xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 0605e984fab700a6ef4affc3fdb66aaba3417baa)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/Loads.h"
27 #include "llvm/Analysis/MemoryLocation.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/TargetTransformInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/Analysis/VectorUtils.h"
32 #include "llvm/CodeGen/Analysis.h"
33 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h"
34 #include "llvm/CodeGen/CodeGenCommonISel.h"
35 #include "llvm/CodeGen/FunctionLoweringInfo.h"
36 #include "llvm/CodeGen/GCMetadata.h"
37 #include "llvm/CodeGen/ISDOpcodes.h"
38 #include "llvm/CodeGen/MachineBasicBlock.h"
39 #include "llvm/CodeGen/MachineFrameInfo.h"
40 #include "llvm/CodeGen/MachineFunction.h"
41 #include "llvm/CodeGen/MachineInstrBuilder.h"
42 #include "llvm/CodeGen/MachineInstrBundleIterator.h"
43 #include "llvm/CodeGen/MachineMemOperand.h"
44 #include "llvm/CodeGen/MachineModuleInfo.h"
45 #include "llvm/CodeGen/MachineOperand.h"
46 #include "llvm/CodeGen/MachineRegisterInfo.h"
47 #include "llvm/CodeGen/RuntimeLibcalls.h"
48 #include "llvm/CodeGen/SelectionDAG.h"
49 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
50 #include "llvm/CodeGen/StackMaps.h"
51 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
52 #include "llvm/CodeGen/TargetFrameLowering.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetOpcodes.h"
55 #include "llvm/CodeGen/TargetRegisterInfo.h"
56 #include "llvm/CodeGen/TargetSubtargetInfo.h"
57 #include "llvm/CodeGen/WinEHFuncInfo.h"
58 #include "llvm/IR/Argument.h"
59 #include "llvm/IR/Attributes.h"
60 #include "llvm/IR/BasicBlock.h"
61 #include "llvm/IR/CFG.h"
62 #include "llvm/IR/CallingConv.h"
63 #include "llvm/IR/Constant.h"
64 #include "llvm/IR/ConstantRange.h"
65 #include "llvm/IR/Constants.h"
66 #include "llvm/IR/DataLayout.h"
67 #include "llvm/IR/DebugInfo.h"
68 #include "llvm/IR/DebugInfoMetadata.h"
69 #include "llvm/IR/DerivedTypes.h"
70 #include "llvm/IR/DiagnosticInfo.h"
71 #include "llvm/IR/EHPersonalities.h"
72 #include "llvm/IR/Function.h"
73 #include "llvm/IR/GetElementPtrTypeIterator.h"
74 #include "llvm/IR/InlineAsm.h"
75 #include "llvm/IR/InstrTypes.h"
76 #include "llvm/IR/Instructions.h"
77 #include "llvm/IR/IntrinsicInst.h"
78 #include "llvm/IR/Intrinsics.h"
79 #include "llvm/IR/IntrinsicsAArch64.h"
80 #include "llvm/IR/IntrinsicsAMDGPU.h"
81 #include "llvm/IR/IntrinsicsWebAssembly.h"
82 #include "llvm/IR/LLVMContext.h"
83 #include "llvm/IR/MemoryModelRelaxationAnnotations.h"
84 #include "llvm/IR/Metadata.h"
85 #include "llvm/IR/Module.h"
86 #include "llvm/IR/Operator.h"
87 #include "llvm/IR/PatternMatch.h"
88 #include "llvm/IR/Statepoint.h"
89 #include "llvm/IR/Type.h"
90 #include "llvm/IR/User.h"
91 #include "llvm/IR/Value.h"
92 #include "llvm/MC/MCContext.h"
93 #include "llvm/Support/AtomicOrdering.h"
94 #include "llvm/Support/Casting.h"
95 #include "llvm/Support/CommandLine.h"
96 #include "llvm/Support/Compiler.h"
97 #include "llvm/Support/Debug.h"
98 #include "llvm/Support/InstructionCost.h"
99 #include "llvm/Support/MathExtras.h"
100 #include "llvm/Support/raw_ostream.h"
101 #include "llvm/Target/TargetIntrinsicInfo.h"
102 #include "llvm/Target/TargetMachine.h"
103 #include "llvm/Target/TargetOptions.h"
104 #include "llvm/TargetParser/Triple.h"
105 #include "llvm/Transforms/Utils/Local.h"
106 #include <cstddef>
107 #include <iterator>
108 #include <limits>
109 #include <optional>
110 #include <tuple>
111 
112 using namespace llvm;
113 using namespace PatternMatch;
114 using namespace SwitchCG;
115 
116 #define DEBUG_TYPE "isel"
117 
118 /// LimitFloatPrecision - Generate low-precision inline sequences for
119 /// some float libcalls (6, 8 or 12 bits).
120 static unsigned LimitFloatPrecision;
121 
122 static cl::opt<bool>
123     InsertAssertAlign("insert-assert-align", cl::init(true),
124                       cl::desc("Insert the experimental `assertalign` node."),
125                       cl::ReallyHidden);
126 
127 static cl::opt<unsigned, true>
128     LimitFPPrecision("limit-float-precision",
129                      cl::desc("Generate low-precision inline sequences "
130                               "for some float libcalls"),
131                      cl::location(LimitFloatPrecision), cl::Hidden,
132                      cl::init(0));
133 
134 static cl::opt<unsigned> SwitchPeelThreshold(
135     "switch-peel-threshold", cl::Hidden, cl::init(66),
136     cl::desc("Set the case probability threshold for peeling the case from a "
137              "switch statement. A value greater than 100 will void this "
138              "optimization"));
139 
140 // Limit the width of DAG chains. This is important in general to prevent
141 // DAG-based analysis from blowing up. For example, alias analysis and
142 // load clustering may not complete in reasonable time. It is difficult to
143 // recognize and avoid this situation within each individual analysis, and
144 // future analyses are likely to have the same behavior. Limiting DAG width is
145 // the safe approach and will be especially important with global DAGs.
146 //
147 // MaxParallelChains default is arbitrarily high to avoid affecting
148 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
149 // sequence over this should have been converted to llvm.memcpy by the
150 // frontend. It is easy to induce this behavior with .ll code such as:
151 // %buffer = alloca [4096 x i8]
152 // %data = load [4096 x i8]* %argPtr
153 // store [4096 x i8] %data, [4096 x i8]* %buffer
154 static const unsigned MaxParallelChains = 64;
155 
156 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
157                                       const SDValue *Parts, unsigned NumParts,
158                                       MVT PartVT, EVT ValueVT, const Value *V,
159                                       SDValue InChain,
160                                       std::optional<CallingConv::ID> CC);
161 
162 /// getCopyFromParts - Create a value that contains the specified legal parts
163 /// combined into the value they represent.  If the parts combine to a type
164 /// larger than ValueVT then AssertOp can be used to specify whether the extra
165 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
166 /// (ISD::AssertSext).
167 static SDValue
168 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts,
169                  unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V,
170                  SDValue InChain,
171                  std::optional<CallingConv::ID> CC = std::nullopt,
172                  std::optional<ISD::NodeType> AssertOp = std::nullopt) {
173   // Let the target assemble the parts if it wants to
174   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
175   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
176                                                    PartVT, ValueVT, CC))
177     return Val;
178 
179   if (ValueVT.isVector())
180     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
181                                   InChain, CC);
182 
183   assert(NumParts > 0 && "No parts to assemble!");
184   SDValue Val = Parts[0];
185 
186   if (NumParts > 1) {
187     // Assemble the value from multiple parts.
188     if (ValueVT.isInteger()) {
189       unsigned PartBits = PartVT.getSizeInBits();
190       unsigned ValueBits = ValueVT.getSizeInBits();
191 
192       // Assemble the power of 2 part.
193       unsigned RoundParts = llvm::bit_floor(NumParts);
194       unsigned RoundBits = PartBits * RoundParts;
195       EVT RoundVT = RoundBits == ValueBits ?
196         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
197       SDValue Lo, Hi;
198 
199       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
200 
201       if (RoundParts > 2) {
202         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, PartVT, HalfVT, V,
203                               InChain);
204         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, RoundParts / 2,
205                               PartVT, HalfVT, V, InChain);
206       } else {
207         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
208         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
209       }
210 
211       if (DAG.getDataLayout().isBigEndian())
212         std::swap(Lo, Hi);
213 
214       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
215 
216       if (RoundParts < NumParts) {
217         // Assemble the trailing non-power-of-2 part.
218         unsigned OddParts = NumParts - RoundParts;
219         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
220         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
221                               OddVT, V, InChain, CC);
222 
223         // Combine the round and odd parts.
224         Lo = Val;
225         if (DAG.getDataLayout().isBigEndian())
226           std::swap(Lo, Hi);
227         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
228         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
229         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
230                          DAG.getConstant(Lo.getValueSizeInBits(), DL,
231                                          TLI.getShiftAmountTy(
232                                              TotalVT, DAG.getDataLayout())));
233         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
234         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
235       }
236     } else if (PartVT.isFloatingPoint()) {
237       // FP split into multiple FP parts (for ppcf128)
238       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
239              "Unexpected split");
240       SDValue Lo, Hi;
241       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
242       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
243       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
244         std::swap(Lo, Hi);
245       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
246     } else {
247       // FP split into integer parts (soft fp)
248       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
249              !PartVT.isVector() && "Unexpected split");
250       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
251       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V,
252                              InChain, CC);
253     }
254   }
255 
256   // There is now one part, held in Val.  Correct it to match ValueVT.
257   // PartEVT is the type of the register class that holds the value.
258   // ValueVT is the type of the inline asm operation.
259   EVT PartEVT = Val.getValueType();
260 
261   if (PartEVT == ValueVT)
262     return Val;
263 
264   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
265       ValueVT.bitsLT(PartEVT)) {
266     // For an FP value in an integer part, we need to truncate to the right
267     // width first.
268     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
269     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
270   }
271 
272   // Handle types that have the same size.
273   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
274     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
275 
276   // Handle types with different sizes.
277   if (PartEVT.isInteger() && ValueVT.isInteger()) {
278     if (ValueVT.bitsLT(PartEVT)) {
279       // For a truncate, see if we have any information to
280       // indicate whether the truncated bits will always be
281       // zero or sign-extension.
282       if (AssertOp)
283         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
284                           DAG.getValueType(ValueVT));
285       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
286     }
287     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
288   }
289 
290   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
291     // FP_ROUND's are always exact here.
292     if (ValueVT.bitsLT(Val.getValueType())) {
293 
294       SDValue NoChange =
295           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
296 
297       if (DAG.getMachineFunction().getFunction().getAttributes().hasFnAttr(
298               llvm::Attribute::StrictFP)) {
299         return DAG.getNode(ISD::STRICT_FP_ROUND, DL,
300                            DAG.getVTList(ValueVT, MVT::Other), InChain, Val,
301                            NoChange);
302       }
303 
304       return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, NoChange);
305     }
306 
307     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
308   }
309 
310   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
311   // then truncating.
312   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
313       ValueVT.bitsLT(PartEVT)) {
314     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
315     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
316   }
317 
318   report_fatal_error("Unknown mismatch in getCopyFromParts!");
319 }
320 
321 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
322                                               const Twine &ErrMsg) {
323   const Instruction *I = dyn_cast_or_null<Instruction>(V);
324   if (!V)
325     return Ctx.emitError(ErrMsg);
326 
327   const char *AsmError = ", possible invalid constraint for vector type";
328   if (const CallInst *CI = dyn_cast<CallInst>(I))
329     if (CI->isInlineAsm())
330       return Ctx.emitError(I, ErrMsg + AsmError);
331 
332   return Ctx.emitError(I, ErrMsg);
333 }
334 
335 /// getCopyFromPartsVector - Create a value that contains the specified legal
336 /// parts combined into the value they represent.  If the parts combine to a
337 /// type larger than ValueVT then AssertOp can be used to specify whether the
338 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
339 /// ValueVT (ISD::AssertSext).
340 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
341                                       const SDValue *Parts, unsigned NumParts,
342                                       MVT PartVT, EVT ValueVT, const Value *V,
343                                       SDValue InChain,
344                                       std::optional<CallingConv::ID> CallConv) {
345   assert(ValueVT.isVector() && "Not a vector value");
346   assert(NumParts > 0 && "No parts to assemble!");
347   const bool IsABIRegCopy = CallConv.has_value();
348 
349   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
350   SDValue Val = Parts[0];
351 
352   // Handle a multi-element vector.
353   if (NumParts > 1) {
354     EVT IntermediateVT;
355     MVT RegisterVT;
356     unsigned NumIntermediates;
357     unsigned NumRegs;
358 
359     if (IsABIRegCopy) {
360       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
361           *DAG.getContext(), *CallConv, ValueVT, IntermediateVT,
362           NumIntermediates, RegisterVT);
363     } else {
364       NumRegs =
365           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
366                                      NumIntermediates, RegisterVT);
367     }
368 
369     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
370     NumParts = NumRegs; // Silence a compiler warning.
371     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
372     assert(RegisterVT.getSizeInBits() ==
373            Parts[0].getSimpleValueType().getSizeInBits() &&
374            "Part type sizes don't match!");
375 
376     // Assemble the parts into intermediate operands.
377     SmallVector<SDValue, 8> Ops(NumIntermediates);
378     if (NumIntermediates == NumParts) {
379       // If the register was not expanded, truncate or copy the value,
380       // as appropriate.
381       for (unsigned i = 0; i != NumParts; ++i)
382         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, PartVT, IntermediateVT,
383                                   V, InChain, CallConv);
384     } else if (NumParts > 0) {
385       // If the intermediate type was expanded, build the intermediate
386       // operands from the parts.
387       assert(NumParts % NumIntermediates == 0 &&
388              "Must expand into a divisible number of parts!");
389       unsigned Factor = NumParts / NumIntermediates;
390       for (unsigned i = 0; i != NumIntermediates; ++i)
391         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, PartVT,
392                                   IntermediateVT, V, InChain, CallConv);
393     }
394 
395     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
396     // intermediate operands.
397     EVT BuiltVectorTy =
398         IntermediateVT.isVector()
399             ? EVT::getVectorVT(
400                   *DAG.getContext(), IntermediateVT.getScalarType(),
401                   IntermediateVT.getVectorElementCount() * NumParts)
402             : EVT::getVectorVT(*DAG.getContext(),
403                                IntermediateVT.getScalarType(),
404                                NumIntermediates);
405     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
406                                                 : ISD::BUILD_VECTOR,
407                       DL, BuiltVectorTy, Ops);
408   }
409 
410   // There is now one part, held in Val.  Correct it to match ValueVT.
411   EVT PartEVT = Val.getValueType();
412 
413   if (PartEVT == ValueVT)
414     return Val;
415 
416   if (PartEVT.isVector()) {
417     // Vector/Vector bitcast.
418     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
419       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
420 
421     // If the parts vector has more elements than the value vector, then we
422     // have a vector widening case (e.g. <2 x float> -> <4 x float>).
423     // Extract the elements we want.
424     if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) {
425       assert((PartEVT.getVectorElementCount().getKnownMinValue() >
426               ValueVT.getVectorElementCount().getKnownMinValue()) &&
427              (PartEVT.getVectorElementCount().isScalable() ==
428               ValueVT.getVectorElementCount().isScalable()) &&
429              "Cannot narrow, it would be a lossy transformation");
430       PartEVT =
431           EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(),
432                            ValueVT.getVectorElementCount());
433       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val,
434                         DAG.getVectorIdxConstant(0, DL));
435       if (PartEVT == ValueVT)
436         return Val;
437       if (PartEVT.isInteger() && ValueVT.isFloatingPoint())
438         return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
439 
440       // Vector/Vector bitcast (e.g. <2 x bfloat> -> <2 x half>).
441       if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
442         return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
443     }
444 
445     // Promoted vector extract
446     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
447   }
448 
449   // Trivial bitcast if the types are the same size and the destination
450   // vector type is legal.
451   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
452       TLI.isTypeLegal(ValueVT))
453     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
454 
455   if (ValueVT.getVectorNumElements() != 1) {
456      // Certain ABIs require that vectors are passed as integers. For vectors
457      // are the same size, this is an obvious bitcast.
458      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
459        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
460      } else if (ValueVT.bitsLT(PartEVT)) {
461        const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
462        EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
463        // Drop the extra bits.
464        Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
465        return DAG.getBitcast(ValueVT, Val);
466      }
467 
468      diagnosePossiblyInvalidConstraint(
469          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
470      return DAG.getUNDEF(ValueVT);
471   }
472 
473   // Handle cases such as i8 -> <1 x i1>
474   EVT ValueSVT = ValueVT.getVectorElementType();
475   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
476     unsigned ValueSize = ValueSVT.getSizeInBits();
477     if (ValueSize == PartEVT.getSizeInBits()) {
478       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
479     } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) {
480       // It's possible a scalar floating point type gets softened to integer and
481       // then promoted to a larger integer. If PartEVT is the larger integer
482       // we need to truncate it and then bitcast to the FP type.
483       assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types");
484       EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
485       Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
486       Val = DAG.getBitcast(ValueSVT, Val);
487     } else {
488       Val = ValueVT.isFloatingPoint()
489                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
490                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
491     }
492   }
493 
494   return DAG.getBuildVector(ValueVT, DL, Val);
495 }
496 
497 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
498                                  SDValue Val, SDValue *Parts, unsigned NumParts,
499                                  MVT PartVT, const Value *V,
500                                  std::optional<CallingConv::ID> CallConv);
501 
502 /// getCopyToParts - Create a series of nodes that contain the specified value
503 /// split into legal parts.  If the parts contain more bits than Val, then, for
504 /// integers, ExtendKind can be used to specify how to generate the extra bits.
505 static void
506 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
507                unsigned NumParts, MVT PartVT, const Value *V,
508                std::optional<CallingConv::ID> CallConv = std::nullopt,
509                ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
510   // Let the target split the parts if it wants to
511   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
512   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
513                                       CallConv))
514     return;
515   EVT ValueVT = Val.getValueType();
516 
517   // Handle the vector case separately.
518   if (ValueVT.isVector())
519     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
520                                 CallConv);
521 
522   unsigned OrigNumParts = NumParts;
523   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
524          "Copying to an illegal type!");
525 
526   if (NumParts == 0)
527     return;
528 
529   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
530   EVT PartEVT = PartVT;
531   if (PartEVT == ValueVT) {
532     assert(NumParts == 1 && "No-op copy with multiple parts!");
533     Parts[0] = Val;
534     return;
535   }
536 
537   unsigned PartBits = PartVT.getSizeInBits();
538   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
539     // If the parts cover more bits than the value has, promote the value.
540     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
541       assert(NumParts == 1 && "Do not know what to promote to!");
542       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
543     } else {
544       if (ValueVT.isFloatingPoint()) {
545         // FP values need to be bitcast, then extended if they are being put
546         // into a larger container.
547         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
548         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
549       }
550       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
551              ValueVT.isInteger() &&
552              "Unknown mismatch!");
553       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
554       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
555       if (PartVT == MVT::x86mmx)
556         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
557     }
558   } else if (PartBits == ValueVT.getSizeInBits()) {
559     // Different types of the same size.
560     assert(NumParts == 1 && PartEVT != ValueVT);
561     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
562   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
563     // If the parts cover less bits than value has, truncate the value.
564     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
565            ValueVT.isInteger() &&
566            "Unknown mismatch!");
567     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
568     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
569     if (PartVT == MVT::x86mmx)
570       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
571   }
572 
573   // The value may have changed - recompute ValueVT.
574   ValueVT = Val.getValueType();
575   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
576          "Failed to tile the value with PartVT!");
577 
578   if (NumParts == 1) {
579     if (PartEVT != ValueVT) {
580       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
581                                         "scalar-to-vector conversion failed");
582       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
583     }
584 
585     Parts[0] = Val;
586     return;
587   }
588 
589   // Expand the value into multiple parts.
590   if (NumParts & (NumParts - 1)) {
591     // The number of parts is not a power of 2.  Split off and copy the tail.
592     assert(PartVT.isInteger() && ValueVT.isInteger() &&
593            "Do not know what to expand to!");
594     unsigned RoundParts = llvm::bit_floor(NumParts);
595     unsigned RoundBits = RoundParts * PartBits;
596     unsigned OddParts = NumParts - RoundParts;
597     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
598       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL));
599 
600     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
601                    CallConv);
602 
603     if (DAG.getDataLayout().isBigEndian())
604       // The odd parts were reversed by getCopyToParts - unreverse them.
605       std::reverse(Parts + RoundParts, Parts + NumParts);
606 
607     NumParts = RoundParts;
608     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
609     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
610   }
611 
612   // The number of parts is a power of 2.  Repeatedly bisect the value using
613   // EXTRACT_ELEMENT.
614   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
615                          EVT::getIntegerVT(*DAG.getContext(),
616                                            ValueVT.getSizeInBits()),
617                          Val);
618 
619   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
620     for (unsigned i = 0; i < NumParts; i += StepSize) {
621       unsigned ThisBits = StepSize * PartBits / 2;
622       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
623       SDValue &Part0 = Parts[i];
624       SDValue &Part1 = Parts[i+StepSize/2];
625 
626       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
627                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
628       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
629                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
630 
631       if (ThisBits == PartBits && ThisVT != PartVT) {
632         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
633         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
634       }
635     }
636   }
637 
638   if (DAG.getDataLayout().isBigEndian())
639     std::reverse(Parts, Parts + OrigNumParts);
640 }
641 
642 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val,
643                                      const SDLoc &DL, EVT PartVT) {
644   if (!PartVT.isVector())
645     return SDValue();
646 
647   EVT ValueVT = Val.getValueType();
648   EVT PartEVT = PartVT.getVectorElementType();
649   EVT ValueEVT = ValueVT.getVectorElementType();
650   ElementCount PartNumElts = PartVT.getVectorElementCount();
651   ElementCount ValueNumElts = ValueVT.getVectorElementCount();
652 
653   // We only support widening vectors with equivalent element types and
654   // fixed/scalable properties. If a target needs to widen a fixed-length type
655   // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
656   if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
657       PartNumElts.isScalable() != ValueNumElts.isScalable())
658     return SDValue();
659 
660   // Have a try for bf16 because some targets share its ABI with fp16.
661   if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) {
662     assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
663            "Cannot widen to illegal type");
664     Val = DAG.getNode(ISD::BITCAST, DL,
665                       ValueVT.changeVectorElementType(MVT::f16), Val);
666   } else if (PartEVT != ValueEVT) {
667     return SDValue();
668   }
669 
670   // Widening a scalable vector to another scalable vector is done by inserting
671   // the vector into a larger undef one.
672   if (PartNumElts.isScalable())
673     return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
674                        Val, DAG.getVectorIdxConstant(0, DL));
675 
676   // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
677   // undef elements.
678   SmallVector<SDValue, 16> Ops;
679   DAG.ExtractVectorElements(Val, Ops);
680   SDValue EltUndef = DAG.getUNDEF(PartEVT);
681   Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
682 
683   // FIXME: Use CONCAT for 2x -> 4x.
684   return DAG.getBuildVector(PartVT, DL, Ops);
685 }
686 
687 /// getCopyToPartsVector - Create a series of nodes that contain the specified
688 /// value split into legal parts.
689 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
690                                  SDValue Val, SDValue *Parts, unsigned NumParts,
691                                  MVT PartVT, const Value *V,
692                                  std::optional<CallingConv::ID> CallConv) {
693   EVT ValueVT = Val.getValueType();
694   assert(ValueVT.isVector() && "Not a vector");
695   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
696   const bool IsABIRegCopy = CallConv.has_value();
697 
698   if (NumParts == 1) {
699     EVT PartEVT = PartVT;
700     if (PartEVT == ValueVT) {
701       // Nothing to do.
702     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
703       // Bitconvert vector->vector case.
704       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
705     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
706       Val = Widened;
707     } else if (PartVT.isVector() &&
708                PartEVT.getVectorElementType().bitsGE(
709                    ValueVT.getVectorElementType()) &&
710                PartEVT.getVectorElementCount() ==
711                    ValueVT.getVectorElementCount()) {
712 
713       // Promoted vector extract
714       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
715     } else if (PartEVT.isVector() &&
716                PartEVT.getVectorElementType() !=
717                    ValueVT.getVectorElementType() &&
718                TLI.getTypeAction(*DAG.getContext(), ValueVT) ==
719                    TargetLowering::TypeWidenVector) {
720       // Combination of widening and promotion.
721       EVT WidenVT =
722           EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(),
723                            PartVT.getVectorElementCount());
724       SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT);
725       Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT);
726     } else {
727       // Don't extract an integer from a float vector. This can happen if the
728       // FP type gets softened to integer and then promoted. The promotion
729       // prevents it from being picked up by the earlier bitcast case.
730       if (ValueVT.getVectorElementCount().isScalar() &&
731           (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) {
732         // If we reach this condition and PartVT is FP, this means that
733         // ValueVT is also FP and both have a different size, otherwise we
734         // would have bitcasted them. Producing an EXTRACT_VECTOR_ELT here
735         // would be invalid since that would mean the smaller FP type has to
736         // be extended to the larger one.
737         if (PartVT.isFloatingPoint()) {
738           Val = DAG.getBitcast(ValueVT.getScalarType(), Val);
739           Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
740         } else
741           Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
742                             DAG.getVectorIdxConstant(0, DL));
743       } else {
744         uint64_t ValueSize = ValueVT.getFixedSizeInBits();
745         assert(PartVT.getFixedSizeInBits() > ValueSize &&
746                "lossy conversion of vector to scalar type");
747         EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
748         Val = DAG.getBitcast(IntermediateType, Val);
749         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
750       }
751     }
752 
753     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
754     Parts[0] = Val;
755     return;
756   }
757 
758   // Handle a multi-element vector.
759   EVT IntermediateVT;
760   MVT RegisterVT;
761   unsigned NumIntermediates;
762   unsigned NumRegs;
763   if (IsABIRegCopy) {
764     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
765         *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates,
766         RegisterVT);
767   } else {
768     NumRegs =
769         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
770                                    NumIntermediates, RegisterVT);
771   }
772 
773   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
774   NumParts = NumRegs; // Silence a compiler warning.
775   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
776 
777   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
778          "Mixing scalable and fixed vectors when copying in parts");
779 
780   std::optional<ElementCount> DestEltCnt;
781 
782   if (IntermediateVT.isVector())
783     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
784   else
785     DestEltCnt = ElementCount::getFixed(NumIntermediates);
786 
787   EVT BuiltVectorTy = EVT::getVectorVT(
788       *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt);
789 
790   if (ValueVT == BuiltVectorTy) {
791     // Nothing to do.
792   } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
793     // Bitconvert vector->vector case.
794     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
795   } else {
796     if (BuiltVectorTy.getVectorElementType().bitsGT(
797             ValueVT.getVectorElementType())) {
798       // Integer promotion.
799       ValueVT = EVT::getVectorVT(*DAG.getContext(),
800                                  BuiltVectorTy.getVectorElementType(),
801                                  ValueVT.getVectorElementCount());
802       Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
803     }
804 
805     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
806       Val = Widened;
807     }
808   }
809 
810   assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
811 
812   // Split the vector into intermediate operands.
813   SmallVector<SDValue, 8> Ops(NumIntermediates);
814   for (unsigned i = 0; i != NumIntermediates; ++i) {
815     if (IntermediateVT.isVector()) {
816       // This does something sensible for scalable vectors - see the
817       // definition of EXTRACT_SUBVECTOR for further details.
818       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
819       Ops[i] =
820           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
821                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
822     } else {
823       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
824                            DAG.getVectorIdxConstant(i, DL));
825     }
826   }
827 
828   // Split the intermediate operands into legal parts.
829   if (NumParts == NumIntermediates) {
830     // If the register was not expanded, promote or copy the value,
831     // as appropriate.
832     for (unsigned i = 0; i != NumParts; ++i)
833       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
834   } else if (NumParts > 0) {
835     // If the intermediate type was expanded, split each the value into
836     // legal parts.
837     assert(NumIntermediates != 0 && "division by zero");
838     assert(NumParts % NumIntermediates == 0 &&
839            "Must expand into a divisible number of parts!");
840     unsigned Factor = NumParts / NumIntermediates;
841     for (unsigned i = 0; i != NumIntermediates; ++i)
842       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
843                      CallConv);
844   }
845 }
846 
847 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
848                            EVT valuevt, std::optional<CallingConv::ID> CC)
849     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
850       RegCount(1, regs.size()), CallConv(CC) {}
851 
852 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
853                            const DataLayout &DL, unsigned Reg, Type *Ty,
854                            std::optional<CallingConv::ID> CC) {
855   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
856 
857   CallConv = CC;
858 
859   for (EVT ValueVT : ValueVTs) {
860     unsigned NumRegs =
861         isABIMangled()
862             ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT)
863             : TLI.getNumRegisters(Context, ValueVT);
864     MVT RegisterVT =
865         isABIMangled()
866             ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT)
867             : TLI.getRegisterType(Context, ValueVT);
868     for (unsigned i = 0; i != NumRegs; ++i)
869       Regs.push_back(Reg + i);
870     RegVTs.push_back(RegisterVT);
871     RegCount.push_back(NumRegs);
872     Reg += NumRegs;
873   }
874 }
875 
876 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
877                                       FunctionLoweringInfo &FuncInfo,
878                                       const SDLoc &dl, SDValue &Chain,
879                                       SDValue *Glue, const Value *V) const {
880   // A Value with type {} or [0 x %t] needs no registers.
881   if (ValueVTs.empty())
882     return SDValue();
883 
884   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
885 
886   // Assemble the legal parts into the final values.
887   SmallVector<SDValue, 4> Values(ValueVTs.size());
888   SmallVector<SDValue, 8> Parts;
889   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
890     // Copy the legal parts from the registers.
891     EVT ValueVT = ValueVTs[Value];
892     unsigned NumRegs = RegCount[Value];
893     MVT RegisterVT = isABIMangled()
894                          ? TLI.getRegisterTypeForCallingConv(
895                                *DAG.getContext(), *CallConv, RegVTs[Value])
896                          : RegVTs[Value];
897 
898     Parts.resize(NumRegs);
899     for (unsigned i = 0; i != NumRegs; ++i) {
900       SDValue P;
901       if (!Glue) {
902         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
903       } else {
904         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Glue);
905         *Glue = P.getValue(2);
906       }
907 
908       Chain = P.getValue(1);
909       Parts[i] = P;
910 
911       // If the source register was virtual and if we know something about it,
912       // add an assert node.
913       if (!Register::isVirtualRegister(Regs[Part + i]) ||
914           !RegisterVT.isInteger())
915         continue;
916 
917       const FunctionLoweringInfo::LiveOutInfo *LOI =
918         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
919       if (!LOI)
920         continue;
921 
922       unsigned RegSize = RegisterVT.getScalarSizeInBits();
923       unsigned NumSignBits = LOI->NumSignBits;
924       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
925 
926       if (NumZeroBits == RegSize) {
927         // The current value is a zero.
928         // Explicitly express that as it would be easier for
929         // optimizations to kick in.
930         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
931         continue;
932       }
933 
934       // FIXME: We capture more information than the dag can represent.  For
935       // now, just use the tightest assertzext/assertsext possible.
936       bool isSExt;
937       EVT FromVT(MVT::Other);
938       if (NumZeroBits) {
939         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
940         isSExt = false;
941       } else if (NumSignBits > 1) {
942         FromVT =
943             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
944         isSExt = true;
945       } else {
946         continue;
947       }
948       // Add an assertion node.
949       assert(FromVT != MVT::Other);
950       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
951                              RegisterVT, P, DAG.getValueType(FromVT));
952     }
953 
954     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
955                                      RegisterVT, ValueVT, V, Chain, CallConv);
956     Part += NumRegs;
957     Parts.clear();
958   }
959 
960   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
961 }
962 
963 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
964                                  const SDLoc &dl, SDValue &Chain, SDValue *Glue,
965                                  const Value *V,
966                                  ISD::NodeType PreferredExtendType) const {
967   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
968   ISD::NodeType ExtendKind = PreferredExtendType;
969 
970   // Get the list of the values's legal parts.
971   unsigned NumRegs = Regs.size();
972   SmallVector<SDValue, 8> Parts(NumRegs);
973   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
974     unsigned NumParts = RegCount[Value];
975 
976     MVT RegisterVT = isABIMangled()
977                          ? TLI.getRegisterTypeForCallingConv(
978                                *DAG.getContext(), *CallConv, RegVTs[Value])
979                          : RegVTs[Value];
980 
981     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
982       ExtendKind = ISD::ZERO_EXTEND;
983 
984     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
985                    NumParts, RegisterVT, V, CallConv, ExtendKind);
986     Part += NumParts;
987   }
988 
989   // Copy the parts into the registers.
990   SmallVector<SDValue, 8> Chains(NumRegs);
991   for (unsigned i = 0; i != NumRegs; ++i) {
992     SDValue Part;
993     if (!Glue) {
994       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
995     } else {
996       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Glue);
997       *Glue = Part.getValue(1);
998     }
999 
1000     Chains[i] = Part.getValue(0);
1001   }
1002 
1003   if (NumRegs == 1 || Glue)
1004     // If NumRegs > 1 && Glue is used then the use of the last CopyToReg is
1005     // flagged to it. That is the CopyToReg nodes and the user are considered
1006     // a single scheduling unit. If we create a TokenFactor and return it as
1007     // chain, then the TokenFactor is both a predecessor (operand) of the
1008     // user as well as a successor (the TF operands are flagged to the user).
1009     // c1, f1 = CopyToReg
1010     // c2, f2 = CopyToReg
1011     // c3     = TokenFactor c1, c2
1012     // ...
1013     //        = op c3, ..., f2
1014     Chain = Chains[NumRegs-1];
1015   else
1016     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
1017 }
1018 
1019 void RegsForValue::AddInlineAsmOperands(InlineAsm::Kind Code, bool HasMatching,
1020                                         unsigned MatchingIdx, const SDLoc &dl,
1021                                         SelectionDAG &DAG,
1022                                         std::vector<SDValue> &Ops) const {
1023   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1024 
1025   InlineAsm::Flag Flag(Code, Regs.size());
1026   if (HasMatching)
1027     Flag.setMatchingOp(MatchingIdx);
1028   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
1029     // Put the register class of the virtual registers in the flag word.  That
1030     // way, later passes can recompute register class constraints for inline
1031     // assembly as well as normal instructions.
1032     // Don't do this for tied operands that can use the regclass information
1033     // from the def.
1034     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1035     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
1036     Flag.setRegClass(RC->getID());
1037   }
1038 
1039   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
1040   Ops.push_back(Res);
1041 
1042   if (Code == InlineAsm::Kind::Clobber) {
1043     // Clobbers should always have a 1:1 mapping with registers, and may
1044     // reference registers that have illegal (e.g. vector) types. Hence, we
1045     // shouldn't try to apply any sort of splitting logic to them.
1046     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
1047            "No 1:1 mapping from clobbers to regs?");
1048     Register SP = TLI.getStackPointerRegisterToSaveRestore();
1049     (void)SP;
1050     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
1051       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
1052       assert(
1053           (Regs[I] != SP ||
1054            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
1055           "If we clobbered the stack pointer, MFI should know about it.");
1056     }
1057     return;
1058   }
1059 
1060   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
1061     MVT RegisterVT = RegVTs[Value];
1062     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value],
1063                                            RegisterVT);
1064     for (unsigned i = 0; i != NumRegs; ++i) {
1065       assert(Reg < Regs.size() && "Mismatch in # registers expected");
1066       unsigned TheReg = Regs[Reg++];
1067       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1068     }
1069   }
1070 }
1071 
1072 SmallVector<std::pair<unsigned, TypeSize>, 4>
1073 RegsForValue::getRegsAndSizes() const {
1074   SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec;
1075   unsigned I = 0;
1076   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1077     unsigned RegCount = std::get<0>(CountAndVT);
1078     MVT RegisterVT = std::get<1>(CountAndVT);
1079     TypeSize RegisterSize = RegisterVT.getSizeInBits();
1080     for (unsigned E = I + RegCount; I != E; ++I)
1081       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1082   }
1083   return OutVec;
1084 }
1085 
1086 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1087                                AssumptionCache *ac,
1088                                const TargetLibraryInfo *li) {
1089   AA = aa;
1090   AC = ac;
1091   GFI = gfi;
1092   LibInfo = li;
1093   Context = DAG.getContext();
1094   LPadToCallSiteMap.clear();
1095   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1096   AssignmentTrackingEnabled = isAssignmentTrackingEnabled(
1097       *DAG.getMachineFunction().getFunction().getParent());
1098 }
1099 
1100 void SelectionDAGBuilder::clear() {
1101   NodeMap.clear();
1102   UnusedArgNodeMap.clear();
1103   PendingLoads.clear();
1104   PendingExports.clear();
1105   PendingConstrainedFP.clear();
1106   PendingConstrainedFPStrict.clear();
1107   CurInst = nullptr;
1108   HasTailCall = false;
1109   SDNodeOrder = LowestSDNodeOrder;
1110   StatepointLowering.clear();
1111 }
1112 
1113 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1114   DanglingDebugInfoMap.clear();
1115 }
1116 
1117 // Update DAG root to include dependencies on Pending chains.
1118 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1119   SDValue Root = DAG.getRoot();
1120 
1121   if (Pending.empty())
1122     return Root;
1123 
1124   // Add current root to PendingChains, unless we already indirectly
1125   // depend on it.
1126   if (Root.getOpcode() != ISD::EntryToken) {
1127     unsigned i = 0, e = Pending.size();
1128     for (; i != e; ++i) {
1129       assert(Pending[i].getNode()->getNumOperands() > 1);
1130       if (Pending[i].getNode()->getOperand(0) == Root)
1131         break;  // Don't add the root if we already indirectly depend on it.
1132     }
1133 
1134     if (i == e)
1135       Pending.push_back(Root);
1136   }
1137 
1138   if (Pending.size() == 1)
1139     Root = Pending[0];
1140   else
1141     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1142 
1143   DAG.setRoot(Root);
1144   Pending.clear();
1145   return Root;
1146 }
1147 
1148 SDValue SelectionDAGBuilder::getMemoryRoot() {
1149   return updateRoot(PendingLoads);
1150 }
1151 
1152 SDValue SelectionDAGBuilder::getRoot() {
1153   // Chain up all pending constrained intrinsics together with all
1154   // pending loads, by simply appending them to PendingLoads and
1155   // then calling getMemoryRoot().
1156   PendingLoads.reserve(PendingLoads.size() +
1157                        PendingConstrainedFP.size() +
1158                        PendingConstrainedFPStrict.size());
1159   PendingLoads.append(PendingConstrainedFP.begin(),
1160                       PendingConstrainedFP.end());
1161   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1162                       PendingConstrainedFPStrict.end());
1163   PendingConstrainedFP.clear();
1164   PendingConstrainedFPStrict.clear();
1165   return getMemoryRoot();
1166 }
1167 
1168 SDValue SelectionDAGBuilder::getControlRoot() {
1169   // We need to emit pending fpexcept.strict constrained intrinsics,
1170   // so append them to the PendingExports list.
1171   PendingExports.append(PendingConstrainedFPStrict.begin(),
1172                         PendingConstrainedFPStrict.end());
1173   PendingConstrainedFPStrict.clear();
1174   return updateRoot(PendingExports);
1175 }
1176 
1177 void SelectionDAGBuilder::handleDebugDeclare(Value *Address,
1178                                              DILocalVariable *Variable,
1179                                              DIExpression *Expression,
1180                                              DebugLoc DL) {
1181   assert(Variable && "Missing variable");
1182 
1183   // Check if address has undef value.
1184   if (!Address || isa<UndefValue>(Address) ||
1185       (Address->use_empty() && !isa<Argument>(Address))) {
1186     LLVM_DEBUG(
1187         dbgs()
1188         << "dbg_declare: Dropping debug info (bad/undef/unused-arg address)\n");
1189     return;
1190   }
1191 
1192   bool IsParameter = Variable->isParameter() || isa<Argument>(Address);
1193 
1194   SDValue &N = NodeMap[Address];
1195   if (!N.getNode() && isa<Argument>(Address))
1196     // Check unused arguments map.
1197     N = UnusedArgNodeMap[Address];
1198   SDDbgValue *SDV;
1199   if (N.getNode()) {
1200     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
1201       Address = BCI->getOperand(0);
1202     // Parameters are handled specially.
1203     auto *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
1204     if (IsParameter && FINode) {
1205       // Byval parameter. We have a frame index at this point.
1206       SDV = DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
1207                                       /*IsIndirect*/ true, DL, SDNodeOrder);
1208     } else if (isa<Argument>(Address)) {
1209       // Address is an argument, so try to emit its dbg value using
1210       // virtual register info from the FuncInfo.ValueMap.
1211       EmitFuncArgumentDbgValue(Address, Variable, Expression, DL,
1212                                FuncArgumentDbgValueKind::Declare, N);
1213       return;
1214     } else {
1215       SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
1216                             true, DL, SDNodeOrder);
1217     }
1218     DAG.AddDbgValue(SDV, IsParameter);
1219   } else {
1220     // If Address is an argument then try to emit its dbg value using
1221     // virtual register info from the FuncInfo.ValueMap.
1222     if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, DL,
1223                                   FuncArgumentDbgValueKind::Declare, N)) {
1224       LLVM_DEBUG(dbgs() << "dbg_declare: Dropping debug info"
1225                         << " (could not emit func-arg dbg_value)\n");
1226     }
1227   }
1228   return;
1229 }
1230 
1231 void SelectionDAGBuilder::visitDbgInfo(const Instruction &I) {
1232   // Add SDDbgValue nodes for any var locs here. Do so before updating
1233   // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1234   if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) {
1235     // Add SDDbgValue nodes for any var locs here. Do so before updating
1236     // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1237     for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I);
1238          It != End; ++It) {
1239       auto *Var = FnVarLocs->getDILocalVariable(It->VariableID);
1240       dropDanglingDebugInfo(Var, It->Expr);
1241       if (It->Values.isKillLocation(It->Expr)) {
1242         handleKillDebugValue(Var, It->Expr, It->DL, SDNodeOrder);
1243         continue;
1244       }
1245       SmallVector<Value *> Values(It->Values.location_ops());
1246       if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder,
1247                             It->Values.hasArgList())) {
1248         SmallVector<Value *, 4> Vals;
1249         for (Value *V : It->Values.location_ops())
1250           Vals.push_back(V);
1251         addDanglingDebugInfo(Vals,
1252                              FnVarLocs->getDILocalVariable(It->VariableID),
1253                              It->Expr, Vals.size() > 1, It->DL, SDNodeOrder);
1254       }
1255     }
1256   }
1257 
1258   // We must skip DbgVariableRecords if they've already been processed above as
1259   // we have just emitted the debug values resulting from assignment tracking
1260   // analysis, making any existing DbgVariableRecords redundant (and probably
1261   // less correct). We still need to process DbgLabelRecords. This does sink
1262   // DbgLabelRecords to the bottom of the group of debug records. That sholdn't
1263   // be important as it does so deterministcally and ordering between
1264   // DbgLabelRecords and DbgVariableRecords is immaterial (other than for MIR/IR
1265   // printing).
1266   bool SkipDbgVariableRecords = DAG.getFunctionVarLocs();
1267   // Is there is any debug-info attached to this instruction, in the form of
1268   // DbgRecord non-instruction debug-info records.
1269   for (DbgRecord &DR : I.getDbgRecordRange()) {
1270     if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) {
1271       assert(DLR->getLabel() && "Missing label");
1272       SDDbgLabel *SDV =
1273           DAG.getDbgLabel(DLR->getLabel(), DLR->getDebugLoc(), SDNodeOrder);
1274       DAG.AddDbgLabel(SDV);
1275       continue;
1276     }
1277 
1278     if (SkipDbgVariableRecords)
1279       continue;
1280     DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR);
1281     DILocalVariable *Variable = DVR.getVariable();
1282     DIExpression *Expression = DVR.getExpression();
1283     dropDanglingDebugInfo(Variable, Expression);
1284 
1285     if (DVR.getType() == DbgVariableRecord::LocationType::Declare) {
1286       if (FuncInfo.PreprocessedDVRDeclares.contains(&DVR))
1287         continue;
1288       LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DVR
1289                         << "\n");
1290       handleDebugDeclare(DVR.getVariableLocationOp(0), Variable, Expression,
1291                          DVR.getDebugLoc());
1292       continue;
1293     }
1294 
1295     // A DbgVariableRecord with no locations is a kill location.
1296     SmallVector<Value *, 4> Values(DVR.location_ops());
1297     if (Values.empty()) {
1298       handleKillDebugValue(Variable, Expression, DVR.getDebugLoc(),
1299                            SDNodeOrder);
1300       continue;
1301     }
1302 
1303     // A DbgVariableRecord with an undef or absent location is also a kill
1304     // location.
1305     if (llvm::any_of(Values,
1306                      [](Value *V) { return !V || isa<UndefValue>(V); })) {
1307       handleKillDebugValue(Variable, Expression, DVR.getDebugLoc(),
1308                            SDNodeOrder);
1309       continue;
1310     }
1311 
1312     bool IsVariadic = DVR.hasArgList();
1313     if (!handleDebugValue(Values, Variable, Expression, DVR.getDebugLoc(),
1314                           SDNodeOrder, IsVariadic)) {
1315       addDanglingDebugInfo(Values, Variable, Expression, IsVariadic,
1316                            DVR.getDebugLoc(), SDNodeOrder);
1317     }
1318   }
1319 }
1320 
1321 void SelectionDAGBuilder::visit(const Instruction &I) {
1322   visitDbgInfo(I);
1323 
1324   // Set up outgoing PHI node register values before emitting the terminator.
1325   if (I.isTerminator()) {
1326     HandlePHINodesInSuccessorBlocks(I.getParent());
1327   }
1328 
1329   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1330   if (!isa<DbgInfoIntrinsic>(I))
1331     ++SDNodeOrder;
1332 
1333   CurInst = &I;
1334 
1335   // Set inserted listener only if required.
1336   bool NodeInserted = false;
1337   std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener;
1338   MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections);
1339   MDNode *MMRA = I.getMetadata(LLVMContext::MD_mmra);
1340   if (PCSectionsMD || MMRA) {
1341     InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>(
1342         DAG, [&](SDNode *) { NodeInserted = true; });
1343   }
1344 
1345   visit(I.getOpcode(), I);
1346 
1347   if (!I.isTerminator() && !HasTailCall &&
1348       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1349     CopyToExportRegsIfNeeded(&I);
1350 
1351   // Handle metadata.
1352   if (PCSectionsMD || MMRA) {
1353     auto It = NodeMap.find(&I);
1354     if (It != NodeMap.end()) {
1355       if (PCSectionsMD)
1356         DAG.addPCSections(It->second.getNode(), PCSectionsMD);
1357       if (MMRA)
1358         DAG.addMMRAMetadata(It->second.getNode(), MMRA);
1359     } else if (NodeInserted) {
1360       // This should not happen; if it does, don't let it go unnoticed so we can
1361       // fix it. Relevant visit*() function is probably missing a setValue().
1362       errs() << "warning: loosing !pcsections and/or !mmra metadata ["
1363              << I.getModule()->getName() << "]\n";
1364       LLVM_DEBUG(I.dump());
1365       assert(false);
1366     }
1367   }
1368 
1369   CurInst = nullptr;
1370 }
1371 
1372 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1373   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1374 }
1375 
1376 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1377   // Note: this doesn't use InstVisitor, because it has to work with
1378   // ConstantExpr's in addition to instructions.
1379   switch (Opcode) {
1380   default: llvm_unreachable("Unknown instruction type encountered!");
1381     // Build the switch statement using the Instruction.def file.
1382 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1383     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1384 #include "llvm/IR/Instruction.def"
1385   }
1386 }
1387 
1388 static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG,
1389                                             DILocalVariable *Variable,
1390                                             DebugLoc DL, unsigned Order,
1391                                             SmallVectorImpl<Value *> &Values,
1392                                             DIExpression *Expression) {
1393   // For variadic dbg_values we will now insert an undef.
1394   // FIXME: We can potentially recover these!
1395   SmallVector<SDDbgOperand, 2> Locs;
1396   for (const Value *V : Values) {
1397     auto *Undef = UndefValue::get(V->getType());
1398     Locs.push_back(SDDbgOperand::fromConst(Undef));
1399   }
1400   SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {},
1401                                         /*IsIndirect=*/false, DL, Order,
1402                                         /*IsVariadic=*/true);
1403   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1404   return true;
1405 }
1406 
1407 void SelectionDAGBuilder::addDanglingDebugInfo(SmallVectorImpl<Value *> &Values,
1408                                                DILocalVariable *Var,
1409                                                DIExpression *Expr,
1410                                                bool IsVariadic, DebugLoc DL,
1411                                                unsigned Order) {
1412   if (IsVariadic) {
1413     handleDanglingVariadicDebugInfo(DAG, Var, DL, Order, Values, Expr);
1414     return;
1415   }
1416   // TODO: Dangling debug info will eventually either be resolved or produce
1417   // an Undef DBG_VALUE. However in the resolution case, a gap may appear
1418   // between the original dbg.value location and its resolved DBG_VALUE,
1419   // which we should ideally fill with an extra Undef DBG_VALUE.
1420   assert(Values.size() == 1);
1421   DanglingDebugInfoMap[Values[0]].emplace_back(Var, Expr, DL, Order);
1422 }
1423 
1424 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1425                                                 const DIExpression *Expr) {
1426   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1427     DIVariable *DanglingVariable = DDI.getVariable();
1428     DIExpression *DanglingExpr = DDI.getExpression();
1429     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1430       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for "
1431                         << printDDI(nullptr, DDI) << "\n");
1432       return true;
1433     }
1434     return false;
1435   };
1436 
1437   for (auto &DDIMI : DanglingDebugInfoMap) {
1438     DanglingDebugInfoVector &DDIV = DDIMI.second;
1439 
1440     // If debug info is to be dropped, run it through final checks to see
1441     // whether it can be salvaged.
1442     for (auto &DDI : DDIV)
1443       if (isMatchingDbgValue(DDI))
1444         salvageUnresolvedDbgValue(DDIMI.first, DDI);
1445 
1446     erase_if(DDIV, isMatchingDbgValue);
1447   }
1448 }
1449 
1450 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1451 // generate the debug data structures now that we've seen its definition.
1452 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1453                                                    SDValue Val) {
1454   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1455   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1456     return;
1457 
1458   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1459   for (auto &DDI : DDIV) {
1460     DebugLoc DL = DDI.getDebugLoc();
1461     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1462     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1463     DILocalVariable *Variable = DDI.getVariable();
1464     DIExpression *Expr = DDI.getExpression();
1465     assert(Variable->isValidLocationForIntrinsic(DL) &&
1466            "Expected inlined-at fields to agree");
1467     SDDbgValue *SDV;
1468     if (Val.getNode()) {
1469       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1470       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1471       // we couldn't resolve it directly when examining the DbgValue intrinsic
1472       // in the first place we should not be more successful here). Unless we
1473       // have some test case that prove this to be correct we should avoid
1474       // calling EmitFuncArgumentDbgValue here.
1475       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL,
1476                                     FuncArgumentDbgValueKind::Value, Val)) {
1477         LLVM_DEBUG(dbgs() << "Resolve dangling debug info for "
1478                           << printDDI(V, DDI) << "\n");
1479         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1480         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1481         // inserted after the definition of Val when emitting the instructions
1482         // after ISel. An alternative could be to teach
1483         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1484         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1485                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1486                    << ValSDNodeOrder << "\n");
1487         SDV = getDbgValue(Val, Variable, Expr, DL,
1488                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1489         DAG.AddDbgValue(SDV, false);
1490       } else
1491         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for "
1492                           << printDDI(V, DDI)
1493                           << " in EmitFuncArgumentDbgValue\n");
1494     } else {
1495       LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(V, DDI)
1496                         << "\n");
1497       auto Undef = UndefValue::get(V->getType());
1498       auto SDV =
1499           DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder);
1500       DAG.AddDbgValue(SDV, false);
1501     }
1502   }
1503   DDIV.clear();
1504 }
1505 
1506 void SelectionDAGBuilder::salvageUnresolvedDbgValue(const Value *V,
1507                                                     DanglingDebugInfo &DDI) {
1508   // TODO: For the variadic implementation, instead of only checking the fail
1509   // state of `handleDebugValue`, we need know specifically which values were
1510   // invalid, so that we attempt to salvage only those values when processing
1511   // a DIArgList.
1512   const Value *OrigV = V;
1513   DILocalVariable *Var = DDI.getVariable();
1514   DIExpression *Expr = DDI.getExpression();
1515   DebugLoc DL = DDI.getDebugLoc();
1516   unsigned SDOrder = DDI.getSDNodeOrder();
1517 
1518   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1519   // that DW_OP_stack_value is desired.
1520   bool StackValue = true;
1521 
1522   // Can this Value can be encoded without any further work?
1523   if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false))
1524     return;
1525 
1526   // Attempt to salvage back through as many instructions as possible. Bail if
1527   // a non-instruction is seen, such as a constant expression or global
1528   // variable. FIXME: Further work could recover those too.
1529   while (isa<Instruction>(V)) {
1530     const Instruction &VAsInst = *cast<const Instruction>(V);
1531     // Temporary "0", awaiting real implementation.
1532     SmallVector<uint64_t, 16> Ops;
1533     SmallVector<Value *, 4> AdditionalValues;
1534     V = salvageDebugInfoImpl(const_cast<Instruction &>(VAsInst),
1535                              Expr->getNumLocationOperands(), Ops,
1536                              AdditionalValues);
1537     // If we cannot salvage any further, and haven't yet found a suitable debug
1538     // expression, bail out.
1539     if (!V)
1540       break;
1541 
1542     // TODO: If AdditionalValues isn't empty, then the salvage can only be
1543     // represented with a DBG_VALUE_LIST, so we give up. When we have support
1544     // here for variadic dbg_values, remove that condition.
1545     if (!AdditionalValues.empty())
1546       break;
1547 
1548     // New value and expr now represent this debuginfo.
1549     Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue);
1550 
1551     // Some kind of simplification occurred: check whether the operand of the
1552     // salvaged debug expression can be encoded in this DAG.
1553     if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) {
1554       LLVM_DEBUG(
1555           dbgs() << "Salvaged debug location info for:\n  " << *Var << "\n"
1556                  << *OrigV << "\nBy stripping back to:\n  " << *V << "\n");
1557       return;
1558     }
1559   }
1560 
1561   // This was the final opportunity to salvage this debug information, and it
1562   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1563   // any earlier variable location.
1564   assert(OrigV && "V shouldn't be null");
1565   auto *Undef = UndefValue::get(OrigV->getType());
1566   auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1567   DAG.AddDbgValue(SDV, false);
1568   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  "
1569                     << printDDI(OrigV, DDI) << "\n");
1570 }
1571 
1572 void SelectionDAGBuilder::handleKillDebugValue(DILocalVariable *Var,
1573                                                DIExpression *Expr,
1574                                                DebugLoc DbgLoc,
1575                                                unsigned Order) {
1576   Value *Poison = PoisonValue::get(Type::getInt1Ty(*Context));
1577   DIExpression *NewExpr =
1578       const_cast<DIExpression *>(DIExpression::convertToUndefExpression(Expr));
1579   handleDebugValue(Poison, Var, NewExpr, DbgLoc, Order,
1580                    /*IsVariadic*/ false);
1581 }
1582 
1583 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values,
1584                                            DILocalVariable *Var,
1585                                            DIExpression *Expr, DebugLoc DbgLoc,
1586                                            unsigned Order, bool IsVariadic) {
1587   if (Values.empty())
1588     return true;
1589 
1590   // Filter EntryValue locations out early.
1591   if (visitEntryValueDbgValue(Values, Var, Expr, DbgLoc))
1592     return true;
1593 
1594   SmallVector<SDDbgOperand> LocationOps;
1595   SmallVector<SDNode *> Dependencies;
1596   for (const Value *V : Values) {
1597     // Constant value.
1598     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1599         isa<ConstantPointerNull>(V)) {
1600       LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1601       continue;
1602     }
1603 
1604     // Look through IntToPtr constants.
1605     if (auto *CE = dyn_cast<ConstantExpr>(V))
1606       if (CE->getOpcode() == Instruction::IntToPtr) {
1607         LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0)));
1608         continue;
1609       }
1610 
1611     // If the Value is a frame index, we can create a FrameIndex debug value
1612     // without relying on the DAG at all.
1613     if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1614       auto SI = FuncInfo.StaticAllocaMap.find(AI);
1615       if (SI != FuncInfo.StaticAllocaMap.end()) {
1616         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1617         continue;
1618       }
1619     }
1620 
1621     // Do not use getValue() in here; we don't want to generate code at
1622     // this point if it hasn't been done yet.
1623     SDValue N = NodeMap[V];
1624     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1625       N = UnusedArgNodeMap[V];
1626     if (N.getNode()) {
1627       // Only emit func arg dbg value for non-variadic dbg.values for now.
1628       if (!IsVariadic &&
1629           EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc,
1630                                    FuncArgumentDbgValueKind::Value, N))
1631         return true;
1632       if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1633         // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1634         // describe stack slot locations.
1635         //
1636         // Consider "int x = 0; int *px = &x;". There are two kinds of
1637         // interesting debug values here after optimization:
1638         //
1639         //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
1640         //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1641         //
1642         // Both describe the direct values of their associated variables.
1643         Dependencies.push_back(N.getNode());
1644         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1645         continue;
1646       }
1647       LocationOps.emplace_back(
1648           SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1649       continue;
1650     }
1651 
1652     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1653     // Special rules apply for the first dbg.values of parameter variables in a
1654     // function. Identify them by the fact they reference Argument Values, that
1655     // they're parameters, and they are parameters of the current function. We
1656     // need to let them dangle until they get an SDNode.
1657     bool IsParamOfFunc =
1658         isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt();
1659     if (IsParamOfFunc)
1660       return false;
1661 
1662     // The value is not used in this block yet (or it would have an SDNode).
1663     // We still want the value to appear for the user if possible -- if it has
1664     // an associated VReg, we can refer to that instead.
1665     auto VMI = FuncInfo.ValueMap.find(V);
1666     if (VMI != FuncInfo.ValueMap.end()) {
1667       unsigned Reg = VMI->second;
1668       // If this is a PHI node, it may be split up into several MI PHI nodes
1669       // (in FunctionLoweringInfo::set).
1670       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1671                        V->getType(), std::nullopt);
1672       if (RFV.occupiesMultipleRegs()) {
1673         // FIXME: We could potentially support variadic dbg_values here.
1674         if (IsVariadic)
1675           return false;
1676         unsigned Offset = 0;
1677         unsigned BitsToDescribe = 0;
1678         if (auto VarSize = Var->getSizeInBits())
1679           BitsToDescribe = *VarSize;
1680         if (auto Fragment = Expr->getFragmentInfo())
1681           BitsToDescribe = Fragment->SizeInBits;
1682         for (const auto &RegAndSize : RFV.getRegsAndSizes()) {
1683           // Bail out if all bits are described already.
1684           if (Offset >= BitsToDescribe)
1685             break;
1686           // TODO: handle scalable vectors.
1687           unsigned RegisterSize = RegAndSize.second;
1688           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1689                                       ? BitsToDescribe - Offset
1690                                       : RegisterSize;
1691           auto FragmentExpr = DIExpression::createFragmentExpression(
1692               Expr, Offset, FragmentSize);
1693           if (!FragmentExpr)
1694             continue;
1695           SDDbgValue *SDV = DAG.getVRegDbgValue(
1696               Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, Order);
1697           DAG.AddDbgValue(SDV, false);
1698           Offset += RegisterSize;
1699         }
1700         return true;
1701       }
1702       // We can use simple vreg locations for variadic dbg_values as well.
1703       LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1704       continue;
1705     }
1706     // We failed to create a SDDbgOperand for V.
1707     return false;
1708   }
1709 
1710   // We have created a SDDbgOperand for each Value in Values.
1711   assert(!LocationOps.empty());
1712   SDDbgValue *SDV =
1713       DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1714                           /*IsIndirect=*/false, DbgLoc, Order, IsVariadic);
1715   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1716   return true;
1717 }
1718 
1719 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1720   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1721   for (auto &Pair : DanglingDebugInfoMap)
1722     for (auto &DDI : Pair.second)
1723       salvageUnresolvedDbgValue(const_cast<Value *>(Pair.first), DDI);
1724   clearDanglingDebugInfo();
1725 }
1726 
1727 /// getCopyFromRegs - If there was virtual register allocated for the value V
1728 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1729 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1730   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1731   SDValue Result;
1732 
1733   if (It != FuncInfo.ValueMap.end()) {
1734     Register InReg = It->second;
1735 
1736     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1737                      DAG.getDataLayout(), InReg, Ty,
1738                      std::nullopt); // This is not an ABI copy.
1739     SDValue Chain = DAG.getEntryNode();
1740     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1741                                  V);
1742     resolveDanglingDebugInfo(V, Result);
1743   }
1744 
1745   return Result;
1746 }
1747 
1748 /// getValue - Return an SDValue for the given Value.
1749 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1750   // If we already have an SDValue for this value, use it. It's important
1751   // to do this first, so that we don't create a CopyFromReg if we already
1752   // have a regular SDValue.
1753   SDValue &N = NodeMap[V];
1754   if (N.getNode()) return N;
1755 
1756   // If there's a virtual register allocated and initialized for this
1757   // value, use it.
1758   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1759     return copyFromReg;
1760 
1761   // Otherwise create a new SDValue and remember it.
1762   SDValue Val = getValueImpl(V);
1763   NodeMap[V] = Val;
1764   resolveDanglingDebugInfo(V, Val);
1765   return Val;
1766 }
1767 
1768 /// getNonRegisterValue - Return an SDValue for the given Value, but
1769 /// don't look in FuncInfo.ValueMap for a virtual register.
1770 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1771   // If we already have an SDValue for this value, use it.
1772   SDValue &N = NodeMap[V];
1773   if (N.getNode()) {
1774     if (isIntOrFPConstant(N)) {
1775       // Remove the debug location from the node as the node is about to be used
1776       // in a location which may differ from the original debug location.  This
1777       // is relevant to Constant and ConstantFP nodes because they can appear
1778       // as constant expressions inside PHI nodes.
1779       N->setDebugLoc(DebugLoc());
1780     }
1781     return N;
1782   }
1783 
1784   // Otherwise create a new SDValue and remember it.
1785   SDValue Val = getValueImpl(V);
1786   NodeMap[V] = Val;
1787   resolveDanglingDebugInfo(V, Val);
1788   return Val;
1789 }
1790 
1791 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1792 /// Create an SDValue for the given value.
1793 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1794   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1795 
1796   if (const Constant *C = dyn_cast<Constant>(V)) {
1797     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1798 
1799     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1800       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1801 
1802     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1803       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1804 
1805     if (isa<ConstantPointerNull>(C)) {
1806       unsigned AS = V->getType()->getPointerAddressSpace();
1807       return DAG.getConstant(0, getCurSDLoc(),
1808                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1809     }
1810 
1811     if (match(C, m_VScale()))
1812       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1813 
1814     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1815       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1816 
1817     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1818       return DAG.getUNDEF(VT);
1819 
1820     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1821       visit(CE->getOpcode(), *CE);
1822       SDValue N1 = NodeMap[V];
1823       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1824       return N1;
1825     }
1826 
1827     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1828       SmallVector<SDValue, 4> Constants;
1829       for (const Use &U : C->operands()) {
1830         SDNode *Val = getValue(U).getNode();
1831         // If the operand is an empty aggregate, there are no values.
1832         if (!Val) continue;
1833         // Add each leaf value from the operand to the Constants list
1834         // to form a flattened list of all the values.
1835         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1836           Constants.push_back(SDValue(Val, i));
1837       }
1838 
1839       return DAG.getMergeValues(Constants, getCurSDLoc());
1840     }
1841 
1842     if (const ConstantDataSequential *CDS =
1843           dyn_cast<ConstantDataSequential>(C)) {
1844       SmallVector<SDValue, 4> Ops;
1845       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1846         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1847         // Add each leaf value from the operand to the Constants list
1848         // to form a flattened list of all the values.
1849         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1850           Ops.push_back(SDValue(Val, i));
1851       }
1852 
1853       if (isa<ArrayType>(CDS->getType()))
1854         return DAG.getMergeValues(Ops, getCurSDLoc());
1855       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1856     }
1857 
1858     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1859       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1860              "Unknown struct or array constant!");
1861 
1862       SmallVector<EVT, 4> ValueVTs;
1863       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1864       unsigned NumElts = ValueVTs.size();
1865       if (NumElts == 0)
1866         return SDValue(); // empty struct
1867       SmallVector<SDValue, 4> Constants(NumElts);
1868       for (unsigned i = 0; i != NumElts; ++i) {
1869         EVT EltVT = ValueVTs[i];
1870         if (isa<UndefValue>(C))
1871           Constants[i] = DAG.getUNDEF(EltVT);
1872         else if (EltVT.isFloatingPoint())
1873           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1874         else
1875           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1876       }
1877 
1878       return DAG.getMergeValues(Constants, getCurSDLoc());
1879     }
1880 
1881     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1882       return DAG.getBlockAddress(BA, VT);
1883 
1884     if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1885       return getValue(Equiv->getGlobalValue());
1886 
1887     if (const auto *NC = dyn_cast<NoCFIValue>(C))
1888       return getValue(NC->getGlobalValue());
1889 
1890     if (VT == MVT::aarch64svcount) {
1891       assert(C->isNullValue() && "Can only zero this target type!");
1892       return DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT,
1893                          DAG.getConstant(0, getCurSDLoc(), MVT::nxv16i1));
1894     }
1895 
1896     VectorType *VecTy = cast<VectorType>(V->getType());
1897 
1898     // Now that we know the number and type of the elements, get that number of
1899     // elements into the Ops array based on what kind of constant it is.
1900     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1901       SmallVector<SDValue, 16> Ops;
1902       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1903       for (unsigned i = 0; i != NumElements; ++i)
1904         Ops.push_back(getValue(CV->getOperand(i)));
1905 
1906       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1907     }
1908 
1909     if (isa<ConstantAggregateZero>(C)) {
1910       EVT EltVT =
1911           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1912 
1913       SDValue Op;
1914       if (EltVT.isFloatingPoint())
1915         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1916       else
1917         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1918 
1919       return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op);
1920     }
1921 
1922     llvm_unreachable("Unknown vector constant");
1923   }
1924 
1925   // If this is a static alloca, generate it as the frameindex instead of
1926   // computation.
1927   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1928     DenseMap<const AllocaInst*, int>::iterator SI =
1929       FuncInfo.StaticAllocaMap.find(AI);
1930     if (SI != FuncInfo.StaticAllocaMap.end())
1931       return DAG.getFrameIndex(
1932           SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType()));
1933   }
1934 
1935   // If this is an instruction which fast-isel has deferred, select it now.
1936   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1937     Register InReg = FuncInfo.InitializeRegForValue(Inst);
1938 
1939     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1940                      Inst->getType(), std::nullopt);
1941     SDValue Chain = DAG.getEntryNode();
1942     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1943   }
1944 
1945   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V))
1946     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1947 
1948   if (const auto *BB = dyn_cast<BasicBlock>(V))
1949     return DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
1950 
1951   llvm_unreachable("Can't get register for value!");
1952 }
1953 
1954 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1955   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1956   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1957   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1958   bool IsSEH = isAsynchronousEHPersonality(Pers);
1959   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1960   if (!IsSEH)
1961     CatchPadMBB->setIsEHScopeEntry();
1962   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1963   if (IsMSVCCXX || IsCoreCLR)
1964     CatchPadMBB->setIsEHFuncletEntry();
1965 }
1966 
1967 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1968   // Update machine-CFG edge.
1969   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1970   FuncInfo.MBB->addSuccessor(TargetMBB);
1971   TargetMBB->setIsEHCatchretTarget(true);
1972   DAG.getMachineFunction().setHasEHCatchret(true);
1973 
1974   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1975   bool IsSEH = isAsynchronousEHPersonality(Pers);
1976   if (IsSEH) {
1977     // If this is not a fall-through branch or optimizations are switched off,
1978     // emit the branch.
1979     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1980         TM.getOptLevel() == CodeGenOptLevel::None)
1981       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1982                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1983     return;
1984   }
1985 
1986   // Figure out the funclet membership for the catchret's successor.
1987   // This will be used by the FuncletLayout pass to determine how to order the
1988   // BB's.
1989   // A 'catchret' returns to the outer scope's color.
1990   Value *ParentPad = I.getCatchSwitchParentPad();
1991   const BasicBlock *SuccessorColor;
1992   if (isa<ConstantTokenNone>(ParentPad))
1993     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1994   else
1995     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1996   assert(SuccessorColor && "No parent funclet for catchret!");
1997   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1998   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1999 
2000   // Create the terminator node.
2001   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
2002                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
2003                             DAG.getBasicBlock(SuccessorColorMBB));
2004   DAG.setRoot(Ret);
2005 }
2006 
2007 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
2008   // Don't emit any special code for the cleanuppad instruction. It just marks
2009   // the start of an EH scope/funclet.
2010   FuncInfo.MBB->setIsEHScopeEntry();
2011   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
2012   if (Pers != EHPersonality::Wasm_CXX) {
2013     FuncInfo.MBB->setIsEHFuncletEntry();
2014     FuncInfo.MBB->setIsCleanupFuncletEntry();
2015   }
2016 }
2017 
2018 // In wasm EH, even though a catchpad may not catch an exception if a tag does
2019 // not match, it is OK to add only the first unwind destination catchpad to the
2020 // successors, because there will be at least one invoke instruction within the
2021 // catch scope that points to the next unwind destination, if one exists, so
2022 // CFGSort cannot mess up with BB sorting order.
2023 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
2024 // call within them, and catchpads only consisting of 'catch (...)' have a
2025 // '__cxa_end_catch' call within them, both of which generate invokes in case
2026 // the next unwind destination exists, i.e., the next unwind destination is not
2027 // the caller.)
2028 //
2029 // Having at most one EH pad successor is also simpler and helps later
2030 // transformations.
2031 //
2032 // For example,
2033 // current:
2034 //   invoke void @foo to ... unwind label %catch.dispatch
2035 // catch.dispatch:
2036 //   %0 = catchswitch within ... [label %catch.start] unwind label %next
2037 // catch.start:
2038 //   ...
2039 //   ... in this BB or some other child BB dominated by this BB there will be an
2040 //   invoke that points to 'next' BB as an unwind destination
2041 //
2042 // next: ; We don't need to add this to 'current' BB's successor
2043 //   ...
2044 static void findWasmUnwindDestinations(
2045     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
2046     BranchProbability Prob,
2047     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
2048         &UnwindDests) {
2049   while (EHPadBB) {
2050     const Instruction *Pad = EHPadBB->getFirstNonPHI();
2051     if (isa<CleanupPadInst>(Pad)) {
2052       // Stop on cleanup pads.
2053       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
2054       UnwindDests.back().first->setIsEHScopeEntry();
2055       break;
2056     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
2057       // Add the catchpad handlers to the possible destinations. We don't
2058       // continue to the unwind destination of the catchswitch for wasm.
2059       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2060         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
2061         UnwindDests.back().first->setIsEHScopeEntry();
2062       }
2063       break;
2064     } else {
2065       continue;
2066     }
2067   }
2068 }
2069 
2070 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
2071 /// many places it could ultimately go. In the IR, we have a single unwind
2072 /// destination, but in the machine CFG, we enumerate all the possible blocks.
2073 /// This function skips over imaginary basic blocks that hold catchswitch
2074 /// instructions, and finds all the "real" machine
2075 /// basic block destinations. As those destinations may not be successors of
2076 /// EHPadBB, here we also calculate the edge probability to those destinations.
2077 /// The passed-in Prob is the edge probability to EHPadBB.
2078 static void findUnwindDestinations(
2079     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
2080     BranchProbability Prob,
2081     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
2082         &UnwindDests) {
2083   EHPersonality Personality =
2084     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
2085   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
2086   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
2087   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
2088   bool IsSEH = isAsynchronousEHPersonality(Personality);
2089 
2090   if (IsWasmCXX) {
2091     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
2092     assert(UnwindDests.size() <= 1 &&
2093            "There should be at most one unwind destination for wasm");
2094     return;
2095   }
2096 
2097   while (EHPadBB) {
2098     const Instruction *Pad = EHPadBB->getFirstNonPHI();
2099     BasicBlock *NewEHPadBB = nullptr;
2100     if (isa<LandingPadInst>(Pad)) {
2101       // Stop on landingpads. They are not funclets.
2102       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
2103       break;
2104     } else if (isa<CleanupPadInst>(Pad)) {
2105       // Stop on cleanup pads. Cleanups are always funclet entries for all known
2106       // personalities.
2107       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
2108       UnwindDests.back().first->setIsEHScopeEntry();
2109       UnwindDests.back().first->setIsEHFuncletEntry();
2110       break;
2111     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
2112       // Add the catchpad handlers to the possible destinations.
2113       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2114         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
2115         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
2116         if (IsMSVCCXX || IsCoreCLR)
2117           UnwindDests.back().first->setIsEHFuncletEntry();
2118         if (!IsSEH)
2119           UnwindDests.back().first->setIsEHScopeEntry();
2120       }
2121       NewEHPadBB = CatchSwitch->getUnwindDest();
2122     } else {
2123       continue;
2124     }
2125 
2126     BranchProbabilityInfo *BPI = FuncInfo.BPI;
2127     if (BPI && NewEHPadBB)
2128       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
2129     EHPadBB = NewEHPadBB;
2130   }
2131 }
2132 
2133 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
2134   // Update successor info.
2135   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2136   auto UnwindDest = I.getUnwindDest();
2137   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2138   BranchProbability UnwindDestProb =
2139       (BPI && UnwindDest)
2140           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
2141           : BranchProbability::getZero();
2142   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
2143   for (auto &UnwindDest : UnwindDests) {
2144     UnwindDest.first->setIsEHPad();
2145     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
2146   }
2147   FuncInfo.MBB->normalizeSuccProbs();
2148 
2149   // Create the terminator node.
2150   SDValue Ret =
2151       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
2152   DAG.setRoot(Ret);
2153 }
2154 
2155 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
2156   report_fatal_error("visitCatchSwitch not yet implemented!");
2157 }
2158 
2159 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
2160   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2161   auto &DL = DAG.getDataLayout();
2162   SDValue Chain = getControlRoot();
2163   SmallVector<ISD::OutputArg, 8> Outs;
2164   SmallVector<SDValue, 8> OutVals;
2165 
2166   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
2167   // lower
2168   //
2169   //   %val = call <ty> @llvm.experimental.deoptimize()
2170   //   ret <ty> %val
2171   //
2172   // differently.
2173   if (I.getParent()->getTerminatingDeoptimizeCall()) {
2174     LowerDeoptimizingReturn();
2175     return;
2176   }
2177 
2178   if (!FuncInfo.CanLowerReturn) {
2179     unsigned DemoteReg = FuncInfo.DemoteRegister;
2180     const Function *F = I.getParent()->getParent();
2181 
2182     // Emit a store of the return value through the virtual register.
2183     // Leave Outs empty so that LowerReturn won't try to load return
2184     // registers the usual way.
2185     SmallVector<EVT, 1> PtrValueVTs;
2186     ComputeValueVTs(TLI, DL,
2187                     PointerType::get(F->getContext(),
2188                                      DAG.getDataLayout().getAllocaAddrSpace()),
2189                     PtrValueVTs);
2190 
2191     SDValue RetPtr =
2192         DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]);
2193     SDValue RetOp = getValue(I.getOperand(0));
2194 
2195     SmallVector<EVT, 4> ValueVTs, MemVTs;
2196     SmallVector<uint64_t, 4> Offsets;
2197     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
2198                     &Offsets, 0);
2199     unsigned NumValues = ValueVTs.size();
2200 
2201     SmallVector<SDValue, 4> Chains(NumValues);
2202     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
2203     for (unsigned i = 0; i != NumValues; ++i) {
2204       // An aggregate return value cannot wrap around the address space, so
2205       // offsets to its parts don't wrap either.
2206       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
2207                                            TypeSize::getFixed(Offsets[i]));
2208 
2209       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
2210       if (MemVTs[i] != ValueVTs[i])
2211         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
2212       Chains[i] = DAG.getStore(
2213           Chain, getCurSDLoc(), Val,
2214           // FIXME: better loc info would be nice.
2215           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
2216           commonAlignment(BaseAlign, Offsets[i]));
2217     }
2218 
2219     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
2220                         MVT::Other, Chains);
2221   } else if (I.getNumOperands() != 0) {
2222     SmallVector<EVT, 4> ValueVTs;
2223     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
2224     unsigned NumValues = ValueVTs.size();
2225     if (NumValues) {
2226       SDValue RetOp = getValue(I.getOperand(0));
2227 
2228       const Function *F = I.getParent()->getParent();
2229 
2230       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
2231           I.getOperand(0)->getType(), F->getCallingConv(),
2232           /*IsVarArg*/ false, DL);
2233 
2234       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
2235       if (F->getAttributes().hasRetAttr(Attribute::SExt))
2236         ExtendKind = ISD::SIGN_EXTEND;
2237       else if (F->getAttributes().hasRetAttr(Attribute::ZExt))
2238         ExtendKind = ISD::ZERO_EXTEND;
2239 
2240       LLVMContext &Context = F->getContext();
2241       bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg);
2242 
2243       for (unsigned j = 0; j != NumValues; ++j) {
2244         EVT VT = ValueVTs[j];
2245 
2246         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
2247           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
2248 
2249         CallingConv::ID CC = F->getCallingConv();
2250 
2251         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
2252         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
2253         SmallVector<SDValue, 4> Parts(NumParts);
2254         getCopyToParts(DAG, getCurSDLoc(),
2255                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
2256                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
2257 
2258         // 'inreg' on function refers to return value
2259         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2260         if (RetInReg)
2261           Flags.setInReg();
2262 
2263         if (I.getOperand(0)->getType()->isPointerTy()) {
2264           Flags.setPointer();
2265           Flags.setPointerAddrSpace(
2266               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
2267         }
2268 
2269         if (NeedsRegBlock) {
2270           Flags.setInConsecutiveRegs();
2271           if (j == NumValues - 1)
2272             Flags.setInConsecutiveRegsLast();
2273         }
2274 
2275         // Propagate extension type if any
2276         if (ExtendKind == ISD::SIGN_EXTEND)
2277           Flags.setSExt();
2278         else if (ExtendKind == ISD::ZERO_EXTEND)
2279           Flags.setZExt();
2280 
2281         for (unsigned i = 0; i < NumParts; ++i) {
2282           Outs.push_back(ISD::OutputArg(Flags,
2283                                         Parts[i].getValueType().getSimpleVT(),
2284                                         VT, /*isfixed=*/true, 0, 0));
2285           OutVals.push_back(Parts[i]);
2286         }
2287       }
2288     }
2289   }
2290 
2291   // Push in swifterror virtual register as the last element of Outs. This makes
2292   // sure swifterror virtual register will be returned in the swifterror
2293   // physical register.
2294   const Function *F = I.getParent()->getParent();
2295   if (TLI.supportSwiftError() &&
2296       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2297     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
2298     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2299     Flags.setSwiftError();
2300     Outs.push_back(ISD::OutputArg(
2301         Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)),
2302         /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0));
2303     // Create SDNode for the swifterror virtual register.
2304     OutVals.push_back(
2305         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
2306                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
2307                         EVT(TLI.getPointerTy(DL))));
2308   }
2309 
2310   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
2311   CallingConv::ID CallConv =
2312     DAG.getMachineFunction().getFunction().getCallingConv();
2313   Chain = DAG.getTargetLoweringInfo().LowerReturn(
2314       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2315 
2316   // Verify that the target's LowerReturn behaved as expected.
2317   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2318          "LowerReturn didn't return a valid chain!");
2319 
2320   // Update the DAG with the new chain value resulting from return lowering.
2321   DAG.setRoot(Chain);
2322 }
2323 
2324 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
2325 /// created for it, emit nodes to copy the value into the virtual
2326 /// registers.
2327 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
2328   // Skip empty types
2329   if (V->getType()->isEmptyTy())
2330     return;
2331 
2332   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
2333   if (VMI != FuncInfo.ValueMap.end()) {
2334     assert((!V->use_empty() || isa<CallBrInst>(V)) &&
2335            "Unused value assigned virtual registers!");
2336     CopyValueToVirtualRegister(V, VMI->second);
2337   }
2338 }
2339 
2340 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
2341 /// the current basic block, add it to ValueMap now so that we'll get a
2342 /// CopyTo/FromReg.
2343 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
2344   // No need to export constants.
2345   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2346 
2347   // Already exported?
2348   if (FuncInfo.isExportedInst(V)) return;
2349 
2350   Register Reg = FuncInfo.InitializeRegForValue(V);
2351   CopyValueToVirtualRegister(V, Reg);
2352 }
2353 
2354 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
2355                                                      const BasicBlock *FromBB) {
2356   // The operands of the setcc have to be in this block.  We don't know
2357   // how to export them from some other block.
2358   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2359     // Can export from current BB.
2360     if (VI->getParent() == FromBB)
2361       return true;
2362 
2363     // Is already exported, noop.
2364     return FuncInfo.isExportedInst(V);
2365   }
2366 
2367   // If this is an argument, we can export it if the BB is the entry block or
2368   // if it is already exported.
2369   if (isa<Argument>(V)) {
2370     if (FromBB->isEntryBlock())
2371       return true;
2372 
2373     // Otherwise, can only export this if it is already exported.
2374     return FuncInfo.isExportedInst(V);
2375   }
2376 
2377   // Otherwise, constants can always be exported.
2378   return true;
2379 }
2380 
2381 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2382 BranchProbability
2383 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2384                                         const MachineBasicBlock *Dst) const {
2385   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2386   const BasicBlock *SrcBB = Src->getBasicBlock();
2387   const BasicBlock *DstBB = Dst->getBasicBlock();
2388   if (!BPI) {
2389     // If BPI is not available, set the default probability as 1 / N, where N is
2390     // the number of successors.
2391     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2392     return BranchProbability(1, SuccSize);
2393   }
2394   return BPI->getEdgeProbability(SrcBB, DstBB);
2395 }
2396 
2397 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2398                                                MachineBasicBlock *Dst,
2399                                                BranchProbability Prob) {
2400   if (!FuncInfo.BPI)
2401     Src->addSuccessorWithoutProb(Dst);
2402   else {
2403     if (Prob.isUnknown())
2404       Prob = getEdgeProbability(Src, Dst);
2405     Src->addSuccessor(Dst, Prob);
2406   }
2407 }
2408 
2409 static bool InBlock(const Value *V, const BasicBlock *BB) {
2410   if (const Instruction *I = dyn_cast<Instruction>(V))
2411     return I->getParent() == BB;
2412   return true;
2413 }
2414 
2415 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2416 /// This function emits a branch and is used at the leaves of an OR or an
2417 /// AND operator tree.
2418 void
2419 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2420                                                   MachineBasicBlock *TBB,
2421                                                   MachineBasicBlock *FBB,
2422                                                   MachineBasicBlock *CurBB,
2423                                                   MachineBasicBlock *SwitchBB,
2424                                                   BranchProbability TProb,
2425                                                   BranchProbability FProb,
2426                                                   bool InvertCond) {
2427   const BasicBlock *BB = CurBB->getBasicBlock();
2428 
2429   // If the leaf of the tree is a comparison, merge the condition into
2430   // the caseblock.
2431   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2432     // The operands of the cmp have to be in this block.  We don't know
2433     // how to export them from some other block.  If this is the first block
2434     // of the sequence, no exporting is needed.
2435     if (CurBB == SwitchBB ||
2436         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2437          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2438       ISD::CondCode Condition;
2439       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2440         ICmpInst::Predicate Pred =
2441             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2442         Condition = getICmpCondCode(Pred);
2443       } else {
2444         const FCmpInst *FC = cast<FCmpInst>(Cond);
2445         FCmpInst::Predicate Pred =
2446             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2447         Condition = getFCmpCondCode(Pred);
2448         if (TM.Options.NoNaNsFPMath)
2449           Condition = getFCmpCodeWithoutNaN(Condition);
2450       }
2451 
2452       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2453                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2454       SL->SwitchCases.push_back(CB);
2455       return;
2456     }
2457   }
2458 
2459   // Create a CaseBlock record representing this branch.
2460   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2461   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2462                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2463   SL->SwitchCases.push_back(CB);
2464 }
2465 
2466 // Collect dependencies on V recursively. This is used for the cost analysis in
2467 // `shouldKeepJumpConditionsTogether`.
2468 static bool collectInstructionDeps(
2469     SmallMapVector<const Instruction *, bool, 8> *Deps, const Value *V,
2470     SmallMapVector<const Instruction *, bool, 8> *Necessary = nullptr,
2471     unsigned Depth = 0) {
2472   // Return false if we have an incomplete count.
2473   if (Depth >= SelectionDAG::MaxRecursionDepth)
2474     return false;
2475 
2476   auto *I = dyn_cast<Instruction>(V);
2477   if (I == nullptr)
2478     return true;
2479 
2480   if (Necessary != nullptr) {
2481     // This instruction is necessary for the other side of the condition so
2482     // don't count it.
2483     if (Necessary->contains(I))
2484       return true;
2485   }
2486 
2487   // Already added this dep.
2488   if (!Deps->try_emplace(I, false).second)
2489     return true;
2490 
2491   for (unsigned OpIdx = 0, E = I->getNumOperands(); OpIdx < E; ++OpIdx)
2492     if (!collectInstructionDeps(Deps, I->getOperand(OpIdx), Necessary,
2493                                 Depth + 1))
2494       return false;
2495   return true;
2496 }
2497 
2498 bool SelectionDAGBuilder::shouldKeepJumpConditionsTogether(
2499     const FunctionLoweringInfo &FuncInfo, const BranchInst &I,
2500     Instruction::BinaryOps Opc, const Value *Lhs, const Value *Rhs,
2501     TargetLoweringBase::CondMergingParams Params) const {
2502   if (I.getNumSuccessors() != 2)
2503     return false;
2504 
2505   if (!I.isConditional())
2506     return false;
2507 
2508   if (Params.BaseCost < 0)
2509     return false;
2510 
2511   // Baseline cost.
2512   InstructionCost CostThresh = Params.BaseCost;
2513 
2514   BranchProbabilityInfo *BPI = nullptr;
2515   if (Params.LikelyBias || Params.UnlikelyBias)
2516     BPI = FuncInfo.BPI;
2517   if (BPI != nullptr) {
2518     // See if we are either likely to get an early out or compute both lhs/rhs
2519     // of the condition.
2520     BasicBlock *IfFalse = I.getSuccessor(0);
2521     BasicBlock *IfTrue = I.getSuccessor(1);
2522 
2523     std::optional<bool> Likely;
2524     if (BPI->isEdgeHot(I.getParent(), IfTrue))
2525       Likely = true;
2526     else if (BPI->isEdgeHot(I.getParent(), IfFalse))
2527       Likely = false;
2528 
2529     if (Likely) {
2530       if (Opc == (*Likely ? Instruction::And : Instruction::Or))
2531         // Its likely we will have to compute both lhs and rhs of condition
2532         CostThresh += Params.LikelyBias;
2533       else {
2534         if (Params.UnlikelyBias < 0)
2535           return false;
2536         // Its likely we will get an early out.
2537         CostThresh -= Params.UnlikelyBias;
2538       }
2539     }
2540   }
2541 
2542   if (CostThresh <= 0)
2543     return false;
2544 
2545   // Collect "all" instructions that lhs condition is dependent on.
2546   // Use map for stable iteration (to avoid non-determanism of iteration of
2547   // SmallPtrSet). The `bool` value is just a dummy.
2548   SmallMapVector<const Instruction *, bool, 8> LhsDeps, RhsDeps;
2549   collectInstructionDeps(&LhsDeps, Lhs);
2550   // Collect "all" instructions that rhs condition is dependent on AND are
2551   // dependencies of lhs. This gives us an estimate on which instructions we
2552   // stand to save by splitting the condition.
2553   if (!collectInstructionDeps(&RhsDeps, Rhs, &LhsDeps))
2554     return false;
2555   // Add the compare instruction itself unless its a dependency on the LHS.
2556   if (const auto *RhsI = dyn_cast<Instruction>(Rhs))
2557     if (!LhsDeps.contains(RhsI))
2558       RhsDeps.try_emplace(RhsI, false);
2559 
2560   const auto &TLI = DAG.getTargetLoweringInfo();
2561   const auto &TTI =
2562       TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction());
2563 
2564   InstructionCost CostOfIncluding = 0;
2565   // See if this instruction will need to computed independently of whether RHS
2566   // is.
2567   Value *BrCond = I.getCondition();
2568   auto ShouldCountInsn = [&RhsDeps, &BrCond](const Instruction *Ins) {
2569     for (const auto *U : Ins->users()) {
2570       // If user is independent of RHS calculation we don't need to count it.
2571       if (auto *UIns = dyn_cast<Instruction>(U))
2572         if (UIns != BrCond && !RhsDeps.contains(UIns))
2573           return false;
2574     }
2575     return true;
2576   };
2577 
2578   // Prune instructions from RHS Deps that are dependencies of unrelated
2579   // instructions. The value (SelectionDAG::MaxRecursionDepth) is fairly
2580   // arbitrary and just meant to cap the how much time we spend in the pruning
2581   // loop. Its highly unlikely to come into affect.
2582   const unsigned MaxPruneIters = SelectionDAG::MaxRecursionDepth;
2583   // Stop after a certain point. No incorrectness from including too many
2584   // instructions.
2585   for (unsigned PruneIters = 0; PruneIters < MaxPruneIters; ++PruneIters) {
2586     const Instruction *ToDrop = nullptr;
2587     for (const auto &InsPair : RhsDeps) {
2588       if (!ShouldCountInsn(InsPair.first)) {
2589         ToDrop = InsPair.first;
2590         break;
2591       }
2592     }
2593     if (ToDrop == nullptr)
2594       break;
2595     RhsDeps.erase(ToDrop);
2596   }
2597 
2598   for (const auto &InsPair : RhsDeps) {
2599     // Finally accumulate latency that we can only attribute to computing the
2600     // RHS condition. Use latency because we are essentially trying to calculate
2601     // the cost of the dependency chain.
2602     // Possible TODO: We could try to estimate ILP and make this more precise.
2603     CostOfIncluding +=
2604         TTI.getInstructionCost(InsPair.first, TargetTransformInfo::TCK_Latency);
2605 
2606     if (CostOfIncluding > CostThresh)
2607       return false;
2608   }
2609   return true;
2610 }
2611 
2612 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2613                                                MachineBasicBlock *TBB,
2614                                                MachineBasicBlock *FBB,
2615                                                MachineBasicBlock *CurBB,
2616                                                MachineBasicBlock *SwitchBB,
2617                                                Instruction::BinaryOps Opc,
2618                                                BranchProbability TProb,
2619                                                BranchProbability FProb,
2620                                                bool InvertCond) {
2621   // Skip over not part of the tree and remember to invert op and operands at
2622   // next level.
2623   Value *NotCond;
2624   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2625       InBlock(NotCond, CurBB->getBasicBlock())) {
2626     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2627                          !InvertCond);
2628     return;
2629   }
2630 
2631   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2632   const Value *BOpOp0, *BOpOp1;
2633   // Compute the effective opcode for Cond, taking into account whether it needs
2634   // to be inverted, e.g.
2635   //   and (not (or A, B)), C
2636   // gets lowered as
2637   //   and (and (not A, not B), C)
2638   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
2639   if (BOp) {
2640     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2641                ? Instruction::And
2642                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2643                       ? Instruction::Or
2644                       : (Instruction::BinaryOps)0);
2645     if (InvertCond) {
2646       if (BOpc == Instruction::And)
2647         BOpc = Instruction::Or;
2648       else if (BOpc == Instruction::Or)
2649         BOpc = Instruction::And;
2650     }
2651   }
2652 
2653   // If this node is not part of the or/and tree, emit it as a branch.
2654   // Note that all nodes in the tree should have same opcode.
2655   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2656   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2657       !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2658       !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2659     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2660                                  TProb, FProb, InvertCond);
2661     return;
2662   }
2663 
2664   //  Create TmpBB after CurBB.
2665   MachineFunction::iterator BBI(CurBB);
2666   MachineFunction &MF = DAG.getMachineFunction();
2667   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2668   CurBB->getParent()->insert(++BBI, TmpBB);
2669 
2670   if (Opc == Instruction::Or) {
2671     // Codegen X | Y as:
2672     // BB1:
2673     //   jmp_if_X TBB
2674     //   jmp TmpBB
2675     // TmpBB:
2676     //   jmp_if_Y TBB
2677     //   jmp FBB
2678     //
2679 
2680     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2681     // The requirement is that
2682     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2683     //     = TrueProb for original BB.
2684     // Assuming the original probabilities are A and B, one choice is to set
2685     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2686     // A/(1+B) and 2B/(1+B). This choice assumes that
2687     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2688     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2689     // TmpBB, but the math is more complicated.
2690 
2691     auto NewTrueProb = TProb / 2;
2692     auto NewFalseProb = TProb / 2 + FProb;
2693     // Emit the LHS condition.
2694     FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2695                          NewFalseProb, InvertCond);
2696 
2697     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2698     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2699     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2700     // Emit the RHS condition into TmpBB.
2701     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2702                          Probs[1], InvertCond);
2703   } else {
2704     assert(Opc == Instruction::And && "Unknown merge op!");
2705     // Codegen X & Y as:
2706     // BB1:
2707     //   jmp_if_X TmpBB
2708     //   jmp FBB
2709     // TmpBB:
2710     //   jmp_if_Y TBB
2711     //   jmp FBB
2712     //
2713     //  This requires creation of TmpBB after CurBB.
2714 
2715     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2716     // The requirement is that
2717     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2718     //     = FalseProb for original BB.
2719     // Assuming the original probabilities are A and B, one choice is to set
2720     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2721     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2722     // TrueProb for BB1 * FalseProb for TmpBB.
2723 
2724     auto NewTrueProb = TProb + FProb / 2;
2725     auto NewFalseProb = FProb / 2;
2726     // Emit the LHS condition.
2727     FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2728                          NewFalseProb, InvertCond);
2729 
2730     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2731     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2732     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2733     // Emit the RHS condition into TmpBB.
2734     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2735                          Probs[1], InvertCond);
2736   }
2737 }
2738 
2739 /// If the set of cases should be emitted as a series of branches, return true.
2740 /// If we should emit this as a bunch of and/or'd together conditions, return
2741 /// false.
2742 bool
2743 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2744   if (Cases.size() != 2) return true;
2745 
2746   // If this is two comparisons of the same values or'd or and'd together, they
2747   // will get folded into a single comparison, so don't emit two blocks.
2748   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2749        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2750       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2751        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2752     return false;
2753   }
2754 
2755   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2756   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2757   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2758       Cases[0].CC == Cases[1].CC &&
2759       isa<Constant>(Cases[0].CmpRHS) &&
2760       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2761     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2762       return false;
2763     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2764       return false;
2765   }
2766 
2767   return true;
2768 }
2769 
2770 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2771   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2772 
2773   // Update machine-CFG edges.
2774   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2775 
2776   if (I.isUnconditional()) {
2777     // Update machine-CFG edges.
2778     BrMBB->addSuccessor(Succ0MBB);
2779 
2780     // If this is not a fall-through branch or optimizations are switched off,
2781     // emit the branch.
2782     if (Succ0MBB != NextBlock(BrMBB) ||
2783         TM.getOptLevel() == CodeGenOptLevel::None) {
2784       auto Br = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
2785                             getControlRoot(), DAG.getBasicBlock(Succ0MBB));
2786       setValue(&I, Br);
2787       DAG.setRoot(Br);
2788     }
2789 
2790     return;
2791   }
2792 
2793   // If this condition is one of the special cases we handle, do special stuff
2794   // now.
2795   const Value *CondVal = I.getCondition();
2796   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2797 
2798   // If this is a series of conditions that are or'd or and'd together, emit
2799   // this as a sequence of branches instead of setcc's with and/or operations.
2800   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2801   // unpredictable branches, and vector extracts because those jumps are likely
2802   // expensive for any target), this should improve performance.
2803   // For example, instead of something like:
2804   //     cmp A, B
2805   //     C = seteq
2806   //     cmp D, E
2807   //     F = setle
2808   //     or C, F
2809   //     jnz foo
2810   // Emit:
2811   //     cmp A, B
2812   //     je foo
2813   //     cmp D, E
2814   //     jle foo
2815   const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2816   if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2817       BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) {
2818     Value *Vec;
2819     const Value *BOp0, *BOp1;
2820     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
2821     if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2822       Opcode = Instruction::And;
2823     else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2824       Opcode = Instruction::Or;
2825 
2826     if (Opcode &&
2827         !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2828           match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value()))) &&
2829         !shouldKeepJumpConditionsTogether(
2830             FuncInfo, I, Opcode, BOp0, BOp1,
2831             DAG.getTargetLoweringInfo().getJumpConditionMergingParams(
2832                 Opcode, BOp0, BOp1))) {
2833       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2834                            getEdgeProbability(BrMBB, Succ0MBB),
2835                            getEdgeProbability(BrMBB, Succ1MBB),
2836                            /*InvertCond=*/false);
2837       // If the compares in later blocks need to use values not currently
2838       // exported from this block, export them now.  This block should always
2839       // be the first entry.
2840       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2841 
2842       // Allow some cases to be rejected.
2843       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2844         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2845           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2846           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2847         }
2848 
2849         // Emit the branch for this block.
2850         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2851         SL->SwitchCases.erase(SL->SwitchCases.begin());
2852         return;
2853       }
2854 
2855       // Okay, we decided not to do this, remove any inserted MBB's and clear
2856       // SwitchCases.
2857       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2858         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2859 
2860       SL->SwitchCases.clear();
2861     }
2862   }
2863 
2864   // Create a CaseBlock record representing this branch.
2865   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2866                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2867 
2868   // Use visitSwitchCase to actually insert the fast branch sequence for this
2869   // cond branch.
2870   visitSwitchCase(CB, BrMBB);
2871 }
2872 
2873 /// visitSwitchCase - Emits the necessary code to represent a single node in
2874 /// the binary search tree resulting from lowering a switch instruction.
2875 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2876                                           MachineBasicBlock *SwitchBB) {
2877   SDValue Cond;
2878   SDValue CondLHS = getValue(CB.CmpLHS);
2879   SDLoc dl = CB.DL;
2880 
2881   if (CB.CC == ISD::SETTRUE) {
2882     // Branch or fall through to TrueBB.
2883     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2884     SwitchBB->normalizeSuccProbs();
2885     if (CB.TrueBB != NextBlock(SwitchBB)) {
2886       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2887                               DAG.getBasicBlock(CB.TrueBB)));
2888     }
2889     return;
2890   }
2891 
2892   auto &TLI = DAG.getTargetLoweringInfo();
2893   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2894 
2895   // Build the setcc now.
2896   if (!CB.CmpMHS) {
2897     // Fold "(X == true)" to X and "(X == false)" to !X to
2898     // handle common cases produced by branch lowering.
2899     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2900         CB.CC == ISD::SETEQ)
2901       Cond = CondLHS;
2902     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2903              CB.CC == ISD::SETEQ) {
2904       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2905       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2906     } else {
2907       SDValue CondRHS = getValue(CB.CmpRHS);
2908 
2909       // If a pointer's DAG type is larger than its memory type then the DAG
2910       // values are zero-extended. This breaks signed comparisons so truncate
2911       // back to the underlying type before doing the compare.
2912       if (CondLHS.getValueType() != MemVT) {
2913         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2914         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2915       }
2916       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2917     }
2918   } else {
2919     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2920 
2921     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2922     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2923 
2924     SDValue CmpOp = getValue(CB.CmpMHS);
2925     EVT VT = CmpOp.getValueType();
2926 
2927     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2928       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2929                           ISD::SETLE);
2930     } else {
2931       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2932                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2933       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2934                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2935     }
2936   }
2937 
2938   // Update successor info
2939   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2940   // TrueBB and FalseBB are always different unless the incoming IR is
2941   // degenerate. This only happens when running llc on weird IR.
2942   if (CB.TrueBB != CB.FalseBB)
2943     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2944   SwitchBB->normalizeSuccProbs();
2945 
2946   // If the lhs block is the next block, invert the condition so that we can
2947   // fall through to the lhs instead of the rhs block.
2948   if (CB.TrueBB == NextBlock(SwitchBB)) {
2949     std::swap(CB.TrueBB, CB.FalseBB);
2950     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2951     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2952   }
2953 
2954   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2955                                MVT::Other, getControlRoot(), Cond,
2956                                DAG.getBasicBlock(CB.TrueBB));
2957 
2958   setValue(CurInst, BrCond);
2959 
2960   // Insert the false branch. Do this even if it's a fall through branch,
2961   // this makes it easier to do DAG optimizations which require inverting
2962   // the branch condition.
2963   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2964                        DAG.getBasicBlock(CB.FalseBB));
2965 
2966   DAG.setRoot(BrCond);
2967 }
2968 
2969 /// visitJumpTable - Emit JumpTable node in the current MBB
2970 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2971   // Emit the code for the jump table
2972   assert(JT.SL && "Should set SDLoc for SelectionDAG!");
2973   assert(JT.Reg != -1U && "Should lower JT Header first!");
2974   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2975   SDValue Index = DAG.getCopyFromReg(getControlRoot(), *JT.SL, JT.Reg, PTy);
2976   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2977   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, *JT.SL, MVT::Other,
2978                                     Index.getValue(1), Table, Index);
2979   DAG.setRoot(BrJumpTable);
2980 }
2981 
2982 /// visitJumpTableHeader - This function emits necessary code to produce index
2983 /// in the JumpTable from switch case.
2984 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2985                                                JumpTableHeader &JTH,
2986                                                MachineBasicBlock *SwitchBB) {
2987   assert(JT.SL && "Should set SDLoc for SelectionDAG!");
2988   const SDLoc &dl = *JT.SL;
2989 
2990   // Subtract the lowest switch case value from the value being switched on.
2991   SDValue SwitchOp = getValue(JTH.SValue);
2992   EVT VT = SwitchOp.getValueType();
2993   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2994                             DAG.getConstant(JTH.First, dl, VT));
2995 
2996   // The SDNode we just created, which holds the value being switched on minus
2997   // the smallest case value, needs to be copied to a virtual register so it
2998   // can be used as an index into the jump table in a subsequent basic block.
2999   // This value may be smaller or larger than the target's pointer type, and
3000   // therefore require extension or truncating.
3001   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3002   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
3003 
3004   unsigned JumpTableReg =
3005       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
3006   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
3007                                     JumpTableReg, SwitchOp);
3008   JT.Reg = JumpTableReg;
3009 
3010   if (!JTH.FallthroughUnreachable) {
3011     // Emit the range check for the jump table, and branch to the default block
3012     // for the switch statement if the value being switched on exceeds the
3013     // largest case in the switch.
3014     SDValue CMP = DAG.getSetCC(
3015         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
3016                                    Sub.getValueType()),
3017         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
3018 
3019     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
3020                                  MVT::Other, CopyTo, CMP,
3021                                  DAG.getBasicBlock(JT.Default));
3022 
3023     // Avoid emitting unnecessary branches to the next block.
3024     if (JT.MBB != NextBlock(SwitchBB))
3025       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
3026                            DAG.getBasicBlock(JT.MBB));
3027 
3028     DAG.setRoot(BrCond);
3029   } else {
3030     // Avoid emitting unnecessary branches to the next block.
3031     if (JT.MBB != NextBlock(SwitchBB))
3032       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
3033                               DAG.getBasicBlock(JT.MBB)));
3034     else
3035       DAG.setRoot(CopyTo);
3036   }
3037 }
3038 
3039 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
3040 /// variable if there exists one.
3041 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
3042                                  SDValue &Chain) {
3043   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3044   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
3045   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
3046   MachineFunction &MF = DAG.getMachineFunction();
3047   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
3048   MachineSDNode *Node =
3049       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
3050   if (Global) {
3051     MachinePointerInfo MPInfo(Global);
3052     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
3053                  MachineMemOperand::MODereferenceable;
3054     MachineMemOperand *MemRef = MF.getMachineMemOperand(
3055         MPInfo, Flags, LocationSize::precise(PtrTy.getSizeInBits() / 8),
3056         DAG.getEVTAlign(PtrTy));
3057     DAG.setNodeMemRefs(Node, {MemRef});
3058   }
3059   if (PtrTy != PtrMemTy)
3060     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
3061   return SDValue(Node, 0);
3062 }
3063 
3064 /// Codegen a new tail for a stack protector check ParentMBB which has had its
3065 /// tail spliced into a stack protector check success bb.
3066 ///
3067 /// For a high level explanation of how this fits into the stack protector
3068 /// generation see the comment on the declaration of class
3069 /// StackProtectorDescriptor.
3070 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
3071                                                   MachineBasicBlock *ParentBB) {
3072 
3073   // First create the loads to the guard/stack slot for the comparison.
3074   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3075   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
3076   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
3077 
3078   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
3079   int FI = MFI.getStackProtectorIndex();
3080 
3081   SDValue Guard;
3082   SDLoc dl = getCurSDLoc();
3083   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
3084   const Module &M = *ParentBB->getParent()->getFunction().getParent();
3085   Align Align =
3086       DAG.getDataLayout().getPrefTypeAlign(PointerType::get(M.getContext(), 0));
3087 
3088   // Generate code to load the content of the guard slot.
3089   SDValue GuardVal = DAG.getLoad(
3090       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
3091       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
3092       MachineMemOperand::MOVolatile);
3093 
3094   if (TLI.useStackGuardXorFP())
3095     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
3096 
3097   // Retrieve guard check function, nullptr if instrumentation is inlined.
3098   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
3099     // The target provides a guard check function to validate the guard value.
3100     // Generate a call to that function with the content of the guard slot as
3101     // argument.
3102     FunctionType *FnTy = GuardCheckFn->getFunctionType();
3103     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
3104 
3105     TargetLowering::ArgListTy Args;
3106     TargetLowering::ArgListEntry Entry;
3107     Entry.Node = GuardVal;
3108     Entry.Ty = FnTy->getParamType(0);
3109     if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
3110       Entry.IsInReg = true;
3111     Args.push_back(Entry);
3112 
3113     TargetLowering::CallLoweringInfo CLI(DAG);
3114     CLI.setDebugLoc(getCurSDLoc())
3115         .setChain(DAG.getEntryNode())
3116         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
3117                    getValue(GuardCheckFn), std::move(Args));
3118 
3119     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
3120     DAG.setRoot(Result.second);
3121     return;
3122   }
3123 
3124   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
3125   // Otherwise, emit a volatile load to retrieve the stack guard value.
3126   SDValue Chain = DAG.getEntryNode();
3127   if (TLI.useLoadStackGuardNode()) {
3128     Guard = getLoadStackGuard(DAG, dl, Chain);
3129   } else {
3130     const Value *IRGuard = TLI.getSDagStackGuard(M);
3131     SDValue GuardPtr = getValue(IRGuard);
3132 
3133     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
3134                         MachinePointerInfo(IRGuard, 0), Align,
3135                         MachineMemOperand::MOVolatile);
3136   }
3137 
3138   // Perform the comparison via a getsetcc.
3139   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
3140                                                         *DAG.getContext(),
3141                                                         Guard.getValueType()),
3142                              Guard, GuardVal, ISD::SETNE);
3143 
3144   // If the guard/stackslot do not equal, branch to failure MBB.
3145   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
3146                                MVT::Other, GuardVal.getOperand(0),
3147                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
3148   // Otherwise branch to success MBB.
3149   SDValue Br = DAG.getNode(ISD::BR, dl,
3150                            MVT::Other, BrCond,
3151                            DAG.getBasicBlock(SPD.getSuccessMBB()));
3152 
3153   DAG.setRoot(Br);
3154 }
3155 
3156 /// Codegen the failure basic block for a stack protector check.
3157 ///
3158 /// A failure stack protector machine basic block consists simply of a call to
3159 /// __stack_chk_fail().
3160 ///
3161 /// For a high level explanation of how this fits into the stack protector
3162 /// generation see the comment on the declaration of class
3163 /// StackProtectorDescriptor.
3164 void
3165 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
3166   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3167   TargetLowering::MakeLibCallOptions CallOptions;
3168   CallOptions.setDiscardResult(true);
3169   SDValue Chain =
3170       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
3171                       std::nullopt, CallOptions, getCurSDLoc())
3172           .second;
3173   // On PS4/PS5, the "return address" must still be within the calling
3174   // function, even if it's at the very end, so emit an explicit TRAP here.
3175   // Passing 'true' for doesNotReturn above won't generate the trap for us.
3176   if (TM.getTargetTriple().isPS())
3177     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
3178   // WebAssembly needs an unreachable instruction after a non-returning call,
3179   // because the function return type can be different from __stack_chk_fail's
3180   // return type (void).
3181   if (TM.getTargetTriple().isWasm())
3182     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
3183 
3184   DAG.setRoot(Chain);
3185 }
3186 
3187 /// visitBitTestHeader - This function emits necessary code to produce value
3188 /// suitable for "bit tests"
3189 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
3190                                              MachineBasicBlock *SwitchBB) {
3191   SDLoc dl = getCurSDLoc();
3192 
3193   // Subtract the minimum value.
3194   SDValue SwitchOp = getValue(B.SValue);
3195   EVT VT = SwitchOp.getValueType();
3196   SDValue RangeSub =
3197       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
3198 
3199   // Determine the type of the test operands.
3200   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3201   bool UsePtrType = false;
3202   if (!TLI.isTypeLegal(VT)) {
3203     UsePtrType = true;
3204   } else {
3205     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
3206       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
3207         // Switch table case range are encoded into series of masks.
3208         // Just use pointer type, it's guaranteed to fit.
3209         UsePtrType = true;
3210         break;
3211       }
3212   }
3213   SDValue Sub = RangeSub;
3214   if (UsePtrType) {
3215     VT = TLI.getPointerTy(DAG.getDataLayout());
3216     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
3217   }
3218 
3219   B.RegVT = VT.getSimpleVT();
3220   B.Reg = FuncInfo.CreateReg(B.RegVT);
3221   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
3222 
3223   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
3224 
3225   if (!B.FallthroughUnreachable)
3226     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
3227   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
3228   SwitchBB->normalizeSuccProbs();
3229 
3230   SDValue Root = CopyTo;
3231   if (!B.FallthroughUnreachable) {
3232     // Conditional branch to the default block.
3233     SDValue RangeCmp = DAG.getSetCC(dl,
3234         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
3235                                RangeSub.getValueType()),
3236         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
3237         ISD::SETUGT);
3238 
3239     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
3240                        DAG.getBasicBlock(B.Default));
3241   }
3242 
3243   // Avoid emitting unnecessary branches to the next block.
3244   if (MBB != NextBlock(SwitchBB))
3245     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
3246 
3247   DAG.setRoot(Root);
3248 }
3249 
3250 /// visitBitTestCase - this function produces one "bit test"
3251 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
3252                                            MachineBasicBlock* NextMBB,
3253                                            BranchProbability BranchProbToNext,
3254                                            unsigned Reg,
3255                                            BitTestCase &B,
3256                                            MachineBasicBlock *SwitchBB) {
3257   SDLoc dl = getCurSDLoc();
3258   MVT VT = BB.RegVT;
3259   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
3260   SDValue Cmp;
3261   unsigned PopCount = llvm::popcount(B.Mask);
3262   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3263   if (PopCount == 1) {
3264     // Testing for a single bit; just compare the shift count with what it
3265     // would need to be to shift a 1 bit in that position.
3266     Cmp = DAG.getSetCC(
3267         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3268         ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT),
3269         ISD::SETEQ);
3270   } else if (PopCount == BB.Range) {
3271     // There is only one zero bit in the range, test for it directly.
3272     Cmp = DAG.getSetCC(
3273         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3274         ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE);
3275   } else {
3276     // Make desired shift
3277     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
3278                                     DAG.getConstant(1, dl, VT), ShiftOp);
3279 
3280     // Emit bit tests and jumps
3281     SDValue AndOp = DAG.getNode(ISD::AND, dl,
3282                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
3283     Cmp = DAG.getSetCC(
3284         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3285         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
3286   }
3287 
3288   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
3289   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
3290   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
3291   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
3292   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
3293   // one as they are relative probabilities (and thus work more like weights),
3294   // and hence we need to normalize them to let the sum of them become one.
3295   SwitchBB->normalizeSuccProbs();
3296 
3297   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
3298                               MVT::Other, getControlRoot(),
3299                               Cmp, DAG.getBasicBlock(B.TargetBB));
3300 
3301   // Avoid emitting unnecessary branches to the next block.
3302   if (NextMBB != NextBlock(SwitchBB))
3303     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
3304                         DAG.getBasicBlock(NextMBB));
3305 
3306   DAG.setRoot(BrAnd);
3307 }
3308 
3309 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
3310   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
3311 
3312   // Retrieve successors. Look through artificial IR level blocks like
3313   // catchswitch for successors.
3314   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
3315   const BasicBlock *EHPadBB = I.getSuccessor(1);
3316   MachineBasicBlock *EHPadMBB = FuncInfo.MBBMap[EHPadBB];
3317 
3318   // Deopt and ptrauth bundles are lowered in helper functions, and we don't
3319   // have to do anything here to lower funclet bundles.
3320   assert(!I.hasOperandBundlesOtherThan(
3321              {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition,
3322               LLVMContext::OB_gc_live, LLVMContext::OB_funclet,
3323               LLVMContext::OB_cfguardtarget, LLVMContext::OB_ptrauth,
3324               LLVMContext::OB_clang_arc_attachedcall}) &&
3325          "Cannot lower invokes with arbitrary operand bundles yet!");
3326 
3327   const Value *Callee(I.getCalledOperand());
3328   const Function *Fn = dyn_cast<Function>(Callee);
3329   if (isa<InlineAsm>(Callee))
3330     visitInlineAsm(I, EHPadBB);
3331   else if (Fn && Fn->isIntrinsic()) {
3332     switch (Fn->getIntrinsicID()) {
3333     default:
3334       llvm_unreachable("Cannot invoke this intrinsic");
3335     case Intrinsic::donothing:
3336       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
3337     case Intrinsic::seh_try_begin:
3338     case Intrinsic::seh_scope_begin:
3339     case Intrinsic::seh_try_end:
3340     case Intrinsic::seh_scope_end:
3341       if (EHPadMBB)
3342           // a block referenced by EH table
3343           // so dtor-funclet not removed by opts
3344           EHPadMBB->setMachineBlockAddressTaken();
3345       break;
3346     case Intrinsic::experimental_patchpoint_void:
3347     case Intrinsic::experimental_patchpoint:
3348       visitPatchpoint(I, EHPadBB);
3349       break;
3350     case Intrinsic::experimental_gc_statepoint:
3351       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
3352       break;
3353     case Intrinsic::wasm_rethrow: {
3354       // This is usually done in visitTargetIntrinsic, but this intrinsic is
3355       // special because it can be invoked, so we manually lower it to a DAG
3356       // node here.
3357       SmallVector<SDValue, 8> Ops;
3358       Ops.push_back(getRoot()); // inchain
3359       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3360       Ops.push_back(
3361           DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
3362                                 TLI.getPointerTy(DAG.getDataLayout())));
3363       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
3364       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
3365       break;
3366     }
3367     }
3368   } else if (I.hasDeoptState()) {
3369     // Currently we do not lower any intrinsic calls with deopt operand bundles.
3370     // Eventually we will support lowering the @llvm.experimental.deoptimize
3371     // intrinsic, and right now there are no plans to support other intrinsics
3372     // with deopt state.
3373     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
3374   } else if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) {
3375     LowerCallSiteWithPtrAuthBundle(cast<CallBase>(I), EHPadBB);
3376   } else {
3377     LowerCallTo(I, getValue(Callee), false, false, EHPadBB);
3378   }
3379 
3380   // If the value of the invoke is used outside of its defining block, make it
3381   // available as a virtual register.
3382   // We already took care of the exported value for the statepoint instruction
3383   // during call to the LowerStatepoint.
3384   if (!isa<GCStatepointInst>(I)) {
3385     CopyToExportRegsIfNeeded(&I);
3386   }
3387 
3388   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
3389   BranchProbabilityInfo *BPI = FuncInfo.BPI;
3390   BranchProbability EHPadBBProb =
3391       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
3392           : BranchProbability::getZero();
3393   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
3394 
3395   // Update successor info.
3396   addSuccessorWithProb(InvokeMBB, Return);
3397   for (auto &UnwindDest : UnwindDests) {
3398     UnwindDest.first->setIsEHPad();
3399     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
3400   }
3401   InvokeMBB->normalizeSuccProbs();
3402 
3403   // Drop into normal successor.
3404   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
3405                           DAG.getBasicBlock(Return)));
3406 }
3407 
3408 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
3409   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
3410 
3411   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
3412   // have to do anything here to lower funclet bundles.
3413   assert(!I.hasOperandBundlesOtherThan(
3414              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
3415          "Cannot lower callbrs with arbitrary operand bundles yet!");
3416 
3417   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
3418   visitInlineAsm(I);
3419   CopyToExportRegsIfNeeded(&I);
3420 
3421   // Retrieve successors.
3422   SmallPtrSet<BasicBlock *, 8> Dests;
3423   Dests.insert(I.getDefaultDest());
3424   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
3425 
3426   // Update successor info.
3427   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
3428   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
3429     BasicBlock *Dest = I.getIndirectDest(i);
3430     MachineBasicBlock *Target = FuncInfo.MBBMap[Dest];
3431     Target->setIsInlineAsmBrIndirectTarget();
3432     Target->setMachineBlockAddressTaken();
3433     Target->setLabelMustBeEmitted();
3434     // Don't add duplicate machine successors.
3435     if (Dests.insert(Dest).second)
3436       addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
3437   }
3438   CallBrMBB->normalizeSuccProbs();
3439 
3440   // Drop into default successor.
3441   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
3442                           MVT::Other, getControlRoot(),
3443                           DAG.getBasicBlock(Return)));
3444 }
3445 
3446 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
3447   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
3448 }
3449 
3450 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
3451   assert(FuncInfo.MBB->isEHPad() &&
3452          "Call to landingpad not in landing pad!");
3453 
3454   // If there aren't registers to copy the values into (e.g., during SjLj
3455   // exceptions), then don't bother to create these DAG nodes.
3456   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3457   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
3458   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
3459       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
3460     return;
3461 
3462   // If landingpad's return type is token type, we don't create DAG nodes
3463   // for its exception pointer and selector value. The extraction of exception
3464   // pointer or selector value from token type landingpads is not currently
3465   // supported.
3466   if (LP.getType()->isTokenTy())
3467     return;
3468 
3469   SmallVector<EVT, 2> ValueVTs;
3470   SDLoc dl = getCurSDLoc();
3471   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
3472   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
3473 
3474   // Get the two live-in registers as SDValues. The physregs have already been
3475   // copied into virtual registers.
3476   SDValue Ops[2];
3477   if (FuncInfo.ExceptionPointerVirtReg) {
3478     Ops[0] = DAG.getZExtOrTrunc(
3479         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3480                            FuncInfo.ExceptionPointerVirtReg,
3481                            TLI.getPointerTy(DAG.getDataLayout())),
3482         dl, ValueVTs[0]);
3483   } else {
3484     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
3485   }
3486   Ops[1] = DAG.getZExtOrTrunc(
3487       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3488                          FuncInfo.ExceptionSelectorVirtReg,
3489                          TLI.getPointerTy(DAG.getDataLayout())),
3490       dl, ValueVTs[1]);
3491 
3492   // Merge into one.
3493   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3494                             DAG.getVTList(ValueVTs), Ops);
3495   setValue(&LP, Res);
3496 }
3497 
3498 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
3499                                            MachineBasicBlock *Last) {
3500   // Update JTCases.
3501   for (JumpTableBlock &JTB : SL->JTCases)
3502     if (JTB.first.HeaderBB == First)
3503       JTB.first.HeaderBB = Last;
3504 
3505   // Update BitTestCases.
3506   for (BitTestBlock &BTB : SL->BitTestCases)
3507     if (BTB.Parent == First)
3508       BTB.Parent = Last;
3509 }
3510 
3511 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3512   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3513 
3514   // Update machine-CFG edges with unique successors.
3515   SmallSet<BasicBlock*, 32> Done;
3516   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3517     BasicBlock *BB = I.getSuccessor(i);
3518     bool Inserted = Done.insert(BB).second;
3519     if (!Inserted)
3520         continue;
3521 
3522     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
3523     addSuccessorWithProb(IndirectBrMBB, Succ);
3524   }
3525   IndirectBrMBB->normalizeSuccProbs();
3526 
3527   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
3528                           MVT::Other, getControlRoot(),
3529                           getValue(I.getAddress())));
3530 }
3531 
3532 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3533   if (!DAG.getTarget().Options.TrapUnreachable)
3534     return;
3535 
3536   // We may be able to ignore unreachable behind a noreturn call.
3537   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
3538     if (const CallInst *Call = dyn_cast_or_null<CallInst>(I.getPrevNode())) {
3539       if (Call->doesNotReturn())
3540         return;
3541     }
3542   }
3543 
3544   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3545 }
3546 
3547 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3548   SDNodeFlags Flags;
3549   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3550     Flags.copyFMF(*FPOp);
3551 
3552   SDValue Op = getValue(I.getOperand(0));
3553   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3554                                     Op, Flags);
3555   setValue(&I, UnNodeValue);
3556 }
3557 
3558 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3559   SDNodeFlags Flags;
3560   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3561     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3562     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3563   }
3564   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3565     Flags.setExact(ExactOp->isExact());
3566   if (auto *DisjointOp = dyn_cast<PossiblyDisjointInst>(&I))
3567     Flags.setDisjoint(DisjointOp->isDisjoint());
3568   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3569     Flags.copyFMF(*FPOp);
3570 
3571   SDValue Op1 = getValue(I.getOperand(0));
3572   SDValue Op2 = getValue(I.getOperand(1));
3573   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3574                                      Op1, Op2, Flags);
3575   setValue(&I, BinNodeValue);
3576 }
3577 
3578 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3579   SDValue Op1 = getValue(I.getOperand(0));
3580   SDValue Op2 = getValue(I.getOperand(1));
3581 
3582   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3583       Op1.getValueType(), DAG.getDataLayout());
3584 
3585   // Coerce the shift amount to the right type if we can. This exposes the
3586   // truncate or zext to optimization early.
3587   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3588     assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) &&
3589            "Unexpected shift type");
3590     Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy);
3591   }
3592 
3593   bool nuw = false;
3594   bool nsw = false;
3595   bool exact = false;
3596 
3597   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3598 
3599     if (const OverflowingBinaryOperator *OFBinOp =
3600             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3601       nuw = OFBinOp->hasNoUnsignedWrap();
3602       nsw = OFBinOp->hasNoSignedWrap();
3603     }
3604     if (const PossiblyExactOperator *ExactOp =
3605             dyn_cast<const PossiblyExactOperator>(&I))
3606       exact = ExactOp->isExact();
3607   }
3608   SDNodeFlags Flags;
3609   Flags.setExact(exact);
3610   Flags.setNoSignedWrap(nsw);
3611   Flags.setNoUnsignedWrap(nuw);
3612   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3613                             Flags);
3614   setValue(&I, Res);
3615 }
3616 
3617 void SelectionDAGBuilder::visitSDiv(const User &I) {
3618   SDValue Op1 = getValue(I.getOperand(0));
3619   SDValue Op2 = getValue(I.getOperand(1));
3620 
3621   SDNodeFlags Flags;
3622   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3623                  cast<PossiblyExactOperator>(&I)->isExact());
3624   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3625                            Op2, Flags));
3626 }
3627 
3628 void SelectionDAGBuilder::visitICmp(const ICmpInst &I) {
3629   ICmpInst::Predicate predicate = I.getPredicate();
3630   SDValue Op1 = getValue(I.getOperand(0));
3631   SDValue Op2 = getValue(I.getOperand(1));
3632   ISD::CondCode Opcode = getICmpCondCode(predicate);
3633 
3634   auto &TLI = DAG.getTargetLoweringInfo();
3635   EVT MemVT =
3636       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3637 
3638   // If a pointer's DAG type is larger than its memory type then the DAG values
3639   // are zero-extended. This breaks signed comparisons so truncate back to the
3640   // underlying type before doing the compare.
3641   if (Op1.getValueType() != MemVT) {
3642     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3643     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3644   }
3645 
3646   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3647                                                         I.getType());
3648   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3649 }
3650 
3651 void SelectionDAGBuilder::visitFCmp(const FCmpInst &I) {
3652   FCmpInst::Predicate predicate = I.getPredicate();
3653   SDValue Op1 = getValue(I.getOperand(0));
3654   SDValue Op2 = getValue(I.getOperand(1));
3655 
3656   ISD::CondCode Condition = getFCmpCondCode(predicate);
3657   auto *FPMO = cast<FPMathOperator>(&I);
3658   if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3659     Condition = getFCmpCodeWithoutNaN(Condition);
3660 
3661   SDNodeFlags Flags;
3662   Flags.copyFMF(*FPMO);
3663   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3664 
3665   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3666                                                         I.getType());
3667   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3668 }
3669 
3670 // Check if the condition of the select has one use or two users that are both
3671 // selects with the same condition.
3672 static bool hasOnlySelectUsers(const Value *Cond) {
3673   return llvm::all_of(Cond->users(), [](const Value *V) {
3674     return isa<SelectInst>(V);
3675   });
3676 }
3677 
3678 void SelectionDAGBuilder::visitSelect(const User &I) {
3679   SmallVector<EVT, 4> ValueVTs;
3680   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3681                   ValueVTs);
3682   unsigned NumValues = ValueVTs.size();
3683   if (NumValues == 0) return;
3684 
3685   SmallVector<SDValue, 4> Values(NumValues);
3686   SDValue Cond     = getValue(I.getOperand(0));
3687   SDValue LHSVal   = getValue(I.getOperand(1));
3688   SDValue RHSVal   = getValue(I.getOperand(2));
3689   SmallVector<SDValue, 1> BaseOps(1, Cond);
3690   ISD::NodeType OpCode =
3691       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3692 
3693   bool IsUnaryAbs = false;
3694   bool Negate = false;
3695 
3696   SDNodeFlags Flags;
3697   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3698     Flags.copyFMF(*FPOp);
3699 
3700   Flags.setUnpredictable(
3701       cast<SelectInst>(I).getMetadata(LLVMContext::MD_unpredictable));
3702 
3703   // Min/max matching is only viable if all output VTs are the same.
3704   if (all_equal(ValueVTs)) {
3705     EVT VT = ValueVTs[0];
3706     LLVMContext &Ctx = *DAG.getContext();
3707     auto &TLI = DAG.getTargetLoweringInfo();
3708 
3709     // We care about the legality of the operation after it has been type
3710     // legalized.
3711     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3712       VT = TLI.getTypeToTransformTo(Ctx, VT);
3713 
3714     // If the vselect is legal, assume we want to leave this as a vector setcc +
3715     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3716     // min/max is legal on the scalar type.
3717     bool UseScalarMinMax = VT.isVector() &&
3718       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3719 
3720     // ValueTracking's select pattern matching does not account for -0.0,
3721     // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that
3722     // -0.0 is less than +0.0.
3723     Value *LHS, *RHS;
3724     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3725     ISD::NodeType Opc = ISD::DELETED_NODE;
3726     switch (SPR.Flavor) {
3727     case SPF_UMAX:    Opc = ISD::UMAX; break;
3728     case SPF_UMIN:    Opc = ISD::UMIN; break;
3729     case SPF_SMAX:    Opc = ISD::SMAX; break;
3730     case SPF_SMIN:    Opc = ISD::SMIN; break;
3731     case SPF_FMINNUM:
3732       switch (SPR.NaNBehavior) {
3733       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3734       case SPNB_RETURNS_NAN: break;
3735       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3736       case SPNB_RETURNS_ANY:
3737         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) ||
3738             (UseScalarMinMax &&
3739              TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType())))
3740           Opc = ISD::FMINNUM;
3741         break;
3742       }
3743       break;
3744     case SPF_FMAXNUM:
3745       switch (SPR.NaNBehavior) {
3746       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3747       case SPNB_RETURNS_NAN: break;
3748       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3749       case SPNB_RETURNS_ANY:
3750         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) ||
3751             (UseScalarMinMax &&
3752              TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType())))
3753           Opc = ISD::FMAXNUM;
3754         break;
3755       }
3756       break;
3757     case SPF_NABS:
3758       Negate = true;
3759       [[fallthrough]];
3760     case SPF_ABS:
3761       IsUnaryAbs = true;
3762       Opc = ISD::ABS;
3763       break;
3764     default: break;
3765     }
3766 
3767     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3768         (TLI.isOperationLegalOrCustomOrPromote(Opc, VT) ||
3769          (UseScalarMinMax &&
3770           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3771         // If the underlying comparison instruction is used by any other
3772         // instruction, the consumed instructions won't be destroyed, so it is
3773         // not profitable to convert to a min/max.
3774         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3775       OpCode = Opc;
3776       LHSVal = getValue(LHS);
3777       RHSVal = getValue(RHS);
3778       BaseOps.clear();
3779     }
3780 
3781     if (IsUnaryAbs) {
3782       OpCode = Opc;
3783       LHSVal = getValue(LHS);
3784       BaseOps.clear();
3785     }
3786   }
3787 
3788   if (IsUnaryAbs) {
3789     for (unsigned i = 0; i != NumValues; ++i) {
3790       SDLoc dl = getCurSDLoc();
3791       EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3792       Values[i] =
3793           DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3794       if (Negate)
3795         Values[i] = DAG.getNegative(Values[i], dl, VT);
3796     }
3797   } else {
3798     for (unsigned i = 0; i != NumValues; ++i) {
3799       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3800       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3801       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3802       Values[i] = DAG.getNode(
3803           OpCode, getCurSDLoc(),
3804           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3805     }
3806   }
3807 
3808   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3809                            DAG.getVTList(ValueVTs), Values));
3810 }
3811 
3812 void SelectionDAGBuilder::visitTrunc(const User &I) {
3813   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3814   SDValue N = getValue(I.getOperand(0));
3815   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3816                                                         I.getType());
3817   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3818 }
3819 
3820 void SelectionDAGBuilder::visitZExt(const User &I) {
3821   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3822   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3823   SDValue N = getValue(I.getOperand(0));
3824   auto &TLI = DAG.getTargetLoweringInfo();
3825   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3826 
3827   SDNodeFlags Flags;
3828   if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I))
3829     Flags.setNonNeg(PNI->hasNonNeg());
3830 
3831   // Eagerly use nonneg information to canonicalize towards sign_extend if
3832   // that is the target's preference.
3833   // TODO: Let the target do this later.
3834   if (Flags.hasNonNeg() &&
3835       TLI.isSExtCheaperThanZExt(N.getValueType(), DestVT)) {
3836     setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3837     return;
3838   }
3839 
3840   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N, Flags));
3841 }
3842 
3843 void SelectionDAGBuilder::visitSExt(const User &I) {
3844   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3845   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3846   SDValue N = getValue(I.getOperand(0));
3847   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3848                                                         I.getType());
3849   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3850 }
3851 
3852 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3853   // FPTrunc is never a no-op cast, no need to check
3854   SDValue N = getValue(I.getOperand(0));
3855   SDLoc dl = getCurSDLoc();
3856   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3857   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3858   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3859                            DAG.getTargetConstant(
3860                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3861 }
3862 
3863 void SelectionDAGBuilder::visitFPExt(const User &I) {
3864   // FPExt is never a no-op cast, no need to check
3865   SDValue N = getValue(I.getOperand(0));
3866   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3867                                                         I.getType());
3868   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3869 }
3870 
3871 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3872   // FPToUI is never a no-op cast, no need to check
3873   SDValue N = getValue(I.getOperand(0));
3874   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3875                                                         I.getType());
3876   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3877 }
3878 
3879 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3880   // FPToSI is never a no-op cast, no need to check
3881   SDValue N = getValue(I.getOperand(0));
3882   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3883                                                         I.getType());
3884   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3885 }
3886 
3887 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3888   // UIToFP is never a no-op cast, no need to check
3889   SDValue N = getValue(I.getOperand(0));
3890   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3891                                                         I.getType());
3892   SDNodeFlags Flags;
3893   if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I))
3894     Flags.setNonNeg(PNI->hasNonNeg());
3895 
3896   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N, Flags));
3897 }
3898 
3899 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3900   // SIToFP is never a no-op cast, no need to check
3901   SDValue N = getValue(I.getOperand(0));
3902   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3903                                                         I.getType());
3904   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3905 }
3906 
3907 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3908   // What to do depends on the size of the integer and the size of the pointer.
3909   // We can either truncate, zero extend, or no-op, accordingly.
3910   SDValue N = getValue(I.getOperand(0));
3911   auto &TLI = DAG.getTargetLoweringInfo();
3912   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3913                                                         I.getType());
3914   EVT PtrMemVT =
3915       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3916   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3917   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3918   setValue(&I, N);
3919 }
3920 
3921 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3922   // What to do depends on the size of the integer and the size of the pointer.
3923   // We can either truncate, zero extend, or no-op, accordingly.
3924   SDValue N = getValue(I.getOperand(0));
3925   auto &TLI = DAG.getTargetLoweringInfo();
3926   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3927   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3928   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3929   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3930   setValue(&I, N);
3931 }
3932 
3933 void SelectionDAGBuilder::visitBitCast(const User &I) {
3934   SDValue N = getValue(I.getOperand(0));
3935   SDLoc dl = getCurSDLoc();
3936   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3937                                                         I.getType());
3938 
3939   // BitCast assures us that source and destination are the same size so this is
3940   // either a BITCAST or a no-op.
3941   if (DestVT != N.getValueType())
3942     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3943                              DestVT, N)); // convert types.
3944   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3945   // might fold any kind of constant expression to an integer constant and that
3946   // is not what we are looking for. Only recognize a bitcast of a genuine
3947   // constant integer as an opaque constant.
3948   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3949     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3950                                  /*isOpaque*/true));
3951   else
3952     setValue(&I, N);            // noop cast.
3953 }
3954 
3955 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3956   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3957   const Value *SV = I.getOperand(0);
3958   SDValue N = getValue(SV);
3959   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3960 
3961   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3962   unsigned DestAS = I.getType()->getPointerAddressSpace();
3963 
3964   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3965     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3966 
3967   setValue(&I, N);
3968 }
3969 
3970 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3971   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3972   SDValue InVec = getValue(I.getOperand(0));
3973   SDValue InVal = getValue(I.getOperand(1));
3974   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3975                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3976   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3977                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3978                            InVec, InVal, InIdx));
3979 }
3980 
3981 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3982   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3983   SDValue InVec = getValue(I.getOperand(0));
3984   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3985                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3986   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3987                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3988                            InVec, InIdx));
3989 }
3990 
3991 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3992   SDValue Src1 = getValue(I.getOperand(0));
3993   SDValue Src2 = getValue(I.getOperand(1));
3994   ArrayRef<int> Mask;
3995   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3996     Mask = SVI->getShuffleMask();
3997   else
3998     Mask = cast<ConstantExpr>(I).getShuffleMask();
3999   SDLoc DL = getCurSDLoc();
4000   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4001   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4002   EVT SrcVT = Src1.getValueType();
4003 
4004   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
4005       VT.isScalableVector()) {
4006     // Canonical splat form of first element of first input vector.
4007     SDValue FirstElt =
4008         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
4009                     DAG.getVectorIdxConstant(0, DL));
4010     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
4011     return;
4012   }
4013 
4014   // For now, we only handle splats for scalable vectors.
4015   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
4016   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
4017   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
4018 
4019   unsigned SrcNumElts = SrcVT.getVectorNumElements();
4020   unsigned MaskNumElts = Mask.size();
4021 
4022   if (SrcNumElts == MaskNumElts) {
4023     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
4024     return;
4025   }
4026 
4027   // Normalize the shuffle vector since mask and vector length don't match.
4028   if (SrcNumElts < MaskNumElts) {
4029     // Mask is longer than the source vectors. We can use concatenate vector to
4030     // make the mask and vectors lengths match.
4031 
4032     if (MaskNumElts % SrcNumElts == 0) {
4033       // Mask length is a multiple of the source vector length.
4034       // Check if the shuffle is some kind of concatenation of the input
4035       // vectors.
4036       unsigned NumConcat = MaskNumElts / SrcNumElts;
4037       bool IsConcat = true;
4038       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
4039       for (unsigned i = 0; i != MaskNumElts; ++i) {
4040         int Idx = Mask[i];
4041         if (Idx < 0)
4042           continue;
4043         // Ensure the indices in each SrcVT sized piece are sequential and that
4044         // the same source is used for the whole piece.
4045         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
4046             (ConcatSrcs[i / SrcNumElts] >= 0 &&
4047              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
4048           IsConcat = false;
4049           break;
4050         }
4051         // Remember which source this index came from.
4052         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
4053       }
4054 
4055       // The shuffle is concatenating multiple vectors together. Just emit
4056       // a CONCAT_VECTORS operation.
4057       if (IsConcat) {
4058         SmallVector<SDValue, 8> ConcatOps;
4059         for (auto Src : ConcatSrcs) {
4060           if (Src < 0)
4061             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
4062           else if (Src == 0)
4063             ConcatOps.push_back(Src1);
4064           else
4065             ConcatOps.push_back(Src2);
4066         }
4067         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
4068         return;
4069       }
4070     }
4071 
4072     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
4073     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
4074     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
4075                                     PaddedMaskNumElts);
4076 
4077     // Pad both vectors with undefs to make them the same length as the mask.
4078     SDValue UndefVal = DAG.getUNDEF(SrcVT);
4079 
4080     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
4081     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
4082     MOps1[0] = Src1;
4083     MOps2[0] = Src2;
4084 
4085     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
4086     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
4087 
4088     // Readjust mask for new input vector length.
4089     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
4090     for (unsigned i = 0; i != MaskNumElts; ++i) {
4091       int Idx = Mask[i];
4092       if (Idx >= (int)SrcNumElts)
4093         Idx -= SrcNumElts - PaddedMaskNumElts;
4094       MappedOps[i] = Idx;
4095     }
4096 
4097     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
4098 
4099     // If the concatenated vector was padded, extract a subvector with the
4100     // correct number of elements.
4101     if (MaskNumElts != PaddedMaskNumElts)
4102       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
4103                            DAG.getVectorIdxConstant(0, DL));
4104 
4105     setValue(&I, Result);
4106     return;
4107   }
4108 
4109   if (SrcNumElts > MaskNumElts) {
4110     // Analyze the access pattern of the vector to see if we can extract
4111     // two subvectors and do the shuffle.
4112     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
4113     bool CanExtract = true;
4114     for (int Idx : Mask) {
4115       unsigned Input = 0;
4116       if (Idx < 0)
4117         continue;
4118 
4119       if (Idx >= (int)SrcNumElts) {
4120         Input = 1;
4121         Idx -= SrcNumElts;
4122       }
4123 
4124       // If all the indices come from the same MaskNumElts sized portion of
4125       // the sources we can use extract. Also make sure the extract wouldn't
4126       // extract past the end of the source.
4127       int NewStartIdx = alignDown(Idx, MaskNumElts);
4128       if (NewStartIdx + MaskNumElts > SrcNumElts ||
4129           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
4130         CanExtract = false;
4131       // Make sure we always update StartIdx as we use it to track if all
4132       // elements are undef.
4133       StartIdx[Input] = NewStartIdx;
4134     }
4135 
4136     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
4137       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
4138       return;
4139     }
4140     if (CanExtract) {
4141       // Extract appropriate subvector and generate a vector shuffle
4142       for (unsigned Input = 0; Input < 2; ++Input) {
4143         SDValue &Src = Input == 0 ? Src1 : Src2;
4144         if (StartIdx[Input] < 0)
4145           Src = DAG.getUNDEF(VT);
4146         else {
4147           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
4148                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
4149         }
4150       }
4151 
4152       // Calculate new mask.
4153       SmallVector<int, 8> MappedOps(Mask);
4154       for (int &Idx : MappedOps) {
4155         if (Idx >= (int)SrcNumElts)
4156           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
4157         else if (Idx >= 0)
4158           Idx -= StartIdx[0];
4159       }
4160 
4161       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
4162       return;
4163     }
4164   }
4165 
4166   // We can't use either concat vectors or extract subvectors so fall back to
4167   // replacing the shuffle with extract and build vector.
4168   // to insert and build vector.
4169   EVT EltVT = VT.getVectorElementType();
4170   SmallVector<SDValue,8> Ops;
4171   for (int Idx : Mask) {
4172     SDValue Res;
4173 
4174     if (Idx < 0) {
4175       Res = DAG.getUNDEF(EltVT);
4176     } else {
4177       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
4178       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
4179 
4180       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
4181                         DAG.getVectorIdxConstant(Idx, DL));
4182     }
4183 
4184     Ops.push_back(Res);
4185   }
4186 
4187   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
4188 }
4189 
4190 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
4191   ArrayRef<unsigned> Indices = I.getIndices();
4192   const Value *Op0 = I.getOperand(0);
4193   const Value *Op1 = I.getOperand(1);
4194   Type *AggTy = I.getType();
4195   Type *ValTy = Op1->getType();
4196   bool IntoUndef = isa<UndefValue>(Op0);
4197   bool FromUndef = isa<UndefValue>(Op1);
4198 
4199   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
4200 
4201   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4202   SmallVector<EVT, 4> AggValueVTs;
4203   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
4204   SmallVector<EVT, 4> ValValueVTs;
4205   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
4206 
4207   unsigned NumAggValues = AggValueVTs.size();
4208   unsigned NumValValues = ValValueVTs.size();
4209   SmallVector<SDValue, 4> Values(NumAggValues);
4210 
4211   // Ignore an insertvalue that produces an empty object
4212   if (!NumAggValues) {
4213     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
4214     return;
4215   }
4216 
4217   SDValue Agg = getValue(Op0);
4218   unsigned i = 0;
4219   // Copy the beginning value(s) from the original aggregate.
4220   for (; i != LinearIndex; ++i)
4221     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4222                 SDValue(Agg.getNode(), Agg.getResNo() + i);
4223   // Copy values from the inserted value(s).
4224   if (NumValValues) {
4225     SDValue Val = getValue(Op1);
4226     for (; i != LinearIndex + NumValValues; ++i)
4227       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4228                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
4229   }
4230   // Copy remaining value(s) from the original aggregate.
4231   for (; i != NumAggValues; ++i)
4232     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4233                 SDValue(Agg.getNode(), Agg.getResNo() + i);
4234 
4235   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
4236                            DAG.getVTList(AggValueVTs), Values));
4237 }
4238 
4239 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
4240   ArrayRef<unsigned> Indices = I.getIndices();
4241   const Value *Op0 = I.getOperand(0);
4242   Type *AggTy = Op0->getType();
4243   Type *ValTy = I.getType();
4244   bool OutOfUndef = isa<UndefValue>(Op0);
4245 
4246   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
4247 
4248   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4249   SmallVector<EVT, 4> ValValueVTs;
4250   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
4251 
4252   unsigned NumValValues = ValValueVTs.size();
4253 
4254   // Ignore a extractvalue that produces an empty object
4255   if (!NumValValues) {
4256     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
4257     return;
4258   }
4259 
4260   SmallVector<SDValue, 4> Values(NumValValues);
4261 
4262   SDValue Agg = getValue(Op0);
4263   // Copy out the selected value(s).
4264   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
4265     Values[i - LinearIndex] =
4266       OutOfUndef ?
4267         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
4268         SDValue(Agg.getNode(), Agg.getResNo() + i);
4269 
4270   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
4271                            DAG.getVTList(ValValueVTs), Values));
4272 }
4273 
4274 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
4275   Value *Op0 = I.getOperand(0);
4276   // Note that the pointer operand may be a vector of pointers. Take the scalar
4277   // element which holds a pointer.
4278   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
4279   SDValue N = getValue(Op0);
4280   SDLoc dl = getCurSDLoc();
4281   auto &TLI = DAG.getTargetLoweringInfo();
4282 
4283   // Normalize Vector GEP - all scalar operands should be converted to the
4284   // splat vector.
4285   bool IsVectorGEP = I.getType()->isVectorTy();
4286   ElementCount VectorElementCount =
4287       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
4288                   : ElementCount::getFixed(0);
4289 
4290   if (IsVectorGEP && !N.getValueType().isVector()) {
4291     LLVMContext &Context = *DAG.getContext();
4292     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
4293     N = DAG.getSplat(VT, dl, N);
4294   }
4295 
4296   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
4297        GTI != E; ++GTI) {
4298     const Value *Idx = GTI.getOperand();
4299     if (StructType *StTy = GTI.getStructTypeOrNull()) {
4300       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
4301       if (Field) {
4302         // N = N + Offset
4303         uint64_t Offset =
4304             DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field);
4305 
4306         // In an inbounds GEP with an offset that is nonnegative even when
4307         // interpreted as signed, assume there is no unsigned overflow.
4308         SDNodeFlags Flags;
4309         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
4310           Flags.setNoUnsignedWrap(true);
4311 
4312         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
4313                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
4314       }
4315     } else {
4316       // IdxSize is the width of the arithmetic according to IR semantics.
4317       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
4318       // (and fix up the result later).
4319       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
4320       MVT IdxTy = MVT::getIntegerVT(IdxSize);
4321       TypeSize ElementSize =
4322           GTI.getSequentialElementStride(DAG.getDataLayout());
4323       // We intentionally mask away the high bits here; ElementSize may not
4324       // fit in IdxTy.
4325       APInt ElementMul(IdxSize, ElementSize.getKnownMinValue());
4326       bool ElementScalable = ElementSize.isScalable();
4327 
4328       // If this is a scalar constant or a splat vector of constants,
4329       // handle it quickly.
4330       const auto *C = dyn_cast<Constant>(Idx);
4331       if (C && isa<VectorType>(C->getType()))
4332         C = C->getSplatValue();
4333 
4334       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
4335       if (CI && CI->isZero())
4336         continue;
4337       if (CI && !ElementScalable) {
4338         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
4339         LLVMContext &Context = *DAG.getContext();
4340         SDValue OffsVal;
4341         if (IsVectorGEP)
4342           OffsVal = DAG.getConstant(
4343               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
4344         else
4345           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
4346 
4347         // In an inbounds GEP with an offset that is nonnegative even when
4348         // interpreted as signed, assume there is no unsigned overflow.
4349         SDNodeFlags Flags;
4350         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
4351           Flags.setNoUnsignedWrap(true);
4352 
4353         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
4354 
4355         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
4356         continue;
4357       }
4358 
4359       // N = N + Idx * ElementMul;
4360       SDValue IdxN = getValue(Idx);
4361 
4362       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
4363         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
4364                                   VectorElementCount);
4365         IdxN = DAG.getSplat(VT, dl, IdxN);
4366       }
4367 
4368       // If the index is smaller or larger than intptr_t, truncate or extend
4369       // it.
4370       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
4371 
4372       if (ElementScalable) {
4373         EVT VScaleTy = N.getValueType().getScalarType();
4374         SDValue VScale = DAG.getNode(
4375             ISD::VSCALE, dl, VScaleTy,
4376             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
4377         if (IsVectorGEP)
4378           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
4379         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
4380       } else {
4381         // If this is a multiply by a power of two, turn it into a shl
4382         // immediately.  This is a very common case.
4383         if (ElementMul != 1) {
4384           if (ElementMul.isPowerOf2()) {
4385             unsigned Amt = ElementMul.logBase2();
4386             IdxN = DAG.getNode(ISD::SHL, dl,
4387                                N.getValueType(), IdxN,
4388                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
4389           } else {
4390             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
4391                                             IdxN.getValueType());
4392             IdxN = DAG.getNode(ISD::MUL, dl,
4393                                N.getValueType(), IdxN, Scale);
4394           }
4395         }
4396       }
4397 
4398       N = DAG.getNode(ISD::ADD, dl,
4399                       N.getValueType(), N, IdxN);
4400     }
4401   }
4402 
4403   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
4404   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
4405   if (IsVectorGEP) {
4406     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
4407     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
4408   }
4409 
4410   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
4411     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
4412 
4413   setValue(&I, N);
4414 }
4415 
4416 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
4417   // If this is a fixed sized alloca in the entry block of the function,
4418   // allocate it statically on the stack.
4419   if (FuncInfo.StaticAllocaMap.count(&I))
4420     return;   // getValue will auto-populate this.
4421 
4422   SDLoc dl = getCurSDLoc();
4423   Type *Ty = I.getAllocatedType();
4424   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4425   auto &DL = DAG.getDataLayout();
4426   TypeSize TySize = DL.getTypeAllocSize(Ty);
4427   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
4428 
4429   SDValue AllocSize = getValue(I.getArraySize());
4430 
4431   EVT IntPtr = TLI.getPointerTy(DL, I.getAddressSpace());
4432   if (AllocSize.getValueType() != IntPtr)
4433     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4434 
4435   if (TySize.isScalable())
4436     AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4437                             DAG.getVScale(dl, IntPtr,
4438                                           APInt(IntPtr.getScalarSizeInBits(),
4439                                                 TySize.getKnownMinValue())));
4440   else {
4441     SDValue TySizeValue =
4442         DAG.getConstant(TySize.getFixedValue(), dl, MVT::getIntegerVT(64));
4443     AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4444                             DAG.getZExtOrTrunc(TySizeValue, dl, IntPtr));
4445   }
4446 
4447   // Handle alignment.  If the requested alignment is less than or equal to
4448   // the stack alignment, ignore it.  If the size is greater than or equal to
4449   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4450   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
4451   if (*Alignment <= StackAlign)
4452     Alignment = std::nullopt;
4453 
4454   const uint64_t StackAlignMask = StackAlign.value() - 1U;
4455   // Round the size of the allocation up to the stack alignment size
4456   // by add SA-1 to the size. This doesn't overflow because we're computing
4457   // an address inside an alloca.
4458   SDNodeFlags Flags;
4459   Flags.setNoUnsignedWrap(true);
4460   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4461                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
4462 
4463   // Mask out the low bits for alignment purposes.
4464   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4465                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
4466 
4467   SDValue Ops[] = {
4468       getRoot(), AllocSize,
4469       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4470   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4471   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4472   setValue(&I, DSA);
4473   DAG.setRoot(DSA.getValue(1));
4474 
4475   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4476 }
4477 
4478 static const MDNode *getRangeMetadata(const Instruction &I) {
4479   // If !noundef is not present, then !range violation results in a poison
4480   // value rather than immediate undefined behavior. In theory, transferring
4481   // these annotations to SDAG is fine, but in practice there are key SDAG
4482   // transforms that are known not to be poison-safe, such as folding logical
4483   // and/or to bitwise and/or. For now, only transfer !range if !noundef is
4484   // also present.
4485   if (!I.hasMetadata(LLVMContext::MD_noundef))
4486     return nullptr;
4487   return I.getMetadata(LLVMContext::MD_range);
4488 }
4489 
4490 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4491   if (I.isAtomic())
4492     return visitAtomicLoad(I);
4493 
4494   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4495   const Value *SV = I.getOperand(0);
4496   if (TLI.supportSwiftError()) {
4497     // Swifterror values can come from either a function parameter with
4498     // swifterror attribute or an alloca with swifterror attribute.
4499     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4500       if (Arg->hasSwiftErrorAttr())
4501         return visitLoadFromSwiftError(I);
4502     }
4503 
4504     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4505       if (Alloca->isSwiftError())
4506         return visitLoadFromSwiftError(I);
4507     }
4508   }
4509 
4510   SDValue Ptr = getValue(SV);
4511 
4512   Type *Ty = I.getType();
4513   SmallVector<EVT, 4> ValueVTs, MemVTs;
4514   SmallVector<TypeSize, 4> Offsets;
4515   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4516   unsigned NumValues = ValueVTs.size();
4517   if (NumValues == 0)
4518     return;
4519 
4520   Align Alignment = I.getAlign();
4521   AAMDNodes AAInfo = I.getAAMetadata();
4522   const MDNode *Ranges = getRangeMetadata(I);
4523   bool isVolatile = I.isVolatile();
4524   MachineMemOperand::Flags MMOFlags =
4525       TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
4526 
4527   SDValue Root;
4528   bool ConstantMemory = false;
4529   if (isVolatile)
4530     // Serialize volatile loads with other side effects.
4531     Root = getRoot();
4532   else if (NumValues > MaxParallelChains)
4533     Root = getMemoryRoot();
4534   else if (AA &&
4535            AA->pointsToConstantMemory(MemoryLocation(
4536                SV,
4537                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4538                AAInfo))) {
4539     // Do not serialize (non-volatile) loads of constant memory with anything.
4540     Root = DAG.getEntryNode();
4541     ConstantMemory = true;
4542     MMOFlags |= MachineMemOperand::MOInvariant;
4543   } else {
4544     // Do not serialize non-volatile loads against each other.
4545     Root = DAG.getRoot();
4546   }
4547 
4548   SDLoc dl = getCurSDLoc();
4549 
4550   if (isVolatile)
4551     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4552 
4553   SmallVector<SDValue, 4> Values(NumValues);
4554   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4555 
4556   unsigned ChainI = 0;
4557   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4558     // Serializing loads here may result in excessive register pressure, and
4559     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4560     // could recover a bit by hoisting nodes upward in the chain by recognizing
4561     // they are side-effect free or do not alias. The optimizer should really
4562     // avoid this case by converting large object/array copies to llvm.memcpy
4563     // (MaxParallelChains should always remain as failsafe).
4564     if (ChainI == MaxParallelChains) {
4565       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4566       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4567                                   ArrayRef(Chains.data(), ChainI));
4568       Root = Chain;
4569       ChainI = 0;
4570     }
4571 
4572     // TODO: MachinePointerInfo only supports a fixed length offset.
4573     MachinePointerInfo PtrInfo =
4574         !Offsets[i].isScalable() || Offsets[i].isZero()
4575             ? MachinePointerInfo(SV, Offsets[i].getKnownMinValue())
4576             : MachinePointerInfo();
4577 
4578     SDValue A = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]);
4579     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, PtrInfo, Alignment,
4580                             MMOFlags, AAInfo, Ranges);
4581     Chains[ChainI] = L.getValue(1);
4582 
4583     if (MemVTs[i] != ValueVTs[i])
4584       L = DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]);
4585 
4586     Values[i] = L;
4587   }
4588 
4589   if (!ConstantMemory) {
4590     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4591                                 ArrayRef(Chains.data(), ChainI));
4592     if (isVolatile)
4593       DAG.setRoot(Chain);
4594     else
4595       PendingLoads.push_back(Chain);
4596   }
4597 
4598   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4599                            DAG.getVTList(ValueVTs), Values));
4600 }
4601 
4602 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4603   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4604          "call visitStoreToSwiftError when backend supports swifterror");
4605 
4606   SmallVector<EVT, 4> ValueVTs;
4607   SmallVector<uint64_t, 4> Offsets;
4608   const Value *SrcV = I.getOperand(0);
4609   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4610                   SrcV->getType(), ValueVTs, &Offsets, 0);
4611   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4612          "expect a single EVT for swifterror");
4613 
4614   SDValue Src = getValue(SrcV);
4615   // Create a virtual register, then update the virtual register.
4616   Register VReg =
4617       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4618   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4619   // Chain can be getRoot or getControlRoot.
4620   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4621                                       SDValue(Src.getNode(), Src.getResNo()));
4622   DAG.setRoot(CopyNode);
4623 }
4624 
4625 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4626   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4627          "call visitLoadFromSwiftError when backend supports swifterror");
4628 
4629   assert(!I.isVolatile() &&
4630          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4631          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4632          "Support volatile, non temporal, invariant for load_from_swift_error");
4633 
4634   const Value *SV = I.getOperand(0);
4635   Type *Ty = I.getType();
4636   assert(
4637       (!AA ||
4638        !AA->pointsToConstantMemory(MemoryLocation(
4639            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4640            I.getAAMetadata()))) &&
4641       "load_from_swift_error should not be constant memory");
4642 
4643   SmallVector<EVT, 4> ValueVTs;
4644   SmallVector<uint64_t, 4> Offsets;
4645   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4646                   ValueVTs, &Offsets, 0);
4647   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4648          "expect a single EVT for swifterror");
4649 
4650   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4651   SDValue L = DAG.getCopyFromReg(
4652       getRoot(), getCurSDLoc(),
4653       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4654 
4655   setValue(&I, L);
4656 }
4657 
4658 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4659   if (I.isAtomic())
4660     return visitAtomicStore(I);
4661 
4662   const Value *SrcV = I.getOperand(0);
4663   const Value *PtrV = I.getOperand(1);
4664 
4665   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4666   if (TLI.supportSwiftError()) {
4667     // Swifterror values can come from either a function parameter with
4668     // swifterror attribute or an alloca with swifterror attribute.
4669     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4670       if (Arg->hasSwiftErrorAttr())
4671         return visitStoreToSwiftError(I);
4672     }
4673 
4674     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4675       if (Alloca->isSwiftError())
4676         return visitStoreToSwiftError(I);
4677     }
4678   }
4679 
4680   SmallVector<EVT, 4> ValueVTs, MemVTs;
4681   SmallVector<TypeSize, 4> Offsets;
4682   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4683                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4684   unsigned NumValues = ValueVTs.size();
4685   if (NumValues == 0)
4686     return;
4687 
4688   // Get the lowered operands. Note that we do this after
4689   // checking if NumResults is zero, because with zero results
4690   // the operands won't have values in the map.
4691   SDValue Src = getValue(SrcV);
4692   SDValue Ptr = getValue(PtrV);
4693 
4694   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4695   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4696   SDLoc dl = getCurSDLoc();
4697   Align Alignment = I.getAlign();
4698   AAMDNodes AAInfo = I.getAAMetadata();
4699 
4700   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4701 
4702   unsigned ChainI = 0;
4703   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4704     // See visitLoad comments.
4705     if (ChainI == MaxParallelChains) {
4706       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4707                                   ArrayRef(Chains.data(), ChainI));
4708       Root = Chain;
4709       ChainI = 0;
4710     }
4711 
4712     // TODO: MachinePointerInfo only supports a fixed length offset.
4713     MachinePointerInfo PtrInfo =
4714         !Offsets[i].isScalable() || Offsets[i].isZero()
4715             ? MachinePointerInfo(PtrV, Offsets[i].getKnownMinValue())
4716             : MachinePointerInfo();
4717 
4718     SDValue Add = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]);
4719     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4720     if (MemVTs[i] != ValueVTs[i])
4721       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4722     SDValue St =
4723         DAG.getStore(Root, dl, Val, Add, PtrInfo, Alignment, MMOFlags, AAInfo);
4724     Chains[ChainI] = St;
4725   }
4726 
4727   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4728                                   ArrayRef(Chains.data(), ChainI));
4729   setValue(&I, StoreNode);
4730   DAG.setRoot(StoreNode);
4731 }
4732 
4733 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4734                                            bool IsCompressing) {
4735   SDLoc sdl = getCurSDLoc();
4736 
4737   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4738                                Align &Alignment) {
4739     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4740     Src0 = I.getArgOperand(0);
4741     Ptr = I.getArgOperand(1);
4742     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getAlignValue();
4743     Mask = I.getArgOperand(3);
4744   };
4745   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4746                                     Align &Alignment) {
4747     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4748     Src0 = I.getArgOperand(0);
4749     Ptr = I.getArgOperand(1);
4750     Mask = I.getArgOperand(2);
4751     Alignment = I.getParamAlign(1).valueOrOne();
4752   };
4753 
4754   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4755   Align Alignment;
4756   if (IsCompressing)
4757     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4758   else
4759     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4760 
4761   SDValue Ptr = getValue(PtrOperand);
4762   SDValue Src0 = getValue(Src0Operand);
4763   SDValue Mask = getValue(MaskOperand);
4764   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4765 
4766   EVT VT = Src0.getValueType();
4767 
4768   auto MMOFlags = MachineMemOperand::MOStore;
4769   if (I.hasMetadata(LLVMContext::MD_nontemporal))
4770     MMOFlags |= MachineMemOperand::MONonTemporal;
4771 
4772   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4773       MachinePointerInfo(PtrOperand), MMOFlags,
4774       LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata());
4775   SDValue StoreNode =
4776       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4777                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4778   DAG.setRoot(StoreNode);
4779   setValue(&I, StoreNode);
4780 }
4781 
4782 // Get a uniform base for the Gather/Scatter intrinsic.
4783 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4784 // We try to represent it as a base pointer + vector of indices.
4785 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4786 // The first operand of the GEP may be a single pointer or a vector of pointers
4787 // Example:
4788 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4789 //  or
4790 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4791 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4792 //
4793 // When the first GEP operand is a single pointer - it is the uniform base we
4794 // are looking for. If first operand of the GEP is a splat vector - we
4795 // extract the splat value and use it as a uniform base.
4796 // In all other cases the function returns 'false'.
4797 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4798                            ISD::MemIndexType &IndexType, SDValue &Scale,
4799                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB,
4800                            uint64_t ElemSize) {
4801   SelectionDAG& DAG = SDB->DAG;
4802   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4803   const DataLayout &DL = DAG.getDataLayout();
4804 
4805   assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type");
4806 
4807   // Handle splat constant pointer.
4808   if (auto *C = dyn_cast<Constant>(Ptr)) {
4809     C = C->getSplatValue();
4810     if (!C)
4811       return false;
4812 
4813     Base = SDB->getValue(C);
4814 
4815     ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
4816     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4817     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4818     IndexType = ISD::SIGNED_SCALED;
4819     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4820     return true;
4821   }
4822 
4823   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4824   if (!GEP || GEP->getParent() != CurBB)
4825     return false;
4826 
4827   if (GEP->getNumOperands() != 2)
4828     return false;
4829 
4830   const Value *BasePtr = GEP->getPointerOperand();
4831   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4832 
4833   // Make sure the base is scalar and the index is a vector.
4834   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4835     return false;
4836 
4837   TypeSize ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType());
4838   if (ScaleVal.isScalable())
4839     return false;
4840 
4841   // Target may not support the required addressing mode.
4842   if (ScaleVal != 1 &&
4843       !TLI.isLegalScaleForGatherScatter(ScaleVal.getFixedValue(), ElemSize))
4844     return false;
4845 
4846   Base = SDB->getValue(BasePtr);
4847   Index = SDB->getValue(IndexVal);
4848   IndexType = ISD::SIGNED_SCALED;
4849 
4850   Scale =
4851       DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4852   return true;
4853 }
4854 
4855 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4856   SDLoc sdl = getCurSDLoc();
4857 
4858   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4859   const Value *Ptr = I.getArgOperand(1);
4860   SDValue Src0 = getValue(I.getArgOperand(0));
4861   SDValue Mask = getValue(I.getArgOperand(3));
4862   EVT VT = Src0.getValueType();
4863   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4864                         ->getMaybeAlignValue()
4865                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4866   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4867 
4868   SDValue Base;
4869   SDValue Index;
4870   ISD::MemIndexType IndexType;
4871   SDValue Scale;
4872   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4873                                     I.getParent(), VT.getScalarStoreSize());
4874 
4875   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4876   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4877       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4878       LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata());
4879   if (!UniformBase) {
4880     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4881     Index = getValue(Ptr);
4882     IndexType = ISD::SIGNED_SCALED;
4883     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4884   }
4885 
4886   EVT IdxVT = Index.getValueType();
4887   EVT EltTy = IdxVT.getVectorElementType();
4888   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4889     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4890     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4891   }
4892 
4893   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4894   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4895                                          Ops, MMO, IndexType, false);
4896   DAG.setRoot(Scatter);
4897   setValue(&I, Scatter);
4898 }
4899 
4900 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4901   SDLoc sdl = getCurSDLoc();
4902 
4903   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4904                               Align &Alignment) {
4905     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4906     Ptr = I.getArgOperand(0);
4907     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getAlignValue();
4908     Mask = I.getArgOperand(2);
4909     Src0 = I.getArgOperand(3);
4910   };
4911   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4912                                  Align &Alignment) {
4913     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4914     Ptr = I.getArgOperand(0);
4915     Alignment = I.getParamAlign(0).valueOrOne();
4916     Mask = I.getArgOperand(1);
4917     Src0 = I.getArgOperand(2);
4918   };
4919 
4920   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4921   Align Alignment;
4922   if (IsExpanding)
4923     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4924   else
4925     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4926 
4927   SDValue Ptr = getValue(PtrOperand);
4928   SDValue Src0 = getValue(Src0Operand);
4929   SDValue Mask = getValue(MaskOperand);
4930   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4931 
4932   EVT VT = Src0.getValueType();
4933   AAMDNodes AAInfo = I.getAAMetadata();
4934   const MDNode *Ranges = getRangeMetadata(I);
4935 
4936   // Do not serialize masked loads of constant memory with anything.
4937   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
4938   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4939 
4940   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4941 
4942   auto MMOFlags = MachineMemOperand::MOLoad;
4943   if (I.hasMetadata(LLVMContext::MD_nontemporal))
4944     MMOFlags |= MachineMemOperand::MONonTemporal;
4945 
4946   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4947       MachinePointerInfo(PtrOperand), MMOFlags,
4948       LocationSize::beforeOrAfterPointer(), Alignment, AAInfo, Ranges);
4949 
4950   SDValue Load =
4951       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4952                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4953   if (AddToChain)
4954     PendingLoads.push_back(Load.getValue(1));
4955   setValue(&I, Load);
4956 }
4957 
4958 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4959   SDLoc sdl = getCurSDLoc();
4960 
4961   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4962   const Value *Ptr = I.getArgOperand(0);
4963   SDValue Src0 = getValue(I.getArgOperand(3));
4964   SDValue Mask = getValue(I.getArgOperand(2));
4965 
4966   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4967   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4968   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
4969                         ->getMaybeAlignValue()
4970                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4971 
4972   const MDNode *Ranges = getRangeMetadata(I);
4973 
4974   SDValue Root = DAG.getRoot();
4975   SDValue Base;
4976   SDValue Index;
4977   ISD::MemIndexType IndexType;
4978   SDValue Scale;
4979   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4980                                     I.getParent(), VT.getScalarStoreSize());
4981   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4982   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4983       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4984       LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata(),
4985       Ranges);
4986 
4987   if (!UniformBase) {
4988     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4989     Index = getValue(Ptr);
4990     IndexType = ISD::SIGNED_SCALED;
4991     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4992   }
4993 
4994   EVT IdxVT = Index.getValueType();
4995   EVT EltTy = IdxVT.getVectorElementType();
4996   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4997     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4998     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4999   }
5000 
5001   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
5002   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
5003                                        Ops, MMO, IndexType, ISD::NON_EXTLOAD);
5004 
5005   PendingLoads.push_back(Gather.getValue(1));
5006   setValue(&I, Gather);
5007 }
5008 
5009 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
5010   SDLoc dl = getCurSDLoc();
5011   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
5012   AtomicOrdering FailureOrdering = I.getFailureOrdering();
5013   SyncScope::ID SSID = I.getSyncScopeID();
5014 
5015   SDValue InChain = getRoot();
5016 
5017   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
5018   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
5019 
5020   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5021   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
5022 
5023   MachineFunction &MF = DAG.getMachineFunction();
5024   MachineMemOperand *MMO = MF.getMachineMemOperand(
5025       MachinePointerInfo(I.getPointerOperand()), Flags,
5026       LocationSize::precise(MemVT.getStoreSize()), DAG.getEVTAlign(MemVT),
5027       AAMDNodes(), nullptr, SSID, SuccessOrdering, FailureOrdering);
5028 
5029   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
5030                                    dl, MemVT, VTs, InChain,
5031                                    getValue(I.getPointerOperand()),
5032                                    getValue(I.getCompareOperand()),
5033                                    getValue(I.getNewValOperand()), MMO);
5034 
5035   SDValue OutChain = L.getValue(2);
5036 
5037   setValue(&I, L);
5038   DAG.setRoot(OutChain);
5039 }
5040 
5041 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
5042   SDLoc dl = getCurSDLoc();
5043   ISD::NodeType NT;
5044   switch (I.getOperation()) {
5045   default: llvm_unreachable("Unknown atomicrmw operation");
5046   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
5047   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
5048   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
5049   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
5050   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
5051   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
5052   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
5053   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
5054   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
5055   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
5056   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
5057   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
5058   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
5059   case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break;
5060   case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break;
5061   case AtomicRMWInst::UIncWrap:
5062     NT = ISD::ATOMIC_LOAD_UINC_WRAP;
5063     break;
5064   case AtomicRMWInst::UDecWrap:
5065     NT = ISD::ATOMIC_LOAD_UDEC_WRAP;
5066     break;
5067   }
5068   AtomicOrdering Ordering = I.getOrdering();
5069   SyncScope::ID SSID = I.getSyncScopeID();
5070 
5071   SDValue InChain = getRoot();
5072 
5073   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
5074   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5075   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
5076 
5077   MachineFunction &MF = DAG.getMachineFunction();
5078   MachineMemOperand *MMO = MF.getMachineMemOperand(
5079       MachinePointerInfo(I.getPointerOperand()), Flags,
5080       LocationSize::precise(MemVT.getStoreSize()), DAG.getEVTAlign(MemVT),
5081       AAMDNodes(), nullptr, SSID, Ordering);
5082 
5083   SDValue L =
5084     DAG.getAtomic(NT, dl, MemVT, InChain,
5085                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
5086                   MMO);
5087 
5088   SDValue OutChain = L.getValue(1);
5089 
5090   setValue(&I, L);
5091   DAG.setRoot(OutChain);
5092 }
5093 
5094 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
5095   SDLoc dl = getCurSDLoc();
5096   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5097   SDValue Ops[3];
5098   Ops[0] = getRoot();
5099   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
5100                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
5101   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
5102                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
5103   SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops);
5104   setValue(&I, N);
5105   DAG.setRoot(N);
5106 }
5107 
5108 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
5109   SDLoc dl = getCurSDLoc();
5110   AtomicOrdering Order = I.getOrdering();
5111   SyncScope::ID SSID = I.getSyncScopeID();
5112 
5113   SDValue InChain = getRoot();
5114 
5115   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5116   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5117   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
5118 
5119   if (!TLI.supportsUnalignedAtomics() &&
5120       I.getAlign().value() < MemVT.getSizeInBits() / 8)
5121     report_fatal_error("Cannot generate unaligned atomic load");
5122 
5123   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
5124 
5125   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
5126       MachinePointerInfo(I.getPointerOperand()), Flags,
5127       LocationSize::precise(MemVT.getStoreSize()), I.getAlign(), AAMDNodes(),
5128       nullptr, SSID, Order);
5129 
5130   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
5131 
5132   SDValue Ptr = getValue(I.getPointerOperand());
5133   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
5134                             Ptr, MMO);
5135 
5136   SDValue OutChain = L.getValue(1);
5137   if (MemVT != VT)
5138     L = DAG.getPtrExtOrTrunc(L, dl, VT);
5139 
5140   setValue(&I, L);
5141   DAG.setRoot(OutChain);
5142 }
5143 
5144 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
5145   SDLoc dl = getCurSDLoc();
5146 
5147   AtomicOrdering Ordering = I.getOrdering();
5148   SyncScope::ID SSID = I.getSyncScopeID();
5149 
5150   SDValue InChain = getRoot();
5151 
5152   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5153   EVT MemVT =
5154       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
5155 
5156   if (!TLI.supportsUnalignedAtomics() &&
5157       I.getAlign().value() < MemVT.getSizeInBits() / 8)
5158     report_fatal_error("Cannot generate unaligned atomic store");
5159 
5160   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
5161 
5162   MachineFunction &MF = DAG.getMachineFunction();
5163   MachineMemOperand *MMO = MF.getMachineMemOperand(
5164       MachinePointerInfo(I.getPointerOperand()), Flags,
5165       LocationSize::precise(MemVT.getStoreSize()), I.getAlign(), AAMDNodes(),
5166       nullptr, SSID, Ordering);
5167 
5168   SDValue Val = getValue(I.getValueOperand());
5169   if (Val.getValueType() != MemVT)
5170     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
5171   SDValue Ptr = getValue(I.getPointerOperand());
5172 
5173   SDValue OutChain =
5174       DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, Val, Ptr, MMO);
5175 
5176   setValue(&I, OutChain);
5177   DAG.setRoot(OutChain);
5178 }
5179 
5180 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
5181 /// node.
5182 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
5183                                                unsigned Intrinsic) {
5184   // Ignore the callsite's attributes. A specific call site may be marked with
5185   // readnone, but the lowering code will expect the chain based on the
5186   // definition.
5187   const Function *F = I.getCalledFunction();
5188   bool HasChain = !F->doesNotAccessMemory();
5189   bool OnlyLoad = HasChain && F->onlyReadsMemory();
5190 
5191   // Build the operand list.
5192   SmallVector<SDValue, 8> Ops;
5193   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
5194     if (OnlyLoad) {
5195       // We don't need to serialize loads against other loads.
5196       Ops.push_back(DAG.getRoot());
5197     } else {
5198       Ops.push_back(getRoot());
5199     }
5200   }
5201 
5202   // Info is set by getTgtMemIntrinsic
5203   TargetLowering::IntrinsicInfo Info;
5204   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5205   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
5206                                                DAG.getMachineFunction(),
5207                                                Intrinsic);
5208 
5209   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
5210   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
5211       Info.opc == ISD::INTRINSIC_W_CHAIN)
5212     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
5213                                         TLI.getPointerTy(DAG.getDataLayout())));
5214 
5215   // Add all operands of the call to the operand list.
5216   for (unsigned i = 0, e = I.arg_size(); i != e; ++i) {
5217     const Value *Arg = I.getArgOperand(i);
5218     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
5219       Ops.push_back(getValue(Arg));
5220       continue;
5221     }
5222 
5223     // Use TargetConstant instead of a regular constant for immarg.
5224     EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true);
5225     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
5226       assert(CI->getBitWidth() <= 64 &&
5227              "large intrinsic immediates not handled");
5228       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
5229     } else {
5230       Ops.push_back(
5231           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
5232     }
5233   }
5234 
5235   SmallVector<EVT, 4> ValueVTs;
5236   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
5237 
5238   if (HasChain)
5239     ValueVTs.push_back(MVT::Other);
5240 
5241   SDVTList VTs = DAG.getVTList(ValueVTs);
5242 
5243   // Propagate fast-math-flags from IR to node(s).
5244   SDNodeFlags Flags;
5245   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
5246     Flags.copyFMF(*FPMO);
5247   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
5248 
5249   // Create the node.
5250   SDValue Result;
5251 
5252   if (auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl)) {
5253     auto *Token = Bundle->Inputs[0].get();
5254     SDValue ConvControlToken = getValue(Token);
5255     assert(Ops.back().getValueType() != MVT::Glue &&
5256            "Did not expected another glue node here.");
5257     ConvControlToken =
5258         DAG.getNode(ISD::CONVERGENCECTRL_GLUE, {}, MVT::Glue, ConvControlToken);
5259     Ops.push_back(ConvControlToken);
5260   }
5261 
5262   // In some cases, custom collection of operands from CallInst I may be needed.
5263   TLI.CollectTargetIntrinsicOperands(I, Ops, DAG);
5264   if (IsTgtIntrinsic) {
5265     // This is target intrinsic that touches memory
5266     //
5267     // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic
5268     //       didn't yield anything useful.
5269     MachinePointerInfo MPI;
5270     if (Info.ptrVal)
5271       MPI = MachinePointerInfo(Info.ptrVal, Info.offset);
5272     else if (Info.fallbackAddressSpace)
5273       MPI = MachinePointerInfo(*Info.fallbackAddressSpace);
5274     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops,
5275                                      Info.memVT, MPI, Info.align, Info.flags,
5276                                      Info.size, I.getAAMetadata());
5277   } else if (!HasChain) {
5278     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
5279   } else if (!I.getType()->isVoidTy()) {
5280     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
5281   } else {
5282     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
5283   }
5284 
5285   if (HasChain) {
5286     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
5287     if (OnlyLoad)
5288       PendingLoads.push_back(Chain);
5289     else
5290       DAG.setRoot(Chain);
5291   }
5292 
5293   if (!I.getType()->isVoidTy()) {
5294     if (!isa<VectorType>(I.getType()))
5295       Result = lowerRangeToAssertZExt(DAG, I, Result);
5296 
5297     MaybeAlign Alignment = I.getRetAlign();
5298 
5299     // Insert `assertalign` node if there's an alignment.
5300     if (InsertAssertAlign && Alignment) {
5301       Result =
5302           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
5303     }
5304   }
5305 
5306   setValue(&I, Result);
5307 }
5308 
5309 /// GetSignificand - Get the significand and build it into a floating-point
5310 /// number with exponent of 1:
5311 ///
5312 ///   Op = (Op & 0x007fffff) | 0x3f800000;
5313 ///
5314 /// where Op is the hexadecimal representation of floating point value.
5315 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
5316   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
5317                            DAG.getConstant(0x007fffff, dl, MVT::i32));
5318   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
5319                            DAG.getConstant(0x3f800000, dl, MVT::i32));
5320   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
5321 }
5322 
5323 /// GetExponent - Get the exponent:
5324 ///
5325 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
5326 ///
5327 /// where Op is the hexadecimal representation of floating point value.
5328 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
5329                            const TargetLowering &TLI, const SDLoc &dl) {
5330   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
5331                            DAG.getConstant(0x7f800000, dl, MVT::i32));
5332   SDValue t1 = DAG.getNode(
5333       ISD::SRL, dl, MVT::i32, t0,
5334       DAG.getConstant(23, dl,
5335                       TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout())));
5336   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
5337                            DAG.getConstant(127, dl, MVT::i32));
5338   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
5339 }
5340 
5341 /// getF32Constant - Get 32-bit floating point constant.
5342 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
5343                               const SDLoc &dl) {
5344   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
5345                            MVT::f32);
5346 }
5347 
5348 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
5349                                        SelectionDAG &DAG) {
5350   // TODO: What fast-math-flags should be set on the floating-point nodes?
5351 
5352   //   IntegerPartOfX = ((int32_t)(t0);
5353   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
5354 
5355   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
5356   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
5357   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
5358 
5359   //   IntegerPartOfX <<= 23;
5360   IntegerPartOfX =
5361       DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
5362                   DAG.getConstant(23, dl,
5363                                   DAG.getTargetLoweringInfo().getShiftAmountTy(
5364                                       MVT::i32, DAG.getDataLayout())));
5365 
5366   SDValue TwoToFractionalPartOfX;
5367   if (LimitFloatPrecision <= 6) {
5368     // For floating-point precision of 6:
5369     //
5370     //   TwoToFractionalPartOfX =
5371     //     0.997535578f +
5372     //       (0.735607626f + 0.252464424f * x) * x;
5373     //
5374     // error 0.0144103317, which is 6 bits
5375     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5376                              getF32Constant(DAG, 0x3e814304, dl));
5377     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5378                              getF32Constant(DAG, 0x3f3c50c8, dl));
5379     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5380     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5381                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
5382   } else if (LimitFloatPrecision <= 12) {
5383     // For floating-point precision of 12:
5384     //
5385     //   TwoToFractionalPartOfX =
5386     //     0.999892986f +
5387     //       (0.696457318f +
5388     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
5389     //
5390     // error 0.000107046256, which is 13 to 14 bits
5391     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5392                              getF32Constant(DAG, 0x3da235e3, dl));
5393     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5394                              getF32Constant(DAG, 0x3e65b8f3, dl));
5395     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5396     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5397                              getF32Constant(DAG, 0x3f324b07, dl));
5398     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5399     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5400                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
5401   } else { // LimitFloatPrecision <= 18
5402     // For floating-point precision of 18:
5403     //
5404     //   TwoToFractionalPartOfX =
5405     //     0.999999982f +
5406     //       (0.693148872f +
5407     //         (0.240227044f +
5408     //           (0.554906021e-1f +
5409     //             (0.961591928e-2f +
5410     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
5411     // error 2.47208000*10^(-7), which is better than 18 bits
5412     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5413                              getF32Constant(DAG, 0x3924b03e, dl));
5414     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5415                              getF32Constant(DAG, 0x3ab24b87, dl));
5416     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5417     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5418                              getF32Constant(DAG, 0x3c1d8c17, dl));
5419     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5420     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5421                              getF32Constant(DAG, 0x3d634a1d, dl));
5422     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5423     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5424                              getF32Constant(DAG, 0x3e75fe14, dl));
5425     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5426     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
5427                               getF32Constant(DAG, 0x3f317234, dl));
5428     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
5429     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
5430                                          getF32Constant(DAG, 0x3f800000, dl));
5431   }
5432 
5433   // Add the exponent into the result in integer domain.
5434   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
5435   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
5436                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
5437 }
5438 
5439 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
5440 /// limited-precision mode.
5441 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5442                          const TargetLowering &TLI, SDNodeFlags Flags) {
5443   if (Op.getValueType() == MVT::f32 &&
5444       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5445 
5446     // Put the exponent in the right bit position for later addition to the
5447     // final result:
5448     //
5449     // t0 = Op * log2(e)
5450 
5451     // TODO: What fast-math-flags should be set here?
5452     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5453                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5454     return getLimitedPrecisionExp2(t0, dl, DAG);
5455   }
5456 
5457   // No special expansion.
5458   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
5459 }
5460 
5461 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5462 /// limited-precision mode.
5463 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5464                          const TargetLowering &TLI, SDNodeFlags Flags) {
5465   // TODO: What fast-math-flags should be set on the floating-point nodes?
5466 
5467   if (Op.getValueType() == MVT::f32 &&
5468       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5469     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5470 
5471     // Scale the exponent by log(2).
5472     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5473     SDValue LogOfExponent =
5474         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5475                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5476 
5477     // Get the significand and build it into a floating-point number with
5478     // exponent of 1.
5479     SDValue X = GetSignificand(DAG, Op1, dl);
5480 
5481     SDValue LogOfMantissa;
5482     if (LimitFloatPrecision <= 6) {
5483       // For floating-point precision of 6:
5484       //
5485       //   LogofMantissa =
5486       //     -1.1609546f +
5487       //       (1.4034025f - 0.23903021f * x) * x;
5488       //
5489       // error 0.0034276066, which is better than 8 bits
5490       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5491                                getF32Constant(DAG, 0xbe74c456, dl));
5492       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5493                                getF32Constant(DAG, 0x3fb3a2b1, dl));
5494       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5495       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5496                                   getF32Constant(DAG, 0x3f949a29, dl));
5497     } else if (LimitFloatPrecision <= 12) {
5498       // For floating-point precision of 12:
5499       //
5500       //   LogOfMantissa =
5501       //     -1.7417939f +
5502       //       (2.8212026f +
5503       //         (-1.4699568f +
5504       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5505       //
5506       // error 0.000061011436, which is 14 bits
5507       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5508                                getF32Constant(DAG, 0xbd67b6d6, dl));
5509       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5510                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5511       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5512       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5513                                getF32Constant(DAG, 0x3fbc278b, dl));
5514       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5515       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5516                                getF32Constant(DAG, 0x40348e95, dl));
5517       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5518       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5519                                   getF32Constant(DAG, 0x3fdef31a, dl));
5520     } else { // LimitFloatPrecision <= 18
5521       // For floating-point precision of 18:
5522       //
5523       //   LogOfMantissa =
5524       //     -2.1072184f +
5525       //       (4.2372794f +
5526       //         (-3.7029485f +
5527       //           (2.2781945f +
5528       //             (-0.87823314f +
5529       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5530       //
5531       // error 0.0000023660568, which is better than 18 bits
5532       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5533                                getF32Constant(DAG, 0xbc91e5ac, dl));
5534       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5535                                getF32Constant(DAG, 0x3e4350aa, dl));
5536       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5537       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5538                                getF32Constant(DAG, 0x3f60d3e3, dl));
5539       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5540       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5541                                getF32Constant(DAG, 0x4011cdf0, dl));
5542       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5543       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5544                                getF32Constant(DAG, 0x406cfd1c, dl));
5545       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5546       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5547                                getF32Constant(DAG, 0x408797cb, dl));
5548       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5549       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5550                                   getF32Constant(DAG, 0x4006dcab, dl));
5551     }
5552 
5553     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5554   }
5555 
5556   // No special expansion.
5557   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5558 }
5559 
5560 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5561 /// limited-precision mode.
5562 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5563                           const TargetLowering &TLI, SDNodeFlags Flags) {
5564   // TODO: What fast-math-flags should be set on the floating-point nodes?
5565 
5566   if (Op.getValueType() == MVT::f32 &&
5567       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5568     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5569 
5570     // Get the exponent.
5571     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5572 
5573     // Get the significand and build it into a floating-point number with
5574     // exponent of 1.
5575     SDValue X = GetSignificand(DAG, Op1, dl);
5576 
5577     // Different possible minimax approximations of significand in
5578     // floating-point for various degrees of accuracy over [1,2].
5579     SDValue Log2ofMantissa;
5580     if (LimitFloatPrecision <= 6) {
5581       // For floating-point precision of 6:
5582       //
5583       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5584       //
5585       // error 0.0049451742, which is more than 7 bits
5586       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5587                                getF32Constant(DAG, 0xbeb08fe0, dl));
5588       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5589                                getF32Constant(DAG, 0x40019463, dl));
5590       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5591       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5592                                    getF32Constant(DAG, 0x3fd6633d, dl));
5593     } else if (LimitFloatPrecision <= 12) {
5594       // For floating-point precision of 12:
5595       //
5596       //   Log2ofMantissa =
5597       //     -2.51285454f +
5598       //       (4.07009056f +
5599       //         (-2.12067489f +
5600       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5601       //
5602       // error 0.0000876136000, which is better than 13 bits
5603       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5604                                getF32Constant(DAG, 0xbda7262e, dl));
5605       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5606                                getF32Constant(DAG, 0x3f25280b, dl));
5607       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5608       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5609                                getF32Constant(DAG, 0x4007b923, dl));
5610       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5611       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5612                                getF32Constant(DAG, 0x40823e2f, dl));
5613       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5614       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5615                                    getF32Constant(DAG, 0x4020d29c, dl));
5616     } else { // LimitFloatPrecision <= 18
5617       // For floating-point precision of 18:
5618       //
5619       //   Log2ofMantissa =
5620       //     -3.0400495f +
5621       //       (6.1129976f +
5622       //         (-5.3420409f +
5623       //           (3.2865683f +
5624       //             (-1.2669343f +
5625       //               (0.27515199f -
5626       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5627       //
5628       // error 0.0000018516, which is better than 18 bits
5629       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5630                                getF32Constant(DAG, 0xbcd2769e, dl));
5631       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5632                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5633       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5634       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5635                                getF32Constant(DAG, 0x3fa22ae7, dl));
5636       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5637       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5638                                getF32Constant(DAG, 0x40525723, dl));
5639       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5640       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5641                                getF32Constant(DAG, 0x40aaf200, dl));
5642       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5643       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5644                                getF32Constant(DAG, 0x40c39dad, dl));
5645       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5646       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5647                                    getF32Constant(DAG, 0x4042902c, dl));
5648     }
5649 
5650     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5651   }
5652 
5653   // No special expansion.
5654   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5655 }
5656 
5657 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5658 /// limited-precision mode.
5659 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5660                            const TargetLowering &TLI, SDNodeFlags Flags) {
5661   // TODO: What fast-math-flags should be set on the floating-point nodes?
5662 
5663   if (Op.getValueType() == MVT::f32 &&
5664       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5665     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5666 
5667     // Scale the exponent by log10(2) [0.30102999f].
5668     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5669     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5670                                         getF32Constant(DAG, 0x3e9a209a, dl));
5671 
5672     // Get the significand and build it into a floating-point number with
5673     // exponent of 1.
5674     SDValue X = GetSignificand(DAG, Op1, dl);
5675 
5676     SDValue Log10ofMantissa;
5677     if (LimitFloatPrecision <= 6) {
5678       // For floating-point precision of 6:
5679       //
5680       //   Log10ofMantissa =
5681       //     -0.50419619f +
5682       //       (0.60948995f - 0.10380950f * x) * x;
5683       //
5684       // error 0.0014886165, which is 6 bits
5685       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5686                                getF32Constant(DAG, 0xbdd49a13, dl));
5687       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5688                                getF32Constant(DAG, 0x3f1c0789, dl));
5689       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5690       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5691                                     getF32Constant(DAG, 0x3f011300, dl));
5692     } else if (LimitFloatPrecision <= 12) {
5693       // For floating-point precision of 12:
5694       //
5695       //   Log10ofMantissa =
5696       //     -0.64831180f +
5697       //       (0.91751397f +
5698       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5699       //
5700       // error 0.00019228036, which is better than 12 bits
5701       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5702                                getF32Constant(DAG, 0x3d431f31, dl));
5703       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5704                                getF32Constant(DAG, 0x3ea21fb2, dl));
5705       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5706       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5707                                getF32Constant(DAG, 0x3f6ae232, dl));
5708       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5709       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5710                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5711     } else { // LimitFloatPrecision <= 18
5712       // For floating-point precision of 18:
5713       //
5714       //   Log10ofMantissa =
5715       //     -0.84299375f +
5716       //       (1.5327582f +
5717       //         (-1.0688956f +
5718       //           (0.49102474f +
5719       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5720       //
5721       // error 0.0000037995730, which is better than 18 bits
5722       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5723                                getF32Constant(DAG, 0x3c5d51ce, dl));
5724       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5725                                getF32Constant(DAG, 0x3e00685a, dl));
5726       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5727       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5728                                getF32Constant(DAG, 0x3efb6798, dl));
5729       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5730       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5731                                getF32Constant(DAG, 0x3f88d192, dl));
5732       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5733       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5734                                getF32Constant(DAG, 0x3fc4316c, dl));
5735       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5736       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5737                                     getF32Constant(DAG, 0x3f57ce70, dl));
5738     }
5739 
5740     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5741   }
5742 
5743   // No special expansion.
5744   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5745 }
5746 
5747 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5748 /// limited-precision mode.
5749 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5750                           const TargetLowering &TLI, SDNodeFlags Flags) {
5751   if (Op.getValueType() == MVT::f32 &&
5752       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5753     return getLimitedPrecisionExp2(Op, dl, DAG);
5754 
5755   // No special expansion.
5756   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5757 }
5758 
5759 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5760 /// limited-precision mode with x == 10.0f.
5761 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5762                          SelectionDAG &DAG, const TargetLowering &TLI,
5763                          SDNodeFlags Flags) {
5764   bool IsExp10 = false;
5765   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5766       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5767     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5768       APFloat Ten(10.0f);
5769       IsExp10 = LHSC->isExactlyValue(Ten);
5770     }
5771   }
5772 
5773   // TODO: What fast-math-flags should be set on the FMUL node?
5774   if (IsExp10) {
5775     // Put the exponent in the right bit position for later addition to the
5776     // final result:
5777     //
5778     //   #define LOG2OF10 3.3219281f
5779     //   t0 = Op * LOG2OF10;
5780     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5781                              getF32Constant(DAG, 0x40549a78, dl));
5782     return getLimitedPrecisionExp2(t0, dl, DAG);
5783   }
5784 
5785   // No special expansion.
5786   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5787 }
5788 
5789 /// ExpandPowI - Expand a llvm.powi intrinsic.
5790 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5791                           SelectionDAG &DAG) {
5792   // If RHS is a constant, we can expand this out to a multiplication tree if
5793   // it's beneficial on the target, otherwise we end up lowering to a call to
5794   // __powidf2 (for example).
5795   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5796     unsigned Val = RHSC->getSExtValue();
5797 
5798     // powi(x, 0) -> 1.0
5799     if (Val == 0)
5800       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5801 
5802     if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI(
5803             Val, DAG.shouldOptForSize())) {
5804       // Get the exponent as a positive value.
5805       if ((int)Val < 0)
5806         Val = -Val;
5807       // We use the simple binary decomposition method to generate the multiply
5808       // sequence.  There are more optimal ways to do this (for example,
5809       // powi(x,15) generates one more multiply than it should), but this has
5810       // the benefit of being both really simple and much better than a libcall.
5811       SDValue Res; // Logically starts equal to 1.0
5812       SDValue CurSquare = LHS;
5813       // TODO: Intrinsics should have fast-math-flags that propagate to these
5814       // nodes.
5815       while (Val) {
5816         if (Val & 1) {
5817           if (Res.getNode())
5818             Res =
5819                 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare);
5820           else
5821             Res = CurSquare; // 1.0*CurSquare.
5822         }
5823 
5824         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5825                                 CurSquare, CurSquare);
5826         Val >>= 1;
5827       }
5828 
5829       // If the original was negative, invert the result, producing 1/(x*x*x).
5830       if (RHSC->getSExtValue() < 0)
5831         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5832                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5833       return Res;
5834     }
5835   }
5836 
5837   // Otherwise, expand to a libcall.
5838   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5839 }
5840 
5841 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5842                             SDValue LHS, SDValue RHS, SDValue Scale,
5843                             SelectionDAG &DAG, const TargetLowering &TLI) {
5844   EVT VT = LHS.getValueType();
5845   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5846   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5847   LLVMContext &Ctx = *DAG.getContext();
5848 
5849   // If the type is legal but the operation isn't, this node might survive all
5850   // the way to operation legalization. If we end up there and we do not have
5851   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5852   // node.
5853 
5854   // Coax the legalizer into expanding the node during type legalization instead
5855   // by bumping the size by one bit. This will force it to Promote, enabling the
5856   // early expansion and avoiding the need to expand later.
5857 
5858   // We don't have to do this if Scale is 0; that can always be expanded, unless
5859   // it's a saturating signed operation. Those can experience true integer
5860   // division overflow, a case which we must avoid.
5861 
5862   // FIXME: We wouldn't have to do this (or any of the early
5863   // expansion/promotion) if it was possible to expand a libcall of an
5864   // illegal type during operation legalization. But it's not, so things
5865   // get a bit hacky.
5866   unsigned ScaleInt = Scale->getAsZExtVal();
5867   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5868       (TLI.isTypeLegal(VT) ||
5869        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5870     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5871         Opcode, VT, ScaleInt);
5872     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5873       EVT PromVT;
5874       if (VT.isScalarInteger())
5875         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5876       else if (VT.isVector()) {
5877         PromVT = VT.getVectorElementType();
5878         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5879         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5880       } else
5881         llvm_unreachable("Wrong VT for DIVFIX?");
5882       LHS = DAG.getExtOrTrunc(Signed, LHS, DL, PromVT);
5883       RHS = DAG.getExtOrTrunc(Signed, RHS, DL, PromVT);
5884       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5885       // For saturating operations, we need to shift up the LHS to get the
5886       // proper saturation width, and then shift down again afterwards.
5887       if (Saturating)
5888         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5889                           DAG.getConstant(1, DL, ShiftTy));
5890       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5891       if (Saturating)
5892         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5893                           DAG.getConstant(1, DL, ShiftTy));
5894       return DAG.getZExtOrTrunc(Res, DL, VT);
5895     }
5896   }
5897 
5898   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5899 }
5900 
5901 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5902 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5903 static void
5904 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs,
5905                      const SDValue &N) {
5906   switch (N.getOpcode()) {
5907   case ISD::CopyFromReg: {
5908     SDValue Op = N.getOperand(1);
5909     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5910                       Op.getValueType().getSizeInBits());
5911     return;
5912   }
5913   case ISD::BITCAST:
5914   case ISD::AssertZext:
5915   case ISD::AssertSext:
5916   case ISD::TRUNCATE:
5917     getUnderlyingArgRegs(Regs, N.getOperand(0));
5918     return;
5919   case ISD::BUILD_PAIR:
5920   case ISD::BUILD_VECTOR:
5921   case ISD::CONCAT_VECTORS:
5922     for (SDValue Op : N->op_values())
5923       getUnderlyingArgRegs(Regs, Op);
5924     return;
5925   default:
5926     return;
5927   }
5928 }
5929 
5930 /// If the DbgValueInst is a dbg_value of a function argument, create the
5931 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5932 /// instruction selection, they will be inserted to the entry BB.
5933 /// We don't currently support this for variadic dbg_values, as they shouldn't
5934 /// appear for function arguments or in the prologue.
5935 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5936     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5937     DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) {
5938   const Argument *Arg = dyn_cast<Argument>(V);
5939   if (!Arg)
5940     return false;
5941 
5942   MachineFunction &MF = DAG.getMachineFunction();
5943   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5944 
5945   // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind
5946   // we've been asked to pursue.
5947   auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr,
5948                               bool Indirect) {
5949     if (Reg.isVirtual() && MF.useDebugInstrRef()) {
5950       // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF
5951       // pointing at the VReg, which will be patched up later.
5952       auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF);
5953       SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg(
5954           /* Reg */ Reg, /* isDef */ false, /* isImp */ false,
5955           /* isKill */ false, /* isDead */ false,
5956           /* isUndef */ false, /* isEarlyClobber */ false,
5957           /* SubReg */ 0, /* isDebug */ true)});
5958 
5959       auto *NewDIExpr = FragExpr;
5960       // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into
5961       // the DIExpression.
5962       if (Indirect)
5963         NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore);
5964       SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0});
5965       NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops);
5966       return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr);
5967     } else {
5968       // Create a completely standard DBG_VALUE.
5969       auto &Inst = TII->get(TargetOpcode::DBG_VALUE);
5970       return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr);
5971     }
5972   };
5973 
5974   if (Kind == FuncArgumentDbgValueKind::Value) {
5975     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5976     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5977     // the entry block.
5978     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5979     if (!IsInEntryBlock)
5980       return false;
5981 
5982     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5983     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5984     // variable that also is a param.
5985     //
5986     // Although, if we are at the top of the entry block already, we can still
5987     // emit using ArgDbgValue. This might catch some situations when the
5988     // dbg.value refers to an argument that isn't used in the entry block, so
5989     // any CopyToReg node would be optimized out and the only way to express
5990     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5991     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5992     // we should only emit as ArgDbgValue if the Variable is an argument to the
5993     // current function, and the dbg.value intrinsic is found in the entry
5994     // block.
5995     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5996         !DL->getInlinedAt();
5997     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5998     if (!IsInPrologue && !VariableIsFunctionInputArg)
5999       return false;
6000 
6001     // Here we assume that a function argument on IR level only can be used to
6002     // describe one input parameter on source level. If we for example have
6003     // source code like this
6004     //
6005     //    struct A { long x, y; };
6006     //    void foo(struct A a, long b) {
6007     //      ...
6008     //      b = a.x;
6009     //      ...
6010     //    }
6011     //
6012     // and IR like this
6013     //
6014     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
6015     //  entry:
6016     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
6017     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
6018     //    call void @llvm.dbg.value(metadata i32 %b, "b",
6019     //    ...
6020     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
6021     //    ...
6022     //
6023     // then the last dbg.value is describing a parameter "b" using a value that
6024     // is an argument. But since we already has used %a1 to describe a parameter
6025     // we should not handle that last dbg.value here (that would result in an
6026     // incorrect hoisting of the DBG_VALUE to the function entry).
6027     // Notice that we allow one dbg.value per IR level argument, to accommodate
6028     // for the situation with fragments above.
6029     // If there is no node for the value being handled, we return true to skip
6030     // the normal generation of debug info, as it would kill existing debug
6031     // info for the parameter in case of duplicates.
6032     if (VariableIsFunctionInputArg) {
6033       unsigned ArgNo = Arg->getArgNo();
6034       if (ArgNo >= FuncInfo.DescribedArgs.size())
6035         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
6036       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
6037         return !NodeMap[V].getNode();
6038       FuncInfo.DescribedArgs.set(ArgNo);
6039     }
6040   }
6041 
6042   bool IsIndirect = false;
6043   std::optional<MachineOperand> Op;
6044   // Some arguments' frame index is recorded during argument lowering.
6045   int FI = FuncInfo.getArgumentFrameIndex(Arg);
6046   if (FI != std::numeric_limits<int>::max())
6047     Op = MachineOperand::CreateFI(FI);
6048 
6049   SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes;
6050   if (!Op && N.getNode()) {
6051     getUnderlyingArgRegs(ArgRegsAndSizes, N);
6052     Register Reg;
6053     if (ArgRegsAndSizes.size() == 1)
6054       Reg = ArgRegsAndSizes.front().first;
6055 
6056     if (Reg && Reg.isVirtual()) {
6057       MachineRegisterInfo &RegInfo = MF.getRegInfo();
6058       Register PR = RegInfo.getLiveInPhysReg(Reg);
6059       if (PR)
6060         Reg = PR;
6061     }
6062     if (Reg) {
6063       Op = MachineOperand::CreateReg(Reg, false);
6064       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
6065     }
6066   }
6067 
6068   if (!Op && N.getNode()) {
6069     // Check if frame index is available.
6070     SDValue LCandidate = peekThroughBitcasts(N);
6071     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
6072       if (FrameIndexSDNode *FINode =
6073           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
6074         Op = MachineOperand::CreateFI(FINode->getIndex());
6075   }
6076 
6077   if (!Op) {
6078     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
6079     auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>>
6080                                          SplitRegs) {
6081       unsigned Offset = 0;
6082       for (const auto &RegAndSize : SplitRegs) {
6083         // If the expression is already a fragment, the current register
6084         // offset+size might extend beyond the fragment. In this case, only
6085         // the register bits that are inside the fragment are relevant.
6086         int RegFragmentSizeInBits = RegAndSize.second;
6087         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
6088           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
6089           // The register is entirely outside the expression fragment,
6090           // so is irrelevant for debug info.
6091           if (Offset >= ExprFragmentSizeInBits)
6092             break;
6093           // The register is partially outside the expression fragment, only
6094           // the low bits within the fragment are relevant for debug info.
6095           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
6096             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
6097           }
6098         }
6099 
6100         auto FragmentExpr = DIExpression::createFragmentExpression(
6101             Expr, Offset, RegFragmentSizeInBits);
6102         Offset += RegAndSize.second;
6103         // If a valid fragment expression cannot be created, the variable's
6104         // correct value cannot be determined and so it is set as Undef.
6105         if (!FragmentExpr) {
6106           SDDbgValue *SDV = DAG.getConstantDbgValue(
6107               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
6108           DAG.AddDbgValue(SDV, false);
6109           continue;
6110         }
6111         MachineInstr *NewMI =
6112             MakeVRegDbgValue(RegAndSize.first, *FragmentExpr,
6113                              Kind != FuncArgumentDbgValueKind::Value);
6114         FuncInfo.ArgDbgValues.push_back(NewMI);
6115       }
6116     };
6117 
6118     // Check if ValueMap has reg number.
6119     DenseMap<const Value *, Register>::const_iterator
6120       VMI = FuncInfo.ValueMap.find(V);
6121     if (VMI != FuncInfo.ValueMap.end()) {
6122       const auto &TLI = DAG.getTargetLoweringInfo();
6123       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
6124                        V->getType(), std::nullopt);
6125       if (RFV.occupiesMultipleRegs()) {
6126         splitMultiRegDbgValue(RFV.getRegsAndSizes());
6127         return true;
6128       }
6129 
6130       Op = MachineOperand::CreateReg(VMI->second, false);
6131       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
6132     } else if (ArgRegsAndSizes.size() > 1) {
6133       // This was split due to the calling convention, and no virtual register
6134       // mapping exists for the value.
6135       splitMultiRegDbgValue(ArgRegsAndSizes);
6136       return true;
6137     }
6138   }
6139 
6140   if (!Op)
6141     return false;
6142 
6143   assert(Variable->isValidLocationForIntrinsic(DL) &&
6144          "Expected inlined-at fields to agree");
6145   MachineInstr *NewMI = nullptr;
6146 
6147   if (Op->isReg())
6148     NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect);
6149   else
6150     NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op,
6151                     Variable, Expr);
6152 
6153   // Otherwise, use ArgDbgValues.
6154   FuncInfo.ArgDbgValues.push_back(NewMI);
6155   return true;
6156 }
6157 
6158 /// Return the appropriate SDDbgValue based on N.
6159 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
6160                                              DILocalVariable *Variable,
6161                                              DIExpression *Expr,
6162                                              const DebugLoc &dl,
6163                                              unsigned DbgSDNodeOrder) {
6164   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
6165     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
6166     // stack slot locations.
6167     //
6168     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
6169     // debug values here after optimization:
6170     //
6171     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
6172     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
6173     //
6174     // Both describe the direct values of their associated variables.
6175     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
6176                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
6177   }
6178   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
6179                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
6180 }
6181 
6182 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
6183   switch (Intrinsic) {
6184   case Intrinsic::smul_fix:
6185     return ISD::SMULFIX;
6186   case Intrinsic::umul_fix:
6187     return ISD::UMULFIX;
6188   case Intrinsic::smul_fix_sat:
6189     return ISD::SMULFIXSAT;
6190   case Intrinsic::umul_fix_sat:
6191     return ISD::UMULFIXSAT;
6192   case Intrinsic::sdiv_fix:
6193     return ISD::SDIVFIX;
6194   case Intrinsic::udiv_fix:
6195     return ISD::UDIVFIX;
6196   case Intrinsic::sdiv_fix_sat:
6197     return ISD::SDIVFIXSAT;
6198   case Intrinsic::udiv_fix_sat:
6199     return ISD::UDIVFIXSAT;
6200   default:
6201     llvm_unreachable("Unhandled fixed point intrinsic");
6202   }
6203 }
6204 
6205 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
6206                                            const char *FunctionName) {
6207   assert(FunctionName && "FunctionName must not be nullptr");
6208   SDValue Callee = DAG.getExternalSymbol(
6209       FunctionName,
6210       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
6211   LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
6212 }
6213 
6214 /// Given a @llvm.call.preallocated.setup, return the corresponding
6215 /// preallocated call.
6216 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
6217   assert(cast<CallBase>(PreallocatedSetup)
6218                  ->getCalledFunction()
6219                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
6220          "expected call_preallocated_setup Value");
6221   for (const auto *U : PreallocatedSetup->users()) {
6222     auto *UseCall = cast<CallBase>(U);
6223     const Function *Fn = UseCall->getCalledFunction();
6224     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
6225       return UseCall;
6226     }
6227   }
6228   llvm_unreachable("expected corresponding call to preallocated setup/arg");
6229 }
6230 
6231 /// If DI is a debug value with an EntryValue expression, lower it using the
6232 /// corresponding physical register of the associated Argument value
6233 /// (guaranteed to exist by the verifier).
6234 bool SelectionDAGBuilder::visitEntryValueDbgValue(
6235     ArrayRef<const Value *> Values, DILocalVariable *Variable,
6236     DIExpression *Expr, DebugLoc DbgLoc) {
6237   if (!Expr->isEntryValue() || !hasSingleElement(Values))
6238     return false;
6239 
6240   // These properties are guaranteed by the verifier.
6241   const Argument *Arg = cast<Argument>(Values[0]);
6242   assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync));
6243 
6244   auto ArgIt = FuncInfo.ValueMap.find(Arg);
6245   if (ArgIt == FuncInfo.ValueMap.end()) {
6246     LLVM_DEBUG(
6247         dbgs() << "Dropping dbg.value: expression is entry_value but "
6248                   "couldn't find an associated register for the Argument\n");
6249     return true;
6250   }
6251   Register ArgVReg = ArgIt->getSecond();
6252 
6253   for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins())
6254     if (ArgVReg == VirtReg || ArgVReg == PhysReg) {
6255       SDDbgValue *SDV = DAG.getVRegDbgValue(
6256           Variable, Expr, PhysReg, false /*IsIndidrect*/, DbgLoc, SDNodeOrder);
6257       DAG.AddDbgValue(SDV, false /*treat as dbg.declare byval parameter*/);
6258       return true;
6259     }
6260   LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but "
6261                        "couldn't find a physical register\n");
6262   return true;
6263 }
6264 
6265 /// Lower the call to the specified intrinsic function.
6266 void SelectionDAGBuilder::visitConvergenceControl(const CallInst &I,
6267                                                   unsigned Intrinsic) {
6268   SDLoc sdl = getCurSDLoc();
6269   switch (Intrinsic) {
6270   case Intrinsic::experimental_convergence_anchor:
6271     setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ANCHOR, sdl, MVT::Untyped));
6272     break;
6273   case Intrinsic::experimental_convergence_entry:
6274     setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ENTRY, sdl, MVT::Untyped));
6275     break;
6276   case Intrinsic::experimental_convergence_loop: {
6277     auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl);
6278     auto *Token = Bundle->Inputs[0].get();
6279     setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_LOOP, sdl, MVT::Untyped,
6280                              getValue(Token)));
6281     break;
6282   }
6283   }
6284 }
6285 
6286 void SelectionDAGBuilder::visitVectorHistogram(const CallInst &I,
6287                                                unsigned IntrinsicID) {
6288   // For now, we're only lowering an 'add' histogram.
6289   // We can add others later, e.g. saturating adds, min/max.
6290   assert(IntrinsicID == Intrinsic::experimental_vector_histogram_add &&
6291          "Tried to lower unsupported histogram type");
6292   SDLoc sdl = getCurSDLoc();
6293   Value *Ptr = I.getOperand(0);
6294   SDValue Inc = getValue(I.getOperand(1));
6295   SDValue Mask = getValue(I.getOperand(2));
6296 
6297   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6298   DataLayout TargetDL = DAG.getDataLayout();
6299   EVT VT = Inc.getValueType();
6300   Align Alignment = DAG.getEVTAlign(VT);
6301 
6302   const MDNode *Ranges = getRangeMetadata(I);
6303 
6304   SDValue Root = DAG.getRoot();
6305   SDValue Base;
6306   SDValue Index;
6307   ISD::MemIndexType IndexType;
6308   SDValue Scale;
6309   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
6310                                     I.getParent(), VT.getScalarStoreSize());
6311 
6312   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
6313 
6314   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
6315       MachinePointerInfo(AS),
6316       MachineMemOperand::MOLoad | MachineMemOperand::MOStore,
6317       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges);
6318 
6319   if (!UniformBase) {
6320     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
6321     Index = getValue(Ptr);
6322     IndexType = ISD::SIGNED_SCALED;
6323     Scale =
6324         DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
6325   }
6326 
6327   EVT IdxVT = Index.getValueType();
6328   EVT EltTy = IdxVT.getVectorElementType();
6329   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
6330     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
6331     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
6332   }
6333 
6334   SDValue ID = DAG.getTargetConstant(IntrinsicID, sdl, MVT::i32);
6335 
6336   SDValue Ops[] = {Root, Inc, Mask, Base, Index, Scale, ID};
6337   SDValue Histogram = DAG.getMaskedHistogram(DAG.getVTList(MVT::Other), VT, sdl,
6338                                              Ops, MMO, IndexType);
6339 
6340   setValue(&I, Histogram);
6341   DAG.setRoot(Histogram);
6342 }
6343 
6344 /// Lower the call to the specified intrinsic function.
6345 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
6346                                              unsigned Intrinsic) {
6347   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6348   SDLoc sdl = getCurSDLoc();
6349   DebugLoc dl = getCurDebugLoc();
6350   SDValue Res;
6351 
6352   SDNodeFlags Flags;
6353   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
6354     Flags.copyFMF(*FPOp);
6355 
6356   switch (Intrinsic) {
6357   default:
6358     // By default, turn this into a target intrinsic node.
6359     visitTargetIntrinsic(I, Intrinsic);
6360     return;
6361   case Intrinsic::vscale: {
6362     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6363     setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1)));
6364     return;
6365   }
6366   case Intrinsic::vastart:  visitVAStart(I); return;
6367   case Intrinsic::vaend:    visitVAEnd(I); return;
6368   case Intrinsic::vacopy:   visitVACopy(I); return;
6369   case Intrinsic::returnaddress:
6370     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
6371                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6372                              getValue(I.getArgOperand(0))));
6373     return;
6374   case Intrinsic::addressofreturnaddress:
6375     setValue(&I,
6376              DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
6377                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
6378     return;
6379   case Intrinsic::sponentry:
6380     setValue(&I,
6381              DAG.getNode(ISD::SPONENTRY, sdl,
6382                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
6383     return;
6384   case Intrinsic::frameaddress:
6385     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
6386                              TLI.getFrameIndexTy(DAG.getDataLayout()),
6387                              getValue(I.getArgOperand(0))));
6388     return;
6389   case Intrinsic::read_volatile_register:
6390   case Intrinsic::read_register: {
6391     Value *Reg = I.getArgOperand(0);
6392     SDValue Chain = getRoot();
6393     SDValue RegName =
6394         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
6395     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6396     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
6397       DAG.getVTList(VT, MVT::Other), Chain, RegName);
6398     setValue(&I, Res);
6399     DAG.setRoot(Res.getValue(1));
6400     return;
6401   }
6402   case Intrinsic::write_register: {
6403     Value *Reg = I.getArgOperand(0);
6404     Value *RegValue = I.getArgOperand(1);
6405     SDValue Chain = getRoot();
6406     SDValue RegName =
6407         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
6408     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
6409                             RegName, getValue(RegValue)));
6410     return;
6411   }
6412   case Intrinsic::memcpy: {
6413     const auto &MCI = cast<MemCpyInst>(I);
6414     SDValue Op1 = getValue(I.getArgOperand(0));
6415     SDValue Op2 = getValue(I.getArgOperand(1));
6416     SDValue Op3 = getValue(I.getArgOperand(2));
6417     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
6418     Align DstAlign = MCI.getDestAlign().valueOrOne();
6419     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
6420     Align Alignment = std::min(DstAlign, SrcAlign);
6421     bool isVol = MCI.isVolatile();
6422     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6423     // FIXME: Support passing different dest/src alignments to the memcpy DAG
6424     // node.
6425     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6426     SDValue MC = DAG.getMemcpy(
6427         Root, sdl, Op1, Op2, Op3, Alignment, isVol,
6428         /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)),
6429         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
6430     updateDAGForMaybeTailCall(MC);
6431     return;
6432   }
6433   case Intrinsic::memcpy_inline: {
6434     const auto &MCI = cast<MemCpyInlineInst>(I);
6435     SDValue Dst = getValue(I.getArgOperand(0));
6436     SDValue Src = getValue(I.getArgOperand(1));
6437     SDValue Size = getValue(I.getArgOperand(2));
6438     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
6439     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
6440     Align DstAlign = MCI.getDestAlign().valueOrOne();
6441     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
6442     Align Alignment = std::min(DstAlign, SrcAlign);
6443     bool isVol = MCI.isVolatile();
6444     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6445     // FIXME: Support passing different dest/src alignments to the memcpy DAG
6446     // node.
6447     SDValue MC = DAG.getMemcpy(
6448         getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
6449         /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)),
6450         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
6451     updateDAGForMaybeTailCall(MC);
6452     return;
6453   }
6454   case Intrinsic::memset: {
6455     const auto &MSI = cast<MemSetInst>(I);
6456     SDValue Op1 = getValue(I.getArgOperand(0));
6457     SDValue Op2 = getValue(I.getArgOperand(1));
6458     SDValue Op3 = getValue(I.getArgOperand(2));
6459     // @llvm.memset defines 0 and 1 to both mean no alignment.
6460     Align Alignment = MSI.getDestAlign().valueOrOne();
6461     bool isVol = MSI.isVolatile();
6462     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6463     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6464     SDValue MS = DAG.getMemset(
6465         Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false,
6466         isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata());
6467     updateDAGForMaybeTailCall(MS);
6468     return;
6469   }
6470   case Intrinsic::memset_inline: {
6471     const auto &MSII = cast<MemSetInlineInst>(I);
6472     SDValue Dst = getValue(I.getArgOperand(0));
6473     SDValue Value = getValue(I.getArgOperand(1));
6474     SDValue Size = getValue(I.getArgOperand(2));
6475     assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size");
6476     // @llvm.memset defines 0 and 1 to both mean no alignment.
6477     Align DstAlign = MSII.getDestAlign().valueOrOne();
6478     bool isVol = MSII.isVolatile();
6479     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6480     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6481     SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol,
6482                                /* AlwaysInline */ true, isTC,
6483                                MachinePointerInfo(I.getArgOperand(0)),
6484                                I.getAAMetadata());
6485     updateDAGForMaybeTailCall(MC);
6486     return;
6487   }
6488   case Intrinsic::memmove: {
6489     const auto &MMI = cast<MemMoveInst>(I);
6490     SDValue Op1 = getValue(I.getArgOperand(0));
6491     SDValue Op2 = getValue(I.getArgOperand(1));
6492     SDValue Op3 = getValue(I.getArgOperand(2));
6493     // @llvm.memmove defines 0 and 1 to both mean no alignment.
6494     Align DstAlign = MMI.getDestAlign().valueOrOne();
6495     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
6496     Align Alignment = std::min(DstAlign, SrcAlign);
6497     bool isVol = MMI.isVolatile();
6498     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6499     // FIXME: Support passing different dest/src alignments to the memmove DAG
6500     // node.
6501     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6502     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
6503                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
6504                                 MachinePointerInfo(I.getArgOperand(1)),
6505                                 I.getAAMetadata(), AA);
6506     updateDAGForMaybeTailCall(MM);
6507     return;
6508   }
6509   case Intrinsic::memcpy_element_unordered_atomic: {
6510     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
6511     SDValue Dst = getValue(MI.getRawDest());
6512     SDValue Src = getValue(MI.getRawSource());
6513     SDValue Length = getValue(MI.getLength());
6514 
6515     Type *LengthTy = MI.getLength()->getType();
6516     unsigned ElemSz = MI.getElementSizeInBytes();
6517     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6518     SDValue MC =
6519         DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6520                             isTC, MachinePointerInfo(MI.getRawDest()),
6521                             MachinePointerInfo(MI.getRawSource()));
6522     updateDAGForMaybeTailCall(MC);
6523     return;
6524   }
6525   case Intrinsic::memmove_element_unordered_atomic: {
6526     auto &MI = cast<AtomicMemMoveInst>(I);
6527     SDValue Dst = getValue(MI.getRawDest());
6528     SDValue Src = getValue(MI.getRawSource());
6529     SDValue Length = getValue(MI.getLength());
6530 
6531     Type *LengthTy = MI.getLength()->getType();
6532     unsigned ElemSz = MI.getElementSizeInBytes();
6533     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6534     SDValue MC =
6535         DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6536                              isTC, MachinePointerInfo(MI.getRawDest()),
6537                              MachinePointerInfo(MI.getRawSource()));
6538     updateDAGForMaybeTailCall(MC);
6539     return;
6540   }
6541   case Intrinsic::memset_element_unordered_atomic: {
6542     auto &MI = cast<AtomicMemSetInst>(I);
6543     SDValue Dst = getValue(MI.getRawDest());
6544     SDValue Val = getValue(MI.getValue());
6545     SDValue Length = getValue(MI.getLength());
6546 
6547     Type *LengthTy = MI.getLength()->getType();
6548     unsigned ElemSz = MI.getElementSizeInBytes();
6549     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6550     SDValue MC =
6551         DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz,
6552                             isTC, MachinePointerInfo(MI.getRawDest()));
6553     updateDAGForMaybeTailCall(MC);
6554     return;
6555   }
6556   case Intrinsic::call_preallocated_setup: {
6557     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
6558     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6559     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
6560                               getRoot(), SrcValue);
6561     setValue(&I, Res);
6562     DAG.setRoot(Res);
6563     return;
6564   }
6565   case Intrinsic::call_preallocated_arg: {
6566     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
6567     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6568     SDValue Ops[3];
6569     Ops[0] = getRoot();
6570     Ops[1] = SrcValue;
6571     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
6572                                    MVT::i32); // arg index
6573     SDValue Res = DAG.getNode(
6574         ISD::PREALLOCATED_ARG, sdl,
6575         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
6576     setValue(&I, Res);
6577     DAG.setRoot(Res.getValue(1));
6578     return;
6579   }
6580   case Intrinsic::dbg_declare: {
6581     const auto &DI = cast<DbgDeclareInst>(I);
6582     // Debug intrinsics are handled separately in assignment tracking mode.
6583     // Some intrinsics are handled right after Argument lowering.
6584     if (AssignmentTrackingEnabled ||
6585         FuncInfo.PreprocessedDbgDeclares.count(&DI))
6586       return;
6587     LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DI << "\n");
6588     DILocalVariable *Variable = DI.getVariable();
6589     DIExpression *Expression = DI.getExpression();
6590     dropDanglingDebugInfo(Variable, Expression);
6591     // Assume dbg.declare can not currently use DIArgList, i.e.
6592     // it is non-variadic.
6593     assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList");
6594     handleDebugDeclare(DI.getVariableLocationOp(0), Variable, Expression,
6595                        DI.getDebugLoc());
6596     return;
6597   }
6598   case Intrinsic::dbg_label: {
6599     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
6600     DILabel *Label = DI.getLabel();
6601     assert(Label && "Missing label");
6602 
6603     SDDbgLabel *SDV;
6604     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
6605     DAG.AddDbgLabel(SDV);
6606     return;
6607   }
6608   case Intrinsic::dbg_assign: {
6609     // Debug intrinsics are handled seperately in assignment tracking mode.
6610     if (AssignmentTrackingEnabled)
6611       return;
6612     // If assignment tracking hasn't been enabled then fall through and treat
6613     // the dbg.assign as a dbg.value.
6614     [[fallthrough]];
6615   }
6616   case Intrinsic::dbg_value: {
6617     // Debug intrinsics are handled seperately in assignment tracking mode.
6618     if (AssignmentTrackingEnabled)
6619       return;
6620     const DbgValueInst &DI = cast<DbgValueInst>(I);
6621     assert(DI.getVariable() && "Missing variable");
6622 
6623     DILocalVariable *Variable = DI.getVariable();
6624     DIExpression *Expression = DI.getExpression();
6625     dropDanglingDebugInfo(Variable, Expression);
6626 
6627     if (DI.isKillLocation()) {
6628       handleKillDebugValue(Variable, Expression, DI.getDebugLoc(), SDNodeOrder);
6629       return;
6630     }
6631 
6632     SmallVector<Value *, 4> Values(DI.getValues());
6633     if (Values.empty())
6634       return;
6635 
6636     bool IsVariadic = DI.hasArgList();
6637     if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(),
6638                           SDNodeOrder, IsVariadic))
6639       addDanglingDebugInfo(Values, Variable, Expression, IsVariadic,
6640                            DI.getDebugLoc(), SDNodeOrder);
6641     return;
6642   }
6643 
6644   case Intrinsic::eh_typeid_for: {
6645     // Find the type id for the given typeinfo.
6646     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6647     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6648     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6649     setValue(&I, Res);
6650     return;
6651   }
6652 
6653   case Intrinsic::eh_return_i32:
6654   case Intrinsic::eh_return_i64:
6655     DAG.getMachineFunction().setCallsEHReturn(true);
6656     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6657                             MVT::Other,
6658                             getControlRoot(),
6659                             getValue(I.getArgOperand(0)),
6660                             getValue(I.getArgOperand(1))));
6661     return;
6662   case Intrinsic::eh_unwind_init:
6663     DAG.getMachineFunction().setCallsUnwindInit(true);
6664     return;
6665   case Intrinsic::eh_dwarf_cfa:
6666     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6667                              TLI.getPointerTy(DAG.getDataLayout()),
6668                              getValue(I.getArgOperand(0))));
6669     return;
6670   case Intrinsic::eh_sjlj_callsite: {
6671     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6672     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0));
6673     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6674 
6675     MMI.setCurrentCallSite(CI->getZExtValue());
6676     return;
6677   }
6678   case Intrinsic::eh_sjlj_functioncontext: {
6679     // Get and store the index of the function context.
6680     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6681     AllocaInst *FnCtx =
6682       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6683     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6684     MFI.setFunctionContextIndex(FI);
6685     return;
6686   }
6687   case Intrinsic::eh_sjlj_setjmp: {
6688     SDValue Ops[2];
6689     Ops[0] = getRoot();
6690     Ops[1] = getValue(I.getArgOperand(0));
6691     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6692                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6693     setValue(&I, Op.getValue(0));
6694     DAG.setRoot(Op.getValue(1));
6695     return;
6696   }
6697   case Intrinsic::eh_sjlj_longjmp:
6698     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6699                             getRoot(), getValue(I.getArgOperand(0))));
6700     return;
6701   case Intrinsic::eh_sjlj_setup_dispatch:
6702     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6703                             getRoot()));
6704     return;
6705   case Intrinsic::masked_gather:
6706     visitMaskedGather(I);
6707     return;
6708   case Intrinsic::masked_load:
6709     visitMaskedLoad(I);
6710     return;
6711   case Intrinsic::masked_scatter:
6712     visitMaskedScatter(I);
6713     return;
6714   case Intrinsic::masked_store:
6715     visitMaskedStore(I);
6716     return;
6717   case Intrinsic::masked_expandload:
6718     visitMaskedLoad(I, true /* IsExpanding */);
6719     return;
6720   case Intrinsic::masked_compressstore:
6721     visitMaskedStore(I, true /* IsCompressing */);
6722     return;
6723   case Intrinsic::powi:
6724     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6725                             getValue(I.getArgOperand(1)), DAG));
6726     return;
6727   case Intrinsic::log:
6728     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6729     return;
6730   case Intrinsic::log2:
6731     setValue(&I,
6732              expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6733     return;
6734   case Intrinsic::log10:
6735     setValue(&I,
6736              expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6737     return;
6738   case Intrinsic::exp:
6739     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6740     return;
6741   case Intrinsic::exp2:
6742     setValue(&I,
6743              expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6744     return;
6745   case Intrinsic::pow:
6746     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6747                            getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6748     return;
6749   case Intrinsic::sqrt:
6750   case Intrinsic::fabs:
6751   case Intrinsic::sin:
6752   case Intrinsic::cos:
6753   case Intrinsic::tan:
6754   case Intrinsic::exp10:
6755   case Intrinsic::floor:
6756   case Intrinsic::ceil:
6757   case Intrinsic::trunc:
6758   case Intrinsic::rint:
6759   case Intrinsic::nearbyint:
6760   case Intrinsic::round:
6761   case Intrinsic::roundeven:
6762   case Intrinsic::canonicalize: {
6763     unsigned Opcode;
6764     // clang-format off
6765     switch (Intrinsic) {
6766     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6767     case Intrinsic::sqrt:         Opcode = ISD::FSQRT;         break;
6768     case Intrinsic::fabs:         Opcode = ISD::FABS;          break;
6769     case Intrinsic::sin:          Opcode = ISD::FSIN;          break;
6770     case Intrinsic::cos:          Opcode = ISD::FCOS;          break;
6771     case Intrinsic::tan:          Opcode = ISD::FTAN;          break;
6772     case Intrinsic::exp10:        Opcode = ISD::FEXP10;        break;
6773     case Intrinsic::floor:        Opcode = ISD::FFLOOR;        break;
6774     case Intrinsic::ceil:         Opcode = ISD::FCEIL;         break;
6775     case Intrinsic::trunc:        Opcode = ISD::FTRUNC;        break;
6776     case Intrinsic::rint:         Opcode = ISD::FRINT;         break;
6777     case Intrinsic::nearbyint:    Opcode = ISD::FNEARBYINT;    break;
6778     case Intrinsic::round:        Opcode = ISD::FROUND;        break;
6779     case Intrinsic::roundeven:    Opcode = ISD::FROUNDEVEN;    break;
6780     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6781     }
6782     // clang-format on
6783 
6784     setValue(&I, DAG.getNode(Opcode, sdl,
6785                              getValue(I.getArgOperand(0)).getValueType(),
6786                              getValue(I.getArgOperand(0)), Flags));
6787     return;
6788   }
6789   case Intrinsic::lround:
6790   case Intrinsic::llround:
6791   case Intrinsic::lrint:
6792   case Intrinsic::llrint: {
6793     unsigned Opcode;
6794     // clang-format off
6795     switch (Intrinsic) {
6796     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6797     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6798     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6799     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6800     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6801     }
6802     // clang-format on
6803 
6804     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6805     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6806                              getValue(I.getArgOperand(0))));
6807     return;
6808   }
6809   case Intrinsic::minnum:
6810     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6811                              getValue(I.getArgOperand(0)).getValueType(),
6812                              getValue(I.getArgOperand(0)),
6813                              getValue(I.getArgOperand(1)), Flags));
6814     return;
6815   case Intrinsic::maxnum:
6816     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6817                              getValue(I.getArgOperand(0)).getValueType(),
6818                              getValue(I.getArgOperand(0)),
6819                              getValue(I.getArgOperand(1)), Flags));
6820     return;
6821   case Intrinsic::minimum:
6822     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6823                              getValue(I.getArgOperand(0)).getValueType(),
6824                              getValue(I.getArgOperand(0)),
6825                              getValue(I.getArgOperand(1)), Flags));
6826     return;
6827   case Intrinsic::maximum:
6828     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6829                              getValue(I.getArgOperand(0)).getValueType(),
6830                              getValue(I.getArgOperand(0)),
6831                              getValue(I.getArgOperand(1)), Flags));
6832     return;
6833   case Intrinsic::copysign:
6834     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6835                              getValue(I.getArgOperand(0)).getValueType(),
6836                              getValue(I.getArgOperand(0)),
6837                              getValue(I.getArgOperand(1)), Flags));
6838     return;
6839   case Intrinsic::ldexp:
6840     setValue(&I, DAG.getNode(ISD::FLDEXP, sdl,
6841                              getValue(I.getArgOperand(0)).getValueType(),
6842                              getValue(I.getArgOperand(0)),
6843                              getValue(I.getArgOperand(1)), Flags));
6844     return;
6845   case Intrinsic::frexp: {
6846     SmallVector<EVT, 2> ValueVTs;
6847     ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
6848     SDVTList VTs = DAG.getVTList(ValueVTs);
6849     setValue(&I,
6850              DAG.getNode(ISD::FFREXP, sdl, VTs, getValue(I.getArgOperand(0))));
6851     return;
6852   }
6853   case Intrinsic::arithmetic_fence: {
6854     setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl,
6855                              getValue(I.getArgOperand(0)).getValueType(),
6856                              getValue(I.getArgOperand(0)), Flags));
6857     return;
6858   }
6859   case Intrinsic::fma:
6860     setValue(&I, DAG.getNode(
6861                      ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6862                      getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6863                      getValue(I.getArgOperand(2)), Flags));
6864     return;
6865 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6866   case Intrinsic::INTRINSIC:
6867 #include "llvm/IR/ConstrainedOps.def"
6868     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6869     return;
6870 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6871 #include "llvm/IR/VPIntrinsics.def"
6872     visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
6873     return;
6874   case Intrinsic::fptrunc_round: {
6875     // Get the last argument, the metadata and convert it to an integer in the
6876     // call
6877     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata();
6878     std::optional<RoundingMode> RoundMode =
6879         convertStrToRoundingMode(cast<MDString>(MD)->getString());
6880 
6881     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6882 
6883     // Propagate fast-math-flags from IR to node(s).
6884     SDNodeFlags Flags;
6885     Flags.copyFMF(*cast<FPMathOperator>(&I));
6886     SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
6887 
6888     SDValue Result;
6889     Result = DAG.getNode(
6890         ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)),
6891         DAG.getTargetConstant((int)*RoundMode, sdl,
6892                               TLI.getPointerTy(DAG.getDataLayout())));
6893     setValue(&I, Result);
6894 
6895     return;
6896   }
6897   case Intrinsic::fmuladd: {
6898     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6899     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6900         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6901       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6902                                getValue(I.getArgOperand(0)).getValueType(),
6903                                getValue(I.getArgOperand(0)),
6904                                getValue(I.getArgOperand(1)),
6905                                getValue(I.getArgOperand(2)), Flags));
6906     } else {
6907       // TODO: Intrinsic calls should have fast-math-flags.
6908       SDValue Mul = DAG.getNode(
6909           ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6910           getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6911       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6912                                 getValue(I.getArgOperand(0)).getValueType(),
6913                                 Mul, getValue(I.getArgOperand(2)), Flags);
6914       setValue(&I, Add);
6915     }
6916     return;
6917   }
6918   case Intrinsic::convert_to_fp16:
6919     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6920                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6921                                          getValue(I.getArgOperand(0)),
6922                                          DAG.getTargetConstant(0, sdl,
6923                                                                MVT::i32))));
6924     return;
6925   case Intrinsic::convert_from_fp16:
6926     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6927                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6928                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6929                                          getValue(I.getArgOperand(0)))));
6930     return;
6931   case Intrinsic::fptosi_sat: {
6932     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6933     setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
6934                              getValue(I.getArgOperand(0)),
6935                              DAG.getValueType(VT.getScalarType())));
6936     return;
6937   }
6938   case Intrinsic::fptoui_sat: {
6939     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6940     setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
6941                              getValue(I.getArgOperand(0)),
6942                              DAG.getValueType(VT.getScalarType())));
6943     return;
6944   }
6945   case Intrinsic::set_rounding:
6946     Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
6947                       {getRoot(), getValue(I.getArgOperand(0))});
6948     setValue(&I, Res);
6949     DAG.setRoot(Res.getValue(0));
6950     return;
6951   case Intrinsic::is_fpclass: {
6952     const DataLayout DLayout = DAG.getDataLayout();
6953     EVT DestVT = TLI.getValueType(DLayout, I.getType());
6954     EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType());
6955     FPClassTest Test = static_cast<FPClassTest>(
6956         cast<ConstantInt>(I.getArgOperand(1))->getZExtValue());
6957     MachineFunction &MF = DAG.getMachineFunction();
6958     const Function &F = MF.getFunction();
6959     SDValue Op = getValue(I.getArgOperand(0));
6960     SDNodeFlags Flags;
6961     Flags.setNoFPExcept(
6962         !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP));
6963     // If ISD::IS_FPCLASS should be expanded, do it right now, because the
6964     // expansion can use illegal types. Making expansion early allows
6965     // legalizing these types prior to selection.
6966     if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) {
6967       SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG);
6968       setValue(&I, Result);
6969       return;
6970     }
6971 
6972     SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32);
6973     SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags);
6974     setValue(&I, V);
6975     return;
6976   }
6977   case Intrinsic::get_fpenv: {
6978     const DataLayout DLayout = DAG.getDataLayout();
6979     EVT EnvVT = TLI.getValueType(DLayout, I.getType());
6980     Align TempAlign = DAG.getEVTAlign(EnvVT);
6981     SDValue Chain = getRoot();
6982     // Use GET_FPENV if it is legal or custom. Otherwise use memory-based node
6983     // and temporary storage in stack.
6984     if (TLI.isOperationLegalOrCustom(ISD::GET_FPENV, EnvVT)) {
6985       Res = DAG.getNode(
6986           ISD::GET_FPENV, sdl,
6987           DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()),
6988                         MVT::Other),
6989           Chain);
6990     } else {
6991       SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
6992       int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
6993       auto MPI =
6994           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
6995       MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
6996           MPI, MachineMemOperand::MOStore, LocationSize::beforeOrAfterPointer(),
6997           TempAlign);
6998       Chain = DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
6999       Res = DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI);
7000     }
7001     setValue(&I, Res);
7002     DAG.setRoot(Res.getValue(1));
7003     return;
7004   }
7005   case Intrinsic::set_fpenv: {
7006     const DataLayout DLayout = DAG.getDataLayout();
7007     SDValue Env = getValue(I.getArgOperand(0));
7008     EVT EnvVT = Env.getValueType();
7009     Align TempAlign = DAG.getEVTAlign(EnvVT);
7010     SDValue Chain = getRoot();
7011     // If SET_FPENV is custom or legal, use it. Otherwise use loading
7012     // environment from memory.
7013     if (TLI.isOperationLegalOrCustom(ISD::SET_FPENV, EnvVT)) {
7014       Chain = DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env);
7015     } else {
7016       // Allocate space in stack, copy environment bits into it and use this
7017       // memory in SET_FPENV_MEM.
7018       SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
7019       int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
7020       auto MPI =
7021           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
7022       Chain = DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign,
7023                            MachineMemOperand::MOStore);
7024       MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7025           MPI, MachineMemOperand::MOLoad, LocationSize::beforeOrAfterPointer(),
7026           TempAlign);
7027       Chain = DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
7028     }
7029     DAG.setRoot(Chain);
7030     return;
7031   }
7032   case Intrinsic::reset_fpenv:
7033     DAG.setRoot(DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other, getRoot()));
7034     return;
7035   case Intrinsic::get_fpmode:
7036     Res = DAG.getNode(
7037         ISD::GET_FPMODE, sdl,
7038         DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7039                       MVT::Other),
7040         DAG.getRoot());
7041     setValue(&I, Res);
7042     DAG.setRoot(Res.getValue(1));
7043     return;
7044   case Intrinsic::set_fpmode:
7045     Res = DAG.getNode(ISD::SET_FPMODE, sdl, MVT::Other, {DAG.getRoot()},
7046                       getValue(I.getArgOperand(0)));
7047     DAG.setRoot(Res);
7048     return;
7049   case Intrinsic::reset_fpmode: {
7050     Res = DAG.getNode(ISD::RESET_FPMODE, sdl, MVT::Other, getRoot());
7051     DAG.setRoot(Res);
7052     return;
7053   }
7054   case Intrinsic::pcmarker: {
7055     SDValue Tmp = getValue(I.getArgOperand(0));
7056     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
7057     return;
7058   }
7059   case Intrinsic::readcyclecounter: {
7060     SDValue Op = getRoot();
7061     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
7062                       DAG.getVTList(MVT::i64, MVT::Other), Op);
7063     setValue(&I, Res);
7064     DAG.setRoot(Res.getValue(1));
7065     return;
7066   }
7067   case Intrinsic::readsteadycounter: {
7068     SDValue Op = getRoot();
7069     Res = DAG.getNode(ISD::READSTEADYCOUNTER, sdl,
7070                       DAG.getVTList(MVT::i64, MVT::Other), Op);
7071     setValue(&I, Res);
7072     DAG.setRoot(Res.getValue(1));
7073     return;
7074   }
7075   case Intrinsic::bitreverse:
7076     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
7077                              getValue(I.getArgOperand(0)).getValueType(),
7078                              getValue(I.getArgOperand(0))));
7079     return;
7080   case Intrinsic::bswap:
7081     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
7082                              getValue(I.getArgOperand(0)).getValueType(),
7083                              getValue(I.getArgOperand(0))));
7084     return;
7085   case Intrinsic::cttz: {
7086     SDValue Arg = getValue(I.getArgOperand(0));
7087     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
7088     EVT Ty = Arg.getValueType();
7089     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
7090                              sdl, Ty, Arg));
7091     return;
7092   }
7093   case Intrinsic::ctlz: {
7094     SDValue Arg = getValue(I.getArgOperand(0));
7095     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
7096     EVT Ty = Arg.getValueType();
7097     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
7098                              sdl, Ty, Arg));
7099     return;
7100   }
7101   case Intrinsic::ctpop: {
7102     SDValue Arg = getValue(I.getArgOperand(0));
7103     EVT Ty = Arg.getValueType();
7104     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
7105     return;
7106   }
7107   case Intrinsic::fshl:
7108   case Intrinsic::fshr: {
7109     bool IsFSHL = Intrinsic == Intrinsic::fshl;
7110     SDValue X = getValue(I.getArgOperand(0));
7111     SDValue Y = getValue(I.getArgOperand(1));
7112     SDValue Z = getValue(I.getArgOperand(2));
7113     EVT VT = X.getValueType();
7114 
7115     if (X == Y) {
7116       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
7117       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
7118     } else {
7119       auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
7120       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
7121     }
7122     return;
7123   }
7124   case Intrinsic::sadd_sat: {
7125     SDValue Op1 = getValue(I.getArgOperand(0));
7126     SDValue Op2 = getValue(I.getArgOperand(1));
7127     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
7128     return;
7129   }
7130   case Intrinsic::uadd_sat: {
7131     SDValue Op1 = getValue(I.getArgOperand(0));
7132     SDValue Op2 = getValue(I.getArgOperand(1));
7133     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
7134     return;
7135   }
7136   case Intrinsic::ssub_sat: {
7137     SDValue Op1 = getValue(I.getArgOperand(0));
7138     SDValue Op2 = getValue(I.getArgOperand(1));
7139     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
7140     return;
7141   }
7142   case Intrinsic::usub_sat: {
7143     SDValue Op1 = getValue(I.getArgOperand(0));
7144     SDValue Op2 = getValue(I.getArgOperand(1));
7145     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
7146     return;
7147   }
7148   case Intrinsic::sshl_sat: {
7149     SDValue Op1 = getValue(I.getArgOperand(0));
7150     SDValue Op2 = getValue(I.getArgOperand(1));
7151     setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
7152     return;
7153   }
7154   case Intrinsic::ushl_sat: {
7155     SDValue Op1 = getValue(I.getArgOperand(0));
7156     SDValue Op2 = getValue(I.getArgOperand(1));
7157     setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
7158     return;
7159   }
7160   case Intrinsic::smul_fix:
7161   case Intrinsic::umul_fix:
7162   case Intrinsic::smul_fix_sat:
7163   case Intrinsic::umul_fix_sat: {
7164     SDValue Op1 = getValue(I.getArgOperand(0));
7165     SDValue Op2 = getValue(I.getArgOperand(1));
7166     SDValue Op3 = getValue(I.getArgOperand(2));
7167     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
7168                              Op1.getValueType(), Op1, Op2, Op3));
7169     return;
7170   }
7171   case Intrinsic::sdiv_fix:
7172   case Intrinsic::udiv_fix:
7173   case Intrinsic::sdiv_fix_sat:
7174   case Intrinsic::udiv_fix_sat: {
7175     SDValue Op1 = getValue(I.getArgOperand(0));
7176     SDValue Op2 = getValue(I.getArgOperand(1));
7177     SDValue Op3 = getValue(I.getArgOperand(2));
7178     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
7179                               Op1, Op2, Op3, DAG, TLI));
7180     return;
7181   }
7182   case Intrinsic::smax: {
7183     SDValue Op1 = getValue(I.getArgOperand(0));
7184     SDValue Op2 = getValue(I.getArgOperand(1));
7185     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
7186     return;
7187   }
7188   case Intrinsic::smin: {
7189     SDValue Op1 = getValue(I.getArgOperand(0));
7190     SDValue Op2 = getValue(I.getArgOperand(1));
7191     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
7192     return;
7193   }
7194   case Intrinsic::umax: {
7195     SDValue Op1 = getValue(I.getArgOperand(0));
7196     SDValue Op2 = getValue(I.getArgOperand(1));
7197     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
7198     return;
7199   }
7200   case Intrinsic::umin: {
7201     SDValue Op1 = getValue(I.getArgOperand(0));
7202     SDValue Op2 = getValue(I.getArgOperand(1));
7203     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
7204     return;
7205   }
7206   case Intrinsic::abs: {
7207     // TODO: Preserve "int min is poison" arg in SDAG?
7208     SDValue Op1 = getValue(I.getArgOperand(0));
7209     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
7210     return;
7211   }
7212   case Intrinsic::stacksave: {
7213     SDValue Op = getRoot();
7214     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7215     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
7216     setValue(&I, Res);
7217     DAG.setRoot(Res.getValue(1));
7218     return;
7219   }
7220   case Intrinsic::stackrestore:
7221     Res = getValue(I.getArgOperand(0));
7222     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
7223     return;
7224   case Intrinsic::get_dynamic_area_offset: {
7225     SDValue Op = getRoot();
7226     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
7227     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
7228     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
7229     // target.
7230     if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
7231       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
7232                          " intrinsic!");
7233     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
7234                       Op);
7235     DAG.setRoot(Op);
7236     setValue(&I, Res);
7237     return;
7238   }
7239   case Intrinsic::stackguard: {
7240     MachineFunction &MF = DAG.getMachineFunction();
7241     const Module &M = *MF.getFunction().getParent();
7242     EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
7243     SDValue Chain = getRoot();
7244     if (TLI.useLoadStackGuardNode()) {
7245       Res = getLoadStackGuard(DAG, sdl, Chain);
7246       Res = DAG.getPtrExtOrTrunc(Res, sdl, PtrTy);
7247     } else {
7248       const Value *Global = TLI.getSDagStackGuard(M);
7249       Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType());
7250       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
7251                         MachinePointerInfo(Global, 0), Align,
7252                         MachineMemOperand::MOVolatile);
7253     }
7254     if (TLI.useStackGuardXorFP())
7255       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
7256     DAG.setRoot(Chain);
7257     setValue(&I, Res);
7258     return;
7259   }
7260   case Intrinsic::stackprotector: {
7261     // Emit code into the DAG to store the stack guard onto the stack.
7262     MachineFunction &MF = DAG.getMachineFunction();
7263     MachineFrameInfo &MFI = MF.getFrameInfo();
7264     SDValue Src, Chain = getRoot();
7265 
7266     if (TLI.useLoadStackGuardNode())
7267       Src = getLoadStackGuard(DAG, sdl, Chain);
7268     else
7269       Src = getValue(I.getArgOperand(0));   // The guard's value.
7270 
7271     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
7272 
7273     int FI = FuncInfo.StaticAllocaMap[Slot];
7274     MFI.setStackProtectorIndex(FI);
7275     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
7276 
7277     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
7278 
7279     // Store the stack protector onto the stack.
7280     Res = DAG.getStore(
7281         Chain, sdl, Src, FIN,
7282         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
7283         MaybeAlign(), MachineMemOperand::MOVolatile);
7284     setValue(&I, Res);
7285     DAG.setRoot(Res);
7286     return;
7287   }
7288   case Intrinsic::objectsize:
7289     llvm_unreachable("llvm.objectsize.* should have been lowered already");
7290 
7291   case Intrinsic::is_constant:
7292     llvm_unreachable("llvm.is.constant.* should have been lowered already");
7293 
7294   case Intrinsic::annotation:
7295   case Intrinsic::ptr_annotation:
7296   case Intrinsic::launder_invariant_group:
7297   case Intrinsic::strip_invariant_group:
7298     // Drop the intrinsic, but forward the value
7299     setValue(&I, getValue(I.getOperand(0)));
7300     return;
7301 
7302   case Intrinsic::assume:
7303   case Intrinsic::experimental_noalias_scope_decl:
7304   case Intrinsic::var_annotation:
7305   case Intrinsic::sideeffect:
7306     // Discard annotate attributes, noalias scope declarations, assumptions, and
7307     // artificial side-effects.
7308     return;
7309 
7310   case Intrinsic::codeview_annotation: {
7311     // Emit a label associated with this metadata.
7312     MachineFunction &MF = DAG.getMachineFunction();
7313     MCSymbol *Label =
7314         MF.getMMI().getContext().createTempSymbol("annotation", true);
7315     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
7316     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
7317     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
7318     DAG.setRoot(Res);
7319     return;
7320   }
7321 
7322   case Intrinsic::init_trampoline: {
7323     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
7324 
7325     SDValue Ops[6];
7326     Ops[0] = getRoot();
7327     Ops[1] = getValue(I.getArgOperand(0));
7328     Ops[2] = getValue(I.getArgOperand(1));
7329     Ops[3] = getValue(I.getArgOperand(2));
7330     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
7331     Ops[5] = DAG.getSrcValue(F);
7332 
7333     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
7334 
7335     DAG.setRoot(Res);
7336     return;
7337   }
7338   case Intrinsic::adjust_trampoline:
7339     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
7340                              TLI.getPointerTy(DAG.getDataLayout()),
7341                              getValue(I.getArgOperand(0))));
7342     return;
7343   case Intrinsic::gcroot: {
7344     assert(DAG.getMachineFunction().getFunction().hasGC() &&
7345            "only valid in functions with gc specified, enforced by Verifier");
7346     assert(GFI && "implied by previous");
7347     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
7348     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
7349 
7350     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
7351     GFI->addStackRoot(FI->getIndex(), TypeMap);
7352     return;
7353   }
7354   case Intrinsic::gcread:
7355   case Intrinsic::gcwrite:
7356     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
7357   case Intrinsic::get_rounding:
7358     Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot());
7359     setValue(&I, Res);
7360     DAG.setRoot(Res.getValue(1));
7361     return;
7362 
7363   case Intrinsic::expect:
7364     // Just replace __builtin_expect(exp, c) with EXP.
7365     setValue(&I, getValue(I.getArgOperand(0)));
7366     return;
7367 
7368   case Intrinsic::ubsantrap:
7369   case Intrinsic::debugtrap:
7370   case Intrinsic::trap: {
7371     StringRef TrapFuncName =
7372         I.getAttributes().getFnAttr("trap-func-name").getValueAsString();
7373     if (TrapFuncName.empty()) {
7374       switch (Intrinsic) {
7375       case Intrinsic::trap:
7376         DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
7377         break;
7378       case Intrinsic::debugtrap:
7379         DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
7380         break;
7381       case Intrinsic::ubsantrap:
7382         DAG.setRoot(DAG.getNode(
7383             ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
7384             DAG.getTargetConstant(
7385                 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
7386                 MVT::i32)));
7387         break;
7388       default: llvm_unreachable("unknown trap intrinsic");
7389       }
7390       return;
7391     }
7392     TargetLowering::ArgListTy Args;
7393     if (Intrinsic == Intrinsic::ubsantrap) {
7394       Args.push_back(TargetLoweringBase::ArgListEntry());
7395       Args[0].Val = I.getArgOperand(0);
7396       Args[0].Node = getValue(Args[0].Val);
7397       Args[0].Ty = Args[0].Val->getType();
7398     }
7399 
7400     TargetLowering::CallLoweringInfo CLI(DAG);
7401     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
7402         CallingConv::C, I.getType(),
7403         DAG.getExternalSymbol(TrapFuncName.data(),
7404                               TLI.getPointerTy(DAG.getDataLayout())),
7405         std::move(Args));
7406 
7407     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7408     DAG.setRoot(Result.second);
7409     return;
7410   }
7411 
7412   case Intrinsic::allow_runtime_check:
7413   case Intrinsic::allow_ubsan_check:
7414     setValue(&I, getValue(ConstantInt::getTrue(I.getType())));
7415     return;
7416 
7417   case Intrinsic::uadd_with_overflow:
7418   case Intrinsic::sadd_with_overflow:
7419   case Intrinsic::usub_with_overflow:
7420   case Intrinsic::ssub_with_overflow:
7421   case Intrinsic::umul_with_overflow:
7422   case Intrinsic::smul_with_overflow: {
7423     ISD::NodeType Op;
7424     switch (Intrinsic) {
7425     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7426     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
7427     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
7428     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
7429     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
7430     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
7431     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
7432     }
7433     SDValue Op1 = getValue(I.getArgOperand(0));
7434     SDValue Op2 = getValue(I.getArgOperand(1));
7435 
7436     EVT ResultVT = Op1.getValueType();
7437     EVT OverflowVT = MVT::i1;
7438     if (ResultVT.isVector())
7439       OverflowVT = EVT::getVectorVT(
7440           *Context, OverflowVT, ResultVT.getVectorElementCount());
7441 
7442     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
7443     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
7444     return;
7445   }
7446   case Intrinsic::prefetch: {
7447     SDValue Ops[5];
7448     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7449     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
7450     Ops[0] = DAG.getRoot();
7451     Ops[1] = getValue(I.getArgOperand(0));
7452     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
7453                                    MVT::i32);
7454     Ops[3] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(2)), sdl,
7455                                    MVT::i32);
7456     Ops[4] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(3)), sdl,
7457                                    MVT::i32);
7458     SDValue Result = DAG.getMemIntrinsicNode(
7459         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
7460         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
7461         /* align */ std::nullopt, Flags);
7462 
7463     // Chain the prefetch in parallel with any pending loads, to stay out of
7464     // the way of later optimizations.
7465     PendingLoads.push_back(Result);
7466     Result = getRoot();
7467     DAG.setRoot(Result);
7468     return;
7469   }
7470   case Intrinsic::lifetime_start:
7471   case Intrinsic::lifetime_end: {
7472     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
7473     // Stack coloring is not enabled in O0, discard region information.
7474     if (TM.getOptLevel() == CodeGenOptLevel::None)
7475       return;
7476 
7477     const int64_t ObjectSize =
7478         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
7479     Value *const ObjectPtr = I.getArgOperand(1);
7480     SmallVector<const Value *, 4> Allocas;
7481     getUnderlyingObjects(ObjectPtr, Allocas);
7482 
7483     for (const Value *Alloca : Allocas) {
7484       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca);
7485 
7486       // Could not find an Alloca.
7487       if (!LifetimeObject)
7488         continue;
7489 
7490       // First check that the Alloca is static, otherwise it won't have a
7491       // valid frame index.
7492       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
7493       if (SI == FuncInfo.StaticAllocaMap.end())
7494         return;
7495 
7496       const int FrameIndex = SI->second;
7497       int64_t Offset;
7498       if (GetPointerBaseWithConstantOffset(
7499               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
7500         Offset = -1; // Cannot determine offset from alloca to lifetime object.
7501       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
7502                                 Offset);
7503       DAG.setRoot(Res);
7504     }
7505     return;
7506   }
7507   case Intrinsic::pseudoprobe: {
7508     auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
7509     auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7510     auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
7511     Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
7512     DAG.setRoot(Res);
7513     return;
7514   }
7515   case Intrinsic::invariant_start:
7516     // Discard region information.
7517     setValue(&I,
7518              DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType())));
7519     return;
7520   case Intrinsic::invariant_end:
7521     // Discard region information.
7522     return;
7523   case Intrinsic::clear_cache: {
7524     SDValue InputChain = DAG.getRoot();
7525     SDValue StartVal = getValue(I.getArgOperand(0));
7526     SDValue EndVal = getValue(I.getArgOperand(1));
7527     Res = DAG.getNode(ISD::CLEAR_CACHE, sdl, DAG.getVTList(MVT::Other),
7528                       {InputChain, StartVal, EndVal});
7529     setValue(&I, Res);
7530     DAG.setRoot(Res);
7531     return;
7532   }
7533   case Intrinsic::donothing:
7534   case Intrinsic::seh_try_begin:
7535   case Intrinsic::seh_scope_begin:
7536   case Intrinsic::seh_try_end:
7537   case Intrinsic::seh_scope_end:
7538     // ignore
7539     return;
7540   case Intrinsic::experimental_stackmap:
7541     visitStackmap(I);
7542     return;
7543   case Intrinsic::experimental_patchpoint_void:
7544   case Intrinsic::experimental_patchpoint:
7545     visitPatchpoint(I);
7546     return;
7547   case Intrinsic::experimental_gc_statepoint:
7548     LowerStatepoint(cast<GCStatepointInst>(I));
7549     return;
7550   case Intrinsic::experimental_gc_result:
7551     visitGCResult(cast<GCResultInst>(I));
7552     return;
7553   case Intrinsic::experimental_gc_relocate:
7554     visitGCRelocate(cast<GCRelocateInst>(I));
7555     return;
7556   case Intrinsic::instrprof_cover:
7557     llvm_unreachable("instrprof failed to lower a cover");
7558   case Intrinsic::instrprof_increment:
7559     llvm_unreachable("instrprof failed to lower an increment");
7560   case Intrinsic::instrprof_timestamp:
7561     llvm_unreachable("instrprof failed to lower a timestamp");
7562   case Intrinsic::instrprof_value_profile:
7563     llvm_unreachable("instrprof failed to lower a value profiling call");
7564   case Intrinsic::instrprof_mcdc_parameters:
7565     llvm_unreachable("instrprof failed to lower mcdc parameters");
7566   case Intrinsic::instrprof_mcdc_tvbitmap_update:
7567     llvm_unreachable("instrprof failed to lower an mcdc tvbitmap update");
7568   case Intrinsic::instrprof_mcdc_condbitmap_update:
7569     llvm_unreachable("instrprof failed to lower an mcdc condbitmap update");
7570   case Intrinsic::localescape: {
7571     MachineFunction &MF = DAG.getMachineFunction();
7572     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
7573 
7574     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
7575     // is the same on all targets.
7576     for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) {
7577       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
7578       if (isa<ConstantPointerNull>(Arg))
7579         continue; // Skip null pointers. They represent a hole in index space.
7580       AllocaInst *Slot = cast<AllocaInst>(Arg);
7581       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
7582              "can only escape static allocas");
7583       int FI = FuncInfo.StaticAllocaMap[Slot];
7584       MCSymbol *FrameAllocSym =
7585           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
7586               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
7587       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
7588               TII->get(TargetOpcode::LOCAL_ESCAPE))
7589           .addSym(FrameAllocSym)
7590           .addFrameIndex(FI);
7591     }
7592 
7593     return;
7594   }
7595 
7596   case Intrinsic::localrecover: {
7597     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
7598     MachineFunction &MF = DAG.getMachineFunction();
7599 
7600     // Get the symbol that defines the frame offset.
7601     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
7602     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
7603     unsigned IdxVal =
7604         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
7605     MCSymbol *FrameAllocSym =
7606         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
7607             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
7608 
7609     Value *FP = I.getArgOperand(1);
7610     SDValue FPVal = getValue(FP);
7611     EVT PtrVT = FPVal.getValueType();
7612 
7613     // Create a MCSymbol for the label to avoid any target lowering
7614     // that would make this PC relative.
7615     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
7616     SDValue OffsetVal =
7617         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
7618 
7619     // Add the offset to the FP.
7620     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
7621     setValue(&I, Add);
7622 
7623     return;
7624   }
7625 
7626   case Intrinsic::eh_exceptionpointer:
7627   case Intrinsic::eh_exceptioncode: {
7628     // Get the exception pointer vreg, copy from it, and resize it to fit.
7629     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
7630     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
7631     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
7632     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
7633     SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT);
7634     if (Intrinsic == Intrinsic::eh_exceptioncode)
7635       N = DAG.getZExtOrTrunc(N, sdl, MVT::i32);
7636     setValue(&I, N);
7637     return;
7638   }
7639   case Intrinsic::xray_customevent: {
7640     // Here we want to make sure that the intrinsic behaves as if it has a
7641     // specific calling convention.
7642     const auto &Triple = DAG.getTarget().getTargetTriple();
7643     if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
7644       return;
7645 
7646     SmallVector<SDValue, 8> Ops;
7647 
7648     // We want to say that we always want the arguments in registers.
7649     SDValue LogEntryVal = getValue(I.getArgOperand(0));
7650     SDValue StrSizeVal = getValue(I.getArgOperand(1));
7651     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7652     SDValue Chain = getRoot();
7653     Ops.push_back(LogEntryVal);
7654     Ops.push_back(StrSizeVal);
7655     Ops.push_back(Chain);
7656 
7657     // We need to enforce the calling convention for the callsite, so that
7658     // argument ordering is enforced correctly, and that register allocation can
7659     // see that some registers may be assumed clobbered and have to preserve
7660     // them across calls to the intrinsic.
7661     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
7662                                            sdl, NodeTys, Ops);
7663     SDValue patchableNode = SDValue(MN, 0);
7664     DAG.setRoot(patchableNode);
7665     setValue(&I, patchableNode);
7666     return;
7667   }
7668   case Intrinsic::xray_typedevent: {
7669     // Here we want to make sure that the intrinsic behaves as if it has a
7670     // specific calling convention.
7671     const auto &Triple = DAG.getTarget().getTargetTriple();
7672     if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
7673       return;
7674 
7675     SmallVector<SDValue, 8> Ops;
7676 
7677     // We want to say that we always want the arguments in registers.
7678     // It's unclear to me how manipulating the selection DAG here forces callers
7679     // to provide arguments in registers instead of on the stack.
7680     SDValue LogTypeId = getValue(I.getArgOperand(0));
7681     SDValue LogEntryVal = getValue(I.getArgOperand(1));
7682     SDValue StrSizeVal = getValue(I.getArgOperand(2));
7683     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7684     SDValue Chain = getRoot();
7685     Ops.push_back(LogTypeId);
7686     Ops.push_back(LogEntryVal);
7687     Ops.push_back(StrSizeVal);
7688     Ops.push_back(Chain);
7689 
7690     // We need to enforce the calling convention for the callsite, so that
7691     // argument ordering is enforced correctly, and that register allocation can
7692     // see that some registers may be assumed clobbered and have to preserve
7693     // them across calls to the intrinsic.
7694     MachineSDNode *MN = DAG.getMachineNode(
7695         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops);
7696     SDValue patchableNode = SDValue(MN, 0);
7697     DAG.setRoot(patchableNode);
7698     setValue(&I, patchableNode);
7699     return;
7700   }
7701   case Intrinsic::experimental_deoptimize:
7702     LowerDeoptimizeCall(&I);
7703     return;
7704   case Intrinsic::experimental_stepvector:
7705     visitStepVector(I);
7706     return;
7707   case Intrinsic::vector_reduce_fadd:
7708   case Intrinsic::vector_reduce_fmul:
7709   case Intrinsic::vector_reduce_add:
7710   case Intrinsic::vector_reduce_mul:
7711   case Intrinsic::vector_reduce_and:
7712   case Intrinsic::vector_reduce_or:
7713   case Intrinsic::vector_reduce_xor:
7714   case Intrinsic::vector_reduce_smax:
7715   case Intrinsic::vector_reduce_smin:
7716   case Intrinsic::vector_reduce_umax:
7717   case Intrinsic::vector_reduce_umin:
7718   case Intrinsic::vector_reduce_fmax:
7719   case Intrinsic::vector_reduce_fmin:
7720   case Intrinsic::vector_reduce_fmaximum:
7721   case Intrinsic::vector_reduce_fminimum:
7722     visitVectorReduce(I, Intrinsic);
7723     return;
7724 
7725   case Intrinsic::icall_branch_funnel: {
7726     SmallVector<SDValue, 16> Ops;
7727     Ops.push_back(getValue(I.getArgOperand(0)));
7728 
7729     int64_t Offset;
7730     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7731         I.getArgOperand(1), Offset, DAG.getDataLayout()));
7732     if (!Base)
7733       report_fatal_error(
7734           "llvm.icall.branch.funnel operand must be a GlobalValue");
7735     Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0));
7736 
7737     struct BranchFunnelTarget {
7738       int64_t Offset;
7739       SDValue Target;
7740     };
7741     SmallVector<BranchFunnelTarget, 8> Targets;
7742 
7743     for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) {
7744       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7745           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
7746       if (ElemBase != Base)
7747         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
7748                            "to the same GlobalValue");
7749 
7750       SDValue Val = getValue(I.getArgOperand(Op + 1));
7751       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
7752       if (!GA)
7753         report_fatal_error(
7754             "llvm.icall.branch.funnel operand must be a GlobalValue");
7755       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
7756                                      GA->getGlobal(), sdl, Val.getValueType(),
7757                                      GA->getOffset())});
7758     }
7759     llvm::sort(Targets,
7760                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
7761                  return T1.Offset < T2.Offset;
7762                });
7763 
7764     for (auto &T : Targets) {
7765       Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32));
7766       Ops.push_back(T.Target);
7767     }
7768 
7769     Ops.push_back(DAG.getRoot()); // Chain
7770     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl,
7771                                  MVT::Other, Ops),
7772               0);
7773     DAG.setRoot(N);
7774     setValue(&I, N);
7775     HasTailCall = true;
7776     return;
7777   }
7778 
7779   case Intrinsic::wasm_landingpad_index:
7780     // Information this intrinsic contained has been transferred to
7781     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
7782     // delete it now.
7783     return;
7784 
7785   case Intrinsic::aarch64_settag:
7786   case Intrinsic::aarch64_settag_zero: {
7787     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7788     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
7789     SDValue Val = TSI.EmitTargetCodeForSetTag(
7790         DAG, sdl, getRoot(), getValue(I.getArgOperand(0)),
7791         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
7792         ZeroMemory);
7793     DAG.setRoot(Val);
7794     setValue(&I, Val);
7795     return;
7796   }
7797   case Intrinsic::amdgcn_cs_chain: {
7798     assert(I.arg_size() == 5 && "Additional args not supported yet");
7799     assert(cast<ConstantInt>(I.getOperand(4))->isZero() &&
7800            "Non-zero flags not supported yet");
7801 
7802     // At this point we don't care if it's amdgpu_cs_chain or
7803     // amdgpu_cs_chain_preserve.
7804     CallingConv::ID CC = CallingConv::AMDGPU_CS_Chain;
7805 
7806     Type *RetTy = I.getType();
7807     assert(RetTy->isVoidTy() && "Should not return");
7808 
7809     SDValue Callee = getValue(I.getOperand(0));
7810 
7811     // We only have 2 actual args: one for the SGPRs and one for the VGPRs.
7812     // We'll also tack the value of the EXEC mask at the end.
7813     TargetLowering::ArgListTy Args;
7814     Args.reserve(3);
7815 
7816     for (unsigned Idx : {2, 3, 1}) {
7817       TargetLowering::ArgListEntry Arg;
7818       Arg.Node = getValue(I.getOperand(Idx));
7819       Arg.Ty = I.getOperand(Idx)->getType();
7820       Arg.setAttributes(&I, Idx);
7821       Args.push_back(Arg);
7822     }
7823 
7824     assert(Args[0].IsInReg && "SGPR args should be marked inreg");
7825     assert(!Args[1].IsInReg && "VGPR args should not be marked inreg");
7826     Args[2].IsInReg = true; // EXEC should be inreg
7827 
7828     TargetLowering::CallLoweringInfo CLI(DAG);
7829     CLI.setDebugLoc(getCurSDLoc())
7830         .setChain(getRoot())
7831         .setCallee(CC, RetTy, Callee, std::move(Args))
7832         .setNoReturn(true)
7833         .setTailCall(true)
7834         .setConvergent(I.isConvergent());
7835     CLI.CB = &I;
7836     std::pair<SDValue, SDValue> Result =
7837         lowerInvokable(CLI, /*EHPadBB*/ nullptr);
7838     (void)Result;
7839     assert(!Result.first.getNode() && !Result.second.getNode() &&
7840            "Should've lowered as tail call");
7841 
7842     HasTailCall = true;
7843     return;
7844   }
7845   case Intrinsic::ptrmask: {
7846     SDValue Ptr = getValue(I.getOperand(0));
7847     SDValue Mask = getValue(I.getOperand(1));
7848 
7849     // On arm64_32, pointers are 32 bits when stored in memory, but
7850     // zero-extended to 64 bits when in registers.  Thus the mask is 32 bits to
7851     // match the index type, but the pointer is 64 bits, so the the mask must be
7852     // zero-extended up to 64 bits to match the pointer.
7853     EVT PtrVT =
7854         TLI.getValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
7855     EVT MemVT =
7856         TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
7857     assert(PtrVT == Ptr.getValueType());
7858     assert(MemVT == Mask.getValueType());
7859     if (MemVT != PtrVT)
7860       Mask = DAG.getPtrExtOrTrunc(Mask, sdl, PtrVT);
7861 
7862     setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, Mask));
7863     return;
7864   }
7865   case Intrinsic::threadlocal_address: {
7866     setValue(&I, getValue(I.getOperand(0)));
7867     return;
7868   }
7869   case Intrinsic::get_active_lane_mask: {
7870     EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7871     SDValue Index = getValue(I.getOperand(0));
7872     EVT ElementVT = Index.getValueType();
7873 
7874     if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) {
7875       visitTargetIntrinsic(I, Intrinsic);
7876       return;
7877     }
7878 
7879     SDValue TripCount = getValue(I.getOperand(1));
7880     EVT VecTy = EVT::getVectorVT(*DAG.getContext(), ElementVT,
7881                                  CCVT.getVectorElementCount());
7882 
7883     SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index);
7884     SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount);
7885     SDValue VectorStep = DAG.getStepVector(sdl, VecTy);
7886     SDValue VectorInduction = DAG.getNode(
7887         ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep);
7888     SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction,
7889                                  VectorTripCount, ISD::CondCode::SETULT);
7890     setValue(&I, SetCC);
7891     return;
7892   }
7893   case Intrinsic::experimental_get_vector_length: {
7894     assert(cast<ConstantInt>(I.getOperand(1))->getSExtValue() > 0 &&
7895            "Expected positive VF");
7896     unsigned VF = cast<ConstantInt>(I.getOperand(1))->getZExtValue();
7897     bool IsScalable = cast<ConstantInt>(I.getOperand(2))->isOne();
7898 
7899     SDValue Count = getValue(I.getOperand(0));
7900     EVT CountVT = Count.getValueType();
7901 
7902     if (!TLI.shouldExpandGetVectorLength(CountVT, VF, IsScalable)) {
7903       visitTargetIntrinsic(I, Intrinsic);
7904       return;
7905     }
7906 
7907     // Expand to a umin between the trip count and the maximum elements the type
7908     // can hold.
7909     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7910 
7911     // Extend the trip count to at least the result VT.
7912     if (CountVT.bitsLT(VT)) {
7913       Count = DAG.getNode(ISD::ZERO_EXTEND, sdl, VT, Count);
7914       CountVT = VT;
7915     }
7916 
7917     SDValue MaxEVL = DAG.getElementCount(sdl, CountVT,
7918                                          ElementCount::get(VF, IsScalable));
7919 
7920     SDValue UMin = DAG.getNode(ISD::UMIN, sdl, CountVT, Count, MaxEVL);
7921     // Clip to the result type if needed.
7922     SDValue Trunc = DAG.getNode(ISD::TRUNCATE, sdl, VT, UMin);
7923 
7924     setValue(&I, Trunc);
7925     return;
7926   }
7927   case Intrinsic::experimental_cttz_elts: {
7928     auto DL = getCurSDLoc();
7929     SDValue Op = getValue(I.getOperand(0));
7930     EVT OpVT = Op.getValueType();
7931 
7932     if (!TLI.shouldExpandCttzElements(OpVT)) {
7933       visitTargetIntrinsic(I, Intrinsic);
7934       return;
7935     }
7936 
7937     if (OpVT.getScalarType() != MVT::i1) {
7938       // Compare the input vector elements to zero & use to count trailing zeros
7939       SDValue AllZero = DAG.getConstant(0, DL, OpVT);
7940       OpVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
7941                               OpVT.getVectorElementCount());
7942       Op = DAG.getSetCC(DL, OpVT, Op, AllZero, ISD::SETNE);
7943     }
7944 
7945     // If the zero-is-poison flag is set, we can assume the upper limit
7946     // of the result is VF-1.
7947     bool ZeroIsPoison =
7948         !cast<ConstantSDNode>(getValue(I.getOperand(1)))->isZero();
7949     ConstantRange VScaleRange(1, true); // Dummy value.
7950     if (isa<ScalableVectorType>(I.getOperand(0)->getType()))
7951       VScaleRange = getVScaleRange(I.getCaller(), 64);
7952     unsigned EltWidth = TLI.getBitWidthForCttzElements(
7953         I.getType(), OpVT.getVectorElementCount(), ZeroIsPoison, &VScaleRange);
7954 
7955     MVT NewEltTy = MVT::getIntegerVT(EltWidth);
7956 
7957     // Create the new vector type & get the vector length
7958     EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltTy,
7959                                  OpVT.getVectorElementCount());
7960 
7961     SDValue VL =
7962         DAG.getElementCount(DL, NewEltTy, OpVT.getVectorElementCount());
7963 
7964     SDValue StepVec = DAG.getStepVector(DL, NewVT);
7965     SDValue SplatVL = DAG.getSplat(NewVT, DL, VL);
7966     SDValue StepVL = DAG.getNode(ISD::SUB, DL, NewVT, SplatVL, StepVec);
7967     SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, Op);
7968     SDValue And = DAG.getNode(ISD::AND, DL, NewVT, StepVL, Ext);
7969     SDValue Max = DAG.getNode(ISD::VECREDUCE_UMAX, DL, NewEltTy, And);
7970     SDValue Sub = DAG.getNode(ISD::SUB, DL, NewEltTy, VL, Max);
7971 
7972     EVT RetTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
7973     SDValue Ret = DAG.getZExtOrTrunc(Sub, DL, RetTy);
7974 
7975     setValue(&I, Ret);
7976     return;
7977   }
7978   case Intrinsic::vector_insert: {
7979     SDValue Vec = getValue(I.getOperand(0));
7980     SDValue SubVec = getValue(I.getOperand(1));
7981     SDValue Index = getValue(I.getOperand(2));
7982 
7983     // The intrinsic's index type is i64, but the SDNode requires an index type
7984     // suitable for the target. Convert the index as required.
7985     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7986     if (Index.getValueType() != VectorIdxTy)
7987       Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl);
7988 
7989     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7990     setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec,
7991                              Index));
7992     return;
7993   }
7994   case Intrinsic::vector_extract: {
7995     SDValue Vec = getValue(I.getOperand(0));
7996     SDValue Index = getValue(I.getOperand(1));
7997     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7998 
7999     // The intrinsic's index type is i64, but the SDNode requires an index type
8000     // suitable for the target. Convert the index as required.
8001     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
8002     if (Index.getValueType() != VectorIdxTy)
8003       Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl);
8004 
8005     setValue(&I,
8006              DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index));
8007     return;
8008   }
8009   case Intrinsic::vector_reverse:
8010     visitVectorReverse(I);
8011     return;
8012   case Intrinsic::vector_splice:
8013     visitVectorSplice(I);
8014     return;
8015   case Intrinsic::callbr_landingpad:
8016     visitCallBrLandingPad(I);
8017     return;
8018   case Intrinsic::vector_interleave2:
8019     visitVectorInterleave(I);
8020     return;
8021   case Intrinsic::vector_deinterleave2:
8022     visitVectorDeinterleave(I);
8023     return;
8024   case Intrinsic::experimental_convergence_anchor:
8025   case Intrinsic::experimental_convergence_entry:
8026   case Intrinsic::experimental_convergence_loop:
8027     visitConvergenceControl(I, Intrinsic);
8028     return;
8029   case Intrinsic::experimental_vector_histogram_add: {
8030     visitVectorHistogram(I, Intrinsic);
8031     return;
8032   }
8033   }
8034 }
8035 
8036 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
8037     const ConstrainedFPIntrinsic &FPI) {
8038   SDLoc sdl = getCurSDLoc();
8039 
8040   // We do not need to serialize constrained FP intrinsics against
8041   // each other or against (nonvolatile) loads, so they can be
8042   // chained like loads.
8043   SDValue Chain = DAG.getRoot();
8044   SmallVector<SDValue, 4> Opers;
8045   Opers.push_back(Chain);
8046   for (unsigned I = 0, E = FPI.getNonMetadataArgCount(); I != E; ++I)
8047     Opers.push_back(getValue(FPI.getArgOperand(I)));
8048 
8049   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
8050     assert(Result.getNode()->getNumValues() == 2);
8051 
8052     // Push node to the appropriate list so that future instructions can be
8053     // chained up correctly.
8054     SDValue OutChain = Result.getValue(1);
8055     switch (EB) {
8056     case fp::ExceptionBehavior::ebIgnore:
8057       // The only reason why ebIgnore nodes still need to be chained is that
8058       // they might depend on the current rounding mode, and therefore must
8059       // not be moved across instruction that may change that mode.
8060       [[fallthrough]];
8061     case fp::ExceptionBehavior::ebMayTrap:
8062       // These must not be moved across calls or instructions that may change
8063       // floating-point exception masks.
8064       PendingConstrainedFP.push_back(OutChain);
8065       break;
8066     case fp::ExceptionBehavior::ebStrict:
8067       // These must not be moved across calls or instructions that may change
8068       // floating-point exception masks or read floating-point exception flags.
8069       // In addition, they cannot be optimized out even if unused.
8070       PendingConstrainedFPStrict.push_back(OutChain);
8071       break;
8072     }
8073   };
8074 
8075   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8076   EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType());
8077   SDVTList VTs = DAG.getVTList(VT, MVT::Other);
8078   fp::ExceptionBehavior EB = *FPI.getExceptionBehavior();
8079 
8080   SDNodeFlags Flags;
8081   if (EB == fp::ExceptionBehavior::ebIgnore)
8082     Flags.setNoFPExcept(true);
8083 
8084   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
8085     Flags.copyFMF(*FPOp);
8086 
8087   unsigned Opcode;
8088   switch (FPI.getIntrinsicID()) {
8089   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
8090 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8091   case Intrinsic::INTRINSIC:                                                   \
8092     Opcode = ISD::STRICT_##DAGN;                                               \
8093     break;
8094 #include "llvm/IR/ConstrainedOps.def"
8095   case Intrinsic::experimental_constrained_fmuladd: {
8096     Opcode = ISD::STRICT_FMA;
8097     // Break fmuladd into fmul and fadd.
8098     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
8099         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
8100       Opers.pop_back();
8101       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
8102       pushOutChain(Mul, EB);
8103       Opcode = ISD::STRICT_FADD;
8104       Opers.clear();
8105       Opers.push_back(Mul.getValue(1));
8106       Opers.push_back(Mul.getValue(0));
8107       Opers.push_back(getValue(FPI.getArgOperand(2)));
8108     }
8109     break;
8110   }
8111   }
8112 
8113   // A few strict DAG nodes carry additional operands that are not
8114   // set up by the default code above.
8115   switch (Opcode) {
8116   default: break;
8117   case ISD::STRICT_FP_ROUND:
8118     Opers.push_back(
8119         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
8120     break;
8121   case ISD::STRICT_FSETCC:
8122   case ISD::STRICT_FSETCCS: {
8123     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
8124     ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
8125     if (TM.Options.NoNaNsFPMath)
8126       Condition = getFCmpCodeWithoutNaN(Condition);
8127     Opers.push_back(DAG.getCondCode(Condition));
8128     break;
8129   }
8130   }
8131 
8132   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
8133   pushOutChain(Result, EB);
8134 
8135   SDValue FPResult = Result.getValue(0);
8136   setValue(&FPI, FPResult);
8137 }
8138 
8139 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
8140   std::optional<unsigned> ResOPC;
8141   switch (VPIntrin.getIntrinsicID()) {
8142   case Intrinsic::vp_ctlz: {
8143     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
8144     ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ;
8145     break;
8146   }
8147   case Intrinsic::vp_cttz: {
8148     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
8149     ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ;
8150     break;
8151   }
8152   case Intrinsic::vp_cttz_elts: {
8153     bool IsZeroPoison = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
8154     ResOPC = IsZeroPoison ? ISD::VP_CTTZ_ELTS_ZERO_UNDEF : ISD::VP_CTTZ_ELTS;
8155     break;
8156   }
8157 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD)                                    \
8158   case Intrinsic::VPID:                                                        \
8159     ResOPC = ISD::VPSD;                                                        \
8160     break;
8161 #include "llvm/IR/VPIntrinsics.def"
8162   }
8163 
8164   if (!ResOPC)
8165     llvm_unreachable(
8166         "Inconsistency: no SDNode available for this VPIntrinsic!");
8167 
8168   if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD ||
8169       *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) {
8170     if (VPIntrin.getFastMathFlags().allowReassoc())
8171       return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD
8172                                                 : ISD::VP_REDUCE_FMUL;
8173   }
8174 
8175   return *ResOPC;
8176 }
8177 
8178 void SelectionDAGBuilder::visitVPLoad(
8179     const VPIntrinsic &VPIntrin, EVT VT,
8180     const SmallVectorImpl<SDValue> &OpValues) {
8181   SDLoc DL = getCurSDLoc();
8182   Value *PtrOperand = VPIntrin.getArgOperand(0);
8183   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8184   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8185   const MDNode *Ranges = getRangeMetadata(VPIntrin);
8186   SDValue LD;
8187   // Do not serialize variable-length loads of constant memory with
8188   // anything.
8189   if (!Alignment)
8190     Alignment = DAG.getEVTAlign(VT);
8191   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
8192   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
8193   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
8194   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8195       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
8196       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges);
8197   LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2],
8198                      MMO, false /*IsExpanding */);
8199   if (AddToChain)
8200     PendingLoads.push_back(LD.getValue(1));
8201   setValue(&VPIntrin, LD);
8202 }
8203 
8204 void SelectionDAGBuilder::visitVPGather(
8205     const VPIntrinsic &VPIntrin, EVT VT,
8206     const SmallVectorImpl<SDValue> &OpValues) {
8207   SDLoc DL = getCurSDLoc();
8208   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8209   Value *PtrOperand = VPIntrin.getArgOperand(0);
8210   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8211   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8212   const MDNode *Ranges = getRangeMetadata(VPIntrin);
8213   SDValue LD;
8214   if (!Alignment)
8215     Alignment = DAG.getEVTAlign(VT.getScalarType());
8216   unsigned AS =
8217     PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
8218   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8219       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
8220       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges);
8221   SDValue Base, Index, Scale;
8222   ISD::MemIndexType IndexType;
8223   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
8224                                     this, VPIntrin.getParent(),
8225                                     VT.getScalarStoreSize());
8226   if (!UniformBase) {
8227     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
8228     Index = getValue(PtrOperand);
8229     IndexType = ISD::SIGNED_SCALED;
8230     Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
8231   }
8232   EVT IdxVT = Index.getValueType();
8233   EVT EltTy = IdxVT.getVectorElementType();
8234   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
8235     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
8236     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
8237   }
8238   LD = DAG.getGatherVP(
8239       DAG.getVTList(VT, MVT::Other), VT, DL,
8240       {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO,
8241       IndexType);
8242   PendingLoads.push_back(LD.getValue(1));
8243   setValue(&VPIntrin, LD);
8244 }
8245 
8246 void SelectionDAGBuilder::visitVPStore(
8247     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8248   SDLoc DL = getCurSDLoc();
8249   Value *PtrOperand = VPIntrin.getArgOperand(1);
8250   EVT VT = OpValues[0].getValueType();
8251   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8252   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8253   SDValue ST;
8254   if (!Alignment)
8255     Alignment = DAG.getEVTAlign(VT);
8256   SDValue Ptr = OpValues[1];
8257   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
8258   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8259       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
8260       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo);
8261   ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset,
8262                       OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED,
8263                       /* IsTruncating */ false, /*IsCompressing*/ false);
8264   DAG.setRoot(ST);
8265   setValue(&VPIntrin, ST);
8266 }
8267 
8268 void SelectionDAGBuilder::visitVPScatter(
8269     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8270   SDLoc DL = getCurSDLoc();
8271   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8272   Value *PtrOperand = VPIntrin.getArgOperand(1);
8273   EVT VT = OpValues[0].getValueType();
8274   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8275   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8276   SDValue ST;
8277   if (!Alignment)
8278     Alignment = DAG.getEVTAlign(VT.getScalarType());
8279   unsigned AS =
8280       PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
8281   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8282       MachinePointerInfo(AS), MachineMemOperand::MOStore,
8283       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo);
8284   SDValue Base, Index, Scale;
8285   ISD::MemIndexType IndexType;
8286   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
8287                                     this, VPIntrin.getParent(),
8288                                     VT.getScalarStoreSize());
8289   if (!UniformBase) {
8290     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
8291     Index = getValue(PtrOperand);
8292     IndexType = ISD::SIGNED_SCALED;
8293     Scale =
8294       DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
8295   }
8296   EVT IdxVT = Index.getValueType();
8297   EVT EltTy = IdxVT.getVectorElementType();
8298   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
8299     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
8300     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
8301   }
8302   ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL,
8303                         {getMemoryRoot(), OpValues[0], Base, Index, Scale,
8304                          OpValues[2], OpValues[3]},
8305                         MMO, IndexType);
8306   DAG.setRoot(ST);
8307   setValue(&VPIntrin, ST);
8308 }
8309 
8310 void SelectionDAGBuilder::visitVPStridedLoad(
8311     const VPIntrinsic &VPIntrin, EVT VT,
8312     const SmallVectorImpl<SDValue> &OpValues) {
8313   SDLoc DL = getCurSDLoc();
8314   Value *PtrOperand = VPIntrin.getArgOperand(0);
8315   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8316   if (!Alignment)
8317     Alignment = DAG.getEVTAlign(VT.getScalarType());
8318   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8319   const MDNode *Ranges = getRangeMetadata(VPIntrin);
8320   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
8321   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
8322   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
8323   unsigned AS = PtrOperand->getType()->getPointerAddressSpace();
8324   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8325       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
8326       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges);
8327 
8328   SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1],
8329                                     OpValues[2], OpValues[3], MMO,
8330                                     false /*IsExpanding*/);
8331 
8332   if (AddToChain)
8333     PendingLoads.push_back(LD.getValue(1));
8334   setValue(&VPIntrin, LD);
8335 }
8336 
8337 void SelectionDAGBuilder::visitVPStridedStore(
8338     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8339   SDLoc DL = getCurSDLoc();
8340   Value *PtrOperand = VPIntrin.getArgOperand(1);
8341   EVT VT = OpValues[0].getValueType();
8342   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8343   if (!Alignment)
8344     Alignment = DAG.getEVTAlign(VT.getScalarType());
8345   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8346   unsigned AS = PtrOperand->getType()->getPointerAddressSpace();
8347   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8348       MachinePointerInfo(AS), MachineMemOperand::MOStore,
8349       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo);
8350 
8351   SDValue ST = DAG.getStridedStoreVP(
8352       getMemoryRoot(), DL, OpValues[0], OpValues[1],
8353       DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3],
8354       OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false,
8355       /*IsCompressing*/ false);
8356 
8357   DAG.setRoot(ST);
8358   setValue(&VPIntrin, ST);
8359 }
8360 
8361 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) {
8362   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8363   SDLoc DL = getCurSDLoc();
8364 
8365   ISD::CondCode Condition;
8366   CmpInst::Predicate CondCode = VPIntrin.getPredicate();
8367   bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy();
8368   if (IsFP) {
8369     // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan)
8370     // flags, but calls that don't return floating-point types can't be
8371     // FPMathOperators, like vp.fcmp. This affects constrained fcmp too.
8372     Condition = getFCmpCondCode(CondCode);
8373     if (TM.Options.NoNaNsFPMath)
8374       Condition = getFCmpCodeWithoutNaN(Condition);
8375   } else {
8376     Condition = getICmpCondCode(CondCode);
8377   }
8378 
8379   SDValue Op1 = getValue(VPIntrin.getOperand(0));
8380   SDValue Op2 = getValue(VPIntrin.getOperand(1));
8381   // #2 is the condition code
8382   SDValue MaskOp = getValue(VPIntrin.getOperand(3));
8383   SDValue EVL = getValue(VPIntrin.getOperand(4));
8384   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
8385   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
8386          "Unexpected target EVL type");
8387   EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL);
8388 
8389   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8390                                                         VPIntrin.getType());
8391   setValue(&VPIntrin,
8392            DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL));
8393 }
8394 
8395 void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
8396     const VPIntrinsic &VPIntrin) {
8397   SDLoc DL = getCurSDLoc();
8398   unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
8399 
8400   auto IID = VPIntrin.getIntrinsicID();
8401 
8402   if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin))
8403     return visitVPCmp(*CmpI);
8404 
8405   SmallVector<EVT, 4> ValueVTs;
8406   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8407   ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
8408   SDVTList VTs = DAG.getVTList(ValueVTs);
8409 
8410   auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID);
8411 
8412   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
8413   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
8414          "Unexpected target EVL type");
8415 
8416   // Request operands.
8417   SmallVector<SDValue, 7> OpValues;
8418   for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) {
8419     auto Op = getValue(VPIntrin.getArgOperand(I));
8420     if (I == EVLParamPos)
8421       Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op);
8422     OpValues.push_back(Op);
8423   }
8424 
8425   switch (Opcode) {
8426   default: {
8427     SDNodeFlags SDFlags;
8428     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
8429       SDFlags.copyFMF(*FPMO);
8430     SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags);
8431     setValue(&VPIntrin, Result);
8432     break;
8433   }
8434   case ISD::VP_LOAD:
8435     visitVPLoad(VPIntrin, ValueVTs[0], OpValues);
8436     break;
8437   case ISD::VP_GATHER:
8438     visitVPGather(VPIntrin, ValueVTs[0], OpValues);
8439     break;
8440   case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
8441     visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues);
8442     break;
8443   case ISD::VP_STORE:
8444     visitVPStore(VPIntrin, OpValues);
8445     break;
8446   case ISD::VP_SCATTER:
8447     visitVPScatter(VPIntrin, OpValues);
8448     break;
8449   case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
8450     visitVPStridedStore(VPIntrin, OpValues);
8451     break;
8452   case ISD::VP_FMULADD: {
8453     assert(OpValues.size() == 5 && "Unexpected number of operands");
8454     SDNodeFlags SDFlags;
8455     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
8456       SDFlags.copyFMF(*FPMO);
8457     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
8458         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) {
8459       setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags));
8460     } else {
8461       SDValue Mul = DAG.getNode(
8462           ISD::VP_FMUL, DL, VTs,
8463           {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags);
8464       SDValue Add =
8465           DAG.getNode(ISD::VP_FADD, DL, VTs,
8466                       {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags);
8467       setValue(&VPIntrin, Add);
8468     }
8469     break;
8470   }
8471   case ISD::VP_IS_FPCLASS: {
8472     const DataLayout DLayout = DAG.getDataLayout();
8473     EVT DestVT = TLI.getValueType(DLayout, VPIntrin.getType());
8474     auto Constant = OpValues[1]->getAsZExtVal();
8475     SDValue Check = DAG.getTargetConstant(Constant, DL, MVT::i32);
8476     SDValue V = DAG.getNode(ISD::VP_IS_FPCLASS, DL, DestVT,
8477                             {OpValues[0], Check, OpValues[2], OpValues[3]});
8478     setValue(&VPIntrin, V);
8479     return;
8480   }
8481   case ISD::VP_INTTOPTR: {
8482     SDValue N = OpValues[0];
8483     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType());
8484     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType());
8485     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
8486                                OpValues[2]);
8487     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
8488                              OpValues[2]);
8489     setValue(&VPIntrin, N);
8490     break;
8491   }
8492   case ISD::VP_PTRTOINT: {
8493     SDValue N = OpValues[0];
8494     EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8495                                                           VPIntrin.getType());
8496     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(),
8497                                        VPIntrin.getOperand(0)->getType());
8498     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
8499                                OpValues[2]);
8500     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
8501                              OpValues[2]);
8502     setValue(&VPIntrin, N);
8503     break;
8504   }
8505   case ISD::VP_ABS:
8506   case ISD::VP_CTLZ:
8507   case ISD::VP_CTLZ_ZERO_UNDEF:
8508   case ISD::VP_CTTZ:
8509   case ISD::VP_CTTZ_ZERO_UNDEF:
8510   case ISD::VP_CTTZ_ELTS_ZERO_UNDEF:
8511   case ISD::VP_CTTZ_ELTS: {
8512     SDValue Result =
8513         DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]});
8514     setValue(&VPIntrin, Result);
8515     break;
8516   }
8517   }
8518 }
8519 
8520 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
8521                                           const BasicBlock *EHPadBB,
8522                                           MCSymbol *&BeginLabel) {
8523   MachineFunction &MF = DAG.getMachineFunction();
8524   MachineModuleInfo &MMI = MF.getMMI();
8525 
8526   // Insert a label before the invoke call to mark the try range.  This can be
8527   // used to detect deletion of the invoke via the MachineModuleInfo.
8528   BeginLabel = MMI.getContext().createTempSymbol();
8529 
8530   // For SjLj, keep track of which landing pads go with which invokes
8531   // so as to maintain the ordering of pads in the LSDA.
8532   unsigned CallSiteIndex = MMI.getCurrentCallSite();
8533   if (CallSiteIndex) {
8534     MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
8535     LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
8536 
8537     // Now that the call site is handled, stop tracking it.
8538     MMI.setCurrentCallSite(0);
8539   }
8540 
8541   return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
8542 }
8543 
8544 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
8545                                         const BasicBlock *EHPadBB,
8546                                         MCSymbol *BeginLabel) {
8547   assert(BeginLabel && "BeginLabel should've been set");
8548 
8549   MachineFunction &MF = DAG.getMachineFunction();
8550   MachineModuleInfo &MMI = MF.getMMI();
8551 
8552   // Insert a label at the end of the invoke call to mark the try range.  This
8553   // can be used to detect deletion of the invoke via the MachineModuleInfo.
8554   MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
8555   Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
8556 
8557   // Inform MachineModuleInfo of range.
8558   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
8559   // There is a platform (e.g. wasm) that uses funclet style IR but does not
8560   // actually use outlined funclets and their LSDA info style.
8561   if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
8562     assert(II && "II should've been set");
8563     WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
8564     EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
8565   } else if (!isScopedEHPersonality(Pers)) {
8566     assert(EHPadBB);
8567     MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
8568   }
8569 
8570   return Chain;
8571 }
8572 
8573 std::pair<SDValue, SDValue>
8574 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
8575                                     const BasicBlock *EHPadBB) {
8576   MCSymbol *BeginLabel = nullptr;
8577 
8578   if (EHPadBB) {
8579     // Both PendingLoads and PendingExports must be flushed here;
8580     // this call might not return.
8581     (void)getRoot();
8582     DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
8583     CLI.setChain(getRoot());
8584   }
8585 
8586   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8587   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
8588 
8589   assert((CLI.IsTailCall || Result.second.getNode()) &&
8590          "Non-null chain expected with non-tail call!");
8591   assert((Result.second.getNode() || !Result.first.getNode()) &&
8592          "Null value expected with tail call!");
8593 
8594   if (!Result.second.getNode()) {
8595     // As a special case, a null chain means that a tail call has been emitted
8596     // and the DAG root is already updated.
8597     HasTailCall = true;
8598 
8599     // Since there's no actual continuation from this block, nothing can be
8600     // relying on us setting vregs for them.
8601     PendingExports.clear();
8602   } else {
8603     DAG.setRoot(Result.second);
8604   }
8605 
8606   if (EHPadBB) {
8607     DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
8608                            BeginLabel));
8609   }
8610 
8611   return Result;
8612 }
8613 
8614 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
8615                                       bool isTailCall, bool isMustTailCall,
8616                                       const BasicBlock *EHPadBB,
8617                                       const TargetLowering::PtrAuthInfo *PAI) {
8618   auto &DL = DAG.getDataLayout();
8619   FunctionType *FTy = CB.getFunctionType();
8620   Type *RetTy = CB.getType();
8621 
8622   TargetLowering::ArgListTy Args;
8623   Args.reserve(CB.arg_size());
8624 
8625   const Value *SwiftErrorVal = nullptr;
8626   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8627 
8628   if (isTailCall) {
8629     // Avoid emitting tail calls in functions with the disable-tail-calls
8630     // attribute.
8631     auto *Caller = CB.getParent()->getParent();
8632     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
8633         "true" && !isMustTailCall)
8634       isTailCall = false;
8635 
8636     // We can't tail call inside a function with a swifterror argument. Lowering
8637     // does not support this yet. It would have to move into the swifterror
8638     // register before the call.
8639     if (TLI.supportSwiftError() &&
8640         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
8641       isTailCall = false;
8642   }
8643 
8644   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
8645     TargetLowering::ArgListEntry Entry;
8646     const Value *V = *I;
8647 
8648     // Skip empty types
8649     if (V->getType()->isEmptyTy())
8650       continue;
8651 
8652     SDValue ArgNode = getValue(V);
8653     Entry.Node = ArgNode; Entry.Ty = V->getType();
8654 
8655     Entry.setAttributes(&CB, I - CB.arg_begin());
8656 
8657     // Use swifterror virtual register as input to the call.
8658     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
8659       SwiftErrorVal = V;
8660       // We find the virtual register for the actual swifterror argument.
8661       // Instead of using the Value, we use the virtual register instead.
8662       Entry.Node =
8663           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
8664                           EVT(TLI.getPointerTy(DL)));
8665     }
8666 
8667     Args.push_back(Entry);
8668 
8669     // If we have an explicit sret argument that is an Instruction, (i.e., it
8670     // might point to function-local memory), we can't meaningfully tail-call.
8671     if (Entry.IsSRet && isa<Instruction>(V))
8672       isTailCall = false;
8673   }
8674 
8675   // If call site has a cfguardtarget operand bundle, create and add an
8676   // additional ArgListEntry.
8677   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
8678     TargetLowering::ArgListEntry Entry;
8679     Value *V = Bundle->Inputs[0];
8680     SDValue ArgNode = getValue(V);
8681     Entry.Node = ArgNode;
8682     Entry.Ty = V->getType();
8683     Entry.IsCFGuardTarget = true;
8684     Args.push_back(Entry);
8685   }
8686 
8687   // Check if target-independent constraints permit a tail call here.
8688   // Target-dependent constraints are checked within TLI->LowerCallTo.
8689   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
8690     isTailCall = false;
8691 
8692   // Disable tail calls if there is an swifterror argument. Targets have not
8693   // been updated to support tail calls.
8694   if (TLI.supportSwiftError() && SwiftErrorVal)
8695     isTailCall = false;
8696 
8697   ConstantInt *CFIType = nullptr;
8698   if (CB.isIndirectCall()) {
8699     if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) {
8700       if (!TLI.supportKCFIBundles())
8701         report_fatal_error(
8702             "Target doesn't support calls with kcfi operand bundles.");
8703       CFIType = cast<ConstantInt>(Bundle->Inputs[0]);
8704       assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type");
8705     }
8706   }
8707 
8708   SDValue ConvControlToken;
8709   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_convergencectrl)) {
8710     auto *Token = Bundle->Inputs[0].get();
8711     ConvControlToken = getValue(Token);
8712   }
8713 
8714   TargetLowering::CallLoweringInfo CLI(DAG);
8715   CLI.setDebugLoc(getCurSDLoc())
8716       .setChain(getRoot())
8717       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
8718       .setTailCall(isTailCall)
8719       .setConvergent(CB.isConvergent())
8720       .setIsPreallocated(
8721           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0)
8722       .setCFIType(CFIType)
8723       .setConvergenceControlToken(ConvControlToken);
8724 
8725   // Set the pointer authentication info if we have it.
8726   if (PAI) {
8727     if (!TLI.supportPtrAuthBundles())
8728       report_fatal_error(
8729           "This target doesn't support calls with ptrauth operand bundles.");
8730     CLI.setPtrAuth(*PAI);
8731   }
8732 
8733   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8734 
8735   if (Result.first.getNode()) {
8736     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
8737     setValue(&CB, Result.first);
8738   }
8739 
8740   // The last element of CLI.InVals has the SDValue for swifterror return.
8741   // Here we copy it to a virtual register and update SwiftErrorMap for
8742   // book-keeping.
8743   if (SwiftErrorVal && TLI.supportSwiftError()) {
8744     // Get the last element of InVals.
8745     SDValue Src = CLI.InVals.back();
8746     Register VReg =
8747         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
8748     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
8749     DAG.setRoot(CopyNode);
8750   }
8751 }
8752 
8753 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
8754                              SelectionDAGBuilder &Builder) {
8755   // Check to see if this load can be trivially constant folded, e.g. if the
8756   // input is from a string literal.
8757   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
8758     // Cast pointer to the type we really want to load.
8759     Type *LoadTy =
8760         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
8761     if (LoadVT.isVector())
8762       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
8763 
8764     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
8765                                          PointerType::getUnqual(LoadTy));
8766 
8767     if (const Constant *LoadCst =
8768             ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
8769                                          LoadTy, Builder.DAG.getDataLayout()))
8770       return Builder.getValue(LoadCst);
8771   }
8772 
8773   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
8774   // still constant memory, the input chain can be the entry node.
8775   SDValue Root;
8776   bool ConstantMemory = false;
8777 
8778   // Do not serialize (non-volatile) loads of constant memory with anything.
8779   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
8780     Root = Builder.DAG.getEntryNode();
8781     ConstantMemory = true;
8782   } else {
8783     // Do not serialize non-volatile loads against each other.
8784     Root = Builder.DAG.getRoot();
8785   }
8786 
8787   SDValue Ptr = Builder.getValue(PtrVal);
8788   SDValue LoadVal =
8789       Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
8790                           MachinePointerInfo(PtrVal), Align(1));
8791 
8792   if (!ConstantMemory)
8793     Builder.PendingLoads.push_back(LoadVal.getValue(1));
8794   return LoadVal;
8795 }
8796 
8797 /// Record the value for an instruction that produces an integer result,
8798 /// converting the type where necessary.
8799 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
8800                                                   SDValue Value,
8801                                                   bool IsSigned) {
8802   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8803                                                     I.getType(), true);
8804   Value = DAG.getExtOrTrunc(IsSigned, Value, getCurSDLoc(), VT);
8805   setValue(&I, Value);
8806 }
8807 
8808 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
8809 /// true and lower it. Otherwise return false, and it will be lowered like a
8810 /// normal call.
8811 /// The caller already checked that \p I calls the appropriate LibFunc with a
8812 /// correct prototype.
8813 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
8814   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
8815   const Value *Size = I.getArgOperand(2);
8816   const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size));
8817   if (CSize && CSize->getZExtValue() == 0) {
8818     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8819                                                           I.getType(), true);
8820     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
8821     return true;
8822   }
8823 
8824   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8825   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
8826       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
8827       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
8828   if (Res.first.getNode()) {
8829     processIntegerCallValue(I, Res.first, true);
8830     PendingLoads.push_back(Res.second);
8831     return true;
8832   }
8833 
8834   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
8835   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
8836   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
8837     return false;
8838 
8839   // If the target has a fast compare for the given size, it will return a
8840   // preferred load type for that size. Require that the load VT is legal and
8841   // that the target supports unaligned loads of that type. Otherwise, return
8842   // INVALID.
8843   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
8844     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8845     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
8846     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
8847       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
8848       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
8849       // TODO: Check alignment of src and dest ptrs.
8850       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
8851       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
8852       if (!TLI.isTypeLegal(LVT) ||
8853           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
8854           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
8855         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
8856     }
8857 
8858     return LVT;
8859   };
8860 
8861   // This turns into unaligned loads. We only do this if the target natively
8862   // supports the MVT we'll be loading or if it is small enough (<= 4) that
8863   // we'll only produce a small number of byte loads.
8864   MVT LoadVT;
8865   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
8866   switch (NumBitsToCompare) {
8867   default:
8868     return false;
8869   case 16:
8870     LoadVT = MVT::i16;
8871     break;
8872   case 32:
8873     LoadVT = MVT::i32;
8874     break;
8875   case 64:
8876   case 128:
8877   case 256:
8878     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
8879     break;
8880   }
8881 
8882   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
8883     return false;
8884 
8885   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
8886   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
8887 
8888   // Bitcast to a wide integer type if the loads are vectors.
8889   if (LoadVT.isVector()) {
8890     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
8891     LoadL = DAG.getBitcast(CmpVT, LoadL);
8892     LoadR = DAG.getBitcast(CmpVT, LoadR);
8893   }
8894 
8895   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
8896   processIntegerCallValue(I, Cmp, false);
8897   return true;
8898 }
8899 
8900 /// See if we can lower a memchr call into an optimized form. If so, return
8901 /// true and lower it. Otherwise return false, and it will be lowered like a
8902 /// normal call.
8903 /// The caller already checked that \p I calls the appropriate LibFunc with a
8904 /// correct prototype.
8905 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
8906   const Value *Src = I.getArgOperand(0);
8907   const Value *Char = I.getArgOperand(1);
8908   const Value *Length = I.getArgOperand(2);
8909 
8910   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8911   std::pair<SDValue, SDValue> Res =
8912     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
8913                                 getValue(Src), getValue(Char), getValue(Length),
8914                                 MachinePointerInfo(Src));
8915   if (Res.first.getNode()) {
8916     setValue(&I, Res.first);
8917     PendingLoads.push_back(Res.second);
8918     return true;
8919   }
8920 
8921   return false;
8922 }
8923 
8924 /// See if we can lower a mempcpy call into an optimized form. If so, return
8925 /// true and lower it. Otherwise return false, and it will be lowered like a
8926 /// normal call.
8927 /// The caller already checked that \p I calls the appropriate LibFunc with a
8928 /// correct prototype.
8929 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
8930   SDValue Dst = getValue(I.getArgOperand(0));
8931   SDValue Src = getValue(I.getArgOperand(1));
8932   SDValue Size = getValue(I.getArgOperand(2));
8933 
8934   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
8935   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
8936   // DAG::getMemcpy needs Alignment to be defined.
8937   Align Alignment = std::min(DstAlign, SrcAlign);
8938 
8939   SDLoc sdl = getCurSDLoc();
8940 
8941   // In the mempcpy context we need to pass in a false value for isTailCall
8942   // because the return pointer needs to be adjusted by the size of
8943   // the copied memory.
8944   SDValue Root = getMemoryRoot();
8945   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, false, false,
8946                              /*isTailCall=*/false,
8947                              MachinePointerInfo(I.getArgOperand(0)),
8948                              MachinePointerInfo(I.getArgOperand(1)),
8949                              I.getAAMetadata());
8950   assert(MC.getNode() != nullptr &&
8951          "** memcpy should not be lowered as TailCall in mempcpy context **");
8952   DAG.setRoot(MC);
8953 
8954   // Check if Size needs to be truncated or extended.
8955   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
8956 
8957   // Adjust return pointer to point just past the last dst byte.
8958   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
8959                                     Dst, Size);
8960   setValue(&I, DstPlusSize);
8961   return true;
8962 }
8963 
8964 /// See if we can lower a strcpy call into an optimized form.  If so, return
8965 /// true and lower it, otherwise return false and it will be lowered like a
8966 /// normal call.
8967 /// The caller already checked that \p I calls the appropriate LibFunc with a
8968 /// correct prototype.
8969 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
8970   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8971 
8972   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8973   std::pair<SDValue, SDValue> Res =
8974     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
8975                                 getValue(Arg0), getValue(Arg1),
8976                                 MachinePointerInfo(Arg0),
8977                                 MachinePointerInfo(Arg1), isStpcpy);
8978   if (Res.first.getNode()) {
8979     setValue(&I, Res.first);
8980     DAG.setRoot(Res.second);
8981     return true;
8982   }
8983 
8984   return false;
8985 }
8986 
8987 /// See if we can lower a strcmp call into an optimized form.  If so, return
8988 /// true and lower it, otherwise return false and it will be lowered like a
8989 /// normal call.
8990 /// The caller already checked that \p I calls the appropriate LibFunc with a
8991 /// correct prototype.
8992 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
8993   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8994 
8995   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8996   std::pair<SDValue, SDValue> Res =
8997     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
8998                                 getValue(Arg0), getValue(Arg1),
8999                                 MachinePointerInfo(Arg0),
9000                                 MachinePointerInfo(Arg1));
9001   if (Res.first.getNode()) {
9002     processIntegerCallValue(I, Res.first, true);
9003     PendingLoads.push_back(Res.second);
9004     return true;
9005   }
9006 
9007   return false;
9008 }
9009 
9010 /// See if we can lower a strlen call into an optimized form.  If so, return
9011 /// true and lower it, otherwise return false and it will be lowered like a
9012 /// normal call.
9013 /// The caller already checked that \p I calls the appropriate LibFunc with a
9014 /// correct prototype.
9015 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
9016   const Value *Arg0 = I.getArgOperand(0);
9017 
9018   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9019   std::pair<SDValue, SDValue> Res =
9020     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
9021                                 getValue(Arg0), MachinePointerInfo(Arg0));
9022   if (Res.first.getNode()) {
9023     processIntegerCallValue(I, Res.first, false);
9024     PendingLoads.push_back(Res.second);
9025     return true;
9026   }
9027 
9028   return false;
9029 }
9030 
9031 /// See if we can lower a strnlen call into an optimized form.  If so, return
9032 /// true and lower it, otherwise return false and it will be lowered like a
9033 /// normal call.
9034 /// The caller already checked that \p I calls the appropriate LibFunc with a
9035 /// correct prototype.
9036 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
9037   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
9038 
9039   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9040   std::pair<SDValue, SDValue> Res =
9041     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
9042                                  getValue(Arg0), getValue(Arg1),
9043                                  MachinePointerInfo(Arg0));
9044   if (Res.first.getNode()) {
9045     processIntegerCallValue(I, Res.first, false);
9046     PendingLoads.push_back(Res.second);
9047     return true;
9048   }
9049 
9050   return false;
9051 }
9052 
9053 /// See if we can lower a unary floating-point operation into an SDNode with
9054 /// the specified Opcode.  If so, return true and lower it, otherwise return
9055 /// false and it will be lowered like a normal call.
9056 /// The caller already checked that \p I calls the appropriate LibFunc with a
9057 /// correct prototype.
9058 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
9059                                               unsigned Opcode) {
9060   // We already checked this call's prototype; verify it doesn't modify errno.
9061   if (!I.onlyReadsMemory())
9062     return false;
9063 
9064   SDNodeFlags Flags;
9065   Flags.copyFMF(cast<FPMathOperator>(I));
9066 
9067   SDValue Tmp = getValue(I.getArgOperand(0));
9068   setValue(&I,
9069            DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
9070   return true;
9071 }
9072 
9073 /// See if we can lower a binary floating-point operation into an SDNode with
9074 /// the specified Opcode. If so, return true and lower it. Otherwise return
9075 /// false, and it will be lowered like a normal call.
9076 /// The caller already checked that \p I calls the appropriate LibFunc with a
9077 /// correct prototype.
9078 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
9079                                                unsigned Opcode) {
9080   // We already checked this call's prototype; verify it doesn't modify errno.
9081   if (!I.onlyReadsMemory())
9082     return false;
9083 
9084   SDNodeFlags Flags;
9085   Flags.copyFMF(cast<FPMathOperator>(I));
9086 
9087   SDValue Tmp0 = getValue(I.getArgOperand(0));
9088   SDValue Tmp1 = getValue(I.getArgOperand(1));
9089   EVT VT = Tmp0.getValueType();
9090   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
9091   return true;
9092 }
9093 
9094 void SelectionDAGBuilder::visitCall(const CallInst &I) {
9095   // Handle inline assembly differently.
9096   if (I.isInlineAsm()) {
9097     visitInlineAsm(I);
9098     return;
9099   }
9100 
9101   diagnoseDontCall(I);
9102 
9103   if (Function *F = I.getCalledFunction()) {
9104     if (F->isDeclaration()) {
9105       // Is this an LLVM intrinsic or a target-specific intrinsic?
9106       unsigned IID = F->getIntrinsicID();
9107       if (!IID)
9108         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
9109           IID = II->getIntrinsicID(F);
9110 
9111       if (IID) {
9112         visitIntrinsicCall(I, IID);
9113         return;
9114       }
9115     }
9116 
9117     // Check for well-known libc/libm calls.  If the function is internal, it
9118     // can't be a library call.  Don't do the check if marked as nobuiltin for
9119     // some reason or the call site requires strict floating point semantics.
9120     LibFunc Func;
9121     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
9122         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
9123         LibInfo->hasOptimizedCodeGen(Func)) {
9124       switch (Func) {
9125       default: break;
9126       case LibFunc_bcmp:
9127         if (visitMemCmpBCmpCall(I))
9128           return;
9129         break;
9130       case LibFunc_copysign:
9131       case LibFunc_copysignf:
9132       case LibFunc_copysignl:
9133         // We already checked this call's prototype; verify it doesn't modify
9134         // errno.
9135         if (I.onlyReadsMemory()) {
9136           SDValue LHS = getValue(I.getArgOperand(0));
9137           SDValue RHS = getValue(I.getArgOperand(1));
9138           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
9139                                    LHS.getValueType(), LHS, RHS));
9140           return;
9141         }
9142         break;
9143       case LibFunc_fabs:
9144       case LibFunc_fabsf:
9145       case LibFunc_fabsl:
9146         if (visitUnaryFloatCall(I, ISD::FABS))
9147           return;
9148         break;
9149       case LibFunc_fmin:
9150       case LibFunc_fminf:
9151       case LibFunc_fminl:
9152         if (visitBinaryFloatCall(I, ISD::FMINNUM))
9153           return;
9154         break;
9155       case LibFunc_fmax:
9156       case LibFunc_fmaxf:
9157       case LibFunc_fmaxl:
9158         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
9159           return;
9160         break;
9161       case LibFunc_sin:
9162       case LibFunc_sinf:
9163       case LibFunc_sinl:
9164         if (visitUnaryFloatCall(I, ISD::FSIN))
9165           return;
9166         break;
9167       case LibFunc_cos:
9168       case LibFunc_cosf:
9169       case LibFunc_cosl:
9170         if (visitUnaryFloatCall(I, ISD::FCOS))
9171           return;
9172         break;
9173       case LibFunc_tan:
9174       case LibFunc_tanf:
9175       case LibFunc_tanl:
9176         if (visitUnaryFloatCall(I, ISD::FTAN))
9177           return;
9178         break;
9179       case LibFunc_sqrt:
9180       case LibFunc_sqrtf:
9181       case LibFunc_sqrtl:
9182       case LibFunc_sqrt_finite:
9183       case LibFunc_sqrtf_finite:
9184       case LibFunc_sqrtl_finite:
9185         if (visitUnaryFloatCall(I, ISD::FSQRT))
9186           return;
9187         break;
9188       case LibFunc_floor:
9189       case LibFunc_floorf:
9190       case LibFunc_floorl:
9191         if (visitUnaryFloatCall(I, ISD::FFLOOR))
9192           return;
9193         break;
9194       case LibFunc_nearbyint:
9195       case LibFunc_nearbyintf:
9196       case LibFunc_nearbyintl:
9197         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
9198           return;
9199         break;
9200       case LibFunc_ceil:
9201       case LibFunc_ceilf:
9202       case LibFunc_ceill:
9203         if (visitUnaryFloatCall(I, ISD::FCEIL))
9204           return;
9205         break;
9206       case LibFunc_rint:
9207       case LibFunc_rintf:
9208       case LibFunc_rintl:
9209         if (visitUnaryFloatCall(I, ISD::FRINT))
9210           return;
9211         break;
9212       case LibFunc_round:
9213       case LibFunc_roundf:
9214       case LibFunc_roundl:
9215         if (visitUnaryFloatCall(I, ISD::FROUND))
9216           return;
9217         break;
9218       case LibFunc_trunc:
9219       case LibFunc_truncf:
9220       case LibFunc_truncl:
9221         if (visitUnaryFloatCall(I, ISD::FTRUNC))
9222           return;
9223         break;
9224       case LibFunc_log2:
9225       case LibFunc_log2f:
9226       case LibFunc_log2l:
9227         if (visitUnaryFloatCall(I, ISD::FLOG2))
9228           return;
9229         break;
9230       case LibFunc_exp2:
9231       case LibFunc_exp2f:
9232       case LibFunc_exp2l:
9233         if (visitUnaryFloatCall(I, ISD::FEXP2))
9234           return;
9235         break;
9236       case LibFunc_exp10:
9237       case LibFunc_exp10f:
9238       case LibFunc_exp10l:
9239         if (visitUnaryFloatCall(I, ISD::FEXP10))
9240           return;
9241         break;
9242       case LibFunc_ldexp:
9243       case LibFunc_ldexpf:
9244       case LibFunc_ldexpl:
9245         if (visitBinaryFloatCall(I, ISD::FLDEXP))
9246           return;
9247         break;
9248       case LibFunc_memcmp:
9249         if (visitMemCmpBCmpCall(I))
9250           return;
9251         break;
9252       case LibFunc_mempcpy:
9253         if (visitMemPCpyCall(I))
9254           return;
9255         break;
9256       case LibFunc_memchr:
9257         if (visitMemChrCall(I))
9258           return;
9259         break;
9260       case LibFunc_strcpy:
9261         if (visitStrCpyCall(I, false))
9262           return;
9263         break;
9264       case LibFunc_stpcpy:
9265         if (visitStrCpyCall(I, true))
9266           return;
9267         break;
9268       case LibFunc_strcmp:
9269         if (visitStrCmpCall(I))
9270           return;
9271         break;
9272       case LibFunc_strlen:
9273         if (visitStrLenCall(I))
9274           return;
9275         break;
9276       case LibFunc_strnlen:
9277         if (visitStrNLenCall(I))
9278           return;
9279         break;
9280       }
9281     }
9282   }
9283 
9284   if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) {
9285     LowerCallSiteWithPtrAuthBundle(cast<CallBase>(I), /*EHPadBB=*/nullptr);
9286     return;
9287   }
9288 
9289   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
9290   // have to do anything here to lower funclet bundles.
9291   // CFGuardTarget bundles are lowered in LowerCallTo.
9292   assert(!I.hasOperandBundlesOtherThan(
9293              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
9294               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated,
9295               LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi,
9296               LLVMContext::OB_convergencectrl}) &&
9297          "Cannot lower calls with arbitrary operand bundles!");
9298 
9299   SDValue Callee = getValue(I.getCalledOperand());
9300 
9301   if (I.hasDeoptState())
9302     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
9303   else
9304     // Check if we can potentially perform a tail call. More detailed checking
9305     // is be done within LowerCallTo, after more information about the call is
9306     // known.
9307     LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
9308 }
9309 
9310 void SelectionDAGBuilder::LowerCallSiteWithPtrAuthBundle(
9311     const CallBase &CB, const BasicBlock *EHPadBB) {
9312   auto PAB = CB.getOperandBundle("ptrauth");
9313   const Value *CalleeV = CB.getCalledOperand();
9314 
9315   // Gather the call ptrauth data from the operand bundle:
9316   //   [ i32 <key>, i64 <discriminator> ]
9317   const auto *Key = cast<ConstantInt>(PAB->Inputs[0]);
9318   const Value *Discriminator = PAB->Inputs[1];
9319 
9320   assert(Key->getType()->isIntegerTy(32) && "Invalid ptrauth key");
9321   assert(Discriminator->getType()->isIntegerTy(64) &&
9322          "Invalid ptrauth discriminator");
9323 
9324   // Functions should never be ptrauth-called directly.
9325   assert(!isa<Function>(CalleeV) && "invalid direct ptrauth call");
9326 
9327   // Otherwise, do an authenticated indirect call.
9328   TargetLowering::PtrAuthInfo PAI = {Key->getZExtValue(),
9329                                      getValue(Discriminator)};
9330 
9331   LowerCallTo(CB, getValue(CalleeV), CB.isTailCall(), CB.isMustTailCall(),
9332               EHPadBB, &PAI);
9333 }
9334 
9335 namespace {
9336 
9337 /// AsmOperandInfo - This contains information for each constraint that we are
9338 /// lowering.
9339 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
9340 public:
9341   /// CallOperand - If this is the result output operand or a clobber
9342   /// this is null, otherwise it is the incoming operand to the CallInst.
9343   /// This gets modified as the asm is processed.
9344   SDValue CallOperand;
9345 
9346   /// AssignedRegs - If this is a register or register class operand, this
9347   /// contains the set of register corresponding to the operand.
9348   RegsForValue AssignedRegs;
9349 
9350   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
9351     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
9352   }
9353 
9354   /// Whether or not this operand accesses memory
9355   bool hasMemory(const TargetLowering &TLI) const {
9356     // Indirect operand accesses access memory.
9357     if (isIndirect)
9358       return true;
9359 
9360     for (const auto &Code : Codes)
9361       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
9362         return true;
9363 
9364     return false;
9365   }
9366 };
9367 
9368 
9369 } // end anonymous namespace
9370 
9371 /// Make sure that the output operand \p OpInfo and its corresponding input
9372 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
9373 /// out).
9374 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
9375                                SDISelAsmOperandInfo &MatchingOpInfo,
9376                                SelectionDAG &DAG) {
9377   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
9378     return;
9379 
9380   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
9381   const auto &TLI = DAG.getTargetLoweringInfo();
9382 
9383   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
9384       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
9385                                        OpInfo.ConstraintVT);
9386   std::pair<unsigned, const TargetRegisterClass *> InputRC =
9387       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
9388                                        MatchingOpInfo.ConstraintVT);
9389   if ((OpInfo.ConstraintVT.isInteger() !=
9390        MatchingOpInfo.ConstraintVT.isInteger()) ||
9391       (MatchRC.second != InputRC.second)) {
9392     // FIXME: error out in a more elegant fashion
9393     report_fatal_error("Unsupported asm: input constraint"
9394                        " with a matching output constraint of"
9395                        " incompatible type!");
9396   }
9397   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
9398 }
9399 
9400 /// Get a direct memory input to behave well as an indirect operand.
9401 /// This may introduce stores, hence the need for a \p Chain.
9402 /// \return The (possibly updated) chain.
9403 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
9404                                         SDISelAsmOperandInfo &OpInfo,
9405                                         SelectionDAG &DAG) {
9406   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9407 
9408   // If we don't have an indirect input, put it in the constpool if we can,
9409   // otherwise spill it to a stack slot.
9410   // TODO: This isn't quite right. We need to handle these according to
9411   // the addressing mode that the constraint wants. Also, this may take
9412   // an additional register for the computation and we don't want that
9413   // either.
9414 
9415   // If the operand is a float, integer, or vector constant, spill to a
9416   // constant pool entry to get its address.
9417   const Value *OpVal = OpInfo.CallOperandVal;
9418   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
9419       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
9420     OpInfo.CallOperand = DAG.getConstantPool(
9421         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
9422     return Chain;
9423   }
9424 
9425   // Otherwise, create a stack slot and emit a store to it before the asm.
9426   Type *Ty = OpVal->getType();
9427   auto &DL = DAG.getDataLayout();
9428   uint64_t TySize = DL.getTypeAllocSize(Ty);
9429   MachineFunction &MF = DAG.getMachineFunction();
9430   int SSFI = MF.getFrameInfo().CreateStackObject(
9431       TySize, DL.getPrefTypeAlign(Ty), false);
9432   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
9433   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
9434                             MachinePointerInfo::getFixedStack(MF, SSFI),
9435                             TLI.getMemValueType(DL, Ty));
9436   OpInfo.CallOperand = StackSlot;
9437 
9438   return Chain;
9439 }
9440 
9441 /// GetRegistersForValue - Assign registers (virtual or physical) for the
9442 /// specified operand.  We prefer to assign virtual registers, to allow the
9443 /// register allocator to handle the assignment process.  However, if the asm
9444 /// uses features that we can't model on machineinstrs, we have SDISel do the
9445 /// allocation.  This produces generally horrible, but correct, code.
9446 ///
9447 ///   OpInfo describes the operand
9448 ///   RefOpInfo describes the matching operand if any, the operand otherwise
9449 static std::optional<unsigned>
9450 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
9451                      SDISelAsmOperandInfo &OpInfo,
9452                      SDISelAsmOperandInfo &RefOpInfo) {
9453   LLVMContext &Context = *DAG.getContext();
9454   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9455 
9456   MachineFunction &MF = DAG.getMachineFunction();
9457   SmallVector<unsigned, 4> Regs;
9458   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9459 
9460   // No work to do for memory/address operands.
9461   if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
9462       OpInfo.ConstraintType == TargetLowering::C_Address)
9463     return std::nullopt;
9464 
9465   // If this is a constraint for a single physreg, or a constraint for a
9466   // register class, find it.
9467   unsigned AssignedReg;
9468   const TargetRegisterClass *RC;
9469   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
9470       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
9471   // RC is unset only on failure. Return immediately.
9472   if (!RC)
9473     return std::nullopt;
9474 
9475   // Get the actual register value type.  This is important, because the user
9476   // may have asked for (e.g.) the AX register in i32 type.  We need to
9477   // remember that AX is actually i16 to get the right extension.
9478   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
9479 
9480   if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
9481     // If this is an FP operand in an integer register (or visa versa), or more
9482     // generally if the operand value disagrees with the register class we plan
9483     // to stick it in, fix the operand type.
9484     //
9485     // If this is an input value, the bitcast to the new type is done now.
9486     // Bitcast for output value is done at the end of visitInlineAsm().
9487     if ((OpInfo.Type == InlineAsm::isOutput ||
9488          OpInfo.Type == InlineAsm::isInput) &&
9489         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
9490       // Try to convert to the first EVT that the reg class contains.  If the
9491       // types are identical size, use a bitcast to convert (e.g. two differing
9492       // vector types).  Note: output bitcast is done at the end of
9493       // visitInlineAsm().
9494       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
9495         // Exclude indirect inputs while they are unsupported because the code
9496         // to perform the load is missing and thus OpInfo.CallOperand still
9497         // refers to the input address rather than the pointed-to value.
9498         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
9499           OpInfo.CallOperand =
9500               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
9501         OpInfo.ConstraintVT = RegVT;
9502         // If the operand is an FP value and we want it in integer registers,
9503         // use the corresponding integer type. This turns an f64 value into
9504         // i64, which can be passed with two i32 values on a 32-bit machine.
9505       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
9506         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
9507         if (OpInfo.Type == InlineAsm::isInput)
9508           OpInfo.CallOperand =
9509               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
9510         OpInfo.ConstraintVT = VT;
9511       }
9512     }
9513   }
9514 
9515   // No need to allocate a matching input constraint since the constraint it's
9516   // matching to has already been allocated.
9517   if (OpInfo.isMatchingInputConstraint())
9518     return std::nullopt;
9519 
9520   EVT ValueVT = OpInfo.ConstraintVT;
9521   if (OpInfo.ConstraintVT == MVT::Other)
9522     ValueVT = RegVT;
9523 
9524   // Initialize NumRegs.
9525   unsigned NumRegs = 1;
9526   if (OpInfo.ConstraintVT != MVT::Other)
9527     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT);
9528 
9529   // If this is a constraint for a specific physical register, like {r17},
9530   // assign it now.
9531 
9532   // If this associated to a specific register, initialize iterator to correct
9533   // place. If virtual, make sure we have enough registers
9534 
9535   // Initialize iterator if necessary
9536   TargetRegisterClass::iterator I = RC->begin();
9537   MachineRegisterInfo &RegInfo = MF.getRegInfo();
9538 
9539   // Do not check for single registers.
9540   if (AssignedReg) {
9541     I = std::find(I, RC->end(), AssignedReg);
9542     if (I == RC->end()) {
9543       // RC does not contain the selected register, which indicates a
9544       // mismatch between the register and the required type/bitwidth.
9545       return {AssignedReg};
9546     }
9547   }
9548 
9549   for (; NumRegs; --NumRegs, ++I) {
9550     assert(I != RC->end() && "Ran out of registers to allocate!");
9551     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
9552     Regs.push_back(R);
9553   }
9554 
9555   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
9556   return std::nullopt;
9557 }
9558 
9559 static unsigned
9560 findMatchingInlineAsmOperand(unsigned OperandNo,
9561                              const std::vector<SDValue> &AsmNodeOperands) {
9562   // Scan until we find the definition we already emitted of this operand.
9563   unsigned CurOp = InlineAsm::Op_FirstOperand;
9564   for (; OperandNo; --OperandNo) {
9565     // Advance to the next operand.
9566     unsigned OpFlag = AsmNodeOperands[CurOp]->getAsZExtVal();
9567     const InlineAsm::Flag F(OpFlag);
9568     assert(
9569         (F.isRegDefKind() || F.isRegDefEarlyClobberKind() || F.isMemKind()) &&
9570         "Skipped past definitions?");
9571     CurOp += F.getNumOperandRegisters() + 1;
9572   }
9573   return CurOp;
9574 }
9575 
9576 namespace {
9577 
9578 class ExtraFlags {
9579   unsigned Flags = 0;
9580 
9581 public:
9582   explicit ExtraFlags(const CallBase &Call) {
9583     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
9584     if (IA->hasSideEffects())
9585       Flags |= InlineAsm::Extra_HasSideEffects;
9586     if (IA->isAlignStack())
9587       Flags |= InlineAsm::Extra_IsAlignStack;
9588     if (Call.isConvergent())
9589       Flags |= InlineAsm::Extra_IsConvergent;
9590     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
9591   }
9592 
9593   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
9594     // Ideally, we would only check against memory constraints.  However, the
9595     // meaning of an Other constraint can be target-specific and we can't easily
9596     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
9597     // for Other constraints as well.
9598     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
9599         OpInfo.ConstraintType == TargetLowering::C_Other) {
9600       if (OpInfo.Type == InlineAsm::isInput)
9601         Flags |= InlineAsm::Extra_MayLoad;
9602       else if (OpInfo.Type == InlineAsm::isOutput)
9603         Flags |= InlineAsm::Extra_MayStore;
9604       else if (OpInfo.Type == InlineAsm::isClobber)
9605         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
9606     }
9607   }
9608 
9609   unsigned get() const { return Flags; }
9610 };
9611 
9612 } // end anonymous namespace
9613 
9614 static bool isFunction(SDValue Op) {
9615   if (Op && Op.getOpcode() == ISD::GlobalAddress) {
9616     if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
9617       auto Fn = dyn_cast_or_null<Function>(GA->getGlobal());
9618 
9619       // In normal "call dllimport func" instruction (non-inlineasm) it force
9620       // indirect access by specifing call opcode. And usually specially print
9621       // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can
9622       // not do in this way now. (In fact, this is similar with "Data Access"
9623       // action). So here we ignore dllimport function.
9624       if (Fn && !Fn->hasDLLImportStorageClass())
9625         return true;
9626     }
9627   }
9628   return false;
9629 }
9630 
9631 /// visitInlineAsm - Handle a call to an InlineAsm object.
9632 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
9633                                          const BasicBlock *EHPadBB) {
9634   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
9635 
9636   /// ConstraintOperands - Information about all of the constraints.
9637   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
9638 
9639   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9640   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
9641       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
9642 
9643   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
9644   // AsmDialect, MayLoad, MayStore).
9645   bool HasSideEffect = IA->hasSideEffects();
9646   ExtraFlags ExtraInfo(Call);
9647 
9648   for (auto &T : TargetConstraints) {
9649     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
9650     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
9651 
9652     if (OpInfo.CallOperandVal)
9653       OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
9654 
9655     if (!HasSideEffect)
9656       HasSideEffect = OpInfo.hasMemory(TLI);
9657 
9658     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
9659     // FIXME: Could we compute this on OpInfo rather than T?
9660 
9661     // Compute the constraint code and ConstraintType to use.
9662     TLI.ComputeConstraintToUse(T, SDValue());
9663 
9664     if (T.ConstraintType == TargetLowering::C_Immediate &&
9665         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
9666       // We've delayed emitting a diagnostic like the "n" constraint because
9667       // inlining could cause an integer showing up.
9668       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
9669                                           "' expects an integer constant "
9670                                           "expression");
9671 
9672     ExtraInfo.update(T);
9673   }
9674 
9675   // We won't need to flush pending loads if this asm doesn't touch
9676   // memory and is nonvolatile.
9677   SDValue Glue, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
9678 
9679   bool EmitEHLabels = isa<InvokeInst>(Call);
9680   if (EmitEHLabels) {
9681     assert(EHPadBB && "InvokeInst must have an EHPadBB");
9682   }
9683   bool IsCallBr = isa<CallBrInst>(Call);
9684 
9685   if (IsCallBr || EmitEHLabels) {
9686     // If this is a callbr or invoke we need to flush pending exports since
9687     // inlineasm_br and invoke are terminators.
9688     // We need to do this before nodes are glued to the inlineasm_br node.
9689     Chain = getControlRoot();
9690   }
9691 
9692   MCSymbol *BeginLabel = nullptr;
9693   if (EmitEHLabels) {
9694     Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
9695   }
9696 
9697   int OpNo = -1;
9698   SmallVector<StringRef> AsmStrs;
9699   IA->collectAsmStrs(AsmStrs);
9700 
9701   // Second pass over the constraints: compute which constraint option to use.
9702   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9703     if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput)
9704       OpNo++;
9705 
9706     // If this is an output operand with a matching input operand, look up the
9707     // matching input. If their types mismatch, e.g. one is an integer, the
9708     // other is floating point, or their sizes are different, flag it as an
9709     // error.
9710     if (OpInfo.hasMatchingInput()) {
9711       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
9712       patchMatchingInput(OpInfo, Input, DAG);
9713     }
9714 
9715     // Compute the constraint code and ConstraintType to use.
9716     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
9717 
9718     if ((OpInfo.ConstraintType == TargetLowering::C_Memory &&
9719          OpInfo.Type == InlineAsm::isClobber) ||
9720         OpInfo.ConstraintType == TargetLowering::C_Address)
9721       continue;
9722 
9723     // In Linux PIC model, there are 4 cases about value/label addressing:
9724     //
9725     // 1: Function call or Label jmp inside the module.
9726     // 2: Data access (such as global variable, static variable) inside module.
9727     // 3: Function call or Label jmp outside the module.
9728     // 4: Data access (such as global variable) outside the module.
9729     //
9730     // Due to current llvm inline asm architecture designed to not "recognize"
9731     // the asm code, there are quite troubles for us to treat mem addressing
9732     // differently for same value/adress used in different instuctions.
9733     // For example, in pic model, call a func may in plt way or direclty
9734     // pc-related, but lea/mov a function adress may use got.
9735     //
9736     // Here we try to "recognize" function call for the case 1 and case 3 in
9737     // inline asm. And try to adjust the constraint for them.
9738     //
9739     // TODO: Due to current inline asm didn't encourage to jmp to the outsider
9740     // label, so here we don't handle jmp function label now, but we need to
9741     // enhance it (especilly in PIC model) if we meet meaningful requirements.
9742     if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) &&
9743         TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) &&
9744         TM.getCodeModel() != CodeModel::Large) {
9745       OpInfo.isIndirect = false;
9746       OpInfo.ConstraintType = TargetLowering::C_Address;
9747     }
9748 
9749     // If this is a memory input, and if the operand is not indirect, do what we
9750     // need to provide an address for the memory input.
9751     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
9752         !OpInfo.isIndirect) {
9753       assert((OpInfo.isMultipleAlternative ||
9754               (OpInfo.Type == InlineAsm::isInput)) &&
9755              "Can only indirectify direct input operands!");
9756 
9757       // Memory operands really want the address of the value.
9758       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
9759 
9760       // There is no longer a Value* corresponding to this operand.
9761       OpInfo.CallOperandVal = nullptr;
9762 
9763       // It is now an indirect operand.
9764       OpInfo.isIndirect = true;
9765     }
9766 
9767   }
9768 
9769   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
9770   std::vector<SDValue> AsmNodeOperands;
9771   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
9772   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
9773       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
9774 
9775   // If we have a !srcloc metadata node associated with it, we want to attach
9776   // this to the ultimately generated inline asm machineinstr.  To do this, we
9777   // pass in the third operand as this (potentially null) inline asm MDNode.
9778   const MDNode *SrcLoc = Call.getMetadata("srcloc");
9779   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
9780 
9781   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
9782   // bits as operand 3.
9783   AsmNodeOperands.push_back(DAG.getTargetConstant(
9784       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9785 
9786   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
9787   // this, assign virtual and physical registers for inputs and otput.
9788   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9789     // Assign Registers.
9790     SDISelAsmOperandInfo &RefOpInfo =
9791         OpInfo.isMatchingInputConstraint()
9792             ? ConstraintOperands[OpInfo.getMatchedOperand()]
9793             : OpInfo;
9794     const auto RegError =
9795         getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
9796     if (RegError) {
9797       const MachineFunction &MF = DAG.getMachineFunction();
9798       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9799       const char *RegName = TRI.getName(*RegError);
9800       emitInlineAsmError(Call, "register '" + Twine(RegName) +
9801                                    "' allocated for constraint '" +
9802                                    Twine(OpInfo.ConstraintCode) +
9803                                    "' does not match required type");
9804       return;
9805     }
9806 
9807     auto DetectWriteToReservedRegister = [&]() {
9808       const MachineFunction &MF = DAG.getMachineFunction();
9809       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9810       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
9811         if (Register::isPhysicalRegister(Reg) &&
9812             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
9813           const char *RegName = TRI.getName(Reg);
9814           emitInlineAsmError(Call, "write to reserved register '" +
9815                                        Twine(RegName) + "'");
9816           return true;
9817         }
9818       }
9819       return false;
9820     };
9821     assert((OpInfo.ConstraintType != TargetLowering::C_Address ||
9822             (OpInfo.Type == InlineAsm::isInput &&
9823              !OpInfo.isMatchingInputConstraint())) &&
9824            "Only address as input operand is allowed.");
9825 
9826     switch (OpInfo.Type) {
9827     case InlineAsm::isOutput:
9828       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
9829         const InlineAsm::ConstraintCode ConstraintID =
9830             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9831         assert(ConstraintID != InlineAsm::ConstraintCode::Unknown &&
9832                "Failed to convert memory constraint code to constraint id.");
9833 
9834         // Add information to the INLINEASM node to know about this output.
9835         InlineAsm::Flag OpFlags(InlineAsm::Kind::Mem, 1);
9836         OpFlags.setMemConstraint(ConstraintID);
9837         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
9838                                                         MVT::i32));
9839         AsmNodeOperands.push_back(OpInfo.CallOperand);
9840       } else {
9841         // Otherwise, this outputs to a register (directly for C_Register /
9842         // C_RegisterClass, and a target-defined fashion for
9843         // C_Immediate/C_Other). Find a register that we can use.
9844         if (OpInfo.AssignedRegs.Regs.empty()) {
9845           emitInlineAsmError(
9846               Call, "couldn't allocate output register for constraint '" +
9847                         Twine(OpInfo.ConstraintCode) + "'");
9848           return;
9849         }
9850 
9851         if (DetectWriteToReservedRegister())
9852           return;
9853 
9854         // Add information to the INLINEASM node to know that this register is
9855         // set.
9856         OpInfo.AssignedRegs.AddInlineAsmOperands(
9857             OpInfo.isEarlyClobber ? InlineAsm::Kind::RegDefEarlyClobber
9858                                   : InlineAsm::Kind::RegDef,
9859             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
9860       }
9861       break;
9862 
9863     case InlineAsm::isInput:
9864     case InlineAsm::isLabel: {
9865       SDValue InOperandVal = OpInfo.CallOperand;
9866 
9867       if (OpInfo.isMatchingInputConstraint()) {
9868         // If this is required to match an output register we have already set,
9869         // just use its register.
9870         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
9871                                                   AsmNodeOperands);
9872         InlineAsm::Flag Flag(AsmNodeOperands[CurOp]->getAsZExtVal());
9873         if (Flag.isRegDefKind() || Flag.isRegDefEarlyClobberKind()) {
9874           if (OpInfo.isIndirect) {
9875             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
9876             emitInlineAsmError(Call, "inline asm not supported yet: "
9877                                      "don't know how to handle tied "
9878                                      "indirect register inputs");
9879             return;
9880           }
9881 
9882           SmallVector<unsigned, 4> Regs;
9883           MachineFunction &MF = DAG.getMachineFunction();
9884           MachineRegisterInfo &MRI = MF.getRegInfo();
9885           const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9886           auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]);
9887           Register TiedReg = R->getReg();
9888           MVT RegVT = R->getSimpleValueType(0);
9889           const TargetRegisterClass *RC =
9890               TiedReg.isVirtual()     ? MRI.getRegClass(TiedReg)
9891               : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT)
9892                                       : TRI.getMinimalPhysRegClass(TiedReg);
9893           for (unsigned i = 0, e = Flag.getNumOperandRegisters(); i != e; ++i)
9894             Regs.push_back(MRI.createVirtualRegister(RC));
9895 
9896           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
9897 
9898           SDLoc dl = getCurSDLoc();
9899           // Use the produced MatchedRegs object to
9900           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, &Call);
9901           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, true,
9902                                            OpInfo.getMatchedOperand(), dl, DAG,
9903                                            AsmNodeOperands);
9904           break;
9905         }
9906 
9907         assert(Flag.isMemKind() && "Unknown matching constraint!");
9908         assert(Flag.getNumOperandRegisters() == 1 &&
9909                "Unexpected number of operands");
9910         // Add information to the INLINEASM node to know about this input.
9911         // See InlineAsm.h isUseOperandTiedToDef.
9912         Flag.clearMemConstraint();
9913         Flag.setMatchingOp(OpInfo.getMatchedOperand());
9914         AsmNodeOperands.push_back(DAG.getTargetConstant(
9915             Flag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9916         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
9917         break;
9918       }
9919 
9920       // Treat indirect 'X' constraint as memory.
9921       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
9922           OpInfo.isIndirect)
9923         OpInfo.ConstraintType = TargetLowering::C_Memory;
9924 
9925       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
9926           OpInfo.ConstraintType == TargetLowering::C_Other) {
9927         std::vector<SDValue> Ops;
9928         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
9929                                           Ops, DAG);
9930         if (Ops.empty()) {
9931           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
9932             if (isa<ConstantSDNode>(InOperandVal)) {
9933               emitInlineAsmError(Call, "value out of range for constraint '" +
9934                                            Twine(OpInfo.ConstraintCode) + "'");
9935               return;
9936             }
9937 
9938           emitInlineAsmError(Call,
9939                              "invalid operand for inline asm constraint '" +
9940                                  Twine(OpInfo.ConstraintCode) + "'");
9941           return;
9942         }
9943 
9944         // Add information to the INLINEASM node to know about this input.
9945         InlineAsm::Flag ResOpType(InlineAsm::Kind::Imm, Ops.size());
9946         AsmNodeOperands.push_back(DAG.getTargetConstant(
9947             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9948         llvm::append_range(AsmNodeOperands, Ops);
9949         break;
9950       }
9951 
9952       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
9953         assert((OpInfo.isIndirect ||
9954                 OpInfo.ConstraintType != TargetLowering::C_Memory) &&
9955                "Operand must be indirect to be a mem!");
9956         assert(InOperandVal.getValueType() ==
9957                    TLI.getPointerTy(DAG.getDataLayout()) &&
9958                "Memory operands expect pointer values");
9959 
9960         const InlineAsm::ConstraintCode ConstraintID =
9961             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9962         assert(ConstraintID != InlineAsm::ConstraintCode::Unknown &&
9963                "Failed to convert memory constraint code to constraint id.");
9964 
9965         // Add information to the INLINEASM node to know about this input.
9966         InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1);
9967         ResOpType.setMemConstraint(ConstraintID);
9968         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
9969                                                         getCurSDLoc(),
9970                                                         MVT::i32));
9971         AsmNodeOperands.push_back(InOperandVal);
9972         break;
9973       }
9974 
9975       if (OpInfo.ConstraintType == TargetLowering::C_Address) {
9976         const InlineAsm::ConstraintCode ConstraintID =
9977             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9978         assert(ConstraintID != InlineAsm::ConstraintCode::Unknown &&
9979                "Failed to convert memory constraint code to constraint id.");
9980 
9981         InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1);
9982 
9983         SDValue AsmOp = InOperandVal;
9984         if (isFunction(InOperandVal)) {
9985           auto *GA = cast<GlobalAddressSDNode>(InOperandVal);
9986           ResOpType = InlineAsm::Flag(InlineAsm::Kind::Func, 1);
9987           AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(),
9988                                              InOperandVal.getValueType(),
9989                                              GA->getOffset());
9990         }
9991 
9992         // Add information to the INLINEASM node to know about this input.
9993         ResOpType.setMemConstraint(ConstraintID);
9994 
9995         AsmNodeOperands.push_back(
9996             DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32));
9997 
9998         AsmNodeOperands.push_back(AsmOp);
9999         break;
10000       }
10001 
10002       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
10003               OpInfo.ConstraintType == TargetLowering::C_Register) &&
10004              "Unknown constraint type!");
10005 
10006       // TODO: Support this.
10007       if (OpInfo.isIndirect) {
10008         emitInlineAsmError(
10009             Call, "Don't know how to handle indirect register inputs yet "
10010                   "for constraint '" +
10011                       Twine(OpInfo.ConstraintCode) + "'");
10012         return;
10013       }
10014 
10015       // Copy the input into the appropriate registers.
10016       if (OpInfo.AssignedRegs.Regs.empty()) {
10017         emitInlineAsmError(Call,
10018                            "couldn't allocate input reg for constraint '" +
10019                                Twine(OpInfo.ConstraintCode) + "'");
10020         return;
10021       }
10022 
10023       if (DetectWriteToReservedRegister())
10024         return;
10025 
10026       SDLoc dl = getCurSDLoc();
10027 
10028       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue,
10029                                         &Call);
10030 
10031       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, false,
10032                                                0, dl, DAG, AsmNodeOperands);
10033       break;
10034     }
10035     case InlineAsm::isClobber:
10036       // Add the clobbered value to the operand list, so that the register
10037       // allocator is aware that the physreg got clobbered.
10038       if (!OpInfo.AssignedRegs.Regs.empty())
10039         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::Clobber,
10040                                                  false, 0, getCurSDLoc(), DAG,
10041                                                  AsmNodeOperands);
10042       break;
10043     }
10044   }
10045 
10046   // Finish up input operands.  Set the input chain and add the flag last.
10047   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
10048   if (Glue.getNode()) AsmNodeOperands.push_back(Glue);
10049 
10050   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
10051   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
10052                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
10053   Glue = Chain.getValue(1);
10054 
10055   // Do additional work to generate outputs.
10056 
10057   SmallVector<EVT, 1> ResultVTs;
10058   SmallVector<SDValue, 1> ResultValues;
10059   SmallVector<SDValue, 8> OutChains;
10060 
10061   llvm::Type *CallResultType = Call.getType();
10062   ArrayRef<Type *> ResultTypes;
10063   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
10064     ResultTypes = StructResult->elements();
10065   else if (!CallResultType->isVoidTy())
10066     ResultTypes = ArrayRef(CallResultType);
10067 
10068   auto CurResultType = ResultTypes.begin();
10069   auto handleRegAssign = [&](SDValue V) {
10070     assert(CurResultType != ResultTypes.end() && "Unexpected value");
10071     assert((*CurResultType)->isSized() && "Unexpected unsized type");
10072     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
10073     ++CurResultType;
10074     // If the type of the inline asm call site return value is different but has
10075     // same size as the type of the asm output bitcast it.  One example of this
10076     // is for vectors with different width / number of elements.  This can
10077     // happen for register classes that can contain multiple different value
10078     // types.  The preg or vreg allocated may not have the same VT as was
10079     // expected.
10080     //
10081     // This can also happen for a return value that disagrees with the register
10082     // class it is put in, eg. a double in a general-purpose register on a
10083     // 32-bit machine.
10084     if (ResultVT != V.getValueType() &&
10085         ResultVT.getSizeInBits() == V.getValueSizeInBits())
10086       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
10087     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
10088              V.getValueType().isInteger()) {
10089       // If a result value was tied to an input value, the computed result
10090       // may have a wider width than the expected result.  Extract the
10091       // relevant portion.
10092       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
10093     }
10094     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
10095     ResultVTs.push_back(ResultVT);
10096     ResultValues.push_back(V);
10097   };
10098 
10099   // Deal with output operands.
10100   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
10101     if (OpInfo.Type == InlineAsm::isOutput) {
10102       SDValue Val;
10103       // Skip trivial output operands.
10104       if (OpInfo.AssignedRegs.Regs.empty())
10105         continue;
10106 
10107       switch (OpInfo.ConstraintType) {
10108       case TargetLowering::C_Register:
10109       case TargetLowering::C_RegisterClass:
10110         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
10111                                                   Chain, &Glue, &Call);
10112         break;
10113       case TargetLowering::C_Immediate:
10114       case TargetLowering::C_Other:
10115         Val = TLI.LowerAsmOutputForConstraint(Chain, Glue, getCurSDLoc(),
10116                                               OpInfo, DAG);
10117         break;
10118       case TargetLowering::C_Memory:
10119         break; // Already handled.
10120       case TargetLowering::C_Address:
10121         break; // Silence warning.
10122       case TargetLowering::C_Unknown:
10123         assert(false && "Unexpected unknown constraint");
10124       }
10125 
10126       // Indirect output manifest as stores. Record output chains.
10127       if (OpInfo.isIndirect) {
10128         const Value *Ptr = OpInfo.CallOperandVal;
10129         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
10130         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
10131                                      MachinePointerInfo(Ptr));
10132         OutChains.push_back(Store);
10133       } else {
10134         // generate CopyFromRegs to associated registers.
10135         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
10136         if (Val.getOpcode() == ISD::MERGE_VALUES) {
10137           for (const SDValue &V : Val->op_values())
10138             handleRegAssign(V);
10139         } else
10140           handleRegAssign(Val);
10141       }
10142     }
10143   }
10144 
10145   // Set results.
10146   if (!ResultValues.empty()) {
10147     assert(CurResultType == ResultTypes.end() &&
10148            "Mismatch in number of ResultTypes");
10149     assert(ResultValues.size() == ResultTypes.size() &&
10150            "Mismatch in number of output operands in asm result");
10151 
10152     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
10153                             DAG.getVTList(ResultVTs), ResultValues);
10154     setValue(&Call, V);
10155   }
10156 
10157   // Collect store chains.
10158   if (!OutChains.empty())
10159     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
10160 
10161   if (EmitEHLabels) {
10162     Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
10163   }
10164 
10165   // Only Update Root if inline assembly has a memory effect.
10166   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
10167       EmitEHLabels)
10168     DAG.setRoot(Chain);
10169 }
10170 
10171 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
10172                                              const Twine &Message) {
10173   LLVMContext &Ctx = *DAG.getContext();
10174   Ctx.emitError(&Call, Message);
10175 
10176   // Make sure we leave the DAG in a valid state
10177   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10178   SmallVector<EVT, 1> ValueVTs;
10179   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
10180 
10181   if (ValueVTs.empty())
10182     return;
10183 
10184   SmallVector<SDValue, 1> Ops;
10185   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
10186     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
10187 
10188   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
10189 }
10190 
10191 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
10192   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
10193                           MVT::Other, getRoot(),
10194                           getValue(I.getArgOperand(0)),
10195                           DAG.getSrcValue(I.getArgOperand(0))));
10196 }
10197 
10198 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
10199   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10200   const DataLayout &DL = DAG.getDataLayout();
10201   SDValue V = DAG.getVAArg(
10202       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
10203       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
10204       DL.getABITypeAlign(I.getType()).value());
10205   DAG.setRoot(V.getValue(1));
10206 
10207   if (I.getType()->isPointerTy())
10208     V = DAG.getPtrExtOrTrunc(
10209         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
10210   setValue(&I, V);
10211 }
10212 
10213 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
10214   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
10215                           MVT::Other, getRoot(),
10216                           getValue(I.getArgOperand(0)),
10217                           DAG.getSrcValue(I.getArgOperand(0))));
10218 }
10219 
10220 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
10221   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
10222                           MVT::Other, getRoot(),
10223                           getValue(I.getArgOperand(0)),
10224                           getValue(I.getArgOperand(1)),
10225                           DAG.getSrcValue(I.getArgOperand(0)),
10226                           DAG.getSrcValue(I.getArgOperand(1))));
10227 }
10228 
10229 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
10230                                                     const Instruction &I,
10231                                                     SDValue Op) {
10232   const MDNode *Range = getRangeMetadata(I);
10233   if (!Range)
10234     return Op;
10235 
10236   ConstantRange CR = getConstantRangeFromMetadata(*Range);
10237   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
10238     return Op;
10239 
10240   APInt Lo = CR.getUnsignedMin();
10241   if (!Lo.isMinValue())
10242     return Op;
10243 
10244   APInt Hi = CR.getUnsignedMax();
10245   unsigned Bits = std::max(Hi.getActiveBits(),
10246                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
10247 
10248   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
10249 
10250   SDLoc SL = getCurSDLoc();
10251 
10252   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
10253                              DAG.getValueType(SmallVT));
10254   unsigned NumVals = Op.getNode()->getNumValues();
10255   if (NumVals == 1)
10256     return ZExt;
10257 
10258   SmallVector<SDValue, 4> Ops;
10259 
10260   Ops.push_back(ZExt);
10261   for (unsigned I = 1; I != NumVals; ++I)
10262     Ops.push_back(Op.getValue(I));
10263 
10264   return DAG.getMergeValues(Ops, SL);
10265 }
10266 
10267 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
10268 /// the call being lowered.
10269 ///
10270 /// This is a helper for lowering intrinsics that follow a target calling
10271 /// convention or require stack pointer adjustment. Only a subset of the
10272 /// intrinsic's operands need to participate in the calling convention.
10273 void SelectionDAGBuilder::populateCallLoweringInfo(
10274     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
10275     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
10276     AttributeSet RetAttrs, bool IsPatchPoint) {
10277   TargetLowering::ArgListTy Args;
10278   Args.reserve(NumArgs);
10279 
10280   // Populate the argument list.
10281   // Attributes for args start at offset 1, after the return attribute.
10282   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
10283        ArgI != ArgE; ++ArgI) {
10284     const Value *V = Call->getOperand(ArgI);
10285 
10286     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
10287 
10288     TargetLowering::ArgListEntry Entry;
10289     Entry.Node = getValue(V);
10290     Entry.Ty = V->getType();
10291     Entry.setAttributes(Call, ArgI);
10292     Args.push_back(Entry);
10293   }
10294 
10295   CLI.setDebugLoc(getCurSDLoc())
10296       .setChain(getRoot())
10297       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args),
10298                  RetAttrs)
10299       .setDiscardResult(Call->use_empty())
10300       .setIsPatchPoint(IsPatchPoint)
10301       .setIsPreallocated(
10302           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
10303 }
10304 
10305 /// Add a stack map intrinsic call's live variable operands to a stackmap
10306 /// or patchpoint target node's operand list.
10307 ///
10308 /// Constants are converted to TargetConstants purely as an optimization to
10309 /// avoid constant materialization and register allocation.
10310 ///
10311 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
10312 /// generate addess computation nodes, and so FinalizeISel can convert the
10313 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
10314 /// address materialization and register allocation, but may also be required
10315 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
10316 /// alloca in the entry block, then the runtime may assume that the alloca's
10317 /// StackMap location can be read immediately after compilation and that the
10318 /// location is valid at any point during execution (this is similar to the
10319 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
10320 /// only available in a register, then the runtime would need to trap when
10321 /// execution reaches the StackMap in order to read the alloca's location.
10322 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
10323                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
10324                                 SelectionDAGBuilder &Builder) {
10325   SelectionDAG &DAG = Builder.DAG;
10326   for (unsigned I = StartIdx; I < Call.arg_size(); I++) {
10327     SDValue Op = Builder.getValue(Call.getArgOperand(I));
10328 
10329     // Things on the stack are pointer-typed, meaning that they are already
10330     // legal and can be emitted directly to target nodes.
10331     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
10332       Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType()));
10333     } else {
10334       // Otherwise emit a target independent node to be legalised.
10335       Ops.push_back(Builder.getValue(Call.getArgOperand(I)));
10336     }
10337   }
10338 }
10339 
10340 /// Lower llvm.experimental.stackmap.
10341 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
10342   // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
10343   //                                  [live variables...])
10344 
10345   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
10346 
10347   SDValue Chain, InGlue, Callee;
10348   SmallVector<SDValue, 32> Ops;
10349 
10350   SDLoc DL = getCurSDLoc();
10351   Callee = getValue(CI.getCalledOperand());
10352 
10353   // The stackmap intrinsic only records the live variables (the arguments
10354   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
10355   // intrinsic, this won't be lowered to a function call. This means we don't
10356   // have to worry about calling conventions and target specific lowering code.
10357   // Instead we perform the call lowering right here.
10358   //
10359   // chain, flag = CALLSEQ_START(chain, 0, 0)
10360   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
10361   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
10362   //
10363   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
10364   InGlue = Chain.getValue(1);
10365 
10366   // Add the STACKMAP operands, starting with DAG house-keeping.
10367   Ops.push_back(Chain);
10368   Ops.push_back(InGlue);
10369 
10370   // Add the <id>, <numShadowBytes> operands.
10371   //
10372   // These do not require legalisation, and can be emitted directly to target
10373   // constant nodes.
10374   SDValue ID = getValue(CI.getArgOperand(0));
10375   assert(ID.getValueType() == MVT::i64);
10376   SDValue IDConst =
10377       DAG.getTargetConstant(ID->getAsZExtVal(), DL, ID.getValueType());
10378   Ops.push_back(IDConst);
10379 
10380   SDValue Shad = getValue(CI.getArgOperand(1));
10381   assert(Shad.getValueType() == MVT::i32);
10382   SDValue ShadConst =
10383       DAG.getTargetConstant(Shad->getAsZExtVal(), DL, Shad.getValueType());
10384   Ops.push_back(ShadConst);
10385 
10386   // Add the live variables.
10387   addStackMapLiveVars(CI, 2, DL, Ops, *this);
10388 
10389   // Create the STACKMAP node.
10390   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10391   Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops);
10392   InGlue = Chain.getValue(1);
10393 
10394   Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL);
10395 
10396   // Stackmaps don't generate values, so nothing goes into the NodeMap.
10397 
10398   // Set the root to the target-lowered call chain.
10399   DAG.setRoot(Chain);
10400 
10401   // Inform the Frame Information that we have a stackmap in this function.
10402   FuncInfo.MF->getFrameInfo().setHasStackMap();
10403 }
10404 
10405 /// Lower llvm.experimental.patchpoint directly to its target opcode.
10406 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
10407                                           const BasicBlock *EHPadBB) {
10408   // <ty> @llvm.experimental.patchpoint.<ty>(i64 <id>,
10409   //                                         i32 <numBytes>,
10410   //                                         i8* <target>,
10411   //                                         i32 <numArgs>,
10412   //                                         [Args...],
10413   //                                         [live variables...])
10414 
10415   CallingConv::ID CC = CB.getCallingConv();
10416   bool IsAnyRegCC = CC == CallingConv::AnyReg;
10417   bool HasDef = !CB.getType()->isVoidTy();
10418   SDLoc dl = getCurSDLoc();
10419   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
10420 
10421   // Handle immediate and symbolic callees.
10422   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
10423     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
10424                                    /*isTarget=*/true);
10425   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
10426     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
10427                                          SDLoc(SymbolicCallee),
10428                                          SymbolicCallee->getValueType(0));
10429 
10430   // Get the real number of arguments participating in the call <numArgs>
10431   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
10432   unsigned NumArgs = NArgVal->getAsZExtVal();
10433 
10434   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
10435   // Intrinsics include all meta-operands up to but not including CC.
10436   unsigned NumMetaOpers = PatchPointOpers::CCPos;
10437   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
10438          "Not enough arguments provided to the patchpoint intrinsic");
10439 
10440   // For AnyRegCC the arguments are lowered later on manually.
10441   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
10442   Type *ReturnTy =
10443       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
10444 
10445   TargetLowering::CallLoweringInfo CLI(DAG);
10446   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
10447                            ReturnTy, CB.getAttributes().getRetAttrs(), true);
10448   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
10449 
10450   SDNode *CallEnd = Result.second.getNode();
10451   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
10452     CallEnd = CallEnd->getOperand(0).getNode();
10453 
10454   /// Get a call instruction from the call sequence chain.
10455   /// Tail calls are not allowed.
10456   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
10457          "Expected a callseq node.");
10458   SDNode *Call = CallEnd->getOperand(0).getNode();
10459   bool HasGlue = Call->getGluedNode();
10460 
10461   // Replace the target specific call node with the patchable intrinsic.
10462   SmallVector<SDValue, 8> Ops;
10463 
10464   // Push the chain.
10465   Ops.push_back(*(Call->op_begin()));
10466 
10467   // Optionally, push the glue (if any).
10468   if (HasGlue)
10469     Ops.push_back(*(Call->op_end() - 1));
10470 
10471   // Push the register mask info.
10472   if (HasGlue)
10473     Ops.push_back(*(Call->op_end() - 2));
10474   else
10475     Ops.push_back(*(Call->op_end() - 1));
10476 
10477   // Add the <id> and <numBytes> constants.
10478   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
10479   Ops.push_back(DAG.getTargetConstant(IDVal->getAsZExtVal(), dl, MVT::i64));
10480   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
10481   Ops.push_back(DAG.getTargetConstant(NBytesVal->getAsZExtVal(), dl, MVT::i32));
10482 
10483   // Add the callee.
10484   Ops.push_back(Callee);
10485 
10486   // Adjust <numArgs> to account for any arguments that have been passed on the
10487   // stack instead.
10488   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
10489   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
10490   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
10491   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
10492 
10493   // Add the calling convention
10494   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
10495 
10496   // Add the arguments we omitted previously. The register allocator should
10497   // place these in any free register.
10498   if (IsAnyRegCC)
10499     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
10500       Ops.push_back(getValue(CB.getArgOperand(i)));
10501 
10502   // Push the arguments from the call instruction.
10503   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
10504   Ops.append(Call->op_begin() + 2, e);
10505 
10506   // Push live variables for the stack map.
10507   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
10508 
10509   SDVTList NodeTys;
10510   if (IsAnyRegCC && HasDef) {
10511     // Create the return types based on the intrinsic definition
10512     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10513     SmallVector<EVT, 3> ValueVTs;
10514     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
10515     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
10516 
10517     // There is always a chain and a glue type at the end
10518     ValueVTs.push_back(MVT::Other);
10519     ValueVTs.push_back(MVT::Glue);
10520     NodeTys = DAG.getVTList(ValueVTs);
10521   } else
10522     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10523 
10524   // Replace the target specific call node with a PATCHPOINT node.
10525   SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops);
10526 
10527   // Update the NodeMap.
10528   if (HasDef) {
10529     if (IsAnyRegCC)
10530       setValue(&CB, SDValue(PPV.getNode(), 0));
10531     else
10532       setValue(&CB, Result.first);
10533   }
10534 
10535   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
10536   // call sequence. Furthermore the location of the chain and glue can change
10537   // when the AnyReg calling convention is used and the intrinsic returns a
10538   // value.
10539   if (IsAnyRegCC && HasDef) {
10540     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
10541     SDValue To[] = {PPV.getValue(1), PPV.getValue(2)};
10542     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
10543   } else
10544     DAG.ReplaceAllUsesWith(Call, PPV.getNode());
10545   DAG.DeleteNode(Call);
10546 
10547   // Inform the Frame Information that we have a patchpoint in this function.
10548   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
10549 }
10550 
10551 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
10552                                             unsigned Intrinsic) {
10553   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10554   SDValue Op1 = getValue(I.getArgOperand(0));
10555   SDValue Op2;
10556   if (I.arg_size() > 1)
10557     Op2 = getValue(I.getArgOperand(1));
10558   SDLoc dl = getCurSDLoc();
10559   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
10560   SDValue Res;
10561   SDNodeFlags SDFlags;
10562   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
10563     SDFlags.copyFMF(*FPMO);
10564 
10565   switch (Intrinsic) {
10566   case Intrinsic::vector_reduce_fadd:
10567     if (SDFlags.hasAllowReassociation())
10568       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
10569                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
10570                         SDFlags);
10571     else
10572       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
10573     break;
10574   case Intrinsic::vector_reduce_fmul:
10575     if (SDFlags.hasAllowReassociation())
10576       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
10577                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
10578                         SDFlags);
10579     else
10580       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
10581     break;
10582   case Intrinsic::vector_reduce_add:
10583     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
10584     break;
10585   case Intrinsic::vector_reduce_mul:
10586     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
10587     break;
10588   case Intrinsic::vector_reduce_and:
10589     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
10590     break;
10591   case Intrinsic::vector_reduce_or:
10592     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
10593     break;
10594   case Intrinsic::vector_reduce_xor:
10595     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
10596     break;
10597   case Intrinsic::vector_reduce_smax:
10598     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
10599     break;
10600   case Intrinsic::vector_reduce_smin:
10601     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
10602     break;
10603   case Intrinsic::vector_reduce_umax:
10604     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
10605     break;
10606   case Intrinsic::vector_reduce_umin:
10607     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
10608     break;
10609   case Intrinsic::vector_reduce_fmax:
10610     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
10611     break;
10612   case Intrinsic::vector_reduce_fmin:
10613     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
10614     break;
10615   case Intrinsic::vector_reduce_fmaximum:
10616     Res = DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags);
10617     break;
10618   case Intrinsic::vector_reduce_fminimum:
10619     Res = DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags);
10620     break;
10621   default:
10622     llvm_unreachable("Unhandled vector reduce intrinsic");
10623   }
10624   setValue(&I, Res);
10625 }
10626 
10627 /// Returns an AttributeList representing the attributes applied to the return
10628 /// value of the given call.
10629 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
10630   SmallVector<Attribute::AttrKind, 2> Attrs;
10631   if (CLI.RetSExt)
10632     Attrs.push_back(Attribute::SExt);
10633   if (CLI.RetZExt)
10634     Attrs.push_back(Attribute::ZExt);
10635   if (CLI.IsInReg)
10636     Attrs.push_back(Attribute::InReg);
10637 
10638   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
10639                             Attrs);
10640 }
10641 
10642 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
10643 /// implementation, which just calls LowerCall.
10644 /// FIXME: When all targets are
10645 /// migrated to using LowerCall, this hook should be integrated into SDISel.
10646 std::pair<SDValue, SDValue>
10647 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
10648   // Handle the incoming return values from the call.
10649   CLI.Ins.clear();
10650   Type *OrigRetTy = CLI.RetTy;
10651   SmallVector<EVT, 4> RetTys;
10652   SmallVector<TypeSize, 4> Offsets;
10653   auto &DL = CLI.DAG.getDataLayout();
10654   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
10655 
10656   if (CLI.IsPostTypeLegalization) {
10657     // If we are lowering a libcall after legalization, split the return type.
10658     SmallVector<EVT, 4> OldRetTys;
10659     SmallVector<TypeSize, 4> OldOffsets;
10660     RetTys.swap(OldRetTys);
10661     Offsets.swap(OldOffsets);
10662 
10663     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
10664       EVT RetVT = OldRetTys[i];
10665       uint64_t Offset = OldOffsets[i];
10666       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
10667       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
10668       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
10669       RetTys.append(NumRegs, RegisterVT);
10670       for (unsigned j = 0; j != NumRegs; ++j)
10671         Offsets.push_back(TypeSize::getFixed(Offset + j * RegisterVTByteSZ));
10672     }
10673   }
10674 
10675   SmallVector<ISD::OutputArg, 4> Outs;
10676   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
10677 
10678   bool CanLowerReturn =
10679       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
10680                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
10681 
10682   SDValue DemoteStackSlot;
10683   int DemoteStackIdx = -100;
10684   if (!CanLowerReturn) {
10685     // FIXME: equivalent assert?
10686     // assert(!CS.hasInAllocaArgument() &&
10687     //        "sret demotion is incompatible with inalloca");
10688     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
10689     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
10690     MachineFunction &MF = CLI.DAG.getMachineFunction();
10691     DemoteStackIdx =
10692         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
10693     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
10694                                               DL.getAllocaAddrSpace());
10695 
10696     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
10697     ArgListEntry Entry;
10698     Entry.Node = DemoteStackSlot;
10699     Entry.Ty = StackSlotPtrType;
10700     Entry.IsSExt = false;
10701     Entry.IsZExt = false;
10702     Entry.IsInReg = false;
10703     Entry.IsSRet = true;
10704     Entry.IsNest = false;
10705     Entry.IsByVal = false;
10706     Entry.IsByRef = false;
10707     Entry.IsReturned = false;
10708     Entry.IsSwiftSelf = false;
10709     Entry.IsSwiftAsync = false;
10710     Entry.IsSwiftError = false;
10711     Entry.IsCFGuardTarget = false;
10712     Entry.Alignment = Alignment;
10713     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
10714     CLI.NumFixedArgs += 1;
10715     CLI.getArgs()[0].IndirectType = CLI.RetTy;
10716     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
10717 
10718     // sret demotion isn't compatible with tail-calls, since the sret argument
10719     // points into the callers stack frame.
10720     CLI.IsTailCall = false;
10721   } else {
10722     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
10723         CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL);
10724     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
10725       ISD::ArgFlagsTy Flags;
10726       if (NeedsRegBlock) {
10727         Flags.setInConsecutiveRegs();
10728         if (I == RetTys.size() - 1)
10729           Flags.setInConsecutiveRegsLast();
10730       }
10731       EVT VT = RetTys[I];
10732       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10733                                                      CLI.CallConv, VT);
10734       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10735                                                        CLI.CallConv, VT);
10736       for (unsigned i = 0; i != NumRegs; ++i) {
10737         ISD::InputArg MyFlags;
10738         MyFlags.Flags = Flags;
10739         MyFlags.VT = RegisterVT;
10740         MyFlags.ArgVT = VT;
10741         MyFlags.Used = CLI.IsReturnValueUsed;
10742         if (CLI.RetTy->isPointerTy()) {
10743           MyFlags.Flags.setPointer();
10744           MyFlags.Flags.setPointerAddrSpace(
10745               cast<PointerType>(CLI.RetTy)->getAddressSpace());
10746         }
10747         if (CLI.RetSExt)
10748           MyFlags.Flags.setSExt();
10749         if (CLI.RetZExt)
10750           MyFlags.Flags.setZExt();
10751         if (CLI.IsInReg)
10752           MyFlags.Flags.setInReg();
10753         CLI.Ins.push_back(MyFlags);
10754       }
10755     }
10756   }
10757 
10758   // We push in swifterror return as the last element of CLI.Ins.
10759   ArgListTy &Args = CLI.getArgs();
10760   if (supportSwiftError()) {
10761     for (const ArgListEntry &Arg : Args) {
10762       if (Arg.IsSwiftError) {
10763         ISD::InputArg MyFlags;
10764         MyFlags.VT = getPointerTy(DL);
10765         MyFlags.ArgVT = EVT(getPointerTy(DL));
10766         MyFlags.Flags.setSwiftError();
10767         CLI.Ins.push_back(MyFlags);
10768       }
10769     }
10770   }
10771 
10772   // Handle all of the outgoing arguments.
10773   CLI.Outs.clear();
10774   CLI.OutVals.clear();
10775   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
10776     SmallVector<EVT, 4> ValueVTs;
10777     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
10778     // FIXME: Split arguments if CLI.IsPostTypeLegalization
10779     Type *FinalType = Args[i].Ty;
10780     if (Args[i].IsByVal)
10781       FinalType = Args[i].IndirectType;
10782     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
10783         FinalType, CLI.CallConv, CLI.IsVarArg, DL);
10784     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
10785          ++Value) {
10786       EVT VT = ValueVTs[Value];
10787       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
10788       SDValue Op = SDValue(Args[i].Node.getNode(),
10789                            Args[i].Node.getResNo() + Value);
10790       ISD::ArgFlagsTy Flags;
10791 
10792       // Certain targets (such as MIPS), may have a different ABI alignment
10793       // for a type depending on the context. Give the target a chance to
10794       // specify the alignment it wants.
10795       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
10796       Flags.setOrigAlign(OriginalAlignment);
10797 
10798       if (Args[i].Ty->isPointerTy()) {
10799         Flags.setPointer();
10800         Flags.setPointerAddrSpace(
10801             cast<PointerType>(Args[i].Ty)->getAddressSpace());
10802       }
10803       if (Args[i].IsZExt)
10804         Flags.setZExt();
10805       if (Args[i].IsSExt)
10806         Flags.setSExt();
10807       if (Args[i].IsInReg) {
10808         // If we are using vectorcall calling convention, a structure that is
10809         // passed InReg - is surely an HVA
10810         if (CLI.CallConv == CallingConv::X86_VectorCall &&
10811             isa<StructType>(FinalType)) {
10812           // The first value of a structure is marked
10813           if (0 == Value)
10814             Flags.setHvaStart();
10815           Flags.setHva();
10816         }
10817         // Set InReg Flag
10818         Flags.setInReg();
10819       }
10820       if (Args[i].IsSRet)
10821         Flags.setSRet();
10822       if (Args[i].IsSwiftSelf)
10823         Flags.setSwiftSelf();
10824       if (Args[i].IsSwiftAsync)
10825         Flags.setSwiftAsync();
10826       if (Args[i].IsSwiftError)
10827         Flags.setSwiftError();
10828       if (Args[i].IsCFGuardTarget)
10829         Flags.setCFGuardTarget();
10830       if (Args[i].IsByVal)
10831         Flags.setByVal();
10832       if (Args[i].IsByRef)
10833         Flags.setByRef();
10834       if (Args[i].IsPreallocated) {
10835         Flags.setPreallocated();
10836         // Set the byval flag for CCAssignFn callbacks that don't know about
10837         // preallocated.  This way we can know how many bytes we should've
10838         // allocated and how many bytes a callee cleanup function will pop.  If
10839         // we port preallocated to more targets, we'll have to add custom
10840         // preallocated handling in the various CC lowering callbacks.
10841         Flags.setByVal();
10842       }
10843       if (Args[i].IsInAlloca) {
10844         Flags.setInAlloca();
10845         // Set the byval flag for CCAssignFn callbacks that don't know about
10846         // inalloca.  This way we can know how many bytes we should've allocated
10847         // and how many bytes a callee cleanup function will pop.  If we port
10848         // inalloca to more targets, we'll have to add custom inalloca handling
10849         // in the various CC lowering callbacks.
10850         Flags.setByVal();
10851       }
10852       Align MemAlign;
10853       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
10854         unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType);
10855         Flags.setByValSize(FrameSize);
10856 
10857         // info is not there but there are cases it cannot get right.
10858         if (auto MA = Args[i].Alignment)
10859           MemAlign = *MA;
10860         else
10861           MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL));
10862       } else if (auto MA = Args[i].Alignment) {
10863         MemAlign = *MA;
10864       } else {
10865         MemAlign = OriginalAlignment;
10866       }
10867       Flags.setMemAlign(MemAlign);
10868       if (Args[i].IsNest)
10869         Flags.setNest();
10870       if (NeedsRegBlock)
10871         Flags.setInConsecutiveRegs();
10872 
10873       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10874                                                  CLI.CallConv, VT);
10875       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10876                                                         CLI.CallConv, VT);
10877       SmallVector<SDValue, 4> Parts(NumParts);
10878       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
10879 
10880       if (Args[i].IsSExt)
10881         ExtendKind = ISD::SIGN_EXTEND;
10882       else if (Args[i].IsZExt)
10883         ExtendKind = ISD::ZERO_EXTEND;
10884 
10885       // Conservatively only handle 'returned' on non-vectors that can be lowered,
10886       // for now.
10887       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
10888           CanLowerReturn) {
10889         assert((CLI.RetTy == Args[i].Ty ||
10890                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
10891                  CLI.RetTy->getPointerAddressSpace() ==
10892                      Args[i].Ty->getPointerAddressSpace())) &&
10893                RetTys.size() == NumValues && "unexpected use of 'returned'");
10894         // Before passing 'returned' to the target lowering code, ensure that
10895         // either the register MVT and the actual EVT are the same size or that
10896         // the return value and argument are extended in the same way; in these
10897         // cases it's safe to pass the argument register value unchanged as the
10898         // return register value (although it's at the target's option whether
10899         // to do so)
10900         // TODO: allow code generation to take advantage of partially preserved
10901         // registers rather than clobbering the entire register when the
10902         // parameter extension method is not compatible with the return
10903         // extension method
10904         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
10905             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
10906              CLI.RetZExt == Args[i].IsZExt))
10907           Flags.setReturned();
10908       }
10909 
10910       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
10911                      CLI.CallConv, ExtendKind);
10912 
10913       for (unsigned j = 0; j != NumParts; ++j) {
10914         // if it isn't first piece, alignment must be 1
10915         // For scalable vectors the scalable part is currently handled
10916         // by individual targets, so we just use the known minimum size here.
10917         ISD::OutputArg MyFlags(
10918             Flags, Parts[j].getValueType().getSimpleVT(), VT,
10919             i < CLI.NumFixedArgs, i,
10920             j * Parts[j].getValueType().getStoreSize().getKnownMinValue());
10921         if (NumParts > 1 && j == 0)
10922           MyFlags.Flags.setSplit();
10923         else if (j != 0) {
10924           MyFlags.Flags.setOrigAlign(Align(1));
10925           if (j == NumParts - 1)
10926             MyFlags.Flags.setSplitEnd();
10927         }
10928 
10929         CLI.Outs.push_back(MyFlags);
10930         CLI.OutVals.push_back(Parts[j]);
10931       }
10932 
10933       if (NeedsRegBlock && Value == NumValues - 1)
10934         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
10935     }
10936   }
10937 
10938   SmallVector<SDValue, 4> InVals;
10939   CLI.Chain = LowerCall(CLI, InVals);
10940 
10941   // Update CLI.InVals to use outside of this function.
10942   CLI.InVals = InVals;
10943 
10944   // Verify that the target's LowerCall behaved as expected.
10945   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
10946          "LowerCall didn't return a valid chain!");
10947   assert((!CLI.IsTailCall || InVals.empty()) &&
10948          "LowerCall emitted a return value for a tail call!");
10949   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
10950          "LowerCall didn't emit the correct number of values!");
10951 
10952   // For a tail call, the return value is merely live-out and there aren't
10953   // any nodes in the DAG representing it. Return a special value to
10954   // indicate that a tail call has been emitted and no more Instructions
10955   // should be processed in the current block.
10956   if (CLI.IsTailCall) {
10957     CLI.DAG.setRoot(CLI.Chain);
10958     return std::make_pair(SDValue(), SDValue());
10959   }
10960 
10961 #ifndef NDEBUG
10962   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
10963     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
10964     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
10965            "LowerCall emitted a value with the wrong type!");
10966   }
10967 #endif
10968 
10969   SmallVector<SDValue, 4> ReturnValues;
10970   if (!CanLowerReturn) {
10971     // The instruction result is the result of loading from the
10972     // hidden sret parameter.
10973     SmallVector<EVT, 1> PVTs;
10974     Type *PtrRetTy =
10975         PointerType::get(OrigRetTy->getContext(), DL.getAllocaAddrSpace());
10976 
10977     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
10978     assert(PVTs.size() == 1 && "Pointers should fit in one register");
10979     EVT PtrVT = PVTs[0];
10980 
10981     unsigned NumValues = RetTys.size();
10982     ReturnValues.resize(NumValues);
10983     SmallVector<SDValue, 4> Chains(NumValues);
10984 
10985     // An aggregate return value cannot wrap around the address space, so
10986     // offsets to its parts don't wrap either.
10987     SDNodeFlags Flags;
10988     Flags.setNoUnsignedWrap(true);
10989 
10990     MachineFunction &MF = CLI.DAG.getMachineFunction();
10991     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
10992     for (unsigned i = 0; i < NumValues; ++i) {
10993       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
10994                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
10995                                                         PtrVT), Flags);
10996       SDValue L = CLI.DAG.getLoad(
10997           RetTys[i], CLI.DL, CLI.Chain, Add,
10998           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
10999                                             DemoteStackIdx, Offsets[i]),
11000           HiddenSRetAlign);
11001       ReturnValues[i] = L;
11002       Chains[i] = L.getValue(1);
11003     }
11004 
11005     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
11006   } else {
11007     // Collect the legal value parts into potentially illegal values
11008     // that correspond to the original function's return values.
11009     std::optional<ISD::NodeType> AssertOp;
11010     if (CLI.RetSExt)
11011       AssertOp = ISD::AssertSext;
11012     else if (CLI.RetZExt)
11013       AssertOp = ISD::AssertZext;
11014     unsigned CurReg = 0;
11015     for (EVT VT : RetTys) {
11016       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
11017                                                      CLI.CallConv, VT);
11018       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
11019                                                        CLI.CallConv, VT);
11020 
11021       ReturnValues.push_back(getCopyFromParts(
11022           CLI.DAG, CLI.DL, &InVals[CurReg], NumRegs, RegisterVT, VT, nullptr,
11023           CLI.Chain, CLI.CallConv, AssertOp));
11024       CurReg += NumRegs;
11025     }
11026 
11027     // For a function returning void, there is no return value. We can't create
11028     // such a node, so we just return a null return value in that case. In
11029     // that case, nothing will actually look at the value.
11030     if (ReturnValues.empty())
11031       return std::make_pair(SDValue(), CLI.Chain);
11032   }
11033 
11034   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
11035                                 CLI.DAG.getVTList(RetTys), ReturnValues);
11036   return std::make_pair(Res, CLI.Chain);
11037 }
11038 
11039 /// Places new result values for the node in Results (their number
11040 /// and types must exactly match those of the original return values of
11041 /// the node), or leaves Results empty, which indicates that the node is not
11042 /// to be custom lowered after all.
11043 void TargetLowering::LowerOperationWrapper(SDNode *N,
11044                                            SmallVectorImpl<SDValue> &Results,
11045                                            SelectionDAG &DAG) const {
11046   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
11047 
11048   if (!Res.getNode())
11049     return;
11050 
11051   // If the original node has one result, take the return value from
11052   // LowerOperation as is. It might not be result number 0.
11053   if (N->getNumValues() == 1) {
11054     Results.push_back(Res);
11055     return;
11056   }
11057 
11058   // If the original node has multiple results, then the return node should
11059   // have the same number of results.
11060   assert((N->getNumValues() == Res->getNumValues()) &&
11061       "Lowering returned the wrong number of results!");
11062 
11063   // Places new result values base on N result number.
11064   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
11065     Results.push_back(Res.getValue(I));
11066 }
11067 
11068 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
11069   llvm_unreachable("LowerOperation not implemented for this target!");
11070 }
11071 
11072 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V,
11073                                                      unsigned Reg,
11074                                                      ISD::NodeType ExtendType) {
11075   SDValue Op = getNonRegisterValue(V);
11076   assert((Op.getOpcode() != ISD::CopyFromReg ||
11077           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
11078          "Copy from a reg to the same reg!");
11079   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
11080 
11081   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11082   // If this is an InlineAsm we have to match the registers required, not the
11083   // notional registers required by the type.
11084 
11085   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
11086                    std::nullopt); // This is not an ABI copy.
11087   SDValue Chain = DAG.getEntryNode();
11088 
11089   if (ExtendType == ISD::ANY_EXTEND) {
11090     auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V);
11091     if (PreferredExtendIt != FuncInfo.PreferredExtendType.end())
11092       ExtendType = PreferredExtendIt->second;
11093   }
11094   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
11095   PendingExports.push_back(Chain);
11096 }
11097 
11098 #include "llvm/CodeGen/SelectionDAGISel.h"
11099 
11100 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
11101 /// entry block, return true.  This includes arguments used by switches, since
11102 /// the switch may expand into multiple basic blocks.
11103 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
11104   // With FastISel active, we may be splitting blocks, so force creation
11105   // of virtual registers for all non-dead arguments.
11106   if (FastISel)
11107     return A->use_empty();
11108 
11109   const BasicBlock &Entry = A->getParent()->front();
11110   for (const User *U : A->users())
11111     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
11112       return false;  // Use not in entry block.
11113 
11114   return true;
11115 }
11116 
11117 using ArgCopyElisionMapTy =
11118     DenseMap<const Argument *,
11119              std::pair<const AllocaInst *, const StoreInst *>>;
11120 
11121 /// Scan the entry block of the function in FuncInfo for arguments that look
11122 /// like copies into a local alloca. Record any copied arguments in
11123 /// ArgCopyElisionCandidates.
11124 static void
11125 findArgumentCopyElisionCandidates(const DataLayout &DL,
11126                                   FunctionLoweringInfo *FuncInfo,
11127                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
11128   // Record the state of every static alloca used in the entry block. Argument
11129   // allocas are all used in the entry block, so we need approximately as many
11130   // entries as we have arguments.
11131   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
11132   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
11133   unsigned NumArgs = FuncInfo->Fn->arg_size();
11134   StaticAllocas.reserve(NumArgs * 2);
11135 
11136   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
11137     if (!V)
11138       return nullptr;
11139     V = V->stripPointerCasts();
11140     const auto *AI = dyn_cast<AllocaInst>(V);
11141     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
11142       return nullptr;
11143     auto Iter = StaticAllocas.insert({AI, Unknown});
11144     return &Iter.first->second;
11145   };
11146 
11147   // Look for stores of arguments to static allocas. Look through bitcasts and
11148   // GEPs to handle type coercions, as long as the alloca is fully initialized
11149   // by the store. Any non-store use of an alloca escapes it and any subsequent
11150   // unanalyzed store might write it.
11151   // FIXME: Handle structs initialized with multiple stores.
11152   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
11153     // Look for stores, and handle non-store uses conservatively.
11154     const auto *SI = dyn_cast<StoreInst>(&I);
11155     if (!SI) {
11156       // We will look through cast uses, so ignore them completely.
11157       if (I.isCast())
11158         continue;
11159       // Ignore debug info and pseudo op intrinsics, they don't escape or store
11160       // to allocas.
11161       if (I.isDebugOrPseudoInst())
11162         continue;
11163       // This is an unknown instruction. Assume it escapes or writes to all
11164       // static alloca operands.
11165       for (const Use &U : I.operands()) {
11166         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
11167           *Info = StaticAllocaInfo::Clobbered;
11168       }
11169       continue;
11170     }
11171 
11172     // If the stored value is a static alloca, mark it as escaped.
11173     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
11174       *Info = StaticAllocaInfo::Clobbered;
11175 
11176     // Check if the destination is a static alloca.
11177     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
11178     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
11179     if (!Info)
11180       continue;
11181     const AllocaInst *AI = cast<AllocaInst>(Dst);
11182 
11183     // Skip allocas that have been initialized or clobbered.
11184     if (*Info != StaticAllocaInfo::Unknown)
11185       continue;
11186 
11187     // Check if the stored value is an argument, and that this store fully
11188     // initializes the alloca.
11189     // If the argument type has padding bits we can't directly forward a pointer
11190     // as the upper bits may contain garbage.
11191     // Don't elide copies from the same argument twice.
11192     const Value *Val = SI->getValueOperand()->stripPointerCasts();
11193     const auto *Arg = dyn_cast<Argument>(Val);
11194     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
11195         Arg->getType()->isEmptyTy() ||
11196         DL.getTypeStoreSize(Arg->getType()) !=
11197             DL.getTypeAllocSize(AI->getAllocatedType()) ||
11198         !DL.typeSizeEqualsStoreSize(Arg->getType()) ||
11199         ArgCopyElisionCandidates.count(Arg)) {
11200       *Info = StaticAllocaInfo::Clobbered;
11201       continue;
11202     }
11203 
11204     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
11205                       << '\n');
11206 
11207     // Mark this alloca and store for argument copy elision.
11208     *Info = StaticAllocaInfo::Elidable;
11209     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
11210 
11211     // Stop scanning if we've seen all arguments. This will happen early in -O0
11212     // builds, which is useful, because -O0 builds have large entry blocks and
11213     // many allocas.
11214     if (ArgCopyElisionCandidates.size() == NumArgs)
11215       break;
11216   }
11217 }
11218 
11219 /// Try to elide argument copies from memory into a local alloca. Succeeds if
11220 /// ArgVal is a load from a suitable fixed stack object.
11221 static void tryToElideArgumentCopy(
11222     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
11223     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
11224     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
11225     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
11226     ArrayRef<SDValue> ArgVals, bool &ArgHasUses) {
11227   // Check if this is a load from a fixed stack object.
11228   auto *LNode = dyn_cast<LoadSDNode>(ArgVals[0]);
11229   if (!LNode)
11230     return;
11231   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
11232   if (!FINode)
11233     return;
11234 
11235   // Check that the fixed stack object is the right size and alignment.
11236   // Look at the alignment that the user wrote on the alloca instead of looking
11237   // at the stack object.
11238   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
11239   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
11240   const AllocaInst *AI = ArgCopyIter->second.first;
11241   int FixedIndex = FINode->getIndex();
11242   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
11243   int OldIndex = AllocaIndex;
11244   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
11245   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
11246     LLVM_DEBUG(
11247         dbgs() << "  argument copy elision failed due to bad fixed stack "
11248                   "object size\n");
11249     return;
11250   }
11251   Align RequiredAlignment = AI->getAlign();
11252   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
11253     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
11254                          "greater than stack argument alignment ("
11255                       << DebugStr(RequiredAlignment) << " vs "
11256                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
11257     return;
11258   }
11259 
11260   // Perform the elision. Delete the old stack object and replace its only use
11261   // in the variable info map. Mark the stack object as mutable and aliased.
11262   LLVM_DEBUG({
11263     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
11264            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
11265            << '\n';
11266   });
11267   MFI.RemoveStackObject(OldIndex);
11268   MFI.setIsImmutableObjectIndex(FixedIndex, false);
11269   MFI.setIsAliasedObjectIndex(FixedIndex, true);
11270   AllocaIndex = FixedIndex;
11271   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
11272   for (SDValue ArgVal : ArgVals)
11273     Chains.push_back(ArgVal.getValue(1));
11274 
11275   // Avoid emitting code for the store implementing the copy.
11276   const StoreInst *SI = ArgCopyIter->second.second;
11277   ElidedArgCopyInstrs.insert(SI);
11278 
11279   // Check for uses of the argument again so that we can avoid exporting ArgVal
11280   // if it is't used by anything other than the store.
11281   for (const Value *U : Arg.users()) {
11282     if (U != SI) {
11283       ArgHasUses = true;
11284       break;
11285     }
11286   }
11287 }
11288 
11289 void SelectionDAGISel::LowerArguments(const Function &F) {
11290   SelectionDAG &DAG = SDB->DAG;
11291   SDLoc dl = SDB->getCurSDLoc();
11292   const DataLayout &DL = DAG.getDataLayout();
11293   SmallVector<ISD::InputArg, 16> Ins;
11294 
11295   // In Naked functions we aren't going to save any registers.
11296   if (F.hasFnAttribute(Attribute::Naked))
11297     return;
11298 
11299   if (!FuncInfo->CanLowerReturn) {
11300     // Put in an sret pointer parameter before all the other parameters.
11301     SmallVector<EVT, 1> ValueVTs;
11302     ComputeValueVTs(*TLI, DAG.getDataLayout(),
11303                     PointerType::get(F.getContext(),
11304                                      DAG.getDataLayout().getAllocaAddrSpace()),
11305                     ValueVTs);
11306 
11307     // NOTE: Assuming that a pointer will never break down to more than one VT
11308     // or one register.
11309     ISD::ArgFlagsTy Flags;
11310     Flags.setSRet();
11311     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
11312     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
11313                          ISD::InputArg::NoArgIndex, 0);
11314     Ins.push_back(RetArg);
11315   }
11316 
11317   // Look for stores of arguments to static allocas. Mark such arguments with a
11318   // flag to ask the target to give us the memory location of that argument if
11319   // available.
11320   ArgCopyElisionMapTy ArgCopyElisionCandidates;
11321   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
11322                                     ArgCopyElisionCandidates);
11323 
11324   // Set up the incoming argument description vector.
11325   for (const Argument &Arg : F.args()) {
11326     unsigned ArgNo = Arg.getArgNo();
11327     SmallVector<EVT, 4> ValueVTs;
11328     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
11329     bool isArgValueUsed = !Arg.use_empty();
11330     unsigned PartBase = 0;
11331     Type *FinalType = Arg.getType();
11332     if (Arg.hasAttribute(Attribute::ByVal))
11333       FinalType = Arg.getParamByValType();
11334     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
11335         FinalType, F.getCallingConv(), F.isVarArg(), DL);
11336     for (unsigned Value = 0, NumValues = ValueVTs.size();
11337          Value != NumValues; ++Value) {
11338       EVT VT = ValueVTs[Value];
11339       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
11340       ISD::ArgFlagsTy Flags;
11341 
11342 
11343       if (Arg.getType()->isPointerTy()) {
11344         Flags.setPointer();
11345         Flags.setPointerAddrSpace(
11346             cast<PointerType>(Arg.getType())->getAddressSpace());
11347       }
11348       if (Arg.hasAttribute(Attribute::ZExt))
11349         Flags.setZExt();
11350       if (Arg.hasAttribute(Attribute::SExt))
11351         Flags.setSExt();
11352       if (Arg.hasAttribute(Attribute::InReg)) {
11353         // If we are using vectorcall calling convention, a structure that is
11354         // passed InReg - is surely an HVA
11355         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
11356             isa<StructType>(Arg.getType())) {
11357           // The first value of a structure is marked
11358           if (0 == Value)
11359             Flags.setHvaStart();
11360           Flags.setHva();
11361         }
11362         // Set InReg Flag
11363         Flags.setInReg();
11364       }
11365       if (Arg.hasAttribute(Attribute::StructRet))
11366         Flags.setSRet();
11367       if (Arg.hasAttribute(Attribute::SwiftSelf))
11368         Flags.setSwiftSelf();
11369       if (Arg.hasAttribute(Attribute::SwiftAsync))
11370         Flags.setSwiftAsync();
11371       if (Arg.hasAttribute(Attribute::SwiftError))
11372         Flags.setSwiftError();
11373       if (Arg.hasAttribute(Attribute::ByVal))
11374         Flags.setByVal();
11375       if (Arg.hasAttribute(Attribute::ByRef))
11376         Flags.setByRef();
11377       if (Arg.hasAttribute(Attribute::InAlloca)) {
11378         Flags.setInAlloca();
11379         // Set the byval flag for CCAssignFn callbacks that don't know about
11380         // inalloca.  This way we can know how many bytes we should've allocated
11381         // and how many bytes a callee cleanup function will pop.  If we port
11382         // inalloca to more targets, we'll have to add custom inalloca handling
11383         // in the various CC lowering callbacks.
11384         Flags.setByVal();
11385       }
11386       if (Arg.hasAttribute(Attribute::Preallocated)) {
11387         Flags.setPreallocated();
11388         // Set the byval flag for CCAssignFn callbacks that don't know about
11389         // preallocated.  This way we can know how many bytes we should've
11390         // allocated and how many bytes a callee cleanup function will pop.  If
11391         // we port preallocated to more targets, we'll have to add custom
11392         // preallocated handling in the various CC lowering callbacks.
11393         Flags.setByVal();
11394       }
11395 
11396       // Certain targets (such as MIPS), may have a different ABI alignment
11397       // for a type depending on the context. Give the target a chance to
11398       // specify the alignment it wants.
11399       const Align OriginalAlignment(
11400           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
11401       Flags.setOrigAlign(OriginalAlignment);
11402 
11403       Align MemAlign;
11404       Type *ArgMemTy = nullptr;
11405       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
11406           Flags.isByRef()) {
11407         if (!ArgMemTy)
11408           ArgMemTy = Arg.getPointeeInMemoryValueType();
11409 
11410         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
11411 
11412         // For in-memory arguments, size and alignment should be passed from FE.
11413         // BE will guess if this info is not there but there are cases it cannot
11414         // get right.
11415         if (auto ParamAlign = Arg.getParamStackAlign())
11416           MemAlign = *ParamAlign;
11417         else if ((ParamAlign = Arg.getParamAlign()))
11418           MemAlign = *ParamAlign;
11419         else
11420           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
11421         if (Flags.isByRef())
11422           Flags.setByRefSize(MemSize);
11423         else
11424           Flags.setByValSize(MemSize);
11425       } else if (auto ParamAlign = Arg.getParamStackAlign()) {
11426         MemAlign = *ParamAlign;
11427       } else {
11428         MemAlign = OriginalAlignment;
11429       }
11430       Flags.setMemAlign(MemAlign);
11431 
11432       if (Arg.hasAttribute(Attribute::Nest))
11433         Flags.setNest();
11434       if (NeedsRegBlock)
11435         Flags.setInConsecutiveRegs();
11436       if (ArgCopyElisionCandidates.count(&Arg))
11437         Flags.setCopyElisionCandidate();
11438       if (Arg.hasAttribute(Attribute::Returned))
11439         Flags.setReturned();
11440 
11441       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
11442           *CurDAG->getContext(), F.getCallingConv(), VT);
11443       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
11444           *CurDAG->getContext(), F.getCallingConv(), VT);
11445       for (unsigned i = 0; i != NumRegs; ++i) {
11446         // For scalable vectors, use the minimum size; individual targets
11447         // are responsible for handling scalable vector arguments and
11448         // return values.
11449         ISD::InputArg MyFlags(
11450             Flags, RegisterVT, VT, isArgValueUsed, ArgNo,
11451             PartBase + i * RegisterVT.getStoreSize().getKnownMinValue());
11452         if (NumRegs > 1 && i == 0)
11453           MyFlags.Flags.setSplit();
11454         // if it isn't first piece, alignment must be 1
11455         else if (i > 0) {
11456           MyFlags.Flags.setOrigAlign(Align(1));
11457           if (i == NumRegs - 1)
11458             MyFlags.Flags.setSplitEnd();
11459         }
11460         Ins.push_back(MyFlags);
11461       }
11462       if (NeedsRegBlock && Value == NumValues - 1)
11463         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
11464       PartBase += VT.getStoreSize().getKnownMinValue();
11465     }
11466   }
11467 
11468   // Call the target to set up the argument values.
11469   SmallVector<SDValue, 8> InVals;
11470   SDValue NewRoot = TLI->LowerFormalArguments(
11471       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
11472 
11473   // Verify that the target's LowerFormalArguments behaved as expected.
11474   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
11475          "LowerFormalArguments didn't return a valid chain!");
11476   assert(InVals.size() == Ins.size() &&
11477          "LowerFormalArguments didn't emit the correct number of values!");
11478   LLVM_DEBUG({
11479     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
11480       assert(InVals[i].getNode() &&
11481              "LowerFormalArguments emitted a null value!");
11482       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
11483              "LowerFormalArguments emitted a value with the wrong type!");
11484     }
11485   });
11486 
11487   // Update the DAG with the new chain value resulting from argument lowering.
11488   DAG.setRoot(NewRoot);
11489 
11490   // Set up the argument values.
11491   unsigned i = 0;
11492   if (!FuncInfo->CanLowerReturn) {
11493     // Create a virtual register for the sret pointer, and put in a copy
11494     // from the sret argument into it.
11495     SmallVector<EVT, 1> ValueVTs;
11496     ComputeValueVTs(*TLI, DAG.getDataLayout(),
11497                     PointerType::get(F.getContext(),
11498                                      DAG.getDataLayout().getAllocaAddrSpace()),
11499                     ValueVTs);
11500     MVT VT = ValueVTs[0].getSimpleVT();
11501     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
11502     std::optional<ISD::NodeType> AssertOp;
11503     SDValue ArgValue =
11504         getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, nullptr, NewRoot,
11505                          F.getCallingConv(), AssertOp);
11506 
11507     MachineFunction& MF = SDB->DAG.getMachineFunction();
11508     MachineRegisterInfo& RegInfo = MF.getRegInfo();
11509     Register SRetReg =
11510         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
11511     FuncInfo->DemoteRegister = SRetReg;
11512     NewRoot =
11513         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
11514     DAG.setRoot(NewRoot);
11515 
11516     // i indexes lowered arguments.  Bump it past the hidden sret argument.
11517     ++i;
11518   }
11519 
11520   SmallVector<SDValue, 4> Chains;
11521   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
11522   for (const Argument &Arg : F.args()) {
11523     SmallVector<SDValue, 4> ArgValues;
11524     SmallVector<EVT, 4> ValueVTs;
11525     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
11526     unsigned NumValues = ValueVTs.size();
11527     if (NumValues == 0)
11528       continue;
11529 
11530     bool ArgHasUses = !Arg.use_empty();
11531 
11532     // Elide the copying store if the target loaded this argument from a
11533     // suitable fixed stack object.
11534     if (Ins[i].Flags.isCopyElisionCandidate()) {
11535       unsigned NumParts = 0;
11536       for (EVT VT : ValueVTs)
11537         NumParts += TLI->getNumRegistersForCallingConv(*CurDAG->getContext(),
11538                                                        F.getCallingConv(), VT);
11539 
11540       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
11541                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
11542                              ArrayRef(&InVals[i], NumParts), ArgHasUses);
11543     }
11544 
11545     // If this argument is unused then remember its value. It is used to generate
11546     // debugging information.
11547     bool isSwiftErrorArg =
11548         TLI->supportSwiftError() &&
11549         Arg.hasAttribute(Attribute::SwiftError);
11550     if (!ArgHasUses && !isSwiftErrorArg) {
11551       SDB->setUnusedArgValue(&Arg, InVals[i]);
11552 
11553       // Also remember any frame index for use in FastISel.
11554       if (FrameIndexSDNode *FI =
11555           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
11556         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11557     }
11558 
11559     for (unsigned Val = 0; Val != NumValues; ++Val) {
11560       EVT VT = ValueVTs[Val];
11561       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
11562                                                       F.getCallingConv(), VT);
11563       unsigned NumParts = TLI->getNumRegistersForCallingConv(
11564           *CurDAG->getContext(), F.getCallingConv(), VT);
11565 
11566       // Even an apparent 'unused' swifterror argument needs to be returned. So
11567       // we do generate a copy for it that can be used on return from the
11568       // function.
11569       if (ArgHasUses || isSwiftErrorArg) {
11570         std::optional<ISD::NodeType> AssertOp;
11571         if (Arg.hasAttribute(Attribute::SExt))
11572           AssertOp = ISD::AssertSext;
11573         else if (Arg.hasAttribute(Attribute::ZExt))
11574           AssertOp = ISD::AssertZext;
11575 
11576         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
11577                                              PartVT, VT, nullptr, NewRoot,
11578                                              F.getCallingConv(), AssertOp));
11579       }
11580 
11581       i += NumParts;
11582     }
11583 
11584     // We don't need to do anything else for unused arguments.
11585     if (ArgValues.empty())
11586       continue;
11587 
11588     // Note down frame index.
11589     if (FrameIndexSDNode *FI =
11590         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
11591       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11592 
11593     SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues),
11594                                      SDB->getCurSDLoc());
11595 
11596     SDB->setValue(&Arg, Res);
11597     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
11598       // We want to associate the argument with the frame index, among
11599       // involved operands, that correspond to the lowest address. The
11600       // getCopyFromParts function, called earlier, is swapping the order of
11601       // the operands to BUILD_PAIR depending on endianness. The result of
11602       // that swapping is that the least significant bits of the argument will
11603       // be in the first operand of the BUILD_PAIR node, and the most
11604       // significant bits will be in the second operand.
11605       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
11606       if (LoadSDNode *LNode =
11607           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
11608         if (FrameIndexSDNode *FI =
11609             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
11610           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11611     }
11612 
11613     // Analyses past this point are naive and don't expect an assertion.
11614     if (Res.getOpcode() == ISD::AssertZext)
11615       Res = Res.getOperand(0);
11616 
11617     // Update the SwiftErrorVRegDefMap.
11618     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
11619       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
11620       if (Register::isVirtualRegister(Reg))
11621         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
11622                                    Reg);
11623     }
11624 
11625     // If this argument is live outside of the entry block, insert a copy from
11626     // wherever we got it to the vreg that other BB's will reference it as.
11627     if (Res.getOpcode() == ISD::CopyFromReg) {
11628       // If we can, though, try to skip creating an unnecessary vreg.
11629       // FIXME: This isn't very clean... it would be nice to make this more
11630       // general.
11631       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
11632       if (Register::isVirtualRegister(Reg)) {
11633         FuncInfo->ValueMap[&Arg] = Reg;
11634         continue;
11635       }
11636     }
11637     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
11638       FuncInfo->InitializeRegForValue(&Arg);
11639       SDB->CopyToExportRegsIfNeeded(&Arg);
11640     }
11641   }
11642 
11643   if (!Chains.empty()) {
11644     Chains.push_back(NewRoot);
11645     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
11646   }
11647 
11648   DAG.setRoot(NewRoot);
11649 
11650   assert(i == InVals.size() && "Argument register count mismatch!");
11651 
11652   // If any argument copy elisions occurred and we have debug info, update the
11653   // stale frame indices used in the dbg.declare variable info table.
11654   if (!ArgCopyElisionFrameIndexMap.empty()) {
11655     for (MachineFunction::VariableDbgInfo &VI :
11656          MF->getInStackSlotVariableDbgInfo()) {
11657       auto I = ArgCopyElisionFrameIndexMap.find(VI.getStackSlot());
11658       if (I != ArgCopyElisionFrameIndexMap.end())
11659         VI.updateStackSlot(I->second);
11660     }
11661   }
11662 
11663   // Finally, if the target has anything special to do, allow it to do so.
11664   emitFunctionEntryCode();
11665 }
11666 
11667 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
11668 /// ensure constants are generated when needed.  Remember the virtual registers
11669 /// that need to be added to the Machine PHI nodes as input.  We cannot just
11670 /// directly add them, because expansion might result in multiple MBB's for one
11671 /// BB.  As such, the start of the BB might correspond to a different MBB than
11672 /// the end.
11673 void
11674 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
11675   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11676 
11677   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
11678 
11679   // Check PHI nodes in successors that expect a value to be available from this
11680   // block.
11681   for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) {
11682     if (!isa<PHINode>(SuccBB->begin())) continue;
11683     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
11684 
11685     // If this terminator has multiple identical successors (common for
11686     // switches), only handle each succ once.
11687     if (!SuccsHandled.insert(SuccMBB).second)
11688       continue;
11689 
11690     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
11691 
11692     // At this point we know that there is a 1-1 correspondence between LLVM PHI
11693     // nodes and Machine PHI nodes, but the incoming operands have not been
11694     // emitted yet.
11695     for (const PHINode &PN : SuccBB->phis()) {
11696       // Ignore dead phi's.
11697       if (PN.use_empty())
11698         continue;
11699 
11700       // Skip empty types
11701       if (PN.getType()->isEmptyTy())
11702         continue;
11703 
11704       unsigned Reg;
11705       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
11706 
11707       if (const auto *C = dyn_cast<Constant>(PHIOp)) {
11708         unsigned &RegOut = ConstantsOut[C];
11709         if (RegOut == 0) {
11710           RegOut = FuncInfo.CreateRegs(C);
11711           // We need to zero/sign extend ConstantInt phi operands to match
11712           // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo.
11713           ISD::NodeType ExtendType = ISD::ANY_EXTEND;
11714           if (auto *CI = dyn_cast<ConstantInt>(C))
11715             ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND
11716                                                     : ISD::ZERO_EXTEND;
11717           CopyValueToVirtualRegister(C, RegOut, ExtendType);
11718         }
11719         Reg = RegOut;
11720       } else {
11721         DenseMap<const Value *, Register>::iterator I =
11722           FuncInfo.ValueMap.find(PHIOp);
11723         if (I != FuncInfo.ValueMap.end())
11724           Reg = I->second;
11725         else {
11726           assert(isa<AllocaInst>(PHIOp) &&
11727                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
11728                  "Didn't codegen value into a register!??");
11729           Reg = FuncInfo.CreateRegs(PHIOp);
11730           CopyValueToVirtualRegister(PHIOp, Reg);
11731         }
11732       }
11733 
11734       // Remember that this register needs to added to the machine PHI node as
11735       // the input for this MBB.
11736       SmallVector<EVT, 4> ValueVTs;
11737       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
11738       for (EVT VT : ValueVTs) {
11739         const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
11740         for (unsigned i = 0; i != NumRegisters; ++i)
11741           FuncInfo.PHINodesToUpdate.push_back(
11742               std::make_pair(&*MBBI++, Reg + i));
11743         Reg += NumRegisters;
11744       }
11745     }
11746   }
11747 
11748   ConstantsOut.clear();
11749 }
11750 
11751 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
11752   MachineFunction::iterator I(MBB);
11753   if (++I == FuncInfo.MF->end())
11754     return nullptr;
11755   return &*I;
11756 }
11757 
11758 /// During lowering new call nodes can be created (such as memset, etc.).
11759 /// Those will become new roots of the current DAG, but complications arise
11760 /// when they are tail calls. In such cases, the call lowering will update
11761 /// the root, but the builder still needs to know that a tail call has been
11762 /// lowered in order to avoid generating an additional return.
11763 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
11764   // If the node is null, we do have a tail call.
11765   if (MaybeTC.getNode() != nullptr)
11766     DAG.setRoot(MaybeTC);
11767   else
11768     HasTailCall = true;
11769 }
11770 
11771 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
11772                                         MachineBasicBlock *SwitchMBB,
11773                                         MachineBasicBlock *DefaultMBB) {
11774   MachineFunction *CurMF = FuncInfo.MF;
11775   MachineBasicBlock *NextMBB = nullptr;
11776   MachineFunction::iterator BBI(W.MBB);
11777   if (++BBI != FuncInfo.MF->end())
11778     NextMBB = &*BBI;
11779 
11780   unsigned Size = W.LastCluster - W.FirstCluster + 1;
11781 
11782   BranchProbabilityInfo *BPI = FuncInfo.BPI;
11783 
11784   if (Size == 2 && W.MBB == SwitchMBB) {
11785     // If any two of the cases has the same destination, and if one value
11786     // is the same as the other, but has one bit unset that the other has set,
11787     // use bit manipulation to do two compares at once.  For example:
11788     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
11789     // TODO: This could be extended to merge any 2 cases in switches with 3
11790     // cases.
11791     // TODO: Handle cases where W.CaseBB != SwitchBB.
11792     CaseCluster &Small = *W.FirstCluster;
11793     CaseCluster &Big = *W.LastCluster;
11794 
11795     if (Small.Low == Small.High && Big.Low == Big.High &&
11796         Small.MBB == Big.MBB) {
11797       const APInt &SmallValue = Small.Low->getValue();
11798       const APInt &BigValue = Big.Low->getValue();
11799 
11800       // Check that there is only one bit different.
11801       APInt CommonBit = BigValue ^ SmallValue;
11802       if (CommonBit.isPowerOf2()) {
11803         SDValue CondLHS = getValue(Cond);
11804         EVT VT = CondLHS.getValueType();
11805         SDLoc DL = getCurSDLoc();
11806 
11807         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
11808                                  DAG.getConstant(CommonBit, DL, VT));
11809         SDValue Cond = DAG.getSetCC(
11810             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
11811             ISD::SETEQ);
11812 
11813         // Update successor info.
11814         // Both Small and Big will jump to Small.BB, so we sum up the
11815         // probabilities.
11816         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
11817         if (BPI)
11818           addSuccessorWithProb(
11819               SwitchMBB, DefaultMBB,
11820               // The default destination is the first successor in IR.
11821               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
11822         else
11823           addSuccessorWithProb(SwitchMBB, DefaultMBB);
11824 
11825         // Insert the true branch.
11826         SDValue BrCond =
11827             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
11828                         DAG.getBasicBlock(Small.MBB));
11829         // Insert the false branch.
11830         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
11831                              DAG.getBasicBlock(DefaultMBB));
11832 
11833         DAG.setRoot(BrCond);
11834         return;
11835       }
11836     }
11837   }
11838 
11839   if (TM.getOptLevel() != CodeGenOptLevel::None) {
11840     // Here, we order cases by probability so the most likely case will be
11841     // checked first. However, two clusters can have the same probability in
11842     // which case their relative ordering is non-deterministic. So we use Low
11843     // as a tie-breaker as clusters are guaranteed to never overlap.
11844     llvm::sort(W.FirstCluster, W.LastCluster + 1,
11845                [](const CaseCluster &a, const CaseCluster &b) {
11846       return a.Prob != b.Prob ?
11847              a.Prob > b.Prob :
11848              a.Low->getValue().slt(b.Low->getValue());
11849     });
11850 
11851     // Rearrange the case blocks so that the last one falls through if possible
11852     // without changing the order of probabilities.
11853     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
11854       --I;
11855       if (I->Prob > W.LastCluster->Prob)
11856         break;
11857       if (I->Kind == CC_Range && I->MBB == NextMBB) {
11858         std::swap(*I, *W.LastCluster);
11859         break;
11860       }
11861     }
11862   }
11863 
11864   // Compute total probability.
11865   BranchProbability DefaultProb = W.DefaultProb;
11866   BranchProbability UnhandledProbs = DefaultProb;
11867   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
11868     UnhandledProbs += I->Prob;
11869 
11870   MachineBasicBlock *CurMBB = W.MBB;
11871   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
11872     bool FallthroughUnreachable = false;
11873     MachineBasicBlock *Fallthrough;
11874     if (I == W.LastCluster) {
11875       // For the last cluster, fall through to the default destination.
11876       Fallthrough = DefaultMBB;
11877       FallthroughUnreachable = isa<UnreachableInst>(
11878           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
11879     } else {
11880       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
11881       CurMF->insert(BBI, Fallthrough);
11882       // Put Cond in a virtual register to make it available from the new blocks.
11883       ExportFromCurrentBlock(Cond);
11884     }
11885     UnhandledProbs -= I->Prob;
11886 
11887     switch (I->Kind) {
11888       case CC_JumpTable: {
11889         // FIXME: Optimize away range check based on pivot comparisons.
11890         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
11891         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
11892 
11893         // The jump block hasn't been inserted yet; insert it here.
11894         MachineBasicBlock *JumpMBB = JT->MBB;
11895         CurMF->insert(BBI, JumpMBB);
11896 
11897         auto JumpProb = I->Prob;
11898         auto FallthroughProb = UnhandledProbs;
11899 
11900         // If the default statement is a target of the jump table, we evenly
11901         // distribute the default probability to successors of CurMBB. Also
11902         // update the probability on the edge from JumpMBB to Fallthrough.
11903         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
11904                                               SE = JumpMBB->succ_end();
11905              SI != SE; ++SI) {
11906           if (*SI == DefaultMBB) {
11907             JumpProb += DefaultProb / 2;
11908             FallthroughProb -= DefaultProb / 2;
11909             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
11910             JumpMBB->normalizeSuccProbs();
11911             break;
11912           }
11913         }
11914 
11915         // If the default clause is unreachable, propagate that knowledge into
11916         // JTH->FallthroughUnreachable which will use it to suppress the range
11917         // check.
11918         //
11919         // However, don't do this if we're doing branch target enforcement,
11920         // because a table branch _without_ a range check can be a tempting JOP
11921         // gadget - out-of-bounds inputs that are impossible in correct
11922         // execution become possible again if an attacker can influence the
11923         // control flow. So if an attacker doesn't already have a BTI bypass
11924         // available, we don't want them to be able to get one out of this
11925         // table branch.
11926         if (FallthroughUnreachable) {
11927           Function &CurFunc = CurMF->getFunction();
11928           bool HasBranchTargetEnforcement = false;
11929           if (CurFunc.hasFnAttribute("branch-target-enforcement")) {
11930             HasBranchTargetEnforcement =
11931                 CurFunc.getFnAttribute("branch-target-enforcement")
11932                     .getValueAsBool();
11933           } else {
11934             HasBranchTargetEnforcement =
11935                 CurMF->getMMI().getModule()->getModuleFlag(
11936                     "branch-target-enforcement");
11937           }
11938           if (!HasBranchTargetEnforcement)
11939             JTH->FallthroughUnreachable = true;
11940         }
11941 
11942         if (!JTH->FallthroughUnreachable)
11943           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
11944         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
11945         CurMBB->normalizeSuccProbs();
11946 
11947         // The jump table header will be inserted in our current block, do the
11948         // range check, and fall through to our fallthrough block.
11949         JTH->HeaderBB = CurMBB;
11950         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
11951 
11952         // If we're in the right place, emit the jump table header right now.
11953         if (CurMBB == SwitchMBB) {
11954           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
11955           JTH->Emitted = true;
11956         }
11957         break;
11958       }
11959       case CC_BitTests: {
11960         // FIXME: Optimize away range check based on pivot comparisons.
11961         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
11962 
11963         // The bit test blocks haven't been inserted yet; insert them here.
11964         for (BitTestCase &BTC : BTB->Cases)
11965           CurMF->insert(BBI, BTC.ThisBB);
11966 
11967         // Fill in fields of the BitTestBlock.
11968         BTB->Parent = CurMBB;
11969         BTB->Default = Fallthrough;
11970 
11971         BTB->DefaultProb = UnhandledProbs;
11972         // If the cases in bit test don't form a contiguous range, we evenly
11973         // distribute the probability on the edge to Fallthrough to two
11974         // successors of CurMBB.
11975         if (!BTB->ContiguousRange) {
11976           BTB->Prob += DefaultProb / 2;
11977           BTB->DefaultProb -= DefaultProb / 2;
11978         }
11979 
11980         if (FallthroughUnreachable)
11981           BTB->FallthroughUnreachable = true;
11982 
11983         // If we're in the right place, emit the bit test header right now.
11984         if (CurMBB == SwitchMBB) {
11985           visitBitTestHeader(*BTB, SwitchMBB);
11986           BTB->Emitted = true;
11987         }
11988         break;
11989       }
11990       case CC_Range: {
11991         const Value *RHS, *LHS, *MHS;
11992         ISD::CondCode CC;
11993         if (I->Low == I->High) {
11994           // Check Cond == I->Low.
11995           CC = ISD::SETEQ;
11996           LHS = Cond;
11997           RHS=I->Low;
11998           MHS = nullptr;
11999         } else {
12000           // Check I->Low <= Cond <= I->High.
12001           CC = ISD::SETLE;
12002           LHS = I->Low;
12003           MHS = Cond;
12004           RHS = I->High;
12005         }
12006 
12007         // If Fallthrough is unreachable, fold away the comparison.
12008         if (FallthroughUnreachable)
12009           CC = ISD::SETTRUE;
12010 
12011         // The false probability is the sum of all unhandled cases.
12012         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
12013                      getCurSDLoc(), I->Prob, UnhandledProbs);
12014 
12015         if (CurMBB == SwitchMBB)
12016           visitSwitchCase(CB, SwitchMBB);
12017         else
12018           SL->SwitchCases.push_back(CB);
12019 
12020         break;
12021       }
12022     }
12023     CurMBB = Fallthrough;
12024   }
12025 }
12026 
12027 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
12028                                         const SwitchWorkListItem &W,
12029                                         Value *Cond,
12030                                         MachineBasicBlock *SwitchMBB) {
12031   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
12032          "Clusters not sorted?");
12033   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
12034 
12035   auto [LastLeft, FirstRight, LeftProb, RightProb] =
12036       SL->computeSplitWorkItemInfo(W);
12037 
12038   // Use the first element on the right as pivot since we will make less-than
12039   // comparisons against it.
12040   CaseClusterIt PivotCluster = FirstRight;
12041   assert(PivotCluster > W.FirstCluster);
12042   assert(PivotCluster <= W.LastCluster);
12043 
12044   CaseClusterIt FirstLeft = W.FirstCluster;
12045   CaseClusterIt LastRight = W.LastCluster;
12046 
12047   const ConstantInt *Pivot = PivotCluster->Low;
12048 
12049   // New blocks will be inserted immediately after the current one.
12050   MachineFunction::iterator BBI(W.MBB);
12051   ++BBI;
12052 
12053   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
12054   // we can branch to its destination directly if it's squeezed exactly in
12055   // between the known lower bound and Pivot - 1.
12056   MachineBasicBlock *LeftMBB;
12057   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
12058       FirstLeft->Low == W.GE &&
12059       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
12060     LeftMBB = FirstLeft->MBB;
12061   } else {
12062     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
12063     FuncInfo.MF->insert(BBI, LeftMBB);
12064     WorkList.push_back(
12065         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
12066     // Put Cond in a virtual register to make it available from the new blocks.
12067     ExportFromCurrentBlock(Cond);
12068   }
12069 
12070   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
12071   // single cluster, RHS.Low == Pivot, and we can branch to its destination
12072   // directly if RHS.High equals the current upper bound.
12073   MachineBasicBlock *RightMBB;
12074   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
12075       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
12076     RightMBB = FirstRight->MBB;
12077   } else {
12078     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
12079     FuncInfo.MF->insert(BBI, RightMBB);
12080     WorkList.push_back(
12081         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
12082     // Put Cond in a virtual register to make it available from the new blocks.
12083     ExportFromCurrentBlock(Cond);
12084   }
12085 
12086   // Create the CaseBlock record that will be used to lower the branch.
12087   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
12088                getCurSDLoc(), LeftProb, RightProb);
12089 
12090   if (W.MBB == SwitchMBB)
12091     visitSwitchCase(CB, SwitchMBB);
12092   else
12093     SL->SwitchCases.push_back(CB);
12094 }
12095 
12096 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
12097 // from the swith statement.
12098 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
12099                                             BranchProbability PeeledCaseProb) {
12100   if (PeeledCaseProb == BranchProbability::getOne())
12101     return BranchProbability::getZero();
12102   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
12103 
12104   uint32_t Numerator = CaseProb.getNumerator();
12105   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
12106   return BranchProbability(Numerator, std::max(Numerator, Denominator));
12107 }
12108 
12109 // Try to peel the top probability case if it exceeds the threshold.
12110 // Return current MachineBasicBlock for the switch statement if the peeling
12111 // does not occur.
12112 // If the peeling is performed, return the newly created MachineBasicBlock
12113 // for the peeled switch statement. Also update Clusters to remove the peeled
12114 // case. PeeledCaseProb is the BranchProbability for the peeled case.
12115 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
12116     const SwitchInst &SI, CaseClusterVector &Clusters,
12117     BranchProbability &PeeledCaseProb) {
12118   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
12119   // Don't perform if there is only one cluster or optimizing for size.
12120   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
12121       TM.getOptLevel() == CodeGenOptLevel::None ||
12122       SwitchMBB->getParent()->getFunction().hasMinSize())
12123     return SwitchMBB;
12124 
12125   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
12126   unsigned PeeledCaseIndex = 0;
12127   bool SwitchPeeled = false;
12128   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
12129     CaseCluster &CC = Clusters[Index];
12130     if (CC.Prob < TopCaseProb)
12131       continue;
12132     TopCaseProb = CC.Prob;
12133     PeeledCaseIndex = Index;
12134     SwitchPeeled = true;
12135   }
12136   if (!SwitchPeeled)
12137     return SwitchMBB;
12138 
12139   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
12140                     << TopCaseProb << "\n");
12141 
12142   // Record the MBB for the peeled switch statement.
12143   MachineFunction::iterator BBI(SwitchMBB);
12144   ++BBI;
12145   MachineBasicBlock *PeeledSwitchMBB =
12146       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
12147   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
12148 
12149   ExportFromCurrentBlock(SI.getCondition());
12150   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
12151   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
12152                           nullptr,   nullptr,      TopCaseProb.getCompl()};
12153   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
12154 
12155   Clusters.erase(PeeledCaseIt);
12156   for (CaseCluster &CC : Clusters) {
12157     LLVM_DEBUG(
12158         dbgs() << "Scale the probablity for one cluster, before scaling: "
12159                << CC.Prob << "\n");
12160     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
12161     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
12162   }
12163   PeeledCaseProb = TopCaseProb;
12164   return PeeledSwitchMBB;
12165 }
12166 
12167 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
12168   // Extract cases from the switch.
12169   BranchProbabilityInfo *BPI = FuncInfo.BPI;
12170   CaseClusterVector Clusters;
12171   Clusters.reserve(SI.getNumCases());
12172   for (auto I : SI.cases()) {
12173     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
12174     const ConstantInt *CaseVal = I.getCaseValue();
12175     BranchProbability Prob =
12176         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
12177             : BranchProbability(1, SI.getNumCases() + 1);
12178     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
12179   }
12180 
12181   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
12182 
12183   // Cluster adjacent cases with the same destination. We do this at all
12184   // optimization levels because it's cheap to do and will make codegen faster
12185   // if there are many clusters.
12186   sortAndRangeify(Clusters);
12187 
12188   // The branch probablity of the peeled case.
12189   BranchProbability PeeledCaseProb = BranchProbability::getZero();
12190   MachineBasicBlock *PeeledSwitchMBB =
12191       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
12192 
12193   // If there is only the default destination, jump there directly.
12194   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
12195   if (Clusters.empty()) {
12196     assert(PeeledSwitchMBB == SwitchMBB);
12197     SwitchMBB->addSuccessor(DefaultMBB);
12198     if (DefaultMBB != NextBlock(SwitchMBB)) {
12199       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
12200                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
12201     }
12202     return;
12203   }
12204 
12205   SL->findJumpTables(Clusters, &SI, getCurSDLoc(), DefaultMBB, DAG.getPSI(),
12206                      DAG.getBFI());
12207   SL->findBitTestClusters(Clusters, &SI);
12208 
12209   LLVM_DEBUG({
12210     dbgs() << "Case clusters: ";
12211     for (const CaseCluster &C : Clusters) {
12212       if (C.Kind == CC_JumpTable)
12213         dbgs() << "JT:";
12214       if (C.Kind == CC_BitTests)
12215         dbgs() << "BT:";
12216 
12217       C.Low->getValue().print(dbgs(), true);
12218       if (C.Low != C.High) {
12219         dbgs() << '-';
12220         C.High->getValue().print(dbgs(), true);
12221       }
12222       dbgs() << ' ';
12223     }
12224     dbgs() << '\n';
12225   });
12226 
12227   assert(!Clusters.empty());
12228   SwitchWorkList WorkList;
12229   CaseClusterIt First = Clusters.begin();
12230   CaseClusterIt Last = Clusters.end() - 1;
12231   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
12232   // Scale the branchprobability for DefaultMBB if the peel occurs and
12233   // DefaultMBB is not replaced.
12234   if (PeeledCaseProb != BranchProbability::getZero() &&
12235       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
12236     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
12237   WorkList.push_back(
12238       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
12239 
12240   while (!WorkList.empty()) {
12241     SwitchWorkListItem W = WorkList.pop_back_val();
12242     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
12243 
12244     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOptLevel::None &&
12245         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
12246       // For optimized builds, lower large range as a balanced binary tree.
12247       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
12248       continue;
12249     }
12250 
12251     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
12252   }
12253 }
12254 
12255 void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
12256   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12257   auto DL = getCurSDLoc();
12258   EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12259   setValue(&I, DAG.getStepVector(DL, ResultVT));
12260 }
12261 
12262 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
12263   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12264   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12265 
12266   SDLoc DL = getCurSDLoc();
12267   SDValue V = getValue(I.getOperand(0));
12268   assert(VT == V.getValueType() && "Malformed vector.reverse!");
12269 
12270   if (VT.isScalableVector()) {
12271     setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
12272     return;
12273   }
12274 
12275   // Use VECTOR_SHUFFLE for the fixed-length vector
12276   // to maintain existing behavior.
12277   SmallVector<int, 8> Mask;
12278   unsigned NumElts = VT.getVectorMinNumElements();
12279   for (unsigned i = 0; i != NumElts; ++i)
12280     Mask.push_back(NumElts - 1 - i);
12281 
12282   setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
12283 }
12284 
12285 void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I) {
12286   auto DL = getCurSDLoc();
12287   SDValue InVec = getValue(I.getOperand(0));
12288   EVT OutVT =
12289       InVec.getValueType().getHalfNumVectorElementsVT(*DAG.getContext());
12290 
12291   unsigned OutNumElts = OutVT.getVectorMinNumElements();
12292 
12293   // ISD Node needs the input vectors split into two equal parts
12294   SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
12295                            DAG.getVectorIdxConstant(0, DL));
12296   SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
12297                            DAG.getVectorIdxConstant(OutNumElts, DL));
12298 
12299   // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing
12300   // legalisation and combines.
12301   if (OutVT.isFixedLengthVector()) {
12302     SDValue Even = DAG.getVectorShuffle(OutVT, DL, Lo, Hi,
12303                                         createStrideMask(0, 2, OutNumElts));
12304     SDValue Odd = DAG.getVectorShuffle(OutVT, DL, Lo, Hi,
12305                                        createStrideMask(1, 2, OutNumElts));
12306     SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc());
12307     setValue(&I, Res);
12308     return;
12309   }
12310 
12311   SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL,
12312                             DAG.getVTList(OutVT, OutVT), Lo, Hi);
12313   setValue(&I, Res);
12314 }
12315 
12316 void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I) {
12317   auto DL = getCurSDLoc();
12318   EVT InVT = getValue(I.getOperand(0)).getValueType();
12319   SDValue InVec0 = getValue(I.getOperand(0));
12320   SDValue InVec1 = getValue(I.getOperand(1));
12321   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12322   EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12323 
12324   // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing
12325   // legalisation and combines.
12326   if (OutVT.isFixedLengthVector()) {
12327     unsigned NumElts = InVT.getVectorMinNumElements();
12328     SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVec0, InVec1);
12329     setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT),
12330                                       createInterleaveMask(NumElts, 2)));
12331     return;
12332   }
12333 
12334   SDValue Res = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL,
12335                             DAG.getVTList(InVT, InVT), InVec0, InVec1);
12336   Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Res.getValue(0),
12337                     Res.getValue(1));
12338   setValue(&I, Res);
12339 }
12340 
12341 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
12342   SmallVector<EVT, 4> ValueVTs;
12343   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
12344                   ValueVTs);
12345   unsigned NumValues = ValueVTs.size();
12346   if (NumValues == 0) return;
12347 
12348   SmallVector<SDValue, 4> Values(NumValues);
12349   SDValue Op = getValue(I.getOperand(0));
12350 
12351   for (unsigned i = 0; i != NumValues; ++i)
12352     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
12353                             SDValue(Op.getNode(), Op.getResNo() + i));
12354 
12355   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
12356                            DAG.getVTList(ValueVTs), Values));
12357 }
12358 
12359 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
12360   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12361   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12362 
12363   SDLoc DL = getCurSDLoc();
12364   SDValue V1 = getValue(I.getOperand(0));
12365   SDValue V2 = getValue(I.getOperand(1));
12366   int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue();
12367 
12368   // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
12369   if (VT.isScalableVector()) {
12370     setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2,
12371                              DAG.getVectorIdxConstant(Imm, DL)));
12372     return;
12373   }
12374 
12375   unsigned NumElts = VT.getVectorNumElements();
12376 
12377   uint64_t Idx = (NumElts + Imm) % NumElts;
12378 
12379   // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
12380   SmallVector<int, 8> Mask;
12381   for (unsigned i = 0; i < NumElts; ++i)
12382     Mask.push_back(Idx + i);
12383   setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
12384 }
12385 
12386 // Consider the following MIR after SelectionDAG, which produces output in
12387 // phyregs in the first case or virtregs in the second case.
12388 //
12389 // INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx
12390 // %5:gr32 = COPY $ebx
12391 // %6:gr32 = COPY $edx
12392 // %1:gr32 = COPY %6:gr32
12393 // %0:gr32 = COPY %5:gr32
12394 //
12395 // INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32
12396 // %1:gr32 = COPY %6:gr32
12397 // %0:gr32 = COPY %5:gr32
12398 //
12399 // Given %0, we'd like to return $ebx in the first case and %5 in the second.
12400 // Given %1, we'd like to return $edx in the first case and %6 in the second.
12401 //
12402 // If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap
12403 // to a single virtreg (such as %0). The remaining outputs monotonically
12404 // increase in virtreg number from there. If a callbr has no outputs, then it
12405 // should not have a corresponding callbr landingpad; in fact, the callbr
12406 // landingpad would not even be able to refer to such a callbr.
12407 static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg) {
12408   MachineInstr *MI = MRI.def_begin(Reg)->getParent();
12409   // There is definitely at least one copy.
12410   assert(MI->getOpcode() == TargetOpcode::COPY &&
12411          "start of copy chain MUST be COPY");
12412   Reg = MI->getOperand(1).getReg();
12413   MI = MRI.def_begin(Reg)->getParent();
12414   // There may be an optional second copy.
12415   if (MI->getOpcode() == TargetOpcode::COPY) {
12416     assert(Reg.isVirtual() && "expected COPY of virtual register");
12417     Reg = MI->getOperand(1).getReg();
12418     assert(Reg.isPhysical() && "expected COPY of physical register");
12419     MI = MRI.def_begin(Reg)->getParent();
12420   }
12421   // The start of the chain must be an INLINEASM_BR.
12422   assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR &&
12423          "end of copy chain MUST be INLINEASM_BR");
12424   return Reg;
12425 }
12426 
12427 // We must do this walk rather than the simpler
12428 //   setValue(&I, getCopyFromRegs(CBR, CBR->getType()));
12429 // otherwise we will end up with copies of virtregs only valid along direct
12430 // edges.
12431 void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) {
12432   SmallVector<EVT, 8> ResultVTs;
12433   SmallVector<SDValue, 8> ResultValues;
12434   const auto *CBR =
12435       cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator());
12436 
12437   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12438   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
12439   MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
12440 
12441   unsigned InitialDef = FuncInfo.ValueMap[CBR];
12442   SDValue Chain = DAG.getRoot();
12443 
12444   // Re-parse the asm constraints string.
12445   TargetLowering::AsmOperandInfoVector TargetConstraints =
12446       TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR);
12447   for (auto &T : TargetConstraints) {
12448     SDISelAsmOperandInfo OpInfo(T);
12449     if (OpInfo.Type != InlineAsm::isOutput)
12450       continue;
12451 
12452     // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the
12453     // individual constraint.
12454     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
12455 
12456     switch (OpInfo.ConstraintType) {
12457     case TargetLowering::C_Register:
12458     case TargetLowering::C_RegisterClass: {
12459       // Fill in OpInfo.AssignedRegs.Regs.
12460       getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo);
12461 
12462       // getRegistersForValue may produce 1 to many registers based on whether
12463       // the OpInfo.ConstraintVT is legal on the target or not.
12464       for (size_t i = 0, e = OpInfo.AssignedRegs.Regs.size(); i != e; ++i) {
12465         Register OriginalDef = FollowCopyChain(MRI, InitialDef++);
12466         if (Register::isPhysicalRegister(OriginalDef))
12467           FuncInfo.MBB->addLiveIn(OriginalDef);
12468         // Update the assigned registers to use the original defs.
12469         OpInfo.AssignedRegs.Regs[i] = OriginalDef;
12470       }
12471 
12472       SDValue V = OpInfo.AssignedRegs.getCopyFromRegs(
12473           DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR);
12474       ResultValues.push_back(V);
12475       ResultVTs.push_back(OpInfo.ConstraintVT);
12476       break;
12477     }
12478     case TargetLowering::C_Other: {
12479       SDValue Flag;
12480       SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
12481                                                   OpInfo, DAG);
12482       ++InitialDef;
12483       ResultValues.push_back(V);
12484       ResultVTs.push_back(OpInfo.ConstraintVT);
12485       break;
12486     }
12487     default:
12488       break;
12489     }
12490   }
12491   SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
12492                           DAG.getVTList(ResultVTs), ResultValues);
12493   setValue(&I, V);
12494 }
12495