1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/Analysis/VectorUtils.h" 26 #include "llvm/CodeGen/FastISel.h" 27 #include "llvm/CodeGen/FunctionLoweringInfo.h" 28 #include "llvm/CodeGen/GCMetadata.h" 29 #include "llvm/CodeGen/GCStrategy.h" 30 #include "llvm/CodeGen/MachineFrameInfo.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineJumpTableInfo.h" 34 #include "llvm/CodeGen/MachineModuleInfo.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/SelectionDAG.h" 37 #include "llvm/CodeGen/StackMaps.h" 38 #include "llvm/CodeGen/WinEHFuncInfo.h" 39 #include "llvm/IR/CallingConv.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfo.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/Statepoint.h" 53 #include "llvm/MC/MCSymbol.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Target/TargetFrameLowering.h" 60 #include "llvm/Target/TargetInstrInfo.h" 61 #include "llvm/Target/TargetIntrinsicInfo.h" 62 #include "llvm/Target/TargetLowering.h" 63 #include "llvm/Target/TargetOptions.h" 64 #include "llvm/Target/TargetSelectionDAGInfo.h" 65 #include "llvm/Target/TargetSubtargetInfo.h" 66 #include <algorithm> 67 #include <utility> 68 using namespace llvm; 69 70 #define DEBUG_TYPE "isel" 71 72 /// LimitFloatPrecision - Generate low-precision inline sequences for 73 /// some float libcalls (6, 8 or 12 bits). 74 static unsigned LimitFloatPrecision; 75 76 static cl::opt<unsigned, true> 77 LimitFPPrecision("limit-float-precision", 78 cl::desc("Generate low-precision inline sequences " 79 "for some float libcalls"), 80 cl::location(LimitFloatPrecision), 81 cl::init(0)); 82 83 static cl::opt<bool> 84 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden, 85 cl::desc("Enable fast-math-flags for DAG nodes")); 86 87 // Limit the width of DAG chains. This is important in general to prevent 88 // DAG-based analysis from blowing up. For example, alias analysis and 89 // load clustering may not complete in reasonable time. It is difficult to 90 // recognize and avoid this situation within each individual analysis, and 91 // future analyses are likely to have the same behavior. Limiting DAG width is 92 // the safe approach and will be especially important with global DAGs. 93 // 94 // MaxParallelChains default is arbitrarily high to avoid affecting 95 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 96 // sequence over this should have been converted to llvm.memcpy by the 97 // frontend. It easy to induce this behavior with .ll code such as: 98 // %buffer = alloca [4096 x i8] 99 // %data = load [4096 x i8]* %argPtr 100 // store [4096 x i8] %data, [4096 x i8]* %buffer 101 static const unsigned MaxParallelChains = 64; 102 103 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 104 const SDValue *Parts, unsigned NumParts, 105 MVT PartVT, EVT ValueVT, const Value *V); 106 107 /// getCopyFromParts - Create a value that contains the specified legal parts 108 /// combined into the value they represent. If the parts combine to a type 109 /// larger then ValueVT then AssertOp can be used to specify whether the extra 110 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 111 /// (ISD::AssertSext). 112 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 113 const SDValue *Parts, 114 unsigned NumParts, MVT PartVT, EVT ValueVT, 115 const Value *V, 116 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 117 if (ValueVT.isVector()) 118 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 119 PartVT, ValueVT, V); 120 121 assert(NumParts > 0 && "No parts to assemble!"); 122 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 123 SDValue Val = Parts[0]; 124 125 if (NumParts > 1) { 126 // Assemble the value from multiple parts. 127 if (ValueVT.isInteger()) { 128 unsigned PartBits = PartVT.getSizeInBits(); 129 unsigned ValueBits = ValueVT.getSizeInBits(); 130 131 // Assemble the power of 2 part. 132 unsigned RoundParts = NumParts & (NumParts - 1) ? 133 1 << Log2_32(NumParts) : NumParts; 134 unsigned RoundBits = PartBits * RoundParts; 135 EVT RoundVT = RoundBits == ValueBits ? 136 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 137 SDValue Lo, Hi; 138 139 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 140 141 if (RoundParts > 2) { 142 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 143 PartVT, HalfVT, V); 144 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 145 RoundParts / 2, PartVT, HalfVT, V); 146 } else { 147 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 148 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 149 } 150 151 if (DAG.getDataLayout().isBigEndian()) 152 std::swap(Lo, Hi); 153 154 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 155 156 if (RoundParts < NumParts) { 157 // Assemble the trailing non-power-of-2 part. 158 unsigned OddParts = NumParts - RoundParts; 159 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 160 Hi = getCopyFromParts(DAG, DL, 161 Parts + RoundParts, OddParts, PartVT, OddVT, V); 162 163 // Combine the round and odd parts. 164 Lo = Val; 165 if (DAG.getDataLayout().isBigEndian()) 166 std::swap(Lo, Hi); 167 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 168 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 169 Hi = 170 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 171 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 172 TLI.getPointerTy(DAG.getDataLayout()))); 173 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 174 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 175 } 176 } else if (PartVT.isFloatingPoint()) { 177 // FP split into multiple FP parts (for ppcf128) 178 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 179 "Unexpected split"); 180 SDValue Lo, Hi; 181 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 182 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 183 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 184 std::swap(Lo, Hi); 185 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 186 } else { 187 // FP split into integer parts (soft fp) 188 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 189 !PartVT.isVector() && "Unexpected split"); 190 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 191 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 192 } 193 } 194 195 // There is now one part, held in Val. Correct it to match ValueVT. 196 EVT PartEVT = Val.getValueType(); 197 198 if (PartEVT == ValueVT) 199 return Val; 200 201 if (PartEVT.isInteger() && ValueVT.isInteger()) { 202 if (ValueVT.bitsLT(PartEVT)) { 203 // For a truncate, see if we have any information to 204 // indicate whether the truncated bits will always be 205 // zero or sign-extension. 206 if (AssertOp != ISD::DELETED_NODE) 207 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 208 DAG.getValueType(ValueVT)); 209 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 210 } 211 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 212 } 213 214 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 215 // FP_ROUND's are always exact here. 216 if (ValueVT.bitsLT(Val.getValueType())) 217 return DAG.getNode( 218 ISD::FP_ROUND, DL, ValueVT, Val, 219 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 220 221 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 222 } 223 224 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 225 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 226 227 llvm_unreachable("Unknown mismatch!"); 228 } 229 230 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 231 const Twine &ErrMsg) { 232 const Instruction *I = dyn_cast_or_null<Instruction>(V); 233 if (!V) 234 return Ctx.emitError(ErrMsg); 235 236 const char *AsmError = ", possible invalid constraint for vector type"; 237 if (const CallInst *CI = dyn_cast<CallInst>(I)) 238 if (isa<InlineAsm>(CI->getCalledValue())) 239 return Ctx.emitError(I, ErrMsg + AsmError); 240 241 return Ctx.emitError(I, ErrMsg); 242 } 243 244 /// getCopyFromPartsVector - Create a value that contains the specified legal 245 /// parts combined into the value they represent. If the parts combine to a 246 /// type larger then ValueVT then AssertOp can be used to specify whether the 247 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 248 /// ValueVT (ISD::AssertSext). 249 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 250 const SDValue *Parts, unsigned NumParts, 251 MVT PartVT, EVT ValueVT, const Value *V) { 252 assert(ValueVT.isVector() && "Not a vector value"); 253 assert(NumParts > 0 && "No parts to assemble!"); 254 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 255 SDValue Val = Parts[0]; 256 257 // Handle a multi-element vector. 258 if (NumParts > 1) { 259 EVT IntermediateVT; 260 MVT RegisterVT; 261 unsigned NumIntermediates; 262 unsigned NumRegs = 263 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 264 NumIntermediates, RegisterVT); 265 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 266 NumParts = NumRegs; // Silence a compiler warning. 267 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 268 assert(RegisterVT.getSizeInBits() == 269 Parts[0].getSimpleValueType().getSizeInBits() && 270 "Part type sizes don't match!"); 271 272 // Assemble the parts into intermediate operands. 273 SmallVector<SDValue, 8> Ops(NumIntermediates); 274 if (NumIntermediates == NumParts) { 275 // If the register was not expanded, truncate or copy the value, 276 // as appropriate. 277 for (unsigned i = 0; i != NumParts; ++i) 278 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 279 PartVT, IntermediateVT, V); 280 } else if (NumParts > 0) { 281 // If the intermediate type was expanded, build the intermediate 282 // operands from the parts. 283 assert(NumParts % NumIntermediates == 0 && 284 "Must expand into a divisible number of parts!"); 285 unsigned Factor = NumParts / NumIntermediates; 286 for (unsigned i = 0; i != NumIntermediates; ++i) 287 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 288 PartVT, IntermediateVT, V); 289 } 290 291 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 292 // intermediate operands. 293 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 294 : ISD::BUILD_VECTOR, 295 DL, ValueVT, Ops); 296 } 297 298 // There is now one part, held in Val. Correct it to match ValueVT. 299 EVT PartEVT = Val.getValueType(); 300 301 if (PartEVT == ValueVT) 302 return Val; 303 304 if (PartEVT.isVector()) { 305 // If the element type of the source/dest vectors are the same, but the 306 // parts vector has more elements than the value vector, then we have a 307 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 308 // elements we want. 309 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 310 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 311 "Cannot narrow, it would be a lossy transformation"); 312 return DAG.getNode( 313 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 314 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 315 } 316 317 // Vector/Vector bitcast. 318 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 319 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 320 321 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 322 "Cannot handle this kind of promotion"); 323 // Promoted vector extract 324 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 325 326 } 327 328 // Trivial bitcast if the types are the same size and the destination 329 // vector type is legal. 330 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 331 TLI.isTypeLegal(ValueVT)) 332 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 333 334 // Handle cases such as i8 -> <1 x i1> 335 if (ValueVT.getVectorNumElements() != 1) { 336 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 337 "non-trivial scalar-to-vector conversion"); 338 return DAG.getUNDEF(ValueVT); 339 } 340 341 if (ValueVT.getVectorNumElements() == 1 && 342 ValueVT.getVectorElementType() != PartEVT) 343 Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType()); 344 345 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 346 } 347 348 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 349 SDValue Val, SDValue *Parts, unsigned NumParts, 350 MVT PartVT, const Value *V); 351 352 /// getCopyToParts - Create a series of nodes that contain the specified value 353 /// split into legal parts. If the parts contain more bits than Val, then, for 354 /// integers, ExtendKind can be used to specify how to generate the extra bits. 355 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 356 SDValue Val, SDValue *Parts, unsigned NumParts, 357 MVT PartVT, const Value *V, 358 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 359 EVT ValueVT = Val.getValueType(); 360 361 // Handle the vector case separately. 362 if (ValueVT.isVector()) 363 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 364 365 unsigned PartBits = PartVT.getSizeInBits(); 366 unsigned OrigNumParts = NumParts; 367 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 368 "Copying to an illegal type!"); 369 370 if (NumParts == 0) 371 return; 372 373 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 374 EVT PartEVT = PartVT; 375 if (PartEVT == ValueVT) { 376 assert(NumParts == 1 && "No-op copy with multiple parts!"); 377 Parts[0] = Val; 378 return; 379 } 380 381 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 382 // If the parts cover more bits than the value has, promote the value. 383 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 384 assert(NumParts == 1 && "Do not know what to promote to!"); 385 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 386 } else { 387 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 388 ValueVT.isInteger() && 389 "Unknown mismatch!"); 390 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 391 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 392 if (PartVT == MVT::x86mmx) 393 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 394 } 395 } else if (PartBits == ValueVT.getSizeInBits()) { 396 // Different types of the same size. 397 assert(NumParts == 1 && PartEVT != ValueVT); 398 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 399 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 400 // If the parts cover less bits than value has, truncate the value. 401 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 402 ValueVT.isInteger() && 403 "Unknown mismatch!"); 404 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 405 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 406 if (PartVT == MVT::x86mmx) 407 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 408 } 409 410 // The value may have changed - recompute ValueVT. 411 ValueVT = Val.getValueType(); 412 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 413 "Failed to tile the value with PartVT!"); 414 415 if (NumParts == 1) { 416 if (PartEVT != ValueVT) 417 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 418 "scalar-to-vector conversion failed"); 419 420 Parts[0] = Val; 421 return; 422 } 423 424 // Expand the value into multiple parts. 425 if (NumParts & (NumParts - 1)) { 426 // The number of parts is not a power of 2. Split off and copy the tail. 427 assert(PartVT.isInteger() && ValueVT.isInteger() && 428 "Do not know what to expand to!"); 429 unsigned RoundParts = 1 << Log2_32(NumParts); 430 unsigned RoundBits = RoundParts * PartBits; 431 unsigned OddParts = NumParts - RoundParts; 432 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 433 DAG.getIntPtrConstant(RoundBits, DL)); 434 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 435 436 if (DAG.getDataLayout().isBigEndian()) 437 // The odd parts were reversed by getCopyToParts - unreverse them. 438 std::reverse(Parts + RoundParts, Parts + NumParts); 439 440 NumParts = RoundParts; 441 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 442 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 443 } 444 445 // The number of parts is a power of 2. Repeatedly bisect the value using 446 // EXTRACT_ELEMENT. 447 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 448 EVT::getIntegerVT(*DAG.getContext(), 449 ValueVT.getSizeInBits()), 450 Val); 451 452 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 453 for (unsigned i = 0; i < NumParts; i += StepSize) { 454 unsigned ThisBits = StepSize * PartBits / 2; 455 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 456 SDValue &Part0 = Parts[i]; 457 SDValue &Part1 = Parts[i+StepSize/2]; 458 459 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 460 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 461 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 462 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 463 464 if (ThisBits == PartBits && ThisVT != PartVT) { 465 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 466 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 467 } 468 } 469 } 470 471 if (DAG.getDataLayout().isBigEndian()) 472 std::reverse(Parts, Parts + OrigNumParts); 473 } 474 475 476 /// getCopyToPartsVector - Create a series of nodes that contain the specified 477 /// value split into legal parts. 478 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 479 SDValue Val, SDValue *Parts, unsigned NumParts, 480 MVT PartVT, const Value *V) { 481 EVT ValueVT = Val.getValueType(); 482 assert(ValueVT.isVector() && "Not a vector"); 483 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 484 485 if (NumParts == 1) { 486 EVT PartEVT = PartVT; 487 if (PartEVT == ValueVT) { 488 // Nothing to do. 489 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 490 // Bitconvert vector->vector case. 491 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 492 } else if (PartVT.isVector() && 493 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 494 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 495 EVT ElementVT = PartVT.getVectorElementType(); 496 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 497 // undef elements. 498 SmallVector<SDValue, 16> Ops; 499 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 500 Ops.push_back(DAG.getNode( 501 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 502 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 503 504 for (unsigned i = ValueVT.getVectorNumElements(), 505 e = PartVT.getVectorNumElements(); i != e; ++i) 506 Ops.push_back(DAG.getUNDEF(ElementVT)); 507 508 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 509 510 // FIXME: Use CONCAT for 2x -> 4x. 511 512 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 513 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 514 } else if (PartVT.isVector() && 515 PartEVT.getVectorElementType().bitsGE( 516 ValueVT.getVectorElementType()) && 517 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 518 519 // Promoted vector extract 520 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 521 } else{ 522 // Vector -> scalar conversion. 523 assert(ValueVT.getVectorNumElements() == 1 && 524 "Only trivial vector-to-scalar conversions should get here!"); 525 Val = DAG.getNode( 526 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 527 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 528 529 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 530 } 531 532 Parts[0] = Val; 533 return; 534 } 535 536 // Handle a multi-element vector. 537 EVT IntermediateVT; 538 MVT RegisterVT; 539 unsigned NumIntermediates; 540 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 541 IntermediateVT, 542 NumIntermediates, RegisterVT); 543 unsigned NumElements = ValueVT.getVectorNumElements(); 544 545 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 546 NumParts = NumRegs; // Silence a compiler warning. 547 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 548 549 // Split the vector into intermediate operands. 550 SmallVector<SDValue, 8> Ops(NumIntermediates); 551 for (unsigned i = 0; i != NumIntermediates; ++i) { 552 if (IntermediateVT.isVector()) 553 Ops[i] = 554 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 555 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 556 TLI.getVectorIdxTy(DAG.getDataLayout()))); 557 else 558 Ops[i] = DAG.getNode( 559 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 560 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 561 } 562 563 // Split the intermediate operands into legal parts. 564 if (NumParts == NumIntermediates) { 565 // If the register was not expanded, promote or copy the value, 566 // as appropriate. 567 for (unsigned i = 0; i != NumParts; ++i) 568 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 569 } else if (NumParts > 0) { 570 // If the intermediate type was expanded, split each the value into 571 // legal parts. 572 assert(NumIntermediates != 0 && "division by zero"); 573 assert(NumParts % NumIntermediates == 0 && 574 "Must expand into a divisible number of parts!"); 575 unsigned Factor = NumParts / NumIntermediates; 576 for (unsigned i = 0; i != NumIntermediates; ++i) 577 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 578 } 579 } 580 581 RegsForValue::RegsForValue() {} 582 583 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 584 EVT valuevt) 585 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 586 587 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 588 const DataLayout &DL, unsigned Reg, Type *Ty) { 589 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 590 591 for (EVT ValueVT : ValueVTs) { 592 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); 593 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); 594 for (unsigned i = 0; i != NumRegs; ++i) 595 Regs.push_back(Reg + i); 596 RegVTs.push_back(RegisterVT); 597 Reg += NumRegs; 598 } 599 } 600 601 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 602 /// this value and returns the result as a ValueVT value. This uses 603 /// Chain/Flag as the input and updates them for the output Chain/Flag. 604 /// If the Flag pointer is NULL, no flag is used. 605 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 606 FunctionLoweringInfo &FuncInfo, 607 SDLoc dl, 608 SDValue &Chain, SDValue *Flag, 609 const Value *V) const { 610 // A Value with type {} or [0 x %t] needs no registers. 611 if (ValueVTs.empty()) 612 return SDValue(); 613 614 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 615 616 // Assemble the legal parts into the final values. 617 SmallVector<SDValue, 4> Values(ValueVTs.size()); 618 SmallVector<SDValue, 8> Parts; 619 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 620 // Copy the legal parts from the registers. 621 EVT ValueVT = ValueVTs[Value]; 622 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 623 MVT RegisterVT = RegVTs[Value]; 624 625 Parts.resize(NumRegs); 626 for (unsigned i = 0; i != NumRegs; ++i) { 627 SDValue P; 628 if (!Flag) { 629 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 630 } else { 631 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 632 *Flag = P.getValue(2); 633 } 634 635 Chain = P.getValue(1); 636 Parts[i] = P; 637 638 // If the source register was virtual and if we know something about it, 639 // add an assert node. 640 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 641 !RegisterVT.isInteger() || RegisterVT.isVector()) 642 continue; 643 644 const FunctionLoweringInfo::LiveOutInfo *LOI = 645 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 646 if (!LOI) 647 continue; 648 649 unsigned RegSize = RegisterVT.getSizeInBits(); 650 unsigned NumSignBits = LOI->NumSignBits; 651 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 652 653 if (NumZeroBits == RegSize) { 654 // The current value is a zero. 655 // Explicitly express that as it would be easier for 656 // optimizations to kick in. 657 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 658 continue; 659 } 660 661 // FIXME: We capture more information than the dag can represent. For 662 // now, just use the tightest assertzext/assertsext possible. 663 bool isSExt = true; 664 EVT FromVT(MVT::Other); 665 if (NumSignBits == RegSize) 666 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 667 else if (NumZeroBits >= RegSize-1) 668 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 669 else if (NumSignBits > RegSize-8) 670 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 671 else if (NumZeroBits >= RegSize-8) 672 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 673 else if (NumSignBits > RegSize-16) 674 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 675 else if (NumZeroBits >= RegSize-16) 676 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 677 else if (NumSignBits > RegSize-32) 678 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 679 else if (NumZeroBits >= RegSize-32) 680 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 681 else 682 continue; 683 684 // Add an assertion node. 685 assert(FromVT != MVT::Other); 686 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 687 RegisterVT, P, DAG.getValueType(FromVT)); 688 } 689 690 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 691 NumRegs, RegisterVT, ValueVT, V); 692 Part += NumRegs; 693 Parts.clear(); 694 } 695 696 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 697 } 698 699 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 700 /// specified value into the registers specified by this object. This uses 701 /// Chain/Flag as the input and updates them for the output Chain/Flag. 702 /// If the Flag pointer is NULL, no flag is used. 703 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 704 SDValue &Chain, SDValue *Flag, const Value *V, 705 ISD::NodeType PreferredExtendType) const { 706 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 707 ISD::NodeType ExtendKind = PreferredExtendType; 708 709 // Get the list of the values's legal parts. 710 unsigned NumRegs = Regs.size(); 711 SmallVector<SDValue, 8> Parts(NumRegs); 712 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 713 EVT ValueVT = ValueVTs[Value]; 714 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 715 MVT RegisterVT = RegVTs[Value]; 716 717 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 718 ExtendKind = ISD::ZERO_EXTEND; 719 720 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 721 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 722 Part += NumParts; 723 } 724 725 // Copy the parts into the registers. 726 SmallVector<SDValue, 8> Chains(NumRegs); 727 for (unsigned i = 0; i != NumRegs; ++i) { 728 SDValue Part; 729 if (!Flag) { 730 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 731 } else { 732 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 733 *Flag = Part.getValue(1); 734 } 735 736 Chains[i] = Part.getValue(0); 737 } 738 739 if (NumRegs == 1 || Flag) 740 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 741 // flagged to it. That is the CopyToReg nodes and the user are considered 742 // a single scheduling unit. If we create a TokenFactor and return it as 743 // chain, then the TokenFactor is both a predecessor (operand) of the 744 // user as well as a successor (the TF operands are flagged to the user). 745 // c1, f1 = CopyToReg 746 // c2, f2 = CopyToReg 747 // c3 = TokenFactor c1, c2 748 // ... 749 // = op c3, ..., f2 750 Chain = Chains[NumRegs-1]; 751 else 752 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 753 } 754 755 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 756 /// operand list. This adds the code marker and includes the number of 757 /// values added into it. 758 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 759 unsigned MatchingIdx, SDLoc dl, 760 SelectionDAG &DAG, 761 std::vector<SDValue> &Ops) const { 762 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 763 764 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 765 if (HasMatching) 766 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 767 else if (!Regs.empty() && 768 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 769 // Put the register class of the virtual registers in the flag word. That 770 // way, later passes can recompute register class constraints for inline 771 // assembly as well as normal instructions. 772 // Don't do this for tied operands that can use the regclass information 773 // from the def. 774 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 775 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 776 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 777 } 778 779 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 780 Ops.push_back(Res); 781 782 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 783 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 784 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 785 MVT RegisterVT = RegVTs[Value]; 786 for (unsigned i = 0; i != NumRegs; ++i) { 787 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 788 unsigned TheReg = Regs[Reg++]; 789 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 790 791 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 792 // If we clobbered the stack pointer, MFI should know about it. 793 assert(DAG.getMachineFunction().getFrameInfo()-> 794 hasOpaqueSPAdjustment()); 795 } 796 } 797 } 798 } 799 800 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 801 const TargetLibraryInfo *li) { 802 AA = &aa; 803 GFI = gfi; 804 LibInfo = li; 805 DL = &DAG.getDataLayout(); 806 Context = DAG.getContext(); 807 LPadToCallSiteMap.clear(); 808 } 809 810 /// clear - Clear out the current SelectionDAG and the associated 811 /// state and prepare this SelectionDAGBuilder object to be used 812 /// for a new block. This doesn't clear out information about 813 /// additional blocks that are needed to complete switch lowering 814 /// or PHI node updating; that information is cleared out as it is 815 /// consumed. 816 void SelectionDAGBuilder::clear() { 817 NodeMap.clear(); 818 UnusedArgNodeMap.clear(); 819 PendingLoads.clear(); 820 PendingExports.clear(); 821 CurInst = nullptr; 822 HasTailCall = false; 823 SDNodeOrder = LowestSDNodeOrder; 824 StatepointLowering.clear(); 825 } 826 827 /// clearDanglingDebugInfo - Clear the dangling debug information 828 /// map. This function is separated from the clear so that debug 829 /// information that is dangling in a basic block can be properly 830 /// resolved in a different basic block. This allows the 831 /// SelectionDAG to resolve dangling debug information attached 832 /// to PHI nodes. 833 void SelectionDAGBuilder::clearDanglingDebugInfo() { 834 DanglingDebugInfoMap.clear(); 835 } 836 837 /// getRoot - Return the current virtual root of the Selection DAG, 838 /// flushing any PendingLoad items. This must be done before emitting 839 /// a store or any other node that may need to be ordered after any 840 /// prior load instructions. 841 /// 842 SDValue SelectionDAGBuilder::getRoot() { 843 if (PendingLoads.empty()) 844 return DAG.getRoot(); 845 846 if (PendingLoads.size() == 1) { 847 SDValue Root = PendingLoads[0]; 848 DAG.setRoot(Root); 849 PendingLoads.clear(); 850 return Root; 851 } 852 853 // Otherwise, we have to make a token factor node. 854 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 855 PendingLoads); 856 PendingLoads.clear(); 857 DAG.setRoot(Root); 858 return Root; 859 } 860 861 /// getControlRoot - Similar to getRoot, but instead of flushing all the 862 /// PendingLoad items, flush all the PendingExports items. It is necessary 863 /// to do this before emitting a terminator instruction. 864 /// 865 SDValue SelectionDAGBuilder::getControlRoot() { 866 SDValue Root = DAG.getRoot(); 867 868 if (PendingExports.empty()) 869 return Root; 870 871 // Turn all of the CopyToReg chains into one factored node. 872 if (Root.getOpcode() != ISD::EntryToken) { 873 unsigned i = 0, e = PendingExports.size(); 874 for (; i != e; ++i) { 875 assert(PendingExports[i].getNode()->getNumOperands() > 1); 876 if (PendingExports[i].getNode()->getOperand(0) == Root) 877 break; // Don't add the root if we already indirectly depend on it. 878 } 879 880 if (i == e) 881 PendingExports.push_back(Root); 882 } 883 884 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 885 PendingExports); 886 PendingExports.clear(); 887 DAG.setRoot(Root); 888 return Root; 889 } 890 891 void SelectionDAGBuilder::visit(const Instruction &I) { 892 // Set up outgoing PHI node register values before emitting the terminator. 893 if (isa<TerminatorInst>(&I)) 894 HandlePHINodesInSuccessorBlocks(I.getParent()); 895 896 ++SDNodeOrder; 897 898 CurInst = &I; 899 900 visit(I.getOpcode(), I); 901 902 if (!isa<TerminatorInst>(&I) && !HasTailCall) 903 CopyToExportRegsIfNeeded(&I); 904 905 CurInst = nullptr; 906 } 907 908 void SelectionDAGBuilder::visitPHI(const PHINode &) { 909 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 910 } 911 912 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 913 // Note: this doesn't use InstVisitor, because it has to work with 914 // ConstantExpr's in addition to instructions. 915 switch (Opcode) { 916 default: llvm_unreachable("Unknown instruction type encountered!"); 917 // Build the switch statement using the Instruction.def file. 918 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 919 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 920 #include "llvm/IR/Instruction.def" 921 } 922 } 923 924 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 925 // generate the debug data structures now that we've seen its definition. 926 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 927 SDValue Val) { 928 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 929 if (DDI.getDI()) { 930 const DbgValueInst *DI = DDI.getDI(); 931 DebugLoc dl = DDI.getdl(); 932 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 933 DILocalVariable *Variable = DI->getVariable(); 934 DIExpression *Expr = DI->getExpression(); 935 assert(Variable->isValidLocationForIntrinsic(dl) && 936 "Expected inlined-at fields to agree"); 937 uint64_t Offset = DI->getOffset(); 938 // A dbg.value for an alloca is always indirect. 939 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 940 SDDbgValue *SDV; 941 if (Val.getNode()) { 942 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect, 943 Val)) { 944 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 945 IsIndirect, Offset, dl, DbgSDNodeOrder); 946 DAG.AddDbgValue(SDV, Val.getNode(), false); 947 } 948 } else 949 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 950 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 951 } 952 } 953 954 /// getCopyFromRegs - If there was virtual register allocated for the value V 955 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 956 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 957 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 958 SDValue Result; 959 960 if (It != FuncInfo.ValueMap.end()) { 961 unsigned InReg = It->second; 962 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 963 DAG.getDataLayout(), InReg, Ty); 964 SDValue Chain = DAG.getEntryNode(); 965 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 966 resolveDanglingDebugInfo(V, Result); 967 } 968 969 return Result; 970 } 971 972 /// getValue - Return an SDValue for the given Value. 973 SDValue SelectionDAGBuilder::getValue(const Value *V) { 974 // If we already have an SDValue for this value, use it. It's important 975 // to do this first, so that we don't create a CopyFromReg if we already 976 // have a regular SDValue. 977 SDValue &N = NodeMap[V]; 978 if (N.getNode()) return N; 979 980 // If there's a virtual register allocated and initialized for this 981 // value, use it. 982 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 983 if (copyFromReg.getNode()) { 984 return copyFromReg; 985 } 986 987 // Otherwise create a new SDValue and remember it. 988 SDValue Val = getValueImpl(V); 989 NodeMap[V] = Val; 990 resolveDanglingDebugInfo(V, Val); 991 return Val; 992 } 993 994 // Return true if SDValue exists for the given Value 995 bool SelectionDAGBuilder::findValue(const Value *V) const { 996 return (NodeMap.find(V) != NodeMap.end()) || 997 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 998 } 999 1000 /// getNonRegisterValue - Return an SDValue for the given Value, but 1001 /// don't look in FuncInfo.ValueMap for a virtual register. 1002 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1003 // If we already have an SDValue for this value, use it. 1004 SDValue &N = NodeMap[V]; 1005 if (N.getNode()) { 1006 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1007 // Remove the debug location from the node as the node is about to be used 1008 // in a location which may differ from the original debug location. This 1009 // is relevant to Constant and ConstantFP nodes because they can appear 1010 // as constant expressions inside PHI nodes. 1011 N->setDebugLoc(DebugLoc()); 1012 } 1013 return N; 1014 } 1015 1016 // Otherwise create a new SDValue and remember it. 1017 SDValue Val = getValueImpl(V); 1018 NodeMap[V] = Val; 1019 resolveDanglingDebugInfo(V, Val); 1020 return Val; 1021 } 1022 1023 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1024 /// Create an SDValue for the given value. 1025 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1026 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1027 1028 if (const Constant *C = dyn_cast<Constant>(V)) { 1029 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1030 1031 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1032 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1033 1034 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1035 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1036 1037 if (isa<ConstantPointerNull>(C)) { 1038 unsigned AS = V->getType()->getPointerAddressSpace(); 1039 return DAG.getConstant(0, getCurSDLoc(), 1040 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1041 } 1042 1043 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1044 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1045 1046 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1047 return DAG.getUNDEF(VT); 1048 1049 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1050 visit(CE->getOpcode(), *CE); 1051 SDValue N1 = NodeMap[V]; 1052 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1053 return N1; 1054 } 1055 1056 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1057 SmallVector<SDValue, 4> Constants; 1058 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1059 OI != OE; ++OI) { 1060 SDNode *Val = getValue(*OI).getNode(); 1061 // If the operand is an empty aggregate, there are no values. 1062 if (!Val) continue; 1063 // Add each leaf value from the operand to the Constants list 1064 // to form a flattened list of all the values. 1065 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1066 Constants.push_back(SDValue(Val, i)); 1067 } 1068 1069 return DAG.getMergeValues(Constants, getCurSDLoc()); 1070 } 1071 1072 if (const ConstantDataSequential *CDS = 1073 dyn_cast<ConstantDataSequential>(C)) { 1074 SmallVector<SDValue, 4> Ops; 1075 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1076 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1077 // Add each leaf value from the operand to the Constants list 1078 // to form a flattened list of all the values. 1079 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1080 Ops.push_back(SDValue(Val, i)); 1081 } 1082 1083 if (isa<ArrayType>(CDS->getType())) 1084 return DAG.getMergeValues(Ops, getCurSDLoc()); 1085 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1086 VT, Ops); 1087 } 1088 1089 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1090 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1091 "Unknown struct or array constant!"); 1092 1093 SmallVector<EVT, 4> ValueVTs; 1094 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1095 unsigned NumElts = ValueVTs.size(); 1096 if (NumElts == 0) 1097 return SDValue(); // empty struct 1098 SmallVector<SDValue, 4> Constants(NumElts); 1099 for (unsigned i = 0; i != NumElts; ++i) { 1100 EVT EltVT = ValueVTs[i]; 1101 if (isa<UndefValue>(C)) 1102 Constants[i] = DAG.getUNDEF(EltVT); 1103 else if (EltVT.isFloatingPoint()) 1104 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1105 else 1106 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1107 } 1108 1109 return DAG.getMergeValues(Constants, getCurSDLoc()); 1110 } 1111 1112 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1113 return DAG.getBlockAddress(BA, VT); 1114 1115 VectorType *VecTy = cast<VectorType>(V->getType()); 1116 unsigned NumElements = VecTy->getNumElements(); 1117 1118 // Now that we know the number and type of the elements, get that number of 1119 // elements into the Ops array based on what kind of constant it is. 1120 SmallVector<SDValue, 16> Ops; 1121 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1122 for (unsigned i = 0; i != NumElements; ++i) 1123 Ops.push_back(getValue(CV->getOperand(i))); 1124 } else { 1125 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1126 EVT EltVT = 1127 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1128 1129 SDValue Op; 1130 if (EltVT.isFloatingPoint()) 1131 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1132 else 1133 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1134 Ops.assign(NumElements, Op); 1135 } 1136 1137 // Create a BUILD_VECTOR node. 1138 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1139 } 1140 1141 // If this is a static alloca, generate it as the frameindex instead of 1142 // computation. 1143 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1144 DenseMap<const AllocaInst*, int>::iterator SI = 1145 FuncInfo.StaticAllocaMap.find(AI); 1146 if (SI != FuncInfo.StaticAllocaMap.end()) 1147 return DAG.getFrameIndex(SI->second, 1148 TLI.getPointerTy(DAG.getDataLayout())); 1149 } 1150 1151 // If this is an instruction which fast-isel has deferred, select it now. 1152 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1153 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1154 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1155 Inst->getType()); 1156 SDValue Chain = DAG.getEntryNode(); 1157 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1158 } 1159 1160 llvm_unreachable("Can't get register for value!"); 1161 } 1162 1163 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1164 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1165 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1166 bool IsSEH = isAsynchronousEHPersonality(Pers); 1167 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1168 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1169 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1170 if (IsMSVCCXX || IsCoreCLR) 1171 CatchPadMBB->setIsEHFuncletEntry(); 1172 1173 MachineBasicBlock *NormalDestMBB = FuncInfo.MBBMap[I.getNormalDest()]; 1174 1175 // Update machine-CFG edge. 1176 FuncInfo.MBB->addSuccessor(NormalDestMBB); 1177 1178 // CatchPads in SEH are not funclets, they are merely markers which indicate 1179 // where to insert register restoration code. 1180 if (IsSEH) { 1181 DAG.setRoot(DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1182 getControlRoot(), DAG.getBasicBlock(NormalDestMBB), 1183 DAG.getBasicBlock(&FuncInfo.MF->front()))); 1184 return; 1185 } 1186 1187 // If this is not a fall-through branch or optimizations are switched off, 1188 // emit the branch. 1189 if (NormalDestMBB != NextBlock(CatchPadMBB) || 1190 TM.getOptLevel() == CodeGenOpt::None) 1191 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1192 getControlRoot(), 1193 DAG.getBasicBlock(NormalDestMBB))); 1194 } 1195 1196 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1197 // Update machine-CFG edge. 1198 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1199 FuncInfo.MBB->addSuccessor(TargetMBB); 1200 1201 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1202 bool IsSEH = isAsynchronousEHPersonality(Pers); 1203 if (IsSEH) { 1204 // If this is not a fall-through branch or optimizations are switched off, 1205 // emit the branch. 1206 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1207 TM.getOptLevel() == CodeGenOpt::None) 1208 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1209 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1210 return; 1211 } 1212 1213 // Figure out the funclet membership for the catchret's successor. 1214 // This will be used by the FuncletLayout pass to determine how to order the 1215 // BB's. 1216 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 1217 WinEHFuncInfo &EHInfo = 1218 MMI.getWinEHFuncInfo(DAG.getMachineFunction().getFunction()); 1219 const BasicBlock *SuccessorColor = EHInfo.CatchRetSuccessorColorMap[&I]; 1220 assert(SuccessorColor && "No parent funclet for catchret!"); 1221 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1222 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1223 1224 // Create the terminator node. 1225 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1226 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1227 DAG.getBasicBlock(SuccessorColorMBB)); 1228 DAG.setRoot(Ret); 1229 } 1230 1231 void SelectionDAGBuilder::visitCatchEndPad(const CatchEndPadInst &I) { 1232 llvm_unreachable("should never codegen catchendpads"); 1233 } 1234 1235 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1236 // Don't emit any special code for the cleanuppad instruction. It just marks 1237 // the start of a funclet. 1238 FuncInfo.MBB->setIsEHFuncletEntry(); 1239 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1240 } 1241 1242 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1243 /// many places it could ultimately go. In the IR, we have a single unwind 1244 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1245 /// This function skips over imaginary basic blocks that hold catchpad, 1246 /// terminatepad, or catchendpad instructions, and finds all the "real" machine 1247 /// basic block destinations. As those destinations may not be successors of 1248 /// EHPadBB, here we also calculate the edge weight to those destinations. The 1249 /// passed-in Weight is the edge weight to EHPadBB. 1250 static void findUnwindDestinations( 1251 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, uint32_t Weight, 1252 SmallVectorImpl<std::pair<MachineBasicBlock *, uint32_t>> &UnwindDests) { 1253 EHPersonality Personality = 1254 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1255 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1256 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1257 1258 while (EHPadBB) { 1259 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1260 BasicBlock *NewEHPadBB = nullptr; 1261 if (isa<LandingPadInst>(Pad)) { 1262 // Stop on landingpads. They are not funclets. 1263 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Weight); 1264 break; 1265 } else if (isa<CleanupPadInst>(Pad)) { 1266 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1267 // personalities. 1268 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Weight); 1269 UnwindDests.back().first->setIsEHFuncletEntry(); 1270 break; 1271 } else if (const auto *CPI = dyn_cast<CatchPadInst>(Pad)) { 1272 // Add the catchpad handler to the possible destinations. 1273 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Weight); 1274 // In MSVC C++, catchblocks are funclets and need prologues. 1275 if (IsMSVCCXX || IsCoreCLR) 1276 UnwindDests.back().first->setIsEHFuncletEntry(); 1277 NewEHPadBB = CPI->getUnwindDest(); 1278 } else if (const auto *CEPI = dyn_cast<CatchEndPadInst>(Pad)) 1279 NewEHPadBB = CEPI->getUnwindDest(); 1280 else if (const auto *CEPI = dyn_cast<CleanupEndPadInst>(Pad)) 1281 NewEHPadBB = CEPI->getUnwindDest(); 1282 else 1283 continue; 1284 1285 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1286 if (BPI && NewEHPadBB) { 1287 // When BPI is available, the calculated weight cannot be zero as zero 1288 // will be turned to a default weight in MachineBlockFrequencyInfo. 1289 Weight = std::max<uint32_t>( 1290 BPI->getEdgeProbability(EHPadBB, NewEHPadBB).scale(Weight), 1); 1291 } 1292 EHPadBB = NewEHPadBB; 1293 } 1294 } 1295 1296 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1297 // Update successor info. 1298 SmallVector<std::pair<MachineBasicBlock *, uint32_t>, 1> UnwindDests; 1299 auto UnwindDest = I.getUnwindDest(); 1300 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1301 uint32_t UnwindDestWeight = 1302 BPI ? BPI->getEdgeWeight(FuncInfo.MBB->getBasicBlock(), UnwindDest) : 0; 1303 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestWeight, UnwindDests); 1304 for (auto &UnwindDest : UnwindDests) { 1305 UnwindDest.first->setIsEHPad(); 1306 addSuccessorWithWeight(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1307 } 1308 1309 // Create the terminator node. 1310 SDValue Ret = 1311 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1312 DAG.setRoot(Ret); 1313 } 1314 1315 void SelectionDAGBuilder::visitCleanupEndPad(const CleanupEndPadInst &I) { 1316 report_fatal_error("visitCleanupEndPad not yet implemented!"); 1317 } 1318 1319 void SelectionDAGBuilder::visitTerminatePad(const TerminatePadInst &TPI) { 1320 report_fatal_error("visitTerminatePad not yet implemented!"); 1321 } 1322 1323 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1324 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1325 auto &DL = DAG.getDataLayout(); 1326 SDValue Chain = getControlRoot(); 1327 SmallVector<ISD::OutputArg, 8> Outs; 1328 SmallVector<SDValue, 8> OutVals; 1329 1330 if (!FuncInfo.CanLowerReturn) { 1331 unsigned DemoteReg = FuncInfo.DemoteRegister; 1332 const Function *F = I.getParent()->getParent(); 1333 1334 // Emit a store of the return value through the virtual register. 1335 // Leave Outs empty so that LowerReturn won't try to load return 1336 // registers the usual way. 1337 SmallVector<EVT, 1> PtrValueVTs; 1338 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1339 PtrValueVTs); 1340 1341 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1342 SDValue RetOp = getValue(I.getOperand(0)); 1343 1344 SmallVector<EVT, 4> ValueVTs; 1345 SmallVector<uint64_t, 4> Offsets; 1346 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1347 unsigned NumValues = ValueVTs.size(); 1348 1349 SmallVector<SDValue, 4> Chains(NumValues); 1350 for (unsigned i = 0; i != NumValues; ++i) { 1351 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1352 RetPtr.getValueType(), RetPtr, 1353 DAG.getIntPtrConstant(Offsets[i], 1354 getCurSDLoc())); 1355 Chains[i] = 1356 DAG.getStore(Chain, getCurSDLoc(), 1357 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1358 // FIXME: better loc info would be nice. 1359 Add, MachinePointerInfo(), false, false, 0); 1360 } 1361 1362 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1363 MVT::Other, Chains); 1364 } else if (I.getNumOperands() != 0) { 1365 SmallVector<EVT, 4> ValueVTs; 1366 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1367 unsigned NumValues = ValueVTs.size(); 1368 if (NumValues) { 1369 SDValue RetOp = getValue(I.getOperand(0)); 1370 1371 const Function *F = I.getParent()->getParent(); 1372 1373 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1374 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1375 Attribute::SExt)) 1376 ExtendKind = ISD::SIGN_EXTEND; 1377 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1378 Attribute::ZExt)) 1379 ExtendKind = ISD::ZERO_EXTEND; 1380 1381 LLVMContext &Context = F->getContext(); 1382 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1383 Attribute::InReg); 1384 1385 for (unsigned j = 0; j != NumValues; ++j) { 1386 EVT VT = ValueVTs[j]; 1387 1388 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1389 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1390 1391 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1392 MVT PartVT = TLI.getRegisterType(Context, VT); 1393 SmallVector<SDValue, 4> Parts(NumParts); 1394 getCopyToParts(DAG, getCurSDLoc(), 1395 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1396 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1397 1398 // 'inreg' on function refers to return value 1399 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1400 if (RetInReg) 1401 Flags.setInReg(); 1402 1403 // Propagate extension type if any 1404 if (ExtendKind == ISD::SIGN_EXTEND) 1405 Flags.setSExt(); 1406 else if (ExtendKind == ISD::ZERO_EXTEND) 1407 Flags.setZExt(); 1408 1409 for (unsigned i = 0; i < NumParts; ++i) { 1410 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1411 VT, /*isfixed=*/true, 0, 0)); 1412 OutVals.push_back(Parts[i]); 1413 } 1414 } 1415 } 1416 } 1417 1418 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1419 CallingConv::ID CallConv = 1420 DAG.getMachineFunction().getFunction()->getCallingConv(); 1421 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1422 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1423 1424 // Verify that the target's LowerReturn behaved as expected. 1425 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1426 "LowerReturn didn't return a valid chain!"); 1427 1428 // Update the DAG with the new chain value resulting from return lowering. 1429 DAG.setRoot(Chain); 1430 } 1431 1432 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1433 /// created for it, emit nodes to copy the value into the virtual 1434 /// registers. 1435 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1436 // Skip empty types 1437 if (V->getType()->isEmptyTy()) 1438 return; 1439 1440 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1441 if (VMI != FuncInfo.ValueMap.end()) { 1442 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1443 CopyValueToVirtualRegister(V, VMI->second); 1444 } 1445 } 1446 1447 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1448 /// the current basic block, add it to ValueMap now so that we'll get a 1449 /// CopyTo/FromReg. 1450 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1451 // No need to export constants. 1452 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1453 1454 // Already exported? 1455 if (FuncInfo.isExportedInst(V)) return; 1456 1457 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1458 CopyValueToVirtualRegister(V, Reg); 1459 } 1460 1461 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1462 const BasicBlock *FromBB) { 1463 // The operands of the setcc have to be in this block. We don't know 1464 // how to export them from some other block. 1465 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1466 // Can export from current BB. 1467 if (VI->getParent() == FromBB) 1468 return true; 1469 1470 // Is already exported, noop. 1471 return FuncInfo.isExportedInst(V); 1472 } 1473 1474 // If this is an argument, we can export it if the BB is the entry block or 1475 // if it is already exported. 1476 if (isa<Argument>(V)) { 1477 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1478 return true; 1479 1480 // Otherwise, can only export this if it is already exported. 1481 return FuncInfo.isExportedInst(V); 1482 } 1483 1484 // Otherwise, constants can always be exported. 1485 return true; 1486 } 1487 1488 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1489 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1490 const MachineBasicBlock *Dst) const { 1491 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1492 if (!BPI) 1493 return 0; 1494 const BasicBlock *SrcBB = Src->getBasicBlock(); 1495 const BasicBlock *DstBB = Dst->getBasicBlock(); 1496 return BPI->getEdgeWeight(SrcBB, DstBB); 1497 } 1498 1499 void SelectionDAGBuilder:: 1500 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1501 uint32_t Weight /* = 0 */) { 1502 if (!FuncInfo.BPI) 1503 Src->addSuccessorWithoutWeight(Dst); 1504 else { 1505 if (!Weight) 1506 Weight = getEdgeWeight(Src, Dst); 1507 Src->addSuccessor(Dst, Weight); 1508 } 1509 } 1510 1511 1512 static bool InBlock(const Value *V, const BasicBlock *BB) { 1513 if (const Instruction *I = dyn_cast<Instruction>(V)) 1514 return I->getParent() == BB; 1515 return true; 1516 } 1517 1518 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1519 /// This function emits a branch and is used at the leaves of an OR or an 1520 /// AND operator tree. 1521 /// 1522 void 1523 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1524 MachineBasicBlock *TBB, 1525 MachineBasicBlock *FBB, 1526 MachineBasicBlock *CurBB, 1527 MachineBasicBlock *SwitchBB, 1528 uint32_t TWeight, 1529 uint32_t FWeight) { 1530 const BasicBlock *BB = CurBB->getBasicBlock(); 1531 1532 // If the leaf of the tree is a comparison, merge the condition into 1533 // the caseblock. 1534 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1535 // The operands of the cmp have to be in this block. We don't know 1536 // how to export them from some other block. If this is the first block 1537 // of the sequence, no exporting is needed. 1538 if (CurBB == SwitchBB || 1539 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1540 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1541 ISD::CondCode Condition; 1542 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1543 Condition = getICmpCondCode(IC->getPredicate()); 1544 } else { 1545 const FCmpInst *FC = cast<FCmpInst>(Cond); 1546 Condition = getFCmpCondCode(FC->getPredicate()); 1547 if (TM.Options.NoNaNsFPMath) 1548 Condition = getFCmpCodeWithoutNaN(Condition); 1549 } 1550 1551 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1552 TBB, FBB, CurBB, TWeight, FWeight); 1553 SwitchCases.push_back(CB); 1554 return; 1555 } 1556 } 1557 1558 // Create a CaseBlock record representing this branch. 1559 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1560 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1561 SwitchCases.push_back(CB); 1562 } 1563 1564 /// Scale down both weights to fit into uint32_t. 1565 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1566 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1567 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1568 NewTrue = NewTrue / Scale; 1569 NewFalse = NewFalse / Scale; 1570 } 1571 1572 /// FindMergedConditions - If Cond is an expression like 1573 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1574 MachineBasicBlock *TBB, 1575 MachineBasicBlock *FBB, 1576 MachineBasicBlock *CurBB, 1577 MachineBasicBlock *SwitchBB, 1578 Instruction::BinaryOps Opc, 1579 uint32_t TWeight, 1580 uint32_t FWeight) { 1581 // If this node is not part of the or/and tree, emit it as a branch. 1582 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1583 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1584 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1585 BOp->getParent() != CurBB->getBasicBlock() || 1586 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1587 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1588 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1589 TWeight, FWeight); 1590 return; 1591 } 1592 1593 // Create TmpBB after CurBB. 1594 MachineFunction::iterator BBI(CurBB); 1595 MachineFunction &MF = DAG.getMachineFunction(); 1596 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1597 CurBB->getParent()->insert(++BBI, TmpBB); 1598 1599 if (Opc == Instruction::Or) { 1600 // Codegen X | Y as: 1601 // BB1: 1602 // jmp_if_X TBB 1603 // jmp TmpBB 1604 // TmpBB: 1605 // jmp_if_Y TBB 1606 // jmp FBB 1607 // 1608 1609 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1610 // The requirement is that 1611 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1612 // = TrueProb for original BB. 1613 // Assuming the original weights are A and B, one choice is to set BB1's 1614 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1615 // assumes that 1616 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1617 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1618 // TmpBB, but the math is more complicated. 1619 1620 uint64_t NewTrueWeight = TWeight; 1621 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1622 ScaleWeights(NewTrueWeight, NewFalseWeight); 1623 // Emit the LHS condition. 1624 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1625 NewTrueWeight, NewFalseWeight); 1626 1627 NewTrueWeight = TWeight; 1628 NewFalseWeight = 2 * (uint64_t)FWeight; 1629 ScaleWeights(NewTrueWeight, NewFalseWeight); 1630 // Emit the RHS condition into TmpBB. 1631 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1632 NewTrueWeight, NewFalseWeight); 1633 } else { 1634 assert(Opc == Instruction::And && "Unknown merge op!"); 1635 // Codegen X & Y as: 1636 // BB1: 1637 // jmp_if_X TmpBB 1638 // jmp FBB 1639 // TmpBB: 1640 // jmp_if_Y TBB 1641 // jmp FBB 1642 // 1643 // This requires creation of TmpBB after CurBB. 1644 1645 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1646 // The requirement is that 1647 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1648 // = FalseProb for original BB. 1649 // Assuming the original weights are A and B, one choice is to set BB1's 1650 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1651 // assumes that 1652 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1653 1654 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1655 uint64_t NewFalseWeight = FWeight; 1656 ScaleWeights(NewTrueWeight, NewFalseWeight); 1657 // Emit the LHS condition. 1658 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1659 NewTrueWeight, NewFalseWeight); 1660 1661 NewTrueWeight = 2 * (uint64_t)TWeight; 1662 NewFalseWeight = FWeight; 1663 ScaleWeights(NewTrueWeight, NewFalseWeight); 1664 // Emit the RHS condition into TmpBB. 1665 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1666 NewTrueWeight, NewFalseWeight); 1667 } 1668 } 1669 1670 /// If the set of cases should be emitted as a series of branches, return true. 1671 /// If we should emit this as a bunch of and/or'd together conditions, return 1672 /// false. 1673 bool 1674 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1675 if (Cases.size() != 2) return true; 1676 1677 // If this is two comparisons of the same values or'd or and'd together, they 1678 // will get folded into a single comparison, so don't emit two blocks. 1679 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1680 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1681 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1682 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1683 return false; 1684 } 1685 1686 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1687 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1688 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1689 Cases[0].CC == Cases[1].CC && 1690 isa<Constant>(Cases[0].CmpRHS) && 1691 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1692 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1693 return false; 1694 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1695 return false; 1696 } 1697 1698 return true; 1699 } 1700 1701 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1702 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1703 1704 // Update machine-CFG edges. 1705 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1706 1707 if (I.isUnconditional()) { 1708 // Update machine-CFG edges. 1709 BrMBB->addSuccessor(Succ0MBB); 1710 1711 // If this is not a fall-through branch or optimizations are switched off, 1712 // emit the branch. 1713 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1714 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1715 MVT::Other, getControlRoot(), 1716 DAG.getBasicBlock(Succ0MBB))); 1717 1718 return; 1719 } 1720 1721 // If this condition is one of the special cases we handle, do special stuff 1722 // now. 1723 const Value *CondVal = I.getCondition(); 1724 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1725 1726 // If this is a series of conditions that are or'd or and'd together, emit 1727 // this as a sequence of branches instead of setcc's with and/or operations. 1728 // As long as jumps are not expensive, this should improve performance. 1729 // For example, instead of something like: 1730 // cmp A, B 1731 // C = seteq 1732 // cmp D, E 1733 // F = setle 1734 // or C, F 1735 // jnz foo 1736 // Emit: 1737 // cmp A, B 1738 // je foo 1739 // cmp D, E 1740 // jle foo 1741 // 1742 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1743 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1744 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1745 !I.getMetadata(LLVMContext::MD_unpredictable) && 1746 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1747 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1748 Opcode, getEdgeWeight(BrMBB, Succ0MBB), 1749 getEdgeWeight(BrMBB, Succ1MBB)); 1750 // If the compares in later blocks need to use values not currently 1751 // exported from this block, export them now. This block should always 1752 // be the first entry. 1753 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1754 1755 // Allow some cases to be rejected. 1756 if (ShouldEmitAsBranches(SwitchCases)) { 1757 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1758 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1759 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1760 } 1761 1762 // Emit the branch for this block. 1763 visitSwitchCase(SwitchCases[0], BrMBB); 1764 SwitchCases.erase(SwitchCases.begin()); 1765 return; 1766 } 1767 1768 // Okay, we decided not to do this, remove any inserted MBB's and clear 1769 // SwitchCases. 1770 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1771 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1772 1773 SwitchCases.clear(); 1774 } 1775 } 1776 1777 // Create a CaseBlock record representing this branch. 1778 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1779 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1780 1781 // Use visitSwitchCase to actually insert the fast branch sequence for this 1782 // cond branch. 1783 visitSwitchCase(CB, BrMBB); 1784 } 1785 1786 /// visitSwitchCase - Emits the necessary code to represent a single node in 1787 /// the binary search tree resulting from lowering a switch instruction. 1788 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1789 MachineBasicBlock *SwitchBB) { 1790 SDValue Cond; 1791 SDValue CondLHS = getValue(CB.CmpLHS); 1792 SDLoc dl = getCurSDLoc(); 1793 1794 // Build the setcc now. 1795 if (!CB.CmpMHS) { 1796 // Fold "(X == true)" to X and "(X == false)" to !X to 1797 // handle common cases produced by branch lowering. 1798 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1799 CB.CC == ISD::SETEQ) 1800 Cond = CondLHS; 1801 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1802 CB.CC == ISD::SETEQ) { 1803 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1804 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1805 } else 1806 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1807 } else { 1808 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1809 1810 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1811 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1812 1813 SDValue CmpOp = getValue(CB.CmpMHS); 1814 EVT VT = CmpOp.getValueType(); 1815 1816 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1817 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1818 ISD::SETLE); 1819 } else { 1820 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1821 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1822 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1823 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1824 } 1825 } 1826 1827 // Update successor info 1828 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1829 // TrueBB and FalseBB are always different unless the incoming IR is 1830 // degenerate. This only happens when running llc on weird IR. 1831 if (CB.TrueBB != CB.FalseBB) 1832 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1833 1834 // If the lhs block is the next block, invert the condition so that we can 1835 // fall through to the lhs instead of the rhs block. 1836 if (CB.TrueBB == NextBlock(SwitchBB)) { 1837 std::swap(CB.TrueBB, CB.FalseBB); 1838 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1839 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1840 } 1841 1842 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1843 MVT::Other, getControlRoot(), Cond, 1844 DAG.getBasicBlock(CB.TrueBB)); 1845 1846 // Insert the false branch. Do this even if it's a fall through branch, 1847 // this makes it easier to do DAG optimizations which require inverting 1848 // the branch condition. 1849 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1850 DAG.getBasicBlock(CB.FalseBB)); 1851 1852 DAG.setRoot(BrCond); 1853 } 1854 1855 /// visitJumpTable - Emit JumpTable node in the current MBB 1856 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1857 // Emit the code for the jump table 1858 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1859 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1860 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1861 JT.Reg, PTy); 1862 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1863 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1864 MVT::Other, Index.getValue(1), 1865 Table, Index); 1866 DAG.setRoot(BrJumpTable); 1867 } 1868 1869 /// visitJumpTableHeader - This function emits necessary code to produce index 1870 /// in the JumpTable from switch case. 1871 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1872 JumpTableHeader &JTH, 1873 MachineBasicBlock *SwitchBB) { 1874 SDLoc dl = getCurSDLoc(); 1875 1876 // Subtract the lowest switch case value from the value being switched on and 1877 // conditional branch to default mbb if the result is greater than the 1878 // difference between smallest and largest cases. 1879 SDValue SwitchOp = getValue(JTH.SValue); 1880 EVT VT = SwitchOp.getValueType(); 1881 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1882 DAG.getConstant(JTH.First, dl, VT)); 1883 1884 // The SDNode we just created, which holds the value being switched on minus 1885 // the smallest case value, needs to be copied to a virtual register so it 1886 // can be used as an index into the jump table in a subsequent basic block. 1887 // This value may be smaller or larger than the target's pointer type, and 1888 // therefore require extension or truncating. 1889 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1890 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 1891 1892 unsigned JumpTableReg = 1893 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 1894 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1895 JumpTableReg, SwitchOp); 1896 JT.Reg = JumpTableReg; 1897 1898 // Emit the range check for the jump table, and branch to the default block 1899 // for the switch statement if the value being switched on exceeds the largest 1900 // case in the switch. 1901 SDValue CMP = DAG.getSetCC( 1902 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1903 Sub.getValueType()), 1904 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 1905 1906 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1907 MVT::Other, CopyTo, CMP, 1908 DAG.getBasicBlock(JT.Default)); 1909 1910 // Avoid emitting unnecessary branches to the next block. 1911 if (JT.MBB != NextBlock(SwitchBB)) 1912 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1913 DAG.getBasicBlock(JT.MBB)); 1914 1915 DAG.setRoot(BrCond); 1916 } 1917 1918 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1919 /// tail spliced into a stack protector check success bb. 1920 /// 1921 /// For a high level explanation of how this fits into the stack protector 1922 /// generation see the comment on the declaration of class 1923 /// StackProtectorDescriptor. 1924 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1925 MachineBasicBlock *ParentBB) { 1926 1927 // First create the loads to the guard/stack slot for the comparison. 1928 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1929 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 1930 1931 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1932 int FI = MFI->getStackProtectorIndex(); 1933 1934 const Value *IRGuard = SPD.getGuard(); 1935 SDValue GuardPtr = getValue(IRGuard); 1936 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1937 1938 unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType()); 1939 1940 SDValue Guard; 1941 SDLoc dl = getCurSDLoc(); 1942 1943 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1944 // guard value from the virtual register holding the value. Otherwise, emit a 1945 // volatile load to retrieve the stack guard value. 1946 unsigned GuardReg = SPD.getGuardReg(); 1947 1948 if (GuardReg && TLI.useLoadStackGuardNode()) 1949 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 1950 PtrTy); 1951 else 1952 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1953 GuardPtr, MachinePointerInfo(IRGuard, 0), 1954 true, false, false, Align); 1955 1956 SDValue StackSlot = DAG.getLoad( 1957 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 1958 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true, 1959 false, false, Align); 1960 1961 // Perform the comparison via a subtract/getsetcc. 1962 EVT VT = Guard.getValueType(); 1963 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 1964 1965 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 1966 *DAG.getContext(), 1967 Sub.getValueType()), 1968 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 1969 1970 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1971 // branch to failure MBB. 1972 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1973 MVT::Other, StackSlot.getOperand(0), 1974 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1975 // Otherwise branch to success MBB. 1976 SDValue Br = DAG.getNode(ISD::BR, dl, 1977 MVT::Other, BrCond, 1978 DAG.getBasicBlock(SPD.getSuccessMBB())); 1979 1980 DAG.setRoot(Br); 1981 } 1982 1983 /// Codegen the failure basic block for a stack protector check. 1984 /// 1985 /// A failure stack protector machine basic block consists simply of a call to 1986 /// __stack_chk_fail(). 1987 /// 1988 /// For a high level explanation of how this fits into the stack protector 1989 /// generation see the comment on the declaration of class 1990 /// StackProtectorDescriptor. 1991 void 1992 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1993 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1994 SDValue Chain = 1995 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1996 None, false, getCurSDLoc(), false, false).second; 1997 DAG.setRoot(Chain); 1998 } 1999 2000 /// visitBitTestHeader - This function emits necessary code to produce value 2001 /// suitable for "bit tests" 2002 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2003 MachineBasicBlock *SwitchBB) { 2004 SDLoc dl = getCurSDLoc(); 2005 2006 // Subtract the minimum value 2007 SDValue SwitchOp = getValue(B.SValue); 2008 EVT VT = SwitchOp.getValueType(); 2009 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2010 DAG.getConstant(B.First, dl, VT)); 2011 2012 // Check range 2013 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2014 SDValue RangeCmp = DAG.getSetCC( 2015 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2016 Sub.getValueType()), 2017 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2018 2019 // Determine the type of the test operands. 2020 bool UsePtrType = false; 2021 if (!TLI.isTypeLegal(VT)) 2022 UsePtrType = true; 2023 else { 2024 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2025 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2026 // Switch table case range are encoded into series of masks. 2027 // Just use pointer type, it's guaranteed to fit. 2028 UsePtrType = true; 2029 break; 2030 } 2031 } 2032 if (UsePtrType) { 2033 VT = TLI.getPointerTy(DAG.getDataLayout()); 2034 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2035 } 2036 2037 B.RegVT = VT.getSimpleVT(); 2038 B.Reg = FuncInfo.CreateReg(B.RegVT); 2039 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2040 2041 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2042 2043 addSuccessorWithWeight(SwitchBB, B.Default, B.DefaultWeight); 2044 addSuccessorWithWeight(SwitchBB, MBB, B.Weight); 2045 2046 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2047 MVT::Other, CopyTo, RangeCmp, 2048 DAG.getBasicBlock(B.Default)); 2049 2050 // Avoid emitting unnecessary branches to the next block. 2051 if (MBB != NextBlock(SwitchBB)) 2052 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2053 DAG.getBasicBlock(MBB)); 2054 2055 DAG.setRoot(BrRange); 2056 } 2057 2058 /// visitBitTestCase - this function produces one "bit test" 2059 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2060 MachineBasicBlock* NextMBB, 2061 uint32_t BranchWeightToNext, 2062 unsigned Reg, 2063 BitTestCase &B, 2064 MachineBasicBlock *SwitchBB) { 2065 SDLoc dl = getCurSDLoc(); 2066 MVT VT = BB.RegVT; 2067 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2068 SDValue Cmp; 2069 unsigned PopCount = countPopulation(B.Mask); 2070 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2071 if (PopCount == 1) { 2072 // Testing for a single bit; just compare the shift count with what it 2073 // would need to be to shift a 1 bit in that position. 2074 Cmp = DAG.getSetCC( 2075 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2076 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2077 ISD::SETEQ); 2078 } else if (PopCount == BB.Range) { 2079 // There is only one zero bit in the range, test for it directly. 2080 Cmp = DAG.getSetCC( 2081 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2082 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2083 ISD::SETNE); 2084 } else { 2085 // Make desired shift 2086 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2087 DAG.getConstant(1, dl, VT), ShiftOp); 2088 2089 // Emit bit tests and jumps 2090 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2091 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2092 Cmp = DAG.getSetCC( 2093 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2094 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2095 } 2096 2097 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 2098 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 2099 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 2100 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 2101 2102 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2103 MVT::Other, getControlRoot(), 2104 Cmp, DAG.getBasicBlock(B.TargetBB)); 2105 2106 // Avoid emitting unnecessary branches to the next block. 2107 if (NextMBB != NextBlock(SwitchBB)) 2108 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2109 DAG.getBasicBlock(NextMBB)); 2110 2111 DAG.setRoot(BrAnd); 2112 } 2113 2114 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2115 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2116 2117 // Retrieve successors. Look through artificial IR level blocks like catchpads 2118 // and catchendpads for successors. 2119 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2120 const BasicBlock *EHPadBB = I.getSuccessor(1); 2121 2122 const Value *Callee(I.getCalledValue()); 2123 const Function *Fn = dyn_cast<Function>(Callee); 2124 if (isa<InlineAsm>(Callee)) 2125 visitInlineAsm(&I); 2126 else if (Fn && Fn->isIntrinsic()) { 2127 switch (Fn->getIntrinsicID()) { 2128 default: 2129 llvm_unreachable("Cannot invoke this intrinsic"); 2130 case Intrinsic::donothing: 2131 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2132 break; 2133 case Intrinsic::experimental_patchpoint_void: 2134 case Intrinsic::experimental_patchpoint_i64: 2135 visitPatchpoint(&I, EHPadBB); 2136 break; 2137 case Intrinsic::experimental_gc_statepoint: 2138 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2139 break; 2140 } 2141 } else 2142 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2143 2144 // If the value of the invoke is used outside of its defining block, make it 2145 // available as a virtual register. 2146 // We already took care of the exported value for the statepoint instruction 2147 // during call to the LowerStatepoint. 2148 if (!isStatepoint(I)) { 2149 CopyToExportRegsIfNeeded(&I); 2150 } 2151 2152 SmallVector<std::pair<MachineBasicBlock *, uint32_t>, 1> UnwindDests; 2153 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2154 uint32_t EHPadBBWeight = 2155 BPI ? BPI->getEdgeWeight(InvokeMBB->getBasicBlock(), EHPadBB) : 0; 2156 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBWeight, UnwindDests); 2157 2158 // Update successor info. 2159 addSuccessorWithWeight(InvokeMBB, Return); 2160 for (auto &UnwindDest : UnwindDests) { 2161 UnwindDest.first->setIsEHPad(); 2162 addSuccessorWithWeight(InvokeMBB, UnwindDest.first, UnwindDest.second); 2163 } 2164 2165 // Drop into normal successor. 2166 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2167 MVT::Other, getControlRoot(), 2168 DAG.getBasicBlock(Return))); 2169 } 2170 2171 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2172 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2173 } 2174 2175 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2176 assert(FuncInfo.MBB->isEHPad() && 2177 "Call to landingpad not in landing pad!"); 2178 2179 MachineBasicBlock *MBB = FuncInfo.MBB; 2180 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2181 AddLandingPadInfo(LP, MMI, MBB); 2182 2183 // If there aren't registers to copy the values into (e.g., during SjLj 2184 // exceptions), then don't bother to create these DAG nodes. 2185 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2186 if (TLI.getExceptionPointerRegister() == 0 && 2187 TLI.getExceptionSelectorRegister() == 0) 2188 return; 2189 2190 SmallVector<EVT, 2> ValueVTs; 2191 SDLoc dl = getCurSDLoc(); 2192 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2193 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2194 2195 // Get the two live-in registers as SDValues. The physregs have already been 2196 // copied into virtual registers. 2197 SDValue Ops[2]; 2198 if (FuncInfo.ExceptionPointerVirtReg) { 2199 Ops[0] = DAG.getZExtOrTrunc( 2200 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2201 FuncInfo.ExceptionPointerVirtReg, 2202 TLI.getPointerTy(DAG.getDataLayout())), 2203 dl, ValueVTs[0]); 2204 } else { 2205 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2206 } 2207 Ops[1] = DAG.getZExtOrTrunc( 2208 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2209 FuncInfo.ExceptionSelectorVirtReg, 2210 TLI.getPointerTy(DAG.getDataLayout())), 2211 dl, ValueVTs[1]); 2212 2213 // Merge into one. 2214 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2215 DAG.getVTList(ValueVTs), Ops); 2216 setValue(&LP, Res); 2217 } 2218 2219 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2220 #ifndef NDEBUG 2221 for (const CaseCluster &CC : Clusters) 2222 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2223 #endif 2224 2225 std::sort(Clusters.begin(), Clusters.end(), 2226 [](const CaseCluster &a, const CaseCluster &b) { 2227 return a.Low->getValue().slt(b.Low->getValue()); 2228 }); 2229 2230 // Merge adjacent clusters with the same destination. 2231 const unsigned N = Clusters.size(); 2232 unsigned DstIndex = 0; 2233 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2234 CaseCluster &CC = Clusters[SrcIndex]; 2235 const ConstantInt *CaseVal = CC.Low; 2236 MachineBasicBlock *Succ = CC.MBB; 2237 2238 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2239 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2240 // If this case has the same successor and is a neighbour, merge it into 2241 // the previous cluster. 2242 Clusters[DstIndex - 1].High = CaseVal; 2243 Clusters[DstIndex - 1].Weight += CC.Weight; 2244 assert(Clusters[DstIndex - 1].Weight >= CC.Weight && "Weight overflow!"); 2245 } else { 2246 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2247 sizeof(Clusters[SrcIndex])); 2248 } 2249 } 2250 Clusters.resize(DstIndex); 2251 } 2252 2253 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2254 MachineBasicBlock *Last) { 2255 // Update JTCases. 2256 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2257 if (JTCases[i].first.HeaderBB == First) 2258 JTCases[i].first.HeaderBB = Last; 2259 2260 // Update BitTestCases. 2261 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2262 if (BitTestCases[i].Parent == First) 2263 BitTestCases[i].Parent = Last; 2264 } 2265 2266 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2267 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2268 2269 // Update machine-CFG edges with unique successors. 2270 SmallSet<BasicBlock*, 32> Done; 2271 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2272 BasicBlock *BB = I.getSuccessor(i); 2273 bool Inserted = Done.insert(BB).second; 2274 if (!Inserted) 2275 continue; 2276 2277 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2278 addSuccessorWithWeight(IndirectBrMBB, Succ); 2279 } 2280 2281 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2282 MVT::Other, getControlRoot(), 2283 getValue(I.getAddress()))); 2284 } 2285 2286 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2287 if (DAG.getTarget().Options.TrapUnreachable) 2288 DAG.setRoot( 2289 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2290 } 2291 2292 void SelectionDAGBuilder::visitFSub(const User &I) { 2293 // -0.0 - X --> fneg 2294 Type *Ty = I.getType(); 2295 if (isa<Constant>(I.getOperand(0)) && 2296 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2297 SDValue Op2 = getValue(I.getOperand(1)); 2298 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2299 Op2.getValueType(), Op2)); 2300 return; 2301 } 2302 2303 visitBinary(I, ISD::FSUB); 2304 } 2305 2306 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2307 SDValue Op1 = getValue(I.getOperand(0)); 2308 SDValue Op2 = getValue(I.getOperand(1)); 2309 2310 bool nuw = false; 2311 bool nsw = false; 2312 bool exact = false; 2313 FastMathFlags FMF; 2314 2315 if (const OverflowingBinaryOperator *OFBinOp = 2316 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2317 nuw = OFBinOp->hasNoUnsignedWrap(); 2318 nsw = OFBinOp->hasNoSignedWrap(); 2319 } 2320 if (const PossiblyExactOperator *ExactOp = 2321 dyn_cast<const PossiblyExactOperator>(&I)) 2322 exact = ExactOp->isExact(); 2323 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2324 FMF = FPOp->getFastMathFlags(); 2325 2326 SDNodeFlags Flags; 2327 Flags.setExact(exact); 2328 Flags.setNoSignedWrap(nsw); 2329 Flags.setNoUnsignedWrap(nuw); 2330 if (EnableFMFInDAG) { 2331 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2332 Flags.setNoInfs(FMF.noInfs()); 2333 Flags.setNoNaNs(FMF.noNaNs()); 2334 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2335 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2336 } 2337 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2338 Op1, Op2, &Flags); 2339 setValue(&I, BinNodeValue); 2340 } 2341 2342 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2343 SDValue Op1 = getValue(I.getOperand(0)); 2344 SDValue Op2 = getValue(I.getOperand(1)); 2345 2346 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2347 Op2.getValueType(), DAG.getDataLayout()); 2348 2349 // Coerce the shift amount to the right type if we can. 2350 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2351 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2352 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2353 SDLoc DL = getCurSDLoc(); 2354 2355 // If the operand is smaller than the shift count type, promote it. 2356 if (ShiftSize > Op2Size) 2357 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2358 2359 // If the operand is larger than the shift count type but the shift 2360 // count type has enough bits to represent any shift value, truncate 2361 // it now. This is a common case and it exposes the truncate to 2362 // optimization early. 2363 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2364 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2365 // Otherwise we'll need to temporarily settle for some other convenient 2366 // type. Type legalization will make adjustments once the shiftee is split. 2367 else 2368 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2369 } 2370 2371 bool nuw = false; 2372 bool nsw = false; 2373 bool exact = false; 2374 2375 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2376 2377 if (const OverflowingBinaryOperator *OFBinOp = 2378 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2379 nuw = OFBinOp->hasNoUnsignedWrap(); 2380 nsw = OFBinOp->hasNoSignedWrap(); 2381 } 2382 if (const PossiblyExactOperator *ExactOp = 2383 dyn_cast<const PossiblyExactOperator>(&I)) 2384 exact = ExactOp->isExact(); 2385 } 2386 SDNodeFlags Flags; 2387 Flags.setExact(exact); 2388 Flags.setNoSignedWrap(nsw); 2389 Flags.setNoUnsignedWrap(nuw); 2390 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2391 &Flags); 2392 setValue(&I, Res); 2393 } 2394 2395 void SelectionDAGBuilder::visitSDiv(const User &I) { 2396 SDValue Op1 = getValue(I.getOperand(0)); 2397 SDValue Op2 = getValue(I.getOperand(1)); 2398 2399 SDNodeFlags Flags; 2400 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2401 cast<PossiblyExactOperator>(&I)->isExact()); 2402 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2403 Op2, &Flags)); 2404 } 2405 2406 void SelectionDAGBuilder::visitICmp(const User &I) { 2407 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2408 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2409 predicate = IC->getPredicate(); 2410 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2411 predicate = ICmpInst::Predicate(IC->getPredicate()); 2412 SDValue Op1 = getValue(I.getOperand(0)); 2413 SDValue Op2 = getValue(I.getOperand(1)); 2414 ISD::CondCode Opcode = getICmpCondCode(predicate); 2415 2416 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2417 I.getType()); 2418 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2419 } 2420 2421 void SelectionDAGBuilder::visitFCmp(const User &I) { 2422 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2423 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2424 predicate = FC->getPredicate(); 2425 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2426 predicate = FCmpInst::Predicate(FC->getPredicate()); 2427 SDValue Op1 = getValue(I.getOperand(0)); 2428 SDValue Op2 = getValue(I.getOperand(1)); 2429 ISD::CondCode Condition = getFCmpCondCode(predicate); 2430 2431 // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them. 2432 // FIXME: We should propagate the fast-math-flags to the DAG node itself for 2433 // further optimization, but currently FMF is only applicable to binary nodes. 2434 if (TM.Options.NoNaNsFPMath) 2435 Condition = getFCmpCodeWithoutNaN(Condition); 2436 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2437 I.getType()); 2438 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2439 } 2440 2441 void SelectionDAGBuilder::visitSelect(const User &I) { 2442 SmallVector<EVT, 4> ValueVTs; 2443 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2444 ValueVTs); 2445 unsigned NumValues = ValueVTs.size(); 2446 if (NumValues == 0) return; 2447 2448 SmallVector<SDValue, 4> Values(NumValues); 2449 SDValue Cond = getValue(I.getOperand(0)); 2450 SDValue LHSVal = getValue(I.getOperand(1)); 2451 SDValue RHSVal = getValue(I.getOperand(2)); 2452 auto BaseOps = {Cond}; 2453 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2454 ISD::VSELECT : ISD::SELECT; 2455 2456 // Min/max matching is only viable if all output VTs are the same. 2457 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2458 EVT VT = ValueVTs[0]; 2459 LLVMContext &Ctx = *DAG.getContext(); 2460 auto &TLI = DAG.getTargetLoweringInfo(); 2461 while (TLI.getTypeAction(Ctx, VT) == TargetLoweringBase::TypeSplitVector) 2462 VT = TLI.getTypeToTransformTo(Ctx, VT); 2463 2464 Value *LHS, *RHS; 2465 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2466 ISD::NodeType Opc = ISD::DELETED_NODE; 2467 switch (SPR.Flavor) { 2468 case SPF_UMAX: Opc = ISD::UMAX; break; 2469 case SPF_UMIN: Opc = ISD::UMIN; break; 2470 case SPF_SMAX: Opc = ISD::SMAX; break; 2471 case SPF_SMIN: Opc = ISD::SMIN; break; 2472 case SPF_FMINNUM: 2473 switch (SPR.NaNBehavior) { 2474 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2475 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2476 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2477 case SPNB_RETURNS_ANY: 2478 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) ? ISD::FMINNUM 2479 : ISD::FMINNAN; 2480 break; 2481 } 2482 break; 2483 case SPF_FMAXNUM: 2484 switch (SPR.NaNBehavior) { 2485 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2486 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2487 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2488 case SPNB_RETURNS_ANY: 2489 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) ? ISD::FMAXNUM 2490 : ISD::FMAXNAN; 2491 break; 2492 } 2493 break; 2494 default: break; 2495 } 2496 2497 if (Opc != ISD::DELETED_NODE && TLI.isOperationLegalOrCustom(Opc, VT) && 2498 // If the underlying comparison instruction is used by any other instruction, 2499 // the consumed instructions won't be destroyed, so it is not profitable 2500 // to convert to a min/max. 2501 cast<SelectInst>(&I)->getCondition()->hasOneUse()) { 2502 OpCode = Opc; 2503 LHSVal = getValue(LHS); 2504 RHSVal = getValue(RHS); 2505 BaseOps = {}; 2506 } 2507 } 2508 2509 for (unsigned i = 0; i != NumValues; ++i) { 2510 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2511 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2512 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2513 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2514 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2515 Ops); 2516 } 2517 2518 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2519 DAG.getVTList(ValueVTs), Values)); 2520 } 2521 2522 void SelectionDAGBuilder::visitTrunc(const User &I) { 2523 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2524 SDValue N = getValue(I.getOperand(0)); 2525 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2526 I.getType()); 2527 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2528 } 2529 2530 void SelectionDAGBuilder::visitZExt(const User &I) { 2531 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2532 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2533 SDValue N = getValue(I.getOperand(0)); 2534 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2535 I.getType()); 2536 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2537 } 2538 2539 void SelectionDAGBuilder::visitSExt(const User &I) { 2540 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2541 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2542 SDValue N = getValue(I.getOperand(0)); 2543 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2544 I.getType()); 2545 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2546 } 2547 2548 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2549 // FPTrunc is never a no-op cast, no need to check 2550 SDValue N = getValue(I.getOperand(0)); 2551 SDLoc dl = getCurSDLoc(); 2552 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2553 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2554 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2555 DAG.getTargetConstant( 2556 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2557 } 2558 2559 void SelectionDAGBuilder::visitFPExt(const User &I) { 2560 // FPExt is never a no-op cast, no need to check 2561 SDValue N = getValue(I.getOperand(0)); 2562 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2563 I.getType()); 2564 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2565 } 2566 2567 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2568 // FPToUI is never a no-op cast, no need to check 2569 SDValue N = getValue(I.getOperand(0)); 2570 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2571 I.getType()); 2572 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2573 } 2574 2575 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2576 // FPToSI is never a no-op cast, no need to check 2577 SDValue N = getValue(I.getOperand(0)); 2578 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2579 I.getType()); 2580 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2581 } 2582 2583 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2584 // UIToFP is never a no-op cast, no need to check 2585 SDValue N = getValue(I.getOperand(0)); 2586 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2587 I.getType()); 2588 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2589 } 2590 2591 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2592 // SIToFP is never a no-op cast, no need to check 2593 SDValue N = getValue(I.getOperand(0)); 2594 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2595 I.getType()); 2596 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2597 } 2598 2599 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2600 // What to do depends on the size of the integer and the size of the pointer. 2601 // We can either truncate, zero extend, or no-op, accordingly. 2602 SDValue N = getValue(I.getOperand(0)); 2603 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2604 I.getType()); 2605 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2606 } 2607 2608 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2609 // What to do depends on the size of the integer and the size of the pointer. 2610 // We can either truncate, zero extend, or no-op, accordingly. 2611 SDValue N = getValue(I.getOperand(0)); 2612 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2613 I.getType()); 2614 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2615 } 2616 2617 void SelectionDAGBuilder::visitBitCast(const User &I) { 2618 SDValue N = getValue(I.getOperand(0)); 2619 SDLoc dl = getCurSDLoc(); 2620 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2621 I.getType()); 2622 2623 // BitCast assures us that source and destination are the same size so this is 2624 // either a BITCAST or a no-op. 2625 if (DestVT != N.getValueType()) 2626 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2627 DestVT, N)); // convert types. 2628 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2629 // might fold any kind of constant expression to an integer constant and that 2630 // is not what we are looking for. Only regcognize a bitcast of a genuine 2631 // constant integer as an opaque constant. 2632 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2633 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2634 /*isOpaque*/true)); 2635 else 2636 setValue(&I, N); // noop cast. 2637 } 2638 2639 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2640 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2641 const Value *SV = I.getOperand(0); 2642 SDValue N = getValue(SV); 2643 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2644 2645 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2646 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2647 2648 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2649 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2650 2651 setValue(&I, N); 2652 } 2653 2654 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2655 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2656 SDValue InVec = getValue(I.getOperand(0)); 2657 SDValue InVal = getValue(I.getOperand(1)); 2658 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 2659 TLI.getVectorIdxTy(DAG.getDataLayout())); 2660 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2661 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2662 InVec, InVal, InIdx)); 2663 } 2664 2665 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2666 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2667 SDValue InVec = getValue(I.getOperand(0)); 2668 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 2669 TLI.getVectorIdxTy(DAG.getDataLayout())); 2670 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2671 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2672 InVec, InIdx)); 2673 } 2674 2675 // Utility for visitShuffleVector - Return true if every element in Mask, 2676 // beginning from position Pos and ending in Pos+Size, falls within the 2677 // specified sequential range [L, L+Pos). or is undef. 2678 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2679 unsigned Pos, unsigned Size, int Low) { 2680 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2681 if (Mask[i] >= 0 && Mask[i] != Low) 2682 return false; 2683 return true; 2684 } 2685 2686 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2687 SDValue Src1 = getValue(I.getOperand(0)); 2688 SDValue Src2 = getValue(I.getOperand(1)); 2689 2690 SmallVector<int, 8> Mask; 2691 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2692 unsigned MaskNumElts = Mask.size(); 2693 2694 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2695 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2696 EVT SrcVT = Src1.getValueType(); 2697 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2698 2699 if (SrcNumElts == MaskNumElts) { 2700 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2701 &Mask[0])); 2702 return; 2703 } 2704 2705 // Normalize the shuffle vector since mask and vector length don't match. 2706 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2707 // Mask is longer than the source vectors and is a multiple of the source 2708 // vectors. We can use concatenate vector to make the mask and vectors 2709 // lengths match. 2710 if (SrcNumElts*2 == MaskNumElts) { 2711 // First check for Src1 in low and Src2 in high 2712 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2713 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2714 // The shuffle is concatenating two vectors together. 2715 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2716 VT, Src1, Src2)); 2717 return; 2718 } 2719 // Then check for Src2 in low and Src1 in high 2720 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2721 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2722 // The shuffle is concatenating two vectors together. 2723 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2724 VT, Src2, Src1)); 2725 return; 2726 } 2727 } 2728 2729 // Pad both vectors with undefs to make them the same length as the mask. 2730 unsigned NumConcat = MaskNumElts / SrcNumElts; 2731 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2732 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2733 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2734 2735 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2736 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2737 MOps1[0] = Src1; 2738 MOps2[0] = Src2; 2739 2740 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2741 getCurSDLoc(), VT, MOps1); 2742 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2743 getCurSDLoc(), VT, MOps2); 2744 2745 // Readjust mask for new input vector length. 2746 SmallVector<int, 8> MappedOps; 2747 for (unsigned i = 0; i != MaskNumElts; ++i) { 2748 int Idx = Mask[i]; 2749 if (Idx >= (int)SrcNumElts) 2750 Idx -= SrcNumElts - MaskNumElts; 2751 MappedOps.push_back(Idx); 2752 } 2753 2754 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2755 &MappedOps[0])); 2756 return; 2757 } 2758 2759 if (SrcNumElts > MaskNumElts) { 2760 // Analyze the access pattern of the vector to see if we can extract 2761 // two subvectors and do the shuffle. The analysis is done by calculating 2762 // the range of elements the mask access on both vectors. 2763 int MinRange[2] = { static_cast<int>(SrcNumElts), 2764 static_cast<int>(SrcNumElts)}; 2765 int MaxRange[2] = {-1, -1}; 2766 2767 for (unsigned i = 0; i != MaskNumElts; ++i) { 2768 int Idx = Mask[i]; 2769 unsigned Input = 0; 2770 if (Idx < 0) 2771 continue; 2772 2773 if (Idx >= (int)SrcNumElts) { 2774 Input = 1; 2775 Idx -= SrcNumElts; 2776 } 2777 if (Idx > MaxRange[Input]) 2778 MaxRange[Input] = Idx; 2779 if (Idx < MinRange[Input]) 2780 MinRange[Input] = Idx; 2781 } 2782 2783 // Check if the access is smaller than the vector size and can we find 2784 // a reasonable extract index. 2785 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2786 // Extract. 2787 int StartIdx[2]; // StartIdx to extract from 2788 for (unsigned Input = 0; Input < 2; ++Input) { 2789 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2790 RangeUse[Input] = 0; // Unused 2791 StartIdx[Input] = 0; 2792 continue; 2793 } 2794 2795 // Find a good start index that is a multiple of the mask length. Then 2796 // see if the rest of the elements are in range. 2797 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2798 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2799 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2800 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2801 } 2802 2803 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2804 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2805 return; 2806 } 2807 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2808 // Extract appropriate subvector and generate a vector shuffle 2809 for (unsigned Input = 0; Input < 2; ++Input) { 2810 SDValue &Src = Input == 0 ? Src1 : Src2; 2811 if (RangeUse[Input] == 0) 2812 Src = DAG.getUNDEF(VT); 2813 else { 2814 SDLoc dl = getCurSDLoc(); 2815 Src = DAG.getNode( 2816 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 2817 DAG.getConstant(StartIdx[Input], dl, 2818 TLI.getVectorIdxTy(DAG.getDataLayout()))); 2819 } 2820 } 2821 2822 // Calculate new mask. 2823 SmallVector<int, 8> MappedOps; 2824 for (unsigned i = 0; i != MaskNumElts; ++i) { 2825 int Idx = Mask[i]; 2826 if (Idx >= 0) { 2827 if (Idx < (int)SrcNumElts) 2828 Idx -= StartIdx[0]; 2829 else 2830 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2831 } 2832 MappedOps.push_back(Idx); 2833 } 2834 2835 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2836 &MappedOps[0])); 2837 return; 2838 } 2839 } 2840 2841 // We can't use either concat vectors or extract subvectors so fall back to 2842 // replacing the shuffle with extract and build vector. 2843 // to insert and build vector. 2844 EVT EltVT = VT.getVectorElementType(); 2845 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 2846 SDLoc dl = getCurSDLoc(); 2847 SmallVector<SDValue,8> Ops; 2848 for (unsigned i = 0; i != MaskNumElts; ++i) { 2849 int Idx = Mask[i]; 2850 SDValue Res; 2851 2852 if (Idx < 0) { 2853 Res = DAG.getUNDEF(EltVT); 2854 } else { 2855 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2856 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2857 2858 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 2859 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 2860 } 2861 2862 Ops.push_back(Res); 2863 } 2864 2865 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 2866 } 2867 2868 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2869 const Value *Op0 = I.getOperand(0); 2870 const Value *Op1 = I.getOperand(1); 2871 Type *AggTy = I.getType(); 2872 Type *ValTy = Op1->getType(); 2873 bool IntoUndef = isa<UndefValue>(Op0); 2874 bool FromUndef = isa<UndefValue>(Op1); 2875 2876 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2877 2878 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2879 SmallVector<EVT, 4> AggValueVTs; 2880 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 2881 SmallVector<EVT, 4> ValValueVTs; 2882 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2883 2884 unsigned NumAggValues = AggValueVTs.size(); 2885 unsigned NumValValues = ValValueVTs.size(); 2886 SmallVector<SDValue, 4> Values(NumAggValues); 2887 2888 // Ignore an insertvalue that produces an empty object 2889 if (!NumAggValues) { 2890 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2891 return; 2892 } 2893 2894 SDValue Agg = getValue(Op0); 2895 unsigned i = 0; 2896 // Copy the beginning value(s) from the original aggregate. 2897 for (; i != LinearIndex; ++i) 2898 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2899 SDValue(Agg.getNode(), Agg.getResNo() + i); 2900 // Copy values from the inserted value(s). 2901 if (NumValValues) { 2902 SDValue Val = getValue(Op1); 2903 for (; i != LinearIndex + NumValValues; ++i) 2904 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2905 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2906 } 2907 // Copy remaining value(s) from the original aggregate. 2908 for (; i != NumAggValues; ++i) 2909 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2910 SDValue(Agg.getNode(), Agg.getResNo() + i); 2911 2912 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2913 DAG.getVTList(AggValueVTs), Values)); 2914 } 2915 2916 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2917 const Value *Op0 = I.getOperand(0); 2918 Type *AggTy = Op0->getType(); 2919 Type *ValTy = I.getType(); 2920 bool OutOfUndef = isa<UndefValue>(Op0); 2921 2922 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2923 2924 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2925 SmallVector<EVT, 4> ValValueVTs; 2926 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2927 2928 unsigned NumValValues = ValValueVTs.size(); 2929 2930 // Ignore a extractvalue that produces an empty object 2931 if (!NumValValues) { 2932 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2933 return; 2934 } 2935 2936 SmallVector<SDValue, 4> Values(NumValValues); 2937 2938 SDValue Agg = getValue(Op0); 2939 // Copy out the selected value(s). 2940 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2941 Values[i - LinearIndex] = 2942 OutOfUndef ? 2943 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2944 SDValue(Agg.getNode(), Agg.getResNo() + i); 2945 2946 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2947 DAG.getVTList(ValValueVTs), Values)); 2948 } 2949 2950 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2951 Value *Op0 = I.getOperand(0); 2952 // Note that the pointer operand may be a vector of pointers. Take the scalar 2953 // element which holds a pointer. 2954 Type *Ty = Op0->getType()->getScalarType(); 2955 unsigned AS = Ty->getPointerAddressSpace(); 2956 SDValue N = getValue(Op0); 2957 SDLoc dl = getCurSDLoc(); 2958 2959 // Normalize Vector GEP - all scalar operands should be converted to the 2960 // splat vector. 2961 unsigned VectorWidth = I.getType()->isVectorTy() ? 2962 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 2963 2964 if (VectorWidth && !N.getValueType().isVector()) { 2965 MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth); 2966 SmallVector<SDValue, 16> Ops(VectorWidth, N); 2967 N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 2968 } 2969 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2970 OI != E; ++OI) { 2971 const Value *Idx = *OI; 2972 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 2973 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 2974 if (Field) { 2975 // N = N + Offset 2976 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 2977 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 2978 DAG.getConstant(Offset, dl, N.getValueType())); 2979 } 2980 2981 Ty = StTy->getElementType(Field); 2982 } else { 2983 Ty = cast<SequentialType>(Ty)->getElementType(); 2984 MVT PtrTy = 2985 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 2986 unsigned PtrSize = PtrTy.getSizeInBits(); 2987 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 2988 2989 // If this is a scalar constant or a splat vector of constants, 2990 // handle it quickly. 2991 const auto *CI = dyn_cast<ConstantInt>(Idx); 2992 if (!CI && isa<ConstantDataVector>(Idx) && 2993 cast<ConstantDataVector>(Idx)->getSplatValue()) 2994 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 2995 2996 if (CI) { 2997 if (CI->isZero()) 2998 continue; 2999 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 3000 SDValue OffsVal = VectorWidth ? 3001 DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) : 3002 DAG.getConstant(Offs, dl, PtrTy); 3003 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal); 3004 continue; 3005 } 3006 3007 // N = N + Idx * ElementSize; 3008 SDValue IdxN = getValue(Idx); 3009 3010 if (!IdxN.getValueType().isVector() && VectorWidth) { 3011 MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth); 3012 SmallVector<SDValue, 16> Ops(VectorWidth, IdxN); 3013 IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 3014 } 3015 // If the index is smaller or larger than intptr_t, truncate or extend 3016 // it. 3017 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3018 3019 // If this is a multiply by a power of two, turn it into a shl 3020 // immediately. This is a very common case. 3021 if (ElementSize != 1) { 3022 if (ElementSize.isPowerOf2()) { 3023 unsigned Amt = ElementSize.logBase2(); 3024 IdxN = DAG.getNode(ISD::SHL, dl, 3025 N.getValueType(), IdxN, 3026 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3027 } else { 3028 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3029 IdxN = DAG.getNode(ISD::MUL, dl, 3030 N.getValueType(), IdxN, Scale); 3031 } 3032 } 3033 3034 N = DAG.getNode(ISD::ADD, dl, 3035 N.getValueType(), N, IdxN); 3036 } 3037 } 3038 3039 setValue(&I, N); 3040 } 3041 3042 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3043 // If this is a fixed sized alloca in the entry block of the function, 3044 // allocate it statically on the stack. 3045 if (FuncInfo.StaticAllocaMap.count(&I)) 3046 return; // getValue will auto-populate this. 3047 3048 SDLoc dl = getCurSDLoc(); 3049 Type *Ty = I.getAllocatedType(); 3050 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3051 auto &DL = DAG.getDataLayout(); 3052 uint64_t TySize = DL.getTypeAllocSize(Ty); 3053 unsigned Align = 3054 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3055 3056 SDValue AllocSize = getValue(I.getArraySize()); 3057 3058 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 3059 if (AllocSize.getValueType() != IntPtr) 3060 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3061 3062 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3063 AllocSize, 3064 DAG.getConstant(TySize, dl, IntPtr)); 3065 3066 // Handle alignment. If the requested alignment is less than or equal to 3067 // the stack alignment, ignore it. If the size is greater than or equal to 3068 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3069 unsigned StackAlign = 3070 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3071 if (Align <= StackAlign) 3072 Align = 0; 3073 3074 // Round the size of the allocation up to the stack alignment size 3075 // by add SA-1 to the size. 3076 AllocSize = DAG.getNode(ISD::ADD, dl, 3077 AllocSize.getValueType(), AllocSize, 3078 DAG.getIntPtrConstant(StackAlign - 1, dl)); 3079 3080 // Mask out the low bits for alignment purposes. 3081 AllocSize = DAG.getNode(ISD::AND, dl, 3082 AllocSize.getValueType(), AllocSize, 3083 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 3084 dl)); 3085 3086 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 3087 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3088 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3089 setValue(&I, DSA); 3090 DAG.setRoot(DSA.getValue(1)); 3091 3092 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3093 } 3094 3095 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3096 if (I.isAtomic()) 3097 return visitAtomicLoad(I); 3098 3099 const Value *SV = I.getOperand(0); 3100 SDValue Ptr = getValue(SV); 3101 3102 Type *Ty = I.getType(); 3103 3104 bool isVolatile = I.isVolatile(); 3105 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3106 3107 // The IR notion of invariant_load only guarantees that all *non-faulting* 3108 // invariant loads result in the same value. The MI notion of invariant load 3109 // guarantees that the load can be legally moved to any location within its 3110 // containing function. The MI notion of invariant_load is stronger than the 3111 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load 3112 // with a guarantee that the location being loaded from is dereferenceable 3113 // throughout the function's lifetime. 3114 3115 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr && 3116 isDereferenceablePointer(SV, DAG.getDataLayout()); 3117 unsigned Alignment = I.getAlignment(); 3118 3119 AAMDNodes AAInfo; 3120 I.getAAMetadata(AAInfo); 3121 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3122 3123 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3124 SmallVector<EVT, 4> ValueVTs; 3125 SmallVector<uint64_t, 4> Offsets; 3126 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3127 unsigned NumValues = ValueVTs.size(); 3128 if (NumValues == 0) 3129 return; 3130 3131 SDValue Root; 3132 bool ConstantMemory = false; 3133 if (isVolatile || NumValues > MaxParallelChains) 3134 // Serialize volatile loads with other side effects. 3135 Root = getRoot(); 3136 else if (AA->pointsToConstantMemory(MemoryLocation( 3137 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3138 // Do not serialize (non-volatile) loads of constant memory with anything. 3139 Root = DAG.getEntryNode(); 3140 ConstantMemory = true; 3141 } else { 3142 // Do not serialize non-volatile loads against each other. 3143 Root = DAG.getRoot(); 3144 } 3145 3146 SDLoc dl = getCurSDLoc(); 3147 3148 if (isVolatile) 3149 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3150 3151 SmallVector<SDValue, 4> Values(NumValues); 3152 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3153 EVT PtrVT = Ptr.getValueType(); 3154 unsigned ChainI = 0; 3155 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3156 // Serializing loads here may result in excessive register pressure, and 3157 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3158 // could recover a bit by hoisting nodes upward in the chain by recognizing 3159 // they are side-effect free or do not alias. The optimizer should really 3160 // avoid this case by converting large object/array copies to llvm.memcpy 3161 // (MaxParallelChains should always remain as failsafe). 3162 if (ChainI == MaxParallelChains) { 3163 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3164 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3165 makeArrayRef(Chains.data(), ChainI)); 3166 Root = Chain; 3167 ChainI = 0; 3168 } 3169 SDValue A = DAG.getNode(ISD::ADD, dl, 3170 PtrVT, Ptr, 3171 DAG.getConstant(Offsets[i], dl, PtrVT)); 3172 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 3173 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3174 isNonTemporal, isInvariant, Alignment, AAInfo, 3175 Ranges); 3176 3177 Values[i] = L; 3178 Chains[ChainI] = L.getValue(1); 3179 } 3180 3181 if (!ConstantMemory) { 3182 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3183 makeArrayRef(Chains.data(), ChainI)); 3184 if (isVolatile) 3185 DAG.setRoot(Chain); 3186 else 3187 PendingLoads.push_back(Chain); 3188 } 3189 3190 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3191 DAG.getVTList(ValueVTs), Values)); 3192 } 3193 3194 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3195 if (I.isAtomic()) 3196 return visitAtomicStore(I); 3197 3198 const Value *SrcV = I.getOperand(0); 3199 const Value *PtrV = I.getOperand(1); 3200 3201 SmallVector<EVT, 4> ValueVTs; 3202 SmallVector<uint64_t, 4> Offsets; 3203 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3204 SrcV->getType(), ValueVTs, &Offsets); 3205 unsigned NumValues = ValueVTs.size(); 3206 if (NumValues == 0) 3207 return; 3208 3209 // Get the lowered operands. Note that we do this after 3210 // checking if NumResults is zero, because with zero results 3211 // the operands won't have values in the map. 3212 SDValue Src = getValue(SrcV); 3213 SDValue Ptr = getValue(PtrV); 3214 3215 SDValue Root = getRoot(); 3216 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3217 EVT PtrVT = Ptr.getValueType(); 3218 bool isVolatile = I.isVolatile(); 3219 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3220 unsigned Alignment = I.getAlignment(); 3221 SDLoc dl = getCurSDLoc(); 3222 3223 AAMDNodes AAInfo; 3224 I.getAAMetadata(AAInfo); 3225 3226 unsigned ChainI = 0; 3227 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3228 // See visitLoad comments. 3229 if (ChainI == MaxParallelChains) { 3230 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3231 makeArrayRef(Chains.data(), ChainI)); 3232 Root = Chain; 3233 ChainI = 0; 3234 } 3235 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3236 DAG.getConstant(Offsets[i], dl, PtrVT)); 3237 SDValue St = DAG.getStore(Root, dl, 3238 SDValue(Src.getNode(), Src.getResNo() + i), 3239 Add, MachinePointerInfo(PtrV, Offsets[i]), 3240 isVolatile, isNonTemporal, Alignment, AAInfo); 3241 Chains[ChainI] = St; 3242 } 3243 3244 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3245 makeArrayRef(Chains.data(), ChainI)); 3246 DAG.setRoot(StoreNode); 3247 } 3248 3249 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3250 SDLoc sdl = getCurSDLoc(); 3251 3252 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3253 Value *PtrOperand = I.getArgOperand(1); 3254 SDValue Ptr = getValue(PtrOperand); 3255 SDValue Src0 = getValue(I.getArgOperand(0)); 3256 SDValue Mask = getValue(I.getArgOperand(3)); 3257 EVT VT = Src0.getValueType(); 3258 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3259 if (!Alignment) 3260 Alignment = DAG.getEVTAlignment(VT); 3261 3262 AAMDNodes AAInfo; 3263 I.getAAMetadata(AAInfo); 3264 3265 MachineMemOperand *MMO = 3266 DAG.getMachineFunction(). 3267 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3268 MachineMemOperand::MOStore, VT.getStoreSize(), 3269 Alignment, AAInfo); 3270 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3271 MMO, false); 3272 DAG.setRoot(StoreNode); 3273 setValue(&I, StoreNode); 3274 } 3275 3276 // Get a uniform base for the Gather/Scatter intrinsic. 3277 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3278 // We try to represent it as a base pointer + vector of indices. 3279 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3280 // The first operand of the GEP may be a single pointer or a vector of pointers 3281 // Example: 3282 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3283 // or 3284 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3285 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3286 // 3287 // When the first GEP operand is a single pointer - it is the uniform base we 3288 // are looking for. If first operand of the GEP is a splat vector - we 3289 // extract the spalt value and use it as a uniform base. 3290 // In all other cases the function returns 'false'. 3291 // 3292 static bool getUniformBase(Value *& Ptr, SDValue& Base, SDValue& Index, 3293 SelectionDAGBuilder* SDB) { 3294 3295 SelectionDAG& DAG = SDB->DAG; 3296 LLVMContext &Context = *DAG.getContext(); 3297 3298 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3299 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3300 if (!GEP || GEP->getNumOperands() > 2) 3301 return false; 3302 3303 Value *GEPPtr = GEP->getPointerOperand(); 3304 if (!GEPPtr->getType()->isVectorTy()) 3305 Ptr = GEPPtr; 3306 else if (!(Ptr = getSplatValue(GEPPtr))) 3307 return false; 3308 3309 Value *IndexVal = GEP->getOperand(1); 3310 3311 // The operands of the GEP may be defined in another basic block. 3312 // In this case we'll not find nodes for the operands. 3313 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3314 return false; 3315 3316 Base = SDB->getValue(Ptr); 3317 Index = SDB->getValue(IndexVal); 3318 3319 // Suppress sign extension. 3320 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3321 if (SDB->findValue(Sext->getOperand(0))) { 3322 IndexVal = Sext->getOperand(0); 3323 Index = SDB->getValue(IndexVal); 3324 } 3325 } 3326 if (!Index.getValueType().isVector()) { 3327 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3328 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3329 SmallVector<SDValue, 16> Ops(GEPWidth, Index); 3330 Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops); 3331 } 3332 return true; 3333 } 3334 3335 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3336 SDLoc sdl = getCurSDLoc(); 3337 3338 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3339 Value *Ptr = I.getArgOperand(1); 3340 SDValue Src0 = getValue(I.getArgOperand(0)); 3341 SDValue Mask = getValue(I.getArgOperand(3)); 3342 EVT VT = Src0.getValueType(); 3343 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3344 if (!Alignment) 3345 Alignment = DAG.getEVTAlignment(VT); 3346 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3347 3348 AAMDNodes AAInfo; 3349 I.getAAMetadata(AAInfo); 3350 3351 SDValue Base; 3352 SDValue Index; 3353 Value *BasePtr = Ptr; 3354 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3355 3356 Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3357 MachineMemOperand *MMO = DAG.getMachineFunction(). 3358 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3359 MachineMemOperand::MOStore, VT.getStoreSize(), 3360 Alignment, AAInfo); 3361 if (!UniformBase) { 3362 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3363 Index = getValue(Ptr); 3364 } 3365 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3366 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3367 Ops, MMO); 3368 DAG.setRoot(Scatter); 3369 setValue(&I, Scatter); 3370 } 3371 3372 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3373 SDLoc sdl = getCurSDLoc(); 3374 3375 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3376 Value *PtrOperand = I.getArgOperand(0); 3377 SDValue Ptr = getValue(PtrOperand); 3378 SDValue Src0 = getValue(I.getArgOperand(3)); 3379 SDValue Mask = getValue(I.getArgOperand(2)); 3380 3381 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3382 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3383 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3384 if (!Alignment) 3385 Alignment = DAG.getEVTAlignment(VT); 3386 3387 AAMDNodes AAInfo; 3388 I.getAAMetadata(AAInfo); 3389 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3390 3391 SDValue InChain = DAG.getRoot(); 3392 if (AA->pointsToConstantMemory(MemoryLocation( 3393 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3394 AAInfo))) { 3395 // Do not serialize (non-volatile) loads of constant memory with anything. 3396 InChain = DAG.getEntryNode(); 3397 } 3398 3399 MachineMemOperand *MMO = 3400 DAG.getMachineFunction(). 3401 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3402 MachineMemOperand::MOLoad, VT.getStoreSize(), 3403 Alignment, AAInfo, Ranges); 3404 3405 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3406 ISD::NON_EXTLOAD); 3407 SDValue OutChain = Load.getValue(1); 3408 DAG.setRoot(OutChain); 3409 setValue(&I, Load); 3410 } 3411 3412 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3413 SDLoc sdl = getCurSDLoc(); 3414 3415 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3416 Value *Ptr = I.getArgOperand(0); 3417 SDValue Src0 = getValue(I.getArgOperand(3)); 3418 SDValue Mask = getValue(I.getArgOperand(2)); 3419 3420 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3421 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3422 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3423 if (!Alignment) 3424 Alignment = DAG.getEVTAlignment(VT); 3425 3426 AAMDNodes AAInfo; 3427 I.getAAMetadata(AAInfo); 3428 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3429 3430 SDValue Root = DAG.getRoot(); 3431 SDValue Base; 3432 SDValue Index; 3433 Value *BasePtr = Ptr; 3434 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3435 bool ConstantMemory = false; 3436 if (UniformBase && 3437 AA->pointsToConstantMemory(MemoryLocation( 3438 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3439 AAInfo))) { 3440 // Do not serialize (non-volatile) loads of constant memory with anything. 3441 Root = DAG.getEntryNode(); 3442 ConstantMemory = true; 3443 } 3444 3445 MachineMemOperand *MMO = 3446 DAG.getMachineFunction(). 3447 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3448 MachineMemOperand::MOLoad, VT.getStoreSize(), 3449 Alignment, AAInfo, Ranges); 3450 3451 if (!UniformBase) { 3452 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3453 Index = getValue(Ptr); 3454 } 3455 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3456 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3457 Ops, MMO); 3458 3459 SDValue OutChain = Gather.getValue(1); 3460 if (!ConstantMemory) 3461 PendingLoads.push_back(OutChain); 3462 setValue(&I, Gather); 3463 } 3464 3465 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3466 SDLoc dl = getCurSDLoc(); 3467 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3468 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3469 SynchronizationScope Scope = I.getSynchScope(); 3470 3471 SDValue InChain = getRoot(); 3472 3473 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3474 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3475 SDValue L = DAG.getAtomicCmpSwap( 3476 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3477 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3478 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3479 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3480 3481 SDValue OutChain = L.getValue(2); 3482 3483 setValue(&I, L); 3484 DAG.setRoot(OutChain); 3485 } 3486 3487 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3488 SDLoc dl = getCurSDLoc(); 3489 ISD::NodeType NT; 3490 switch (I.getOperation()) { 3491 default: llvm_unreachable("Unknown atomicrmw operation"); 3492 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3493 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3494 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3495 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3496 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3497 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3498 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3499 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3500 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3501 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3502 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3503 } 3504 AtomicOrdering Order = I.getOrdering(); 3505 SynchronizationScope Scope = I.getSynchScope(); 3506 3507 SDValue InChain = getRoot(); 3508 3509 SDValue L = 3510 DAG.getAtomic(NT, dl, 3511 getValue(I.getValOperand()).getSimpleValueType(), 3512 InChain, 3513 getValue(I.getPointerOperand()), 3514 getValue(I.getValOperand()), 3515 I.getPointerOperand(), 3516 /* Alignment=*/ 0, Order, Scope); 3517 3518 SDValue OutChain = L.getValue(1); 3519 3520 setValue(&I, L); 3521 DAG.setRoot(OutChain); 3522 } 3523 3524 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3525 SDLoc dl = getCurSDLoc(); 3526 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3527 SDValue Ops[3]; 3528 Ops[0] = getRoot(); 3529 Ops[1] = DAG.getConstant(I.getOrdering(), dl, 3530 TLI.getPointerTy(DAG.getDataLayout())); 3531 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, 3532 TLI.getPointerTy(DAG.getDataLayout())); 3533 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3534 } 3535 3536 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3537 SDLoc dl = getCurSDLoc(); 3538 AtomicOrdering Order = I.getOrdering(); 3539 SynchronizationScope Scope = I.getSynchScope(); 3540 3541 SDValue InChain = getRoot(); 3542 3543 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3544 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3545 3546 if (I.getAlignment() < VT.getSizeInBits() / 8) 3547 report_fatal_error("Cannot generate unaligned atomic load"); 3548 3549 MachineMemOperand *MMO = 3550 DAG.getMachineFunction(). 3551 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3552 MachineMemOperand::MOVolatile | 3553 MachineMemOperand::MOLoad, 3554 VT.getStoreSize(), 3555 I.getAlignment() ? I.getAlignment() : 3556 DAG.getEVTAlignment(VT)); 3557 3558 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3559 SDValue L = 3560 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3561 getValue(I.getPointerOperand()), MMO, 3562 Order, Scope); 3563 3564 SDValue OutChain = L.getValue(1); 3565 3566 setValue(&I, L); 3567 DAG.setRoot(OutChain); 3568 } 3569 3570 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3571 SDLoc dl = getCurSDLoc(); 3572 3573 AtomicOrdering Order = I.getOrdering(); 3574 SynchronizationScope Scope = I.getSynchScope(); 3575 3576 SDValue InChain = getRoot(); 3577 3578 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3579 EVT VT = 3580 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 3581 3582 if (I.getAlignment() < VT.getSizeInBits() / 8) 3583 report_fatal_error("Cannot generate unaligned atomic store"); 3584 3585 SDValue OutChain = 3586 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3587 InChain, 3588 getValue(I.getPointerOperand()), 3589 getValue(I.getValueOperand()), 3590 I.getPointerOperand(), I.getAlignment(), 3591 Order, Scope); 3592 3593 DAG.setRoot(OutChain); 3594 } 3595 3596 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3597 /// node. 3598 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3599 unsigned Intrinsic) { 3600 bool HasChain = !I.doesNotAccessMemory(); 3601 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3602 3603 // Build the operand list. 3604 SmallVector<SDValue, 8> Ops; 3605 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3606 if (OnlyLoad) { 3607 // We don't need to serialize loads against other loads. 3608 Ops.push_back(DAG.getRoot()); 3609 } else { 3610 Ops.push_back(getRoot()); 3611 } 3612 } 3613 3614 // Info is set by getTgtMemInstrinsic 3615 TargetLowering::IntrinsicInfo Info; 3616 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3617 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3618 3619 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3620 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3621 Info.opc == ISD::INTRINSIC_W_CHAIN) 3622 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 3623 TLI.getPointerTy(DAG.getDataLayout()))); 3624 3625 // Add all operands of the call to the operand list. 3626 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3627 SDValue Op = getValue(I.getArgOperand(i)); 3628 Ops.push_back(Op); 3629 } 3630 3631 SmallVector<EVT, 4> ValueVTs; 3632 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 3633 3634 if (HasChain) 3635 ValueVTs.push_back(MVT::Other); 3636 3637 SDVTList VTs = DAG.getVTList(ValueVTs); 3638 3639 // Create the node. 3640 SDValue Result; 3641 if (IsTgtIntrinsic) { 3642 // This is target intrinsic that touches memory 3643 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3644 VTs, Ops, Info.memVT, 3645 MachinePointerInfo(Info.ptrVal, Info.offset), 3646 Info.align, Info.vol, 3647 Info.readMem, Info.writeMem, Info.size); 3648 } else if (!HasChain) { 3649 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3650 } else if (!I.getType()->isVoidTy()) { 3651 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3652 } else { 3653 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3654 } 3655 3656 if (HasChain) { 3657 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3658 if (OnlyLoad) 3659 PendingLoads.push_back(Chain); 3660 else 3661 DAG.setRoot(Chain); 3662 } 3663 3664 if (!I.getType()->isVoidTy()) { 3665 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3666 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 3667 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3668 } 3669 3670 setValue(&I, Result); 3671 } 3672 } 3673 3674 /// GetSignificand - Get the significand and build it into a floating-point 3675 /// number with exponent of 1: 3676 /// 3677 /// Op = (Op & 0x007fffff) | 0x3f800000; 3678 /// 3679 /// where Op is the hexadecimal representation of floating point value. 3680 static SDValue 3681 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3682 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3683 DAG.getConstant(0x007fffff, dl, MVT::i32)); 3684 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3685 DAG.getConstant(0x3f800000, dl, MVT::i32)); 3686 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3687 } 3688 3689 /// GetExponent - Get the exponent: 3690 /// 3691 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3692 /// 3693 /// where Op is the hexadecimal representation of floating point value. 3694 static SDValue 3695 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3696 SDLoc dl) { 3697 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3698 DAG.getConstant(0x7f800000, dl, MVT::i32)); 3699 SDValue t1 = DAG.getNode( 3700 ISD::SRL, dl, MVT::i32, t0, 3701 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 3702 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3703 DAG.getConstant(127, dl, MVT::i32)); 3704 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3705 } 3706 3707 /// getF32Constant - Get 32-bit floating point constant. 3708 static SDValue 3709 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 3710 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 3711 MVT::f32); 3712 } 3713 3714 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3715 SelectionDAG &DAG) { 3716 // TODO: What fast-math-flags should be set on the floating-point nodes? 3717 3718 // IntegerPartOfX = ((int32_t)(t0); 3719 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3720 3721 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3722 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3723 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3724 3725 // IntegerPartOfX <<= 23; 3726 IntegerPartOfX = DAG.getNode( 3727 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3728 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 3729 DAG.getDataLayout()))); 3730 3731 SDValue TwoToFractionalPartOfX; 3732 if (LimitFloatPrecision <= 6) { 3733 // For floating-point precision of 6: 3734 // 3735 // TwoToFractionalPartOfX = 3736 // 0.997535578f + 3737 // (0.735607626f + 0.252464424f * x) * x; 3738 // 3739 // error 0.0144103317, which is 6 bits 3740 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3741 getF32Constant(DAG, 0x3e814304, dl)); 3742 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3743 getF32Constant(DAG, 0x3f3c50c8, dl)); 3744 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3745 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3746 getF32Constant(DAG, 0x3f7f5e7e, dl)); 3747 } else if (LimitFloatPrecision <= 12) { 3748 // For floating-point precision of 12: 3749 // 3750 // TwoToFractionalPartOfX = 3751 // 0.999892986f + 3752 // (0.696457318f + 3753 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3754 // 3755 // error 0.000107046256, which is 13 to 14 bits 3756 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3757 getF32Constant(DAG, 0x3da235e3, dl)); 3758 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3759 getF32Constant(DAG, 0x3e65b8f3, dl)); 3760 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3761 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3762 getF32Constant(DAG, 0x3f324b07, dl)); 3763 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3764 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3765 getF32Constant(DAG, 0x3f7ff8fd, dl)); 3766 } else { // LimitFloatPrecision <= 18 3767 // For floating-point precision of 18: 3768 // 3769 // TwoToFractionalPartOfX = 3770 // 0.999999982f + 3771 // (0.693148872f + 3772 // (0.240227044f + 3773 // (0.554906021e-1f + 3774 // (0.961591928e-2f + 3775 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3776 // error 2.47208000*10^(-7), which is better than 18 bits 3777 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3778 getF32Constant(DAG, 0x3924b03e, dl)); 3779 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3780 getF32Constant(DAG, 0x3ab24b87, dl)); 3781 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3782 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3783 getF32Constant(DAG, 0x3c1d8c17, dl)); 3784 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3785 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3786 getF32Constant(DAG, 0x3d634a1d, dl)); 3787 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3788 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3789 getF32Constant(DAG, 0x3e75fe14, dl)); 3790 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3791 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3792 getF32Constant(DAG, 0x3f317234, dl)); 3793 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3794 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3795 getF32Constant(DAG, 0x3f800000, dl)); 3796 } 3797 3798 // Add the exponent into the result in integer domain. 3799 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 3800 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3801 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 3802 } 3803 3804 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3805 /// limited-precision mode. 3806 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3807 const TargetLowering &TLI) { 3808 if (Op.getValueType() == MVT::f32 && 3809 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3810 3811 // Put the exponent in the right bit position for later addition to the 3812 // final result: 3813 // 3814 // #define LOG2OFe 1.4426950f 3815 // t0 = Op * LOG2OFe 3816 3817 // TODO: What fast-math-flags should be set here? 3818 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3819 getF32Constant(DAG, 0x3fb8aa3b, dl)); 3820 return getLimitedPrecisionExp2(t0, dl, DAG); 3821 } 3822 3823 // No special expansion. 3824 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3825 } 3826 3827 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3828 /// limited-precision mode. 3829 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3830 const TargetLowering &TLI) { 3831 3832 // TODO: What fast-math-flags should be set on the floating-point nodes? 3833 3834 if (Op.getValueType() == MVT::f32 && 3835 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3836 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3837 3838 // Scale the exponent by log(2) [0.69314718f]. 3839 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3840 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3841 getF32Constant(DAG, 0x3f317218, dl)); 3842 3843 // Get the significand and build it into a floating-point number with 3844 // exponent of 1. 3845 SDValue X = GetSignificand(DAG, Op1, dl); 3846 3847 SDValue LogOfMantissa; 3848 if (LimitFloatPrecision <= 6) { 3849 // For floating-point precision of 6: 3850 // 3851 // LogofMantissa = 3852 // -1.1609546f + 3853 // (1.4034025f - 0.23903021f * x) * x; 3854 // 3855 // error 0.0034276066, which is better than 8 bits 3856 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3857 getF32Constant(DAG, 0xbe74c456, dl)); 3858 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3859 getF32Constant(DAG, 0x3fb3a2b1, dl)); 3860 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3861 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3862 getF32Constant(DAG, 0x3f949a29, dl)); 3863 } else if (LimitFloatPrecision <= 12) { 3864 // For floating-point precision of 12: 3865 // 3866 // LogOfMantissa = 3867 // -1.7417939f + 3868 // (2.8212026f + 3869 // (-1.4699568f + 3870 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3871 // 3872 // error 0.000061011436, which is 14 bits 3873 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3874 getF32Constant(DAG, 0xbd67b6d6, dl)); 3875 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3876 getF32Constant(DAG, 0x3ee4f4b8, dl)); 3877 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3878 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3879 getF32Constant(DAG, 0x3fbc278b, dl)); 3880 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3881 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3882 getF32Constant(DAG, 0x40348e95, dl)); 3883 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3884 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3885 getF32Constant(DAG, 0x3fdef31a, dl)); 3886 } else { // LimitFloatPrecision <= 18 3887 // For floating-point precision of 18: 3888 // 3889 // LogOfMantissa = 3890 // -2.1072184f + 3891 // (4.2372794f + 3892 // (-3.7029485f + 3893 // (2.2781945f + 3894 // (-0.87823314f + 3895 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3896 // 3897 // error 0.0000023660568, which is better than 18 bits 3898 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3899 getF32Constant(DAG, 0xbc91e5ac, dl)); 3900 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3901 getF32Constant(DAG, 0x3e4350aa, dl)); 3902 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3903 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3904 getF32Constant(DAG, 0x3f60d3e3, dl)); 3905 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3906 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3907 getF32Constant(DAG, 0x4011cdf0, dl)); 3908 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3909 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3910 getF32Constant(DAG, 0x406cfd1c, dl)); 3911 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3912 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3913 getF32Constant(DAG, 0x408797cb, dl)); 3914 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3915 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3916 getF32Constant(DAG, 0x4006dcab, dl)); 3917 } 3918 3919 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3920 } 3921 3922 // No special expansion. 3923 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3924 } 3925 3926 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3927 /// limited-precision mode. 3928 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3929 const TargetLowering &TLI) { 3930 3931 // TODO: What fast-math-flags should be set on the floating-point nodes? 3932 3933 if (Op.getValueType() == MVT::f32 && 3934 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3935 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3936 3937 // Get the exponent. 3938 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3939 3940 // Get the significand and build it into a floating-point number with 3941 // exponent of 1. 3942 SDValue X = GetSignificand(DAG, Op1, dl); 3943 3944 // Different possible minimax approximations of significand in 3945 // floating-point for various degrees of accuracy over [1,2]. 3946 SDValue Log2ofMantissa; 3947 if (LimitFloatPrecision <= 6) { 3948 // For floating-point precision of 6: 3949 // 3950 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3951 // 3952 // error 0.0049451742, which is more than 7 bits 3953 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3954 getF32Constant(DAG, 0xbeb08fe0, dl)); 3955 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3956 getF32Constant(DAG, 0x40019463, dl)); 3957 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3958 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3959 getF32Constant(DAG, 0x3fd6633d, dl)); 3960 } else if (LimitFloatPrecision <= 12) { 3961 // For floating-point precision of 12: 3962 // 3963 // Log2ofMantissa = 3964 // -2.51285454f + 3965 // (4.07009056f + 3966 // (-2.12067489f + 3967 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3968 // 3969 // error 0.0000876136000, which is better than 13 bits 3970 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3971 getF32Constant(DAG, 0xbda7262e, dl)); 3972 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3973 getF32Constant(DAG, 0x3f25280b, dl)); 3974 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3975 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3976 getF32Constant(DAG, 0x4007b923, dl)); 3977 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3978 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3979 getF32Constant(DAG, 0x40823e2f, dl)); 3980 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3981 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3982 getF32Constant(DAG, 0x4020d29c, dl)); 3983 } else { // LimitFloatPrecision <= 18 3984 // For floating-point precision of 18: 3985 // 3986 // Log2ofMantissa = 3987 // -3.0400495f + 3988 // (6.1129976f + 3989 // (-5.3420409f + 3990 // (3.2865683f + 3991 // (-1.2669343f + 3992 // (0.27515199f - 3993 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3994 // 3995 // error 0.0000018516, which is better than 18 bits 3996 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3997 getF32Constant(DAG, 0xbcd2769e, dl)); 3998 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3999 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4000 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4001 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4002 getF32Constant(DAG, 0x3fa22ae7, dl)); 4003 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4004 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4005 getF32Constant(DAG, 0x40525723, dl)); 4006 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4007 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4008 getF32Constant(DAG, 0x40aaf200, dl)); 4009 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4010 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4011 getF32Constant(DAG, 0x40c39dad, dl)); 4012 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4013 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4014 getF32Constant(DAG, 0x4042902c, dl)); 4015 } 4016 4017 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4018 } 4019 4020 // No special expansion. 4021 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4022 } 4023 4024 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4025 /// limited-precision mode. 4026 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4027 const TargetLowering &TLI) { 4028 4029 // TODO: What fast-math-flags should be set on the floating-point nodes? 4030 4031 if (Op.getValueType() == MVT::f32 && 4032 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4033 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4034 4035 // Scale the exponent by log10(2) [0.30102999f]. 4036 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4037 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4038 getF32Constant(DAG, 0x3e9a209a, dl)); 4039 4040 // Get the significand and build it into a floating-point number with 4041 // exponent of 1. 4042 SDValue X = GetSignificand(DAG, Op1, dl); 4043 4044 SDValue Log10ofMantissa; 4045 if (LimitFloatPrecision <= 6) { 4046 // For floating-point precision of 6: 4047 // 4048 // Log10ofMantissa = 4049 // -0.50419619f + 4050 // (0.60948995f - 0.10380950f * x) * x; 4051 // 4052 // error 0.0014886165, which is 6 bits 4053 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4054 getF32Constant(DAG, 0xbdd49a13, dl)); 4055 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4056 getF32Constant(DAG, 0x3f1c0789, dl)); 4057 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4058 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4059 getF32Constant(DAG, 0x3f011300, dl)); 4060 } else if (LimitFloatPrecision <= 12) { 4061 // For floating-point precision of 12: 4062 // 4063 // Log10ofMantissa = 4064 // -0.64831180f + 4065 // (0.91751397f + 4066 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4067 // 4068 // error 0.00019228036, which is better than 12 bits 4069 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4070 getF32Constant(DAG, 0x3d431f31, dl)); 4071 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4072 getF32Constant(DAG, 0x3ea21fb2, dl)); 4073 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4074 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4075 getF32Constant(DAG, 0x3f6ae232, dl)); 4076 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4077 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4078 getF32Constant(DAG, 0x3f25f7c3, dl)); 4079 } else { // LimitFloatPrecision <= 18 4080 // For floating-point precision of 18: 4081 // 4082 // Log10ofMantissa = 4083 // -0.84299375f + 4084 // (1.5327582f + 4085 // (-1.0688956f + 4086 // (0.49102474f + 4087 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4088 // 4089 // error 0.0000037995730, which is better than 18 bits 4090 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4091 getF32Constant(DAG, 0x3c5d51ce, dl)); 4092 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4093 getF32Constant(DAG, 0x3e00685a, dl)); 4094 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4095 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4096 getF32Constant(DAG, 0x3efb6798, dl)); 4097 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4098 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4099 getF32Constant(DAG, 0x3f88d192, dl)); 4100 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4101 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4102 getF32Constant(DAG, 0x3fc4316c, dl)); 4103 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4104 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4105 getF32Constant(DAG, 0x3f57ce70, dl)); 4106 } 4107 4108 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4109 } 4110 4111 // No special expansion. 4112 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4113 } 4114 4115 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4116 /// limited-precision mode. 4117 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4118 const TargetLowering &TLI) { 4119 if (Op.getValueType() == MVT::f32 && 4120 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4121 return getLimitedPrecisionExp2(Op, dl, DAG); 4122 4123 // No special expansion. 4124 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4125 } 4126 4127 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4128 /// limited-precision mode with x == 10.0f. 4129 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4130 SelectionDAG &DAG, const TargetLowering &TLI) { 4131 bool IsExp10 = false; 4132 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4133 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4134 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4135 APFloat Ten(10.0f); 4136 IsExp10 = LHSC->isExactlyValue(Ten); 4137 } 4138 } 4139 4140 // TODO: What fast-math-flags should be set on the FMUL node? 4141 if (IsExp10) { 4142 // Put the exponent in the right bit position for later addition to the 4143 // final result: 4144 // 4145 // #define LOG2OF10 3.3219281f 4146 // t0 = Op * LOG2OF10; 4147 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4148 getF32Constant(DAG, 0x40549a78, dl)); 4149 return getLimitedPrecisionExp2(t0, dl, DAG); 4150 } 4151 4152 // No special expansion. 4153 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4154 } 4155 4156 4157 /// ExpandPowI - Expand a llvm.powi intrinsic. 4158 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4159 SelectionDAG &DAG) { 4160 // If RHS is a constant, we can expand this out to a multiplication tree, 4161 // otherwise we end up lowering to a call to __powidf2 (for example). When 4162 // optimizing for size, we only want to do this if the expansion would produce 4163 // a small number of multiplies, otherwise we do the full expansion. 4164 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4165 // Get the exponent as a positive value. 4166 unsigned Val = RHSC->getSExtValue(); 4167 if ((int)Val < 0) Val = -Val; 4168 4169 // powi(x, 0) -> 1.0 4170 if (Val == 0) 4171 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4172 4173 const Function *F = DAG.getMachineFunction().getFunction(); 4174 if (!F->optForSize() || 4175 // If optimizing for size, don't insert too many multiplies. 4176 // This inserts up to 5 multiplies. 4177 countPopulation(Val) + Log2_32(Val) < 7) { 4178 // We use the simple binary decomposition method to generate the multiply 4179 // sequence. There are more optimal ways to do this (for example, 4180 // powi(x,15) generates one more multiply than it should), but this has 4181 // the benefit of being both really simple and much better than a libcall. 4182 SDValue Res; // Logically starts equal to 1.0 4183 SDValue CurSquare = LHS; 4184 // TODO: Intrinsics should have fast-math-flags that propagate to these 4185 // nodes. 4186 while (Val) { 4187 if (Val & 1) { 4188 if (Res.getNode()) 4189 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4190 else 4191 Res = CurSquare; // 1.0*CurSquare. 4192 } 4193 4194 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4195 CurSquare, CurSquare); 4196 Val >>= 1; 4197 } 4198 4199 // If the original was negative, invert the result, producing 1/(x*x*x). 4200 if (RHSC->getSExtValue() < 0) 4201 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4202 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4203 return Res; 4204 } 4205 } 4206 4207 // Otherwise, expand to a libcall. 4208 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4209 } 4210 4211 // getUnderlyingArgReg - Find underlying register used for a truncated or 4212 // bitcasted argument. 4213 static unsigned getUnderlyingArgReg(const SDValue &N) { 4214 switch (N.getOpcode()) { 4215 case ISD::CopyFromReg: 4216 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4217 case ISD::BITCAST: 4218 case ISD::AssertZext: 4219 case ISD::AssertSext: 4220 case ISD::TRUNCATE: 4221 return getUnderlyingArgReg(N.getOperand(0)); 4222 default: 4223 return 0; 4224 } 4225 } 4226 4227 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4228 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4229 /// At the end of instruction selection, they will be inserted to the entry BB. 4230 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4231 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4232 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4233 const Argument *Arg = dyn_cast<Argument>(V); 4234 if (!Arg) 4235 return false; 4236 4237 MachineFunction &MF = DAG.getMachineFunction(); 4238 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4239 4240 // Ignore inlined function arguments here. 4241 // 4242 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4243 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4244 return false; 4245 4246 Optional<MachineOperand> Op; 4247 // Some arguments' frame index is recorded during argument lowering. 4248 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4249 Op = MachineOperand::CreateFI(FI); 4250 4251 if (!Op && N.getNode()) { 4252 unsigned Reg = getUnderlyingArgReg(N); 4253 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4254 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4255 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4256 if (PR) 4257 Reg = PR; 4258 } 4259 if (Reg) 4260 Op = MachineOperand::CreateReg(Reg, false); 4261 } 4262 4263 if (!Op) { 4264 // Check if ValueMap has reg number. 4265 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4266 if (VMI != FuncInfo.ValueMap.end()) 4267 Op = MachineOperand::CreateReg(VMI->second, false); 4268 } 4269 4270 if (!Op && N.getNode()) 4271 // Check if frame index is available. 4272 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4273 if (FrameIndexSDNode *FINode = 4274 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4275 Op = MachineOperand::CreateFI(FINode->getIndex()); 4276 4277 if (!Op) 4278 return false; 4279 4280 assert(Variable->isValidLocationForIntrinsic(DL) && 4281 "Expected inlined-at fields to agree"); 4282 if (Op->isReg()) 4283 FuncInfo.ArgDbgValues.push_back( 4284 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4285 Op->getReg(), Offset, Variable, Expr)); 4286 else 4287 FuncInfo.ArgDbgValues.push_back( 4288 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4289 .addOperand(*Op) 4290 .addImm(Offset) 4291 .addMetadata(Variable) 4292 .addMetadata(Expr)); 4293 4294 return true; 4295 } 4296 4297 // VisualStudio defines setjmp as _setjmp 4298 #if defined(_MSC_VER) && defined(setjmp) && \ 4299 !defined(setjmp_undefined_for_msvc) 4300 # pragma push_macro("setjmp") 4301 # undef setjmp 4302 # define setjmp_undefined_for_msvc 4303 #endif 4304 4305 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4306 /// we want to emit this as a call to a named external function, return the name 4307 /// otherwise lower it and return null. 4308 const char * 4309 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4310 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4311 SDLoc sdl = getCurSDLoc(); 4312 DebugLoc dl = getCurDebugLoc(); 4313 SDValue Res; 4314 4315 switch (Intrinsic) { 4316 default: 4317 // By default, turn this into a target intrinsic node. 4318 visitTargetIntrinsic(I, Intrinsic); 4319 return nullptr; 4320 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4321 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4322 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4323 case Intrinsic::returnaddress: 4324 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4325 TLI.getPointerTy(DAG.getDataLayout()), 4326 getValue(I.getArgOperand(0)))); 4327 return nullptr; 4328 case Intrinsic::frameaddress: 4329 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4330 TLI.getPointerTy(DAG.getDataLayout()), 4331 getValue(I.getArgOperand(0)))); 4332 return nullptr; 4333 case Intrinsic::read_register: { 4334 Value *Reg = I.getArgOperand(0); 4335 SDValue Chain = getRoot(); 4336 SDValue RegName = 4337 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4338 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4339 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4340 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4341 setValue(&I, Res); 4342 DAG.setRoot(Res.getValue(1)); 4343 return nullptr; 4344 } 4345 case Intrinsic::write_register: { 4346 Value *Reg = I.getArgOperand(0); 4347 Value *RegValue = I.getArgOperand(1); 4348 SDValue Chain = getRoot(); 4349 SDValue RegName = 4350 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4351 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4352 RegName, getValue(RegValue))); 4353 return nullptr; 4354 } 4355 case Intrinsic::setjmp: 4356 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4357 case Intrinsic::longjmp: 4358 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4359 case Intrinsic::memcpy: { 4360 // FIXME: this definition of "user defined address space" is x86-specific 4361 // Assert for address < 256 since we support only user defined address 4362 // spaces. 4363 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4364 < 256 && 4365 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4366 < 256 && 4367 "Unknown address space"); 4368 SDValue Op1 = getValue(I.getArgOperand(0)); 4369 SDValue Op2 = getValue(I.getArgOperand(1)); 4370 SDValue Op3 = getValue(I.getArgOperand(2)); 4371 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4372 if (!Align) 4373 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4374 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4375 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4376 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4377 false, isTC, 4378 MachinePointerInfo(I.getArgOperand(0)), 4379 MachinePointerInfo(I.getArgOperand(1))); 4380 updateDAGForMaybeTailCall(MC); 4381 return nullptr; 4382 } 4383 case Intrinsic::memset: { 4384 // FIXME: this definition of "user defined address space" is x86-specific 4385 // Assert for address < 256 since we support only user defined address 4386 // spaces. 4387 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4388 < 256 && 4389 "Unknown address space"); 4390 SDValue Op1 = getValue(I.getArgOperand(0)); 4391 SDValue Op2 = getValue(I.getArgOperand(1)); 4392 SDValue Op3 = getValue(I.getArgOperand(2)); 4393 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4394 if (!Align) 4395 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4396 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4397 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4398 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4399 isTC, MachinePointerInfo(I.getArgOperand(0))); 4400 updateDAGForMaybeTailCall(MS); 4401 return nullptr; 4402 } 4403 case Intrinsic::memmove: { 4404 // FIXME: this definition of "user defined address space" is x86-specific 4405 // Assert for address < 256 since we support only user defined address 4406 // spaces. 4407 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4408 < 256 && 4409 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4410 < 256 && 4411 "Unknown address space"); 4412 SDValue Op1 = getValue(I.getArgOperand(0)); 4413 SDValue Op2 = getValue(I.getArgOperand(1)); 4414 SDValue Op3 = getValue(I.getArgOperand(2)); 4415 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4416 if (!Align) 4417 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4418 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4419 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4420 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4421 isTC, MachinePointerInfo(I.getArgOperand(0)), 4422 MachinePointerInfo(I.getArgOperand(1))); 4423 updateDAGForMaybeTailCall(MM); 4424 return nullptr; 4425 } 4426 case Intrinsic::dbg_declare: { 4427 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4428 DILocalVariable *Variable = DI.getVariable(); 4429 DIExpression *Expression = DI.getExpression(); 4430 const Value *Address = DI.getAddress(); 4431 assert(Variable && "Missing variable"); 4432 if (!Address) { 4433 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4434 return nullptr; 4435 } 4436 4437 // Check if address has undef value. 4438 if (isa<UndefValue>(Address) || 4439 (Address->use_empty() && !isa<Argument>(Address))) { 4440 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4441 return nullptr; 4442 } 4443 4444 SDValue &N = NodeMap[Address]; 4445 if (!N.getNode() && isa<Argument>(Address)) 4446 // Check unused arguments map. 4447 N = UnusedArgNodeMap[Address]; 4448 SDDbgValue *SDV; 4449 if (N.getNode()) { 4450 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4451 Address = BCI->getOperand(0); 4452 // Parameters are handled specially. 4453 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 4454 4455 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4456 4457 if (isParameter && !AI) { 4458 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4459 if (FINode) 4460 // Byval parameter. We have a frame index at this point. 4461 SDV = DAG.getFrameIndexDbgValue( 4462 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4463 else { 4464 // Address is an argument, so try to emit its dbg value using 4465 // virtual register info from the FuncInfo.ValueMap. 4466 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4467 N); 4468 return nullptr; 4469 } 4470 } else { 4471 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4472 true, 0, dl, SDNodeOrder); 4473 } 4474 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4475 } else { 4476 // If Address is an argument then try to emit its dbg value using 4477 // virtual register info from the FuncInfo.ValueMap. 4478 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4479 N)) { 4480 // If variable is pinned by a alloca in dominating bb then 4481 // use StaticAllocaMap. 4482 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4483 if (AI->getParent() != DI.getParent()) { 4484 DenseMap<const AllocaInst*, int>::iterator SI = 4485 FuncInfo.StaticAllocaMap.find(AI); 4486 if (SI != FuncInfo.StaticAllocaMap.end()) { 4487 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4488 0, dl, SDNodeOrder); 4489 DAG.AddDbgValue(SDV, nullptr, false); 4490 return nullptr; 4491 } 4492 } 4493 } 4494 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4495 } 4496 } 4497 return nullptr; 4498 } 4499 case Intrinsic::dbg_value: { 4500 const DbgValueInst &DI = cast<DbgValueInst>(I); 4501 assert(DI.getVariable() && "Missing variable"); 4502 4503 DILocalVariable *Variable = DI.getVariable(); 4504 DIExpression *Expression = DI.getExpression(); 4505 uint64_t Offset = DI.getOffset(); 4506 const Value *V = DI.getValue(); 4507 if (!V) 4508 return nullptr; 4509 4510 SDDbgValue *SDV; 4511 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4512 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4513 SDNodeOrder); 4514 DAG.AddDbgValue(SDV, nullptr, false); 4515 } else { 4516 // Do not use getValue() in here; we don't want to generate code at 4517 // this point if it hasn't been done yet. 4518 SDValue N = NodeMap[V]; 4519 if (!N.getNode() && isa<Argument>(V)) 4520 // Check unused arguments map. 4521 N = UnusedArgNodeMap[V]; 4522 if (N.getNode()) { 4523 // A dbg.value for an alloca is always indirect. 4524 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4525 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4526 IsIndirect, N)) { 4527 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4528 IsIndirect, Offset, dl, SDNodeOrder); 4529 DAG.AddDbgValue(SDV, N.getNode(), false); 4530 } 4531 } else if (!V->use_empty() ) { 4532 // Do not call getValue(V) yet, as we don't want to generate code. 4533 // Remember it for later. 4534 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4535 DanglingDebugInfoMap[V] = DDI; 4536 } else { 4537 // We may expand this to cover more cases. One case where we have no 4538 // data available is an unreferenced parameter. 4539 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4540 } 4541 } 4542 4543 // Build a debug info table entry. 4544 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4545 V = BCI->getOperand(0); 4546 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4547 // Don't handle byval struct arguments or VLAs, for example. 4548 if (!AI) { 4549 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4550 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4551 return nullptr; 4552 } 4553 DenseMap<const AllocaInst*, int>::iterator SI = 4554 FuncInfo.StaticAllocaMap.find(AI); 4555 if (SI == FuncInfo.StaticAllocaMap.end()) 4556 return nullptr; // VLAs. 4557 return nullptr; 4558 } 4559 4560 case Intrinsic::eh_typeid_for: { 4561 // Find the type id for the given typeinfo. 4562 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4563 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4564 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4565 setValue(&I, Res); 4566 return nullptr; 4567 } 4568 4569 case Intrinsic::eh_return_i32: 4570 case Intrinsic::eh_return_i64: 4571 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4572 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4573 MVT::Other, 4574 getControlRoot(), 4575 getValue(I.getArgOperand(0)), 4576 getValue(I.getArgOperand(1)))); 4577 return nullptr; 4578 case Intrinsic::eh_unwind_init: 4579 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4580 return nullptr; 4581 case Intrinsic::eh_dwarf_cfa: { 4582 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4583 TLI.getPointerTy(DAG.getDataLayout())); 4584 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4585 CfaArg.getValueType(), 4586 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4587 CfaArg.getValueType()), 4588 CfaArg); 4589 SDValue FA = DAG.getNode( 4590 ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()), 4591 DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 4592 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4593 FA, Offset)); 4594 return nullptr; 4595 } 4596 case Intrinsic::eh_sjlj_callsite: { 4597 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4598 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4599 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4600 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4601 4602 MMI.setCurrentCallSite(CI->getZExtValue()); 4603 return nullptr; 4604 } 4605 case Intrinsic::eh_sjlj_functioncontext: { 4606 // Get and store the index of the function context. 4607 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4608 AllocaInst *FnCtx = 4609 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4610 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4611 MFI->setFunctionContextIndex(FI); 4612 return nullptr; 4613 } 4614 case Intrinsic::eh_sjlj_setjmp: { 4615 SDValue Ops[2]; 4616 Ops[0] = getRoot(); 4617 Ops[1] = getValue(I.getArgOperand(0)); 4618 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4619 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4620 setValue(&I, Op.getValue(0)); 4621 DAG.setRoot(Op.getValue(1)); 4622 return nullptr; 4623 } 4624 case Intrinsic::eh_sjlj_longjmp: { 4625 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4626 getRoot(), getValue(I.getArgOperand(0)))); 4627 return nullptr; 4628 } 4629 case Intrinsic::eh_sjlj_setup_dispatch: { 4630 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 4631 getRoot())); 4632 return nullptr; 4633 } 4634 4635 case Intrinsic::masked_gather: 4636 visitMaskedGather(I); 4637 return nullptr; 4638 case Intrinsic::masked_load: 4639 visitMaskedLoad(I); 4640 return nullptr; 4641 case Intrinsic::masked_scatter: 4642 visitMaskedScatter(I); 4643 return nullptr; 4644 case Intrinsic::masked_store: 4645 visitMaskedStore(I); 4646 return nullptr; 4647 case Intrinsic::x86_mmx_pslli_w: 4648 case Intrinsic::x86_mmx_pslli_d: 4649 case Intrinsic::x86_mmx_pslli_q: 4650 case Intrinsic::x86_mmx_psrli_w: 4651 case Intrinsic::x86_mmx_psrli_d: 4652 case Intrinsic::x86_mmx_psrli_q: 4653 case Intrinsic::x86_mmx_psrai_w: 4654 case Intrinsic::x86_mmx_psrai_d: { 4655 SDValue ShAmt = getValue(I.getArgOperand(1)); 4656 if (isa<ConstantSDNode>(ShAmt)) { 4657 visitTargetIntrinsic(I, Intrinsic); 4658 return nullptr; 4659 } 4660 unsigned NewIntrinsic = 0; 4661 EVT ShAmtVT = MVT::v2i32; 4662 switch (Intrinsic) { 4663 case Intrinsic::x86_mmx_pslli_w: 4664 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4665 break; 4666 case Intrinsic::x86_mmx_pslli_d: 4667 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4668 break; 4669 case Intrinsic::x86_mmx_pslli_q: 4670 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4671 break; 4672 case Intrinsic::x86_mmx_psrli_w: 4673 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4674 break; 4675 case Intrinsic::x86_mmx_psrli_d: 4676 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4677 break; 4678 case Intrinsic::x86_mmx_psrli_q: 4679 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4680 break; 4681 case Intrinsic::x86_mmx_psrai_w: 4682 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4683 break; 4684 case Intrinsic::x86_mmx_psrai_d: 4685 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4686 break; 4687 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4688 } 4689 4690 // The vector shift intrinsics with scalars uses 32b shift amounts but 4691 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4692 // to be zero. 4693 // We must do this early because v2i32 is not a legal type. 4694 SDValue ShOps[2]; 4695 ShOps[0] = ShAmt; 4696 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 4697 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4698 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4699 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4700 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4701 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 4702 getValue(I.getArgOperand(0)), ShAmt); 4703 setValue(&I, Res); 4704 return nullptr; 4705 } 4706 case Intrinsic::convertff: 4707 case Intrinsic::convertfsi: 4708 case Intrinsic::convertfui: 4709 case Intrinsic::convertsif: 4710 case Intrinsic::convertuif: 4711 case Intrinsic::convertss: 4712 case Intrinsic::convertsu: 4713 case Intrinsic::convertus: 4714 case Intrinsic::convertuu: { 4715 ISD::CvtCode Code = ISD::CVT_INVALID; 4716 switch (Intrinsic) { 4717 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4718 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4719 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4720 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4721 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4722 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4723 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4724 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4725 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4726 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4727 } 4728 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4729 const Value *Op1 = I.getArgOperand(0); 4730 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4731 DAG.getValueType(DestVT), 4732 DAG.getValueType(getValue(Op1).getValueType()), 4733 getValue(I.getArgOperand(1)), 4734 getValue(I.getArgOperand(2)), 4735 Code); 4736 setValue(&I, Res); 4737 return nullptr; 4738 } 4739 case Intrinsic::powi: 4740 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4741 getValue(I.getArgOperand(1)), DAG)); 4742 return nullptr; 4743 case Intrinsic::log: 4744 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4745 return nullptr; 4746 case Intrinsic::log2: 4747 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4748 return nullptr; 4749 case Intrinsic::log10: 4750 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4751 return nullptr; 4752 case Intrinsic::exp: 4753 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4754 return nullptr; 4755 case Intrinsic::exp2: 4756 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4757 return nullptr; 4758 case Intrinsic::pow: 4759 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4760 getValue(I.getArgOperand(1)), DAG, TLI)); 4761 return nullptr; 4762 case Intrinsic::sqrt: 4763 case Intrinsic::fabs: 4764 case Intrinsic::sin: 4765 case Intrinsic::cos: 4766 case Intrinsic::floor: 4767 case Intrinsic::ceil: 4768 case Intrinsic::trunc: 4769 case Intrinsic::rint: 4770 case Intrinsic::nearbyint: 4771 case Intrinsic::round: { 4772 unsigned Opcode; 4773 switch (Intrinsic) { 4774 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4775 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4776 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4777 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4778 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4779 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4780 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4781 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4782 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4783 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4784 case Intrinsic::round: Opcode = ISD::FROUND; break; 4785 } 4786 4787 setValue(&I, DAG.getNode(Opcode, sdl, 4788 getValue(I.getArgOperand(0)).getValueType(), 4789 getValue(I.getArgOperand(0)))); 4790 return nullptr; 4791 } 4792 case Intrinsic::minnum: 4793 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4794 getValue(I.getArgOperand(0)).getValueType(), 4795 getValue(I.getArgOperand(0)), 4796 getValue(I.getArgOperand(1)))); 4797 return nullptr; 4798 case Intrinsic::maxnum: 4799 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4800 getValue(I.getArgOperand(0)).getValueType(), 4801 getValue(I.getArgOperand(0)), 4802 getValue(I.getArgOperand(1)))); 4803 return nullptr; 4804 case Intrinsic::copysign: 4805 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4806 getValue(I.getArgOperand(0)).getValueType(), 4807 getValue(I.getArgOperand(0)), 4808 getValue(I.getArgOperand(1)))); 4809 return nullptr; 4810 case Intrinsic::fma: 4811 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4812 getValue(I.getArgOperand(0)).getValueType(), 4813 getValue(I.getArgOperand(0)), 4814 getValue(I.getArgOperand(1)), 4815 getValue(I.getArgOperand(2)))); 4816 return nullptr; 4817 case Intrinsic::fmuladd: { 4818 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4819 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4820 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 4821 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4822 getValue(I.getArgOperand(0)).getValueType(), 4823 getValue(I.getArgOperand(0)), 4824 getValue(I.getArgOperand(1)), 4825 getValue(I.getArgOperand(2)))); 4826 } else { 4827 // TODO: Intrinsic calls should have fast-math-flags. 4828 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4829 getValue(I.getArgOperand(0)).getValueType(), 4830 getValue(I.getArgOperand(0)), 4831 getValue(I.getArgOperand(1))); 4832 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4833 getValue(I.getArgOperand(0)).getValueType(), 4834 Mul, 4835 getValue(I.getArgOperand(2))); 4836 setValue(&I, Add); 4837 } 4838 return nullptr; 4839 } 4840 case Intrinsic::convert_to_fp16: 4841 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 4842 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 4843 getValue(I.getArgOperand(0)), 4844 DAG.getTargetConstant(0, sdl, 4845 MVT::i32)))); 4846 return nullptr; 4847 case Intrinsic::convert_from_fp16: 4848 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 4849 TLI.getValueType(DAG.getDataLayout(), I.getType()), 4850 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 4851 getValue(I.getArgOperand(0))))); 4852 return nullptr; 4853 case Intrinsic::pcmarker: { 4854 SDValue Tmp = getValue(I.getArgOperand(0)); 4855 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4856 return nullptr; 4857 } 4858 case Intrinsic::readcyclecounter: { 4859 SDValue Op = getRoot(); 4860 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4861 DAG.getVTList(MVT::i64, MVT::Other), Op); 4862 setValue(&I, Res); 4863 DAG.setRoot(Res.getValue(1)); 4864 return nullptr; 4865 } 4866 case Intrinsic::bswap: 4867 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4868 getValue(I.getArgOperand(0)).getValueType(), 4869 getValue(I.getArgOperand(0)))); 4870 return nullptr; 4871 case Intrinsic::uabsdiff: 4872 setValue(&I, DAG.getNode(ISD::UABSDIFF, sdl, 4873 getValue(I.getArgOperand(0)).getValueType(), 4874 getValue(I.getArgOperand(0)), 4875 getValue(I.getArgOperand(1)))); 4876 return nullptr; 4877 case Intrinsic::sabsdiff: 4878 setValue(&I, DAG.getNode(ISD::SABSDIFF, sdl, 4879 getValue(I.getArgOperand(0)).getValueType(), 4880 getValue(I.getArgOperand(0)), 4881 getValue(I.getArgOperand(1)))); 4882 return nullptr; 4883 case Intrinsic::cttz: { 4884 SDValue Arg = getValue(I.getArgOperand(0)); 4885 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4886 EVT Ty = Arg.getValueType(); 4887 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4888 sdl, Ty, Arg)); 4889 return nullptr; 4890 } 4891 case Intrinsic::ctlz: { 4892 SDValue Arg = getValue(I.getArgOperand(0)); 4893 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4894 EVT Ty = Arg.getValueType(); 4895 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4896 sdl, Ty, Arg)); 4897 return nullptr; 4898 } 4899 case Intrinsic::ctpop: { 4900 SDValue Arg = getValue(I.getArgOperand(0)); 4901 EVT Ty = Arg.getValueType(); 4902 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4903 return nullptr; 4904 } 4905 case Intrinsic::stacksave: { 4906 SDValue Op = getRoot(); 4907 Res = DAG.getNode( 4908 ISD::STACKSAVE, sdl, 4909 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 4910 setValue(&I, Res); 4911 DAG.setRoot(Res.getValue(1)); 4912 return nullptr; 4913 } 4914 case Intrinsic::stackrestore: { 4915 Res = getValue(I.getArgOperand(0)); 4916 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 4917 return nullptr; 4918 } 4919 case Intrinsic::stackprotector: { 4920 // Emit code into the DAG to store the stack guard onto the stack. 4921 MachineFunction &MF = DAG.getMachineFunction(); 4922 MachineFrameInfo *MFI = MF.getFrameInfo(); 4923 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 4924 SDValue Src, Chain = getRoot(); 4925 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 4926 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 4927 4928 // See if Ptr is a bitcast. If it is, look through it and see if we can get 4929 // global variable __stack_chk_guard. 4930 if (!GV) 4931 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 4932 if (BC->getOpcode() == Instruction::BitCast) 4933 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 4934 4935 if (GV && TLI.useLoadStackGuardNode()) { 4936 // Emit a LOAD_STACK_GUARD node. 4937 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 4938 sdl, PtrTy, Chain); 4939 MachinePointerInfo MPInfo(GV); 4940 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 4941 unsigned Flags = MachineMemOperand::MOLoad | 4942 MachineMemOperand::MOInvariant; 4943 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 4944 PtrTy.getSizeInBits() / 8, 4945 DAG.getEVTAlignment(PtrTy)); 4946 Node->setMemRefs(MemRefs, MemRefs + 1); 4947 4948 // Copy the guard value to a virtual register so that it can be 4949 // retrieved in the epilogue. 4950 Src = SDValue(Node, 0); 4951 const TargetRegisterClass *RC = 4952 TLI.getRegClassFor(Src.getSimpleValueType()); 4953 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 4954 4955 SPDescriptor.setGuardReg(Reg); 4956 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 4957 } else { 4958 Src = getValue(I.getArgOperand(0)); // The guard's value. 4959 } 4960 4961 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4962 4963 int FI = FuncInfo.StaticAllocaMap[Slot]; 4964 MFI->setStackProtectorIndex(FI); 4965 4966 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4967 4968 // Store the stack protector onto the stack. 4969 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 4970 DAG.getMachineFunction(), FI), 4971 true, false, 0); 4972 setValue(&I, Res); 4973 DAG.setRoot(Res); 4974 return nullptr; 4975 } 4976 case Intrinsic::objectsize: { 4977 // If we don't know by now, we're never going to know. 4978 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4979 4980 assert(CI && "Non-constant type in __builtin_object_size?"); 4981 4982 SDValue Arg = getValue(I.getCalledValue()); 4983 EVT Ty = Arg.getValueType(); 4984 4985 if (CI->isZero()) 4986 Res = DAG.getConstant(-1ULL, sdl, Ty); 4987 else 4988 Res = DAG.getConstant(0, sdl, Ty); 4989 4990 setValue(&I, Res); 4991 return nullptr; 4992 } 4993 case Intrinsic::annotation: 4994 case Intrinsic::ptr_annotation: 4995 // Drop the intrinsic, but forward the value 4996 setValue(&I, getValue(I.getOperand(0))); 4997 return nullptr; 4998 case Intrinsic::assume: 4999 case Intrinsic::var_annotation: 5000 // Discard annotate attributes and assumptions 5001 return nullptr; 5002 5003 case Intrinsic::init_trampoline: { 5004 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5005 5006 SDValue Ops[6]; 5007 Ops[0] = getRoot(); 5008 Ops[1] = getValue(I.getArgOperand(0)); 5009 Ops[2] = getValue(I.getArgOperand(1)); 5010 Ops[3] = getValue(I.getArgOperand(2)); 5011 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5012 Ops[5] = DAG.getSrcValue(F); 5013 5014 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5015 5016 DAG.setRoot(Res); 5017 return nullptr; 5018 } 5019 case Intrinsic::adjust_trampoline: { 5020 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5021 TLI.getPointerTy(DAG.getDataLayout()), 5022 getValue(I.getArgOperand(0)))); 5023 return nullptr; 5024 } 5025 case Intrinsic::gcroot: 5026 if (GFI) { 5027 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5028 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5029 5030 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5031 GFI->addStackRoot(FI->getIndex(), TypeMap); 5032 } 5033 return nullptr; 5034 case Intrinsic::gcread: 5035 case Intrinsic::gcwrite: 5036 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5037 case Intrinsic::flt_rounds: 5038 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5039 return nullptr; 5040 5041 case Intrinsic::expect: { 5042 // Just replace __builtin_expect(exp, c) with EXP. 5043 setValue(&I, getValue(I.getArgOperand(0))); 5044 return nullptr; 5045 } 5046 5047 case Intrinsic::debugtrap: 5048 case Intrinsic::trap: { 5049 StringRef TrapFuncName = 5050 I.getAttributes() 5051 .getAttribute(AttributeSet::FunctionIndex, "trap-func-name") 5052 .getValueAsString(); 5053 if (TrapFuncName.empty()) { 5054 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5055 ISD::TRAP : ISD::DEBUGTRAP; 5056 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5057 return nullptr; 5058 } 5059 TargetLowering::ArgListTy Args; 5060 5061 TargetLowering::CallLoweringInfo CLI(DAG); 5062 CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee( 5063 CallingConv::C, I.getType(), 5064 DAG.getExternalSymbol(TrapFuncName.data(), 5065 TLI.getPointerTy(DAG.getDataLayout())), 5066 std::move(Args), 0); 5067 5068 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5069 DAG.setRoot(Result.second); 5070 return nullptr; 5071 } 5072 5073 case Intrinsic::uadd_with_overflow: 5074 case Intrinsic::sadd_with_overflow: 5075 case Intrinsic::usub_with_overflow: 5076 case Intrinsic::ssub_with_overflow: 5077 case Intrinsic::umul_with_overflow: 5078 case Intrinsic::smul_with_overflow: { 5079 ISD::NodeType Op; 5080 switch (Intrinsic) { 5081 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5082 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5083 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5084 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5085 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5086 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5087 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5088 } 5089 SDValue Op1 = getValue(I.getArgOperand(0)); 5090 SDValue Op2 = getValue(I.getArgOperand(1)); 5091 5092 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5093 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5094 return nullptr; 5095 } 5096 case Intrinsic::prefetch: { 5097 SDValue Ops[5]; 5098 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5099 Ops[0] = getRoot(); 5100 Ops[1] = getValue(I.getArgOperand(0)); 5101 Ops[2] = getValue(I.getArgOperand(1)); 5102 Ops[3] = getValue(I.getArgOperand(2)); 5103 Ops[4] = getValue(I.getArgOperand(3)); 5104 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5105 DAG.getVTList(MVT::Other), Ops, 5106 EVT::getIntegerVT(*Context, 8), 5107 MachinePointerInfo(I.getArgOperand(0)), 5108 0, /* align */ 5109 false, /* volatile */ 5110 rw==0, /* read */ 5111 rw==1)); /* write */ 5112 return nullptr; 5113 } 5114 case Intrinsic::lifetime_start: 5115 case Intrinsic::lifetime_end: { 5116 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5117 // Stack coloring is not enabled in O0, discard region information. 5118 if (TM.getOptLevel() == CodeGenOpt::None) 5119 return nullptr; 5120 5121 SmallVector<Value *, 4> Allocas; 5122 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5123 5124 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5125 E = Allocas.end(); Object != E; ++Object) { 5126 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5127 5128 // Could not find an Alloca. 5129 if (!LifetimeObject) 5130 continue; 5131 5132 // First check that the Alloca is static, otherwise it won't have a 5133 // valid frame index. 5134 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5135 if (SI == FuncInfo.StaticAllocaMap.end()) 5136 return nullptr; 5137 5138 int FI = SI->second; 5139 5140 SDValue Ops[2]; 5141 Ops[0] = getRoot(); 5142 Ops[1] = 5143 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true); 5144 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5145 5146 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5147 DAG.setRoot(Res); 5148 } 5149 return nullptr; 5150 } 5151 case Intrinsic::invariant_start: 5152 // Discard region information. 5153 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5154 return nullptr; 5155 case Intrinsic::invariant_end: 5156 // Discard region information. 5157 return nullptr; 5158 case Intrinsic::stackprotectorcheck: { 5159 // Do not actually emit anything for this basic block. Instead we initialize 5160 // the stack protector descriptor and export the guard variable so we can 5161 // access it in FinishBasicBlock. 5162 const BasicBlock *BB = I.getParent(); 5163 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5164 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5165 5166 // Flush our exports since we are going to process a terminator. 5167 (void)getControlRoot(); 5168 return nullptr; 5169 } 5170 case Intrinsic::clear_cache: 5171 return TLI.getClearCacheBuiltinName(); 5172 case Intrinsic::donothing: 5173 // ignore 5174 return nullptr; 5175 case Intrinsic::experimental_stackmap: { 5176 visitStackmap(I); 5177 return nullptr; 5178 } 5179 case Intrinsic::experimental_patchpoint_void: 5180 case Intrinsic::experimental_patchpoint_i64: { 5181 visitPatchpoint(&I); 5182 return nullptr; 5183 } 5184 case Intrinsic::experimental_gc_statepoint: { 5185 visitStatepoint(I); 5186 return nullptr; 5187 } 5188 case Intrinsic::experimental_gc_result_int: 5189 case Intrinsic::experimental_gc_result_float: 5190 case Intrinsic::experimental_gc_result_ptr: 5191 case Intrinsic::experimental_gc_result: { 5192 visitGCResult(I); 5193 return nullptr; 5194 } 5195 case Intrinsic::experimental_gc_relocate: { 5196 visitGCRelocate(I); 5197 return nullptr; 5198 } 5199 case Intrinsic::instrprof_increment: 5200 llvm_unreachable("instrprof failed to lower an increment"); 5201 5202 case Intrinsic::localescape: { 5203 MachineFunction &MF = DAG.getMachineFunction(); 5204 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5205 5206 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5207 // is the same on all targets. 5208 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5209 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5210 if (isa<ConstantPointerNull>(Arg)) 5211 continue; // Skip null pointers. They represent a hole in index space. 5212 AllocaInst *Slot = cast<AllocaInst>(Arg); 5213 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5214 "can only escape static allocas"); 5215 int FI = FuncInfo.StaticAllocaMap[Slot]; 5216 MCSymbol *FrameAllocSym = 5217 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5218 GlobalValue::getRealLinkageName(MF.getName()), Idx); 5219 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5220 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5221 .addSym(FrameAllocSym) 5222 .addFrameIndex(FI); 5223 } 5224 5225 return nullptr; 5226 } 5227 5228 case Intrinsic::localrecover: { 5229 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5230 MachineFunction &MF = DAG.getMachineFunction(); 5231 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5232 5233 // Get the symbol that defines the frame offset. 5234 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5235 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5236 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5237 MCSymbol *FrameAllocSym = 5238 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5239 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5240 5241 // Create a MCSymbol for the label to avoid any target lowering 5242 // that would make this PC relative. 5243 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5244 SDValue OffsetVal = 5245 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5246 5247 // Add the offset to the FP. 5248 Value *FP = I.getArgOperand(1); 5249 SDValue FPVal = getValue(FP); 5250 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5251 setValue(&I, Add); 5252 5253 return nullptr; 5254 } 5255 5256 case Intrinsic::eh_exceptionpointer: 5257 case Intrinsic::eh_exceptioncode: { 5258 // Get the exception pointer vreg, copy from it, and resize it to fit. 5259 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 5260 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5261 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5262 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 5263 SDValue N = 5264 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5265 if (Intrinsic == Intrinsic::eh_exceptioncode) 5266 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5267 setValue(&I, N); 5268 return nullptr; 5269 } 5270 } 5271 } 5272 5273 std::pair<SDValue, SDValue> 5274 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5275 const BasicBlock *EHPadBB) { 5276 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5277 MCSymbol *BeginLabel = nullptr; 5278 5279 if (EHPadBB) { 5280 // Insert a label before the invoke call to mark the try range. This can be 5281 // used to detect deletion of the invoke via the MachineModuleInfo. 5282 BeginLabel = MMI.getContext().createTempSymbol(); 5283 5284 // For SjLj, keep track of which landing pads go with which invokes 5285 // so as to maintain the ordering of pads in the LSDA. 5286 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5287 if (CallSiteIndex) { 5288 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5289 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 5290 5291 // Now that the call site is handled, stop tracking it. 5292 MMI.setCurrentCallSite(0); 5293 } 5294 5295 // Both PendingLoads and PendingExports must be flushed here; 5296 // this call might not return. 5297 (void)getRoot(); 5298 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5299 5300 CLI.setChain(getRoot()); 5301 } 5302 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5303 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5304 5305 assert((CLI.IsTailCall || Result.second.getNode()) && 5306 "Non-null chain expected with non-tail call!"); 5307 assert((Result.second.getNode() || !Result.first.getNode()) && 5308 "Null value expected with tail call!"); 5309 5310 if (!Result.second.getNode()) { 5311 // As a special case, a null chain means that a tail call has been emitted 5312 // and the DAG root is already updated. 5313 HasTailCall = true; 5314 5315 // Since there's no actual continuation from this block, nothing can be 5316 // relying on us setting vregs for them. 5317 PendingExports.clear(); 5318 } else { 5319 DAG.setRoot(Result.second); 5320 } 5321 5322 if (EHPadBB) { 5323 // Insert a label at the end of the invoke call to mark the try range. This 5324 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5325 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5326 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5327 5328 // Inform MachineModuleInfo of range. 5329 if (MMI.hasEHFunclets()) { 5330 WinEHFuncInfo &EHInfo = 5331 MMI.getWinEHFuncInfo(DAG.getMachineFunction().getFunction()); 5332 EHInfo.addIPToStateRange(EHPadBB, BeginLabel, EndLabel); 5333 } else { 5334 MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 5335 } 5336 } 5337 5338 return Result; 5339 } 5340 5341 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5342 bool isTailCall, 5343 const BasicBlock *EHPadBB) { 5344 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5345 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5346 Type *RetTy = FTy->getReturnType(); 5347 5348 TargetLowering::ArgListTy Args; 5349 TargetLowering::ArgListEntry Entry; 5350 Args.reserve(CS.arg_size()); 5351 5352 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5353 i != e; ++i) { 5354 const Value *V = *i; 5355 5356 // Skip empty types 5357 if (V->getType()->isEmptyTy()) 5358 continue; 5359 5360 SDValue ArgNode = getValue(V); 5361 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5362 5363 // Skip the first return-type Attribute to get to params. 5364 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5365 Args.push_back(Entry); 5366 5367 // If we have an explicit sret argument that is an Instruction, (i.e., it 5368 // might point to function-local memory), we can't meaningfully tail-call. 5369 if (Entry.isSRet && isa<Instruction>(V)) 5370 isTailCall = false; 5371 } 5372 5373 // Check if target-independent constraints permit a tail call here. 5374 // Target-dependent constraints are checked within TLI->LowerCallTo. 5375 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5376 isTailCall = false; 5377 5378 TargetLowering::CallLoweringInfo CLI(DAG); 5379 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5380 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5381 .setTailCall(isTailCall); 5382 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 5383 5384 if (Result.first.getNode()) 5385 setValue(CS.getInstruction(), Result.first); 5386 } 5387 5388 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5389 /// value is equal or not-equal to zero. 5390 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5391 for (const User *U : V->users()) { 5392 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5393 if (IC->isEquality()) 5394 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5395 if (C->isNullValue()) 5396 continue; 5397 // Unknown instruction. 5398 return false; 5399 } 5400 return true; 5401 } 5402 5403 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5404 Type *LoadTy, 5405 SelectionDAGBuilder &Builder) { 5406 5407 // Check to see if this load can be trivially constant folded, e.g. if the 5408 // input is from a string literal. 5409 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5410 // Cast pointer to the type we really want to load. 5411 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5412 PointerType::getUnqual(LoadTy)); 5413 5414 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5415 const_cast<Constant *>(LoadInput), *Builder.DL)) 5416 return Builder.getValue(LoadCst); 5417 } 5418 5419 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5420 // still constant memory, the input chain can be the entry node. 5421 SDValue Root; 5422 bool ConstantMemory = false; 5423 5424 // Do not serialize (non-volatile) loads of constant memory with anything. 5425 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5426 Root = Builder.DAG.getEntryNode(); 5427 ConstantMemory = true; 5428 } else { 5429 // Do not serialize non-volatile loads against each other. 5430 Root = Builder.DAG.getRoot(); 5431 } 5432 5433 SDValue Ptr = Builder.getValue(PtrVal); 5434 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5435 Ptr, MachinePointerInfo(PtrVal), 5436 false /*volatile*/, 5437 false /*nontemporal*/, 5438 false /*isinvariant*/, 1 /* align=1 */); 5439 5440 if (!ConstantMemory) 5441 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5442 return LoadVal; 5443 } 5444 5445 /// processIntegerCallValue - Record the value for an instruction that 5446 /// produces an integer result, converting the type where necessary. 5447 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5448 SDValue Value, 5449 bool IsSigned) { 5450 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5451 I.getType(), true); 5452 if (IsSigned) 5453 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5454 else 5455 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5456 setValue(&I, Value); 5457 } 5458 5459 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5460 /// If so, return true and lower it, otherwise return false and it will be 5461 /// lowered like a normal call. 5462 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5463 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5464 if (I.getNumArgOperands() != 3) 5465 return false; 5466 5467 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5468 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5469 !I.getArgOperand(2)->getType()->isIntegerTy() || 5470 !I.getType()->isIntegerTy()) 5471 return false; 5472 5473 const Value *Size = I.getArgOperand(2); 5474 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5475 if (CSize && CSize->getZExtValue() == 0) { 5476 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5477 I.getType(), true); 5478 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5479 return true; 5480 } 5481 5482 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5483 std::pair<SDValue, SDValue> Res = 5484 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5485 getValue(LHS), getValue(RHS), getValue(Size), 5486 MachinePointerInfo(LHS), 5487 MachinePointerInfo(RHS)); 5488 if (Res.first.getNode()) { 5489 processIntegerCallValue(I, Res.first, true); 5490 PendingLoads.push_back(Res.second); 5491 return true; 5492 } 5493 5494 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5495 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5496 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5497 bool ActuallyDoIt = true; 5498 MVT LoadVT; 5499 Type *LoadTy; 5500 switch (CSize->getZExtValue()) { 5501 default: 5502 LoadVT = MVT::Other; 5503 LoadTy = nullptr; 5504 ActuallyDoIt = false; 5505 break; 5506 case 2: 5507 LoadVT = MVT::i16; 5508 LoadTy = Type::getInt16Ty(CSize->getContext()); 5509 break; 5510 case 4: 5511 LoadVT = MVT::i32; 5512 LoadTy = Type::getInt32Ty(CSize->getContext()); 5513 break; 5514 case 8: 5515 LoadVT = MVT::i64; 5516 LoadTy = Type::getInt64Ty(CSize->getContext()); 5517 break; 5518 /* 5519 case 16: 5520 LoadVT = MVT::v4i32; 5521 LoadTy = Type::getInt32Ty(CSize->getContext()); 5522 LoadTy = VectorType::get(LoadTy, 4); 5523 break; 5524 */ 5525 } 5526 5527 // This turns into unaligned loads. We only do this if the target natively 5528 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5529 // we'll only produce a small number of byte loads. 5530 5531 // Require that we can find a legal MVT, and only do this if the target 5532 // supports unaligned loads of that type. Expanding into byte loads would 5533 // bloat the code. 5534 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5535 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5536 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5537 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5538 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5539 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5540 // TODO: Check alignment of src and dest ptrs. 5541 if (!TLI.isTypeLegal(LoadVT) || 5542 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5543 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5544 ActuallyDoIt = false; 5545 } 5546 5547 if (ActuallyDoIt) { 5548 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5549 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5550 5551 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5552 ISD::SETNE); 5553 processIntegerCallValue(I, Res, false); 5554 return true; 5555 } 5556 } 5557 5558 5559 return false; 5560 } 5561 5562 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5563 /// form. If so, return true and lower it, otherwise return false and it 5564 /// will be lowered like a normal call. 5565 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5566 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5567 if (I.getNumArgOperands() != 3) 5568 return false; 5569 5570 const Value *Src = I.getArgOperand(0); 5571 const Value *Char = I.getArgOperand(1); 5572 const Value *Length = I.getArgOperand(2); 5573 if (!Src->getType()->isPointerTy() || 5574 !Char->getType()->isIntegerTy() || 5575 !Length->getType()->isIntegerTy() || 5576 !I.getType()->isPointerTy()) 5577 return false; 5578 5579 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5580 std::pair<SDValue, SDValue> Res = 5581 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5582 getValue(Src), getValue(Char), getValue(Length), 5583 MachinePointerInfo(Src)); 5584 if (Res.first.getNode()) { 5585 setValue(&I, Res.first); 5586 PendingLoads.push_back(Res.second); 5587 return true; 5588 } 5589 5590 return false; 5591 } 5592 5593 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5594 /// optimized form. If so, return true and lower it, otherwise return false 5595 /// and it will be lowered like a normal call. 5596 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5597 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5598 if (I.getNumArgOperands() != 2) 5599 return false; 5600 5601 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5602 if (!Arg0->getType()->isPointerTy() || 5603 !Arg1->getType()->isPointerTy() || 5604 !I.getType()->isPointerTy()) 5605 return false; 5606 5607 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5608 std::pair<SDValue, SDValue> Res = 5609 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5610 getValue(Arg0), getValue(Arg1), 5611 MachinePointerInfo(Arg0), 5612 MachinePointerInfo(Arg1), isStpcpy); 5613 if (Res.first.getNode()) { 5614 setValue(&I, Res.first); 5615 DAG.setRoot(Res.second); 5616 return true; 5617 } 5618 5619 return false; 5620 } 5621 5622 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5623 /// If so, return true and lower it, otherwise return false and it will be 5624 /// lowered like a normal call. 5625 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5626 // Verify that the prototype makes sense. int strcmp(void*,void*) 5627 if (I.getNumArgOperands() != 2) 5628 return false; 5629 5630 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5631 if (!Arg0->getType()->isPointerTy() || 5632 !Arg1->getType()->isPointerTy() || 5633 !I.getType()->isIntegerTy()) 5634 return false; 5635 5636 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5637 std::pair<SDValue, SDValue> Res = 5638 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5639 getValue(Arg0), getValue(Arg1), 5640 MachinePointerInfo(Arg0), 5641 MachinePointerInfo(Arg1)); 5642 if (Res.first.getNode()) { 5643 processIntegerCallValue(I, Res.first, true); 5644 PendingLoads.push_back(Res.second); 5645 return true; 5646 } 5647 5648 return false; 5649 } 5650 5651 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5652 /// form. If so, return true and lower it, otherwise return false and it 5653 /// will be lowered like a normal call. 5654 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5655 // Verify that the prototype makes sense. size_t strlen(char *) 5656 if (I.getNumArgOperands() != 1) 5657 return false; 5658 5659 const Value *Arg0 = I.getArgOperand(0); 5660 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5661 return false; 5662 5663 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5664 std::pair<SDValue, SDValue> Res = 5665 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5666 getValue(Arg0), MachinePointerInfo(Arg0)); 5667 if (Res.first.getNode()) { 5668 processIntegerCallValue(I, Res.first, false); 5669 PendingLoads.push_back(Res.second); 5670 return true; 5671 } 5672 5673 return false; 5674 } 5675 5676 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5677 /// form. If so, return true and lower it, otherwise return false and it 5678 /// will be lowered like a normal call. 5679 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5680 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5681 if (I.getNumArgOperands() != 2) 5682 return false; 5683 5684 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5685 if (!Arg0->getType()->isPointerTy() || 5686 !Arg1->getType()->isIntegerTy() || 5687 !I.getType()->isIntegerTy()) 5688 return false; 5689 5690 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5691 std::pair<SDValue, SDValue> Res = 5692 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5693 getValue(Arg0), getValue(Arg1), 5694 MachinePointerInfo(Arg0)); 5695 if (Res.first.getNode()) { 5696 processIntegerCallValue(I, Res.first, false); 5697 PendingLoads.push_back(Res.second); 5698 return true; 5699 } 5700 5701 return false; 5702 } 5703 5704 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5705 /// operation (as expected), translate it to an SDNode with the specified opcode 5706 /// and return true. 5707 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5708 unsigned Opcode) { 5709 // Sanity check that it really is a unary floating-point call. 5710 if (I.getNumArgOperands() != 1 || 5711 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5712 I.getType() != I.getArgOperand(0)->getType() || 5713 !I.onlyReadsMemory()) 5714 return false; 5715 5716 SDValue Tmp = getValue(I.getArgOperand(0)); 5717 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5718 return true; 5719 } 5720 5721 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5722 /// operation (as expected), translate it to an SDNode with the specified opcode 5723 /// and return true. 5724 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5725 unsigned Opcode) { 5726 // Sanity check that it really is a binary floating-point call. 5727 if (I.getNumArgOperands() != 2 || 5728 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5729 I.getType() != I.getArgOperand(0)->getType() || 5730 I.getType() != I.getArgOperand(1)->getType() || 5731 !I.onlyReadsMemory()) 5732 return false; 5733 5734 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5735 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5736 EVT VT = Tmp0.getValueType(); 5737 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5738 return true; 5739 } 5740 5741 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5742 // Handle inline assembly differently. 5743 if (isa<InlineAsm>(I.getCalledValue())) { 5744 visitInlineAsm(&I); 5745 return; 5746 } 5747 5748 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5749 ComputeUsesVAFloatArgument(I, &MMI); 5750 5751 const char *RenameFn = nullptr; 5752 if (Function *F = I.getCalledFunction()) { 5753 if (F->isDeclaration()) { 5754 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5755 if (unsigned IID = II->getIntrinsicID(F)) { 5756 RenameFn = visitIntrinsicCall(I, IID); 5757 if (!RenameFn) 5758 return; 5759 } 5760 } 5761 if (Intrinsic::ID IID = F->getIntrinsicID()) { 5762 RenameFn = visitIntrinsicCall(I, IID); 5763 if (!RenameFn) 5764 return; 5765 } 5766 } 5767 5768 // Check for well-known libc/libm calls. If the function is internal, it 5769 // can't be a library call. 5770 LibFunc::Func Func; 5771 if (!F->hasLocalLinkage() && F->hasName() && 5772 LibInfo->getLibFunc(F->getName(), Func) && 5773 LibInfo->hasOptimizedCodeGen(Func)) { 5774 switch (Func) { 5775 default: break; 5776 case LibFunc::copysign: 5777 case LibFunc::copysignf: 5778 case LibFunc::copysignl: 5779 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5780 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5781 I.getType() == I.getArgOperand(0)->getType() && 5782 I.getType() == I.getArgOperand(1)->getType() && 5783 I.onlyReadsMemory()) { 5784 SDValue LHS = getValue(I.getArgOperand(0)); 5785 SDValue RHS = getValue(I.getArgOperand(1)); 5786 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5787 LHS.getValueType(), LHS, RHS)); 5788 return; 5789 } 5790 break; 5791 case LibFunc::fabs: 5792 case LibFunc::fabsf: 5793 case LibFunc::fabsl: 5794 if (visitUnaryFloatCall(I, ISD::FABS)) 5795 return; 5796 break; 5797 case LibFunc::fmin: 5798 case LibFunc::fminf: 5799 case LibFunc::fminl: 5800 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5801 return; 5802 break; 5803 case LibFunc::fmax: 5804 case LibFunc::fmaxf: 5805 case LibFunc::fmaxl: 5806 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5807 return; 5808 break; 5809 case LibFunc::sin: 5810 case LibFunc::sinf: 5811 case LibFunc::sinl: 5812 if (visitUnaryFloatCall(I, ISD::FSIN)) 5813 return; 5814 break; 5815 case LibFunc::cos: 5816 case LibFunc::cosf: 5817 case LibFunc::cosl: 5818 if (visitUnaryFloatCall(I, ISD::FCOS)) 5819 return; 5820 break; 5821 case LibFunc::sqrt: 5822 case LibFunc::sqrtf: 5823 case LibFunc::sqrtl: 5824 case LibFunc::sqrt_finite: 5825 case LibFunc::sqrtf_finite: 5826 case LibFunc::sqrtl_finite: 5827 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5828 return; 5829 break; 5830 case LibFunc::floor: 5831 case LibFunc::floorf: 5832 case LibFunc::floorl: 5833 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5834 return; 5835 break; 5836 case LibFunc::nearbyint: 5837 case LibFunc::nearbyintf: 5838 case LibFunc::nearbyintl: 5839 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5840 return; 5841 break; 5842 case LibFunc::ceil: 5843 case LibFunc::ceilf: 5844 case LibFunc::ceill: 5845 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5846 return; 5847 break; 5848 case LibFunc::rint: 5849 case LibFunc::rintf: 5850 case LibFunc::rintl: 5851 if (visitUnaryFloatCall(I, ISD::FRINT)) 5852 return; 5853 break; 5854 case LibFunc::round: 5855 case LibFunc::roundf: 5856 case LibFunc::roundl: 5857 if (visitUnaryFloatCall(I, ISD::FROUND)) 5858 return; 5859 break; 5860 case LibFunc::trunc: 5861 case LibFunc::truncf: 5862 case LibFunc::truncl: 5863 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5864 return; 5865 break; 5866 case LibFunc::log2: 5867 case LibFunc::log2f: 5868 case LibFunc::log2l: 5869 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5870 return; 5871 break; 5872 case LibFunc::exp2: 5873 case LibFunc::exp2f: 5874 case LibFunc::exp2l: 5875 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5876 return; 5877 break; 5878 case LibFunc::memcmp: 5879 if (visitMemCmpCall(I)) 5880 return; 5881 break; 5882 case LibFunc::memchr: 5883 if (visitMemChrCall(I)) 5884 return; 5885 break; 5886 case LibFunc::strcpy: 5887 if (visitStrCpyCall(I, false)) 5888 return; 5889 break; 5890 case LibFunc::stpcpy: 5891 if (visitStrCpyCall(I, true)) 5892 return; 5893 break; 5894 case LibFunc::strcmp: 5895 if (visitStrCmpCall(I)) 5896 return; 5897 break; 5898 case LibFunc::strlen: 5899 if (visitStrLenCall(I)) 5900 return; 5901 break; 5902 case LibFunc::strnlen: 5903 if (visitStrNLenCall(I)) 5904 return; 5905 break; 5906 } 5907 } 5908 } 5909 5910 SDValue Callee; 5911 if (!RenameFn) 5912 Callee = getValue(I.getCalledValue()); 5913 else 5914 Callee = DAG.getExternalSymbol( 5915 RenameFn, 5916 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5917 5918 // Check if we can potentially perform a tail call. More detailed checking is 5919 // be done within LowerCallTo, after more information about the call is known. 5920 LowerCallTo(&I, Callee, I.isTailCall()); 5921 } 5922 5923 namespace { 5924 5925 /// AsmOperandInfo - This contains information for each constraint that we are 5926 /// lowering. 5927 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5928 public: 5929 /// CallOperand - If this is the result output operand or a clobber 5930 /// this is null, otherwise it is the incoming operand to the CallInst. 5931 /// This gets modified as the asm is processed. 5932 SDValue CallOperand; 5933 5934 /// AssignedRegs - If this is a register or register class operand, this 5935 /// contains the set of register corresponding to the operand. 5936 RegsForValue AssignedRegs; 5937 5938 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5939 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 5940 } 5941 5942 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5943 /// corresponds to. If there is no Value* for this operand, it returns 5944 /// MVT::Other. 5945 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 5946 const DataLayout &DL) const { 5947 if (!CallOperandVal) return MVT::Other; 5948 5949 if (isa<BasicBlock>(CallOperandVal)) 5950 return TLI.getPointerTy(DL); 5951 5952 llvm::Type *OpTy = CallOperandVal->getType(); 5953 5954 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5955 // If this is an indirect operand, the operand is a pointer to the 5956 // accessed type. 5957 if (isIndirect) { 5958 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5959 if (!PtrTy) 5960 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5961 OpTy = PtrTy->getElementType(); 5962 } 5963 5964 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5965 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5966 if (STy->getNumElements() == 1) 5967 OpTy = STy->getElementType(0); 5968 5969 // If OpTy is not a single value, it may be a struct/union that we 5970 // can tile with integers. 5971 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5972 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 5973 switch (BitSize) { 5974 default: break; 5975 case 1: 5976 case 8: 5977 case 16: 5978 case 32: 5979 case 64: 5980 case 128: 5981 OpTy = IntegerType::get(Context, BitSize); 5982 break; 5983 } 5984 } 5985 5986 return TLI.getValueType(DL, OpTy, true); 5987 } 5988 }; 5989 5990 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5991 5992 } // end anonymous namespace 5993 5994 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5995 /// specified operand. We prefer to assign virtual registers, to allow the 5996 /// register allocator to handle the assignment process. However, if the asm 5997 /// uses features that we can't model on machineinstrs, we have SDISel do the 5998 /// allocation. This produces generally horrible, but correct, code. 5999 /// 6000 /// OpInfo describes the operand. 6001 /// 6002 static void GetRegistersForValue(SelectionDAG &DAG, 6003 const TargetLowering &TLI, 6004 SDLoc DL, 6005 SDISelAsmOperandInfo &OpInfo) { 6006 LLVMContext &Context = *DAG.getContext(); 6007 6008 MachineFunction &MF = DAG.getMachineFunction(); 6009 SmallVector<unsigned, 4> Regs; 6010 6011 // If this is a constraint for a single physreg, or a constraint for a 6012 // register class, find it. 6013 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 6014 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 6015 OpInfo.ConstraintCode, 6016 OpInfo.ConstraintVT); 6017 6018 unsigned NumRegs = 1; 6019 if (OpInfo.ConstraintVT != MVT::Other) { 6020 // If this is a FP input in an integer register (or visa versa) insert a bit 6021 // cast of the input value. More generally, handle any case where the input 6022 // value disagrees with the register class we plan to stick this in. 6023 if (OpInfo.Type == InlineAsm::isInput && 6024 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6025 // Try to convert to the first EVT that the reg class contains. If the 6026 // types are identical size, use a bitcast to convert (e.g. two differing 6027 // vector types). 6028 MVT RegVT = *PhysReg.second->vt_begin(); 6029 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6030 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6031 RegVT, OpInfo.CallOperand); 6032 OpInfo.ConstraintVT = RegVT; 6033 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6034 // If the input is a FP value and we want it in FP registers, do a 6035 // bitcast to the corresponding integer type. This turns an f64 value 6036 // into i64, which can be passed with two i32 values on a 32-bit 6037 // machine. 6038 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6039 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6040 RegVT, OpInfo.CallOperand); 6041 OpInfo.ConstraintVT = RegVT; 6042 } 6043 } 6044 6045 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6046 } 6047 6048 MVT RegVT; 6049 EVT ValueVT = OpInfo.ConstraintVT; 6050 6051 // If this is a constraint for a specific physical register, like {r17}, 6052 // assign it now. 6053 if (unsigned AssignedReg = PhysReg.first) { 6054 const TargetRegisterClass *RC = PhysReg.second; 6055 if (OpInfo.ConstraintVT == MVT::Other) 6056 ValueVT = *RC->vt_begin(); 6057 6058 // Get the actual register value type. This is important, because the user 6059 // may have asked for (e.g.) the AX register in i32 type. We need to 6060 // remember that AX is actually i16 to get the right extension. 6061 RegVT = *RC->vt_begin(); 6062 6063 // This is a explicit reference to a physical register. 6064 Regs.push_back(AssignedReg); 6065 6066 // If this is an expanded reference, add the rest of the regs to Regs. 6067 if (NumRegs != 1) { 6068 TargetRegisterClass::iterator I = RC->begin(); 6069 for (; *I != AssignedReg; ++I) 6070 assert(I != RC->end() && "Didn't find reg!"); 6071 6072 // Already added the first reg. 6073 --NumRegs; ++I; 6074 for (; NumRegs; --NumRegs, ++I) { 6075 assert(I != RC->end() && "Ran out of registers to allocate!"); 6076 Regs.push_back(*I); 6077 } 6078 } 6079 6080 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6081 return; 6082 } 6083 6084 // Otherwise, if this was a reference to an LLVM register class, create vregs 6085 // for this reference. 6086 if (const TargetRegisterClass *RC = PhysReg.second) { 6087 RegVT = *RC->vt_begin(); 6088 if (OpInfo.ConstraintVT == MVT::Other) 6089 ValueVT = RegVT; 6090 6091 // Create the appropriate number of virtual registers. 6092 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6093 for (; NumRegs; --NumRegs) 6094 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6095 6096 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6097 return; 6098 } 6099 6100 // Otherwise, we couldn't allocate enough registers for this. 6101 } 6102 6103 /// visitInlineAsm - Handle a call to an InlineAsm object. 6104 /// 6105 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6106 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6107 6108 /// ConstraintOperands - Information about all of the constraints. 6109 SDISelAsmOperandInfoVector ConstraintOperands; 6110 6111 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6112 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 6113 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 6114 6115 bool hasMemory = false; 6116 6117 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6118 unsigned ResNo = 0; // ResNo - The result number of the next output. 6119 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6120 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6121 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6122 6123 MVT OpVT = MVT::Other; 6124 6125 // Compute the value type for each operand. 6126 switch (OpInfo.Type) { 6127 case InlineAsm::isOutput: 6128 // Indirect outputs just consume an argument. 6129 if (OpInfo.isIndirect) { 6130 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6131 break; 6132 } 6133 6134 // The return value of the call is this value. As such, there is no 6135 // corresponding argument. 6136 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6137 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6138 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 6139 STy->getElementType(ResNo)); 6140 } else { 6141 assert(ResNo == 0 && "Asm only has one result!"); 6142 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 6143 } 6144 ++ResNo; 6145 break; 6146 case InlineAsm::isInput: 6147 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6148 break; 6149 case InlineAsm::isClobber: 6150 // Nothing to do. 6151 break; 6152 } 6153 6154 // If this is an input or an indirect output, process the call argument. 6155 // BasicBlocks are labels, currently appearing only in asm's. 6156 if (OpInfo.CallOperandVal) { 6157 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6158 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6159 } else { 6160 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6161 } 6162 6163 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 6164 DAG.getDataLayout()).getSimpleVT(); 6165 } 6166 6167 OpInfo.ConstraintVT = OpVT; 6168 6169 // Indirect operand accesses access memory. 6170 if (OpInfo.isIndirect) 6171 hasMemory = true; 6172 else { 6173 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6174 TargetLowering::ConstraintType 6175 CType = TLI.getConstraintType(OpInfo.Codes[j]); 6176 if (CType == TargetLowering::C_Memory) { 6177 hasMemory = true; 6178 break; 6179 } 6180 } 6181 } 6182 } 6183 6184 SDValue Chain, Flag; 6185 6186 // We won't need to flush pending loads if this asm doesn't touch 6187 // memory and is nonvolatile. 6188 if (hasMemory || IA->hasSideEffects()) 6189 Chain = getRoot(); 6190 else 6191 Chain = DAG.getRoot(); 6192 6193 // Second pass over the constraints: compute which constraint option to use 6194 // and assign registers to constraints that want a specific physreg. 6195 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6196 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6197 6198 // If this is an output operand with a matching input operand, look up the 6199 // matching input. If their types mismatch, e.g. one is an integer, the 6200 // other is floating point, or their sizes are different, flag it as an 6201 // error. 6202 if (OpInfo.hasMatchingInput()) { 6203 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6204 6205 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6206 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6207 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6208 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6209 OpInfo.ConstraintVT); 6210 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6211 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 6212 Input.ConstraintVT); 6213 if ((OpInfo.ConstraintVT.isInteger() != 6214 Input.ConstraintVT.isInteger()) || 6215 (MatchRC.second != InputRC.second)) { 6216 report_fatal_error("Unsupported asm: input constraint" 6217 " with a matching output constraint of" 6218 " incompatible type!"); 6219 } 6220 Input.ConstraintVT = OpInfo.ConstraintVT; 6221 } 6222 } 6223 6224 // Compute the constraint code and ConstraintType to use. 6225 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6226 6227 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6228 OpInfo.Type == InlineAsm::isClobber) 6229 continue; 6230 6231 // If this is a memory input, and if the operand is not indirect, do what we 6232 // need to to provide an address for the memory input. 6233 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6234 !OpInfo.isIndirect) { 6235 assert((OpInfo.isMultipleAlternative || 6236 (OpInfo.Type == InlineAsm::isInput)) && 6237 "Can only indirectify direct input operands!"); 6238 6239 // Memory operands really want the address of the value. If we don't have 6240 // an indirect input, put it in the constpool if we can, otherwise spill 6241 // it to a stack slot. 6242 // TODO: This isn't quite right. We need to handle these according to 6243 // the addressing mode that the constraint wants. Also, this may take 6244 // an additional register for the computation and we don't want that 6245 // either. 6246 6247 // If the operand is a float, integer, or vector constant, spill to a 6248 // constant pool entry to get its address. 6249 const Value *OpVal = OpInfo.CallOperandVal; 6250 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6251 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6252 OpInfo.CallOperand = DAG.getConstantPool( 6253 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6254 } else { 6255 // Otherwise, create a stack slot and emit a store to it before the 6256 // asm. 6257 Type *Ty = OpVal->getType(); 6258 auto &DL = DAG.getDataLayout(); 6259 uint64_t TySize = DL.getTypeAllocSize(Ty); 6260 unsigned Align = DL.getPrefTypeAlignment(Ty); 6261 MachineFunction &MF = DAG.getMachineFunction(); 6262 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6263 SDValue StackSlot = 6264 DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout())); 6265 Chain = DAG.getStore( 6266 Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot, 6267 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), 6268 false, false, 0); 6269 OpInfo.CallOperand = StackSlot; 6270 } 6271 6272 // There is no longer a Value* corresponding to this operand. 6273 OpInfo.CallOperandVal = nullptr; 6274 6275 // It is now an indirect operand. 6276 OpInfo.isIndirect = true; 6277 } 6278 6279 // If this constraint is for a specific register, allocate it before 6280 // anything else. 6281 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6282 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6283 } 6284 6285 // Second pass - Loop over all of the operands, assigning virtual or physregs 6286 // to register class operands. 6287 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6288 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6289 6290 // C_Register operands have already been allocated, Other/Memory don't need 6291 // to be. 6292 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6293 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6294 } 6295 6296 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6297 std::vector<SDValue> AsmNodeOperands; 6298 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6299 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 6300 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 6301 6302 // If we have a !srcloc metadata node associated with it, we want to attach 6303 // this to the ultimately generated inline asm machineinstr. To do this, we 6304 // pass in the third operand as this (potentially null) inline asm MDNode. 6305 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6306 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6307 6308 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6309 // bits as operand 3. 6310 unsigned ExtraInfo = 0; 6311 if (IA->hasSideEffects()) 6312 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6313 if (IA->isAlignStack()) 6314 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6315 // Set the asm dialect. 6316 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6317 6318 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6319 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6320 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6321 6322 // Compute the constraint code and ConstraintType to use. 6323 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6324 6325 // Ideally, we would only check against memory constraints. However, the 6326 // meaning of an other constraint can be target-specific and we can't easily 6327 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6328 // for other constriants as well. 6329 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6330 OpInfo.ConstraintType == TargetLowering::C_Other) { 6331 if (OpInfo.Type == InlineAsm::isInput) 6332 ExtraInfo |= InlineAsm::Extra_MayLoad; 6333 else if (OpInfo.Type == InlineAsm::isOutput) 6334 ExtraInfo |= InlineAsm::Extra_MayStore; 6335 else if (OpInfo.Type == InlineAsm::isClobber) 6336 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6337 } 6338 } 6339 6340 AsmNodeOperands.push_back(DAG.getTargetConstant( 6341 ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6342 6343 // Loop over all of the inputs, copying the operand values into the 6344 // appropriate registers and processing the output regs. 6345 RegsForValue RetValRegs; 6346 6347 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6348 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6349 6350 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6351 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6352 6353 switch (OpInfo.Type) { 6354 case InlineAsm::isOutput: { 6355 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6356 OpInfo.ConstraintType != TargetLowering::C_Register) { 6357 // Memory output, or 'other' output (e.g. 'X' constraint). 6358 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6359 6360 unsigned ConstraintID = 6361 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6362 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6363 "Failed to convert memory constraint code to constraint id."); 6364 6365 // Add information to the INLINEASM node to know about this output. 6366 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6367 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6368 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6369 MVT::i32)); 6370 AsmNodeOperands.push_back(OpInfo.CallOperand); 6371 break; 6372 } 6373 6374 // Otherwise, this is a register or register class output. 6375 6376 // Copy the output from the appropriate register. Find a register that 6377 // we can use. 6378 if (OpInfo.AssignedRegs.Regs.empty()) { 6379 LLVMContext &Ctx = *DAG.getContext(); 6380 Ctx.emitError(CS.getInstruction(), 6381 "couldn't allocate output register for constraint '" + 6382 Twine(OpInfo.ConstraintCode) + "'"); 6383 return; 6384 } 6385 6386 // If this is an indirect operand, store through the pointer after the 6387 // asm. 6388 if (OpInfo.isIndirect) { 6389 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6390 OpInfo.CallOperandVal)); 6391 } else { 6392 // This is the result value of the call. 6393 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6394 // Concatenate this output onto the outputs list. 6395 RetValRegs.append(OpInfo.AssignedRegs); 6396 } 6397 6398 // Add information to the INLINEASM node to know that this register is 6399 // set. 6400 OpInfo.AssignedRegs 6401 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6402 ? InlineAsm::Kind_RegDefEarlyClobber 6403 : InlineAsm::Kind_RegDef, 6404 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6405 break; 6406 } 6407 case InlineAsm::isInput: { 6408 SDValue InOperandVal = OpInfo.CallOperand; 6409 6410 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6411 // If this is required to match an output register we have already set, 6412 // just use its register. 6413 unsigned OperandNo = OpInfo.getMatchedOperand(); 6414 6415 // Scan until we find the definition we already emitted of this operand. 6416 // When we find it, create a RegsForValue operand. 6417 unsigned CurOp = InlineAsm::Op_FirstOperand; 6418 for (; OperandNo; --OperandNo) { 6419 // Advance to the next operand. 6420 unsigned OpFlag = 6421 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6422 assert((InlineAsm::isRegDefKind(OpFlag) || 6423 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6424 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6425 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6426 } 6427 6428 unsigned OpFlag = 6429 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6430 if (InlineAsm::isRegDefKind(OpFlag) || 6431 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6432 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6433 if (OpInfo.isIndirect) { 6434 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6435 LLVMContext &Ctx = *DAG.getContext(); 6436 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6437 " don't know how to handle tied " 6438 "indirect register inputs"); 6439 return; 6440 } 6441 6442 RegsForValue MatchedRegs; 6443 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6444 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6445 MatchedRegs.RegVTs.push_back(RegVT); 6446 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6447 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6448 i != e; ++i) { 6449 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6450 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6451 else { 6452 LLVMContext &Ctx = *DAG.getContext(); 6453 Ctx.emitError(CS.getInstruction(), 6454 "inline asm error: This value" 6455 " type register class is not natively supported!"); 6456 return; 6457 } 6458 } 6459 SDLoc dl = getCurSDLoc(); 6460 // Use the produced MatchedRegs object to 6461 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6462 Chain, &Flag, CS.getInstruction()); 6463 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6464 true, OpInfo.getMatchedOperand(), dl, 6465 DAG, AsmNodeOperands); 6466 break; 6467 } 6468 6469 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6470 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6471 "Unexpected number of operands"); 6472 // Add information to the INLINEASM node to know about this input. 6473 // See InlineAsm.h isUseOperandTiedToDef. 6474 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6475 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6476 OpInfo.getMatchedOperand()); 6477 AsmNodeOperands.push_back(DAG.getTargetConstant( 6478 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6479 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6480 break; 6481 } 6482 6483 // Treat indirect 'X' constraint as memory. 6484 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6485 OpInfo.isIndirect) 6486 OpInfo.ConstraintType = TargetLowering::C_Memory; 6487 6488 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6489 std::vector<SDValue> Ops; 6490 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6491 Ops, DAG); 6492 if (Ops.empty()) { 6493 LLVMContext &Ctx = *DAG.getContext(); 6494 Ctx.emitError(CS.getInstruction(), 6495 "invalid operand for inline asm constraint '" + 6496 Twine(OpInfo.ConstraintCode) + "'"); 6497 return; 6498 } 6499 6500 // Add information to the INLINEASM node to know about this input. 6501 unsigned ResOpType = 6502 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6503 AsmNodeOperands.push_back(DAG.getTargetConstant( 6504 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6505 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6506 break; 6507 } 6508 6509 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6510 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6511 assert(InOperandVal.getValueType() == 6512 TLI.getPointerTy(DAG.getDataLayout()) && 6513 "Memory operands expect pointer values"); 6514 6515 unsigned ConstraintID = 6516 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6517 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6518 "Failed to convert memory constraint code to constraint id."); 6519 6520 // Add information to the INLINEASM node to know about this input. 6521 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6522 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6523 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6524 getCurSDLoc(), 6525 MVT::i32)); 6526 AsmNodeOperands.push_back(InOperandVal); 6527 break; 6528 } 6529 6530 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6531 OpInfo.ConstraintType == TargetLowering::C_Register) && 6532 "Unknown constraint type!"); 6533 6534 // TODO: Support this. 6535 if (OpInfo.isIndirect) { 6536 LLVMContext &Ctx = *DAG.getContext(); 6537 Ctx.emitError(CS.getInstruction(), 6538 "Don't know how to handle indirect register inputs yet " 6539 "for constraint '" + 6540 Twine(OpInfo.ConstraintCode) + "'"); 6541 return; 6542 } 6543 6544 // Copy the input into the appropriate registers. 6545 if (OpInfo.AssignedRegs.Regs.empty()) { 6546 LLVMContext &Ctx = *DAG.getContext(); 6547 Ctx.emitError(CS.getInstruction(), 6548 "couldn't allocate input reg for constraint '" + 6549 Twine(OpInfo.ConstraintCode) + "'"); 6550 return; 6551 } 6552 6553 SDLoc dl = getCurSDLoc(); 6554 6555 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6556 Chain, &Flag, CS.getInstruction()); 6557 6558 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6559 dl, DAG, AsmNodeOperands); 6560 break; 6561 } 6562 case InlineAsm::isClobber: { 6563 // Add the clobbered value to the operand list, so that the register 6564 // allocator is aware that the physreg got clobbered. 6565 if (!OpInfo.AssignedRegs.Regs.empty()) 6566 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6567 false, 0, getCurSDLoc(), DAG, 6568 AsmNodeOperands); 6569 break; 6570 } 6571 } 6572 } 6573 6574 // Finish up input operands. Set the input chain and add the flag last. 6575 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6576 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6577 6578 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6579 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6580 Flag = Chain.getValue(1); 6581 6582 // If this asm returns a register value, copy the result from that register 6583 // and set it as the value of the call. 6584 if (!RetValRegs.Regs.empty()) { 6585 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6586 Chain, &Flag, CS.getInstruction()); 6587 6588 // FIXME: Why don't we do this for inline asms with MRVs? 6589 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6590 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 6591 6592 // If any of the results of the inline asm is a vector, it may have the 6593 // wrong width/num elts. This can happen for register classes that can 6594 // contain multiple different value types. The preg or vreg allocated may 6595 // not have the same VT as was expected. Convert it to the right type 6596 // with bit_convert. 6597 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6598 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6599 ResultType, Val); 6600 6601 } else if (ResultType != Val.getValueType() && 6602 ResultType.isInteger() && Val.getValueType().isInteger()) { 6603 // If a result value was tied to an input value, the computed result may 6604 // have a wider width than the expected result. Extract the relevant 6605 // portion. 6606 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6607 } 6608 6609 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6610 } 6611 6612 setValue(CS.getInstruction(), Val); 6613 // Don't need to use this as a chain in this case. 6614 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6615 return; 6616 } 6617 6618 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6619 6620 // Process indirect outputs, first output all of the flagged copies out of 6621 // physregs. 6622 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6623 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6624 const Value *Ptr = IndirectStoresToEmit[i].second; 6625 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6626 Chain, &Flag, IA); 6627 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6628 } 6629 6630 // Emit the non-flagged stores from the physregs. 6631 SmallVector<SDValue, 8> OutChains; 6632 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6633 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6634 StoresToEmit[i].first, 6635 getValue(StoresToEmit[i].second), 6636 MachinePointerInfo(StoresToEmit[i].second), 6637 false, false, 0); 6638 OutChains.push_back(Val); 6639 } 6640 6641 if (!OutChains.empty()) 6642 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6643 6644 DAG.setRoot(Chain); 6645 } 6646 6647 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6648 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6649 MVT::Other, getRoot(), 6650 getValue(I.getArgOperand(0)), 6651 DAG.getSrcValue(I.getArgOperand(0)))); 6652 } 6653 6654 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6655 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6656 const DataLayout &DL = DAG.getDataLayout(); 6657 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6658 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 6659 DAG.getSrcValue(I.getOperand(0)), 6660 DL.getABITypeAlignment(I.getType())); 6661 setValue(&I, V); 6662 DAG.setRoot(V.getValue(1)); 6663 } 6664 6665 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6666 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6667 MVT::Other, getRoot(), 6668 getValue(I.getArgOperand(0)), 6669 DAG.getSrcValue(I.getArgOperand(0)))); 6670 } 6671 6672 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6673 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6674 MVT::Other, getRoot(), 6675 getValue(I.getArgOperand(0)), 6676 getValue(I.getArgOperand(1)), 6677 DAG.getSrcValue(I.getArgOperand(0)), 6678 DAG.getSrcValue(I.getArgOperand(1)))); 6679 } 6680 6681 /// \brief Lower an argument list according to the target calling convention. 6682 /// 6683 /// \return A tuple of <return-value, token-chain> 6684 /// 6685 /// This is a helper for lowering intrinsics that follow a target calling 6686 /// convention or require stack pointer adjustment. Only a subset of the 6687 /// intrinsic's operands need to participate in the calling convention. 6688 std::pair<SDValue, SDValue> SelectionDAGBuilder::lowerCallOperands( 6689 ImmutableCallSite CS, unsigned ArgIdx, unsigned NumArgs, SDValue Callee, 6690 Type *ReturnTy, const BasicBlock *EHPadBB, bool IsPatchPoint) { 6691 TargetLowering::ArgListTy Args; 6692 Args.reserve(NumArgs); 6693 6694 // Populate the argument list. 6695 // Attributes for args start at offset 1, after the return attribute. 6696 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6697 ArgI != ArgE; ++ArgI) { 6698 const Value *V = CS->getOperand(ArgI); 6699 6700 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6701 6702 TargetLowering::ArgListEntry Entry; 6703 Entry.Node = getValue(V); 6704 Entry.Ty = V->getType(); 6705 Entry.setAttributes(&CS, AttrI); 6706 Args.push_back(Entry); 6707 } 6708 6709 TargetLowering::CallLoweringInfo CLI(DAG); 6710 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6711 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs) 6712 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6713 6714 return lowerInvokable(CLI, EHPadBB); 6715 } 6716 6717 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6718 /// or patchpoint target node's operand list. 6719 /// 6720 /// Constants are converted to TargetConstants purely as an optimization to 6721 /// avoid constant materialization and register allocation. 6722 /// 6723 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6724 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6725 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6726 /// address materialization and register allocation, but may also be required 6727 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6728 /// alloca in the entry block, then the runtime may assume that the alloca's 6729 /// StackMap location can be read immediately after compilation and that the 6730 /// location is valid at any point during execution (this is similar to the 6731 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6732 /// only available in a register, then the runtime would need to trap when 6733 /// execution reaches the StackMap in order to read the alloca's location. 6734 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6735 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 6736 SelectionDAGBuilder &Builder) { 6737 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6738 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6739 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6740 Ops.push_back( 6741 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 6742 Ops.push_back( 6743 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 6744 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6745 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6746 Ops.push_back(Builder.DAG.getTargetFrameIndex( 6747 FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout()))); 6748 } else 6749 Ops.push_back(OpVal); 6750 } 6751 } 6752 6753 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6754 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6755 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6756 // [live variables...]) 6757 6758 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6759 6760 SDValue Chain, InFlag, Callee, NullPtr; 6761 SmallVector<SDValue, 32> Ops; 6762 6763 SDLoc DL = getCurSDLoc(); 6764 Callee = getValue(CI.getCalledValue()); 6765 NullPtr = DAG.getIntPtrConstant(0, DL, true); 6766 6767 // The stackmap intrinsic only records the live variables (the arguemnts 6768 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6769 // intrinsic, this won't be lowered to a function call. This means we don't 6770 // have to worry about calling conventions and target specific lowering code. 6771 // Instead we perform the call lowering right here. 6772 // 6773 // chain, flag = CALLSEQ_START(chain, 0) 6774 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6775 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6776 // 6777 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6778 InFlag = Chain.getValue(1); 6779 6780 // Add the <id> and <numBytes> constants. 6781 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6782 Ops.push_back(DAG.getTargetConstant( 6783 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 6784 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6785 Ops.push_back(DAG.getTargetConstant( 6786 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 6787 MVT::i32)); 6788 6789 // Push live variables for the stack map. 6790 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 6791 6792 // We are not pushing any register mask info here on the operands list, 6793 // because the stackmap doesn't clobber anything. 6794 6795 // Push the chain and the glue flag. 6796 Ops.push_back(Chain); 6797 Ops.push_back(InFlag); 6798 6799 // Create the STACKMAP node. 6800 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6801 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6802 Chain = SDValue(SM, 0); 6803 InFlag = Chain.getValue(1); 6804 6805 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6806 6807 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6808 6809 // Set the root to the target-lowered call chain. 6810 DAG.setRoot(Chain); 6811 6812 // Inform the Frame Information that we have a stackmap in this function. 6813 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6814 } 6815 6816 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6817 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6818 const BasicBlock *EHPadBB) { 6819 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6820 // i32 <numBytes>, 6821 // i8* <target>, 6822 // i32 <numArgs>, 6823 // [Args...], 6824 // [live variables...]) 6825 6826 CallingConv::ID CC = CS.getCallingConv(); 6827 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6828 bool HasDef = !CS->getType()->isVoidTy(); 6829 SDLoc dl = getCurSDLoc(); 6830 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 6831 6832 // Handle immediate and symbolic callees. 6833 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 6834 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 6835 /*isTarget=*/true); 6836 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 6837 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 6838 SDLoc(SymbolicCallee), 6839 SymbolicCallee->getValueType(0)); 6840 6841 // Get the real number of arguments participating in the call <numArgs> 6842 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6843 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6844 6845 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6846 // Intrinsics include all meta-operands up to but not including CC. 6847 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6848 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 6849 "Not enough arguments provided to the patchpoint intrinsic"); 6850 6851 // For AnyRegCC the arguments are lowered later on manually. 6852 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 6853 Type *ReturnTy = 6854 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6855 std::pair<SDValue, SDValue> Result = lowerCallOperands( 6856 CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, EHPadBB, true); 6857 6858 SDNode *CallEnd = Result.second.getNode(); 6859 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6860 CallEnd = CallEnd->getOperand(0).getNode(); 6861 6862 /// Get a call instruction from the call sequence chain. 6863 /// Tail calls are not allowed. 6864 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6865 "Expected a callseq node."); 6866 SDNode *Call = CallEnd->getOperand(0).getNode(); 6867 bool HasGlue = Call->getGluedNode(); 6868 6869 // Replace the target specific call node with the patchable intrinsic. 6870 SmallVector<SDValue, 8> Ops; 6871 6872 // Add the <id> and <numBytes> constants. 6873 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 6874 Ops.push_back(DAG.getTargetConstant( 6875 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 6876 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 6877 Ops.push_back(DAG.getTargetConstant( 6878 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 6879 MVT::i32)); 6880 6881 // Add the callee. 6882 Ops.push_back(Callee); 6883 6884 // Adjust <numArgs> to account for any arguments that have been passed on the 6885 // stack instead. 6886 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6887 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 6888 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 6889 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 6890 6891 // Add the calling convention 6892 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 6893 6894 // Add the arguments we omitted previously. The register allocator should 6895 // place these in any free register. 6896 if (IsAnyRegCC) 6897 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6898 Ops.push_back(getValue(CS.getArgument(i))); 6899 6900 // Push the arguments from the call instruction up to the register mask. 6901 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 6902 Ops.append(Call->op_begin() + 2, e); 6903 6904 // Push live variables for the stack map. 6905 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 6906 6907 // Push the register mask info. 6908 if (HasGlue) 6909 Ops.push_back(*(Call->op_end()-2)); 6910 else 6911 Ops.push_back(*(Call->op_end()-1)); 6912 6913 // Push the chain (this is originally the first operand of the call, but 6914 // becomes now the last or second to last operand). 6915 Ops.push_back(*(Call->op_begin())); 6916 6917 // Push the glue flag (last operand). 6918 if (HasGlue) 6919 Ops.push_back(*(Call->op_end()-1)); 6920 6921 SDVTList NodeTys; 6922 if (IsAnyRegCC && HasDef) { 6923 // Create the return types based on the intrinsic definition 6924 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6925 SmallVector<EVT, 3> ValueVTs; 6926 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 6927 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 6928 6929 // There is always a chain and a glue type at the end 6930 ValueVTs.push_back(MVT::Other); 6931 ValueVTs.push_back(MVT::Glue); 6932 NodeTys = DAG.getVTList(ValueVTs); 6933 } else 6934 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6935 6936 // Replace the target specific call node with a PATCHPOINT node. 6937 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 6938 dl, NodeTys, Ops); 6939 6940 // Update the NodeMap. 6941 if (HasDef) { 6942 if (IsAnyRegCC) 6943 setValue(CS.getInstruction(), SDValue(MN, 0)); 6944 else 6945 setValue(CS.getInstruction(), Result.first); 6946 } 6947 6948 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 6949 // call sequence. Furthermore the location of the chain and glue can change 6950 // when the AnyReg calling convention is used and the intrinsic returns a 6951 // value. 6952 if (IsAnyRegCC && HasDef) { 6953 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 6954 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 6955 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 6956 } else 6957 DAG.ReplaceAllUsesWith(Call, MN); 6958 DAG.DeleteNode(Call); 6959 6960 // Inform the Frame Information that we have a patchpoint in this function. 6961 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 6962 } 6963 6964 /// Returns an AttributeSet representing the attributes applied to the return 6965 /// value of the given call. 6966 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 6967 SmallVector<Attribute::AttrKind, 2> Attrs; 6968 if (CLI.RetSExt) 6969 Attrs.push_back(Attribute::SExt); 6970 if (CLI.RetZExt) 6971 Attrs.push_back(Attribute::ZExt); 6972 if (CLI.IsInReg) 6973 Attrs.push_back(Attribute::InReg); 6974 6975 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 6976 Attrs); 6977 } 6978 6979 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6980 /// implementation, which just calls LowerCall. 6981 /// FIXME: When all targets are 6982 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6983 std::pair<SDValue, SDValue> 6984 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6985 // Handle the incoming return values from the call. 6986 CLI.Ins.clear(); 6987 Type *OrigRetTy = CLI.RetTy; 6988 SmallVector<EVT, 4> RetTys; 6989 SmallVector<uint64_t, 4> Offsets; 6990 auto &DL = CLI.DAG.getDataLayout(); 6991 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 6992 6993 SmallVector<ISD::OutputArg, 4> Outs; 6994 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 6995 6996 bool CanLowerReturn = 6997 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 6998 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 6999 7000 SDValue DemoteStackSlot; 7001 int DemoteStackIdx = -100; 7002 if (!CanLowerReturn) { 7003 // FIXME: equivalent assert? 7004 // assert(!CS.hasInAllocaArgument() && 7005 // "sret demotion is incompatible with inalloca"); 7006 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 7007 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 7008 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7009 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 7010 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7011 7012 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL)); 7013 ArgListEntry Entry; 7014 Entry.Node = DemoteStackSlot; 7015 Entry.Ty = StackSlotPtrType; 7016 Entry.isSExt = false; 7017 Entry.isZExt = false; 7018 Entry.isInReg = false; 7019 Entry.isSRet = true; 7020 Entry.isNest = false; 7021 Entry.isByVal = false; 7022 Entry.isReturned = false; 7023 Entry.Alignment = Align; 7024 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7025 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7026 7027 // sret demotion isn't compatible with tail-calls, since the sret argument 7028 // points into the callers stack frame. 7029 CLI.IsTailCall = false; 7030 } else { 7031 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7032 EVT VT = RetTys[I]; 7033 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7034 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7035 for (unsigned i = 0; i != NumRegs; ++i) { 7036 ISD::InputArg MyFlags; 7037 MyFlags.VT = RegisterVT; 7038 MyFlags.ArgVT = VT; 7039 MyFlags.Used = CLI.IsReturnValueUsed; 7040 if (CLI.RetSExt) 7041 MyFlags.Flags.setSExt(); 7042 if (CLI.RetZExt) 7043 MyFlags.Flags.setZExt(); 7044 if (CLI.IsInReg) 7045 MyFlags.Flags.setInReg(); 7046 CLI.Ins.push_back(MyFlags); 7047 } 7048 } 7049 } 7050 7051 // Handle all of the outgoing arguments. 7052 CLI.Outs.clear(); 7053 CLI.OutVals.clear(); 7054 ArgListTy &Args = CLI.getArgs(); 7055 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7056 SmallVector<EVT, 4> ValueVTs; 7057 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 7058 Type *FinalType = Args[i].Ty; 7059 if (Args[i].isByVal) 7060 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7061 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7062 FinalType, CLI.CallConv, CLI.IsVarArg); 7063 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7064 ++Value) { 7065 EVT VT = ValueVTs[Value]; 7066 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7067 SDValue Op = SDValue(Args[i].Node.getNode(), 7068 Args[i].Node.getResNo() + Value); 7069 ISD::ArgFlagsTy Flags; 7070 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7071 7072 if (Args[i].isZExt) 7073 Flags.setZExt(); 7074 if (Args[i].isSExt) 7075 Flags.setSExt(); 7076 if (Args[i].isInReg) 7077 Flags.setInReg(); 7078 if (Args[i].isSRet) 7079 Flags.setSRet(); 7080 if (Args[i].isByVal) 7081 Flags.setByVal(); 7082 if (Args[i].isInAlloca) { 7083 Flags.setInAlloca(); 7084 // Set the byval flag for CCAssignFn callbacks that don't know about 7085 // inalloca. This way we can know how many bytes we should've allocated 7086 // and how many bytes a callee cleanup function will pop. If we port 7087 // inalloca to more targets, we'll have to add custom inalloca handling 7088 // in the various CC lowering callbacks. 7089 Flags.setByVal(); 7090 } 7091 if (Args[i].isByVal || Args[i].isInAlloca) { 7092 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7093 Type *ElementTy = Ty->getElementType(); 7094 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7095 // For ByVal, alignment should come from FE. BE will guess if this 7096 // info is not there but there are cases it cannot get right. 7097 unsigned FrameAlign; 7098 if (Args[i].Alignment) 7099 FrameAlign = Args[i].Alignment; 7100 else 7101 FrameAlign = getByValTypeAlignment(ElementTy, DL); 7102 Flags.setByValAlign(FrameAlign); 7103 } 7104 if (Args[i].isNest) 7105 Flags.setNest(); 7106 if (NeedsRegBlock) 7107 Flags.setInConsecutiveRegs(); 7108 Flags.setOrigAlign(OriginalAlignment); 7109 7110 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7111 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7112 SmallVector<SDValue, 4> Parts(NumParts); 7113 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7114 7115 if (Args[i].isSExt) 7116 ExtendKind = ISD::SIGN_EXTEND; 7117 else if (Args[i].isZExt) 7118 ExtendKind = ISD::ZERO_EXTEND; 7119 7120 // Conservatively only handle 'returned' on non-vectors for now 7121 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7122 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7123 "unexpected use of 'returned'"); 7124 // Before passing 'returned' to the target lowering code, ensure that 7125 // either the register MVT and the actual EVT are the same size or that 7126 // the return value and argument are extended in the same way; in these 7127 // cases it's safe to pass the argument register value unchanged as the 7128 // return register value (although it's at the target's option whether 7129 // to do so) 7130 // TODO: allow code generation to take advantage of partially preserved 7131 // registers rather than clobbering the entire register when the 7132 // parameter extension method is not compatible with the return 7133 // extension method 7134 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7135 (ExtendKind != ISD::ANY_EXTEND && 7136 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7137 Flags.setReturned(); 7138 } 7139 7140 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7141 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7142 7143 for (unsigned j = 0; j != NumParts; ++j) { 7144 // if it isn't first piece, alignment must be 1 7145 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7146 i < CLI.NumFixedArgs, 7147 i, j*Parts[j].getValueType().getStoreSize()); 7148 if (NumParts > 1 && j == 0) 7149 MyFlags.Flags.setSplit(); 7150 else if (j != 0) 7151 MyFlags.Flags.setOrigAlign(1); 7152 7153 CLI.Outs.push_back(MyFlags); 7154 CLI.OutVals.push_back(Parts[j]); 7155 } 7156 7157 if (NeedsRegBlock && Value == NumValues - 1) 7158 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 7159 } 7160 } 7161 7162 SmallVector<SDValue, 4> InVals; 7163 CLI.Chain = LowerCall(CLI, InVals); 7164 7165 // Verify that the target's LowerCall behaved as expected. 7166 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7167 "LowerCall didn't return a valid chain!"); 7168 assert((!CLI.IsTailCall || InVals.empty()) && 7169 "LowerCall emitted a return value for a tail call!"); 7170 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7171 "LowerCall didn't emit the correct number of values!"); 7172 7173 // For a tail call, the return value is merely live-out and there aren't 7174 // any nodes in the DAG representing it. Return a special value to 7175 // indicate that a tail call has been emitted and no more Instructions 7176 // should be processed in the current block. 7177 if (CLI.IsTailCall) { 7178 CLI.DAG.setRoot(CLI.Chain); 7179 return std::make_pair(SDValue(), SDValue()); 7180 } 7181 7182 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7183 assert(InVals[i].getNode() && 7184 "LowerCall emitted a null value!"); 7185 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7186 "LowerCall emitted a value with the wrong type!"); 7187 }); 7188 7189 SmallVector<SDValue, 4> ReturnValues; 7190 if (!CanLowerReturn) { 7191 // The instruction result is the result of loading from the 7192 // hidden sret parameter. 7193 SmallVector<EVT, 1> PVTs; 7194 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7195 7196 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 7197 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7198 EVT PtrVT = PVTs[0]; 7199 7200 unsigned NumValues = RetTys.size(); 7201 ReturnValues.resize(NumValues); 7202 SmallVector<SDValue, 4> Chains(NumValues); 7203 7204 for (unsigned i = 0; i < NumValues; ++i) { 7205 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7206 CLI.DAG.getConstant(Offsets[i], CLI.DL, 7207 PtrVT)); 7208 SDValue L = CLI.DAG.getLoad( 7209 RetTys[i], CLI.DL, CLI.Chain, Add, 7210 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 7211 DemoteStackIdx, Offsets[i]), 7212 false, false, false, 1); 7213 ReturnValues[i] = L; 7214 Chains[i] = L.getValue(1); 7215 } 7216 7217 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7218 } else { 7219 // Collect the legal value parts into potentially illegal values 7220 // that correspond to the original function's return values. 7221 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7222 if (CLI.RetSExt) 7223 AssertOp = ISD::AssertSext; 7224 else if (CLI.RetZExt) 7225 AssertOp = ISD::AssertZext; 7226 unsigned CurReg = 0; 7227 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7228 EVT VT = RetTys[I]; 7229 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7230 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7231 7232 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7233 NumRegs, RegisterVT, VT, nullptr, 7234 AssertOp)); 7235 CurReg += NumRegs; 7236 } 7237 7238 // For a function returning void, there is no return value. We can't create 7239 // such a node, so we just return a null return value in that case. In 7240 // that case, nothing will actually look at the value. 7241 if (ReturnValues.empty()) 7242 return std::make_pair(SDValue(), CLI.Chain); 7243 } 7244 7245 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7246 CLI.DAG.getVTList(RetTys), ReturnValues); 7247 return std::make_pair(Res, CLI.Chain); 7248 } 7249 7250 void TargetLowering::LowerOperationWrapper(SDNode *N, 7251 SmallVectorImpl<SDValue> &Results, 7252 SelectionDAG &DAG) const { 7253 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7254 if (Res.getNode()) 7255 Results.push_back(Res); 7256 } 7257 7258 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7259 llvm_unreachable("LowerOperation not implemented for this target!"); 7260 } 7261 7262 void 7263 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7264 SDValue Op = getNonRegisterValue(V); 7265 assert((Op.getOpcode() != ISD::CopyFromReg || 7266 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7267 "Copy from a reg to the same reg!"); 7268 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7269 7270 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7271 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 7272 V->getType()); 7273 SDValue Chain = DAG.getEntryNode(); 7274 7275 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7276 FuncInfo.PreferredExtendType.end()) 7277 ? ISD::ANY_EXTEND 7278 : FuncInfo.PreferredExtendType[V]; 7279 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7280 PendingExports.push_back(Chain); 7281 } 7282 7283 #include "llvm/CodeGen/SelectionDAGISel.h" 7284 7285 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7286 /// entry block, return true. This includes arguments used by switches, since 7287 /// the switch may expand into multiple basic blocks. 7288 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7289 // With FastISel active, we may be splitting blocks, so force creation 7290 // of virtual registers for all non-dead arguments. 7291 if (FastISel) 7292 return A->use_empty(); 7293 7294 const BasicBlock &Entry = A->getParent()->front(); 7295 for (const User *U : A->users()) 7296 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 7297 return false; // Use not in entry block. 7298 7299 return true; 7300 } 7301 7302 void SelectionDAGISel::LowerArguments(const Function &F) { 7303 SelectionDAG &DAG = SDB->DAG; 7304 SDLoc dl = SDB->getCurSDLoc(); 7305 const DataLayout &DL = DAG.getDataLayout(); 7306 SmallVector<ISD::InputArg, 16> Ins; 7307 7308 if (!FuncInfo->CanLowerReturn) { 7309 // Put in an sret pointer parameter before all the other parameters. 7310 SmallVector<EVT, 1> ValueVTs; 7311 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7312 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7313 7314 // NOTE: Assuming that a pointer will never break down to more than one VT 7315 // or one register. 7316 ISD::ArgFlagsTy Flags; 7317 Flags.setSRet(); 7318 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7319 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7320 ISD::InputArg::NoArgIndex, 0); 7321 Ins.push_back(RetArg); 7322 } 7323 7324 // Set up the incoming argument description vector. 7325 unsigned Idx = 1; 7326 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7327 I != E; ++I, ++Idx) { 7328 SmallVector<EVT, 4> ValueVTs; 7329 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7330 bool isArgValueUsed = !I->use_empty(); 7331 unsigned PartBase = 0; 7332 Type *FinalType = I->getType(); 7333 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7334 FinalType = cast<PointerType>(FinalType)->getElementType(); 7335 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7336 FinalType, F.getCallingConv(), F.isVarArg()); 7337 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7338 Value != NumValues; ++Value) { 7339 EVT VT = ValueVTs[Value]; 7340 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7341 ISD::ArgFlagsTy Flags; 7342 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7343 7344 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7345 Flags.setZExt(); 7346 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7347 Flags.setSExt(); 7348 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7349 Flags.setInReg(); 7350 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7351 Flags.setSRet(); 7352 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7353 Flags.setByVal(); 7354 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7355 Flags.setInAlloca(); 7356 // Set the byval flag for CCAssignFn callbacks that don't know about 7357 // inalloca. This way we can know how many bytes we should've allocated 7358 // and how many bytes a callee cleanup function will pop. If we port 7359 // inalloca to more targets, we'll have to add custom inalloca handling 7360 // in the various CC lowering callbacks. 7361 Flags.setByVal(); 7362 } 7363 if (Flags.isByVal() || Flags.isInAlloca()) { 7364 PointerType *Ty = cast<PointerType>(I->getType()); 7365 Type *ElementTy = Ty->getElementType(); 7366 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7367 // For ByVal, alignment should be passed from FE. BE will guess if 7368 // this info is not there but there are cases it cannot get right. 7369 unsigned FrameAlign; 7370 if (F.getParamAlignment(Idx)) 7371 FrameAlign = F.getParamAlignment(Idx); 7372 else 7373 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 7374 Flags.setByValAlign(FrameAlign); 7375 } 7376 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7377 Flags.setNest(); 7378 if (NeedsRegBlock) 7379 Flags.setInConsecutiveRegs(); 7380 Flags.setOrigAlign(OriginalAlignment); 7381 7382 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7383 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7384 for (unsigned i = 0; i != NumRegs; ++i) { 7385 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7386 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7387 if (NumRegs > 1 && i == 0) 7388 MyFlags.Flags.setSplit(); 7389 // if it isn't first piece, alignment must be 1 7390 else if (i > 0) 7391 MyFlags.Flags.setOrigAlign(1); 7392 Ins.push_back(MyFlags); 7393 } 7394 if (NeedsRegBlock && Value == NumValues - 1) 7395 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7396 PartBase += VT.getStoreSize(); 7397 } 7398 } 7399 7400 // Call the target to set up the argument values. 7401 SmallVector<SDValue, 8> InVals; 7402 SDValue NewRoot = TLI->LowerFormalArguments( 7403 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7404 7405 // Verify that the target's LowerFormalArguments behaved as expected. 7406 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7407 "LowerFormalArguments didn't return a valid chain!"); 7408 assert(InVals.size() == Ins.size() && 7409 "LowerFormalArguments didn't emit the correct number of values!"); 7410 DEBUG({ 7411 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7412 assert(InVals[i].getNode() && 7413 "LowerFormalArguments emitted a null value!"); 7414 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7415 "LowerFormalArguments emitted a value with the wrong type!"); 7416 } 7417 }); 7418 7419 // Update the DAG with the new chain value resulting from argument lowering. 7420 DAG.setRoot(NewRoot); 7421 7422 // Set up the argument values. 7423 unsigned i = 0; 7424 Idx = 1; 7425 if (!FuncInfo->CanLowerReturn) { 7426 // Create a virtual register for the sret pointer, and put in a copy 7427 // from the sret argument into it. 7428 SmallVector<EVT, 1> ValueVTs; 7429 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7430 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7431 MVT VT = ValueVTs[0].getSimpleVT(); 7432 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7433 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7434 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7435 RegVT, VT, nullptr, AssertOp); 7436 7437 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7438 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7439 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7440 FuncInfo->DemoteRegister = SRetReg; 7441 NewRoot = 7442 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7443 DAG.setRoot(NewRoot); 7444 7445 // i indexes lowered arguments. Bump it past the hidden sret argument. 7446 // Idx indexes LLVM arguments. Don't touch it. 7447 ++i; 7448 } 7449 7450 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7451 ++I, ++Idx) { 7452 SmallVector<SDValue, 4> ArgValues; 7453 SmallVector<EVT, 4> ValueVTs; 7454 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7455 unsigned NumValues = ValueVTs.size(); 7456 7457 // If this argument is unused then remember its value. It is used to generate 7458 // debugging information. 7459 if (I->use_empty() && NumValues) { 7460 SDB->setUnusedArgValue(&*I, InVals[i]); 7461 7462 // Also remember any frame index for use in FastISel. 7463 if (FrameIndexSDNode *FI = 7464 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7465 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7466 } 7467 7468 for (unsigned Val = 0; Val != NumValues; ++Val) { 7469 EVT VT = ValueVTs[Val]; 7470 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7471 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7472 7473 if (!I->use_empty()) { 7474 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7475 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7476 AssertOp = ISD::AssertSext; 7477 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7478 AssertOp = ISD::AssertZext; 7479 7480 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7481 NumParts, PartVT, VT, 7482 nullptr, AssertOp)); 7483 } 7484 7485 i += NumParts; 7486 } 7487 7488 // We don't need to do anything else for unused arguments. 7489 if (ArgValues.empty()) 7490 continue; 7491 7492 // Note down frame index. 7493 if (FrameIndexSDNode *FI = 7494 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7495 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7496 7497 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7498 SDB->getCurSDLoc()); 7499 7500 SDB->setValue(&*I, Res); 7501 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7502 if (LoadSDNode *LNode = 7503 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7504 if (FrameIndexSDNode *FI = 7505 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7506 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7507 } 7508 7509 // If this argument is live outside of the entry block, insert a copy from 7510 // wherever we got it to the vreg that other BB's will reference it as. 7511 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7512 // If we can, though, try to skip creating an unnecessary vreg. 7513 // FIXME: This isn't very clean... it would be nice to make this more 7514 // general. It's also subtly incompatible with the hacks FastISel 7515 // uses with vregs. 7516 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7517 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7518 FuncInfo->ValueMap[&*I] = Reg; 7519 continue; 7520 } 7521 } 7522 if (!isOnlyUsedInEntryBlock(&*I, TM.Options.EnableFastISel)) { 7523 FuncInfo->InitializeRegForValue(&*I); 7524 SDB->CopyToExportRegsIfNeeded(&*I); 7525 } 7526 } 7527 7528 assert(i == InVals.size() && "Argument register count mismatch!"); 7529 7530 // Finally, if the target has anything special to do, allow it to do so. 7531 EmitFunctionEntryCode(); 7532 } 7533 7534 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7535 /// ensure constants are generated when needed. Remember the virtual registers 7536 /// that need to be added to the Machine PHI nodes as input. We cannot just 7537 /// directly add them, because expansion might result in multiple MBB's for one 7538 /// BB. As such, the start of the BB might correspond to a different MBB than 7539 /// the end. 7540 /// 7541 void 7542 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7543 const TerminatorInst *TI = LLVMBB->getTerminator(); 7544 7545 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7546 7547 // Check PHI nodes in successors that expect a value to be available from this 7548 // block. 7549 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7550 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7551 if (!isa<PHINode>(SuccBB->begin())) continue; 7552 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7553 7554 // If this terminator has multiple identical successors (common for 7555 // switches), only handle each succ once. 7556 if (!SuccsHandled.insert(SuccMBB).second) 7557 continue; 7558 7559 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7560 7561 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7562 // nodes and Machine PHI nodes, but the incoming operands have not been 7563 // emitted yet. 7564 for (BasicBlock::const_iterator I = SuccBB->begin(); 7565 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7566 // Ignore dead phi's. 7567 if (PN->use_empty()) continue; 7568 7569 // Skip empty types 7570 if (PN->getType()->isEmptyTy()) 7571 continue; 7572 7573 unsigned Reg; 7574 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7575 7576 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7577 unsigned &RegOut = ConstantsOut[C]; 7578 if (RegOut == 0) { 7579 RegOut = FuncInfo.CreateRegs(C->getType()); 7580 CopyValueToVirtualRegister(C, RegOut); 7581 } 7582 Reg = RegOut; 7583 } else { 7584 DenseMap<const Value *, unsigned>::iterator I = 7585 FuncInfo.ValueMap.find(PHIOp); 7586 if (I != FuncInfo.ValueMap.end()) 7587 Reg = I->second; 7588 else { 7589 assert(isa<AllocaInst>(PHIOp) && 7590 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7591 "Didn't codegen value into a register!??"); 7592 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7593 CopyValueToVirtualRegister(PHIOp, Reg); 7594 } 7595 } 7596 7597 // Remember that this register needs to added to the machine PHI node as 7598 // the input for this MBB. 7599 SmallVector<EVT, 4> ValueVTs; 7600 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7601 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 7602 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7603 EVT VT = ValueVTs[vti]; 7604 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7605 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7606 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7607 Reg += NumRegisters; 7608 } 7609 } 7610 } 7611 7612 ConstantsOut.clear(); 7613 } 7614 7615 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7616 /// is 0. 7617 MachineBasicBlock * 7618 SelectionDAGBuilder::StackProtectorDescriptor:: 7619 AddSuccessorMBB(const BasicBlock *BB, 7620 MachineBasicBlock *ParentMBB, 7621 bool IsLikely, 7622 MachineBasicBlock *SuccMBB) { 7623 // If SuccBB has not been created yet, create it. 7624 if (!SuccMBB) { 7625 MachineFunction *MF = ParentMBB->getParent(); 7626 MachineFunction::iterator BBI(ParentMBB); 7627 SuccMBB = MF->CreateMachineBasicBlock(BB); 7628 MF->insert(++BBI, SuccMBB); 7629 } 7630 // Add it as a successor of ParentMBB. 7631 ParentMBB->addSuccessor( 7632 SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely)); 7633 return SuccMBB; 7634 } 7635 7636 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7637 MachineFunction::iterator I(MBB); 7638 if (++I == FuncInfo.MF->end()) 7639 return nullptr; 7640 return &*I; 7641 } 7642 7643 /// During lowering new call nodes can be created (such as memset, etc.). 7644 /// Those will become new roots of the current DAG, but complications arise 7645 /// when they are tail calls. In such cases, the call lowering will update 7646 /// the root, but the builder still needs to know that a tail call has been 7647 /// lowered in order to avoid generating an additional return. 7648 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7649 // If the node is null, we do have a tail call. 7650 if (MaybeTC.getNode() != nullptr) 7651 DAG.setRoot(MaybeTC); 7652 else 7653 HasTailCall = true; 7654 } 7655 7656 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7657 unsigned *TotalCases, unsigned First, 7658 unsigned Last) { 7659 assert(Last >= First); 7660 assert(TotalCases[Last] >= TotalCases[First]); 7661 7662 APInt LowCase = Clusters[First].Low->getValue(); 7663 APInt HighCase = Clusters[Last].High->getValue(); 7664 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7665 7666 // FIXME: A range of consecutive cases has 100% density, but only requires one 7667 // comparison to lower. We should discriminate against such consecutive ranges 7668 // in jump tables. 7669 7670 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7671 uint64_t Range = Diff + 1; 7672 7673 uint64_t NumCases = 7674 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7675 7676 assert(NumCases < UINT64_MAX / 100); 7677 assert(Range >= NumCases); 7678 7679 return NumCases * 100 >= Range * MinJumpTableDensity; 7680 } 7681 7682 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7683 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7684 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7685 } 7686 7687 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7688 unsigned First, unsigned Last, 7689 const SwitchInst *SI, 7690 MachineBasicBlock *DefaultMBB, 7691 CaseCluster &JTCluster) { 7692 assert(First <= Last); 7693 7694 uint32_t Weight = 0; 7695 unsigned NumCmps = 0; 7696 std::vector<MachineBasicBlock*> Table; 7697 DenseMap<MachineBasicBlock*, uint32_t> JTWeights; 7698 for (unsigned I = First; I <= Last; ++I) { 7699 assert(Clusters[I].Kind == CC_Range); 7700 Weight += Clusters[I].Weight; 7701 assert(Weight >= Clusters[I].Weight && "Weight overflow!"); 7702 APInt Low = Clusters[I].Low->getValue(); 7703 APInt High = Clusters[I].High->getValue(); 7704 NumCmps += (Low == High) ? 1 : 2; 7705 if (I != First) { 7706 // Fill the gap between this and the previous cluster. 7707 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7708 assert(PreviousHigh.slt(Low)); 7709 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7710 for (uint64_t J = 0; J < Gap; J++) 7711 Table.push_back(DefaultMBB); 7712 } 7713 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7714 for (uint64_t J = 0; J < ClusterSize; ++J) 7715 Table.push_back(Clusters[I].MBB); 7716 JTWeights[Clusters[I].MBB] += Clusters[I].Weight; 7717 } 7718 7719 unsigned NumDests = JTWeights.size(); 7720 if (isSuitableForBitTests(NumDests, NumCmps, 7721 Clusters[First].Low->getValue(), 7722 Clusters[Last].High->getValue())) { 7723 // Clusters[First..Last] should be lowered as bit tests instead. 7724 return false; 7725 } 7726 7727 // Create the MBB that will load from and jump through the table. 7728 // Note: We create it here, but it's not inserted into the function yet. 7729 MachineFunction *CurMF = FuncInfo.MF; 7730 MachineBasicBlock *JumpTableMBB = 7731 CurMF->CreateMachineBasicBlock(SI->getParent()); 7732 7733 // Add successors. Note: use table order for determinism. 7734 SmallPtrSet<MachineBasicBlock *, 8> Done; 7735 for (MachineBasicBlock *Succ : Table) { 7736 if (Done.count(Succ)) 7737 continue; 7738 addSuccessorWithWeight(JumpTableMBB, Succ, JTWeights[Succ]); 7739 Done.insert(Succ); 7740 } 7741 7742 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7743 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 7744 ->createJumpTableIndex(Table); 7745 7746 // Set up the jump table info. 7747 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 7748 JumpTableHeader JTH(Clusters[First].Low->getValue(), 7749 Clusters[Last].High->getValue(), SI->getCondition(), 7750 nullptr, false); 7751 JTCases.emplace_back(std::move(JTH), std::move(JT)); 7752 7753 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 7754 JTCases.size() - 1, Weight); 7755 return true; 7756 } 7757 7758 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 7759 const SwitchInst *SI, 7760 MachineBasicBlock *DefaultMBB) { 7761 #ifndef NDEBUG 7762 // Clusters must be non-empty, sorted, and only contain Range clusters. 7763 assert(!Clusters.empty()); 7764 for (CaseCluster &C : Clusters) 7765 assert(C.Kind == CC_Range); 7766 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 7767 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 7768 #endif 7769 7770 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7771 if (!areJTsAllowed(TLI)) 7772 return; 7773 7774 const int64_t N = Clusters.size(); 7775 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 7776 7777 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 7778 SmallVector<unsigned, 8> TotalCases(N); 7779 7780 for (unsigned i = 0; i < N; ++i) { 7781 APInt Hi = Clusters[i].High->getValue(); 7782 APInt Lo = Clusters[i].Low->getValue(); 7783 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 7784 if (i != 0) 7785 TotalCases[i] += TotalCases[i - 1]; 7786 } 7787 7788 if (N >= MinJumpTableSize && isDense(Clusters, &TotalCases[0], 0, N - 1)) { 7789 // Cheap case: the whole range might be suitable for jump table. 7790 CaseCluster JTCluster; 7791 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 7792 Clusters[0] = JTCluster; 7793 Clusters.resize(1); 7794 return; 7795 } 7796 } 7797 7798 // The algorithm below is not suitable for -O0. 7799 if (TM.getOptLevel() == CodeGenOpt::None) 7800 return; 7801 7802 // Split Clusters into minimum number of dense partitions. The algorithm uses 7803 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 7804 // for the Case Statement'" (1994), but builds the MinPartitions array in 7805 // reverse order to make it easier to reconstruct the partitions in ascending 7806 // order. In the choice between two optimal partitionings, it picks the one 7807 // which yields more jump tables. 7808 7809 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7810 SmallVector<unsigned, 8> MinPartitions(N); 7811 // LastElement[i] is the last element of the partition starting at i. 7812 SmallVector<unsigned, 8> LastElement(N); 7813 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 7814 SmallVector<unsigned, 8> NumTables(N); 7815 7816 // Base case: There is only one way to partition Clusters[N-1]. 7817 MinPartitions[N - 1] = 1; 7818 LastElement[N - 1] = N - 1; 7819 assert(MinJumpTableSize > 1); 7820 NumTables[N - 1] = 0; 7821 7822 // Note: loop indexes are signed to avoid underflow. 7823 for (int64_t i = N - 2; i >= 0; i--) { 7824 // Find optimal partitioning of Clusters[i..N-1]. 7825 // Baseline: Put Clusters[i] into a partition on its own. 7826 MinPartitions[i] = MinPartitions[i + 1] + 1; 7827 LastElement[i] = i; 7828 NumTables[i] = NumTables[i + 1]; 7829 7830 // Search for a solution that results in fewer partitions. 7831 for (int64_t j = N - 1; j > i; j--) { 7832 // Try building a partition from Clusters[i..j]. 7833 if (isDense(Clusters, &TotalCases[0], i, j)) { 7834 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7835 bool IsTable = j - i + 1 >= MinJumpTableSize; 7836 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 7837 7838 // If this j leads to fewer partitions, or same number of partitions 7839 // with more lookup tables, it is a better partitioning. 7840 if (NumPartitions < MinPartitions[i] || 7841 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 7842 MinPartitions[i] = NumPartitions; 7843 LastElement[i] = j; 7844 NumTables[i] = Tables; 7845 } 7846 } 7847 } 7848 } 7849 7850 // Iterate over the partitions, replacing some with jump tables in-place. 7851 unsigned DstIndex = 0; 7852 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7853 Last = LastElement[First]; 7854 assert(Last >= First); 7855 assert(DstIndex <= First); 7856 unsigned NumClusters = Last - First + 1; 7857 7858 CaseCluster JTCluster; 7859 if (NumClusters >= MinJumpTableSize && 7860 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 7861 Clusters[DstIndex++] = JTCluster; 7862 } else { 7863 for (unsigned I = First; I <= Last; ++I) 7864 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7865 } 7866 } 7867 Clusters.resize(DstIndex); 7868 } 7869 7870 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 7871 // FIXME: Using the pointer type doesn't seem ideal. 7872 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); 7873 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 7874 return Range <= BW; 7875 } 7876 7877 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 7878 unsigned NumCmps, 7879 const APInt &Low, 7880 const APInt &High) { 7881 // FIXME: I don't think NumCmps is the correct metric: a single case and a 7882 // range of cases both require only one branch to lower. Just looking at the 7883 // number of clusters and destinations should be enough to decide whether to 7884 // build bit tests. 7885 7886 // To lower a range with bit tests, the range must fit the bitwidth of a 7887 // machine word. 7888 if (!rangeFitsInWord(Low, High)) 7889 return false; 7890 7891 // Decide whether it's profitable to lower this range with bit tests. Each 7892 // destination requires a bit test and branch, and there is an overall range 7893 // check branch. For a small number of clusters, separate comparisons might be 7894 // cheaper, and for many destinations, splitting the range might be better. 7895 return (NumDests == 1 && NumCmps >= 3) || 7896 (NumDests == 2 && NumCmps >= 5) || 7897 (NumDests == 3 && NumCmps >= 6); 7898 } 7899 7900 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 7901 unsigned First, unsigned Last, 7902 const SwitchInst *SI, 7903 CaseCluster &BTCluster) { 7904 assert(First <= Last); 7905 if (First == Last) 7906 return false; 7907 7908 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7909 unsigned NumCmps = 0; 7910 for (int64_t I = First; I <= Last; ++I) { 7911 assert(Clusters[I].Kind == CC_Range); 7912 Dests.set(Clusters[I].MBB->getNumber()); 7913 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 7914 } 7915 unsigned NumDests = Dests.count(); 7916 7917 APInt Low = Clusters[First].Low->getValue(); 7918 APInt High = Clusters[Last].High->getValue(); 7919 assert(Low.slt(High)); 7920 7921 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 7922 return false; 7923 7924 APInt LowBound; 7925 APInt CmpRange; 7926 7927 const int BitWidth = DAG.getTargetLoweringInfo() 7928 .getPointerTy(DAG.getDataLayout()) 7929 .getSizeInBits(); 7930 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 7931 7932 // Check if the clusters cover a contiguous range such that no value in the 7933 // range will jump to the default statement. 7934 bool ContiguousRange = true; 7935 for (int64_t I = First + 1; I <= Last; ++I) { 7936 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 7937 ContiguousRange = false; 7938 break; 7939 } 7940 } 7941 7942 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 7943 // Optimize the case where all the case values fit in a word without having 7944 // to subtract minValue. In this case, we can optimize away the subtraction. 7945 LowBound = APInt::getNullValue(Low.getBitWidth()); 7946 CmpRange = High; 7947 ContiguousRange = false; 7948 } else { 7949 LowBound = Low; 7950 CmpRange = High - Low; 7951 } 7952 7953 CaseBitsVector CBV; 7954 uint32_t TotalWeight = 0; 7955 for (unsigned i = First; i <= Last; ++i) { 7956 // Find the CaseBits for this destination. 7957 unsigned j; 7958 for (j = 0; j < CBV.size(); ++j) 7959 if (CBV[j].BB == Clusters[i].MBB) 7960 break; 7961 if (j == CBV.size()) 7962 CBV.push_back(CaseBits(0, Clusters[i].MBB, 0, 0)); 7963 CaseBits *CB = &CBV[j]; 7964 7965 // Update Mask, Bits and ExtraWeight. 7966 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 7967 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 7968 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 7969 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 7970 CB->Bits += Hi - Lo + 1; 7971 CB->ExtraWeight += Clusters[i].Weight; 7972 TotalWeight += Clusters[i].Weight; 7973 assert(TotalWeight >= Clusters[i].Weight && "Weight overflow!"); 7974 } 7975 7976 BitTestInfo BTI; 7977 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 7978 // Sort by weight first, number of bits second. 7979 if (a.ExtraWeight != b.ExtraWeight) 7980 return a.ExtraWeight > b.ExtraWeight; 7981 return a.Bits > b.Bits; 7982 }); 7983 7984 for (auto &CB : CBV) { 7985 MachineBasicBlock *BitTestBB = 7986 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 7987 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraWeight)); 7988 } 7989 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 7990 SI->getCondition(), -1U, MVT::Other, false, 7991 ContiguousRange, nullptr, nullptr, std::move(BTI), 7992 TotalWeight); 7993 7994 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 7995 BitTestCases.size() - 1, TotalWeight); 7996 return true; 7997 } 7998 7999 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 8000 const SwitchInst *SI) { 8001 // Partition Clusters into as few subsets as possible, where each subset has a 8002 // range that fits in a machine word and has <= 3 unique destinations. 8003 8004 #ifndef NDEBUG 8005 // Clusters must be sorted and contain Range or JumpTable clusters. 8006 assert(!Clusters.empty()); 8007 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 8008 for (const CaseCluster &C : Clusters) 8009 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 8010 for (unsigned i = 1; i < Clusters.size(); ++i) 8011 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 8012 #endif 8013 8014 // The algorithm below is not suitable for -O0. 8015 if (TM.getOptLevel() == CodeGenOpt::None) 8016 return; 8017 8018 // If target does not have legal shift left, do not emit bit tests at all. 8019 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8020 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 8021 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 8022 return; 8023 8024 int BitWidth = PTy.getSizeInBits(); 8025 const int64_t N = Clusters.size(); 8026 8027 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 8028 SmallVector<unsigned, 8> MinPartitions(N); 8029 // LastElement[i] is the last element of the partition starting at i. 8030 SmallVector<unsigned, 8> LastElement(N); 8031 8032 // FIXME: This might not be the best algorithm for finding bit test clusters. 8033 8034 // Base case: There is only one way to partition Clusters[N-1]. 8035 MinPartitions[N - 1] = 1; 8036 LastElement[N - 1] = N - 1; 8037 8038 // Note: loop indexes are signed to avoid underflow. 8039 for (int64_t i = N - 2; i >= 0; --i) { 8040 // Find optimal partitioning of Clusters[i..N-1]. 8041 // Baseline: Put Clusters[i] into a partition on its own. 8042 MinPartitions[i] = MinPartitions[i + 1] + 1; 8043 LastElement[i] = i; 8044 8045 // Search for a solution that results in fewer partitions. 8046 // Note: the search is limited by BitWidth, reducing time complexity. 8047 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 8048 // Try building a partition from Clusters[i..j]. 8049 8050 // Check the range. 8051 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 8052 Clusters[j].High->getValue())) 8053 continue; 8054 8055 // Check nbr of destinations and cluster types. 8056 // FIXME: This works, but doesn't seem very efficient. 8057 bool RangesOnly = true; 8058 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 8059 for (int64_t k = i; k <= j; k++) { 8060 if (Clusters[k].Kind != CC_Range) { 8061 RangesOnly = false; 8062 break; 8063 } 8064 Dests.set(Clusters[k].MBB->getNumber()); 8065 } 8066 if (!RangesOnly || Dests.count() > 3) 8067 break; 8068 8069 // Check if it's a better partition. 8070 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 8071 if (NumPartitions < MinPartitions[i]) { 8072 // Found a better partition. 8073 MinPartitions[i] = NumPartitions; 8074 LastElement[i] = j; 8075 } 8076 } 8077 } 8078 8079 // Iterate over the partitions, replacing with bit-test clusters in-place. 8080 unsigned DstIndex = 0; 8081 for (unsigned First = 0, Last; First < N; First = Last + 1) { 8082 Last = LastElement[First]; 8083 assert(First <= Last); 8084 assert(DstIndex <= First); 8085 8086 CaseCluster BitTestCluster; 8087 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 8088 Clusters[DstIndex++] = BitTestCluster; 8089 } else { 8090 size_t NumClusters = Last - First + 1; 8091 std::memmove(&Clusters[DstIndex], &Clusters[First], 8092 sizeof(Clusters[0]) * NumClusters); 8093 DstIndex += NumClusters; 8094 } 8095 } 8096 Clusters.resize(DstIndex); 8097 } 8098 8099 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 8100 MachineBasicBlock *SwitchMBB, 8101 MachineBasicBlock *DefaultMBB) { 8102 MachineFunction *CurMF = FuncInfo.MF; 8103 MachineBasicBlock *NextMBB = nullptr; 8104 MachineFunction::iterator BBI(W.MBB); 8105 if (++BBI != FuncInfo.MF->end()) 8106 NextMBB = &*BBI; 8107 8108 unsigned Size = W.LastCluster - W.FirstCluster + 1; 8109 8110 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8111 8112 if (Size == 2 && W.MBB == SwitchMBB) { 8113 // If any two of the cases has the same destination, and if one value 8114 // is the same as the other, but has one bit unset that the other has set, 8115 // use bit manipulation to do two compares at once. For example: 8116 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 8117 // TODO: This could be extended to merge any 2 cases in switches with 3 8118 // cases. 8119 // TODO: Handle cases where W.CaseBB != SwitchBB. 8120 CaseCluster &Small = *W.FirstCluster; 8121 CaseCluster &Big = *W.LastCluster; 8122 8123 if (Small.Low == Small.High && Big.Low == Big.High && 8124 Small.MBB == Big.MBB) { 8125 const APInt &SmallValue = Small.Low->getValue(); 8126 const APInt &BigValue = Big.Low->getValue(); 8127 8128 // Check that there is only one bit different. 8129 APInt CommonBit = BigValue ^ SmallValue; 8130 if (CommonBit.isPowerOf2()) { 8131 SDValue CondLHS = getValue(Cond); 8132 EVT VT = CondLHS.getValueType(); 8133 SDLoc DL = getCurSDLoc(); 8134 8135 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 8136 DAG.getConstant(CommonBit, DL, VT)); 8137 SDValue Cond = DAG.getSetCC( 8138 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 8139 ISD::SETEQ); 8140 8141 // Update successor info. 8142 // Both Small and Big will jump to Small.BB, so we sum up the weights. 8143 addSuccessorWithWeight(SwitchMBB, Small.MBB, Small.Weight + Big.Weight); 8144 addSuccessorWithWeight( 8145 SwitchMBB, DefaultMBB, 8146 // The default destination is the first successor in IR. 8147 BPI ? BPI->getEdgeWeight(SwitchMBB->getBasicBlock(), (unsigned)0) 8148 : 0); 8149 8150 // Insert the true branch. 8151 SDValue BrCond = 8152 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 8153 DAG.getBasicBlock(Small.MBB)); 8154 // Insert the false branch. 8155 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 8156 DAG.getBasicBlock(DefaultMBB)); 8157 8158 DAG.setRoot(BrCond); 8159 return; 8160 } 8161 } 8162 } 8163 8164 if (TM.getOptLevel() != CodeGenOpt::None) { 8165 // Order cases by weight so the most likely case will be checked first. 8166 std::sort(W.FirstCluster, W.LastCluster + 1, 8167 [](const CaseCluster &a, const CaseCluster &b) { 8168 return a.Weight > b.Weight; 8169 }); 8170 8171 // Rearrange the case blocks so that the last one falls through if possible 8172 // without without changing the order of weights. 8173 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 8174 --I; 8175 if (I->Weight > W.LastCluster->Weight) 8176 break; 8177 if (I->Kind == CC_Range && I->MBB == NextMBB) { 8178 std::swap(*I, *W.LastCluster); 8179 break; 8180 } 8181 } 8182 } 8183 8184 // Compute total weight. 8185 uint32_t DefaultWeight = W.DefaultWeight; 8186 uint32_t UnhandledWeights = DefaultWeight; 8187 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) { 8188 UnhandledWeights += I->Weight; 8189 assert(UnhandledWeights >= I->Weight && "Weight overflow!"); 8190 } 8191 8192 MachineBasicBlock *CurMBB = W.MBB; 8193 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 8194 MachineBasicBlock *Fallthrough; 8195 if (I == W.LastCluster) { 8196 // For the last cluster, fall through to the default destination. 8197 Fallthrough = DefaultMBB; 8198 } else { 8199 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 8200 CurMF->insert(BBI, Fallthrough); 8201 // Put Cond in a virtual register to make it available from the new blocks. 8202 ExportFromCurrentBlock(Cond); 8203 } 8204 UnhandledWeights -= I->Weight; 8205 8206 switch (I->Kind) { 8207 case CC_JumpTable: { 8208 // FIXME: Optimize away range check based on pivot comparisons. 8209 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 8210 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 8211 8212 // The jump block hasn't been inserted yet; insert it here. 8213 MachineBasicBlock *JumpMBB = JT->MBB; 8214 CurMF->insert(BBI, JumpMBB); 8215 8216 uint32_t JumpWeight = I->Weight; 8217 uint32_t FallthroughWeight = UnhandledWeights; 8218 8219 // If the default statement is a target of the jump table, we evenly 8220 // distribute the default weight to successors of CurMBB. Also update 8221 // the weight on the edge from JumpMBB to Fallthrough. 8222 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 8223 SE = JumpMBB->succ_end(); 8224 SI != SE; ++SI) { 8225 if (*SI == DefaultMBB) { 8226 JumpWeight += DefaultWeight / 2; 8227 FallthroughWeight -= DefaultWeight / 2; 8228 JumpMBB->setSuccWeight(SI, DefaultWeight / 2); 8229 break; 8230 } 8231 } 8232 8233 addSuccessorWithWeight(CurMBB, Fallthrough, FallthroughWeight); 8234 addSuccessorWithWeight(CurMBB, JumpMBB, JumpWeight); 8235 8236 // The jump table header will be inserted in our current block, do the 8237 // range check, and fall through to our fallthrough block. 8238 JTH->HeaderBB = CurMBB; 8239 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 8240 8241 // If we're in the right place, emit the jump table header right now. 8242 if (CurMBB == SwitchMBB) { 8243 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 8244 JTH->Emitted = true; 8245 } 8246 break; 8247 } 8248 case CC_BitTests: { 8249 // FIXME: Optimize away range check based on pivot comparisons. 8250 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 8251 8252 // The bit test blocks haven't been inserted yet; insert them here. 8253 for (BitTestCase &BTC : BTB->Cases) 8254 CurMF->insert(BBI, BTC.ThisBB); 8255 8256 // Fill in fields of the BitTestBlock. 8257 BTB->Parent = CurMBB; 8258 BTB->Default = Fallthrough; 8259 8260 BTB->DefaultWeight = UnhandledWeights; 8261 // If the cases in bit test don't form a contiguous range, we evenly 8262 // distribute the weight on the edge to Fallthrough to two successors 8263 // of CurMBB. 8264 if (!BTB->ContiguousRange) { 8265 BTB->Weight += DefaultWeight / 2; 8266 BTB->DefaultWeight -= DefaultWeight / 2; 8267 } 8268 8269 // If we're in the right place, emit the bit test header right now. 8270 if (CurMBB == SwitchMBB) { 8271 visitBitTestHeader(*BTB, SwitchMBB); 8272 BTB->Emitted = true; 8273 } 8274 break; 8275 } 8276 case CC_Range: { 8277 const Value *RHS, *LHS, *MHS; 8278 ISD::CondCode CC; 8279 if (I->Low == I->High) { 8280 // Check Cond == I->Low. 8281 CC = ISD::SETEQ; 8282 LHS = Cond; 8283 RHS=I->Low; 8284 MHS = nullptr; 8285 } else { 8286 // Check I->Low <= Cond <= I->High. 8287 CC = ISD::SETLE; 8288 LHS = I->Low; 8289 MHS = Cond; 8290 RHS = I->High; 8291 } 8292 8293 // The false weight is the sum of all unhandled cases. 8294 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Weight, 8295 UnhandledWeights); 8296 8297 if (CurMBB == SwitchMBB) 8298 visitSwitchCase(CB, SwitchMBB); 8299 else 8300 SwitchCases.push_back(CB); 8301 8302 break; 8303 } 8304 } 8305 CurMBB = Fallthrough; 8306 } 8307 } 8308 8309 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 8310 CaseClusterIt First, 8311 CaseClusterIt Last) { 8312 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 8313 if (X.Weight != CC.Weight) 8314 return X.Weight > CC.Weight; 8315 8316 // Ties are broken by comparing the case value. 8317 return X.Low->getValue().slt(CC.Low->getValue()); 8318 }); 8319 } 8320 8321 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 8322 const SwitchWorkListItem &W, 8323 Value *Cond, 8324 MachineBasicBlock *SwitchMBB) { 8325 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 8326 "Clusters not sorted?"); 8327 8328 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 8329 8330 // Balance the tree based on branch weights to create a near-optimal (in terms 8331 // of search time given key frequency) binary search tree. See e.g. Kurt 8332 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 8333 CaseClusterIt LastLeft = W.FirstCluster; 8334 CaseClusterIt FirstRight = W.LastCluster; 8335 uint32_t LeftWeight = LastLeft->Weight + W.DefaultWeight / 2; 8336 uint32_t RightWeight = FirstRight->Weight + W.DefaultWeight / 2; 8337 8338 // Move LastLeft and FirstRight towards each other from opposite directions to 8339 // find a partitioning of the clusters which balances the weight on both 8340 // sides. If LeftWeight and RightWeight are equal, alternate which side is 8341 // taken to ensure 0-weight nodes are distributed evenly. 8342 unsigned I = 0; 8343 while (LastLeft + 1 < FirstRight) { 8344 if (LeftWeight < RightWeight || (LeftWeight == RightWeight && (I & 1))) 8345 LeftWeight += (++LastLeft)->Weight; 8346 else 8347 RightWeight += (--FirstRight)->Weight; 8348 I++; 8349 } 8350 8351 for (;;) { 8352 // Our binary search tree differs from a typical BST in that ours can have up 8353 // to three values in each leaf. The pivot selection above doesn't take that 8354 // into account, which means the tree might require more nodes and be less 8355 // efficient. We compensate for this here. 8356 8357 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 8358 unsigned NumRight = W.LastCluster - FirstRight + 1; 8359 8360 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 8361 // If one side has less than 3 clusters, and the other has more than 3, 8362 // consider taking a cluster from the other side. 8363 8364 if (NumLeft < NumRight) { 8365 // Consider moving the first cluster on the right to the left side. 8366 CaseCluster &CC = *FirstRight; 8367 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8368 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8369 if (LeftSideRank <= RightSideRank) { 8370 // Moving the cluster to the left does not demote it. 8371 ++LastLeft; 8372 ++FirstRight; 8373 continue; 8374 } 8375 } else { 8376 assert(NumRight < NumLeft); 8377 // Consider moving the last element on the left to the right side. 8378 CaseCluster &CC = *LastLeft; 8379 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8380 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8381 if (RightSideRank <= LeftSideRank) { 8382 // Moving the cluster to the right does not demot it. 8383 --LastLeft; 8384 --FirstRight; 8385 continue; 8386 } 8387 } 8388 } 8389 break; 8390 } 8391 8392 assert(LastLeft + 1 == FirstRight); 8393 assert(LastLeft >= W.FirstCluster); 8394 assert(FirstRight <= W.LastCluster); 8395 8396 // Use the first element on the right as pivot since we will make less-than 8397 // comparisons against it. 8398 CaseClusterIt PivotCluster = FirstRight; 8399 assert(PivotCluster > W.FirstCluster); 8400 assert(PivotCluster <= W.LastCluster); 8401 8402 CaseClusterIt FirstLeft = W.FirstCluster; 8403 CaseClusterIt LastRight = W.LastCluster; 8404 8405 const ConstantInt *Pivot = PivotCluster->Low; 8406 8407 // New blocks will be inserted immediately after the current one. 8408 MachineFunction::iterator BBI(W.MBB); 8409 ++BBI; 8410 8411 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8412 // we can branch to its destination directly if it's squeezed exactly in 8413 // between the known lower bound and Pivot - 1. 8414 MachineBasicBlock *LeftMBB; 8415 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8416 FirstLeft->Low == W.GE && 8417 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8418 LeftMBB = FirstLeft->MBB; 8419 } else { 8420 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8421 FuncInfo.MF->insert(BBI, LeftMBB); 8422 WorkList.push_back( 8423 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultWeight / 2}); 8424 // Put Cond in a virtual register to make it available from the new blocks. 8425 ExportFromCurrentBlock(Cond); 8426 } 8427 8428 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8429 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8430 // directly if RHS.High equals the current upper bound. 8431 MachineBasicBlock *RightMBB; 8432 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8433 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8434 RightMBB = FirstRight->MBB; 8435 } else { 8436 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8437 FuncInfo.MF->insert(BBI, RightMBB); 8438 WorkList.push_back( 8439 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultWeight / 2}); 8440 // Put Cond in a virtual register to make it available from the new blocks. 8441 ExportFromCurrentBlock(Cond); 8442 } 8443 8444 // Create the CaseBlock record that will be used to lower the branch. 8445 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8446 LeftWeight, RightWeight); 8447 8448 if (W.MBB == SwitchMBB) 8449 visitSwitchCase(CB, SwitchMBB); 8450 else 8451 SwitchCases.push_back(CB); 8452 } 8453 8454 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8455 // Extract cases from the switch. 8456 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8457 CaseClusterVector Clusters; 8458 Clusters.reserve(SI.getNumCases()); 8459 for (auto I : SI.cases()) { 8460 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8461 const ConstantInt *CaseVal = I.getCaseValue(); 8462 uint32_t Weight = 8463 BPI ? BPI->getEdgeWeight(SI.getParent(), I.getSuccessorIndex()) : 0; 8464 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Weight)); 8465 } 8466 8467 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8468 8469 // Cluster adjacent cases with the same destination. We do this at all 8470 // optimization levels because it's cheap to do and will make codegen faster 8471 // if there are many clusters. 8472 sortAndRangeify(Clusters); 8473 8474 if (TM.getOptLevel() != CodeGenOpt::None) { 8475 // Replace an unreachable default with the most popular destination. 8476 // FIXME: Exploit unreachable default more aggressively. 8477 bool UnreachableDefault = 8478 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8479 if (UnreachableDefault && !Clusters.empty()) { 8480 DenseMap<const BasicBlock *, unsigned> Popularity; 8481 unsigned MaxPop = 0; 8482 const BasicBlock *MaxBB = nullptr; 8483 for (auto I : SI.cases()) { 8484 const BasicBlock *BB = I.getCaseSuccessor(); 8485 if (++Popularity[BB] > MaxPop) { 8486 MaxPop = Popularity[BB]; 8487 MaxBB = BB; 8488 } 8489 } 8490 // Set new default. 8491 assert(MaxPop > 0 && MaxBB); 8492 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8493 8494 // Remove cases that were pointing to the destination that is now the 8495 // default. 8496 CaseClusterVector New; 8497 New.reserve(Clusters.size()); 8498 for (CaseCluster &CC : Clusters) { 8499 if (CC.MBB != DefaultMBB) 8500 New.push_back(CC); 8501 } 8502 Clusters = std::move(New); 8503 } 8504 } 8505 8506 // If there is only the default destination, jump there directly. 8507 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 8508 if (Clusters.empty()) { 8509 SwitchMBB->addSuccessor(DefaultMBB); 8510 if (DefaultMBB != NextBlock(SwitchMBB)) { 8511 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 8512 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 8513 } 8514 return; 8515 } 8516 8517 findJumpTables(Clusters, &SI, DefaultMBB); 8518 findBitTestClusters(Clusters, &SI); 8519 8520 DEBUG({ 8521 dbgs() << "Case clusters: "; 8522 for (const CaseCluster &C : Clusters) { 8523 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 8524 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 8525 8526 C.Low->getValue().print(dbgs(), true); 8527 if (C.Low != C.High) { 8528 dbgs() << '-'; 8529 C.High->getValue().print(dbgs(), true); 8530 } 8531 dbgs() << ' '; 8532 } 8533 dbgs() << '\n'; 8534 }); 8535 8536 assert(!Clusters.empty()); 8537 SwitchWorkList WorkList; 8538 CaseClusterIt First = Clusters.begin(); 8539 CaseClusterIt Last = Clusters.end() - 1; 8540 uint32_t DefaultWeight = getEdgeWeight(SwitchMBB, DefaultMBB); 8541 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultWeight}); 8542 8543 while (!WorkList.empty()) { 8544 SwitchWorkListItem W = WorkList.back(); 8545 WorkList.pop_back(); 8546 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 8547 8548 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 8549 // For optimized builds, lower large range as a balanced binary tree. 8550 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 8551 continue; 8552 } 8553 8554 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 8555 } 8556 } 8557