1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/Analysis/VectorUtils.h" 26 #include "llvm/CodeGen/FastISel.h" 27 #include "llvm/CodeGen/FunctionLoweringInfo.h" 28 #include "llvm/CodeGen/GCMetadata.h" 29 #include "llvm/CodeGen/GCStrategy.h" 30 #include "llvm/CodeGen/MachineFrameInfo.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineJumpTableInfo.h" 34 #include "llvm/CodeGen/MachineModuleInfo.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/SelectionDAG.h" 37 #include "llvm/CodeGen/StackMaps.h" 38 #include "llvm/CodeGen/WinEHFuncInfo.h" 39 #include "llvm/IR/CallingConv.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfo.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/Statepoint.h" 53 #include "llvm/MC/MCSymbol.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Target/TargetFrameLowering.h" 60 #include "llvm/Target/TargetInstrInfo.h" 61 #include "llvm/Target/TargetIntrinsicInfo.h" 62 #include "llvm/Target/TargetLowering.h" 63 #include "llvm/Target/TargetOptions.h" 64 #include "llvm/Target/TargetSelectionDAGInfo.h" 65 #include "llvm/Target/TargetSubtargetInfo.h" 66 #include <algorithm> 67 #include <utility> 68 using namespace llvm; 69 70 #define DEBUG_TYPE "isel" 71 72 /// LimitFloatPrecision - Generate low-precision inline sequences for 73 /// some float libcalls (6, 8 or 12 bits). 74 static unsigned LimitFloatPrecision; 75 76 static cl::opt<unsigned, true> 77 LimitFPPrecision("limit-float-precision", 78 cl::desc("Generate low-precision inline sequences " 79 "for some float libcalls"), 80 cl::location(LimitFloatPrecision), 81 cl::init(0)); 82 83 static cl::opt<bool> 84 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden, 85 cl::desc("Enable fast-math-flags for DAG nodes")); 86 87 // Limit the width of DAG chains. This is important in general to prevent 88 // DAG-based analysis from blowing up. For example, alias analysis and 89 // load clustering may not complete in reasonable time. It is difficult to 90 // recognize and avoid this situation within each individual analysis, and 91 // future analyses are likely to have the same behavior. Limiting DAG width is 92 // the safe approach and will be especially important with global DAGs. 93 // 94 // MaxParallelChains default is arbitrarily high to avoid affecting 95 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 96 // sequence over this should have been converted to llvm.memcpy by the 97 // frontend. It easy to induce this behavior with .ll code such as: 98 // %buffer = alloca [4096 x i8] 99 // %data = load [4096 x i8]* %argPtr 100 // store [4096 x i8] %data, [4096 x i8]* %buffer 101 static const unsigned MaxParallelChains = 64; 102 103 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 104 const SDValue *Parts, unsigned NumParts, 105 MVT PartVT, EVT ValueVT, const Value *V); 106 107 /// getCopyFromParts - Create a value that contains the specified legal parts 108 /// combined into the value they represent. If the parts combine to a type 109 /// larger then ValueVT then AssertOp can be used to specify whether the extra 110 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 111 /// (ISD::AssertSext). 112 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 113 const SDValue *Parts, 114 unsigned NumParts, MVT PartVT, EVT ValueVT, 115 const Value *V, 116 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 117 if (ValueVT.isVector()) 118 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 119 PartVT, ValueVT, V); 120 121 assert(NumParts > 0 && "No parts to assemble!"); 122 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 123 SDValue Val = Parts[0]; 124 125 if (NumParts > 1) { 126 // Assemble the value from multiple parts. 127 if (ValueVT.isInteger()) { 128 unsigned PartBits = PartVT.getSizeInBits(); 129 unsigned ValueBits = ValueVT.getSizeInBits(); 130 131 // Assemble the power of 2 part. 132 unsigned RoundParts = NumParts & (NumParts - 1) ? 133 1 << Log2_32(NumParts) : NumParts; 134 unsigned RoundBits = PartBits * RoundParts; 135 EVT RoundVT = RoundBits == ValueBits ? 136 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 137 SDValue Lo, Hi; 138 139 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 140 141 if (RoundParts > 2) { 142 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 143 PartVT, HalfVT, V); 144 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 145 RoundParts / 2, PartVT, HalfVT, V); 146 } else { 147 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 148 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 149 } 150 151 if (DAG.getDataLayout().isBigEndian()) 152 std::swap(Lo, Hi); 153 154 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 155 156 if (RoundParts < NumParts) { 157 // Assemble the trailing non-power-of-2 part. 158 unsigned OddParts = NumParts - RoundParts; 159 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 160 Hi = getCopyFromParts(DAG, DL, 161 Parts + RoundParts, OddParts, PartVT, OddVT, V); 162 163 // Combine the round and odd parts. 164 Lo = Val; 165 if (DAG.getDataLayout().isBigEndian()) 166 std::swap(Lo, Hi); 167 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 168 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 169 Hi = 170 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 171 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 172 TLI.getPointerTy(DAG.getDataLayout()))); 173 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 174 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 175 } 176 } else if (PartVT.isFloatingPoint()) { 177 // FP split into multiple FP parts (for ppcf128) 178 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 179 "Unexpected split"); 180 SDValue Lo, Hi; 181 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 182 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 183 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 184 std::swap(Lo, Hi); 185 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 186 } else { 187 // FP split into integer parts (soft fp) 188 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 189 !PartVT.isVector() && "Unexpected split"); 190 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 191 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 192 } 193 } 194 195 // There is now one part, held in Val. Correct it to match ValueVT. 196 EVT PartEVT = Val.getValueType(); 197 198 if (PartEVT == ValueVT) 199 return Val; 200 201 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 202 ValueVT.bitsLT(PartEVT)) { 203 // For an FP value in an integer part, we need to truncate to the right 204 // width first. 205 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 206 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 207 } 208 209 if (PartEVT.isInteger() && ValueVT.isInteger()) { 210 if (ValueVT.bitsLT(PartEVT)) { 211 // For a truncate, see if we have any information to 212 // indicate whether the truncated bits will always be 213 // zero or sign-extension. 214 if (AssertOp != ISD::DELETED_NODE) 215 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 216 DAG.getValueType(ValueVT)); 217 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 218 } 219 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 220 } 221 222 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 223 // FP_ROUND's are always exact here. 224 if (ValueVT.bitsLT(Val.getValueType())) 225 return DAG.getNode( 226 ISD::FP_ROUND, DL, ValueVT, Val, 227 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 228 229 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 230 } 231 232 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 233 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 234 235 llvm_unreachable("Unknown mismatch!"); 236 } 237 238 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 239 const Twine &ErrMsg) { 240 const Instruction *I = dyn_cast_or_null<Instruction>(V); 241 if (!V) 242 return Ctx.emitError(ErrMsg); 243 244 const char *AsmError = ", possible invalid constraint for vector type"; 245 if (const CallInst *CI = dyn_cast<CallInst>(I)) 246 if (isa<InlineAsm>(CI->getCalledValue())) 247 return Ctx.emitError(I, ErrMsg + AsmError); 248 249 return Ctx.emitError(I, ErrMsg); 250 } 251 252 /// getCopyFromPartsVector - Create a value that contains the specified legal 253 /// parts combined into the value they represent. If the parts combine to a 254 /// type larger then ValueVT then AssertOp can be used to specify whether the 255 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 256 /// ValueVT (ISD::AssertSext). 257 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 258 const SDValue *Parts, unsigned NumParts, 259 MVT PartVT, EVT ValueVT, const Value *V) { 260 assert(ValueVT.isVector() && "Not a vector value"); 261 assert(NumParts > 0 && "No parts to assemble!"); 262 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 263 SDValue Val = Parts[0]; 264 265 // Handle a multi-element vector. 266 if (NumParts > 1) { 267 EVT IntermediateVT; 268 MVT RegisterVT; 269 unsigned NumIntermediates; 270 unsigned NumRegs = 271 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 272 NumIntermediates, RegisterVT); 273 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 274 NumParts = NumRegs; // Silence a compiler warning. 275 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 276 assert(RegisterVT.getSizeInBits() == 277 Parts[0].getSimpleValueType().getSizeInBits() && 278 "Part type sizes don't match!"); 279 280 // Assemble the parts into intermediate operands. 281 SmallVector<SDValue, 8> Ops(NumIntermediates); 282 if (NumIntermediates == NumParts) { 283 // If the register was not expanded, truncate or copy the value, 284 // as appropriate. 285 for (unsigned i = 0; i != NumParts; ++i) 286 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 287 PartVT, IntermediateVT, V); 288 } else if (NumParts > 0) { 289 // If the intermediate type was expanded, build the intermediate 290 // operands from the parts. 291 assert(NumParts % NumIntermediates == 0 && 292 "Must expand into a divisible number of parts!"); 293 unsigned Factor = NumParts / NumIntermediates; 294 for (unsigned i = 0; i != NumIntermediates; ++i) 295 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 296 PartVT, IntermediateVT, V); 297 } 298 299 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 300 // intermediate operands. 301 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 302 : ISD::BUILD_VECTOR, 303 DL, ValueVT, Ops); 304 } 305 306 // There is now one part, held in Val. Correct it to match ValueVT. 307 EVT PartEVT = Val.getValueType(); 308 309 if (PartEVT == ValueVT) 310 return Val; 311 312 if (PartEVT.isVector()) { 313 // If the element type of the source/dest vectors are the same, but the 314 // parts vector has more elements than the value vector, then we have a 315 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 316 // elements we want. 317 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 318 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 319 "Cannot narrow, it would be a lossy transformation"); 320 return DAG.getNode( 321 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 322 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 323 } 324 325 // Vector/Vector bitcast. 326 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 327 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 328 329 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 330 "Cannot handle this kind of promotion"); 331 // Promoted vector extract 332 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 333 334 } 335 336 // Trivial bitcast if the types are the same size and the destination 337 // vector type is legal. 338 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 339 TLI.isTypeLegal(ValueVT)) 340 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 341 342 // Handle cases such as i8 -> <1 x i1> 343 if (ValueVT.getVectorNumElements() != 1) { 344 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 345 "non-trivial scalar-to-vector conversion"); 346 return DAG.getUNDEF(ValueVT); 347 } 348 349 if (ValueVT.getVectorNumElements() == 1 && 350 ValueVT.getVectorElementType() != PartEVT) 351 Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType()); 352 353 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 354 } 355 356 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 357 SDValue Val, SDValue *Parts, unsigned NumParts, 358 MVT PartVT, const Value *V); 359 360 /// getCopyToParts - Create a series of nodes that contain the specified value 361 /// split into legal parts. If the parts contain more bits than Val, then, for 362 /// integers, ExtendKind can be used to specify how to generate the extra bits. 363 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 364 SDValue Val, SDValue *Parts, unsigned NumParts, 365 MVT PartVT, const Value *V, 366 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 367 EVT ValueVT = Val.getValueType(); 368 369 // Handle the vector case separately. 370 if (ValueVT.isVector()) 371 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 372 373 unsigned PartBits = PartVT.getSizeInBits(); 374 unsigned OrigNumParts = NumParts; 375 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 376 "Copying to an illegal type!"); 377 378 if (NumParts == 0) 379 return; 380 381 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 382 EVT PartEVT = PartVT; 383 if (PartEVT == ValueVT) { 384 assert(NumParts == 1 && "No-op copy with multiple parts!"); 385 Parts[0] = Val; 386 return; 387 } 388 389 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 390 // If the parts cover more bits than the value has, promote the value. 391 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 392 assert(NumParts == 1 && "Do not know what to promote to!"); 393 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 394 } else { 395 if (ValueVT.isFloatingPoint()) { 396 // FP values need to be bitcast, then extended if they are being put 397 // into a larger container. 398 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 399 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 400 } 401 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 402 ValueVT.isInteger() && 403 "Unknown mismatch!"); 404 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 405 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 406 if (PartVT == MVT::x86mmx) 407 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 408 } 409 } else if (PartBits == ValueVT.getSizeInBits()) { 410 // Different types of the same size. 411 assert(NumParts == 1 && PartEVT != ValueVT); 412 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 413 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 414 // If the parts cover less bits than value has, truncate the value. 415 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 416 ValueVT.isInteger() && 417 "Unknown mismatch!"); 418 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 419 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 420 if (PartVT == MVT::x86mmx) 421 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 422 } 423 424 // The value may have changed - recompute ValueVT. 425 ValueVT = Val.getValueType(); 426 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 427 "Failed to tile the value with PartVT!"); 428 429 if (NumParts == 1) { 430 if (PartEVT != ValueVT) 431 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 432 "scalar-to-vector conversion failed"); 433 434 Parts[0] = Val; 435 return; 436 } 437 438 // Expand the value into multiple parts. 439 if (NumParts & (NumParts - 1)) { 440 // The number of parts is not a power of 2. Split off and copy the tail. 441 assert(PartVT.isInteger() && ValueVT.isInteger() && 442 "Do not know what to expand to!"); 443 unsigned RoundParts = 1 << Log2_32(NumParts); 444 unsigned RoundBits = RoundParts * PartBits; 445 unsigned OddParts = NumParts - RoundParts; 446 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 447 DAG.getIntPtrConstant(RoundBits, DL)); 448 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 449 450 if (DAG.getDataLayout().isBigEndian()) 451 // The odd parts were reversed by getCopyToParts - unreverse them. 452 std::reverse(Parts + RoundParts, Parts + NumParts); 453 454 NumParts = RoundParts; 455 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 456 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 457 } 458 459 // The number of parts is a power of 2. Repeatedly bisect the value using 460 // EXTRACT_ELEMENT. 461 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 462 EVT::getIntegerVT(*DAG.getContext(), 463 ValueVT.getSizeInBits()), 464 Val); 465 466 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 467 for (unsigned i = 0; i < NumParts; i += StepSize) { 468 unsigned ThisBits = StepSize * PartBits / 2; 469 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 470 SDValue &Part0 = Parts[i]; 471 SDValue &Part1 = Parts[i+StepSize/2]; 472 473 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 474 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 475 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 476 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 477 478 if (ThisBits == PartBits && ThisVT != PartVT) { 479 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 480 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 481 } 482 } 483 } 484 485 if (DAG.getDataLayout().isBigEndian()) 486 std::reverse(Parts, Parts + OrigNumParts); 487 } 488 489 490 /// getCopyToPartsVector - Create a series of nodes that contain the specified 491 /// value split into legal parts. 492 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 493 SDValue Val, SDValue *Parts, unsigned NumParts, 494 MVT PartVT, const Value *V) { 495 EVT ValueVT = Val.getValueType(); 496 assert(ValueVT.isVector() && "Not a vector"); 497 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 498 499 if (NumParts == 1) { 500 EVT PartEVT = PartVT; 501 if (PartEVT == ValueVT) { 502 // Nothing to do. 503 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 504 // Bitconvert vector->vector case. 505 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 506 } else if (PartVT.isVector() && 507 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 508 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 509 EVT ElementVT = PartVT.getVectorElementType(); 510 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 511 // undef elements. 512 SmallVector<SDValue, 16> Ops; 513 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 514 Ops.push_back(DAG.getNode( 515 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 516 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 517 518 for (unsigned i = ValueVT.getVectorNumElements(), 519 e = PartVT.getVectorNumElements(); i != e; ++i) 520 Ops.push_back(DAG.getUNDEF(ElementVT)); 521 522 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 523 524 // FIXME: Use CONCAT for 2x -> 4x. 525 526 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 527 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 528 } else if (PartVT.isVector() && 529 PartEVT.getVectorElementType().bitsGE( 530 ValueVT.getVectorElementType()) && 531 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 532 533 // Promoted vector extract 534 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 535 } else{ 536 // Vector -> scalar conversion. 537 assert(ValueVT.getVectorNumElements() == 1 && 538 "Only trivial vector-to-scalar conversions should get here!"); 539 Val = DAG.getNode( 540 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 541 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 542 543 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 544 } 545 546 Parts[0] = Val; 547 return; 548 } 549 550 // Handle a multi-element vector. 551 EVT IntermediateVT; 552 MVT RegisterVT; 553 unsigned NumIntermediates; 554 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 555 IntermediateVT, 556 NumIntermediates, RegisterVT); 557 unsigned NumElements = ValueVT.getVectorNumElements(); 558 559 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 560 NumParts = NumRegs; // Silence a compiler warning. 561 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 562 563 // Split the vector into intermediate operands. 564 SmallVector<SDValue, 8> Ops(NumIntermediates); 565 for (unsigned i = 0; i != NumIntermediates; ++i) { 566 if (IntermediateVT.isVector()) 567 Ops[i] = 568 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 569 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 570 TLI.getVectorIdxTy(DAG.getDataLayout()))); 571 else 572 Ops[i] = DAG.getNode( 573 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 574 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 575 } 576 577 // Split the intermediate operands into legal parts. 578 if (NumParts == NumIntermediates) { 579 // If the register was not expanded, promote or copy the value, 580 // as appropriate. 581 for (unsigned i = 0; i != NumParts; ++i) 582 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 583 } else if (NumParts > 0) { 584 // If the intermediate type was expanded, split each the value into 585 // legal parts. 586 assert(NumIntermediates != 0 && "division by zero"); 587 assert(NumParts % NumIntermediates == 0 && 588 "Must expand into a divisible number of parts!"); 589 unsigned Factor = NumParts / NumIntermediates; 590 for (unsigned i = 0; i != NumIntermediates; ++i) 591 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 592 } 593 } 594 595 RegsForValue::RegsForValue() {} 596 597 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 598 EVT valuevt) 599 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 600 601 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 602 const DataLayout &DL, unsigned Reg, Type *Ty) { 603 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 604 605 for (EVT ValueVT : ValueVTs) { 606 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); 607 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); 608 for (unsigned i = 0; i != NumRegs; ++i) 609 Regs.push_back(Reg + i); 610 RegVTs.push_back(RegisterVT); 611 Reg += NumRegs; 612 } 613 } 614 615 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 616 /// this value and returns the result as a ValueVT value. This uses 617 /// Chain/Flag as the input and updates them for the output Chain/Flag. 618 /// If the Flag pointer is NULL, no flag is used. 619 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 620 FunctionLoweringInfo &FuncInfo, 621 SDLoc dl, 622 SDValue &Chain, SDValue *Flag, 623 const Value *V) const { 624 // A Value with type {} or [0 x %t] needs no registers. 625 if (ValueVTs.empty()) 626 return SDValue(); 627 628 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 629 630 // Assemble the legal parts into the final values. 631 SmallVector<SDValue, 4> Values(ValueVTs.size()); 632 SmallVector<SDValue, 8> Parts; 633 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 634 // Copy the legal parts from the registers. 635 EVT ValueVT = ValueVTs[Value]; 636 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 637 MVT RegisterVT = RegVTs[Value]; 638 639 Parts.resize(NumRegs); 640 for (unsigned i = 0; i != NumRegs; ++i) { 641 SDValue P; 642 if (!Flag) { 643 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 644 } else { 645 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 646 *Flag = P.getValue(2); 647 } 648 649 Chain = P.getValue(1); 650 Parts[i] = P; 651 652 // If the source register was virtual and if we know something about it, 653 // add an assert node. 654 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 655 !RegisterVT.isInteger() || RegisterVT.isVector()) 656 continue; 657 658 const FunctionLoweringInfo::LiveOutInfo *LOI = 659 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 660 if (!LOI) 661 continue; 662 663 unsigned RegSize = RegisterVT.getSizeInBits(); 664 unsigned NumSignBits = LOI->NumSignBits; 665 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 666 667 if (NumZeroBits == RegSize) { 668 // The current value is a zero. 669 // Explicitly express that as it would be easier for 670 // optimizations to kick in. 671 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 672 continue; 673 } 674 675 // FIXME: We capture more information than the dag can represent. For 676 // now, just use the tightest assertzext/assertsext possible. 677 bool isSExt = true; 678 EVT FromVT(MVT::Other); 679 if (NumSignBits == RegSize) 680 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 681 else if (NumZeroBits >= RegSize-1) 682 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 683 else if (NumSignBits > RegSize-8) 684 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 685 else if (NumZeroBits >= RegSize-8) 686 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 687 else if (NumSignBits > RegSize-16) 688 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 689 else if (NumZeroBits >= RegSize-16) 690 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 691 else if (NumSignBits > RegSize-32) 692 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 693 else if (NumZeroBits >= RegSize-32) 694 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 695 else 696 continue; 697 698 // Add an assertion node. 699 assert(FromVT != MVT::Other); 700 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 701 RegisterVT, P, DAG.getValueType(FromVT)); 702 } 703 704 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 705 NumRegs, RegisterVT, ValueVT, V); 706 Part += NumRegs; 707 Parts.clear(); 708 } 709 710 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 711 } 712 713 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 714 /// specified value into the registers specified by this object. This uses 715 /// Chain/Flag as the input and updates them for the output Chain/Flag. 716 /// If the Flag pointer is NULL, no flag is used. 717 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 718 SDValue &Chain, SDValue *Flag, const Value *V, 719 ISD::NodeType PreferredExtendType) const { 720 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 721 ISD::NodeType ExtendKind = PreferredExtendType; 722 723 // Get the list of the values's legal parts. 724 unsigned NumRegs = Regs.size(); 725 SmallVector<SDValue, 8> Parts(NumRegs); 726 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 727 EVT ValueVT = ValueVTs[Value]; 728 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 729 MVT RegisterVT = RegVTs[Value]; 730 731 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 732 ExtendKind = ISD::ZERO_EXTEND; 733 734 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 735 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 736 Part += NumParts; 737 } 738 739 // Copy the parts into the registers. 740 SmallVector<SDValue, 8> Chains(NumRegs); 741 for (unsigned i = 0; i != NumRegs; ++i) { 742 SDValue Part; 743 if (!Flag) { 744 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 745 } else { 746 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 747 *Flag = Part.getValue(1); 748 } 749 750 Chains[i] = Part.getValue(0); 751 } 752 753 if (NumRegs == 1 || Flag) 754 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 755 // flagged to it. That is the CopyToReg nodes and the user are considered 756 // a single scheduling unit. If we create a TokenFactor and return it as 757 // chain, then the TokenFactor is both a predecessor (operand) of the 758 // user as well as a successor (the TF operands are flagged to the user). 759 // c1, f1 = CopyToReg 760 // c2, f2 = CopyToReg 761 // c3 = TokenFactor c1, c2 762 // ... 763 // = op c3, ..., f2 764 Chain = Chains[NumRegs-1]; 765 else 766 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 767 } 768 769 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 770 /// operand list. This adds the code marker and includes the number of 771 /// values added into it. 772 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 773 unsigned MatchingIdx, SDLoc dl, 774 SelectionDAG &DAG, 775 std::vector<SDValue> &Ops) const { 776 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 777 778 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 779 if (HasMatching) 780 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 781 else if (!Regs.empty() && 782 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 783 // Put the register class of the virtual registers in the flag word. That 784 // way, later passes can recompute register class constraints for inline 785 // assembly as well as normal instructions. 786 // Don't do this for tied operands that can use the regclass information 787 // from the def. 788 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 789 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 790 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 791 } 792 793 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 794 Ops.push_back(Res); 795 796 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 797 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 798 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 799 MVT RegisterVT = RegVTs[Value]; 800 for (unsigned i = 0; i != NumRegs; ++i) { 801 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 802 unsigned TheReg = Regs[Reg++]; 803 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 804 805 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 806 // If we clobbered the stack pointer, MFI should know about it. 807 assert(DAG.getMachineFunction().getFrameInfo()-> 808 hasOpaqueSPAdjustment()); 809 } 810 } 811 } 812 } 813 814 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 815 const TargetLibraryInfo *li) { 816 AA = &aa; 817 GFI = gfi; 818 LibInfo = li; 819 DL = &DAG.getDataLayout(); 820 Context = DAG.getContext(); 821 LPadToCallSiteMap.clear(); 822 } 823 824 /// clear - Clear out the current SelectionDAG and the associated 825 /// state and prepare this SelectionDAGBuilder object to be used 826 /// for a new block. This doesn't clear out information about 827 /// additional blocks that are needed to complete switch lowering 828 /// or PHI node updating; that information is cleared out as it is 829 /// consumed. 830 void SelectionDAGBuilder::clear() { 831 NodeMap.clear(); 832 UnusedArgNodeMap.clear(); 833 PendingLoads.clear(); 834 PendingExports.clear(); 835 CurInst = nullptr; 836 HasTailCall = false; 837 SDNodeOrder = LowestSDNodeOrder; 838 StatepointLowering.clear(); 839 } 840 841 /// clearDanglingDebugInfo - Clear the dangling debug information 842 /// map. This function is separated from the clear so that debug 843 /// information that is dangling in a basic block can be properly 844 /// resolved in a different basic block. This allows the 845 /// SelectionDAG to resolve dangling debug information attached 846 /// to PHI nodes. 847 void SelectionDAGBuilder::clearDanglingDebugInfo() { 848 DanglingDebugInfoMap.clear(); 849 } 850 851 /// getRoot - Return the current virtual root of the Selection DAG, 852 /// flushing any PendingLoad items. This must be done before emitting 853 /// a store or any other node that may need to be ordered after any 854 /// prior load instructions. 855 /// 856 SDValue SelectionDAGBuilder::getRoot() { 857 if (PendingLoads.empty()) 858 return DAG.getRoot(); 859 860 if (PendingLoads.size() == 1) { 861 SDValue Root = PendingLoads[0]; 862 DAG.setRoot(Root); 863 PendingLoads.clear(); 864 return Root; 865 } 866 867 // Otherwise, we have to make a token factor node. 868 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 869 PendingLoads); 870 PendingLoads.clear(); 871 DAG.setRoot(Root); 872 return Root; 873 } 874 875 /// getControlRoot - Similar to getRoot, but instead of flushing all the 876 /// PendingLoad items, flush all the PendingExports items. It is necessary 877 /// to do this before emitting a terminator instruction. 878 /// 879 SDValue SelectionDAGBuilder::getControlRoot() { 880 SDValue Root = DAG.getRoot(); 881 882 if (PendingExports.empty()) 883 return Root; 884 885 // Turn all of the CopyToReg chains into one factored node. 886 if (Root.getOpcode() != ISD::EntryToken) { 887 unsigned i = 0, e = PendingExports.size(); 888 for (; i != e; ++i) { 889 assert(PendingExports[i].getNode()->getNumOperands() > 1); 890 if (PendingExports[i].getNode()->getOperand(0) == Root) 891 break; // Don't add the root if we already indirectly depend on it. 892 } 893 894 if (i == e) 895 PendingExports.push_back(Root); 896 } 897 898 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 899 PendingExports); 900 PendingExports.clear(); 901 DAG.setRoot(Root); 902 return Root; 903 } 904 905 void SelectionDAGBuilder::visit(const Instruction &I) { 906 // Set up outgoing PHI node register values before emitting the terminator. 907 if (isa<TerminatorInst>(&I)) 908 HandlePHINodesInSuccessorBlocks(I.getParent()); 909 910 ++SDNodeOrder; 911 912 CurInst = &I; 913 914 visit(I.getOpcode(), I); 915 916 if (!isa<TerminatorInst>(&I) && !HasTailCall && 917 !isStatepoint(&I)) // statepoints handle their exports internally 918 CopyToExportRegsIfNeeded(&I); 919 920 CurInst = nullptr; 921 } 922 923 void SelectionDAGBuilder::visitPHI(const PHINode &) { 924 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 925 } 926 927 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 928 // Note: this doesn't use InstVisitor, because it has to work with 929 // ConstantExpr's in addition to instructions. 930 switch (Opcode) { 931 default: llvm_unreachable("Unknown instruction type encountered!"); 932 // Build the switch statement using the Instruction.def file. 933 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 934 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 935 #include "llvm/IR/Instruction.def" 936 } 937 } 938 939 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 940 // generate the debug data structures now that we've seen its definition. 941 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 942 SDValue Val) { 943 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 944 if (DDI.getDI()) { 945 const DbgValueInst *DI = DDI.getDI(); 946 DebugLoc dl = DDI.getdl(); 947 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 948 DILocalVariable *Variable = DI->getVariable(); 949 DIExpression *Expr = DI->getExpression(); 950 assert(Variable->isValidLocationForIntrinsic(dl) && 951 "Expected inlined-at fields to agree"); 952 uint64_t Offset = DI->getOffset(); 953 // A dbg.value for an alloca is always indirect. 954 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 955 SDDbgValue *SDV; 956 if (Val.getNode()) { 957 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect, 958 Val)) { 959 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 960 IsIndirect, Offset, dl, DbgSDNodeOrder); 961 DAG.AddDbgValue(SDV, Val.getNode(), false); 962 } 963 } else 964 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 965 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 966 } 967 } 968 969 /// getCopyFromRegs - If there was virtual register allocated for the value V 970 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 971 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 972 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 973 SDValue Result; 974 975 if (It != FuncInfo.ValueMap.end()) { 976 unsigned InReg = It->second; 977 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 978 DAG.getDataLayout(), InReg, Ty); 979 SDValue Chain = DAG.getEntryNode(); 980 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 981 resolveDanglingDebugInfo(V, Result); 982 } 983 984 return Result; 985 } 986 987 /// getValue - Return an SDValue for the given Value. 988 SDValue SelectionDAGBuilder::getValue(const Value *V) { 989 // If we already have an SDValue for this value, use it. It's important 990 // to do this first, so that we don't create a CopyFromReg if we already 991 // have a regular SDValue. 992 SDValue &N = NodeMap[V]; 993 if (N.getNode()) return N; 994 995 // If there's a virtual register allocated and initialized for this 996 // value, use it. 997 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 998 if (copyFromReg.getNode()) { 999 return copyFromReg; 1000 } 1001 1002 // Otherwise create a new SDValue and remember it. 1003 SDValue Val = getValueImpl(V); 1004 NodeMap[V] = Val; 1005 resolveDanglingDebugInfo(V, Val); 1006 return Val; 1007 } 1008 1009 // Return true if SDValue exists for the given Value 1010 bool SelectionDAGBuilder::findValue(const Value *V) const { 1011 return (NodeMap.find(V) != NodeMap.end()) || 1012 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1013 } 1014 1015 /// getNonRegisterValue - Return an SDValue for the given Value, but 1016 /// don't look in FuncInfo.ValueMap for a virtual register. 1017 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1018 // If we already have an SDValue for this value, use it. 1019 SDValue &N = NodeMap[V]; 1020 if (N.getNode()) { 1021 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1022 // Remove the debug location from the node as the node is about to be used 1023 // in a location which may differ from the original debug location. This 1024 // is relevant to Constant and ConstantFP nodes because they can appear 1025 // as constant expressions inside PHI nodes. 1026 N->setDebugLoc(DebugLoc()); 1027 } 1028 return N; 1029 } 1030 1031 // Otherwise create a new SDValue and remember it. 1032 SDValue Val = getValueImpl(V); 1033 NodeMap[V] = Val; 1034 resolveDanglingDebugInfo(V, Val); 1035 return Val; 1036 } 1037 1038 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1039 /// Create an SDValue for the given value. 1040 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1041 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1042 1043 if (const Constant *C = dyn_cast<Constant>(V)) { 1044 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1045 1046 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1047 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1048 1049 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1050 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1051 1052 if (isa<ConstantPointerNull>(C)) { 1053 unsigned AS = V->getType()->getPointerAddressSpace(); 1054 return DAG.getConstant(0, getCurSDLoc(), 1055 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1056 } 1057 1058 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1059 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1060 1061 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1062 return DAG.getUNDEF(VT); 1063 1064 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1065 visit(CE->getOpcode(), *CE); 1066 SDValue N1 = NodeMap[V]; 1067 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1068 return N1; 1069 } 1070 1071 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1072 SmallVector<SDValue, 4> Constants; 1073 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1074 OI != OE; ++OI) { 1075 SDNode *Val = getValue(*OI).getNode(); 1076 // If the operand is an empty aggregate, there are no values. 1077 if (!Val) continue; 1078 // Add each leaf value from the operand to the Constants list 1079 // to form a flattened list of all the values. 1080 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1081 Constants.push_back(SDValue(Val, i)); 1082 } 1083 1084 return DAG.getMergeValues(Constants, getCurSDLoc()); 1085 } 1086 1087 if (const ConstantDataSequential *CDS = 1088 dyn_cast<ConstantDataSequential>(C)) { 1089 SmallVector<SDValue, 4> Ops; 1090 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1091 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1092 // Add each leaf value from the operand to the Constants list 1093 // to form a flattened list of all the values. 1094 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1095 Ops.push_back(SDValue(Val, i)); 1096 } 1097 1098 if (isa<ArrayType>(CDS->getType())) 1099 return DAG.getMergeValues(Ops, getCurSDLoc()); 1100 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1101 VT, Ops); 1102 } 1103 1104 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1105 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1106 "Unknown struct or array constant!"); 1107 1108 SmallVector<EVT, 4> ValueVTs; 1109 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1110 unsigned NumElts = ValueVTs.size(); 1111 if (NumElts == 0) 1112 return SDValue(); // empty struct 1113 SmallVector<SDValue, 4> Constants(NumElts); 1114 for (unsigned i = 0; i != NumElts; ++i) { 1115 EVT EltVT = ValueVTs[i]; 1116 if (isa<UndefValue>(C)) 1117 Constants[i] = DAG.getUNDEF(EltVT); 1118 else if (EltVT.isFloatingPoint()) 1119 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1120 else 1121 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1122 } 1123 1124 return DAG.getMergeValues(Constants, getCurSDLoc()); 1125 } 1126 1127 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1128 return DAG.getBlockAddress(BA, VT); 1129 1130 VectorType *VecTy = cast<VectorType>(V->getType()); 1131 unsigned NumElements = VecTy->getNumElements(); 1132 1133 // Now that we know the number and type of the elements, get that number of 1134 // elements into the Ops array based on what kind of constant it is. 1135 SmallVector<SDValue, 16> Ops; 1136 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1137 for (unsigned i = 0; i != NumElements; ++i) 1138 Ops.push_back(getValue(CV->getOperand(i))); 1139 } else { 1140 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1141 EVT EltVT = 1142 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1143 1144 SDValue Op; 1145 if (EltVT.isFloatingPoint()) 1146 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1147 else 1148 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1149 Ops.assign(NumElements, Op); 1150 } 1151 1152 // Create a BUILD_VECTOR node. 1153 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1154 } 1155 1156 // If this is a static alloca, generate it as the frameindex instead of 1157 // computation. 1158 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1159 DenseMap<const AllocaInst*, int>::iterator SI = 1160 FuncInfo.StaticAllocaMap.find(AI); 1161 if (SI != FuncInfo.StaticAllocaMap.end()) 1162 return DAG.getFrameIndex(SI->second, 1163 TLI.getPointerTy(DAG.getDataLayout())); 1164 } 1165 1166 // If this is an instruction which fast-isel has deferred, select it now. 1167 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1168 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1169 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1170 Inst->getType()); 1171 SDValue Chain = DAG.getEntryNode(); 1172 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1173 } 1174 1175 llvm_unreachable("Can't get register for value!"); 1176 } 1177 1178 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1179 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1180 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1181 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1182 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1183 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1184 if (IsMSVCCXX || IsCoreCLR) 1185 CatchPadMBB->setIsEHFuncletEntry(); 1186 1187 MachineBasicBlock *NormalDestMBB = FuncInfo.MBBMap[I.getNormalDest()]; 1188 1189 // Update machine-CFG edge. 1190 FuncInfo.MBB->addSuccessor(NormalDestMBB); 1191 1192 SDValue Chain = 1193 DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot()); 1194 1195 // If this is not a fall-through branch or optimizations are switched off, 1196 // emit the branch. 1197 if (NormalDestMBB != NextBlock(CatchPadMBB) || 1198 TM.getOptLevel() == CodeGenOpt::None) 1199 Chain = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, Chain, 1200 DAG.getBasicBlock(NormalDestMBB)); 1201 DAG.setRoot(Chain); 1202 } 1203 1204 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1205 // Update machine-CFG edge. 1206 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1207 FuncInfo.MBB->addSuccessor(TargetMBB); 1208 1209 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1210 bool IsSEH = isAsynchronousEHPersonality(Pers); 1211 if (IsSEH) { 1212 // If this is not a fall-through branch or optimizations are switched off, 1213 // emit the branch. 1214 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1215 TM.getOptLevel() == CodeGenOpt::None) 1216 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1217 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1218 return; 1219 } 1220 1221 // Figure out the funclet membership for the catchret's successor. 1222 // This will be used by the FuncletLayout pass to determine how to order the 1223 // BB's. 1224 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 1225 const BasicBlock *SuccessorColor = EHInfo->CatchRetSuccessorColorMap[&I]; 1226 assert(SuccessorColor && "No parent funclet for catchret!"); 1227 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1228 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1229 1230 // Create the terminator node. 1231 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1232 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1233 DAG.getBasicBlock(SuccessorColorMBB)); 1234 DAG.setRoot(Ret); 1235 } 1236 1237 void SelectionDAGBuilder::visitCatchEndPad(const CatchEndPadInst &I) { 1238 llvm_unreachable("should never codegen catchendpads"); 1239 } 1240 1241 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1242 // Don't emit any special code for the cleanuppad instruction. It just marks 1243 // the start of a funclet. 1244 FuncInfo.MBB->setIsEHFuncletEntry(); 1245 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1246 } 1247 1248 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1249 /// many places it could ultimately go. In the IR, we have a single unwind 1250 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1251 /// This function skips over imaginary basic blocks that hold catchpad, 1252 /// terminatepad, or catchendpad instructions, and finds all the "real" machine 1253 /// basic block destinations. As those destinations may not be successors of 1254 /// EHPadBB, here we also calculate the edge probability to those destinations. 1255 /// The passed-in Prob is the edge probability to EHPadBB. 1256 static void findUnwindDestinations( 1257 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1258 BranchProbability Prob, 1259 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1260 &UnwindDests) { 1261 EHPersonality Personality = 1262 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1263 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1264 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1265 1266 while (EHPadBB) { 1267 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1268 BasicBlock *NewEHPadBB = nullptr; 1269 if (isa<LandingPadInst>(Pad)) { 1270 // Stop on landingpads. They are not funclets. 1271 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1272 break; 1273 } else if (isa<CleanupPadInst>(Pad)) { 1274 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1275 // personalities. 1276 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1277 UnwindDests.back().first->setIsEHFuncletEntry(); 1278 break; 1279 } else if (const auto *CPI = dyn_cast<CatchPadInst>(Pad)) { 1280 // Add the catchpad handler to the possible destinations. 1281 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1282 // In MSVC C++, catchblocks are funclets and need prologues. 1283 if (IsMSVCCXX || IsCoreCLR) 1284 UnwindDests.back().first->setIsEHFuncletEntry(); 1285 NewEHPadBB = CPI->getUnwindDest(); 1286 } else if (const auto *CEPI = dyn_cast<CatchEndPadInst>(Pad)) 1287 NewEHPadBB = CEPI->getUnwindDest(); 1288 else if (const auto *CEPI = dyn_cast<CleanupEndPadInst>(Pad)) 1289 NewEHPadBB = CEPI->getUnwindDest(); 1290 else 1291 continue; 1292 1293 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1294 if (BPI && NewEHPadBB) 1295 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1296 EHPadBB = NewEHPadBB; 1297 } 1298 } 1299 1300 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1301 // Update successor info. 1302 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1303 auto UnwindDest = I.getUnwindDest(); 1304 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1305 BranchProbability UnwindDestProb = 1306 (BPI && UnwindDest) 1307 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1308 : BranchProbability::getZero(); 1309 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1310 for (auto &UnwindDest : UnwindDests) { 1311 UnwindDest.first->setIsEHPad(); 1312 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1313 } 1314 FuncInfo.MBB->normalizeSuccProbs(); 1315 1316 // Create the terminator node. 1317 SDValue Ret = 1318 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1319 DAG.setRoot(Ret); 1320 } 1321 1322 void SelectionDAGBuilder::visitCleanupEndPad(const CleanupEndPadInst &I) { 1323 report_fatal_error("visitCleanupEndPad not yet implemented!"); 1324 } 1325 1326 void SelectionDAGBuilder::visitTerminatePad(const TerminatePadInst &TPI) { 1327 report_fatal_error("visitTerminatePad not yet implemented!"); 1328 } 1329 1330 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1331 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1332 auto &DL = DAG.getDataLayout(); 1333 SDValue Chain = getControlRoot(); 1334 SmallVector<ISD::OutputArg, 8> Outs; 1335 SmallVector<SDValue, 8> OutVals; 1336 1337 if (!FuncInfo.CanLowerReturn) { 1338 unsigned DemoteReg = FuncInfo.DemoteRegister; 1339 const Function *F = I.getParent()->getParent(); 1340 1341 // Emit a store of the return value through the virtual register. 1342 // Leave Outs empty so that LowerReturn won't try to load return 1343 // registers the usual way. 1344 SmallVector<EVT, 1> PtrValueVTs; 1345 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1346 PtrValueVTs); 1347 1348 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1349 DemoteReg, PtrValueVTs[0]); 1350 SDValue RetOp = getValue(I.getOperand(0)); 1351 1352 SmallVector<EVT, 4> ValueVTs; 1353 SmallVector<uint64_t, 4> Offsets; 1354 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1355 unsigned NumValues = ValueVTs.size(); 1356 1357 SmallVector<SDValue, 4> Chains(NumValues); 1358 for (unsigned i = 0; i != NumValues; ++i) { 1359 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1360 RetPtr.getValueType(), RetPtr, 1361 DAG.getIntPtrConstant(Offsets[i], 1362 getCurSDLoc())); 1363 Chains[i] = 1364 DAG.getStore(Chain, getCurSDLoc(), 1365 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1366 // FIXME: better loc info would be nice. 1367 Add, MachinePointerInfo(), false, false, 0); 1368 } 1369 1370 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1371 MVT::Other, Chains); 1372 } else if (I.getNumOperands() != 0) { 1373 SmallVector<EVT, 4> ValueVTs; 1374 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1375 unsigned NumValues = ValueVTs.size(); 1376 if (NumValues) { 1377 SDValue RetOp = getValue(I.getOperand(0)); 1378 1379 const Function *F = I.getParent()->getParent(); 1380 1381 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1382 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1383 Attribute::SExt)) 1384 ExtendKind = ISD::SIGN_EXTEND; 1385 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1386 Attribute::ZExt)) 1387 ExtendKind = ISD::ZERO_EXTEND; 1388 1389 LLVMContext &Context = F->getContext(); 1390 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1391 Attribute::InReg); 1392 1393 for (unsigned j = 0; j != NumValues; ++j) { 1394 EVT VT = ValueVTs[j]; 1395 1396 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1397 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1398 1399 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1400 MVT PartVT = TLI.getRegisterType(Context, VT); 1401 SmallVector<SDValue, 4> Parts(NumParts); 1402 getCopyToParts(DAG, getCurSDLoc(), 1403 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1404 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1405 1406 // 'inreg' on function refers to return value 1407 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1408 if (RetInReg) 1409 Flags.setInReg(); 1410 1411 // Propagate extension type if any 1412 if (ExtendKind == ISD::SIGN_EXTEND) 1413 Flags.setSExt(); 1414 else if (ExtendKind == ISD::ZERO_EXTEND) 1415 Flags.setZExt(); 1416 1417 for (unsigned i = 0; i < NumParts; ++i) { 1418 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1419 VT, /*isfixed=*/true, 0, 0)); 1420 OutVals.push_back(Parts[i]); 1421 } 1422 } 1423 } 1424 } 1425 1426 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1427 CallingConv::ID CallConv = 1428 DAG.getMachineFunction().getFunction()->getCallingConv(); 1429 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1430 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1431 1432 // Verify that the target's LowerReturn behaved as expected. 1433 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1434 "LowerReturn didn't return a valid chain!"); 1435 1436 // Update the DAG with the new chain value resulting from return lowering. 1437 DAG.setRoot(Chain); 1438 } 1439 1440 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1441 /// created for it, emit nodes to copy the value into the virtual 1442 /// registers. 1443 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1444 // Skip empty types 1445 if (V->getType()->isEmptyTy()) 1446 return; 1447 1448 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1449 if (VMI != FuncInfo.ValueMap.end()) { 1450 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1451 CopyValueToVirtualRegister(V, VMI->second); 1452 } 1453 } 1454 1455 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1456 /// the current basic block, add it to ValueMap now so that we'll get a 1457 /// CopyTo/FromReg. 1458 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1459 // No need to export constants. 1460 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1461 1462 // Already exported? 1463 if (FuncInfo.isExportedInst(V)) return; 1464 1465 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1466 CopyValueToVirtualRegister(V, Reg); 1467 } 1468 1469 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1470 const BasicBlock *FromBB) { 1471 // The operands of the setcc have to be in this block. We don't know 1472 // how to export them from some other block. 1473 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1474 // Can export from current BB. 1475 if (VI->getParent() == FromBB) 1476 return true; 1477 1478 // Is already exported, noop. 1479 return FuncInfo.isExportedInst(V); 1480 } 1481 1482 // If this is an argument, we can export it if the BB is the entry block or 1483 // if it is already exported. 1484 if (isa<Argument>(V)) { 1485 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1486 return true; 1487 1488 // Otherwise, can only export this if it is already exported. 1489 return FuncInfo.isExportedInst(V); 1490 } 1491 1492 // Otherwise, constants can always be exported. 1493 return true; 1494 } 1495 1496 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1497 BranchProbability 1498 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1499 const MachineBasicBlock *Dst) const { 1500 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1501 const BasicBlock *SrcBB = Src->getBasicBlock(); 1502 const BasicBlock *DstBB = Dst->getBasicBlock(); 1503 if (!BPI) { 1504 // If BPI is not available, set the default probability as 1 / N, where N is 1505 // the number of successors. 1506 auto SuccSize = std::max<uint32_t>( 1507 std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1); 1508 return BranchProbability(1, SuccSize); 1509 } 1510 return BPI->getEdgeProbability(SrcBB, DstBB); 1511 } 1512 1513 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1514 MachineBasicBlock *Dst, 1515 BranchProbability Prob) { 1516 if (!FuncInfo.BPI) 1517 Src->addSuccessorWithoutProb(Dst); 1518 else { 1519 if (Prob.isUnknown()) 1520 Prob = getEdgeProbability(Src, Dst); 1521 Src->addSuccessor(Dst, Prob); 1522 } 1523 } 1524 1525 static bool InBlock(const Value *V, const BasicBlock *BB) { 1526 if (const Instruction *I = dyn_cast<Instruction>(V)) 1527 return I->getParent() == BB; 1528 return true; 1529 } 1530 1531 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1532 /// This function emits a branch and is used at the leaves of an OR or an 1533 /// AND operator tree. 1534 /// 1535 void 1536 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1537 MachineBasicBlock *TBB, 1538 MachineBasicBlock *FBB, 1539 MachineBasicBlock *CurBB, 1540 MachineBasicBlock *SwitchBB, 1541 BranchProbability TProb, 1542 BranchProbability FProb) { 1543 const BasicBlock *BB = CurBB->getBasicBlock(); 1544 1545 // If the leaf of the tree is a comparison, merge the condition into 1546 // the caseblock. 1547 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1548 // The operands of the cmp have to be in this block. We don't know 1549 // how to export them from some other block. If this is the first block 1550 // of the sequence, no exporting is needed. 1551 if (CurBB == SwitchBB || 1552 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1553 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1554 ISD::CondCode Condition; 1555 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1556 Condition = getICmpCondCode(IC->getPredicate()); 1557 } else { 1558 const FCmpInst *FC = cast<FCmpInst>(Cond); 1559 Condition = getFCmpCondCode(FC->getPredicate()); 1560 if (TM.Options.NoNaNsFPMath) 1561 Condition = getFCmpCodeWithoutNaN(Condition); 1562 } 1563 1564 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1565 TBB, FBB, CurBB, TProb, FProb); 1566 SwitchCases.push_back(CB); 1567 return; 1568 } 1569 } 1570 1571 // Create a CaseBlock record representing this branch. 1572 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1573 nullptr, TBB, FBB, CurBB, TProb, FProb); 1574 SwitchCases.push_back(CB); 1575 } 1576 1577 /// FindMergedConditions - If Cond is an expression like 1578 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1579 MachineBasicBlock *TBB, 1580 MachineBasicBlock *FBB, 1581 MachineBasicBlock *CurBB, 1582 MachineBasicBlock *SwitchBB, 1583 Instruction::BinaryOps Opc, 1584 BranchProbability TProb, 1585 BranchProbability FProb) { 1586 // If this node is not part of the or/and tree, emit it as a branch. 1587 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1588 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1589 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1590 BOp->getParent() != CurBB->getBasicBlock() || 1591 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1592 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1593 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1594 TProb, FProb); 1595 return; 1596 } 1597 1598 // Create TmpBB after CurBB. 1599 MachineFunction::iterator BBI(CurBB); 1600 MachineFunction &MF = DAG.getMachineFunction(); 1601 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1602 CurBB->getParent()->insert(++BBI, TmpBB); 1603 1604 if (Opc == Instruction::Or) { 1605 // Codegen X | Y as: 1606 // BB1: 1607 // jmp_if_X TBB 1608 // jmp TmpBB 1609 // TmpBB: 1610 // jmp_if_Y TBB 1611 // jmp FBB 1612 // 1613 1614 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1615 // The requirement is that 1616 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1617 // = TrueProb for original BB. 1618 // Assuming the original probabilities are A and B, one choice is to set 1619 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 1620 // A/(1+B) and 2B/(1+B). This choice assumes that 1621 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1622 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1623 // TmpBB, but the math is more complicated. 1624 1625 auto NewTrueProb = TProb / 2; 1626 auto NewFalseProb = TProb / 2 + FProb; 1627 // Emit the LHS condition. 1628 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1629 NewTrueProb, NewFalseProb); 1630 1631 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 1632 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 1633 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1634 // Emit the RHS condition into TmpBB. 1635 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1636 Probs[0], Probs[1]); 1637 } else { 1638 assert(Opc == Instruction::And && "Unknown merge op!"); 1639 // Codegen X & Y as: 1640 // BB1: 1641 // jmp_if_X TmpBB 1642 // jmp FBB 1643 // TmpBB: 1644 // jmp_if_Y TBB 1645 // jmp FBB 1646 // 1647 // This requires creation of TmpBB after CurBB. 1648 1649 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1650 // The requirement is that 1651 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1652 // = FalseProb for original BB. 1653 // Assuming the original probabilities are A and B, one choice is to set 1654 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 1655 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 1656 // TrueProb for BB1 * FalseProb for TmpBB. 1657 1658 auto NewTrueProb = TProb + FProb / 2; 1659 auto NewFalseProb = FProb / 2; 1660 // Emit the LHS condition. 1661 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1662 NewTrueProb, NewFalseProb); 1663 1664 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 1665 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 1666 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1667 // Emit the RHS condition into TmpBB. 1668 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1669 Probs[0], Probs[1]); 1670 } 1671 } 1672 1673 /// If the set of cases should be emitted as a series of branches, return true. 1674 /// If we should emit this as a bunch of and/or'd together conditions, return 1675 /// false. 1676 bool 1677 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1678 if (Cases.size() != 2) return true; 1679 1680 // If this is two comparisons of the same values or'd or and'd together, they 1681 // will get folded into a single comparison, so don't emit two blocks. 1682 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1683 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1684 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1685 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1686 return false; 1687 } 1688 1689 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1690 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1691 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1692 Cases[0].CC == Cases[1].CC && 1693 isa<Constant>(Cases[0].CmpRHS) && 1694 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1695 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1696 return false; 1697 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1698 return false; 1699 } 1700 1701 return true; 1702 } 1703 1704 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1705 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1706 1707 // Update machine-CFG edges. 1708 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1709 1710 if (I.isUnconditional()) { 1711 // Update machine-CFG edges. 1712 BrMBB->addSuccessor(Succ0MBB); 1713 1714 // If this is not a fall-through branch or optimizations are switched off, 1715 // emit the branch. 1716 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1717 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1718 MVT::Other, getControlRoot(), 1719 DAG.getBasicBlock(Succ0MBB))); 1720 1721 return; 1722 } 1723 1724 // If this condition is one of the special cases we handle, do special stuff 1725 // now. 1726 const Value *CondVal = I.getCondition(); 1727 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1728 1729 // If this is a series of conditions that are or'd or and'd together, emit 1730 // this as a sequence of branches instead of setcc's with and/or operations. 1731 // As long as jumps are not expensive, this should improve performance. 1732 // For example, instead of something like: 1733 // cmp A, B 1734 // C = seteq 1735 // cmp D, E 1736 // F = setle 1737 // or C, F 1738 // jnz foo 1739 // Emit: 1740 // cmp A, B 1741 // je foo 1742 // cmp D, E 1743 // jle foo 1744 // 1745 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1746 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1747 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1748 !I.getMetadata(LLVMContext::MD_unpredictable) && 1749 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1750 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1751 Opcode, 1752 getEdgeProbability(BrMBB, Succ0MBB), 1753 getEdgeProbability(BrMBB, Succ1MBB)); 1754 // If the compares in later blocks need to use values not currently 1755 // exported from this block, export them now. This block should always 1756 // be the first entry. 1757 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1758 1759 // Allow some cases to be rejected. 1760 if (ShouldEmitAsBranches(SwitchCases)) { 1761 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1762 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1763 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1764 } 1765 1766 // Emit the branch for this block. 1767 visitSwitchCase(SwitchCases[0], BrMBB); 1768 SwitchCases.erase(SwitchCases.begin()); 1769 return; 1770 } 1771 1772 // Okay, we decided not to do this, remove any inserted MBB's and clear 1773 // SwitchCases. 1774 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1775 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1776 1777 SwitchCases.clear(); 1778 } 1779 } 1780 1781 // Create a CaseBlock record representing this branch. 1782 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1783 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1784 1785 // Use visitSwitchCase to actually insert the fast branch sequence for this 1786 // cond branch. 1787 visitSwitchCase(CB, BrMBB); 1788 } 1789 1790 /// visitSwitchCase - Emits the necessary code to represent a single node in 1791 /// the binary search tree resulting from lowering a switch instruction. 1792 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1793 MachineBasicBlock *SwitchBB) { 1794 SDValue Cond; 1795 SDValue CondLHS = getValue(CB.CmpLHS); 1796 SDLoc dl = getCurSDLoc(); 1797 1798 // Build the setcc now. 1799 if (!CB.CmpMHS) { 1800 // Fold "(X == true)" to X and "(X == false)" to !X to 1801 // handle common cases produced by branch lowering. 1802 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1803 CB.CC == ISD::SETEQ) 1804 Cond = CondLHS; 1805 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1806 CB.CC == ISD::SETEQ) { 1807 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1808 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1809 } else 1810 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1811 } else { 1812 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1813 1814 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1815 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1816 1817 SDValue CmpOp = getValue(CB.CmpMHS); 1818 EVT VT = CmpOp.getValueType(); 1819 1820 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1821 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1822 ISD::SETLE); 1823 } else { 1824 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1825 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1826 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1827 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1828 } 1829 } 1830 1831 // Update successor info 1832 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 1833 // TrueBB and FalseBB are always different unless the incoming IR is 1834 // degenerate. This only happens when running llc on weird IR. 1835 if (CB.TrueBB != CB.FalseBB) 1836 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 1837 SwitchBB->normalizeSuccProbs(); 1838 1839 // If the lhs block is the next block, invert the condition so that we can 1840 // fall through to the lhs instead of the rhs block. 1841 if (CB.TrueBB == NextBlock(SwitchBB)) { 1842 std::swap(CB.TrueBB, CB.FalseBB); 1843 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1844 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1845 } 1846 1847 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1848 MVT::Other, getControlRoot(), Cond, 1849 DAG.getBasicBlock(CB.TrueBB)); 1850 1851 // Insert the false branch. Do this even if it's a fall through branch, 1852 // this makes it easier to do DAG optimizations which require inverting 1853 // the branch condition. 1854 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1855 DAG.getBasicBlock(CB.FalseBB)); 1856 1857 DAG.setRoot(BrCond); 1858 } 1859 1860 /// visitJumpTable - Emit JumpTable node in the current MBB 1861 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1862 // Emit the code for the jump table 1863 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1864 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1865 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1866 JT.Reg, PTy); 1867 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1868 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1869 MVT::Other, Index.getValue(1), 1870 Table, Index); 1871 DAG.setRoot(BrJumpTable); 1872 } 1873 1874 /// visitJumpTableHeader - This function emits necessary code to produce index 1875 /// in the JumpTable from switch case. 1876 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1877 JumpTableHeader &JTH, 1878 MachineBasicBlock *SwitchBB) { 1879 SDLoc dl = getCurSDLoc(); 1880 1881 // Subtract the lowest switch case value from the value being switched on and 1882 // conditional branch to default mbb if the result is greater than the 1883 // difference between smallest and largest cases. 1884 SDValue SwitchOp = getValue(JTH.SValue); 1885 EVT VT = SwitchOp.getValueType(); 1886 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1887 DAG.getConstant(JTH.First, dl, VT)); 1888 1889 // The SDNode we just created, which holds the value being switched on minus 1890 // the smallest case value, needs to be copied to a virtual register so it 1891 // can be used as an index into the jump table in a subsequent basic block. 1892 // This value may be smaller or larger than the target's pointer type, and 1893 // therefore require extension or truncating. 1894 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1895 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 1896 1897 unsigned JumpTableReg = 1898 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 1899 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1900 JumpTableReg, SwitchOp); 1901 JT.Reg = JumpTableReg; 1902 1903 // Emit the range check for the jump table, and branch to the default block 1904 // for the switch statement if the value being switched on exceeds the largest 1905 // case in the switch. 1906 SDValue CMP = DAG.getSetCC( 1907 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1908 Sub.getValueType()), 1909 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 1910 1911 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1912 MVT::Other, CopyTo, CMP, 1913 DAG.getBasicBlock(JT.Default)); 1914 1915 // Avoid emitting unnecessary branches to the next block. 1916 if (JT.MBB != NextBlock(SwitchBB)) 1917 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1918 DAG.getBasicBlock(JT.MBB)); 1919 1920 DAG.setRoot(BrCond); 1921 } 1922 1923 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1924 /// tail spliced into a stack protector check success bb. 1925 /// 1926 /// For a high level explanation of how this fits into the stack protector 1927 /// generation see the comment on the declaration of class 1928 /// StackProtectorDescriptor. 1929 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1930 MachineBasicBlock *ParentBB) { 1931 1932 // First create the loads to the guard/stack slot for the comparison. 1933 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1934 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 1935 1936 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1937 int FI = MFI->getStackProtectorIndex(); 1938 1939 const Value *IRGuard = SPD.getGuard(); 1940 SDValue GuardPtr = getValue(IRGuard); 1941 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1942 1943 unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType()); 1944 1945 SDValue Guard; 1946 SDLoc dl = getCurSDLoc(); 1947 1948 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1949 // guard value from the virtual register holding the value. Otherwise, emit a 1950 // volatile load to retrieve the stack guard value. 1951 unsigned GuardReg = SPD.getGuardReg(); 1952 1953 if (GuardReg && TLI.useLoadStackGuardNode()) 1954 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 1955 PtrTy); 1956 else 1957 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1958 GuardPtr, MachinePointerInfo(IRGuard, 0), 1959 true, false, false, Align); 1960 1961 SDValue StackSlot = DAG.getLoad( 1962 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 1963 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true, 1964 false, false, Align); 1965 1966 // Perform the comparison via a subtract/getsetcc. 1967 EVT VT = Guard.getValueType(); 1968 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 1969 1970 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 1971 *DAG.getContext(), 1972 Sub.getValueType()), 1973 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 1974 1975 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1976 // branch to failure MBB. 1977 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1978 MVT::Other, StackSlot.getOperand(0), 1979 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1980 // Otherwise branch to success MBB. 1981 SDValue Br = DAG.getNode(ISD::BR, dl, 1982 MVT::Other, BrCond, 1983 DAG.getBasicBlock(SPD.getSuccessMBB())); 1984 1985 DAG.setRoot(Br); 1986 } 1987 1988 /// Codegen the failure basic block for a stack protector check. 1989 /// 1990 /// A failure stack protector machine basic block consists simply of a call to 1991 /// __stack_chk_fail(). 1992 /// 1993 /// For a high level explanation of how this fits into the stack protector 1994 /// generation see the comment on the declaration of class 1995 /// StackProtectorDescriptor. 1996 void 1997 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1998 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1999 SDValue Chain = 2000 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2001 None, false, getCurSDLoc(), false, false).second; 2002 DAG.setRoot(Chain); 2003 } 2004 2005 /// visitBitTestHeader - This function emits necessary code to produce value 2006 /// suitable for "bit tests" 2007 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2008 MachineBasicBlock *SwitchBB) { 2009 SDLoc dl = getCurSDLoc(); 2010 2011 // Subtract the minimum value 2012 SDValue SwitchOp = getValue(B.SValue); 2013 EVT VT = SwitchOp.getValueType(); 2014 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2015 DAG.getConstant(B.First, dl, VT)); 2016 2017 // Check range 2018 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2019 SDValue RangeCmp = DAG.getSetCC( 2020 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2021 Sub.getValueType()), 2022 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2023 2024 // Determine the type of the test operands. 2025 bool UsePtrType = false; 2026 if (!TLI.isTypeLegal(VT)) 2027 UsePtrType = true; 2028 else { 2029 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2030 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2031 // Switch table case range are encoded into series of masks. 2032 // Just use pointer type, it's guaranteed to fit. 2033 UsePtrType = true; 2034 break; 2035 } 2036 } 2037 if (UsePtrType) { 2038 VT = TLI.getPointerTy(DAG.getDataLayout()); 2039 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2040 } 2041 2042 B.RegVT = VT.getSimpleVT(); 2043 B.Reg = FuncInfo.CreateReg(B.RegVT); 2044 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2045 2046 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2047 2048 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2049 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2050 SwitchBB->normalizeSuccProbs(); 2051 2052 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2053 MVT::Other, CopyTo, RangeCmp, 2054 DAG.getBasicBlock(B.Default)); 2055 2056 // Avoid emitting unnecessary branches to the next block. 2057 if (MBB != NextBlock(SwitchBB)) 2058 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2059 DAG.getBasicBlock(MBB)); 2060 2061 DAG.setRoot(BrRange); 2062 } 2063 2064 /// visitBitTestCase - this function produces one "bit test" 2065 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2066 MachineBasicBlock* NextMBB, 2067 BranchProbability BranchProbToNext, 2068 unsigned Reg, 2069 BitTestCase &B, 2070 MachineBasicBlock *SwitchBB) { 2071 SDLoc dl = getCurSDLoc(); 2072 MVT VT = BB.RegVT; 2073 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2074 SDValue Cmp; 2075 unsigned PopCount = countPopulation(B.Mask); 2076 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2077 if (PopCount == 1) { 2078 // Testing for a single bit; just compare the shift count with what it 2079 // would need to be to shift a 1 bit in that position. 2080 Cmp = DAG.getSetCC( 2081 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2082 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2083 ISD::SETEQ); 2084 } else if (PopCount == BB.Range) { 2085 // There is only one zero bit in the range, test for it directly. 2086 Cmp = DAG.getSetCC( 2087 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2088 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2089 ISD::SETNE); 2090 } else { 2091 // Make desired shift 2092 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2093 DAG.getConstant(1, dl, VT), ShiftOp); 2094 2095 // Emit bit tests and jumps 2096 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2097 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2098 Cmp = DAG.getSetCC( 2099 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2100 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2101 } 2102 2103 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2104 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2105 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2106 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2107 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2108 // one as they are relative probabilities (and thus work more like weights), 2109 // and hence we need to normalize them to let the sum of them become one. 2110 SwitchBB->normalizeSuccProbs(); 2111 2112 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2113 MVT::Other, getControlRoot(), 2114 Cmp, DAG.getBasicBlock(B.TargetBB)); 2115 2116 // Avoid emitting unnecessary branches to the next block. 2117 if (NextMBB != NextBlock(SwitchBB)) 2118 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2119 DAG.getBasicBlock(NextMBB)); 2120 2121 DAG.setRoot(BrAnd); 2122 } 2123 2124 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2125 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2126 2127 // Retrieve successors. Look through artificial IR level blocks like catchpads 2128 // and catchendpads for successors. 2129 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2130 const BasicBlock *EHPadBB = I.getSuccessor(1); 2131 2132 const Value *Callee(I.getCalledValue()); 2133 const Function *Fn = dyn_cast<Function>(Callee); 2134 if (isa<InlineAsm>(Callee)) 2135 visitInlineAsm(&I); 2136 else if (Fn && Fn->isIntrinsic()) { 2137 switch (Fn->getIntrinsicID()) { 2138 default: 2139 llvm_unreachable("Cannot invoke this intrinsic"); 2140 case Intrinsic::donothing: 2141 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2142 break; 2143 case Intrinsic::experimental_patchpoint_void: 2144 case Intrinsic::experimental_patchpoint_i64: 2145 visitPatchpoint(&I, EHPadBB); 2146 break; 2147 case Intrinsic::experimental_gc_statepoint: 2148 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2149 break; 2150 } 2151 } else 2152 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2153 2154 // If the value of the invoke is used outside of its defining block, make it 2155 // available as a virtual register. 2156 // We already took care of the exported value for the statepoint instruction 2157 // during call to the LowerStatepoint. 2158 if (!isStatepoint(I)) { 2159 CopyToExportRegsIfNeeded(&I); 2160 } 2161 2162 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2163 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2164 BranchProbability EHPadBBProb = 2165 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2166 : BranchProbability::getZero(); 2167 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2168 2169 // Update successor info. 2170 addSuccessorWithProb(InvokeMBB, Return); 2171 for (auto &UnwindDest : UnwindDests) { 2172 UnwindDest.first->setIsEHPad(); 2173 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2174 } 2175 InvokeMBB->normalizeSuccProbs(); 2176 2177 // Drop into normal successor. 2178 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2179 MVT::Other, getControlRoot(), 2180 DAG.getBasicBlock(Return))); 2181 } 2182 2183 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2184 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2185 } 2186 2187 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2188 assert(FuncInfo.MBB->isEHPad() && 2189 "Call to landingpad not in landing pad!"); 2190 2191 MachineBasicBlock *MBB = FuncInfo.MBB; 2192 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2193 AddLandingPadInfo(LP, MMI, MBB); 2194 2195 // If there aren't registers to copy the values into (e.g., during SjLj 2196 // exceptions), then don't bother to create these DAG nodes. 2197 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2198 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2199 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2200 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2201 return; 2202 2203 SmallVector<EVT, 2> ValueVTs; 2204 SDLoc dl = getCurSDLoc(); 2205 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2206 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2207 2208 // Get the two live-in registers as SDValues. The physregs have already been 2209 // copied into virtual registers. 2210 SDValue Ops[2]; 2211 if (FuncInfo.ExceptionPointerVirtReg) { 2212 Ops[0] = DAG.getZExtOrTrunc( 2213 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2214 FuncInfo.ExceptionPointerVirtReg, 2215 TLI.getPointerTy(DAG.getDataLayout())), 2216 dl, ValueVTs[0]); 2217 } else { 2218 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2219 } 2220 Ops[1] = DAG.getZExtOrTrunc( 2221 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2222 FuncInfo.ExceptionSelectorVirtReg, 2223 TLI.getPointerTy(DAG.getDataLayout())), 2224 dl, ValueVTs[1]); 2225 2226 // Merge into one. 2227 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2228 DAG.getVTList(ValueVTs), Ops); 2229 setValue(&LP, Res); 2230 } 2231 2232 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2233 #ifndef NDEBUG 2234 for (const CaseCluster &CC : Clusters) 2235 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2236 #endif 2237 2238 std::sort(Clusters.begin(), Clusters.end(), 2239 [](const CaseCluster &a, const CaseCluster &b) { 2240 return a.Low->getValue().slt(b.Low->getValue()); 2241 }); 2242 2243 // Merge adjacent clusters with the same destination. 2244 const unsigned N = Clusters.size(); 2245 unsigned DstIndex = 0; 2246 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2247 CaseCluster &CC = Clusters[SrcIndex]; 2248 const ConstantInt *CaseVal = CC.Low; 2249 MachineBasicBlock *Succ = CC.MBB; 2250 2251 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2252 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2253 // If this case has the same successor and is a neighbour, merge it into 2254 // the previous cluster. 2255 Clusters[DstIndex - 1].High = CaseVal; 2256 Clusters[DstIndex - 1].Prob += CC.Prob; 2257 } else { 2258 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2259 sizeof(Clusters[SrcIndex])); 2260 } 2261 } 2262 Clusters.resize(DstIndex); 2263 } 2264 2265 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2266 MachineBasicBlock *Last) { 2267 // Update JTCases. 2268 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2269 if (JTCases[i].first.HeaderBB == First) 2270 JTCases[i].first.HeaderBB = Last; 2271 2272 // Update BitTestCases. 2273 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2274 if (BitTestCases[i].Parent == First) 2275 BitTestCases[i].Parent = Last; 2276 } 2277 2278 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2279 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2280 2281 // Update machine-CFG edges with unique successors. 2282 SmallSet<BasicBlock*, 32> Done; 2283 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2284 BasicBlock *BB = I.getSuccessor(i); 2285 bool Inserted = Done.insert(BB).second; 2286 if (!Inserted) 2287 continue; 2288 2289 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2290 addSuccessorWithProb(IndirectBrMBB, Succ); 2291 } 2292 2293 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2294 MVT::Other, getControlRoot(), 2295 getValue(I.getAddress()))); 2296 } 2297 2298 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2299 if (DAG.getTarget().Options.TrapUnreachable) 2300 DAG.setRoot( 2301 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2302 } 2303 2304 void SelectionDAGBuilder::visitFSub(const User &I) { 2305 // -0.0 - X --> fneg 2306 Type *Ty = I.getType(); 2307 if (isa<Constant>(I.getOperand(0)) && 2308 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2309 SDValue Op2 = getValue(I.getOperand(1)); 2310 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2311 Op2.getValueType(), Op2)); 2312 return; 2313 } 2314 2315 visitBinary(I, ISD::FSUB); 2316 } 2317 2318 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2319 SDValue Op1 = getValue(I.getOperand(0)); 2320 SDValue Op2 = getValue(I.getOperand(1)); 2321 2322 bool nuw = false; 2323 bool nsw = false; 2324 bool exact = false; 2325 FastMathFlags FMF; 2326 2327 if (const OverflowingBinaryOperator *OFBinOp = 2328 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2329 nuw = OFBinOp->hasNoUnsignedWrap(); 2330 nsw = OFBinOp->hasNoSignedWrap(); 2331 } 2332 if (const PossiblyExactOperator *ExactOp = 2333 dyn_cast<const PossiblyExactOperator>(&I)) 2334 exact = ExactOp->isExact(); 2335 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2336 FMF = FPOp->getFastMathFlags(); 2337 2338 SDNodeFlags Flags; 2339 Flags.setExact(exact); 2340 Flags.setNoSignedWrap(nsw); 2341 Flags.setNoUnsignedWrap(nuw); 2342 if (EnableFMFInDAG) { 2343 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2344 Flags.setNoInfs(FMF.noInfs()); 2345 Flags.setNoNaNs(FMF.noNaNs()); 2346 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2347 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2348 } 2349 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2350 Op1, Op2, &Flags); 2351 setValue(&I, BinNodeValue); 2352 } 2353 2354 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2355 SDValue Op1 = getValue(I.getOperand(0)); 2356 SDValue Op2 = getValue(I.getOperand(1)); 2357 2358 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2359 Op2.getValueType(), DAG.getDataLayout()); 2360 2361 // Coerce the shift amount to the right type if we can. 2362 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2363 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2364 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2365 SDLoc DL = getCurSDLoc(); 2366 2367 // If the operand is smaller than the shift count type, promote it. 2368 if (ShiftSize > Op2Size) 2369 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2370 2371 // If the operand is larger than the shift count type but the shift 2372 // count type has enough bits to represent any shift value, truncate 2373 // it now. This is a common case and it exposes the truncate to 2374 // optimization early. 2375 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2376 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2377 // Otherwise we'll need to temporarily settle for some other convenient 2378 // type. Type legalization will make adjustments once the shiftee is split. 2379 else 2380 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2381 } 2382 2383 bool nuw = false; 2384 bool nsw = false; 2385 bool exact = false; 2386 2387 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2388 2389 if (const OverflowingBinaryOperator *OFBinOp = 2390 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2391 nuw = OFBinOp->hasNoUnsignedWrap(); 2392 nsw = OFBinOp->hasNoSignedWrap(); 2393 } 2394 if (const PossiblyExactOperator *ExactOp = 2395 dyn_cast<const PossiblyExactOperator>(&I)) 2396 exact = ExactOp->isExact(); 2397 } 2398 SDNodeFlags Flags; 2399 Flags.setExact(exact); 2400 Flags.setNoSignedWrap(nsw); 2401 Flags.setNoUnsignedWrap(nuw); 2402 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2403 &Flags); 2404 setValue(&I, Res); 2405 } 2406 2407 void SelectionDAGBuilder::visitSDiv(const User &I) { 2408 SDValue Op1 = getValue(I.getOperand(0)); 2409 SDValue Op2 = getValue(I.getOperand(1)); 2410 2411 SDNodeFlags Flags; 2412 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2413 cast<PossiblyExactOperator>(&I)->isExact()); 2414 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2415 Op2, &Flags)); 2416 } 2417 2418 void SelectionDAGBuilder::visitICmp(const User &I) { 2419 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2420 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2421 predicate = IC->getPredicate(); 2422 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2423 predicate = ICmpInst::Predicate(IC->getPredicate()); 2424 SDValue Op1 = getValue(I.getOperand(0)); 2425 SDValue Op2 = getValue(I.getOperand(1)); 2426 ISD::CondCode Opcode = getICmpCondCode(predicate); 2427 2428 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2429 I.getType()); 2430 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2431 } 2432 2433 void SelectionDAGBuilder::visitFCmp(const User &I) { 2434 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2435 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2436 predicate = FC->getPredicate(); 2437 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2438 predicate = FCmpInst::Predicate(FC->getPredicate()); 2439 SDValue Op1 = getValue(I.getOperand(0)); 2440 SDValue Op2 = getValue(I.getOperand(1)); 2441 ISD::CondCode Condition = getFCmpCondCode(predicate); 2442 2443 // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them. 2444 // FIXME: We should propagate the fast-math-flags to the DAG node itself for 2445 // further optimization, but currently FMF is only applicable to binary nodes. 2446 if (TM.Options.NoNaNsFPMath) 2447 Condition = getFCmpCodeWithoutNaN(Condition); 2448 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2449 I.getType()); 2450 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2451 } 2452 2453 void SelectionDAGBuilder::visitSelect(const User &I) { 2454 SmallVector<EVT, 4> ValueVTs; 2455 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2456 ValueVTs); 2457 unsigned NumValues = ValueVTs.size(); 2458 if (NumValues == 0) return; 2459 2460 SmallVector<SDValue, 4> Values(NumValues); 2461 SDValue Cond = getValue(I.getOperand(0)); 2462 SDValue LHSVal = getValue(I.getOperand(1)); 2463 SDValue RHSVal = getValue(I.getOperand(2)); 2464 auto BaseOps = {Cond}; 2465 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2466 ISD::VSELECT : ISD::SELECT; 2467 2468 // Min/max matching is only viable if all output VTs are the same. 2469 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2470 EVT VT = ValueVTs[0]; 2471 LLVMContext &Ctx = *DAG.getContext(); 2472 auto &TLI = DAG.getTargetLoweringInfo(); 2473 while (TLI.getTypeAction(Ctx, VT) == TargetLoweringBase::TypeSplitVector) 2474 VT = TLI.getTypeToTransformTo(Ctx, VT); 2475 2476 Value *LHS, *RHS; 2477 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2478 ISD::NodeType Opc = ISD::DELETED_NODE; 2479 switch (SPR.Flavor) { 2480 case SPF_UMAX: Opc = ISD::UMAX; break; 2481 case SPF_UMIN: Opc = ISD::UMIN; break; 2482 case SPF_SMAX: Opc = ISD::SMAX; break; 2483 case SPF_SMIN: Opc = ISD::SMIN; break; 2484 case SPF_FMINNUM: 2485 switch (SPR.NaNBehavior) { 2486 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2487 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2488 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2489 case SPNB_RETURNS_ANY: 2490 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) ? ISD::FMINNUM 2491 : ISD::FMINNAN; 2492 break; 2493 } 2494 break; 2495 case SPF_FMAXNUM: 2496 switch (SPR.NaNBehavior) { 2497 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2498 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2499 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2500 case SPNB_RETURNS_ANY: 2501 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) ? ISD::FMAXNUM 2502 : ISD::FMAXNAN; 2503 break; 2504 } 2505 break; 2506 default: break; 2507 } 2508 2509 if (Opc != ISD::DELETED_NODE && TLI.isOperationLegalOrCustom(Opc, VT) && 2510 // If the underlying comparison instruction is used by any other instruction, 2511 // the consumed instructions won't be destroyed, so it is not profitable 2512 // to convert to a min/max. 2513 cast<SelectInst>(&I)->getCondition()->hasOneUse()) { 2514 OpCode = Opc; 2515 LHSVal = getValue(LHS); 2516 RHSVal = getValue(RHS); 2517 BaseOps = {}; 2518 } 2519 } 2520 2521 for (unsigned i = 0; i != NumValues; ++i) { 2522 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2523 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2524 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2525 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2526 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2527 Ops); 2528 } 2529 2530 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2531 DAG.getVTList(ValueVTs), Values)); 2532 } 2533 2534 void SelectionDAGBuilder::visitTrunc(const User &I) { 2535 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2536 SDValue N = getValue(I.getOperand(0)); 2537 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2538 I.getType()); 2539 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2540 } 2541 2542 void SelectionDAGBuilder::visitZExt(const User &I) { 2543 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2544 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2545 SDValue N = getValue(I.getOperand(0)); 2546 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2547 I.getType()); 2548 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2549 } 2550 2551 void SelectionDAGBuilder::visitSExt(const User &I) { 2552 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2553 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2554 SDValue N = getValue(I.getOperand(0)); 2555 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2556 I.getType()); 2557 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2558 } 2559 2560 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2561 // FPTrunc is never a no-op cast, no need to check 2562 SDValue N = getValue(I.getOperand(0)); 2563 SDLoc dl = getCurSDLoc(); 2564 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2565 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2566 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2567 DAG.getTargetConstant( 2568 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2569 } 2570 2571 void SelectionDAGBuilder::visitFPExt(const User &I) { 2572 // FPExt is never a no-op cast, no need to check 2573 SDValue N = getValue(I.getOperand(0)); 2574 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2575 I.getType()); 2576 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2577 } 2578 2579 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2580 // FPToUI is never a no-op cast, no need to check 2581 SDValue N = getValue(I.getOperand(0)); 2582 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2583 I.getType()); 2584 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2585 } 2586 2587 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2588 // FPToSI is never a no-op cast, no need to check 2589 SDValue N = getValue(I.getOperand(0)); 2590 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2591 I.getType()); 2592 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2593 } 2594 2595 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2596 // UIToFP is never a no-op cast, no need to check 2597 SDValue N = getValue(I.getOperand(0)); 2598 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2599 I.getType()); 2600 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2601 } 2602 2603 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2604 // SIToFP is never a no-op cast, no need to check 2605 SDValue N = getValue(I.getOperand(0)); 2606 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2607 I.getType()); 2608 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2609 } 2610 2611 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2612 // What to do depends on the size of the integer and the size of the pointer. 2613 // We can either truncate, zero extend, or no-op, accordingly. 2614 SDValue N = getValue(I.getOperand(0)); 2615 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2616 I.getType()); 2617 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2618 } 2619 2620 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2621 // What to do depends on the size of the integer and the size of the pointer. 2622 // We can either truncate, zero extend, or no-op, accordingly. 2623 SDValue N = getValue(I.getOperand(0)); 2624 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2625 I.getType()); 2626 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2627 } 2628 2629 void SelectionDAGBuilder::visitBitCast(const User &I) { 2630 SDValue N = getValue(I.getOperand(0)); 2631 SDLoc dl = getCurSDLoc(); 2632 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2633 I.getType()); 2634 2635 // BitCast assures us that source and destination are the same size so this is 2636 // either a BITCAST or a no-op. 2637 if (DestVT != N.getValueType()) 2638 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2639 DestVT, N)); // convert types. 2640 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2641 // might fold any kind of constant expression to an integer constant and that 2642 // is not what we are looking for. Only regcognize a bitcast of a genuine 2643 // constant integer as an opaque constant. 2644 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2645 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2646 /*isOpaque*/true)); 2647 else 2648 setValue(&I, N); // noop cast. 2649 } 2650 2651 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2652 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2653 const Value *SV = I.getOperand(0); 2654 SDValue N = getValue(SV); 2655 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2656 2657 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2658 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2659 2660 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2661 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2662 2663 setValue(&I, N); 2664 } 2665 2666 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2667 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2668 SDValue InVec = getValue(I.getOperand(0)); 2669 SDValue InVal = getValue(I.getOperand(1)); 2670 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 2671 TLI.getVectorIdxTy(DAG.getDataLayout())); 2672 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2673 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2674 InVec, InVal, InIdx)); 2675 } 2676 2677 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2678 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2679 SDValue InVec = getValue(I.getOperand(0)); 2680 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 2681 TLI.getVectorIdxTy(DAG.getDataLayout())); 2682 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2683 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2684 InVec, InIdx)); 2685 } 2686 2687 // Utility for visitShuffleVector - Return true if every element in Mask, 2688 // beginning from position Pos and ending in Pos+Size, falls within the 2689 // specified sequential range [L, L+Pos). or is undef. 2690 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2691 unsigned Pos, unsigned Size, int Low) { 2692 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2693 if (Mask[i] >= 0 && Mask[i] != Low) 2694 return false; 2695 return true; 2696 } 2697 2698 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2699 SDValue Src1 = getValue(I.getOperand(0)); 2700 SDValue Src2 = getValue(I.getOperand(1)); 2701 2702 SmallVector<int, 8> Mask; 2703 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2704 unsigned MaskNumElts = Mask.size(); 2705 2706 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2707 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2708 EVT SrcVT = Src1.getValueType(); 2709 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2710 2711 if (SrcNumElts == MaskNumElts) { 2712 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2713 &Mask[0])); 2714 return; 2715 } 2716 2717 // Normalize the shuffle vector since mask and vector length don't match. 2718 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2719 // Mask is longer than the source vectors and is a multiple of the source 2720 // vectors. We can use concatenate vector to make the mask and vectors 2721 // lengths match. 2722 if (SrcNumElts*2 == MaskNumElts) { 2723 // First check for Src1 in low and Src2 in high 2724 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2725 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2726 // The shuffle is concatenating two vectors together. 2727 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2728 VT, Src1, Src2)); 2729 return; 2730 } 2731 // Then check for Src2 in low and Src1 in high 2732 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2733 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2734 // The shuffle is concatenating two vectors together. 2735 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2736 VT, Src2, Src1)); 2737 return; 2738 } 2739 } 2740 2741 // Pad both vectors with undefs to make them the same length as the mask. 2742 unsigned NumConcat = MaskNumElts / SrcNumElts; 2743 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2744 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2745 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2746 2747 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2748 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2749 MOps1[0] = Src1; 2750 MOps2[0] = Src2; 2751 2752 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2753 getCurSDLoc(), VT, MOps1); 2754 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2755 getCurSDLoc(), VT, MOps2); 2756 2757 // Readjust mask for new input vector length. 2758 SmallVector<int, 8> MappedOps; 2759 for (unsigned i = 0; i != MaskNumElts; ++i) { 2760 int Idx = Mask[i]; 2761 if (Idx >= (int)SrcNumElts) 2762 Idx -= SrcNumElts - MaskNumElts; 2763 MappedOps.push_back(Idx); 2764 } 2765 2766 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2767 &MappedOps[0])); 2768 return; 2769 } 2770 2771 if (SrcNumElts > MaskNumElts) { 2772 // Analyze the access pattern of the vector to see if we can extract 2773 // two subvectors and do the shuffle. The analysis is done by calculating 2774 // the range of elements the mask access on both vectors. 2775 int MinRange[2] = { static_cast<int>(SrcNumElts), 2776 static_cast<int>(SrcNumElts)}; 2777 int MaxRange[2] = {-1, -1}; 2778 2779 for (unsigned i = 0; i != MaskNumElts; ++i) { 2780 int Idx = Mask[i]; 2781 unsigned Input = 0; 2782 if (Idx < 0) 2783 continue; 2784 2785 if (Idx >= (int)SrcNumElts) { 2786 Input = 1; 2787 Idx -= SrcNumElts; 2788 } 2789 if (Idx > MaxRange[Input]) 2790 MaxRange[Input] = Idx; 2791 if (Idx < MinRange[Input]) 2792 MinRange[Input] = Idx; 2793 } 2794 2795 // Check if the access is smaller than the vector size and can we find 2796 // a reasonable extract index. 2797 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2798 // Extract. 2799 int StartIdx[2]; // StartIdx to extract from 2800 for (unsigned Input = 0; Input < 2; ++Input) { 2801 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2802 RangeUse[Input] = 0; // Unused 2803 StartIdx[Input] = 0; 2804 continue; 2805 } 2806 2807 // Find a good start index that is a multiple of the mask length. Then 2808 // see if the rest of the elements are in range. 2809 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2810 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2811 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2812 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2813 } 2814 2815 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2816 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2817 return; 2818 } 2819 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2820 // Extract appropriate subvector and generate a vector shuffle 2821 for (unsigned Input = 0; Input < 2; ++Input) { 2822 SDValue &Src = Input == 0 ? Src1 : Src2; 2823 if (RangeUse[Input] == 0) 2824 Src = DAG.getUNDEF(VT); 2825 else { 2826 SDLoc dl = getCurSDLoc(); 2827 Src = DAG.getNode( 2828 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 2829 DAG.getConstant(StartIdx[Input], dl, 2830 TLI.getVectorIdxTy(DAG.getDataLayout()))); 2831 } 2832 } 2833 2834 // Calculate new mask. 2835 SmallVector<int, 8> MappedOps; 2836 for (unsigned i = 0; i != MaskNumElts; ++i) { 2837 int Idx = Mask[i]; 2838 if (Idx >= 0) { 2839 if (Idx < (int)SrcNumElts) 2840 Idx -= StartIdx[0]; 2841 else 2842 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2843 } 2844 MappedOps.push_back(Idx); 2845 } 2846 2847 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2848 &MappedOps[0])); 2849 return; 2850 } 2851 } 2852 2853 // We can't use either concat vectors or extract subvectors so fall back to 2854 // replacing the shuffle with extract and build vector. 2855 // to insert and build vector. 2856 EVT EltVT = VT.getVectorElementType(); 2857 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 2858 SDLoc dl = getCurSDLoc(); 2859 SmallVector<SDValue,8> Ops; 2860 for (unsigned i = 0; i != MaskNumElts; ++i) { 2861 int Idx = Mask[i]; 2862 SDValue Res; 2863 2864 if (Idx < 0) { 2865 Res = DAG.getUNDEF(EltVT); 2866 } else { 2867 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2868 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2869 2870 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 2871 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 2872 } 2873 2874 Ops.push_back(Res); 2875 } 2876 2877 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 2878 } 2879 2880 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2881 const Value *Op0 = I.getOperand(0); 2882 const Value *Op1 = I.getOperand(1); 2883 Type *AggTy = I.getType(); 2884 Type *ValTy = Op1->getType(); 2885 bool IntoUndef = isa<UndefValue>(Op0); 2886 bool FromUndef = isa<UndefValue>(Op1); 2887 2888 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2889 2890 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2891 SmallVector<EVT, 4> AggValueVTs; 2892 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 2893 SmallVector<EVT, 4> ValValueVTs; 2894 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2895 2896 unsigned NumAggValues = AggValueVTs.size(); 2897 unsigned NumValValues = ValValueVTs.size(); 2898 SmallVector<SDValue, 4> Values(NumAggValues); 2899 2900 // Ignore an insertvalue that produces an empty object 2901 if (!NumAggValues) { 2902 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2903 return; 2904 } 2905 2906 SDValue Agg = getValue(Op0); 2907 unsigned i = 0; 2908 // Copy the beginning value(s) from the original aggregate. 2909 for (; i != LinearIndex; ++i) 2910 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2911 SDValue(Agg.getNode(), Agg.getResNo() + i); 2912 // Copy values from the inserted value(s). 2913 if (NumValValues) { 2914 SDValue Val = getValue(Op1); 2915 for (; i != LinearIndex + NumValValues; ++i) 2916 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2917 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2918 } 2919 // Copy remaining value(s) from the original aggregate. 2920 for (; i != NumAggValues; ++i) 2921 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2922 SDValue(Agg.getNode(), Agg.getResNo() + i); 2923 2924 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2925 DAG.getVTList(AggValueVTs), Values)); 2926 } 2927 2928 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2929 const Value *Op0 = I.getOperand(0); 2930 Type *AggTy = Op0->getType(); 2931 Type *ValTy = I.getType(); 2932 bool OutOfUndef = isa<UndefValue>(Op0); 2933 2934 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2935 2936 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2937 SmallVector<EVT, 4> ValValueVTs; 2938 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2939 2940 unsigned NumValValues = ValValueVTs.size(); 2941 2942 // Ignore a extractvalue that produces an empty object 2943 if (!NumValValues) { 2944 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2945 return; 2946 } 2947 2948 SmallVector<SDValue, 4> Values(NumValValues); 2949 2950 SDValue Agg = getValue(Op0); 2951 // Copy out the selected value(s). 2952 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2953 Values[i - LinearIndex] = 2954 OutOfUndef ? 2955 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2956 SDValue(Agg.getNode(), Agg.getResNo() + i); 2957 2958 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2959 DAG.getVTList(ValValueVTs), Values)); 2960 } 2961 2962 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2963 Value *Op0 = I.getOperand(0); 2964 // Note that the pointer operand may be a vector of pointers. Take the scalar 2965 // element which holds a pointer. 2966 Type *Ty = Op0->getType()->getScalarType(); 2967 unsigned AS = Ty->getPointerAddressSpace(); 2968 SDValue N = getValue(Op0); 2969 SDLoc dl = getCurSDLoc(); 2970 2971 // Normalize Vector GEP - all scalar operands should be converted to the 2972 // splat vector. 2973 unsigned VectorWidth = I.getType()->isVectorTy() ? 2974 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 2975 2976 if (VectorWidth && !N.getValueType().isVector()) { 2977 MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth); 2978 SmallVector<SDValue, 16> Ops(VectorWidth, N); 2979 N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 2980 } 2981 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2982 OI != E; ++OI) { 2983 const Value *Idx = *OI; 2984 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 2985 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 2986 if (Field) { 2987 // N = N + Offset 2988 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 2989 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 2990 DAG.getConstant(Offset, dl, N.getValueType())); 2991 } 2992 2993 Ty = StTy->getElementType(Field); 2994 } else { 2995 Ty = cast<SequentialType>(Ty)->getElementType(); 2996 MVT PtrTy = 2997 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 2998 unsigned PtrSize = PtrTy.getSizeInBits(); 2999 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 3000 3001 // If this is a scalar constant or a splat vector of constants, 3002 // handle it quickly. 3003 const auto *CI = dyn_cast<ConstantInt>(Idx); 3004 if (!CI && isa<ConstantDataVector>(Idx) && 3005 cast<ConstantDataVector>(Idx)->getSplatValue()) 3006 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3007 3008 if (CI) { 3009 if (CI->isZero()) 3010 continue; 3011 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 3012 SDValue OffsVal = VectorWidth ? 3013 DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) : 3014 DAG.getConstant(Offs, dl, PtrTy); 3015 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal); 3016 continue; 3017 } 3018 3019 // N = N + Idx * ElementSize; 3020 SDValue IdxN = getValue(Idx); 3021 3022 if (!IdxN.getValueType().isVector() && VectorWidth) { 3023 MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth); 3024 SmallVector<SDValue, 16> Ops(VectorWidth, IdxN); 3025 IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 3026 } 3027 // If the index is smaller or larger than intptr_t, truncate or extend 3028 // it. 3029 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3030 3031 // If this is a multiply by a power of two, turn it into a shl 3032 // immediately. This is a very common case. 3033 if (ElementSize != 1) { 3034 if (ElementSize.isPowerOf2()) { 3035 unsigned Amt = ElementSize.logBase2(); 3036 IdxN = DAG.getNode(ISD::SHL, dl, 3037 N.getValueType(), IdxN, 3038 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3039 } else { 3040 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3041 IdxN = DAG.getNode(ISD::MUL, dl, 3042 N.getValueType(), IdxN, Scale); 3043 } 3044 } 3045 3046 N = DAG.getNode(ISD::ADD, dl, 3047 N.getValueType(), N, IdxN); 3048 } 3049 } 3050 3051 setValue(&I, N); 3052 } 3053 3054 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3055 // If this is a fixed sized alloca in the entry block of the function, 3056 // allocate it statically on the stack. 3057 if (FuncInfo.StaticAllocaMap.count(&I)) 3058 return; // getValue will auto-populate this. 3059 3060 SDLoc dl = getCurSDLoc(); 3061 Type *Ty = I.getAllocatedType(); 3062 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3063 auto &DL = DAG.getDataLayout(); 3064 uint64_t TySize = DL.getTypeAllocSize(Ty); 3065 unsigned Align = 3066 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3067 3068 SDValue AllocSize = getValue(I.getArraySize()); 3069 3070 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 3071 if (AllocSize.getValueType() != IntPtr) 3072 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3073 3074 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3075 AllocSize, 3076 DAG.getConstant(TySize, dl, IntPtr)); 3077 3078 // Handle alignment. If the requested alignment is less than or equal to 3079 // the stack alignment, ignore it. If the size is greater than or equal to 3080 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3081 unsigned StackAlign = 3082 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3083 if (Align <= StackAlign) 3084 Align = 0; 3085 3086 // Round the size of the allocation up to the stack alignment size 3087 // by add SA-1 to the size. 3088 AllocSize = DAG.getNode(ISD::ADD, dl, 3089 AllocSize.getValueType(), AllocSize, 3090 DAG.getIntPtrConstant(StackAlign - 1, dl)); 3091 3092 // Mask out the low bits for alignment purposes. 3093 AllocSize = DAG.getNode(ISD::AND, dl, 3094 AllocSize.getValueType(), AllocSize, 3095 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 3096 dl)); 3097 3098 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 3099 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3100 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3101 setValue(&I, DSA); 3102 DAG.setRoot(DSA.getValue(1)); 3103 3104 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3105 } 3106 3107 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3108 if (I.isAtomic()) 3109 return visitAtomicLoad(I); 3110 3111 const Value *SV = I.getOperand(0); 3112 SDValue Ptr = getValue(SV); 3113 3114 Type *Ty = I.getType(); 3115 3116 bool isVolatile = I.isVolatile(); 3117 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3118 3119 // The IR notion of invariant_load only guarantees that all *non-faulting* 3120 // invariant loads result in the same value. The MI notion of invariant load 3121 // guarantees that the load can be legally moved to any location within its 3122 // containing function. The MI notion of invariant_load is stronger than the 3123 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load 3124 // with a guarantee that the location being loaded from is dereferenceable 3125 // throughout the function's lifetime. 3126 3127 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr && 3128 isDereferenceablePointer(SV, DAG.getDataLayout()); 3129 unsigned Alignment = I.getAlignment(); 3130 3131 AAMDNodes AAInfo; 3132 I.getAAMetadata(AAInfo); 3133 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3134 3135 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3136 SmallVector<EVT, 4> ValueVTs; 3137 SmallVector<uint64_t, 4> Offsets; 3138 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3139 unsigned NumValues = ValueVTs.size(); 3140 if (NumValues == 0) 3141 return; 3142 3143 SDValue Root; 3144 bool ConstantMemory = false; 3145 if (isVolatile || NumValues > MaxParallelChains) 3146 // Serialize volatile loads with other side effects. 3147 Root = getRoot(); 3148 else if (AA->pointsToConstantMemory(MemoryLocation( 3149 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3150 // Do not serialize (non-volatile) loads of constant memory with anything. 3151 Root = DAG.getEntryNode(); 3152 ConstantMemory = true; 3153 } else { 3154 // Do not serialize non-volatile loads against each other. 3155 Root = DAG.getRoot(); 3156 } 3157 3158 SDLoc dl = getCurSDLoc(); 3159 3160 if (isVolatile) 3161 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3162 3163 SmallVector<SDValue, 4> Values(NumValues); 3164 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3165 EVT PtrVT = Ptr.getValueType(); 3166 unsigned ChainI = 0; 3167 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3168 // Serializing loads here may result in excessive register pressure, and 3169 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3170 // could recover a bit by hoisting nodes upward in the chain by recognizing 3171 // they are side-effect free or do not alias. The optimizer should really 3172 // avoid this case by converting large object/array copies to llvm.memcpy 3173 // (MaxParallelChains should always remain as failsafe). 3174 if (ChainI == MaxParallelChains) { 3175 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3176 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3177 makeArrayRef(Chains.data(), ChainI)); 3178 Root = Chain; 3179 ChainI = 0; 3180 } 3181 SDValue A = DAG.getNode(ISD::ADD, dl, 3182 PtrVT, Ptr, 3183 DAG.getConstant(Offsets[i], dl, PtrVT)); 3184 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 3185 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3186 isNonTemporal, isInvariant, Alignment, AAInfo, 3187 Ranges); 3188 3189 Values[i] = L; 3190 Chains[ChainI] = L.getValue(1); 3191 } 3192 3193 if (!ConstantMemory) { 3194 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3195 makeArrayRef(Chains.data(), ChainI)); 3196 if (isVolatile) 3197 DAG.setRoot(Chain); 3198 else 3199 PendingLoads.push_back(Chain); 3200 } 3201 3202 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3203 DAG.getVTList(ValueVTs), Values)); 3204 } 3205 3206 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3207 if (I.isAtomic()) 3208 return visitAtomicStore(I); 3209 3210 const Value *SrcV = I.getOperand(0); 3211 const Value *PtrV = I.getOperand(1); 3212 3213 SmallVector<EVT, 4> ValueVTs; 3214 SmallVector<uint64_t, 4> Offsets; 3215 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3216 SrcV->getType(), ValueVTs, &Offsets); 3217 unsigned NumValues = ValueVTs.size(); 3218 if (NumValues == 0) 3219 return; 3220 3221 // Get the lowered operands. Note that we do this after 3222 // checking if NumResults is zero, because with zero results 3223 // the operands won't have values in the map. 3224 SDValue Src = getValue(SrcV); 3225 SDValue Ptr = getValue(PtrV); 3226 3227 SDValue Root = getRoot(); 3228 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3229 EVT PtrVT = Ptr.getValueType(); 3230 bool isVolatile = I.isVolatile(); 3231 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3232 unsigned Alignment = I.getAlignment(); 3233 SDLoc dl = getCurSDLoc(); 3234 3235 AAMDNodes AAInfo; 3236 I.getAAMetadata(AAInfo); 3237 3238 unsigned ChainI = 0; 3239 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3240 // See visitLoad comments. 3241 if (ChainI == MaxParallelChains) { 3242 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3243 makeArrayRef(Chains.data(), ChainI)); 3244 Root = Chain; 3245 ChainI = 0; 3246 } 3247 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3248 DAG.getConstant(Offsets[i], dl, PtrVT)); 3249 SDValue St = DAG.getStore(Root, dl, 3250 SDValue(Src.getNode(), Src.getResNo() + i), 3251 Add, MachinePointerInfo(PtrV, Offsets[i]), 3252 isVolatile, isNonTemporal, Alignment, AAInfo); 3253 Chains[ChainI] = St; 3254 } 3255 3256 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3257 makeArrayRef(Chains.data(), ChainI)); 3258 DAG.setRoot(StoreNode); 3259 } 3260 3261 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3262 SDLoc sdl = getCurSDLoc(); 3263 3264 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3265 Value *PtrOperand = I.getArgOperand(1); 3266 SDValue Ptr = getValue(PtrOperand); 3267 SDValue Src0 = getValue(I.getArgOperand(0)); 3268 SDValue Mask = getValue(I.getArgOperand(3)); 3269 EVT VT = Src0.getValueType(); 3270 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3271 if (!Alignment) 3272 Alignment = DAG.getEVTAlignment(VT); 3273 3274 AAMDNodes AAInfo; 3275 I.getAAMetadata(AAInfo); 3276 3277 MachineMemOperand *MMO = 3278 DAG.getMachineFunction(). 3279 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3280 MachineMemOperand::MOStore, VT.getStoreSize(), 3281 Alignment, AAInfo); 3282 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3283 MMO, false); 3284 DAG.setRoot(StoreNode); 3285 setValue(&I, StoreNode); 3286 } 3287 3288 // Get a uniform base for the Gather/Scatter intrinsic. 3289 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3290 // We try to represent it as a base pointer + vector of indices. 3291 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3292 // The first operand of the GEP may be a single pointer or a vector of pointers 3293 // Example: 3294 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3295 // or 3296 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3297 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3298 // 3299 // When the first GEP operand is a single pointer - it is the uniform base we 3300 // are looking for. If first operand of the GEP is a splat vector - we 3301 // extract the spalt value and use it as a uniform base. 3302 // In all other cases the function returns 'false'. 3303 // 3304 static bool getUniformBase(const Value *& Ptr, SDValue& Base, SDValue& Index, 3305 SelectionDAGBuilder* SDB) { 3306 3307 SelectionDAG& DAG = SDB->DAG; 3308 LLVMContext &Context = *DAG.getContext(); 3309 3310 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3311 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3312 if (!GEP || GEP->getNumOperands() > 2) 3313 return false; 3314 3315 const Value *GEPPtr = GEP->getPointerOperand(); 3316 if (!GEPPtr->getType()->isVectorTy()) 3317 Ptr = GEPPtr; 3318 else if (!(Ptr = getSplatValue(GEPPtr))) 3319 return false; 3320 3321 Value *IndexVal = GEP->getOperand(1); 3322 3323 // The operands of the GEP may be defined in another basic block. 3324 // In this case we'll not find nodes for the operands. 3325 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3326 return false; 3327 3328 Base = SDB->getValue(Ptr); 3329 Index = SDB->getValue(IndexVal); 3330 3331 // Suppress sign extension. 3332 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3333 if (SDB->findValue(Sext->getOperand(0))) { 3334 IndexVal = Sext->getOperand(0); 3335 Index = SDB->getValue(IndexVal); 3336 } 3337 } 3338 if (!Index.getValueType().isVector()) { 3339 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3340 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3341 SmallVector<SDValue, 16> Ops(GEPWidth, Index); 3342 Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops); 3343 } 3344 return true; 3345 } 3346 3347 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3348 SDLoc sdl = getCurSDLoc(); 3349 3350 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3351 const Value *Ptr = I.getArgOperand(1); 3352 SDValue Src0 = getValue(I.getArgOperand(0)); 3353 SDValue Mask = getValue(I.getArgOperand(3)); 3354 EVT VT = Src0.getValueType(); 3355 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3356 if (!Alignment) 3357 Alignment = DAG.getEVTAlignment(VT); 3358 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3359 3360 AAMDNodes AAInfo; 3361 I.getAAMetadata(AAInfo); 3362 3363 SDValue Base; 3364 SDValue Index; 3365 const Value *BasePtr = Ptr; 3366 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3367 3368 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3369 MachineMemOperand *MMO = DAG.getMachineFunction(). 3370 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3371 MachineMemOperand::MOStore, VT.getStoreSize(), 3372 Alignment, AAInfo); 3373 if (!UniformBase) { 3374 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3375 Index = getValue(Ptr); 3376 } 3377 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3378 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3379 Ops, MMO); 3380 DAG.setRoot(Scatter); 3381 setValue(&I, Scatter); 3382 } 3383 3384 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3385 SDLoc sdl = getCurSDLoc(); 3386 3387 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3388 Value *PtrOperand = I.getArgOperand(0); 3389 SDValue Ptr = getValue(PtrOperand); 3390 SDValue Src0 = getValue(I.getArgOperand(3)); 3391 SDValue Mask = getValue(I.getArgOperand(2)); 3392 3393 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3394 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3395 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3396 if (!Alignment) 3397 Alignment = DAG.getEVTAlignment(VT); 3398 3399 AAMDNodes AAInfo; 3400 I.getAAMetadata(AAInfo); 3401 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3402 3403 SDValue InChain = DAG.getRoot(); 3404 if (AA->pointsToConstantMemory(MemoryLocation( 3405 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3406 AAInfo))) { 3407 // Do not serialize (non-volatile) loads of constant memory with anything. 3408 InChain = DAG.getEntryNode(); 3409 } 3410 3411 MachineMemOperand *MMO = 3412 DAG.getMachineFunction(). 3413 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3414 MachineMemOperand::MOLoad, VT.getStoreSize(), 3415 Alignment, AAInfo, Ranges); 3416 3417 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3418 ISD::NON_EXTLOAD); 3419 SDValue OutChain = Load.getValue(1); 3420 DAG.setRoot(OutChain); 3421 setValue(&I, Load); 3422 } 3423 3424 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3425 SDLoc sdl = getCurSDLoc(); 3426 3427 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3428 const Value *Ptr = I.getArgOperand(0); 3429 SDValue Src0 = getValue(I.getArgOperand(3)); 3430 SDValue Mask = getValue(I.getArgOperand(2)); 3431 3432 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3433 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3434 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3435 if (!Alignment) 3436 Alignment = DAG.getEVTAlignment(VT); 3437 3438 AAMDNodes AAInfo; 3439 I.getAAMetadata(AAInfo); 3440 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3441 3442 SDValue Root = DAG.getRoot(); 3443 SDValue Base; 3444 SDValue Index; 3445 const Value *BasePtr = Ptr; 3446 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3447 bool ConstantMemory = false; 3448 if (UniformBase && 3449 AA->pointsToConstantMemory(MemoryLocation( 3450 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3451 AAInfo))) { 3452 // Do not serialize (non-volatile) loads of constant memory with anything. 3453 Root = DAG.getEntryNode(); 3454 ConstantMemory = true; 3455 } 3456 3457 MachineMemOperand *MMO = 3458 DAG.getMachineFunction(). 3459 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3460 MachineMemOperand::MOLoad, VT.getStoreSize(), 3461 Alignment, AAInfo, Ranges); 3462 3463 if (!UniformBase) { 3464 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3465 Index = getValue(Ptr); 3466 } 3467 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3468 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3469 Ops, MMO); 3470 3471 SDValue OutChain = Gather.getValue(1); 3472 if (!ConstantMemory) 3473 PendingLoads.push_back(OutChain); 3474 setValue(&I, Gather); 3475 } 3476 3477 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3478 SDLoc dl = getCurSDLoc(); 3479 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3480 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3481 SynchronizationScope Scope = I.getSynchScope(); 3482 3483 SDValue InChain = getRoot(); 3484 3485 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3486 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3487 SDValue L = DAG.getAtomicCmpSwap( 3488 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3489 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3490 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3491 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3492 3493 SDValue OutChain = L.getValue(2); 3494 3495 setValue(&I, L); 3496 DAG.setRoot(OutChain); 3497 } 3498 3499 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3500 SDLoc dl = getCurSDLoc(); 3501 ISD::NodeType NT; 3502 switch (I.getOperation()) { 3503 default: llvm_unreachable("Unknown atomicrmw operation"); 3504 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3505 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3506 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3507 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3508 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3509 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3510 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3511 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3512 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3513 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3514 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3515 } 3516 AtomicOrdering Order = I.getOrdering(); 3517 SynchronizationScope Scope = I.getSynchScope(); 3518 3519 SDValue InChain = getRoot(); 3520 3521 SDValue L = 3522 DAG.getAtomic(NT, dl, 3523 getValue(I.getValOperand()).getSimpleValueType(), 3524 InChain, 3525 getValue(I.getPointerOperand()), 3526 getValue(I.getValOperand()), 3527 I.getPointerOperand(), 3528 /* Alignment=*/ 0, Order, Scope); 3529 3530 SDValue OutChain = L.getValue(1); 3531 3532 setValue(&I, L); 3533 DAG.setRoot(OutChain); 3534 } 3535 3536 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3537 SDLoc dl = getCurSDLoc(); 3538 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3539 SDValue Ops[3]; 3540 Ops[0] = getRoot(); 3541 Ops[1] = DAG.getConstant(I.getOrdering(), dl, 3542 TLI.getPointerTy(DAG.getDataLayout())); 3543 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, 3544 TLI.getPointerTy(DAG.getDataLayout())); 3545 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3546 } 3547 3548 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3549 SDLoc dl = getCurSDLoc(); 3550 AtomicOrdering Order = I.getOrdering(); 3551 SynchronizationScope Scope = I.getSynchScope(); 3552 3553 SDValue InChain = getRoot(); 3554 3555 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3556 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3557 3558 if (I.getAlignment() < VT.getSizeInBits() / 8) 3559 report_fatal_error("Cannot generate unaligned atomic load"); 3560 3561 MachineMemOperand *MMO = 3562 DAG.getMachineFunction(). 3563 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3564 MachineMemOperand::MOVolatile | 3565 MachineMemOperand::MOLoad, 3566 VT.getStoreSize(), 3567 I.getAlignment() ? I.getAlignment() : 3568 DAG.getEVTAlignment(VT)); 3569 3570 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3571 SDValue L = 3572 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3573 getValue(I.getPointerOperand()), MMO, 3574 Order, Scope); 3575 3576 SDValue OutChain = L.getValue(1); 3577 3578 setValue(&I, L); 3579 DAG.setRoot(OutChain); 3580 } 3581 3582 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3583 SDLoc dl = getCurSDLoc(); 3584 3585 AtomicOrdering Order = I.getOrdering(); 3586 SynchronizationScope Scope = I.getSynchScope(); 3587 3588 SDValue InChain = getRoot(); 3589 3590 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3591 EVT VT = 3592 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 3593 3594 if (I.getAlignment() < VT.getSizeInBits() / 8) 3595 report_fatal_error("Cannot generate unaligned atomic store"); 3596 3597 SDValue OutChain = 3598 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3599 InChain, 3600 getValue(I.getPointerOperand()), 3601 getValue(I.getValueOperand()), 3602 I.getPointerOperand(), I.getAlignment(), 3603 Order, Scope); 3604 3605 DAG.setRoot(OutChain); 3606 } 3607 3608 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3609 /// node. 3610 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3611 unsigned Intrinsic) { 3612 bool HasChain = !I.doesNotAccessMemory(); 3613 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3614 3615 // Build the operand list. 3616 SmallVector<SDValue, 8> Ops; 3617 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3618 if (OnlyLoad) { 3619 // We don't need to serialize loads against other loads. 3620 Ops.push_back(DAG.getRoot()); 3621 } else { 3622 Ops.push_back(getRoot()); 3623 } 3624 } 3625 3626 // Info is set by getTgtMemInstrinsic 3627 TargetLowering::IntrinsicInfo Info; 3628 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3629 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3630 3631 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3632 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3633 Info.opc == ISD::INTRINSIC_W_CHAIN) 3634 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 3635 TLI.getPointerTy(DAG.getDataLayout()))); 3636 3637 // Add all operands of the call to the operand list. 3638 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3639 SDValue Op = getValue(I.getArgOperand(i)); 3640 Ops.push_back(Op); 3641 } 3642 3643 SmallVector<EVT, 4> ValueVTs; 3644 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 3645 3646 if (HasChain) 3647 ValueVTs.push_back(MVT::Other); 3648 3649 SDVTList VTs = DAG.getVTList(ValueVTs); 3650 3651 // Create the node. 3652 SDValue Result; 3653 if (IsTgtIntrinsic) { 3654 // This is target intrinsic that touches memory 3655 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3656 VTs, Ops, Info.memVT, 3657 MachinePointerInfo(Info.ptrVal, Info.offset), 3658 Info.align, Info.vol, 3659 Info.readMem, Info.writeMem, Info.size); 3660 } else if (!HasChain) { 3661 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3662 } else if (!I.getType()->isVoidTy()) { 3663 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3664 } else { 3665 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3666 } 3667 3668 if (HasChain) { 3669 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3670 if (OnlyLoad) 3671 PendingLoads.push_back(Chain); 3672 else 3673 DAG.setRoot(Chain); 3674 } 3675 3676 if (!I.getType()->isVoidTy()) { 3677 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3678 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 3679 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3680 } 3681 3682 setValue(&I, Result); 3683 } 3684 } 3685 3686 /// GetSignificand - Get the significand and build it into a floating-point 3687 /// number with exponent of 1: 3688 /// 3689 /// Op = (Op & 0x007fffff) | 0x3f800000; 3690 /// 3691 /// where Op is the hexadecimal representation of floating point value. 3692 static SDValue 3693 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3694 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3695 DAG.getConstant(0x007fffff, dl, MVT::i32)); 3696 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3697 DAG.getConstant(0x3f800000, dl, MVT::i32)); 3698 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3699 } 3700 3701 /// GetExponent - Get the exponent: 3702 /// 3703 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3704 /// 3705 /// where Op is the hexadecimal representation of floating point value. 3706 static SDValue 3707 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3708 SDLoc dl) { 3709 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3710 DAG.getConstant(0x7f800000, dl, MVT::i32)); 3711 SDValue t1 = DAG.getNode( 3712 ISD::SRL, dl, MVT::i32, t0, 3713 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 3714 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3715 DAG.getConstant(127, dl, MVT::i32)); 3716 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3717 } 3718 3719 /// getF32Constant - Get 32-bit floating point constant. 3720 static SDValue 3721 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 3722 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 3723 MVT::f32); 3724 } 3725 3726 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3727 SelectionDAG &DAG) { 3728 // TODO: What fast-math-flags should be set on the floating-point nodes? 3729 3730 // IntegerPartOfX = ((int32_t)(t0); 3731 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3732 3733 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3734 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3735 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3736 3737 // IntegerPartOfX <<= 23; 3738 IntegerPartOfX = DAG.getNode( 3739 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3740 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 3741 DAG.getDataLayout()))); 3742 3743 SDValue TwoToFractionalPartOfX; 3744 if (LimitFloatPrecision <= 6) { 3745 // For floating-point precision of 6: 3746 // 3747 // TwoToFractionalPartOfX = 3748 // 0.997535578f + 3749 // (0.735607626f + 0.252464424f * x) * x; 3750 // 3751 // error 0.0144103317, which is 6 bits 3752 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3753 getF32Constant(DAG, 0x3e814304, dl)); 3754 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3755 getF32Constant(DAG, 0x3f3c50c8, dl)); 3756 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3757 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3758 getF32Constant(DAG, 0x3f7f5e7e, dl)); 3759 } else if (LimitFloatPrecision <= 12) { 3760 // For floating-point precision of 12: 3761 // 3762 // TwoToFractionalPartOfX = 3763 // 0.999892986f + 3764 // (0.696457318f + 3765 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3766 // 3767 // error 0.000107046256, which is 13 to 14 bits 3768 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3769 getF32Constant(DAG, 0x3da235e3, dl)); 3770 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3771 getF32Constant(DAG, 0x3e65b8f3, dl)); 3772 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3773 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3774 getF32Constant(DAG, 0x3f324b07, dl)); 3775 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3776 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3777 getF32Constant(DAG, 0x3f7ff8fd, dl)); 3778 } else { // LimitFloatPrecision <= 18 3779 // For floating-point precision of 18: 3780 // 3781 // TwoToFractionalPartOfX = 3782 // 0.999999982f + 3783 // (0.693148872f + 3784 // (0.240227044f + 3785 // (0.554906021e-1f + 3786 // (0.961591928e-2f + 3787 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3788 // error 2.47208000*10^(-7), which is better than 18 bits 3789 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3790 getF32Constant(DAG, 0x3924b03e, dl)); 3791 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3792 getF32Constant(DAG, 0x3ab24b87, dl)); 3793 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3794 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3795 getF32Constant(DAG, 0x3c1d8c17, dl)); 3796 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3797 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3798 getF32Constant(DAG, 0x3d634a1d, dl)); 3799 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3800 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3801 getF32Constant(DAG, 0x3e75fe14, dl)); 3802 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3803 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3804 getF32Constant(DAG, 0x3f317234, dl)); 3805 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3806 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3807 getF32Constant(DAG, 0x3f800000, dl)); 3808 } 3809 3810 // Add the exponent into the result in integer domain. 3811 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 3812 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3813 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 3814 } 3815 3816 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3817 /// limited-precision mode. 3818 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3819 const TargetLowering &TLI) { 3820 if (Op.getValueType() == MVT::f32 && 3821 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3822 3823 // Put the exponent in the right bit position for later addition to the 3824 // final result: 3825 // 3826 // #define LOG2OFe 1.4426950f 3827 // t0 = Op * LOG2OFe 3828 3829 // TODO: What fast-math-flags should be set here? 3830 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3831 getF32Constant(DAG, 0x3fb8aa3b, dl)); 3832 return getLimitedPrecisionExp2(t0, dl, DAG); 3833 } 3834 3835 // No special expansion. 3836 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3837 } 3838 3839 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3840 /// limited-precision mode. 3841 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3842 const TargetLowering &TLI) { 3843 3844 // TODO: What fast-math-flags should be set on the floating-point nodes? 3845 3846 if (Op.getValueType() == MVT::f32 && 3847 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3848 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3849 3850 // Scale the exponent by log(2) [0.69314718f]. 3851 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3852 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3853 getF32Constant(DAG, 0x3f317218, dl)); 3854 3855 // Get the significand and build it into a floating-point number with 3856 // exponent of 1. 3857 SDValue X = GetSignificand(DAG, Op1, dl); 3858 3859 SDValue LogOfMantissa; 3860 if (LimitFloatPrecision <= 6) { 3861 // For floating-point precision of 6: 3862 // 3863 // LogofMantissa = 3864 // -1.1609546f + 3865 // (1.4034025f - 0.23903021f * x) * x; 3866 // 3867 // error 0.0034276066, which is better than 8 bits 3868 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3869 getF32Constant(DAG, 0xbe74c456, dl)); 3870 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3871 getF32Constant(DAG, 0x3fb3a2b1, dl)); 3872 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3873 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3874 getF32Constant(DAG, 0x3f949a29, dl)); 3875 } else if (LimitFloatPrecision <= 12) { 3876 // For floating-point precision of 12: 3877 // 3878 // LogOfMantissa = 3879 // -1.7417939f + 3880 // (2.8212026f + 3881 // (-1.4699568f + 3882 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3883 // 3884 // error 0.000061011436, which is 14 bits 3885 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3886 getF32Constant(DAG, 0xbd67b6d6, dl)); 3887 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3888 getF32Constant(DAG, 0x3ee4f4b8, dl)); 3889 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3890 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3891 getF32Constant(DAG, 0x3fbc278b, dl)); 3892 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3893 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3894 getF32Constant(DAG, 0x40348e95, dl)); 3895 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3896 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3897 getF32Constant(DAG, 0x3fdef31a, dl)); 3898 } else { // LimitFloatPrecision <= 18 3899 // For floating-point precision of 18: 3900 // 3901 // LogOfMantissa = 3902 // -2.1072184f + 3903 // (4.2372794f + 3904 // (-3.7029485f + 3905 // (2.2781945f + 3906 // (-0.87823314f + 3907 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3908 // 3909 // error 0.0000023660568, which is better than 18 bits 3910 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3911 getF32Constant(DAG, 0xbc91e5ac, dl)); 3912 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3913 getF32Constant(DAG, 0x3e4350aa, dl)); 3914 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3915 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3916 getF32Constant(DAG, 0x3f60d3e3, dl)); 3917 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3918 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3919 getF32Constant(DAG, 0x4011cdf0, dl)); 3920 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3921 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3922 getF32Constant(DAG, 0x406cfd1c, dl)); 3923 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3924 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3925 getF32Constant(DAG, 0x408797cb, dl)); 3926 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3927 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3928 getF32Constant(DAG, 0x4006dcab, dl)); 3929 } 3930 3931 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3932 } 3933 3934 // No special expansion. 3935 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3936 } 3937 3938 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3939 /// limited-precision mode. 3940 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3941 const TargetLowering &TLI) { 3942 3943 // TODO: What fast-math-flags should be set on the floating-point nodes? 3944 3945 if (Op.getValueType() == MVT::f32 && 3946 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3947 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3948 3949 // Get the exponent. 3950 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3951 3952 // Get the significand and build it into a floating-point number with 3953 // exponent of 1. 3954 SDValue X = GetSignificand(DAG, Op1, dl); 3955 3956 // Different possible minimax approximations of significand in 3957 // floating-point for various degrees of accuracy over [1,2]. 3958 SDValue Log2ofMantissa; 3959 if (LimitFloatPrecision <= 6) { 3960 // For floating-point precision of 6: 3961 // 3962 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3963 // 3964 // error 0.0049451742, which is more than 7 bits 3965 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3966 getF32Constant(DAG, 0xbeb08fe0, dl)); 3967 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3968 getF32Constant(DAG, 0x40019463, dl)); 3969 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3970 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3971 getF32Constant(DAG, 0x3fd6633d, dl)); 3972 } else if (LimitFloatPrecision <= 12) { 3973 // For floating-point precision of 12: 3974 // 3975 // Log2ofMantissa = 3976 // -2.51285454f + 3977 // (4.07009056f + 3978 // (-2.12067489f + 3979 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3980 // 3981 // error 0.0000876136000, which is better than 13 bits 3982 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3983 getF32Constant(DAG, 0xbda7262e, dl)); 3984 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3985 getF32Constant(DAG, 0x3f25280b, dl)); 3986 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3987 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3988 getF32Constant(DAG, 0x4007b923, dl)); 3989 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3990 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3991 getF32Constant(DAG, 0x40823e2f, dl)); 3992 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3993 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3994 getF32Constant(DAG, 0x4020d29c, dl)); 3995 } else { // LimitFloatPrecision <= 18 3996 // For floating-point precision of 18: 3997 // 3998 // Log2ofMantissa = 3999 // -3.0400495f + 4000 // (6.1129976f + 4001 // (-5.3420409f + 4002 // (3.2865683f + 4003 // (-1.2669343f + 4004 // (0.27515199f - 4005 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4006 // 4007 // error 0.0000018516, which is better than 18 bits 4008 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4009 getF32Constant(DAG, 0xbcd2769e, dl)); 4010 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4011 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4012 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4013 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4014 getF32Constant(DAG, 0x3fa22ae7, dl)); 4015 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4016 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4017 getF32Constant(DAG, 0x40525723, dl)); 4018 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4019 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4020 getF32Constant(DAG, 0x40aaf200, dl)); 4021 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4022 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4023 getF32Constant(DAG, 0x40c39dad, dl)); 4024 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4025 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4026 getF32Constant(DAG, 0x4042902c, dl)); 4027 } 4028 4029 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4030 } 4031 4032 // No special expansion. 4033 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4034 } 4035 4036 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4037 /// limited-precision mode. 4038 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4039 const TargetLowering &TLI) { 4040 4041 // TODO: What fast-math-flags should be set on the floating-point nodes? 4042 4043 if (Op.getValueType() == MVT::f32 && 4044 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4045 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4046 4047 // Scale the exponent by log10(2) [0.30102999f]. 4048 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4049 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4050 getF32Constant(DAG, 0x3e9a209a, dl)); 4051 4052 // Get the significand and build it into a floating-point number with 4053 // exponent of 1. 4054 SDValue X = GetSignificand(DAG, Op1, dl); 4055 4056 SDValue Log10ofMantissa; 4057 if (LimitFloatPrecision <= 6) { 4058 // For floating-point precision of 6: 4059 // 4060 // Log10ofMantissa = 4061 // -0.50419619f + 4062 // (0.60948995f - 0.10380950f * x) * x; 4063 // 4064 // error 0.0014886165, which is 6 bits 4065 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4066 getF32Constant(DAG, 0xbdd49a13, dl)); 4067 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4068 getF32Constant(DAG, 0x3f1c0789, dl)); 4069 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4070 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4071 getF32Constant(DAG, 0x3f011300, dl)); 4072 } else if (LimitFloatPrecision <= 12) { 4073 // For floating-point precision of 12: 4074 // 4075 // Log10ofMantissa = 4076 // -0.64831180f + 4077 // (0.91751397f + 4078 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4079 // 4080 // error 0.00019228036, which is better than 12 bits 4081 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4082 getF32Constant(DAG, 0x3d431f31, dl)); 4083 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4084 getF32Constant(DAG, 0x3ea21fb2, dl)); 4085 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4086 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4087 getF32Constant(DAG, 0x3f6ae232, dl)); 4088 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4089 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4090 getF32Constant(DAG, 0x3f25f7c3, dl)); 4091 } else { // LimitFloatPrecision <= 18 4092 // For floating-point precision of 18: 4093 // 4094 // Log10ofMantissa = 4095 // -0.84299375f + 4096 // (1.5327582f + 4097 // (-1.0688956f + 4098 // (0.49102474f + 4099 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4100 // 4101 // error 0.0000037995730, which is better than 18 bits 4102 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4103 getF32Constant(DAG, 0x3c5d51ce, dl)); 4104 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4105 getF32Constant(DAG, 0x3e00685a, dl)); 4106 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4107 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4108 getF32Constant(DAG, 0x3efb6798, dl)); 4109 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4110 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4111 getF32Constant(DAG, 0x3f88d192, dl)); 4112 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4113 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4114 getF32Constant(DAG, 0x3fc4316c, dl)); 4115 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4116 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4117 getF32Constant(DAG, 0x3f57ce70, dl)); 4118 } 4119 4120 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4121 } 4122 4123 // No special expansion. 4124 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4125 } 4126 4127 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4128 /// limited-precision mode. 4129 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4130 const TargetLowering &TLI) { 4131 if (Op.getValueType() == MVT::f32 && 4132 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4133 return getLimitedPrecisionExp2(Op, dl, DAG); 4134 4135 // No special expansion. 4136 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4137 } 4138 4139 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4140 /// limited-precision mode with x == 10.0f. 4141 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4142 SelectionDAG &DAG, const TargetLowering &TLI) { 4143 bool IsExp10 = false; 4144 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4145 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4146 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4147 APFloat Ten(10.0f); 4148 IsExp10 = LHSC->isExactlyValue(Ten); 4149 } 4150 } 4151 4152 // TODO: What fast-math-flags should be set on the FMUL node? 4153 if (IsExp10) { 4154 // Put the exponent in the right bit position for later addition to the 4155 // final result: 4156 // 4157 // #define LOG2OF10 3.3219281f 4158 // t0 = Op * LOG2OF10; 4159 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4160 getF32Constant(DAG, 0x40549a78, dl)); 4161 return getLimitedPrecisionExp2(t0, dl, DAG); 4162 } 4163 4164 // No special expansion. 4165 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4166 } 4167 4168 4169 /// ExpandPowI - Expand a llvm.powi intrinsic. 4170 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4171 SelectionDAG &DAG) { 4172 // If RHS is a constant, we can expand this out to a multiplication tree, 4173 // otherwise we end up lowering to a call to __powidf2 (for example). When 4174 // optimizing for size, we only want to do this if the expansion would produce 4175 // a small number of multiplies, otherwise we do the full expansion. 4176 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4177 // Get the exponent as a positive value. 4178 unsigned Val = RHSC->getSExtValue(); 4179 if ((int)Val < 0) Val = -Val; 4180 4181 // powi(x, 0) -> 1.0 4182 if (Val == 0) 4183 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4184 4185 const Function *F = DAG.getMachineFunction().getFunction(); 4186 if (!F->optForSize() || 4187 // If optimizing for size, don't insert too many multiplies. 4188 // This inserts up to 5 multiplies. 4189 countPopulation(Val) + Log2_32(Val) < 7) { 4190 // We use the simple binary decomposition method to generate the multiply 4191 // sequence. There are more optimal ways to do this (for example, 4192 // powi(x,15) generates one more multiply than it should), but this has 4193 // the benefit of being both really simple and much better than a libcall. 4194 SDValue Res; // Logically starts equal to 1.0 4195 SDValue CurSquare = LHS; 4196 // TODO: Intrinsics should have fast-math-flags that propagate to these 4197 // nodes. 4198 while (Val) { 4199 if (Val & 1) { 4200 if (Res.getNode()) 4201 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4202 else 4203 Res = CurSquare; // 1.0*CurSquare. 4204 } 4205 4206 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4207 CurSquare, CurSquare); 4208 Val >>= 1; 4209 } 4210 4211 // If the original was negative, invert the result, producing 1/(x*x*x). 4212 if (RHSC->getSExtValue() < 0) 4213 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4214 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4215 return Res; 4216 } 4217 } 4218 4219 // Otherwise, expand to a libcall. 4220 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4221 } 4222 4223 // getUnderlyingArgReg - Find underlying register used for a truncated or 4224 // bitcasted argument. 4225 static unsigned getUnderlyingArgReg(const SDValue &N) { 4226 switch (N.getOpcode()) { 4227 case ISD::CopyFromReg: 4228 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4229 case ISD::BITCAST: 4230 case ISD::AssertZext: 4231 case ISD::AssertSext: 4232 case ISD::TRUNCATE: 4233 return getUnderlyingArgReg(N.getOperand(0)); 4234 default: 4235 return 0; 4236 } 4237 } 4238 4239 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4240 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4241 /// At the end of instruction selection, they will be inserted to the entry BB. 4242 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4243 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4244 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4245 const Argument *Arg = dyn_cast<Argument>(V); 4246 if (!Arg) 4247 return false; 4248 4249 MachineFunction &MF = DAG.getMachineFunction(); 4250 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4251 4252 // Ignore inlined function arguments here. 4253 // 4254 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4255 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4256 return false; 4257 4258 Optional<MachineOperand> Op; 4259 // Some arguments' frame index is recorded during argument lowering. 4260 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4261 Op = MachineOperand::CreateFI(FI); 4262 4263 if (!Op && N.getNode()) { 4264 unsigned Reg = getUnderlyingArgReg(N); 4265 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4266 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4267 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4268 if (PR) 4269 Reg = PR; 4270 } 4271 if (Reg) 4272 Op = MachineOperand::CreateReg(Reg, false); 4273 } 4274 4275 if (!Op) { 4276 // Check if ValueMap has reg number. 4277 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4278 if (VMI != FuncInfo.ValueMap.end()) 4279 Op = MachineOperand::CreateReg(VMI->second, false); 4280 } 4281 4282 if (!Op && N.getNode()) 4283 // Check if frame index is available. 4284 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4285 if (FrameIndexSDNode *FINode = 4286 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4287 Op = MachineOperand::CreateFI(FINode->getIndex()); 4288 4289 if (!Op) 4290 return false; 4291 4292 assert(Variable->isValidLocationForIntrinsic(DL) && 4293 "Expected inlined-at fields to agree"); 4294 if (Op->isReg()) 4295 FuncInfo.ArgDbgValues.push_back( 4296 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4297 Op->getReg(), Offset, Variable, Expr)); 4298 else 4299 FuncInfo.ArgDbgValues.push_back( 4300 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4301 .addOperand(*Op) 4302 .addImm(Offset) 4303 .addMetadata(Variable) 4304 .addMetadata(Expr)); 4305 4306 return true; 4307 } 4308 4309 // VisualStudio defines setjmp as _setjmp 4310 #if defined(_MSC_VER) && defined(setjmp) && \ 4311 !defined(setjmp_undefined_for_msvc) 4312 # pragma push_macro("setjmp") 4313 # undef setjmp 4314 # define setjmp_undefined_for_msvc 4315 #endif 4316 4317 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4318 /// we want to emit this as a call to a named external function, return the name 4319 /// otherwise lower it and return null. 4320 const char * 4321 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4322 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4323 SDLoc sdl = getCurSDLoc(); 4324 DebugLoc dl = getCurDebugLoc(); 4325 SDValue Res; 4326 4327 switch (Intrinsic) { 4328 default: 4329 // By default, turn this into a target intrinsic node. 4330 visitTargetIntrinsic(I, Intrinsic); 4331 return nullptr; 4332 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4333 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4334 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4335 case Intrinsic::returnaddress: 4336 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4337 TLI.getPointerTy(DAG.getDataLayout()), 4338 getValue(I.getArgOperand(0)))); 4339 return nullptr; 4340 case Intrinsic::frameaddress: 4341 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4342 TLI.getPointerTy(DAG.getDataLayout()), 4343 getValue(I.getArgOperand(0)))); 4344 return nullptr; 4345 case Intrinsic::read_register: { 4346 Value *Reg = I.getArgOperand(0); 4347 SDValue Chain = getRoot(); 4348 SDValue RegName = 4349 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4350 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4351 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4352 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4353 setValue(&I, Res); 4354 DAG.setRoot(Res.getValue(1)); 4355 return nullptr; 4356 } 4357 case Intrinsic::write_register: { 4358 Value *Reg = I.getArgOperand(0); 4359 Value *RegValue = I.getArgOperand(1); 4360 SDValue Chain = getRoot(); 4361 SDValue RegName = 4362 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4363 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4364 RegName, getValue(RegValue))); 4365 return nullptr; 4366 } 4367 case Intrinsic::setjmp: 4368 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4369 case Intrinsic::longjmp: 4370 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4371 case Intrinsic::memcpy: { 4372 // FIXME: this definition of "user defined address space" is x86-specific 4373 // Assert for address < 256 since we support only user defined address 4374 // spaces. 4375 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4376 < 256 && 4377 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4378 < 256 && 4379 "Unknown address space"); 4380 SDValue Op1 = getValue(I.getArgOperand(0)); 4381 SDValue Op2 = getValue(I.getArgOperand(1)); 4382 SDValue Op3 = getValue(I.getArgOperand(2)); 4383 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4384 if (!Align) 4385 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4386 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4387 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4388 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4389 false, isTC, 4390 MachinePointerInfo(I.getArgOperand(0)), 4391 MachinePointerInfo(I.getArgOperand(1))); 4392 updateDAGForMaybeTailCall(MC); 4393 return nullptr; 4394 } 4395 case Intrinsic::memset: { 4396 // FIXME: this definition of "user defined address space" is x86-specific 4397 // Assert for address < 256 since we support only user defined address 4398 // spaces. 4399 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4400 < 256 && 4401 "Unknown address space"); 4402 SDValue Op1 = getValue(I.getArgOperand(0)); 4403 SDValue Op2 = getValue(I.getArgOperand(1)); 4404 SDValue Op3 = getValue(I.getArgOperand(2)); 4405 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4406 if (!Align) 4407 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4408 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4409 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4410 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4411 isTC, MachinePointerInfo(I.getArgOperand(0))); 4412 updateDAGForMaybeTailCall(MS); 4413 return nullptr; 4414 } 4415 case Intrinsic::memmove: { 4416 // FIXME: this definition of "user defined address space" is x86-specific 4417 // Assert for address < 256 since we support only user defined address 4418 // spaces. 4419 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4420 < 256 && 4421 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4422 < 256 && 4423 "Unknown address space"); 4424 SDValue Op1 = getValue(I.getArgOperand(0)); 4425 SDValue Op2 = getValue(I.getArgOperand(1)); 4426 SDValue Op3 = getValue(I.getArgOperand(2)); 4427 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4428 if (!Align) 4429 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4430 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4431 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4432 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4433 isTC, MachinePointerInfo(I.getArgOperand(0)), 4434 MachinePointerInfo(I.getArgOperand(1))); 4435 updateDAGForMaybeTailCall(MM); 4436 return nullptr; 4437 } 4438 case Intrinsic::dbg_declare: { 4439 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4440 DILocalVariable *Variable = DI.getVariable(); 4441 DIExpression *Expression = DI.getExpression(); 4442 const Value *Address = DI.getAddress(); 4443 assert(Variable && "Missing variable"); 4444 if (!Address) { 4445 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4446 return nullptr; 4447 } 4448 4449 // Check if address has undef value. 4450 if (isa<UndefValue>(Address) || 4451 (Address->use_empty() && !isa<Argument>(Address))) { 4452 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4453 return nullptr; 4454 } 4455 4456 SDValue &N = NodeMap[Address]; 4457 if (!N.getNode() && isa<Argument>(Address)) 4458 // Check unused arguments map. 4459 N = UnusedArgNodeMap[Address]; 4460 SDDbgValue *SDV; 4461 if (N.getNode()) { 4462 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4463 Address = BCI->getOperand(0); 4464 // Parameters are handled specially. 4465 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 4466 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4467 if (isParameter && FINode) { 4468 // Byval parameter. We have a frame index at this point. 4469 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, 4470 FINode->getIndex(), 0, dl, SDNodeOrder); 4471 } else if (isa<Argument>(Address)) { 4472 // Address is an argument, so try to emit its dbg value using 4473 // virtual register info from the FuncInfo.ValueMap. 4474 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4475 N); 4476 return nullptr; 4477 } else { 4478 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4479 true, 0, dl, SDNodeOrder); 4480 } 4481 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4482 } else { 4483 // If Address is an argument then try to emit its dbg value using 4484 // virtual register info from the FuncInfo.ValueMap. 4485 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4486 N)) { 4487 // If variable is pinned by a alloca in dominating bb then 4488 // use StaticAllocaMap. 4489 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4490 if (AI->getParent() != DI.getParent()) { 4491 DenseMap<const AllocaInst*, int>::iterator SI = 4492 FuncInfo.StaticAllocaMap.find(AI); 4493 if (SI != FuncInfo.StaticAllocaMap.end()) { 4494 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4495 0, dl, SDNodeOrder); 4496 DAG.AddDbgValue(SDV, nullptr, false); 4497 return nullptr; 4498 } 4499 } 4500 } 4501 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4502 } 4503 } 4504 return nullptr; 4505 } 4506 case Intrinsic::dbg_value: { 4507 const DbgValueInst &DI = cast<DbgValueInst>(I); 4508 assert(DI.getVariable() && "Missing variable"); 4509 4510 DILocalVariable *Variable = DI.getVariable(); 4511 DIExpression *Expression = DI.getExpression(); 4512 uint64_t Offset = DI.getOffset(); 4513 const Value *V = DI.getValue(); 4514 if (!V) 4515 return nullptr; 4516 4517 SDDbgValue *SDV; 4518 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4519 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4520 SDNodeOrder); 4521 DAG.AddDbgValue(SDV, nullptr, false); 4522 } else { 4523 // Do not use getValue() in here; we don't want to generate code at 4524 // this point if it hasn't been done yet. 4525 SDValue N = NodeMap[V]; 4526 if (!N.getNode() && isa<Argument>(V)) 4527 // Check unused arguments map. 4528 N = UnusedArgNodeMap[V]; 4529 if (N.getNode()) { 4530 // A dbg.value for an alloca is always indirect. 4531 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4532 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4533 IsIndirect, N)) { 4534 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4535 IsIndirect, Offset, dl, SDNodeOrder); 4536 DAG.AddDbgValue(SDV, N.getNode(), false); 4537 } 4538 } else if (!V->use_empty() ) { 4539 // Do not call getValue(V) yet, as we don't want to generate code. 4540 // Remember it for later. 4541 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4542 DanglingDebugInfoMap[V] = DDI; 4543 } else { 4544 // We may expand this to cover more cases. One case where we have no 4545 // data available is an unreferenced parameter. 4546 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4547 } 4548 } 4549 4550 // Build a debug info table entry. 4551 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4552 V = BCI->getOperand(0); 4553 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4554 // Don't handle byval struct arguments or VLAs, for example. 4555 if (!AI) { 4556 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4557 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4558 return nullptr; 4559 } 4560 DenseMap<const AllocaInst*, int>::iterator SI = 4561 FuncInfo.StaticAllocaMap.find(AI); 4562 if (SI == FuncInfo.StaticAllocaMap.end()) 4563 return nullptr; // VLAs. 4564 return nullptr; 4565 } 4566 4567 case Intrinsic::eh_typeid_for: { 4568 // Find the type id for the given typeinfo. 4569 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4570 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4571 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4572 setValue(&I, Res); 4573 return nullptr; 4574 } 4575 4576 case Intrinsic::eh_return_i32: 4577 case Intrinsic::eh_return_i64: 4578 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4579 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4580 MVT::Other, 4581 getControlRoot(), 4582 getValue(I.getArgOperand(0)), 4583 getValue(I.getArgOperand(1)))); 4584 return nullptr; 4585 case Intrinsic::eh_unwind_init: 4586 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4587 return nullptr; 4588 case Intrinsic::eh_dwarf_cfa: { 4589 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4590 TLI.getPointerTy(DAG.getDataLayout())); 4591 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4592 CfaArg.getValueType(), 4593 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4594 CfaArg.getValueType()), 4595 CfaArg); 4596 SDValue FA = DAG.getNode( 4597 ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()), 4598 DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 4599 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4600 FA, Offset)); 4601 return nullptr; 4602 } 4603 case Intrinsic::eh_sjlj_callsite: { 4604 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4605 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4606 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4607 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4608 4609 MMI.setCurrentCallSite(CI->getZExtValue()); 4610 return nullptr; 4611 } 4612 case Intrinsic::eh_sjlj_functioncontext: { 4613 // Get and store the index of the function context. 4614 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4615 AllocaInst *FnCtx = 4616 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4617 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4618 MFI->setFunctionContextIndex(FI); 4619 return nullptr; 4620 } 4621 case Intrinsic::eh_sjlj_setjmp: { 4622 SDValue Ops[2]; 4623 Ops[0] = getRoot(); 4624 Ops[1] = getValue(I.getArgOperand(0)); 4625 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4626 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4627 setValue(&I, Op.getValue(0)); 4628 DAG.setRoot(Op.getValue(1)); 4629 return nullptr; 4630 } 4631 case Intrinsic::eh_sjlj_longjmp: { 4632 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4633 getRoot(), getValue(I.getArgOperand(0)))); 4634 return nullptr; 4635 } 4636 case Intrinsic::eh_sjlj_setup_dispatch: { 4637 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 4638 getRoot())); 4639 return nullptr; 4640 } 4641 4642 case Intrinsic::masked_gather: 4643 visitMaskedGather(I); 4644 return nullptr; 4645 case Intrinsic::masked_load: 4646 visitMaskedLoad(I); 4647 return nullptr; 4648 case Intrinsic::masked_scatter: 4649 visitMaskedScatter(I); 4650 return nullptr; 4651 case Intrinsic::masked_store: 4652 visitMaskedStore(I); 4653 return nullptr; 4654 case Intrinsic::x86_mmx_pslli_w: 4655 case Intrinsic::x86_mmx_pslli_d: 4656 case Intrinsic::x86_mmx_pslli_q: 4657 case Intrinsic::x86_mmx_psrli_w: 4658 case Intrinsic::x86_mmx_psrli_d: 4659 case Intrinsic::x86_mmx_psrli_q: 4660 case Intrinsic::x86_mmx_psrai_w: 4661 case Intrinsic::x86_mmx_psrai_d: { 4662 SDValue ShAmt = getValue(I.getArgOperand(1)); 4663 if (isa<ConstantSDNode>(ShAmt)) { 4664 visitTargetIntrinsic(I, Intrinsic); 4665 return nullptr; 4666 } 4667 unsigned NewIntrinsic = 0; 4668 EVT ShAmtVT = MVT::v2i32; 4669 switch (Intrinsic) { 4670 case Intrinsic::x86_mmx_pslli_w: 4671 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4672 break; 4673 case Intrinsic::x86_mmx_pslli_d: 4674 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4675 break; 4676 case Intrinsic::x86_mmx_pslli_q: 4677 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4678 break; 4679 case Intrinsic::x86_mmx_psrli_w: 4680 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4681 break; 4682 case Intrinsic::x86_mmx_psrli_d: 4683 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4684 break; 4685 case Intrinsic::x86_mmx_psrli_q: 4686 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4687 break; 4688 case Intrinsic::x86_mmx_psrai_w: 4689 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4690 break; 4691 case Intrinsic::x86_mmx_psrai_d: 4692 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4693 break; 4694 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4695 } 4696 4697 // The vector shift intrinsics with scalars uses 32b shift amounts but 4698 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4699 // to be zero. 4700 // We must do this early because v2i32 is not a legal type. 4701 SDValue ShOps[2]; 4702 ShOps[0] = ShAmt; 4703 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 4704 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4705 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4706 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4707 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4708 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 4709 getValue(I.getArgOperand(0)), ShAmt); 4710 setValue(&I, Res); 4711 return nullptr; 4712 } 4713 case Intrinsic::convertff: 4714 case Intrinsic::convertfsi: 4715 case Intrinsic::convertfui: 4716 case Intrinsic::convertsif: 4717 case Intrinsic::convertuif: 4718 case Intrinsic::convertss: 4719 case Intrinsic::convertsu: 4720 case Intrinsic::convertus: 4721 case Intrinsic::convertuu: { 4722 ISD::CvtCode Code = ISD::CVT_INVALID; 4723 switch (Intrinsic) { 4724 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4725 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4726 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4727 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4728 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4729 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4730 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4731 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4732 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4733 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4734 } 4735 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4736 const Value *Op1 = I.getArgOperand(0); 4737 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4738 DAG.getValueType(DestVT), 4739 DAG.getValueType(getValue(Op1).getValueType()), 4740 getValue(I.getArgOperand(1)), 4741 getValue(I.getArgOperand(2)), 4742 Code); 4743 setValue(&I, Res); 4744 return nullptr; 4745 } 4746 case Intrinsic::powi: 4747 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4748 getValue(I.getArgOperand(1)), DAG)); 4749 return nullptr; 4750 case Intrinsic::log: 4751 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4752 return nullptr; 4753 case Intrinsic::log2: 4754 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4755 return nullptr; 4756 case Intrinsic::log10: 4757 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4758 return nullptr; 4759 case Intrinsic::exp: 4760 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4761 return nullptr; 4762 case Intrinsic::exp2: 4763 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4764 return nullptr; 4765 case Intrinsic::pow: 4766 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4767 getValue(I.getArgOperand(1)), DAG, TLI)); 4768 return nullptr; 4769 case Intrinsic::sqrt: 4770 case Intrinsic::fabs: 4771 case Intrinsic::sin: 4772 case Intrinsic::cos: 4773 case Intrinsic::floor: 4774 case Intrinsic::ceil: 4775 case Intrinsic::trunc: 4776 case Intrinsic::rint: 4777 case Intrinsic::nearbyint: 4778 case Intrinsic::round: { 4779 unsigned Opcode; 4780 switch (Intrinsic) { 4781 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4782 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4783 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4784 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4785 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4786 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4787 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4788 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4789 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4790 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4791 case Intrinsic::round: Opcode = ISD::FROUND; break; 4792 } 4793 4794 setValue(&I, DAG.getNode(Opcode, sdl, 4795 getValue(I.getArgOperand(0)).getValueType(), 4796 getValue(I.getArgOperand(0)))); 4797 return nullptr; 4798 } 4799 case Intrinsic::minnum: 4800 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4801 getValue(I.getArgOperand(0)).getValueType(), 4802 getValue(I.getArgOperand(0)), 4803 getValue(I.getArgOperand(1)))); 4804 return nullptr; 4805 case Intrinsic::maxnum: 4806 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4807 getValue(I.getArgOperand(0)).getValueType(), 4808 getValue(I.getArgOperand(0)), 4809 getValue(I.getArgOperand(1)))); 4810 return nullptr; 4811 case Intrinsic::copysign: 4812 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4813 getValue(I.getArgOperand(0)).getValueType(), 4814 getValue(I.getArgOperand(0)), 4815 getValue(I.getArgOperand(1)))); 4816 return nullptr; 4817 case Intrinsic::fma: 4818 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4819 getValue(I.getArgOperand(0)).getValueType(), 4820 getValue(I.getArgOperand(0)), 4821 getValue(I.getArgOperand(1)), 4822 getValue(I.getArgOperand(2)))); 4823 return nullptr; 4824 case Intrinsic::fmuladd: { 4825 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4826 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4827 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 4828 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4829 getValue(I.getArgOperand(0)).getValueType(), 4830 getValue(I.getArgOperand(0)), 4831 getValue(I.getArgOperand(1)), 4832 getValue(I.getArgOperand(2)))); 4833 } else { 4834 // TODO: Intrinsic calls should have fast-math-flags. 4835 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4836 getValue(I.getArgOperand(0)).getValueType(), 4837 getValue(I.getArgOperand(0)), 4838 getValue(I.getArgOperand(1))); 4839 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4840 getValue(I.getArgOperand(0)).getValueType(), 4841 Mul, 4842 getValue(I.getArgOperand(2))); 4843 setValue(&I, Add); 4844 } 4845 return nullptr; 4846 } 4847 case Intrinsic::convert_to_fp16: 4848 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 4849 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 4850 getValue(I.getArgOperand(0)), 4851 DAG.getTargetConstant(0, sdl, 4852 MVT::i32)))); 4853 return nullptr; 4854 case Intrinsic::convert_from_fp16: 4855 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 4856 TLI.getValueType(DAG.getDataLayout(), I.getType()), 4857 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 4858 getValue(I.getArgOperand(0))))); 4859 return nullptr; 4860 case Intrinsic::pcmarker: { 4861 SDValue Tmp = getValue(I.getArgOperand(0)); 4862 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4863 return nullptr; 4864 } 4865 case Intrinsic::readcyclecounter: { 4866 SDValue Op = getRoot(); 4867 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4868 DAG.getVTList(MVT::i64, MVT::Other), Op); 4869 setValue(&I, Res); 4870 DAG.setRoot(Res.getValue(1)); 4871 return nullptr; 4872 } 4873 case Intrinsic::bitreverse: 4874 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 4875 getValue(I.getArgOperand(0)).getValueType(), 4876 getValue(I.getArgOperand(0)))); 4877 return nullptr; 4878 case Intrinsic::bswap: 4879 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4880 getValue(I.getArgOperand(0)).getValueType(), 4881 getValue(I.getArgOperand(0)))); 4882 return nullptr; 4883 case Intrinsic::uabsdiff: 4884 setValue(&I, DAG.getNode(ISD::UABSDIFF, sdl, 4885 getValue(I.getArgOperand(0)).getValueType(), 4886 getValue(I.getArgOperand(0)), 4887 getValue(I.getArgOperand(1)))); 4888 return nullptr; 4889 case Intrinsic::sabsdiff: 4890 setValue(&I, DAG.getNode(ISD::SABSDIFF, sdl, 4891 getValue(I.getArgOperand(0)).getValueType(), 4892 getValue(I.getArgOperand(0)), 4893 getValue(I.getArgOperand(1)))); 4894 return nullptr; 4895 case Intrinsic::cttz: { 4896 SDValue Arg = getValue(I.getArgOperand(0)); 4897 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4898 EVT Ty = Arg.getValueType(); 4899 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4900 sdl, Ty, Arg)); 4901 return nullptr; 4902 } 4903 case Intrinsic::ctlz: { 4904 SDValue Arg = getValue(I.getArgOperand(0)); 4905 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4906 EVT Ty = Arg.getValueType(); 4907 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4908 sdl, Ty, Arg)); 4909 return nullptr; 4910 } 4911 case Intrinsic::ctpop: { 4912 SDValue Arg = getValue(I.getArgOperand(0)); 4913 EVT Ty = Arg.getValueType(); 4914 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4915 return nullptr; 4916 } 4917 case Intrinsic::stacksave: { 4918 SDValue Op = getRoot(); 4919 Res = DAG.getNode( 4920 ISD::STACKSAVE, sdl, 4921 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 4922 setValue(&I, Res); 4923 DAG.setRoot(Res.getValue(1)); 4924 return nullptr; 4925 } 4926 case Intrinsic::stackrestore: { 4927 Res = getValue(I.getArgOperand(0)); 4928 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 4929 return nullptr; 4930 } 4931 case Intrinsic::get_dynamic_area_offset: { 4932 SDValue Op = getRoot(); 4933 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 4934 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4935 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 4936 // target. 4937 if (PtrTy != ResTy) 4938 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 4939 " intrinsic!"); 4940 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 4941 Op); 4942 DAG.setRoot(Op); 4943 setValue(&I, Res); 4944 return nullptr; 4945 } 4946 case Intrinsic::stackprotector: { 4947 // Emit code into the DAG to store the stack guard onto the stack. 4948 MachineFunction &MF = DAG.getMachineFunction(); 4949 MachineFrameInfo *MFI = MF.getFrameInfo(); 4950 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 4951 SDValue Src, Chain = getRoot(); 4952 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 4953 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 4954 4955 // See if Ptr is a bitcast. If it is, look through it and see if we can get 4956 // global variable __stack_chk_guard. 4957 if (!GV) 4958 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 4959 if (BC->getOpcode() == Instruction::BitCast) 4960 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 4961 4962 if (GV && TLI.useLoadStackGuardNode()) { 4963 // Emit a LOAD_STACK_GUARD node. 4964 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 4965 sdl, PtrTy, Chain); 4966 MachinePointerInfo MPInfo(GV); 4967 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 4968 unsigned Flags = MachineMemOperand::MOLoad | 4969 MachineMemOperand::MOInvariant; 4970 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 4971 PtrTy.getSizeInBits() / 8, 4972 DAG.getEVTAlignment(PtrTy)); 4973 Node->setMemRefs(MemRefs, MemRefs + 1); 4974 4975 // Copy the guard value to a virtual register so that it can be 4976 // retrieved in the epilogue. 4977 Src = SDValue(Node, 0); 4978 const TargetRegisterClass *RC = 4979 TLI.getRegClassFor(Src.getSimpleValueType()); 4980 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 4981 4982 SPDescriptor.setGuardReg(Reg); 4983 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 4984 } else { 4985 Src = getValue(I.getArgOperand(0)); // The guard's value. 4986 } 4987 4988 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4989 4990 int FI = FuncInfo.StaticAllocaMap[Slot]; 4991 MFI->setStackProtectorIndex(FI); 4992 4993 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4994 4995 // Store the stack protector onto the stack. 4996 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 4997 DAG.getMachineFunction(), FI), 4998 true, false, 0); 4999 setValue(&I, Res); 5000 DAG.setRoot(Res); 5001 return nullptr; 5002 } 5003 case Intrinsic::objectsize: { 5004 // If we don't know by now, we're never going to know. 5005 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5006 5007 assert(CI && "Non-constant type in __builtin_object_size?"); 5008 5009 SDValue Arg = getValue(I.getCalledValue()); 5010 EVT Ty = Arg.getValueType(); 5011 5012 if (CI->isZero()) 5013 Res = DAG.getConstant(-1ULL, sdl, Ty); 5014 else 5015 Res = DAG.getConstant(0, sdl, Ty); 5016 5017 setValue(&I, Res); 5018 return nullptr; 5019 } 5020 case Intrinsic::annotation: 5021 case Intrinsic::ptr_annotation: 5022 // Drop the intrinsic, but forward the value 5023 setValue(&I, getValue(I.getOperand(0))); 5024 return nullptr; 5025 case Intrinsic::assume: 5026 case Intrinsic::var_annotation: 5027 // Discard annotate attributes and assumptions 5028 return nullptr; 5029 5030 case Intrinsic::init_trampoline: { 5031 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5032 5033 SDValue Ops[6]; 5034 Ops[0] = getRoot(); 5035 Ops[1] = getValue(I.getArgOperand(0)); 5036 Ops[2] = getValue(I.getArgOperand(1)); 5037 Ops[3] = getValue(I.getArgOperand(2)); 5038 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5039 Ops[5] = DAG.getSrcValue(F); 5040 5041 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5042 5043 DAG.setRoot(Res); 5044 return nullptr; 5045 } 5046 case Intrinsic::adjust_trampoline: { 5047 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5048 TLI.getPointerTy(DAG.getDataLayout()), 5049 getValue(I.getArgOperand(0)))); 5050 return nullptr; 5051 } 5052 case Intrinsic::gcroot: 5053 if (GFI) { 5054 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5055 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5056 5057 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5058 GFI->addStackRoot(FI->getIndex(), TypeMap); 5059 } 5060 return nullptr; 5061 case Intrinsic::gcread: 5062 case Intrinsic::gcwrite: 5063 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5064 case Intrinsic::flt_rounds: 5065 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5066 return nullptr; 5067 5068 case Intrinsic::expect: { 5069 // Just replace __builtin_expect(exp, c) with EXP. 5070 setValue(&I, getValue(I.getArgOperand(0))); 5071 return nullptr; 5072 } 5073 5074 case Intrinsic::debugtrap: 5075 case Intrinsic::trap: { 5076 StringRef TrapFuncName = 5077 I.getAttributes() 5078 .getAttribute(AttributeSet::FunctionIndex, "trap-func-name") 5079 .getValueAsString(); 5080 if (TrapFuncName.empty()) { 5081 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5082 ISD::TRAP : ISD::DEBUGTRAP; 5083 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5084 return nullptr; 5085 } 5086 TargetLowering::ArgListTy Args; 5087 5088 TargetLowering::CallLoweringInfo CLI(DAG); 5089 CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee( 5090 CallingConv::C, I.getType(), 5091 DAG.getExternalSymbol(TrapFuncName.data(), 5092 TLI.getPointerTy(DAG.getDataLayout())), 5093 std::move(Args), 0); 5094 5095 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5096 DAG.setRoot(Result.second); 5097 return nullptr; 5098 } 5099 5100 case Intrinsic::uadd_with_overflow: 5101 case Intrinsic::sadd_with_overflow: 5102 case Intrinsic::usub_with_overflow: 5103 case Intrinsic::ssub_with_overflow: 5104 case Intrinsic::umul_with_overflow: 5105 case Intrinsic::smul_with_overflow: { 5106 ISD::NodeType Op; 5107 switch (Intrinsic) { 5108 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5109 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5110 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5111 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5112 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5113 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5114 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5115 } 5116 SDValue Op1 = getValue(I.getArgOperand(0)); 5117 SDValue Op2 = getValue(I.getArgOperand(1)); 5118 5119 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5120 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5121 return nullptr; 5122 } 5123 case Intrinsic::prefetch: { 5124 SDValue Ops[5]; 5125 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5126 Ops[0] = getRoot(); 5127 Ops[1] = getValue(I.getArgOperand(0)); 5128 Ops[2] = getValue(I.getArgOperand(1)); 5129 Ops[3] = getValue(I.getArgOperand(2)); 5130 Ops[4] = getValue(I.getArgOperand(3)); 5131 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5132 DAG.getVTList(MVT::Other), Ops, 5133 EVT::getIntegerVT(*Context, 8), 5134 MachinePointerInfo(I.getArgOperand(0)), 5135 0, /* align */ 5136 false, /* volatile */ 5137 rw==0, /* read */ 5138 rw==1)); /* write */ 5139 return nullptr; 5140 } 5141 case Intrinsic::lifetime_start: 5142 case Intrinsic::lifetime_end: { 5143 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5144 // Stack coloring is not enabled in O0, discard region information. 5145 if (TM.getOptLevel() == CodeGenOpt::None) 5146 return nullptr; 5147 5148 SmallVector<Value *, 4> Allocas; 5149 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5150 5151 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5152 E = Allocas.end(); Object != E; ++Object) { 5153 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5154 5155 // Could not find an Alloca. 5156 if (!LifetimeObject) 5157 continue; 5158 5159 // First check that the Alloca is static, otherwise it won't have a 5160 // valid frame index. 5161 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5162 if (SI == FuncInfo.StaticAllocaMap.end()) 5163 return nullptr; 5164 5165 int FI = SI->second; 5166 5167 SDValue Ops[2]; 5168 Ops[0] = getRoot(); 5169 Ops[1] = 5170 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true); 5171 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5172 5173 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5174 DAG.setRoot(Res); 5175 } 5176 return nullptr; 5177 } 5178 case Intrinsic::invariant_start: 5179 // Discard region information. 5180 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5181 return nullptr; 5182 case Intrinsic::invariant_end: 5183 // Discard region information. 5184 return nullptr; 5185 case Intrinsic::stackprotectorcheck: { 5186 // Do not actually emit anything for this basic block. Instead we initialize 5187 // the stack protector descriptor and export the guard variable so we can 5188 // access it in FinishBasicBlock. 5189 const BasicBlock *BB = I.getParent(); 5190 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5191 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5192 5193 // Flush our exports since we are going to process a terminator. 5194 (void)getControlRoot(); 5195 return nullptr; 5196 } 5197 case Intrinsic::clear_cache: 5198 return TLI.getClearCacheBuiltinName(); 5199 case Intrinsic::donothing: 5200 // ignore 5201 return nullptr; 5202 case Intrinsic::experimental_stackmap: { 5203 visitStackmap(I); 5204 return nullptr; 5205 } 5206 case Intrinsic::experimental_patchpoint_void: 5207 case Intrinsic::experimental_patchpoint_i64: { 5208 visitPatchpoint(&I); 5209 return nullptr; 5210 } 5211 case Intrinsic::experimental_gc_statepoint: { 5212 visitStatepoint(I); 5213 return nullptr; 5214 } 5215 case Intrinsic::experimental_gc_result_int: 5216 case Intrinsic::experimental_gc_result_float: 5217 case Intrinsic::experimental_gc_result_ptr: 5218 case Intrinsic::experimental_gc_result: { 5219 visitGCResult(I); 5220 return nullptr; 5221 } 5222 case Intrinsic::experimental_gc_relocate: { 5223 visitGCRelocate(I); 5224 return nullptr; 5225 } 5226 case Intrinsic::instrprof_increment: 5227 llvm_unreachable("instrprof failed to lower an increment"); 5228 case Intrinsic::instrprof_value_profile: 5229 llvm_unreachable("instrprof failed to lower a value profiling call"); 5230 case Intrinsic::localescape: { 5231 MachineFunction &MF = DAG.getMachineFunction(); 5232 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5233 5234 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5235 // is the same on all targets. 5236 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5237 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5238 if (isa<ConstantPointerNull>(Arg)) 5239 continue; // Skip null pointers. They represent a hole in index space. 5240 AllocaInst *Slot = cast<AllocaInst>(Arg); 5241 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5242 "can only escape static allocas"); 5243 int FI = FuncInfo.StaticAllocaMap[Slot]; 5244 MCSymbol *FrameAllocSym = 5245 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5246 GlobalValue::getRealLinkageName(MF.getName()), Idx); 5247 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5248 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5249 .addSym(FrameAllocSym) 5250 .addFrameIndex(FI); 5251 } 5252 5253 return nullptr; 5254 } 5255 5256 case Intrinsic::localrecover: { 5257 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5258 MachineFunction &MF = DAG.getMachineFunction(); 5259 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5260 5261 // Get the symbol that defines the frame offset. 5262 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5263 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5264 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5265 MCSymbol *FrameAllocSym = 5266 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5267 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5268 5269 // Create a MCSymbol for the label to avoid any target lowering 5270 // that would make this PC relative. 5271 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5272 SDValue OffsetVal = 5273 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5274 5275 // Add the offset to the FP. 5276 Value *FP = I.getArgOperand(1); 5277 SDValue FPVal = getValue(FP); 5278 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5279 setValue(&I, Add); 5280 5281 return nullptr; 5282 } 5283 5284 case Intrinsic::eh_exceptionpointer: 5285 case Intrinsic::eh_exceptioncode: { 5286 // Get the exception pointer vreg, copy from it, and resize it to fit. 5287 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 5288 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5289 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5290 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 5291 SDValue N = 5292 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5293 if (Intrinsic == Intrinsic::eh_exceptioncode) 5294 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5295 setValue(&I, N); 5296 return nullptr; 5297 } 5298 } 5299 } 5300 5301 std::pair<SDValue, SDValue> 5302 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5303 const BasicBlock *EHPadBB) { 5304 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5305 MCSymbol *BeginLabel = nullptr; 5306 5307 if (EHPadBB) { 5308 // Insert a label before the invoke call to mark the try range. This can be 5309 // used to detect deletion of the invoke via the MachineModuleInfo. 5310 BeginLabel = MMI.getContext().createTempSymbol(); 5311 5312 // For SjLj, keep track of which landing pads go with which invokes 5313 // so as to maintain the ordering of pads in the LSDA. 5314 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5315 if (CallSiteIndex) { 5316 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5317 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 5318 5319 // Now that the call site is handled, stop tracking it. 5320 MMI.setCurrentCallSite(0); 5321 } 5322 5323 // Both PendingLoads and PendingExports must be flushed here; 5324 // this call might not return. 5325 (void)getRoot(); 5326 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5327 5328 CLI.setChain(getRoot()); 5329 } 5330 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5331 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5332 5333 assert((CLI.IsTailCall || Result.second.getNode()) && 5334 "Non-null chain expected with non-tail call!"); 5335 assert((Result.second.getNode() || !Result.first.getNode()) && 5336 "Null value expected with tail call!"); 5337 5338 if (!Result.second.getNode()) { 5339 // As a special case, a null chain means that a tail call has been emitted 5340 // and the DAG root is already updated. 5341 HasTailCall = true; 5342 5343 // Since there's no actual continuation from this block, nothing can be 5344 // relying on us setting vregs for them. 5345 PendingExports.clear(); 5346 } else { 5347 DAG.setRoot(Result.second); 5348 } 5349 5350 if (EHPadBB) { 5351 // Insert a label at the end of the invoke call to mark the try range. This 5352 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5353 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5354 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5355 5356 // Inform MachineModuleInfo of range. 5357 if (MMI.hasEHFunclets()) { 5358 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 5359 EHInfo->addIPToStateRange(EHPadBB, BeginLabel, EndLabel); 5360 } else { 5361 MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 5362 } 5363 } 5364 5365 return Result; 5366 } 5367 5368 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5369 bool isTailCall, 5370 const BasicBlock *EHPadBB) { 5371 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5372 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5373 Type *RetTy = FTy->getReturnType(); 5374 5375 TargetLowering::ArgListTy Args; 5376 TargetLowering::ArgListEntry Entry; 5377 Args.reserve(CS.arg_size()); 5378 5379 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5380 i != e; ++i) { 5381 const Value *V = *i; 5382 5383 // Skip empty types 5384 if (V->getType()->isEmptyTy()) 5385 continue; 5386 5387 SDValue ArgNode = getValue(V); 5388 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5389 5390 // Skip the first return-type Attribute to get to params. 5391 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5392 Args.push_back(Entry); 5393 5394 // If we have an explicit sret argument that is an Instruction, (i.e., it 5395 // might point to function-local memory), we can't meaningfully tail-call. 5396 if (Entry.isSRet && isa<Instruction>(V)) 5397 isTailCall = false; 5398 } 5399 5400 // Check if target-independent constraints permit a tail call here. 5401 // Target-dependent constraints are checked within TLI->LowerCallTo. 5402 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5403 isTailCall = false; 5404 5405 TargetLowering::CallLoweringInfo CLI(DAG); 5406 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5407 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5408 .setTailCall(isTailCall); 5409 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 5410 5411 if (Result.first.getNode()) 5412 setValue(CS.getInstruction(), Result.first); 5413 } 5414 5415 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5416 /// value is equal or not-equal to zero. 5417 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5418 for (const User *U : V->users()) { 5419 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5420 if (IC->isEquality()) 5421 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5422 if (C->isNullValue()) 5423 continue; 5424 // Unknown instruction. 5425 return false; 5426 } 5427 return true; 5428 } 5429 5430 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5431 Type *LoadTy, 5432 SelectionDAGBuilder &Builder) { 5433 5434 // Check to see if this load can be trivially constant folded, e.g. if the 5435 // input is from a string literal. 5436 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5437 // Cast pointer to the type we really want to load. 5438 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5439 PointerType::getUnqual(LoadTy)); 5440 5441 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5442 const_cast<Constant *>(LoadInput), *Builder.DL)) 5443 return Builder.getValue(LoadCst); 5444 } 5445 5446 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5447 // still constant memory, the input chain can be the entry node. 5448 SDValue Root; 5449 bool ConstantMemory = false; 5450 5451 // Do not serialize (non-volatile) loads of constant memory with anything. 5452 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5453 Root = Builder.DAG.getEntryNode(); 5454 ConstantMemory = true; 5455 } else { 5456 // Do not serialize non-volatile loads against each other. 5457 Root = Builder.DAG.getRoot(); 5458 } 5459 5460 SDValue Ptr = Builder.getValue(PtrVal); 5461 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5462 Ptr, MachinePointerInfo(PtrVal), 5463 false /*volatile*/, 5464 false /*nontemporal*/, 5465 false /*isinvariant*/, 1 /* align=1 */); 5466 5467 if (!ConstantMemory) 5468 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5469 return LoadVal; 5470 } 5471 5472 /// processIntegerCallValue - Record the value for an instruction that 5473 /// produces an integer result, converting the type where necessary. 5474 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5475 SDValue Value, 5476 bool IsSigned) { 5477 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5478 I.getType(), true); 5479 if (IsSigned) 5480 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5481 else 5482 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5483 setValue(&I, Value); 5484 } 5485 5486 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5487 /// If so, return true and lower it, otherwise return false and it will be 5488 /// lowered like a normal call. 5489 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5490 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5491 if (I.getNumArgOperands() != 3) 5492 return false; 5493 5494 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5495 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5496 !I.getArgOperand(2)->getType()->isIntegerTy() || 5497 !I.getType()->isIntegerTy()) 5498 return false; 5499 5500 const Value *Size = I.getArgOperand(2); 5501 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5502 if (CSize && CSize->getZExtValue() == 0) { 5503 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5504 I.getType(), true); 5505 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5506 return true; 5507 } 5508 5509 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5510 std::pair<SDValue, SDValue> Res = 5511 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5512 getValue(LHS), getValue(RHS), getValue(Size), 5513 MachinePointerInfo(LHS), 5514 MachinePointerInfo(RHS)); 5515 if (Res.first.getNode()) { 5516 processIntegerCallValue(I, Res.first, true); 5517 PendingLoads.push_back(Res.second); 5518 return true; 5519 } 5520 5521 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5522 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5523 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5524 bool ActuallyDoIt = true; 5525 MVT LoadVT; 5526 Type *LoadTy; 5527 switch (CSize->getZExtValue()) { 5528 default: 5529 LoadVT = MVT::Other; 5530 LoadTy = nullptr; 5531 ActuallyDoIt = false; 5532 break; 5533 case 2: 5534 LoadVT = MVT::i16; 5535 LoadTy = Type::getInt16Ty(CSize->getContext()); 5536 break; 5537 case 4: 5538 LoadVT = MVT::i32; 5539 LoadTy = Type::getInt32Ty(CSize->getContext()); 5540 break; 5541 case 8: 5542 LoadVT = MVT::i64; 5543 LoadTy = Type::getInt64Ty(CSize->getContext()); 5544 break; 5545 /* 5546 case 16: 5547 LoadVT = MVT::v4i32; 5548 LoadTy = Type::getInt32Ty(CSize->getContext()); 5549 LoadTy = VectorType::get(LoadTy, 4); 5550 break; 5551 */ 5552 } 5553 5554 // This turns into unaligned loads. We only do this if the target natively 5555 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5556 // we'll only produce a small number of byte loads. 5557 5558 // Require that we can find a legal MVT, and only do this if the target 5559 // supports unaligned loads of that type. Expanding into byte loads would 5560 // bloat the code. 5561 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5562 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5563 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5564 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5565 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5566 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5567 // TODO: Check alignment of src and dest ptrs. 5568 if (!TLI.isTypeLegal(LoadVT) || 5569 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5570 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5571 ActuallyDoIt = false; 5572 } 5573 5574 if (ActuallyDoIt) { 5575 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5576 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5577 5578 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5579 ISD::SETNE); 5580 processIntegerCallValue(I, Res, false); 5581 return true; 5582 } 5583 } 5584 5585 5586 return false; 5587 } 5588 5589 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5590 /// form. If so, return true and lower it, otherwise return false and it 5591 /// will be lowered like a normal call. 5592 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5593 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5594 if (I.getNumArgOperands() != 3) 5595 return false; 5596 5597 const Value *Src = I.getArgOperand(0); 5598 const Value *Char = I.getArgOperand(1); 5599 const Value *Length = I.getArgOperand(2); 5600 if (!Src->getType()->isPointerTy() || 5601 !Char->getType()->isIntegerTy() || 5602 !Length->getType()->isIntegerTy() || 5603 !I.getType()->isPointerTy()) 5604 return false; 5605 5606 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5607 std::pair<SDValue, SDValue> Res = 5608 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5609 getValue(Src), getValue(Char), getValue(Length), 5610 MachinePointerInfo(Src)); 5611 if (Res.first.getNode()) { 5612 setValue(&I, Res.first); 5613 PendingLoads.push_back(Res.second); 5614 return true; 5615 } 5616 5617 return false; 5618 } 5619 5620 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5621 /// optimized form. If so, return true and lower it, otherwise return false 5622 /// and it will be lowered like a normal call. 5623 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5624 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5625 if (I.getNumArgOperands() != 2) 5626 return false; 5627 5628 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5629 if (!Arg0->getType()->isPointerTy() || 5630 !Arg1->getType()->isPointerTy() || 5631 !I.getType()->isPointerTy()) 5632 return false; 5633 5634 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5635 std::pair<SDValue, SDValue> Res = 5636 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5637 getValue(Arg0), getValue(Arg1), 5638 MachinePointerInfo(Arg0), 5639 MachinePointerInfo(Arg1), isStpcpy); 5640 if (Res.first.getNode()) { 5641 setValue(&I, Res.first); 5642 DAG.setRoot(Res.second); 5643 return true; 5644 } 5645 5646 return false; 5647 } 5648 5649 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5650 /// If so, return true and lower it, otherwise return false and it will be 5651 /// lowered like a normal call. 5652 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5653 // Verify that the prototype makes sense. int strcmp(void*,void*) 5654 if (I.getNumArgOperands() != 2) 5655 return false; 5656 5657 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5658 if (!Arg0->getType()->isPointerTy() || 5659 !Arg1->getType()->isPointerTy() || 5660 !I.getType()->isIntegerTy()) 5661 return false; 5662 5663 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5664 std::pair<SDValue, SDValue> Res = 5665 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5666 getValue(Arg0), getValue(Arg1), 5667 MachinePointerInfo(Arg0), 5668 MachinePointerInfo(Arg1)); 5669 if (Res.first.getNode()) { 5670 processIntegerCallValue(I, Res.first, true); 5671 PendingLoads.push_back(Res.second); 5672 return true; 5673 } 5674 5675 return false; 5676 } 5677 5678 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5679 /// form. If so, return true and lower it, otherwise return false and it 5680 /// will be lowered like a normal call. 5681 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5682 // Verify that the prototype makes sense. size_t strlen(char *) 5683 if (I.getNumArgOperands() != 1) 5684 return false; 5685 5686 const Value *Arg0 = I.getArgOperand(0); 5687 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5688 return false; 5689 5690 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5691 std::pair<SDValue, SDValue> Res = 5692 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5693 getValue(Arg0), MachinePointerInfo(Arg0)); 5694 if (Res.first.getNode()) { 5695 processIntegerCallValue(I, Res.first, false); 5696 PendingLoads.push_back(Res.second); 5697 return true; 5698 } 5699 5700 return false; 5701 } 5702 5703 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5704 /// form. If so, return true and lower it, otherwise return false and it 5705 /// will be lowered like a normal call. 5706 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5707 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5708 if (I.getNumArgOperands() != 2) 5709 return false; 5710 5711 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5712 if (!Arg0->getType()->isPointerTy() || 5713 !Arg1->getType()->isIntegerTy() || 5714 !I.getType()->isIntegerTy()) 5715 return false; 5716 5717 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5718 std::pair<SDValue, SDValue> Res = 5719 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5720 getValue(Arg0), getValue(Arg1), 5721 MachinePointerInfo(Arg0)); 5722 if (Res.first.getNode()) { 5723 processIntegerCallValue(I, Res.first, false); 5724 PendingLoads.push_back(Res.second); 5725 return true; 5726 } 5727 5728 return false; 5729 } 5730 5731 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5732 /// operation (as expected), translate it to an SDNode with the specified opcode 5733 /// and return true. 5734 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5735 unsigned Opcode) { 5736 // Sanity check that it really is a unary floating-point call. 5737 if (I.getNumArgOperands() != 1 || 5738 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5739 I.getType() != I.getArgOperand(0)->getType() || 5740 !I.onlyReadsMemory()) 5741 return false; 5742 5743 SDValue Tmp = getValue(I.getArgOperand(0)); 5744 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5745 return true; 5746 } 5747 5748 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5749 /// operation (as expected), translate it to an SDNode with the specified opcode 5750 /// and return true. 5751 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5752 unsigned Opcode) { 5753 // Sanity check that it really is a binary floating-point call. 5754 if (I.getNumArgOperands() != 2 || 5755 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5756 I.getType() != I.getArgOperand(0)->getType() || 5757 I.getType() != I.getArgOperand(1)->getType() || 5758 !I.onlyReadsMemory()) 5759 return false; 5760 5761 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5762 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5763 EVT VT = Tmp0.getValueType(); 5764 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5765 return true; 5766 } 5767 5768 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5769 // Handle inline assembly differently. 5770 if (isa<InlineAsm>(I.getCalledValue())) { 5771 visitInlineAsm(&I); 5772 return; 5773 } 5774 5775 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5776 ComputeUsesVAFloatArgument(I, &MMI); 5777 5778 const char *RenameFn = nullptr; 5779 if (Function *F = I.getCalledFunction()) { 5780 if (F->isDeclaration()) { 5781 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5782 if (unsigned IID = II->getIntrinsicID(F)) { 5783 RenameFn = visitIntrinsicCall(I, IID); 5784 if (!RenameFn) 5785 return; 5786 } 5787 } 5788 if (Intrinsic::ID IID = F->getIntrinsicID()) { 5789 RenameFn = visitIntrinsicCall(I, IID); 5790 if (!RenameFn) 5791 return; 5792 } 5793 } 5794 5795 // Check for well-known libc/libm calls. If the function is internal, it 5796 // can't be a library call. 5797 LibFunc::Func Func; 5798 if (!F->hasLocalLinkage() && F->hasName() && 5799 LibInfo->getLibFunc(F->getName(), Func) && 5800 LibInfo->hasOptimizedCodeGen(Func)) { 5801 switch (Func) { 5802 default: break; 5803 case LibFunc::copysign: 5804 case LibFunc::copysignf: 5805 case LibFunc::copysignl: 5806 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5807 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5808 I.getType() == I.getArgOperand(0)->getType() && 5809 I.getType() == I.getArgOperand(1)->getType() && 5810 I.onlyReadsMemory()) { 5811 SDValue LHS = getValue(I.getArgOperand(0)); 5812 SDValue RHS = getValue(I.getArgOperand(1)); 5813 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5814 LHS.getValueType(), LHS, RHS)); 5815 return; 5816 } 5817 break; 5818 case LibFunc::fabs: 5819 case LibFunc::fabsf: 5820 case LibFunc::fabsl: 5821 if (visitUnaryFloatCall(I, ISD::FABS)) 5822 return; 5823 break; 5824 case LibFunc::fmin: 5825 case LibFunc::fminf: 5826 case LibFunc::fminl: 5827 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5828 return; 5829 break; 5830 case LibFunc::fmax: 5831 case LibFunc::fmaxf: 5832 case LibFunc::fmaxl: 5833 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5834 return; 5835 break; 5836 case LibFunc::sin: 5837 case LibFunc::sinf: 5838 case LibFunc::sinl: 5839 if (visitUnaryFloatCall(I, ISD::FSIN)) 5840 return; 5841 break; 5842 case LibFunc::cos: 5843 case LibFunc::cosf: 5844 case LibFunc::cosl: 5845 if (visitUnaryFloatCall(I, ISD::FCOS)) 5846 return; 5847 break; 5848 case LibFunc::sqrt: 5849 case LibFunc::sqrtf: 5850 case LibFunc::sqrtl: 5851 case LibFunc::sqrt_finite: 5852 case LibFunc::sqrtf_finite: 5853 case LibFunc::sqrtl_finite: 5854 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5855 return; 5856 break; 5857 case LibFunc::floor: 5858 case LibFunc::floorf: 5859 case LibFunc::floorl: 5860 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5861 return; 5862 break; 5863 case LibFunc::nearbyint: 5864 case LibFunc::nearbyintf: 5865 case LibFunc::nearbyintl: 5866 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5867 return; 5868 break; 5869 case LibFunc::ceil: 5870 case LibFunc::ceilf: 5871 case LibFunc::ceill: 5872 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5873 return; 5874 break; 5875 case LibFunc::rint: 5876 case LibFunc::rintf: 5877 case LibFunc::rintl: 5878 if (visitUnaryFloatCall(I, ISD::FRINT)) 5879 return; 5880 break; 5881 case LibFunc::round: 5882 case LibFunc::roundf: 5883 case LibFunc::roundl: 5884 if (visitUnaryFloatCall(I, ISD::FROUND)) 5885 return; 5886 break; 5887 case LibFunc::trunc: 5888 case LibFunc::truncf: 5889 case LibFunc::truncl: 5890 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5891 return; 5892 break; 5893 case LibFunc::log2: 5894 case LibFunc::log2f: 5895 case LibFunc::log2l: 5896 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5897 return; 5898 break; 5899 case LibFunc::exp2: 5900 case LibFunc::exp2f: 5901 case LibFunc::exp2l: 5902 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5903 return; 5904 break; 5905 case LibFunc::memcmp: 5906 if (visitMemCmpCall(I)) 5907 return; 5908 break; 5909 case LibFunc::memchr: 5910 if (visitMemChrCall(I)) 5911 return; 5912 break; 5913 case LibFunc::strcpy: 5914 if (visitStrCpyCall(I, false)) 5915 return; 5916 break; 5917 case LibFunc::stpcpy: 5918 if (visitStrCpyCall(I, true)) 5919 return; 5920 break; 5921 case LibFunc::strcmp: 5922 if (visitStrCmpCall(I)) 5923 return; 5924 break; 5925 case LibFunc::strlen: 5926 if (visitStrLenCall(I)) 5927 return; 5928 break; 5929 case LibFunc::strnlen: 5930 if (visitStrNLenCall(I)) 5931 return; 5932 break; 5933 } 5934 } 5935 } 5936 5937 SDValue Callee; 5938 if (!RenameFn) 5939 Callee = getValue(I.getCalledValue()); 5940 else 5941 Callee = DAG.getExternalSymbol( 5942 RenameFn, 5943 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5944 5945 // Check if we can potentially perform a tail call. More detailed checking is 5946 // be done within LowerCallTo, after more information about the call is known. 5947 LowerCallTo(&I, Callee, I.isTailCall()); 5948 } 5949 5950 namespace { 5951 5952 /// AsmOperandInfo - This contains information for each constraint that we are 5953 /// lowering. 5954 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5955 public: 5956 /// CallOperand - If this is the result output operand or a clobber 5957 /// this is null, otherwise it is the incoming operand to the CallInst. 5958 /// This gets modified as the asm is processed. 5959 SDValue CallOperand; 5960 5961 /// AssignedRegs - If this is a register or register class operand, this 5962 /// contains the set of register corresponding to the operand. 5963 RegsForValue AssignedRegs; 5964 5965 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5966 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 5967 } 5968 5969 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5970 /// corresponds to. If there is no Value* for this operand, it returns 5971 /// MVT::Other. 5972 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 5973 const DataLayout &DL) const { 5974 if (!CallOperandVal) return MVT::Other; 5975 5976 if (isa<BasicBlock>(CallOperandVal)) 5977 return TLI.getPointerTy(DL); 5978 5979 llvm::Type *OpTy = CallOperandVal->getType(); 5980 5981 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5982 // If this is an indirect operand, the operand is a pointer to the 5983 // accessed type. 5984 if (isIndirect) { 5985 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5986 if (!PtrTy) 5987 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5988 OpTy = PtrTy->getElementType(); 5989 } 5990 5991 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5992 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5993 if (STy->getNumElements() == 1) 5994 OpTy = STy->getElementType(0); 5995 5996 // If OpTy is not a single value, it may be a struct/union that we 5997 // can tile with integers. 5998 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5999 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 6000 switch (BitSize) { 6001 default: break; 6002 case 1: 6003 case 8: 6004 case 16: 6005 case 32: 6006 case 64: 6007 case 128: 6008 OpTy = IntegerType::get(Context, BitSize); 6009 break; 6010 } 6011 } 6012 6013 return TLI.getValueType(DL, OpTy, true); 6014 } 6015 }; 6016 6017 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6018 6019 } // end anonymous namespace 6020 6021 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6022 /// specified operand. We prefer to assign virtual registers, to allow the 6023 /// register allocator to handle the assignment process. However, if the asm 6024 /// uses features that we can't model on machineinstrs, we have SDISel do the 6025 /// allocation. This produces generally horrible, but correct, code. 6026 /// 6027 /// OpInfo describes the operand. 6028 /// 6029 static void GetRegistersForValue(SelectionDAG &DAG, 6030 const TargetLowering &TLI, 6031 SDLoc DL, 6032 SDISelAsmOperandInfo &OpInfo) { 6033 LLVMContext &Context = *DAG.getContext(); 6034 6035 MachineFunction &MF = DAG.getMachineFunction(); 6036 SmallVector<unsigned, 4> Regs; 6037 6038 // If this is a constraint for a single physreg, or a constraint for a 6039 // register class, find it. 6040 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 6041 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 6042 OpInfo.ConstraintCode, 6043 OpInfo.ConstraintVT); 6044 6045 unsigned NumRegs = 1; 6046 if (OpInfo.ConstraintVT != MVT::Other) { 6047 // If this is a FP input in an integer register (or visa versa) insert a bit 6048 // cast of the input value. More generally, handle any case where the input 6049 // value disagrees with the register class we plan to stick this in. 6050 if (OpInfo.Type == InlineAsm::isInput && 6051 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6052 // Try to convert to the first EVT that the reg class contains. If the 6053 // types are identical size, use a bitcast to convert (e.g. two differing 6054 // vector types). 6055 MVT RegVT = *PhysReg.second->vt_begin(); 6056 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6057 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6058 RegVT, OpInfo.CallOperand); 6059 OpInfo.ConstraintVT = RegVT; 6060 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6061 // If the input is a FP value and we want it in FP registers, do a 6062 // bitcast to the corresponding integer type. This turns an f64 value 6063 // into i64, which can be passed with two i32 values on a 32-bit 6064 // machine. 6065 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6066 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6067 RegVT, OpInfo.CallOperand); 6068 OpInfo.ConstraintVT = RegVT; 6069 } 6070 } 6071 6072 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6073 } 6074 6075 MVT RegVT; 6076 EVT ValueVT = OpInfo.ConstraintVT; 6077 6078 // If this is a constraint for a specific physical register, like {r17}, 6079 // assign it now. 6080 if (unsigned AssignedReg = PhysReg.first) { 6081 const TargetRegisterClass *RC = PhysReg.second; 6082 if (OpInfo.ConstraintVT == MVT::Other) 6083 ValueVT = *RC->vt_begin(); 6084 6085 // Get the actual register value type. This is important, because the user 6086 // may have asked for (e.g.) the AX register in i32 type. We need to 6087 // remember that AX is actually i16 to get the right extension. 6088 RegVT = *RC->vt_begin(); 6089 6090 // This is a explicit reference to a physical register. 6091 Regs.push_back(AssignedReg); 6092 6093 // If this is an expanded reference, add the rest of the regs to Regs. 6094 if (NumRegs != 1) { 6095 TargetRegisterClass::iterator I = RC->begin(); 6096 for (; *I != AssignedReg; ++I) 6097 assert(I != RC->end() && "Didn't find reg!"); 6098 6099 // Already added the first reg. 6100 --NumRegs; ++I; 6101 for (; NumRegs; --NumRegs, ++I) { 6102 assert(I != RC->end() && "Ran out of registers to allocate!"); 6103 Regs.push_back(*I); 6104 } 6105 } 6106 6107 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6108 return; 6109 } 6110 6111 // Otherwise, if this was a reference to an LLVM register class, create vregs 6112 // for this reference. 6113 if (const TargetRegisterClass *RC = PhysReg.second) { 6114 RegVT = *RC->vt_begin(); 6115 if (OpInfo.ConstraintVT == MVT::Other) 6116 ValueVT = RegVT; 6117 6118 // Create the appropriate number of virtual registers. 6119 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6120 for (; NumRegs; --NumRegs) 6121 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6122 6123 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6124 return; 6125 } 6126 6127 // Otherwise, we couldn't allocate enough registers for this. 6128 } 6129 6130 /// visitInlineAsm - Handle a call to an InlineAsm object. 6131 /// 6132 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6133 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6134 6135 /// ConstraintOperands - Information about all of the constraints. 6136 SDISelAsmOperandInfoVector ConstraintOperands; 6137 6138 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6139 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 6140 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 6141 6142 bool hasMemory = false; 6143 6144 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6145 unsigned ResNo = 0; // ResNo - The result number of the next output. 6146 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6147 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6148 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6149 6150 MVT OpVT = MVT::Other; 6151 6152 // Compute the value type for each operand. 6153 switch (OpInfo.Type) { 6154 case InlineAsm::isOutput: 6155 // Indirect outputs just consume an argument. 6156 if (OpInfo.isIndirect) { 6157 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6158 break; 6159 } 6160 6161 // The return value of the call is this value. As such, there is no 6162 // corresponding argument. 6163 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6164 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6165 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 6166 STy->getElementType(ResNo)); 6167 } else { 6168 assert(ResNo == 0 && "Asm only has one result!"); 6169 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 6170 } 6171 ++ResNo; 6172 break; 6173 case InlineAsm::isInput: 6174 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6175 break; 6176 case InlineAsm::isClobber: 6177 // Nothing to do. 6178 break; 6179 } 6180 6181 // If this is an input or an indirect output, process the call argument. 6182 // BasicBlocks are labels, currently appearing only in asm's. 6183 if (OpInfo.CallOperandVal) { 6184 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6185 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6186 } else { 6187 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6188 } 6189 6190 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 6191 DAG.getDataLayout()).getSimpleVT(); 6192 } 6193 6194 OpInfo.ConstraintVT = OpVT; 6195 6196 // Indirect operand accesses access memory. 6197 if (OpInfo.isIndirect) 6198 hasMemory = true; 6199 else { 6200 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6201 TargetLowering::ConstraintType 6202 CType = TLI.getConstraintType(OpInfo.Codes[j]); 6203 if (CType == TargetLowering::C_Memory) { 6204 hasMemory = true; 6205 break; 6206 } 6207 } 6208 } 6209 } 6210 6211 SDValue Chain, Flag; 6212 6213 // We won't need to flush pending loads if this asm doesn't touch 6214 // memory and is nonvolatile. 6215 if (hasMemory || IA->hasSideEffects()) 6216 Chain = getRoot(); 6217 else 6218 Chain = DAG.getRoot(); 6219 6220 // Second pass over the constraints: compute which constraint option to use 6221 // and assign registers to constraints that want a specific physreg. 6222 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6223 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6224 6225 // If this is an output operand with a matching input operand, look up the 6226 // matching input. If their types mismatch, e.g. one is an integer, the 6227 // other is floating point, or their sizes are different, flag it as an 6228 // error. 6229 if (OpInfo.hasMatchingInput()) { 6230 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6231 6232 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6233 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6234 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6235 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6236 OpInfo.ConstraintVT); 6237 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6238 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 6239 Input.ConstraintVT); 6240 if ((OpInfo.ConstraintVT.isInteger() != 6241 Input.ConstraintVT.isInteger()) || 6242 (MatchRC.second != InputRC.second)) { 6243 report_fatal_error("Unsupported asm: input constraint" 6244 " with a matching output constraint of" 6245 " incompatible type!"); 6246 } 6247 Input.ConstraintVT = OpInfo.ConstraintVT; 6248 } 6249 } 6250 6251 // Compute the constraint code and ConstraintType to use. 6252 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6253 6254 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6255 OpInfo.Type == InlineAsm::isClobber) 6256 continue; 6257 6258 // If this is a memory input, and if the operand is not indirect, do what we 6259 // need to to provide an address for the memory input. 6260 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6261 !OpInfo.isIndirect) { 6262 assert((OpInfo.isMultipleAlternative || 6263 (OpInfo.Type == InlineAsm::isInput)) && 6264 "Can only indirectify direct input operands!"); 6265 6266 // Memory operands really want the address of the value. If we don't have 6267 // an indirect input, put it in the constpool if we can, otherwise spill 6268 // it to a stack slot. 6269 // TODO: This isn't quite right. We need to handle these according to 6270 // the addressing mode that the constraint wants. Also, this may take 6271 // an additional register for the computation and we don't want that 6272 // either. 6273 6274 // If the operand is a float, integer, or vector constant, spill to a 6275 // constant pool entry to get its address. 6276 const Value *OpVal = OpInfo.CallOperandVal; 6277 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6278 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6279 OpInfo.CallOperand = DAG.getConstantPool( 6280 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6281 } else { 6282 // Otherwise, create a stack slot and emit a store to it before the 6283 // asm. 6284 Type *Ty = OpVal->getType(); 6285 auto &DL = DAG.getDataLayout(); 6286 uint64_t TySize = DL.getTypeAllocSize(Ty); 6287 unsigned Align = DL.getPrefTypeAlignment(Ty); 6288 MachineFunction &MF = DAG.getMachineFunction(); 6289 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6290 SDValue StackSlot = 6291 DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout())); 6292 Chain = DAG.getStore( 6293 Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot, 6294 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), 6295 false, false, 0); 6296 OpInfo.CallOperand = StackSlot; 6297 } 6298 6299 // There is no longer a Value* corresponding to this operand. 6300 OpInfo.CallOperandVal = nullptr; 6301 6302 // It is now an indirect operand. 6303 OpInfo.isIndirect = true; 6304 } 6305 6306 // If this constraint is for a specific register, allocate it before 6307 // anything else. 6308 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6309 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6310 } 6311 6312 // Second pass - Loop over all of the operands, assigning virtual or physregs 6313 // to register class operands. 6314 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6315 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6316 6317 // C_Register operands have already been allocated, Other/Memory don't need 6318 // to be. 6319 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6320 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6321 } 6322 6323 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6324 std::vector<SDValue> AsmNodeOperands; 6325 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6326 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 6327 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 6328 6329 // If we have a !srcloc metadata node associated with it, we want to attach 6330 // this to the ultimately generated inline asm machineinstr. To do this, we 6331 // pass in the third operand as this (potentially null) inline asm MDNode. 6332 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6333 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6334 6335 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6336 // bits as operand 3. 6337 unsigned ExtraInfo = 0; 6338 if (IA->hasSideEffects()) 6339 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6340 if (IA->isAlignStack()) 6341 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6342 // Set the asm dialect. 6343 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6344 6345 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6346 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6347 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6348 6349 // Compute the constraint code and ConstraintType to use. 6350 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6351 6352 // Ideally, we would only check against memory constraints. However, the 6353 // meaning of an other constraint can be target-specific and we can't easily 6354 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6355 // for other constriants as well. 6356 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6357 OpInfo.ConstraintType == TargetLowering::C_Other) { 6358 if (OpInfo.Type == InlineAsm::isInput) 6359 ExtraInfo |= InlineAsm::Extra_MayLoad; 6360 else if (OpInfo.Type == InlineAsm::isOutput) 6361 ExtraInfo |= InlineAsm::Extra_MayStore; 6362 else if (OpInfo.Type == InlineAsm::isClobber) 6363 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6364 } 6365 } 6366 6367 AsmNodeOperands.push_back(DAG.getTargetConstant( 6368 ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6369 6370 // Loop over all of the inputs, copying the operand values into the 6371 // appropriate registers and processing the output regs. 6372 RegsForValue RetValRegs; 6373 6374 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6375 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6376 6377 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6378 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6379 6380 switch (OpInfo.Type) { 6381 case InlineAsm::isOutput: { 6382 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6383 OpInfo.ConstraintType != TargetLowering::C_Register) { 6384 // Memory output, or 'other' output (e.g. 'X' constraint). 6385 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6386 6387 unsigned ConstraintID = 6388 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6389 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6390 "Failed to convert memory constraint code to constraint id."); 6391 6392 // Add information to the INLINEASM node to know about this output. 6393 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6394 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6395 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6396 MVT::i32)); 6397 AsmNodeOperands.push_back(OpInfo.CallOperand); 6398 break; 6399 } 6400 6401 // Otherwise, this is a register or register class output. 6402 6403 // Copy the output from the appropriate register. Find a register that 6404 // we can use. 6405 if (OpInfo.AssignedRegs.Regs.empty()) { 6406 LLVMContext &Ctx = *DAG.getContext(); 6407 Ctx.emitError(CS.getInstruction(), 6408 "couldn't allocate output register for constraint '" + 6409 Twine(OpInfo.ConstraintCode) + "'"); 6410 return; 6411 } 6412 6413 // If this is an indirect operand, store through the pointer after the 6414 // asm. 6415 if (OpInfo.isIndirect) { 6416 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6417 OpInfo.CallOperandVal)); 6418 } else { 6419 // This is the result value of the call. 6420 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6421 // Concatenate this output onto the outputs list. 6422 RetValRegs.append(OpInfo.AssignedRegs); 6423 } 6424 6425 // Add information to the INLINEASM node to know that this register is 6426 // set. 6427 OpInfo.AssignedRegs 6428 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6429 ? InlineAsm::Kind_RegDefEarlyClobber 6430 : InlineAsm::Kind_RegDef, 6431 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6432 break; 6433 } 6434 case InlineAsm::isInput: { 6435 SDValue InOperandVal = OpInfo.CallOperand; 6436 6437 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6438 // If this is required to match an output register we have already set, 6439 // just use its register. 6440 unsigned OperandNo = OpInfo.getMatchedOperand(); 6441 6442 // Scan until we find the definition we already emitted of this operand. 6443 // When we find it, create a RegsForValue operand. 6444 unsigned CurOp = InlineAsm::Op_FirstOperand; 6445 for (; OperandNo; --OperandNo) { 6446 // Advance to the next operand. 6447 unsigned OpFlag = 6448 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6449 assert((InlineAsm::isRegDefKind(OpFlag) || 6450 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6451 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6452 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6453 } 6454 6455 unsigned OpFlag = 6456 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6457 if (InlineAsm::isRegDefKind(OpFlag) || 6458 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6459 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6460 if (OpInfo.isIndirect) { 6461 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6462 LLVMContext &Ctx = *DAG.getContext(); 6463 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6464 " don't know how to handle tied " 6465 "indirect register inputs"); 6466 return; 6467 } 6468 6469 RegsForValue MatchedRegs; 6470 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6471 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6472 MatchedRegs.RegVTs.push_back(RegVT); 6473 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6474 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6475 i != e; ++i) { 6476 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6477 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6478 else { 6479 LLVMContext &Ctx = *DAG.getContext(); 6480 Ctx.emitError(CS.getInstruction(), 6481 "inline asm error: This value" 6482 " type register class is not natively supported!"); 6483 return; 6484 } 6485 } 6486 SDLoc dl = getCurSDLoc(); 6487 // Use the produced MatchedRegs object to 6488 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6489 Chain, &Flag, CS.getInstruction()); 6490 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6491 true, OpInfo.getMatchedOperand(), dl, 6492 DAG, AsmNodeOperands); 6493 break; 6494 } 6495 6496 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6497 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6498 "Unexpected number of operands"); 6499 // Add information to the INLINEASM node to know about this input. 6500 // See InlineAsm.h isUseOperandTiedToDef. 6501 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6502 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6503 OpInfo.getMatchedOperand()); 6504 AsmNodeOperands.push_back(DAG.getTargetConstant( 6505 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6506 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6507 break; 6508 } 6509 6510 // Treat indirect 'X' constraint as memory. 6511 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6512 OpInfo.isIndirect) 6513 OpInfo.ConstraintType = TargetLowering::C_Memory; 6514 6515 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6516 std::vector<SDValue> Ops; 6517 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6518 Ops, DAG); 6519 if (Ops.empty()) { 6520 LLVMContext &Ctx = *DAG.getContext(); 6521 Ctx.emitError(CS.getInstruction(), 6522 "invalid operand for inline asm constraint '" + 6523 Twine(OpInfo.ConstraintCode) + "'"); 6524 return; 6525 } 6526 6527 // Add information to the INLINEASM node to know about this input. 6528 unsigned ResOpType = 6529 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6530 AsmNodeOperands.push_back(DAG.getTargetConstant( 6531 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6532 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6533 break; 6534 } 6535 6536 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6537 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6538 assert(InOperandVal.getValueType() == 6539 TLI.getPointerTy(DAG.getDataLayout()) && 6540 "Memory operands expect pointer values"); 6541 6542 unsigned ConstraintID = 6543 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6544 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6545 "Failed to convert memory constraint code to constraint id."); 6546 6547 // Add information to the INLINEASM node to know about this input. 6548 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6549 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6550 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6551 getCurSDLoc(), 6552 MVT::i32)); 6553 AsmNodeOperands.push_back(InOperandVal); 6554 break; 6555 } 6556 6557 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6558 OpInfo.ConstraintType == TargetLowering::C_Register) && 6559 "Unknown constraint type!"); 6560 6561 // TODO: Support this. 6562 if (OpInfo.isIndirect) { 6563 LLVMContext &Ctx = *DAG.getContext(); 6564 Ctx.emitError(CS.getInstruction(), 6565 "Don't know how to handle indirect register inputs yet " 6566 "for constraint '" + 6567 Twine(OpInfo.ConstraintCode) + "'"); 6568 return; 6569 } 6570 6571 // Copy the input into the appropriate registers. 6572 if (OpInfo.AssignedRegs.Regs.empty()) { 6573 LLVMContext &Ctx = *DAG.getContext(); 6574 Ctx.emitError(CS.getInstruction(), 6575 "couldn't allocate input reg for constraint '" + 6576 Twine(OpInfo.ConstraintCode) + "'"); 6577 return; 6578 } 6579 6580 SDLoc dl = getCurSDLoc(); 6581 6582 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6583 Chain, &Flag, CS.getInstruction()); 6584 6585 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6586 dl, DAG, AsmNodeOperands); 6587 break; 6588 } 6589 case InlineAsm::isClobber: { 6590 // Add the clobbered value to the operand list, so that the register 6591 // allocator is aware that the physreg got clobbered. 6592 if (!OpInfo.AssignedRegs.Regs.empty()) 6593 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6594 false, 0, getCurSDLoc(), DAG, 6595 AsmNodeOperands); 6596 break; 6597 } 6598 } 6599 } 6600 6601 // Finish up input operands. Set the input chain and add the flag last. 6602 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6603 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6604 6605 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6606 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6607 Flag = Chain.getValue(1); 6608 6609 // If this asm returns a register value, copy the result from that register 6610 // and set it as the value of the call. 6611 if (!RetValRegs.Regs.empty()) { 6612 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6613 Chain, &Flag, CS.getInstruction()); 6614 6615 // FIXME: Why don't we do this for inline asms with MRVs? 6616 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6617 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 6618 6619 // If any of the results of the inline asm is a vector, it may have the 6620 // wrong width/num elts. This can happen for register classes that can 6621 // contain multiple different value types. The preg or vreg allocated may 6622 // not have the same VT as was expected. Convert it to the right type 6623 // with bit_convert. 6624 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6625 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6626 ResultType, Val); 6627 6628 } else if (ResultType != Val.getValueType() && 6629 ResultType.isInteger() && Val.getValueType().isInteger()) { 6630 // If a result value was tied to an input value, the computed result may 6631 // have a wider width than the expected result. Extract the relevant 6632 // portion. 6633 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6634 } 6635 6636 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6637 } 6638 6639 setValue(CS.getInstruction(), Val); 6640 // Don't need to use this as a chain in this case. 6641 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6642 return; 6643 } 6644 6645 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6646 6647 // Process indirect outputs, first output all of the flagged copies out of 6648 // physregs. 6649 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6650 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6651 const Value *Ptr = IndirectStoresToEmit[i].second; 6652 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6653 Chain, &Flag, IA); 6654 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6655 } 6656 6657 // Emit the non-flagged stores from the physregs. 6658 SmallVector<SDValue, 8> OutChains; 6659 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6660 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6661 StoresToEmit[i].first, 6662 getValue(StoresToEmit[i].second), 6663 MachinePointerInfo(StoresToEmit[i].second), 6664 false, false, 0); 6665 OutChains.push_back(Val); 6666 } 6667 6668 if (!OutChains.empty()) 6669 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6670 6671 DAG.setRoot(Chain); 6672 } 6673 6674 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6675 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6676 MVT::Other, getRoot(), 6677 getValue(I.getArgOperand(0)), 6678 DAG.getSrcValue(I.getArgOperand(0)))); 6679 } 6680 6681 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6682 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6683 const DataLayout &DL = DAG.getDataLayout(); 6684 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6685 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 6686 DAG.getSrcValue(I.getOperand(0)), 6687 DL.getABITypeAlignment(I.getType())); 6688 setValue(&I, V); 6689 DAG.setRoot(V.getValue(1)); 6690 } 6691 6692 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6693 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6694 MVT::Other, getRoot(), 6695 getValue(I.getArgOperand(0)), 6696 DAG.getSrcValue(I.getArgOperand(0)))); 6697 } 6698 6699 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6700 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6701 MVT::Other, getRoot(), 6702 getValue(I.getArgOperand(0)), 6703 getValue(I.getArgOperand(1)), 6704 DAG.getSrcValue(I.getArgOperand(0)), 6705 DAG.getSrcValue(I.getArgOperand(1)))); 6706 } 6707 6708 /// \brief Lower an argument list according to the target calling convention. 6709 /// 6710 /// \return A tuple of <return-value, token-chain> 6711 /// 6712 /// This is a helper for lowering intrinsics that follow a target calling 6713 /// convention or require stack pointer adjustment. Only a subset of the 6714 /// intrinsic's operands need to participate in the calling convention. 6715 std::pair<SDValue, SDValue> SelectionDAGBuilder::lowerCallOperands( 6716 ImmutableCallSite CS, unsigned ArgIdx, unsigned NumArgs, SDValue Callee, 6717 Type *ReturnTy, const BasicBlock *EHPadBB, bool IsPatchPoint) { 6718 TargetLowering::ArgListTy Args; 6719 Args.reserve(NumArgs); 6720 6721 // Populate the argument list. 6722 // Attributes for args start at offset 1, after the return attribute. 6723 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6724 ArgI != ArgE; ++ArgI) { 6725 const Value *V = CS->getOperand(ArgI); 6726 6727 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6728 6729 TargetLowering::ArgListEntry Entry; 6730 Entry.Node = getValue(V); 6731 Entry.Ty = V->getType(); 6732 Entry.setAttributes(&CS, AttrI); 6733 Args.push_back(Entry); 6734 } 6735 6736 TargetLowering::CallLoweringInfo CLI(DAG); 6737 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6738 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs) 6739 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6740 6741 return lowerInvokable(CLI, EHPadBB); 6742 } 6743 6744 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6745 /// or patchpoint target node's operand list. 6746 /// 6747 /// Constants are converted to TargetConstants purely as an optimization to 6748 /// avoid constant materialization and register allocation. 6749 /// 6750 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6751 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6752 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6753 /// address materialization and register allocation, but may also be required 6754 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6755 /// alloca in the entry block, then the runtime may assume that the alloca's 6756 /// StackMap location can be read immediately after compilation and that the 6757 /// location is valid at any point during execution (this is similar to the 6758 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6759 /// only available in a register, then the runtime would need to trap when 6760 /// execution reaches the StackMap in order to read the alloca's location. 6761 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6762 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 6763 SelectionDAGBuilder &Builder) { 6764 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6765 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6766 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6767 Ops.push_back( 6768 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 6769 Ops.push_back( 6770 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 6771 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6772 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6773 Ops.push_back(Builder.DAG.getTargetFrameIndex( 6774 FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout()))); 6775 } else 6776 Ops.push_back(OpVal); 6777 } 6778 } 6779 6780 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6781 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6782 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6783 // [live variables...]) 6784 6785 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6786 6787 SDValue Chain, InFlag, Callee, NullPtr; 6788 SmallVector<SDValue, 32> Ops; 6789 6790 SDLoc DL = getCurSDLoc(); 6791 Callee = getValue(CI.getCalledValue()); 6792 NullPtr = DAG.getIntPtrConstant(0, DL, true); 6793 6794 // The stackmap intrinsic only records the live variables (the arguemnts 6795 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6796 // intrinsic, this won't be lowered to a function call. This means we don't 6797 // have to worry about calling conventions and target specific lowering code. 6798 // Instead we perform the call lowering right here. 6799 // 6800 // chain, flag = CALLSEQ_START(chain, 0) 6801 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6802 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6803 // 6804 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6805 InFlag = Chain.getValue(1); 6806 6807 // Add the <id> and <numBytes> constants. 6808 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6809 Ops.push_back(DAG.getTargetConstant( 6810 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 6811 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6812 Ops.push_back(DAG.getTargetConstant( 6813 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 6814 MVT::i32)); 6815 6816 // Push live variables for the stack map. 6817 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 6818 6819 // We are not pushing any register mask info here on the operands list, 6820 // because the stackmap doesn't clobber anything. 6821 6822 // Push the chain and the glue flag. 6823 Ops.push_back(Chain); 6824 Ops.push_back(InFlag); 6825 6826 // Create the STACKMAP node. 6827 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6828 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6829 Chain = SDValue(SM, 0); 6830 InFlag = Chain.getValue(1); 6831 6832 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6833 6834 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6835 6836 // Set the root to the target-lowered call chain. 6837 DAG.setRoot(Chain); 6838 6839 // Inform the Frame Information that we have a stackmap in this function. 6840 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6841 } 6842 6843 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6844 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6845 const BasicBlock *EHPadBB) { 6846 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6847 // i32 <numBytes>, 6848 // i8* <target>, 6849 // i32 <numArgs>, 6850 // [Args...], 6851 // [live variables...]) 6852 6853 CallingConv::ID CC = CS.getCallingConv(); 6854 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6855 bool HasDef = !CS->getType()->isVoidTy(); 6856 SDLoc dl = getCurSDLoc(); 6857 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 6858 6859 // Handle immediate and symbolic callees. 6860 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 6861 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 6862 /*isTarget=*/true); 6863 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 6864 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 6865 SDLoc(SymbolicCallee), 6866 SymbolicCallee->getValueType(0)); 6867 6868 // Get the real number of arguments participating in the call <numArgs> 6869 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6870 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6871 6872 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6873 // Intrinsics include all meta-operands up to but not including CC. 6874 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6875 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 6876 "Not enough arguments provided to the patchpoint intrinsic"); 6877 6878 // For AnyRegCC the arguments are lowered later on manually. 6879 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 6880 Type *ReturnTy = 6881 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6882 std::pair<SDValue, SDValue> Result = lowerCallOperands( 6883 CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, EHPadBB, true); 6884 6885 SDNode *CallEnd = Result.second.getNode(); 6886 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6887 CallEnd = CallEnd->getOperand(0).getNode(); 6888 6889 /// Get a call instruction from the call sequence chain. 6890 /// Tail calls are not allowed. 6891 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6892 "Expected a callseq node."); 6893 SDNode *Call = CallEnd->getOperand(0).getNode(); 6894 bool HasGlue = Call->getGluedNode(); 6895 6896 // Replace the target specific call node with the patchable intrinsic. 6897 SmallVector<SDValue, 8> Ops; 6898 6899 // Add the <id> and <numBytes> constants. 6900 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 6901 Ops.push_back(DAG.getTargetConstant( 6902 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 6903 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 6904 Ops.push_back(DAG.getTargetConstant( 6905 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 6906 MVT::i32)); 6907 6908 // Add the callee. 6909 Ops.push_back(Callee); 6910 6911 // Adjust <numArgs> to account for any arguments that have been passed on the 6912 // stack instead. 6913 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6914 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 6915 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 6916 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 6917 6918 // Add the calling convention 6919 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 6920 6921 // Add the arguments we omitted previously. The register allocator should 6922 // place these in any free register. 6923 if (IsAnyRegCC) 6924 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6925 Ops.push_back(getValue(CS.getArgument(i))); 6926 6927 // Push the arguments from the call instruction up to the register mask. 6928 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 6929 Ops.append(Call->op_begin() + 2, e); 6930 6931 // Push live variables for the stack map. 6932 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 6933 6934 // Push the register mask info. 6935 if (HasGlue) 6936 Ops.push_back(*(Call->op_end()-2)); 6937 else 6938 Ops.push_back(*(Call->op_end()-1)); 6939 6940 // Push the chain (this is originally the first operand of the call, but 6941 // becomes now the last or second to last operand). 6942 Ops.push_back(*(Call->op_begin())); 6943 6944 // Push the glue flag (last operand). 6945 if (HasGlue) 6946 Ops.push_back(*(Call->op_end()-1)); 6947 6948 SDVTList NodeTys; 6949 if (IsAnyRegCC && HasDef) { 6950 // Create the return types based on the intrinsic definition 6951 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6952 SmallVector<EVT, 3> ValueVTs; 6953 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 6954 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 6955 6956 // There is always a chain and a glue type at the end 6957 ValueVTs.push_back(MVT::Other); 6958 ValueVTs.push_back(MVT::Glue); 6959 NodeTys = DAG.getVTList(ValueVTs); 6960 } else 6961 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6962 6963 // Replace the target specific call node with a PATCHPOINT node. 6964 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 6965 dl, NodeTys, Ops); 6966 6967 // Update the NodeMap. 6968 if (HasDef) { 6969 if (IsAnyRegCC) 6970 setValue(CS.getInstruction(), SDValue(MN, 0)); 6971 else 6972 setValue(CS.getInstruction(), Result.first); 6973 } 6974 6975 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 6976 // call sequence. Furthermore the location of the chain and glue can change 6977 // when the AnyReg calling convention is used and the intrinsic returns a 6978 // value. 6979 if (IsAnyRegCC && HasDef) { 6980 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 6981 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 6982 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 6983 } else 6984 DAG.ReplaceAllUsesWith(Call, MN); 6985 DAG.DeleteNode(Call); 6986 6987 // Inform the Frame Information that we have a patchpoint in this function. 6988 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 6989 } 6990 6991 /// Returns an AttributeSet representing the attributes applied to the return 6992 /// value of the given call. 6993 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 6994 SmallVector<Attribute::AttrKind, 2> Attrs; 6995 if (CLI.RetSExt) 6996 Attrs.push_back(Attribute::SExt); 6997 if (CLI.RetZExt) 6998 Attrs.push_back(Attribute::ZExt); 6999 if (CLI.IsInReg) 7000 Attrs.push_back(Attribute::InReg); 7001 7002 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 7003 Attrs); 7004 } 7005 7006 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7007 /// implementation, which just calls LowerCall. 7008 /// FIXME: When all targets are 7009 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7010 std::pair<SDValue, SDValue> 7011 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7012 // Handle the incoming return values from the call. 7013 CLI.Ins.clear(); 7014 Type *OrigRetTy = CLI.RetTy; 7015 SmallVector<EVT, 4> RetTys; 7016 SmallVector<uint64_t, 4> Offsets; 7017 auto &DL = CLI.DAG.getDataLayout(); 7018 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 7019 7020 SmallVector<ISD::OutputArg, 4> Outs; 7021 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 7022 7023 bool CanLowerReturn = 7024 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 7025 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7026 7027 SDValue DemoteStackSlot; 7028 int DemoteStackIdx = -100; 7029 if (!CanLowerReturn) { 7030 // FIXME: equivalent assert? 7031 // assert(!CS.hasInAllocaArgument() && 7032 // "sret demotion is incompatible with inalloca"); 7033 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 7034 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 7035 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7036 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 7037 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7038 7039 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL)); 7040 ArgListEntry Entry; 7041 Entry.Node = DemoteStackSlot; 7042 Entry.Ty = StackSlotPtrType; 7043 Entry.isSExt = false; 7044 Entry.isZExt = false; 7045 Entry.isInReg = false; 7046 Entry.isSRet = true; 7047 Entry.isNest = false; 7048 Entry.isByVal = false; 7049 Entry.isReturned = false; 7050 Entry.Alignment = Align; 7051 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7052 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7053 7054 // sret demotion isn't compatible with tail-calls, since the sret argument 7055 // points into the callers stack frame. 7056 CLI.IsTailCall = false; 7057 } else { 7058 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7059 EVT VT = RetTys[I]; 7060 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7061 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7062 for (unsigned i = 0; i != NumRegs; ++i) { 7063 ISD::InputArg MyFlags; 7064 MyFlags.VT = RegisterVT; 7065 MyFlags.ArgVT = VT; 7066 MyFlags.Used = CLI.IsReturnValueUsed; 7067 if (CLI.RetSExt) 7068 MyFlags.Flags.setSExt(); 7069 if (CLI.RetZExt) 7070 MyFlags.Flags.setZExt(); 7071 if (CLI.IsInReg) 7072 MyFlags.Flags.setInReg(); 7073 CLI.Ins.push_back(MyFlags); 7074 } 7075 } 7076 } 7077 7078 // Handle all of the outgoing arguments. 7079 CLI.Outs.clear(); 7080 CLI.OutVals.clear(); 7081 ArgListTy &Args = CLI.getArgs(); 7082 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7083 SmallVector<EVT, 4> ValueVTs; 7084 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 7085 Type *FinalType = Args[i].Ty; 7086 if (Args[i].isByVal) 7087 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7088 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7089 FinalType, CLI.CallConv, CLI.IsVarArg); 7090 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7091 ++Value) { 7092 EVT VT = ValueVTs[Value]; 7093 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7094 SDValue Op = SDValue(Args[i].Node.getNode(), 7095 Args[i].Node.getResNo() + Value); 7096 ISD::ArgFlagsTy Flags; 7097 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7098 7099 if (Args[i].isZExt) 7100 Flags.setZExt(); 7101 if (Args[i].isSExt) 7102 Flags.setSExt(); 7103 if (Args[i].isInReg) 7104 Flags.setInReg(); 7105 if (Args[i].isSRet) 7106 Flags.setSRet(); 7107 if (Args[i].isByVal) 7108 Flags.setByVal(); 7109 if (Args[i].isInAlloca) { 7110 Flags.setInAlloca(); 7111 // Set the byval flag for CCAssignFn callbacks that don't know about 7112 // inalloca. This way we can know how many bytes we should've allocated 7113 // and how many bytes a callee cleanup function will pop. If we port 7114 // inalloca to more targets, we'll have to add custom inalloca handling 7115 // in the various CC lowering callbacks. 7116 Flags.setByVal(); 7117 } 7118 if (Args[i].isByVal || Args[i].isInAlloca) { 7119 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7120 Type *ElementTy = Ty->getElementType(); 7121 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7122 // For ByVal, alignment should come from FE. BE will guess if this 7123 // info is not there but there are cases it cannot get right. 7124 unsigned FrameAlign; 7125 if (Args[i].Alignment) 7126 FrameAlign = Args[i].Alignment; 7127 else 7128 FrameAlign = getByValTypeAlignment(ElementTy, DL); 7129 Flags.setByValAlign(FrameAlign); 7130 } 7131 if (Args[i].isNest) 7132 Flags.setNest(); 7133 if (NeedsRegBlock) 7134 Flags.setInConsecutiveRegs(); 7135 Flags.setOrigAlign(OriginalAlignment); 7136 7137 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7138 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7139 SmallVector<SDValue, 4> Parts(NumParts); 7140 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7141 7142 if (Args[i].isSExt) 7143 ExtendKind = ISD::SIGN_EXTEND; 7144 else if (Args[i].isZExt) 7145 ExtendKind = ISD::ZERO_EXTEND; 7146 7147 // Conservatively only handle 'returned' on non-vectors for now 7148 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7149 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7150 "unexpected use of 'returned'"); 7151 // Before passing 'returned' to the target lowering code, ensure that 7152 // either the register MVT and the actual EVT are the same size or that 7153 // the return value and argument are extended in the same way; in these 7154 // cases it's safe to pass the argument register value unchanged as the 7155 // return register value (although it's at the target's option whether 7156 // to do so) 7157 // TODO: allow code generation to take advantage of partially preserved 7158 // registers rather than clobbering the entire register when the 7159 // parameter extension method is not compatible with the return 7160 // extension method 7161 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7162 (ExtendKind != ISD::ANY_EXTEND && 7163 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7164 Flags.setReturned(); 7165 } 7166 7167 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7168 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7169 7170 for (unsigned j = 0; j != NumParts; ++j) { 7171 // if it isn't first piece, alignment must be 1 7172 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7173 i < CLI.NumFixedArgs, 7174 i, j*Parts[j].getValueType().getStoreSize()); 7175 if (NumParts > 1 && j == 0) 7176 MyFlags.Flags.setSplit(); 7177 else if (j != 0) 7178 MyFlags.Flags.setOrigAlign(1); 7179 7180 CLI.Outs.push_back(MyFlags); 7181 CLI.OutVals.push_back(Parts[j]); 7182 } 7183 7184 if (NeedsRegBlock && Value == NumValues - 1) 7185 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 7186 } 7187 } 7188 7189 SmallVector<SDValue, 4> InVals; 7190 CLI.Chain = LowerCall(CLI, InVals); 7191 7192 // Verify that the target's LowerCall behaved as expected. 7193 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7194 "LowerCall didn't return a valid chain!"); 7195 assert((!CLI.IsTailCall || InVals.empty()) && 7196 "LowerCall emitted a return value for a tail call!"); 7197 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7198 "LowerCall didn't emit the correct number of values!"); 7199 7200 // For a tail call, the return value is merely live-out and there aren't 7201 // any nodes in the DAG representing it. Return a special value to 7202 // indicate that a tail call has been emitted and no more Instructions 7203 // should be processed in the current block. 7204 if (CLI.IsTailCall) { 7205 CLI.DAG.setRoot(CLI.Chain); 7206 return std::make_pair(SDValue(), SDValue()); 7207 } 7208 7209 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7210 assert(InVals[i].getNode() && 7211 "LowerCall emitted a null value!"); 7212 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7213 "LowerCall emitted a value with the wrong type!"); 7214 }); 7215 7216 SmallVector<SDValue, 4> ReturnValues; 7217 if (!CanLowerReturn) { 7218 // The instruction result is the result of loading from the 7219 // hidden sret parameter. 7220 SmallVector<EVT, 1> PVTs; 7221 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7222 7223 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 7224 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7225 EVT PtrVT = PVTs[0]; 7226 7227 unsigned NumValues = RetTys.size(); 7228 ReturnValues.resize(NumValues); 7229 SmallVector<SDValue, 4> Chains(NumValues); 7230 7231 for (unsigned i = 0; i < NumValues; ++i) { 7232 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7233 CLI.DAG.getConstant(Offsets[i], CLI.DL, 7234 PtrVT)); 7235 SDValue L = CLI.DAG.getLoad( 7236 RetTys[i], CLI.DL, CLI.Chain, Add, 7237 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 7238 DemoteStackIdx, Offsets[i]), 7239 false, false, false, 1); 7240 ReturnValues[i] = L; 7241 Chains[i] = L.getValue(1); 7242 } 7243 7244 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7245 } else { 7246 // Collect the legal value parts into potentially illegal values 7247 // that correspond to the original function's return values. 7248 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7249 if (CLI.RetSExt) 7250 AssertOp = ISD::AssertSext; 7251 else if (CLI.RetZExt) 7252 AssertOp = ISD::AssertZext; 7253 unsigned CurReg = 0; 7254 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7255 EVT VT = RetTys[I]; 7256 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7257 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7258 7259 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7260 NumRegs, RegisterVT, VT, nullptr, 7261 AssertOp)); 7262 CurReg += NumRegs; 7263 } 7264 7265 // For a function returning void, there is no return value. We can't create 7266 // such a node, so we just return a null return value in that case. In 7267 // that case, nothing will actually look at the value. 7268 if (ReturnValues.empty()) 7269 return std::make_pair(SDValue(), CLI.Chain); 7270 } 7271 7272 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7273 CLI.DAG.getVTList(RetTys), ReturnValues); 7274 return std::make_pair(Res, CLI.Chain); 7275 } 7276 7277 void TargetLowering::LowerOperationWrapper(SDNode *N, 7278 SmallVectorImpl<SDValue> &Results, 7279 SelectionDAG &DAG) const { 7280 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7281 if (Res.getNode()) 7282 Results.push_back(Res); 7283 } 7284 7285 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7286 llvm_unreachable("LowerOperation not implemented for this target!"); 7287 } 7288 7289 void 7290 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7291 SDValue Op = getNonRegisterValue(V); 7292 assert((Op.getOpcode() != ISD::CopyFromReg || 7293 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7294 "Copy from a reg to the same reg!"); 7295 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7296 7297 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7298 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 7299 V->getType()); 7300 SDValue Chain = DAG.getEntryNode(); 7301 7302 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7303 FuncInfo.PreferredExtendType.end()) 7304 ? ISD::ANY_EXTEND 7305 : FuncInfo.PreferredExtendType[V]; 7306 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7307 PendingExports.push_back(Chain); 7308 } 7309 7310 #include "llvm/CodeGen/SelectionDAGISel.h" 7311 7312 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7313 /// entry block, return true. This includes arguments used by switches, since 7314 /// the switch may expand into multiple basic blocks. 7315 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7316 // With FastISel active, we may be splitting blocks, so force creation 7317 // of virtual registers for all non-dead arguments. 7318 if (FastISel) 7319 return A->use_empty(); 7320 7321 const BasicBlock &Entry = A->getParent()->front(); 7322 for (const User *U : A->users()) 7323 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 7324 return false; // Use not in entry block. 7325 7326 return true; 7327 } 7328 7329 void SelectionDAGISel::LowerArguments(const Function &F) { 7330 SelectionDAG &DAG = SDB->DAG; 7331 SDLoc dl = SDB->getCurSDLoc(); 7332 const DataLayout &DL = DAG.getDataLayout(); 7333 SmallVector<ISD::InputArg, 16> Ins; 7334 7335 if (!FuncInfo->CanLowerReturn) { 7336 // Put in an sret pointer parameter before all the other parameters. 7337 SmallVector<EVT, 1> ValueVTs; 7338 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7339 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7340 7341 // NOTE: Assuming that a pointer will never break down to more than one VT 7342 // or one register. 7343 ISD::ArgFlagsTy Flags; 7344 Flags.setSRet(); 7345 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7346 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7347 ISD::InputArg::NoArgIndex, 0); 7348 Ins.push_back(RetArg); 7349 } 7350 7351 // Set up the incoming argument description vector. 7352 unsigned Idx = 1; 7353 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7354 I != E; ++I, ++Idx) { 7355 SmallVector<EVT, 4> ValueVTs; 7356 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7357 bool isArgValueUsed = !I->use_empty(); 7358 unsigned PartBase = 0; 7359 Type *FinalType = I->getType(); 7360 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7361 FinalType = cast<PointerType>(FinalType)->getElementType(); 7362 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7363 FinalType, F.getCallingConv(), F.isVarArg()); 7364 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7365 Value != NumValues; ++Value) { 7366 EVT VT = ValueVTs[Value]; 7367 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7368 ISD::ArgFlagsTy Flags; 7369 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7370 7371 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7372 Flags.setZExt(); 7373 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7374 Flags.setSExt(); 7375 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7376 Flags.setInReg(); 7377 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7378 Flags.setSRet(); 7379 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7380 Flags.setByVal(); 7381 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7382 Flags.setInAlloca(); 7383 // Set the byval flag for CCAssignFn callbacks that don't know about 7384 // inalloca. This way we can know how many bytes we should've allocated 7385 // and how many bytes a callee cleanup function will pop. If we port 7386 // inalloca to more targets, we'll have to add custom inalloca handling 7387 // in the various CC lowering callbacks. 7388 Flags.setByVal(); 7389 } 7390 if (Flags.isByVal() || Flags.isInAlloca()) { 7391 PointerType *Ty = cast<PointerType>(I->getType()); 7392 Type *ElementTy = Ty->getElementType(); 7393 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7394 // For ByVal, alignment should be passed from FE. BE will guess if 7395 // this info is not there but there are cases it cannot get right. 7396 unsigned FrameAlign; 7397 if (F.getParamAlignment(Idx)) 7398 FrameAlign = F.getParamAlignment(Idx); 7399 else 7400 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 7401 Flags.setByValAlign(FrameAlign); 7402 } 7403 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7404 Flags.setNest(); 7405 if (NeedsRegBlock) 7406 Flags.setInConsecutiveRegs(); 7407 Flags.setOrigAlign(OriginalAlignment); 7408 7409 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7410 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7411 for (unsigned i = 0; i != NumRegs; ++i) { 7412 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7413 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7414 if (NumRegs > 1 && i == 0) 7415 MyFlags.Flags.setSplit(); 7416 // if it isn't first piece, alignment must be 1 7417 else if (i > 0) 7418 MyFlags.Flags.setOrigAlign(1); 7419 Ins.push_back(MyFlags); 7420 } 7421 if (NeedsRegBlock && Value == NumValues - 1) 7422 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7423 PartBase += VT.getStoreSize(); 7424 } 7425 } 7426 7427 // Call the target to set up the argument values. 7428 SmallVector<SDValue, 8> InVals; 7429 SDValue NewRoot = TLI->LowerFormalArguments( 7430 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7431 7432 // Verify that the target's LowerFormalArguments behaved as expected. 7433 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7434 "LowerFormalArguments didn't return a valid chain!"); 7435 assert(InVals.size() == Ins.size() && 7436 "LowerFormalArguments didn't emit the correct number of values!"); 7437 DEBUG({ 7438 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7439 assert(InVals[i].getNode() && 7440 "LowerFormalArguments emitted a null value!"); 7441 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7442 "LowerFormalArguments emitted a value with the wrong type!"); 7443 } 7444 }); 7445 7446 // Update the DAG with the new chain value resulting from argument lowering. 7447 DAG.setRoot(NewRoot); 7448 7449 // Set up the argument values. 7450 unsigned i = 0; 7451 Idx = 1; 7452 if (!FuncInfo->CanLowerReturn) { 7453 // Create a virtual register for the sret pointer, and put in a copy 7454 // from the sret argument into it. 7455 SmallVector<EVT, 1> ValueVTs; 7456 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7457 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7458 MVT VT = ValueVTs[0].getSimpleVT(); 7459 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7460 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7461 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7462 RegVT, VT, nullptr, AssertOp); 7463 7464 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7465 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7466 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7467 FuncInfo->DemoteRegister = SRetReg; 7468 NewRoot = 7469 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7470 DAG.setRoot(NewRoot); 7471 7472 // i indexes lowered arguments. Bump it past the hidden sret argument. 7473 // Idx indexes LLVM arguments. Don't touch it. 7474 ++i; 7475 } 7476 7477 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7478 ++I, ++Idx) { 7479 SmallVector<SDValue, 4> ArgValues; 7480 SmallVector<EVT, 4> ValueVTs; 7481 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7482 unsigned NumValues = ValueVTs.size(); 7483 7484 // If this argument is unused then remember its value. It is used to generate 7485 // debugging information. 7486 if (I->use_empty() && NumValues) { 7487 SDB->setUnusedArgValue(&*I, InVals[i]); 7488 7489 // Also remember any frame index for use in FastISel. 7490 if (FrameIndexSDNode *FI = 7491 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7492 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7493 } 7494 7495 for (unsigned Val = 0; Val != NumValues; ++Val) { 7496 EVT VT = ValueVTs[Val]; 7497 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7498 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7499 7500 if (!I->use_empty()) { 7501 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7502 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7503 AssertOp = ISD::AssertSext; 7504 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7505 AssertOp = ISD::AssertZext; 7506 7507 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7508 NumParts, PartVT, VT, 7509 nullptr, AssertOp)); 7510 } 7511 7512 i += NumParts; 7513 } 7514 7515 // We don't need to do anything else for unused arguments. 7516 if (ArgValues.empty()) 7517 continue; 7518 7519 // Note down frame index. 7520 if (FrameIndexSDNode *FI = 7521 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7522 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7523 7524 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7525 SDB->getCurSDLoc()); 7526 7527 SDB->setValue(&*I, Res); 7528 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7529 if (LoadSDNode *LNode = 7530 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7531 if (FrameIndexSDNode *FI = 7532 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7533 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7534 } 7535 7536 // If this argument is live outside of the entry block, insert a copy from 7537 // wherever we got it to the vreg that other BB's will reference it as. 7538 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7539 // If we can, though, try to skip creating an unnecessary vreg. 7540 // FIXME: This isn't very clean... it would be nice to make this more 7541 // general. It's also subtly incompatible with the hacks FastISel 7542 // uses with vregs. 7543 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7544 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7545 FuncInfo->ValueMap[&*I] = Reg; 7546 continue; 7547 } 7548 } 7549 if (!isOnlyUsedInEntryBlock(&*I, TM.Options.EnableFastISel)) { 7550 FuncInfo->InitializeRegForValue(&*I); 7551 SDB->CopyToExportRegsIfNeeded(&*I); 7552 } 7553 } 7554 7555 assert(i == InVals.size() && "Argument register count mismatch!"); 7556 7557 // Finally, if the target has anything special to do, allow it to do so. 7558 EmitFunctionEntryCode(); 7559 } 7560 7561 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7562 /// ensure constants are generated when needed. Remember the virtual registers 7563 /// that need to be added to the Machine PHI nodes as input. We cannot just 7564 /// directly add them, because expansion might result in multiple MBB's for one 7565 /// BB. As such, the start of the BB might correspond to a different MBB than 7566 /// the end. 7567 /// 7568 void 7569 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7570 const TerminatorInst *TI = LLVMBB->getTerminator(); 7571 7572 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7573 7574 // Check PHI nodes in successors that expect a value to be available from this 7575 // block. 7576 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7577 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7578 if (!isa<PHINode>(SuccBB->begin())) continue; 7579 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7580 7581 // If this terminator has multiple identical successors (common for 7582 // switches), only handle each succ once. 7583 if (!SuccsHandled.insert(SuccMBB).second) 7584 continue; 7585 7586 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7587 7588 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7589 // nodes and Machine PHI nodes, but the incoming operands have not been 7590 // emitted yet. 7591 for (BasicBlock::const_iterator I = SuccBB->begin(); 7592 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7593 // Ignore dead phi's. 7594 if (PN->use_empty()) continue; 7595 7596 // Skip empty types 7597 if (PN->getType()->isEmptyTy()) 7598 continue; 7599 7600 unsigned Reg; 7601 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7602 7603 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7604 unsigned &RegOut = ConstantsOut[C]; 7605 if (RegOut == 0) { 7606 RegOut = FuncInfo.CreateRegs(C->getType()); 7607 CopyValueToVirtualRegister(C, RegOut); 7608 } 7609 Reg = RegOut; 7610 } else { 7611 DenseMap<const Value *, unsigned>::iterator I = 7612 FuncInfo.ValueMap.find(PHIOp); 7613 if (I != FuncInfo.ValueMap.end()) 7614 Reg = I->second; 7615 else { 7616 assert(isa<AllocaInst>(PHIOp) && 7617 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7618 "Didn't codegen value into a register!??"); 7619 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7620 CopyValueToVirtualRegister(PHIOp, Reg); 7621 } 7622 } 7623 7624 // Remember that this register needs to added to the machine PHI node as 7625 // the input for this MBB. 7626 SmallVector<EVT, 4> ValueVTs; 7627 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7628 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 7629 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7630 EVT VT = ValueVTs[vti]; 7631 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7632 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7633 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7634 Reg += NumRegisters; 7635 } 7636 } 7637 } 7638 7639 ConstantsOut.clear(); 7640 } 7641 7642 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7643 /// is 0. 7644 MachineBasicBlock * 7645 SelectionDAGBuilder::StackProtectorDescriptor:: 7646 AddSuccessorMBB(const BasicBlock *BB, 7647 MachineBasicBlock *ParentMBB, 7648 bool IsLikely, 7649 MachineBasicBlock *SuccMBB) { 7650 // If SuccBB has not been created yet, create it. 7651 if (!SuccMBB) { 7652 MachineFunction *MF = ParentMBB->getParent(); 7653 MachineFunction::iterator BBI(ParentMBB); 7654 SuccMBB = MF->CreateMachineBasicBlock(BB); 7655 MF->insert(++BBI, SuccMBB); 7656 } 7657 // Add it as a successor of ParentMBB. 7658 ParentMBB->addSuccessor( 7659 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 7660 return SuccMBB; 7661 } 7662 7663 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7664 MachineFunction::iterator I(MBB); 7665 if (++I == FuncInfo.MF->end()) 7666 return nullptr; 7667 return &*I; 7668 } 7669 7670 /// During lowering new call nodes can be created (such as memset, etc.). 7671 /// Those will become new roots of the current DAG, but complications arise 7672 /// when they are tail calls. In such cases, the call lowering will update 7673 /// the root, but the builder still needs to know that a tail call has been 7674 /// lowered in order to avoid generating an additional return. 7675 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7676 // If the node is null, we do have a tail call. 7677 if (MaybeTC.getNode() != nullptr) 7678 DAG.setRoot(MaybeTC); 7679 else 7680 HasTailCall = true; 7681 } 7682 7683 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7684 unsigned *TotalCases, unsigned First, 7685 unsigned Last) { 7686 assert(Last >= First); 7687 assert(TotalCases[Last] >= TotalCases[First]); 7688 7689 APInt LowCase = Clusters[First].Low->getValue(); 7690 APInt HighCase = Clusters[Last].High->getValue(); 7691 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7692 7693 // FIXME: A range of consecutive cases has 100% density, but only requires one 7694 // comparison to lower. We should discriminate against such consecutive ranges 7695 // in jump tables. 7696 7697 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7698 uint64_t Range = Diff + 1; 7699 7700 uint64_t NumCases = 7701 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7702 7703 assert(NumCases < UINT64_MAX / 100); 7704 assert(Range >= NumCases); 7705 7706 return NumCases * 100 >= Range * MinJumpTableDensity; 7707 } 7708 7709 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7710 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7711 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7712 } 7713 7714 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7715 unsigned First, unsigned Last, 7716 const SwitchInst *SI, 7717 MachineBasicBlock *DefaultMBB, 7718 CaseCluster &JTCluster) { 7719 assert(First <= Last); 7720 7721 auto Prob = BranchProbability::getZero(); 7722 unsigned NumCmps = 0; 7723 std::vector<MachineBasicBlock*> Table; 7724 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 7725 7726 // Initialize probabilities in JTProbs. 7727 for (unsigned I = First; I <= Last; ++I) 7728 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 7729 7730 for (unsigned I = First; I <= Last; ++I) { 7731 assert(Clusters[I].Kind == CC_Range); 7732 Prob += Clusters[I].Prob; 7733 APInt Low = Clusters[I].Low->getValue(); 7734 APInt High = Clusters[I].High->getValue(); 7735 NumCmps += (Low == High) ? 1 : 2; 7736 if (I != First) { 7737 // Fill the gap between this and the previous cluster. 7738 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7739 assert(PreviousHigh.slt(Low)); 7740 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7741 for (uint64_t J = 0; J < Gap; J++) 7742 Table.push_back(DefaultMBB); 7743 } 7744 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7745 for (uint64_t J = 0; J < ClusterSize; ++J) 7746 Table.push_back(Clusters[I].MBB); 7747 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 7748 } 7749 7750 unsigned NumDests = JTProbs.size(); 7751 if (isSuitableForBitTests(NumDests, NumCmps, 7752 Clusters[First].Low->getValue(), 7753 Clusters[Last].High->getValue())) { 7754 // Clusters[First..Last] should be lowered as bit tests instead. 7755 return false; 7756 } 7757 7758 // Create the MBB that will load from and jump through the table. 7759 // Note: We create it here, but it's not inserted into the function yet. 7760 MachineFunction *CurMF = FuncInfo.MF; 7761 MachineBasicBlock *JumpTableMBB = 7762 CurMF->CreateMachineBasicBlock(SI->getParent()); 7763 7764 // Add successors. Note: use table order for determinism. 7765 SmallPtrSet<MachineBasicBlock *, 8> Done; 7766 for (MachineBasicBlock *Succ : Table) { 7767 if (Done.count(Succ)) 7768 continue; 7769 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 7770 Done.insert(Succ); 7771 } 7772 JumpTableMBB->normalizeSuccProbs(); 7773 7774 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7775 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 7776 ->createJumpTableIndex(Table); 7777 7778 // Set up the jump table info. 7779 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 7780 JumpTableHeader JTH(Clusters[First].Low->getValue(), 7781 Clusters[Last].High->getValue(), SI->getCondition(), 7782 nullptr, false); 7783 JTCases.emplace_back(std::move(JTH), std::move(JT)); 7784 7785 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 7786 JTCases.size() - 1, Prob); 7787 return true; 7788 } 7789 7790 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 7791 const SwitchInst *SI, 7792 MachineBasicBlock *DefaultMBB) { 7793 #ifndef NDEBUG 7794 // Clusters must be non-empty, sorted, and only contain Range clusters. 7795 assert(!Clusters.empty()); 7796 for (CaseCluster &C : Clusters) 7797 assert(C.Kind == CC_Range); 7798 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 7799 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 7800 #endif 7801 7802 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7803 if (!areJTsAllowed(TLI)) 7804 return; 7805 7806 const int64_t N = Clusters.size(); 7807 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 7808 7809 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 7810 SmallVector<unsigned, 8> TotalCases(N); 7811 7812 for (unsigned i = 0; i < N; ++i) { 7813 APInt Hi = Clusters[i].High->getValue(); 7814 APInt Lo = Clusters[i].Low->getValue(); 7815 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 7816 if (i != 0) 7817 TotalCases[i] += TotalCases[i - 1]; 7818 } 7819 7820 if (N >= MinJumpTableSize && isDense(Clusters, &TotalCases[0], 0, N - 1)) { 7821 // Cheap case: the whole range might be suitable for jump table. 7822 CaseCluster JTCluster; 7823 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 7824 Clusters[0] = JTCluster; 7825 Clusters.resize(1); 7826 return; 7827 } 7828 } 7829 7830 // The algorithm below is not suitable for -O0. 7831 if (TM.getOptLevel() == CodeGenOpt::None) 7832 return; 7833 7834 // Split Clusters into minimum number of dense partitions. The algorithm uses 7835 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 7836 // for the Case Statement'" (1994), but builds the MinPartitions array in 7837 // reverse order to make it easier to reconstruct the partitions in ascending 7838 // order. In the choice between two optimal partitionings, it picks the one 7839 // which yields more jump tables. 7840 7841 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7842 SmallVector<unsigned, 8> MinPartitions(N); 7843 // LastElement[i] is the last element of the partition starting at i. 7844 SmallVector<unsigned, 8> LastElement(N); 7845 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 7846 SmallVector<unsigned, 8> NumTables(N); 7847 7848 // Base case: There is only one way to partition Clusters[N-1]. 7849 MinPartitions[N - 1] = 1; 7850 LastElement[N - 1] = N - 1; 7851 assert(MinJumpTableSize > 1); 7852 NumTables[N - 1] = 0; 7853 7854 // Note: loop indexes are signed to avoid underflow. 7855 for (int64_t i = N - 2; i >= 0; i--) { 7856 // Find optimal partitioning of Clusters[i..N-1]. 7857 // Baseline: Put Clusters[i] into a partition on its own. 7858 MinPartitions[i] = MinPartitions[i + 1] + 1; 7859 LastElement[i] = i; 7860 NumTables[i] = NumTables[i + 1]; 7861 7862 // Search for a solution that results in fewer partitions. 7863 for (int64_t j = N - 1; j > i; j--) { 7864 // Try building a partition from Clusters[i..j]. 7865 if (isDense(Clusters, &TotalCases[0], i, j)) { 7866 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7867 bool IsTable = j - i + 1 >= MinJumpTableSize; 7868 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 7869 7870 // If this j leads to fewer partitions, or same number of partitions 7871 // with more lookup tables, it is a better partitioning. 7872 if (NumPartitions < MinPartitions[i] || 7873 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 7874 MinPartitions[i] = NumPartitions; 7875 LastElement[i] = j; 7876 NumTables[i] = Tables; 7877 } 7878 } 7879 } 7880 } 7881 7882 // Iterate over the partitions, replacing some with jump tables in-place. 7883 unsigned DstIndex = 0; 7884 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7885 Last = LastElement[First]; 7886 assert(Last >= First); 7887 assert(DstIndex <= First); 7888 unsigned NumClusters = Last - First + 1; 7889 7890 CaseCluster JTCluster; 7891 if (NumClusters >= MinJumpTableSize && 7892 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 7893 Clusters[DstIndex++] = JTCluster; 7894 } else { 7895 for (unsigned I = First; I <= Last; ++I) 7896 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7897 } 7898 } 7899 Clusters.resize(DstIndex); 7900 } 7901 7902 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 7903 // FIXME: Using the pointer type doesn't seem ideal. 7904 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); 7905 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 7906 return Range <= BW; 7907 } 7908 7909 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 7910 unsigned NumCmps, 7911 const APInt &Low, 7912 const APInt &High) { 7913 // FIXME: I don't think NumCmps is the correct metric: a single case and a 7914 // range of cases both require only one branch to lower. Just looking at the 7915 // number of clusters and destinations should be enough to decide whether to 7916 // build bit tests. 7917 7918 // To lower a range with bit tests, the range must fit the bitwidth of a 7919 // machine word. 7920 if (!rangeFitsInWord(Low, High)) 7921 return false; 7922 7923 // Decide whether it's profitable to lower this range with bit tests. Each 7924 // destination requires a bit test and branch, and there is an overall range 7925 // check branch. For a small number of clusters, separate comparisons might be 7926 // cheaper, and for many destinations, splitting the range might be better. 7927 return (NumDests == 1 && NumCmps >= 3) || 7928 (NumDests == 2 && NumCmps >= 5) || 7929 (NumDests == 3 && NumCmps >= 6); 7930 } 7931 7932 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 7933 unsigned First, unsigned Last, 7934 const SwitchInst *SI, 7935 CaseCluster &BTCluster) { 7936 assert(First <= Last); 7937 if (First == Last) 7938 return false; 7939 7940 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7941 unsigned NumCmps = 0; 7942 for (int64_t I = First; I <= Last; ++I) { 7943 assert(Clusters[I].Kind == CC_Range); 7944 Dests.set(Clusters[I].MBB->getNumber()); 7945 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 7946 } 7947 unsigned NumDests = Dests.count(); 7948 7949 APInt Low = Clusters[First].Low->getValue(); 7950 APInt High = Clusters[Last].High->getValue(); 7951 assert(Low.slt(High)); 7952 7953 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 7954 return false; 7955 7956 APInt LowBound; 7957 APInt CmpRange; 7958 7959 const int BitWidth = DAG.getTargetLoweringInfo() 7960 .getPointerTy(DAG.getDataLayout()) 7961 .getSizeInBits(); 7962 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 7963 7964 // Check if the clusters cover a contiguous range such that no value in the 7965 // range will jump to the default statement. 7966 bool ContiguousRange = true; 7967 for (int64_t I = First + 1; I <= Last; ++I) { 7968 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 7969 ContiguousRange = false; 7970 break; 7971 } 7972 } 7973 7974 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 7975 // Optimize the case where all the case values fit in a word without having 7976 // to subtract minValue. In this case, we can optimize away the subtraction. 7977 LowBound = APInt::getNullValue(Low.getBitWidth()); 7978 CmpRange = High; 7979 ContiguousRange = false; 7980 } else { 7981 LowBound = Low; 7982 CmpRange = High - Low; 7983 } 7984 7985 CaseBitsVector CBV; 7986 auto TotalProb = BranchProbability::getZero(); 7987 for (unsigned i = First; i <= Last; ++i) { 7988 // Find the CaseBits for this destination. 7989 unsigned j; 7990 for (j = 0; j < CBV.size(); ++j) 7991 if (CBV[j].BB == Clusters[i].MBB) 7992 break; 7993 if (j == CBV.size()) 7994 CBV.push_back( 7995 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 7996 CaseBits *CB = &CBV[j]; 7997 7998 // Update Mask, Bits and ExtraProb. 7999 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 8000 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 8001 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 8002 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 8003 CB->Bits += Hi - Lo + 1; 8004 CB->ExtraProb += Clusters[i].Prob; 8005 TotalProb += Clusters[i].Prob; 8006 } 8007 8008 BitTestInfo BTI; 8009 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 8010 // Sort by probability first, number of bits second. 8011 if (a.ExtraProb != b.ExtraProb) 8012 return a.ExtraProb > b.ExtraProb; 8013 return a.Bits > b.Bits; 8014 }); 8015 8016 for (auto &CB : CBV) { 8017 MachineBasicBlock *BitTestBB = 8018 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 8019 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 8020 } 8021 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 8022 SI->getCondition(), -1U, MVT::Other, false, 8023 ContiguousRange, nullptr, nullptr, std::move(BTI), 8024 TotalProb); 8025 8026 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 8027 BitTestCases.size() - 1, TotalProb); 8028 return true; 8029 } 8030 8031 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 8032 const SwitchInst *SI) { 8033 // Partition Clusters into as few subsets as possible, where each subset has a 8034 // range that fits in a machine word and has <= 3 unique destinations. 8035 8036 #ifndef NDEBUG 8037 // Clusters must be sorted and contain Range or JumpTable clusters. 8038 assert(!Clusters.empty()); 8039 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 8040 for (const CaseCluster &C : Clusters) 8041 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 8042 for (unsigned i = 1; i < Clusters.size(); ++i) 8043 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 8044 #endif 8045 8046 // The algorithm below is not suitable for -O0. 8047 if (TM.getOptLevel() == CodeGenOpt::None) 8048 return; 8049 8050 // If target does not have legal shift left, do not emit bit tests at all. 8051 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8052 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 8053 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 8054 return; 8055 8056 int BitWidth = PTy.getSizeInBits(); 8057 const int64_t N = Clusters.size(); 8058 8059 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 8060 SmallVector<unsigned, 8> MinPartitions(N); 8061 // LastElement[i] is the last element of the partition starting at i. 8062 SmallVector<unsigned, 8> LastElement(N); 8063 8064 // FIXME: This might not be the best algorithm for finding bit test clusters. 8065 8066 // Base case: There is only one way to partition Clusters[N-1]. 8067 MinPartitions[N - 1] = 1; 8068 LastElement[N - 1] = N - 1; 8069 8070 // Note: loop indexes are signed to avoid underflow. 8071 for (int64_t i = N - 2; i >= 0; --i) { 8072 // Find optimal partitioning of Clusters[i..N-1]. 8073 // Baseline: Put Clusters[i] into a partition on its own. 8074 MinPartitions[i] = MinPartitions[i + 1] + 1; 8075 LastElement[i] = i; 8076 8077 // Search for a solution that results in fewer partitions. 8078 // Note: the search is limited by BitWidth, reducing time complexity. 8079 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 8080 // Try building a partition from Clusters[i..j]. 8081 8082 // Check the range. 8083 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 8084 Clusters[j].High->getValue())) 8085 continue; 8086 8087 // Check nbr of destinations and cluster types. 8088 // FIXME: This works, but doesn't seem very efficient. 8089 bool RangesOnly = true; 8090 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 8091 for (int64_t k = i; k <= j; k++) { 8092 if (Clusters[k].Kind != CC_Range) { 8093 RangesOnly = false; 8094 break; 8095 } 8096 Dests.set(Clusters[k].MBB->getNumber()); 8097 } 8098 if (!RangesOnly || Dests.count() > 3) 8099 break; 8100 8101 // Check if it's a better partition. 8102 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 8103 if (NumPartitions < MinPartitions[i]) { 8104 // Found a better partition. 8105 MinPartitions[i] = NumPartitions; 8106 LastElement[i] = j; 8107 } 8108 } 8109 } 8110 8111 // Iterate over the partitions, replacing with bit-test clusters in-place. 8112 unsigned DstIndex = 0; 8113 for (unsigned First = 0, Last; First < N; First = Last + 1) { 8114 Last = LastElement[First]; 8115 assert(First <= Last); 8116 assert(DstIndex <= First); 8117 8118 CaseCluster BitTestCluster; 8119 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 8120 Clusters[DstIndex++] = BitTestCluster; 8121 } else { 8122 size_t NumClusters = Last - First + 1; 8123 std::memmove(&Clusters[DstIndex], &Clusters[First], 8124 sizeof(Clusters[0]) * NumClusters); 8125 DstIndex += NumClusters; 8126 } 8127 } 8128 Clusters.resize(DstIndex); 8129 } 8130 8131 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 8132 MachineBasicBlock *SwitchMBB, 8133 MachineBasicBlock *DefaultMBB) { 8134 MachineFunction *CurMF = FuncInfo.MF; 8135 MachineBasicBlock *NextMBB = nullptr; 8136 MachineFunction::iterator BBI(W.MBB); 8137 if (++BBI != FuncInfo.MF->end()) 8138 NextMBB = &*BBI; 8139 8140 unsigned Size = W.LastCluster - W.FirstCluster + 1; 8141 8142 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8143 8144 if (Size == 2 && W.MBB == SwitchMBB) { 8145 // If any two of the cases has the same destination, and if one value 8146 // is the same as the other, but has one bit unset that the other has set, 8147 // use bit manipulation to do two compares at once. For example: 8148 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 8149 // TODO: This could be extended to merge any 2 cases in switches with 3 8150 // cases. 8151 // TODO: Handle cases where W.CaseBB != SwitchBB. 8152 CaseCluster &Small = *W.FirstCluster; 8153 CaseCluster &Big = *W.LastCluster; 8154 8155 if (Small.Low == Small.High && Big.Low == Big.High && 8156 Small.MBB == Big.MBB) { 8157 const APInt &SmallValue = Small.Low->getValue(); 8158 const APInt &BigValue = Big.Low->getValue(); 8159 8160 // Check that there is only one bit different. 8161 APInt CommonBit = BigValue ^ SmallValue; 8162 if (CommonBit.isPowerOf2()) { 8163 SDValue CondLHS = getValue(Cond); 8164 EVT VT = CondLHS.getValueType(); 8165 SDLoc DL = getCurSDLoc(); 8166 8167 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 8168 DAG.getConstant(CommonBit, DL, VT)); 8169 SDValue Cond = DAG.getSetCC( 8170 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 8171 ISD::SETEQ); 8172 8173 // Update successor info. 8174 // Both Small and Big will jump to Small.BB, so we sum up the 8175 // probabilities. 8176 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 8177 if (BPI) 8178 addSuccessorWithProb( 8179 SwitchMBB, DefaultMBB, 8180 // The default destination is the first successor in IR. 8181 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 8182 else 8183 addSuccessorWithProb(SwitchMBB, DefaultMBB); 8184 8185 // Insert the true branch. 8186 SDValue BrCond = 8187 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 8188 DAG.getBasicBlock(Small.MBB)); 8189 // Insert the false branch. 8190 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 8191 DAG.getBasicBlock(DefaultMBB)); 8192 8193 DAG.setRoot(BrCond); 8194 return; 8195 } 8196 } 8197 } 8198 8199 if (TM.getOptLevel() != CodeGenOpt::None) { 8200 // Order cases by probability so the most likely case will be checked first. 8201 std::sort(W.FirstCluster, W.LastCluster + 1, 8202 [](const CaseCluster &a, const CaseCluster &b) { 8203 return a.Prob > b.Prob; 8204 }); 8205 8206 // Rearrange the case blocks so that the last one falls through if possible 8207 // without without changing the order of probabilities. 8208 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 8209 --I; 8210 if (I->Prob > W.LastCluster->Prob) 8211 break; 8212 if (I->Kind == CC_Range && I->MBB == NextMBB) { 8213 std::swap(*I, *W.LastCluster); 8214 break; 8215 } 8216 } 8217 } 8218 8219 // Compute total probability. 8220 BranchProbability DefaultProb = W.DefaultProb; 8221 BranchProbability UnhandledProbs = DefaultProb; 8222 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 8223 UnhandledProbs += I->Prob; 8224 8225 MachineBasicBlock *CurMBB = W.MBB; 8226 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 8227 MachineBasicBlock *Fallthrough; 8228 if (I == W.LastCluster) { 8229 // For the last cluster, fall through to the default destination. 8230 Fallthrough = DefaultMBB; 8231 } else { 8232 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 8233 CurMF->insert(BBI, Fallthrough); 8234 // Put Cond in a virtual register to make it available from the new blocks. 8235 ExportFromCurrentBlock(Cond); 8236 } 8237 UnhandledProbs -= I->Prob; 8238 8239 switch (I->Kind) { 8240 case CC_JumpTable: { 8241 // FIXME: Optimize away range check based on pivot comparisons. 8242 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 8243 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 8244 8245 // The jump block hasn't been inserted yet; insert it here. 8246 MachineBasicBlock *JumpMBB = JT->MBB; 8247 CurMF->insert(BBI, JumpMBB); 8248 8249 auto JumpProb = I->Prob; 8250 auto FallthroughProb = UnhandledProbs; 8251 8252 // If the default statement is a target of the jump table, we evenly 8253 // distribute the default probability to successors of CurMBB. Also 8254 // update the probability on the edge from JumpMBB to Fallthrough. 8255 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 8256 SE = JumpMBB->succ_end(); 8257 SI != SE; ++SI) { 8258 if (*SI == DefaultMBB) { 8259 JumpProb += DefaultProb / 2; 8260 FallthroughProb -= DefaultProb / 2; 8261 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 8262 break; 8263 } 8264 } 8265 8266 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 8267 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 8268 8269 // The jump table header will be inserted in our current block, do the 8270 // range check, and fall through to our fallthrough block. 8271 JTH->HeaderBB = CurMBB; 8272 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 8273 8274 // If we're in the right place, emit the jump table header right now. 8275 if (CurMBB == SwitchMBB) { 8276 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 8277 JTH->Emitted = true; 8278 } 8279 break; 8280 } 8281 case CC_BitTests: { 8282 // FIXME: Optimize away range check based on pivot comparisons. 8283 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 8284 8285 // The bit test blocks haven't been inserted yet; insert them here. 8286 for (BitTestCase &BTC : BTB->Cases) 8287 CurMF->insert(BBI, BTC.ThisBB); 8288 8289 // Fill in fields of the BitTestBlock. 8290 BTB->Parent = CurMBB; 8291 BTB->Default = Fallthrough; 8292 8293 BTB->DefaultProb = UnhandledProbs; 8294 // If the cases in bit test don't form a contiguous range, we evenly 8295 // distribute the probability on the edge to Fallthrough to two 8296 // successors of CurMBB. 8297 if (!BTB->ContiguousRange) { 8298 BTB->Prob += DefaultProb / 2; 8299 BTB->DefaultProb -= DefaultProb / 2; 8300 } 8301 8302 // If we're in the right place, emit the bit test header right now. 8303 if (CurMBB == SwitchMBB) { 8304 visitBitTestHeader(*BTB, SwitchMBB); 8305 BTB->Emitted = true; 8306 } 8307 break; 8308 } 8309 case CC_Range: { 8310 const Value *RHS, *LHS, *MHS; 8311 ISD::CondCode CC; 8312 if (I->Low == I->High) { 8313 // Check Cond == I->Low. 8314 CC = ISD::SETEQ; 8315 LHS = Cond; 8316 RHS=I->Low; 8317 MHS = nullptr; 8318 } else { 8319 // Check I->Low <= Cond <= I->High. 8320 CC = ISD::SETLE; 8321 LHS = I->Low; 8322 MHS = Cond; 8323 RHS = I->High; 8324 } 8325 8326 // The false probability is the sum of all unhandled cases. 8327 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob, 8328 UnhandledProbs); 8329 8330 if (CurMBB == SwitchMBB) 8331 visitSwitchCase(CB, SwitchMBB); 8332 else 8333 SwitchCases.push_back(CB); 8334 8335 break; 8336 } 8337 } 8338 CurMBB = Fallthrough; 8339 } 8340 } 8341 8342 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 8343 CaseClusterIt First, 8344 CaseClusterIt Last) { 8345 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 8346 if (X.Prob != CC.Prob) 8347 return X.Prob > CC.Prob; 8348 8349 // Ties are broken by comparing the case value. 8350 return X.Low->getValue().slt(CC.Low->getValue()); 8351 }); 8352 } 8353 8354 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 8355 const SwitchWorkListItem &W, 8356 Value *Cond, 8357 MachineBasicBlock *SwitchMBB) { 8358 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 8359 "Clusters not sorted?"); 8360 8361 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 8362 8363 // Balance the tree based on branch probabilities to create a near-optimal (in 8364 // terms of search time given key frequency) binary search tree. See e.g. Kurt 8365 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 8366 CaseClusterIt LastLeft = W.FirstCluster; 8367 CaseClusterIt FirstRight = W.LastCluster; 8368 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 8369 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 8370 8371 // Move LastLeft and FirstRight towards each other from opposite directions to 8372 // find a partitioning of the clusters which balances the probability on both 8373 // sides. If LeftProb and RightProb are equal, alternate which side is 8374 // taken to ensure 0-probability nodes are distributed evenly. 8375 unsigned I = 0; 8376 while (LastLeft + 1 < FirstRight) { 8377 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 8378 LeftProb += (++LastLeft)->Prob; 8379 else 8380 RightProb += (--FirstRight)->Prob; 8381 I++; 8382 } 8383 8384 for (;;) { 8385 // Our binary search tree differs from a typical BST in that ours can have up 8386 // to three values in each leaf. The pivot selection above doesn't take that 8387 // into account, which means the tree might require more nodes and be less 8388 // efficient. We compensate for this here. 8389 8390 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 8391 unsigned NumRight = W.LastCluster - FirstRight + 1; 8392 8393 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 8394 // If one side has less than 3 clusters, and the other has more than 3, 8395 // consider taking a cluster from the other side. 8396 8397 if (NumLeft < NumRight) { 8398 // Consider moving the first cluster on the right to the left side. 8399 CaseCluster &CC = *FirstRight; 8400 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8401 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8402 if (LeftSideRank <= RightSideRank) { 8403 // Moving the cluster to the left does not demote it. 8404 ++LastLeft; 8405 ++FirstRight; 8406 continue; 8407 } 8408 } else { 8409 assert(NumRight < NumLeft); 8410 // Consider moving the last element on the left to the right side. 8411 CaseCluster &CC = *LastLeft; 8412 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8413 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8414 if (RightSideRank <= LeftSideRank) { 8415 // Moving the cluster to the right does not demot it. 8416 --LastLeft; 8417 --FirstRight; 8418 continue; 8419 } 8420 } 8421 } 8422 break; 8423 } 8424 8425 assert(LastLeft + 1 == FirstRight); 8426 assert(LastLeft >= W.FirstCluster); 8427 assert(FirstRight <= W.LastCluster); 8428 8429 // Use the first element on the right as pivot since we will make less-than 8430 // comparisons against it. 8431 CaseClusterIt PivotCluster = FirstRight; 8432 assert(PivotCluster > W.FirstCluster); 8433 assert(PivotCluster <= W.LastCluster); 8434 8435 CaseClusterIt FirstLeft = W.FirstCluster; 8436 CaseClusterIt LastRight = W.LastCluster; 8437 8438 const ConstantInt *Pivot = PivotCluster->Low; 8439 8440 // New blocks will be inserted immediately after the current one. 8441 MachineFunction::iterator BBI(W.MBB); 8442 ++BBI; 8443 8444 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8445 // we can branch to its destination directly if it's squeezed exactly in 8446 // between the known lower bound and Pivot - 1. 8447 MachineBasicBlock *LeftMBB; 8448 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8449 FirstLeft->Low == W.GE && 8450 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8451 LeftMBB = FirstLeft->MBB; 8452 } else { 8453 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8454 FuncInfo.MF->insert(BBI, LeftMBB); 8455 WorkList.push_back( 8456 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 8457 // Put Cond in a virtual register to make it available from the new blocks. 8458 ExportFromCurrentBlock(Cond); 8459 } 8460 8461 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8462 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8463 // directly if RHS.High equals the current upper bound. 8464 MachineBasicBlock *RightMBB; 8465 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8466 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8467 RightMBB = FirstRight->MBB; 8468 } else { 8469 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8470 FuncInfo.MF->insert(BBI, RightMBB); 8471 WorkList.push_back( 8472 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 8473 // Put Cond in a virtual register to make it available from the new blocks. 8474 ExportFromCurrentBlock(Cond); 8475 } 8476 8477 // Create the CaseBlock record that will be used to lower the branch. 8478 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8479 LeftProb, RightProb); 8480 8481 if (W.MBB == SwitchMBB) 8482 visitSwitchCase(CB, SwitchMBB); 8483 else 8484 SwitchCases.push_back(CB); 8485 } 8486 8487 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8488 // Extract cases from the switch. 8489 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8490 CaseClusterVector Clusters; 8491 Clusters.reserve(SI.getNumCases()); 8492 for (auto I : SI.cases()) { 8493 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8494 const ConstantInt *CaseVal = I.getCaseValue(); 8495 BranchProbability Prob = 8496 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 8497 : BranchProbability(1, SI.getNumCases() + 1); 8498 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 8499 } 8500 8501 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8502 8503 // Cluster adjacent cases with the same destination. We do this at all 8504 // optimization levels because it's cheap to do and will make codegen faster 8505 // if there are many clusters. 8506 sortAndRangeify(Clusters); 8507 8508 if (TM.getOptLevel() != CodeGenOpt::None) { 8509 // Replace an unreachable default with the most popular destination. 8510 // FIXME: Exploit unreachable default more aggressively. 8511 bool UnreachableDefault = 8512 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8513 if (UnreachableDefault && !Clusters.empty()) { 8514 DenseMap<const BasicBlock *, unsigned> Popularity; 8515 unsigned MaxPop = 0; 8516 const BasicBlock *MaxBB = nullptr; 8517 for (auto I : SI.cases()) { 8518 const BasicBlock *BB = I.getCaseSuccessor(); 8519 if (++Popularity[BB] > MaxPop) { 8520 MaxPop = Popularity[BB]; 8521 MaxBB = BB; 8522 } 8523 } 8524 // Set new default. 8525 assert(MaxPop > 0 && MaxBB); 8526 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8527 8528 // Remove cases that were pointing to the destination that is now the 8529 // default. 8530 CaseClusterVector New; 8531 New.reserve(Clusters.size()); 8532 for (CaseCluster &CC : Clusters) { 8533 if (CC.MBB != DefaultMBB) 8534 New.push_back(CC); 8535 } 8536 Clusters = std::move(New); 8537 } 8538 } 8539 8540 // If there is only the default destination, jump there directly. 8541 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 8542 if (Clusters.empty()) { 8543 SwitchMBB->addSuccessor(DefaultMBB); 8544 if (DefaultMBB != NextBlock(SwitchMBB)) { 8545 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 8546 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 8547 } 8548 return; 8549 } 8550 8551 findJumpTables(Clusters, &SI, DefaultMBB); 8552 findBitTestClusters(Clusters, &SI); 8553 8554 DEBUG({ 8555 dbgs() << "Case clusters: "; 8556 for (const CaseCluster &C : Clusters) { 8557 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 8558 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 8559 8560 C.Low->getValue().print(dbgs(), true); 8561 if (C.Low != C.High) { 8562 dbgs() << '-'; 8563 C.High->getValue().print(dbgs(), true); 8564 } 8565 dbgs() << ' '; 8566 } 8567 dbgs() << '\n'; 8568 }); 8569 8570 assert(!Clusters.empty()); 8571 SwitchWorkList WorkList; 8572 CaseClusterIt First = Clusters.begin(); 8573 CaseClusterIt Last = Clusters.end() - 1; 8574 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); 8575 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 8576 8577 while (!WorkList.empty()) { 8578 SwitchWorkListItem W = WorkList.back(); 8579 WorkList.pop_back(); 8580 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 8581 8582 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 8583 // For optimized builds, lower large range as a balanced binary tree. 8584 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 8585 continue; 8586 } 8587 8588 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 8589 } 8590 } 8591