1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/Analysis/BranchProbabilityInfo.h" 31 #include "llvm/Analysis/ConstantFolding.h" 32 #include "llvm/Analysis/EHPersonalities.h" 33 #include "llvm/Analysis/Loads.h" 34 #include "llvm/Analysis/MemoryLocation.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/Analysis/VectorUtils.h" 38 #include "llvm/CodeGen/Analysis.h" 39 #include "llvm/CodeGen/FunctionLoweringInfo.h" 40 #include "llvm/CodeGen/GCMetadata.h" 41 #include "llvm/CodeGen/ISDOpcodes.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineFrameInfo.h" 44 #include "llvm/CodeGen/MachineFunction.h" 45 #include "llvm/CodeGen/MachineInstr.h" 46 #include "llvm/CodeGen/MachineInstrBuilder.h" 47 #include "llvm/CodeGen/MachineJumpTableInfo.h" 48 #include "llvm/CodeGen/MachineMemOperand.h" 49 #include "llvm/CodeGen/MachineModuleInfo.h" 50 #include "llvm/CodeGen/MachineOperand.h" 51 #include "llvm/CodeGen/MachineRegisterInfo.h" 52 #include "llvm/CodeGen/MachineValueType.h" 53 #include "llvm/CodeGen/RuntimeLibcalls.h" 54 #include "llvm/CodeGen/SelectionDAG.h" 55 #include "llvm/CodeGen/SelectionDAGNodes.h" 56 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 57 #include "llvm/CodeGen/StackMaps.h" 58 #include "llvm/CodeGen/TargetFrameLowering.h" 59 #include "llvm/CodeGen/TargetInstrInfo.h" 60 #include "llvm/CodeGen/ValueTypes.h" 61 #include "llvm/CodeGen/WinEHFuncInfo.h" 62 #include "llvm/IR/Argument.h" 63 #include "llvm/IR/Attributes.h" 64 #include "llvm/IR/BasicBlock.h" 65 #include "llvm/IR/CFG.h" 66 #include "llvm/IR/CallSite.h" 67 #include "llvm/IR/CallingConv.h" 68 #include "llvm/IR/Constant.h" 69 #include "llvm/IR/ConstantRange.h" 70 #include "llvm/IR/Constants.h" 71 #include "llvm/IR/DataLayout.h" 72 #include "llvm/IR/DebugInfoMetadata.h" 73 #include "llvm/IR/DebugLoc.h" 74 #include "llvm/IR/DerivedTypes.h" 75 #include "llvm/IR/Function.h" 76 #include "llvm/IR/GetElementPtrTypeIterator.h" 77 #include "llvm/IR/InlineAsm.h" 78 #include "llvm/IR/InstrTypes.h" 79 #include "llvm/IR/Instruction.h" 80 #include "llvm/IR/Instructions.h" 81 #include "llvm/IR/IntrinsicInst.h" 82 #include "llvm/IR/Intrinsics.h" 83 #include "llvm/IR/LLVMContext.h" 84 #include "llvm/IR/Metadata.h" 85 #include "llvm/IR/Module.h" 86 #include "llvm/IR/Operator.h" 87 #include "llvm/IR/Statepoint.h" 88 #include "llvm/IR/Type.h" 89 #include "llvm/IR/User.h" 90 #include "llvm/IR/Value.h" 91 #include "llvm/MC/MCContext.h" 92 #include "llvm/MC/MCSymbol.h" 93 #include "llvm/Support/AtomicOrdering.h" 94 #include "llvm/Support/BranchProbability.h" 95 #include "llvm/Support/Casting.h" 96 #include "llvm/Support/CodeGen.h" 97 #include "llvm/Support/CommandLine.h" 98 #include "llvm/Support/Compiler.h" 99 #include "llvm/Support/Debug.h" 100 #include "llvm/Support/ErrorHandling.h" 101 #include "llvm/Support/MathExtras.h" 102 #include "llvm/Support/raw_ostream.h" 103 #include "llvm/Target/TargetIntrinsicInfo.h" 104 #include "llvm/Target/TargetLowering.h" 105 #include "llvm/Target/TargetMachine.h" 106 #include "llvm/Target/TargetOpcodes.h" 107 #include "llvm/Target/TargetOptions.h" 108 #include "llvm/Target/TargetRegisterInfo.h" 109 #include "llvm/Target/TargetSubtargetInfo.h" 110 #include <algorithm> 111 #include <cassert> 112 #include <cstddef> 113 #include <cstdint> 114 #include <cstring> 115 #include <iterator> 116 #include <limits> 117 #include <numeric> 118 #include <tuple> 119 #include <utility> 120 #include <vector> 121 122 using namespace llvm; 123 124 #define DEBUG_TYPE "isel" 125 126 /// LimitFloatPrecision - Generate low-precision inline sequences for 127 /// some float libcalls (6, 8 or 12 bits). 128 static unsigned LimitFloatPrecision; 129 130 static cl::opt<unsigned, true> 131 LimitFPPrecision("limit-float-precision", 132 cl::desc("Generate low-precision inline sequences " 133 "for some float libcalls"), 134 cl::location(LimitFloatPrecision), 135 cl::init(0)); 136 137 static cl::opt<unsigned> SwitchPeelThreshold( 138 "switch-peel-threshold", cl::Hidden, cl::init(66), 139 cl::desc("Set the case probability threshold for peeling the case from a " 140 "switch statement. A value greater than 100 will void this " 141 "optimization")); 142 143 // Limit the width of DAG chains. This is important in general to prevent 144 // DAG-based analysis from blowing up. For example, alias analysis and 145 // load clustering may not complete in reasonable time. It is difficult to 146 // recognize and avoid this situation within each individual analysis, and 147 // future analyses are likely to have the same behavior. Limiting DAG width is 148 // the safe approach and will be especially important with global DAGs. 149 // 150 // MaxParallelChains default is arbitrarily high to avoid affecting 151 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 152 // sequence over this should have been converted to llvm.memcpy by the 153 // frontend. It is easy to induce this behavior with .ll code such as: 154 // %buffer = alloca [4096 x i8] 155 // %data = load [4096 x i8]* %argPtr 156 // store [4096 x i8] %data, [4096 x i8]* %buffer 157 static const unsigned MaxParallelChains = 64; 158 159 // True if the Value passed requires ABI mangling as it is a parameter to a 160 // function or a return value from a function which is not an intrinsic. 161 static bool isABIRegCopy(const Value *V) { 162 const bool IsRetInst = V && isa<ReturnInst>(V); 163 const bool IsCallInst = V && isa<CallInst>(V); 164 const bool IsInLineAsm = 165 IsCallInst && static_cast<const CallInst *>(V)->isInlineAsm(); 166 const bool IsIndirectFunctionCall = 167 IsCallInst && !IsInLineAsm && 168 !static_cast<const CallInst *>(V)->getCalledFunction(); 169 // It is possible that the call instruction is an inline asm statement or an 170 // indirect function call in which case the return value of 171 // getCalledFunction() would be nullptr. 172 const bool IsInstrinsicCall = 173 IsCallInst && !IsInLineAsm && !IsIndirectFunctionCall && 174 static_cast<const CallInst *>(V)->getCalledFunction()->getIntrinsicID() != 175 Intrinsic::not_intrinsic; 176 177 return IsRetInst || (IsCallInst && (!IsInLineAsm && !IsInstrinsicCall)); 178 } 179 180 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 181 const SDValue *Parts, unsigned NumParts, 182 MVT PartVT, EVT ValueVT, const Value *V, 183 bool IsABIRegCopy); 184 185 /// getCopyFromParts - Create a value that contains the specified legal parts 186 /// combined into the value they represent. If the parts combine to a type 187 /// larger than ValueVT then AssertOp can be used to specify whether the extra 188 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 189 /// (ISD::AssertSext). 190 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 191 const SDValue *Parts, unsigned NumParts, 192 MVT PartVT, EVT ValueVT, const Value *V, 193 Optional<ISD::NodeType> AssertOp = None, 194 bool IsABIRegCopy = false) { 195 if (ValueVT.isVector()) 196 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 197 PartVT, ValueVT, V, IsABIRegCopy); 198 199 assert(NumParts > 0 && "No parts to assemble!"); 200 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 201 SDValue Val = Parts[0]; 202 203 if (NumParts > 1) { 204 // Assemble the value from multiple parts. 205 if (ValueVT.isInteger()) { 206 unsigned PartBits = PartVT.getSizeInBits(); 207 unsigned ValueBits = ValueVT.getSizeInBits(); 208 209 // Assemble the power of 2 part. 210 unsigned RoundParts = NumParts & (NumParts - 1) ? 211 1 << Log2_32(NumParts) : NumParts; 212 unsigned RoundBits = PartBits * RoundParts; 213 EVT RoundVT = RoundBits == ValueBits ? 214 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 215 SDValue Lo, Hi; 216 217 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 218 219 if (RoundParts > 2) { 220 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 221 PartVT, HalfVT, V); 222 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 223 RoundParts / 2, PartVT, HalfVT, V); 224 } else { 225 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 226 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 227 } 228 229 if (DAG.getDataLayout().isBigEndian()) 230 std::swap(Lo, Hi); 231 232 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 233 234 if (RoundParts < NumParts) { 235 // Assemble the trailing non-power-of-2 part. 236 unsigned OddParts = NumParts - RoundParts; 237 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 238 Hi = getCopyFromParts(DAG, DL, 239 Parts + RoundParts, OddParts, PartVT, OddVT, V); 240 241 // Combine the round and odd parts. 242 Lo = Val; 243 if (DAG.getDataLayout().isBigEndian()) 244 std::swap(Lo, Hi); 245 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 246 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 247 Hi = 248 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 249 DAG.getConstant(Lo.getValueSizeInBits(), DL, 250 TLI.getPointerTy(DAG.getDataLayout()))); 251 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 252 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 253 } 254 } else if (PartVT.isFloatingPoint()) { 255 // FP split into multiple FP parts (for ppcf128) 256 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 257 "Unexpected split"); 258 SDValue Lo, Hi; 259 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 260 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 261 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 262 std::swap(Lo, Hi); 263 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 264 } else { 265 // FP split into integer parts (soft fp) 266 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 267 !PartVT.isVector() && "Unexpected split"); 268 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 269 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 270 } 271 } 272 273 // There is now one part, held in Val. Correct it to match ValueVT. 274 // PartEVT is the type of the register class that holds the value. 275 // ValueVT is the type of the inline asm operation. 276 EVT PartEVT = Val.getValueType(); 277 278 if (PartEVT == ValueVT) 279 return Val; 280 281 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 282 ValueVT.bitsLT(PartEVT)) { 283 // For an FP value in an integer part, we need to truncate to the right 284 // width first. 285 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 286 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 287 } 288 289 // Handle types that have the same size. 290 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 291 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 292 293 // Handle types with different sizes. 294 if (PartEVT.isInteger() && ValueVT.isInteger()) { 295 if (ValueVT.bitsLT(PartEVT)) { 296 // For a truncate, see if we have any information to 297 // indicate whether the truncated bits will always be 298 // zero or sign-extension. 299 if (AssertOp.hasValue()) 300 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 301 DAG.getValueType(ValueVT)); 302 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 303 } 304 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 305 } 306 307 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 308 // FP_ROUND's are always exact here. 309 if (ValueVT.bitsLT(Val.getValueType())) 310 return DAG.getNode( 311 ISD::FP_ROUND, DL, ValueVT, Val, 312 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 313 314 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 315 } 316 317 llvm_unreachable("Unknown mismatch!"); 318 } 319 320 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 321 const Twine &ErrMsg) { 322 const Instruction *I = dyn_cast_or_null<Instruction>(V); 323 if (!V) 324 return Ctx.emitError(ErrMsg); 325 326 const char *AsmError = ", possible invalid constraint for vector type"; 327 if (const CallInst *CI = dyn_cast<CallInst>(I)) 328 if (isa<InlineAsm>(CI->getCalledValue())) 329 return Ctx.emitError(I, ErrMsg + AsmError); 330 331 return Ctx.emitError(I, ErrMsg); 332 } 333 334 /// getCopyFromPartsVector - Create a value that contains the specified legal 335 /// parts combined into the value they represent. If the parts combine to a 336 /// type larger than ValueVT then AssertOp can be used to specify whether the 337 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 338 /// ValueVT (ISD::AssertSext). 339 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 340 const SDValue *Parts, unsigned NumParts, 341 MVT PartVT, EVT ValueVT, const Value *V, 342 bool IsABIRegCopy) { 343 assert(ValueVT.isVector() && "Not a vector value"); 344 assert(NumParts > 0 && "No parts to assemble!"); 345 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 346 SDValue Val = Parts[0]; 347 348 // Handle a multi-element vector. 349 if (NumParts > 1) { 350 EVT IntermediateVT; 351 MVT RegisterVT; 352 unsigned NumIntermediates; 353 unsigned NumRegs; 354 355 if (IsABIRegCopy) { 356 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 357 *DAG.getContext(), ValueVT, IntermediateVT, NumIntermediates, 358 RegisterVT); 359 } else { 360 NumRegs = 361 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 362 NumIntermediates, RegisterVT); 363 } 364 365 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 366 NumParts = NumRegs; // Silence a compiler warning. 367 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 368 assert(RegisterVT.getSizeInBits() == 369 Parts[0].getSimpleValueType().getSizeInBits() && 370 "Part type sizes don't match!"); 371 372 // Assemble the parts into intermediate operands. 373 SmallVector<SDValue, 8> Ops(NumIntermediates); 374 if (NumIntermediates == NumParts) { 375 // If the register was not expanded, truncate or copy the value, 376 // as appropriate. 377 for (unsigned i = 0; i != NumParts; ++i) 378 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 379 PartVT, IntermediateVT, V); 380 } else if (NumParts > 0) { 381 // If the intermediate type was expanded, build the intermediate 382 // operands from the parts. 383 assert(NumParts % NumIntermediates == 0 && 384 "Must expand into a divisible number of parts!"); 385 unsigned Factor = NumParts / NumIntermediates; 386 for (unsigned i = 0; i != NumIntermediates; ++i) 387 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 388 PartVT, IntermediateVT, V); 389 } 390 391 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 392 // intermediate operands. 393 EVT BuiltVectorTy = 394 EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(), 395 (IntermediateVT.isVector() 396 ? IntermediateVT.getVectorNumElements() * NumParts 397 : NumIntermediates)); 398 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 399 : ISD::BUILD_VECTOR, 400 DL, BuiltVectorTy, Ops); 401 } 402 403 // There is now one part, held in Val. Correct it to match ValueVT. 404 EVT PartEVT = Val.getValueType(); 405 406 if (PartEVT == ValueVT) 407 return Val; 408 409 if (PartEVT.isVector()) { 410 // If the element type of the source/dest vectors are the same, but the 411 // parts vector has more elements than the value vector, then we have a 412 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 413 // elements we want. 414 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 415 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 416 "Cannot narrow, it would be a lossy transformation"); 417 return DAG.getNode( 418 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 419 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 420 } 421 422 // Vector/Vector bitcast. 423 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 424 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 425 426 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 427 "Cannot handle this kind of promotion"); 428 // Promoted vector extract 429 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 430 431 } 432 433 // Trivial bitcast if the types are the same size and the destination 434 // vector type is legal. 435 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 436 TLI.isTypeLegal(ValueVT)) 437 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 438 439 if (ValueVT.getVectorNumElements() != 1) { 440 // Certain ABIs require that vectors are passed as integers. For vectors 441 // are the same size, this is an obvious bitcast. 442 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 443 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 444 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 445 // Bitcast Val back the original type and extract the corresponding 446 // vector we want. 447 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 448 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 449 ValueVT.getVectorElementType(), Elts); 450 Val = DAG.getBitcast(WiderVecType, Val); 451 return DAG.getNode( 452 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 453 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 454 } 455 456 diagnosePossiblyInvalidConstraint( 457 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 458 return DAG.getUNDEF(ValueVT); 459 } 460 461 // Handle cases such as i8 -> <1 x i1> 462 EVT ValueSVT = ValueVT.getVectorElementType(); 463 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) 464 Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 465 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 466 467 return DAG.getBuildVector(ValueVT, DL, Val); 468 } 469 470 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 471 SDValue Val, SDValue *Parts, unsigned NumParts, 472 MVT PartVT, const Value *V, bool IsABIRegCopy); 473 474 /// getCopyToParts - Create a series of nodes that contain the specified value 475 /// split into legal parts. If the parts contain more bits than Val, then, for 476 /// integers, ExtendKind can be used to specify how to generate the extra bits. 477 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 478 SDValue *Parts, unsigned NumParts, MVT PartVT, 479 const Value *V, 480 ISD::NodeType ExtendKind = ISD::ANY_EXTEND, 481 bool IsABIRegCopy = false) { 482 EVT ValueVT = Val.getValueType(); 483 484 // Handle the vector case separately. 485 if (ValueVT.isVector()) 486 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 487 IsABIRegCopy); 488 489 unsigned PartBits = PartVT.getSizeInBits(); 490 unsigned OrigNumParts = NumParts; 491 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 492 "Copying to an illegal type!"); 493 494 if (NumParts == 0) 495 return; 496 497 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 498 EVT PartEVT = PartVT; 499 if (PartEVT == ValueVT) { 500 assert(NumParts == 1 && "No-op copy with multiple parts!"); 501 Parts[0] = Val; 502 return; 503 } 504 505 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 506 // If the parts cover more bits than the value has, promote the value. 507 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 508 assert(NumParts == 1 && "Do not know what to promote to!"); 509 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 510 } else { 511 if (ValueVT.isFloatingPoint()) { 512 // FP values need to be bitcast, then extended if they are being put 513 // into a larger container. 514 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 515 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 516 } 517 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 518 ValueVT.isInteger() && 519 "Unknown mismatch!"); 520 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 521 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 522 if (PartVT == MVT::x86mmx) 523 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 524 } 525 } else if (PartBits == ValueVT.getSizeInBits()) { 526 // Different types of the same size. 527 assert(NumParts == 1 && PartEVT != ValueVT); 528 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 529 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 530 // If the parts cover less bits than value has, truncate the value. 531 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 532 ValueVT.isInteger() && 533 "Unknown mismatch!"); 534 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 535 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 536 if (PartVT == MVT::x86mmx) 537 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 538 } 539 540 // The value may have changed - recompute ValueVT. 541 ValueVT = Val.getValueType(); 542 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 543 "Failed to tile the value with PartVT!"); 544 545 if (NumParts == 1) { 546 if (PartEVT != ValueVT) { 547 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 548 "scalar-to-vector conversion failed"); 549 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 550 } 551 552 Parts[0] = Val; 553 return; 554 } 555 556 // Expand the value into multiple parts. 557 if (NumParts & (NumParts - 1)) { 558 // The number of parts is not a power of 2. Split off and copy the tail. 559 assert(PartVT.isInteger() && ValueVT.isInteger() && 560 "Do not know what to expand to!"); 561 unsigned RoundParts = 1 << Log2_32(NumParts); 562 unsigned RoundBits = RoundParts * PartBits; 563 unsigned OddParts = NumParts - RoundParts; 564 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 565 DAG.getIntPtrConstant(RoundBits, DL)); 566 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 567 568 if (DAG.getDataLayout().isBigEndian()) 569 // The odd parts were reversed by getCopyToParts - unreverse them. 570 std::reverse(Parts + RoundParts, Parts + NumParts); 571 572 NumParts = RoundParts; 573 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 574 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 575 } 576 577 // The number of parts is a power of 2. Repeatedly bisect the value using 578 // EXTRACT_ELEMENT. 579 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 580 EVT::getIntegerVT(*DAG.getContext(), 581 ValueVT.getSizeInBits()), 582 Val); 583 584 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 585 for (unsigned i = 0; i < NumParts; i += StepSize) { 586 unsigned ThisBits = StepSize * PartBits / 2; 587 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 588 SDValue &Part0 = Parts[i]; 589 SDValue &Part1 = Parts[i+StepSize/2]; 590 591 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 592 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 593 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 594 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 595 596 if (ThisBits == PartBits && ThisVT != PartVT) { 597 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 598 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 599 } 600 } 601 } 602 603 if (DAG.getDataLayout().isBigEndian()) 604 std::reverse(Parts, Parts + OrigNumParts); 605 } 606 607 608 /// getCopyToPartsVector - Create a series of nodes that contain the specified 609 /// value split into legal parts. 610 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 611 SDValue Val, SDValue *Parts, unsigned NumParts, 612 MVT PartVT, const Value *V, 613 bool IsABIRegCopy) { 614 EVT ValueVT = Val.getValueType(); 615 assert(ValueVT.isVector() && "Not a vector"); 616 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 617 618 if (NumParts == 1) { 619 EVT PartEVT = PartVT; 620 if (PartEVT == ValueVT) { 621 // Nothing to do. 622 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 623 // Bitconvert vector->vector case. 624 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 625 } else if (PartVT.isVector() && 626 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 627 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 628 EVT ElementVT = PartVT.getVectorElementType(); 629 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 630 // undef elements. 631 SmallVector<SDValue, 16> Ops; 632 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 633 Ops.push_back(DAG.getNode( 634 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 635 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 636 637 for (unsigned i = ValueVT.getVectorNumElements(), 638 e = PartVT.getVectorNumElements(); i != e; ++i) 639 Ops.push_back(DAG.getUNDEF(ElementVT)); 640 641 Val = DAG.getBuildVector(PartVT, DL, Ops); 642 643 // FIXME: Use CONCAT for 2x -> 4x. 644 645 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 646 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 647 } else if (PartVT.isVector() && 648 PartEVT.getVectorElementType().bitsGE( 649 ValueVT.getVectorElementType()) && 650 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 651 652 // Promoted vector extract 653 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 654 } else { 655 if (ValueVT.getVectorNumElements() == 1) { 656 Val = DAG.getNode( 657 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 658 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 659 } else { 660 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 661 "lossy conversion of vector to scalar type"); 662 EVT IntermediateType = 663 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 664 Val = DAG.getBitcast(IntermediateType, Val); 665 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 666 } 667 } 668 669 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 670 Parts[0] = Val; 671 return; 672 } 673 674 // Handle a multi-element vector. 675 EVT IntermediateVT; 676 MVT RegisterVT; 677 unsigned NumIntermediates; 678 unsigned NumRegs; 679 if (IsABIRegCopy) { 680 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 681 *DAG.getContext(), ValueVT, IntermediateVT, NumIntermediates, 682 RegisterVT); 683 } else { 684 NumRegs = 685 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 686 NumIntermediates, RegisterVT); 687 } 688 unsigned NumElements = ValueVT.getVectorNumElements(); 689 690 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 691 NumParts = NumRegs; // Silence a compiler warning. 692 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 693 694 // Convert the vector to the appropiate type if necessary. 695 unsigned DestVectorNoElts = 696 NumIntermediates * 697 (IntermediateVT.isVector() ? IntermediateVT.getVectorNumElements() : 1); 698 EVT BuiltVectorTy = EVT::getVectorVT( 699 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts); 700 if (Val.getValueType() != BuiltVectorTy) 701 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 702 703 // Split the vector into intermediate operands. 704 SmallVector<SDValue, 8> Ops(NumIntermediates); 705 for (unsigned i = 0; i != NumIntermediates; ++i) { 706 if (IntermediateVT.isVector()) 707 Ops[i] = 708 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 709 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 710 TLI.getVectorIdxTy(DAG.getDataLayout()))); 711 else 712 Ops[i] = DAG.getNode( 713 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 714 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 715 } 716 717 // Split the intermediate operands into legal parts. 718 if (NumParts == NumIntermediates) { 719 // If the register was not expanded, promote or copy the value, 720 // as appropriate. 721 for (unsigned i = 0; i != NumParts; ++i) 722 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 723 } else if (NumParts > 0) { 724 // If the intermediate type was expanded, split each the value into 725 // legal parts. 726 assert(NumIntermediates != 0 && "division by zero"); 727 assert(NumParts % NumIntermediates == 0 && 728 "Must expand into a divisible number of parts!"); 729 unsigned Factor = NumParts / NumIntermediates; 730 for (unsigned i = 0; i != NumIntermediates; ++i) 731 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 732 } 733 } 734 735 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 736 EVT valuevt, bool IsABIMangledValue) 737 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 738 RegCount(1, regs.size()), IsABIMangled(IsABIMangledValue) {} 739 740 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 741 const DataLayout &DL, unsigned Reg, Type *Ty, 742 bool IsABIMangledValue) { 743 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 744 745 IsABIMangled = IsABIMangledValue; 746 747 for (EVT ValueVT : ValueVTs) { 748 unsigned NumRegs = IsABIMangledValue 749 ? TLI.getNumRegistersForCallingConv(Context, ValueVT) 750 : TLI.getNumRegisters(Context, ValueVT); 751 MVT RegisterVT = IsABIMangledValue 752 ? TLI.getRegisterTypeForCallingConv(Context, ValueVT) 753 : TLI.getRegisterType(Context, ValueVT); 754 for (unsigned i = 0; i != NumRegs; ++i) 755 Regs.push_back(Reg + i); 756 RegVTs.push_back(RegisterVT); 757 RegCount.push_back(NumRegs); 758 Reg += NumRegs; 759 } 760 } 761 762 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 763 FunctionLoweringInfo &FuncInfo, 764 const SDLoc &dl, SDValue &Chain, 765 SDValue *Flag, const Value *V) const { 766 // A Value with type {} or [0 x %t] needs no registers. 767 if (ValueVTs.empty()) 768 return SDValue(); 769 770 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 771 772 // Assemble the legal parts into the final values. 773 SmallVector<SDValue, 4> Values(ValueVTs.size()); 774 SmallVector<SDValue, 8> Parts; 775 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 776 // Copy the legal parts from the registers. 777 EVT ValueVT = ValueVTs[Value]; 778 unsigned NumRegs = RegCount[Value]; 779 MVT RegisterVT = IsABIMangled 780 ? TLI.getRegisterTypeForCallingConv(RegVTs[Value]) 781 : RegVTs[Value]; 782 783 Parts.resize(NumRegs); 784 for (unsigned i = 0; i != NumRegs; ++i) { 785 SDValue P; 786 if (!Flag) { 787 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 788 } else { 789 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 790 *Flag = P.getValue(2); 791 } 792 793 Chain = P.getValue(1); 794 Parts[i] = P; 795 796 // If the source register was virtual and if we know something about it, 797 // add an assert node. 798 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 799 !RegisterVT.isInteger() || RegisterVT.isVector()) 800 continue; 801 802 const FunctionLoweringInfo::LiveOutInfo *LOI = 803 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 804 if (!LOI) 805 continue; 806 807 unsigned RegSize = RegisterVT.getSizeInBits(); 808 unsigned NumSignBits = LOI->NumSignBits; 809 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 810 811 if (NumZeroBits == RegSize) { 812 // The current value is a zero. 813 // Explicitly express that as it would be easier for 814 // optimizations to kick in. 815 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 816 continue; 817 } 818 819 // FIXME: We capture more information than the dag can represent. For 820 // now, just use the tightest assertzext/assertsext possible. 821 bool isSExt = true; 822 EVT FromVT(MVT::Other); 823 if (NumSignBits == RegSize) { 824 isSExt = true; // ASSERT SEXT 1 825 FromVT = MVT::i1; 826 } else if (NumZeroBits >= RegSize - 1) { 827 isSExt = false; // ASSERT ZEXT 1 828 FromVT = MVT::i1; 829 } else if (NumSignBits > RegSize - 8) { 830 isSExt = true; // ASSERT SEXT 8 831 FromVT = MVT::i8; 832 } else if (NumZeroBits >= RegSize - 8) { 833 isSExt = false; // ASSERT ZEXT 8 834 FromVT = MVT::i8; 835 } else if (NumSignBits > RegSize - 16) { 836 isSExt = true; // ASSERT SEXT 16 837 FromVT = MVT::i16; 838 } else if (NumZeroBits >= RegSize - 16) { 839 isSExt = false; // ASSERT ZEXT 16 840 FromVT = MVT::i16; 841 } else if (NumSignBits > RegSize - 32) { 842 isSExt = true; // ASSERT SEXT 32 843 FromVT = MVT::i32; 844 } else if (NumZeroBits >= RegSize - 32) { 845 isSExt = false; // ASSERT ZEXT 32 846 FromVT = MVT::i32; 847 } else { 848 continue; 849 } 850 // Add an assertion node. 851 assert(FromVT != MVT::Other); 852 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 853 RegisterVT, P, DAG.getValueType(FromVT)); 854 } 855 856 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 857 NumRegs, RegisterVT, ValueVT, V); 858 Part += NumRegs; 859 Parts.clear(); 860 } 861 862 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 863 } 864 865 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 866 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 867 const Value *V, 868 ISD::NodeType PreferredExtendType) const { 869 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 870 ISD::NodeType ExtendKind = PreferredExtendType; 871 872 // Get the list of the values's legal parts. 873 unsigned NumRegs = Regs.size(); 874 SmallVector<SDValue, 8> Parts(NumRegs); 875 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 876 unsigned NumParts = RegCount[Value]; 877 878 MVT RegisterVT = IsABIMangled 879 ? TLI.getRegisterTypeForCallingConv(RegVTs[Value]) 880 : RegVTs[Value]; 881 882 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 883 ExtendKind = ISD::ZERO_EXTEND; 884 885 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 886 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 887 Part += NumParts; 888 } 889 890 // Copy the parts into the registers. 891 SmallVector<SDValue, 8> Chains(NumRegs); 892 for (unsigned i = 0; i != NumRegs; ++i) { 893 SDValue Part; 894 if (!Flag) { 895 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 896 } else { 897 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 898 *Flag = Part.getValue(1); 899 } 900 901 Chains[i] = Part.getValue(0); 902 } 903 904 if (NumRegs == 1 || Flag) 905 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 906 // flagged to it. That is the CopyToReg nodes and the user are considered 907 // a single scheduling unit. If we create a TokenFactor and return it as 908 // chain, then the TokenFactor is both a predecessor (operand) of the 909 // user as well as a successor (the TF operands are flagged to the user). 910 // c1, f1 = CopyToReg 911 // c2, f2 = CopyToReg 912 // c3 = TokenFactor c1, c2 913 // ... 914 // = op c3, ..., f2 915 Chain = Chains[NumRegs-1]; 916 else 917 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 918 } 919 920 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 921 unsigned MatchingIdx, const SDLoc &dl, 922 SelectionDAG &DAG, 923 std::vector<SDValue> &Ops) const { 924 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 925 926 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 927 if (HasMatching) 928 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 929 else if (!Regs.empty() && 930 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 931 // Put the register class of the virtual registers in the flag word. That 932 // way, later passes can recompute register class constraints for inline 933 // assembly as well as normal instructions. 934 // Don't do this for tied operands that can use the regclass information 935 // from the def. 936 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 937 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 938 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 939 } 940 941 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 942 Ops.push_back(Res); 943 944 if (Code == InlineAsm::Kind_Clobber) { 945 // Clobbers should always have a 1:1 mapping with registers, and may 946 // reference registers that have illegal (e.g. vector) types. Hence, we 947 // shouldn't try to apply any sort of splitting logic to them. 948 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 949 "No 1:1 mapping from clobbers to regs?"); 950 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 951 (void)SP; 952 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 953 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 954 assert( 955 (Regs[I] != SP || 956 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 957 "If we clobbered the stack pointer, MFI should know about it."); 958 } 959 return; 960 } 961 962 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 963 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 964 MVT RegisterVT = RegVTs[Value]; 965 for (unsigned i = 0; i != NumRegs; ++i) { 966 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 967 unsigned TheReg = Regs[Reg++]; 968 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 969 } 970 } 971 } 972 973 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 974 const TargetLibraryInfo *li) { 975 AA = aa; 976 GFI = gfi; 977 LibInfo = li; 978 DL = &DAG.getDataLayout(); 979 Context = DAG.getContext(); 980 LPadToCallSiteMap.clear(); 981 } 982 983 void SelectionDAGBuilder::clear() { 984 NodeMap.clear(); 985 UnusedArgNodeMap.clear(); 986 PendingLoads.clear(); 987 PendingExports.clear(); 988 CurInst = nullptr; 989 HasTailCall = false; 990 SDNodeOrder = LowestSDNodeOrder; 991 StatepointLowering.clear(); 992 } 993 994 void SelectionDAGBuilder::clearDanglingDebugInfo() { 995 DanglingDebugInfoMap.clear(); 996 } 997 998 SDValue SelectionDAGBuilder::getRoot() { 999 if (PendingLoads.empty()) 1000 return DAG.getRoot(); 1001 1002 if (PendingLoads.size() == 1) { 1003 SDValue Root = PendingLoads[0]; 1004 DAG.setRoot(Root); 1005 PendingLoads.clear(); 1006 return Root; 1007 } 1008 1009 // Otherwise, we have to make a token factor node. 1010 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 1011 PendingLoads); 1012 PendingLoads.clear(); 1013 DAG.setRoot(Root); 1014 return Root; 1015 } 1016 1017 SDValue SelectionDAGBuilder::getControlRoot() { 1018 SDValue Root = DAG.getRoot(); 1019 1020 if (PendingExports.empty()) 1021 return Root; 1022 1023 // Turn all of the CopyToReg chains into one factored node. 1024 if (Root.getOpcode() != ISD::EntryToken) { 1025 unsigned i = 0, e = PendingExports.size(); 1026 for (; i != e; ++i) { 1027 assert(PendingExports[i].getNode()->getNumOperands() > 1); 1028 if (PendingExports[i].getNode()->getOperand(0) == Root) 1029 break; // Don't add the root if we already indirectly depend on it. 1030 } 1031 1032 if (i == e) 1033 PendingExports.push_back(Root); 1034 } 1035 1036 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 1037 PendingExports); 1038 PendingExports.clear(); 1039 DAG.setRoot(Root); 1040 return Root; 1041 } 1042 1043 void SelectionDAGBuilder::visit(const Instruction &I) { 1044 // Set up outgoing PHI node register values before emitting the terminator. 1045 if (isa<TerminatorInst>(&I)) { 1046 HandlePHINodesInSuccessorBlocks(I.getParent()); 1047 } 1048 1049 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1050 if (!isa<DbgInfoIntrinsic>(I)) 1051 ++SDNodeOrder; 1052 1053 CurInst = &I; 1054 1055 visit(I.getOpcode(), I); 1056 1057 if (!isa<TerminatorInst>(&I) && !HasTailCall && 1058 !isStatepoint(&I)) // statepoints handle their exports internally 1059 CopyToExportRegsIfNeeded(&I); 1060 1061 CurInst = nullptr; 1062 } 1063 1064 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1065 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1066 } 1067 1068 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1069 // Note: this doesn't use InstVisitor, because it has to work with 1070 // ConstantExpr's in addition to instructions. 1071 switch (Opcode) { 1072 default: llvm_unreachable("Unknown instruction type encountered!"); 1073 // Build the switch statement using the Instruction.def file. 1074 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1075 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1076 #include "llvm/IR/Instruction.def" 1077 } 1078 } 1079 1080 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1081 // generate the debug data structures now that we've seen its definition. 1082 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1083 SDValue Val) { 1084 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 1085 if (DDI.getDI()) { 1086 const DbgValueInst *DI = DDI.getDI(); 1087 DebugLoc dl = DDI.getdl(); 1088 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1089 DILocalVariable *Variable = DI->getVariable(); 1090 DIExpression *Expr = DI->getExpression(); 1091 assert(Variable->isValidLocationForIntrinsic(dl) && 1092 "Expected inlined-at fields to agree"); 1093 SDDbgValue *SDV; 1094 if (Val.getNode()) { 1095 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1096 SDV = getDbgValue(Val, Variable, Expr, dl, DbgSDNodeOrder); 1097 DAG.AddDbgValue(SDV, Val.getNode(), false); 1098 } 1099 } else 1100 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1101 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1102 } 1103 } 1104 1105 /// getCopyFromRegs - If there was virtual register allocated for the value V 1106 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1107 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1108 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1109 SDValue Result; 1110 1111 if (It != FuncInfo.ValueMap.end()) { 1112 unsigned InReg = It->second; 1113 1114 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1115 DAG.getDataLayout(), InReg, Ty, isABIRegCopy(V)); 1116 SDValue Chain = DAG.getEntryNode(); 1117 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1118 V); 1119 resolveDanglingDebugInfo(V, Result); 1120 } 1121 1122 return Result; 1123 } 1124 1125 /// getValue - Return an SDValue for the given Value. 1126 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1127 // If we already have an SDValue for this value, use it. It's important 1128 // to do this first, so that we don't create a CopyFromReg if we already 1129 // have a regular SDValue. 1130 SDValue &N = NodeMap[V]; 1131 if (N.getNode()) return N; 1132 1133 // If there's a virtual register allocated and initialized for this 1134 // value, use it. 1135 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1136 return copyFromReg; 1137 1138 // Otherwise create a new SDValue and remember it. 1139 SDValue Val = getValueImpl(V); 1140 NodeMap[V] = Val; 1141 resolveDanglingDebugInfo(V, Val); 1142 return Val; 1143 } 1144 1145 // Return true if SDValue exists for the given Value 1146 bool SelectionDAGBuilder::findValue(const Value *V) const { 1147 return (NodeMap.find(V) != NodeMap.end()) || 1148 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1149 } 1150 1151 /// getNonRegisterValue - Return an SDValue for the given Value, but 1152 /// don't look in FuncInfo.ValueMap for a virtual register. 1153 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1154 // If we already have an SDValue for this value, use it. 1155 SDValue &N = NodeMap[V]; 1156 if (N.getNode()) { 1157 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1158 // Remove the debug location from the node as the node is about to be used 1159 // in a location which may differ from the original debug location. This 1160 // is relevant to Constant and ConstantFP nodes because they can appear 1161 // as constant expressions inside PHI nodes. 1162 N->setDebugLoc(DebugLoc()); 1163 } 1164 return N; 1165 } 1166 1167 // Otherwise create a new SDValue and remember it. 1168 SDValue Val = getValueImpl(V); 1169 NodeMap[V] = Val; 1170 resolveDanglingDebugInfo(V, Val); 1171 return Val; 1172 } 1173 1174 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1175 /// Create an SDValue for the given value. 1176 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1177 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1178 1179 if (const Constant *C = dyn_cast<Constant>(V)) { 1180 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1181 1182 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1183 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1184 1185 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1186 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1187 1188 if (isa<ConstantPointerNull>(C)) { 1189 unsigned AS = V->getType()->getPointerAddressSpace(); 1190 return DAG.getConstant(0, getCurSDLoc(), 1191 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1192 } 1193 1194 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1195 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1196 1197 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1198 return DAG.getUNDEF(VT); 1199 1200 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1201 visit(CE->getOpcode(), *CE); 1202 SDValue N1 = NodeMap[V]; 1203 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1204 return N1; 1205 } 1206 1207 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1208 SmallVector<SDValue, 4> Constants; 1209 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1210 OI != OE; ++OI) { 1211 SDNode *Val = getValue(*OI).getNode(); 1212 // If the operand is an empty aggregate, there are no values. 1213 if (!Val) continue; 1214 // Add each leaf value from the operand to the Constants list 1215 // to form a flattened list of all the values. 1216 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1217 Constants.push_back(SDValue(Val, i)); 1218 } 1219 1220 return DAG.getMergeValues(Constants, getCurSDLoc()); 1221 } 1222 1223 if (const ConstantDataSequential *CDS = 1224 dyn_cast<ConstantDataSequential>(C)) { 1225 SmallVector<SDValue, 4> Ops; 1226 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1227 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1228 // Add each leaf value from the operand to the Constants list 1229 // to form a flattened list of all the values. 1230 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1231 Ops.push_back(SDValue(Val, i)); 1232 } 1233 1234 if (isa<ArrayType>(CDS->getType())) 1235 return DAG.getMergeValues(Ops, getCurSDLoc()); 1236 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1237 } 1238 1239 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1240 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1241 "Unknown struct or array constant!"); 1242 1243 SmallVector<EVT, 4> ValueVTs; 1244 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1245 unsigned NumElts = ValueVTs.size(); 1246 if (NumElts == 0) 1247 return SDValue(); // empty struct 1248 SmallVector<SDValue, 4> Constants(NumElts); 1249 for (unsigned i = 0; i != NumElts; ++i) { 1250 EVT EltVT = ValueVTs[i]; 1251 if (isa<UndefValue>(C)) 1252 Constants[i] = DAG.getUNDEF(EltVT); 1253 else if (EltVT.isFloatingPoint()) 1254 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1255 else 1256 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1257 } 1258 1259 return DAG.getMergeValues(Constants, getCurSDLoc()); 1260 } 1261 1262 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1263 return DAG.getBlockAddress(BA, VT); 1264 1265 VectorType *VecTy = cast<VectorType>(V->getType()); 1266 unsigned NumElements = VecTy->getNumElements(); 1267 1268 // Now that we know the number and type of the elements, get that number of 1269 // elements into the Ops array based on what kind of constant it is. 1270 SmallVector<SDValue, 16> Ops; 1271 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1272 for (unsigned i = 0; i != NumElements; ++i) 1273 Ops.push_back(getValue(CV->getOperand(i))); 1274 } else { 1275 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1276 EVT EltVT = 1277 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1278 1279 SDValue Op; 1280 if (EltVT.isFloatingPoint()) 1281 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1282 else 1283 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1284 Ops.assign(NumElements, Op); 1285 } 1286 1287 // Create a BUILD_VECTOR node. 1288 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1289 } 1290 1291 // If this is a static alloca, generate it as the frameindex instead of 1292 // computation. 1293 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1294 DenseMap<const AllocaInst*, int>::iterator SI = 1295 FuncInfo.StaticAllocaMap.find(AI); 1296 if (SI != FuncInfo.StaticAllocaMap.end()) 1297 return DAG.getFrameIndex(SI->second, 1298 TLI.getFrameIndexTy(DAG.getDataLayout())); 1299 } 1300 1301 // If this is an instruction which fast-isel has deferred, select it now. 1302 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1303 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1304 1305 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1306 Inst->getType(), isABIRegCopy(V)); 1307 SDValue Chain = DAG.getEntryNode(); 1308 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1309 } 1310 1311 llvm_unreachable("Can't get register for value!"); 1312 } 1313 1314 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1315 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1316 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1317 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1318 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1319 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1320 if (IsMSVCCXX || IsCoreCLR) 1321 CatchPadMBB->setIsEHFuncletEntry(); 1322 1323 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot())); 1324 } 1325 1326 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1327 // Update machine-CFG edge. 1328 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1329 FuncInfo.MBB->addSuccessor(TargetMBB); 1330 1331 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1332 bool IsSEH = isAsynchronousEHPersonality(Pers); 1333 if (IsSEH) { 1334 // If this is not a fall-through branch or optimizations are switched off, 1335 // emit the branch. 1336 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1337 TM.getOptLevel() == CodeGenOpt::None) 1338 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1339 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1340 return; 1341 } 1342 1343 // Figure out the funclet membership for the catchret's successor. 1344 // This will be used by the FuncletLayout pass to determine how to order the 1345 // BB's. 1346 // A 'catchret' returns to the outer scope's color. 1347 Value *ParentPad = I.getCatchSwitchParentPad(); 1348 const BasicBlock *SuccessorColor; 1349 if (isa<ConstantTokenNone>(ParentPad)) 1350 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1351 else 1352 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1353 assert(SuccessorColor && "No parent funclet for catchret!"); 1354 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1355 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1356 1357 // Create the terminator node. 1358 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1359 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1360 DAG.getBasicBlock(SuccessorColorMBB)); 1361 DAG.setRoot(Ret); 1362 } 1363 1364 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1365 // Don't emit any special code for the cleanuppad instruction. It just marks 1366 // the start of a funclet. 1367 FuncInfo.MBB->setIsEHFuncletEntry(); 1368 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1369 } 1370 1371 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1372 /// many places it could ultimately go. In the IR, we have a single unwind 1373 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1374 /// This function skips over imaginary basic blocks that hold catchswitch 1375 /// instructions, and finds all the "real" machine 1376 /// basic block destinations. As those destinations may not be successors of 1377 /// EHPadBB, here we also calculate the edge probability to those destinations. 1378 /// The passed-in Prob is the edge probability to EHPadBB. 1379 static void findUnwindDestinations( 1380 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1381 BranchProbability Prob, 1382 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1383 &UnwindDests) { 1384 EHPersonality Personality = 1385 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1386 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1387 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1388 1389 while (EHPadBB) { 1390 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1391 BasicBlock *NewEHPadBB = nullptr; 1392 if (isa<LandingPadInst>(Pad)) { 1393 // Stop on landingpads. They are not funclets. 1394 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1395 break; 1396 } else if (isa<CleanupPadInst>(Pad)) { 1397 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1398 // personalities. 1399 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1400 UnwindDests.back().first->setIsEHFuncletEntry(); 1401 break; 1402 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1403 // Add the catchpad handlers to the possible destinations. 1404 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1405 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1406 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1407 if (IsMSVCCXX || IsCoreCLR) 1408 UnwindDests.back().first->setIsEHFuncletEntry(); 1409 } 1410 NewEHPadBB = CatchSwitch->getUnwindDest(); 1411 } else { 1412 continue; 1413 } 1414 1415 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1416 if (BPI && NewEHPadBB) 1417 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1418 EHPadBB = NewEHPadBB; 1419 } 1420 } 1421 1422 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1423 // Update successor info. 1424 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1425 auto UnwindDest = I.getUnwindDest(); 1426 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1427 BranchProbability UnwindDestProb = 1428 (BPI && UnwindDest) 1429 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1430 : BranchProbability::getZero(); 1431 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1432 for (auto &UnwindDest : UnwindDests) { 1433 UnwindDest.first->setIsEHPad(); 1434 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1435 } 1436 FuncInfo.MBB->normalizeSuccProbs(); 1437 1438 // Create the terminator node. 1439 SDValue Ret = 1440 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1441 DAG.setRoot(Ret); 1442 } 1443 1444 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1445 report_fatal_error("visitCatchSwitch not yet implemented!"); 1446 } 1447 1448 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1449 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1450 auto &DL = DAG.getDataLayout(); 1451 SDValue Chain = getControlRoot(); 1452 SmallVector<ISD::OutputArg, 8> Outs; 1453 SmallVector<SDValue, 8> OutVals; 1454 1455 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1456 // lower 1457 // 1458 // %val = call <ty> @llvm.experimental.deoptimize() 1459 // ret <ty> %val 1460 // 1461 // differently. 1462 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1463 LowerDeoptimizingReturn(); 1464 return; 1465 } 1466 1467 if (!FuncInfo.CanLowerReturn) { 1468 unsigned DemoteReg = FuncInfo.DemoteRegister; 1469 const Function *F = I.getParent()->getParent(); 1470 1471 // Emit a store of the return value through the virtual register. 1472 // Leave Outs empty so that LowerReturn won't try to load return 1473 // registers the usual way. 1474 SmallVector<EVT, 1> PtrValueVTs; 1475 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1476 PtrValueVTs); 1477 1478 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1479 DemoteReg, PtrValueVTs[0]); 1480 SDValue RetOp = getValue(I.getOperand(0)); 1481 1482 SmallVector<EVT, 4> ValueVTs; 1483 SmallVector<uint64_t, 4> Offsets; 1484 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1485 unsigned NumValues = ValueVTs.size(); 1486 1487 // An aggregate return value cannot wrap around the address space, so 1488 // offsets to its parts don't wrap either. 1489 SDNodeFlags Flags; 1490 Flags.setNoUnsignedWrap(true); 1491 1492 SmallVector<SDValue, 4> Chains(NumValues); 1493 for (unsigned i = 0; i != NumValues; ++i) { 1494 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1495 RetPtr.getValueType(), RetPtr, 1496 DAG.getIntPtrConstant(Offsets[i], 1497 getCurSDLoc()), 1498 Flags); 1499 Chains[i] = DAG.getStore(Chain, getCurSDLoc(), 1500 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1501 // FIXME: better loc info would be nice. 1502 Add, MachinePointerInfo()); 1503 } 1504 1505 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1506 MVT::Other, Chains); 1507 } else if (I.getNumOperands() != 0) { 1508 SmallVector<EVT, 4> ValueVTs; 1509 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1510 unsigned NumValues = ValueVTs.size(); 1511 if (NumValues) { 1512 SDValue RetOp = getValue(I.getOperand(0)); 1513 1514 const Function *F = I.getParent()->getParent(); 1515 1516 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1517 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1518 Attribute::SExt)) 1519 ExtendKind = ISD::SIGN_EXTEND; 1520 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1521 Attribute::ZExt)) 1522 ExtendKind = ISD::ZERO_EXTEND; 1523 1524 LLVMContext &Context = F->getContext(); 1525 bool RetInReg = F->getAttributes().hasAttribute( 1526 AttributeList::ReturnIndex, Attribute::InReg); 1527 1528 for (unsigned j = 0; j != NumValues; ++j) { 1529 EVT VT = ValueVTs[j]; 1530 1531 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1532 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1533 1534 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, VT); 1535 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, VT); 1536 SmallVector<SDValue, 4> Parts(NumParts); 1537 getCopyToParts(DAG, getCurSDLoc(), 1538 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1539 &Parts[0], NumParts, PartVT, &I, ExtendKind, true); 1540 1541 // 'inreg' on function refers to return value 1542 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1543 if (RetInReg) 1544 Flags.setInReg(); 1545 1546 // Propagate extension type if any 1547 if (ExtendKind == ISD::SIGN_EXTEND) 1548 Flags.setSExt(); 1549 else if (ExtendKind == ISD::ZERO_EXTEND) 1550 Flags.setZExt(); 1551 1552 for (unsigned i = 0; i < NumParts; ++i) { 1553 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1554 VT, /*isfixed=*/true, 0, 0)); 1555 OutVals.push_back(Parts[i]); 1556 } 1557 } 1558 } 1559 } 1560 1561 // Push in swifterror virtual register as the last element of Outs. This makes 1562 // sure swifterror virtual register will be returned in the swifterror 1563 // physical register. 1564 const Function *F = I.getParent()->getParent(); 1565 if (TLI.supportSwiftError() && 1566 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1567 assert(FuncInfo.SwiftErrorArg && "Need a swift error argument"); 1568 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1569 Flags.setSwiftError(); 1570 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1571 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1572 true /*isfixed*/, 1 /*origidx*/, 1573 0 /*partOffs*/)); 1574 // Create SDNode for the swifterror virtual register. 1575 OutVals.push_back( 1576 DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt( 1577 &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first, 1578 EVT(TLI.getPointerTy(DL)))); 1579 } 1580 1581 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1582 CallingConv::ID CallConv = 1583 DAG.getMachineFunction().getFunction()->getCallingConv(); 1584 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1585 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1586 1587 // Verify that the target's LowerReturn behaved as expected. 1588 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1589 "LowerReturn didn't return a valid chain!"); 1590 1591 // Update the DAG with the new chain value resulting from return lowering. 1592 DAG.setRoot(Chain); 1593 } 1594 1595 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1596 /// created for it, emit nodes to copy the value into the virtual 1597 /// registers. 1598 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1599 // Skip empty types 1600 if (V->getType()->isEmptyTy()) 1601 return; 1602 1603 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1604 if (VMI != FuncInfo.ValueMap.end()) { 1605 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1606 CopyValueToVirtualRegister(V, VMI->second); 1607 } 1608 } 1609 1610 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1611 /// the current basic block, add it to ValueMap now so that we'll get a 1612 /// CopyTo/FromReg. 1613 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1614 // No need to export constants. 1615 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1616 1617 // Already exported? 1618 if (FuncInfo.isExportedInst(V)) return; 1619 1620 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1621 CopyValueToVirtualRegister(V, Reg); 1622 } 1623 1624 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1625 const BasicBlock *FromBB) { 1626 // The operands of the setcc have to be in this block. We don't know 1627 // how to export them from some other block. 1628 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1629 // Can export from current BB. 1630 if (VI->getParent() == FromBB) 1631 return true; 1632 1633 // Is already exported, noop. 1634 return FuncInfo.isExportedInst(V); 1635 } 1636 1637 // If this is an argument, we can export it if the BB is the entry block or 1638 // if it is already exported. 1639 if (isa<Argument>(V)) { 1640 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1641 return true; 1642 1643 // Otherwise, can only export this if it is already exported. 1644 return FuncInfo.isExportedInst(V); 1645 } 1646 1647 // Otherwise, constants can always be exported. 1648 return true; 1649 } 1650 1651 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1652 BranchProbability 1653 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1654 const MachineBasicBlock *Dst) const { 1655 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1656 const BasicBlock *SrcBB = Src->getBasicBlock(); 1657 const BasicBlock *DstBB = Dst->getBasicBlock(); 1658 if (!BPI) { 1659 // If BPI is not available, set the default probability as 1 / N, where N is 1660 // the number of successors. 1661 auto SuccSize = std::max<uint32_t>( 1662 std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1); 1663 return BranchProbability(1, SuccSize); 1664 } 1665 return BPI->getEdgeProbability(SrcBB, DstBB); 1666 } 1667 1668 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1669 MachineBasicBlock *Dst, 1670 BranchProbability Prob) { 1671 if (!FuncInfo.BPI) 1672 Src->addSuccessorWithoutProb(Dst); 1673 else { 1674 if (Prob.isUnknown()) 1675 Prob = getEdgeProbability(Src, Dst); 1676 Src->addSuccessor(Dst, Prob); 1677 } 1678 } 1679 1680 static bool InBlock(const Value *V, const BasicBlock *BB) { 1681 if (const Instruction *I = dyn_cast<Instruction>(V)) 1682 return I->getParent() == BB; 1683 return true; 1684 } 1685 1686 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1687 /// This function emits a branch and is used at the leaves of an OR or an 1688 /// AND operator tree. 1689 void 1690 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1691 MachineBasicBlock *TBB, 1692 MachineBasicBlock *FBB, 1693 MachineBasicBlock *CurBB, 1694 MachineBasicBlock *SwitchBB, 1695 BranchProbability TProb, 1696 BranchProbability FProb, 1697 bool InvertCond) { 1698 const BasicBlock *BB = CurBB->getBasicBlock(); 1699 1700 // If the leaf of the tree is a comparison, merge the condition into 1701 // the caseblock. 1702 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1703 // The operands of the cmp have to be in this block. We don't know 1704 // how to export them from some other block. If this is the first block 1705 // of the sequence, no exporting is needed. 1706 if (CurBB == SwitchBB || 1707 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1708 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1709 ISD::CondCode Condition; 1710 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1711 ICmpInst::Predicate Pred = 1712 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 1713 Condition = getICmpCondCode(Pred); 1714 } else { 1715 const FCmpInst *FC = cast<FCmpInst>(Cond); 1716 FCmpInst::Predicate Pred = 1717 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 1718 Condition = getFCmpCondCode(Pred); 1719 if (TM.Options.NoNaNsFPMath) 1720 Condition = getFCmpCodeWithoutNaN(Condition); 1721 } 1722 1723 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1724 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 1725 SwitchCases.push_back(CB); 1726 return; 1727 } 1728 } 1729 1730 // Create a CaseBlock record representing this branch. 1731 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 1732 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 1733 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 1734 SwitchCases.push_back(CB); 1735 } 1736 1737 /// FindMergedConditions - If Cond is an expression like 1738 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1739 MachineBasicBlock *TBB, 1740 MachineBasicBlock *FBB, 1741 MachineBasicBlock *CurBB, 1742 MachineBasicBlock *SwitchBB, 1743 Instruction::BinaryOps Opc, 1744 BranchProbability TProb, 1745 BranchProbability FProb, 1746 bool InvertCond) { 1747 // Skip over not part of the tree and remember to invert op and operands at 1748 // next level. 1749 if (BinaryOperator::isNot(Cond) && Cond->hasOneUse()) { 1750 const Value *CondOp = BinaryOperator::getNotArgument(Cond); 1751 if (InBlock(CondOp, CurBB->getBasicBlock())) { 1752 FindMergedConditions(CondOp, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 1753 !InvertCond); 1754 return; 1755 } 1756 } 1757 1758 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1759 // Compute the effective opcode for Cond, taking into account whether it needs 1760 // to be inverted, e.g. 1761 // and (not (or A, B)), C 1762 // gets lowered as 1763 // and (and (not A, not B), C) 1764 unsigned BOpc = 0; 1765 if (BOp) { 1766 BOpc = BOp->getOpcode(); 1767 if (InvertCond) { 1768 if (BOpc == Instruction::And) 1769 BOpc = Instruction::Or; 1770 else if (BOpc == Instruction::Or) 1771 BOpc = Instruction::And; 1772 } 1773 } 1774 1775 // If this node is not part of the or/and tree, emit it as a branch. 1776 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1777 BOpc != Opc || !BOp->hasOneUse() || 1778 BOp->getParent() != CurBB->getBasicBlock() || 1779 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1780 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1781 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1782 TProb, FProb, InvertCond); 1783 return; 1784 } 1785 1786 // Create TmpBB after CurBB. 1787 MachineFunction::iterator BBI(CurBB); 1788 MachineFunction &MF = DAG.getMachineFunction(); 1789 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1790 CurBB->getParent()->insert(++BBI, TmpBB); 1791 1792 if (Opc == Instruction::Or) { 1793 // Codegen X | Y as: 1794 // BB1: 1795 // jmp_if_X TBB 1796 // jmp TmpBB 1797 // TmpBB: 1798 // jmp_if_Y TBB 1799 // jmp FBB 1800 // 1801 1802 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1803 // The requirement is that 1804 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1805 // = TrueProb for original BB. 1806 // Assuming the original probabilities are A and B, one choice is to set 1807 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 1808 // A/(1+B) and 2B/(1+B). This choice assumes that 1809 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1810 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1811 // TmpBB, but the math is more complicated. 1812 1813 auto NewTrueProb = TProb / 2; 1814 auto NewFalseProb = TProb / 2 + FProb; 1815 // Emit the LHS condition. 1816 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1817 NewTrueProb, NewFalseProb, InvertCond); 1818 1819 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 1820 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 1821 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1822 // Emit the RHS condition into TmpBB. 1823 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1824 Probs[0], Probs[1], InvertCond); 1825 } else { 1826 assert(Opc == Instruction::And && "Unknown merge op!"); 1827 // Codegen X & Y as: 1828 // BB1: 1829 // jmp_if_X TmpBB 1830 // jmp FBB 1831 // TmpBB: 1832 // jmp_if_Y TBB 1833 // jmp FBB 1834 // 1835 // This requires creation of TmpBB after CurBB. 1836 1837 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1838 // The requirement is that 1839 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1840 // = FalseProb for original BB. 1841 // Assuming the original probabilities are A and B, one choice is to set 1842 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 1843 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 1844 // TrueProb for BB1 * FalseProb for TmpBB. 1845 1846 auto NewTrueProb = TProb + FProb / 2; 1847 auto NewFalseProb = FProb / 2; 1848 // Emit the LHS condition. 1849 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1850 NewTrueProb, NewFalseProb, InvertCond); 1851 1852 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 1853 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 1854 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1855 // Emit the RHS condition into TmpBB. 1856 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1857 Probs[0], Probs[1], InvertCond); 1858 } 1859 } 1860 1861 /// If the set of cases should be emitted as a series of branches, return true. 1862 /// If we should emit this as a bunch of and/or'd together conditions, return 1863 /// false. 1864 bool 1865 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1866 if (Cases.size() != 2) return true; 1867 1868 // If this is two comparisons of the same values or'd or and'd together, they 1869 // will get folded into a single comparison, so don't emit two blocks. 1870 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1871 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1872 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1873 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1874 return false; 1875 } 1876 1877 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1878 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1879 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1880 Cases[0].CC == Cases[1].CC && 1881 isa<Constant>(Cases[0].CmpRHS) && 1882 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1883 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1884 return false; 1885 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1886 return false; 1887 } 1888 1889 return true; 1890 } 1891 1892 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1893 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1894 1895 // Update machine-CFG edges. 1896 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1897 1898 if (I.isUnconditional()) { 1899 // Update machine-CFG edges. 1900 BrMBB->addSuccessor(Succ0MBB); 1901 1902 // If this is not a fall-through branch or optimizations are switched off, 1903 // emit the branch. 1904 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1905 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1906 MVT::Other, getControlRoot(), 1907 DAG.getBasicBlock(Succ0MBB))); 1908 1909 return; 1910 } 1911 1912 // If this condition is one of the special cases we handle, do special stuff 1913 // now. 1914 const Value *CondVal = I.getCondition(); 1915 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1916 1917 // If this is a series of conditions that are or'd or and'd together, emit 1918 // this as a sequence of branches instead of setcc's with and/or operations. 1919 // As long as jumps are not expensive, this should improve performance. 1920 // For example, instead of something like: 1921 // cmp A, B 1922 // C = seteq 1923 // cmp D, E 1924 // F = setle 1925 // or C, F 1926 // jnz foo 1927 // Emit: 1928 // cmp A, B 1929 // je foo 1930 // cmp D, E 1931 // jle foo 1932 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1933 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1934 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1935 !I.getMetadata(LLVMContext::MD_unpredictable) && 1936 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1937 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1938 Opcode, 1939 getEdgeProbability(BrMBB, Succ0MBB), 1940 getEdgeProbability(BrMBB, Succ1MBB), 1941 /*InvertCond=*/false); 1942 // If the compares in later blocks need to use values not currently 1943 // exported from this block, export them now. This block should always 1944 // be the first entry. 1945 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1946 1947 // Allow some cases to be rejected. 1948 if (ShouldEmitAsBranches(SwitchCases)) { 1949 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1950 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1951 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1952 } 1953 1954 // Emit the branch for this block. 1955 visitSwitchCase(SwitchCases[0], BrMBB); 1956 SwitchCases.erase(SwitchCases.begin()); 1957 return; 1958 } 1959 1960 // Okay, we decided not to do this, remove any inserted MBB's and clear 1961 // SwitchCases. 1962 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1963 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1964 1965 SwitchCases.clear(); 1966 } 1967 } 1968 1969 // Create a CaseBlock record representing this branch. 1970 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1971 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 1972 1973 // Use visitSwitchCase to actually insert the fast branch sequence for this 1974 // cond branch. 1975 visitSwitchCase(CB, BrMBB); 1976 } 1977 1978 /// visitSwitchCase - Emits the necessary code to represent a single node in 1979 /// the binary search tree resulting from lowering a switch instruction. 1980 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1981 MachineBasicBlock *SwitchBB) { 1982 SDValue Cond; 1983 SDValue CondLHS = getValue(CB.CmpLHS); 1984 SDLoc dl = CB.DL; 1985 1986 // Build the setcc now. 1987 if (!CB.CmpMHS) { 1988 // Fold "(X == true)" to X and "(X == false)" to !X to 1989 // handle common cases produced by branch lowering. 1990 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1991 CB.CC == ISD::SETEQ) 1992 Cond = CondLHS; 1993 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1994 CB.CC == ISD::SETEQ) { 1995 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1996 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1997 } else 1998 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1999 } else { 2000 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2001 2002 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2003 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2004 2005 SDValue CmpOp = getValue(CB.CmpMHS); 2006 EVT VT = CmpOp.getValueType(); 2007 2008 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2009 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2010 ISD::SETLE); 2011 } else { 2012 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2013 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2014 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2015 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2016 } 2017 } 2018 2019 // Update successor info 2020 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2021 // TrueBB and FalseBB are always different unless the incoming IR is 2022 // degenerate. This only happens when running llc on weird IR. 2023 if (CB.TrueBB != CB.FalseBB) 2024 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2025 SwitchBB->normalizeSuccProbs(); 2026 2027 // If the lhs block is the next block, invert the condition so that we can 2028 // fall through to the lhs instead of the rhs block. 2029 if (CB.TrueBB == NextBlock(SwitchBB)) { 2030 std::swap(CB.TrueBB, CB.FalseBB); 2031 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2032 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2033 } 2034 2035 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2036 MVT::Other, getControlRoot(), Cond, 2037 DAG.getBasicBlock(CB.TrueBB)); 2038 2039 // Insert the false branch. Do this even if it's a fall through branch, 2040 // this makes it easier to do DAG optimizations which require inverting 2041 // the branch condition. 2042 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2043 DAG.getBasicBlock(CB.FalseBB)); 2044 2045 DAG.setRoot(BrCond); 2046 } 2047 2048 /// visitJumpTable - Emit JumpTable node in the current MBB 2049 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 2050 // Emit the code for the jump table 2051 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2052 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2053 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2054 JT.Reg, PTy); 2055 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2056 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2057 MVT::Other, Index.getValue(1), 2058 Table, Index); 2059 DAG.setRoot(BrJumpTable); 2060 } 2061 2062 /// visitJumpTableHeader - This function emits necessary code to produce index 2063 /// in the JumpTable from switch case. 2064 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 2065 JumpTableHeader &JTH, 2066 MachineBasicBlock *SwitchBB) { 2067 SDLoc dl = getCurSDLoc(); 2068 2069 // Subtract the lowest switch case value from the value being switched on and 2070 // conditional branch to default mbb if the result is greater than the 2071 // difference between smallest and largest cases. 2072 SDValue SwitchOp = getValue(JTH.SValue); 2073 EVT VT = SwitchOp.getValueType(); 2074 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2075 DAG.getConstant(JTH.First, dl, VT)); 2076 2077 // The SDNode we just created, which holds the value being switched on minus 2078 // the smallest case value, needs to be copied to a virtual register so it 2079 // can be used as an index into the jump table in a subsequent basic block. 2080 // This value may be smaller or larger than the target's pointer type, and 2081 // therefore require extension or truncating. 2082 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2083 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2084 2085 unsigned JumpTableReg = 2086 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2087 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2088 JumpTableReg, SwitchOp); 2089 JT.Reg = JumpTableReg; 2090 2091 // Emit the range check for the jump table, and branch to the default block 2092 // for the switch statement if the value being switched on exceeds the largest 2093 // case in the switch. 2094 SDValue CMP = DAG.getSetCC( 2095 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2096 Sub.getValueType()), 2097 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2098 2099 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2100 MVT::Other, CopyTo, CMP, 2101 DAG.getBasicBlock(JT.Default)); 2102 2103 // Avoid emitting unnecessary branches to the next block. 2104 if (JT.MBB != NextBlock(SwitchBB)) 2105 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2106 DAG.getBasicBlock(JT.MBB)); 2107 2108 DAG.setRoot(BrCond); 2109 } 2110 2111 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2112 /// variable if there exists one. 2113 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2114 SDValue &Chain) { 2115 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2116 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2117 MachineFunction &MF = DAG.getMachineFunction(); 2118 Value *Global = TLI.getSDagStackGuard(*MF.getFunction()->getParent()); 2119 MachineSDNode *Node = 2120 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2121 if (Global) { 2122 MachinePointerInfo MPInfo(Global); 2123 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 2124 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2125 MachineMemOperand::MODereferenceable; 2126 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, PtrTy.getSizeInBits() / 8, 2127 DAG.getEVTAlignment(PtrTy)); 2128 Node->setMemRefs(MemRefs, MemRefs + 1); 2129 } 2130 return SDValue(Node, 0); 2131 } 2132 2133 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2134 /// tail spliced into a stack protector check success bb. 2135 /// 2136 /// For a high level explanation of how this fits into the stack protector 2137 /// generation see the comment on the declaration of class 2138 /// StackProtectorDescriptor. 2139 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2140 MachineBasicBlock *ParentBB) { 2141 2142 // First create the loads to the guard/stack slot for the comparison. 2143 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2144 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2145 2146 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2147 int FI = MFI.getStackProtectorIndex(); 2148 2149 SDValue Guard; 2150 SDLoc dl = getCurSDLoc(); 2151 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2152 const Module &M = *ParentBB->getParent()->getFunction()->getParent(); 2153 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2154 2155 // Generate code to load the content of the guard slot. 2156 SDValue StackSlot = DAG.getLoad( 2157 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 2158 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2159 MachineMemOperand::MOVolatile); 2160 2161 // Retrieve guard check function, nullptr if instrumentation is inlined. 2162 if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) { 2163 // The target provides a guard check function to validate the guard value. 2164 // Generate a call to that function with the content of the guard slot as 2165 // argument. 2166 auto *Fn = cast<Function>(GuardCheck); 2167 FunctionType *FnTy = Fn->getFunctionType(); 2168 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2169 2170 TargetLowering::ArgListTy Args; 2171 TargetLowering::ArgListEntry Entry; 2172 Entry.Node = StackSlot; 2173 Entry.Ty = FnTy->getParamType(0); 2174 if (Fn->hasAttribute(1, Attribute::AttrKind::InReg)) 2175 Entry.IsInReg = true; 2176 Args.push_back(Entry); 2177 2178 TargetLowering::CallLoweringInfo CLI(DAG); 2179 CLI.setDebugLoc(getCurSDLoc()) 2180 .setChain(DAG.getEntryNode()) 2181 .setCallee(Fn->getCallingConv(), FnTy->getReturnType(), 2182 getValue(GuardCheck), std::move(Args)); 2183 2184 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2185 DAG.setRoot(Result.second); 2186 return; 2187 } 2188 2189 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2190 // Otherwise, emit a volatile load to retrieve the stack guard value. 2191 SDValue Chain = DAG.getEntryNode(); 2192 if (TLI.useLoadStackGuardNode()) { 2193 Guard = getLoadStackGuard(DAG, dl, Chain); 2194 } else { 2195 const Value *IRGuard = TLI.getSDagStackGuard(M); 2196 SDValue GuardPtr = getValue(IRGuard); 2197 2198 Guard = 2199 DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0), 2200 Align, MachineMemOperand::MOVolatile); 2201 } 2202 2203 // Perform the comparison via a subtract/getsetcc. 2204 EVT VT = Guard.getValueType(); 2205 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 2206 2207 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2208 *DAG.getContext(), 2209 Sub.getValueType()), 2210 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2211 2212 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2213 // branch to failure MBB. 2214 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2215 MVT::Other, StackSlot.getOperand(0), 2216 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2217 // Otherwise branch to success MBB. 2218 SDValue Br = DAG.getNode(ISD::BR, dl, 2219 MVT::Other, BrCond, 2220 DAG.getBasicBlock(SPD.getSuccessMBB())); 2221 2222 DAG.setRoot(Br); 2223 } 2224 2225 /// Codegen the failure basic block for a stack protector check. 2226 /// 2227 /// A failure stack protector machine basic block consists simply of a call to 2228 /// __stack_chk_fail(). 2229 /// 2230 /// For a high level explanation of how this fits into the stack protector 2231 /// generation see the comment on the declaration of class 2232 /// StackProtectorDescriptor. 2233 void 2234 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2235 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2236 SDValue Chain = 2237 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2238 None, false, getCurSDLoc(), false, false).second; 2239 DAG.setRoot(Chain); 2240 } 2241 2242 /// visitBitTestHeader - This function emits necessary code to produce value 2243 /// suitable for "bit tests" 2244 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2245 MachineBasicBlock *SwitchBB) { 2246 SDLoc dl = getCurSDLoc(); 2247 2248 // Subtract the minimum value 2249 SDValue SwitchOp = getValue(B.SValue); 2250 EVT VT = SwitchOp.getValueType(); 2251 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2252 DAG.getConstant(B.First, dl, VT)); 2253 2254 // Check range 2255 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2256 SDValue RangeCmp = DAG.getSetCC( 2257 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2258 Sub.getValueType()), 2259 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2260 2261 // Determine the type of the test operands. 2262 bool UsePtrType = false; 2263 if (!TLI.isTypeLegal(VT)) 2264 UsePtrType = true; 2265 else { 2266 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2267 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2268 // Switch table case range are encoded into series of masks. 2269 // Just use pointer type, it's guaranteed to fit. 2270 UsePtrType = true; 2271 break; 2272 } 2273 } 2274 if (UsePtrType) { 2275 VT = TLI.getPointerTy(DAG.getDataLayout()); 2276 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2277 } 2278 2279 B.RegVT = VT.getSimpleVT(); 2280 B.Reg = FuncInfo.CreateReg(B.RegVT); 2281 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2282 2283 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2284 2285 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2286 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2287 SwitchBB->normalizeSuccProbs(); 2288 2289 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2290 MVT::Other, CopyTo, RangeCmp, 2291 DAG.getBasicBlock(B.Default)); 2292 2293 // Avoid emitting unnecessary branches to the next block. 2294 if (MBB != NextBlock(SwitchBB)) 2295 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2296 DAG.getBasicBlock(MBB)); 2297 2298 DAG.setRoot(BrRange); 2299 } 2300 2301 /// visitBitTestCase - this function produces one "bit test" 2302 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2303 MachineBasicBlock* NextMBB, 2304 BranchProbability BranchProbToNext, 2305 unsigned Reg, 2306 BitTestCase &B, 2307 MachineBasicBlock *SwitchBB) { 2308 SDLoc dl = getCurSDLoc(); 2309 MVT VT = BB.RegVT; 2310 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2311 SDValue Cmp; 2312 unsigned PopCount = countPopulation(B.Mask); 2313 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2314 if (PopCount == 1) { 2315 // Testing for a single bit; just compare the shift count with what it 2316 // would need to be to shift a 1 bit in that position. 2317 Cmp = DAG.getSetCC( 2318 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2319 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2320 ISD::SETEQ); 2321 } else if (PopCount == BB.Range) { 2322 // There is only one zero bit in the range, test for it directly. 2323 Cmp = DAG.getSetCC( 2324 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2325 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2326 ISD::SETNE); 2327 } else { 2328 // Make desired shift 2329 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2330 DAG.getConstant(1, dl, VT), ShiftOp); 2331 2332 // Emit bit tests and jumps 2333 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2334 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2335 Cmp = DAG.getSetCC( 2336 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2337 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2338 } 2339 2340 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2341 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2342 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2343 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2344 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2345 // one as they are relative probabilities (and thus work more like weights), 2346 // and hence we need to normalize them to let the sum of them become one. 2347 SwitchBB->normalizeSuccProbs(); 2348 2349 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2350 MVT::Other, getControlRoot(), 2351 Cmp, DAG.getBasicBlock(B.TargetBB)); 2352 2353 // Avoid emitting unnecessary branches to the next block. 2354 if (NextMBB != NextBlock(SwitchBB)) 2355 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2356 DAG.getBasicBlock(NextMBB)); 2357 2358 DAG.setRoot(BrAnd); 2359 } 2360 2361 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2362 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2363 2364 // Retrieve successors. Look through artificial IR level blocks like 2365 // catchswitch for successors. 2366 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2367 const BasicBlock *EHPadBB = I.getSuccessor(1); 2368 2369 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2370 // have to do anything here to lower funclet bundles. 2371 assert(!I.hasOperandBundlesOtherThan( 2372 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2373 "Cannot lower invokes with arbitrary operand bundles yet!"); 2374 2375 const Value *Callee(I.getCalledValue()); 2376 const Function *Fn = dyn_cast<Function>(Callee); 2377 if (isa<InlineAsm>(Callee)) 2378 visitInlineAsm(&I); 2379 else if (Fn && Fn->isIntrinsic()) { 2380 switch (Fn->getIntrinsicID()) { 2381 default: 2382 llvm_unreachable("Cannot invoke this intrinsic"); 2383 case Intrinsic::donothing: 2384 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2385 break; 2386 case Intrinsic::experimental_patchpoint_void: 2387 case Intrinsic::experimental_patchpoint_i64: 2388 visitPatchpoint(&I, EHPadBB); 2389 break; 2390 case Intrinsic::experimental_gc_statepoint: 2391 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2392 break; 2393 } 2394 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2395 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2396 // Eventually we will support lowering the @llvm.experimental.deoptimize 2397 // intrinsic, and right now there are no plans to support other intrinsics 2398 // with deopt state. 2399 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2400 } else { 2401 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2402 } 2403 2404 // If the value of the invoke is used outside of its defining block, make it 2405 // available as a virtual register. 2406 // We already took care of the exported value for the statepoint instruction 2407 // during call to the LowerStatepoint. 2408 if (!isStatepoint(I)) { 2409 CopyToExportRegsIfNeeded(&I); 2410 } 2411 2412 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2413 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2414 BranchProbability EHPadBBProb = 2415 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2416 : BranchProbability::getZero(); 2417 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2418 2419 // Update successor info. 2420 addSuccessorWithProb(InvokeMBB, Return); 2421 for (auto &UnwindDest : UnwindDests) { 2422 UnwindDest.first->setIsEHPad(); 2423 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2424 } 2425 InvokeMBB->normalizeSuccProbs(); 2426 2427 // Drop into normal successor. 2428 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2429 MVT::Other, getControlRoot(), 2430 DAG.getBasicBlock(Return))); 2431 } 2432 2433 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2434 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2435 } 2436 2437 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2438 assert(FuncInfo.MBB->isEHPad() && 2439 "Call to landingpad not in landing pad!"); 2440 2441 MachineBasicBlock *MBB = FuncInfo.MBB; 2442 addLandingPadInfo(LP, *MBB); 2443 2444 // If there aren't registers to copy the values into (e.g., during SjLj 2445 // exceptions), then don't bother to create these DAG nodes. 2446 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2447 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2448 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2449 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2450 return; 2451 2452 // If landingpad's return type is token type, we don't create DAG nodes 2453 // for its exception pointer and selector value. The extraction of exception 2454 // pointer or selector value from token type landingpads is not currently 2455 // supported. 2456 if (LP.getType()->isTokenTy()) 2457 return; 2458 2459 SmallVector<EVT, 2> ValueVTs; 2460 SDLoc dl = getCurSDLoc(); 2461 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2462 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2463 2464 // Get the two live-in registers as SDValues. The physregs have already been 2465 // copied into virtual registers. 2466 SDValue Ops[2]; 2467 if (FuncInfo.ExceptionPointerVirtReg) { 2468 Ops[0] = DAG.getZExtOrTrunc( 2469 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2470 FuncInfo.ExceptionPointerVirtReg, 2471 TLI.getPointerTy(DAG.getDataLayout())), 2472 dl, ValueVTs[0]); 2473 } else { 2474 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2475 } 2476 Ops[1] = DAG.getZExtOrTrunc( 2477 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2478 FuncInfo.ExceptionSelectorVirtReg, 2479 TLI.getPointerTy(DAG.getDataLayout())), 2480 dl, ValueVTs[1]); 2481 2482 // Merge into one. 2483 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2484 DAG.getVTList(ValueVTs), Ops); 2485 setValue(&LP, Res); 2486 } 2487 2488 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2489 #ifndef NDEBUG 2490 for (const CaseCluster &CC : Clusters) 2491 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2492 #endif 2493 2494 std::sort(Clusters.begin(), Clusters.end(), 2495 [](const CaseCluster &a, const CaseCluster &b) { 2496 return a.Low->getValue().slt(b.Low->getValue()); 2497 }); 2498 2499 // Merge adjacent clusters with the same destination. 2500 const unsigned N = Clusters.size(); 2501 unsigned DstIndex = 0; 2502 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2503 CaseCluster &CC = Clusters[SrcIndex]; 2504 const ConstantInt *CaseVal = CC.Low; 2505 MachineBasicBlock *Succ = CC.MBB; 2506 2507 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2508 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2509 // If this case has the same successor and is a neighbour, merge it into 2510 // the previous cluster. 2511 Clusters[DstIndex - 1].High = CaseVal; 2512 Clusters[DstIndex - 1].Prob += CC.Prob; 2513 } else { 2514 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2515 sizeof(Clusters[SrcIndex])); 2516 } 2517 } 2518 Clusters.resize(DstIndex); 2519 } 2520 2521 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2522 MachineBasicBlock *Last) { 2523 // Update JTCases. 2524 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2525 if (JTCases[i].first.HeaderBB == First) 2526 JTCases[i].first.HeaderBB = Last; 2527 2528 // Update BitTestCases. 2529 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2530 if (BitTestCases[i].Parent == First) 2531 BitTestCases[i].Parent = Last; 2532 } 2533 2534 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2535 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2536 2537 // Update machine-CFG edges with unique successors. 2538 SmallSet<BasicBlock*, 32> Done; 2539 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2540 BasicBlock *BB = I.getSuccessor(i); 2541 bool Inserted = Done.insert(BB).second; 2542 if (!Inserted) 2543 continue; 2544 2545 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2546 addSuccessorWithProb(IndirectBrMBB, Succ); 2547 } 2548 IndirectBrMBB->normalizeSuccProbs(); 2549 2550 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2551 MVT::Other, getControlRoot(), 2552 getValue(I.getAddress()))); 2553 } 2554 2555 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2556 if (DAG.getTarget().Options.TrapUnreachable) 2557 DAG.setRoot( 2558 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2559 } 2560 2561 void SelectionDAGBuilder::visitFSub(const User &I) { 2562 // -0.0 - X --> fneg 2563 Type *Ty = I.getType(); 2564 if (isa<Constant>(I.getOperand(0)) && 2565 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2566 SDValue Op2 = getValue(I.getOperand(1)); 2567 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2568 Op2.getValueType(), Op2)); 2569 return; 2570 } 2571 2572 visitBinary(I, ISD::FSUB); 2573 } 2574 2575 /// Checks if the given instruction performs a vector reduction, in which case 2576 /// we have the freedom to alter the elements in the result as long as the 2577 /// reduction of them stays unchanged. 2578 static bool isVectorReductionOp(const User *I) { 2579 const Instruction *Inst = dyn_cast<Instruction>(I); 2580 if (!Inst || !Inst->getType()->isVectorTy()) 2581 return false; 2582 2583 auto OpCode = Inst->getOpcode(); 2584 switch (OpCode) { 2585 case Instruction::Add: 2586 case Instruction::Mul: 2587 case Instruction::And: 2588 case Instruction::Or: 2589 case Instruction::Xor: 2590 break; 2591 case Instruction::FAdd: 2592 case Instruction::FMul: 2593 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2594 if (FPOp->getFastMathFlags().isFast()) 2595 break; 2596 LLVM_FALLTHROUGH; 2597 default: 2598 return false; 2599 } 2600 2601 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 2602 unsigned ElemNumToReduce = ElemNum; 2603 2604 // Do DFS search on the def-use chain from the given instruction. We only 2605 // allow four kinds of operations during the search until we reach the 2606 // instruction that extracts the first element from the vector: 2607 // 2608 // 1. The reduction operation of the same opcode as the given instruction. 2609 // 2610 // 2. PHI node. 2611 // 2612 // 3. ShuffleVector instruction together with a reduction operation that 2613 // does a partial reduction. 2614 // 2615 // 4. ExtractElement that extracts the first element from the vector, and we 2616 // stop searching the def-use chain here. 2617 // 2618 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 2619 // from 1-3 to the stack to continue the DFS. The given instruction is not 2620 // a reduction operation if we meet any other instructions other than those 2621 // listed above. 2622 2623 SmallVector<const User *, 16> UsersToVisit{Inst}; 2624 SmallPtrSet<const User *, 16> Visited; 2625 bool ReduxExtracted = false; 2626 2627 while (!UsersToVisit.empty()) { 2628 auto User = UsersToVisit.back(); 2629 UsersToVisit.pop_back(); 2630 if (!Visited.insert(User).second) 2631 continue; 2632 2633 for (const auto &U : User->users()) { 2634 auto Inst = dyn_cast<Instruction>(U); 2635 if (!Inst) 2636 return false; 2637 2638 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 2639 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2640 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast()) 2641 return false; 2642 UsersToVisit.push_back(U); 2643 } else if (const ShuffleVectorInst *ShufInst = 2644 dyn_cast<ShuffleVectorInst>(U)) { 2645 // Detect the following pattern: A ShuffleVector instruction together 2646 // with a reduction that do partial reduction on the first and second 2647 // ElemNumToReduce / 2 elements, and store the result in 2648 // ElemNumToReduce / 2 elements in another vector. 2649 2650 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 2651 if (ResultElements < ElemNum) 2652 return false; 2653 2654 if (ElemNumToReduce == 1) 2655 return false; 2656 if (!isa<UndefValue>(U->getOperand(1))) 2657 return false; 2658 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 2659 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 2660 return false; 2661 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 2662 if (ShufInst->getMaskValue(i) != -1) 2663 return false; 2664 2665 // There is only one user of this ShuffleVector instruction, which 2666 // must be a reduction operation. 2667 if (!U->hasOneUse()) 2668 return false; 2669 2670 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 2671 if (!U2 || U2->getOpcode() != OpCode) 2672 return false; 2673 2674 // Check operands of the reduction operation. 2675 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 2676 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 2677 UsersToVisit.push_back(U2); 2678 ElemNumToReduce /= 2; 2679 } else 2680 return false; 2681 } else if (isa<ExtractElementInst>(U)) { 2682 // At this moment we should have reduced all elements in the vector. 2683 if (ElemNumToReduce != 1) 2684 return false; 2685 2686 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 2687 if (!Val || Val->getZExtValue() != 0) 2688 return false; 2689 2690 ReduxExtracted = true; 2691 } else 2692 return false; 2693 } 2694 } 2695 return ReduxExtracted; 2696 } 2697 2698 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2699 SDValue Op1 = getValue(I.getOperand(0)); 2700 SDValue Op2 = getValue(I.getOperand(1)); 2701 2702 bool nuw = false; 2703 bool nsw = false; 2704 bool exact = false; 2705 bool vec_redux = false; 2706 FastMathFlags FMF; 2707 2708 if (const OverflowingBinaryOperator *OFBinOp = 2709 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2710 nuw = OFBinOp->hasNoUnsignedWrap(); 2711 nsw = OFBinOp->hasNoSignedWrap(); 2712 } 2713 if (const PossiblyExactOperator *ExactOp = 2714 dyn_cast<const PossiblyExactOperator>(&I)) 2715 exact = ExactOp->isExact(); 2716 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2717 FMF = FPOp->getFastMathFlags(); 2718 2719 if (isVectorReductionOp(&I)) { 2720 vec_redux = true; 2721 DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 2722 } 2723 2724 SDNodeFlags Flags; 2725 Flags.setExact(exact); 2726 Flags.setNoSignedWrap(nsw); 2727 Flags.setNoUnsignedWrap(nuw); 2728 Flags.setVectorReduction(vec_redux); 2729 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2730 Flags.setAllowContract(FMF.allowContract()); 2731 Flags.setNoInfs(FMF.noInfs()); 2732 Flags.setNoNaNs(FMF.noNaNs()); 2733 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2734 Flags.setUnsafeAlgebra(FMF.isFast()); 2735 2736 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2737 Op1, Op2, Flags); 2738 setValue(&I, BinNodeValue); 2739 } 2740 2741 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2742 SDValue Op1 = getValue(I.getOperand(0)); 2743 SDValue Op2 = getValue(I.getOperand(1)); 2744 2745 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2746 Op2.getValueType(), DAG.getDataLayout()); 2747 2748 // Coerce the shift amount to the right type if we can. 2749 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2750 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2751 unsigned Op2Size = Op2.getValueSizeInBits(); 2752 SDLoc DL = getCurSDLoc(); 2753 2754 // If the operand is smaller than the shift count type, promote it. 2755 if (ShiftSize > Op2Size) 2756 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2757 2758 // If the operand is larger than the shift count type but the shift 2759 // count type has enough bits to represent any shift value, truncate 2760 // it now. This is a common case and it exposes the truncate to 2761 // optimization early. 2762 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 2763 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2764 // Otherwise we'll need to temporarily settle for some other convenient 2765 // type. Type legalization will make adjustments once the shiftee is split. 2766 else 2767 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2768 } 2769 2770 bool nuw = false; 2771 bool nsw = false; 2772 bool exact = false; 2773 2774 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2775 2776 if (const OverflowingBinaryOperator *OFBinOp = 2777 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2778 nuw = OFBinOp->hasNoUnsignedWrap(); 2779 nsw = OFBinOp->hasNoSignedWrap(); 2780 } 2781 if (const PossiblyExactOperator *ExactOp = 2782 dyn_cast<const PossiblyExactOperator>(&I)) 2783 exact = ExactOp->isExact(); 2784 } 2785 SDNodeFlags Flags; 2786 Flags.setExact(exact); 2787 Flags.setNoSignedWrap(nsw); 2788 Flags.setNoUnsignedWrap(nuw); 2789 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2790 Flags); 2791 setValue(&I, Res); 2792 } 2793 2794 void SelectionDAGBuilder::visitSDiv(const User &I) { 2795 SDValue Op1 = getValue(I.getOperand(0)); 2796 SDValue Op2 = getValue(I.getOperand(1)); 2797 2798 SDNodeFlags Flags; 2799 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2800 cast<PossiblyExactOperator>(&I)->isExact()); 2801 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2802 Op2, Flags)); 2803 } 2804 2805 void SelectionDAGBuilder::visitICmp(const User &I) { 2806 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2807 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2808 predicate = IC->getPredicate(); 2809 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2810 predicate = ICmpInst::Predicate(IC->getPredicate()); 2811 SDValue Op1 = getValue(I.getOperand(0)); 2812 SDValue Op2 = getValue(I.getOperand(1)); 2813 ISD::CondCode Opcode = getICmpCondCode(predicate); 2814 2815 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2816 I.getType()); 2817 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2818 } 2819 2820 void SelectionDAGBuilder::visitFCmp(const User &I) { 2821 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2822 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2823 predicate = FC->getPredicate(); 2824 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2825 predicate = FCmpInst::Predicate(FC->getPredicate()); 2826 SDValue Op1 = getValue(I.getOperand(0)); 2827 SDValue Op2 = getValue(I.getOperand(1)); 2828 ISD::CondCode Condition = getFCmpCondCode(predicate); 2829 2830 // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them. 2831 // FIXME: We should propagate the fast-math-flags to the DAG node itself for 2832 // further optimization, but currently FMF is only applicable to binary nodes. 2833 if (TM.Options.NoNaNsFPMath) 2834 Condition = getFCmpCodeWithoutNaN(Condition); 2835 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2836 I.getType()); 2837 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2838 } 2839 2840 // Check if the condition of the select has one use or two users that are both 2841 // selects with the same condition. 2842 static bool hasOnlySelectUsers(const Value *Cond) { 2843 return llvm::all_of(Cond->users(), [](const Value *V) { 2844 return isa<SelectInst>(V); 2845 }); 2846 } 2847 2848 void SelectionDAGBuilder::visitSelect(const User &I) { 2849 SmallVector<EVT, 4> ValueVTs; 2850 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2851 ValueVTs); 2852 unsigned NumValues = ValueVTs.size(); 2853 if (NumValues == 0) return; 2854 2855 SmallVector<SDValue, 4> Values(NumValues); 2856 SDValue Cond = getValue(I.getOperand(0)); 2857 SDValue LHSVal = getValue(I.getOperand(1)); 2858 SDValue RHSVal = getValue(I.getOperand(2)); 2859 auto BaseOps = {Cond}; 2860 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2861 ISD::VSELECT : ISD::SELECT; 2862 2863 // Min/max matching is only viable if all output VTs are the same. 2864 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2865 EVT VT = ValueVTs[0]; 2866 LLVMContext &Ctx = *DAG.getContext(); 2867 auto &TLI = DAG.getTargetLoweringInfo(); 2868 2869 // We care about the legality of the operation after it has been type 2870 // legalized. 2871 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 2872 VT != TLI.getTypeToTransformTo(Ctx, VT)) 2873 VT = TLI.getTypeToTransformTo(Ctx, VT); 2874 2875 // If the vselect is legal, assume we want to leave this as a vector setcc + 2876 // vselect. Otherwise, if this is going to be scalarized, we want to see if 2877 // min/max is legal on the scalar type. 2878 bool UseScalarMinMax = VT.isVector() && 2879 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 2880 2881 Value *LHS, *RHS; 2882 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2883 ISD::NodeType Opc = ISD::DELETED_NODE; 2884 switch (SPR.Flavor) { 2885 case SPF_UMAX: Opc = ISD::UMAX; break; 2886 case SPF_UMIN: Opc = ISD::UMIN; break; 2887 case SPF_SMAX: Opc = ISD::SMAX; break; 2888 case SPF_SMIN: Opc = ISD::SMIN; break; 2889 case SPF_FMINNUM: 2890 switch (SPR.NaNBehavior) { 2891 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2892 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2893 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2894 case SPNB_RETURNS_ANY: { 2895 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 2896 Opc = ISD::FMINNUM; 2897 else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)) 2898 Opc = ISD::FMINNAN; 2899 else if (UseScalarMinMax) 2900 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 2901 ISD::FMINNUM : ISD::FMINNAN; 2902 break; 2903 } 2904 } 2905 break; 2906 case SPF_FMAXNUM: 2907 switch (SPR.NaNBehavior) { 2908 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2909 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2910 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2911 case SPNB_RETURNS_ANY: 2912 2913 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 2914 Opc = ISD::FMAXNUM; 2915 else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)) 2916 Opc = ISD::FMAXNAN; 2917 else if (UseScalarMinMax) 2918 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 2919 ISD::FMAXNUM : ISD::FMAXNAN; 2920 break; 2921 } 2922 break; 2923 default: break; 2924 } 2925 2926 if (Opc != ISD::DELETED_NODE && 2927 (TLI.isOperationLegalOrCustom(Opc, VT) || 2928 (UseScalarMinMax && 2929 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 2930 // If the underlying comparison instruction is used by any other 2931 // instruction, the consumed instructions won't be destroyed, so it is 2932 // not profitable to convert to a min/max. 2933 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 2934 OpCode = Opc; 2935 LHSVal = getValue(LHS); 2936 RHSVal = getValue(RHS); 2937 BaseOps = {}; 2938 } 2939 } 2940 2941 for (unsigned i = 0; i != NumValues; ++i) { 2942 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2943 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2944 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2945 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2946 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2947 Ops); 2948 } 2949 2950 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2951 DAG.getVTList(ValueVTs), Values)); 2952 } 2953 2954 void SelectionDAGBuilder::visitTrunc(const User &I) { 2955 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2956 SDValue N = getValue(I.getOperand(0)); 2957 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2958 I.getType()); 2959 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2960 } 2961 2962 void SelectionDAGBuilder::visitZExt(const User &I) { 2963 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2964 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2965 SDValue N = getValue(I.getOperand(0)); 2966 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2967 I.getType()); 2968 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2969 } 2970 2971 void SelectionDAGBuilder::visitSExt(const User &I) { 2972 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2973 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2974 SDValue N = getValue(I.getOperand(0)); 2975 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2976 I.getType()); 2977 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2978 } 2979 2980 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2981 // FPTrunc is never a no-op cast, no need to check 2982 SDValue N = getValue(I.getOperand(0)); 2983 SDLoc dl = getCurSDLoc(); 2984 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2985 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2986 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2987 DAG.getTargetConstant( 2988 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2989 } 2990 2991 void SelectionDAGBuilder::visitFPExt(const User &I) { 2992 // FPExt is never a no-op cast, no need to check 2993 SDValue N = getValue(I.getOperand(0)); 2994 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2995 I.getType()); 2996 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2997 } 2998 2999 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3000 // FPToUI is never a no-op cast, no need to check 3001 SDValue N = getValue(I.getOperand(0)); 3002 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3003 I.getType()); 3004 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3005 } 3006 3007 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3008 // FPToSI is never a no-op cast, no need to check 3009 SDValue N = getValue(I.getOperand(0)); 3010 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3011 I.getType()); 3012 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3013 } 3014 3015 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3016 // UIToFP is never a no-op cast, no need to check 3017 SDValue N = getValue(I.getOperand(0)); 3018 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3019 I.getType()); 3020 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3021 } 3022 3023 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3024 // SIToFP is never a no-op cast, no need to check 3025 SDValue N = getValue(I.getOperand(0)); 3026 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3027 I.getType()); 3028 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3029 } 3030 3031 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3032 // What to do depends on the size of the integer and the size of the pointer. 3033 // We can either truncate, zero extend, or no-op, accordingly. 3034 SDValue N = getValue(I.getOperand(0)); 3035 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3036 I.getType()); 3037 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3038 } 3039 3040 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3041 // What to do depends on the size of the integer and the size of the pointer. 3042 // We can either truncate, zero extend, or no-op, accordingly. 3043 SDValue N = getValue(I.getOperand(0)); 3044 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3045 I.getType()); 3046 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3047 } 3048 3049 void SelectionDAGBuilder::visitBitCast(const User &I) { 3050 SDValue N = getValue(I.getOperand(0)); 3051 SDLoc dl = getCurSDLoc(); 3052 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3053 I.getType()); 3054 3055 // BitCast assures us that source and destination are the same size so this is 3056 // either a BITCAST or a no-op. 3057 if (DestVT != N.getValueType()) 3058 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3059 DestVT, N)); // convert types. 3060 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3061 // might fold any kind of constant expression to an integer constant and that 3062 // is not what we are looking for. Only recognize a bitcast of a genuine 3063 // constant integer as an opaque constant. 3064 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3065 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3066 /*isOpaque*/true)); 3067 else 3068 setValue(&I, N); // noop cast. 3069 } 3070 3071 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3072 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3073 const Value *SV = I.getOperand(0); 3074 SDValue N = getValue(SV); 3075 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3076 3077 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3078 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3079 3080 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3081 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3082 3083 setValue(&I, N); 3084 } 3085 3086 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3087 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3088 SDValue InVec = getValue(I.getOperand(0)); 3089 SDValue InVal = getValue(I.getOperand(1)); 3090 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3091 TLI.getVectorIdxTy(DAG.getDataLayout())); 3092 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3093 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3094 InVec, InVal, InIdx)); 3095 } 3096 3097 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3098 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3099 SDValue InVec = getValue(I.getOperand(0)); 3100 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3101 TLI.getVectorIdxTy(DAG.getDataLayout())); 3102 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3103 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3104 InVec, InIdx)); 3105 } 3106 3107 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3108 SDValue Src1 = getValue(I.getOperand(0)); 3109 SDValue Src2 = getValue(I.getOperand(1)); 3110 SDLoc DL = getCurSDLoc(); 3111 3112 SmallVector<int, 8> Mask; 3113 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3114 unsigned MaskNumElts = Mask.size(); 3115 3116 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3117 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3118 EVT SrcVT = Src1.getValueType(); 3119 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3120 3121 if (SrcNumElts == MaskNumElts) { 3122 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3123 return; 3124 } 3125 3126 // Normalize the shuffle vector since mask and vector length don't match. 3127 if (SrcNumElts < MaskNumElts) { 3128 // Mask is longer than the source vectors. We can use concatenate vector to 3129 // make the mask and vectors lengths match. 3130 3131 if (MaskNumElts % SrcNumElts == 0) { 3132 // Mask length is a multiple of the source vector length. 3133 // Check if the shuffle is some kind of concatenation of the input 3134 // vectors. 3135 unsigned NumConcat = MaskNumElts / SrcNumElts; 3136 bool IsConcat = true; 3137 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3138 for (unsigned i = 0; i != MaskNumElts; ++i) { 3139 int Idx = Mask[i]; 3140 if (Idx < 0) 3141 continue; 3142 // Ensure the indices in each SrcVT sized piece are sequential and that 3143 // the same source is used for the whole piece. 3144 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3145 (ConcatSrcs[i / SrcNumElts] >= 0 && 3146 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3147 IsConcat = false; 3148 break; 3149 } 3150 // Remember which source this index came from. 3151 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3152 } 3153 3154 // The shuffle is concatenating multiple vectors together. Just emit 3155 // a CONCAT_VECTORS operation. 3156 if (IsConcat) { 3157 SmallVector<SDValue, 8> ConcatOps; 3158 for (auto Src : ConcatSrcs) { 3159 if (Src < 0) 3160 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3161 else if (Src == 0) 3162 ConcatOps.push_back(Src1); 3163 else 3164 ConcatOps.push_back(Src2); 3165 } 3166 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3167 return; 3168 } 3169 } 3170 3171 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3172 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3173 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3174 PaddedMaskNumElts); 3175 3176 // Pad both vectors with undefs to make them the same length as the mask. 3177 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3178 3179 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3180 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3181 MOps1[0] = Src1; 3182 MOps2[0] = Src2; 3183 3184 Src1 = Src1.isUndef() 3185 ? DAG.getUNDEF(PaddedVT) 3186 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3187 Src2 = Src2.isUndef() 3188 ? DAG.getUNDEF(PaddedVT) 3189 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3190 3191 // Readjust mask for new input vector length. 3192 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3193 for (unsigned i = 0; i != MaskNumElts; ++i) { 3194 int Idx = Mask[i]; 3195 if (Idx >= (int)SrcNumElts) 3196 Idx -= SrcNumElts - PaddedMaskNumElts; 3197 MappedOps[i] = Idx; 3198 } 3199 3200 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3201 3202 // If the concatenated vector was padded, extract a subvector with the 3203 // correct number of elements. 3204 if (MaskNumElts != PaddedMaskNumElts) 3205 Result = DAG.getNode( 3206 ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3207 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3208 3209 setValue(&I, Result); 3210 return; 3211 } 3212 3213 if (SrcNumElts > MaskNumElts) { 3214 // Analyze the access pattern of the vector to see if we can extract 3215 // two subvectors and do the shuffle. 3216 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3217 bool CanExtract = true; 3218 for (int Idx : Mask) { 3219 unsigned Input = 0; 3220 if (Idx < 0) 3221 continue; 3222 3223 if (Idx >= (int)SrcNumElts) { 3224 Input = 1; 3225 Idx -= SrcNumElts; 3226 } 3227 3228 // If all the indices come from the same MaskNumElts sized portion of 3229 // the sources we can use extract. Also make sure the extract wouldn't 3230 // extract past the end of the source. 3231 int NewStartIdx = alignDown(Idx, MaskNumElts); 3232 if (NewStartIdx + MaskNumElts > SrcNumElts || 3233 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3234 CanExtract = false; 3235 // Make sure we always update StartIdx as we use it to track if all 3236 // elements are undef. 3237 StartIdx[Input] = NewStartIdx; 3238 } 3239 3240 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3241 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3242 return; 3243 } 3244 if (CanExtract) { 3245 // Extract appropriate subvector and generate a vector shuffle 3246 for (unsigned Input = 0; Input < 2; ++Input) { 3247 SDValue &Src = Input == 0 ? Src1 : Src2; 3248 if (StartIdx[Input] < 0) 3249 Src = DAG.getUNDEF(VT); 3250 else { 3251 Src = DAG.getNode( 3252 ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3253 DAG.getConstant(StartIdx[Input], DL, 3254 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3255 } 3256 } 3257 3258 // Calculate new mask. 3259 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3260 for (int &Idx : MappedOps) { 3261 if (Idx >= (int)SrcNumElts) 3262 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3263 else if (Idx >= 0) 3264 Idx -= StartIdx[0]; 3265 } 3266 3267 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3268 return; 3269 } 3270 } 3271 3272 // We can't use either concat vectors or extract subvectors so fall back to 3273 // replacing the shuffle with extract and build vector. 3274 // to insert and build vector. 3275 EVT EltVT = VT.getVectorElementType(); 3276 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3277 SmallVector<SDValue,8> Ops; 3278 for (int Idx : Mask) { 3279 SDValue Res; 3280 3281 if (Idx < 0) { 3282 Res = DAG.getUNDEF(EltVT); 3283 } else { 3284 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3285 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3286 3287 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3288 EltVT, Src, DAG.getConstant(Idx, DL, IdxVT)); 3289 } 3290 3291 Ops.push_back(Res); 3292 } 3293 3294 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3295 } 3296 3297 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3298 ArrayRef<unsigned> Indices; 3299 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3300 Indices = IV->getIndices(); 3301 else 3302 Indices = cast<ConstantExpr>(&I)->getIndices(); 3303 3304 const Value *Op0 = I.getOperand(0); 3305 const Value *Op1 = I.getOperand(1); 3306 Type *AggTy = I.getType(); 3307 Type *ValTy = Op1->getType(); 3308 bool IntoUndef = isa<UndefValue>(Op0); 3309 bool FromUndef = isa<UndefValue>(Op1); 3310 3311 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3312 3313 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3314 SmallVector<EVT, 4> AggValueVTs; 3315 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3316 SmallVector<EVT, 4> ValValueVTs; 3317 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3318 3319 unsigned NumAggValues = AggValueVTs.size(); 3320 unsigned NumValValues = ValValueVTs.size(); 3321 SmallVector<SDValue, 4> Values(NumAggValues); 3322 3323 // Ignore an insertvalue that produces an empty object 3324 if (!NumAggValues) { 3325 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3326 return; 3327 } 3328 3329 SDValue Agg = getValue(Op0); 3330 unsigned i = 0; 3331 // Copy the beginning value(s) from the original aggregate. 3332 for (; i != LinearIndex; ++i) 3333 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3334 SDValue(Agg.getNode(), Agg.getResNo() + i); 3335 // Copy values from the inserted value(s). 3336 if (NumValValues) { 3337 SDValue Val = getValue(Op1); 3338 for (; i != LinearIndex + NumValValues; ++i) 3339 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3340 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3341 } 3342 // Copy remaining value(s) from the original aggregate. 3343 for (; i != NumAggValues; ++i) 3344 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3345 SDValue(Agg.getNode(), Agg.getResNo() + i); 3346 3347 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3348 DAG.getVTList(AggValueVTs), Values)); 3349 } 3350 3351 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3352 ArrayRef<unsigned> Indices; 3353 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3354 Indices = EV->getIndices(); 3355 else 3356 Indices = cast<ConstantExpr>(&I)->getIndices(); 3357 3358 const Value *Op0 = I.getOperand(0); 3359 Type *AggTy = Op0->getType(); 3360 Type *ValTy = I.getType(); 3361 bool OutOfUndef = isa<UndefValue>(Op0); 3362 3363 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3364 3365 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3366 SmallVector<EVT, 4> ValValueVTs; 3367 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3368 3369 unsigned NumValValues = ValValueVTs.size(); 3370 3371 // Ignore a extractvalue that produces an empty object 3372 if (!NumValValues) { 3373 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3374 return; 3375 } 3376 3377 SmallVector<SDValue, 4> Values(NumValValues); 3378 3379 SDValue Agg = getValue(Op0); 3380 // Copy out the selected value(s). 3381 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3382 Values[i - LinearIndex] = 3383 OutOfUndef ? 3384 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3385 SDValue(Agg.getNode(), Agg.getResNo() + i); 3386 3387 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3388 DAG.getVTList(ValValueVTs), Values)); 3389 } 3390 3391 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3392 Value *Op0 = I.getOperand(0); 3393 // Note that the pointer operand may be a vector of pointers. Take the scalar 3394 // element which holds a pointer. 3395 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3396 SDValue N = getValue(Op0); 3397 SDLoc dl = getCurSDLoc(); 3398 3399 // Normalize Vector GEP - all scalar operands should be converted to the 3400 // splat vector. 3401 unsigned VectorWidth = I.getType()->isVectorTy() ? 3402 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 3403 3404 if (VectorWidth && !N.getValueType().isVector()) { 3405 LLVMContext &Context = *DAG.getContext(); 3406 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); 3407 N = DAG.getSplatBuildVector(VT, dl, N); 3408 } 3409 3410 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3411 GTI != E; ++GTI) { 3412 const Value *Idx = GTI.getOperand(); 3413 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3414 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3415 if (Field) { 3416 // N = N + Offset 3417 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3418 3419 // In an inbounds GEP with an offset that is nonnegative even when 3420 // interpreted as signed, assume there is no unsigned overflow. 3421 SDNodeFlags Flags; 3422 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3423 Flags.setNoUnsignedWrap(true); 3424 3425 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3426 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3427 } 3428 } else { 3429 MVT PtrTy = 3430 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 3431 unsigned PtrSize = PtrTy.getSizeInBits(); 3432 APInt ElementSize(PtrSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3433 3434 // If this is a scalar constant or a splat vector of constants, 3435 // handle it quickly. 3436 const auto *CI = dyn_cast<ConstantInt>(Idx); 3437 if (!CI && isa<ConstantDataVector>(Idx) && 3438 cast<ConstantDataVector>(Idx)->getSplatValue()) 3439 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3440 3441 if (CI) { 3442 if (CI->isZero()) 3443 continue; 3444 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 3445 LLVMContext &Context = *DAG.getContext(); 3446 SDValue OffsVal = VectorWidth ? 3447 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, PtrTy, VectorWidth)) : 3448 DAG.getConstant(Offs, dl, PtrTy); 3449 3450 // In an inbouds GEP with an offset that is nonnegative even when 3451 // interpreted as signed, assume there is no unsigned overflow. 3452 SDNodeFlags Flags; 3453 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3454 Flags.setNoUnsignedWrap(true); 3455 3456 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3457 continue; 3458 } 3459 3460 // N = N + Idx * ElementSize; 3461 SDValue IdxN = getValue(Idx); 3462 3463 if (!IdxN.getValueType().isVector() && VectorWidth) { 3464 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth); 3465 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3466 } 3467 3468 // If the index is smaller or larger than intptr_t, truncate or extend 3469 // it. 3470 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3471 3472 // If this is a multiply by a power of two, turn it into a shl 3473 // immediately. This is a very common case. 3474 if (ElementSize != 1) { 3475 if (ElementSize.isPowerOf2()) { 3476 unsigned Amt = ElementSize.logBase2(); 3477 IdxN = DAG.getNode(ISD::SHL, dl, 3478 N.getValueType(), IdxN, 3479 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3480 } else { 3481 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3482 IdxN = DAG.getNode(ISD::MUL, dl, 3483 N.getValueType(), IdxN, Scale); 3484 } 3485 } 3486 3487 N = DAG.getNode(ISD::ADD, dl, 3488 N.getValueType(), N, IdxN); 3489 } 3490 } 3491 3492 setValue(&I, N); 3493 } 3494 3495 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3496 // If this is a fixed sized alloca in the entry block of the function, 3497 // allocate it statically on the stack. 3498 if (FuncInfo.StaticAllocaMap.count(&I)) 3499 return; // getValue will auto-populate this. 3500 3501 SDLoc dl = getCurSDLoc(); 3502 Type *Ty = I.getAllocatedType(); 3503 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3504 auto &DL = DAG.getDataLayout(); 3505 uint64_t TySize = DL.getTypeAllocSize(Ty); 3506 unsigned Align = 3507 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3508 3509 SDValue AllocSize = getValue(I.getArraySize()); 3510 3511 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3512 if (AllocSize.getValueType() != IntPtr) 3513 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3514 3515 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3516 AllocSize, 3517 DAG.getConstant(TySize, dl, IntPtr)); 3518 3519 // Handle alignment. If the requested alignment is less than or equal to 3520 // the stack alignment, ignore it. If the size is greater than or equal to 3521 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3522 unsigned StackAlign = 3523 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3524 if (Align <= StackAlign) 3525 Align = 0; 3526 3527 // Round the size of the allocation up to the stack alignment size 3528 // by add SA-1 to the size. This doesn't overflow because we're computing 3529 // an address inside an alloca. 3530 SDNodeFlags Flags; 3531 Flags.setNoUnsignedWrap(true); 3532 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 3533 DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags); 3534 3535 // Mask out the low bits for alignment purposes. 3536 AllocSize = 3537 DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 3538 DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr)); 3539 3540 SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)}; 3541 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3542 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3543 setValue(&I, DSA); 3544 DAG.setRoot(DSA.getValue(1)); 3545 3546 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3547 } 3548 3549 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3550 if (I.isAtomic()) 3551 return visitAtomicLoad(I); 3552 3553 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3554 const Value *SV = I.getOperand(0); 3555 if (TLI.supportSwiftError()) { 3556 // Swifterror values can come from either a function parameter with 3557 // swifterror attribute or an alloca with swifterror attribute. 3558 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3559 if (Arg->hasSwiftErrorAttr()) 3560 return visitLoadFromSwiftError(I); 3561 } 3562 3563 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3564 if (Alloca->isSwiftError()) 3565 return visitLoadFromSwiftError(I); 3566 } 3567 } 3568 3569 SDValue Ptr = getValue(SV); 3570 3571 Type *Ty = I.getType(); 3572 3573 bool isVolatile = I.isVolatile(); 3574 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3575 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 3576 bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout()); 3577 unsigned Alignment = I.getAlignment(); 3578 3579 AAMDNodes AAInfo; 3580 I.getAAMetadata(AAInfo); 3581 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3582 3583 SmallVector<EVT, 4> ValueVTs; 3584 SmallVector<uint64_t, 4> Offsets; 3585 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3586 unsigned NumValues = ValueVTs.size(); 3587 if (NumValues == 0) 3588 return; 3589 3590 SDValue Root; 3591 bool ConstantMemory = false; 3592 if (isVolatile || NumValues > MaxParallelChains) 3593 // Serialize volatile loads with other side effects. 3594 Root = getRoot(); 3595 else if (AA && AA->pointsToConstantMemory(MemoryLocation( 3596 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3597 // Do not serialize (non-volatile) loads of constant memory with anything. 3598 Root = DAG.getEntryNode(); 3599 ConstantMemory = true; 3600 } else { 3601 // Do not serialize non-volatile loads against each other. 3602 Root = DAG.getRoot(); 3603 } 3604 3605 SDLoc dl = getCurSDLoc(); 3606 3607 if (isVolatile) 3608 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3609 3610 // An aggregate load cannot wrap around the address space, so offsets to its 3611 // parts don't wrap either. 3612 SDNodeFlags Flags; 3613 Flags.setNoUnsignedWrap(true); 3614 3615 SmallVector<SDValue, 4> Values(NumValues); 3616 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3617 EVT PtrVT = Ptr.getValueType(); 3618 unsigned ChainI = 0; 3619 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3620 // Serializing loads here may result in excessive register pressure, and 3621 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3622 // could recover a bit by hoisting nodes upward in the chain by recognizing 3623 // they are side-effect free or do not alias. The optimizer should really 3624 // avoid this case by converting large object/array copies to llvm.memcpy 3625 // (MaxParallelChains should always remain as failsafe). 3626 if (ChainI == MaxParallelChains) { 3627 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3628 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3629 makeArrayRef(Chains.data(), ChainI)); 3630 Root = Chain; 3631 ChainI = 0; 3632 } 3633 SDValue A = DAG.getNode(ISD::ADD, dl, 3634 PtrVT, Ptr, 3635 DAG.getConstant(Offsets[i], dl, PtrVT), 3636 Flags); 3637 auto MMOFlags = MachineMemOperand::MONone; 3638 if (isVolatile) 3639 MMOFlags |= MachineMemOperand::MOVolatile; 3640 if (isNonTemporal) 3641 MMOFlags |= MachineMemOperand::MONonTemporal; 3642 if (isInvariant) 3643 MMOFlags |= MachineMemOperand::MOInvariant; 3644 if (isDereferenceable) 3645 MMOFlags |= MachineMemOperand::MODereferenceable; 3646 MMOFlags |= TLI.getMMOFlags(I); 3647 3648 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A, 3649 MachinePointerInfo(SV, Offsets[i]), Alignment, 3650 MMOFlags, AAInfo, Ranges); 3651 3652 Values[i] = L; 3653 Chains[ChainI] = L.getValue(1); 3654 } 3655 3656 if (!ConstantMemory) { 3657 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3658 makeArrayRef(Chains.data(), ChainI)); 3659 if (isVolatile) 3660 DAG.setRoot(Chain); 3661 else 3662 PendingLoads.push_back(Chain); 3663 } 3664 3665 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3666 DAG.getVTList(ValueVTs), Values)); 3667 } 3668 3669 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 3670 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 3671 "call visitStoreToSwiftError when backend supports swifterror"); 3672 3673 SmallVector<EVT, 4> ValueVTs; 3674 SmallVector<uint64_t, 4> Offsets; 3675 const Value *SrcV = I.getOperand(0); 3676 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3677 SrcV->getType(), ValueVTs, &Offsets); 3678 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3679 "expect a single EVT for swifterror"); 3680 3681 SDValue Src = getValue(SrcV); 3682 // Create a virtual register, then update the virtual register. 3683 unsigned VReg; bool CreatedVReg; 3684 std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I); 3685 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 3686 // Chain can be getRoot or getControlRoot. 3687 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 3688 SDValue(Src.getNode(), Src.getResNo())); 3689 DAG.setRoot(CopyNode); 3690 if (CreatedVReg) 3691 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg); 3692 } 3693 3694 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 3695 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 3696 "call visitLoadFromSwiftError when backend supports swifterror"); 3697 3698 assert(!I.isVolatile() && 3699 I.getMetadata(LLVMContext::MD_nontemporal) == nullptr && 3700 I.getMetadata(LLVMContext::MD_invariant_load) == nullptr && 3701 "Support volatile, non temporal, invariant for load_from_swift_error"); 3702 3703 const Value *SV = I.getOperand(0); 3704 Type *Ty = I.getType(); 3705 AAMDNodes AAInfo; 3706 I.getAAMetadata(AAInfo); 3707 assert((!AA || !AA->pointsToConstantMemory(MemoryLocation( 3708 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) && 3709 "load_from_swift_error should not be constant memory"); 3710 3711 SmallVector<EVT, 4> ValueVTs; 3712 SmallVector<uint64_t, 4> Offsets; 3713 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 3714 ValueVTs, &Offsets); 3715 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3716 "expect a single EVT for swifterror"); 3717 3718 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 3719 SDValue L = DAG.getCopyFromReg( 3720 getRoot(), getCurSDLoc(), 3721 FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first, 3722 ValueVTs[0]); 3723 3724 setValue(&I, L); 3725 } 3726 3727 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3728 if (I.isAtomic()) 3729 return visitAtomicStore(I); 3730 3731 const Value *SrcV = I.getOperand(0); 3732 const Value *PtrV = I.getOperand(1); 3733 3734 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3735 if (TLI.supportSwiftError()) { 3736 // Swifterror values can come from either a function parameter with 3737 // swifterror attribute or an alloca with swifterror attribute. 3738 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 3739 if (Arg->hasSwiftErrorAttr()) 3740 return visitStoreToSwiftError(I); 3741 } 3742 3743 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 3744 if (Alloca->isSwiftError()) 3745 return visitStoreToSwiftError(I); 3746 } 3747 } 3748 3749 SmallVector<EVT, 4> ValueVTs; 3750 SmallVector<uint64_t, 4> Offsets; 3751 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3752 SrcV->getType(), ValueVTs, &Offsets); 3753 unsigned NumValues = ValueVTs.size(); 3754 if (NumValues == 0) 3755 return; 3756 3757 // Get the lowered operands. Note that we do this after 3758 // checking if NumResults is zero, because with zero results 3759 // the operands won't have values in the map. 3760 SDValue Src = getValue(SrcV); 3761 SDValue Ptr = getValue(PtrV); 3762 3763 SDValue Root = getRoot(); 3764 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3765 SDLoc dl = getCurSDLoc(); 3766 EVT PtrVT = Ptr.getValueType(); 3767 unsigned Alignment = I.getAlignment(); 3768 AAMDNodes AAInfo; 3769 I.getAAMetadata(AAInfo); 3770 3771 auto MMOFlags = MachineMemOperand::MONone; 3772 if (I.isVolatile()) 3773 MMOFlags |= MachineMemOperand::MOVolatile; 3774 if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr) 3775 MMOFlags |= MachineMemOperand::MONonTemporal; 3776 MMOFlags |= TLI.getMMOFlags(I); 3777 3778 // An aggregate load cannot wrap around the address space, so offsets to its 3779 // parts don't wrap either. 3780 SDNodeFlags Flags; 3781 Flags.setNoUnsignedWrap(true); 3782 3783 unsigned ChainI = 0; 3784 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3785 // See visitLoad comments. 3786 if (ChainI == MaxParallelChains) { 3787 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3788 makeArrayRef(Chains.data(), ChainI)); 3789 Root = Chain; 3790 ChainI = 0; 3791 } 3792 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3793 DAG.getConstant(Offsets[i], dl, PtrVT), Flags); 3794 SDValue St = DAG.getStore( 3795 Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add, 3796 MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo); 3797 Chains[ChainI] = St; 3798 } 3799 3800 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3801 makeArrayRef(Chains.data(), ChainI)); 3802 DAG.setRoot(StoreNode); 3803 } 3804 3805 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 3806 bool IsCompressing) { 3807 SDLoc sdl = getCurSDLoc(); 3808 3809 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3810 unsigned& Alignment) { 3811 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3812 Src0 = I.getArgOperand(0); 3813 Ptr = I.getArgOperand(1); 3814 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 3815 Mask = I.getArgOperand(3); 3816 }; 3817 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3818 unsigned& Alignment) { 3819 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 3820 Src0 = I.getArgOperand(0); 3821 Ptr = I.getArgOperand(1); 3822 Mask = I.getArgOperand(2); 3823 Alignment = 0; 3824 }; 3825 3826 Value *PtrOperand, *MaskOperand, *Src0Operand; 3827 unsigned Alignment; 3828 if (IsCompressing) 3829 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3830 else 3831 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3832 3833 SDValue Ptr = getValue(PtrOperand); 3834 SDValue Src0 = getValue(Src0Operand); 3835 SDValue Mask = getValue(MaskOperand); 3836 3837 EVT VT = Src0.getValueType(); 3838 if (!Alignment) 3839 Alignment = DAG.getEVTAlignment(VT); 3840 3841 AAMDNodes AAInfo; 3842 I.getAAMetadata(AAInfo); 3843 3844 MachineMemOperand *MMO = 3845 DAG.getMachineFunction(). 3846 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3847 MachineMemOperand::MOStore, VT.getStoreSize(), 3848 Alignment, AAInfo); 3849 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3850 MMO, false /* Truncating */, 3851 IsCompressing); 3852 DAG.setRoot(StoreNode); 3853 setValue(&I, StoreNode); 3854 } 3855 3856 // Get a uniform base for the Gather/Scatter intrinsic. 3857 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3858 // We try to represent it as a base pointer + vector of indices. 3859 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3860 // The first operand of the GEP may be a single pointer or a vector of pointers 3861 // Example: 3862 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3863 // or 3864 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3865 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3866 // 3867 // When the first GEP operand is a single pointer - it is the uniform base we 3868 // are looking for. If first operand of the GEP is a splat vector - we 3869 // extract the splat value and use it as a uniform base. 3870 // In all other cases the function returns 'false'. 3871 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index, 3872 SelectionDAGBuilder* SDB) { 3873 SelectionDAG& DAG = SDB->DAG; 3874 LLVMContext &Context = *DAG.getContext(); 3875 3876 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3877 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3878 if (!GEP) 3879 return false; 3880 3881 const Value *GEPPtr = GEP->getPointerOperand(); 3882 if (!GEPPtr->getType()->isVectorTy()) 3883 Ptr = GEPPtr; 3884 else if (!(Ptr = getSplatValue(GEPPtr))) 3885 return false; 3886 3887 unsigned FinalIndex = GEP->getNumOperands() - 1; 3888 Value *IndexVal = GEP->getOperand(FinalIndex); 3889 3890 // Ensure all the other indices are 0. 3891 for (unsigned i = 1; i < FinalIndex; ++i) { 3892 auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i)); 3893 if (!C || !C->isZero()) 3894 return false; 3895 } 3896 3897 // The operands of the GEP may be defined in another basic block. 3898 // In this case we'll not find nodes for the operands. 3899 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3900 return false; 3901 3902 Base = SDB->getValue(Ptr); 3903 Index = SDB->getValue(IndexVal); 3904 3905 // Suppress sign extension. 3906 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3907 if (SDB->findValue(Sext->getOperand(0))) { 3908 IndexVal = Sext->getOperand(0); 3909 Index = SDB->getValue(IndexVal); 3910 } 3911 } 3912 if (!Index.getValueType().isVector()) { 3913 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3914 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3915 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 3916 } 3917 return true; 3918 } 3919 3920 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3921 SDLoc sdl = getCurSDLoc(); 3922 3923 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3924 const Value *Ptr = I.getArgOperand(1); 3925 SDValue Src0 = getValue(I.getArgOperand(0)); 3926 SDValue Mask = getValue(I.getArgOperand(3)); 3927 EVT VT = Src0.getValueType(); 3928 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3929 if (!Alignment) 3930 Alignment = DAG.getEVTAlignment(VT); 3931 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3932 3933 AAMDNodes AAInfo; 3934 I.getAAMetadata(AAInfo); 3935 3936 SDValue Base; 3937 SDValue Index; 3938 const Value *BasePtr = Ptr; 3939 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3940 3941 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3942 MachineMemOperand *MMO = DAG.getMachineFunction(). 3943 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3944 MachineMemOperand::MOStore, VT.getStoreSize(), 3945 Alignment, AAInfo); 3946 if (!UniformBase) { 3947 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3948 Index = getValue(Ptr); 3949 } 3950 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3951 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3952 Ops, MMO); 3953 DAG.setRoot(Scatter); 3954 setValue(&I, Scatter); 3955 } 3956 3957 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 3958 SDLoc sdl = getCurSDLoc(); 3959 3960 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3961 unsigned& Alignment) { 3962 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3963 Ptr = I.getArgOperand(0); 3964 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 3965 Mask = I.getArgOperand(2); 3966 Src0 = I.getArgOperand(3); 3967 }; 3968 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3969 unsigned& Alignment) { 3970 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 3971 Ptr = I.getArgOperand(0); 3972 Alignment = 0; 3973 Mask = I.getArgOperand(1); 3974 Src0 = I.getArgOperand(2); 3975 }; 3976 3977 Value *PtrOperand, *MaskOperand, *Src0Operand; 3978 unsigned Alignment; 3979 if (IsExpanding) 3980 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3981 else 3982 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3983 3984 SDValue Ptr = getValue(PtrOperand); 3985 SDValue Src0 = getValue(Src0Operand); 3986 SDValue Mask = getValue(MaskOperand); 3987 3988 EVT VT = Src0.getValueType(); 3989 if (!Alignment) 3990 Alignment = DAG.getEVTAlignment(VT); 3991 3992 AAMDNodes AAInfo; 3993 I.getAAMetadata(AAInfo); 3994 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3995 3996 // Do not serialize masked loads of constant memory with anything. 3997 bool AddToChain = !AA || !AA->pointsToConstantMemory(MemoryLocation( 3998 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), AAInfo)); 3999 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4000 4001 MachineMemOperand *MMO = 4002 DAG.getMachineFunction(). 4003 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4004 MachineMemOperand::MOLoad, VT.getStoreSize(), 4005 Alignment, AAInfo, Ranges); 4006 4007 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 4008 ISD::NON_EXTLOAD, IsExpanding); 4009 if (AddToChain) { 4010 SDValue OutChain = Load.getValue(1); 4011 DAG.setRoot(OutChain); 4012 } 4013 setValue(&I, Load); 4014 } 4015 4016 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4017 SDLoc sdl = getCurSDLoc(); 4018 4019 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4020 const Value *Ptr = I.getArgOperand(0); 4021 SDValue Src0 = getValue(I.getArgOperand(3)); 4022 SDValue Mask = getValue(I.getArgOperand(2)); 4023 4024 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4025 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4026 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 4027 if (!Alignment) 4028 Alignment = DAG.getEVTAlignment(VT); 4029 4030 AAMDNodes AAInfo; 4031 I.getAAMetadata(AAInfo); 4032 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4033 4034 SDValue Root = DAG.getRoot(); 4035 SDValue Base; 4036 SDValue Index; 4037 const Value *BasePtr = Ptr; 4038 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 4039 bool ConstantMemory = false; 4040 if (UniformBase && 4041 AA && AA->pointsToConstantMemory(MemoryLocation( 4042 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 4043 AAInfo))) { 4044 // Do not serialize (non-volatile) loads of constant memory with anything. 4045 Root = DAG.getEntryNode(); 4046 ConstantMemory = true; 4047 } 4048 4049 MachineMemOperand *MMO = 4050 DAG.getMachineFunction(). 4051 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 4052 MachineMemOperand::MOLoad, VT.getStoreSize(), 4053 Alignment, AAInfo, Ranges); 4054 4055 if (!UniformBase) { 4056 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4057 Index = getValue(Ptr); 4058 } 4059 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 4060 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4061 Ops, MMO); 4062 4063 SDValue OutChain = Gather.getValue(1); 4064 if (!ConstantMemory) 4065 PendingLoads.push_back(OutChain); 4066 setValue(&I, Gather); 4067 } 4068 4069 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4070 SDLoc dl = getCurSDLoc(); 4071 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 4072 AtomicOrdering FailureOrder = I.getFailureOrdering(); 4073 SyncScope::ID SSID = I.getSyncScopeID(); 4074 4075 SDValue InChain = getRoot(); 4076 4077 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4078 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4079 SDValue L = DAG.getAtomicCmpSwap( 4080 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 4081 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 4082 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 4083 /*Alignment=*/ 0, SuccessOrder, FailureOrder, SSID); 4084 4085 SDValue OutChain = L.getValue(2); 4086 4087 setValue(&I, L); 4088 DAG.setRoot(OutChain); 4089 } 4090 4091 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4092 SDLoc dl = getCurSDLoc(); 4093 ISD::NodeType NT; 4094 switch (I.getOperation()) { 4095 default: llvm_unreachable("Unknown atomicrmw operation"); 4096 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4097 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4098 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4099 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4100 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4101 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4102 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4103 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4104 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4105 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4106 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4107 } 4108 AtomicOrdering Order = I.getOrdering(); 4109 SyncScope::ID SSID = I.getSyncScopeID(); 4110 4111 SDValue InChain = getRoot(); 4112 4113 SDValue L = 4114 DAG.getAtomic(NT, dl, 4115 getValue(I.getValOperand()).getSimpleValueType(), 4116 InChain, 4117 getValue(I.getPointerOperand()), 4118 getValue(I.getValOperand()), 4119 I.getPointerOperand(), 4120 /* Alignment=*/ 0, Order, SSID); 4121 4122 SDValue OutChain = L.getValue(1); 4123 4124 setValue(&I, L); 4125 DAG.setRoot(OutChain); 4126 } 4127 4128 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4129 SDLoc dl = getCurSDLoc(); 4130 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4131 SDValue Ops[3]; 4132 Ops[0] = getRoot(); 4133 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl, 4134 TLI.getFenceOperandTy(DAG.getDataLayout())); 4135 Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl, 4136 TLI.getFenceOperandTy(DAG.getDataLayout())); 4137 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4138 } 4139 4140 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4141 SDLoc dl = getCurSDLoc(); 4142 AtomicOrdering Order = I.getOrdering(); 4143 SyncScope::ID SSID = I.getSyncScopeID(); 4144 4145 SDValue InChain = getRoot(); 4146 4147 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4148 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4149 4150 if (I.getAlignment() < VT.getSizeInBits() / 8) 4151 report_fatal_error("Cannot generate unaligned atomic load"); 4152 4153 MachineMemOperand *MMO = 4154 DAG.getMachineFunction(). 4155 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4156 MachineMemOperand::MOVolatile | 4157 MachineMemOperand::MOLoad, 4158 VT.getStoreSize(), 4159 I.getAlignment() ? I.getAlignment() : 4160 DAG.getEVTAlignment(VT), 4161 AAMDNodes(), nullptr, SSID, Order); 4162 4163 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4164 SDValue L = 4165 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 4166 getValue(I.getPointerOperand()), MMO); 4167 4168 SDValue OutChain = L.getValue(1); 4169 4170 setValue(&I, L); 4171 DAG.setRoot(OutChain); 4172 } 4173 4174 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4175 SDLoc dl = getCurSDLoc(); 4176 4177 AtomicOrdering Order = I.getOrdering(); 4178 SyncScope::ID SSID = I.getSyncScopeID(); 4179 4180 SDValue InChain = getRoot(); 4181 4182 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4183 EVT VT = 4184 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4185 4186 if (I.getAlignment() < VT.getSizeInBits() / 8) 4187 report_fatal_error("Cannot generate unaligned atomic store"); 4188 4189 SDValue OutChain = 4190 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 4191 InChain, 4192 getValue(I.getPointerOperand()), 4193 getValue(I.getValueOperand()), 4194 I.getPointerOperand(), I.getAlignment(), 4195 Order, SSID); 4196 4197 DAG.setRoot(OutChain); 4198 } 4199 4200 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4201 /// node. 4202 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4203 unsigned Intrinsic) { 4204 // Ignore the callsite's attributes. A specific call site may be marked with 4205 // readnone, but the lowering code will expect the chain based on the 4206 // definition. 4207 const Function *F = I.getCalledFunction(); 4208 bool HasChain = !F->doesNotAccessMemory(); 4209 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4210 4211 // Build the operand list. 4212 SmallVector<SDValue, 8> Ops; 4213 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4214 if (OnlyLoad) { 4215 // We don't need to serialize loads against other loads. 4216 Ops.push_back(DAG.getRoot()); 4217 } else { 4218 Ops.push_back(getRoot()); 4219 } 4220 } 4221 4222 // Info is set by getTgtMemInstrinsic 4223 TargetLowering::IntrinsicInfo Info; 4224 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4225 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 4226 4227 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4228 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4229 Info.opc == ISD::INTRINSIC_W_CHAIN) 4230 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4231 TLI.getPointerTy(DAG.getDataLayout()))); 4232 4233 // Add all operands of the call to the operand list. 4234 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4235 SDValue Op = getValue(I.getArgOperand(i)); 4236 Ops.push_back(Op); 4237 } 4238 4239 SmallVector<EVT, 4> ValueVTs; 4240 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4241 4242 if (HasChain) 4243 ValueVTs.push_back(MVT::Other); 4244 4245 SDVTList VTs = DAG.getVTList(ValueVTs); 4246 4247 // Create the node. 4248 SDValue Result; 4249 if (IsTgtIntrinsic) { 4250 // This is target intrinsic that touches memory 4251 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 4252 VTs, Ops, Info.memVT, 4253 MachinePointerInfo(Info.ptrVal, Info.offset), 4254 Info.align, Info.vol, 4255 Info.readMem, Info.writeMem, Info.size); 4256 } else if (!HasChain) { 4257 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4258 } else if (!I.getType()->isVoidTy()) { 4259 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4260 } else { 4261 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4262 } 4263 4264 if (HasChain) { 4265 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4266 if (OnlyLoad) 4267 PendingLoads.push_back(Chain); 4268 else 4269 DAG.setRoot(Chain); 4270 } 4271 4272 if (!I.getType()->isVoidTy()) { 4273 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4274 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4275 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4276 } else 4277 Result = lowerRangeToAssertZExt(DAG, I, Result); 4278 4279 setValue(&I, Result); 4280 } 4281 } 4282 4283 /// GetSignificand - Get the significand and build it into a floating-point 4284 /// number with exponent of 1: 4285 /// 4286 /// Op = (Op & 0x007fffff) | 0x3f800000; 4287 /// 4288 /// where Op is the hexadecimal representation of floating point value. 4289 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4290 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4291 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4292 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4293 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4294 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4295 } 4296 4297 /// GetExponent - Get the exponent: 4298 /// 4299 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4300 /// 4301 /// where Op is the hexadecimal representation of floating point value. 4302 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4303 const TargetLowering &TLI, const SDLoc &dl) { 4304 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4305 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4306 SDValue t1 = DAG.getNode( 4307 ISD::SRL, dl, MVT::i32, t0, 4308 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4309 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4310 DAG.getConstant(127, dl, MVT::i32)); 4311 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4312 } 4313 4314 /// getF32Constant - Get 32-bit floating point constant. 4315 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4316 const SDLoc &dl) { 4317 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4318 MVT::f32); 4319 } 4320 4321 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4322 SelectionDAG &DAG) { 4323 // TODO: What fast-math-flags should be set on the floating-point nodes? 4324 4325 // IntegerPartOfX = ((int32_t)(t0); 4326 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4327 4328 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4329 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4330 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4331 4332 // IntegerPartOfX <<= 23; 4333 IntegerPartOfX = DAG.getNode( 4334 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4335 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4336 DAG.getDataLayout()))); 4337 4338 SDValue TwoToFractionalPartOfX; 4339 if (LimitFloatPrecision <= 6) { 4340 // For floating-point precision of 6: 4341 // 4342 // TwoToFractionalPartOfX = 4343 // 0.997535578f + 4344 // (0.735607626f + 0.252464424f * x) * x; 4345 // 4346 // error 0.0144103317, which is 6 bits 4347 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4348 getF32Constant(DAG, 0x3e814304, dl)); 4349 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4350 getF32Constant(DAG, 0x3f3c50c8, dl)); 4351 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4352 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4353 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4354 } else if (LimitFloatPrecision <= 12) { 4355 // For floating-point precision of 12: 4356 // 4357 // TwoToFractionalPartOfX = 4358 // 0.999892986f + 4359 // (0.696457318f + 4360 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4361 // 4362 // error 0.000107046256, which is 13 to 14 bits 4363 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4364 getF32Constant(DAG, 0x3da235e3, dl)); 4365 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4366 getF32Constant(DAG, 0x3e65b8f3, dl)); 4367 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4368 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4369 getF32Constant(DAG, 0x3f324b07, dl)); 4370 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4371 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4372 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4373 } else { // LimitFloatPrecision <= 18 4374 // For floating-point precision of 18: 4375 // 4376 // TwoToFractionalPartOfX = 4377 // 0.999999982f + 4378 // (0.693148872f + 4379 // (0.240227044f + 4380 // (0.554906021e-1f + 4381 // (0.961591928e-2f + 4382 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4383 // error 2.47208000*10^(-7), which is better than 18 bits 4384 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4385 getF32Constant(DAG, 0x3924b03e, dl)); 4386 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4387 getF32Constant(DAG, 0x3ab24b87, dl)); 4388 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4389 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4390 getF32Constant(DAG, 0x3c1d8c17, dl)); 4391 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4392 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4393 getF32Constant(DAG, 0x3d634a1d, dl)); 4394 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4395 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4396 getF32Constant(DAG, 0x3e75fe14, dl)); 4397 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4398 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4399 getF32Constant(DAG, 0x3f317234, dl)); 4400 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4401 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4402 getF32Constant(DAG, 0x3f800000, dl)); 4403 } 4404 4405 // Add the exponent into the result in integer domain. 4406 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4407 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4408 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4409 } 4410 4411 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4412 /// limited-precision mode. 4413 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4414 const TargetLowering &TLI) { 4415 if (Op.getValueType() == MVT::f32 && 4416 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4417 4418 // Put the exponent in the right bit position for later addition to the 4419 // final result: 4420 // 4421 // #define LOG2OFe 1.4426950f 4422 // t0 = Op * LOG2OFe 4423 4424 // TODO: What fast-math-flags should be set here? 4425 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4426 getF32Constant(DAG, 0x3fb8aa3b, dl)); 4427 return getLimitedPrecisionExp2(t0, dl, DAG); 4428 } 4429 4430 // No special expansion. 4431 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4432 } 4433 4434 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4435 /// limited-precision mode. 4436 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4437 const TargetLowering &TLI) { 4438 // TODO: What fast-math-flags should be set on the floating-point nodes? 4439 4440 if (Op.getValueType() == MVT::f32 && 4441 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4442 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4443 4444 // Scale the exponent by log(2) [0.69314718f]. 4445 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4446 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4447 getF32Constant(DAG, 0x3f317218, dl)); 4448 4449 // Get the significand and build it into a floating-point number with 4450 // exponent of 1. 4451 SDValue X = GetSignificand(DAG, Op1, dl); 4452 4453 SDValue LogOfMantissa; 4454 if (LimitFloatPrecision <= 6) { 4455 // For floating-point precision of 6: 4456 // 4457 // LogofMantissa = 4458 // -1.1609546f + 4459 // (1.4034025f - 0.23903021f * x) * x; 4460 // 4461 // error 0.0034276066, which is better than 8 bits 4462 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4463 getF32Constant(DAG, 0xbe74c456, dl)); 4464 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4465 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4466 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4467 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4468 getF32Constant(DAG, 0x3f949a29, dl)); 4469 } else if (LimitFloatPrecision <= 12) { 4470 // For floating-point precision of 12: 4471 // 4472 // LogOfMantissa = 4473 // -1.7417939f + 4474 // (2.8212026f + 4475 // (-1.4699568f + 4476 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4477 // 4478 // error 0.000061011436, which is 14 bits 4479 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4480 getF32Constant(DAG, 0xbd67b6d6, dl)); 4481 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4482 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4483 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4484 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4485 getF32Constant(DAG, 0x3fbc278b, dl)); 4486 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4487 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4488 getF32Constant(DAG, 0x40348e95, dl)); 4489 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4490 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4491 getF32Constant(DAG, 0x3fdef31a, dl)); 4492 } else { // LimitFloatPrecision <= 18 4493 // For floating-point precision of 18: 4494 // 4495 // LogOfMantissa = 4496 // -2.1072184f + 4497 // (4.2372794f + 4498 // (-3.7029485f + 4499 // (2.2781945f + 4500 // (-0.87823314f + 4501 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4502 // 4503 // error 0.0000023660568, which is better than 18 bits 4504 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4505 getF32Constant(DAG, 0xbc91e5ac, dl)); 4506 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4507 getF32Constant(DAG, 0x3e4350aa, dl)); 4508 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4509 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4510 getF32Constant(DAG, 0x3f60d3e3, dl)); 4511 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4512 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4513 getF32Constant(DAG, 0x4011cdf0, dl)); 4514 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4515 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4516 getF32Constant(DAG, 0x406cfd1c, dl)); 4517 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4518 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4519 getF32Constant(DAG, 0x408797cb, dl)); 4520 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4521 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4522 getF32Constant(DAG, 0x4006dcab, dl)); 4523 } 4524 4525 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4526 } 4527 4528 // No special expansion. 4529 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4530 } 4531 4532 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4533 /// limited-precision mode. 4534 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4535 const TargetLowering &TLI) { 4536 // TODO: What fast-math-flags should be set on the floating-point nodes? 4537 4538 if (Op.getValueType() == MVT::f32 && 4539 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4540 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4541 4542 // Get the exponent. 4543 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4544 4545 // Get the significand and build it into a floating-point number with 4546 // exponent of 1. 4547 SDValue X = GetSignificand(DAG, Op1, dl); 4548 4549 // Different possible minimax approximations of significand in 4550 // floating-point for various degrees of accuracy over [1,2]. 4551 SDValue Log2ofMantissa; 4552 if (LimitFloatPrecision <= 6) { 4553 // For floating-point precision of 6: 4554 // 4555 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4556 // 4557 // error 0.0049451742, which is more than 7 bits 4558 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4559 getF32Constant(DAG, 0xbeb08fe0, dl)); 4560 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4561 getF32Constant(DAG, 0x40019463, dl)); 4562 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4563 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4564 getF32Constant(DAG, 0x3fd6633d, dl)); 4565 } else if (LimitFloatPrecision <= 12) { 4566 // For floating-point precision of 12: 4567 // 4568 // Log2ofMantissa = 4569 // -2.51285454f + 4570 // (4.07009056f + 4571 // (-2.12067489f + 4572 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4573 // 4574 // error 0.0000876136000, which is better than 13 bits 4575 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4576 getF32Constant(DAG, 0xbda7262e, dl)); 4577 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4578 getF32Constant(DAG, 0x3f25280b, dl)); 4579 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4580 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4581 getF32Constant(DAG, 0x4007b923, dl)); 4582 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4583 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4584 getF32Constant(DAG, 0x40823e2f, dl)); 4585 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4586 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4587 getF32Constant(DAG, 0x4020d29c, dl)); 4588 } else { // LimitFloatPrecision <= 18 4589 // For floating-point precision of 18: 4590 // 4591 // Log2ofMantissa = 4592 // -3.0400495f + 4593 // (6.1129976f + 4594 // (-5.3420409f + 4595 // (3.2865683f + 4596 // (-1.2669343f + 4597 // (0.27515199f - 4598 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4599 // 4600 // error 0.0000018516, which is better than 18 bits 4601 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4602 getF32Constant(DAG, 0xbcd2769e, dl)); 4603 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4604 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4605 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4606 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4607 getF32Constant(DAG, 0x3fa22ae7, dl)); 4608 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4609 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4610 getF32Constant(DAG, 0x40525723, dl)); 4611 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4612 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4613 getF32Constant(DAG, 0x40aaf200, dl)); 4614 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4615 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4616 getF32Constant(DAG, 0x40c39dad, dl)); 4617 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4618 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4619 getF32Constant(DAG, 0x4042902c, dl)); 4620 } 4621 4622 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4623 } 4624 4625 // No special expansion. 4626 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4627 } 4628 4629 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4630 /// limited-precision mode. 4631 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4632 const TargetLowering &TLI) { 4633 // TODO: What fast-math-flags should be set on the floating-point nodes? 4634 4635 if (Op.getValueType() == MVT::f32 && 4636 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4637 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4638 4639 // Scale the exponent by log10(2) [0.30102999f]. 4640 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4641 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4642 getF32Constant(DAG, 0x3e9a209a, dl)); 4643 4644 // Get the significand and build it into a floating-point number with 4645 // exponent of 1. 4646 SDValue X = GetSignificand(DAG, Op1, dl); 4647 4648 SDValue Log10ofMantissa; 4649 if (LimitFloatPrecision <= 6) { 4650 // For floating-point precision of 6: 4651 // 4652 // Log10ofMantissa = 4653 // -0.50419619f + 4654 // (0.60948995f - 0.10380950f * x) * x; 4655 // 4656 // error 0.0014886165, which is 6 bits 4657 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4658 getF32Constant(DAG, 0xbdd49a13, dl)); 4659 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4660 getF32Constant(DAG, 0x3f1c0789, dl)); 4661 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4662 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4663 getF32Constant(DAG, 0x3f011300, dl)); 4664 } else if (LimitFloatPrecision <= 12) { 4665 // For floating-point precision of 12: 4666 // 4667 // Log10ofMantissa = 4668 // -0.64831180f + 4669 // (0.91751397f + 4670 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4671 // 4672 // error 0.00019228036, which is better than 12 bits 4673 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4674 getF32Constant(DAG, 0x3d431f31, dl)); 4675 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4676 getF32Constant(DAG, 0x3ea21fb2, dl)); 4677 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4678 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4679 getF32Constant(DAG, 0x3f6ae232, dl)); 4680 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4681 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4682 getF32Constant(DAG, 0x3f25f7c3, dl)); 4683 } else { // LimitFloatPrecision <= 18 4684 // For floating-point precision of 18: 4685 // 4686 // Log10ofMantissa = 4687 // -0.84299375f + 4688 // (1.5327582f + 4689 // (-1.0688956f + 4690 // (0.49102474f + 4691 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4692 // 4693 // error 0.0000037995730, which is better than 18 bits 4694 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4695 getF32Constant(DAG, 0x3c5d51ce, dl)); 4696 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4697 getF32Constant(DAG, 0x3e00685a, dl)); 4698 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4699 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4700 getF32Constant(DAG, 0x3efb6798, dl)); 4701 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4702 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4703 getF32Constant(DAG, 0x3f88d192, dl)); 4704 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4705 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4706 getF32Constant(DAG, 0x3fc4316c, dl)); 4707 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4708 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4709 getF32Constant(DAG, 0x3f57ce70, dl)); 4710 } 4711 4712 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4713 } 4714 4715 // No special expansion. 4716 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4717 } 4718 4719 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4720 /// limited-precision mode. 4721 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4722 const TargetLowering &TLI) { 4723 if (Op.getValueType() == MVT::f32 && 4724 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4725 return getLimitedPrecisionExp2(Op, dl, DAG); 4726 4727 // No special expansion. 4728 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4729 } 4730 4731 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4732 /// limited-precision mode with x == 10.0f. 4733 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 4734 SelectionDAG &DAG, const TargetLowering &TLI) { 4735 bool IsExp10 = false; 4736 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4737 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4738 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4739 APFloat Ten(10.0f); 4740 IsExp10 = LHSC->isExactlyValue(Ten); 4741 } 4742 } 4743 4744 // TODO: What fast-math-flags should be set on the FMUL node? 4745 if (IsExp10) { 4746 // Put the exponent in the right bit position for later addition to the 4747 // final result: 4748 // 4749 // #define LOG2OF10 3.3219281f 4750 // t0 = Op * LOG2OF10; 4751 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4752 getF32Constant(DAG, 0x40549a78, dl)); 4753 return getLimitedPrecisionExp2(t0, dl, DAG); 4754 } 4755 4756 // No special expansion. 4757 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4758 } 4759 4760 /// ExpandPowI - Expand a llvm.powi intrinsic. 4761 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 4762 SelectionDAG &DAG) { 4763 // If RHS is a constant, we can expand this out to a multiplication tree, 4764 // otherwise we end up lowering to a call to __powidf2 (for example). When 4765 // optimizing for size, we only want to do this if the expansion would produce 4766 // a small number of multiplies, otherwise we do the full expansion. 4767 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4768 // Get the exponent as a positive value. 4769 unsigned Val = RHSC->getSExtValue(); 4770 if ((int)Val < 0) Val = -Val; 4771 4772 // powi(x, 0) -> 1.0 4773 if (Val == 0) 4774 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4775 4776 const Function *F = DAG.getMachineFunction().getFunction(); 4777 if (!F->optForSize() || 4778 // If optimizing for size, don't insert too many multiplies. 4779 // This inserts up to 5 multiplies. 4780 countPopulation(Val) + Log2_32(Val) < 7) { 4781 // We use the simple binary decomposition method to generate the multiply 4782 // sequence. There are more optimal ways to do this (for example, 4783 // powi(x,15) generates one more multiply than it should), but this has 4784 // the benefit of being both really simple and much better than a libcall. 4785 SDValue Res; // Logically starts equal to 1.0 4786 SDValue CurSquare = LHS; 4787 // TODO: Intrinsics should have fast-math-flags that propagate to these 4788 // nodes. 4789 while (Val) { 4790 if (Val & 1) { 4791 if (Res.getNode()) 4792 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4793 else 4794 Res = CurSquare; // 1.0*CurSquare. 4795 } 4796 4797 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4798 CurSquare, CurSquare); 4799 Val >>= 1; 4800 } 4801 4802 // If the original was negative, invert the result, producing 1/(x*x*x). 4803 if (RHSC->getSExtValue() < 0) 4804 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4805 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4806 return Res; 4807 } 4808 } 4809 4810 // Otherwise, expand to a libcall. 4811 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4812 } 4813 4814 // getUnderlyingArgReg - Find underlying register used for a truncated or 4815 // bitcasted argument. 4816 static unsigned getUnderlyingArgReg(const SDValue &N) { 4817 switch (N.getOpcode()) { 4818 case ISD::CopyFromReg: 4819 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4820 case ISD::BITCAST: 4821 case ISD::AssertZext: 4822 case ISD::AssertSext: 4823 case ISD::TRUNCATE: 4824 return getUnderlyingArgReg(N.getOperand(0)); 4825 default: 4826 return 0; 4827 } 4828 } 4829 4830 /// If the DbgValueInst is a dbg_value of a function argument, create the 4831 /// corresponding DBG_VALUE machine instruction for it now. At the end of 4832 /// instruction selection, they will be inserted to the entry BB. 4833 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4834 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4835 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 4836 const Argument *Arg = dyn_cast<Argument>(V); 4837 if (!Arg) 4838 return false; 4839 4840 MachineFunction &MF = DAG.getMachineFunction(); 4841 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4842 4843 bool IsIndirect = false; 4844 Optional<MachineOperand> Op; 4845 // Some arguments' frame index is recorded during argument lowering. 4846 int FI = FuncInfo.getArgumentFrameIndex(Arg); 4847 if (FI != std::numeric_limits<int>::max()) 4848 Op = MachineOperand::CreateFI(FI); 4849 4850 if (!Op && N.getNode()) { 4851 unsigned Reg = getUnderlyingArgReg(N); 4852 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4853 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4854 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4855 if (PR) 4856 Reg = PR; 4857 } 4858 if (Reg) { 4859 Op = MachineOperand::CreateReg(Reg, false); 4860 IsIndirect = IsDbgDeclare; 4861 } 4862 } 4863 4864 if (!Op) { 4865 // Check if ValueMap has reg number. 4866 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4867 if (VMI != FuncInfo.ValueMap.end()) { 4868 const auto &TLI = DAG.getTargetLoweringInfo(); 4869 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 4870 V->getType(), isABIRegCopy(V)); 4871 unsigned NumRegs = 4872 std::accumulate(RFV.RegCount.begin(), RFV.RegCount.end(), 0); 4873 if (NumRegs > 1) { 4874 unsigned I = 0; 4875 unsigned Offset = 0; 4876 auto RegisterVT = RFV.RegVTs.begin(); 4877 for (auto RegCount : RFV.RegCount) { 4878 unsigned RegisterSize = (RegisterVT++)->getSizeInBits(); 4879 for (unsigned E = I + RegCount; I != E; ++I) { 4880 // The vregs are guaranteed to be allocated in sequence. 4881 Op = MachineOperand::CreateReg(VMI->second + I, false); 4882 auto FragmentExpr = DIExpression::createFragmentExpression( 4883 Expr, Offset, RegisterSize); 4884 if (!FragmentExpr) 4885 continue; 4886 FuncInfo.ArgDbgValues.push_back( 4887 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, 4888 Op->getReg(), Variable, *FragmentExpr)); 4889 Offset += RegisterSize; 4890 } 4891 } 4892 return true; 4893 } 4894 Op = MachineOperand::CreateReg(VMI->second, false); 4895 IsIndirect = IsDbgDeclare; 4896 } 4897 } 4898 4899 if (!Op && N.getNode()) 4900 // Check if frame index is available. 4901 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4902 if (FrameIndexSDNode *FINode = 4903 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4904 Op = MachineOperand::CreateFI(FINode->getIndex()); 4905 4906 if (!Op) 4907 return false; 4908 4909 assert(Variable->isValidLocationForIntrinsic(DL) && 4910 "Expected inlined-at fields to agree"); 4911 if (Op->isReg()) 4912 FuncInfo.ArgDbgValues.push_back( 4913 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4914 Op->getReg(), Variable, Expr)); 4915 else 4916 FuncInfo.ArgDbgValues.push_back( 4917 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4918 .add(*Op) 4919 .addImm(0) 4920 .addMetadata(Variable) 4921 .addMetadata(Expr)); 4922 4923 return true; 4924 } 4925 4926 /// Return the appropriate SDDbgValue based on N. 4927 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 4928 DILocalVariable *Variable, 4929 DIExpression *Expr, 4930 const DebugLoc &dl, 4931 unsigned DbgSDNodeOrder) { 4932 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 4933 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 4934 // stack slot locations as such instead of as indirectly addressed 4935 // locations. 4936 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), dl, 4937 DbgSDNodeOrder); 4938 } 4939 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), false, dl, 4940 DbgSDNodeOrder); 4941 } 4942 4943 // VisualStudio defines setjmp as _setjmp 4944 #if defined(_MSC_VER) && defined(setjmp) && \ 4945 !defined(setjmp_undefined_for_msvc) 4946 # pragma push_macro("setjmp") 4947 # undef setjmp 4948 # define setjmp_undefined_for_msvc 4949 #endif 4950 4951 /// Lower the call to the specified intrinsic function. If we want to emit this 4952 /// as a call to a named external function, return the name. Otherwise, lower it 4953 /// and return null. 4954 const char * 4955 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4956 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4957 SDLoc sdl = getCurSDLoc(); 4958 DebugLoc dl = getCurDebugLoc(); 4959 SDValue Res; 4960 4961 switch (Intrinsic) { 4962 default: 4963 // By default, turn this into a target intrinsic node. 4964 visitTargetIntrinsic(I, Intrinsic); 4965 return nullptr; 4966 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4967 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4968 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4969 case Intrinsic::returnaddress: 4970 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4971 TLI.getPointerTy(DAG.getDataLayout()), 4972 getValue(I.getArgOperand(0)))); 4973 return nullptr; 4974 case Intrinsic::addressofreturnaddress: 4975 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 4976 TLI.getPointerTy(DAG.getDataLayout()))); 4977 return nullptr; 4978 case Intrinsic::frameaddress: 4979 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4980 TLI.getPointerTy(DAG.getDataLayout()), 4981 getValue(I.getArgOperand(0)))); 4982 return nullptr; 4983 case Intrinsic::read_register: { 4984 Value *Reg = I.getArgOperand(0); 4985 SDValue Chain = getRoot(); 4986 SDValue RegName = 4987 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4988 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4989 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4990 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4991 setValue(&I, Res); 4992 DAG.setRoot(Res.getValue(1)); 4993 return nullptr; 4994 } 4995 case Intrinsic::write_register: { 4996 Value *Reg = I.getArgOperand(0); 4997 Value *RegValue = I.getArgOperand(1); 4998 SDValue Chain = getRoot(); 4999 SDValue RegName = 5000 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5001 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5002 RegName, getValue(RegValue))); 5003 return nullptr; 5004 } 5005 case Intrinsic::setjmp: 5006 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 5007 case Intrinsic::longjmp: 5008 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 5009 case Intrinsic::memcpy: { 5010 SDValue Op1 = getValue(I.getArgOperand(0)); 5011 SDValue Op2 = getValue(I.getArgOperand(1)); 5012 SDValue Op3 = getValue(I.getArgOperand(2)); 5013 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 5014 if (!Align) 5015 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5016 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 5017 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5018 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5019 false, isTC, 5020 MachinePointerInfo(I.getArgOperand(0)), 5021 MachinePointerInfo(I.getArgOperand(1))); 5022 updateDAGForMaybeTailCall(MC); 5023 return nullptr; 5024 } 5025 case Intrinsic::memset: { 5026 SDValue Op1 = getValue(I.getArgOperand(0)); 5027 SDValue Op2 = getValue(I.getArgOperand(1)); 5028 SDValue Op3 = getValue(I.getArgOperand(2)); 5029 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 5030 if (!Align) 5031 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 5032 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 5033 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5034 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5035 isTC, MachinePointerInfo(I.getArgOperand(0))); 5036 updateDAGForMaybeTailCall(MS); 5037 return nullptr; 5038 } 5039 case Intrinsic::memmove: { 5040 SDValue Op1 = getValue(I.getArgOperand(0)); 5041 SDValue Op2 = getValue(I.getArgOperand(1)); 5042 SDValue Op3 = getValue(I.getArgOperand(2)); 5043 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 5044 if (!Align) 5045 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 5046 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 5047 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5048 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5049 isTC, MachinePointerInfo(I.getArgOperand(0)), 5050 MachinePointerInfo(I.getArgOperand(1))); 5051 updateDAGForMaybeTailCall(MM); 5052 return nullptr; 5053 } 5054 case Intrinsic::memcpy_element_unordered_atomic: { 5055 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5056 SDValue Dst = getValue(MI.getRawDest()); 5057 SDValue Src = getValue(MI.getRawSource()); 5058 SDValue Length = getValue(MI.getLength()); 5059 5060 // Emit a library call. 5061 TargetLowering::ArgListTy Args; 5062 TargetLowering::ArgListEntry Entry; 5063 Entry.Ty = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 5064 Entry.Node = Dst; 5065 Args.push_back(Entry); 5066 5067 Entry.Node = Src; 5068 Args.push_back(Entry); 5069 5070 Entry.Ty = MI.getLength()->getType(); 5071 Entry.Node = Length; 5072 Args.push_back(Entry); 5073 5074 uint64_t ElementSizeConstant = MI.getElementSizeInBytes(); 5075 RTLIB::Libcall LibraryCall = 5076 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElementSizeConstant); 5077 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 5078 report_fatal_error("Unsupported element size"); 5079 5080 TargetLowering::CallLoweringInfo CLI(DAG); 5081 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 5082 TLI.getLibcallCallingConv(LibraryCall), 5083 Type::getVoidTy(*DAG.getContext()), 5084 DAG.getExternalSymbol(TLI.getLibcallName(LibraryCall), 5085 TLI.getPointerTy(DAG.getDataLayout())), 5086 std::move(Args)); 5087 5088 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 5089 DAG.setRoot(CallResult.second); 5090 return nullptr; 5091 } 5092 case Intrinsic::memmove_element_unordered_atomic: { 5093 auto &MI = cast<AtomicMemMoveInst>(I); 5094 SDValue Dst = getValue(MI.getRawDest()); 5095 SDValue Src = getValue(MI.getRawSource()); 5096 SDValue Length = getValue(MI.getLength()); 5097 5098 // Emit a library call. 5099 TargetLowering::ArgListTy Args; 5100 TargetLowering::ArgListEntry Entry; 5101 Entry.Ty = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 5102 Entry.Node = Dst; 5103 Args.push_back(Entry); 5104 5105 Entry.Node = Src; 5106 Args.push_back(Entry); 5107 5108 Entry.Ty = MI.getLength()->getType(); 5109 Entry.Node = Length; 5110 Args.push_back(Entry); 5111 5112 uint64_t ElementSizeConstant = MI.getElementSizeInBytes(); 5113 RTLIB::Libcall LibraryCall = 5114 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElementSizeConstant); 5115 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 5116 report_fatal_error("Unsupported element size"); 5117 5118 TargetLowering::CallLoweringInfo CLI(DAG); 5119 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 5120 TLI.getLibcallCallingConv(LibraryCall), 5121 Type::getVoidTy(*DAG.getContext()), 5122 DAG.getExternalSymbol(TLI.getLibcallName(LibraryCall), 5123 TLI.getPointerTy(DAG.getDataLayout())), 5124 std::move(Args)); 5125 5126 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 5127 DAG.setRoot(CallResult.second); 5128 return nullptr; 5129 } 5130 case Intrinsic::memset_element_unordered_atomic: { 5131 auto &MI = cast<AtomicMemSetInst>(I); 5132 SDValue Dst = getValue(MI.getRawDest()); 5133 SDValue Val = getValue(MI.getValue()); 5134 SDValue Length = getValue(MI.getLength()); 5135 5136 // Emit a library call. 5137 TargetLowering::ArgListTy Args; 5138 TargetLowering::ArgListEntry Entry; 5139 Entry.Ty = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 5140 Entry.Node = Dst; 5141 Args.push_back(Entry); 5142 5143 Entry.Ty = Type::getInt8Ty(*DAG.getContext()); 5144 Entry.Node = Val; 5145 Args.push_back(Entry); 5146 5147 Entry.Ty = MI.getLength()->getType(); 5148 Entry.Node = Length; 5149 Args.push_back(Entry); 5150 5151 uint64_t ElementSizeConstant = MI.getElementSizeInBytes(); 5152 RTLIB::Libcall LibraryCall = 5153 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElementSizeConstant); 5154 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 5155 report_fatal_error("Unsupported element size"); 5156 5157 TargetLowering::CallLoweringInfo CLI(DAG); 5158 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 5159 TLI.getLibcallCallingConv(LibraryCall), 5160 Type::getVoidTy(*DAG.getContext()), 5161 DAG.getExternalSymbol(TLI.getLibcallName(LibraryCall), 5162 TLI.getPointerTy(DAG.getDataLayout())), 5163 std::move(Args)); 5164 5165 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 5166 DAG.setRoot(CallResult.second); 5167 return nullptr; 5168 } 5169 case Intrinsic::dbg_addr: 5170 case Intrinsic::dbg_declare: { 5171 const DbgInfoIntrinsic &DI = cast<DbgInfoIntrinsic>(I); 5172 DILocalVariable *Variable = DI.getVariable(); 5173 DIExpression *Expression = DI.getExpression(); 5174 assert(Variable && "Missing variable"); 5175 5176 // Check if address has undef value. 5177 const Value *Address = DI.getVariableLocation(); 5178 if (!Address || isa<UndefValue>(Address) || 5179 (Address->use_empty() && !isa<Argument>(Address))) { 5180 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5181 return nullptr; 5182 } 5183 5184 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5185 5186 // Check if this variable can be described by a frame index, typically 5187 // either as a static alloca or a byval parameter. 5188 int FI = std::numeric_limits<int>::max(); 5189 if (const auto *AI = 5190 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5191 if (AI->isStaticAlloca()) { 5192 auto I = FuncInfo.StaticAllocaMap.find(AI); 5193 if (I != FuncInfo.StaticAllocaMap.end()) 5194 FI = I->second; 5195 } 5196 } else if (const auto *Arg = dyn_cast<Argument>( 5197 Address->stripInBoundsConstantOffsets())) { 5198 FI = FuncInfo.getArgumentFrameIndex(Arg); 5199 } 5200 5201 // llvm.dbg.addr is control dependent and always generates indirect 5202 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5203 // the MachineFunction variable table. 5204 if (FI != std::numeric_limits<int>::max()) { 5205 if (Intrinsic == Intrinsic::dbg_addr) 5206 DAG.AddDbgValue(DAG.getFrameIndexDbgValue(Variable, Expression, FI, dl, 5207 SDNodeOrder), 5208 getRoot().getNode(), isParameter); 5209 return nullptr; 5210 } 5211 5212 SDValue &N = NodeMap[Address]; 5213 if (!N.getNode() && isa<Argument>(Address)) 5214 // Check unused arguments map. 5215 N = UnusedArgNodeMap[Address]; 5216 SDDbgValue *SDV; 5217 if (N.getNode()) { 5218 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5219 Address = BCI->getOperand(0); 5220 // Parameters are handled specially. 5221 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5222 if (isParameter && FINode) { 5223 // Byval parameter. We have a frame index at this point. 5224 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, 5225 FINode->getIndex(), dl, SDNodeOrder); 5226 } else if (isa<Argument>(Address)) { 5227 // Address is an argument, so try to emit its dbg value using 5228 // virtual register info from the FuncInfo.ValueMap. 5229 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5230 return nullptr; 5231 } else { 5232 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5233 true, dl, SDNodeOrder); 5234 } 5235 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5236 } else { 5237 // If Address is an argument then try to emit its dbg value using 5238 // virtual register info from the FuncInfo.ValueMap. 5239 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5240 N)) { 5241 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5242 } 5243 } 5244 return nullptr; 5245 } 5246 case Intrinsic::dbg_value: { 5247 const DbgValueInst &DI = cast<DbgValueInst>(I); 5248 assert(DI.getVariable() && "Missing variable"); 5249 5250 DILocalVariable *Variable = DI.getVariable(); 5251 DIExpression *Expression = DI.getExpression(); 5252 const Value *V = DI.getValue(); 5253 if (!V) 5254 return nullptr; 5255 5256 SDDbgValue *SDV; 5257 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 5258 SDV = DAG.getConstantDbgValue(Variable, Expression, V, dl, SDNodeOrder); 5259 DAG.AddDbgValue(SDV, nullptr, false); 5260 return nullptr; 5261 } 5262 5263 // Do not use getValue() in here; we don't want to generate code at 5264 // this point if it hasn't been done yet. 5265 SDValue N = NodeMap[V]; 5266 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 5267 N = UnusedArgNodeMap[V]; 5268 if (N.getNode()) { 5269 if (EmitFuncArgumentDbgValue(V, Variable, Expression, dl, false, N)) 5270 return nullptr; 5271 SDV = getDbgValue(N, Variable, Expression, dl, SDNodeOrder); 5272 DAG.AddDbgValue(SDV, N.getNode(), false); 5273 return nullptr; 5274 } 5275 5276 if (!V->use_empty() ) { 5277 // Do not call getValue(V) yet, as we don't want to generate code. 5278 // Remember it for later. 5279 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 5280 DanglingDebugInfoMap[V] = DDI; 5281 return nullptr; 5282 } 5283 5284 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 5285 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 5286 return nullptr; 5287 } 5288 5289 case Intrinsic::eh_typeid_for: { 5290 // Find the type id for the given typeinfo. 5291 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5292 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5293 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5294 setValue(&I, Res); 5295 return nullptr; 5296 } 5297 5298 case Intrinsic::eh_return_i32: 5299 case Intrinsic::eh_return_i64: 5300 DAG.getMachineFunction().setCallsEHReturn(true); 5301 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5302 MVT::Other, 5303 getControlRoot(), 5304 getValue(I.getArgOperand(0)), 5305 getValue(I.getArgOperand(1)))); 5306 return nullptr; 5307 case Intrinsic::eh_unwind_init: 5308 DAG.getMachineFunction().setCallsUnwindInit(true); 5309 return nullptr; 5310 case Intrinsic::eh_dwarf_cfa: 5311 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5312 TLI.getPointerTy(DAG.getDataLayout()), 5313 getValue(I.getArgOperand(0)))); 5314 return nullptr; 5315 case Intrinsic::eh_sjlj_callsite: { 5316 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5317 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5318 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5319 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5320 5321 MMI.setCurrentCallSite(CI->getZExtValue()); 5322 return nullptr; 5323 } 5324 case Intrinsic::eh_sjlj_functioncontext: { 5325 // Get and store the index of the function context. 5326 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5327 AllocaInst *FnCtx = 5328 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5329 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5330 MFI.setFunctionContextIndex(FI); 5331 return nullptr; 5332 } 5333 case Intrinsic::eh_sjlj_setjmp: { 5334 SDValue Ops[2]; 5335 Ops[0] = getRoot(); 5336 Ops[1] = getValue(I.getArgOperand(0)); 5337 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5338 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5339 setValue(&I, Op.getValue(0)); 5340 DAG.setRoot(Op.getValue(1)); 5341 return nullptr; 5342 } 5343 case Intrinsic::eh_sjlj_longjmp: 5344 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5345 getRoot(), getValue(I.getArgOperand(0)))); 5346 return nullptr; 5347 case Intrinsic::eh_sjlj_setup_dispatch: 5348 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 5349 getRoot())); 5350 return nullptr; 5351 case Intrinsic::masked_gather: 5352 visitMaskedGather(I); 5353 return nullptr; 5354 case Intrinsic::masked_load: 5355 visitMaskedLoad(I); 5356 return nullptr; 5357 case Intrinsic::masked_scatter: 5358 visitMaskedScatter(I); 5359 return nullptr; 5360 case Intrinsic::masked_store: 5361 visitMaskedStore(I); 5362 return nullptr; 5363 case Intrinsic::masked_expandload: 5364 visitMaskedLoad(I, true /* IsExpanding */); 5365 return nullptr; 5366 case Intrinsic::masked_compressstore: 5367 visitMaskedStore(I, true /* IsCompressing */); 5368 return nullptr; 5369 case Intrinsic::x86_mmx_pslli_w: 5370 case Intrinsic::x86_mmx_pslli_d: 5371 case Intrinsic::x86_mmx_pslli_q: 5372 case Intrinsic::x86_mmx_psrli_w: 5373 case Intrinsic::x86_mmx_psrli_d: 5374 case Intrinsic::x86_mmx_psrli_q: 5375 case Intrinsic::x86_mmx_psrai_w: 5376 case Intrinsic::x86_mmx_psrai_d: { 5377 SDValue ShAmt = getValue(I.getArgOperand(1)); 5378 if (isa<ConstantSDNode>(ShAmt)) { 5379 visitTargetIntrinsic(I, Intrinsic); 5380 return nullptr; 5381 } 5382 unsigned NewIntrinsic = 0; 5383 EVT ShAmtVT = MVT::v2i32; 5384 switch (Intrinsic) { 5385 case Intrinsic::x86_mmx_pslli_w: 5386 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5387 break; 5388 case Intrinsic::x86_mmx_pslli_d: 5389 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5390 break; 5391 case Intrinsic::x86_mmx_pslli_q: 5392 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5393 break; 5394 case Intrinsic::x86_mmx_psrli_w: 5395 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5396 break; 5397 case Intrinsic::x86_mmx_psrli_d: 5398 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5399 break; 5400 case Intrinsic::x86_mmx_psrli_q: 5401 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5402 break; 5403 case Intrinsic::x86_mmx_psrai_w: 5404 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5405 break; 5406 case Intrinsic::x86_mmx_psrai_d: 5407 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5408 break; 5409 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5410 } 5411 5412 // The vector shift intrinsics with scalars uses 32b shift amounts but 5413 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5414 // to be zero. 5415 // We must do this early because v2i32 is not a legal type. 5416 SDValue ShOps[2]; 5417 ShOps[0] = ShAmt; 5418 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 5419 ShAmt = DAG.getBuildVector(ShAmtVT, sdl, ShOps); 5420 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5421 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5422 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5423 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 5424 getValue(I.getArgOperand(0)), ShAmt); 5425 setValue(&I, Res); 5426 return nullptr; 5427 } 5428 case Intrinsic::powi: 5429 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5430 getValue(I.getArgOperand(1)), DAG)); 5431 return nullptr; 5432 case Intrinsic::log: 5433 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5434 return nullptr; 5435 case Intrinsic::log2: 5436 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5437 return nullptr; 5438 case Intrinsic::log10: 5439 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5440 return nullptr; 5441 case Intrinsic::exp: 5442 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5443 return nullptr; 5444 case Intrinsic::exp2: 5445 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5446 return nullptr; 5447 case Intrinsic::pow: 5448 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5449 getValue(I.getArgOperand(1)), DAG, TLI)); 5450 return nullptr; 5451 case Intrinsic::sqrt: 5452 case Intrinsic::fabs: 5453 case Intrinsic::sin: 5454 case Intrinsic::cos: 5455 case Intrinsic::floor: 5456 case Intrinsic::ceil: 5457 case Intrinsic::trunc: 5458 case Intrinsic::rint: 5459 case Intrinsic::nearbyint: 5460 case Intrinsic::round: 5461 case Intrinsic::canonicalize: { 5462 unsigned Opcode; 5463 switch (Intrinsic) { 5464 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5465 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5466 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5467 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5468 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5469 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5470 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5471 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5472 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5473 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5474 case Intrinsic::round: Opcode = ISD::FROUND; break; 5475 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 5476 } 5477 5478 setValue(&I, DAG.getNode(Opcode, sdl, 5479 getValue(I.getArgOperand(0)).getValueType(), 5480 getValue(I.getArgOperand(0)))); 5481 return nullptr; 5482 } 5483 case Intrinsic::minnum: { 5484 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5485 unsigned Opc = 5486 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT) 5487 ? ISD::FMINNAN 5488 : ISD::FMINNUM; 5489 setValue(&I, DAG.getNode(Opc, sdl, VT, 5490 getValue(I.getArgOperand(0)), 5491 getValue(I.getArgOperand(1)))); 5492 return nullptr; 5493 } 5494 case Intrinsic::maxnum: { 5495 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5496 unsigned Opc = 5497 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT) 5498 ? ISD::FMAXNAN 5499 : ISD::FMAXNUM; 5500 setValue(&I, DAG.getNode(Opc, sdl, VT, 5501 getValue(I.getArgOperand(0)), 5502 getValue(I.getArgOperand(1)))); 5503 return nullptr; 5504 } 5505 case Intrinsic::copysign: 5506 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5507 getValue(I.getArgOperand(0)).getValueType(), 5508 getValue(I.getArgOperand(0)), 5509 getValue(I.getArgOperand(1)))); 5510 return nullptr; 5511 case Intrinsic::fma: 5512 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5513 getValue(I.getArgOperand(0)).getValueType(), 5514 getValue(I.getArgOperand(0)), 5515 getValue(I.getArgOperand(1)), 5516 getValue(I.getArgOperand(2)))); 5517 return nullptr; 5518 case Intrinsic::experimental_constrained_fadd: 5519 case Intrinsic::experimental_constrained_fsub: 5520 case Intrinsic::experimental_constrained_fmul: 5521 case Intrinsic::experimental_constrained_fdiv: 5522 case Intrinsic::experimental_constrained_frem: 5523 case Intrinsic::experimental_constrained_fma: 5524 case Intrinsic::experimental_constrained_sqrt: 5525 case Intrinsic::experimental_constrained_pow: 5526 case Intrinsic::experimental_constrained_powi: 5527 case Intrinsic::experimental_constrained_sin: 5528 case Intrinsic::experimental_constrained_cos: 5529 case Intrinsic::experimental_constrained_exp: 5530 case Intrinsic::experimental_constrained_exp2: 5531 case Intrinsic::experimental_constrained_log: 5532 case Intrinsic::experimental_constrained_log10: 5533 case Intrinsic::experimental_constrained_log2: 5534 case Intrinsic::experimental_constrained_rint: 5535 case Intrinsic::experimental_constrained_nearbyint: 5536 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 5537 return nullptr; 5538 case Intrinsic::fmuladd: { 5539 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5540 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5541 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 5542 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5543 getValue(I.getArgOperand(0)).getValueType(), 5544 getValue(I.getArgOperand(0)), 5545 getValue(I.getArgOperand(1)), 5546 getValue(I.getArgOperand(2)))); 5547 } else { 5548 // TODO: Intrinsic calls should have fast-math-flags. 5549 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5550 getValue(I.getArgOperand(0)).getValueType(), 5551 getValue(I.getArgOperand(0)), 5552 getValue(I.getArgOperand(1))); 5553 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5554 getValue(I.getArgOperand(0)).getValueType(), 5555 Mul, 5556 getValue(I.getArgOperand(2))); 5557 setValue(&I, Add); 5558 } 5559 return nullptr; 5560 } 5561 case Intrinsic::convert_to_fp16: 5562 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5563 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5564 getValue(I.getArgOperand(0)), 5565 DAG.getTargetConstant(0, sdl, 5566 MVT::i32)))); 5567 return nullptr; 5568 case Intrinsic::convert_from_fp16: 5569 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 5570 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5571 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5572 getValue(I.getArgOperand(0))))); 5573 return nullptr; 5574 case Intrinsic::pcmarker: { 5575 SDValue Tmp = getValue(I.getArgOperand(0)); 5576 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5577 return nullptr; 5578 } 5579 case Intrinsic::readcyclecounter: { 5580 SDValue Op = getRoot(); 5581 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5582 DAG.getVTList(MVT::i64, MVT::Other), Op); 5583 setValue(&I, Res); 5584 DAG.setRoot(Res.getValue(1)); 5585 return nullptr; 5586 } 5587 case Intrinsic::bitreverse: 5588 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 5589 getValue(I.getArgOperand(0)).getValueType(), 5590 getValue(I.getArgOperand(0)))); 5591 return nullptr; 5592 case Intrinsic::bswap: 5593 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5594 getValue(I.getArgOperand(0)).getValueType(), 5595 getValue(I.getArgOperand(0)))); 5596 return nullptr; 5597 case Intrinsic::cttz: { 5598 SDValue Arg = getValue(I.getArgOperand(0)); 5599 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5600 EVT Ty = Arg.getValueType(); 5601 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5602 sdl, Ty, Arg)); 5603 return nullptr; 5604 } 5605 case Intrinsic::ctlz: { 5606 SDValue Arg = getValue(I.getArgOperand(0)); 5607 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5608 EVT Ty = Arg.getValueType(); 5609 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5610 sdl, Ty, Arg)); 5611 return nullptr; 5612 } 5613 case Intrinsic::ctpop: { 5614 SDValue Arg = getValue(I.getArgOperand(0)); 5615 EVT Ty = Arg.getValueType(); 5616 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5617 return nullptr; 5618 } 5619 case Intrinsic::stacksave: { 5620 SDValue Op = getRoot(); 5621 Res = DAG.getNode( 5622 ISD::STACKSAVE, sdl, 5623 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 5624 setValue(&I, Res); 5625 DAG.setRoot(Res.getValue(1)); 5626 return nullptr; 5627 } 5628 case Intrinsic::stackrestore: 5629 Res = getValue(I.getArgOperand(0)); 5630 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5631 return nullptr; 5632 case Intrinsic::get_dynamic_area_offset: { 5633 SDValue Op = getRoot(); 5634 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5635 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5636 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 5637 // target. 5638 if (PtrTy != ResTy) 5639 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 5640 " intrinsic!"); 5641 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 5642 Op); 5643 DAG.setRoot(Op); 5644 setValue(&I, Res); 5645 return nullptr; 5646 } 5647 case Intrinsic::stackguard: { 5648 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5649 MachineFunction &MF = DAG.getMachineFunction(); 5650 const Module &M = *MF.getFunction()->getParent(); 5651 SDValue Chain = getRoot(); 5652 if (TLI.useLoadStackGuardNode()) { 5653 Res = getLoadStackGuard(DAG, sdl, Chain); 5654 } else { 5655 const Value *Global = TLI.getSDagStackGuard(M); 5656 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 5657 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 5658 MachinePointerInfo(Global, 0), Align, 5659 MachineMemOperand::MOVolatile); 5660 } 5661 DAG.setRoot(Chain); 5662 setValue(&I, Res); 5663 return nullptr; 5664 } 5665 case Intrinsic::stackprotector: { 5666 // Emit code into the DAG to store the stack guard onto the stack. 5667 MachineFunction &MF = DAG.getMachineFunction(); 5668 MachineFrameInfo &MFI = MF.getFrameInfo(); 5669 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5670 SDValue Src, Chain = getRoot(); 5671 5672 if (TLI.useLoadStackGuardNode()) 5673 Src = getLoadStackGuard(DAG, sdl, Chain); 5674 else 5675 Src = getValue(I.getArgOperand(0)); // The guard's value. 5676 5677 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5678 5679 int FI = FuncInfo.StaticAllocaMap[Slot]; 5680 MFI.setStackProtectorIndex(FI); 5681 5682 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5683 5684 // Store the stack protector onto the stack. 5685 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 5686 DAG.getMachineFunction(), FI), 5687 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 5688 setValue(&I, Res); 5689 DAG.setRoot(Res); 5690 return nullptr; 5691 } 5692 case Intrinsic::objectsize: { 5693 // If we don't know by now, we're never going to know. 5694 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5695 5696 assert(CI && "Non-constant type in __builtin_object_size?"); 5697 5698 SDValue Arg = getValue(I.getCalledValue()); 5699 EVT Ty = Arg.getValueType(); 5700 5701 if (CI->isZero()) 5702 Res = DAG.getConstant(-1ULL, sdl, Ty); 5703 else 5704 Res = DAG.getConstant(0, sdl, Ty); 5705 5706 setValue(&I, Res); 5707 return nullptr; 5708 } 5709 case Intrinsic::annotation: 5710 case Intrinsic::ptr_annotation: 5711 case Intrinsic::invariant_group_barrier: 5712 // Drop the intrinsic, but forward the value 5713 setValue(&I, getValue(I.getOperand(0))); 5714 return nullptr; 5715 case Intrinsic::assume: 5716 case Intrinsic::var_annotation: 5717 case Intrinsic::sideeffect: 5718 // Discard annotate attributes, assumptions, and artificial side-effects. 5719 return nullptr; 5720 5721 case Intrinsic::codeview_annotation: { 5722 // Emit a label associated with this metadata. 5723 MachineFunction &MF = DAG.getMachineFunction(); 5724 MCSymbol *Label = 5725 MF.getMMI().getContext().createTempSymbol("annotation", true); 5726 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 5727 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 5728 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 5729 DAG.setRoot(Res); 5730 return nullptr; 5731 } 5732 5733 case Intrinsic::init_trampoline: { 5734 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5735 5736 SDValue Ops[6]; 5737 Ops[0] = getRoot(); 5738 Ops[1] = getValue(I.getArgOperand(0)); 5739 Ops[2] = getValue(I.getArgOperand(1)); 5740 Ops[3] = getValue(I.getArgOperand(2)); 5741 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5742 Ops[5] = DAG.getSrcValue(F); 5743 5744 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5745 5746 DAG.setRoot(Res); 5747 return nullptr; 5748 } 5749 case Intrinsic::adjust_trampoline: 5750 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5751 TLI.getPointerTy(DAG.getDataLayout()), 5752 getValue(I.getArgOperand(0)))); 5753 return nullptr; 5754 case Intrinsic::gcroot: { 5755 MachineFunction &MF = DAG.getMachineFunction(); 5756 const Function *F = MF.getFunction(); 5757 (void)F; 5758 assert(F->hasGC() && 5759 "only valid in functions with gc specified, enforced by Verifier"); 5760 assert(GFI && "implied by previous"); 5761 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5762 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5763 5764 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5765 GFI->addStackRoot(FI->getIndex(), TypeMap); 5766 return nullptr; 5767 } 5768 case Intrinsic::gcread: 5769 case Intrinsic::gcwrite: 5770 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5771 case Intrinsic::flt_rounds: 5772 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5773 return nullptr; 5774 5775 case Intrinsic::expect: 5776 // Just replace __builtin_expect(exp, c) with EXP. 5777 setValue(&I, getValue(I.getArgOperand(0))); 5778 return nullptr; 5779 5780 case Intrinsic::debugtrap: 5781 case Intrinsic::trap: { 5782 StringRef TrapFuncName = 5783 I.getAttributes() 5784 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 5785 .getValueAsString(); 5786 if (TrapFuncName.empty()) { 5787 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5788 ISD::TRAP : ISD::DEBUGTRAP; 5789 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5790 return nullptr; 5791 } 5792 TargetLowering::ArgListTy Args; 5793 5794 TargetLowering::CallLoweringInfo CLI(DAG); 5795 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 5796 CallingConv::C, I.getType(), 5797 DAG.getExternalSymbol(TrapFuncName.data(), 5798 TLI.getPointerTy(DAG.getDataLayout())), 5799 std::move(Args)); 5800 5801 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5802 DAG.setRoot(Result.second); 5803 return nullptr; 5804 } 5805 5806 case Intrinsic::uadd_with_overflow: 5807 case Intrinsic::sadd_with_overflow: 5808 case Intrinsic::usub_with_overflow: 5809 case Intrinsic::ssub_with_overflow: 5810 case Intrinsic::umul_with_overflow: 5811 case Intrinsic::smul_with_overflow: { 5812 ISD::NodeType Op; 5813 switch (Intrinsic) { 5814 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5815 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5816 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5817 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5818 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5819 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5820 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5821 } 5822 SDValue Op1 = getValue(I.getArgOperand(0)); 5823 SDValue Op2 = getValue(I.getArgOperand(1)); 5824 5825 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5826 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5827 return nullptr; 5828 } 5829 case Intrinsic::prefetch: { 5830 SDValue Ops[5]; 5831 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5832 Ops[0] = getRoot(); 5833 Ops[1] = getValue(I.getArgOperand(0)); 5834 Ops[2] = getValue(I.getArgOperand(1)); 5835 Ops[3] = getValue(I.getArgOperand(2)); 5836 Ops[4] = getValue(I.getArgOperand(3)); 5837 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5838 DAG.getVTList(MVT::Other), Ops, 5839 EVT::getIntegerVT(*Context, 8), 5840 MachinePointerInfo(I.getArgOperand(0)), 5841 0, /* align */ 5842 false, /* volatile */ 5843 rw==0, /* read */ 5844 rw==1)); /* write */ 5845 return nullptr; 5846 } 5847 case Intrinsic::lifetime_start: 5848 case Intrinsic::lifetime_end: { 5849 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5850 // Stack coloring is not enabled in O0, discard region information. 5851 if (TM.getOptLevel() == CodeGenOpt::None) 5852 return nullptr; 5853 5854 SmallVector<Value *, 4> Allocas; 5855 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5856 5857 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5858 E = Allocas.end(); Object != E; ++Object) { 5859 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5860 5861 // Could not find an Alloca. 5862 if (!LifetimeObject) 5863 continue; 5864 5865 // First check that the Alloca is static, otherwise it won't have a 5866 // valid frame index. 5867 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5868 if (SI == FuncInfo.StaticAllocaMap.end()) 5869 return nullptr; 5870 5871 int FI = SI->second; 5872 5873 SDValue Ops[2]; 5874 Ops[0] = getRoot(); 5875 Ops[1] = 5876 DAG.getFrameIndex(FI, TLI.getFrameIndexTy(DAG.getDataLayout()), true); 5877 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5878 5879 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5880 DAG.setRoot(Res); 5881 } 5882 return nullptr; 5883 } 5884 case Intrinsic::invariant_start: 5885 // Discard region information. 5886 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5887 return nullptr; 5888 case Intrinsic::invariant_end: 5889 // Discard region information. 5890 return nullptr; 5891 case Intrinsic::clear_cache: 5892 return TLI.getClearCacheBuiltinName(); 5893 case Intrinsic::donothing: 5894 // ignore 5895 return nullptr; 5896 case Intrinsic::experimental_stackmap: 5897 visitStackmap(I); 5898 return nullptr; 5899 case Intrinsic::experimental_patchpoint_void: 5900 case Intrinsic::experimental_patchpoint_i64: 5901 visitPatchpoint(&I); 5902 return nullptr; 5903 case Intrinsic::experimental_gc_statepoint: 5904 LowerStatepoint(ImmutableStatepoint(&I)); 5905 return nullptr; 5906 case Intrinsic::experimental_gc_result: 5907 visitGCResult(cast<GCResultInst>(I)); 5908 return nullptr; 5909 case Intrinsic::experimental_gc_relocate: 5910 visitGCRelocate(cast<GCRelocateInst>(I)); 5911 return nullptr; 5912 case Intrinsic::instrprof_increment: 5913 llvm_unreachable("instrprof failed to lower an increment"); 5914 case Intrinsic::instrprof_value_profile: 5915 llvm_unreachable("instrprof failed to lower a value profiling call"); 5916 case Intrinsic::localescape: { 5917 MachineFunction &MF = DAG.getMachineFunction(); 5918 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5919 5920 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5921 // is the same on all targets. 5922 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5923 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5924 if (isa<ConstantPointerNull>(Arg)) 5925 continue; // Skip null pointers. They represent a hole in index space. 5926 AllocaInst *Slot = cast<AllocaInst>(Arg); 5927 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5928 "can only escape static allocas"); 5929 int FI = FuncInfo.StaticAllocaMap[Slot]; 5930 MCSymbol *FrameAllocSym = 5931 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5932 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 5933 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5934 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5935 .addSym(FrameAllocSym) 5936 .addFrameIndex(FI); 5937 } 5938 5939 return nullptr; 5940 } 5941 5942 case Intrinsic::localrecover: { 5943 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5944 MachineFunction &MF = DAG.getMachineFunction(); 5945 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5946 5947 // Get the symbol that defines the frame offset. 5948 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5949 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5950 unsigned IdxVal = 5951 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 5952 MCSymbol *FrameAllocSym = 5953 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5954 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 5955 5956 // Create a MCSymbol for the label to avoid any target lowering 5957 // that would make this PC relative. 5958 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5959 SDValue OffsetVal = 5960 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5961 5962 // Add the offset to the FP. 5963 Value *FP = I.getArgOperand(1); 5964 SDValue FPVal = getValue(FP); 5965 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5966 setValue(&I, Add); 5967 5968 return nullptr; 5969 } 5970 5971 case Intrinsic::eh_exceptionpointer: 5972 case Intrinsic::eh_exceptioncode: { 5973 // Get the exception pointer vreg, copy from it, and resize it to fit. 5974 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 5975 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5976 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5977 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 5978 SDValue N = 5979 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5980 if (Intrinsic == Intrinsic::eh_exceptioncode) 5981 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5982 setValue(&I, N); 5983 return nullptr; 5984 } 5985 case Intrinsic::xray_customevent: { 5986 // Here we want to make sure that the intrinsic behaves as if it has a 5987 // specific calling convention, and only for x86_64. 5988 // FIXME: Support other platforms later. 5989 const auto &Triple = DAG.getTarget().getTargetTriple(); 5990 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 5991 return nullptr; 5992 5993 SDLoc DL = getCurSDLoc(); 5994 SmallVector<SDValue, 8> Ops; 5995 5996 // We want to say that we always want the arguments in registers. 5997 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 5998 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 5999 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6000 SDValue Chain = getRoot(); 6001 Ops.push_back(LogEntryVal); 6002 Ops.push_back(StrSizeVal); 6003 Ops.push_back(Chain); 6004 6005 // We need to enforce the calling convention for the callsite, so that 6006 // argument ordering is enforced correctly, and that register allocation can 6007 // see that some registers may be assumed clobbered and have to preserve 6008 // them across calls to the intrinsic. 6009 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6010 DL, NodeTys, Ops); 6011 SDValue patchableNode = SDValue(MN, 0); 6012 DAG.setRoot(patchableNode); 6013 setValue(&I, patchableNode); 6014 return nullptr; 6015 } 6016 case Intrinsic::experimental_deoptimize: 6017 LowerDeoptimizeCall(&I); 6018 return nullptr; 6019 6020 case Intrinsic::experimental_vector_reduce_fadd: 6021 case Intrinsic::experimental_vector_reduce_fmul: 6022 case Intrinsic::experimental_vector_reduce_add: 6023 case Intrinsic::experimental_vector_reduce_mul: 6024 case Intrinsic::experimental_vector_reduce_and: 6025 case Intrinsic::experimental_vector_reduce_or: 6026 case Intrinsic::experimental_vector_reduce_xor: 6027 case Intrinsic::experimental_vector_reduce_smax: 6028 case Intrinsic::experimental_vector_reduce_smin: 6029 case Intrinsic::experimental_vector_reduce_umax: 6030 case Intrinsic::experimental_vector_reduce_umin: 6031 case Intrinsic::experimental_vector_reduce_fmax: 6032 case Intrinsic::experimental_vector_reduce_fmin: 6033 visitVectorReduce(I, Intrinsic); 6034 return nullptr; 6035 } 6036 } 6037 6038 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6039 const ConstrainedFPIntrinsic &FPI) { 6040 SDLoc sdl = getCurSDLoc(); 6041 unsigned Opcode; 6042 switch (FPI.getIntrinsicID()) { 6043 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6044 case Intrinsic::experimental_constrained_fadd: 6045 Opcode = ISD::STRICT_FADD; 6046 break; 6047 case Intrinsic::experimental_constrained_fsub: 6048 Opcode = ISD::STRICT_FSUB; 6049 break; 6050 case Intrinsic::experimental_constrained_fmul: 6051 Opcode = ISD::STRICT_FMUL; 6052 break; 6053 case Intrinsic::experimental_constrained_fdiv: 6054 Opcode = ISD::STRICT_FDIV; 6055 break; 6056 case Intrinsic::experimental_constrained_frem: 6057 Opcode = ISD::STRICT_FREM; 6058 break; 6059 case Intrinsic::experimental_constrained_fma: 6060 Opcode = ISD::STRICT_FMA; 6061 break; 6062 case Intrinsic::experimental_constrained_sqrt: 6063 Opcode = ISD::STRICT_FSQRT; 6064 break; 6065 case Intrinsic::experimental_constrained_pow: 6066 Opcode = ISD::STRICT_FPOW; 6067 break; 6068 case Intrinsic::experimental_constrained_powi: 6069 Opcode = ISD::STRICT_FPOWI; 6070 break; 6071 case Intrinsic::experimental_constrained_sin: 6072 Opcode = ISD::STRICT_FSIN; 6073 break; 6074 case Intrinsic::experimental_constrained_cos: 6075 Opcode = ISD::STRICT_FCOS; 6076 break; 6077 case Intrinsic::experimental_constrained_exp: 6078 Opcode = ISD::STRICT_FEXP; 6079 break; 6080 case Intrinsic::experimental_constrained_exp2: 6081 Opcode = ISD::STRICT_FEXP2; 6082 break; 6083 case Intrinsic::experimental_constrained_log: 6084 Opcode = ISD::STRICT_FLOG; 6085 break; 6086 case Intrinsic::experimental_constrained_log10: 6087 Opcode = ISD::STRICT_FLOG10; 6088 break; 6089 case Intrinsic::experimental_constrained_log2: 6090 Opcode = ISD::STRICT_FLOG2; 6091 break; 6092 case Intrinsic::experimental_constrained_rint: 6093 Opcode = ISD::STRICT_FRINT; 6094 break; 6095 case Intrinsic::experimental_constrained_nearbyint: 6096 Opcode = ISD::STRICT_FNEARBYINT; 6097 break; 6098 } 6099 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6100 SDValue Chain = getRoot(); 6101 SmallVector<EVT, 4> ValueVTs; 6102 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6103 ValueVTs.push_back(MVT::Other); // Out chain 6104 6105 SDVTList VTs = DAG.getVTList(ValueVTs); 6106 SDValue Result; 6107 if (FPI.isUnaryOp()) 6108 Result = DAG.getNode(Opcode, sdl, VTs, 6109 { Chain, getValue(FPI.getArgOperand(0)) }); 6110 else if (FPI.isTernaryOp()) 6111 Result = DAG.getNode(Opcode, sdl, VTs, 6112 { Chain, getValue(FPI.getArgOperand(0)), 6113 getValue(FPI.getArgOperand(1)), 6114 getValue(FPI.getArgOperand(2)) }); 6115 else 6116 Result = DAG.getNode(Opcode, sdl, VTs, 6117 { Chain, getValue(FPI.getArgOperand(0)), 6118 getValue(FPI.getArgOperand(1)) }); 6119 6120 assert(Result.getNode()->getNumValues() == 2); 6121 SDValue OutChain = Result.getValue(1); 6122 DAG.setRoot(OutChain); 6123 SDValue FPResult = Result.getValue(0); 6124 setValue(&FPI, FPResult); 6125 } 6126 6127 std::pair<SDValue, SDValue> 6128 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 6129 const BasicBlock *EHPadBB) { 6130 MachineFunction &MF = DAG.getMachineFunction(); 6131 MachineModuleInfo &MMI = MF.getMMI(); 6132 MCSymbol *BeginLabel = nullptr; 6133 6134 if (EHPadBB) { 6135 // Insert a label before the invoke call to mark the try range. This can be 6136 // used to detect deletion of the invoke via the MachineModuleInfo. 6137 BeginLabel = MMI.getContext().createTempSymbol(); 6138 6139 // For SjLj, keep track of which landing pads go with which invokes 6140 // so as to maintain the ordering of pads in the LSDA. 6141 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 6142 if (CallSiteIndex) { 6143 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 6144 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 6145 6146 // Now that the call site is handled, stop tracking it. 6147 MMI.setCurrentCallSite(0); 6148 } 6149 6150 // Both PendingLoads and PendingExports must be flushed here; 6151 // this call might not return. 6152 (void)getRoot(); 6153 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 6154 6155 CLI.setChain(getRoot()); 6156 } 6157 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6158 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6159 6160 assert((CLI.IsTailCall || Result.second.getNode()) && 6161 "Non-null chain expected with non-tail call!"); 6162 assert((Result.second.getNode() || !Result.first.getNode()) && 6163 "Null value expected with tail call!"); 6164 6165 if (!Result.second.getNode()) { 6166 // As a special case, a null chain means that a tail call has been emitted 6167 // and the DAG root is already updated. 6168 HasTailCall = true; 6169 6170 // Since there's no actual continuation from this block, nothing can be 6171 // relying on us setting vregs for them. 6172 PendingExports.clear(); 6173 } else { 6174 DAG.setRoot(Result.second); 6175 } 6176 6177 if (EHPadBB) { 6178 // Insert a label at the end of the invoke call to mark the try range. This 6179 // can be used to detect deletion of the invoke via the MachineModuleInfo. 6180 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 6181 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 6182 6183 // Inform MachineModuleInfo of range. 6184 if (MF.hasEHFunclets()) { 6185 assert(CLI.CS); 6186 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 6187 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()), 6188 BeginLabel, EndLabel); 6189 } else { 6190 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 6191 } 6192 } 6193 6194 return Result; 6195 } 6196 6197 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 6198 bool isTailCall, 6199 const BasicBlock *EHPadBB) { 6200 auto &DL = DAG.getDataLayout(); 6201 FunctionType *FTy = CS.getFunctionType(); 6202 Type *RetTy = CS.getType(); 6203 6204 TargetLowering::ArgListTy Args; 6205 Args.reserve(CS.arg_size()); 6206 6207 const Value *SwiftErrorVal = nullptr; 6208 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6209 6210 // We can't tail call inside a function with a swifterror argument. Lowering 6211 // does not support this yet. It would have to move into the swifterror 6212 // register before the call. 6213 auto *Caller = CS.getInstruction()->getParent()->getParent(); 6214 if (TLI.supportSwiftError() && 6215 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 6216 isTailCall = false; 6217 6218 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 6219 i != e; ++i) { 6220 TargetLowering::ArgListEntry Entry; 6221 const Value *V = *i; 6222 6223 // Skip empty types 6224 if (V->getType()->isEmptyTy()) 6225 continue; 6226 6227 SDValue ArgNode = getValue(V); 6228 Entry.Node = ArgNode; Entry.Ty = V->getType(); 6229 6230 Entry.setAttributes(&CS, i - CS.arg_begin()); 6231 6232 // Use swifterror virtual register as input to the call. 6233 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 6234 SwiftErrorVal = V; 6235 // We find the virtual register for the actual swifterror argument. 6236 // Instead of using the Value, we use the virtual register instead. 6237 Entry.Node = DAG.getRegister(FuncInfo 6238 .getOrCreateSwiftErrorVRegUseAt( 6239 CS.getInstruction(), FuncInfo.MBB, V) 6240 .first, 6241 EVT(TLI.getPointerTy(DL))); 6242 } 6243 6244 Args.push_back(Entry); 6245 6246 // If we have an explicit sret argument that is an Instruction, (i.e., it 6247 // might point to function-local memory), we can't meaningfully tail-call. 6248 if (Entry.IsSRet && isa<Instruction>(V)) 6249 isTailCall = false; 6250 } 6251 6252 // Check if target-independent constraints permit a tail call here. 6253 // Target-dependent constraints are checked within TLI->LowerCallTo. 6254 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 6255 isTailCall = false; 6256 6257 // Disable tail calls if there is an swifterror argument. Targets have not 6258 // been updated to support tail calls. 6259 if (TLI.supportSwiftError() && SwiftErrorVal) 6260 isTailCall = false; 6261 6262 TargetLowering::CallLoweringInfo CLI(DAG); 6263 CLI.setDebugLoc(getCurSDLoc()) 6264 .setChain(getRoot()) 6265 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 6266 .setTailCall(isTailCall) 6267 .setConvergent(CS.isConvergent()); 6268 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 6269 6270 if (Result.first.getNode()) { 6271 const Instruction *Inst = CS.getInstruction(); 6272 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 6273 setValue(Inst, Result.first); 6274 } 6275 6276 // The last element of CLI.InVals has the SDValue for swifterror return. 6277 // Here we copy it to a virtual register and update SwiftErrorMap for 6278 // book-keeping. 6279 if (SwiftErrorVal && TLI.supportSwiftError()) { 6280 // Get the last element of InVals. 6281 SDValue Src = CLI.InVals.back(); 6282 unsigned VReg; bool CreatedVReg; 6283 std::tie(VReg, CreatedVReg) = 6284 FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction()); 6285 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 6286 // We update the virtual register for the actual swifterror argument. 6287 if (CreatedVReg) 6288 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg); 6289 DAG.setRoot(CopyNode); 6290 } 6291 } 6292 6293 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 6294 SelectionDAGBuilder &Builder) { 6295 // Check to see if this load can be trivially constant folded, e.g. if the 6296 // input is from a string literal. 6297 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 6298 // Cast pointer to the type we really want to load. 6299 Type *LoadTy = 6300 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 6301 if (LoadVT.isVector()) 6302 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 6303 6304 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 6305 PointerType::getUnqual(LoadTy)); 6306 6307 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 6308 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 6309 return Builder.getValue(LoadCst); 6310 } 6311 6312 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 6313 // still constant memory, the input chain can be the entry node. 6314 SDValue Root; 6315 bool ConstantMemory = false; 6316 6317 // Do not serialize (non-volatile) loads of constant memory with anything. 6318 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 6319 Root = Builder.DAG.getEntryNode(); 6320 ConstantMemory = true; 6321 } else { 6322 // Do not serialize non-volatile loads against each other. 6323 Root = Builder.DAG.getRoot(); 6324 } 6325 6326 SDValue Ptr = Builder.getValue(PtrVal); 6327 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 6328 Ptr, MachinePointerInfo(PtrVal), 6329 /* Alignment = */ 1); 6330 6331 if (!ConstantMemory) 6332 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 6333 return LoadVal; 6334 } 6335 6336 /// Record the value for an instruction that produces an integer result, 6337 /// converting the type where necessary. 6338 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 6339 SDValue Value, 6340 bool IsSigned) { 6341 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6342 I.getType(), true); 6343 if (IsSigned) 6344 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 6345 else 6346 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 6347 setValue(&I, Value); 6348 } 6349 6350 /// See if we can lower a memcmp call into an optimized form. If so, return 6351 /// true and lower it. Otherwise return false, and it will be lowered like a 6352 /// normal call. 6353 /// The caller already checked that \p I calls the appropriate LibFunc with a 6354 /// correct prototype. 6355 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 6356 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 6357 const Value *Size = I.getArgOperand(2); 6358 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 6359 if (CSize && CSize->getZExtValue() == 0) { 6360 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6361 I.getType(), true); 6362 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 6363 return true; 6364 } 6365 6366 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6367 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 6368 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 6369 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 6370 if (Res.first.getNode()) { 6371 processIntegerCallValue(I, Res.first, true); 6372 PendingLoads.push_back(Res.second); 6373 return true; 6374 } 6375 6376 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 6377 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 6378 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 6379 return false; 6380 6381 // If the target has a fast compare for the given size, it will return a 6382 // preferred load type for that size. Require that the load VT is legal and 6383 // that the target supports unaligned loads of that type. Otherwise, return 6384 // INVALID. 6385 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 6386 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6387 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 6388 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 6389 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 6390 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 6391 // TODO: Check alignment of src and dest ptrs. 6392 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 6393 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 6394 if (!TLI.isTypeLegal(LVT) || 6395 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 6396 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 6397 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 6398 } 6399 6400 return LVT; 6401 }; 6402 6403 // This turns into unaligned loads. We only do this if the target natively 6404 // supports the MVT we'll be loading or if it is small enough (<= 4) that 6405 // we'll only produce a small number of byte loads. 6406 MVT LoadVT; 6407 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 6408 switch (NumBitsToCompare) { 6409 default: 6410 return false; 6411 case 16: 6412 LoadVT = MVT::i16; 6413 break; 6414 case 32: 6415 LoadVT = MVT::i32; 6416 break; 6417 case 64: 6418 case 128: 6419 case 256: 6420 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 6421 break; 6422 } 6423 6424 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 6425 return false; 6426 6427 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 6428 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 6429 6430 // Bitcast to a wide integer type if the loads are vectors. 6431 if (LoadVT.isVector()) { 6432 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 6433 LoadL = DAG.getBitcast(CmpVT, LoadL); 6434 LoadR = DAG.getBitcast(CmpVT, LoadR); 6435 } 6436 6437 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 6438 processIntegerCallValue(I, Cmp, false); 6439 return true; 6440 } 6441 6442 /// See if we can lower a memchr call into an optimized form. If so, return 6443 /// true and lower it. Otherwise return false, and it will be lowered like a 6444 /// normal call. 6445 /// The caller already checked that \p I calls the appropriate LibFunc with a 6446 /// correct prototype. 6447 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 6448 const Value *Src = I.getArgOperand(0); 6449 const Value *Char = I.getArgOperand(1); 6450 const Value *Length = I.getArgOperand(2); 6451 6452 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6453 std::pair<SDValue, SDValue> Res = 6454 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 6455 getValue(Src), getValue(Char), getValue(Length), 6456 MachinePointerInfo(Src)); 6457 if (Res.first.getNode()) { 6458 setValue(&I, Res.first); 6459 PendingLoads.push_back(Res.second); 6460 return true; 6461 } 6462 6463 return false; 6464 } 6465 6466 /// See if we can lower a mempcpy call into an optimized form. If so, return 6467 /// true and lower it. Otherwise return false, and it will be lowered like a 6468 /// normal call. 6469 /// The caller already checked that \p I calls the appropriate LibFunc with a 6470 /// correct prototype. 6471 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 6472 SDValue Dst = getValue(I.getArgOperand(0)); 6473 SDValue Src = getValue(I.getArgOperand(1)); 6474 SDValue Size = getValue(I.getArgOperand(2)); 6475 6476 unsigned DstAlign = DAG.InferPtrAlignment(Dst); 6477 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 6478 unsigned Align = std::min(DstAlign, SrcAlign); 6479 if (Align == 0) // Alignment of one or both could not be inferred. 6480 Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved. 6481 6482 bool isVol = false; 6483 SDLoc sdl = getCurSDLoc(); 6484 6485 // In the mempcpy context we need to pass in a false value for isTailCall 6486 // because the return pointer needs to be adjusted by the size of 6487 // the copied memory. 6488 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol, 6489 false, /*isTailCall=*/false, 6490 MachinePointerInfo(I.getArgOperand(0)), 6491 MachinePointerInfo(I.getArgOperand(1))); 6492 assert(MC.getNode() != nullptr && 6493 "** memcpy should not be lowered as TailCall in mempcpy context **"); 6494 DAG.setRoot(MC); 6495 6496 // Check if Size needs to be truncated or extended. 6497 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 6498 6499 // Adjust return pointer to point just past the last dst byte. 6500 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 6501 Dst, Size); 6502 setValue(&I, DstPlusSize); 6503 return true; 6504 } 6505 6506 /// See if we can lower a strcpy call into an optimized form. If so, return 6507 /// true and lower it, otherwise return false and it will be lowered like a 6508 /// normal call. 6509 /// The caller already checked that \p I calls the appropriate LibFunc with a 6510 /// correct prototype. 6511 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 6512 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6513 6514 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6515 std::pair<SDValue, SDValue> Res = 6516 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 6517 getValue(Arg0), getValue(Arg1), 6518 MachinePointerInfo(Arg0), 6519 MachinePointerInfo(Arg1), isStpcpy); 6520 if (Res.first.getNode()) { 6521 setValue(&I, Res.first); 6522 DAG.setRoot(Res.second); 6523 return true; 6524 } 6525 6526 return false; 6527 } 6528 6529 /// See if we can lower a strcmp call into an optimized form. If so, return 6530 /// true and lower it, otherwise return false and it will be lowered like a 6531 /// normal call. 6532 /// The caller already checked that \p I calls the appropriate LibFunc with a 6533 /// correct prototype. 6534 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 6535 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6536 6537 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6538 std::pair<SDValue, SDValue> Res = 6539 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 6540 getValue(Arg0), getValue(Arg1), 6541 MachinePointerInfo(Arg0), 6542 MachinePointerInfo(Arg1)); 6543 if (Res.first.getNode()) { 6544 processIntegerCallValue(I, Res.first, true); 6545 PendingLoads.push_back(Res.second); 6546 return true; 6547 } 6548 6549 return false; 6550 } 6551 6552 /// See if we can lower a strlen call into an optimized form. If so, return 6553 /// true and lower it, otherwise return false and it will be lowered like a 6554 /// normal call. 6555 /// The caller already checked that \p I calls the appropriate LibFunc with a 6556 /// correct prototype. 6557 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 6558 const Value *Arg0 = I.getArgOperand(0); 6559 6560 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6561 std::pair<SDValue, SDValue> Res = 6562 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 6563 getValue(Arg0), MachinePointerInfo(Arg0)); 6564 if (Res.first.getNode()) { 6565 processIntegerCallValue(I, Res.first, false); 6566 PendingLoads.push_back(Res.second); 6567 return true; 6568 } 6569 6570 return false; 6571 } 6572 6573 /// See if we can lower a strnlen call into an optimized form. If so, return 6574 /// true and lower it, otherwise return false and it will be lowered like a 6575 /// normal call. 6576 /// The caller already checked that \p I calls the appropriate LibFunc with a 6577 /// correct prototype. 6578 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 6579 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6580 6581 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6582 std::pair<SDValue, SDValue> Res = 6583 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 6584 getValue(Arg0), getValue(Arg1), 6585 MachinePointerInfo(Arg0)); 6586 if (Res.first.getNode()) { 6587 processIntegerCallValue(I, Res.first, false); 6588 PendingLoads.push_back(Res.second); 6589 return true; 6590 } 6591 6592 return false; 6593 } 6594 6595 /// See if we can lower a unary floating-point operation into an SDNode with 6596 /// the specified Opcode. If so, return true and lower it, otherwise return 6597 /// false and it will be lowered like a normal call. 6598 /// The caller already checked that \p I calls the appropriate LibFunc with a 6599 /// correct prototype. 6600 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 6601 unsigned Opcode) { 6602 // We already checked this call's prototype; verify it doesn't modify errno. 6603 if (!I.onlyReadsMemory()) 6604 return false; 6605 6606 SDValue Tmp = getValue(I.getArgOperand(0)); 6607 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 6608 return true; 6609 } 6610 6611 /// See if we can lower a binary floating-point operation into an SDNode with 6612 /// the specified Opcode. If so, return true and lower it. Otherwise return 6613 /// false, and it will be lowered like a normal call. 6614 /// The caller already checked that \p I calls the appropriate LibFunc with a 6615 /// correct prototype. 6616 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 6617 unsigned Opcode) { 6618 // We already checked this call's prototype; verify it doesn't modify errno. 6619 if (!I.onlyReadsMemory()) 6620 return false; 6621 6622 SDValue Tmp0 = getValue(I.getArgOperand(0)); 6623 SDValue Tmp1 = getValue(I.getArgOperand(1)); 6624 EVT VT = Tmp0.getValueType(); 6625 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 6626 return true; 6627 } 6628 6629 void SelectionDAGBuilder::visitCall(const CallInst &I) { 6630 // Handle inline assembly differently. 6631 if (isa<InlineAsm>(I.getCalledValue())) { 6632 visitInlineAsm(&I); 6633 return; 6634 } 6635 6636 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6637 computeUsesVAFloatArgument(I, MMI); 6638 6639 const char *RenameFn = nullptr; 6640 if (Function *F = I.getCalledFunction()) { 6641 if (F->isDeclaration()) { 6642 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 6643 if (unsigned IID = II->getIntrinsicID(F)) { 6644 RenameFn = visitIntrinsicCall(I, IID); 6645 if (!RenameFn) 6646 return; 6647 } 6648 } 6649 if (Intrinsic::ID IID = F->getIntrinsicID()) { 6650 RenameFn = visitIntrinsicCall(I, IID); 6651 if (!RenameFn) 6652 return; 6653 } 6654 } 6655 6656 // Check for well-known libc/libm calls. If the function is internal, it 6657 // can't be a library call. Don't do the check if marked as nobuiltin for 6658 // some reason or the call site requires strict floating point semantics. 6659 LibFunc Func; 6660 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 6661 F->hasName() && LibInfo->getLibFunc(*F, Func) && 6662 LibInfo->hasOptimizedCodeGen(Func)) { 6663 switch (Func) { 6664 default: break; 6665 case LibFunc_copysign: 6666 case LibFunc_copysignf: 6667 case LibFunc_copysignl: 6668 // We already checked this call's prototype; verify it doesn't modify 6669 // errno. 6670 if (I.onlyReadsMemory()) { 6671 SDValue LHS = getValue(I.getArgOperand(0)); 6672 SDValue RHS = getValue(I.getArgOperand(1)); 6673 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 6674 LHS.getValueType(), LHS, RHS)); 6675 return; 6676 } 6677 break; 6678 case LibFunc_fabs: 6679 case LibFunc_fabsf: 6680 case LibFunc_fabsl: 6681 if (visitUnaryFloatCall(I, ISD::FABS)) 6682 return; 6683 break; 6684 case LibFunc_fmin: 6685 case LibFunc_fminf: 6686 case LibFunc_fminl: 6687 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 6688 return; 6689 break; 6690 case LibFunc_fmax: 6691 case LibFunc_fmaxf: 6692 case LibFunc_fmaxl: 6693 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 6694 return; 6695 break; 6696 case LibFunc_sin: 6697 case LibFunc_sinf: 6698 case LibFunc_sinl: 6699 if (visitUnaryFloatCall(I, ISD::FSIN)) 6700 return; 6701 break; 6702 case LibFunc_cos: 6703 case LibFunc_cosf: 6704 case LibFunc_cosl: 6705 if (visitUnaryFloatCall(I, ISD::FCOS)) 6706 return; 6707 break; 6708 case LibFunc_sqrt: 6709 case LibFunc_sqrtf: 6710 case LibFunc_sqrtl: 6711 case LibFunc_sqrt_finite: 6712 case LibFunc_sqrtf_finite: 6713 case LibFunc_sqrtl_finite: 6714 if (visitUnaryFloatCall(I, ISD::FSQRT)) 6715 return; 6716 break; 6717 case LibFunc_floor: 6718 case LibFunc_floorf: 6719 case LibFunc_floorl: 6720 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 6721 return; 6722 break; 6723 case LibFunc_nearbyint: 6724 case LibFunc_nearbyintf: 6725 case LibFunc_nearbyintl: 6726 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 6727 return; 6728 break; 6729 case LibFunc_ceil: 6730 case LibFunc_ceilf: 6731 case LibFunc_ceill: 6732 if (visitUnaryFloatCall(I, ISD::FCEIL)) 6733 return; 6734 break; 6735 case LibFunc_rint: 6736 case LibFunc_rintf: 6737 case LibFunc_rintl: 6738 if (visitUnaryFloatCall(I, ISD::FRINT)) 6739 return; 6740 break; 6741 case LibFunc_round: 6742 case LibFunc_roundf: 6743 case LibFunc_roundl: 6744 if (visitUnaryFloatCall(I, ISD::FROUND)) 6745 return; 6746 break; 6747 case LibFunc_trunc: 6748 case LibFunc_truncf: 6749 case LibFunc_truncl: 6750 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6751 return; 6752 break; 6753 case LibFunc_log2: 6754 case LibFunc_log2f: 6755 case LibFunc_log2l: 6756 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6757 return; 6758 break; 6759 case LibFunc_exp2: 6760 case LibFunc_exp2f: 6761 case LibFunc_exp2l: 6762 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6763 return; 6764 break; 6765 case LibFunc_memcmp: 6766 if (visitMemCmpCall(I)) 6767 return; 6768 break; 6769 case LibFunc_mempcpy: 6770 if (visitMemPCpyCall(I)) 6771 return; 6772 break; 6773 case LibFunc_memchr: 6774 if (visitMemChrCall(I)) 6775 return; 6776 break; 6777 case LibFunc_strcpy: 6778 if (visitStrCpyCall(I, false)) 6779 return; 6780 break; 6781 case LibFunc_stpcpy: 6782 if (visitStrCpyCall(I, true)) 6783 return; 6784 break; 6785 case LibFunc_strcmp: 6786 if (visitStrCmpCall(I)) 6787 return; 6788 break; 6789 case LibFunc_strlen: 6790 if (visitStrLenCall(I)) 6791 return; 6792 break; 6793 case LibFunc_strnlen: 6794 if (visitStrNLenCall(I)) 6795 return; 6796 break; 6797 } 6798 } 6799 } 6800 6801 SDValue Callee; 6802 if (!RenameFn) 6803 Callee = getValue(I.getCalledValue()); 6804 else 6805 Callee = DAG.getExternalSymbol( 6806 RenameFn, 6807 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6808 6809 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 6810 // have to do anything here to lower funclet bundles. 6811 assert(!I.hasOperandBundlesOtherThan( 6812 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 6813 "Cannot lower calls with arbitrary operand bundles!"); 6814 6815 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 6816 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 6817 else 6818 // Check if we can potentially perform a tail call. More detailed checking 6819 // is be done within LowerCallTo, after more information about the call is 6820 // known. 6821 LowerCallTo(&I, Callee, I.isTailCall()); 6822 } 6823 6824 namespace { 6825 6826 /// AsmOperandInfo - This contains information for each constraint that we are 6827 /// lowering. 6828 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6829 public: 6830 /// CallOperand - If this is the result output operand or a clobber 6831 /// this is null, otherwise it is the incoming operand to the CallInst. 6832 /// This gets modified as the asm is processed. 6833 SDValue CallOperand; 6834 6835 /// AssignedRegs - If this is a register or register class operand, this 6836 /// contains the set of register corresponding to the operand. 6837 RegsForValue AssignedRegs; 6838 6839 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6840 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 6841 } 6842 6843 /// Whether or not this operand accesses memory 6844 bool hasMemory(const TargetLowering &TLI) const { 6845 // Indirect operand accesses access memory. 6846 if (isIndirect) 6847 return true; 6848 6849 for (const auto &Code : Codes) 6850 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 6851 return true; 6852 6853 return false; 6854 } 6855 6856 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6857 /// corresponds to. If there is no Value* for this operand, it returns 6858 /// MVT::Other. 6859 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 6860 const DataLayout &DL) const { 6861 if (!CallOperandVal) return MVT::Other; 6862 6863 if (isa<BasicBlock>(CallOperandVal)) 6864 return TLI.getPointerTy(DL); 6865 6866 llvm::Type *OpTy = CallOperandVal->getType(); 6867 6868 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6869 // If this is an indirect operand, the operand is a pointer to the 6870 // accessed type. 6871 if (isIndirect) { 6872 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6873 if (!PtrTy) 6874 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6875 OpTy = PtrTy->getElementType(); 6876 } 6877 6878 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6879 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6880 if (STy->getNumElements() == 1) 6881 OpTy = STy->getElementType(0); 6882 6883 // If OpTy is not a single value, it may be a struct/union that we 6884 // can tile with integers. 6885 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6886 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 6887 switch (BitSize) { 6888 default: break; 6889 case 1: 6890 case 8: 6891 case 16: 6892 case 32: 6893 case 64: 6894 case 128: 6895 OpTy = IntegerType::get(Context, BitSize); 6896 break; 6897 } 6898 } 6899 6900 return TLI.getValueType(DL, OpTy, true); 6901 } 6902 }; 6903 6904 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>; 6905 6906 } // end anonymous namespace 6907 6908 /// Make sure that the output operand \p OpInfo and its corresponding input 6909 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 6910 /// out). 6911 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 6912 SDISelAsmOperandInfo &MatchingOpInfo, 6913 SelectionDAG &DAG) { 6914 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 6915 return; 6916 6917 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6918 const auto &TLI = DAG.getTargetLoweringInfo(); 6919 6920 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6921 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6922 OpInfo.ConstraintVT); 6923 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6924 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 6925 MatchingOpInfo.ConstraintVT); 6926 if ((OpInfo.ConstraintVT.isInteger() != 6927 MatchingOpInfo.ConstraintVT.isInteger()) || 6928 (MatchRC.second != InputRC.second)) { 6929 // FIXME: error out in a more elegant fashion 6930 report_fatal_error("Unsupported asm: input constraint" 6931 " with a matching output constraint of" 6932 " incompatible type!"); 6933 } 6934 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 6935 } 6936 6937 /// Get a direct memory input to behave well as an indirect operand. 6938 /// This may introduce stores, hence the need for a \p Chain. 6939 /// \return The (possibly updated) chain. 6940 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 6941 SDISelAsmOperandInfo &OpInfo, 6942 SelectionDAG &DAG) { 6943 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6944 6945 // If we don't have an indirect input, put it in the constpool if we can, 6946 // otherwise spill it to a stack slot. 6947 // TODO: This isn't quite right. We need to handle these according to 6948 // the addressing mode that the constraint wants. Also, this may take 6949 // an additional register for the computation and we don't want that 6950 // either. 6951 6952 // If the operand is a float, integer, or vector constant, spill to a 6953 // constant pool entry to get its address. 6954 const Value *OpVal = OpInfo.CallOperandVal; 6955 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6956 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6957 OpInfo.CallOperand = DAG.getConstantPool( 6958 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6959 return Chain; 6960 } 6961 6962 // Otherwise, create a stack slot and emit a store to it before the asm. 6963 Type *Ty = OpVal->getType(); 6964 auto &DL = DAG.getDataLayout(); 6965 uint64_t TySize = DL.getTypeAllocSize(Ty); 6966 unsigned Align = DL.getPrefTypeAlignment(Ty); 6967 MachineFunction &MF = DAG.getMachineFunction(); 6968 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 6969 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 6970 Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot, 6971 MachinePointerInfo::getFixedStack(MF, SSFI)); 6972 OpInfo.CallOperand = StackSlot; 6973 6974 return Chain; 6975 } 6976 6977 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6978 /// specified operand. We prefer to assign virtual registers, to allow the 6979 /// register allocator to handle the assignment process. However, if the asm 6980 /// uses features that we can't model on machineinstrs, we have SDISel do the 6981 /// allocation. This produces generally horrible, but correct, code. 6982 /// 6983 /// OpInfo describes the operand. 6984 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI, 6985 const SDLoc &DL, 6986 SDISelAsmOperandInfo &OpInfo) { 6987 LLVMContext &Context = *DAG.getContext(); 6988 6989 MachineFunction &MF = DAG.getMachineFunction(); 6990 SmallVector<unsigned, 4> Regs; 6991 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 6992 6993 // If this is a constraint for a single physreg, or a constraint for a 6994 // register class, find it. 6995 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 6996 TLI.getRegForInlineAsmConstraint(&TRI, OpInfo.ConstraintCode, 6997 OpInfo.ConstraintVT); 6998 6999 unsigned NumRegs = 1; 7000 if (OpInfo.ConstraintVT != MVT::Other) { 7001 // If this is a FP input in an integer register (or visa versa) insert a bit 7002 // cast of the input value. More generally, handle any case where the input 7003 // value disagrees with the register class we plan to stick this in. 7004 if (OpInfo.Type == InlineAsm::isInput && PhysReg.second && 7005 !TRI.isTypeLegalForClass(*PhysReg.second, OpInfo.ConstraintVT)) { 7006 // Try to convert to the first EVT that the reg class contains. If the 7007 // types are identical size, use a bitcast to convert (e.g. two differing 7008 // vector types). 7009 MVT RegVT = *TRI.legalclasstypes_begin(*PhysReg.second); 7010 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 7011 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 7012 RegVT, OpInfo.CallOperand); 7013 OpInfo.ConstraintVT = RegVT; 7014 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7015 // If the input is a FP value and we want it in FP registers, do a 7016 // bitcast to the corresponding integer type. This turns an f64 value 7017 // into i64, which can be passed with two i32 values on a 32-bit 7018 // machine. 7019 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7020 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 7021 RegVT, OpInfo.CallOperand); 7022 OpInfo.ConstraintVT = RegVT; 7023 } 7024 } 7025 7026 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 7027 } 7028 7029 MVT RegVT; 7030 EVT ValueVT = OpInfo.ConstraintVT; 7031 7032 // If this is a constraint for a specific physical register, like {r17}, 7033 // assign it now. 7034 if (unsigned AssignedReg = PhysReg.first) { 7035 const TargetRegisterClass *RC = PhysReg.second; 7036 if (OpInfo.ConstraintVT == MVT::Other) 7037 ValueVT = *TRI.legalclasstypes_begin(*RC); 7038 7039 // Get the actual register value type. This is important, because the user 7040 // may have asked for (e.g.) the AX register in i32 type. We need to 7041 // remember that AX is actually i16 to get the right extension. 7042 RegVT = *TRI.legalclasstypes_begin(*RC); 7043 7044 // This is a explicit reference to a physical register. 7045 Regs.push_back(AssignedReg); 7046 7047 // If this is an expanded reference, add the rest of the regs to Regs. 7048 if (NumRegs != 1) { 7049 TargetRegisterClass::iterator I = RC->begin(); 7050 for (; *I != AssignedReg; ++I) 7051 assert(I != RC->end() && "Didn't find reg!"); 7052 7053 // Already added the first reg. 7054 --NumRegs; ++I; 7055 for (; NumRegs; --NumRegs, ++I) { 7056 assert(I != RC->end() && "Ran out of registers to allocate!"); 7057 Regs.push_back(*I); 7058 } 7059 } 7060 7061 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7062 return; 7063 } 7064 7065 // Otherwise, if this was a reference to an LLVM register class, create vregs 7066 // for this reference. 7067 if (const TargetRegisterClass *RC = PhysReg.second) { 7068 RegVT = *TRI.legalclasstypes_begin(*RC); 7069 if (OpInfo.ConstraintVT == MVT::Other) 7070 ValueVT = RegVT; 7071 7072 // Create the appropriate number of virtual registers. 7073 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7074 for (; NumRegs; --NumRegs) 7075 Regs.push_back(RegInfo.createVirtualRegister(RC)); 7076 7077 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7078 return; 7079 } 7080 7081 // Otherwise, we couldn't allocate enough registers for this. 7082 } 7083 7084 static unsigned 7085 findMatchingInlineAsmOperand(unsigned OperandNo, 7086 const std::vector<SDValue> &AsmNodeOperands) { 7087 // Scan until we find the definition we already emitted of this operand. 7088 unsigned CurOp = InlineAsm::Op_FirstOperand; 7089 for (; OperandNo; --OperandNo) { 7090 // Advance to the next operand. 7091 unsigned OpFlag = 7092 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7093 assert((InlineAsm::isRegDefKind(OpFlag) || 7094 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 7095 InlineAsm::isMemKind(OpFlag)) && 7096 "Skipped past definitions?"); 7097 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 7098 } 7099 return CurOp; 7100 } 7101 7102 /// Fill \p Regs with \p NumRegs new virtual registers of type \p RegVT 7103 /// \return true if it has succeeded, false otherwise 7104 static bool createVirtualRegs(SmallVector<unsigned, 4> &Regs, unsigned NumRegs, 7105 MVT RegVT, SelectionDAG &DAG) { 7106 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7107 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 7108 for (unsigned i = 0, e = NumRegs; i != e; ++i) { 7109 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 7110 Regs.push_back(RegInfo.createVirtualRegister(RC)); 7111 else 7112 return false; 7113 } 7114 return true; 7115 } 7116 7117 namespace { 7118 7119 class ExtraFlags { 7120 unsigned Flags = 0; 7121 7122 public: 7123 explicit ExtraFlags(ImmutableCallSite CS) { 7124 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7125 if (IA->hasSideEffects()) 7126 Flags |= InlineAsm::Extra_HasSideEffects; 7127 if (IA->isAlignStack()) 7128 Flags |= InlineAsm::Extra_IsAlignStack; 7129 if (CS.isConvergent()) 7130 Flags |= InlineAsm::Extra_IsConvergent; 7131 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 7132 } 7133 7134 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 7135 // Ideally, we would only check against memory constraints. However, the 7136 // meaning of an Other constraint can be target-specific and we can't easily 7137 // reason about it. Therefore, be conservative and set MayLoad/MayStore 7138 // for Other constraints as well. 7139 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 7140 OpInfo.ConstraintType == TargetLowering::C_Other) { 7141 if (OpInfo.Type == InlineAsm::isInput) 7142 Flags |= InlineAsm::Extra_MayLoad; 7143 else if (OpInfo.Type == InlineAsm::isOutput) 7144 Flags |= InlineAsm::Extra_MayStore; 7145 else if (OpInfo.Type == InlineAsm::isClobber) 7146 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 7147 } 7148 } 7149 7150 unsigned get() const { return Flags; } 7151 }; 7152 7153 } // end anonymous namespace 7154 7155 /// visitInlineAsm - Handle a call to an InlineAsm object. 7156 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 7157 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7158 7159 /// ConstraintOperands - Information about all of the constraints. 7160 SDISelAsmOperandInfoVector ConstraintOperands; 7161 7162 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7163 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 7164 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 7165 7166 bool hasMemory = false; 7167 7168 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 7169 ExtraFlags ExtraInfo(CS); 7170 7171 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 7172 unsigned ResNo = 0; // ResNo - The result number of the next output. 7173 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 7174 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 7175 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 7176 7177 MVT OpVT = MVT::Other; 7178 7179 // Compute the value type for each operand. 7180 if (OpInfo.Type == InlineAsm::isInput || 7181 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 7182 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 7183 7184 // Process the call argument. BasicBlocks are labels, currently appearing 7185 // only in asm's. 7186 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 7187 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 7188 } else { 7189 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 7190 } 7191 7192 OpVT = 7193 OpInfo 7194 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 7195 .getSimpleVT(); 7196 } 7197 7198 if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 7199 // The return value of the call is this value. As such, there is no 7200 // corresponding argument. 7201 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7202 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 7203 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 7204 STy->getElementType(ResNo)); 7205 } else { 7206 assert(ResNo == 0 && "Asm only has one result!"); 7207 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 7208 } 7209 ++ResNo; 7210 } 7211 7212 OpInfo.ConstraintVT = OpVT; 7213 7214 if (!hasMemory) 7215 hasMemory = OpInfo.hasMemory(TLI); 7216 7217 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 7218 // FIXME: Could we compute this on OpInfo rather than TargetConstraints[i]? 7219 auto TargetConstraint = TargetConstraints[i]; 7220 7221 // Compute the constraint code and ConstraintType to use. 7222 TLI.ComputeConstraintToUse(TargetConstraint, SDValue()); 7223 7224 ExtraInfo.update(TargetConstraint); 7225 } 7226 7227 SDValue Chain, Flag; 7228 7229 // We won't need to flush pending loads if this asm doesn't touch 7230 // memory and is nonvolatile. 7231 if (hasMemory || IA->hasSideEffects()) 7232 Chain = getRoot(); 7233 else 7234 Chain = DAG.getRoot(); 7235 7236 // Second pass over the constraints: compute which constraint option to use 7237 // and assign registers to constraints that want a specific physreg. 7238 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7239 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7240 7241 // If this is an output operand with a matching input operand, look up the 7242 // matching input. If their types mismatch, e.g. one is an integer, the 7243 // other is floating point, or their sizes are different, flag it as an 7244 // error. 7245 if (OpInfo.hasMatchingInput()) { 7246 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 7247 patchMatchingInput(OpInfo, Input, DAG); 7248 } 7249 7250 // Compute the constraint code and ConstraintType to use. 7251 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 7252 7253 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7254 OpInfo.Type == InlineAsm::isClobber) 7255 continue; 7256 7257 // If this is a memory input, and if the operand is not indirect, do what we 7258 // need to to provide an address for the memory input. 7259 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7260 !OpInfo.isIndirect) { 7261 assert((OpInfo.isMultipleAlternative || 7262 (OpInfo.Type == InlineAsm::isInput)) && 7263 "Can only indirectify direct input operands!"); 7264 7265 // Memory operands really want the address of the value. 7266 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 7267 7268 // There is no longer a Value* corresponding to this operand. 7269 OpInfo.CallOperandVal = nullptr; 7270 7271 // It is now an indirect operand. 7272 OpInfo.isIndirect = true; 7273 } 7274 7275 // If this constraint is for a specific register, allocate it before 7276 // anything else. 7277 if (OpInfo.ConstraintType == TargetLowering::C_Register) 7278 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 7279 } 7280 7281 // Third pass - Loop over all of the operands, assigning virtual or physregs 7282 // to register class operands. 7283 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7284 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7285 7286 // C_Register operands have already been allocated, Other/Memory don't need 7287 // to be. 7288 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 7289 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 7290 } 7291 7292 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 7293 std::vector<SDValue> AsmNodeOperands; 7294 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 7295 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 7296 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 7297 7298 // If we have a !srcloc metadata node associated with it, we want to attach 7299 // this to the ultimately generated inline asm machineinstr. To do this, we 7300 // pass in the third operand as this (potentially null) inline asm MDNode. 7301 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 7302 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 7303 7304 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 7305 // bits as operand 3. 7306 AsmNodeOperands.push_back(DAG.getTargetConstant( 7307 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7308 7309 // Loop over all of the inputs, copying the operand values into the 7310 // appropriate registers and processing the output regs. 7311 RegsForValue RetValRegs; 7312 7313 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 7314 std::vector<std::pair<RegsForValue, Value *>> IndirectStoresToEmit; 7315 7316 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7317 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7318 7319 switch (OpInfo.Type) { 7320 case InlineAsm::isOutput: 7321 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 7322 OpInfo.ConstraintType != TargetLowering::C_Register) { 7323 // Memory output, or 'other' output (e.g. 'X' constraint). 7324 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 7325 7326 unsigned ConstraintID = 7327 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7328 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7329 "Failed to convert memory constraint code to constraint id."); 7330 7331 // Add information to the INLINEASM node to know about this output. 7332 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7333 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 7334 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 7335 MVT::i32)); 7336 AsmNodeOperands.push_back(OpInfo.CallOperand); 7337 break; 7338 } 7339 7340 // Otherwise, this is a register or register class output. 7341 7342 // Copy the output from the appropriate register. Find a register that 7343 // we can use. 7344 if (OpInfo.AssignedRegs.Regs.empty()) { 7345 emitInlineAsmError( 7346 CS, "couldn't allocate output register for constraint '" + 7347 Twine(OpInfo.ConstraintCode) + "'"); 7348 return; 7349 } 7350 7351 // If this is an indirect operand, store through the pointer after the 7352 // asm. 7353 if (OpInfo.isIndirect) { 7354 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 7355 OpInfo.CallOperandVal)); 7356 } else { 7357 // This is the result value of the call. 7358 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7359 // Concatenate this output onto the outputs list. 7360 RetValRegs.append(OpInfo.AssignedRegs); 7361 } 7362 7363 // Add information to the INLINEASM node to know that this register is 7364 // set. 7365 OpInfo.AssignedRegs 7366 .AddInlineAsmOperands(OpInfo.isEarlyClobber 7367 ? InlineAsm::Kind_RegDefEarlyClobber 7368 : InlineAsm::Kind_RegDef, 7369 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 7370 break; 7371 7372 case InlineAsm::isInput: { 7373 SDValue InOperandVal = OpInfo.CallOperand; 7374 7375 if (OpInfo.isMatchingInputConstraint()) { 7376 // If this is required to match an output register we have already set, 7377 // just use its register. 7378 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 7379 AsmNodeOperands); 7380 unsigned OpFlag = 7381 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7382 if (InlineAsm::isRegDefKind(OpFlag) || 7383 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 7384 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 7385 if (OpInfo.isIndirect) { 7386 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 7387 emitInlineAsmError(CS, "inline asm not supported yet:" 7388 " don't know how to handle tied " 7389 "indirect register inputs"); 7390 return; 7391 } 7392 7393 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 7394 SmallVector<unsigned, 4> Regs; 7395 7396 if (!createVirtualRegs(Regs, 7397 InlineAsm::getNumOperandRegisters(OpFlag), 7398 RegVT, DAG)) { 7399 emitInlineAsmError(CS, "inline asm error: This value type register " 7400 "class is not natively supported!"); 7401 return; 7402 } 7403 7404 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 7405 7406 SDLoc dl = getCurSDLoc(); 7407 // Use the produced MatchedRegs object to 7408 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 7409 CS.getInstruction()); 7410 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 7411 true, OpInfo.getMatchedOperand(), dl, 7412 DAG, AsmNodeOperands); 7413 break; 7414 } 7415 7416 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 7417 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 7418 "Unexpected number of operands"); 7419 // Add information to the INLINEASM node to know about this input. 7420 // See InlineAsm.h isUseOperandTiedToDef. 7421 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 7422 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 7423 OpInfo.getMatchedOperand()); 7424 AsmNodeOperands.push_back(DAG.getTargetConstant( 7425 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7426 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 7427 break; 7428 } 7429 7430 // Treat indirect 'X' constraint as memory. 7431 if (OpInfo.ConstraintType == TargetLowering::C_Other && 7432 OpInfo.isIndirect) 7433 OpInfo.ConstraintType = TargetLowering::C_Memory; 7434 7435 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 7436 std::vector<SDValue> Ops; 7437 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 7438 Ops, DAG); 7439 if (Ops.empty()) { 7440 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 7441 Twine(OpInfo.ConstraintCode) + "'"); 7442 return; 7443 } 7444 7445 // Add information to the INLINEASM node to know about this input. 7446 unsigned ResOpType = 7447 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 7448 AsmNodeOperands.push_back(DAG.getTargetConstant( 7449 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7450 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 7451 break; 7452 } 7453 7454 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 7455 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 7456 assert(InOperandVal.getValueType() == 7457 TLI.getPointerTy(DAG.getDataLayout()) && 7458 "Memory operands expect pointer values"); 7459 7460 unsigned ConstraintID = 7461 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7462 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7463 "Failed to convert memory constraint code to constraint id."); 7464 7465 // Add information to the INLINEASM node to know about this input. 7466 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7467 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 7468 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 7469 getCurSDLoc(), 7470 MVT::i32)); 7471 AsmNodeOperands.push_back(InOperandVal); 7472 break; 7473 } 7474 7475 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 7476 OpInfo.ConstraintType == TargetLowering::C_Register) && 7477 "Unknown constraint type!"); 7478 7479 // TODO: Support this. 7480 if (OpInfo.isIndirect) { 7481 emitInlineAsmError( 7482 CS, "Don't know how to handle indirect register inputs yet " 7483 "for constraint '" + 7484 Twine(OpInfo.ConstraintCode) + "'"); 7485 return; 7486 } 7487 7488 // Copy the input into the appropriate registers. 7489 if (OpInfo.AssignedRegs.Regs.empty()) { 7490 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 7491 Twine(OpInfo.ConstraintCode) + "'"); 7492 return; 7493 } 7494 7495 SDLoc dl = getCurSDLoc(); 7496 7497 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 7498 Chain, &Flag, CS.getInstruction()); 7499 7500 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 7501 dl, DAG, AsmNodeOperands); 7502 break; 7503 } 7504 case InlineAsm::isClobber: 7505 // Add the clobbered value to the operand list, so that the register 7506 // allocator is aware that the physreg got clobbered. 7507 if (!OpInfo.AssignedRegs.Regs.empty()) 7508 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 7509 false, 0, getCurSDLoc(), DAG, 7510 AsmNodeOperands); 7511 break; 7512 } 7513 } 7514 7515 // Finish up input operands. Set the input chain and add the flag last. 7516 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 7517 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 7518 7519 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 7520 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 7521 Flag = Chain.getValue(1); 7522 7523 // If this asm returns a register value, copy the result from that register 7524 // and set it as the value of the call. 7525 if (!RetValRegs.Regs.empty()) { 7526 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7527 Chain, &Flag, CS.getInstruction()); 7528 7529 // FIXME: Why don't we do this for inline asms with MRVs? 7530 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 7531 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 7532 7533 // If any of the results of the inline asm is a vector, it may have the 7534 // wrong width/num elts. This can happen for register classes that can 7535 // contain multiple different value types. The preg or vreg allocated may 7536 // not have the same VT as was expected. Convert it to the right type 7537 // with bit_convert. 7538 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 7539 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 7540 ResultType, Val); 7541 7542 } else if (ResultType != Val.getValueType() && 7543 ResultType.isInteger() && Val.getValueType().isInteger()) { 7544 // If a result value was tied to an input value, the computed result may 7545 // have a wider width than the expected result. Extract the relevant 7546 // portion. 7547 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 7548 } 7549 7550 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 7551 } 7552 7553 setValue(CS.getInstruction(), Val); 7554 // Don't need to use this as a chain in this case. 7555 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 7556 return; 7557 } 7558 7559 std::vector<std::pair<SDValue, const Value *>> StoresToEmit; 7560 7561 // Process indirect outputs, first output all of the flagged copies out of 7562 // physregs. 7563 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 7564 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 7565 const Value *Ptr = IndirectStoresToEmit[i].second; 7566 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7567 Chain, &Flag, IA); 7568 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 7569 } 7570 7571 // Emit the non-flagged stores from the physregs. 7572 SmallVector<SDValue, 8> OutChains; 7573 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 7574 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), StoresToEmit[i].first, 7575 getValue(StoresToEmit[i].second), 7576 MachinePointerInfo(StoresToEmit[i].second)); 7577 OutChains.push_back(Val); 7578 } 7579 7580 if (!OutChains.empty()) 7581 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 7582 7583 DAG.setRoot(Chain); 7584 } 7585 7586 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 7587 const Twine &Message) { 7588 LLVMContext &Ctx = *DAG.getContext(); 7589 Ctx.emitError(CS.getInstruction(), Message); 7590 7591 // Make sure we leave the DAG in a valid state 7592 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7593 auto VT = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 7594 setValue(CS.getInstruction(), DAG.getUNDEF(VT)); 7595 } 7596 7597 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 7598 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 7599 MVT::Other, getRoot(), 7600 getValue(I.getArgOperand(0)), 7601 DAG.getSrcValue(I.getArgOperand(0)))); 7602 } 7603 7604 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 7605 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7606 const DataLayout &DL = DAG.getDataLayout(); 7607 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 7608 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 7609 DAG.getSrcValue(I.getOperand(0)), 7610 DL.getABITypeAlignment(I.getType())); 7611 setValue(&I, V); 7612 DAG.setRoot(V.getValue(1)); 7613 } 7614 7615 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 7616 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 7617 MVT::Other, getRoot(), 7618 getValue(I.getArgOperand(0)), 7619 DAG.getSrcValue(I.getArgOperand(0)))); 7620 } 7621 7622 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 7623 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 7624 MVT::Other, getRoot(), 7625 getValue(I.getArgOperand(0)), 7626 getValue(I.getArgOperand(1)), 7627 DAG.getSrcValue(I.getArgOperand(0)), 7628 DAG.getSrcValue(I.getArgOperand(1)))); 7629 } 7630 7631 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 7632 const Instruction &I, 7633 SDValue Op) { 7634 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 7635 if (!Range) 7636 return Op; 7637 7638 ConstantRange CR = getConstantRangeFromMetadata(*Range); 7639 if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet()) 7640 return Op; 7641 7642 APInt Lo = CR.getUnsignedMin(); 7643 if (!Lo.isMinValue()) 7644 return Op; 7645 7646 APInt Hi = CR.getUnsignedMax(); 7647 unsigned Bits = Hi.getActiveBits(); 7648 7649 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 7650 7651 SDLoc SL = getCurSDLoc(); 7652 7653 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 7654 DAG.getValueType(SmallVT)); 7655 unsigned NumVals = Op.getNode()->getNumValues(); 7656 if (NumVals == 1) 7657 return ZExt; 7658 7659 SmallVector<SDValue, 4> Ops; 7660 7661 Ops.push_back(ZExt); 7662 for (unsigned I = 1; I != NumVals; ++I) 7663 Ops.push_back(Op.getValue(I)); 7664 7665 return DAG.getMergeValues(Ops, SL); 7666 } 7667 7668 /// \brief Populate a CallLowerinInfo (into \p CLI) based on the properties of 7669 /// the call being lowered. 7670 /// 7671 /// This is a helper for lowering intrinsics that follow a target calling 7672 /// convention or require stack pointer adjustment. Only a subset of the 7673 /// intrinsic's operands need to participate in the calling convention. 7674 void SelectionDAGBuilder::populateCallLoweringInfo( 7675 TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS, 7676 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 7677 bool IsPatchPoint) { 7678 TargetLowering::ArgListTy Args; 7679 Args.reserve(NumArgs); 7680 7681 // Populate the argument list. 7682 // Attributes for args start at offset 1, after the return attribute. 7683 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 7684 ArgI != ArgE; ++ArgI) { 7685 const Value *V = CS->getOperand(ArgI); 7686 7687 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 7688 7689 TargetLowering::ArgListEntry Entry; 7690 Entry.Node = getValue(V); 7691 Entry.Ty = V->getType(); 7692 Entry.setAttributes(&CS, ArgIdx); 7693 Args.push_back(Entry); 7694 } 7695 7696 CLI.setDebugLoc(getCurSDLoc()) 7697 .setChain(getRoot()) 7698 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args)) 7699 .setDiscardResult(CS->use_empty()) 7700 .setIsPatchPoint(IsPatchPoint); 7701 } 7702 7703 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 7704 /// or patchpoint target node's operand list. 7705 /// 7706 /// Constants are converted to TargetConstants purely as an optimization to 7707 /// avoid constant materialization and register allocation. 7708 /// 7709 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 7710 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 7711 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 7712 /// address materialization and register allocation, but may also be required 7713 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 7714 /// alloca in the entry block, then the runtime may assume that the alloca's 7715 /// StackMap location can be read immediately after compilation and that the 7716 /// location is valid at any point during execution (this is similar to the 7717 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 7718 /// only available in a register, then the runtime would need to trap when 7719 /// execution reaches the StackMap in order to read the alloca's location. 7720 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 7721 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 7722 SelectionDAGBuilder &Builder) { 7723 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 7724 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 7725 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 7726 Ops.push_back( 7727 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 7728 Ops.push_back( 7729 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 7730 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 7731 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 7732 Ops.push_back(Builder.DAG.getTargetFrameIndex( 7733 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 7734 } else 7735 Ops.push_back(OpVal); 7736 } 7737 } 7738 7739 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 7740 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 7741 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 7742 // [live variables...]) 7743 7744 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 7745 7746 SDValue Chain, InFlag, Callee, NullPtr; 7747 SmallVector<SDValue, 32> Ops; 7748 7749 SDLoc DL = getCurSDLoc(); 7750 Callee = getValue(CI.getCalledValue()); 7751 NullPtr = DAG.getIntPtrConstant(0, DL, true); 7752 7753 // The stackmap intrinsic only records the live variables (the arguemnts 7754 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 7755 // intrinsic, this won't be lowered to a function call. This means we don't 7756 // have to worry about calling conventions and target specific lowering code. 7757 // Instead we perform the call lowering right here. 7758 // 7759 // chain, flag = CALLSEQ_START(chain, 0, 0) 7760 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 7761 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 7762 // 7763 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 7764 InFlag = Chain.getValue(1); 7765 7766 // Add the <id> and <numBytes> constants. 7767 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 7768 Ops.push_back(DAG.getTargetConstant( 7769 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 7770 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 7771 Ops.push_back(DAG.getTargetConstant( 7772 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 7773 MVT::i32)); 7774 7775 // Push live variables for the stack map. 7776 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 7777 7778 // We are not pushing any register mask info here on the operands list, 7779 // because the stackmap doesn't clobber anything. 7780 7781 // Push the chain and the glue flag. 7782 Ops.push_back(Chain); 7783 Ops.push_back(InFlag); 7784 7785 // Create the STACKMAP node. 7786 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7787 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 7788 Chain = SDValue(SM, 0); 7789 InFlag = Chain.getValue(1); 7790 7791 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 7792 7793 // Stackmaps don't generate values, so nothing goes into the NodeMap. 7794 7795 // Set the root to the target-lowered call chain. 7796 DAG.setRoot(Chain); 7797 7798 // Inform the Frame Information that we have a stackmap in this function. 7799 FuncInfo.MF->getFrameInfo().setHasStackMap(); 7800 } 7801 7802 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 7803 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 7804 const BasicBlock *EHPadBB) { 7805 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 7806 // i32 <numBytes>, 7807 // i8* <target>, 7808 // i32 <numArgs>, 7809 // [Args...], 7810 // [live variables...]) 7811 7812 CallingConv::ID CC = CS.getCallingConv(); 7813 bool IsAnyRegCC = CC == CallingConv::AnyReg; 7814 bool HasDef = !CS->getType()->isVoidTy(); 7815 SDLoc dl = getCurSDLoc(); 7816 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 7817 7818 // Handle immediate and symbolic callees. 7819 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 7820 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 7821 /*isTarget=*/true); 7822 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 7823 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 7824 SDLoc(SymbolicCallee), 7825 SymbolicCallee->getValueType(0)); 7826 7827 // Get the real number of arguments participating in the call <numArgs> 7828 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 7829 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 7830 7831 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 7832 // Intrinsics include all meta-operands up to but not including CC. 7833 unsigned NumMetaOpers = PatchPointOpers::CCPos; 7834 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 7835 "Not enough arguments provided to the patchpoint intrinsic"); 7836 7837 // For AnyRegCC the arguments are lowered later on manually. 7838 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 7839 Type *ReturnTy = 7840 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 7841 7842 TargetLowering::CallLoweringInfo CLI(DAG); 7843 populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 7844 true); 7845 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7846 7847 SDNode *CallEnd = Result.second.getNode(); 7848 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 7849 CallEnd = CallEnd->getOperand(0).getNode(); 7850 7851 /// Get a call instruction from the call sequence chain. 7852 /// Tail calls are not allowed. 7853 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 7854 "Expected a callseq node."); 7855 SDNode *Call = CallEnd->getOperand(0).getNode(); 7856 bool HasGlue = Call->getGluedNode(); 7857 7858 // Replace the target specific call node with the patchable intrinsic. 7859 SmallVector<SDValue, 8> Ops; 7860 7861 // Add the <id> and <numBytes> constants. 7862 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 7863 Ops.push_back(DAG.getTargetConstant( 7864 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 7865 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 7866 Ops.push_back(DAG.getTargetConstant( 7867 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 7868 MVT::i32)); 7869 7870 // Add the callee. 7871 Ops.push_back(Callee); 7872 7873 // Adjust <numArgs> to account for any arguments that have been passed on the 7874 // stack instead. 7875 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 7876 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 7877 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 7878 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 7879 7880 // Add the calling convention 7881 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 7882 7883 // Add the arguments we omitted previously. The register allocator should 7884 // place these in any free register. 7885 if (IsAnyRegCC) 7886 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 7887 Ops.push_back(getValue(CS.getArgument(i))); 7888 7889 // Push the arguments from the call instruction up to the register mask. 7890 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 7891 Ops.append(Call->op_begin() + 2, e); 7892 7893 // Push live variables for the stack map. 7894 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 7895 7896 // Push the register mask info. 7897 if (HasGlue) 7898 Ops.push_back(*(Call->op_end()-2)); 7899 else 7900 Ops.push_back(*(Call->op_end()-1)); 7901 7902 // Push the chain (this is originally the first operand of the call, but 7903 // becomes now the last or second to last operand). 7904 Ops.push_back(*(Call->op_begin())); 7905 7906 // Push the glue flag (last operand). 7907 if (HasGlue) 7908 Ops.push_back(*(Call->op_end()-1)); 7909 7910 SDVTList NodeTys; 7911 if (IsAnyRegCC && HasDef) { 7912 // Create the return types based on the intrinsic definition 7913 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7914 SmallVector<EVT, 3> ValueVTs; 7915 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 7916 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7917 7918 // There is always a chain and a glue type at the end 7919 ValueVTs.push_back(MVT::Other); 7920 ValueVTs.push_back(MVT::Glue); 7921 NodeTys = DAG.getVTList(ValueVTs); 7922 } else 7923 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7924 7925 // Replace the target specific call node with a PATCHPOINT node. 7926 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7927 dl, NodeTys, Ops); 7928 7929 // Update the NodeMap. 7930 if (HasDef) { 7931 if (IsAnyRegCC) 7932 setValue(CS.getInstruction(), SDValue(MN, 0)); 7933 else 7934 setValue(CS.getInstruction(), Result.first); 7935 } 7936 7937 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7938 // call sequence. Furthermore the location of the chain and glue can change 7939 // when the AnyReg calling convention is used and the intrinsic returns a 7940 // value. 7941 if (IsAnyRegCC && HasDef) { 7942 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7943 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7944 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7945 } else 7946 DAG.ReplaceAllUsesWith(Call, MN); 7947 DAG.DeleteNode(Call); 7948 7949 // Inform the Frame Information that we have a patchpoint in this function. 7950 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 7951 } 7952 7953 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 7954 unsigned Intrinsic) { 7955 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7956 SDValue Op1 = getValue(I.getArgOperand(0)); 7957 SDValue Op2; 7958 if (I.getNumArgOperands() > 1) 7959 Op2 = getValue(I.getArgOperand(1)); 7960 SDLoc dl = getCurSDLoc(); 7961 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7962 SDValue Res; 7963 FastMathFlags FMF; 7964 if (isa<FPMathOperator>(I)) 7965 FMF = I.getFastMathFlags(); 7966 SDNodeFlags SDFlags; 7967 SDFlags.setNoNaNs(FMF.noNaNs()); 7968 7969 switch (Intrinsic) { 7970 case Intrinsic::experimental_vector_reduce_fadd: 7971 if (FMF.isFast()) 7972 Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2); 7973 else 7974 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 7975 break; 7976 case Intrinsic::experimental_vector_reduce_fmul: 7977 if (FMF.isFast()) 7978 Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2); 7979 else 7980 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 7981 break; 7982 case Intrinsic::experimental_vector_reduce_add: 7983 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 7984 break; 7985 case Intrinsic::experimental_vector_reduce_mul: 7986 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 7987 break; 7988 case Intrinsic::experimental_vector_reduce_and: 7989 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 7990 break; 7991 case Intrinsic::experimental_vector_reduce_or: 7992 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 7993 break; 7994 case Intrinsic::experimental_vector_reduce_xor: 7995 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 7996 break; 7997 case Intrinsic::experimental_vector_reduce_smax: 7998 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 7999 break; 8000 case Intrinsic::experimental_vector_reduce_smin: 8001 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 8002 break; 8003 case Intrinsic::experimental_vector_reduce_umax: 8004 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 8005 break; 8006 case Intrinsic::experimental_vector_reduce_umin: 8007 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 8008 break; 8009 case Intrinsic::experimental_vector_reduce_fmax: 8010 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 8011 break; 8012 case Intrinsic::experimental_vector_reduce_fmin: 8013 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 8014 break; 8015 default: 8016 llvm_unreachable("Unhandled vector reduce intrinsic"); 8017 } 8018 setValue(&I, Res); 8019 } 8020 8021 /// Returns an AttributeList representing the attributes applied to the return 8022 /// value of the given call. 8023 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 8024 SmallVector<Attribute::AttrKind, 2> Attrs; 8025 if (CLI.RetSExt) 8026 Attrs.push_back(Attribute::SExt); 8027 if (CLI.RetZExt) 8028 Attrs.push_back(Attribute::ZExt); 8029 if (CLI.IsInReg) 8030 Attrs.push_back(Attribute::InReg); 8031 8032 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 8033 Attrs); 8034 } 8035 8036 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 8037 /// implementation, which just calls LowerCall. 8038 /// FIXME: When all targets are 8039 /// migrated to using LowerCall, this hook should be integrated into SDISel. 8040 std::pair<SDValue, SDValue> 8041 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 8042 // Handle the incoming return values from the call. 8043 CLI.Ins.clear(); 8044 Type *OrigRetTy = CLI.RetTy; 8045 SmallVector<EVT, 4> RetTys; 8046 SmallVector<uint64_t, 4> Offsets; 8047 auto &DL = CLI.DAG.getDataLayout(); 8048 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 8049 8050 if (CLI.IsPostTypeLegalization) { 8051 // If we are lowering a libcall after legalization, split the return type. 8052 SmallVector<EVT, 4> OldRetTys = std::move(RetTys); 8053 SmallVector<uint64_t, 4> OldOffsets = std::move(Offsets); 8054 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 8055 EVT RetVT = OldRetTys[i]; 8056 uint64_t Offset = OldOffsets[i]; 8057 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 8058 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 8059 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 8060 RetTys.append(NumRegs, RegisterVT); 8061 for (unsigned j = 0; j != NumRegs; ++j) 8062 Offsets.push_back(Offset + j * RegisterVTByteSZ); 8063 } 8064 } 8065 8066 SmallVector<ISD::OutputArg, 4> Outs; 8067 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 8068 8069 bool CanLowerReturn = 8070 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 8071 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 8072 8073 SDValue DemoteStackSlot; 8074 int DemoteStackIdx = -100; 8075 if (!CanLowerReturn) { 8076 // FIXME: equivalent assert? 8077 // assert(!CS.hasInAllocaArgument() && 8078 // "sret demotion is incompatible with inalloca"); 8079 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 8080 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 8081 MachineFunction &MF = CLI.DAG.getMachineFunction(); 8082 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 8083 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 8084 8085 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 8086 ArgListEntry Entry; 8087 Entry.Node = DemoteStackSlot; 8088 Entry.Ty = StackSlotPtrType; 8089 Entry.IsSExt = false; 8090 Entry.IsZExt = false; 8091 Entry.IsInReg = false; 8092 Entry.IsSRet = true; 8093 Entry.IsNest = false; 8094 Entry.IsByVal = false; 8095 Entry.IsReturned = false; 8096 Entry.IsSwiftSelf = false; 8097 Entry.IsSwiftError = false; 8098 Entry.Alignment = Align; 8099 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 8100 CLI.NumFixedArgs += 1; 8101 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 8102 8103 // sret demotion isn't compatible with tail-calls, since the sret argument 8104 // points into the callers stack frame. 8105 CLI.IsTailCall = false; 8106 } else { 8107 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 8108 EVT VT = RetTys[I]; 8109 MVT RegisterVT = 8110 getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT); 8111 unsigned NumRegs = 8112 getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT); 8113 for (unsigned i = 0; i != NumRegs; ++i) { 8114 ISD::InputArg MyFlags; 8115 MyFlags.VT = RegisterVT; 8116 MyFlags.ArgVT = VT; 8117 MyFlags.Used = CLI.IsReturnValueUsed; 8118 if (CLI.RetSExt) 8119 MyFlags.Flags.setSExt(); 8120 if (CLI.RetZExt) 8121 MyFlags.Flags.setZExt(); 8122 if (CLI.IsInReg) 8123 MyFlags.Flags.setInReg(); 8124 CLI.Ins.push_back(MyFlags); 8125 } 8126 } 8127 } 8128 8129 // We push in swifterror return as the last element of CLI.Ins. 8130 ArgListTy &Args = CLI.getArgs(); 8131 if (supportSwiftError()) { 8132 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8133 if (Args[i].IsSwiftError) { 8134 ISD::InputArg MyFlags; 8135 MyFlags.VT = getPointerTy(DL); 8136 MyFlags.ArgVT = EVT(getPointerTy(DL)); 8137 MyFlags.Flags.setSwiftError(); 8138 CLI.Ins.push_back(MyFlags); 8139 } 8140 } 8141 } 8142 8143 // Handle all of the outgoing arguments. 8144 CLI.Outs.clear(); 8145 CLI.OutVals.clear(); 8146 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8147 SmallVector<EVT, 4> ValueVTs; 8148 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 8149 // FIXME: Split arguments if CLI.IsPostTypeLegalization 8150 Type *FinalType = Args[i].Ty; 8151 if (Args[i].IsByVal) 8152 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 8153 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 8154 FinalType, CLI.CallConv, CLI.IsVarArg); 8155 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 8156 ++Value) { 8157 EVT VT = ValueVTs[Value]; 8158 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 8159 SDValue Op = SDValue(Args[i].Node.getNode(), 8160 Args[i].Node.getResNo() + Value); 8161 ISD::ArgFlagsTy Flags; 8162 8163 // Certain targets (such as MIPS), may have a different ABI alignment 8164 // for a type depending on the context. Give the target a chance to 8165 // specify the alignment it wants. 8166 unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL); 8167 8168 if (Args[i].IsZExt) 8169 Flags.setZExt(); 8170 if (Args[i].IsSExt) 8171 Flags.setSExt(); 8172 if (Args[i].IsInReg) { 8173 // If we are using vectorcall calling convention, a structure that is 8174 // passed InReg - is surely an HVA 8175 if (CLI.CallConv == CallingConv::X86_VectorCall && 8176 isa<StructType>(FinalType)) { 8177 // The first value of a structure is marked 8178 if (0 == Value) 8179 Flags.setHvaStart(); 8180 Flags.setHva(); 8181 } 8182 // Set InReg Flag 8183 Flags.setInReg(); 8184 } 8185 if (Args[i].IsSRet) 8186 Flags.setSRet(); 8187 if (Args[i].IsSwiftSelf) 8188 Flags.setSwiftSelf(); 8189 if (Args[i].IsSwiftError) 8190 Flags.setSwiftError(); 8191 if (Args[i].IsByVal) 8192 Flags.setByVal(); 8193 if (Args[i].IsInAlloca) { 8194 Flags.setInAlloca(); 8195 // Set the byval flag for CCAssignFn callbacks that don't know about 8196 // inalloca. This way we can know how many bytes we should've allocated 8197 // and how many bytes a callee cleanup function will pop. If we port 8198 // inalloca to more targets, we'll have to add custom inalloca handling 8199 // in the various CC lowering callbacks. 8200 Flags.setByVal(); 8201 } 8202 if (Args[i].IsByVal || Args[i].IsInAlloca) { 8203 PointerType *Ty = cast<PointerType>(Args[i].Ty); 8204 Type *ElementTy = Ty->getElementType(); 8205 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 8206 // For ByVal, alignment should come from FE. BE will guess if this 8207 // info is not there but there are cases it cannot get right. 8208 unsigned FrameAlign; 8209 if (Args[i].Alignment) 8210 FrameAlign = Args[i].Alignment; 8211 else 8212 FrameAlign = getByValTypeAlignment(ElementTy, DL); 8213 Flags.setByValAlign(FrameAlign); 8214 } 8215 if (Args[i].IsNest) 8216 Flags.setNest(); 8217 if (NeedsRegBlock) 8218 Flags.setInConsecutiveRegs(); 8219 Flags.setOrigAlign(OriginalAlignment); 8220 8221 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT); 8222 unsigned NumParts = 8223 getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT); 8224 SmallVector<SDValue, 4> Parts(NumParts); 8225 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 8226 8227 if (Args[i].IsSExt) 8228 ExtendKind = ISD::SIGN_EXTEND; 8229 else if (Args[i].IsZExt) 8230 ExtendKind = ISD::ZERO_EXTEND; 8231 8232 // Conservatively only handle 'returned' on non-vectors for now 8233 if (Args[i].IsReturned && !Op.getValueType().isVector()) { 8234 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 8235 "unexpected use of 'returned'"); 8236 // Before passing 'returned' to the target lowering code, ensure that 8237 // either the register MVT and the actual EVT are the same size or that 8238 // the return value and argument are extended in the same way; in these 8239 // cases it's safe to pass the argument register value unchanged as the 8240 // return register value (although it's at the target's option whether 8241 // to do so) 8242 // TODO: allow code generation to take advantage of partially preserved 8243 // registers rather than clobbering the entire register when the 8244 // parameter extension method is not compatible with the return 8245 // extension method 8246 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 8247 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 8248 CLI.RetZExt == Args[i].IsZExt)) 8249 Flags.setReturned(); 8250 } 8251 8252 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 8253 CLI.CS.getInstruction(), ExtendKind, true); 8254 8255 for (unsigned j = 0; j != NumParts; ++j) { 8256 // if it isn't first piece, alignment must be 1 8257 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 8258 i < CLI.NumFixedArgs, 8259 i, j*Parts[j].getValueType().getStoreSize()); 8260 if (NumParts > 1 && j == 0) 8261 MyFlags.Flags.setSplit(); 8262 else if (j != 0) { 8263 MyFlags.Flags.setOrigAlign(1); 8264 if (j == NumParts - 1) 8265 MyFlags.Flags.setSplitEnd(); 8266 } 8267 8268 CLI.Outs.push_back(MyFlags); 8269 CLI.OutVals.push_back(Parts[j]); 8270 } 8271 8272 if (NeedsRegBlock && Value == NumValues - 1) 8273 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 8274 } 8275 } 8276 8277 SmallVector<SDValue, 4> InVals; 8278 CLI.Chain = LowerCall(CLI, InVals); 8279 8280 // Update CLI.InVals to use outside of this function. 8281 CLI.InVals = InVals; 8282 8283 // Verify that the target's LowerCall behaved as expected. 8284 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 8285 "LowerCall didn't return a valid chain!"); 8286 assert((!CLI.IsTailCall || InVals.empty()) && 8287 "LowerCall emitted a return value for a tail call!"); 8288 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 8289 "LowerCall didn't emit the correct number of values!"); 8290 8291 // For a tail call, the return value is merely live-out and there aren't 8292 // any nodes in the DAG representing it. Return a special value to 8293 // indicate that a tail call has been emitted and no more Instructions 8294 // should be processed in the current block. 8295 if (CLI.IsTailCall) { 8296 CLI.DAG.setRoot(CLI.Chain); 8297 return std::make_pair(SDValue(), SDValue()); 8298 } 8299 8300 #ifndef NDEBUG 8301 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 8302 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 8303 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 8304 "LowerCall emitted a value with the wrong type!"); 8305 } 8306 #endif 8307 8308 SmallVector<SDValue, 4> ReturnValues; 8309 if (!CanLowerReturn) { 8310 // The instruction result is the result of loading from the 8311 // hidden sret parameter. 8312 SmallVector<EVT, 1> PVTs; 8313 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 8314 8315 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 8316 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 8317 EVT PtrVT = PVTs[0]; 8318 8319 unsigned NumValues = RetTys.size(); 8320 ReturnValues.resize(NumValues); 8321 SmallVector<SDValue, 4> Chains(NumValues); 8322 8323 // An aggregate return value cannot wrap around the address space, so 8324 // offsets to its parts don't wrap either. 8325 SDNodeFlags Flags; 8326 Flags.setNoUnsignedWrap(true); 8327 8328 for (unsigned i = 0; i < NumValues; ++i) { 8329 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 8330 CLI.DAG.getConstant(Offsets[i], CLI.DL, 8331 PtrVT), Flags); 8332 SDValue L = CLI.DAG.getLoad( 8333 RetTys[i], CLI.DL, CLI.Chain, Add, 8334 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 8335 DemoteStackIdx, Offsets[i]), 8336 /* Alignment = */ 1); 8337 ReturnValues[i] = L; 8338 Chains[i] = L.getValue(1); 8339 } 8340 8341 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 8342 } else { 8343 // Collect the legal value parts into potentially illegal values 8344 // that correspond to the original function's return values. 8345 Optional<ISD::NodeType> AssertOp; 8346 if (CLI.RetSExt) 8347 AssertOp = ISD::AssertSext; 8348 else if (CLI.RetZExt) 8349 AssertOp = ISD::AssertZext; 8350 unsigned CurReg = 0; 8351 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 8352 EVT VT = RetTys[I]; 8353 MVT RegisterVT = 8354 getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT); 8355 unsigned NumRegs = 8356 getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT); 8357 8358 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 8359 NumRegs, RegisterVT, VT, nullptr, 8360 AssertOp, true)); 8361 CurReg += NumRegs; 8362 } 8363 8364 // For a function returning void, there is no return value. We can't create 8365 // such a node, so we just return a null return value in that case. In 8366 // that case, nothing will actually look at the value. 8367 if (ReturnValues.empty()) 8368 return std::make_pair(SDValue(), CLI.Chain); 8369 } 8370 8371 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 8372 CLI.DAG.getVTList(RetTys), ReturnValues); 8373 return std::make_pair(Res, CLI.Chain); 8374 } 8375 8376 void TargetLowering::LowerOperationWrapper(SDNode *N, 8377 SmallVectorImpl<SDValue> &Results, 8378 SelectionDAG &DAG) const { 8379 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 8380 Results.push_back(Res); 8381 } 8382 8383 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 8384 llvm_unreachable("LowerOperation not implemented for this target!"); 8385 } 8386 8387 void 8388 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 8389 SDValue Op = getNonRegisterValue(V); 8390 assert((Op.getOpcode() != ISD::CopyFromReg || 8391 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 8392 "Copy from a reg to the same reg!"); 8393 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 8394 8395 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8396 // If this is an InlineAsm we have to match the registers required, not the 8397 // notional registers required by the type. 8398 8399 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 8400 V->getType(), isABIRegCopy(V)); 8401 SDValue Chain = DAG.getEntryNode(); 8402 8403 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 8404 FuncInfo.PreferredExtendType.end()) 8405 ? ISD::ANY_EXTEND 8406 : FuncInfo.PreferredExtendType[V]; 8407 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 8408 PendingExports.push_back(Chain); 8409 } 8410 8411 #include "llvm/CodeGen/SelectionDAGISel.h" 8412 8413 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 8414 /// entry block, return true. This includes arguments used by switches, since 8415 /// the switch may expand into multiple basic blocks. 8416 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 8417 // With FastISel active, we may be splitting blocks, so force creation 8418 // of virtual registers for all non-dead arguments. 8419 if (FastISel) 8420 return A->use_empty(); 8421 8422 const BasicBlock &Entry = A->getParent()->front(); 8423 for (const User *U : A->users()) 8424 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 8425 return false; // Use not in entry block. 8426 8427 return true; 8428 } 8429 8430 using ArgCopyElisionMapTy = 8431 DenseMap<const Argument *, 8432 std::pair<const AllocaInst *, const StoreInst *>>; 8433 8434 /// Scan the entry block of the function in FuncInfo for arguments that look 8435 /// like copies into a local alloca. Record any copied arguments in 8436 /// ArgCopyElisionCandidates. 8437 static void 8438 findArgumentCopyElisionCandidates(const DataLayout &DL, 8439 FunctionLoweringInfo *FuncInfo, 8440 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 8441 // Record the state of every static alloca used in the entry block. Argument 8442 // allocas are all used in the entry block, so we need approximately as many 8443 // entries as we have arguments. 8444 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 8445 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 8446 unsigned NumArgs = FuncInfo->Fn->arg_size(); 8447 StaticAllocas.reserve(NumArgs * 2); 8448 8449 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 8450 if (!V) 8451 return nullptr; 8452 V = V->stripPointerCasts(); 8453 const auto *AI = dyn_cast<AllocaInst>(V); 8454 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 8455 return nullptr; 8456 auto Iter = StaticAllocas.insert({AI, Unknown}); 8457 return &Iter.first->second; 8458 }; 8459 8460 // Look for stores of arguments to static allocas. Look through bitcasts and 8461 // GEPs to handle type coercions, as long as the alloca is fully initialized 8462 // by the store. Any non-store use of an alloca escapes it and any subsequent 8463 // unanalyzed store might write it. 8464 // FIXME: Handle structs initialized with multiple stores. 8465 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 8466 // Look for stores, and handle non-store uses conservatively. 8467 const auto *SI = dyn_cast<StoreInst>(&I); 8468 if (!SI) { 8469 // We will look through cast uses, so ignore them completely. 8470 if (I.isCast()) 8471 continue; 8472 // Ignore debug info intrinsics, they don't escape or store to allocas. 8473 if (isa<DbgInfoIntrinsic>(I)) 8474 continue; 8475 // This is an unknown instruction. Assume it escapes or writes to all 8476 // static alloca operands. 8477 for (const Use &U : I.operands()) { 8478 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 8479 *Info = StaticAllocaInfo::Clobbered; 8480 } 8481 continue; 8482 } 8483 8484 // If the stored value is a static alloca, mark it as escaped. 8485 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 8486 *Info = StaticAllocaInfo::Clobbered; 8487 8488 // Check if the destination is a static alloca. 8489 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 8490 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 8491 if (!Info) 8492 continue; 8493 const AllocaInst *AI = cast<AllocaInst>(Dst); 8494 8495 // Skip allocas that have been initialized or clobbered. 8496 if (*Info != StaticAllocaInfo::Unknown) 8497 continue; 8498 8499 // Check if the stored value is an argument, and that this store fully 8500 // initializes the alloca. Don't elide copies from the same argument twice. 8501 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 8502 const auto *Arg = dyn_cast<Argument>(Val); 8503 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 8504 Arg->getType()->isEmptyTy() || 8505 DL.getTypeStoreSize(Arg->getType()) != 8506 DL.getTypeAllocSize(AI->getAllocatedType()) || 8507 ArgCopyElisionCandidates.count(Arg)) { 8508 *Info = StaticAllocaInfo::Clobbered; 8509 continue; 8510 } 8511 8512 DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI << '\n'); 8513 8514 // Mark this alloca and store for argument copy elision. 8515 *Info = StaticAllocaInfo::Elidable; 8516 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 8517 8518 // Stop scanning if we've seen all arguments. This will happen early in -O0 8519 // builds, which is useful, because -O0 builds have large entry blocks and 8520 // many allocas. 8521 if (ArgCopyElisionCandidates.size() == NumArgs) 8522 break; 8523 } 8524 } 8525 8526 /// Try to elide argument copies from memory into a local alloca. Succeeds if 8527 /// ArgVal is a load from a suitable fixed stack object. 8528 static void tryToElideArgumentCopy( 8529 FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains, 8530 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 8531 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 8532 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 8533 SDValue ArgVal, bool &ArgHasUses) { 8534 // Check if this is a load from a fixed stack object. 8535 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 8536 if (!LNode) 8537 return; 8538 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 8539 if (!FINode) 8540 return; 8541 8542 // Check that the fixed stack object is the right size and alignment. 8543 // Look at the alignment that the user wrote on the alloca instead of looking 8544 // at the stack object. 8545 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 8546 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 8547 const AllocaInst *AI = ArgCopyIter->second.first; 8548 int FixedIndex = FINode->getIndex(); 8549 int &AllocaIndex = FuncInfo->StaticAllocaMap[AI]; 8550 int OldIndex = AllocaIndex; 8551 MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo(); 8552 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 8553 DEBUG(dbgs() << " argument copy elision failed due to bad fixed stack " 8554 "object size\n"); 8555 return; 8556 } 8557 unsigned RequiredAlignment = AI->getAlignment(); 8558 if (!RequiredAlignment) { 8559 RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment( 8560 AI->getAllocatedType()); 8561 } 8562 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) { 8563 DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 8564 "greater than stack argument alignment (" 8565 << RequiredAlignment << " vs " 8566 << MFI.getObjectAlignment(FixedIndex) << ")\n"); 8567 return; 8568 } 8569 8570 // Perform the elision. Delete the old stack object and replace its only use 8571 // in the variable info map. Mark the stack object as mutable. 8572 DEBUG({ 8573 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 8574 << " Replacing frame index " << OldIndex << " with " << FixedIndex 8575 << '\n'; 8576 }); 8577 MFI.RemoveStackObject(OldIndex); 8578 MFI.setIsImmutableObjectIndex(FixedIndex, false); 8579 AllocaIndex = FixedIndex; 8580 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 8581 Chains.push_back(ArgVal.getValue(1)); 8582 8583 // Avoid emitting code for the store implementing the copy. 8584 const StoreInst *SI = ArgCopyIter->second.second; 8585 ElidedArgCopyInstrs.insert(SI); 8586 8587 // Check for uses of the argument again so that we can avoid exporting ArgVal 8588 // if it is't used by anything other than the store. 8589 for (const Value *U : Arg.users()) { 8590 if (U != SI) { 8591 ArgHasUses = true; 8592 break; 8593 } 8594 } 8595 } 8596 8597 void SelectionDAGISel::LowerArguments(const Function &F) { 8598 SelectionDAG &DAG = SDB->DAG; 8599 SDLoc dl = SDB->getCurSDLoc(); 8600 const DataLayout &DL = DAG.getDataLayout(); 8601 SmallVector<ISD::InputArg, 16> Ins; 8602 8603 if (!FuncInfo->CanLowerReturn) { 8604 // Put in an sret pointer parameter before all the other parameters. 8605 SmallVector<EVT, 1> ValueVTs; 8606 ComputeValueVTs(*TLI, DAG.getDataLayout(), 8607 PointerType::getUnqual(F.getReturnType()), ValueVTs); 8608 8609 // NOTE: Assuming that a pointer will never break down to more than one VT 8610 // or one register. 8611 ISD::ArgFlagsTy Flags; 8612 Flags.setSRet(); 8613 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 8614 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 8615 ISD::InputArg::NoArgIndex, 0); 8616 Ins.push_back(RetArg); 8617 } 8618 8619 // Look for stores of arguments to static allocas. Mark such arguments with a 8620 // flag to ask the target to give us the memory location of that argument if 8621 // available. 8622 ArgCopyElisionMapTy ArgCopyElisionCandidates; 8623 findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates); 8624 8625 // Set up the incoming argument description vector. 8626 for (const Argument &Arg : F.args()) { 8627 unsigned ArgNo = Arg.getArgNo(); 8628 SmallVector<EVT, 4> ValueVTs; 8629 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 8630 bool isArgValueUsed = !Arg.use_empty(); 8631 unsigned PartBase = 0; 8632 Type *FinalType = Arg.getType(); 8633 if (Arg.hasAttribute(Attribute::ByVal)) 8634 FinalType = cast<PointerType>(FinalType)->getElementType(); 8635 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 8636 FinalType, F.getCallingConv(), F.isVarArg()); 8637 for (unsigned Value = 0, NumValues = ValueVTs.size(); 8638 Value != NumValues; ++Value) { 8639 EVT VT = ValueVTs[Value]; 8640 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 8641 ISD::ArgFlagsTy Flags; 8642 8643 // Certain targets (such as MIPS), may have a different ABI alignment 8644 // for a type depending on the context. Give the target a chance to 8645 // specify the alignment it wants. 8646 unsigned OriginalAlignment = 8647 TLI->getABIAlignmentForCallingConv(ArgTy, DL); 8648 8649 if (Arg.hasAttribute(Attribute::ZExt)) 8650 Flags.setZExt(); 8651 if (Arg.hasAttribute(Attribute::SExt)) 8652 Flags.setSExt(); 8653 if (Arg.hasAttribute(Attribute::InReg)) { 8654 // If we are using vectorcall calling convention, a structure that is 8655 // passed InReg - is surely an HVA 8656 if (F.getCallingConv() == CallingConv::X86_VectorCall && 8657 isa<StructType>(Arg.getType())) { 8658 // The first value of a structure is marked 8659 if (0 == Value) 8660 Flags.setHvaStart(); 8661 Flags.setHva(); 8662 } 8663 // Set InReg Flag 8664 Flags.setInReg(); 8665 } 8666 if (Arg.hasAttribute(Attribute::StructRet)) 8667 Flags.setSRet(); 8668 if (Arg.hasAttribute(Attribute::SwiftSelf)) 8669 Flags.setSwiftSelf(); 8670 if (Arg.hasAttribute(Attribute::SwiftError)) 8671 Flags.setSwiftError(); 8672 if (Arg.hasAttribute(Attribute::ByVal)) 8673 Flags.setByVal(); 8674 if (Arg.hasAttribute(Attribute::InAlloca)) { 8675 Flags.setInAlloca(); 8676 // Set the byval flag for CCAssignFn callbacks that don't know about 8677 // inalloca. This way we can know how many bytes we should've allocated 8678 // and how many bytes a callee cleanup function will pop. If we port 8679 // inalloca to more targets, we'll have to add custom inalloca handling 8680 // in the various CC lowering callbacks. 8681 Flags.setByVal(); 8682 } 8683 if (F.getCallingConv() == CallingConv::X86_INTR) { 8684 // IA Interrupt passes frame (1st parameter) by value in the stack. 8685 if (ArgNo == 0) 8686 Flags.setByVal(); 8687 } 8688 if (Flags.isByVal() || Flags.isInAlloca()) { 8689 PointerType *Ty = cast<PointerType>(Arg.getType()); 8690 Type *ElementTy = Ty->getElementType(); 8691 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 8692 // For ByVal, alignment should be passed from FE. BE will guess if 8693 // this info is not there but there are cases it cannot get right. 8694 unsigned FrameAlign; 8695 if (Arg.getParamAlignment()) 8696 FrameAlign = Arg.getParamAlignment(); 8697 else 8698 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 8699 Flags.setByValAlign(FrameAlign); 8700 } 8701 if (Arg.hasAttribute(Attribute::Nest)) 8702 Flags.setNest(); 8703 if (NeedsRegBlock) 8704 Flags.setInConsecutiveRegs(); 8705 Flags.setOrigAlign(OriginalAlignment); 8706 if (ArgCopyElisionCandidates.count(&Arg)) 8707 Flags.setCopyElisionCandidate(); 8708 8709 MVT RegisterVT = 8710 TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), VT); 8711 unsigned NumRegs = 8712 TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), VT); 8713 for (unsigned i = 0; i != NumRegs; ++i) { 8714 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 8715 ArgNo, PartBase+i*RegisterVT.getStoreSize()); 8716 if (NumRegs > 1 && i == 0) 8717 MyFlags.Flags.setSplit(); 8718 // if it isn't first piece, alignment must be 1 8719 else if (i > 0) { 8720 MyFlags.Flags.setOrigAlign(1); 8721 if (i == NumRegs - 1) 8722 MyFlags.Flags.setSplitEnd(); 8723 } 8724 Ins.push_back(MyFlags); 8725 } 8726 if (NeedsRegBlock && Value == NumValues - 1) 8727 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 8728 PartBase += VT.getStoreSize(); 8729 } 8730 } 8731 8732 // Call the target to set up the argument values. 8733 SmallVector<SDValue, 8> InVals; 8734 SDValue NewRoot = TLI->LowerFormalArguments( 8735 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 8736 8737 // Verify that the target's LowerFormalArguments behaved as expected. 8738 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 8739 "LowerFormalArguments didn't return a valid chain!"); 8740 assert(InVals.size() == Ins.size() && 8741 "LowerFormalArguments didn't emit the correct number of values!"); 8742 DEBUG({ 8743 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 8744 assert(InVals[i].getNode() && 8745 "LowerFormalArguments emitted a null value!"); 8746 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 8747 "LowerFormalArguments emitted a value with the wrong type!"); 8748 } 8749 }); 8750 8751 // Update the DAG with the new chain value resulting from argument lowering. 8752 DAG.setRoot(NewRoot); 8753 8754 // Set up the argument values. 8755 unsigned i = 0; 8756 if (!FuncInfo->CanLowerReturn) { 8757 // Create a virtual register for the sret pointer, and put in a copy 8758 // from the sret argument into it. 8759 SmallVector<EVT, 1> ValueVTs; 8760 ComputeValueVTs(*TLI, DAG.getDataLayout(), 8761 PointerType::getUnqual(F.getReturnType()), ValueVTs); 8762 MVT VT = ValueVTs[0].getSimpleVT(); 8763 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 8764 Optional<ISD::NodeType> AssertOp = None; 8765 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 8766 RegVT, VT, nullptr, AssertOp); 8767 8768 MachineFunction& MF = SDB->DAG.getMachineFunction(); 8769 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 8770 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 8771 FuncInfo->DemoteRegister = SRetReg; 8772 NewRoot = 8773 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 8774 DAG.setRoot(NewRoot); 8775 8776 // i indexes lowered arguments. Bump it past the hidden sret argument. 8777 ++i; 8778 } 8779 8780 SmallVector<SDValue, 4> Chains; 8781 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 8782 for (const Argument &Arg : F.args()) { 8783 SmallVector<SDValue, 4> ArgValues; 8784 SmallVector<EVT, 4> ValueVTs; 8785 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 8786 unsigned NumValues = ValueVTs.size(); 8787 if (NumValues == 0) 8788 continue; 8789 8790 bool ArgHasUses = !Arg.use_empty(); 8791 8792 // Elide the copying store if the target loaded this argument from a 8793 // suitable fixed stack object. 8794 if (Ins[i].Flags.isCopyElisionCandidate()) { 8795 tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 8796 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 8797 InVals[i], ArgHasUses); 8798 } 8799 8800 // If this argument is unused then remember its value. It is used to generate 8801 // debugging information. 8802 bool isSwiftErrorArg = 8803 TLI->supportSwiftError() && 8804 Arg.hasAttribute(Attribute::SwiftError); 8805 if (!ArgHasUses && !isSwiftErrorArg) { 8806 SDB->setUnusedArgValue(&Arg, InVals[i]); 8807 8808 // Also remember any frame index for use in FastISel. 8809 if (FrameIndexSDNode *FI = 8810 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 8811 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 8812 } 8813 8814 for (unsigned Val = 0; Val != NumValues; ++Val) { 8815 EVT VT = ValueVTs[Val]; 8816 MVT PartVT = 8817 TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), VT); 8818 unsigned NumParts = 8819 TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), VT); 8820 8821 // Even an apparant 'unused' swifterror argument needs to be returned. So 8822 // we do generate a copy for it that can be used on return from the 8823 // function. 8824 if (ArgHasUses || isSwiftErrorArg) { 8825 Optional<ISD::NodeType> AssertOp; 8826 if (Arg.hasAttribute(Attribute::SExt)) 8827 AssertOp = ISD::AssertSext; 8828 else if (Arg.hasAttribute(Attribute::ZExt)) 8829 AssertOp = ISD::AssertZext; 8830 8831 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 8832 PartVT, VT, nullptr, AssertOp, 8833 true)); 8834 } 8835 8836 i += NumParts; 8837 } 8838 8839 // We don't need to do anything else for unused arguments. 8840 if (ArgValues.empty()) 8841 continue; 8842 8843 // Note down frame index. 8844 if (FrameIndexSDNode *FI = 8845 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 8846 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 8847 8848 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 8849 SDB->getCurSDLoc()); 8850 8851 SDB->setValue(&Arg, Res); 8852 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 8853 // We want to associate the argument with the frame index, among 8854 // involved operands, that correspond to the lowest address. The 8855 // getCopyFromParts function, called earlier, is swapping the order of 8856 // the operands to BUILD_PAIR depending on endianness. The result of 8857 // that swapping is that the least significant bits of the argument will 8858 // be in the first operand of the BUILD_PAIR node, and the most 8859 // significant bits will be in the second operand. 8860 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 8861 if (LoadSDNode *LNode = 8862 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 8863 if (FrameIndexSDNode *FI = 8864 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 8865 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 8866 } 8867 8868 // Update the SwiftErrorVRegDefMap. 8869 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 8870 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 8871 if (TargetRegisterInfo::isVirtualRegister(Reg)) 8872 FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, 8873 FuncInfo->SwiftErrorArg, Reg); 8874 } 8875 8876 // If this argument is live outside of the entry block, insert a copy from 8877 // wherever we got it to the vreg that other BB's will reference it as. 8878 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 8879 // If we can, though, try to skip creating an unnecessary vreg. 8880 // FIXME: This isn't very clean... it would be nice to make this more 8881 // general. It's also subtly incompatible with the hacks FastISel 8882 // uses with vregs. 8883 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 8884 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 8885 FuncInfo->ValueMap[&Arg] = Reg; 8886 continue; 8887 } 8888 } 8889 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 8890 FuncInfo->InitializeRegForValue(&Arg); 8891 SDB->CopyToExportRegsIfNeeded(&Arg); 8892 } 8893 } 8894 8895 if (!Chains.empty()) { 8896 Chains.push_back(NewRoot); 8897 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 8898 } 8899 8900 DAG.setRoot(NewRoot); 8901 8902 assert(i == InVals.size() && "Argument register count mismatch!"); 8903 8904 // If any argument copy elisions occurred and we have debug info, update the 8905 // stale frame indices used in the dbg.declare variable info table. 8906 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 8907 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 8908 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 8909 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 8910 if (I != ArgCopyElisionFrameIndexMap.end()) 8911 VI.Slot = I->second; 8912 } 8913 } 8914 8915 // Finally, if the target has anything special to do, allow it to do so. 8916 EmitFunctionEntryCode(); 8917 } 8918 8919 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 8920 /// ensure constants are generated when needed. Remember the virtual registers 8921 /// that need to be added to the Machine PHI nodes as input. We cannot just 8922 /// directly add them, because expansion might result in multiple MBB's for one 8923 /// BB. As such, the start of the BB might correspond to a different MBB than 8924 /// the end. 8925 void 8926 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 8927 const TerminatorInst *TI = LLVMBB->getTerminator(); 8928 8929 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 8930 8931 // Check PHI nodes in successors that expect a value to be available from this 8932 // block. 8933 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 8934 const BasicBlock *SuccBB = TI->getSuccessor(succ); 8935 if (!isa<PHINode>(SuccBB->begin())) continue; 8936 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 8937 8938 // If this terminator has multiple identical successors (common for 8939 // switches), only handle each succ once. 8940 if (!SuccsHandled.insert(SuccMBB).second) 8941 continue; 8942 8943 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 8944 8945 // At this point we know that there is a 1-1 correspondence between LLVM PHI 8946 // nodes and Machine PHI nodes, but the incoming operands have not been 8947 // emitted yet. 8948 for (BasicBlock::const_iterator I = SuccBB->begin(); 8949 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 8950 // Ignore dead phi's. 8951 if (PN->use_empty()) continue; 8952 8953 // Skip empty types 8954 if (PN->getType()->isEmptyTy()) 8955 continue; 8956 8957 unsigned Reg; 8958 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 8959 8960 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 8961 unsigned &RegOut = ConstantsOut[C]; 8962 if (RegOut == 0) { 8963 RegOut = FuncInfo.CreateRegs(C->getType()); 8964 CopyValueToVirtualRegister(C, RegOut); 8965 } 8966 Reg = RegOut; 8967 } else { 8968 DenseMap<const Value *, unsigned>::iterator I = 8969 FuncInfo.ValueMap.find(PHIOp); 8970 if (I != FuncInfo.ValueMap.end()) 8971 Reg = I->second; 8972 else { 8973 assert(isa<AllocaInst>(PHIOp) && 8974 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 8975 "Didn't codegen value into a register!??"); 8976 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 8977 CopyValueToVirtualRegister(PHIOp, Reg); 8978 } 8979 } 8980 8981 // Remember that this register needs to added to the machine PHI node as 8982 // the input for this MBB. 8983 SmallVector<EVT, 4> ValueVTs; 8984 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8985 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 8986 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 8987 EVT VT = ValueVTs[vti]; 8988 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 8989 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 8990 FuncInfo.PHINodesToUpdate.push_back( 8991 std::make_pair(&*MBBI++, Reg + i)); 8992 Reg += NumRegisters; 8993 } 8994 } 8995 } 8996 8997 ConstantsOut.clear(); 8998 } 8999 9000 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 9001 /// is 0. 9002 MachineBasicBlock * 9003 SelectionDAGBuilder::StackProtectorDescriptor:: 9004 AddSuccessorMBB(const BasicBlock *BB, 9005 MachineBasicBlock *ParentMBB, 9006 bool IsLikely, 9007 MachineBasicBlock *SuccMBB) { 9008 // If SuccBB has not been created yet, create it. 9009 if (!SuccMBB) { 9010 MachineFunction *MF = ParentMBB->getParent(); 9011 MachineFunction::iterator BBI(ParentMBB); 9012 SuccMBB = MF->CreateMachineBasicBlock(BB); 9013 MF->insert(++BBI, SuccMBB); 9014 } 9015 // Add it as a successor of ParentMBB. 9016 ParentMBB->addSuccessor( 9017 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 9018 return SuccMBB; 9019 } 9020 9021 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 9022 MachineFunction::iterator I(MBB); 9023 if (++I == FuncInfo.MF->end()) 9024 return nullptr; 9025 return &*I; 9026 } 9027 9028 /// During lowering new call nodes can be created (such as memset, etc.). 9029 /// Those will become new roots of the current DAG, but complications arise 9030 /// when they are tail calls. In such cases, the call lowering will update 9031 /// the root, but the builder still needs to know that a tail call has been 9032 /// lowered in order to avoid generating an additional return. 9033 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 9034 // If the node is null, we do have a tail call. 9035 if (MaybeTC.getNode() != nullptr) 9036 DAG.setRoot(MaybeTC); 9037 else 9038 HasTailCall = true; 9039 } 9040 9041 uint64_t 9042 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters, 9043 unsigned First, unsigned Last) const { 9044 assert(Last >= First); 9045 const APInt &LowCase = Clusters[First].Low->getValue(); 9046 const APInt &HighCase = Clusters[Last].High->getValue(); 9047 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 9048 9049 // FIXME: A range of consecutive cases has 100% density, but only requires one 9050 // comparison to lower. We should discriminate against such consecutive ranges 9051 // in jump tables. 9052 9053 return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1; 9054 } 9055 9056 uint64_t SelectionDAGBuilder::getJumpTableNumCases( 9057 const SmallVectorImpl<unsigned> &TotalCases, unsigned First, 9058 unsigned Last) const { 9059 assert(Last >= First); 9060 assert(TotalCases[Last] >= TotalCases[First]); 9061 uint64_t NumCases = 9062 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 9063 return NumCases; 9064 } 9065 9066 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters, 9067 unsigned First, unsigned Last, 9068 const SwitchInst *SI, 9069 MachineBasicBlock *DefaultMBB, 9070 CaseCluster &JTCluster) { 9071 assert(First <= Last); 9072 9073 auto Prob = BranchProbability::getZero(); 9074 unsigned NumCmps = 0; 9075 std::vector<MachineBasicBlock*> Table; 9076 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 9077 9078 // Initialize probabilities in JTProbs. 9079 for (unsigned I = First; I <= Last; ++I) 9080 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 9081 9082 for (unsigned I = First; I <= Last; ++I) { 9083 assert(Clusters[I].Kind == CC_Range); 9084 Prob += Clusters[I].Prob; 9085 const APInt &Low = Clusters[I].Low->getValue(); 9086 const APInt &High = Clusters[I].High->getValue(); 9087 NumCmps += (Low == High) ? 1 : 2; 9088 if (I != First) { 9089 // Fill the gap between this and the previous cluster. 9090 const APInt &PreviousHigh = Clusters[I - 1].High->getValue(); 9091 assert(PreviousHigh.slt(Low)); 9092 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 9093 for (uint64_t J = 0; J < Gap; J++) 9094 Table.push_back(DefaultMBB); 9095 } 9096 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 9097 for (uint64_t J = 0; J < ClusterSize; ++J) 9098 Table.push_back(Clusters[I].MBB); 9099 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 9100 } 9101 9102 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9103 unsigned NumDests = JTProbs.size(); 9104 if (TLI.isSuitableForBitTests( 9105 NumDests, NumCmps, Clusters[First].Low->getValue(), 9106 Clusters[Last].High->getValue(), DAG.getDataLayout())) { 9107 // Clusters[First..Last] should be lowered as bit tests instead. 9108 return false; 9109 } 9110 9111 // Create the MBB that will load from and jump through the table. 9112 // Note: We create it here, but it's not inserted into the function yet. 9113 MachineFunction *CurMF = FuncInfo.MF; 9114 MachineBasicBlock *JumpTableMBB = 9115 CurMF->CreateMachineBasicBlock(SI->getParent()); 9116 9117 // Add successors. Note: use table order for determinism. 9118 SmallPtrSet<MachineBasicBlock *, 8> Done; 9119 for (MachineBasicBlock *Succ : Table) { 9120 if (Done.count(Succ)) 9121 continue; 9122 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 9123 Done.insert(Succ); 9124 } 9125 JumpTableMBB->normalizeSuccProbs(); 9126 9127 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 9128 ->createJumpTableIndex(Table); 9129 9130 // Set up the jump table info. 9131 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 9132 JumpTableHeader JTH(Clusters[First].Low->getValue(), 9133 Clusters[Last].High->getValue(), SI->getCondition(), 9134 nullptr, false); 9135 JTCases.emplace_back(std::move(JTH), std::move(JT)); 9136 9137 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 9138 JTCases.size() - 1, Prob); 9139 return true; 9140 } 9141 9142 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 9143 const SwitchInst *SI, 9144 MachineBasicBlock *DefaultMBB) { 9145 #ifndef NDEBUG 9146 // Clusters must be non-empty, sorted, and only contain Range clusters. 9147 assert(!Clusters.empty()); 9148 for (CaseCluster &C : Clusters) 9149 assert(C.Kind == CC_Range); 9150 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 9151 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 9152 #endif 9153 9154 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9155 if (!TLI.areJTsAllowed(SI->getParent()->getParent())) 9156 return; 9157 9158 const int64_t N = Clusters.size(); 9159 const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries(); 9160 const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2; 9161 9162 if (N < 2 || N < MinJumpTableEntries) 9163 return; 9164 9165 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 9166 SmallVector<unsigned, 8> TotalCases(N); 9167 for (unsigned i = 0; i < N; ++i) { 9168 const APInt &Hi = Clusters[i].High->getValue(); 9169 const APInt &Lo = Clusters[i].Low->getValue(); 9170 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 9171 if (i != 0) 9172 TotalCases[i] += TotalCases[i - 1]; 9173 } 9174 9175 // Cheap case: the whole range may be suitable for jump table. 9176 uint64_t Range = getJumpTableRange(Clusters,0, N - 1); 9177 uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1); 9178 assert(NumCases < UINT64_MAX / 100); 9179 assert(Range >= NumCases); 9180 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 9181 CaseCluster JTCluster; 9182 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 9183 Clusters[0] = JTCluster; 9184 Clusters.resize(1); 9185 return; 9186 } 9187 } 9188 9189 // The algorithm below is not suitable for -O0. 9190 if (TM.getOptLevel() == CodeGenOpt::None) 9191 return; 9192 9193 // Split Clusters into minimum number of dense partitions. The algorithm uses 9194 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 9195 // for the Case Statement'" (1994), but builds the MinPartitions array in 9196 // reverse order to make it easier to reconstruct the partitions in ascending 9197 // order. In the choice between two optimal partitionings, it picks the one 9198 // which yields more jump tables. 9199 9200 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 9201 SmallVector<unsigned, 8> MinPartitions(N); 9202 // LastElement[i] is the last element of the partition starting at i. 9203 SmallVector<unsigned, 8> LastElement(N); 9204 // PartitionsScore[i] is used to break ties when choosing between two 9205 // partitionings resulting in the same number of partitions. 9206 SmallVector<unsigned, 8> PartitionsScore(N); 9207 // For PartitionsScore, a small number of comparisons is considered as good as 9208 // a jump table and a single comparison is considered better than a jump 9209 // table. 9210 enum PartitionScores : unsigned { 9211 NoTable = 0, 9212 Table = 1, 9213 FewCases = 1, 9214 SingleCase = 2 9215 }; 9216 9217 // Base case: There is only one way to partition Clusters[N-1]. 9218 MinPartitions[N - 1] = 1; 9219 LastElement[N - 1] = N - 1; 9220 PartitionsScore[N - 1] = PartitionScores::SingleCase; 9221 9222 // Note: loop indexes are signed to avoid underflow. 9223 for (int64_t i = N - 2; i >= 0; i--) { 9224 // Find optimal partitioning of Clusters[i..N-1]. 9225 // Baseline: Put Clusters[i] into a partition on its own. 9226 MinPartitions[i] = MinPartitions[i + 1] + 1; 9227 LastElement[i] = i; 9228 PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase; 9229 9230 // Search for a solution that results in fewer partitions. 9231 for (int64_t j = N - 1; j > i; j--) { 9232 // Try building a partition from Clusters[i..j]. 9233 uint64_t Range = getJumpTableRange(Clusters, i, j); 9234 uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j); 9235 assert(NumCases < UINT64_MAX / 100); 9236 assert(Range >= NumCases); 9237 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 9238 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 9239 unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1]; 9240 int64_t NumEntries = j - i + 1; 9241 9242 if (NumEntries == 1) 9243 Score += PartitionScores::SingleCase; 9244 else if (NumEntries <= SmallNumberOfEntries) 9245 Score += PartitionScores::FewCases; 9246 else if (NumEntries >= MinJumpTableEntries) 9247 Score += PartitionScores::Table; 9248 9249 // If this leads to fewer partitions, or to the same number of 9250 // partitions with better score, it is a better partitioning. 9251 if (NumPartitions < MinPartitions[i] || 9252 (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) { 9253 MinPartitions[i] = NumPartitions; 9254 LastElement[i] = j; 9255 PartitionsScore[i] = Score; 9256 } 9257 } 9258 } 9259 } 9260 9261 // Iterate over the partitions, replacing some with jump tables in-place. 9262 unsigned DstIndex = 0; 9263 for (unsigned First = 0, Last; First < N; First = Last + 1) { 9264 Last = LastElement[First]; 9265 assert(Last >= First); 9266 assert(DstIndex <= First); 9267 unsigned NumClusters = Last - First + 1; 9268 9269 CaseCluster JTCluster; 9270 if (NumClusters >= MinJumpTableEntries && 9271 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 9272 Clusters[DstIndex++] = JTCluster; 9273 } else { 9274 for (unsigned I = First; I <= Last; ++I) 9275 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 9276 } 9277 } 9278 Clusters.resize(DstIndex); 9279 } 9280 9281 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 9282 unsigned First, unsigned Last, 9283 const SwitchInst *SI, 9284 CaseCluster &BTCluster) { 9285 assert(First <= Last); 9286 if (First == Last) 9287 return false; 9288 9289 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 9290 unsigned NumCmps = 0; 9291 for (int64_t I = First; I <= Last; ++I) { 9292 assert(Clusters[I].Kind == CC_Range); 9293 Dests.set(Clusters[I].MBB->getNumber()); 9294 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 9295 } 9296 unsigned NumDests = Dests.count(); 9297 9298 APInt Low = Clusters[First].Low->getValue(); 9299 APInt High = Clusters[Last].High->getValue(); 9300 assert(Low.slt(High)); 9301 9302 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9303 const DataLayout &DL = DAG.getDataLayout(); 9304 if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL)) 9305 return false; 9306 9307 APInt LowBound; 9308 APInt CmpRange; 9309 9310 const int BitWidth = TLI.getPointerTy(DL).getSizeInBits(); 9311 assert(TLI.rangeFitsInWord(Low, High, DL) && 9312 "Case range must fit in bit mask!"); 9313 9314 // Check if the clusters cover a contiguous range such that no value in the 9315 // range will jump to the default statement. 9316 bool ContiguousRange = true; 9317 for (int64_t I = First + 1; I <= Last; ++I) { 9318 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 9319 ContiguousRange = false; 9320 break; 9321 } 9322 } 9323 9324 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 9325 // Optimize the case where all the case values fit in a word without having 9326 // to subtract minValue. In this case, we can optimize away the subtraction. 9327 LowBound = APInt::getNullValue(Low.getBitWidth()); 9328 CmpRange = High; 9329 ContiguousRange = false; 9330 } else { 9331 LowBound = Low; 9332 CmpRange = High - Low; 9333 } 9334 9335 CaseBitsVector CBV; 9336 auto TotalProb = BranchProbability::getZero(); 9337 for (unsigned i = First; i <= Last; ++i) { 9338 // Find the CaseBits for this destination. 9339 unsigned j; 9340 for (j = 0; j < CBV.size(); ++j) 9341 if (CBV[j].BB == Clusters[i].MBB) 9342 break; 9343 if (j == CBV.size()) 9344 CBV.push_back( 9345 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 9346 CaseBits *CB = &CBV[j]; 9347 9348 // Update Mask, Bits and ExtraProb. 9349 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 9350 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 9351 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 9352 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 9353 CB->Bits += Hi - Lo + 1; 9354 CB->ExtraProb += Clusters[i].Prob; 9355 TotalProb += Clusters[i].Prob; 9356 } 9357 9358 BitTestInfo BTI; 9359 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 9360 // Sort by probability first, number of bits second. 9361 if (a.ExtraProb != b.ExtraProb) 9362 return a.ExtraProb > b.ExtraProb; 9363 return a.Bits > b.Bits; 9364 }); 9365 9366 for (auto &CB : CBV) { 9367 MachineBasicBlock *BitTestBB = 9368 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 9369 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 9370 } 9371 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 9372 SI->getCondition(), -1U, MVT::Other, false, 9373 ContiguousRange, nullptr, nullptr, std::move(BTI), 9374 TotalProb); 9375 9376 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 9377 BitTestCases.size() - 1, TotalProb); 9378 return true; 9379 } 9380 9381 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 9382 const SwitchInst *SI) { 9383 // Partition Clusters into as few subsets as possible, where each subset has a 9384 // range that fits in a machine word and has <= 3 unique destinations. 9385 9386 #ifndef NDEBUG 9387 // Clusters must be sorted and contain Range or JumpTable clusters. 9388 assert(!Clusters.empty()); 9389 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 9390 for (const CaseCluster &C : Clusters) 9391 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 9392 for (unsigned i = 1; i < Clusters.size(); ++i) 9393 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 9394 #endif 9395 9396 // The algorithm below is not suitable for -O0. 9397 if (TM.getOptLevel() == CodeGenOpt::None) 9398 return; 9399 9400 // If target does not have legal shift left, do not emit bit tests at all. 9401 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9402 const DataLayout &DL = DAG.getDataLayout(); 9403 9404 EVT PTy = TLI.getPointerTy(DL); 9405 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 9406 return; 9407 9408 int BitWidth = PTy.getSizeInBits(); 9409 const int64_t N = Clusters.size(); 9410 9411 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 9412 SmallVector<unsigned, 8> MinPartitions(N); 9413 // LastElement[i] is the last element of the partition starting at i. 9414 SmallVector<unsigned, 8> LastElement(N); 9415 9416 // FIXME: This might not be the best algorithm for finding bit test clusters. 9417 9418 // Base case: There is only one way to partition Clusters[N-1]. 9419 MinPartitions[N - 1] = 1; 9420 LastElement[N - 1] = N - 1; 9421 9422 // Note: loop indexes are signed to avoid underflow. 9423 for (int64_t i = N - 2; i >= 0; --i) { 9424 // Find optimal partitioning of Clusters[i..N-1]. 9425 // Baseline: Put Clusters[i] into a partition on its own. 9426 MinPartitions[i] = MinPartitions[i + 1] + 1; 9427 LastElement[i] = i; 9428 9429 // Search for a solution that results in fewer partitions. 9430 // Note: the search is limited by BitWidth, reducing time complexity. 9431 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 9432 // Try building a partition from Clusters[i..j]. 9433 9434 // Check the range. 9435 if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(), 9436 Clusters[j].High->getValue(), DL)) 9437 continue; 9438 9439 // Check nbr of destinations and cluster types. 9440 // FIXME: This works, but doesn't seem very efficient. 9441 bool RangesOnly = true; 9442 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 9443 for (int64_t k = i; k <= j; k++) { 9444 if (Clusters[k].Kind != CC_Range) { 9445 RangesOnly = false; 9446 break; 9447 } 9448 Dests.set(Clusters[k].MBB->getNumber()); 9449 } 9450 if (!RangesOnly || Dests.count() > 3) 9451 break; 9452 9453 // Check if it's a better partition. 9454 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 9455 if (NumPartitions < MinPartitions[i]) { 9456 // Found a better partition. 9457 MinPartitions[i] = NumPartitions; 9458 LastElement[i] = j; 9459 } 9460 } 9461 } 9462 9463 // Iterate over the partitions, replacing with bit-test clusters in-place. 9464 unsigned DstIndex = 0; 9465 for (unsigned First = 0, Last; First < N; First = Last + 1) { 9466 Last = LastElement[First]; 9467 assert(First <= Last); 9468 assert(DstIndex <= First); 9469 9470 CaseCluster BitTestCluster; 9471 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 9472 Clusters[DstIndex++] = BitTestCluster; 9473 } else { 9474 size_t NumClusters = Last - First + 1; 9475 std::memmove(&Clusters[DstIndex], &Clusters[First], 9476 sizeof(Clusters[0]) * NumClusters); 9477 DstIndex += NumClusters; 9478 } 9479 } 9480 Clusters.resize(DstIndex); 9481 } 9482 9483 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 9484 MachineBasicBlock *SwitchMBB, 9485 MachineBasicBlock *DefaultMBB) { 9486 MachineFunction *CurMF = FuncInfo.MF; 9487 MachineBasicBlock *NextMBB = nullptr; 9488 MachineFunction::iterator BBI(W.MBB); 9489 if (++BBI != FuncInfo.MF->end()) 9490 NextMBB = &*BBI; 9491 9492 unsigned Size = W.LastCluster - W.FirstCluster + 1; 9493 9494 BranchProbabilityInfo *BPI = FuncInfo.BPI; 9495 9496 if (Size == 2 && W.MBB == SwitchMBB) { 9497 // If any two of the cases has the same destination, and if one value 9498 // is the same as the other, but has one bit unset that the other has set, 9499 // use bit manipulation to do two compares at once. For example: 9500 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 9501 // TODO: This could be extended to merge any 2 cases in switches with 3 9502 // cases. 9503 // TODO: Handle cases where W.CaseBB != SwitchBB. 9504 CaseCluster &Small = *W.FirstCluster; 9505 CaseCluster &Big = *W.LastCluster; 9506 9507 if (Small.Low == Small.High && Big.Low == Big.High && 9508 Small.MBB == Big.MBB) { 9509 const APInt &SmallValue = Small.Low->getValue(); 9510 const APInt &BigValue = Big.Low->getValue(); 9511 9512 // Check that there is only one bit different. 9513 APInt CommonBit = BigValue ^ SmallValue; 9514 if (CommonBit.isPowerOf2()) { 9515 SDValue CondLHS = getValue(Cond); 9516 EVT VT = CondLHS.getValueType(); 9517 SDLoc DL = getCurSDLoc(); 9518 9519 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 9520 DAG.getConstant(CommonBit, DL, VT)); 9521 SDValue Cond = DAG.getSetCC( 9522 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 9523 ISD::SETEQ); 9524 9525 // Update successor info. 9526 // Both Small and Big will jump to Small.BB, so we sum up the 9527 // probabilities. 9528 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 9529 if (BPI) 9530 addSuccessorWithProb( 9531 SwitchMBB, DefaultMBB, 9532 // The default destination is the first successor in IR. 9533 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 9534 else 9535 addSuccessorWithProb(SwitchMBB, DefaultMBB); 9536 9537 // Insert the true branch. 9538 SDValue BrCond = 9539 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 9540 DAG.getBasicBlock(Small.MBB)); 9541 // Insert the false branch. 9542 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 9543 DAG.getBasicBlock(DefaultMBB)); 9544 9545 DAG.setRoot(BrCond); 9546 return; 9547 } 9548 } 9549 } 9550 9551 if (TM.getOptLevel() != CodeGenOpt::None) { 9552 // Order cases by probability so the most likely case will be checked first. 9553 std::sort(W.FirstCluster, W.LastCluster + 1, 9554 [](const CaseCluster &a, const CaseCluster &b) { 9555 return a.Prob > b.Prob; 9556 }); 9557 9558 // Rearrange the case blocks so that the last one falls through if possible 9559 // without without changing the order of probabilities. 9560 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 9561 --I; 9562 if (I->Prob > W.LastCluster->Prob) 9563 break; 9564 if (I->Kind == CC_Range && I->MBB == NextMBB) { 9565 std::swap(*I, *W.LastCluster); 9566 break; 9567 } 9568 } 9569 } 9570 9571 // Compute total probability. 9572 BranchProbability DefaultProb = W.DefaultProb; 9573 BranchProbability UnhandledProbs = DefaultProb; 9574 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 9575 UnhandledProbs += I->Prob; 9576 9577 MachineBasicBlock *CurMBB = W.MBB; 9578 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 9579 MachineBasicBlock *Fallthrough; 9580 if (I == W.LastCluster) { 9581 // For the last cluster, fall through to the default destination. 9582 Fallthrough = DefaultMBB; 9583 } else { 9584 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 9585 CurMF->insert(BBI, Fallthrough); 9586 // Put Cond in a virtual register to make it available from the new blocks. 9587 ExportFromCurrentBlock(Cond); 9588 } 9589 UnhandledProbs -= I->Prob; 9590 9591 switch (I->Kind) { 9592 case CC_JumpTable: { 9593 // FIXME: Optimize away range check based on pivot comparisons. 9594 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 9595 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 9596 9597 // The jump block hasn't been inserted yet; insert it here. 9598 MachineBasicBlock *JumpMBB = JT->MBB; 9599 CurMF->insert(BBI, JumpMBB); 9600 9601 auto JumpProb = I->Prob; 9602 auto FallthroughProb = UnhandledProbs; 9603 9604 // If the default statement is a target of the jump table, we evenly 9605 // distribute the default probability to successors of CurMBB. Also 9606 // update the probability on the edge from JumpMBB to Fallthrough. 9607 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 9608 SE = JumpMBB->succ_end(); 9609 SI != SE; ++SI) { 9610 if (*SI == DefaultMBB) { 9611 JumpProb += DefaultProb / 2; 9612 FallthroughProb -= DefaultProb / 2; 9613 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 9614 JumpMBB->normalizeSuccProbs(); 9615 break; 9616 } 9617 } 9618 9619 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 9620 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 9621 CurMBB->normalizeSuccProbs(); 9622 9623 // The jump table header will be inserted in our current block, do the 9624 // range check, and fall through to our fallthrough block. 9625 JTH->HeaderBB = CurMBB; 9626 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 9627 9628 // If we're in the right place, emit the jump table header right now. 9629 if (CurMBB == SwitchMBB) { 9630 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 9631 JTH->Emitted = true; 9632 } 9633 break; 9634 } 9635 case CC_BitTests: { 9636 // FIXME: Optimize away range check based on pivot comparisons. 9637 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 9638 9639 // The bit test blocks haven't been inserted yet; insert them here. 9640 for (BitTestCase &BTC : BTB->Cases) 9641 CurMF->insert(BBI, BTC.ThisBB); 9642 9643 // Fill in fields of the BitTestBlock. 9644 BTB->Parent = CurMBB; 9645 BTB->Default = Fallthrough; 9646 9647 BTB->DefaultProb = UnhandledProbs; 9648 // If the cases in bit test don't form a contiguous range, we evenly 9649 // distribute the probability on the edge to Fallthrough to two 9650 // successors of CurMBB. 9651 if (!BTB->ContiguousRange) { 9652 BTB->Prob += DefaultProb / 2; 9653 BTB->DefaultProb -= DefaultProb / 2; 9654 } 9655 9656 // If we're in the right place, emit the bit test header right now. 9657 if (CurMBB == SwitchMBB) { 9658 visitBitTestHeader(*BTB, SwitchMBB); 9659 BTB->Emitted = true; 9660 } 9661 break; 9662 } 9663 case CC_Range: { 9664 const Value *RHS, *LHS, *MHS; 9665 ISD::CondCode CC; 9666 if (I->Low == I->High) { 9667 // Check Cond == I->Low. 9668 CC = ISD::SETEQ; 9669 LHS = Cond; 9670 RHS=I->Low; 9671 MHS = nullptr; 9672 } else { 9673 // Check I->Low <= Cond <= I->High. 9674 CC = ISD::SETLE; 9675 LHS = I->Low; 9676 MHS = Cond; 9677 RHS = I->High; 9678 } 9679 9680 // The false probability is the sum of all unhandled cases. 9681 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 9682 getCurSDLoc(), I->Prob, UnhandledProbs); 9683 9684 if (CurMBB == SwitchMBB) 9685 visitSwitchCase(CB, SwitchMBB); 9686 else 9687 SwitchCases.push_back(CB); 9688 9689 break; 9690 } 9691 } 9692 CurMBB = Fallthrough; 9693 } 9694 } 9695 9696 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 9697 CaseClusterIt First, 9698 CaseClusterIt Last) { 9699 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 9700 if (X.Prob != CC.Prob) 9701 return X.Prob > CC.Prob; 9702 9703 // Ties are broken by comparing the case value. 9704 return X.Low->getValue().slt(CC.Low->getValue()); 9705 }); 9706 } 9707 9708 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 9709 const SwitchWorkListItem &W, 9710 Value *Cond, 9711 MachineBasicBlock *SwitchMBB) { 9712 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 9713 "Clusters not sorted?"); 9714 9715 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 9716 9717 // Balance the tree based on branch probabilities to create a near-optimal (in 9718 // terms of search time given key frequency) binary search tree. See e.g. Kurt 9719 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 9720 CaseClusterIt LastLeft = W.FirstCluster; 9721 CaseClusterIt FirstRight = W.LastCluster; 9722 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 9723 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 9724 9725 // Move LastLeft and FirstRight towards each other from opposite directions to 9726 // find a partitioning of the clusters which balances the probability on both 9727 // sides. If LeftProb and RightProb are equal, alternate which side is 9728 // taken to ensure 0-probability nodes are distributed evenly. 9729 unsigned I = 0; 9730 while (LastLeft + 1 < FirstRight) { 9731 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 9732 LeftProb += (++LastLeft)->Prob; 9733 else 9734 RightProb += (--FirstRight)->Prob; 9735 I++; 9736 } 9737 9738 while (true) { 9739 // Our binary search tree differs from a typical BST in that ours can have up 9740 // to three values in each leaf. The pivot selection above doesn't take that 9741 // into account, which means the tree might require more nodes and be less 9742 // efficient. We compensate for this here. 9743 9744 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 9745 unsigned NumRight = W.LastCluster - FirstRight + 1; 9746 9747 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 9748 // If one side has less than 3 clusters, and the other has more than 3, 9749 // consider taking a cluster from the other side. 9750 9751 if (NumLeft < NumRight) { 9752 // Consider moving the first cluster on the right to the left side. 9753 CaseCluster &CC = *FirstRight; 9754 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 9755 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 9756 if (LeftSideRank <= RightSideRank) { 9757 // Moving the cluster to the left does not demote it. 9758 ++LastLeft; 9759 ++FirstRight; 9760 continue; 9761 } 9762 } else { 9763 assert(NumRight < NumLeft); 9764 // Consider moving the last element on the left to the right side. 9765 CaseCluster &CC = *LastLeft; 9766 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 9767 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 9768 if (RightSideRank <= LeftSideRank) { 9769 // Moving the cluster to the right does not demot it. 9770 --LastLeft; 9771 --FirstRight; 9772 continue; 9773 } 9774 } 9775 } 9776 break; 9777 } 9778 9779 assert(LastLeft + 1 == FirstRight); 9780 assert(LastLeft >= W.FirstCluster); 9781 assert(FirstRight <= W.LastCluster); 9782 9783 // Use the first element on the right as pivot since we will make less-than 9784 // comparisons against it. 9785 CaseClusterIt PivotCluster = FirstRight; 9786 assert(PivotCluster > W.FirstCluster); 9787 assert(PivotCluster <= W.LastCluster); 9788 9789 CaseClusterIt FirstLeft = W.FirstCluster; 9790 CaseClusterIt LastRight = W.LastCluster; 9791 9792 const ConstantInt *Pivot = PivotCluster->Low; 9793 9794 // New blocks will be inserted immediately after the current one. 9795 MachineFunction::iterator BBI(W.MBB); 9796 ++BBI; 9797 9798 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 9799 // we can branch to its destination directly if it's squeezed exactly in 9800 // between the known lower bound and Pivot - 1. 9801 MachineBasicBlock *LeftMBB; 9802 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 9803 FirstLeft->Low == W.GE && 9804 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 9805 LeftMBB = FirstLeft->MBB; 9806 } else { 9807 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 9808 FuncInfo.MF->insert(BBI, LeftMBB); 9809 WorkList.push_back( 9810 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 9811 // Put Cond in a virtual register to make it available from the new blocks. 9812 ExportFromCurrentBlock(Cond); 9813 } 9814 9815 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 9816 // single cluster, RHS.Low == Pivot, and we can branch to its destination 9817 // directly if RHS.High equals the current upper bound. 9818 MachineBasicBlock *RightMBB; 9819 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 9820 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 9821 RightMBB = FirstRight->MBB; 9822 } else { 9823 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 9824 FuncInfo.MF->insert(BBI, RightMBB); 9825 WorkList.push_back( 9826 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 9827 // Put Cond in a virtual register to make it available from the new blocks. 9828 ExportFromCurrentBlock(Cond); 9829 } 9830 9831 // Create the CaseBlock record that will be used to lower the branch. 9832 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 9833 getCurSDLoc(), LeftProb, RightProb); 9834 9835 if (W.MBB == SwitchMBB) 9836 visitSwitchCase(CB, SwitchMBB); 9837 else 9838 SwitchCases.push_back(CB); 9839 } 9840 9841 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 9842 // from the swith statement. 9843 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 9844 BranchProbability PeeledCaseProb) { 9845 if (PeeledCaseProb == BranchProbability::getOne()) 9846 return BranchProbability::getZero(); 9847 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 9848 9849 uint32_t Numerator = CaseProb.getNumerator(); 9850 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 9851 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 9852 } 9853 9854 // Try to peel the top probability case if it exceeds the threshold. 9855 // Return current MachineBasicBlock for the switch statement if the peeling 9856 // does not occur. 9857 // If the peeling is performed, return the newly created MachineBasicBlock 9858 // for the peeled switch statement. Also update Clusters to remove the peeled 9859 // case. PeeledCaseProb is the BranchProbability for the peeled case. 9860 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 9861 const SwitchInst &SI, CaseClusterVector &Clusters, 9862 BranchProbability &PeeledCaseProb) { 9863 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 9864 // Don't perform if there is only one cluster or optimizing for size. 9865 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 9866 TM.getOptLevel() == CodeGenOpt::None || 9867 SwitchMBB->getParent()->getFunction()->optForMinSize()) 9868 return SwitchMBB; 9869 9870 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 9871 unsigned PeeledCaseIndex = 0; 9872 bool SwitchPeeled = false; 9873 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 9874 CaseCluster &CC = Clusters[Index]; 9875 if (CC.Prob < TopCaseProb) 9876 continue; 9877 TopCaseProb = CC.Prob; 9878 PeeledCaseIndex = Index; 9879 SwitchPeeled = true; 9880 } 9881 if (!SwitchPeeled) 9882 return SwitchMBB; 9883 9884 DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " << TopCaseProb 9885 << "\n"); 9886 9887 // Record the MBB for the peeled switch statement. 9888 MachineFunction::iterator BBI(SwitchMBB); 9889 ++BBI; 9890 MachineBasicBlock *PeeledSwitchMBB = 9891 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 9892 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 9893 9894 ExportFromCurrentBlock(SI.getCondition()); 9895 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 9896 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 9897 nullptr, nullptr, TopCaseProb.getCompl()}; 9898 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 9899 9900 Clusters.erase(PeeledCaseIt); 9901 for (CaseCluster &CC : Clusters) { 9902 DEBUG(dbgs() << "Scale the probablity for one cluster, before scaling: " 9903 << CC.Prob << "\n"); 9904 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 9905 DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 9906 } 9907 PeeledCaseProb = TopCaseProb; 9908 return PeeledSwitchMBB; 9909 } 9910 9911 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 9912 // Extract cases from the switch. 9913 BranchProbabilityInfo *BPI = FuncInfo.BPI; 9914 CaseClusterVector Clusters; 9915 Clusters.reserve(SI.getNumCases()); 9916 for (auto I : SI.cases()) { 9917 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 9918 const ConstantInt *CaseVal = I.getCaseValue(); 9919 BranchProbability Prob = 9920 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 9921 : BranchProbability(1, SI.getNumCases() + 1); 9922 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 9923 } 9924 9925 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 9926 9927 // Cluster adjacent cases with the same destination. We do this at all 9928 // optimization levels because it's cheap to do and will make codegen faster 9929 // if there are many clusters. 9930 sortAndRangeify(Clusters); 9931 9932 if (TM.getOptLevel() != CodeGenOpt::None) { 9933 // Replace an unreachable default with the most popular destination. 9934 // FIXME: Exploit unreachable default more aggressively. 9935 bool UnreachableDefault = 9936 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 9937 if (UnreachableDefault && !Clusters.empty()) { 9938 DenseMap<const BasicBlock *, unsigned> Popularity; 9939 unsigned MaxPop = 0; 9940 const BasicBlock *MaxBB = nullptr; 9941 for (auto I : SI.cases()) { 9942 const BasicBlock *BB = I.getCaseSuccessor(); 9943 if (++Popularity[BB] > MaxPop) { 9944 MaxPop = Popularity[BB]; 9945 MaxBB = BB; 9946 } 9947 } 9948 // Set new default. 9949 assert(MaxPop > 0 && MaxBB); 9950 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 9951 9952 // Remove cases that were pointing to the destination that is now the 9953 // default. 9954 CaseClusterVector New; 9955 New.reserve(Clusters.size()); 9956 for (CaseCluster &CC : Clusters) { 9957 if (CC.MBB != DefaultMBB) 9958 New.push_back(CC); 9959 } 9960 Clusters = std::move(New); 9961 } 9962 } 9963 9964 // The branch probablity of the peeled case. 9965 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 9966 MachineBasicBlock *PeeledSwitchMBB = 9967 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 9968 9969 // If there is only the default destination, jump there directly. 9970 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 9971 if (Clusters.empty()) { 9972 assert(PeeledSwitchMBB == SwitchMBB); 9973 SwitchMBB->addSuccessor(DefaultMBB); 9974 if (DefaultMBB != NextBlock(SwitchMBB)) { 9975 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 9976 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 9977 } 9978 return; 9979 } 9980 9981 findJumpTables(Clusters, &SI, DefaultMBB); 9982 findBitTestClusters(Clusters, &SI); 9983 9984 DEBUG({ 9985 dbgs() << "Case clusters: "; 9986 for (const CaseCluster &C : Clusters) { 9987 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 9988 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 9989 9990 C.Low->getValue().print(dbgs(), true); 9991 if (C.Low != C.High) { 9992 dbgs() << '-'; 9993 C.High->getValue().print(dbgs(), true); 9994 } 9995 dbgs() << ' '; 9996 } 9997 dbgs() << '\n'; 9998 }); 9999 10000 assert(!Clusters.empty()); 10001 SwitchWorkList WorkList; 10002 CaseClusterIt First = Clusters.begin(); 10003 CaseClusterIt Last = Clusters.end() - 1; 10004 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10005 // Scale the branchprobability for DefaultMBB if the peel occurs and 10006 // DefaultMBB is not replaced. 10007 if (PeeledCaseProb != BranchProbability::getZero() && 10008 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10009 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10010 WorkList.push_back( 10011 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10012 10013 while (!WorkList.empty()) { 10014 SwitchWorkListItem W = WorkList.back(); 10015 WorkList.pop_back(); 10016 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10017 10018 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10019 !DefaultMBB->getParent()->getFunction()->optForMinSize()) { 10020 // For optimized builds, lower large range as a balanced binary tree. 10021 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10022 continue; 10023 } 10024 10025 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10026 } 10027 } 10028