarlyClobber
7367                                     ? InlineAsm::Kind_RegDefEarlyClobber
7368                                     : InlineAsm::Kind_RegDef,
7369                                 false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
7370       break;
7371 
7372     case InlineAsm::isInput: {
7373       SDValue InOperandVal = OpInfo.CallOperand;
7374 
7375       if (OpInfo.isMatchingInputConstraint()) {
7376         // If this is required to match an output register we have already set,
7377         // just use its register.
7378         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
7379                                                   AsmNodeOperands);
7380         unsigned OpFlag =
7381           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7382         if (InlineAsm::isRegDefKind(OpFlag) ||
7383             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
7384           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
7385           if (OpInfo.isIndirect) {
7386             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
7387             emitInlineAsmError(CS, "inline asm not supported yet:"
7388                                    " don't know how to handle tied "
7389                                    "indirect register inputs");
7390             return;
7391           }
7392 
7393           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
7394           SmallVector<unsigned, 4> Regs;
7395 
7396           if (!createVirtualRegs(Regs,
7397                                  InlineAsm::getNumOperandRegisters(OpFlag),
7398                                  RegVT, DAG)) {
7399             emitInlineAsmError(CS, "inline asm error: This value type register "
7400                                    "class is not natively supported!");
7401             return;
7402           }
7403 
7404           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
7405 
7406           SDLoc dl = getCurSDLoc();
7407           // Use the produced MatchedRegs object to
7408           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
7409                                     CS.getInstruction());
7410           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
7411                                            true, OpInfo.getMatchedOperand(), dl,
7412                                            DAG, AsmNodeOperands);
7413           break;
7414         }
7415 
7416         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
7417         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
7418                "Unexpected number of operands");
7419         // Add information to the INLINEASM node to know about this input.
7420         // See InlineAsm.h isUseOperandTiedToDef.
7421         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
7422         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
7423                                                     OpInfo.getMatchedOperand());
7424         AsmNodeOperands.push_back(DAG.getTargetConstant(
7425             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7426         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
7427         break;
7428       }
7429 
7430       // Treat indirect 'X' constraint as memory.
7431       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
7432           OpInfo.isIndirect)
7433         OpInfo.ConstraintType = TargetLowering::C_Memory;
7434 
7435       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
7436         std::vector<SDValue> Ops;
7437         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
7438                                           Ops, DAG);
7439         if (Ops.empty()) {
7440           emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
7441                                      Twine(OpInfo.ConstraintCode) + "'");
7442           return;
7443         }
7444 
7445         // Add information to the INLINEASM node to know about this input.
7446         unsigned ResOpType =
7447           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
7448         AsmNodeOperands.push_back(DAG.getTargetConstant(
7449             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7450         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
7451         break;
7452       }
7453 
7454       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
7455         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
7456         assert(InOperandVal.getValueType() ==
7457                    TLI.getPointerTy(DAG.getDataLayout()) &&
7458                "Memory operands expect pointer values");
7459 
7460         unsigned ConstraintID =
7461             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7462         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7463                "Failed to convert memory constraint code to constraint id.");
7464 
7465         // Add information to the INLINEASM node to know about this input.
7466         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7467         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
7468         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
7469                                                         getCurSDLoc(),
7470                                                         MVT::i32));
7471         AsmNodeOperands.push_back(InOperandVal);
7472         break;
7473       }
7474 
7475       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
7476               OpInfo.ConstraintType == TargetLowering::C_Register) &&
7477              "Unknown constraint type!");
7478 
7479       // TODO: Support this.
7480       if (OpInfo.isIndirect) {
7481         emitInlineAsmError(
7482             CS, "Don't know how to handle indirect register inputs yet "
7483                 "for constraint '" +
7484                     Twine(OpInfo.ConstraintCode) + "'");
7485         return;
7486       }
7487 
7488       // Copy the input into the appropriate registers.
7489       if (OpInfo.AssignedRegs.Regs.empty()) {
7490         emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
7491                                    Twine(OpInfo.ConstraintCode) + "'");
7492         return;
7493       }
7494 
7495       SDLoc dl = getCurSDLoc();
7496 
7497       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
7498                                         Chain, &Flag, CS.getInstruction());
7499 
7500       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
7501                                                dl, DAG, AsmNodeOperands);
7502       break;
7503     }
7504     case InlineAsm::isClobber:
7505       // Add the clobbered value to the operand list, so that the register
7506       // allocator is aware that the physreg got clobbered.
7507       if (!OpInfo.AssignedRegs.Regs.empty())
7508         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
7509                                                  false, 0, getCurSDLoc(), DAG,
7510                                                  AsmNodeOperands);
7511       break;
7512     }
7513   }
7514 
7515   // Finish up input operands.  Set the input chain and add the flag last.
7516   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
7517   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
7518 
7519   Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
7520                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
7521   Flag = Chain.getValue(1);
7522 
7523   // If this asm returns a register value, copy the result from that register
7524   // and set it as the value of the call.
7525   if (!RetValRegs.Regs.empty()) {
7526     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7527                                              Chain, &Flag, CS.getInstruction());
7528 
7529     // FIXME: Why don't we do this for inline asms with MRVs?
7530     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
7531       EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType());
7532 
7533       // If any of the results of the inline asm is a vector, it may have the
7534       // wrong width/num elts.  This can happen for register classes that can
7535       // contain multiple different value types.  The preg or vreg allocated may
7536       // not have the same VT as was expected.  Convert it to the right type
7537       // with bit_convert.
7538       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
7539         Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
7540                           ResultType, Val);
7541 
7542       } else if (ResultType != Val.getValueType() &&
7543                  ResultType.isInteger() && Val.getValueType().isInteger()) {
7544         // If a result value was tied to an input value, the computed result may
7545         // have a wider width than the expected result.  Extract the relevant
7546         // portion.
7547         Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
7548       }
7549 
7550       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
7551     }
7552 
7553     setValue(CS.getInstruction(), Val);
7554     // Don't need to use this as a chain in this case.
7555     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
7556       return;
7557   }
7558 
7559   std::vector<std::pair<SDValue, const Value *>> StoresToEmit;
7560 
7561   // Process indirect outputs, first output all of the flagged copies out of
7562   // physregs.
7563   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
7564     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
7565     const Value *Ptr = IndirectStoresToEmit[i].second;
7566     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7567                                              Chain, &Flag, IA);
7568     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
7569   }
7570 
7571   // Emit the non-flagged stores from the physregs.
7572   SmallVector<SDValue, 8> OutChains;
7573   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
7574     SDValue Val = DAG.getStore(Chain, getCurSDLoc(), StoresToEmit[i].first,
7575                                getValue(StoresToEmit[i].second),
7576                                MachinePointerInfo(StoresToEmit[i].second));
7577     OutChains.push_back(Val);
7578   }
7579 
7580   if (!OutChains.empty())
7581     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
7582 
7583   DAG.setRoot(Chain);
7584 }
7585 
7586 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
7587                                              const Twine &Message) {
7588   LLVMContext &Ctx = *DAG.getContext();
7589   Ctx.emitError(CS.getInstruction(), Message);
7590 
7591   // Make sure we leave the DAG in a valid state
7592   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7593   auto VT = TLI.getValueType(DAG.getDataLayout(), CS.getType());
7594   setValue(CS.getInstruction(), DAG.getUNDEF(VT));
7595 }
7596 
7597 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
7598   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
7599                           MVT::Other, getRoot(),
7600                           getValue(I.getArgOperand(0)),
7601                           DAG.getSrcValue(I.getArgOperand(0))));
7602 }
7603 
7604 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
7605   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7606   const DataLayout &DL = DAG.getDataLayout();
7607   SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7608                            getCurSDLoc(), getRoot(), getValue(I.getOperand(0)),
7609                            DAG.getSrcValue(I.getOperand(0)),
7610                            DL.getABITypeAlignment(I.getType()));
7611   setValue(&I, V);
7612   DAG.setRoot(V.getValue(1));
7613 }
7614 
7615 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
7616   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
7617                           MVT::Other, getRoot(),
7618                           getValue(I.getArgOperand(0)),
7619                           DAG.getSrcValue(I.getArgOperand(0))));
7620 }
7621 
7622 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
7623   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
7624                           MVT::Other, getRoot(),
7625                           getValue(I.getArgOperand(0)),
7626                           getValue(I.getArgOperand(1)),
7627                           DAG.getSrcValue(I.getArgOperand(0)),
7628                           DAG.getSrcValue(I.getArgOperand(1))));
7629 }
7630 
7631 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
7632                                                     const Instruction &I,
7633                                                     SDValue Op) {
7634   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
7635   if (!Range)
7636     return Op;
7637 
7638   ConstantRange CR = getConstantRangeFromMetadata(*Range);
7639   if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet())
7640     return Op;
7641 
7642   APInt Lo = CR.getUnsignedMin();
7643   if (!Lo.isMinValue())
7644     return Op;
7645 
7646   APInt Hi = CR.getUnsignedMax();
7647   unsigned Bits = Hi.getActiveBits();
7648 
7649   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
7650 
7651   SDLoc SL = getCurSDLoc();
7652 
7653   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
7654                              DAG.getValueType(SmallVT));
7655   unsigned NumVals = Op.getNode()->getNumValues();
7656   if (NumVals == 1)
7657     return ZExt;
7658 
7659   SmallVector<SDValue, 4> Ops;
7660 
7661   Ops.push_back(ZExt);
7662   for (unsigned I = 1; I != NumVals; ++I)
7663     Ops.push_back(Op.getValue(I));
7664 
7665   return DAG.getMergeValues(Ops, SL);
7666 }
7667 
7668 /// \brief Populate a CallLowerinInfo (into \p CLI) based on the properties of
7669 /// the call being lowered.
7670 ///
7671 /// This is a helper for lowering intrinsics that follow a target calling
7672 /// convention or require stack pointer adjustment. Only a subset of the
7673 /// intrinsic's operands need to participate in the calling convention.
7674 void SelectionDAGBuilder::populateCallLoweringInfo(
7675     TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS,
7676     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
7677     bool IsPatchPoint) {
7678   TargetLowering::ArgListTy Args;
7679   Args.reserve(NumArgs);
7680 
7681   // Populate the argument list.
7682   // Attributes for args start at offset 1, after the return attribute.
7683   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
7684        ArgI != ArgE; ++ArgI) {
7685     const Value *V = CS->getOperand(ArgI);
7686 
7687     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
7688 
7689     TargetLowering::ArgListEntry Entry;
7690     Entry.Node = getValue(V);
7691     Entry.Ty = V->getType();
7692     Entry.setAttributes(&CS, ArgIdx);
7693     Args.push_back(Entry);
7694   }
7695 
7696   CLI.setDebugLoc(getCurSDLoc())
7697       .setChain(getRoot())
7698       .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args))
7699       .setDiscardResult(CS->use_empty())
7700       .setIsPatchPoint(IsPatchPoint);
7701 }
7702 
7703 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap
7704 /// or patchpoint target node's operand list.
7705 ///
7706 /// Constants are converted to TargetConstants purely as an optimization to
7707 /// avoid constant materialization and register allocation.
7708 ///
7709 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
7710 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
7711 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
7712 /// address materialization and register allocation, but may also be required
7713 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
7714 /// alloca in the entry block, then the runtime may assume that the alloca's
7715 /// StackMap location can be read immediately after compilation and that the
7716 /// location is valid at any point during execution (this is similar to the
7717 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
7718 /// only available in a register, then the runtime would need to trap when
7719 /// execution reaches the StackMap in order to read the alloca's location.
7720 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
7721                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
7722                                 SelectionDAGBuilder &Builder) {
7723   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
7724     SDValue OpVal = Builder.getValue(CS.getArgument(i));
7725     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
7726       Ops.push_back(
7727         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
7728       Ops.push_back(
7729         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
7730     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
7731       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
7732       Ops.push_back(Builder.DAG.getTargetFrameIndex(
7733           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
7734     } else
7735       Ops.push_back(OpVal);
7736   }
7737 }
7738 
7739 /// \brief Lower llvm.experimental.stackmap directly to its target opcode.
7740 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
7741   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
7742   //                                  [live variables...])
7743 
7744   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
7745 
7746   SDValue Chain, InFlag, Callee, NullPtr;
7747   SmallVector<SDValue, 32> Ops;
7748 
7749   SDLoc DL = getCurSDLoc();
7750   Callee = getValue(CI.getCalledValue());
7751   NullPtr = DAG.getIntPtrConstant(0, DL, true);
7752 
7753   // The stackmap intrinsic only records the live variables (the arguemnts
7754   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
7755   // intrinsic, this won't be lowered to a function call. This means we don't
7756   // have to worry about calling conventions and target specific lowering code.
7757   // Instead we perform the call lowering right here.
7758   //
7759   // chain, flag = CALLSEQ_START(chain, 0, 0)
7760   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
7761   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
7762   //
7763   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
7764   InFlag = Chain.getValue(1);
7765 
7766   // Add the <id> and <numBytes> constants.
7767   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
7768   Ops.push_back(DAG.getTargetConstant(
7769                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
7770   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
7771   Ops.push_back(DAG.getTargetConstant(
7772                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
7773                   MVT::i32));
7774 
7775   // Push live variables for the stack map.
7776   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
7777 
7778   // We are not pushing any register mask info here on the operands list,
7779   // because the stackmap doesn't clobber anything.
7780 
7781   // Push the chain and the glue flag.
7782   Ops.push_back(Chain);
7783   Ops.push_back(InFlag);
7784 
7785   // Create the STACKMAP node.
7786   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7787   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
7788   Chain = SDValue(SM, 0);
7789   InFlag = Chain.getValue(1);
7790 
7791   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
7792 
7793   // Stackmaps don't generate values, so nothing goes into the NodeMap.
7794 
7795   // Set the root to the target-lowered call chain.
7796   DAG.setRoot(Chain);
7797 
7798   // Inform the Frame Information that we have a stackmap in this function.
7799   FuncInfo.MF->getFrameInfo().setHasStackMap();
7800 }
7801 
7802 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode.
7803 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
7804                                           const BasicBlock *EHPadBB) {
7805   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
7806   //                                                 i32 <numBytes>,
7807   //                                                 i8* <target>,
7808   //                                                 i32 <numArgs>,
7809   //                                                 [Args...],
7810   //                                                 [live variables...])
7811 
7812   CallingConv::ID CC = CS.getCallingConv();
7813   bool IsAnyRegCC = CC == CallingConv::AnyReg;
7814   bool HasDef = !CS->getType()->isVoidTy();
7815   SDLoc dl = getCurSDLoc();
7816   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
7817 
7818   // Handle immediate and symbolic callees.
7819   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
7820     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
7821                                    /*isTarget=*/true);
7822   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
7823     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
7824                                          SDLoc(SymbolicCallee),
7825                                          SymbolicCallee->getValueType(0));
7826 
7827   // Get the real number of arguments participating in the call <numArgs>
7828   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
7829   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
7830 
7831   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
7832   // Intrinsics include all meta-operands up to but not including CC.
7833   unsigned NumMetaOpers = PatchPointOpers::CCPos;
7834   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
7835          "Not enough arguments provided to the patchpoint intrinsic");
7836 
7837   // For AnyRegCC the arguments are lowered later on manually.
7838   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
7839   Type *ReturnTy =
7840     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
7841 
7842   TargetLowering::CallLoweringInfo CLI(DAG);
7843   populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy,
7844                            true);
7845   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7846 
7847   SDNode *CallEnd = Result.second.getNode();
7848   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
7849     CallEnd = CallEnd->getOperand(0).getNode();
7850 
7851   /// Get a call instruction from the call sequence chain.
7852   /// Tail calls are not allowed.
7853   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
7854          "Expected a callseq node.");
7855   SDNode *Call = CallEnd->getOperand(0).getNode();
7856   bool HasGlue = Call->getGluedNode();
7857 
7858   // Replace the target specific call node with the patchable intrinsic.
7859   SmallVector<SDValue, 8> Ops;
7860 
7861   // Add the <id> and <numBytes> constants.
7862   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
7863   Ops.push_back(DAG.getTargetConstant(
7864                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
7865   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
7866   Ops.push_back(DAG.getTargetConstant(
7867                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
7868                   MVT::i32));
7869 
7870   // Add the callee.
7871   Ops.push_back(Callee);
7872 
7873   // Adjust <numArgs> to account for any arguments that have been passed on the
7874   // stack instead.
7875   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
7876   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
7877   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
7878   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
7879 
7880   // Add the calling convention
7881   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
7882 
7883   // Add the arguments we omitted previously. The register allocator should
7884   // place these in any free register.
7885   if (IsAnyRegCC)
7886     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
7887       Ops.push_back(getValue(CS.getArgument(i)));
7888 
7889   // Push the arguments from the call instruction up to the register mask.
7890   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
7891   Ops.append(Call->op_begin() + 2, e);
7892 
7893   // Push live variables for the stack map.
7894   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
7895 
7896   // Push the register mask info.
7897   if (HasGlue)
7898     Ops.push_back(*(Call->op_end()-2));
7899   else
7900     Ops.push_back(*(Call->op_end()-1));
7901 
7902   // Push the chain (this is originally the first operand of the call, but
7903   // becomes now the last or second to last operand).
7904   Ops.push_back(*(Call->op_begin()));
7905 
7906   // Push the glue flag (last operand).
7907   if (HasGlue)
7908     Ops.push_back(*(Call->op_end()-1));
7909 
7910   SDVTList NodeTys;
7911   if (IsAnyRegCC && HasDef) {
7912     // Create the return types based on the intrinsic definition
7913     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7914     SmallVector<EVT, 3> ValueVTs;
7915     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
7916     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
7917 
7918     // There is always a chain and a glue type at the end
7919     ValueVTs.push_back(MVT::Other);
7920     ValueVTs.push_back(MVT::Glue);
7921     NodeTys = DAG.getVTList(ValueVTs);
7922   } else
7923     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7924 
7925   // Replace the target specific call node with a PATCHPOINT node.
7926   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
7927                                          dl, NodeTys, Ops);
7928 
7929   // Update the NodeMap.
7930   if (HasDef) {
7931     if (IsAnyRegCC)
7932       setValue(CS.getInstruction(), SDValue(MN, 0));
7933     else
7934       setValue(CS.getInstruction(), Result.first);
7935   }
7936 
7937   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
7938   // call sequence. Furthermore the location of the chain and glue can change
7939   // when the AnyReg calling convention is used and the intrinsic returns a
7940   // value.
7941   if (IsAnyRegCC && HasDef) {
7942     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
7943     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
7944     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
7945   } else
7946     DAG.ReplaceAllUsesWith(Call, MN);
7947   DAG.DeleteNode(Call);
7948 
7949   // Inform the Frame Information that we have a patchpoint in this function.
7950   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
7951 }
7952 
7953 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
7954                                             unsigned Intrinsic) {
7955   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7956   SDValue Op1 = getValue(I.getArgOperand(0));
7957   SDValue Op2;
7958   if (I.getNumArgOperands() > 1)
7959     Op2 = getValue(I.getArgOperand(1));
7960   SDLoc dl = getCurSDLoc();
7961   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7962   SDValue Res;
7963   FastMathFlags FMF;
7964   if (isa<FPMathOperator>(I))
7965     FMF = I.getFastMathFlags();
7966   SDNodeFlags SDFlags;
7967   SDFlags.setNoNaNs(FMF.noNaNs());
7968 
7969   switch (Intrinsic) {
7970   case Intrinsic::experimental_vector_reduce_fadd:
7971     if (FMF.isFast())
7972       Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2);
7973     else
7974       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2);
7975     break;
7976   case Intrinsic::experimental_vector_reduce_fmul:
7977     if (FMF.isFast())
7978       Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2);
7979     else
7980       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2);
7981     break;
7982   case Intrinsic::experimental_vector_reduce_add:
7983     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
7984     break;
7985   case Intrinsic::experimental_vector_reduce_mul:
7986     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
7987     break;
7988   case Intrinsic::experimental_vector_reduce_and:
7989     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
7990     break;
7991   case Intrinsic::experimental_vector_reduce_or:
7992     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
7993     break;
7994   case Intrinsic::experimental_vector_reduce_xor:
7995     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
7996     break;
7997   case Intrinsic::experimental_vector_reduce_smax:
7998     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
7999     break;
8000   case Intrinsic::experimental_vector_reduce_smin:
8001     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
8002     break;
8003   case Intrinsic::experimental_vector_reduce_umax:
8004     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
8005     break;
8006   case Intrinsic::experimental_vector_reduce_umin:
8007     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
8008     break;
8009   case Intrinsic::experimental_vector_reduce_fmax:
8010     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
8011     break;
8012   case Intrinsic::experimental_vector_reduce_fmin:
8013     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
8014     break;
8015   default:
8016     llvm_unreachable("Unhandled vector reduce intrinsic");
8017   }
8018   setValue(&I, Res);
8019 }
8020 
8021 /// Returns an AttributeList representing the attributes applied to the return
8022 /// value of the given call.
8023 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
8024   SmallVector<Attribute::AttrKind, 2> Attrs;
8025   if (CLI.RetSExt)
8026     Attrs.push_back(Attribute::SExt);
8027   if (CLI.RetZExt)
8028     Attrs.push_back(Attribute::ZExt);
8029   if (CLI.IsInReg)
8030     Attrs.push_back(Attribute::InReg);
8031 
8032   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
8033                             Attrs);
8034 }
8035 
8036 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
8037 /// implementation, which just calls LowerCall.
8038 /// FIXME: When all targets are
8039 /// migrated to using LowerCall, this hook should be integrated into SDISel.
8040 std::pair<SDValue, SDValue>
8041 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
8042   // Handle the incoming return values from the call.
8043   CLI.Ins.clear();
8044   Type *OrigRetTy = CLI.RetTy;
8045   SmallVector<EVT, 4> RetTys;
8046   SmallVector<uint64_t, 4> Offsets;
8047   auto &DL = CLI.DAG.getDataLayout();
8048   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
8049 
8050   if (CLI.IsPostTypeLegalization) {
8051     // If we are lowering a libcall after legalization, split the return type.
8052     SmallVector<EVT, 4> OldRetTys = std::move(RetTys);
8053     SmallVector<uint64_t, 4> OldOffsets = std::move(Offsets);
8054     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
8055       EVT RetVT = OldRetTys[i];
8056       uint64_t Offset = OldOffsets[i];
8057       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
8058       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
8059       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
8060       RetTys.append(NumRegs, RegisterVT);
8061       for (unsigned j = 0; j != NumRegs; ++j)
8062         Offsets.push_back(Offset + j * RegisterVTByteSZ);
8063     }
8064   }
8065 
8066   SmallVector<ISD::OutputArg, 4> Outs;
8067   GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
8068 
8069   bool CanLowerReturn =
8070       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
8071                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
8072 
8073   SDValue DemoteStackSlot;
8074   int DemoteStackIdx = -100;
8075   if (!CanLowerReturn) {
8076     // FIXME: equivalent assert?
8077     // assert(!CS.hasInAllocaArgument() &&
8078     //        "sret demotion is incompatible with inalloca");
8079     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
8080     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
8081     MachineFunction &MF = CLI.DAG.getMachineFunction();
8082     DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
8083     Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy);
8084 
8085     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
8086     ArgListEntry Entry;
8087     Entry.Node = DemoteStackSlot;
8088     Entry.Ty = StackSlotPtrType;
8089     Entry.IsSExt = false;
8090     Entry.IsZExt = false;
8091     Entry.IsInReg = false;
8092     Entry.IsSRet = true;
8093     Entry.IsNest = false;
8094     Entry.IsByVal = false;
8095     Entry.IsReturned = false;
8096     Entry.IsSwiftSelf = false;
8097     Entry.IsSwiftError = false;
8098     Entry.Alignment = Align;
8099     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
8100     CLI.NumFixedArgs += 1;
8101     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
8102 
8103     // sret demotion isn't compatible with tail-calls, since the sret argument
8104     // points into the callers stack frame.
8105     CLI.IsTailCall = false;
8106   } else {
8107     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
8108       EVT VT = RetTys[I];
8109       MVT RegisterVT =
8110           getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT);
8111       unsigned NumRegs =
8112           getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT);
8113       for (unsigned i = 0; i != NumRegs; ++i) {
8114         ISD::InputArg MyFlags;
8115         MyFlags.VT = RegisterVT;
8116         MyFlags.ArgVT = VT;
8117         MyFlags.Used = CLI.IsReturnValueUsed;
8118         if (CLI.RetSExt)
8119           MyFlags.Flags.setSExt();
8120         if (CLI.RetZExt)
8121           MyFlags.Flags.setZExt();
8122         if (CLI.IsInReg)
8123           MyFlags.Flags.setInReg();
8124         CLI.Ins.push_back(MyFlags);
8125       }
8126     }
8127   }
8128 
8129   // We push in swifterror return as the last element of CLI.Ins.
8130   ArgListTy &Args = CLI.getArgs();
8131   if (supportSwiftError()) {
8132     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
8133       if (Args[i].IsSwiftError) {
8134         ISD::InputArg MyFlags;
8135         MyFlags.VT = getPointerTy(DL);
8136         MyFlags.ArgVT = EVT(getPointerTy(DL));
8137         MyFlags.Flags.setSwiftError();
8138         CLI.Ins.push_back(MyFlags);
8139       }
8140     }
8141   }
8142 
8143   // Handle all of the outgoing arguments.
8144   CLI.Outs.clear();
8145   CLI.OutVals.clear();
8146   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
8147     SmallVector<EVT, 4> ValueVTs;
8148     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
8149     // FIXME: Split arguments if CLI.IsPostTypeLegalization
8150     Type *FinalType = Args[i].Ty;
8151     if (Args[i].IsByVal)
8152       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
8153     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
8154         FinalType, CLI.CallConv, CLI.IsVarArg);
8155     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
8156          ++Value) {
8157       EVT VT = ValueVTs[Value];
8158       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
8159       SDValue Op = SDValue(Args[i].Node.getNode(),
8160                            Args[i].Node.getResNo() + Value);
8161       ISD::ArgFlagsTy Flags;
8162 
8163       // Certain targets (such as MIPS), may have a different ABI alignment
8164       // for a type depending on the context. Give the target a chance to
8165       // specify the alignment it wants.
8166       unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL);
8167 
8168       if (Args[i].IsZExt)
8169         Flags.setZExt();
8170       if (Args[i].IsSExt)
8171         Flags.setSExt();
8172       if (Args[i].IsInReg) {
8173         // If we are using vectorcall calling convention, a structure that is
8174         // passed InReg - is surely an HVA
8175         if (CLI.CallConv == CallingConv::X86_VectorCall &&
8176             isa<StructType>(FinalType)) {
8177           // The first value of a structure is marked
8178           if (0 == Value)
8179             Flags.setHvaStart();
8180           Flags.setHva();
8181         }
8182         // Set InReg Flag
8183         Flags.setInReg();
8184       }
8185       if (Args[i].IsSRet)
8186         Flags.setSRet();
8187       if (Args[i].IsSwiftSelf)
8188         Flags.setSwiftSelf();
8189       if (Args[i].IsSwiftError)
8190         Flags.setSwiftError();
8191       if (Args[i].IsByVal)
8192         Flags.setByVal();
8193       if (Args[i].IsInAlloca) {
8194         Flags.setInAlloca();
8195         // Set the byval flag for CCAssignFn callbacks that don't know about
8196         // inalloca.  This way we can know how many bytes we should've allocated
8197         // and how many bytes a callee cleanup function will pop.  If we port
8198         // inalloca to more targets, we'll have to add custom inalloca handling
8199         // in the various CC lowering callbacks.
8200         Flags.setByVal();
8201       }
8202       if (Args[i].IsByVal || Args[i].IsInAlloca) {
8203         PointerType *Ty = cast<PointerType>(Args[i].Ty);
8204         Type *ElementTy = Ty->getElementType();
8205         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
8206         // For ByVal, alignment should come from FE.  BE will guess if this
8207         // info is not there but there are cases it cannot get right.
8208         unsigned FrameAlign;
8209         if (Args[i].Alignment)
8210           FrameAlign = Args[i].Alignment;
8211         else
8212           FrameAlign = getByValTypeAlignment(ElementTy, DL);
8213         Flags.setByValAlign(FrameAlign);
8214       }
8215       if (Args[i].IsNest)
8216         Flags.setNest();
8217       if (NeedsRegBlock)
8218         Flags.setInConsecutiveRegs();
8219       Flags.setOrigAlign(OriginalAlignment);
8220 
8221       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT);
8222       unsigned NumParts =
8223           getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT);
8224       SmallVector<SDValue, 4> Parts(NumParts);
8225       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
8226 
8227       if (Args[i].IsSExt)
8228         ExtendKind = ISD::SIGN_EXTEND;
8229       else if (Args[i].IsZExt)
8230         ExtendKind = ISD::ZERO_EXTEND;
8231 
8232       // Conservatively only handle 'returned' on non-vectors for now
8233       if (Args[i].IsReturned && !Op.getValueType().isVector()) {
8234         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
8235                "unexpected use of 'returned'");
8236         // Before passing 'returned' to the target lowering code, ensure that
8237         // either the register MVT and the actual EVT are the same size or that
8238         // the return value and argument are extended in the same way; in these
8239         // cases it's safe to pass the argument register value unchanged as the
8240         // return register value (although it's at the target's option whether
8241         // to do so)
8242         // TODO: allow code generation to take advantage of partially preserved
8243         // registers rather than clobbering the entire register when the
8244         // parameter extension method is not compatible with the return
8245         // extension method
8246         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
8247             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
8248              CLI.RetZExt == Args[i].IsZExt))
8249           Flags.setReturned();
8250       }
8251 
8252       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
8253                      CLI.CS.getInstruction(), ExtendKind, true);
8254 
8255       for (unsigned j = 0; j != NumParts; ++j) {
8256         // if it isn't first piece, alignment must be 1
8257         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
8258                                i < CLI.NumFixedArgs,
8259                                i, j*Parts[j].getValueType().getStoreSize());
8260         if (NumParts > 1 && j == 0)
8261           MyFlags.Flags.setSplit();
8262         else if (j != 0) {
8263           MyFlags.Flags.setOrigAlign(1);
8264           if (j == NumParts - 1)
8265             MyFlags.Flags.setSplitEnd();
8266         }
8267 
8268         CLI.Outs.push_back(MyFlags);
8269         CLI.OutVals.push_back(Parts[j]);
8270       }
8271 
8272       if (NeedsRegBlock && Value == NumValues - 1)
8273         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
8274     }
8275   }
8276 
8277   SmallVector<SDValue, 4> InVals;
8278   CLI.Chain = LowerCall(CLI, InVals);
8279 
8280   // Update CLI.InVals to use outside of this function.
8281   CLI.InVals = InVals;
8282 
8283   // Verify that the target's LowerCall behaved as expected.
8284   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
8285          "LowerCall didn't return a valid chain!");
8286   assert((!CLI.IsTailCall || InVals.empty()) &&
8287          "LowerCall emitted a return value for a tail call!");
8288   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
8289          "LowerCall didn't emit the correct number of values!");
8290 
8291   // For a tail call, the return value is merely live-out and there aren't
8292   // any nodes in the DAG representing it. Return a special value to
8293   // indicate that a tail call has been emitted and no more Instructions
8294   // should be processed in the current block.
8295   if (CLI.IsTailCall) {
8296     CLI.DAG.setRoot(CLI.Chain);
8297     return std::make_pair(SDValue(), SDValue());
8298   }
8299 
8300 #ifndef NDEBUG
8301   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
8302     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
8303     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
8304            "LowerCall emitted a value with the wrong type!");
8305   }
8306 #endif
8307 
8308   SmallVector<SDValue, 4> ReturnValues;
8309   if (!CanLowerReturn) {
8310     // The instruction result is the result of loading from the
8311     // hidden sret parameter.
8312     SmallVector<EVT, 1> PVTs;
8313     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
8314 
8315     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
8316     assert(PVTs.size() == 1 && "Pointers should fit in one register");
8317     EVT PtrVT = PVTs[0];
8318 
8319     unsigned NumValues = RetTys.size();
8320     ReturnValues.resize(NumValues);
8321     SmallVector<SDValue, 4> Chains(NumValues);
8322 
8323     // An aggregate return value cannot wrap around the address space, so
8324     // offsets to its parts don't wrap either.
8325     SDNodeFlags Flags;
8326     Flags.setNoUnsignedWrap(true);
8327 
8328     for (unsigned i = 0; i < NumValues; ++i) {
8329       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
8330                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
8331                                                         PtrVT), Flags);
8332       SDValue L = CLI.DAG.getLoad(
8333           RetTys[i], CLI.DL, CLI.Chain, Add,
8334           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
8335                                             DemoteStackIdx, Offsets[i]),
8336           /* Alignment = */ 1);
8337       ReturnValues[i] = L;
8338       Chains[i] = L.getValue(1);
8339     }
8340 
8341     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
8342   } else {
8343     // Collect the legal value parts into potentially illegal values
8344     // that correspond to the original function's return values.
8345     Optional<ISD::NodeType> AssertOp;
8346     if (CLI.RetSExt)
8347       AssertOp = ISD::AssertSext;
8348     else if (CLI.RetZExt)
8349       AssertOp = ISD::AssertZext;
8350     unsigned CurReg = 0;
8351     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
8352       EVT VT = RetTys[I];
8353       MVT RegisterVT =
8354           getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT);
8355       unsigned NumRegs =
8356           getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT);
8357 
8358       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
8359                                               NumRegs, RegisterVT, VT, nullptr,
8360                                               AssertOp, true));
8361       CurReg += NumRegs;
8362     }
8363 
8364     // For a function returning void, there is no return value. We can't create
8365     // such a node, so we just return a null return value in that case. In
8366     // that case, nothing will actually look at the value.
8367     if (ReturnValues.empty())
8368       return std::make_pair(SDValue(), CLI.Chain);
8369   }
8370 
8371   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
8372                                 CLI.DAG.getVTList(RetTys), ReturnValues);
8373   return std::make_pair(Res, CLI.Chain);
8374 }
8375 
8376 void TargetLowering::LowerOperationWrapper(SDNode *N,
8377                                            SmallVectorImpl<SDValue> &Results,
8378                                            SelectionDAG &DAG) const {
8379   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
8380     Results.push_back(Res);
8381 }
8382 
8383 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
8384   llvm_unreachable("LowerOperation not implemented for this target!");
8385 }
8386 
8387 void
8388 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
8389   SDValue Op = getNonRegisterValue(V);
8390   assert((Op.getOpcode() != ISD::CopyFromReg ||
8391           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
8392          "Copy from a reg to the same reg!");
8393   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
8394 
8395   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8396   // If this is an InlineAsm we have to match the registers required, not the
8397   // notional registers required by the type.
8398 
8399   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
8400                    V->getType(), isABIRegCopy(V));
8401   SDValue Chain = DAG.getEntryNode();
8402 
8403   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
8404                               FuncInfo.PreferredExtendType.end())
8405                                  ? ISD::ANY_EXTEND
8406                                  : FuncInfo.PreferredExtendType[V];
8407   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
8408   PendingExports.push_back(Chain);
8409 }
8410 
8411 #include "llvm/CodeGen/SelectionDAGISel.h"
8412 
8413 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
8414 /// entry block, return true.  This includes arguments used by switches, since
8415 /// the switch may expand into multiple basic blocks.
8416 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
8417   // With FastISel active, we may be splitting blocks, so force creation
8418   // of virtual registers for all non-dead arguments.
8419   if (FastISel)
8420     return A->use_empty();
8421 
8422   const BasicBlock &Entry = A->getParent()->front();
8423   for (const User *U : A->users())
8424     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
8425       return false;  // Use not in entry block.
8426 
8427   return true;
8428 }
8429 
8430 using ArgCopyElisionMapTy =
8431     DenseMap<const Argument *,
8432              std::pair<const AllocaInst *, const StoreInst *>>;
8433 
8434 /// Scan the entry block of the function in FuncInfo for arguments that look
8435 /// like copies into a local alloca. Record any copied arguments in
8436 /// ArgCopyElisionCandidates.
8437 static void
8438 findArgumentCopyElisionCandidates(const DataLayout &DL,
8439                                   FunctionLoweringInfo *FuncInfo,
8440                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
8441   // Record the state of every static alloca used in the entry block. Argument
8442   // allocas are all used in the entry block, so we need approximately as many
8443   // entries as we have arguments.
8444   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
8445   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
8446   unsigned NumArgs = FuncInfo->Fn->arg_size();
8447   StaticAllocas.reserve(NumArgs * 2);
8448 
8449   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
8450     if (!V)
8451       return nullptr;
8452     V = V->stripPointerCasts();
8453     const auto *AI = dyn_cast<AllocaInst>(V);
8454     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
8455       return nullptr;
8456     auto Iter = StaticAllocas.insert({AI, Unknown});
8457     return &Iter.first->second;
8458   };
8459 
8460   // Look for stores of arguments to static allocas. Look through bitcasts and
8461   // GEPs to handle type coercions, as long as the alloca is fully initialized
8462   // by the store. Any non-store use of an alloca escapes it and any subsequent
8463   // unanalyzed store might write it.
8464   // FIXME: Handle structs initialized with multiple stores.
8465   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
8466     // Look for stores, and handle non-store uses conservatively.
8467     const auto *SI = dyn_cast<StoreInst>(&I);
8468     if (!SI) {
8469       // We will look through cast uses, so ignore them completely.
8470       if (I.isCast())
8471         continue;
8472       // Ignore debug info intrinsics, they don't escape or store to allocas.
8473       if (isa<DbgInfoIntrinsic>(I))
8474         continue;
8475       // This is an unknown instruction. Assume it escapes or writes to all
8476       // static alloca operands.
8477       for (const Use &U : I.operands()) {
8478         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
8479           *Info = StaticAllocaInfo::Clobbered;
8480       }
8481       continue;
8482     }
8483 
8484     // If the stored value is a static alloca, mark it as escaped.
8485     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
8486       *Info = StaticAllocaInfo::Clobbered;
8487 
8488     // Check if the destination is a static alloca.
8489     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
8490     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
8491     if (!Info)
8492       continue;
8493     const AllocaInst *AI = cast<AllocaInst>(Dst);
8494 
8495     // Skip allocas that have been initialized or clobbered.
8496     if (*Info != StaticAllocaInfo::Unknown)
8497       continue;
8498 
8499     // Check if the stored value is an argument, and that this store fully
8500     // initializes the alloca. Don't elide copies from the same argument twice.
8501     const Value *Val = SI->getValueOperand()->stripPointerCasts();
8502     const auto *Arg = dyn_cast<Argument>(Val);
8503     if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() ||
8504         Arg->getType()->isEmptyTy() ||
8505         DL.getTypeStoreSize(Arg->getType()) !=
8506             DL.getTypeAllocSize(AI->getAllocatedType()) ||
8507         ArgCopyElisionCandidates.count(Arg)) {
8508       *Info = StaticAllocaInfo::Clobbered;
8509       continue;
8510     }
8511 
8512     DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI << '\n');
8513 
8514     // Mark this alloca and store for argument copy elision.
8515     *Info = StaticAllocaInfo::Elidable;
8516     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
8517 
8518     // Stop scanning if we've seen all arguments. This will happen early in -O0
8519     // builds, which is useful, because -O0 builds have large entry blocks and
8520     // many allocas.
8521     if (ArgCopyElisionCandidates.size() == NumArgs)
8522       break;
8523   }
8524 }
8525 
8526 /// Try to elide argument copies from memory into a local alloca. Succeeds if
8527 /// ArgVal is a load from a suitable fixed stack object.
8528 static void tryToElideArgumentCopy(
8529     FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains,
8530     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
8531     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
8532     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
8533     SDValue ArgVal, bool &ArgHasUses) {
8534   // Check if this is a load from a fixed stack object.
8535   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
8536   if (!LNode)
8537     return;
8538   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
8539   if (!FINode)
8540     return;
8541 
8542   // Check that the fixed stack object is the right size and alignment.
8543   // Look at the alignment that the user wrote on the alloca instead of looking
8544   // at the stack object.
8545   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
8546   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
8547   const AllocaInst *AI = ArgCopyIter->second.first;
8548   int FixedIndex = FINode->getIndex();
8549   int &AllocaIndex = FuncInfo->StaticAllocaMap[AI];
8550   int OldIndex = AllocaIndex;
8551   MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo();
8552   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
8553     DEBUG(dbgs() << "  argument copy elision failed due to bad fixed stack "
8554                     "object size\n");
8555     return;
8556   }
8557   unsigned RequiredAlignment = AI->getAlignment();
8558   if (!RequiredAlignment) {
8559     RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment(
8560         AI->getAllocatedType());
8561   }
8562   if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) {
8563     DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
8564                     "greater than stack argument alignment ("
8565                  << RequiredAlignment << " vs "
8566                  << MFI.getObjectAlignment(FixedIndex) << ")\n");
8567     return;
8568   }
8569 
8570   // Perform the elision. Delete the old stack object and replace its only use
8571   // in the variable info map. Mark the stack object as mutable.
8572   DEBUG({
8573     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
8574            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
8575            << '\n';
8576   });
8577   MFI.RemoveStackObject(OldIndex);
8578   MFI.setIsImmutableObjectIndex(FixedIndex, false);
8579   AllocaIndex = FixedIndex;
8580   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
8581   Chains.push_back(ArgVal.getValue(1));
8582 
8583   // Avoid emitting code for the store implementing the copy.
8584   const StoreInst *SI = ArgCopyIter->second.second;
8585   ElidedArgCopyInstrs.insert(SI);
8586 
8587   // Check for uses of the argument again so that we can avoid exporting ArgVal
8588   // if it is't used by anything other than the store.
8589   for (const Value *U : Arg.users()) {
8590     if (U != SI) {
8591       ArgHasUses = true;
8592       break;
8593     }
8594   }
8595 }
8596 
8597 void SelectionDAGISel::LowerArguments(const Function &F) {
8598   SelectionDAG &DAG = SDB->DAG;
8599   SDLoc dl = SDB->getCurSDLoc();
8600   const DataLayout &DL = DAG.getDataLayout();
8601   SmallVector<ISD::InputArg, 16> Ins;
8602 
8603   if (!FuncInfo->CanLowerReturn) {
8604     // Put in an sret pointer parameter before all the other parameters.
8605     SmallVector<EVT, 1> ValueVTs;
8606     ComputeValueVTs(*TLI, DAG.getDataLayout(),
8607                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
8608 
8609     // NOTE: Assuming that a pointer will never break down to more than one VT
8610     // or one register.
8611     ISD::ArgFlagsTy Flags;
8612     Flags.setSRet();
8613     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
8614     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
8615                          ISD::InputArg::NoArgIndex, 0);
8616     Ins.push_back(RetArg);
8617   }
8618 
8619   // Look for stores of arguments to static allocas. Mark such arguments with a
8620   // flag to ask the target to give us the memory location of that argument if
8621   // available.
8622   ArgCopyElisionMapTy ArgCopyElisionCandidates;
8623   findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates);
8624 
8625   // Set up the incoming argument description vector.
8626   for (const Argument &Arg : F.args()) {
8627     unsigned ArgNo = Arg.getArgNo();
8628     SmallVector<EVT, 4> ValueVTs;
8629     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
8630     bool isArgValueUsed = !Arg.use_empty();
8631     unsigned PartBase = 0;
8632     Type *FinalType = Arg.getType();
8633     if (Arg.hasAttribute(Attribute::ByVal))
8634       FinalType = cast<PointerType>(FinalType)->getElementType();
8635     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
8636         FinalType, F.getCallingConv(), F.isVarArg());
8637     for (unsigned Value = 0, NumValues = ValueVTs.size();
8638          Value != NumValues; ++Value) {
8639       EVT VT = ValueVTs[Value];
8640       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
8641       ISD::ArgFlagsTy Flags;
8642 
8643       // Certain targets (such as MIPS), may have a different ABI alignment
8644       // for a type depending on the context. Give the target a chance to
8645       // specify the alignment it wants.
8646       unsigned OriginalAlignment =
8647           TLI->getABIAlignmentForCallingConv(ArgTy, DL);
8648 
8649       if (Arg.hasAttribute(Attribute::ZExt))
8650         Flags.setZExt();
8651       if (Arg.hasAttribute(Attribute::SExt))
8652         Flags.setSExt();
8653       if (Arg.hasAttribute(Attribute::InReg)) {
8654         // If we are using vectorcall calling convention, a structure that is
8655         // passed InReg - is surely an HVA
8656         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
8657             isa<StructType>(Arg.getType())) {
8658           // The first value of a structure is marked
8659           if (0 == Value)
8660             Flags.setHvaStart();
8661           Flags.setHva();
8662         }
8663         // Set InReg Flag
8664         Flags.setInReg();
8665       }
8666       if (Arg.hasAttribute(Attribute::StructRet))
8667         Flags.setSRet();
8668       if (Arg.hasAttribute(Attribute::SwiftSelf))
8669         Flags.setSwiftSelf();
8670       if (Arg.hasAttribute(Attribute::SwiftError))
8671         Flags.setSwiftError();
8672       if (Arg.hasAttribute(Attribute::ByVal))
8673         Flags.setByVal();
8674       if (Arg.hasAttribute(Attribute::InAlloca)) {
8675         Flags.setInAlloca();
8676         // Set the byval flag for CCAssignFn callbacks that don't know about
8677         // inalloca.  This way we can know how many bytes we should've allocated
8678         // and how many bytes a callee cleanup function will pop.  If we port
8679         // inalloca to more targets, we'll have to add custom inalloca handling
8680         // in the various CC lowering callbacks.
8681         Flags.setByVal();
8682       }
8683       if (F.getCallingConv() == CallingConv::X86_INTR) {
8684         // IA Interrupt passes frame (1st parameter) by value in the stack.
8685         if (ArgNo == 0)
8686           Flags.setByVal();
8687       }
8688       if (Flags.isByVal() || Flags.isInAlloca()) {
8689         PointerType *Ty = cast<PointerType>(Arg.getType());
8690         Type *ElementTy = Ty->getElementType();
8691         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
8692         // For ByVal, alignment should be passed from FE.  BE will guess if
8693         // this info is not there but there are cases it cannot get right.
8694         unsigned FrameAlign;
8695         if (Arg.getParamAlignment())
8696           FrameAlign = Arg.getParamAlignment();
8697         else
8698           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
8699         Flags.setByValAlign(FrameAlign);
8700       }
8701       if (Arg.hasAttribute(Attribute::Nest))
8702         Flags.setNest();
8703       if (NeedsRegBlock)
8704         Flags.setInConsecutiveRegs();
8705       Flags.setOrigAlign(OriginalAlignment);
8706       if (ArgCopyElisionCandidates.count(&Arg))
8707         Flags.setCopyElisionCandidate();
8708 
8709       MVT RegisterVT =
8710           TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), VT);
8711       unsigned NumRegs =
8712           TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), VT);
8713       for (unsigned i = 0; i != NumRegs; ++i) {
8714         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
8715                               ArgNo, PartBase+i*RegisterVT.getStoreSize());
8716         if (NumRegs > 1 && i == 0)
8717           MyFlags.Flags.setSplit();
8718         // if it isn't first piece, alignment must be 1
8719         else if (i > 0) {
8720           MyFlags.Flags.setOrigAlign(1);
8721           if (i == NumRegs - 1)
8722             MyFlags.Flags.setSplitEnd();
8723         }
8724         Ins.push_back(MyFlags);
8725       }
8726       if (NeedsRegBlock && Value == NumValues - 1)
8727         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
8728       PartBase += VT.getStoreSize();
8729     }
8730   }
8731 
8732   // Call the target to set up the argument values.
8733   SmallVector<SDValue, 8> InVals;
8734   SDValue NewRoot = TLI->LowerFormalArguments(
8735       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
8736 
8737   // Verify that the target's LowerFormalArguments behaved as expected.
8738   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
8739          "LowerFormalArguments didn't return a valid chain!");
8740   assert(InVals.size() == Ins.size() &&
8741          "LowerFormalArguments didn't emit the correct number of values!");
8742   DEBUG({
8743       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
8744         assert(InVals[i].getNode() &&
8745                "LowerFormalArguments emitted a null value!");
8746         assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
8747                "LowerFormalArguments emitted a value with the wrong type!");
8748       }
8749     });
8750 
8751   // Update the DAG with the new chain value resulting from argument lowering.
8752   DAG.setRoot(NewRoot);
8753 
8754   // Set up the argument values.
8755   unsigned i = 0;
8756   if (!FuncInfo->CanLowerReturn) {
8757     // Create a virtual register for the sret pointer, and put in a copy
8758     // from the sret argument into it.
8759     SmallVector<EVT, 1> ValueVTs;
8760     ComputeValueVTs(*TLI, DAG.getDataLayout(),
8761                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
8762     MVT VT = ValueVTs[0].getSimpleVT();
8763     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
8764     Optional<ISD::NodeType> AssertOp = None;
8765     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
8766                                         RegVT, VT, nullptr, AssertOp);
8767 
8768     MachineFunction& MF = SDB->DAG.getMachineFunction();
8769     MachineRegisterInfo& RegInfo = MF.getRegInfo();
8770     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
8771     FuncInfo->DemoteRegister = SRetReg;
8772     NewRoot =
8773         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
8774     DAG.setRoot(NewRoot);
8775 
8776     // i indexes lowered arguments.  Bump it past the hidden sret argument.
8777     ++i;
8778   }
8779 
8780   SmallVector<SDValue, 4> Chains;
8781   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
8782   for (const Argument &Arg : F.args()) {
8783     SmallVector<SDValue, 4> ArgValues;
8784     SmallVector<EVT, 4> ValueVTs;
8785     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
8786     unsigned NumValues = ValueVTs.size();
8787     if (NumValues == 0)
8788       continue;
8789 
8790     bool ArgHasUses = !Arg.use_empty();
8791 
8792     // Elide the copying store if the target loaded this argument from a
8793     // suitable fixed stack object.
8794     if (Ins[i].Flags.isCopyElisionCandidate()) {
8795       tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
8796                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
8797                              InVals[i], ArgHasUses);
8798     }
8799 
8800     // If this argument is unused then remember its value. It is used to generate
8801     // debugging information.
8802     bool isSwiftErrorArg =
8803         TLI->supportSwiftError() &&
8804         Arg.hasAttribute(Attribute::SwiftError);
8805     if (!ArgHasUses && !isSwiftErrorArg) {
8806       SDB->setUnusedArgValue(&Arg, InVals[i]);
8807 
8808       // Also remember any frame index for use in FastISel.
8809       if (FrameIndexSDNode *FI =
8810           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
8811         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
8812     }
8813 
8814     for (unsigned Val = 0; Val != NumValues; ++Val) {
8815       EVT VT = ValueVTs[Val];
8816       MVT PartVT =
8817           TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), VT);
8818       unsigned NumParts =
8819           TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), VT);
8820 
8821       // Even an apparant 'unused' swifterror argument needs to be returned. So
8822       // we do generate a copy for it that can be used on return from the
8823       // function.
8824       if (ArgHasUses || isSwiftErrorArg) {
8825         Optional<ISD::NodeType> AssertOp;
8826         if (Arg.hasAttribute(Attribute::SExt))
8827           AssertOp = ISD::AssertSext;
8828         else if (Arg.hasAttribute(Attribute::ZExt))
8829           AssertOp = ISD::AssertZext;
8830 
8831         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
8832                                              PartVT, VT, nullptr, AssertOp,
8833                                              true));
8834       }
8835 
8836       i += NumParts;
8837     }
8838 
8839     // We don't need to do anything else for unused arguments.
8840     if (ArgValues.empty())
8841       continue;
8842 
8843     // Note down frame index.
8844     if (FrameIndexSDNode *FI =
8845         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
8846       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
8847 
8848     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
8849                                      SDB->getCurSDLoc());
8850 
8851     SDB->setValue(&Arg, Res);
8852     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
8853       // We want to associate the argument with the frame index, among
8854       // involved operands, that correspond to the lowest address. The
8855       // getCopyFromParts function, called earlier, is swapping the order of
8856       // the operands to BUILD_PAIR depending on endianness. The result of
8857       // that swapping is that the least significant bits of the argument will
8858       // be in the first operand of the BUILD_PAIR node, and the most
8859       // significant bits will be in the second operand.
8860       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
8861       if (LoadSDNode *LNode =
8862           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
8863         if (FrameIndexSDNode *FI =
8864             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
8865           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
8866     }
8867 
8868     // Update the SwiftErrorVRegDefMap.
8869     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
8870       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
8871       if (TargetRegisterInfo::isVirtualRegister(Reg))
8872         FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB,
8873                                            FuncInfo->SwiftErrorArg, Reg);
8874     }
8875 
8876     // If this argument is live outside of the entry block, insert a copy from
8877     // wherever we got it to the vreg that other BB's will reference it as.
8878     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
8879       // If we can, though, try to skip creating an unnecessary vreg.
8880       // FIXME: This isn't very clean... it would be nice to make this more
8881       // general.  It's also subtly incompatible with the hacks FastISel
8882       // uses with vregs.
8883       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
8884       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
8885         FuncInfo->ValueMap[&Arg] = Reg;
8886         continue;
8887       }
8888     }
8889     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
8890       FuncInfo->InitializeRegForValue(&Arg);
8891       SDB->CopyToExportRegsIfNeeded(&Arg);
8892     }
8893   }
8894 
8895   if (!Chains.empty()) {
8896     Chains.push_back(NewRoot);
8897     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
8898   }
8899 
8900   DAG.setRoot(NewRoot);
8901 
8902   assert(i == InVals.size() && "Argument register count mismatch!");
8903 
8904   // If any argument copy elisions occurred and we have debug info, update the
8905   // stale frame indices used in the dbg.declare variable info table.
8906   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
8907   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
8908     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
8909       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
8910       if (I != ArgCopyElisionFrameIndexMap.end())
8911         VI.Slot = I->second;
8912     }
8913   }
8914 
8915   // Finally, if the target has anything special to do, allow it to do so.
8916   EmitFunctionEntryCode();
8917 }
8918 
8919 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
8920 /// ensure constants are generated when needed.  Remember the virtual registers
8921 /// that need to be added to the Machine PHI nodes as input.  We cannot just
8922 /// directly add them, because expansion might result in multiple MBB's for one
8923 /// BB.  As such, the start of the BB might correspond to a different MBB than
8924 /// the end.
8925 void
8926 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
8927   const TerminatorInst *TI = LLVMBB->getTerminator();
8928 
8929   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
8930 
8931   // Check PHI nodes in successors that expect a value to be available from this
8932   // block.
8933   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
8934     const BasicBlock *SuccBB = TI->getSuccessor(succ);
8935     if (!isa<PHINode>(SuccBB->begin())) continue;
8936     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
8937 
8938     // If this terminator has multiple identical successors (common for
8939     // switches), only handle each succ once.
8940     if (!SuccsHandled.insert(SuccMBB).second)
8941       continue;
8942 
8943     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
8944 
8945     // At this point we know that there is a 1-1 correspondence between LLVM PHI
8946     // nodes and Machine PHI nodes, but the incoming operands have not been
8947     // emitted yet.
8948     for (BasicBlock::const_iterator I = SuccBB->begin();
8949          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
8950       // Ignore dead phi's.
8951       if (PN->use_empty()) continue;
8952 
8953       // Skip empty types
8954       if (PN->getType()->isEmptyTy())
8955         continue;
8956 
8957       unsigned Reg;
8958       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
8959 
8960       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
8961         unsigned &RegOut = ConstantsOut[C];
8962         if (RegOut == 0) {
8963           RegOut = FuncInfo.CreateRegs(C->getType());
8964           CopyValueToVirtualRegister(C, RegOut);
8965         }
8966         Reg = RegOut;
8967       } else {
8968         DenseMap<const Value *, unsigned>::iterator I =
8969           FuncInfo.ValueMap.find(PHIOp);
8970         if (I != FuncInfo.ValueMap.end())
8971           Reg = I->second;
8972         else {
8973           assert(isa<AllocaInst>(PHIOp) &&
8974                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
8975                  "Didn't codegen value into a register!??");
8976           Reg = FuncInfo.CreateRegs(PHIOp->getType());
8977           CopyValueToVirtualRegister(PHIOp, Reg);
8978         }
8979       }
8980 
8981       // Remember that this register needs to added to the machine PHI node as
8982       // the input for this MBB.
8983       SmallVector<EVT, 4> ValueVTs;
8984       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8985       ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs);
8986       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
8987         EVT VT = ValueVTs[vti];
8988         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
8989         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
8990           FuncInfo.PHINodesToUpdate.push_back(
8991               std::make_pair(&*MBBI++, Reg + i));
8992         Reg += NumRegisters;
8993       }
8994     }
8995   }
8996 
8997   ConstantsOut.clear();
8998 }
8999 
9000 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
9001 /// is 0.
9002 MachineBasicBlock *
9003 SelectionDAGBuilder::StackProtectorDescriptor::
9004 AddSuccessorMBB(const BasicBlock *BB,
9005                 MachineBasicBlock *ParentMBB,
9006                 bool IsLikely,
9007                 MachineBasicBlock *SuccMBB) {
9008   // If SuccBB has not been created yet, create it.
9009   if (!SuccMBB) {
9010     MachineFunction *MF = ParentMBB->getParent();
9011     MachineFunction::iterator BBI(ParentMBB);
9012     SuccMBB = MF->CreateMachineBasicBlock(BB);
9013     MF->insert(++BBI, SuccMBB);
9014   }
9015   // Add it as a successor of ParentMBB.
9016   ParentMBB->addSuccessor(
9017       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
9018   return SuccMBB;
9019 }
9020 
9021 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
9022   MachineFunction::iterator I(MBB);
9023   if (++I == FuncInfo.MF->end())
9024     return nullptr;
9025   return &*I;
9026 }
9027 
9028 /// During lowering new call nodes can be created (such as memset, etc.).
9029 /// Those will become new roots of the current DAG, but complications arise
9030 /// when they are tail calls. In such cases, the call lowering will update
9031 /// the root, but the builder still needs to know that a tail call has been
9032 /// lowered in order to avoid generating an additional return.
9033 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
9034   // If the node is null, we do have a tail call.
9035   if (MaybeTC.getNode() != nullptr)
9036     DAG.setRoot(MaybeTC);
9037   else
9038     HasTailCall = true;
9039 }
9040 
9041 uint64_t
9042 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters,
9043                                        unsigned First, unsigned Last) const {
9044   assert(Last >= First);
9045   const APInt &LowCase = Clusters[First].Low->getValue();
9046   const APInt &HighCase = Clusters[Last].High->getValue();
9047   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
9048 
9049   // FIXME: A range of consecutive cases has 100% density, but only requires one
9050   // comparison to lower. We should discriminate against such consecutive ranges
9051   // in jump tables.
9052 
9053   return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1;
9054 }
9055 
9056 uint64_t SelectionDAGBuilder::getJumpTableNumCases(
9057     const SmallVectorImpl<unsigned> &TotalCases, unsigned First,
9058     unsigned Last) const {
9059   assert(Last >= First);
9060   assert(TotalCases[Last] >= TotalCases[First]);
9061   uint64_t NumCases =
9062       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
9063   return NumCases;
9064 }
9065 
9066 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters,
9067                                          unsigned First, unsigned Last,
9068                                          const SwitchInst *SI,
9069                                          MachineBasicBlock *DefaultMBB,
9070                                          CaseCluster &JTCluster) {
9071   assert(First <= Last);
9072 
9073   auto Prob = BranchProbability::getZero();
9074   unsigned NumCmps = 0;
9075   std::vector<MachineBasicBlock*> Table;
9076   DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
9077 
9078   // Initialize probabilities in JTProbs.
9079   for (unsigned I = First; I <= Last; ++I)
9080     JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
9081 
9082   for (unsigned I = First; I <= Last; ++I) {
9083     assert(Clusters[I].Kind == CC_Range);
9084     Prob += Clusters[I].Prob;
9085     const APInt &Low = Clusters[I].Low->getValue();
9086     const APInt &High = Clusters[I].High->getValue();
9087     NumCmps += (Low == High) ? 1 : 2;
9088     if (I != First) {
9089       // Fill the gap between this and the previous cluster.
9090       const APInt &PreviousHigh = Clusters[I - 1].High->getValue();
9091       assert(PreviousHigh.slt(Low));
9092       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
9093       for (uint64_t J = 0; J < Gap; J++)
9094         Table.push_back(DefaultMBB);
9095     }
9096     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
9097     for (uint64_t J = 0; J < ClusterSize; ++J)
9098       Table.push_back(Clusters[I].MBB);
9099     JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
9100   }
9101 
9102   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9103   unsigned NumDests = JTProbs.size();
9104   if (TLI.isSuitableForBitTests(
9105           NumDests, NumCmps, Clusters[First].Low->getValue(),
9106           Clusters[Last].High->getValue(), DAG.getDataLayout())) {
9107     // Clusters[First..Last] should be lowered as bit tests instead.
9108     return false;
9109   }
9110 
9111   // Create the MBB that will load from and jump through the table.
9112   // Note: We create it here, but it's not inserted into the function yet.
9113   MachineFunction *CurMF = FuncInfo.MF;
9114   MachineBasicBlock *JumpTableMBB =
9115       CurMF->CreateMachineBasicBlock(SI->getParent());
9116 
9117   // Add successors. Note: use table order for determinism.
9118   SmallPtrSet<MachineBasicBlock *, 8> Done;
9119   for (MachineBasicBlock *Succ : Table) {
9120     if (Done.count(Succ))
9121       continue;
9122     addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
9123     Done.insert(Succ);
9124   }
9125   JumpTableMBB->normalizeSuccProbs();
9126 
9127   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
9128                      ->createJumpTableIndex(Table);
9129 
9130   // Set up the jump table info.
9131   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
9132   JumpTableHeader JTH(Clusters[First].Low->getValue(),
9133                       Clusters[Last].High->getValue(), SI->getCondition(),
9134                       nullptr, false);
9135   JTCases.emplace_back(std::move(JTH), std::move(JT));
9136 
9137   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
9138                                      JTCases.size() - 1, Prob);
9139   return true;
9140 }
9141 
9142 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
9143                                          const SwitchInst *SI,
9144                                          MachineBasicBlock *DefaultMBB) {
9145 #ifndef NDEBUG
9146   // Clusters must be non-empty, sorted, and only contain Range clusters.
9147   assert(!Clusters.empty());
9148   for (CaseCluster &C : Clusters)
9149     assert(C.Kind == CC_Range);
9150   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
9151     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
9152 #endif
9153 
9154   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9155   if (!TLI.areJTsAllowed(SI->getParent()->getParent()))
9156     return;
9157 
9158   const int64_t N = Clusters.size();
9159   const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries();
9160   const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2;
9161 
9162   if (N < 2 || N < MinJumpTableEntries)
9163     return;
9164 
9165   // TotalCases[i]: Total nbr of cases in Clusters[0..i].
9166   SmallVector<unsigned, 8> TotalCases(N);
9167   for (unsigned i = 0; i < N; ++i) {
9168     const APInt &Hi = Clusters[i].High->getValue();
9169     const APInt &Lo = Clusters[i].Low->getValue();
9170     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
9171     if (i != 0)
9172       TotalCases[i] += TotalCases[i - 1];
9173   }
9174 
9175   // Cheap case: the whole range may be suitable for jump table.
9176   uint64_t Range = getJumpTableRange(Clusters,0, N - 1);
9177   uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1);
9178   assert(NumCases < UINT64_MAX / 100);
9179   assert(Range >= NumCases);
9180   if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
9181     CaseCluster JTCluster;
9182     if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
9183       Clusters[0] = JTCluster;
9184       Clusters.resize(1);
9185       return;
9186     }
9187   }
9188 
9189   // The algorithm below is not suitable for -O0.
9190   if (TM.getOptLevel() == CodeGenOpt::None)
9191     return;
9192 
9193   // Split Clusters into minimum number of dense partitions. The algorithm uses
9194   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
9195   // for the Case Statement'" (1994), but builds the MinPartitions array in
9196   // reverse order to make it easier to reconstruct the partitions in ascending
9197   // order. In the choice between two optimal partitionings, it picks the one
9198   // which yields more jump tables.
9199 
9200   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
9201   SmallVector<unsigned, 8> MinPartitions(N);
9202   // LastElement[i] is the last element of the partition starting at i.
9203   SmallVector<unsigned, 8> LastElement(N);
9204   // PartitionsScore[i] is used to break ties when choosing between two
9205   // partitionings resulting in the same number of partitions.
9206   SmallVector<unsigned, 8> PartitionsScore(N);
9207   // For PartitionsScore, a small number of comparisons is considered as good as
9208   // a jump table and a single comparison is considered better than a jump
9209   // table.
9210   enum PartitionScores : unsigned {
9211     NoTable = 0,
9212     Table = 1,
9213     FewCases = 1,
9214     SingleCase = 2
9215   };
9216 
9217   // Base case: There is only one way to partition Clusters[N-1].
9218   MinPartitions[N - 1] = 1;
9219   LastElement[N - 1] = N - 1;
9220   PartitionsScore[N - 1] = PartitionScores::SingleCase;
9221 
9222   // Note: loop indexes are signed to avoid underflow.
9223   for (int64_t i = N - 2; i >= 0; i--) {
9224     // Find optimal partitioning of Clusters[i..N-1].
9225     // Baseline: Put Clusters[i] into a partition on its own.
9226     MinPartitions[i] = MinPartitions[i + 1] + 1;
9227     LastElement[i] = i;
9228     PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase;
9229 
9230     // Search for a solution that results in fewer partitions.
9231     for (int64_t j = N - 1; j > i; j--) {
9232       // Try building a partition from Clusters[i..j].
9233       uint64_t Range = getJumpTableRange(Clusters, i, j);
9234       uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j);
9235       assert(NumCases < UINT64_MAX / 100);
9236       assert(Range >= NumCases);
9237       if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
9238         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
9239         unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1];
9240         int64_t NumEntries = j - i + 1;
9241 
9242         if (NumEntries == 1)
9243           Score += PartitionScores::SingleCase;
9244         else if (NumEntries <= SmallNumberOfEntries)
9245           Score += PartitionScores::FewCases;
9246         else if (NumEntries >= MinJumpTableEntries)
9247           Score += PartitionScores::Table;
9248 
9249         // If this leads to fewer partitions, or to the same number of
9250         // partitions with better score, it is a better partitioning.
9251         if (NumPartitions < MinPartitions[i] ||
9252             (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) {
9253           MinPartitions[i] = NumPartitions;
9254           LastElement[i] = j;
9255           PartitionsScore[i] = Score;
9256         }
9257       }
9258     }
9259   }
9260 
9261   // Iterate over the partitions, replacing some with jump tables in-place.
9262   unsigned DstIndex = 0;
9263   for (unsigned First = 0, Last; First < N; First = Last + 1) {
9264     Last = LastElement[First];
9265     assert(Last >= First);
9266     assert(DstIndex <= First);
9267     unsigned NumClusters = Last - First + 1;
9268 
9269     CaseCluster JTCluster;
9270     if (NumClusters >= MinJumpTableEntries &&
9271         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
9272       Clusters[DstIndex++] = JTCluster;
9273     } else {
9274       for (unsigned I = First; I <= Last; ++I)
9275         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
9276     }
9277   }
9278   Clusters.resize(DstIndex);
9279 }
9280 
9281 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
9282                                         unsigned First, unsigned Last,
9283                                         const SwitchInst *SI,
9284                                         CaseCluster &BTCluster) {
9285   assert(First <= Last);
9286   if (First == Last)
9287     return false;
9288 
9289   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
9290   unsigned NumCmps = 0;
9291   for (int64_t I = First; I <= Last; ++I) {
9292     assert(Clusters[I].Kind == CC_Range);
9293     Dests.set(Clusters[I].MBB->getNumber());
9294     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
9295   }
9296   unsigned NumDests = Dests.count();
9297 
9298   APInt Low = Clusters[First].Low->getValue();
9299   APInt High = Clusters[Last].High->getValue();
9300   assert(Low.slt(High));
9301 
9302   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9303   const DataLayout &DL = DAG.getDataLayout();
9304   if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL))
9305     return false;
9306 
9307   APInt LowBound;
9308   APInt CmpRange;
9309 
9310   const int BitWidth = TLI.getPointerTy(DL).getSizeInBits();
9311   assert(TLI.rangeFitsInWord(Low, High, DL) &&
9312          "Case range must fit in bit mask!");
9313 
9314   // Check if the clusters cover a contiguous range such that no value in the
9315   // range will jump to the default statement.
9316   bool ContiguousRange = true;
9317   for (int64_t I = First + 1; I <= Last; ++I) {
9318     if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
9319       ContiguousRange = false;
9320       break;
9321     }
9322   }
9323 
9324   if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
9325     // Optimize the case where all the case values fit in a word without having
9326     // to subtract minValue. In this case, we can optimize away the subtraction.
9327     LowBound = APInt::getNullValue(Low.getBitWidth());
9328     CmpRange = High;
9329     ContiguousRange = false;
9330   } else {
9331     LowBound = Low;
9332     CmpRange = High - Low;
9333   }
9334 
9335   CaseBitsVector CBV;
9336   auto TotalProb = BranchProbability::getZero();
9337   for (unsigned i = First; i <= Last; ++i) {
9338     // Find the CaseBits for this destination.
9339     unsigned j;
9340     for (j = 0; j < CBV.size(); ++j)
9341       if (CBV[j].BB == Clusters[i].MBB)
9342         break;
9343     if (j == CBV.size())
9344       CBV.push_back(
9345           CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
9346     CaseBits *CB = &CBV[j];
9347 
9348     // Update Mask, Bits and ExtraProb.
9349     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
9350     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
9351     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
9352     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
9353     CB->Bits += Hi - Lo + 1;
9354     CB->ExtraProb += Clusters[i].Prob;
9355     TotalProb += Clusters[i].Prob;
9356   }
9357 
9358   BitTestInfo BTI;
9359   std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) {
9360     // Sort by probability first, number of bits second.
9361     if (a.ExtraProb != b.ExtraProb)
9362       return a.ExtraProb > b.ExtraProb;
9363     return a.Bits > b.Bits;
9364   });
9365 
9366   for (auto &CB : CBV) {
9367     MachineBasicBlock *BitTestBB =
9368         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
9369     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
9370   }
9371   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
9372                             SI->getCondition(), -1U, MVT::Other, false,
9373                             ContiguousRange, nullptr, nullptr, std::move(BTI),
9374                             TotalProb);
9375 
9376   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
9377                                     BitTestCases.size() - 1, TotalProb);
9378   return true;
9379 }
9380 
9381 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
9382                                               const SwitchInst *SI) {
9383 // Partition Clusters into as few subsets as possible, where each subset has a
9384 // range that fits in a machine word and has <= 3 unique destinations.
9385 
9386 #ifndef NDEBUG
9387   // Clusters must be sorted and contain Range or JumpTable clusters.
9388   assert(!Clusters.empty());
9389   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
9390   for (const CaseCluster &C : Clusters)
9391     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
9392   for (unsigned i = 1; i < Clusters.size(); ++i)
9393     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
9394 #endif
9395 
9396   // The algorithm below is not suitable for -O0.
9397   if (TM.getOptLevel() == CodeGenOpt::None)
9398     return;
9399 
9400   // If target does not have legal shift left, do not emit bit tests at all.
9401   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9402   const DataLayout &DL = DAG.getDataLayout();
9403 
9404   EVT PTy = TLI.getPointerTy(DL);
9405   if (!TLI.isOperationLegal(ISD::SHL, PTy))
9406     return;
9407 
9408   int BitWidth = PTy.getSizeInBits();
9409   const int64_t N = Clusters.size();
9410 
9411   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
9412   SmallVector<unsigned, 8> MinPartitions(N);
9413   // LastElement[i] is the last element of the partition starting at i.
9414   SmallVector<unsigned, 8> LastElement(N);
9415 
9416   // FIXME: This might not be the best algorithm for finding bit test clusters.
9417 
9418   // Base case: There is only one way to partition Clusters[N-1].
9419   MinPartitions[N - 1] = 1;
9420   LastElement[N - 1] = N - 1;
9421 
9422   // Note: loop indexes are signed to avoid underflow.
9423   for (int64_t i = N - 2; i >= 0; --i) {
9424     // Find optimal partitioning of Clusters[i..N-1].
9425     // Baseline: Put Clusters[i] into a partition on its own.
9426     MinPartitions[i] = MinPartitions[i + 1] + 1;
9427     LastElement[i] = i;
9428 
9429     // Search for a solution that results in fewer partitions.
9430     // Note: the search is limited by BitWidth, reducing time complexity.
9431     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
9432       // Try building a partition from Clusters[i..j].
9433 
9434       // Check the range.
9435       if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(),
9436                                Clusters[j].High->getValue(), DL))
9437         continue;
9438 
9439       // Check nbr of destinations and cluster types.
9440       // FIXME: This works, but doesn't seem very efficient.
9441       bool RangesOnly = true;
9442       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
9443       for (int64_t k = i; k <= j; k++) {
9444         if (Clusters[k].Kind != CC_Range) {
9445           RangesOnly = false;
9446           break;
9447         }
9448         Dests.set(Clusters[k].MBB->getNumber());
9449       }
9450       if (!RangesOnly || Dests.count() > 3)
9451         break;
9452 
9453       // Check if it's a better partition.
9454       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
9455       if (NumPartitions < MinPartitions[i]) {
9456         // Found a better partition.
9457         MinPartitions[i] = NumPartitions;
9458         LastElement[i] = j;
9459       }
9460     }
9461   }
9462 
9463   // Iterate over the partitions, replacing with bit-test clusters in-place.
9464   unsigned DstIndex = 0;
9465   for (unsigned First = 0, Last; First < N; First = Last + 1) {
9466     Last = LastElement[First];
9467     assert(First <= Last);
9468     assert(DstIndex <= First);
9469 
9470     CaseCluster BitTestCluster;
9471     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
9472       Clusters[DstIndex++] = BitTestCluster;
9473     } else {
9474       size_t NumClusters = Last - First + 1;
9475       std::memmove(&Clusters[DstIndex], &Clusters[First],
9476                    sizeof(Clusters[0]) * NumClusters);
9477       DstIndex += NumClusters;
9478     }
9479   }
9480   Clusters.resize(DstIndex);
9481 }
9482 
9483 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
9484                                         MachineBasicBlock *SwitchMBB,
9485                                         MachineBasicBlock *DefaultMBB) {
9486   MachineFunction *CurMF = FuncInfo.MF;
9487   MachineBasicBlock *NextMBB = nullptr;
9488   MachineFunction::iterator BBI(W.MBB);
9489   if (++BBI != FuncInfo.MF->end())
9490     NextMBB = &*BBI;
9491 
9492   unsigned Size = W.LastCluster - W.FirstCluster + 1;
9493 
9494   BranchProbabilityInfo *BPI = FuncInfo.BPI;
9495 
9496   if (Size == 2 && W.MBB == SwitchMBB) {
9497     // If any two of the cases has the same destination, and if one value
9498     // is the same as the other, but has one bit unset that the other has set,
9499     // use bit manipulation to do two compares at once.  For example:
9500     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
9501     // TODO: This could be extended to merge any 2 cases in switches with 3
9502     // cases.
9503     // TODO: Handle cases where W.CaseBB != SwitchBB.
9504     CaseCluster &Small = *W.FirstCluster;
9505     CaseCluster &Big = *W.LastCluster;
9506 
9507     if (Small.Low == Small.High && Big.Low == Big.High &&
9508         Small.MBB == Big.MBB) {
9509       const APInt &SmallValue = Small.Low->getValue();
9510       const APInt &BigValue = Big.Low->getValue();
9511 
9512       // Check that there is only one bit different.
9513       APInt CommonBit = BigValue ^ SmallValue;
9514       if (CommonBit.isPowerOf2()) {
9515         SDValue CondLHS = getValue(Cond);
9516         EVT VT = CondLHS.getValueType();
9517         SDLoc DL = getCurSDLoc();
9518 
9519         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
9520                                  DAG.getConstant(CommonBit, DL, VT));
9521         SDValue Cond = DAG.getSetCC(
9522             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
9523             ISD::SETEQ);
9524 
9525         // Update successor info.
9526         // Both Small and Big will jump to Small.BB, so we sum up the
9527         // probabilities.
9528         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
9529         if (BPI)
9530           addSuccessorWithProb(
9531               SwitchMBB, DefaultMBB,
9532               // The default destination is the first successor in IR.
9533               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
9534         else
9535           addSuccessorWithProb(SwitchMBB, DefaultMBB);
9536 
9537         // Insert the true branch.
9538         SDValue BrCond =
9539             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
9540                         DAG.getBasicBlock(Small.MBB));
9541         // Insert the false branch.
9542         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
9543                              DAG.getBasicBlock(DefaultMBB));
9544 
9545         DAG.setRoot(BrCond);
9546         return;
9547       }
9548     }
9549   }
9550 
9551   if (TM.getOptLevel() != CodeGenOpt::None) {
9552     // Order cases by probability so the most likely case will be checked first.
9553     std::sort(W.FirstCluster, W.LastCluster + 1,
9554               [](const CaseCluster &a, const CaseCluster &b) {
9555       return a.Prob > b.Prob;
9556     });
9557 
9558     // Rearrange the case blocks so that the last one falls through if possible
9559     // without without changing the order of probabilities.
9560     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
9561       --I;
9562       if (I->Prob > W.LastCluster->Prob)
9563         break;
9564       if (I->Kind == CC_Range && I->MBB == NextMBB) {
9565         std::swap(*I, *W.LastCluster);
9566         break;
9567       }
9568     }
9569   }
9570 
9571   // Compute total probability.
9572   BranchProbability DefaultProb = W.DefaultProb;
9573   BranchProbability UnhandledProbs = DefaultProb;
9574   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
9575     UnhandledProbs += I->Prob;
9576 
9577   MachineBasicBlock *CurMBB = W.MBB;
9578   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
9579     MachineBasicBlock *Fallthrough;
9580     if (I == W.LastCluster) {
9581       // For the last cluster, fall through to the default destination.
9582       Fallthrough = DefaultMBB;
9583     } else {
9584       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
9585       CurMF->insert(BBI, Fallthrough);
9586       // Put Cond in a virtual register to make it available from the new blocks.
9587       ExportFromCurrentBlock(Cond);
9588     }
9589     UnhandledProbs -= I->Prob;
9590 
9591     switch (I->Kind) {
9592       case CC_JumpTable: {
9593         // FIXME: Optimize away range check based on pivot comparisons.
9594         JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
9595         JumpTable *JT = &JTCases[I->JTCasesIndex].second;
9596 
9597         // The jump block hasn't been inserted yet; insert it here.
9598         MachineBasicBlock *JumpMBB = JT->MBB;
9599         CurMF->insert(BBI, JumpMBB);
9600 
9601         auto JumpProb = I->Prob;
9602         auto FallthroughProb = UnhandledProbs;
9603 
9604         // If the default statement is a target of the jump table, we evenly
9605         // distribute the default probability to successors of CurMBB. Also
9606         // update the probability on the edge from JumpMBB to Fallthrough.
9607         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
9608                                               SE = JumpMBB->succ_end();
9609              SI != SE; ++SI) {
9610           if (*SI == DefaultMBB) {
9611             JumpProb += DefaultProb / 2;
9612             FallthroughProb -= DefaultProb / 2;
9613             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
9614             JumpMBB->normalizeSuccProbs();
9615             break;
9616           }
9617         }
9618 
9619         addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
9620         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
9621         CurMBB->normalizeSuccProbs();
9622 
9623         // The jump table header will be inserted in our current block, do the
9624         // range check, and fall through to our fallthrough block.
9625         JTH->HeaderBB = CurMBB;
9626         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
9627 
9628         // If we're in the right place, emit the jump table header right now.
9629         if (CurMBB == SwitchMBB) {
9630           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
9631           JTH->Emitted = true;
9632         }
9633         break;
9634       }
9635       case CC_BitTests: {
9636         // FIXME: Optimize away range check based on pivot comparisons.
9637         BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
9638 
9639         // The bit test blocks haven't been inserted yet; insert them here.
9640         for (BitTestCase &BTC : BTB->Cases)
9641           CurMF->insert(BBI, BTC.ThisBB);
9642 
9643         // Fill in fields of the BitTestBlock.
9644         BTB->Parent = CurMBB;
9645         BTB->Default = Fallthrough;
9646 
9647         BTB->DefaultProb = UnhandledProbs;
9648         // If the cases in bit test don't form a contiguous range, we evenly
9649         // distribute the probability on the edge to Fallthrough to two
9650         // successors of CurMBB.
9651         if (!BTB->ContiguousRange) {
9652           BTB->Prob += DefaultProb / 2;
9653           BTB->DefaultProb -= DefaultProb / 2;
9654         }
9655 
9656         // If we're in the right place, emit the bit test header right now.
9657         if (CurMBB == SwitchMBB) {
9658           visitBitTestHeader(*BTB, SwitchMBB);
9659           BTB->Emitted = true;
9660         }
9661         break;
9662       }
9663       case CC_Range: {
9664         const Value *RHS, *LHS, *MHS;
9665         ISD::CondCode CC;
9666         if (I->Low == I->High) {
9667           // Check Cond == I->Low.
9668           CC = ISD::SETEQ;
9669           LHS = Cond;
9670           RHS=I->Low;
9671           MHS = nullptr;
9672         } else {
9673           // Check I->Low <= Cond <= I->High.
9674           CC = ISD::SETLE;
9675           LHS = I->Low;
9676           MHS = Cond;
9677           RHS = I->High;
9678         }
9679 
9680         // The false probability is the sum of all unhandled cases.
9681         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
9682                      getCurSDLoc(), I->Prob, UnhandledProbs);
9683 
9684         if (CurMBB == SwitchMBB)
9685           visitSwitchCase(CB, SwitchMBB);
9686         else
9687           SwitchCases.push_back(CB);
9688 
9689         break;
9690       }
9691     }
9692     CurMBB = Fallthrough;
9693   }
9694 }
9695 
9696 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
9697                                               CaseClusterIt First,
9698                                               CaseClusterIt Last) {
9699   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
9700     if (X.Prob != CC.Prob)
9701       return X.Prob > CC.Prob;
9702 
9703     // Ties are broken by comparing the case value.
9704     return X.Low->getValue().slt(CC.Low->getValue());
9705   });
9706 }
9707 
9708 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
9709                                         const SwitchWorkListItem &W,
9710                                         Value *Cond,
9711                                         MachineBasicBlock *SwitchMBB) {
9712   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
9713          "Clusters not sorted?");
9714 
9715   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
9716 
9717   // Balance the tree based on branch probabilities to create a near-optimal (in
9718   // terms of search time given key frequency) binary search tree. See e.g. Kurt
9719   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
9720   CaseClusterIt LastLeft = W.FirstCluster;
9721   CaseClusterIt FirstRight = W.LastCluster;
9722   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
9723   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
9724 
9725   // Move LastLeft and FirstRight towards each other from opposite directions to
9726   // find a partitioning of the clusters which balances the probability on both
9727   // sides. If LeftProb and RightProb are equal, alternate which side is
9728   // taken to ensure 0-probability nodes are distributed evenly.
9729   unsigned I = 0;
9730   while (LastLeft + 1 < FirstRight) {
9731     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
9732       LeftProb += (++LastLeft)->Prob;
9733     else
9734       RightProb += (--FirstRight)->Prob;
9735     I++;
9736   }
9737 
9738   while (true) {
9739     // Our binary search tree differs from a typical BST in that ours can have up
9740     // to three values in each leaf. The pivot selection above doesn't take that
9741     // into account, which means the tree might require more nodes and be less
9742     // efficient. We compensate for this here.
9743 
9744     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
9745     unsigned NumRight = W.LastCluster - FirstRight + 1;
9746 
9747     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
9748       // If one side has less than 3 clusters, and the other has more than 3,
9749       // consider taking a cluster from the other side.
9750 
9751       if (NumLeft < NumRight) {
9752         // Consider moving the first cluster on the right to the left side.
9753         CaseCluster &CC = *FirstRight;
9754         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
9755         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
9756         if (LeftSideRank <= RightSideRank) {
9757           // Moving the cluster to the left does not demote it.
9758           ++LastLeft;
9759           ++FirstRight;
9760           continue;
9761         }
9762       } else {
9763         assert(NumRight < NumLeft);
9764         // Consider moving the last element on the left to the right side.
9765         CaseCluster &CC = *LastLeft;
9766         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
9767         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
9768         if (RightSideRank <= LeftSideRank) {
9769           // Moving the cluster to the right does not demot it.
9770           --LastLeft;
9771           --FirstRight;
9772           continue;
9773         }
9774       }
9775     }
9776     break;
9777   }
9778 
9779   assert(LastLeft + 1 == FirstRight);
9780   assert(LastLeft >= W.FirstCluster);
9781   assert(FirstRight <= W.LastCluster);
9782 
9783   // Use the first element on the right as pivot since we will make less-than
9784   // comparisons against it.
9785   CaseClusterIt PivotCluster = FirstRight;
9786   assert(PivotCluster > W.FirstCluster);
9787   assert(PivotCluster <= W.LastCluster);
9788 
9789   CaseClusterIt FirstLeft = W.FirstCluster;
9790   CaseClusterIt LastRight = W.LastCluster;
9791 
9792   const ConstantInt *Pivot = PivotCluster->Low;
9793 
9794   // New blocks will be inserted immediately after the current one.
9795   MachineFunction::iterator BBI(W.MBB);
9796   ++BBI;
9797 
9798   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
9799   // we can branch to its destination directly if it's squeezed exactly in
9800   // between the known lower bound and Pivot - 1.
9801   MachineBasicBlock *LeftMBB;
9802   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
9803       FirstLeft->Low == W.GE &&
9804       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
9805     LeftMBB = FirstLeft->MBB;
9806   } else {
9807     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
9808     FuncInfo.MF->insert(BBI, LeftMBB);
9809     WorkList.push_back(
9810         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
9811     // Put Cond in a virtual register to make it available from the new blocks.
9812     ExportFromCurrentBlock(Cond);
9813   }
9814 
9815   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
9816   // single cluster, RHS.Low == Pivot, and we can branch to its destination
9817   // directly if RHS.High equals the current upper bound.
9818   MachineBasicBlock *RightMBB;
9819   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
9820       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
9821     RightMBB = FirstRight->MBB;
9822   } else {
9823     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
9824     FuncInfo.MF->insert(BBI, RightMBB);
9825     WorkList.push_back(
9826         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
9827     // Put Cond in a virtual register to make it available from the new blocks.
9828     ExportFromCurrentBlock(Cond);
9829   }
9830 
9831   // Create the CaseBlock record that will be used to lower the branch.
9832   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
9833                getCurSDLoc(), LeftProb, RightProb);
9834 
9835   if (W.MBB == SwitchMBB)
9836     visitSwitchCase(CB, SwitchMBB);
9837   else
9838     SwitchCases.push_back(CB);
9839 }
9840 
9841 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
9842 // from the swith statement.
9843 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
9844                                             BranchProbability PeeledCaseProb) {
9845   if (PeeledCaseProb == BranchProbability::getOne())
9846     return BranchProbability::getZero();
9847   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
9848 
9849   uint32_t Numerator = CaseProb.getNumerator();
9850   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
9851   return BranchProbability(Numerator, std::max(Numerator, Denominator));
9852 }
9853 
9854 // Try to peel the top probability case if it exceeds the threshold.
9855 // Return current MachineBasicBlock for the switch statement if the peeling
9856 // does not occur.
9857 // If the peeling is performed, return the newly created MachineBasicBlock
9858 // for the peeled switch statement. Also update Clusters to remove the peeled
9859 // case. PeeledCaseProb is the BranchProbability for the peeled case.
9860 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
9861     const SwitchInst &SI, CaseClusterVector &Clusters,
9862     BranchProbability &PeeledCaseProb) {
9863   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
9864   // Don't perform if there is only one cluster or optimizing for size.
9865   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
9866       TM.getOptLevel() == CodeGenOpt::None ||
9867       SwitchMBB->getParent()->getFunction()->optForMinSize())
9868     return SwitchMBB;
9869 
9870   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
9871   unsigned PeeledCaseIndex = 0;
9872   bool SwitchPeeled = false;
9873   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
9874     CaseCluster &CC = Clusters[Index];
9875     if (CC.Prob < TopCaseProb)
9876       continue;
9877     TopCaseProb = CC.Prob;
9878     PeeledCaseIndex = Index;
9879     SwitchPeeled = true;
9880   }
9881   if (!SwitchPeeled)
9882     return SwitchMBB;
9883 
9884   DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " << TopCaseProb
9885                << "\n");
9886 
9887   // Record the MBB for the peeled switch statement.
9888   MachineFunction::iterator BBI(SwitchMBB);
9889   ++BBI;
9890   MachineBasicBlock *PeeledSwitchMBB =
9891       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
9892   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
9893 
9894   ExportFromCurrentBlock(SI.getCondition());
9895   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
9896   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
9897                           nullptr,   nullptr,      TopCaseProb.getCompl()};
9898   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
9899 
9900   Clusters.erase(PeeledCaseIt);
9901   for (CaseCluster &CC : Clusters) {
9902     DEBUG(dbgs() << "Scale the probablity for one cluster, before scaling: "
9903                  << CC.Prob << "\n");
9904     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
9905     DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
9906   }
9907   PeeledCaseProb = TopCaseProb;
9908   return PeeledSwitchMBB;
9909 }
9910 
9911 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
9912   // Extract cases from the switch.
9913   BranchProbabilityInfo *BPI = FuncInfo.BPI;
9914   CaseClusterVector Clusters;
9915   Clusters.reserve(SI.getNumCases());
9916   for (auto I : SI.cases()) {
9917     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
9918     const ConstantInt *CaseVal = I.getCaseValue();
9919     BranchProbability Prob =
9920         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
9921             : BranchProbability(1, SI.getNumCases() + 1);
9922     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
9923   }
9924 
9925   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
9926 
9927   // Cluster adjacent cases with the same destination. We do this at all
9928   // optimization levels because it's cheap to do and will make codegen faster
9929   // if there are many clusters.
9930   sortAndRangeify(Clusters);
9931 
9932   if (TM.getOptLevel() != CodeGenOpt::None) {
9933     // Replace an unreachable default with the most popular destination.
9934     // FIXME: Exploit unreachable default more aggressively.
9935     bool UnreachableDefault =
9936         isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg());
9937     if (UnreachableDefault && !Clusters.empty()) {
9938       DenseMap<const BasicBlock *, unsigned> Popularity;
9939       unsigned MaxPop = 0;
9940       const BasicBlock *MaxBB = nullptr;
9941       for (auto I : SI.cases()) {
9942         const BasicBlock *BB = I.getCaseSuccessor();
9943         if (++Popularity[BB] > MaxPop) {
9944           MaxPop = Popularity[BB];
9945           MaxBB = BB;
9946         }
9947       }
9948       // Set new default.
9949       assert(MaxPop > 0 && MaxBB);
9950       DefaultMBB = FuncInfo.MBBMap[MaxBB];
9951 
9952       // Remove cases that were pointing to the destination that is now the
9953       // default.
9954       CaseClusterVector New;
9955       New.reserve(Clusters.size());
9956       for (CaseCluster &CC : Clusters) {
9957         if (CC.MBB != DefaultMBB)
9958           New.push_back(CC);
9959       }
9960       Clusters = std::move(New);
9961     }
9962   }
9963 
9964   // The branch probablity of the peeled case.
9965   BranchProbability PeeledCaseProb = BranchProbability::getZero();
9966   MachineBasicBlock *PeeledSwitchMBB =
9967       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
9968 
9969   // If there is only the default destination, jump there directly.
9970   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
9971   if (Clusters.empty()) {
9972     assert(PeeledSwitchMBB == SwitchMBB);
9973     SwitchMBB->addSuccessor(DefaultMBB);
9974     if (DefaultMBB != NextBlock(SwitchMBB)) {
9975       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
9976                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
9977     }
9978     return;
9979   }
9980 
9981   findJumpTables(Clusters, &SI, DefaultMBB);
9982   findBitTestClusters(Clusters, &SI);
9983 
9984   DEBUG({
9985     dbgs() << "Case clusters: ";
9986     for (const CaseCluster &C : Clusters) {
9987       if (C.Kind == CC_JumpTable) dbgs() << "JT:";
9988       if (C.Kind == CC_BitTests) dbgs() << "BT:";
9989 
9990       C.Low->getValue().print(dbgs(), true);
9991       if (C.Low != C.High) {
9992         dbgs() << '-';
9993         C.High->getValue().print(dbgs(), true);
9994       }
9995       dbgs() << ' ';
9996     }
9997     dbgs() << '\n';
9998   });
9999 
10000   assert(!Clusters.empty());
10001   SwitchWorkList WorkList;
10002   CaseClusterIt First = Clusters.begin();
10003   CaseClusterIt Last = Clusters.end() - 1;
10004   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10005   // Scale the branchprobability for DefaultMBB if the peel occurs and
10006   // DefaultMBB is not replaced.
10007   if (PeeledCaseProb != BranchProbability::getZero() &&
10008       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10009     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10010   WorkList.push_back(
10011       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10012 
10013   while (!WorkList.empty()) {
10014     SwitchWorkListItem W = WorkList.back();
10015     WorkList.pop_back();
10016     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10017 
10018     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10019         !DefaultMBB->getParent()->getFunction()->optForMinSize()) {
10020       // For optimized builds, lower large range as a balanced binary tree.
10021       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10022       continue;
10023     }
10024 
10025     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
10026   }
10027 }
10028