xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 05efe0fdc472e1f57e36b7f42476946c59c7128b)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/BranchProbabilityInfo.h"
31 #include "llvm/Analysis/ConstantFolding.h"
32 #include "llvm/Analysis/EHPersonalities.h"
33 #include "llvm/Analysis/Loads.h"
34 #include "llvm/Analysis/MemoryLocation.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/Analysis/VectorUtils.h"
38 #include "llvm/CodeGen/Analysis.h"
39 #include "llvm/CodeGen/FunctionLoweringInfo.h"
40 #include "llvm/CodeGen/GCMetadata.h"
41 #include "llvm/CodeGen/ISDOpcodes.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineInstr.h"
46 #include "llvm/CodeGen/MachineInstrBuilder.h"
47 #include "llvm/CodeGen/MachineJumpTableInfo.h"
48 #include "llvm/CodeGen/MachineMemOperand.h"
49 #include "llvm/CodeGen/MachineModuleInfo.h"
50 #include "llvm/CodeGen/MachineOperand.h"
51 #include "llvm/CodeGen/MachineRegisterInfo.h"
52 #include "llvm/CodeGen/RuntimeLibcalls.h"
53 #include "llvm/CodeGen/SelectionDAG.h"
54 #include "llvm/CodeGen/SelectionDAGNodes.h"
55 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
56 #include "llvm/CodeGen/StackMaps.h"
57 #include "llvm/CodeGen/TargetFrameLowering.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/CodeGen/TargetLowering.h"
60 #include "llvm/CodeGen/TargetOpcodes.h"
61 #include "llvm/CodeGen/TargetRegisterInfo.h"
62 #include "llvm/CodeGen/TargetSubtargetInfo.h"
63 #include "llvm/CodeGen/ValueTypes.h"
64 #include "llvm/CodeGen/WinEHFuncInfo.h"
65 #include "llvm/IR/Argument.h"
66 #include "llvm/IR/Attributes.h"
67 #include "llvm/IR/BasicBlock.h"
68 #include "llvm/IR/CFG.h"
69 #include "llvm/IR/CallSite.h"
70 #include "llvm/IR/CallingConv.h"
71 #include "llvm/IR/Constant.h"
72 #include "llvm/IR/ConstantRange.h"
73 #include "llvm/IR/Constants.h"
74 #include "llvm/IR/DataLayout.h"
75 #include "llvm/IR/DebugInfoMetadata.h"
76 #include "llvm/IR/DebugLoc.h"
77 #include "llvm/IR/DerivedTypes.h"
78 #include "llvm/IR/Function.h"
79 #include "llvm/IR/GetElementPtrTypeIterator.h"
80 #include "llvm/IR/InlineAsm.h"
81 #include "llvm/IR/InstrTypes.h"
82 #include "llvm/IR/Instruction.h"
83 #include "llvm/IR/Instructions.h"
84 #include "llvm/IR/IntrinsicInst.h"
85 #include "llvm/IR/Intrinsics.h"
86 #include "llvm/IR/LLVMContext.h"
87 #include "llvm/IR/Metadata.h"
88 #include "llvm/IR/Module.h"
89 #include "llvm/IR/Operator.h"
90 #include "llvm/IR/PatternMatch.h"
91 #include "llvm/IR/Statepoint.h"
92 #include "llvm/IR/Type.h"
93 #include "llvm/IR/User.h"
94 #include "llvm/IR/Value.h"
95 #include "llvm/MC/MCContext.h"
96 #include "llvm/MC/MCSymbol.h"
97 #include "llvm/Support/AtomicOrdering.h"
98 #include "llvm/Support/BranchProbability.h"
99 #include "llvm/Support/Casting.h"
100 #include "llvm/Support/CodeGen.h"
101 #include "llvm/Support/CommandLine.h"
102 #include "llvm/Support/Compiler.h"
103 #include "llvm/Support/Debug.h"
104 #include "llvm/Support/ErrorHandling.h"
105 #include "llvm/Support/MachineValueType.h"
106 #include "llvm/Support/MathExtras.h"
107 #include "llvm/Support/raw_ostream.h"
108 #include "llvm/Target/TargetIntrinsicInfo.h"
109 #include "llvm/Target/TargetMachine.h"
110 #include "llvm/Target/TargetOptions.h"
111 #include "llvm/Transforms/Utils/Local.h"
112 #include <algorithm>
113 #include <cassert>
114 #include <cstddef>
115 #include <cstdint>
116 #include <cstring>
117 #include <iterator>
118 #include <limits>
119 #include <numeric>
120 #include <tuple>
121 #include <utility>
122 #include <vector>
123 
124 using namespace llvm;
125 using namespace PatternMatch;
126 
127 #define DEBUG_TYPE "isel"
128 
129 /// LimitFloatPrecision - Generate low-precision inline sequences for
130 /// some float libcalls (6, 8 or 12 bits).
131 static unsigned LimitFloatPrecision;
132 
133 static cl::opt<unsigned, true>
134     LimitFPPrecision("limit-float-precision",
135                      cl::desc("Generate low-precision inline sequences "
136                               "for some float libcalls"),
137                      cl::location(LimitFloatPrecision), cl::Hidden,
138                      cl::init(0));
139 
140 static cl::opt<unsigned> SwitchPeelThreshold(
141     "switch-peel-threshold", cl::Hidden, cl::init(66),
142     cl::desc("Set the case probability threshold for peeling the case from a "
143              "switch statement. A value greater than 100 will void this "
144              "optimization"));
145 
146 // Limit the width of DAG chains. This is important in general to prevent
147 // DAG-based analysis from blowing up. For example, alias analysis and
148 // load clustering may not complete in reasonable time. It is difficult to
149 // recognize and avoid this situation within each individual analysis, and
150 // future analyses are likely to have the same behavior. Limiting DAG width is
151 // the safe approach and will be especially important with global DAGs.
152 //
153 // MaxParallelChains default is arbitrarily high to avoid affecting
154 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
155 // sequence over this should have been converted to llvm.memcpy by the
156 // frontend. It is easy to induce this behavior with .ll code such as:
157 // %buffer = alloca [4096 x i8]
158 // %data = load [4096 x i8]* %argPtr
159 // store [4096 x i8] %data, [4096 x i8]* %buffer
160 static const unsigned MaxParallelChains = 64;
161 
162 // Return the calling convention if the Value passed requires ABI mangling as it
163 // is a parameter to a function or a return value from a function which is not
164 // an intrinsic.
165 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) {
166   if (auto *R = dyn_cast<ReturnInst>(V))
167     return R->getParent()->getParent()->getCallingConv();
168 
169   if (auto *CI = dyn_cast<CallInst>(V)) {
170     const bool IsInlineAsm = CI->isInlineAsm();
171     const bool IsIndirectFunctionCall =
172         !IsInlineAsm && !CI->getCalledFunction();
173 
174     // It is possible that the call instruction is an inline asm statement or an
175     // indirect function call in which case the return value of
176     // getCalledFunction() would be nullptr.
177     const bool IsInstrinsicCall =
178         !IsInlineAsm && !IsIndirectFunctionCall &&
179         CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic;
180 
181     if (!IsInlineAsm && !IsInstrinsicCall)
182       return CI->getCallingConv();
183   }
184 
185   return None;
186 }
187 
188 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
189                                       const SDValue *Parts, unsigned NumParts,
190                                       MVT PartVT, EVT ValueVT, const Value *V,
191                                       Optional<CallingConv::ID> CC);
192 
193 /// getCopyFromParts - Create a value that contains the specified legal parts
194 /// combined into the value they represent.  If the parts combine to a type
195 /// larger than ValueVT then AssertOp can be used to specify whether the extra
196 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
197 /// (ISD::AssertSext).
198 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
199                                 const SDValue *Parts, unsigned NumParts,
200                                 MVT PartVT, EVT ValueVT, const Value *V,
201                                 Optional<CallingConv::ID> CC = None,
202                                 Optional<ISD::NodeType> AssertOp = None) {
203   if (ValueVT.isVector())
204     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
205                                   CC);
206 
207   assert(NumParts > 0 && "No parts to assemble!");
208   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
209   SDValue Val = Parts[0];
210 
211   if (NumParts > 1) {
212     // Assemble the value from multiple parts.
213     if (ValueVT.isInteger()) {
214       unsigned PartBits = PartVT.getSizeInBits();
215       unsigned ValueBits = ValueVT.getSizeInBits();
216 
217       // Assemble the power of 2 part.
218       unsigned RoundParts = NumParts & (NumParts - 1) ?
219         1 << Log2_32(NumParts) : NumParts;
220       unsigned RoundBits = PartBits * RoundParts;
221       EVT RoundVT = RoundBits == ValueBits ?
222         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
223       SDValue Lo, Hi;
224 
225       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
226 
227       if (RoundParts > 2) {
228         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
229                               PartVT, HalfVT, V);
230         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
231                               RoundParts / 2, PartVT, HalfVT, V);
232       } else {
233         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
234         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
235       }
236 
237       if (DAG.getDataLayout().isBigEndian())
238         std::swap(Lo, Hi);
239 
240       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
241 
242       if (RoundParts < NumParts) {
243         // Assemble the trailing non-power-of-2 part.
244         unsigned OddParts = NumParts - RoundParts;
245         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
246         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
247                               OddVT, V, CC);
248 
249         // Combine the round and odd parts.
250         Lo = Val;
251         if (DAG.getDataLayout().isBigEndian())
252           std::swap(Lo, Hi);
253         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
254         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
255         Hi =
256             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
257                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
258                                         TLI.getPointerTy(DAG.getDataLayout())));
259         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
260         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
261       }
262     } else if (PartVT.isFloatingPoint()) {
263       // FP split into multiple FP parts (for ppcf128)
264       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
265              "Unexpected split");
266       SDValue Lo, Hi;
267       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
268       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
269       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
270         std::swap(Lo, Hi);
271       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
272     } else {
273       // FP split into integer parts (soft fp)
274       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
275              !PartVT.isVector() && "Unexpected split");
276       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
277       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
278     }
279   }
280 
281   // There is now one part, held in Val.  Correct it to match ValueVT.
282   // PartEVT is the type of the register class that holds the value.
283   // ValueVT is the type of the inline asm operation.
284   EVT PartEVT = Val.getValueType();
285 
286   if (PartEVT == ValueVT)
287     return Val;
288 
289   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
290       ValueVT.bitsLT(PartEVT)) {
291     // For an FP value in an integer part, we need to truncate to the right
292     // width first.
293     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
294     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
295   }
296 
297   // Handle types that have the same size.
298   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
299     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
300 
301   // Handle types with different sizes.
302   if (PartEVT.isInteger() && ValueVT.isInteger()) {
303     if (ValueVT.bitsLT(PartEVT)) {
304       // For a truncate, see if we have any information to
305       // indicate whether the truncated bits will always be
306       // zero or sign-extension.
307       if (AssertOp.hasValue())
308         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
309                           DAG.getValueType(ValueVT));
310       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
311     }
312     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
313   }
314 
315   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
316     // FP_ROUND's are always exact here.
317     if (ValueVT.bitsLT(Val.getValueType()))
318       return DAG.getNode(
319           ISD::FP_ROUND, DL, ValueVT, Val,
320           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
321 
322     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
323   }
324 
325   llvm_unreachable("Unknown mismatch!");
326 }
327 
328 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
329                                               const Twine &ErrMsg) {
330   const Instruction *I = dyn_cast_or_null<Instruction>(V);
331   if (!V)
332     return Ctx.emitError(ErrMsg);
333 
334   const char *AsmError = ", possible invalid constraint for vector type";
335   if (const CallInst *CI = dyn_cast<CallInst>(I))
336     if (isa<InlineAsm>(CI->getCalledValue()))
337       return Ctx.emitError(I, ErrMsg + AsmError);
338 
339   return Ctx.emitError(I, ErrMsg);
340 }
341 
342 /// getCopyFromPartsVector - Create a value that contains the specified legal
343 /// parts combined into the value they represent.  If the parts combine to a
344 /// type larger than ValueVT then AssertOp can be used to specify whether the
345 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
346 /// ValueVT (ISD::AssertSext).
347 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
348                                       const SDValue *Parts, unsigned NumParts,
349                                       MVT PartVT, EVT ValueVT, const Value *V,
350                                       Optional<CallingConv::ID> CallConv) {
351   assert(ValueVT.isVector() && "Not a vector value");
352   assert(NumParts > 0 && "No parts to assemble!");
353   const bool IsABIRegCopy = CallConv.hasValue();
354 
355   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
356   SDValue Val = Parts[0];
357 
358   // Handle a multi-element vector.
359   if (NumParts > 1) {
360     EVT IntermediateVT;
361     MVT RegisterVT;
362     unsigned NumIntermediates;
363     unsigned NumRegs;
364 
365     if (IsABIRegCopy) {
366       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
367           *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
368           NumIntermediates, RegisterVT);
369     } else {
370       NumRegs =
371           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
372                                      NumIntermediates, RegisterVT);
373     }
374 
375     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
376     NumParts = NumRegs; // Silence a compiler warning.
377     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
378     assert(RegisterVT.getSizeInBits() ==
379            Parts[0].getSimpleValueType().getSizeInBits() &&
380            "Part type sizes don't match!");
381 
382     // Assemble the parts into intermediate operands.
383     SmallVector<SDValue, 8> Ops(NumIntermediates);
384     if (NumIntermediates == NumParts) {
385       // If the register was not expanded, truncate or copy the value,
386       // as appropriate.
387       for (unsigned i = 0; i != NumParts; ++i)
388         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
389                                   PartVT, IntermediateVT, V);
390     } else if (NumParts > 0) {
391       // If the intermediate type was expanded, build the intermediate
392       // operands from the parts.
393       assert(NumParts % NumIntermediates == 0 &&
394              "Must expand into a divisible number of parts!");
395       unsigned Factor = NumParts / NumIntermediates;
396       for (unsigned i = 0; i != NumIntermediates; ++i)
397         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
398                                   PartVT, IntermediateVT, V);
399     }
400 
401     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
402     // intermediate operands.
403     EVT BuiltVectorTy =
404         EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(),
405                          (IntermediateVT.isVector()
406                               ? IntermediateVT.getVectorNumElements() * NumParts
407                               : NumIntermediates));
408     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
409                                                 : ISD::BUILD_VECTOR,
410                       DL, BuiltVectorTy, Ops);
411   }
412 
413   // There is now one part, held in Val.  Correct it to match ValueVT.
414   EVT PartEVT = Val.getValueType();
415 
416   if (PartEVT == ValueVT)
417     return Val;
418 
419   if (PartEVT.isVector()) {
420     // If the element type of the source/dest vectors are the same, but the
421     // parts vector has more elements than the value vector, then we have a
422     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
423     // elements we want.
424     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
425       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
426              "Cannot narrow, it would be a lossy transformation");
427       return DAG.getNode(
428           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
429           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
430     }
431 
432     // Vector/Vector bitcast.
433     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
434       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
435 
436     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
437       "Cannot handle this kind of promotion");
438     // Promoted vector extract
439     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
440 
441   }
442 
443   // Trivial bitcast if the types are the same size and the destination
444   // vector type is legal.
445   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
446       TLI.isTypeLegal(ValueVT))
447     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
448 
449   if (ValueVT.getVectorNumElements() != 1) {
450      // Certain ABIs require that vectors are passed as integers. For vectors
451      // are the same size, this is an obvious bitcast.
452      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
453        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
454      } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) {
455        // Bitcast Val back the original type and extract the corresponding
456        // vector we want.
457        unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
458        EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
459                                            ValueVT.getVectorElementType(), Elts);
460        Val = DAG.getBitcast(WiderVecType, Val);
461        return DAG.getNode(
462            ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
463            DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
464      }
465 
466      diagnosePossiblyInvalidConstraint(
467          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
468      return DAG.getUNDEF(ValueVT);
469   }
470 
471   // Handle cases such as i8 -> <1 x i1>
472   EVT ValueSVT = ValueVT.getVectorElementType();
473   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT)
474     Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
475                                     : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
476 
477   return DAG.getBuildVector(ValueVT, DL, Val);
478 }
479 
480 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
481                                  SDValue Val, SDValue *Parts, unsigned NumParts,
482                                  MVT PartVT, const Value *V,
483                                  Optional<CallingConv::ID> CallConv);
484 
485 /// getCopyToParts - Create a series of nodes that contain the specified value
486 /// split into legal parts.  If the parts contain more bits than Val, then, for
487 /// integers, ExtendKind can be used to specify how to generate the extra bits.
488 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
489                            SDValue *Parts, unsigned NumParts, MVT PartVT,
490                            const Value *V,
491                            Optional<CallingConv::ID> CallConv = None,
492                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
493   EVT ValueVT = Val.getValueType();
494 
495   // Handle the vector case separately.
496   if (ValueVT.isVector())
497     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
498                                 CallConv);
499 
500   unsigned PartBits = PartVT.getSizeInBits();
501   unsigned OrigNumParts = NumParts;
502   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
503          "Copying to an illegal type!");
504 
505   if (NumParts == 0)
506     return;
507 
508   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
509   EVT PartEVT = PartVT;
510   if (PartEVT == ValueVT) {
511     assert(NumParts == 1 && "No-op copy with multiple parts!");
512     Parts[0] = Val;
513     return;
514   }
515 
516   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
517     // If the parts cover more bits than the value has, promote the value.
518     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
519       assert(NumParts == 1 && "Do not know what to promote to!");
520       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
521     } else {
522       if (ValueVT.isFloatingPoint()) {
523         // FP values need to be bitcast, then extended if they are being put
524         // into a larger container.
525         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
526         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
527       }
528       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
529              ValueVT.isInteger() &&
530              "Unknown mismatch!");
531       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
532       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
533       if (PartVT == MVT::x86mmx)
534         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
535     }
536   } else if (PartBits == ValueVT.getSizeInBits()) {
537     // Different types of the same size.
538     assert(NumParts == 1 && PartEVT != ValueVT);
539     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
540   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
541     // If the parts cover less bits than value has, truncate the value.
542     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
543            ValueVT.isInteger() &&
544            "Unknown mismatch!");
545     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
546     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
547     if (PartVT == MVT::x86mmx)
548       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
549   }
550 
551   // The value may have changed - recompute ValueVT.
552   ValueVT = Val.getValueType();
553   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
554          "Failed to tile the value with PartVT!");
555 
556   if (NumParts == 1) {
557     if (PartEVT != ValueVT) {
558       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
559                                         "scalar-to-vector conversion failed");
560       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
561     }
562 
563     Parts[0] = Val;
564     return;
565   }
566 
567   // Expand the value into multiple parts.
568   if (NumParts & (NumParts - 1)) {
569     // The number of parts is not a power of 2.  Split off and copy the tail.
570     assert(PartVT.isInteger() && ValueVT.isInteger() &&
571            "Do not know what to expand to!");
572     unsigned RoundParts = 1 << Log2_32(NumParts);
573     unsigned RoundBits = RoundParts * PartBits;
574     unsigned OddParts = NumParts - RoundParts;
575     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
576       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false));
577 
578     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
579                    CallConv);
580 
581     if (DAG.getDataLayout().isBigEndian())
582       // The odd parts were reversed by getCopyToParts - unreverse them.
583       std::reverse(Parts + RoundParts, Parts + NumParts);
584 
585     NumParts = RoundParts;
586     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
587     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
588   }
589 
590   // The number of parts is a power of 2.  Repeatedly bisect the value using
591   // EXTRACT_ELEMENT.
592   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
593                          EVT::getIntegerVT(*DAG.getContext(),
594                                            ValueVT.getSizeInBits()),
595                          Val);
596 
597   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
598     for (unsigned i = 0; i < NumParts; i += StepSize) {
599       unsigned ThisBits = StepSize * PartBits / 2;
600       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
601       SDValue &Part0 = Parts[i];
602       SDValue &Part1 = Parts[i+StepSize/2];
603 
604       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
605                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
606       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
607                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
608 
609       if (ThisBits == PartBits && ThisVT != PartVT) {
610         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
611         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
612       }
613     }
614   }
615 
616   if (DAG.getDataLayout().isBigEndian())
617     std::reverse(Parts, Parts + OrigNumParts);
618 }
619 
620 static SDValue widenVectorToPartType(SelectionDAG &DAG,
621                                      SDValue Val, const SDLoc &DL, EVT PartVT) {
622   if (!PartVT.isVector())
623     return SDValue();
624 
625   EVT ValueVT = Val.getValueType();
626   unsigned PartNumElts = PartVT.getVectorNumElements();
627   unsigned ValueNumElts = ValueVT.getVectorNumElements();
628   if (PartNumElts > ValueNumElts &&
629       PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
630     EVT ElementVT = PartVT.getVectorElementType();
631     // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
632     // undef elements.
633     SmallVector<SDValue, 16> Ops;
634     DAG.ExtractVectorElements(Val, Ops);
635     SDValue EltUndef = DAG.getUNDEF(ElementVT);
636     for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i)
637       Ops.push_back(EltUndef);
638 
639     // FIXME: Use CONCAT for 2x -> 4x.
640     return DAG.getBuildVector(PartVT, DL, Ops);
641   }
642 
643   return SDValue();
644 }
645 
646 /// getCopyToPartsVector - Create a series of nodes that contain the specified
647 /// value split into legal parts.
648 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
649                                  SDValue Val, SDValue *Parts, unsigned NumParts,
650                                  MVT PartVT, const Value *V,
651                                  Optional<CallingConv::ID> CallConv) {
652   EVT ValueVT = Val.getValueType();
653   assert(ValueVT.isVector() && "Not a vector");
654   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
655   const bool IsABIRegCopy = CallConv.hasValue();
656 
657   if (NumParts == 1) {
658     EVT PartEVT = PartVT;
659     if (PartEVT == ValueVT) {
660       // Nothing to do.
661     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
662       // Bitconvert vector->vector case.
663       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
664     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
665       Val = Widened;
666     } else if (PartVT.isVector() &&
667                PartEVT.getVectorElementType().bitsGE(
668                  ValueVT.getVectorElementType()) &&
669                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
670 
671       // Promoted vector extract
672       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
673     } else {
674       if (ValueVT.getVectorNumElements() == 1) {
675         Val = DAG.getNode(
676             ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
677             DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
678       } else {
679         assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
680                "lossy conversion of vector to scalar type");
681         EVT IntermediateType =
682             EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
683         Val = DAG.getBitcast(IntermediateType, Val);
684         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
685       }
686     }
687 
688     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
689     Parts[0] = Val;
690     return;
691   }
692 
693   // Handle a multi-element vector.
694   EVT IntermediateVT;
695   MVT RegisterVT;
696   unsigned NumIntermediates;
697   unsigned NumRegs;
698   if (IsABIRegCopy) {
699     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
700         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
701         NumIntermediates, RegisterVT);
702   } else {
703     NumRegs =
704         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
705                                    NumIntermediates, RegisterVT);
706   }
707 
708   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
709   NumParts = NumRegs; // Silence a compiler warning.
710   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
711 
712   unsigned IntermediateNumElts = IntermediateVT.isVector() ?
713     IntermediateVT.getVectorNumElements() : 1;
714 
715   // Convert the vector to the appropiate type if necessary.
716   unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts;
717 
718   EVT BuiltVectorTy = EVT::getVectorVT(
719       *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts);
720   MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
721   if (ValueVT != BuiltVectorTy) {
722     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy))
723       Val = Widened;
724 
725     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
726   }
727 
728   // Split the vector into intermediate operands.
729   SmallVector<SDValue, 8> Ops(NumIntermediates);
730   for (unsigned i = 0; i != NumIntermediates; ++i) {
731     if (IntermediateVT.isVector()) {
732       Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
733                            DAG.getConstant(i * IntermediateNumElts, DL, IdxVT));
734     } else {
735       Ops[i] = DAG.getNode(
736           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
737           DAG.getConstant(i, DL, IdxVT));
738     }
739   }
740 
741   // Split the intermediate operands into legal parts.
742   if (NumParts == NumIntermediates) {
743     // If the register was not expanded, promote or copy the value,
744     // as appropriate.
745     for (unsigned i = 0; i != NumParts; ++i)
746       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
747   } else if (NumParts > 0) {
748     // If the intermediate type was expanded, split each the value into
749     // legal parts.
750     assert(NumIntermediates != 0 && "division by zero");
751     assert(NumParts % NumIntermediates == 0 &&
752            "Must expand into a divisible number of parts!");
753     unsigned Factor = NumParts / NumIntermediates;
754     for (unsigned i = 0; i != NumIntermediates; ++i)
755       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
756                      CallConv);
757   }
758 }
759 
760 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
761                            EVT valuevt, Optional<CallingConv::ID> CC)
762     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
763       RegCount(1, regs.size()), CallConv(CC) {}
764 
765 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
766                            const DataLayout &DL, unsigned Reg, Type *Ty,
767                            Optional<CallingConv::ID> CC) {
768   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
769 
770   CallConv = CC;
771 
772   for (EVT ValueVT : ValueVTs) {
773     unsigned NumRegs =
774         isABIMangled()
775             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
776             : TLI.getNumRegisters(Context, ValueVT);
777     MVT RegisterVT =
778         isABIMangled()
779             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
780             : TLI.getRegisterType(Context, ValueVT);
781     for (unsigned i = 0; i != NumRegs; ++i)
782       Regs.push_back(Reg + i);
783     RegVTs.push_back(RegisterVT);
784     RegCount.push_back(NumRegs);
785     Reg += NumRegs;
786   }
787 }
788 
789 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
790                                       FunctionLoweringInfo &FuncInfo,
791                                       const SDLoc &dl, SDValue &Chain,
792                                       SDValue *Flag, const Value *V) const {
793   // A Value with type {} or [0 x %t] needs no registers.
794   if (ValueVTs.empty())
795     return SDValue();
796 
797   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
798 
799   // Assemble the legal parts into the final values.
800   SmallVector<SDValue, 4> Values(ValueVTs.size());
801   SmallVector<SDValue, 8> Parts;
802   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
803     // Copy the legal parts from the registers.
804     EVT ValueVT = ValueVTs[Value];
805     unsigned NumRegs = RegCount[Value];
806     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
807                                           *DAG.getContext(),
808                                           CallConv.getValue(), RegVTs[Value])
809                                     : RegVTs[Value];
810 
811     Parts.resize(NumRegs);
812     for (unsigned i = 0; i != NumRegs; ++i) {
813       SDValue P;
814       if (!Flag) {
815         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
816       } else {
817         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
818         *Flag = P.getValue(2);
819       }
820 
821       Chain = P.getValue(1);
822       Parts[i] = P;
823 
824       // If the source register was virtual and if we know something about it,
825       // add an assert node.
826       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
827           !RegisterVT.isInteger())
828         continue;
829 
830       const FunctionLoweringInfo::LiveOutInfo *LOI =
831         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
832       if (!LOI)
833         continue;
834 
835       unsigned RegSize = RegisterVT.getScalarSizeInBits();
836       unsigned NumSignBits = LOI->NumSignBits;
837       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
838 
839       if (NumZeroBits == RegSize) {
840         // The current value is a zero.
841         // Explicitly express that as it would be easier for
842         // optimizations to kick in.
843         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
844         continue;
845       }
846 
847       // FIXME: We capture more information than the dag can represent.  For
848       // now, just use the tightest assertzext/assertsext possible.
849       bool isSExt;
850       EVT FromVT(MVT::Other);
851       if (NumZeroBits) {
852         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
853         isSExt = false;
854       } else if (NumSignBits > 1) {
855         FromVT =
856             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
857         isSExt = true;
858       } else {
859         continue;
860       }
861       // Add an assertion node.
862       assert(FromVT != MVT::Other);
863       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
864                              RegisterVT, P, DAG.getValueType(FromVT));
865     }
866 
867     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
868                                      RegisterVT, ValueVT, V, CallConv);
869     Part += NumRegs;
870     Parts.clear();
871   }
872 
873   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
874 }
875 
876 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
877                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
878                                  const Value *V,
879                                  ISD::NodeType PreferredExtendType) const {
880   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
881   ISD::NodeType ExtendKind = PreferredExtendType;
882 
883   // Get the list of the values's legal parts.
884   unsigned NumRegs = Regs.size();
885   SmallVector<SDValue, 8> Parts(NumRegs);
886   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
887     unsigned NumParts = RegCount[Value];
888 
889     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
890                                           *DAG.getContext(),
891                                           CallConv.getValue(), RegVTs[Value])
892                                     : RegVTs[Value];
893 
894     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
895       ExtendKind = ISD::ZERO_EXTEND;
896 
897     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
898                    NumParts, RegisterVT, V, CallConv, ExtendKind);
899     Part += NumParts;
900   }
901 
902   // Copy the parts into the registers.
903   SmallVector<SDValue, 8> Chains(NumRegs);
904   for (unsigned i = 0; i != NumRegs; ++i) {
905     SDValue Part;
906     if (!Flag) {
907       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
908     } else {
909       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
910       *Flag = Part.getValue(1);
911     }
912 
913     Chains[i] = Part.getValue(0);
914   }
915 
916   if (NumRegs == 1 || Flag)
917     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
918     // flagged to it. That is the CopyToReg nodes and the user are considered
919     // a single scheduling unit. If we create a TokenFactor and return it as
920     // chain, then the TokenFactor is both a predecessor (operand) of the
921     // user as well as a successor (the TF operands are flagged to the user).
922     // c1, f1 = CopyToReg
923     // c2, f2 = CopyToReg
924     // c3     = TokenFactor c1, c2
925     // ...
926     //        = op c3, ..., f2
927     Chain = Chains[NumRegs-1];
928   else
929     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
930 }
931 
932 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
933                                         unsigned MatchingIdx, const SDLoc &dl,
934                                         SelectionDAG &DAG,
935                                         std::vector<SDValue> &Ops) const {
936   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
937 
938   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
939   if (HasMatching)
940     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
941   else if (!Regs.empty() &&
942            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
943     // Put the register class of the virtual registers in the flag word.  That
944     // way, later passes can recompute register class constraints for inline
945     // assembly as well as normal instructions.
946     // Don't do this for tied operands that can use the regclass information
947     // from the def.
948     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
949     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
950     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
951   }
952 
953   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
954   Ops.push_back(Res);
955 
956   if (Code == InlineAsm::Kind_Clobber) {
957     // Clobbers should always have a 1:1 mapping with registers, and may
958     // reference registers that have illegal (e.g. vector) types. Hence, we
959     // shouldn't try to apply any sort of splitting logic to them.
960     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
961            "No 1:1 mapping from clobbers to regs?");
962     unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
963     (void)SP;
964     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
965       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
966       assert(
967           (Regs[I] != SP ||
968            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
969           "If we clobbered the stack pointer, MFI should know about it.");
970     }
971     return;
972   }
973 
974   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
975     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
976     MVT RegisterVT = RegVTs[Value];
977     for (unsigned i = 0; i != NumRegs; ++i) {
978       assert(Reg < Regs.size() && "Mismatch in # registers expected");
979       unsigned TheReg = Regs[Reg++];
980       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
981     }
982   }
983 }
984 
985 SmallVector<std::pair<unsigned, unsigned>, 4>
986 RegsForValue::getRegsAndSizes() const {
987   SmallVector<std::pair<unsigned, unsigned>, 4> OutVec;
988   unsigned I = 0;
989   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
990     unsigned RegCount = std::get<0>(CountAndVT);
991     MVT RegisterVT = std::get<1>(CountAndVT);
992     unsigned RegisterSize = RegisterVT.getSizeInBits();
993     for (unsigned E = I + RegCount; I != E; ++I)
994       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
995   }
996   return OutVec;
997 }
998 
999 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1000                                const TargetLibraryInfo *li) {
1001   AA = aa;
1002   GFI = gfi;
1003   LibInfo = li;
1004   DL = &DAG.getDataLayout();
1005   Context = DAG.getContext();
1006   LPadToCallSiteMap.clear();
1007 }
1008 
1009 void SelectionDAGBuilder::clear() {
1010   NodeMap.clear();
1011   UnusedArgNodeMap.clear();
1012   PendingLoads.clear();
1013   PendingExports.clear();
1014   CurInst = nullptr;
1015   HasTailCall = false;
1016   SDNodeOrder = LowestSDNodeOrder;
1017   StatepointLowering.clear();
1018 }
1019 
1020 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1021   DanglingDebugInfoMap.clear();
1022 }
1023 
1024 SDValue SelectionDAGBuilder::getRoot() {
1025   if (PendingLoads.empty())
1026     return DAG.getRoot();
1027 
1028   if (PendingLoads.size() == 1) {
1029     SDValue Root = PendingLoads[0];
1030     DAG.setRoot(Root);
1031     PendingLoads.clear();
1032     return Root;
1033   }
1034 
1035   // Otherwise, we have to make a token factor node.
1036   SDValue Root = DAG.getTokenFactor(getCurSDLoc(), PendingLoads);
1037   PendingLoads.clear();
1038   DAG.setRoot(Root);
1039   return Root;
1040 }
1041 
1042 SDValue SelectionDAGBuilder::getControlRoot() {
1043   SDValue Root = DAG.getRoot();
1044 
1045   if (PendingExports.empty())
1046     return Root;
1047 
1048   // Turn all of the CopyToReg chains into one factored node.
1049   if (Root.getOpcode() != ISD::EntryToken) {
1050     unsigned i = 0, e = PendingExports.size();
1051     for (; i != e; ++i) {
1052       assert(PendingExports[i].getNode()->getNumOperands() > 1);
1053       if (PendingExports[i].getNode()->getOperand(0) == Root)
1054         break;  // Don't add the root if we already indirectly depend on it.
1055     }
1056 
1057     if (i == e)
1058       PendingExports.push_back(Root);
1059   }
1060 
1061   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
1062                      PendingExports);
1063   PendingExports.clear();
1064   DAG.setRoot(Root);
1065   return Root;
1066 }
1067 
1068 void SelectionDAGBuilder::visit(const Instruction &I) {
1069   // Set up outgoing PHI node register values before emitting the terminator.
1070   if (I.isTerminator()) {
1071     HandlePHINodesInSuccessorBlocks(I.getParent());
1072   }
1073 
1074   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1075   if (!isa<DbgInfoIntrinsic>(I))
1076     ++SDNodeOrder;
1077 
1078   CurInst = &I;
1079 
1080   visit(I.getOpcode(), I);
1081 
1082   if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) {
1083     // Propagate the fast-math-flags of this IR instruction to the DAG node that
1084     // maps to this instruction.
1085     // TODO: We could handle all flags (nsw, etc) here.
1086     // TODO: If an IR instruction maps to >1 node, only the final node will have
1087     //       flags set.
1088     if (SDNode *Node = getNodeForIRValue(&I)) {
1089       SDNodeFlags IncomingFlags;
1090       IncomingFlags.copyFMF(*FPMO);
1091       if (!Node->getFlags().isDefined())
1092         Node->setFlags(IncomingFlags);
1093       else
1094         Node->intersectFlagsWith(IncomingFlags);
1095     }
1096   }
1097 
1098   if (!I.isTerminator() && !HasTailCall &&
1099       !isStatepoint(&I)) // statepoints handle their exports internally
1100     CopyToExportRegsIfNeeded(&I);
1101 
1102   CurInst = nullptr;
1103 }
1104 
1105 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1106   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1107 }
1108 
1109 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1110   // Note: this doesn't use InstVisitor, because it has to work with
1111   // ConstantExpr's in addition to instructions.
1112   switch (Opcode) {
1113   default: llvm_unreachable("Unknown instruction type encountered!");
1114     // Build the switch statement using the Instruction.def file.
1115 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1116     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1117 #include "llvm/IR/Instruction.def"
1118   }
1119 }
1120 
1121 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1122                                                 const DIExpression *Expr) {
1123   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1124     const DbgValueInst *DI = DDI.getDI();
1125     DIVariable *DanglingVariable = DI->getVariable();
1126     DIExpression *DanglingExpr = DI->getExpression();
1127     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1128       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1129       return true;
1130     }
1131     return false;
1132   };
1133 
1134   for (auto &DDIMI : DanglingDebugInfoMap) {
1135     DanglingDebugInfoVector &DDIV = DDIMI.second;
1136 
1137     // If debug info is to be dropped, run it through final checks to see
1138     // whether it can be salvaged.
1139     for (auto &DDI : DDIV)
1140       if (isMatchingDbgValue(DDI))
1141         salvageUnresolvedDbgValue(DDI);
1142 
1143     DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end());
1144   }
1145 }
1146 
1147 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1148 // generate the debug data structures now that we've seen its definition.
1149 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1150                                                    SDValue Val) {
1151   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1152   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1153     return;
1154 
1155   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1156   for (auto &DDI : DDIV) {
1157     const DbgValueInst *DI = DDI.getDI();
1158     assert(DI && "Ill-formed DanglingDebugInfo");
1159     DebugLoc dl = DDI.getdl();
1160     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1161     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1162     DILocalVariable *Variable = DI->getVariable();
1163     DIExpression *Expr = DI->getExpression();
1164     assert(Variable->isValidLocationForIntrinsic(dl) &&
1165            "Expected inlined-at fields to agree");
1166     SDDbgValue *SDV;
1167     if (Val.getNode()) {
1168       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1169       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1170       // we couldn't resolve it directly when examining the DbgValue intrinsic
1171       // in the first place we should not be more successful here). Unless we
1172       // have some test case that prove this to be correct we should avoid
1173       // calling EmitFuncArgumentDbgValue here.
1174       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1175         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1176                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1177         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1178         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1179         // inserted after the definition of Val when emitting the instructions
1180         // after ISel. An alternative could be to teach
1181         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1182         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1183                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1184                    << ValSDNodeOrder << "\n");
1185         SDV = getDbgValue(Val, Variable, Expr, dl,
1186                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1187         DAG.AddDbgValue(SDV, Val.getNode(), false);
1188       } else
1189         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1190                           << "in EmitFuncArgumentDbgValue\n");
1191     } else {
1192       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1193       auto Undef =
1194           UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1195       auto SDV =
1196           DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1197       DAG.AddDbgValue(SDV, nullptr, false);
1198     }
1199   }
1200   DDIV.clear();
1201 }
1202 
1203 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1204   Value *V = DDI.getDI()->getValue();
1205   DILocalVariable *Var = DDI.getDI()->getVariable();
1206   DIExpression *Expr = DDI.getDI()->getExpression();
1207   DebugLoc DL = DDI.getdl();
1208   DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1209   unsigned SDOrder = DDI.getSDNodeOrder();
1210 
1211   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1212   // that DW_OP_stack_value is desired.
1213   assert(isa<DbgValueInst>(DDI.getDI()));
1214   bool StackValue = true;
1215 
1216   // Can this Value can be encoded without any further work?
1217   if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder))
1218     return;
1219 
1220   // Attempt to salvage back through as many instructions as possible. Bail if
1221   // a non-instruction is seen, such as a constant expression or global
1222   // variable. FIXME: Further work could recover those too.
1223   while (isa<Instruction>(V)) {
1224     Instruction &VAsInst = *cast<Instruction>(V);
1225     DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue);
1226 
1227     // If we cannot salvage any further, and haven't yet found a suitable debug
1228     // expression, bail out.
1229     if (!NewExpr)
1230       break;
1231 
1232     // New value and expr now represent this debuginfo.
1233     V = VAsInst.getOperand(0);
1234     Expr = NewExpr;
1235 
1236     // Some kind of simplification occurred: check whether the operand of the
1237     // salvaged debug expression can be encoded in this DAG.
1238     if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) {
1239       LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n  "
1240                         << DDI.getDI() << "\nBy stripping back to:\n  " << V);
1241       return;
1242     }
1243   }
1244 
1245   // This was the final opportunity to salvage this debug information, and it
1246   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1247   // any earlier variable location.
1248   auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1249   auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1250   DAG.AddDbgValue(SDV, nullptr, false);
1251 
1252   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << DDI.getDI()
1253                     << "\n");
1254   LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *DDI.getDI()->getOperand(0)
1255                     << "\n");
1256 }
1257 
1258 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var,
1259                                            DIExpression *Expr, DebugLoc dl,
1260                                            DebugLoc InstDL, unsigned Order) {
1261   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1262   SDDbgValue *SDV;
1263   if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1264       isa<ConstantPointerNull>(V)) {
1265     SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder);
1266     DAG.AddDbgValue(SDV, nullptr, false);
1267     return true;
1268   }
1269 
1270   // If the Value is a frame index, we can create a FrameIndex debug value
1271   // without relying on the DAG at all.
1272   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1273     auto SI = FuncInfo.StaticAllocaMap.find(AI);
1274     if (SI != FuncInfo.StaticAllocaMap.end()) {
1275       auto SDV =
1276           DAG.getFrameIndexDbgValue(Var, Expr, SI->second,
1277                                     /*IsIndirect*/ false, dl, SDNodeOrder);
1278       // Do not attach the SDNodeDbgValue to an SDNode: this variable location
1279       // is still available even if the SDNode gets optimized out.
1280       DAG.AddDbgValue(SDV, nullptr, false);
1281       return true;
1282     }
1283   }
1284 
1285   // Do not use getValue() in here; we don't want to generate code at
1286   // this point if it hasn't been done yet.
1287   SDValue N = NodeMap[V];
1288   if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1289     N = UnusedArgNodeMap[V];
1290   if (N.getNode()) {
1291     if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N))
1292       return true;
1293     SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder);
1294     DAG.AddDbgValue(SDV, N.getNode(), false);
1295     return true;
1296   }
1297 
1298   // Special rules apply for the first dbg.values of parameter variables in a
1299   // function. Identify them by the fact they reference Argument Values, that
1300   // they're parameters, and they are parameters of the current function. We
1301   // need to let them dangle until they get an SDNode.
1302   bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() &&
1303                        !InstDL.getInlinedAt();
1304   if (!IsParamOfFunc) {
1305     // The value is not used in this block yet (or it would have an SDNode).
1306     // We still want the value to appear for the user if possible -- if it has
1307     // an associated VReg, we can refer to that instead.
1308     auto VMI = FuncInfo.ValueMap.find(V);
1309     if (VMI != FuncInfo.ValueMap.end()) {
1310       unsigned Reg = VMI->second;
1311       // If this is a PHI node, it may be split up into several MI PHI nodes
1312       // (in FunctionLoweringInfo::set).
1313       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1314                        V->getType(), None);
1315       if (RFV.occupiesMultipleRegs()) {
1316         unsigned Offset = 0;
1317         unsigned BitsToDescribe = 0;
1318         if (auto VarSize = Var->getSizeInBits())
1319           BitsToDescribe = *VarSize;
1320         if (auto Fragment = Expr->getFragmentInfo())
1321           BitsToDescribe = Fragment->SizeInBits;
1322         for (auto RegAndSize : RFV.getRegsAndSizes()) {
1323           unsigned RegisterSize = RegAndSize.second;
1324           // Bail out if all bits are described already.
1325           if (Offset >= BitsToDescribe)
1326             break;
1327           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1328               ? BitsToDescribe - Offset
1329               : RegisterSize;
1330           auto FragmentExpr = DIExpression::createFragmentExpression(
1331               Expr, Offset, FragmentSize);
1332           if (!FragmentExpr)
1333               continue;
1334           SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first,
1335                                     false, dl, SDNodeOrder);
1336           DAG.AddDbgValue(SDV, nullptr, false);
1337           Offset += RegisterSize;
1338         }
1339       } else {
1340         SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder);
1341         DAG.AddDbgValue(SDV, nullptr, false);
1342       }
1343       return true;
1344     }
1345   }
1346 
1347   return false;
1348 }
1349 
1350 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1351   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1352   for (auto &Pair : DanglingDebugInfoMap)
1353     for (auto &DDI : Pair.getSecond())
1354       salvageUnresolvedDbgValue(DDI);
1355   clearDanglingDebugInfo();
1356 }
1357 
1358 /// getCopyFromRegs - If there was virtual register allocated for the value V
1359 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1360 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1361   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1362   SDValue Result;
1363 
1364   if (It != FuncInfo.ValueMap.end()) {
1365     unsigned InReg = It->second;
1366 
1367     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1368                      DAG.getDataLayout(), InReg, Ty,
1369                      None); // This is not an ABI copy.
1370     SDValue Chain = DAG.getEntryNode();
1371     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1372                                  V);
1373     resolveDanglingDebugInfo(V, Result);
1374   }
1375 
1376   return Result;
1377 }
1378 
1379 /// getValue - Return an SDValue for the given Value.
1380 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1381   // If we already have an SDValue for this value, use it. It's important
1382   // to do this first, so that we don't create a CopyFromReg if we already
1383   // have a regular SDValue.
1384   SDValue &N = NodeMap[V];
1385   if (N.getNode()) return N;
1386 
1387   // If there's a virtual register allocated and initialized for this
1388   // value, use it.
1389   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1390     return copyFromReg;
1391 
1392   // Otherwise create a new SDValue and remember it.
1393   SDValue Val = getValueImpl(V);
1394   NodeMap[V] = Val;
1395   resolveDanglingDebugInfo(V, Val);
1396   return Val;
1397 }
1398 
1399 // Return true if SDValue exists for the given Value
1400 bool SelectionDAGBuilder::findValue(const Value *V) const {
1401   return (NodeMap.find(V) != NodeMap.end()) ||
1402     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1403 }
1404 
1405 /// getNonRegisterValue - Return an SDValue for the given Value, but
1406 /// don't look in FuncInfo.ValueMap for a virtual register.
1407 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1408   // If we already have an SDValue for this value, use it.
1409   SDValue &N = NodeMap[V];
1410   if (N.getNode()) {
1411     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1412       // Remove the debug location from the node as the node is about to be used
1413       // in a location which may differ from the original debug location.  This
1414       // is relevant to Constant and ConstantFP nodes because they can appear
1415       // as constant expressions inside PHI nodes.
1416       N->setDebugLoc(DebugLoc());
1417     }
1418     return N;
1419   }
1420 
1421   // Otherwise create a new SDValue and remember it.
1422   SDValue Val = getValueImpl(V);
1423   NodeMap[V] = Val;
1424   resolveDanglingDebugInfo(V, Val);
1425   return Val;
1426 }
1427 
1428 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1429 /// Create an SDValue for the given value.
1430 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1431   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1432 
1433   if (const Constant *C = dyn_cast<Constant>(V)) {
1434     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1435 
1436     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1437       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1438 
1439     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1440       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1441 
1442     if (isa<ConstantPointerNull>(C)) {
1443       unsigned AS = V->getType()->getPointerAddressSpace();
1444       return DAG.getConstant(0, getCurSDLoc(),
1445                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1446     }
1447 
1448     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1449       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1450 
1451     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1452       return DAG.getUNDEF(VT);
1453 
1454     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1455       visit(CE->getOpcode(), *CE);
1456       SDValue N1 = NodeMap[V];
1457       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1458       return N1;
1459     }
1460 
1461     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1462       SmallVector<SDValue, 4> Constants;
1463       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1464            OI != OE; ++OI) {
1465         SDNode *Val = getValue(*OI).getNode();
1466         // If the operand is an empty aggregate, there are no values.
1467         if (!Val) continue;
1468         // Add each leaf value from the operand to the Constants list
1469         // to form a flattened list of all the values.
1470         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1471           Constants.push_back(SDValue(Val, i));
1472       }
1473 
1474       return DAG.getMergeValues(Constants, getCurSDLoc());
1475     }
1476 
1477     if (const ConstantDataSequential *CDS =
1478           dyn_cast<ConstantDataSequential>(C)) {
1479       SmallVector<SDValue, 4> Ops;
1480       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1481         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1482         // Add each leaf value from the operand to the Constants list
1483         // to form a flattened list of all the values.
1484         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1485           Ops.push_back(SDValue(Val, i));
1486       }
1487 
1488       if (isa<ArrayType>(CDS->getType()))
1489         return DAG.getMergeValues(Ops, getCurSDLoc());
1490       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1491     }
1492 
1493     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1494       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1495              "Unknown struct or array constant!");
1496 
1497       SmallVector<EVT, 4> ValueVTs;
1498       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1499       unsigned NumElts = ValueVTs.size();
1500       if (NumElts == 0)
1501         return SDValue(); // empty struct
1502       SmallVector<SDValue, 4> Constants(NumElts);
1503       for (unsigned i = 0; i != NumElts; ++i) {
1504         EVT EltVT = ValueVTs[i];
1505         if (isa<UndefValue>(C))
1506           Constants[i] = DAG.getUNDEF(EltVT);
1507         else if (EltVT.isFloatingPoint())
1508           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1509         else
1510           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1511       }
1512 
1513       return DAG.getMergeValues(Constants, getCurSDLoc());
1514     }
1515 
1516     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1517       return DAG.getBlockAddress(BA, VT);
1518 
1519     VectorType *VecTy = cast<VectorType>(V->getType());
1520     unsigned NumElements = VecTy->getNumElements();
1521 
1522     // Now that we know the number and type of the elements, get that number of
1523     // elements into the Ops array based on what kind of constant it is.
1524     SmallVector<SDValue, 16> Ops;
1525     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1526       for (unsigned i = 0; i != NumElements; ++i)
1527         Ops.push_back(getValue(CV->getOperand(i)));
1528     } else {
1529       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1530       EVT EltVT =
1531           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1532 
1533       SDValue Op;
1534       if (EltVT.isFloatingPoint())
1535         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1536       else
1537         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1538       Ops.assign(NumElements, Op);
1539     }
1540 
1541     // Create a BUILD_VECTOR node.
1542     return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1543   }
1544 
1545   // If this is a static alloca, generate it as the frameindex instead of
1546   // computation.
1547   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1548     DenseMap<const AllocaInst*, int>::iterator SI =
1549       FuncInfo.StaticAllocaMap.find(AI);
1550     if (SI != FuncInfo.StaticAllocaMap.end())
1551       return DAG.getFrameIndex(SI->second,
1552                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1553   }
1554 
1555   // If this is an instruction which fast-isel has deferred, select it now.
1556   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1557     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1558 
1559     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1560                      Inst->getType(), getABIRegCopyCC(V));
1561     SDValue Chain = DAG.getEntryNode();
1562     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1563   }
1564 
1565   llvm_unreachable("Can't get register for value!");
1566 }
1567 
1568 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1569   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1570   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1571   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1572   bool IsSEH = isAsynchronousEHPersonality(Pers);
1573   bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX;
1574   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1575   if (!IsSEH)
1576     CatchPadMBB->setIsEHScopeEntry();
1577   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1578   if (IsMSVCCXX || IsCoreCLR)
1579     CatchPadMBB->setIsEHFuncletEntry();
1580   // Wasm does not need catchpads anymore
1581   if (!IsWasmCXX)
1582     DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other,
1583                             getControlRoot()));
1584 }
1585 
1586 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1587   // Update machine-CFG edge.
1588   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1589   FuncInfo.MBB->addSuccessor(TargetMBB);
1590 
1591   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1592   bool IsSEH = isAsynchronousEHPersonality(Pers);
1593   if (IsSEH) {
1594     // If this is not a fall-through branch or optimizations are switched off,
1595     // emit the branch.
1596     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1597         TM.getOptLevel() == CodeGenOpt::None)
1598       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1599                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1600     return;
1601   }
1602 
1603   // Figure out the funclet membership for the catchret's successor.
1604   // This will be used by the FuncletLayout pass to determine how to order the
1605   // BB's.
1606   // A 'catchret' returns to the outer scope's color.
1607   Value *ParentPad = I.getCatchSwitchParentPad();
1608   const BasicBlock *SuccessorColor;
1609   if (isa<ConstantTokenNone>(ParentPad))
1610     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1611   else
1612     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1613   assert(SuccessorColor && "No parent funclet for catchret!");
1614   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1615   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1616 
1617   // Create the terminator node.
1618   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1619                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1620                             DAG.getBasicBlock(SuccessorColorMBB));
1621   DAG.setRoot(Ret);
1622 }
1623 
1624 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1625   // Don't emit any special code for the cleanuppad instruction. It just marks
1626   // the start of an EH scope/funclet.
1627   FuncInfo.MBB->setIsEHScopeEntry();
1628   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1629   if (Pers != EHPersonality::Wasm_CXX) {
1630     FuncInfo.MBB->setIsEHFuncletEntry();
1631     FuncInfo.MBB->setIsCleanupFuncletEntry();
1632   }
1633 }
1634 
1635 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and
1636 // the control flow always stops at the single catch pad, as it does for a
1637 // cleanup pad. In case the exception caught is not of the types the catch pad
1638 // catches, it will be rethrown by a rethrow.
1639 static void findWasmUnwindDestinations(
1640     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1641     BranchProbability Prob,
1642     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1643         &UnwindDests) {
1644   while (EHPadBB) {
1645     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1646     if (isa<CleanupPadInst>(Pad)) {
1647       // Stop on cleanup pads.
1648       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1649       UnwindDests.back().first->setIsEHScopeEntry();
1650       break;
1651     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1652       // Add the catchpad handlers to the possible destinations. We don't
1653       // continue to the unwind destination of the catchswitch for wasm.
1654       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1655         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1656         UnwindDests.back().first->setIsEHScopeEntry();
1657       }
1658       break;
1659     } else {
1660       continue;
1661     }
1662   }
1663 }
1664 
1665 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1666 /// many places it could ultimately go. In the IR, we have a single unwind
1667 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1668 /// This function skips over imaginary basic blocks that hold catchswitch
1669 /// instructions, and finds all the "real" machine
1670 /// basic block destinations. As those destinations may not be successors of
1671 /// EHPadBB, here we also calculate the edge probability to those destinations.
1672 /// The passed-in Prob is the edge probability to EHPadBB.
1673 static void findUnwindDestinations(
1674     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1675     BranchProbability Prob,
1676     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1677         &UnwindDests) {
1678   EHPersonality Personality =
1679     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1680   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1681   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1682   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1683   bool IsSEH = isAsynchronousEHPersonality(Personality);
1684 
1685   if (IsWasmCXX) {
1686     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1687     assert(UnwindDests.size() <= 1 &&
1688            "There should be at most one unwind destination for wasm");
1689     return;
1690   }
1691 
1692   while (EHPadBB) {
1693     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1694     BasicBlock *NewEHPadBB = nullptr;
1695     if (isa<LandingPadInst>(Pad)) {
1696       // Stop on landingpads. They are not funclets.
1697       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1698       break;
1699     } else if (isa<CleanupPadInst>(Pad)) {
1700       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1701       // personalities.
1702       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1703       UnwindDests.back().first->setIsEHScopeEntry();
1704       UnwindDests.back().first->setIsEHFuncletEntry();
1705       break;
1706     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1707       // Add the catchpad handlers to the possible destinations.
1708       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1709         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1710         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1711         if (IsMSVCCXX || IsCoreCLR)
1712           UnwindDests.back().first->setIsEHFuncletEntry();
1713         if (!IsSEH)
1714           UnwindDests.back().first->setIsEHScopeEntry();
1715       }
1716       NewEHPadBB = CatchSwitch->getUnwindDest();
1717     } else {
1718       continue;
1719     }
1720 
1721     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1722     if (BPI && NewEHPadBB)
1723       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1724     EHPadBB = NewEHPadBB;
1725   }
1726 }
1727 
1728 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1729   // Update successor info.
1730   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1731   auto UnwindDest = I.getUnwindDest();
1732   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1733   BranchProbability UnwindDestProb =
1734       (BPI && UnwindDest)
1735           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1736           : BranchProbability::getZero();
1737   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1738   for (auto &UnwindDest : UnwindDests) {
1739     UnwindDest.first->setIsEHPad();
1740     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1741   }
1742   FuncInfo.MBB->normalizeSuccProbs();
1743 
1744   // Create the terminator node.
1745   SDValue Ret =
1746       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1747   DAG.setRoot(Ret);
1748 }
1749 
1750 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1751   report_fatal_error("visitCatchSwitch not yet implemented!");
1752 }
1753 
1754 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1755   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1756   auto &DL = DAG.getDataLayout();
1757   SDValue Chain = getControlRoot();
1758   SmallVector<ISD::OutputArg, 8> Outs;
1759   SmallVector<SDValue, 8> OutVals;
1760 
1761   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1762   // lower
1763   //
1764   //   %val = call <ty> @llvm.experimental.deoptimize()
1765   //   ret <ty> %val
1766   //
1767   // differently.
1768   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1769     LowerDeoptimizingReturn();
1770     return;
1771   }
1772 
1773   if (!FuncInfo.CanLowerReturn) {
1774     unsigned DemoteReg = FuncInfo.DemoteRegister;
1775     const Function *F = I.getParent()->getParent();
1776 
1777     // Emit a store of the return value through the virtual register.
1778     // Leave Outs empty so that LowerReturn won't try to load return
1779     // registers the usual way.
1780     SmallVector<EVT, 1> PtrValueVTs;
1781     ComputeValueVTs(TLI, DL,
1782                     F->getReturnType()->getPointerTo(
1783                         DAG.getDataLayout().getAllocaAddrSpace()),
1784                     PtrValueVTs);
1785 
1786     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1787                                         DemoteReg, PtrValueVTs[0]);
1788     SDValue RetOp = getValue(I.getOperand(0));
1789 
1790     SmallVector<EVT, 4> ValueVTs;
1791     SmallVector<uint64_t, 4> Offsets;
1792     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1793     unsigned NumValues = ValueVTs.size();
1794 
1795     SmallVector<SDValue, 4> Chains(NumValues);
1796     for (unsigned i = 0; i != NumValues; ++i) {
1797       // An aggregate return value cannot wrap around the address space, so
1798       // offsets to its parts don't wrap either.
1799       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]);
1800       Chains[i] = DAG.getStore(
1801           Chain, getCurSDLoc(), SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1802           // FIXME: better loc info would be nice.
1803           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
1804     }
1805 
1806     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1807                         MVT::Other, Chains);
1808   } else if (I.getNumOperands() != 0) {
1809     SmallVector<EVT, 4> ValueVTs;
1810     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1811     unsigned NumValues = ValueVTs.size();
1812     if (NumValues) {
1813       SDValue RetOp = getValue(I.getOperand(0));
1814 
1815       const Function *F = I.getParent()->getParent();
1816 
1817       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1818       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1819                                           Attribute::SExt))
1820         ExtendKind = ISD::SIGN_EXTEND;
1821       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1822                                                Attribute::ZExt))
1823         ExtendKind = ISD::ZERO_EXTEND;
1824 
1825       LLVMContext &Context = F->getContext();
1826       bool RetInReg = F->getAttributes().hasAttribute(
1827           AttributeList::ReturnIndex, Attribute::InReg);
1828 
1829       for (unsigned j = 0; j != NumValues; ++j) {
1830         EVT VT = ValueVTs[j];
1831 
1832         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1833           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1834 
1835         CallingConv::ID CC = F->getCallingConv();
1836 
1837         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1838         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1839         SmallVector<SDValue, 4> Parts(NumParts);
1840         getCopyToParts(DAG, getCurSDLoc(),
1841                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1842                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1843 
1844         // 'inreg' on function refers to return value
1845         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1846         if (RetInReg)
1847           Flags.setInReg();
1848 
1849         // Propagate extension type if any
1850         if (ExtendKind == ISD::SIGN_EXTEND)
1851           Flags.setSExt();
1852         else if (ExtendKind == ISD::ZERO_EXTEND)
1853           Flags.setZExt();
1854 
1855         for (unsigned i = 0; i < NumParts; ++i) {
1856           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1857                                         VT, /*isfixed=*/true, 0, 0));
1858           OutVals.push_back(Parts[i]);
1859         }
1860       }
1861     }
1862   }
1863 
1864   // Push in swifterror virtual register as the last element of Outs. This makes
1865   // sure swifterror virtual register will be returned in the swifterror
1866   // physical register.
1867   const Function *F = I.getParent()->getParent();
1868   if (TLI.supportSwiftError() &&
1869       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1870     assert(FuncInfo.SwiftErrorArg && "Need a swift error argument");
1871     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1872     Flags.setSwiftError();
1873     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1874                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1875                                   true /*isfixed*/, 1 /*origidx*/,
1876                                   0 /*partOffs*/));
1877     // Create SDNode for the swifterror virtual register.
1878     OutVals.push_back(
1879         DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt(
1880                             &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first,
1881                         EVT(TLI.getPointerTy(DL))));
1882   }
1883 
1884   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
1885   CallingConv::ID CallConv =
1886     DAG.getMachineFunction().getFunction().getCallingConv();
1887   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1888       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1889 
1890   // Verify that the target's LowerReturn behaved as expected.
1891   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1892          "LowerReturn didn't return a valid chain!");
1893 
1894   // Update the DAG with the new chain value resulting from return lowering.
1895   DAG.setRoot(Chain);
1896 }
1897 
1898 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1899 /// created for it, emit nodes to copy the value into the virtual
1900 /// registers.
1901 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1902   // Skip empty types
1903   if (V->getType()->isEmptyTy())
1904     return;
1905 
1906   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1907   if (VMI != FuncInfo.ValueMap.end()) {
1908     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1909     CopyValueToVirtualRegister(V, VMI->second);
1910   }
1911 }
1912 
1913 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1914 /// the current basic block, add it to ValueMap now so that we'll get a
1915 /// CopyTo/FromReg.
1916 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1917   // No need to export constants.
1918   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1919 
1920   // Already exported?
1921   if (FuncInfo.isExportedInst(V)) return;
1922 
1923   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1924   CopyValueToVirtualRegister(V, Reg);
1925 }
1926 
1927 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1928                                                      const BasicBlock *FromBB) {
1929   // The operands of the setcc have to be in this block.  We don't know
1930   // how to export them from some other block.
1931   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1932     // Can export from current BB.
1933     if (VI->getParent() == FromBB)
1934       return true;
1935 
1936     // Is already exported, noop.
1937     return FuncInfo.isExportedInst(V);
1938   }
1939 
1940   // If this is an argument, we can export it if the BB is the entry block or
1941   // if it is already exported.
1942   if (isa<Argument>(V)) {
1943     if (FromBB == &FromBB->getParent()->getEntryBlock())
1944       return true;
1945 
1946     // Otherwise, can only export this if it is already exported.
1947     return FuncInfo.isExportedInst(V);
1948   }
1949 
1950   // Otherwise, constants can always be exported.
1951   return true;
1952 }
1953 
1954 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1955 BranchProbability
1956 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1957                                         const MachineBasicBlock *Dst) const {
1958   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1959   const BasicBlock *SrcBB = Src->getBasicBlock();
1960   const BasicBlock *DstBB = Dst->getBasicBlock();
1961   if (!BPI) {
1962     // If BPI is not available, set the default probability as 1 / N, where N is
1963     // the number of successors.
1964     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
1965     return BranchProbability(1, SuccSize);
1966   }
1967   return BPI->getEdgeProbability(SrcBB, DstBB);
1968 }
1969 
1970 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
1971                                                MachineBasicBlock *Dst,
1972                                                BranchProbability Prob) {
1973   if (!FuncInfo.BPI)
1974     Src->addSuccessorWithoutProb(Dst);
1975   else {
1976     if (Prob.isUnknown())
1977       Prob = getEdgeProbability(Src, Dst);
1978     Src->addSuccessor(Dst, Prob);
1979   }
1980 }
1981 
1982 static bool InBlock(const Value *V, const BasicBlock *BB) {
1983   if (const Instruction *I = dyn_cast<Instruction>(V))
1984     return I->getParent() == BB;
1985   return true;
1986 }
1987 
1988 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1989 /// This function emits a branch and is used at the leaves of an OR or an
1990 /// AND operator tree.
1991 void
1992 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1993                                                   MachineBasicBlock *TBB,
1994                                                   MachineBasicBlock *FBB,
1995                                                   MachineBasicBlock *CurBB,
1996                                                   MachineBasicBlock *SwitchBB,
1997                                                   BranchProbability TProb,
1998                                                   BranchProbability FProb,
1999                                                   bool InvertCond) {
2000   const BasicBlock *BB = CurBB->getBasicBlock();
2001 
2002   // If the leaf of the tree is a comparison, merge the condition into
2003   // the caseblock.
2004   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2005     // The operands of the cmp have to be in this block.  We don't know
2006     // how to export them from some other block.  If this is the first block
2007     // of the sequence, no exporting is needed.
2008     if (CurBB == SwitchBB ||
2009         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2010          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2011       ISD::CondCode Condition;
2012       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2013         ICmpInst::Predicate Pred =
2014             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2015         Condition = getICmpCondCode(Pred);
2016       } else {
2017         const FCmpInst *FC = cast<FCmpInst>(Cond);
2018         FCmpInst::Predicate Pred =
2019             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2020         Condition = getFCmpCondCode(Pred);
2021         if (TM.Options.NoNaNsFPMath)
2022           Condition = getFCmpCodeWithoutNaN(Condition);
2023       }
2024 
2025       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2026                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2027       SwitchCases.push_back(CB);
2028       return;
2029     }
2030   }
2031 
2032   // Create a CaseBlock record representing this branch.
2033   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2034   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2035                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2036   SwitchCases.push_back(CB);
2037 }
2038 
2039 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2040                                                MachineBasicBlock *TBB,
2041                                                MachineBasicBlock *FBB,
2042                                                MachineBasicBlock *CurBB,
2043                                                MachineBasicBlock *SwitchBB,
2044                                                Instruction::BinaryOps Opc,
2045                                                BranchProbability TProb,
2046                                                BranchProbability FProb,
2047                                                bool InvertCond) {
2048   // Skip over not part of the tree and remember to invert op and operands at
2049   // next level.
2050   Value *NotCond;
2051   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2052       InBlock(NotCond, CurBB->getBasicBlock())) {
2053     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2054                          !InvertCond);
2055     return;
2056   }
2057 
2058   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2059   // Compute the effective opcode for Cond, taking into account whether it needs
2060   // to be inverted, e.g.
2061   //   and (not (or A, B)), C
2062   // gets lowered as
2063   //   and (and (not A, not B), C)
2064   unsigned BOpc = 0;
2065   if (BOp) {
2066     BOpc = BOp->getOpcode();
2067     if (InvertCond) {
2068       if (BOpc == Instruction::And)
2069         BOpc = Instruction::Or;
2070       else if (BOpc == Instruction::Or)
2071         BOpc = Instruction::And;
2072     }
2073   }
2074 
2075   // If this node is not part of the or/and tree, emit it as a branch.
2076   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
2077       BOpc != unsigned(Opc) || !BOp->hasOneUse() ||
2078       BOp->getParent() != CurBB->getBasicBlock() ||
2079       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
2080       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
2081     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2082                                  TProb, FProb, InvertCond);
2083     return;
2084   }
2085 
2086   //  Create TmpBB after CurBB.
2087   MachineFunction::iterator BBI(CurBB);
2088   MachineFunction &MF = DAG.getMachineFunction();
2089   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2090   CurBB->getParent()->insert(++BBI, TmpBB);
2091 
2092   if (Opc == Instruction::Or) {
2093     // Codegen X | Y as:
2094     // BB1:
2095     //   jmp_if_X TBB
2096     //   jmp TmpBB
2097     // TmpBB:
2098     //   jmp_if_Y TBB
2099     //   jmp FBB
2100     //
2101 
2102     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2103     // The requirement is that
2104     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2105     //     = TrueProb for original BB.
2106     // Assuming the original probabilities are A and B, one choice is to set
2107     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2108     // A/(1+B) and 2B/(1+B). This choice assumes that
2109     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2110     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2111     // TmpBB, but the math is more complicated.
2112 
2113     auto NewTrueProb = TProb / 2;
2114     auto NewFalseProb = TProb / 2 + FProb;
2115     // Emit the LHS condition.
2116     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
2117                          NewTrueProb, NewFalseProb, InvertCond);
2118 
2119     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2120     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2121     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2122     // Emit the RHS condition into TmpBB.
2123     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2124                          Probs[0], Probs[1], InvertCond);
2125   } else {
2126     assert(Opc == Instruction::And && "Unknown merge op!");
2127     // Codegen X & Y as:
2128     // BB1:
2129     //   jmp_if_X TmpBB
2130     //   jmp FBB
2131     // TmpBB:
2132     //   jmp_if_Y TBB
2133     //   jmp FBB
2134     //
2135     //  This requires creation of TmpBB after CurBB.
2136 
2137     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2138     // The requirement is that
2139     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2140     //     = FalseProb for original BB.
2141     // Assuming the original probabilities are A and B, one choice is to set
2142     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2143     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2144     // TrueProb for BB1 * FalseProb for TmpBB.
2145 
2146     auto NewTrueProb = TProb + FProb / 2;
2147     auto NewFalseProb = FProb / 2;
2148     // Emit the LHS condition.
2149     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
2150                          NewTrueProb, NewFalseProb, InvertCond);
2151 
2152     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2153     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2154     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2155     // Emit the RHS condition into TmpBB.
2156     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2157                          Probs[0], Probs[1], InvertCond);
2158   }
2159 }
2160 
2161 /// If the set of cases should be emitted as a series of branches, return true.
2162 /// If we should emit this as a bunch of and/or'd together conditions, return
2163 /// false.
2164 bool
2165 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2166   if (Cases.size() != 2) return true;
2167 
2168   // If this is two comparisons of the same values or'd or and'd together, they
2169   // will get folded into a single comparison, so don't emit two blocks.
2170   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2171        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2172       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2173        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2174     return false;
2175   }
2176 
2177   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2178   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2179   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2180       Cases[0].CC == Cases[1].CC &&
2181       isa<Constant>(Cases[0].CmpRHS) &&
2182       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2183     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2184       return false;
2185     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2186       return false;
2187   }
2188 
2189   return true;
2190 }
2191 
2192 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2193   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2194 
2195   // Update machine-CFG edges.
2196   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2197 
2198   if (I.isUnconditional()) {
2199     // Update machine-CFG edges.
2200     BrMBB->addSuccessor(Succ0MBB);
2201 
2202     // If this is not a fall-through branch or optimizations are switched off,
2203     // emit the branch.
2204     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2205       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2206                               MVT::Other, getControlRoot(),
2207                               DAG.getBasicBlock(Succ0MBB)));
2208 
2209     return;
2210   }
2211 
2212   // If this condition is one of the special cases we handle, do special stuff
2213   // now.
2214   const Value *CondVal = I.getCondition();
2215   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2216 
2217   // If this is a series of conditions that are or'd or and'd together, emit
2218   // this as a sequence of branches instead of setcc's with and/or operations.
2219   // As long as jumps are not expensive, this should improve performance.
2220   // For example, instead of something like:
2221   //     cmp A, B
2222   //     C = seteq
2223   //     cmp D, E
2224   //     F = setle
2225   //     or C, F
2226   //     jnz foo
2227   // Emit:
2228   //     cmp A, B
2229   //     je foo
2230   //     cmp D, E
2231   //     jle foo
2232   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
2233     Instruction::BinaryOps Opcode = BOp->getOpcode();
2234     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
2235         !I.getMetadata(LLVMContext::MD_unpredictable) &&
2236         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
2237       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
2238                            Opcode,
2239                            getEdgeProbability(BrMBB, Succ0MBB),
2240                            getEdgeProbability(BrMBB, Succ1MBB),
2241                            /*InvertCond=*/false);
2242       // If the compares in later blocks need to use values not currently
2243       // exported from this block, export them now.  This block should always
2244       // be the first entry.
2245       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2246 
2247       // Allow some cases to be rejected.
2248       if (ShouldEmitAsBranches(SwitchCases)) {
2249         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
2250           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
2251           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
2252         }
2253 
2254         // Emit the branch for this block.
2255         visitSwitchCase(SwitchCases[0], BrMBB);
2256         SwitchCases.erase(SwitchCases.begin());
2257         return;
2258       }
2259 
2260       // Okay, we decided not to do this, remove any inserted MBB's and clear
2261       // SwitchCases.
2262       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
2263         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
2264 
2265       SwitchCases.clear();
2266     }
2267   }
2268 
2269   // Create a CaseBlock record representing this branch.
2270   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2271                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2272 
2273   // Use visitSwitchCase to actually insert the fast branch sequence for this
2274   // cond branch.
2275   visitSwitchCase(CB, BrMBB);
2276 }
2277 
2278 /// visitSwitchCase - Emits the necessary code to represent a single node in
2279 /// the binary search tree resulting from lowering a switch instruction.
2280 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2281                                           MachineBasicBlock *SwitchBB) {
2282   SDValue Cond;
2283   SDValue CondLHS = getValue(CB.CmpLHS);
2284   SDLoc dl = CB.DL;
2285 
2286   // Build the setcc now.
2287   if (!CB.CmpMHS) {
2288     // Fold "(X == true)" to X and "(X == false)" to !X to
2289     // handle common cases produced by branch lowering.
2290     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2291         CB.CC == ISD::SETEQ)
2292       Cond = CondLHS;
2293     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2294              CB.CC == ISD::SETEQ) {
2295       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2296       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2297     } else
2298       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
2299   } else {
2300     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2301 
2302     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2303     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2304 
2305     SDValue CmpOp = getValue(CB.CmpMHS);
2306     EVT VT = CmpOp.getValueType();
2307 
2308     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2309       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2310                           ISD::SETLE);
2311     } else {
2312       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2313                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2314       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2315                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2316     }
2317   }
2318 
2319   // Update successor info
2320   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2321   // TrueBB and FalseBB are always different unless the incoming IR is
2322   // degenerate. This only happens when running llc on weird IR.
2323   if (CB.TrueBB != CB.FalseBB)
2324     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2325   SwitchBB->normalizeSuccProbs();
2326 
2327   // If the lhs block is the next block, invert the condition so that we can
2328   // fall through to the lhs instead of the rhs block.
2329   if (CB.TrueBB == NextBlock(SwitchBB)) {
2330     std::swap(CB.TrueBB, CB.FalseBB);
2331     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2332     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2333   }
2334 
2335   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2336                                MVT::Other, getControlRoot(), Cond,
2337                                DAG.getBasicBlock(CB.TrueBB));
2338 
2339   // Insert the false branch. Do this even if it's a fall through branch,
2340   // this makes it easier to do DAG optimizations which require inverting
2341   // the branch condition.
2342   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2343                        DAG.getBasicBlock(CB.FalseBB));
2344 
2345   DAG.setRoot(BrCond);
2346 }
2347 
2348 /// visitJumpTable - Emit JumpTable node in the current MBB
2349 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
2350   // Emit the code for the jump table
2351   assert(JT.Reg != -1U && "Should lower JT Header first!");
2352   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2353   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2354                                      JT.Reg, PTy);
2355   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2356   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2357                                     MVT::Other, Index.getValue(1),
2358                                     Table, Index);
2359   DAG.setRoot(BrJumpTable);
2360 }
2361 
2362 /// visitJumpTableHeader - This function emits necessary code to produce index
2363 /// in the JumpTable from switch case.
2364 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
2365                                                JumpTableHeader &JTH,
2366                                                MachineBasicBlock *SwitchBB) {
2367   SDLoc dl = getCurSDLoc();
2368 
2369   // Subtract the lowest switch case value from the value being switched on and
2370   // conditional branch to default mbb if the result is greater than the
2371   // difference between smallest and largest cases.
2372   SDValue SwitchOp = getValue(JTH.SValue);
2373   EVT VT = SwitchOp.getValueType();
2374   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2375                             DAG.getConstant(JTH.First, dl, VT));
2376 
2377   // The SDNode we just created, which holds the value being switched on minus
2378   // the smallest case value, needs to be copied to a virtual register so it
2379   // can be used as an index into the jump table in a subsequent basic block.
2380   // This value may be smaller or larger than the target's pointer type, and
2381   // therefore require extension or truncating.
2382   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2383   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2384 
2385   unsigned JumpTableReg =
2386       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2387   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2388                                     JumpTableReg, SwitchOp);
2389   JT.Reg = JumpTableReg;
2390 
2391   // Emit the range check for the jump table, and branch to the default block
2392   // for the switch statement if the value being switched on exceeds the largest
2393   // case in the switch.
2394   SDValue CMP = DAG.getSetCC(
2395       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2396                                  Sub.getValueType()),
2397       Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2398 
2399   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2400                                MVT::Other, CopyTo, CMP,
2401                                DAG.getBasicBlock(JT.Default));
2402 
2403   // Avoid emitting unnecessary branches to the next block.
2404   if (JT.MBB != NextBlock(SwitchBB))
2405     BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2406                          DAG.getBasicBlock(JT.MBB));
2407 
2408   DAG.setRoot(BrCond);
2409 }
2410 
2411 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2412 /// variable if there exists one.
2413 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2414                                  SDValue &Chain) {
2415   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2416   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2417   MachineFunction &MF = DAG.getMachineFunction();
2418   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2419   MachineSDNode *Node =
2420       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2421   if (Global) {
2422     MachinePointerInfo MPInfo(Global);
2423     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2424                  MachineMemOperand::MODereferenceable;
2425     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2426         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy));
2427     DAG.setNodeMemRefs(Node, {MemRef});
2428   }
2429   return SDValue(Node, 0);
2430 }
2431 
2432 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2433 /// tail spliced into a stack protector check success bb.
2434 ///
2435 /// For a high level explanation of how this fits into the stack protector
2436 /// generation see the comment on the declaration of class
2437 /// StackProtectorDescriptor.
2438 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2439                                                   MachineBasicBlock *ParentBB) {
2440 
2441   // First create the loads to the guard/stack slot for the comparison.
2442   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2443   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2444 
2445   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2446   int FI = MFI.getStackProtectorIndex();
2447 
2448   SDValue Guard;
2449   SDLoc dl = getCurSDLoc();
2450   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2451   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2452   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2453 
2454   // Generate code to load the content of the guard slot.
2455   SDValue GuardVal = DAG.getLoad(
2456       PtrTy, dl, DAG.getEntryNode(), StackSlotPtr,
2457       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2458       MachineMemOperand::MOVolatile);
2459 
2460   if (TLI.useStackGuardXorFP())
2461     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2462 
2463   // Retrieve guard check function, nullptr if instrumentation is inlined.
2464   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2465     // The target provides a guard check function to validate the guard value.
2466     // Generate a call to that function with the content of the guard slot as
2467     // argument.
2468     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2469     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2470 
2471     TargetLowering::ArgListTy Args;
2472     TargetLowering::ArgListEntry Entry;
2473     Entry.Node = GuardVal;
2474     Entry.Ty = FnTy->getParamType(0);
2475     if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg))
2476       Entry.IsInReg = true;
2477     Args.push_back(Entry);
2478 
2479     TargetLowering::CallLoweringInfo CLI(DAG);
2480     CLI.setDebugLoc(getCurSDLoc())
2481         .setChain(DAG.getEntryNode())
2482         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2483                    getValue(GuardCheckFn), std::move(Args));
2484 
2485     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2486     DAG.setRoot(Result.second);
2487     return;
2488   }
2489 
2490   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2491   // Otherwise, emit a volatile load to retrieve the stack guard value.
2492   SDValue Chain = DAG.getEntryNode();
2493   if (TLI.useLoadStackGuardNode()) {
2494     Guard = getLoadStackGuard(DAG, dl, Chain);
2495   } else {
2496     const Value *IRGuard = TLI.getSDagStackGuard(M);
2497     SDValue GuardPtr = getValue(IRGuard);
2498 
2499     Guard =
2500         DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0),
2501                     Align, MachineMemOperand::MOVolatile);
2502   }
2503 
2504   // Perform the comparison via a subtract/getsetcc.
2505   EVT VT = Guard.getValueType();
2506   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal);
2507 
2508   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2509                                                         *DAG.getContext(),
2510                                                         Sub.getValueType()),
2511                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2512 
2513   // If the sub is not 0, then we know the guard/stackslot do not equal, so
2514   // branch to failure MBB.
2515   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2516                                MVT::Other, GuardVal.getOperand(0),
2517                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2518   // Otherwise branch to success MBB.
2519   SDValue Br = DAG.getNode(ISD::BR, dl,
2520                            MVT::Other, BrCond,
2521                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2522 
2523   DAG.setRoot(Br);
2524 }
2525 
2526 /// Codegen the failure basic block for a stack protector check.
2527 ///
2528 /// A failure stack protector machine basic block consists simply of a call to
2529 /// __stack_chk_fail().
2530 ///
2531 /// For a high level explanation of how this fits into the stack protector
2532 /// generation see the comment on the declaration of class
2533 /// StackProtectorDescriptor.
2534 void
2535 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2536   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2537   SDValue Chain =
2538       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2539                       None, false, getCurSDLoc(), false, false).second;
2540   // On PS4, the "return address" must still be within the calling function,
2541   // even if it's at the very end, so emit an explicit TRAP here.
2542   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2543   if (TM.getTargetTriple().isPS4CPU())
2544     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2545 
2546   DAG.setRoot(Chain);
2547 }
2548 
2549 /// visitBitTestHeader - This function emits necessary code to produce value
2550 /// suitable for "bit tests"
2551 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2552                                              MachineBasicBlock *SwitchBB) {
2553   SDLoc dl = getCurSDLoc();
2554 
2555   // Subtract the minimum value
2556   SDValue SwitchOp = getValue(B.SValue);
2557   EVT VT = SwitchOp.getValueType();
2558   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2559                             DAG.getConstant(B.First, dl, VT));
2560 
2561   // Check range
2562   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2563   SDValue RangeCmp = DAG.getSetCC(
2564       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2565                                  Sub.getValueType()),
2566       Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2567 
2568   // Determine the type of the test operands.
2569   bool UsePtrType = false;
2570   if (!TLI.isTypeLegal(VT))
2571     UsePtrType = true;
2572   else {
2573     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2574       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2575         // Switch table case range are encoded into series of masks.
2576         // Just use pointer type, it's guaranteed to fit.
2577         UsePtrType = true;
2578         break;
2579       }
2580   }
2581   if (UsePtrType) {
2582     VT = TLI.getPointerTy(DAG.getDataLayout());
2583     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2584   }
2585 
2586   B.RegVT = VT.getSimpleVT();
2587   B.Reg = FuncInfo.CreateReg(B.RegVT);
2588   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2589 
2590   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2591 
2592   addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2593   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2594   SwitchBB->normalizeSuccProbs();
2595 
2596   SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2597                                 MVT::Other, CopyTo, RangeCmp,
2598                                 DAG.getBasicBlock(B.Default));
2599 
2600   // Avoid emitting unnecessary branches to the next block.
2601   if (MBB != NextBlock(SwitchBB))
2602     BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2603                           DAG.getBasicBlock(MBB));
2604 
2605   DAG.setRoot(BrRange);
2606 }
2607 
2608 /// visitBitTestCase - this function produces one "bit test"
2609 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2610                                            MachineBasicBlock* NextMBB,
2611                                            BranchProbability BranchProbToNext,
2612                                            unsigned Reg,
2613                                            BitTestCase &B,
2614                                            MachineBasicBlock *SwitchBB) {
2615   SDLoc dl = getCurSDLoc();
2616   MVT VT = BB.RegVT;
2617   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2618   SDValue Cmp;
2619   unsigned PopCount = countPopulation(B.Mask);
2620   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2621   if (PopCount == 1) {
2622     // Testing for a single bit; just compare the shift count with what it
2623     // would need to be to shift a 1 bit in that position.
2624     Cmp = DAG.getSetCC(
2625         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2626         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2627         ISD::SETEQ);
2628   } else if (PopCount == BB.Range) {
2629     // There is only one zero bit in the range, test for it directly.
2630     Cmp = DAG.getSetCC(
2631         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2632         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2633         ISD::SETNE);
2634   } else {
2635     // Make desired shift
2636     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2637                                     DAG.getConstant(1, dl, VT), ShiftOp);
2638 
2639     // Emit bit tests and jumps
2640     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2641                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2642     Cmp = DAG.getSetCC(
2643         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2644         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2645   }
2646 
2647   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2648   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2649   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2650   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2651   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2652   // one as they are relative probabilities (and thus work more like weights),
2653   // and hence we need to normalize them to let the sum of them become one.
2654   SwitchBB->normalizeSuccProbs();
2655 
2656   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2657                               MVT::Other, getControlRoot(),
2658                               Cmp, DAG.getBasicBlock(B.TargetBB));
2659 
2660   // Avoid emitting unnecessary branches to the next block.
2661   if (NextMBB != NextBlock(SwitchBB))
2662     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2663                         DAG.getBasicBlock(NextMBB));
2664 
2665   DAG.setRoot(BrAnd);
2666 }
2667 
2668 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2669   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2670 
2671   // Retrieve successors. Look through artificial IR level blocks like
2672   // catchswitch for successors.
2673   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2674   const BasicBlock *EHPadBB = I.getSuccessor(1);
2675 
2676   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2677   // have to do anything here to lower funclet bundles.
2678   assert(!I.hasOperandBundlesOtherThan(
2679              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2680          "Cannot lower invokes with arbitrary operand bundles yet!");
2681 
2682   const Value *Callee(I.getCalledValue());
2683   const Function *Fn = dyn_cast<Function>(Callee);
2684   if (isa<InlineAsm>(Callee))
2685     visitInlineAsm(&I);
2686   else if (Fn && Fn->isIntrinsic()) {
2687     switch (Fn->getIntrinsicID()) {
2688     default:
2689       llvm_unreachable("Cannot invoke this intrinsic");
2690     case Intrinsic::donothing:
2691       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2692       break;
2693     case Intrinsic::experimental_patchpoint_void:
2694     case Intrinsic::experimental_patchpoint_i64:
2695       visitPatchpoint(&I, EHPadBB);
2696       break;
2697     case Intrinsic::experimental_gc_statepoint:
2698       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2699       break;
2700     }
2701   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2702     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2703     // Eventually we will support lowering the @llvm.experimental.deoptimize
2704     // intrinsic, and right now there are no plans to support other intrinsics
2705     // with deopt state.
2706     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2707   } else {
2708     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2709   }
2710 
2711   // If the value of the invoke is used outside of its defining block, make it
2712   // available as a virtual register.
2713   // We already took care of the exported value for the statepoint instruction
2714   // during call to the LowerStatepoint.
2715   if (!isStatepoint(I)) {
2716     CopyToExportRegsIfNeeded(&I);
2717   }
2718 
2719   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2720   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2721   BranchProbability EHPadBBProb =
2722       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2723           : BranchProbability::getZero();
2724   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2725 
2726   // Update successor info.
2727   addSuccessorWithProb(InvokeMBB, Return);
2728   for (auto &UnwindDest : UnwindDests) {
2729     UnwindDest.first->setIsEHPad();
2730     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2731   }
2732   InvokeMBB->normalizeSuccProbs();
2733 
2734   // Drop into normal successor.
2735   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2736                           DAG.getBasicBlock(Return)));
2737 }
2738 
2739 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2740   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2741 
2742   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2743   // have to do anything here to lower funclet bundles.
2744   assert(!I.hasOperandBundlesOtherThan(
2745              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2746          "Cannot lower callbrs with arbitrary operand bundles yet!");
2747 
2748   assert(isa<InlineAsm>(I.getCalledValue()) &&
2749          "Only know how to handle inlineasm callbr");
2750   visitInlineAsm(&I);
2751 
2752   // Retrieve successors.
2753   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
2754 
2755   // Update successor info.
2756   addSuccessorWithProb(CallBrMBB, Return);
2757   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
2758     MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)];
2759     addSuccessorWithProb(CallBrMBB, Target);
2760   }
2761   CallBrMBB->normalizeSuccProbs();
2762 
2763   // Drop into default successor.
2764   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2765                           MVT::Other, getControlRoot(),
2766                           DAG.getBasicBlock(Return)));
2767 }
2768 
2769 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2770   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2771 }
2772 
2773 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2774   assert(FuncInfo.MBB->isEHPad() &&
2775          "Call to landingpad not in landing pad!");
2776 
2777   // If there aren't registers to copy the values into (e.g., during SjLj
2778   // exceptions), then don't bother to create these DAG nodes.
2779   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2780   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2781   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2782       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2783     return;
2784 
2785   // If landingpad's return type is token type, we don't create DAG nodes
2786   // for its exception pointer and selector value. The extraction of exception
2787   // pointer or selector value from token type landingpads is not currently
2788   // supported.
2789   if (LP.getType()->isTokenTy())
2790     return;
2791 
2792   SmallVector<EVT, 2> ValueVTs;
2793   SDLoc dl = getCurSDLoc();
2794   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2795   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2796 
2797   // Get the two live-in registers as SDValues. The physregs have already been
2798   // copied into virtual registers.
2799   SDValue Ops[2];
2800   if (FuncInfo.ExceptionPointerVirtReg) {
2801     Ops[0] = DAG.getZExtOrTrunc(
2802         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2803                            FuncInfo.ExceptionPointerVirtReg,
2804                            TLI.getPointerTy(DAG.getDataLayout())),
2805         dl, ValueVTs[0]);
2806   } else {
2807     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2808   }
2809   Ops[1] = DAG.getZExtOrTrunc(
2810       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2811                          FuncInfo.ExceptionSelectorVirtReg,
2812                          TLI.getPointerTy(DAG.getDataLayout())),
2813       dl, ValueVTs[1]);
2814 
2815   // Merge into one.
2816   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2817                             DAG.getVTList(ValueVTs), Ops);
2818   setValue(&LP, Res);
2819 }
2820 
2821 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2822 #ifndef NDEBUG
2823   for (const CaseCluster &CC : Clusters)
2824     assert(CC.Low == CC.High && "Input clusters must be single-case");
2825 #endif
2826 
2827   llvm::sort(Clusters, [](const CaseCluster &a, const CaseCluster &b) {
2828     return a.Low->getValue().slt(b.Low->getValue());
2829   });
2830 
2831   // Merge adjacent clusters with the same destination.
2832   const unsigned N = Clusters.size();
2833   unsigned DstIndex = 0;
2834   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2835     CaseCluster &CC = Clusters[SrcIndex];
2836     const ConstantInt *CaseVal = CC.Low;
2837     MachineBasicBlock *Succ = CC.MBB;
2838 
2839     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2840         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2841       // If this case has the same successor and is a neighbour, merge it into
2842       // the previous cluster.
2843       Clusters[DstIndex - 1].High = CaseVal;
2844       Clusters[DstIndex - 1].Prob += CC.Prob;
2845     } else {
2846       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2847                    sizeof(Clusters[SrcIndex]));
2848     }
2849   }
2850   Clusters.resize(DstIndex);
2851 }
2852 
2853 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2854                                            MachineBasicBlock *Last) {
2855   // Update JTCases.
2856   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2857     if (JTCases[i].first.HeaderBB == First)
2858       JTCases[i].first.HeaderBB = Last;
2859 
2860   // Update BitTestCases.
2861   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2862     if (BitTestCases[i].Parent == First)
2863       BitTestCases[i].Parent = Last;
2864 }
2865 
2866 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2867   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2868 
2869   // Update machine-CFG edges with unique successors.
2870   SmallSet<BasicBlock*, 32> Done;
2871   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2872     BasicBlock *BB = I.getSuccessor(i);
2873     bool Inserted = Done.insert(BB).second;
2874     if (!Inserted)
2875         continue;
2876 
2877     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2878     addSuccessorWithProb(IndirectBrMBB, Succ);
2879   }
2880   IndirectBrMBB->normalizeSuccProbs();
2881 
2882   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2883                           MVT::Other, getControlRoot(),
2884                           getValue(I.getAddress())));
2885 }
2886 
2887 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2888   if (!DAG.getTarget().Options.TrapUnreachable)
2889     return;
2890 
2891   // We may be able to ignore unreachable behind a noreturn call.
2892   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
2893     const BasicBlock &BB = *I.getParent();
2894     if (&I != &BB.front()) {
2895       BasicBlock::const_iterator PredI =
2896         std::prev(BasicBlock::const_iterator(&I));
2897       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
2898         if (Call->doesNotReturn())
2899           return;
2900       }
2901     }
2902   }
2903 
2904   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2905 }
2906 
2907 void SelectionDAGBuilder::visitFSub(const User &I) {
2908   // -0.0 - X --> fneg
2909   Type *Ty = I.getType();
2910   if (isa<Constant>(I.getOperand(0)) &&
2911       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2912     SDValue Op2 = getValue(I.getOperand(1));
2913     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2914                              Op2.getValueType(), Op2));
2915     return;
2916   }
2917 
2918   visitBinary(I, ISD::FSUB);
2919 }
2920 
2921 /// Checks if the given instruction performs a vector reduction, in which case
2922 /// we have the freedom to alter the elements in the result as long as the
2923 /// reduction of them stays unchanged.
2924 static bool isVectorReductionOp(const User *I) {
2925   const Instruction *Inst = dyn_cast<Instruction>(I);
2926   if (!Inst || !Inst->getType()->isVectorTy())
2927     return false;
2928 
2929   auto OpCode = Inst->getOpcode();
2930   switch (OpCode) {
2931   case Instruction::Add:
2932   case Instruction::Mul:
2933   case Instruction::And:
2934   case Instruction::Or:
2935   case Instruction::Xor:
2936     break;
2937   case Instruction::FAdd:
2938   case Instruction::FMul:
2939     if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2940       if (FPOp->getFastMathFlags().isFast())
2941         break;
2942     LLVM_FALLTHROUGH;
2943   default:
2944     return false;
2945   }
2946 
2947   unsigned ElemNum = Inst->getType()->getVectorNumElements();
2948   // Ensure the reduction size is a power of 2.
2949   if (!isPowerOf2_32(ElemNum))
2950     return false;
2951 
2952   unsigned ElemNumToReduce = ElemNum;
2953 
2954   // Do DFS search on the def-use chain from the given instruction. We only
2955   // allow four kinds of operations during the search until we reach the
2956   // instruction that extracts the first element from the vector:
2957   //
2958   //   1. The reduction operation of the same opcode as the given instruction.
2959   //
2960   //   2. PHI node.
2961   //
2962   //   3. ShuffleVector instruction together with a reduction operation that
2963   //      does a partial reduction.
2964   //
2965   //   4. ExtractElement that extracts the first element from the vector, and we
2966   //      stop searching the def-use chain here.
2967   //
2968   // 3 & 4 above perform a reduction on all elements of the vector. We push defs
2969   // from 1-3 to the stack to continue the DFS. The given instruction is not
2970   // a reduction operation if we meet any other instructions other than those
2971   // listed above.
2972 
2973   SmallVector<const User *, 16> UsersToVisit{Inst};
2974   SmallPtrSet<const User *, 16> Visited;
2975   bool ReduxExtracted = false;
2976 
2977   while (!UsersToVisit.empty()) {
2978     auto User = UsersToVisit.back();
2979     UsersToVisit.pop_back();
2980     if (!Visited.insert(User).second)
2981       continue;
2982 
2983     for (const auto &U : User->users()) {
2984       auto Inst = dyn_cast<Instruction>(U);
2985       if (!Inst)
2986         return false;
2987 
2988       if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
2989         if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2990           if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast())
2991             return false;
2992         UsersToVisit.push_back(U);
2993       } else if (const ShuffleVectorInst *ShufInst =
2994                      dyn_cast<ShuffleVectorInst>(U)) {
2995         // Detect the following pattern: A ShuffleVector instruction together
2996         // with a reduction that do partial reduction on the first and second
2997         // ElemNumToReduce / 2 elements, and store the result in
2998         // ElemNumToReduce / 2 elements in another vector.
2999 
3000         unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
3001         if (ResultElements < ElemNum)
3002           return false;
3003 
3004         if (ElemNumToReduce == 1)
3005           return false;
3006         if (!isa<UndefValue>(U->getOperand(1)))
3007           return false;
3008         for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
3009           if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
3010             return false;
3011         for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
3012           if (ShufInst->getMaskValue(i) != -1)
3013             return false;
3014 
3015         // There is only one user of this ShuffleVector instruction, which
3016         // must be a reduction operation.
3017         if (!U->hasOneUse())
3018           return false;
3019 
3020         auto U2 = dyn_cast<Instruction>(*U->user_begin());
3021         if (!U2 || U2->getOpcode() != OpCode)
3022           return false;
3023 
3024         // Check operands of the reduction operation.
3025         if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
3026             (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
3027           UsersToVisit.push_back(U2);
3028           ElemNumToReduce /= 2;
3029         } else
3030           return false;
3031       } else if (isa<ExtractElementInst>(U)) {
3032         // At this moment we should have reduced all elements in the vector.
3033         if (ElemNumToReduce != 1)
3034           return false;
3035 
3036         const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
3037         if (!Val || !Val->isZero())
3038           return false;
3039 
3040         ReduxExtracted = true;
3041       } else
3042         return false;
3043     }
3044   }
3045   return ReduxExtracted;
3046 }
3047 
3048 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3049   SDNodeFlags Flags;
3050 
3051   SDValue Op = getValue(I.getOperand(0));
3052   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3053                                     Op, Flags);
3054   setValue(&I, UnNodeValue);
3055 }
3056 
3057 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3058   SDNodeFlags Flags;
3059   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3060     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3061     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3062   }
3063   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) {
3064     Flags.setExact(ExactOp->isExact());
3065   }
3066   if (isVectorReductionOp(&I)) {
3067     Flags.setVectorReduction(true);
3068     LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
3069   }
3070 
3071   SDValue Op1 = getValue(I.getOperand(0));
3072   SDValue Op2 = getValue(I.getOperand(1));
3073   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3074                                      Op1, Op2, Flags);
3075   setValue(&I, BinNodeValue);
3076 }
3077 
3078 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3079   SDValue Op1 = getValue(I.getOperand(0));
3080   SDValue Op2 = getValue(I.getOperand(1));
3081 
3082   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3083       Op1.getValueType(), DAG.getDataLayout());
3084 
3085   // Coerce the shift amount to the right type if we can.
3086   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3087     unsigned ShiftSize = ShiftTy.getSizeInBits();
3088     unsigned Op2Size = Op2.getValueSizeInBits();
3089     SDLoc DL = getCurSDLoc();
3090 
3091     // If the operand is smaller than the shift count type, promote it.
3092     if (ShiftSize > Op2Size)
3093       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
3094 
3095     // If the operand is larger than the shift count type but the shift
3096     // count type has enough bits to represent any shift value, truncate
3097     // it now. This is a common case and it exposes the truncate to
3098     // optimization early.
3099     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
3100       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
3101     // Otherwise we'll need to temporarily settle for some other convenient
3102     // type.  Type legalization will make adjustments once the shiftee is split.
3103     else
3104       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
3105   }
3106 
3107   bool nuw = false;
3108   bool nsw = false;
3109   bool exact = false;
3110 
3111   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3112 
3113     if (const OverflowingBinaryOperator *OFBinOp =
3114             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3115       nuw = OFBinOp->hasNoUnsignedWrap();
3116       nsw = OFBinOp->hasNoSignedWrap();
3117     }
3118     if (const PossiblyExactOperator *ExactOp =
3119             dyn_cast<const PossiblyExactOperator>(&I))
3120       exact = ExactOp->isExact();
3121   }
3122   SDNodeFlags Flags;
3123   Flags.setExact(exact);
3124   Flags.setNoSignedWrap(nsw);
3125   Flags.setNoUnsignedWrap(nuw);
3126   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3127                             Flags);
3128   setValue(&I, Res);
3129 }
3130 
3131 void SelectionDAGBuilder::visitSDiv(const User &I) {
3132   SDValue Op1 = getValue(I.getOperand(0));
3133   SDValue Op2 = getValue(I.getOperand(1));
3134 
3135   SDNodeFlags Flags;
3136   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3137                  cast<PossiblyExactOperator>(&I)->isExact());
3138   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3139                            Op2, Flags));
3140 }
3141 
3142 void SelectionDAGBuilder::visitICmp(const User &I) {
3143   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3144   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3145     predicate = IC->getPredicate();
3146   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3147     predicate = ICmpInst::Predicate(IC->getPredicate());
3148   SDValue Op1 = getValue(I.getOperand(0));
3149   SDValue Op2 = getValue(I.getOperand(1));
3150   ISD::CondCode Opcode = getICmpCondCode(predicate);
3151 
3152   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3153                                                         I.getType());
3154   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3155 }
3156 
3157 void SelectionDAGBuilder::visitFCmp(const User &I) {
3158   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3159   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3160     predicate = FC->getPredicate();
3161   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3162     predicate = FCmpInst::Predicate(FC->getPredicate());
3163   SDValue Op1 = getValue(I.getOperand(0));
3164   SDValue Op2 = getValue(I.getOperand(1));
3165 
3166   ISD::CondCode Condition = getFCmpCondCode(predicate);
3167   auto *FPMO = dyn_cast<FPMathOperator>(&I);
3168   if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath)
3169     Condition = getFCmpCodeWithoutNaN(Condition);
3170 
3171   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3172                                                         I.getType());
3173   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3174 }
3175 
3176 // Check if the condition of the select has one use or two users that are both
3177 // selects with the same condition.
3178 static bool hasOnlySelectUsers(const Value *Cond) {
3179   return llvm::all_of(Cond->users(), [](const Value *V) {
3180     return isa<SelectInst>(V);
3181   });
3182 }
3183 
3184 void SelectionDAGBuilder::visitSelect(const User &I) {
3185   SmallVector<EVT, 4> ValueVTs;
3186   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3187                   ValueVTs);
3188   unsigned NumValues = ValueVTs.size();
3189   if (NumValues == 0) return;
3190 
3191   SmallVector<SDValue, 4> Values(NumValues);
3192   SDValue Cond     = getValue(I.getOperand(0));
3193   SDValue LHSVal   = getValue(I.getOperand(1));
3194   SDValue RHSVal   = getValue(I.getOperand(2));
3195   auto BaseOps = {Cond};
3196   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
3197     ISD::VSELECT : ISD::SELECT;
3198 
3199   // Min/max matching is only viable if all output VTs are the same.
3200   if (is_splat(ValueVTs)) {
3201     EVT VT = ValueVTs[0];
3202     LLVMContext &Ctx = *DAG.getContext();
3203     auto &TLI = DAG.getTargetLoweringInfo();
3204 
3205     // We care about the legality of the operation after it has been type
3206     // legalized.
3207     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
3208            VT != TLI.getTypeToTransformTo(Ctx, VT))
3209       VT = TLI.getTypeToTransformTo(Ctx, VT);
3210 
3211     // If the vselect is legal, assume we want to leave this as a vector setcc +
3212     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3213     // min/max is legal on the scalar type.
3214     bool UseScalarMinMax = VT.isVector() &&
3215       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3216 
3217     Value *LHS, *RHS;
3218     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3219     ISD::NodeType Opc = ISD::DELETED_NODE;
3220     switch (SPR.Flavor) {
3221     case SPF_UMAX:    Opc = ISD::UMAX; break;
3222     case SPF_UMIN:    Opc = ISD::UMIN; break;
3223     case SPF_SMAX:    Opc = ISD::SMAX; break;
3224     case SPF_SMIN:    Opc = ISD::SMIN; break;
3225     case SPF_FMINNUM:
3226       switch (SPR.NaNBehavior) {
3227       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3228       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3229       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3230       case SPNB_RETURNS_ANY: {
3231         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3232           Opc = ISD::FMINNUM;
3233         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3234           Opc = ISD::FMINIMUM;
3235         else if (UseScalarMinMax)
3236           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3237             ISD::FMINNUM : ISD::FMINIMUM;
3238         break;
3239       }
3240       }
3241       break;
3242     case SPF_FMAXNUM:
3243       switch (SPR.NaNBehavior) {
3244       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3245       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3246       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3247       case SPNB_RETURNS_ANY:
3248 
3249         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3250           Opc = ISD::FMAXNUM;
3251         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3252           Opc = ISD::FMAXIMUM;
3253         else if (UseScalarMinMax)
3254           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3255             ISD::FMAXNUM : ISD::FMAXIMUM;
3256         break;
3257       }
3258       break;
3259     default: break;
3260     }
3261 
3262     if (Opc != ISD::DELETED_NODE &&
3263         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3264          (UseScalarMinMax &&
3265           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3266         // If the underlying comparison instruction is used by any other
3267         // instruction, the consumed instructions won't be destroyed, so it is
3268         // not profitable to convert to a min/max.
3269         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3270       OpCode = Opc;
3271       LHSVal = getValue(LHS);
3272       RHSVal = getValue(RHS);
3273       BaseOps = {};
3274     }
3275   }
3276 
3277   for (unsigned i = 0; i != NumValues; ++i) {
3278     SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3279     Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3280     Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3281     Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
3282                             LHSVal.getNode()->getValueType(LHSVal.getResNo()+i),
3283                             Ops);
3284   }
3285 
3286   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3287                            DAG.getVTList(ValueVTs), Values));
3288 }
3289 
3290 void SelectionDAGBuilder::visitTrunc(const User &I) {
3291   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3292   SDValue N = getValue(I.getOperand(0));
3293   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3294                                                         I.getType());
3295   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3296 }
3297 
3298 void SelectionDAGBuilder::visitZExt(const User &I) {
3299   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3300   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3301   SDValue N = getValue(I.getOperand(0));
3302   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3303                                                         I.getType());
3304   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3305 }
3306 
3307 void SelectionDAGBuilder::visitSExt(const User &I) {
3308   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3309   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3310   SDValue N = getValue(I.getOperand(0));
3311   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3312                                                         I.getType());
3313   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3314 }
3315 
3316 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3317   // FPTrunc is never a no-op cast, no need to check
3318   SDValue N = getValue(I.getOperand(0));
3319   SDLoc dl = getCurSDLoc();
3320   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3321   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3322   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3323                            DAG.getTargetConstant(
3324                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3325 }
3326 
3327 void SelectionDAGBuilder::visitFPExt(const User &I) {
3328   // FPExt is never a no-op cast, no need to check
3329   SDValue N = getValue(I.getOperand(0));
3330   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3331                                                         I.getType());
3332   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3333 }
3334 
3335 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3336   // FPToUI is never a no-op cast, no need to check
3337   SDValue N = getValue(I.getOperand(0));
3338   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3339                                                         I.getType());
3340   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3341 }
3342 
3343 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3344   // FPToSI is never a no-op cast, no need to check
3345   SDValue N = getValue(I.getOperand(0));
3346   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3347                                                         I.getType());
3348   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3349 }
3350 
3351 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3352   // UIToFP is never a no-op cast, no need to check
3353   SDValue N = getValue(I.getOperand(0));
3354   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3355                                                         I.getType());
3356   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3357 }
3358 
3359 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3360   // SIToFP is never a no-op cast, no need to check
3361   SDValue N = getValue(I.getOperand(0));
3362   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3363                                                         I.getType());
3364   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3365 }
3366 
3367 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3368   // What to do depends on the size of the integer and the size of the pointer.
3369   // We can either truncate, zero extend, or no-op, accordingly.
3370   SDValue N = getValue(I.getOperand(0));
3371   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3372                                                         I.getType());
3373   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3374 }
3375 
3376 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3377   // What to do depends on the size of the integer and the size of the pointer.
3378   // We can either truncate, zero extend, or no-op, accordingly.
3379   SDValue N = getValue(I.getOperand(0));
3380   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3381                                                         I.getType());
3382   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3383 }
3384 
3385 void SelectionDAGBuilder::visitBitCast(const User &I) {
3386   SDValue N = getValue(I.getOperand(0));
3387   SDLoc dl = getCurSDLoc();
3388   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3389                                                         I.getType());
3390 
3391   // BitCast assures us that source and destination are the same size so this is
3392   // either a BITCAST or a no-op.
3393   if (DestVT != N.getValueType())
3394     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3395                              DestVT, N)); // convert types.
3396   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3397   // might fold any kind of constant expression to an integer constant and that
3398   // is not what we are looking for. Only recognize a bitcast of a genuine
3399   // constant integer as an opaque constant.
3400   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3401     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3402                                  /*isOpaque*/true));
3403   else
3404     setValue(&I, N);            // noop cast.
3405 }
3406 
3407 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3408   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3409   const Value *SV = I.getOperand(0);
3410   SDValue N = getValue(SV);
3411   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3412 
3413   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3414   unsigned DestAS = I.getType()->getPointerAddressSpace();
3415 
3416   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3417     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3418 
3419   setValue(&I, N);
3420 }
3421 
3422 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3423   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3424   SDValue InVec = getValue(I.getOperand(0));
3425   SDValue InVal = getValue(I.getOperand(1));
3426   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3427                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3428   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3429                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3430                            InVec, InVal, InIdx));
3431 }
3432 
3433 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3434   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3435   SDValue InVec = getValue(I.getOperand(0));
3436   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3437                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3438   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3439                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3440                            InVec, InIdx));
3441 }
3442 
3443 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3444   SDValue Src1 = getValue(I.getOperand(0));
3445   SDValue Src2 = getValue(I.getOperand(1));
3446   SDLoc DL = getCurSDLoc();
3447 
3448   SmallVector<int, 8> Mask;
3449   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
3450   unsigned MaskNumElts = Mask.size();
3451 
3452   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3453   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3454   EVT SrcVT = Src1.getValueType();
3455   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3456 
3457   if (SrcNumElts == MaskNumElts) {
3458     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3459     return;
3460   }
3461 
3462   // Normalize the shuffle vector since mask and vector length don't match.
3463   if (SrcNumElts < MaskNumElts) {
3464     // Mask is longer than the source vectors. We can use concatenate vector to
3465     // make the mask and vectors lengths match.
3466 
3467     if (MaskNumElts % SrcNumElts == 0) {
3468       // Mask length is a multiple of the source vector length.
3469       // Check if the shuffle is some kind of concatenation of the input
3470       // vectors.
3471       unsigned NumConcat = MaskNumElts / SrcNumElts;
3472       bool IsConcat = true;
3473       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3474       for (unsigned i = 0; i != MaskNumElts; ++i) {
3475         int Idx = Mask[i];
3476         if (Idx < 0)
3477           continue;
3478         // Ensure the indices in each SrcVT sized piece are sequential and that
3479         // the same source is used for the whole piece.
3480         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3481             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3482              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3483           IsConcat = false;
3484           break;
3485         }
3486         // Remember which source this index came from.
3487         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3488       }
3489 
3490       // The shuffle is concatenating multiple vectors together. Just emit
3491       // a CONCAT_VECTORS operation.
3492       if (IsConcat) {
3493         SmallVector<SDValue, 8> ConcatOps;
3494         for (auto Src : ConcatSrcs) {
3495           if (Src < 0)
3496             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3497           else if (Src == 0)
3498             ConcatOps.push_back(Src1);
3499           else
3500             ConcatOps.push_back(Src2);
3501         }
3502         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3503         return;
3504       }
3505     }
3506 
3507     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3508     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3509     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3510                                     PaddedMaskNumElts);
3511 
3512     // Pad both vectors with undefs to make them the same length as the mask.
3513     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3514 
3515     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3516     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3517     MOps1[0] = Src1;
3518     MOps2[0] = Src2;
3519 
3520     Src1 = Src1.isUndef()
3521                ? DAG.getUNDEF(PaddedVT)
3522                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3523     Src2 = Src2.isUndef()
3524                ? DAG.getUNDEF(PaddedVT)
3525                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3526 
3527     // Readjust mask for new input vector length.
3528     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3529     for (unsigned i = 0; i != MaskNumElts; ++i) {
3530       int Idx = Mask[i];
3531       if (Idx >= (int)SrcNumElts)
3532         Idx -= SrcNumElts - PaddedMaskNumElts;
3533       MappedOps[i] = Idx;
3534     }
3535 
3536     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3537 
3538     // If the concatenated vector was padded, extract a subvector with the
3539     // correct number of elements.
3540     if (MaskNumElts != PaddedMaskNumElts)
3541       Result = DAG.getNode(
3542           ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3543           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
3544 
3545     setValue(&I, Result);
3546     return;
3547   }
3548 
3549   if (SrcNumElts > MaskNumElts) {
3550     // Analyze the access pattern of the vector to see if we can extract
3551     // two subvectors and do the shuffle.
3552     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3553     bool CanExtract = true;
3554     for (int Idx : Mask) {
3555       unsigned Input = 0;
3556       if (Idx < 0)
3557         continue;
3558 
3559       if (Idx >= (int)SrcNumElts) {
3560         Input = 1;
3561         Idx -= SrcNumElts;
3562       }
3563 
3564       // If all the indices come from the same MaskNumElts sized portion of
3565       // the sources we can use extract. Also make sure the extract wouldn't
3566       // extract past the end of the source.
3567       int NewStartIdx = alignDown(Idx, MaskNumElts);
3568       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3569           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3570         CanExtract = false;
3571       // Make sure we always update StartIdx as we use it to track if all
3572       // elements are undef.
3573       StartIdx[Input] = NewStartIdx;
3574     }
3575 
3576     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3577       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3578       return;
3579     }
3580     if (CanExtract) {
3581       // Extract appropriate subvector and generate a vector shuffle
3582       for (unsigned Input = 0; Input < 2; ++Input) {
3583         SDValue &Src = Input == 0 ? Src1 : Src2;
3584         if (StartIdx[Input] < 0)
3585           Src = DAG.getUNDEF(VT);
3586         else {
3587           Src = DAG.getNode(
3588               ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3589               DAG.getConstant(StartIdx[Input], DL,
3590                               TLI.getVectorIdxTy(DAG.getDataLayout())));
3591         }
3592       }
3593 
3594       // Calculate new mask.
3595       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3596       for (int &Idx : MappedOps) {
3597         if (Idx >= (int)SrcNumElts)
3598           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3599         else if (Idx >= 0)
3600           Idx -= StartIdx[0];
3601       }
3602 
3603       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3604       return;
3605     }
3606   }
3607 
3608   // We can't use either concat vectors or extract subvectors so fall back to
3609   // replacing the shuffle with extract and build vector.
3610   // to insert and build vector.
3611   EVT EltVT = VT.getVectorElementType();
3612   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3613   SmallVector<SDValue,8> Ops;
3614   for (int Idx : Mask) {
3615     SDValue Res;
3616 
3617     if (Idx < 0) {
3618       Res = DAG.getUNDEF(EltVT);
3619     } else {
3620       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3621       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3622 
3623       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3624                         EltVT, Src, DAG.getConstant(Idx, DL, IdxVT));
3625     }
3626 
3627     Ops.push_back(Res);
3628   }
3629 
3630   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3631 }
3632 
3633 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3634   ArrayRef<unsigned> Indices;
3635   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3636     Indices = IV->getIndices();
3637   else
3638     Indices = cast<ConstantExpr>(&I)->getIndices();
3639 
3640   const Value *Op0 = I.getOperand(0);
3641   const Value *Op1 = I.getOperand(1);
3642   Type *AggTy = I.getType();
3643   Type *ValTy = Op1->getType();
3644   bool IntoUndef = isa<UndefValue>(Op0);
3645   bool FromUndef = isa<UndefValue>(Op1);
3646 
3647   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3648 
3649   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3650   SmallVector<EVT, 4> AggValueVTs;
3651   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3652   SmallVector<EVT, 4> ValValueVTs;
3653   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3654 
3655   unsigned NumAggValues = AggValueVTs.size();
3656   unsigned NumValValues = ValValueVTs.size();
3657   SmallVector<SDValue, 4> Values(NumAggValues);
3658 
3659   // Ignore an insertvalue that produces an empty object
3660   if (!NumAggValues) {
3661     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3662     return;
3663   }
3664 
3665   SDValue Agg = getValue(Op0);
3666   unsigned i = 0;
3667   // Copy the beginning value(s) from the original aggregate.
3668   for (; i != LinearIndex; ++i)
3669     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3670                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3671   // Copy values from the inserted value(s).
3672   if (NumValValues) {
3673     SDValue Val = getValue(Op1);
3674     for (; i != LinearIndex + NumValValues; ++i)
3675       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3676                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3677   }
3678   // Copy remaining value(s) from the original aggregate.
3679   for (; i != NumAggValues; ++i)
3680     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3681                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3682 
3683   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3684                            DAG.getVTList(AggValueVTs), Values));
3685 }
3686 
3687 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3688   ArrayRef<unsigned> Indices;
3689   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3690     Indices = EV->getIndices();
3691   else
3692     Indices = cast<ConstantExpr>(&I)->getIndices();
3693 
3694   const Value *Op0 = I.getOperand(0);
3695   Type *AggTy = Op0->getType();
3696   Type *ValTy = I.getType();
3697   bool OutOfUndef = isa<UndefValue>(Op0);
3698 
3699   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3700 
3701   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3702   SmallVector<EVT, 4> ValValueVTs;
3703   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3704 
3705   unsigned NumValValues = ValValueVTs.size();
3706 
3707   // Ignore a extractvalue that produces an empty object
3708   if (!NumValValues) {
3709     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3710     return;
3711   }
3712 
3713   SmallVector<SDValue, 4> Values(NumValValues);
3714 
3715   SDValue Agg = getValue(Op0);
3716   // Copy out the selected value(s).
3717   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3718     Values[i - LinearIndex] =
3719       OutOfUndef ?
3720         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3721         SDValue(Agg.getNode(), Agg.getResNo() + i);
3722 
3723   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3724                            DAG.getVTList(ValValueVTs), Values));
3725 }
3726 
3727 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3728   Value *Op0 = I.getOperand(0);
3729   // Note that the pointer operand may be a vector of pointers. Take the scalar
3730   // element which holds a pointer.
3731   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3732   SDValue N = getValue(Op0);
3733   SDLoc dl = getCurSDLoc();
3734 
3735   // Normalize Vector GEP - all scalar operands should be converted to the
3736   // splat vector.
3737   unsigned VectorWidth = I.getType()->isVectorTy() ?
3738     cast<VectorType>(I.getType())->getVectorNumElements() : 0;
3739 
3740   if (VectorWidth && !N.getValueType().isVector()) {
3741     LLVMContext &Context = *DAG.getContext();
3742     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth);
3743     N = DAG.getSplatBuildVector(VT, dl, N);
3744   }
3745 
3746   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3747        GTI != E; ++GTI) {
3748     const Value *Idx = GTI.getOperand();
3749     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3750       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3751       if (Field) {
3752         // N = N + Offset
3753         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3754 
3755         // In an inbounds GEP with an offset that is nonnegative even when
3756         // interpreted as signed, assume there is no unsigned overflow.
3757         SDNodeFlags Flags;
3758         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3759           Flags.setNoUnsignedWrap(true);
3760 
3761         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3762                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3763       }
3764     } else {
3765       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3766       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3767       APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3768 
3769       // If this is a scalar constant or a splat vector of constants,
3770       // handle it quickly.
3771       const auto *CI = dyn_cast<ConstantInt>(Idx);
3772       if (!CI && isa<ConstantDataVector>(Idx) &&
3773           cast<ConstantDataVector>(Idx)->getSplatValue())
3774         CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3775 
3776       if (CI) {
3777         if (CI->isZero())
3778           continue;
3779         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize);
3780         LLVMContext &Context = *DAG.getContext();
3781         SDValue OffsVal = VectorWidth ?
3782           DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) :
3783           DAG.getConstant(Offs, dl, IdxTy);
3784 
3785         // In an inbouds GEP with an offset that is nonnegative even when
3786         // interpreted as signed, assume there is no unsigned overflow.
3787         SDNodeFlags Flags;
3788         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3789           Flags.setNoUnsignedWrap(true);
3790 
3791         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3792         continue;
3793       }
3794 
3795       // N = N + Idx * ElementSize;
3796       SDValue IdxN = getValue(Idx);
3797 
3798       if (!IdxN.getValueType().isVector() && VectorWidth) {
3799         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth);
3800         IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3801       }
3802 
3803       // If the index is smaller or larger than intptr_t, truncate or extend
3804       // it.
3805       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3806 
3807       // If this is a multiply by a power of two, turn it into a shl
3808       // immediately.  This is a very common case.
3809       if (ElementSize != 1) {
3810         if (ElementSize.isPowerOf2()) {
3811           unsigned Amt = ElementSize.logBase2();
3812           IdxN = DAG.getNode(ISD::SHL, dl,
3813                              N.getValueType(), IdxN,
3814                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3815         } else {
3816           SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
3817           IdxN = DAG.getNode(ISD::MUL, dl,
3818                              N.getValueType(), IdxN, Scale);
3819         }
3820       }
3821 
3822       N = DAG.getNode(ISD::ADD, dl,
3823                       N.getValueType(), N, IdxN);
3824     }
3825   }
3826 
3827   setValue(&I, N);
3828 }
3829 
3830 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3831   // If this is a fixed sized alloca in the entry block of the function,
3832   // allocate it statically on the stack.
3833   if (FuncInfo.StaticAllocaMap.count(&I))
3834     return;   // getValue will auto-populate this.
3835 
3836   SDLoc dl = getCurSDLoc();
3837   Type *Ty = I.getAllocatedType();
3838   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3839   auto &DL = DAG.getDataLayout();
3840   uint64_t TySize = DL.getTypeAllocSize(Ty);
3841   unsigned Align =
3842       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3843 
3844   SDValue AllocSize = getValue(I.getArraySize());
3845 
3846   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3847   if (AllocSize.getValueType() != IntPtr)
3848     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3849 
3850   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3851                           AllocSize,
3852                           DAG.getConstant(TySize, dl, IntPtr));
3853 
3854   // Handle alignment.  If the requested alignment is less than or equal to
3855   // the stack alignment, ignore it.  If the size is greater than or equal to
3856   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3857   unsigned StackAlign =
3858       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3859   if (Align <= StackAlign)
3860     Align = 0;
3861 
3862   // Round the size of the allocation up to the stack alignment size
3863   // by add SA-1 to the size. This doesn't overflow because we're computing
3864   // an address inside an alloca.
3865   SDNodeFlags Flags;
3866   Flags.setNoUnsignedWrap(true);
3867   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
3868                           DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags);
3869 
3870   // Mask out the low bits for alignment purposes.
3871   AllocSize =
3872       DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
3873                   DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr));
3874 
3875   SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)};
3876   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3877   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3878   setValue(&I, DSA);
3879   DAG.setRoot(DSA.getValue(1));
3880 
3881   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3882 }
3883 
3884 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3885   if (I.isAtomic())
3886     return visitAtomicLoad(I);
3887 
3888   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3889   const Value *SV = I.getOperand(0);
3890   if (TLI.supportSwiftError()) {
3891     // Swifterror values can come from either a function parameter with
3892     // swifterror attribute or an alloca with swifterror attribute.
3893     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3894       if (Arg->hasSwiftErrorAttr())
3895         return visitLoadFromSwiftError(I);
3896     }
3897 
3898     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3899       if (Alloca->isSwiftError())
3900         return visitLoadFromSwiftError(I);
3901     }
3902   }
3903 
3904   SDValue Ptr = getValue(SV);
3905 
3906   Type *Ty = I.getType();
3907 
3908   bool isVolatile = I.isVolatile();
3909   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3910   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr;
3911   bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout());
3912   unsigned Alignment = I.getAlignment();
3913 
3914   AAMDNodes AAInfo;
3915   I.getAAMetadata(AAInfo);
3916   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3917 
3918   SmallVector<EVT, 4> ValueVTs;
3919   SmallVector<uint64_t, 4> Offsets;
3920   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets);
3921   unsigned NumValues = ValueVTs.size();
3922   if (NumValues == 0)
3923     return;
3924 
3925   SDValue Root;
3926   bool ConstantMemory = false;
3927   if (isVolatile || NumValues > MaxParallelChains)
3928     // Serialize volatile loads with other side effects.
3929     Root = getRoot();
3930   else if (AA &&
3931            AA->pointsToConstantMemory(MemoryLocation(
3932                SV,
3933                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
3934                AAInfo))) {
3935     // Do not serialize (non-volatile) loads of constant memory with anything.
3936     Root = DAG.getEntryNode();
3937     ConstantMemory = true;
3938   } else {
3939     // Do not serialize non-volatile loads against each other.
3940     Root = DAG.getRoot();
3941   }
3942 
3943   SDLoc dl = getCurSDLoc();
3944 
3945   if (isVolatile)
3946     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3947 
3948   // An aggregate load cannot wrap around the address space, so offsets to its
3949   // parts don't wrap either.
3950   SDNodeFlags Flags;
3951   Flags.setNoUnsignedWrap(true);
3952 
3953   SmallVector<SDValue, 4> Values(NumValues);
3954   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3955   EVT PtrVT = Ptr.getValueType();
3956   unsigned ChainI = 0;
3957   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3958     // Serializing loads here may result in excessive register pressure, and
3959     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3960     // could recover a bit by hoisting nodes upward in the chain by recognizing
3961     // they are side-effect free or do not alias. The optimizer should really
3962     // avoid this case by converting large object/array copies to llvm.memcpy
3963     // (MaxParallelChains should always remain as failsafe).
3964     if (ChainI == MaxParallelChains) {
3965       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3966       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3967                                   makeArrayRef(Chains.data(), ChainI));
3968       Root = Chain;
3969       ChainI = 0;
3970     }
3971     SDValue A = DAG.getNode(ISD::ADD, dl,
3972                             PtrVT, Ptr,
3973                             DAG.getConstant(Offsets[i], dl, PtrVT),
3974                             Flags);
3975     auto MMOFlags = MachineMemOperand::MONone;
3976     if (isVolatile)
3977       MMOFlags |= MachineMemOperand::MOVolatile;
3978     if (isNonTemporal)
3979       MMOFlags |= MachineMemOperand::MONonTemporal;
3980     if (isInvariant)
3981       MMOFlags |= MachineMemOperand::MOInvariant;
3982     if (isDereferenceable)
3983       MMOFlags |= MachineMemOperand::MODereferenceable;
3984     MMOFlags |= TLI.getMMOFlags(I);
3985 
3986     SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A,
3987                             MachinePointerInfo(SV, Offsets[i]), Alignment,
3988                             MMOFlags, AAInfo, Ranges);
3989 
3990     Values[i] = L;
3991     Chains[ChainI] = L.getValue(1);
3992   }
3993 
3994   if (!ConstantMemory) {
3995     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3996                                 makeArrayRef(Chains.data(), ChainI));
3997     if (isVolatile)
3998       DAG.setRoot(Chain);
3999     else
4000       PendingLoads.push_back(Chain);
4001   }
4002 
4003   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4004                            DAG.getVTList(ValueVTs), Values));
4005 }
4006 
4007 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4008   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4009          "call visitStoreToSwiftError when backend supports swifterror");
4010 
4011   SmallVector<EVT, 4> ValueVTs;
4012   SmallVector<uint64_t, 4> Offsets;
4013   const Value *SrcV = I.getOperand(0);
4014   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4015                   SrcV->getType(), ValueVTs, &Offsets);
4016   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4017          "expect a single EVT for swifterror");
4018 
4019   SDValue Src = getValue(SrcV);
4020   // Create a virtual register, then update the virtual register.
4021   unsigned VReg; bool CreatedVReg;
4022   std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I);
4023   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4024   // Chain can be getRoot or getControlRoot.
4025   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4026                                       SDValue(Src.getNode(), Src.getResNo()));
4027   DAG.setRoot(CopyNode);
4028   if (CreatedVReg)
4029     FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg);
4030 }
4031 
4032 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4033   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4034          "call visitLoadFromSwiftError when backend supports swifterror");
4035 
4036   assert(!I.isVolatile() &&
4037          I.getMetadata(LLVMContext::MD_nontemporal) == nullptr &&
4038          I.getMetadata(LLVMContext::MD_invariant_load) == nullptr &&
4039          "Support volatile, non temporal, invariant for load_from_swift_error");
4040 
4041   const Value *SV = I.getOperand(0);
4042   Type *Ty = I.getType();
4043   AAMDNodes AAInfo;
4044   I.getAAMetadata(AAInfo);
4045   assert(
4046       (!AA ||
4047        !AA->pointsToConstantMemory(MemoryLocation(
4048            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4049            AAInfo))) &&
4050       "load_from_swift_error should not be constant memory");
4051 
4052   SmallVector<EVT, 4> ValueVTs;
4053   SmallVector<uint64_t, 4> Offsets;
4054   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4055                   ValueVTs, &Offsets);
4056   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4057          "expect a single EVT for swifterror");
4058 
4059   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4060   SDValue L = DAG.getCopyFromReg(
4061       getRoot(), getCurSDLoc(),
4062       FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first,
4063       ValueVTs[0]);
4064 
4065   setValue(&I, L);
4066 }
4067 
4068 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4069   if (I.isAtomic())
4070     return visitAtomicStore(I);
4071 
4072   const Value *SrcV = I.getOperand(0);
4073   const Value *PtrV = I.getOperand(1);
4074 
4075   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4076   if (TLI.supportSwiftError()) {
4077     // Swifterror values can come from either a function parameter with
4078     // swifterror attribute or an alloca with swifterror attribute.
4079     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4080       if (Arg->hasSwiftErrorAttr())
4081         return visitStoreToSwiftError(I);
4082     }
4083 
4084     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4085       if (Alloca->isSwiftError())
4086         return visitStoreToSwiftError(I);
4087     }
4088   }
4089 
4090   SmallVector<EVT, 4> ValueVTs;
4091   SmallVector<uint64_t, 4> Offsets;
4092   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4093                   SrcV->getType(), ValueVTs, &Offsets);
4094   unsigned NumValues = ValueVTs.size();
4095   if (NumValues == 0)
4096     return;
4097 
4098   // Get the lowered operands. Note that we do this after
4099   // checking if NumResults is zero, because with zero results
4100   // the operands won't have values in the map.
4101   SDValue Src = getValue(SrcV);
4102   SDValue Ptr = getValue(PtrV);
4103 
4104   SDValue Root = getRoot();
4105   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4106   SDLoc dl = getCurSDLoc();
4107   EVT PtrVT = Ptr.getValueType();
4108   unsigned Alignment = I.getAlignment();
4109   AAMDNodes AAInfo;
4110   I.getAAMetadata(AAInfo);
4111 
4112   auto MMOFlags = MachineMemOperand::MONone;
4113   if (I.isVolatile())
4114     MMOFlags |= MachineMemOperand::MOVolatile;
4115   if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr)
4116     MMOFlags |= MachineMemOperand::MONonTemporal;
4117   MMOFlags |= TLI.getMMOFlags(I);
4118 
4119   // An aggregate load cannot wrap around the address space, so offsets to its
4120   // parts don't wrap either.
4121   SDNodeFlags Flags;
4122   Flags.setNoUnsignedWrap(true);
4123 
4124   unsigned ChainI = 0;
4125   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4126     // See visitLoad comments.
4127     if (ChainI == MaxParallelChains) {
4128       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4129                                   makeArrayRef(Chains.data(), ChainI));
4130       Root = Chain;
4131       ChainI = 0;
4132     }
4133     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
4134                               DAG.getConstant(Offsets[i], dl, PtrVT), Flags);
4135     SDValue St = DAG.getStore(
4136         Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add,
4137         MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo);
4138     Chains[ChainI] = St;
4139   }
4140 
4141   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4142                                   makeArrayRef(Chains.data(), ChainI));
4143   DAG.setRoot(StoreNode);
4144 }
4145 
4146 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4147                                            bool IsCompressing) {
4148   SDLoc sdl = getCurSDLoc();
4149 
4150   auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4151                            unsigned& Alignment) {
4152     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4153     Src0 = I.getArgOperand(0);
4154     Ptr = I.getArgOperand(1);
4155     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
4156     Mask = I.getArgOperand(3);
4157   };
4158   auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4159                            unsigned& Alignment) {
4160     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4161     Src0 = I.getArgOperand(0);
4162     Ptr = I.getArgOperand(1);
4163     Mask = I.getArgOperand(2);
4164     Alignment = 0;
4165   };
4166 
4167   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4168   unsigned Alignment;
4169   if (IsCompressing)
4170     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4171   else
4172     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4173 
4174   SDValue Ptr = getValue(PtrOperand);
4175   SDValue Src0 = getValue(Src0Operand);
4176   SDValue Mask = getValue(MaskOperand);
4177 
4178   EVT VT = Src0.getValueType();
4179   if (!Alignment)
4180     Alignment = DAG.getEVTAlignment(VT);
4181 
4182   AAMDNodes AAInfo;
4183   I.getAAMetadata(AAInfo);
4184 
4185   MachineMemOperand *MMO =
4186     DAG.getMachineFunction().
4187     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4188                           MachineMemOperand::MOStore,  VT.getStoreSize(),
4189                           Alignment, AAInfo);
4190   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
4191                                          MMO, false /* Truncating */,
4192                                          IsCompressing);
4193   DAG.setRoot(StoreNode);
4194   setValue(&I, StoreNode);
4195 }
4196 
4197 // Get a uniform base for the Gather/Scatter intrinsic.
4198 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4199 // We try to represent it as a base pointer + vector of indices.
4200 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4201 // The first operand of the GEP may be a single pointer or a vector of pointers
4202 // Example:
4203 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4204 //  or
4205 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4206 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4207 //
4208 // When the first GEP operand is a single pointer - it is the uniform base we
4209 // are looking for. If first operand of the GEP is a splat vector - we
4210 // extract the splat value and use it as a uniform base.
4211 // In all other cases the function returns 'false'.
4212 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index,
4213                            SDValue &Scale, SelectionDAGBuilder* SDB) {
4214   SelectionDAG& DAG = SDB->DAG;
4215   LLVMContext &Context = *DAG.getContext();
4216 
4217   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
4218   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4219   if (!GEP)
4220     return false;
4221 
4222   const Value *GEPPtr = GEP->getPointerOperand();
4223   if (!GEPPtr->getType()->isVectorTy())
4224     Ptr = GEPPtr;
4225   else if (!(Ptr = getSplatValue(GEPPtr)))
4226     return false;
4227 
4228   unsigned FinalIndex = GEP->getNumOperands() - 1;
4229   Value *IndexVal = GEP->getOperand(FinalIndex);
4230 
4231   // Ensure all the other indices are 0.
4232   for (unsigned i = 1; i < FinalIndex; ++i) {
4233     auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i));
4234     if (!C || !C->isZero())
4235       return false;
4236   }
4237 
4238   // The operands of the GEP may be defined in another basic block.
4239   // In this case we'll not find nodes for the operands.
4240   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
4241     return false;
4242 
4243   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4244   const DataLayout &DL = DAG.getDataLayout();
4245   Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()),
4246                                 SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4247   Base = SDB->getValue(Ptr);
4248   Index = SDB->getValue(IndexVal);
4249 
4250   if (!Index.getValueType().isVector()) {
4251     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
4252     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
4253     Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index);
4254   }
4255   return true;
4256 }
4257 
4258 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4259   SDLoc sdl = getCurSDLoc();
4260 
4261   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
4262   const Value *Ptr = I.getArgOperand(1);
4263   SDValue Src0 = getValue(I.getArgOperand(0));
4264   SDValue Mask = getValue(I.getArgOperand(3));
4265   EVT VT = Src0.getValueType();
4266   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
4267   if (!Alignment)
4268     Alignment = DAG.getEVTAlignment(VT);
4269   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4270 
4271   AAMDNodes AAInfo;
4272   I.getAAMetadata(AAInfo);
4273 
4274   SDValue Base;
4275   SDValue Index;
4276   SDValue Scale;
4277   const Value *BasePtr = Ptr;
4278   bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this);
4279 
4280   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
4281   MachineMemOperand *MMO = DAG.getMachineFunction().
4282     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
4283                          MachineMemOperand::MOStore,  VT.getStoreSize(),
4284                          Alignment, AAInfo);
4285   if (!UniformBase) {
4286     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4287     Index = getValue(Ptr);
4288     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4289   }
4290   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale };
4291   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4292                                          Ops, MMO);
4293   DAG.setRoot(Scatter);
4294   setValue(&I, Scatter);
4295 }
4296 
4297 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4298   SDLoc sdl = getCurSDLoc();
4299 
4300   auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4301                            unsigned& Alignment) {
4302     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4303     Ptr = I.getArgOperand(0);
4304     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4305     Mask = I.getArgOperand(2);
4306     Src0 = I.getArgOperand(3);
4307   };
4308   auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4309                            unsigned& Alignment) {
4310     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4311     Ptr = I.getArgOperand(0);
4312     Alignment = 0;
4313     Mask = I.getArgOperand(1);
4314     Src0 = I.getArgOperand(2);
4315   };
4316 
4317   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4318   unsigned Alignment;
4319   if (IsExpanding)
4320     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4321   else
4322     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4323 
4324   SDValue Ptr = getValue(PtrOperand);
4325   SDValue Src0 = getValue(Src0Operand);
4326   SDValue Mask = getValue(MaskOperand);
4327 
4328   EVT VT = Src0.getValueType();
4329   if (!Alignment)
4330     Alignment = DAG.getEVTAlignment(VT);
4331 
4332   AAMDNodes AAInfo;
4333   I.getAAMetadata(AAInfo);
4334   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4335 
4336   // Do not serialize masked loads of constant memory with anything.
4337   bool AddToChain =
4338       !AA || !AA->pointsToConstantMemory(MemoryLocation(
4339                  PtrOperand,
4340                  LocationSize::precise(
4341                      DAG.getDataLayout().getTypeStoreSize(I.getType())),
4342                  AAInfo));
4343   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4344 
4345   MachineMemOperand *MMO =
4346     DAG.getMachineFunction().
4347     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4348                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
4349                           Alignment, AAInfo, Ranges);
4350 
4351   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
4352                                    ISD::NON_EXTLOAD, IsExpanding);
4353   if (AddToChain)
4354     PendingLoads.push_back(Load.getValue(1));
4355   setValue(&I, Load);
4356 }
4357 
4358 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4359   SDLoc sdl = getCurSDLoc();
4360 
4361   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4362   const Value *Ptr = I.getArgOperand(0);
4363   SDValue Src0 = getValue(I.getArgOperand(3));
4364   SDValue Mask = getValue(I.getArgOperand(2));
4365 
4366   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4367   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4368   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
4369   if (!Alignment)
4370     Alignment = DAG.getEVTAlignment(VT);
4371 
4372   AAMDNodes AAInfo;
4373   I.getAAMetadata(AAInfo);
4374   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4375 
4376   SDValue Root = DAG.getRoot();
4377   SDValue Base;
4378   SDValue Index;
4379   SDValue Scale;
4380   const Value *BasePtr = Ptr;
4381   bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this);
4382   bool ConstantMemory = false;
4383   if (UniformBase && AA &&
4384       AA->pointsToConstantMemory(
4385           MemoryLocation(BasePtr,
4386                          LocationSize::precise(
4387                              DAG.getDataLayout().getTypeStoreSize(I.getType())),
4388                          AAInfo))) {
4389     // Do not serialize (non-volatile) loads of constant memory with anything.
4390     Root = DAG.getEntryNode();
4391     ConstantMemory = true;
4392   }
4393 
4394   MachineMemOperand *MMO =
4395     DAG.getMachineFunction().
4396     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
4397                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
4398                          Alignment, AAInfo, Ranges);
4399 
4400   if (!UniformBase) {
4401     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4402     Index = getValue(Ptr);
4403     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4404   }
4405   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4406   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4407                                        Ops, MMO);
4408 
4409   SDValue OutChain = Gather.getValue(1);
4410   if (!ConstantMemory)
4411     PendingLoads.push_back(OutChain);
4412   setValue(&I, Gather);
4413 }
4414 
4415 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4416   SDLoc dl = getCurSDLoc();
4417   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4418   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4419   SyncScope::ID SSID = I.getSyncScopeID();
4420 
4421   SDValue InChain = getRoot();
4422 
4423   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4424   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4425 
4426   auto Alignment = DAG.getEVTAlignment(MemVT);
4427 
4428   auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4429   if (I.isVolatile())
4430     Flags |= MachineMemOperand::MOVolatile;
4431   Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I);
4432 
4433   MachineFunction &MF = DAG.getMachineFunction();
4434   MachineMemOperand *MMO =
4435     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4436                             Flags, MemVT.getStoreSize(), Alignment,
4437                             AAMDNodes(), nullptr, SSID, SuccessOrdering,
4438                             FailureOrdering);
4439 
4440   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4441                                    dl, MemVT, VTs, InChain,
4442                                    getValue(I.getPointerOperand()),
4443                                    getValue(I.getCompareOperand()),
4444                                    getValue(I.getNewValOperand()), MMO);
4445 
4446   SDValue OutChain = L.getValue(2);
4447 
4448   setValue(&I, L);
4449   DAG.setRoot(OutChain);
4450 }
4451 
4452 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4453   SDLoc dl = getCurSDLoc();
4454   ISD::NodeType NT;
4455   switch (I.getOperation()) {
4456   default: llvm_unreachable("Unknown atomicrmw operation");
4457   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4458   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4459   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4460   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4461   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4462   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4463   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4464   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4465   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4466   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4467   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4468   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4469   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4470   }
4471   AtomicOrdering Ordering = I.getOrdering();
4472   SyncScope::ID SSID = I.getSyncScopeID();
4473 
4474   SDValue InChain = getRoot();
4475 
4476   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4477   auto Alignment = DAG.getEVTAlignment(MemVT);
4478 
4479   auto Flags = MachineMemOperand::MOLoad |  MachineMemOperand::MOStore;
4480   if (I.isVolatile())
4481     Flags |= MachineMemOperand::MOVolatile;
4482   Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I);
4483 
4484   MachineFunction &MF = DAG.getMachineFunction();
4485   MachineMemOperand *MMO =
4486     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags,
4487                             MemVT.getStoreSize(), Alignment, AAMDNodes(),
4488                             nullptr, SSID, Ordering);
4489 
4490   SDValue L =
4491     DAG.getAtomic(NT, dl, MemVT, InChain,
4492                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4493                   MMO);
4494 
4495   SDValue OutChain = L.getValue(1);
4496 
4497   setValue(&I, L);
4498   DAG.setRoot(OutChain);
4499 }
4500 
4501 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4502   SDLoc dl = getCurSDLoc();
4503   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4504   SDValue Ops[3];
4505   Ops[0] = getRoot();
4506   Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl,
4507                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4508   Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl,
4509                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4510   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4511 }
4512 
4513 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4514   SDLoc dl = getCurSDLoc();
4515   AtomicOrdering Order = I.getOrdering();
4516   SyncScope::ID SSID = I.getSyncScopeID();
4517 
4518   SDValue InChain = getRoot();
4519 
4520   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4521   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4522 
4523   if (!TLI.supportsUnalignedAtomics() &&
4524       I.getAlignment() < VT.getStoreSize())
4525     report_fatal_error("Cannot generate unaligned atomic load");
4526 
4527   auto Flags = MachineMemOperand::MOLoad;
4528   if (I.isVolatile())
4529     Flags |= MachineMemOperand::MOVolatile;
4530   Flags |= TLI.getMMOFlags(I);
4531 
4532   MachineMemOperand *MMO =
4533       DAG.getMachineFunction().
4534       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4535                            Flags, VT.getStoreSize(),
4536                            I.getAlignment() ? I.getAlignment() :
4537                                               DAG.getEVTAlignment(VT),
4538                            AAMDNodes(), nullptr, SSID, Order);
4539 
4540   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4541   SDValue L =
4542       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
4543                     getValue(I.getPointerOperand()), MMO);
4544 
4545   SDValue OutChain = L.getValue(1);
4546 
4547   setValue(&I, L);
4548   DAG.setRoot(OutChain);
4549 }
4550 
4551 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4552   SDLoc dl = getCurSDLoc();
4553 
4554   AtomicOrdering Ordering = I.getOrdering();
4555   SyncScope::ID SSID = I.getSyncScopeID();
4556 
4557   SDValue InChain = getRoot();
4558 
4559   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4560   EVT VT =
4561       TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4562 
4563   if (I.getAlignment() < VT.getStoreSize())
4564     report_fatal_error("Cannot generate unaligned atomic store");
4565 
4566   auto Flags = MachineMemOperand::MOStore;
4567   if (I.isVolatile())
4568     Flags |= MachineMemOperand::MOVolatile;
4569   Flags |= TLI.getMMOFlags(I);
4570 
4571   MachineFunction &MF = DAG.getMachineFunction();
4572   MachineMemOperand *MMO =
4573     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags,
4574                             VT.getStoreSize(), I.getAlignment(), AAMDNodes(),
4575                             nullptr, SSID, Ordering);
4576   SDValue OutChain =
4577     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, InChain,
4578               getValue(I.getPointerOperand()), getValue(I.getValueOperand()),
4579               MMO);
4580 
4581 
4582   DAG.setRoot(OutChain);
4583 }
4584 
4585 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4586 /// node.
4587 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4588                                                unsigned Intrinsic) {
4589   // Ignore the callsite's attributes. A specific call site may be marked with
4590   // readnone, but the lowering code will expect the chain based on the
4591   // definition.
4592   const Function *F = I.getCalledFunction();
4593   bool HasChain = !F->doesNotAccessMemory();
4594   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4595 
4596   // Build the operand list.
4597   SmallVector<SDValue, 8> Ops;
4598   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4599     if (OnlyLoad) {
4600       // We don't need to serialize loads against other loads.
4601       Ops.push_back(DAG.getRoot());
4602     } else {
4603       Ops.push_back(getRoot());
4604     }
4605   }
4606 
4607   // Info is set by getTgtMemInstrinsic
4608   TargetLowering::IntrinsicInfo Info;
4609   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4610   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4611                                                DAG.getMachineFunction(),
4612                                                Intrinsic);
4613 
4614   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4615   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4616       Info.opc == ISD::INTRINSIC_W_CHAIN)
4617     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4618                                         TLI.getPointerTy(DAG.getDataLayout())));
4619 
4620   // Add all operands of the call to the operand list.
4621   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4622     SDValue Op = getValue(I.getArgOperand(i));
4623     Ops.push_back(Op);
4624   }
4625 
4626   SmallVector<EVT, 4> ValueVTs;
4627   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4628 
4629   if (HasChain)
4630     ValueVTs.push_back(MVT::Other);
4631 
4632   SDVTList VTs = DAG.getVTList(ValueVTs);
4633 
4634   // Create the node.
4635   SDValue Result;
4636   if (IsTgtIntrinsic) {
4637     // This is target intrinsic that touches memory
4638     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs,
4639       Ops, Info.memVT,
4640       MachinePointerInfo(Info.ptrVal, Info.offset), Info.align,
4641       Info.flags, Info.size);
4642   } else if (!HasChain) {
4643     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4644   } else if (!I.getType()->isVoidTy()) {
4645     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4646   } else {
4647     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4648   }
4649 
4650   if (HasChain) {
4651     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4652     if (OnlyLoad)
4653       PendingLoads.push_back(Chain);
4654     else
4655       DAG.setRoot(Chain);
4656   }
4657 
4658   if (!I.getType()->isVoidTy()) {
4659     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4660       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4661       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4662     } else
4663       Result = lowerRangeToAssertZExt(DAG, I, Result);
4664 
4665     setValue(&I, Result);
4666   }
4667 }
4668 
4669 /// GetSignificand - Get the significand and build it into a floating-point
4670 /// number with exponent of 1:
4671 ///
4672 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4673 ///
4674 /// where Op is the hexadecimal representation of floating point value.
4675 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4676   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4677                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4678   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4679                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4680   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4681 }
4682 
4683 /// GetExponent - Get the exponent:
4684 ///
4685 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4686 ///
4687 /// where Op is the hexadecimal representation of floating point value.
4688 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4689                            const TargetLowering &TLI, const SDLoc &dl) {
4690   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4691                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4692   SDValue t1 = DAG.getNode(
4693       ISD::SRL, dl, MVT::i32, t0,
4694       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4695   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4696                            DAG.getConstant(127, dl, MVT::i32));
4697   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4698 }
4699 
4700 /// getF32Constant - Get 32-bit floating point constant.
4701 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4702                               const SDLoc &dl) {
4703   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4704                            MVT::f32);
4705 }
4706 
4707 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4708                                        SelectionDAG &DAG) {
4709   // TODO: What fast-math-flags should be set on the floating-point nodes?
4710 
4711   //   IntegerPartOfX = ((int32_t)(t0);
4712   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4713 
4714   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4715   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4716   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4717 
4718   //   IntegerPartOfX <<= 23;
4719   IntegerPartOfX = DAG.getNode(
4720       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4721       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4722                                   DAG.getDataLayout())));
4723 
4724   SDValue TwoToFractionalPartOfX;
4725   if (LimitFloatPrecision <= 6) {
4726     // For floating-point precision of 6:
4727     //
4728     //   TwoToFractionalPartOfX =
4729     //     0.997535578f +
4730     //       (0.735607626f + 0.252464424f * x) * x;
4731     //
4732     // error 0.0144103317, which is 6 bits
4733     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4734                              getF32Constant(DAG, 0x3e814304, dl));
4735     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4736                              getF32Constant(DAG, 0x3f3c50c8, dl));
4737     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4738     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4739                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4740   } else if (LimitFloatPrecision <= 12) {
4741     // For floating-point precision of 12:
4742     //
4743     //   TwoToFractionalPartOfX =
4744     //     0.999892986f +
4745     //       (0.696457318f +
4746     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4747     //
4748     // error 0.000107046256, which is 13 to 14 bits
4749     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4750                              getF32Constant(DAG, 0x3da235e3, dl));
4751     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4752                              getF32Constant(DAG, 0x3e65b8f3, dl));
4753     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4754     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4755                              getF32Constant(DAG, 0x3f324b07, dl));
4756     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4757     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4758                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4759   } else { // LimitFloatPrecision <= 18
4760     // For floating-point precision of 18:
4761     //
4762     //   TwoToFractionalPartOfX =
4763     //     0.999999982f +
4764     //       (0.693148872f +
4765     //         (0.240227044f +
4766     //           (0.554906021e-1f +
4767     //             (0.961591928e-2f +
4768     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4769     // error 2.47208000*10^(-7), which is better than 18 bits
4770     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4771                              getF32Constant(DAG, 0x3924b03e, dl));
4772     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4773                              getF32Constant(DAG, 0x3ab24b87, dl));
4774     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4775     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4776                              getF32Constant(DAG, 0x3c1d8c17, dl));
4777     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4778     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4779                              getF32Constant(DAG, 0x3d634a1d, dl));
4780     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4781     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4782                              getF32Constant(DAG, 0x3e75fe14, dl));
4783     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4784     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4785                               getF32Constant(DAG, 0x3f317234, dl));
4786     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4787     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4788                                          getF32Constant(DAG, 0x3f800000, dl));
4789   }
4790 
4791   // Add the exponent into the result in integer domain.
4792   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4793   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4794                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4795 }
4796 
4797 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4798 /// limited-precision mode.
4799 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4800                          const TargetLowering &TLI) {
4801   if (Op.getValueType() == MVT::f32 &&
4802       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4803 
4804     // Put the exponent in the right bit position for later addition to the
4805     // final result:
4806     //
4807     //   #define LOG2OFe 1.4426950f
4808     //   t0 = Op * LOG2OFe
4809 
4810     // TODO: What fast-math-flags should be set here?
4811     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4812                              getF32Constant(DAG, 0x3fb8aa3b, dl));
4813     return getLimitedPrecisionExp2(t0, dl, DAG);
4814   }
4815 
4816   // No special expansion.
4817   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4818 }
4819 
4820 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4821 /// limited-precision mode.
4822 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4823                          const TargetLowering &TLI) {
4824   // TODO: What fast-math-flags should be set on the floating-point nodes?
4825 
4826   if (Op.getValueType() == MVT::f32 &&
4827       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4828     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4829 
4830     // Scale the exponent by log(2) [0.69314718f].
4831     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4832     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4833                                         getF32Constant(DAG, 0x3f317218, dl));
4834 
4835     // Get the significand and build it into a floating-point number with
4836     // exponent of 1.
4837     SDValue X = GetSignificand(DAG, Op1, dl);
4838 
4839     SDValue LogOfMantissa;
4840     if (LimitFloatPrecision <= 6) {
4841       // For floating-point precision of 6:
4842       //
4843       //   LogofMantissa =
4844       //     -1.1609546f +
4845       //       (1.4034025f - 0.23903021f * x) * x;
4846       //
4847       // error 0.0034276066, which is better than 8 bits
4848       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4849                                getF32Constant(DAG, 0xbe74c456, dl));
4850       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4851                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4852       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4853       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4854                                   getF32Constant(DAG, 0x3f949a29, dl));
4855     } else if (LimitFloatPrecision <= 12) {
4856       // For floating-point precision of 12:
4857       //
4858       //   LogOfMantissa =
4859       //     -1.7417939f +
4860       //       (2.8212026f +
4861       //         (-1.4699568f +
4862       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4863       //
4864       // error 0.000061011436, which is 14 bits
4865       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4866                                getF32Constant(DAG, 0xbd67b6d6, dl));
4867       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4868                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4869       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4870       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4871                                getF32Constant(DAG, 0x3fbc278b, dl));
4872       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4873       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4874                                getF32Constant(DAG, 0x40348e95, dl));
4875       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4876       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4877                                   getF32Constant(DAG, 0x3fdef31a, dl));
4878     } else { // LimitFloatPrecision <= 18
4879       // For floating-point precision of 18:
4880       //
4881       //   LogOfMantissa =
4882       //     -2.1072184f +
4883       //       (4.2372794f +
4884       //         (-3.7029485f +
4885       //           (2.2781945f +
4886       //             (-0.87823314f +
4887       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4888       //
4889       // error 0.0000023660568, which is better than 18 bits
4890       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4891                                getF32Constant(DAG, 0xbc91e5ac, dl));
4892       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4893                                getF32Constant(DAG, 0x3e4350aa, dl));
4894       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4895       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4896                                getF32Constant(DAG, 0x3f60d3e3, dl));
4897       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4898       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4899                                getF32Constant(DAG, 0x4011cdf0, dl));
4900       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4901       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4902                                getF32Constant(DAG, 0x406cfd1c, dl));
4903       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4904       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4905                                getF32Constant(DAG, 0x408797cb, dl));
4906       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4907       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4908                                   getF32Constant(DAG, 0x4006dcab, dl));
4909     }
4910 
4911     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4912   }
4913 
4914   // No special expansion.
4915   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4916 }
4917 
4918 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4919 /// limited-precision mode.
4920 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4921                           const TargetLowering &TLI) {
4922   // TODO: What fast-math-flags should be set on the floating-point nodes?
4923 
4924   if (Op.getValueType() == MVT::f32 &&
4925       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4926     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4927 
4928     // Get the exponent.
4929     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4930 
4931     // Get the significand and build it into a floating-point number with
4932     // exponent of 1.
4933     SDValue X = GetSignificand(DAG, Op1, dl);
4934 
4935     // Different possible minimax approximations of significand in
4936     // floating-point for various degrees of accuracy over [1,2].
4937     SDValue Log2ofMantissa;
4938     if (LimitFloatPrecision <= 6) {
4939       // For floating-point precision of 6:
4940       //
4941       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4942       //
4943       // error 0.0049451742, which is more than 7 bits
4944       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4945                                getF32Constant(DAG, 0xbeb08fe0, dl));
4946       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4947                                getF32Constant(DAG, 0x40019463, dl));
4948       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4949       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4950                                    getF32Constant(DAG, 0x3fd6633d, dl));
4951     } else if (LimitFloatPrecision <= 12) {
4952       // For floating-point precision of 12:
4953       //
4954       //   Log2ofMantissa =
4955       //     -2.51285454f +
4956       //       (4.07009056f +
4957       //         (-2.12067489f +
4958       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4959       //
4960       // error 0.0000876136000, which is better than 13 bits
4961       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4962                                getF32Constant(DAG, 0xbda7262e, dl));
4963       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4964                                getF32Constant(DAG, 0x3f25280b, dl));
4965       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4966       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4967                                getF32Constant(DAG, 0x4007b923, dl));
4968       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4969       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4970                                getF32Constant(DAG, 0x40823e2f, dl));
4971       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4972       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4973                                    getF32Constant(DAG, 0x4020d29c, dl));
4974     } else { // LimitFloatPrecision <= 18
4975       // For floating-point precision of 18:
4976       //
4977       //   Log2ofMantissa =
4978       //     -3.0400495f +
4979       //       (6.1129976f +
4980       //         (-5.3420409f +
4981       //           (3.2865683f +
4982       //             (-1.2669343f +
4983       //               (0.27515199f -
4984       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4985       //
4986       // error 0.0000018516, which is better than 18 bits
4987       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4988                                getF32Constant(DAG, 0xbcd2769e, dl));
4989       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4990                                getF32Constant(DAG, 0x3e8ce0b9, dl));
4991       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4992       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4993                                getF32Constant(DAG, 0x3fa22ae7, dl));
4994       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4995       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4996                                getF32Constant(DAG, 0x40525723, dl));
4997       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4998       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4999                                getF32Constant(DAG, 0x40aaf200, dl));
5000       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5001       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5002                                getF32Constant(DAG, 0x40c39dad, dl));
5003       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5004       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5005                                    getF32Constant(DAG, 0x4042902c, dl));
5006     }
5007 
5008     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5009   }
5010 
5011   // No special expansion.
5012   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
5013 }
5014 
5015 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5016 /// limited-precision mode.
5017 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5018                            const TargetLowering &TLI) {
5019   // TODO: What fast-math-flags should be set on the floating-point nodes?
5020 
5021   if (Op.getValueType() == MVT::f32 &&
5022       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5023     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5024 
5025     // Scale the exponent by log10(2) [0.30102999f].
5026     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5027     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5028                                         getF32Constant(DAG, 0x3e9a209a, dl));
5029 
5030     // Get the significand and build it into a floating-point number with
5031     // exponent of 1.
5032     SDValue X = GetSignificand(DAG, Op1, dl);
5033 
5034     SDValue Log10ofMantissa;
5035     if (LimitFloatPrecision <= 6) {
5036       // For floating-point precision of 6:
5037       //
5038       //   Log10ofMantissa =
5039       //     -0.50419619f +
5040       //       (0.60948995f - 0.10380950f * x) * x;
5041       //
5042       // error 0.0014886165, which is 6 bits
5043       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5044                                getF32Constant(DAG, 0xbdd49a13, dl));
5045       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5046                                getF32Constant(DAG, 0x3f1c0789, dl));
5047       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5048       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5049                                     getF32Constant(DAG, 0x3f011300, dl));
5050     } else if (LimitFloatPrecision <= 12) {
5051       // For floating-point precision of 12:
5052       //
5053       //   Log10ofMantissa =
5054       //     -0.64831180f +
5055       //       (0.91751397f +
5056       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5057       //
5058       // error 0.00019228036, which is better than 12 bits
5059       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5060                                getF32Constant(DAG, 0x3d431f31, dl));
5061       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5062                                getF32Constant(DAG, 0x3ea21fb2, dl));
5063       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5064       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5065                                getF32Constant(DAG, 0x3f6ae232, dl));
5066       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5067       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5068                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5069     } else { // LimitFloatPrecision <= 18
5070       // For floating-point precision of 18:
5071       //
5072       //   Log10ofMantissa =
5073       //     -0.84299375f +
5074       //       (1.5327582f +
5075       //         (-1.0688956f +
5076       //           (0.49102474f +
5077       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5078       //
5079       // error 0.0000037995730, which is better than 18 bits
5080       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5081                                getF32Constant(DAG, 0x3c5d51ce, dl));
5082       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5083                                getF32Constant(DAG, 0x3e00685a, dl));
5084       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5085       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5086                                getF32Constant(DAG, 0x3efb6798, dl));
5087       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5088       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5089                                getF32Constant(DAG, 0x3f88d192, dl));
5090       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5091       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5092                                getF32Constant(DAG, 0x3fc4316c, dl));
5093       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5094       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5095                                     getF32Constant(DAG, 0x3f57ce70, dl));
5096     }
5097 
5098     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5099   }
5100 
5101   // No special expansion.
5102   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
5103 }
5104 
5105 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5106 /// limited-precision mode.
5107 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5108                           const TargetLowering &TLI) {
5109   if (Op.getValueType() == MVT::f32 &&
5110       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5111     return getLimitedPrecisionExp2(Op, dl, DAG);
5112 
5113   // No special expansion.
5114   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
5115 }
5116 
5117 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5118 /// limited-precision mode with x == 10.0f.
5119 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5120                          SelectionDAG &DAG, const TargetLowering &TLI) {
5121   bool IsExp10 = false;
5122   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5123       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5124     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5125       APFloat Ten(10.0f);
5126       IsExp10 = LHSC->isExactlyValue(Ten);
5127     }
5128   }
5129 
5130   // TODO: What fast-math-flags should be set on the FMUL node?
5131   if (IsExp10) {
5132     // Put the exponent in the right bit position for later addition to the
5133     // final result:
5134     //
5135     //   #define LOG2OF10 3.3219281f
5136     //   t0 = Op * LOG2OF10;
5137     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5138                              getF32Constant(DAG, 0x40549a78, dl));
5139     return getLimitedPrecisionExp2(t0, dl, DAG);
5140   }
5141 
5142   // No special expansion.
5143   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
5144 }
5145 
5146 /// ExpandPowI - Expand a llvm.powi intrinsic.
5147 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5148                           SelectionDAG &DAG) {
5149   // If RHS is a constant, we can expand this out to a multiplication tree,
5150   // otherwise we end up lowering to a call to __powidf2 (for example).  When
5151   // optimizing for size, we only want to do this if the expansion would produce
5152   // a small number of multiplies, otherwise we do the full expansion.
5153   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5154     // Get the exponent as a positive value.
5155     unsigned Val = RHSC->getSExtValue();
5156     if ((int)Val < 0) Val = -Val;
5157 
5158     // powi(x, 0) -> 1.0
5159     if (Val == 0)
5160       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5161 
5162     const Function &F = DAG.getMachineFunction().getFunction();
5163     if (!F.optForSize() ||
5164         // If optimizing for size, don't insert too many multiplies.
5165         // This inserts up to 5 multiplies.
5166         countPopulation(Val) + Log2_32(Val) < 7) {
5167       // We use the simple binary decomposition method to generate the multiply
5168       // sequence.  There are more optimal ways to do this (for example,
5169       // powi(x,15) generates one more multiply than it should), but this has
5170       // the benefit of being both really simple and much better than a libcall.
5171       SDValue Res;  // Logically starts equal to 1.0
5172       SDValue CurSquare = LHS;
5173       // TODO: Intrinsics should have fast-math-flags that propagate to these
5174       // nodes.
5175       while (Val) {
5176         if (Val & 1) {
5177           if (Res.getNode())
5178             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
5179           else
5180             Res = CurSquare;  // 1.0*CurSquare.
5181         }
5182 
5183         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5184                                 CurSquare, CurSquare);
5185         Val >>= 1;
5186       }
5187 
5188       // If the original was negative, invert the result, producing 1/(x*x*x).
5189       if (RHSC->getSExtValue() < 0)
5190         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5191                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5192       return Res;
5193     }
5194   }
5195 
5196   // Otherwise, expand to a libcall.
5197   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5198 }
5199 
5200 // getUnderlyingArgReg - Find underlying register used for a truncated or
5201 // bitcasted argument.
5202 static unsigned getUnderlyingArgReg(const SDValue &N) {
5203   switch (N.getOpcode()) {
5204   case ISD::CopyFromReg:
5205     return cast<RegisterSDNode>(N.getOperand(1))->getReg();
5206   case ISD::BITCAST:
5207   case ISD::AssertZext:
5208   case ISD::AssertSext:
5209   case ISD::TRUNCATE:
5210     return getUnderlyingArgReg(N.getOperand(0));
5211   default:
5212     return 0;
5213   }
5214 }
5215 
5216 /// If the DbgValueInst is a dbg_value of a function argument, create the
5217 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5218 /// instruction selection, they will be inserted to the entry BB.
5219 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5220     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5221     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
5222   const Argument *Arg = dyn_cast<Argument>(V);
5223   if (!Arg)
5224     return false;
5225 
5226   if (!IsDbgDeclare) {
5227     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5228     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5229     // the entry block.
5230     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5231     if (!IsInEntryBlock)
5232       return false;
5233 
5234     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5235     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5236     // variable that also is a param.
5237     //
5238     // Although, if we are at the top of the entry block already, we can still
5239     // emit using ArgDbgValue. This might catch some situations when the
5240     // dbg.value refers to an argument that isn't used in the entry block, so
5241     // any CopyToReg node would be optimized out and the only way to express
5242     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5243     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5244     // we should only emit as ArgDbgValue if the Variable is an argument to the
5245     // current function, and the dbg.value intrinsic is found in the entry
5246     // block.
5247     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5248         !DL->getInlinedAt();
5249     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5250     if (!IsInPrologue && !VariableIsFunctionInputArg)
5251       return false;
5252 
5253     // Here we assume that a function argument on IR level only can be used to
5254     // describe one input parameter on source level. If we for example have
5255     // source code like this
5256     //
5257     //    struct A { long x, y; };
5258     //    void foo(struct A a, long b) {
5259     //      ...
5260     //      b = a.x;
5261     //      ...
5262     //    }
5263     //
5264     // and IR like this
5265     //
5266     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5267     //  entry:
5268     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5269     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5270     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5271     //    ...
5272     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5273     //    ...
5274     //
5275     // then the last dbg.value is describing a parameter "b" using a value that
5276     // is an argument. But since we already has used %a1 to describe a parameter
5277     // we should not handle that last dbg.value here (that would result in an
5278     // incorrect hoisting of the DBG_VALUE to the function entry).
5279     // Notice that we allow one dbg.value per IR level argument, to accomodate
5280     // for the situation with fragments above.
5281     if (VariableIsFunctionInputArg) {
5282       unsigned ArgNo = Arg->getArgNo();
5283       if (ArgNo >= FuncInfo.DescribedArgs.size())
5284         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5285       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5286         return false;
5287       FuncInfo.DescribedArgs.set(ArgNo);
5288     }
5289   }
5290 
5291   MachineFunction &MF = DAG.getMachineFunction();
5292   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5293 
5294   bool IsIndirect = false;
5295   Optional<MachineOperand> Op;
5296   // Some arguments' frame index is recorded during argument lowering.
5297   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5298   if (FI != std::numeric_limits<int>::max())
5299     Op = MachineOperand::CreateFI(FI);
5300 
5301   if (!Op && N.getNode()) {
5302     unsigned Reg = getUnderlyingArgReg(N);
5303     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
5304       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5305       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
5306       if (PR)
5307         Reg = PR;
5308     }
5309     if (Reg) {
5310       Op = MachineOperand::CreateReg(Reg, false);
5311       IsIndirect = IsDbgDeclare;
5312     }
5313   }
5314 
5315   if (!Op && N.getNode())
5316     // Check if frame index is available.
5317     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
5318       if (FrameIndexSDNode *FINode =
5319           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5320         Op = MachineOperand::CreateFI(FINode->getIndex());
5321 
5322   if (!Op) {
5323     // Check if ValueMap has reg number.
5324     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
5325     if (VMI != FuncInfo.ValueMap.end()) {
5326       const auto &TLI = DAG.getTargetLoweringInfo();
5327       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5328                        V->getType(), getABIRegCopyCC(V));
5329       if (RFV.occupiesMultipleRegs()) {
5330         unsigned Offset = 0;
5331         for (auto RegAndSize : RFV.getRegsAndSizes()) {
5332           Op = MachineOperand::CreateReg(RegAndSize.first, false);
5333           auto FragmentExpr = DIExpression::createFragmentExpression(
5334               Expr, Offset, RegAndSize.second);
5335           if (!FragmentExpr)
5336             continue;
5337           FuncInfo.ArgDbgValues.push_back(
5338               BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
5339                       Op->getReg(), Variable, *FragmentExpr));
5340           Offset += RegAndSize.second;
5341         }
5342         return true;
5343       }
5344       Op = MachineOperand::CreateReg(VMI->second, false);
5345       IsIndirect = IsDbgDeclare;
5346     }
5347   }
5348 
5349   if (!Op)
5350     return false;
5351 
5352   assert(Variable->isValidLocationForIntrinsic(DL) &&
5353          "Expected inlined-at fields to agree");
5354   IsIndirect = (Op->isReg()) ? IsIndirect : true;
5355   FuncInfo.ArgDbgValues.push_back(
5356       BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
5357               *Op, Variable, Expr));
5358 
5359   return true;
5360 }
5361 
5362 /// Return the appropriate SDDbgValue based on N.
5363 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5364                                              DILocalVariable *Variable,
5365                                              DIExpression *Expr,
5366                                              const DebugLoc &dl,
5367                                              unsigned DbgSDNodeOrder) {
5368   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5369     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5370     // stack slot locations.
5371     //
5372     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5373     // debug values here after optimization:
5374     //
5375     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5376     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5377     //
5378     // Both describe the direct values of their associated variables.
5379     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5380                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5381   }
5382   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5383                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5384 }
5385 
5386 // VisualStudio defines setjmp as _setjmp
5387 #if defined(_MSC_VER) && defined(setjmp) && \
5388                          !defined(setjmp_undefined_for_msvc)
5389 #  pragma push_macro("setjmp")
5390 #  undef setjmp
5391 #  define setjmp_undefined_for_msvc
5392 #endif
5393 
5394 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5395   switch (Intrinsic) {
5396   case Intrinsic::smul_fix:
5397     return ISD::SMULFIX;
5398   case Intrinsic::umul_fix:
5399     return ISD::UMULFIX;
5400   default:
5401     llvm_unreachable("Unhandled fixed point intrinsic");
5402   }
5403 }
5404 
5405 /// Lower the call to the specified intrinsic function. If we want to emit this
5406 /// as a call to a named external function, return the name. Otherwise, lower it
5407 /// and return null.
5408 const char *
5409 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
5410   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5411   SDLoc sdl = getCurSDLoc();
5412   DebugLoc dl = getCurDebugLoc();
5413   SDValue Res;
5414 
5415   switch (Intrinsic) {
5416   default:
5417     // By default, turn this into a target intrinsic node.
5418     visitTargetIntrinsic(I, Intrinsic);
5419     return nullptr;
5420   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
5421   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
5422   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
5423   case Intrinsic::returnaddress:
5424     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5425                              TLI.getPointerTy(DAG.getDataLayout()),
5426                              getValue(I.getArgOperand(0))));
5427     return nullptr;
5428   case Intrinsic::addressofreturnaddress:
5429     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5430                              TLI.getPointerTy(DAG.getDataLayout())));
5431     return nullptr;
5432   case Intrinsic::sponentry:
5433     setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl,
5434                              TLI.getPointerTy(DAG.getDataLayout())));
5435     return nullptr;
5436   case Intrinsic::frameaddress:
5437     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5438                              TLI.getPointerTy(DAG.getDataLayout()),
5439                              getValue(I.getArgOperand(0))));
5440     return nullptr;
5441   case Intrinsic::read_register: {
5442     Value *Reg = I.getArgOperand(0);
5443     SDValue Chain = getRoot();
5444     SDValue RegName =
5445         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5446     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5447     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5448       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5449     setValue(&I, Res);
5450     DAG.setRoot(Res.getValue(1));
5451     return nullptr;
5452   }
5453   case Intrinsic::write_register: {
5454     Value *Reg = I.getArgOperand(0);
5455     Value *RegValue = I.getArgOperand(1);
5456     SDValue Chain = getRoot();
5457     SDValue RegName =
5458         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5459     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5460                             RegName, getValue(RegValue)));
5461     return nullptr;
5462   }
5463   case Intrinsic::setjmp:
5464     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
5465   case Intrinsic::longjmp:
5466     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
5467   case Intrinsic::memcpy: {
5468     const auto &MCI = cast<MemCpyInst>(I);
5469     SDValue Op1 = getValue(I.getArgOperand(0));
5470     SDValue Op2 = getValue(I.getArgOperand(1));
5471     SDValue Op3 = getValue(I.getArgOperand(2));
5472     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5473     unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1);
5474     unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1);
5475     unsigned Align = MinAlign(DstAlign, SrcAlign);
5476     bool isVol = MCI.isVolatile();
5477     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5478     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5479     // node.
5480     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5481                                false, isTC,
5482                                MachinePointerInfo(I.getArgOperand(0)),
5483                                MachinePointerInfo(I.getArgOperand(1)));
5484     updateDAGForMaybeTailCall(MC);
5485     return nullptr;
5486   }
5487   case Intrinsic::memset: {
5488     const auto &MSI = cast<MemSetInst>(I);
5489     SDValue Op1 = getValue(I.getArgOperand(0));
5490     SDValue Op2 = getValue(I.getArgOperand(1));
5491     SDValue Op3 = getValue(I.getArgOperand(2));
5492     // @llvm.memset defines 0 and 1 to both mean no alignment.
5493     unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1);
5494     bool isVol = MSI.isVolatile();
5495     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5496     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5497                                isTC, MachinePointerInfo(I.getArgOperand(0)));
5498     updateDAGForMaybeTailCall(MS);
5499     return nullptr;
5500   }
5501   case Intrinsic::memmove: {
5502     const auto &MMI = cast<MemMoveInst>(I);
5503     SDValue Op1 = getValue(I.getArgOperand(0));
5504     SDValue Op2 = getValue(I.getArgOperand(1));
5505     SDValue Op3 = getValue(I.getArgOperand(2));
5506     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5507     unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1);
5508     unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1);
5509     unsigned Align = MinAlign(DstAlign, SrcAlign);
5510     bool isVol = MMI.isVolatile();
5511     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5512     // FIXME: Support passing different dest/src alignments to the memmove DAG
5513     // node.
5514     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5515                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5516                                 MachinePointerInfo(I.getArgOperand(1)));
5517     updateDAGForMaybeTailCall(MM);
5518     return nullptr;
5519   }
5520   case Intrinsic::memcpy_element_unordered_atomic: {
5521     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5522     SDValue Dst = getValue(MI.getRawDest());
5523     SDValue Src = getValue(MI.getRawSource());
5524     SDValue Length = getValue(MI.getLength());
5525 
5526     unsigned DstAlign = MI.getDestAlignment();
5527     unsigned SrcAlign = MI.getSourceAlignment();
5528     Type *LengthTy = MI.getLength()->getType();
5529     unsigned ElemSz = MI.getElementSizeInBytes();
5530     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5531     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5532                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5533                                      MachinePointerInfo(MI.getRawDest()),
5534                                      MachinePointerInfo(MI.getRawSource()));
5535     updateDAGForMaybeTailCall(MC);
5536     return nullptr;
5537   }
5538   case Intrinsic::memmove_element_unordered_atomic: {
5539     auto &MI = cast<AtomicMemMoveInst>(I);
5540     SDValue Dst = getValue(MI.getRawDest());
5541     SDValue Src = getValue(MI.getRawSource());
5542     SDValue Length = getValue(MI.getLength());
5543 
5544     unsigned DstAlign = MI.getDestAlignment();
5545     unsigned SrcAlign = MI.getSourceAlignment();
5546     Type *LengthTy = MI.getLength()->getType();
5547     unsigned ElemSz = MI.getElementSizeInBytes();
5548     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5549     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5550                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5551                                       MachinePointerInfo(MI.getRawDest()),
5552                                       MachinePointerInfo(MI.getRawSource()));
5553     updateDAGForMaybeTailCall(MC);
5554     return nullptr;
5555   }
5556   case Intrinsic::memset_element_unordered_atomic: {
5557     auto &MI = cast<AtomicMemSetInst>(I);
5558     SDValue Dst = getValue(MI.getRawDest());
5559     SDValue Val = getValue(MI.getValue());
5560     SDValue Length = getValue(MI.getLength());
5561 
5562     unsigned DstAlign = MI.getDestAlignment();
5563     Type *LengthTy = MI.getLength()->getType();
5564     unsigned ElemSz = MI.getElementSizeInBytes();
5565     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5566     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5567                                      LengthTy, ElemSz, isTC,
5568                                      MachinePointerInfo(MI.getRawDest()));
5569     updateDAGForMaybeTailCall(MC);
5570     return nullptr;
5571   }
5572   case Intrinsic::dbg_addr:
5573   case Intrinsic::dbg_declare: {
5574     const auto &DI = cast<DbgVariableIntrinsic>(I);
5575     DILocalVariable *Variable = DI.getVariable();
5576     DIExpression *Expression = DI.getExpression();
5577     dropDanglingDebugInfo(Variable, Expression);
5578     assert(Variable && "Missing variable");
5579 
5580     // Check if address has undef value.
5581     const Value *Address = DI.getVariableLocation();
5582     if (!Address || isa<UndefValue>(Address) ||
5583         (Address->use_empty() && !isa<Argument>(Address))) {
5584       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5585       return nullptr;
5586     }
5587 
5588     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5589 
5590     // Check if this variable can be described by a frame index, typically
5591     // either as a static alloca or a byval parameter.
5592     int FI = std::numeric_limits<int>::max();
5593     if (const auto *AI =
5594             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5595       if (AI->isStaticAlloca()) {
5596         auto I = FuncInfo.StaticAllocaMap.find(AI);
5597         if (I != FuncInfo.StaticAllocaMap.end())
5598           FI = I->second;
5599       }
5600     } else if (const auto *Arg = dyn_cast<Argument>(
5601                    Address->stripInBoundsConstantOffsets())) {
5602       FI = FuncInfo.getArgumentFrameIndex(Arg);
5603     }
5604 
5605     // llvm.dbg.addr is control dependent and always generates indirect
5606     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5607     // the MachineFunction variable table.
5608     if (FI != std::numeric_limits<int>::max()) {
5609       if (Intrinsic == Intrinsic::dbg_addr) {
5610         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
5611             Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder);
5612         DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter);
5613       }
5614       return nullptr;
5615     }
5616 
5617     SDValue &N = NodeMap[Address];
5618     if (!N.getNode() && isa<Argument>(Address))
5619       // Check unused arguments map.
5620       N = UnusedArgNodeMap[Address];
5621     SDDbgValue *SDV;
5622     if (N.getNode()) {
5623       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5624         Address = BCI->getOperand(0);
5625       // Parameters are handled specially.
5626       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5627       if (isParameter && FINode) {
5628         // Byval parameter. We have a frame index at this point.
5629         SDV =
5630             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
5631                                       /*IsIndirect*/ true, dl, SDNodeOrder);
5632       } else if (isa<Argument>(Address)) {
5633         // Address is an argument, so try to emit its dbg value using
5634         // virtual register info from the FuncInfo.ValueMap.
5635         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
5636         return nullptr;
5637       } else {
5638         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5639                               true, dl, SDNodeOrder);
5640       }
5641       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5642     } else {
5643       // If Address is an argument then try to emit its dbg value using
5644       // virtual register info from the FuncInfo.ValueMap.
5645       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
5646                                     N)) {
5647         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5648       }
5649     }
5650     return nullptr;
5651   }
5652   case Intrinsic::dbg_label: {
5653     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
5654     DILabel *Label = DI.getLabel();
5655     assert(Label && "Missing label");
5656 
5657     SDDbgLabel *SDV;
5658     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
5659     DAG.AddDbgLabel(SDV);
5660     return nullptr;
5661   }
5662   case Intrinsic::dbg_value: {
5663     const DbgValueInst &DI = cast<DbgValueInst>(I);
5664     assert(DI.getVariable() && "Missing variable");
5665 
5666     DILocalVariable *Variable = DI.getVariable();
5667     DIExpression *Expression = DI.getExpression();
5668     dropDanglingDebugInfo(Variable, Expression);
5669     const Value *V = DI.getValue();
5670     if (!V)
5671       return nullptr;
5672 
5673     if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(),
5674         SDNodeOrder))
5675       return nullptr;
5676 
5677     // TODO: Dangling debug info will eventually either be resolved or produce
5678     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
5679     // between the original dbg.value location and its resolved DBG_VALUE, which
5680     // we should ideally fill with an extra Undef DBG_VALUE.
5681 
5682     DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder);
5683     return nullptr;
5684   }
5685 
5686   case Intrinsic::eh_typeid_for: {
5687     // Find the type id for the given typeinfo.
5688     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5689     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5690     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5691     setValue(&I, Res);
5692     return nullptr;
5693   }
5694 
5695   case Intrinsic::eh_return_i32:
5696   case Intrinsic::eh_return_i64:
5697     DAG.getMachineFunction().setCallsEHReturn(true);
5698     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5699                             MVT::Other,
5700                             getControlRoot(),
5701                             getValue(I.getArgOperand(0)),
5702                             getValue(I.getArgOperand(1))));
5703     return nullptr;
5704   case Intrinsic::eh_unwind_init:
5705     DAG.getMachineFunction().setCallsUnwindInit(true);
5706     return nullptr;
5707   case Intrinsic::eh_dwarf_cfa:
5708     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
5709                              TLI.getPointerTy(DAG.getDataLayout()),
5710                              getValue(I.getArgOperand(0))));
5711     return nullptr;
5712   case Intrinsic::eh_sjlj_callsite: {
5713     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5714     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5715     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5716     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5717 
5718     MMI.setCurrentCallSite(CI->getZExtValue());
5719     return nullptr;
5720   }
5721   case Intrinsic::eh_sjlj_functioncontext: {
5722     // Get and store the index of the function context.
5723     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5724     AllocaInst *FnCtx =
5725       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
5726     int FI = FuncInfo.StaticAllocaMap[FnCtx];
5727     MFI.setFunctionContextIndex(FI);
5728     return nullptr;
5729   }
5730   case Intrinsic::eh_sjlj_setjmp: {
5731     SDValue Ops[2];
5732     Ops[0] = getRoot();
5733     Ops[1] = getValue(I.getArgOperand(0));
5734     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
5735                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
5736     setValue(&I, Op.getValue(0));
5737     DAG.setRoot(Op.getValue(1));
5738     return nullptr;
5739   }
5740   case Intrinsic::eh_sjlj_longjmp:
5741     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
5742                             getRoot(), getValue(I.getArgOperand(0))));
5743     return nullptr;
5744   case Intrinsic::eh_sjlj_setup_dispatch:
5745     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
5746                             getRoot()));
5747     return nullptr;
5748   case Intrinsic::masked_gather:
5749     visitMaskedGather(I);
5750     return nullptr;
5751   case Intrinsic::masked_load:
5752     visitMaskedLoad(I);
5753     return nullptr;
5754   case Intrinsic::masked_scatter:
5755     visitMaskedScatter(I);
5756     return nullptr;
5757   case Intrinsic::masked_store:
5758     visitMaskedStore(I);
5759     return nullptr;
5760   case Intrinsic::masked_expandload:
5761     visitMaskedLoad(I, true /* IsExpanding */);
5762     return nullptr;
5763   case Intrinsic::masked_compressstore:
5764     visitMaskedStore(I, true /* IsCompressing */);
5765     return nullptr;
5766   case Intrinsic::x86_mmx_pslli_w:
5767   case Intrinsic::x86_mmx_pslli_d:
5768   case Intrinsic::x86_mmx_pslli_q:
5769   case Intrinsic::x86_mmx_psrli_w:
5770   case Intrinsic::x86_mmx_psrli_d:
5771   case Intrinsic::x86_mmx_psrli_q:
5772   case Intrinsic::x86_mmx_psrai_w:
5773   case Intrinsic::x86_mmx_psrai_d: {
5774     SDValue ShAmt = getValue(I.getArgOperand(1));
5775     if (isa<ConstantSDNode>(ShAmt)) {
5776       visitTargetIntrinsic(I, Intrinsic);
5777       return nullptr;
5778     }
5779     unsigned NewIntrinsic = 0;
5780     EVT ShAmtVT = MVT::v2i32;
5781     switch (Intrinsic) {
5782     case Intrinsic::x86_mmx_pslli_w:
5783       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
5784       break;
5785     case Intrinsic::x86_mmx_pslli_d:
5786       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
5787       break;
5788     case Intrinsic::x86_mmx_pslli_q:
5789       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
5790       break;
5791     case Intrinsic::x86_mmx_psrli_w:
5792       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
5793       break;
5794     case Intrinsic::x86_mmx_psrli_d:
5795       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
5796       break;
5797     case Intrinsic::x86_mmx_psrli_q:
5798       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
5799       break;
5800     case Intrinsic::x86_mmx_psrai_w:
5801       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
5802       break;
5803     case Intrinsic::x86_mmx_psrai_d:
5804       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
5805       break;
5806     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5807     }
5808 
5809     // The vector shift intrinsics with scalars uses 32b shift amounts but
5810     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
5811     // to be zero.
5812     // We must do this early because v2i32 is not a legal type.
5813     SDValue ShOps[2];
5814     ShOps[0] = ShAmt;
5815     ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
5816     ShAmt =  DAG.getBuildVector(ShAmtVT, sdl, ShOps);
5817     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5818     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
5819     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
5820                        DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
5821                        getValue(I.getArgOperand(0)), ShAmt);
5822     setValue(&I, Res);
5823     return nullptr;
5824   }
5825   case Intrinsic::powi:
5826     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5827                             getValue(I.getArgOperand(1)), DAG));
5828     return nullptr;
5829   case Intrinsic::log:
5830     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5831     return nullptr;
5832   case Intrinsic::log2:
5833     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5834     return nullptr;
5835   case Intrinsic::log10:
5836     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5837     return nullptr;
5838   case Intrinsic::exp:
5839     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5840     return nullptr;
5841   case Intrinsic::exp2:
5842     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5843     return nullptr;
5844   case Intrinsic::pow:
5845     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
5846                            getValue(I.getArgOperand(1)), DAG, TLI));
5847     return nullptr;
5848   case Intrinsic::sqrt:
5849   case Intrinsic::fabs:
5850   case Intrinsic::sin:
5851   case Intrinsic::cos:
5852   case Intrinsic::floor:
5853   case Intrinsic::ceil:
5854   case Intrinsic::trunc:
5855   case Intrinsic::rint:
5856   case Intrinsic::nearbyint:
5857   case Intrinsic::round:
5858   case Intrinsic::canonicalize: {
5859     unsigned Opcode;
5860     switch (Intrinsic) {
5861     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5862     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
5863     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
5864     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
5865     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
5866     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
5867     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
5868     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
5869     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
5870     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
5871     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
5872     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
5873     }
5874 
5875     setValue(&I, DAG.getNode(Opcode, sdl,
5876                              getValue(I.getArgOperand(0)).getValueType(),
5877                              getValue(I.getArgOperand(0))));
5878     return nullptr;
5879   }
5880   case Intrinsic::minnum: {
5881     auto VT = getValue(I.getArgOperand(0)).getValueType();
5882     unsigned Opc =
5883         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)
5884             ? ISD::FMINIMUM
5885             : ISD::FMINNUM;
5886     setValue(&I, DAG.getNode(Opc, sdl, VT,
5887                              getValue(I.getArgOperand(0)),
5888                              getValue(I.getArgOperand(1))));
5889     return nullptr;
5890   }
5891   case Intrinsic::maxnum: {
5892     auto VT = getValue(I.getArgOperand(0)).getValueType();
5893     unsigned Opc =
5894         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)
5895             ? ISD::FMAXIMUM
5896             : ISD::FMAXNUM;
5897     setValue(&I, DAG.getNode(Opc, sdl, VT,
5898                              getValue(I.getArgOperand(0)),
5899                              getValue(I.getArgOperand(1))));
5900     return nullptr;
5901   }
5902   case Intrinsic::minimum:
5903     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
5904                              getValue(I.getArgOperand(0)).getValueType(),
5905                              getValue(I.getArgOperand(0)),
5906                              getValue(I.getArgOperand(1))));
5907     return nullptr;
5908   case Intrinsic::maximum:
5909     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
5910                              getValue(I.getArgOperand(0)).getValueType(),
5911                              getValue(I.getArgOperand(0)),
5912                              getValue(I.getArgOperand(1))));
5913     return nullptr;
5914   case Intrinsic::copysign:
5915     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5916                              getValue(I.getArgOperand(0)).getValueType(),
5917                              getValue(I.getArgOperand(0)),
5918                              getValue(I.getArgOperand(1))));
5919     return nullptr;
5920   case Intrinsic::fma:
5921     setValue(&I, DAG.getNode(ISD::FMA, sdl,
5922                              getValue(I.getArgOperand(0)).getValueType(),
5923                              getValue(I.getArgOperand(0)),
5924                              getValue(I.getArgOperand(1)),
5925                              getValue(I.getArgOperand(2))));
5926     return nullptr;
5927   case Intrinsic::experimental_constrained_fadd:
5928   case Intrinsic::experimental_constrained_fsub:
5929   case Intrinsic::experimental_constrained_fmul:
5930   case Intrinsic::experimental_constrained_fdiv:
5931   case Intrinsic::experimental_constrained_frem:
5932   case Intrinsic::experimental_constrained_fma:
5933   case Intrinsic::experimental_constrained_sqrt:
5934   case Intrinsic::experimental_constrained_pow:
5935   case Intrinsic::experimental_constrained_powi:
5936   case Intrinsic::experimental_constrained_sin:
5937   case Intrinsic::experimental_constrained_cos:
5938   case Intrinsic::experimental_constrained_exp:
5939   case Intrinsic::experimental_constrained_exp2:
5940   case Intrinsic::experimental_constrained_log:
5941   case Intrinsic::experimental_constrained_log10:
5942   case Intrinsic::experimental_constrained_log2:
5943   case Intrinsic::experimental_constrained_rint:
5944   case Intrinsic::experimental_constrained_nearbyint:
5945   case Intrinsic::experimental_constrained_maxnum:
5946   case Intrinsic::experimental_constrained_minnum:
5947   case Intrinsic::experimental_constrained_ceil:
5948   case Intrinsic::experimental_constrained_floor:
5949   case Intrinsic::experimental_constrained_round:
5950   case Intrinsic::experimental_constrained_trunc:
5951     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
5952     return nullptr;
5953   case Intrinsic::fmuladd: {
5954     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5955     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
5956         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
5957       setValue(&I, DAG.getNode(ISD::FMA, sdl,
5958                                getValue(I.getArgOperand(0)).getValueType(),
5959                                getValue(I.getArgOperand(0)),
5960                                getValue(I.getArgOperand(1)),
5961                                getValue(I.getArgOperand(2))));
5962     } else {
5963       // TODO: Intrinsic calls should have fast-math-flags.
5964       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
5965                                 getValue(I.getArgOperand(0)).getValueType(),
5966                                 getValue(I.getArgOperand(0)),
5967                                 getValue(I.getArgOperand(1)));
5968       SDValue Add = DAG.getNode(ISD::FADD, sdl,
5969                                 getValue(I.getArgOperand(0)).getValueType(),
5970                                 Mul,
5971                                 getValue(I.getArgOperand(2)));
5972       setValue(&I, Add);
5973     }
5974     return nullptr;
5975   }
5976   case Intrinsic::convert_to_fp16:
5977     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
5978                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
5979                                          getValue(I.getArgOperand(0)),
5980                                          DAG.getTargetConstant(0, sdl,
5981                                                                MVT::i32))));
5982     return nullptr;
5983   case Intrinsic::convert_from_fp16:
5984     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
5985                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5986                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
5987                                          getValue(I.getArgOperand(0)))));
5988     return nullptr;
5989   case Intrinsic::pcmarker: {
5990     SDValue Tmp = getValue(I.getArgOperand(0));
5991     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
5992     return nullptr;
5993   }
5994   case Intrinsic::readcyclecounter: {
5995     SDValue Op = getRoot();
5996     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
5997                       DAG.getVTList(MVT::i64, MVT::Other), Op);
5998     setValue(&I, Res);
5999     DAG.setRoot(Res.getValue(1));
6000     return nullptr;
6001   }
6002   case Intrinsic::bitreverse:
6003     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6004                              getValue(I.getArgOperand(0)).getValueType(),
6005                              getValue(I.getArgOperand(0))));
6006     return nullptr;
6007   case Intrinsic::bswap:
6008     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6009                              getValue(I.getArgOperand(0)).getValueType(),
6010                              getValue(I.getArgOperand(0))));
6011     return nullptr;
6012   case Intrinsic::cttz: {
6013     SDValue Arg = getValue(I.getArgOperand(0));
6014     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6015     EVT Ty = Arg.getValueType();
6016     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6017                              sdl, Ty, Arg));
6018     return nullptr;
6019   }
6020   case Intrinsic::ctlz: {
6021     SDValue Arg = getValue(I.getArgOperand(0));
6022     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6023     EVT Ty = Arg.getValueType();
6024     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6025                              sdl, Ty, Arg));
6026     return nullptr;
6027   }
6028   case Intrinsic::ctpop: {
6029     SDValue Arg = getValue(I.getArgOperand(0));
6030     EVT Ty = Arg.getValueType();
6031     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6032     return nullptr;
6033   }
6034   case Intrinsic::fshl:
6035   case Intrinsic::fshr: {
6036     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6037     SDValue X = getValue(I.getArgOperand(0));
6038     SDValue Y = getValue(I.getArgOperand(1));
6039     SDValue Z = getValue(I.getArgOperand(2));
6040     EVT VT = X.getValueType();
6041     SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT);
6042     SDValue Zero = DAG.getConstant(0, sdl, VT);
6043     SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC);
6044 
6045     auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6046     if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) {
6047       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6048       return nullptr;
6049     }
6050 
6051     // When X == Y, this is rotate. If the data type has a power-of-2 size, we
6052     // avoid the select that is necessary in the general case to filter out
6053     // the 0-shift possibility that leads to UB.
6054     if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) {
6055       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6056       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6057         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6058         return nullptr;
6059       }
6060 
6061       // Some targets only rotate one way. Try the opposite direction.
6062       RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL;
6063       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6064         // Negate the shift amount because it is safe to ignore the high bits.
6065         SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6066         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt));
6067         return nullptr;
6068       }
6069 
6070       // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW))
6071       // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW))
6072       SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6073       SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC);
6074       SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt);
6075       SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt);
6076       setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY));
6077       return nullptr;
6078     }
6079 
6080     // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
6081     // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
6082     SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt);
6083     SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt);
6084     SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6085     SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY);
6086 
6087     // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
6088     // and that is undefined. We must compare and select to avoid UB.
6089     EVT CCVT = MVT::i1;
6090     if (VT.isVector())
6091       CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements());
6092 
6093     // For fshl, 0-shift returns the 1st arg (X).
6094     // For fshr, 0-shift returns the 2nd arg (Y).
6095     SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ);
6096     setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or));
6097     return nullptr;
6098   }
6099   case Intrinsic::sadd_sat: {
6100     SDValue Op1 = getValue(I.getArgOperand(0));
6101     SDValue Op2 = getValue(I.getArgOperand(1));
6102     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6103     return nullptr;
6104   }
6105   case Intrinsic::uadd_sat: {
6106     SDValue Op1 = getValue(I.getArgOperand(0));
6107     SDValue Op2 = getValue(I.getArgOperand(1));
6108     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6109     return nullptr;
6110   }
6111   case Intrinsic::ssub_sat: {
6112     SDValue Op1 = getValue(I.getArgOperand(0));
6113     SDValue Op2 = getValue(I.getArgOperand(1));
6114     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6115     return nullptr;
6116   }
6117   case Intrinsic::usub_sat: {
6118     SDValue Op1 = getValue(I.getArgOperand(0));
6119     SDValue Op2 = getValue(I.getArgOperand(1));
6120     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6121     return nullptr;
6122   }
6123   case Intrinsic::smul_fix:
6124   case Intrinsic::umul_fix: {
6125     SDValue Op1 = getValue(I.getArgOperand(0));
6126     SDValue Op2 = getValue(I.getArgOperand(1));
6127     SDValue Op3 = getValue(I.getArgOperand(2));
6128     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6129                              Op1.getValueType(), Op1, Op2, Op3));
6130     return nullptr;
6131   }
6132   case Intrinsic::stacksave: {
6133     SDValue Op = getRoot();
6134     Res = DAG.getNode(
6135         ISD::STACKSAVE, sdl,
6136         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
6137     setValue(&I, Res);
6138     DAG.setRoot(Res.getValue(1));
6139     return nullptr;
6140   }
6141   case Intrinsic::stackrestore:
6142     Res = getValue(I.getArgOperand(0));
6143     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6144     return nullptr;
6145   case Intrinsic::get_dynamic_area_offset: {
6146     SDValue Op = getRoot();
6147     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6148     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6149     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6150     // target.
6151     if (PtrTy != ResTy)
6152       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6153                          " intrinsic!");
6154     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6155                       Op);
6156     DAG.setRoot(Op);
6157     setValue(&I, Res);
6158     return nullptr;
6159   }
6160   case Intrinsic::stackguard: {
6161     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6162     MachineFunction &MF = DAG.getMachineFunction();
6163     const Module &M = *MF.getFunction().getParent();
6164     SDValue Chain = getRoot();
6165     if (TLI.useLoadStackGuardNode()) {
6166       Res = getLoadStackGuard(DAG, sdl, Chain);
6167     } else {
6168       const Value *Global = TLI.getSDagStackGuard(M);
6169       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
6170       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6171                         MachinePointerInfo(Global, 0), Align,
6172                         MachineMemOperand::MOVolatile);
6173     }
6174     if (TLI.useStackGuardXorFP())
6175       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6176     DAG.setRoot(Chain);
6177     setValue(&I, Res);
6178     return nullptr;
6179   }
6180   case Intrinsic::stackprotector: {
6181     // Emit code into the DAG to store the stack guard onto the stack.
6182     MachineFunction &MF = DAG.getMachineFunction();
6183     MachineFrameInfo &MFI = MF.getFrameInfo();
6184     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6185     SDValue Src, Chain = getRoot();
6186 
6187     if (TLI.useLoadStackGuardNode())
6188       Src = getLoadStackGuard(DAG, sdl, Chain);
6189     else
6190       Src = getValue(I.getArgOperand(0));   // The guard's value.
6191 
6192     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6193 
6194     int FI = FuncInfo.StaticAllocaMap[Slot];
6195     MFI.setStackProtectorIndex(FI);
6196 
6197     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6198 
6199     // Store the stack protector onto the stack.
6200     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
6201                                                  DAG.getMachineFunction(), FI),
6202                        /* Alignment = */ 0, MachineMemOperand::MOVolatile);
6203     setValue(&I, Res);
6204     DAG.setRoot(Res);
6205     return nullptr;
6206   }
6207   case Intrinsic::objectsize: {
6208     // If we don't know by now, we're never going to know.
6209     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
6210 
6211     assert(CI && "Non-constant type in __builtin_object_size?");
6212 
6213     SDValue Arg = getValue(I.getCalledValue());
6214     EVT Ty = Arg.getValueType();
6215 
6216     if (CI->isZero())
6217       Res = DAG.getConstant(-1ULL, sdl, Ty);
6218     else
6219       Res = DAG.getConstant(0, sdl, Ty);
6220 
6221     setValue(&I, Res);
6222     return nullptr;
6223   }
6224 
6225   case Intrinsic::is_constant:
6226     // If this wasn't constant-folded away by now, then it's not a
6227     // constant.
6228     setValue(&I, DAG.getConstant(0, sdl, MVT::i1));
6229     return nullptr;
6230 
6231   case Intrinsic::annotation:
6232   case Intrinsic::ptr_annotation:
6233   case Intrinsic::launder_invariant_group:
6234   case Intrinsic::strip_invariant_group:
6235     // Drop the intrinsic, but forward the value
6236     setValue(&I, getValue(I.getOperand(0)));
6237     return nullptr;
6238   case Intrinsic::assume:
6239   case Intrinsic::var_annotation:
6240   case Intrinsic::sideeffect:
6241     // Discard annotate attributes, assumptions, and artificial side-effects.
6242     return nullptr;
6243 
6244   case Intrinsic::codeview_annotation: {
6245     // Emit a label associated with this metadata.
6246     MachineFunction &MF = DAG.getMachineFunction();
6247     MCSymbol *Label =
6248         MF.getMMI().getContext().createTempSymbol("annotation", true);
6249     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6250     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6251     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6252     DAG.setRoot(Res);
6253     return nullptr;
6254   }
6255 
6256   case Intrinsic::init_trampoline: {
6257     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6258 
6259     SDValue Ops[6];
6260     Ops[0] = getRoot();
6261     Ops[1] = getValue(I.getArgOperand(0));
6262     Ops[2] = getValue(I.getArgOperand(1));
6263     Ops[3] = getValue(I.getArgOperand(2));
6264     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6265     Ops[5] = DAG.getSrcValue(F);
6266 
6267     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6268 
6269     DAG.setRoot(Res);
6270     return nullptr;
6271   }
6272   case Intrinsic::adjust_trampoline:
6273     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6274                              TLI.getPointerTy(DAG.getDataLayout()),
6275                              getValue(I.getArgOperand(0))));
6276     return nullptr;
6277   case Intrinsic::gcroot: {
6278     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6279            "only valid in functions with gc specified, enforced by Verifier");
6280     assert(GFI && "implied by previous");
6281     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6282     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6283 
6284     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6285     GFI->addStackRoot(FI->getIndex(), TypeMap);
6286     return nullptr;
6287   }
6288   case Intrinsic::gcread:
6289   case Intrinsic::gcwrite:
6290     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6291   case Intrinsic::flt_rounds:
6292     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
6293     return nullptr;
6294 
6295   case Intrinsic::expect:
6296     // Just replace __builtin_expect(exp, c) with EXP.
6297     setValue(&I, getValue(I.getArgOperand(0)));
6298     return nullptr;
6299 
6300   case Intrinsic::debugtrap:
6301   case Intrinsic::trap: {
6302     StringRef TrapFuncName =
6303         I.getAttributes()
6304             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
6305             .getValueAsString();
6306     if (TrapFuncName.empty()) {
6307       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
6308         ISD::TRAP : ISD::DEBUGTRAP;
6309       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
6310       return nullptr;
6311     }
6312     TargetLowering::ArgListTy Args;
6313 
6314     TargetLowering::CallLoweringInfo CLI(DAG);
6315     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6316         CallingConv::C, I.getType(),
6317         DAG.getExternalSymbol(TrapFuncName.data(),
6318                               TLI.getPointerTy(DAG.getDataLayout())),
6319         std::move(Args));
6320 
6321     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6322     DAG.setRoot(Result.second);
6323     return nullptr;
6324   }
6325 
6326   case Intrinsic::uadd_with_overflow:
6327   case Intrinsic::sadd_with_overflow:
6328   case Intrinsic::usub_with_overflow:
6329   case Intrinsic::ssub_with_overflow:
6330   case Intrinsic::umul_with_overflow:
6331   case Intrinsic::smul_with_overflow: {
6332     ISD::NodeType Op;
6333     switch (Intrinsic) {
6334     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6335     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6336     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6337     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6338     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6339     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6340     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6341     }
6342     SDValue Op1 = getValue(I.getArgOperand(0));
6343     SDValue Op2 = getValue(I.getArgOperand(1));
6344 
6345     EVT ResultVT = Op1.getValueType();
6346     EVT OverflowVT = MVT::i1;
6347     if (ResultVT.isVector())
6348       OverflowVT = EVT::getVectorVT(
6349           *Context, OverflowVT, ResultVT.getVectorNumElements());
6350 
6351     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6352     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6353     return nullptr;
6354   }
6355   case Intrinsic::prefetch: {
6356     SDValue Ops[5];
6357     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6358     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6359     Ops[0] = DAG.getRoot();
6360     Ops[1] = getValue(I.getArgOperand(0));
6361     Ops[2] = getValue(I.getArgOperand(1));
6362     Ops[3] = getValue(I.getArgOperand(2));
6363     Ops[4] = getValue(I.getArgOperand(3));
6364     SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
6365                                              DAG.getVTList(MVT::Other), Ops,
6366                                              EVT::getIntegerVT(*Context, 8),
6367                                              MachinePointerInfo(I.getArgOperand(0)),
6368                                              0, /* align */
6369                                              Flags);
6370 
6371     // Chain the prefetch in parallell with any pending loads, to stay out of
6372     // the way of later optimizations.
6373     PendingLoads.push_back(Result);
6374     Result = getRoot();
6375     DAG.setRoot(Result);
6376     return nullptr;
6377   }
6378   case Intrinsic::lifetime_start:
6379   case Intrinsic::lifetime_end: {
6380     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6381     // Stack coloring is not enabled in O0, discard region information.
6382     if (TM.getOptLevel() == CodeGenOpt::None)
6383       return nullptr;
6384 
6385     const int64_t ObjectSize =
6386         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6387     Value *const ObjectPtr = I.getArgOperand(1);
6388     SmallVector<Value *, 4> Allocas;
6389     GetUnderlyingObjects(ObjectPtr, Allocas, *DL);
6390 
6391     for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
6392            E = Allocas.end(); Object != E; ++Object) {
6393       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
6394 
6395       // Could not find an Alloca.
6396       if (!LifetimeObject)
6397         continue;
6398 
6399       // First check that the Alloca is static, otherwise it won't have a
6400       // valid frame index.
6401       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6402       if (SI == FuncInfo.StaticAllocaMap.end())
6403         return nullptr;
6404 
6405       const int FrameIndex = SI->second;
6406       int64_t Offset;
6407       if (GetPointerBaseWithConstantOffset(
6408               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6409         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6410       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6411                                 Offset);
6412       DAG.setRoot(Res);
6413     }
6414     return nullptr;
6415   }
6416   case Intrinsic::invariant_start:
6417     // Discard region information.
6418     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6419     return nullptr;
6420   case Intrinsic::invariant_end:
6421     // Discard region information.
6422     return nullptr;
6423   case Intrinsic::clear_cache:
6424     return TLI.getClearCacheBuiltinName();
6425   case Intrinsic::donothing:
6426     // ignore
6427     return nullptr;
6428   case Intrinsic::experimental_stackmap:
6429     visitStackmap(I);
6430     return nullptr;
6431   case Intrinsic::experimental_patchpoint_void:
6432   case Intrinsic::experimental_patchpoint_i64:
6433     visitPatchpoint(&I);
6434     return nullptr;
6435   case Intrinsic::experimental_gc_statepoint:
6436     LowerStatepoint(ImmutableStatepoint(&I));
6437     return nullptr;
6438   case Intrinsic::experimental_gc_result:
6439     visitGCResult(cast<GCResultInst>(I));
6440     return nullptr;
6441   case Intrinsic::experimental_gc_relocate:
6442     visitGCRelocate(cast<GCRelocateInst>(I));
6443     return nullptr;
6444   case Intrinsic::instrprof_increment:
6445     llvm_unreachable("instrprof failed to lower an increment");
6446   case Intrinsic::instrprof_value_profile:
6447     llvm_unreachable("instrprof failed to lower a value profiling call");
6448   case Intrinsic::localescape: {
6449     MachineFunction &MF = DAG.getMachineFunction();
6450     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6451 
6452     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6453     // is the same on all targets.
6454     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6455       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6456       if (isa<ConstantPointerNull>(Arg))
6457         continue; // Skip null pointers. They represent a hole in index space.
6458       AllocaInst *Slot = cast<AllocaInst>(Arg);
6459       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6460              "can only escape static allocas");
6461       int FI = FuncInfo.StaticAllocaMap[Slot];
6462       MCSymbol *FrameAllocSym =
6463           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6464               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6465       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6466               TII->get(TargetOpcode::LOCAL_ESCAPE))
6467           .addSym(FrameAllocSym)
6468           .addFrameIndex(FI);
6469     }
6470 
6471     return nullptr;
6472   }
6473 
6474   case Intrinsic::localrecover: {
6475     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6476     MachineFunction &MF = DAG.getMachineFunction();
6477     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
6478 
6479     // Get the symbol that defines the frame offset.
6480     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6481     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6482     unsigned IdxVal =
6483         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6484     MCSymbol *FrameAllocSym =
6485         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6486             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6487 
6488     // Create a MCSymbol for the label to avoid any target lowering
6489     // that would make this PC relative.
6490     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6491     SDValue OffsetVal =
6492         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6493 
6494     // Add the offset to the FP.
6495     Value *FP = I.getArgOperand(1);
6496     SDValue FPVal = getValue(FP);
6497     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
6498     setValue(&I, Add);
6499 
6500     return nullptr;
6501   }
6502 
6503   case Intrinsic::eh_exceptionpointer:
6504   case Intrinsic::eh_exceptioncode: {
6505     // Get the exception pointer vreg, copy from it, and resize it to fit.
6506     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6507     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6508     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6509     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6510     SDValue N =
6511         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6512     if (Intrinsic == Intrinsic::eh_exceptioncode)
6513       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6514     setValue(&I, N);
6515     return nullptr;
6516   }
6517   case Intrinsic::xray_customevent: {
6518     // Here we want to make sure that the intrinsic behaves as if it has a
6519     // specific calling convention, and only for x86_64.
6520     // FIXME: Support other platforms later.
6521     const auto &Triple = DAG.getTarget().getTargetTriple();
6522     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6523       return nullptr;
6524 
6525     SDLoc DL = getCurSDLoc();
6526     SmallVector<SDValue, 8> Ops;
6527 
6528     // We want to say that we always want the arguments in registers.
6529     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6530     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6531     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6532     SDValue Chain = getRoot();
6533     Ops.push_back(LogEntryVal);
6534     Ops.push_back(StrSizeVal);
6535     Ops.push_back(Chain);
6536 
6537     // We need to enforce the calling convention for the callsite, so that
6538     // argument ordering is enforced correctly, and that register allocation can
6539     // see that some registers may be assumed clobbered and have to preserve
6540     // them across calls to the intrinsic.
6541     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6542                                            DL, NodeTys, Ops);
6543     SDValue patchableNode = SDValue(MN, 0);
6544     DAG.setRoot(patchableNode);
6545     setValue(&I, patchableNode);
6546     return nullptr;
6547   }
6548   case Intrinsic::xray_typedevent: {
6549     // Here we want to make sure that the intrinsic behaves as if it has a
6550     // specific calling convention, and only for x86_64.
6551     // FIXME: Support other platforms later.
6552     const auto &Triple = DAG.getTarget().getTargetTriple();
6553     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6554       return nullptr;
6555 
6556     SDLoc DL = getCurSDLoc();
6557     SmallVector<SDValue, 8> Ops;
6558 
6559     // We want to say that we always want the arguments in registers.
6560     // It's unclear to me how manipulating the selection DAG here forces callers
6561     // to provide arguments in registers instead of on the stack.
6562     SDValue LogTypeId = getValue(I.getArgOperand(0));
6563     SDValue LogEntryVal = getValue(I.getArgOperand(1));
6564     SDValue StrSizeVal = getValue(I.getArgOperand(2));
6565     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6566     SDValue Chain = getRoot();
6567     Ops.push_back(LogTypeId);
6568     Ops.push_back(LogEntryVal);
6569     Ops.push_back(StrSizeVal);
6570     Ops.push_back(Chain);
6571 
6572     // We need to enforce the calling convention for the callsite, so that
6573     // argument ordering is enforced correctly, and that register allocation can
6574     // see that some registers may be assumed clobbered and have to preserve
6575     // them across calls to the intrinsic.
6576     MachineSDNode *MN = DAG.getMachineNode(
6577         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6578     SDValue patchableNode = SDValue(MN, 0);
6579     DAG.setRoot(patchableNode);
6580     setValue(&I, patchableNode);
6581     return nullptr;
6582   }
6583   case Intrinsic::experimental_deoptimize:
6584     LowerDeoptimizeCall(&I);
6585     return nullptr;
6586 
6587   case Intrinsic::experimental_vector_reduce_fadd:
6588   case Intrinsic::experimental_vector_reduce_fmul:
6589   case Intrinsic::experimental_vector_reduce_add:
6590   case Intrinsic::experimental_vector_reduce_mul:
6591   case Intrinsic::experimental_vector_reduce_and:
6592   case Intrinsic::experimental_vector_reduce_or:
6593   case Intrinsic::experimental_vector_reduce_xor:
6594   case Intrinsic::experimental_vector_reduce_smax:
6595   case Intrinsic::experimental_vector_reduce_smin:
6596   case Intrinsic::experimental_vector_reduce_umax:
6597   case Intrinsic::experimental_vector_reduce_umin:
6598   case Intrinsic::experimental_vector_reduce_fmax:
6599   case Intrinsic::experimental_vector_reduce_fmin:
6600     visitVectorReduce(I, Intrinsic);
6601     return nullptr;
6602 
6603   case Intrinsic::icall_branch_funnel: {
6604     SmallVector<SDValue, 16> Ops;
6605     Ops.push_back(DAG.getRoot());
6606     Ops.push_back(getValue(I.getArgOperand(0)));
6607 
6608     int64_t Offset;
6609     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6610         I.getArgOperand(1), Offset, DAG.getDataLayout()));
6611     if (!Base)
6612       report_fatal_error(
6613           "llvm.icall.branch.funnel operand must be a GlobalValue");
6614     Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6615 
6616     struct BranchFunnelTarget {
6617       int64_t Offset;
6618       SDValue Target;
6619     };
6620     SmallVector<BranchFunnelTarget, 8> Targets;
6621 
6622     for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
6623       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6624           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
6625       if (ElemBase != Base)
6626         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6627                            "to the same GlobalValue");
6628 
6629       SDValue Val = getValue(I.getArgOperand(Op + 1));
6630       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
6631       if (!GA)
6632         report_fatal_error(
6633             "llvm.icall.branch.funnel operand must be a GlobalValue");
6634       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
6635                                      GA->getGlobal(), getCurSDLoc(),
6636                                      Val.getValueType(), GA->getOffset())});
6637     }
6638     llvm::sort(Targets,
6639                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
6640                  return T1.Offset < T2.Offset;
6641                });
6642 
6643     for (auto &T : Targets) {
6644       Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
6645       Ops.push_back(T.Target);
6646     }
6647 
6648     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
6649                                  getCurSDLoc(), MVT::Other, Ops),
6650               0);
6651     DAG.setRoot(N);
6652     setValue(&I, N);
6653     HasTailCall = true;
6654     return nullptr;
6655   }
6656 
6657   case Intrinsic::wasm_landingpad_index:
6658     // Information this intrinsic contained has been transferred to
6659     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
6660     // delete it now.
6661     return nullptr;
6662   }
6663 }
6664 
6665 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6666     const ConstrainedFPIntrinsic &FPI) {
6667   SDLoc sdl = getCurSDLoc();
6668   unsigned Opcode;
6669   switch (FPI.getIntrinsicID()) {
6670   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6671   case Intrinsic::experimental_constrained_fadd:
6672     Opcode = ISD::STRICT_FADD;
6673     break;
6674   case Intrinsic::experimental_constrained_fsub:
6675     Opcode = ISD::STRICT_FSUB;
6676     break;
6677   case Intrinsic::experimental_constrained_fmul:
6678     Opcode = ISD::STRICT_FMUL;
6679     break;
6680   case Intrinsic::experimental_constrained_fdiv:
6681     Opcode = ISD::STRICT_FDIV;
6682     break;
6683   case Intrinsic::experimental_constrained_frem:
6684     Opcode = ISD::STRICT_FREM;
6685     break;
6686   case Intrinsic::experimental_constrained_fma:
6687     Opcode = ISD::STRICT_FMA;
6688     break;
6689   case Intrinsic::experimental_constrained_sqrt:
6690     Opcode = ISD::STRICT_FSQRT;
6691     break;
6692   case Intrinsic::experimental_constrained_pow:
6693     Opcode = ISD::STRICT_FPOW;
6694     break;
6695   case Intrinsic::experimental_constrained_powi:
6696     Opcode = ISD::STRICT_FPOWI;
6697     break;
6698   case Intrinsic::experimental_constrained_sin:
6699     Opcode = ISD::STRICT_FSIN;
6700     break;
6701   case Intrinsic::experimental_constrained_cos:
6702     Opcode = ISD::STRICT_FCOS;
6703     break;
6704   case Intrinsic::experimental_constrained_exp:
6705     Opcode = ISD::STRICT_FEXP;
6706     break;
6707   case Intrinsic::experimental_constrained_exp2:
6708     Opcode = ISD::STRICT_FEXP2;
6709     break;
6710   case Intrinsic::experimental_constrained_log:
6711     Opcode = ISD::STRICT_FLOG;
6712     break;
6713   case Intrinsic::experimental_constrained_log10:
6714     Opcode = ISD::STRICT_FLOG10;
6715     break;
6716   case Intrinsic::experimental_constrained_log2:
6717     Opcode = ISD::STRICT_FLOG2;
6718     break;
6719   case Intrinsic::experimental_constrained_rint:
6720     Opcode = ISD::STRICT_FRINT;
6721     break;
6722   case Intrinsic::experimental_constrained_nearbyint:
6723     Opcode = ISD::STRICT_FNEARBYINT;
6724     break;
6725   case Intrinsic::experimental_constrained_maxnum:
6726     Opcode = ISD::STRICT_FMAXNUM;
6727     break;
6728   case Intrinsic::experimental_constrained_minnum:
6729     Opcode = ISD::STRICT_FMINNUM;
6730     break;
6731   case Intrinsic::experimental_constrained_ceil:
6732     Opcode = ISD::STRICT_FCEIL;
6733     break;
6734   case Intrinsic::experimental_constrained_floor:
6735     Opcode = ISD::STRICT_FFLOOR;
6736     break;
6737   case Intrinsic::experimental_constrained_round:
6738     Opcode = ISD::STRICT_FROUND;
6739     break;
6740   case Intrinsic::experimental_constrained_trunc:
6741     Opcode = ISD::STRICT_FTRUNC;
6742     break;
6743   }
6744   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6745   SDValue Chain = getRoot();
6746   SmallVector<EVT, 4> ValueVTs;
6747   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
6748   ValueVTs.push_back(MVT::Other); // Out chain
6749 
6750   SDVTList VTs = DAG.getVTList(ValueVTs);
6751   SDValue Result;
6752   if (FPI.isUnaryOp())
6753     Result = DAG.getNode(Opcode, sdl, VTs,
6754                          { Chain, getValue(FPI.getArgOperand(0)) });
6755   else if (FPI.isTernaryOp())
6756     Result = DAG.getNode(Opcode, sdl, VTs,
6757                          { Chain, getValue(FPI.getArgOperand(0)),
6758                                   getValue(FPI.getArgOperand(1)),
6759                                   getValue(FPI.getArgOperand(2)) });
6760   else
6761     Result = DAG.getNode(Opcode, sdl, VTs,
6762                          { Chain, getValue(FPI.getArgOperand(0)),
6763                            getValue(FPI.getArgOperand(1))  });
6764 
6765   assert(Result.getNode()->getNumValues() == 2);
6766   SDValue OutChain = Result.getValue(1);
6767   DAG.setRoot(OutChain);
6768   SDValue FPResult = Result.getValue(0);
6769   setValue(&FPI, FPResult);
6770 }
6771 
6772 std::pair<SDValue, SDValue>
6773 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
6774                                     const BasicBlock *EHPadBB) {
6775   MachineFunction &MF = DAG.getMachineFunction();
6776   MachineModuleInfo &MMI = MF.getMMI();
6777   MCSymbol *BeginLabel = nullptr;
6778 
6779   if (EHPadBB) {
6780     // Insert a label before the invoke call to mark the try range.  This can be
6781     // used to detect deletion of the invoke via the MachineModuleInfo.
6782     BeginLabel = MMI.getContext().createTempSymbol();
6783 
6784     // For SjLj, keep track of which landing pads go with which invokes
6785     // so as to maintain the ordering of pads in the LSDA.
6786     unsigned CallSiteIndex = MMI.getCurrentCallSite();
6787     if (CallSiteIndex) {
6788       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
6789       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
6790 
6791       // Now that the call site is handled, stop tracking it.
6792       MMI.setCurrentCallSite(0);
6793     }
6794 
6795     // Both PendingLoads and PendingExports must be flushed here;
6796     // this call might not return.
6797     (void)getRoot();
6798     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
6799 
6800     CLI.setChain(getRoot());
6801   }
6802   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6803   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6804 
6805   assert((CLI.IsTailCall || Result.second.getNode()) &&
6806          "Non-null chain expected with non-tail call!");
6807   assert((Result.second.getNode() || !Result.first.getNode()) &&
6808          "Null value expected with tail call!");
6809 
6810   if (!Result.second.getNode()) {
6811     // As a special case, a null chain means that a tail call has been emitted
6812     // and the DAG root is already updated.
6813     HasTailCall = true;
6814 
6815     // Since there's no actual continuation from this block, nothing can be
6816     // relying on us setting vregs for them.
6817     PendingExports.clear();
6818   } else {
6819     DAG.setRoot(Result.second);
6820   }
6821 
6822   if (EHPadBB) {
6823     // Insert a label at the end of the invoke call to mark the try range.  This
6824     // can be used to detect deletion of the invoke via the MachineModuleInfo.
6825     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
6826     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
6827 
6828     // Inform MachineModuleInfo of range.
6829     auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
6830     // There is a platform (e.g. wasm) that uses funclet style IR but does not
6831     // actually use outlined funclets and their LSDA info style.
6832     if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
6833       assert(CLI.CS);
6834       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
6835       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()),
6836                                 BeginLabel, EndLabel);
6837     } else if (!isScopedEHPersonality(Pers)) {
6838       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
6839     }
6840   }
6841 
6842   return Result;
6843 }
6844 
6845 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
6846                                       bool isTailCall,
6847                                       const BasicBlock *EHPadBB) {
6848   auto &DL = DAG.getDataLayout();
6849   FunctionType *FTy = CS.getFunctionType();
6850   Type *RetTy = CS.getType();
6851 
6852   TargetLowering::ArgListTy Args;
6853   Args.reserve(CS.arg_size());
6854 
6855   const Value *SwiftErrorVal = nullptr;
6856   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6857 
6858   // We can't tail call inside a function with a swifterror argument. Lowering
6859   // does not support this yet. It would have to move into the swifterror
6860   // register before the call.
6861   auto *Caller = CS.getInstruction()->getParent()->getParent();
6862   if (TLI.supportSwiftError() &&
6863       Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
6864     isTailCall = false;
6865 
6866   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
6867        i != e; ++i) {
6868     TargetLowering::ArgListEntry Entry;
6869     const Value *V = *i;
6870 
6871     // Skip empty types
6872     if (V->getType()->isEmptyTy())
6873       continue;
6874 
6875     SDValue ArgNode = getValue(V);
6876     Entry.Node = ArgNode; Entry.Ty = V->getType();
6877 
6878     Entry.setAttributes(&CS, i - CS.arg_begin());
6879 
6880     // Use swifterror virtual register as input to the call.
6881     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
6882       SwiftErrorVal = V;
6883       // We find the virtual register for the actual swifterror argument.
6884       // Instead of using the Value, we use the virtual register instead.
6885       Entry.Node = DAG.getRegister(FuncInfo
6886                                        .getOrCreateSwiftErrorVRegUseAt(
6887                                            CS.getInstruction(), FuncInfo.MBB, V)
6888                                        .first,
6889                                    EVT(TLI.getPointerTy(DL)));
6890     }
6891 
6892     Args.push_back(Entry);
6893 
6894     // If we have an explicit sret argument that is an Instruction, (i.e., it
6895     // might point to function-local memory), we can't meaningfully tail-call.
6896     if (Entry.IsSRet && isa<Instruction>(V))
6897       isTailCall = false;
6898   }
6899 
6900   // Check if target-independent constraints permit a tail call here.
6901   // Target-dependent constraints are checked within TLI->LowerCallTo.
6902   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
6903     isTailCall = false;
6904 
6905   // Disable tail calls if there is an swifterror argument. Targets have not
6906   // been updated to support tail calls.
6907   if (TLI.supportSwiftError() && SwiftErrorVal)
6908     isTailCall = false;
6909 
6910   TargetLowering::CallLoweringInfo CLI(DAG);
6911   CLI.setDebugLoc(getCurSDLoc())
6912       .setChain(getRoot())
6913       .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
6914       .setTailCall(isTailCall)
6915       .setConvergent(CS.isConvergent());
6916   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
6917 
6918   if (Result.first.getNode()) {
6919     const Instruction *Inst = CS.getInstruction();
6920     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
6921     setValue(Inst, Result.first);
6922   }
6923 
6924   // The last element of CLI.InVals has the SDValue for swifterror return.
6925   // Here we copy it to a virtual register and update SwiftErrorMap for
6926   // book-keeping.
6927   if (SwiftErrorVal && TLI.supportSwiftError()) {
6928     // Get the last element of InVals.
6929     SDValue Src = CLI.InVals.back();
6930     unsigned VReg; bool CreatedVReg;
6931     std::tie(VReg, CreatedVReg) =
6932         FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction());
6933     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
6934     // We update the virtual register for the actual swifterror argument.
6935     if (CreatedVReg)
6936       FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg);
6937     DAG.setRoot(CopyNode);
6938   }
6939 }
6940 
6941 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
6942                              SelectionDAGBuilder &Builder) {
6943   // Check to see if this load can be trivially constant folded, e.g. if the
6944   // input is from a string literal.
6945   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
6946     // Cast pointer to the type we really want to load.
6947     Type *LoadTy =
6948         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
6949     if (LoadVT.isVector())
6950       LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements());
6951 
6952     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
6953                                          PointerType::getUnqual(LoadTy));
6954 
6955     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
6956             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
6957       return Builder.getValue(LoadCst);
6958   }
6959 
6960   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
6961   // still constant memory, the input chain can be the entry node.
6962   SDValue Root;
6963   bool ConstantMemory = false;
6964 
6965   // Do not serialize (non-volatile) loads of constant memory with anything.
6966   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
6967     Root = Builder.DAG.getEntryNode();
6968     ConstantMemory = true;
6969   } else {
6970     // Do not serialize non-volatile loads against each other.
6971     Root = Builder.DAG.getRoot();
6972   }
6973 
6974   SDValue Ptr = Builder.getValue(PtrVal);
6975   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
6976                                         Ptr, MachinePointerInfo(PtrVal),
6977                                         /* Alignment = */ 1);
6978 
6979   if (!ConstantMemory)
6980     Builder.PendingLoads.push_back(LoadVal.getValue(1));
6981   return LoadVal;
6982 }
6983 
6984 /// Record the value for an instruction that produces an integer result,
6985 /// converting the type where necessary.
6986 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
6987                                                   SDValue Value,
6988                                                   bool IsSigned) {
6989   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
6990                                                     I.getType(), true);
6991   if (IsSigned)
6992     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
6993   else
6994     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
6995   setValue(&I, Value);
6996 }
6997 
6998 /// See if we can lower a memcmp call into an optimized form. If so, return
6999 /// true and lower it. Otherwise return false, and it will be lowered like a
7000 /// normal call.
7001 /// The caller already checked that \p I calls the appropriate LibFunc with a
7002 /// correct prototype.
7003 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
7004   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7005   const Value *Size = I.getArgOperand(2);
7006   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
7007   if (CSize && CSize->getZExtValue() == 0) {
7008     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7009                                                           I.getType(), true);
7010     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7011     return true;
7012   }
7013 
7014   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7015   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7016       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7017       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7018   if (Res.first.getNode()) {
7019     processIntegerCallValue(I, Res.first, true);
7020     PendingLoads.push_back(Res.second);
7021     return true;
7022   }
7023 
7024   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
7025   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
7026   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7027     return false;
7028 
7029   // If the target has a fast compare for the given size, it will return a
7030   // preferred load type for that size. Require that the load VT is legal and
7031   // that the target supports unaligned loads of that type. Otherwise, return
7032   // INVALID.
7033   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
7034     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7035     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
7036     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
7037       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7038       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7039       // TODO: Check alignment of src and dest ptrs.
7040       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
7041       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
7042       if (!TLI.isTypeLegal(LVT) ||
7043           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
7044           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
7045         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
7046     }
7047 
7048     return LVT;
7049   };
7050 
7051   // This turns into unaligned loads. We only do this if the target natively
7052   // supports the MVT we'll be loading or if it is small enough (<= 4) that
7053   // we'll only produce a small number of byte loads.
7054   MVT LoadVT;
7055   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
7056   switch (NumBitsToCompare) {
7057   default:
7058     return false;
7059   case 16:
7060     LoadVT = MVT::i16;
7061     break;
7062   case 32:
7063     LoadVT = MVT::i32;
7064     break;
7065   case 64:
7066   case 128:
7067   case 256:
7068     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
7069     break;
7070   }
7071 
7072   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
7073     return false;
7074 
7075   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
7076   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
7077 
7078   // Bitcast to a wide integer type if the loads are vectors.
7079   if (LoadVT.isVector()) {
7080     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
7081     LoadL = DAG.getBitcast(CmpVT, LoadL);
7082     LoadR = DAG.getBitcast(CmpVT, LoadR);
7083   }
7084 
7085   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
7086   processIntegerCallValue(I, Cmp, false);
7087   return true;
7088 }
7089 
7090 /// See if we can lower a memchr call into an optimized form. If so, return
7091 /// true and lower it. Otherwise return false, and it will be lowered like a
7092 /// normal call.
7093 /// The caller already checked that \p I calls the appropriate LibFunc with a
7094 /// correct prototype.
7095 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
7096   const Value *Src = I.getArgOperand(0);
7097   const Value *Char = I.getArgOperand(1);
7098   const Value *Length = I.getArgOperand(2);
7099 
7100   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7101   std::pair<SDValue, SDValue> Res =
7102     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
7103                                 getValue(Src), getValue(Char), getValue(Length),
7104                                 MachinePointerInfo(Src));
7105   if (Res.first.getNode()) {
7106     setValue(&I, Res.first);
7107     PendingLoads.push_back(Res.second);
7108     return true;
7109   }
7110 
7111   return false;
7112 }
7113 
7114 /// See if we can lower a mempcpy call into an optimized form. If so, return
7115 /// true and lower it. Otherwise return false, and it will be lowered like a
7116 /// normal call.
7117 /// The caller already checked that \p I calls the appropriate LibFunc with a
7118 /// correct prototype.
7119 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
7120   SDValue Dst = getValue(I.getArgOperand(0));
7121   SDValue Src = getValue(I.getArgOperand(1));
7122   SDValue Size = getValue(I.getArgOperand(2));
7123 
7124   unsigned DstAlign = DAG.InferPtrAlignment(Dst);
7125   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
7126   unsigned Align = std::min(DstAlign, SrcAlign);
7127   if (Align == 0) // Alignment of one or both could not be inferred.
7128     Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved.
7129 
7130   bool isVol = false;
7131   SDLoc sdl = getCurSDLoc();
7132 
7133   // In the mempcpy context we need to pass in a false value for isTailCall
7134   // because the return pointer needs to be adjusted by the size of
7135   // the copied memory.
7136   SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol,
7137                              false, /*isTailCall=*/false,
7138                              MachinePointerInfo(I.getArgOperand(0)),
7139                              MachinePointerInfo(I.getArgOperand(1)));
7140   assert(MC.getNode() != nullptr &&
7141          "** memcpy should not be lowered as TailCall in mempcpy context **");
7142   DAG.setRoot(MC);
7143 
7144   // Check if Size needs to be truncated or extended.
7145   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
7146 
7147   // Adjust return pointer to point just past the last dst byte.
7148   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
7149                                     Dst, Size);
7150   setValue(&I, DstPlusSize);
7151   return true;
7152 }
7153 
7154 /// See if we can lower a strcpy call into an optimized form.  If so, return
7155 /// true and lower it, otherwise return false and it will be lowered like a
7156 /// normal call.
7157 /// The caller already checked that \p I calls the appropriate LibFunc with a
7158 /// correct prototype.
7159 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
7160   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7161 
7162   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7163   std::pair<SDValue, SDValue> Res =
7164     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
7165                                 getValue(Arg0), getValue(Arg1),
7166                                 MachinePointerInfo(Arg0),
7167                                 MachinePointerInfo(Arg1), isStpcpy);
7168   if (Res.first.getNode()) {
7169     setValue(&I, Res.first);
7170     DAG.setRoot(Res.second);
7171     return true;
7172   }
7173 
7174   return false;
7175 }
7176 
7177 /// See if we can lower a strcmp call into an optimized form.  If so, return
7178 /// true and lower it, otherwise return false and it will be lowered like a
7179 /// normal call.
7180 /// The caller already checked that \p I calls the appropriate LibFunc with a
7181 /// correct prototype.
7182 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
7183   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7184 
7185   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7186   std::pair<SDValue, SDValue> Res =
7187     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
7188                                 getValue(Arg0), getValue(Arg1),
7189                                 MachinePointerInfo(Arg0),
7190                                 MachinePointerInfo(Arg1));
7191   if (Res.first.getNode()) {
7192     processIntegerCallValue(I, Res.first, true);
7193     PendingLoads.push_back(Res.second);
7194     return true;
7195   }
7196 
7197   return false;
7198 }
7199 
7200 /// See if we can lower a strlen call into an optimized form.  If so, return
7201 /// true and lower it, otherwise return false and it will be lowered like a
7202 /// normal call.
7203 /// The caller already checked that \p I calls the appropriate LibFunc with a
7204 /// correct prototype.
7205 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
7206   const Value *Arg0 = I.getArgOperand(0);
7207 
7208   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7209   std::pair<SDValue, SDValue> Res =
7210     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
7211                                 getValue(Arg0), MachinePointerInfo(Arg0));
7212   if (Res.first.getNode()) {
7213     processIntegerCallValue(I, Res.first, false);
7214     PendingLoads.push_back(Res.second);
7215     return true;
7216   }
7217 
7218   return false;
7219 }
7220 
7221 /// See if we can lower a strnlen call into an optimized form.  If so, return
7222 /// true and lower it, otherwise return false and it will be lowered like a
7223 /// normal call.
7224 /// The caller already checked that \p I calls the appropriate LibFunc with a
7225 /// correct prototype.
7226 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
7227   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7228 
7229   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7230   std::pair<SDValue, SDValue> Res =
7231     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
7232                                  getValue(Arg0), getValue(Arg1),
7233                                  MachinePointerInfo(Arg0));
7234   if (Res.first.getNode()) {
7235     processIntegerCallValue(I, Res.first, false);
7236     PendingLoads.push_back(Res.second);
7237     return true;
7238   }
7239 
7240   return false;
7241 }
7242 
7243 /// See if we can lower a unary floating-point operation into an SDNode with
7244 /// the specified Opcode.  If so, return true and lower it, otherwise return
7245 /// false and it will be lowered like a normal call.
7246 /// The caller already checked that \p I calls the appropriate LibFunc with a
7247 /// correct prototype.
7248 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
7249                                               unsigned Opcode) {
7250   // We already checked this call's prototype; verify it doesn't modify errno.
7251   if (!I.onlyReadsMemory())
7252     return false;
7253 
7254   SDValue Tmp = getValue(I.getArgOperand(0));
7255   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
7256   return true;
7257 }
7258 
7259 /// See if we can lower a binary floating-point operation into an SDNode with
7260 /// the specified Opcode. If so, return true and lower it. Otherwise return
7261 /// false, and it will be lowered like a normal call.
7262 /// The caller already checked that \p I calls the appropriate LibFunc with a
7263 /// correct prototype.
7264 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
7265                                                unsigned Opcode) {
7266   // We already checked this call's prototype; verify it doesn't modify errno.
7267   if (!I.onlyReadsMemory())
7268     return false;
7269 
7270   SDValue Tmp0 = getValue(I.getArgOperand(0));
7271   SDValue Tmp1 = getValue(I.getArgOperand(1));
7272   EVT VT = Tmp0.getValueType();
7273   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
7274   return true;
7275 }
7276 
7277 void SelectionDAGBuilder::visitCall(const CallInst &I) {
7278   // Handle inline assembly differently.
7279   if (isa<InlineAsm>(I.getCalledValue())) {
7280     visitInlineAsm(&I);
7281     return;
7282   }
7283 
7284   const char *RenameFn = nullptr;
7285   if (Function *F = I.getCalledFunction()) {
7286     if (F->isDeclaration()) {
7287       // Is this an LLVM intrinsic or a target-specific intrinsic?
7288       unsigned IID = F->getIntrinsicID();
7289       if (!IID)
7290         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
7291           IID = II->getIntrinsicID(F);
7292 
7293       if (IID) {
7294         RenameFn = visitIntrinsicCall(I, IID);
7295         if (!RenameFn)
7296           return;
7297       }
7298     }
7299 
7300     // Check for well-known libc/libm calls.  If the function is internal, it
7301     // can't be a library call.  Don't do the check if marked as nobuiltin for
7302     // some reason or the call site requires strict floating point semantics.
7303     LibFunc Func;
7304     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
7305         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
7306         LibInfo->hasOptimizedCodeGen(Func)) {
7307       switch (Func) {
7308       default: break;
7309       case LibFunc_copysign:
7310       case LibFunc_copysignf:
7311       case LibFunc_copysignl:
7312         // We already checked this call's prototype; verify it doesn't modify
7313         // errno.
7314         if (I.onlyReadsMemory()) {
7315           SDValue LHS = getValue(I.getArgOperand(0));
7316           SDValue RHS = getValue(I.getArgOperand(1));
7317           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
7318                                    LHS.getValueType(), LHS, RHS));
7319           return;
7320         }
7321         break;
7322       case LibFunc_fabs:
7323       case LibFunc_fabsf:
7324       case LibFunc_fabsl:
7325         if (visitUnaryFloatCall(I, ISD::FABS))
7326           return;
7327         break;
7328       case LibFunc_fmin:
7329       case LibFunc_fminf:
7330       case LibFunc_fminl:
7331         if (visitBinaryFloatCall(I, ISD::FMINNUM))
7332           return;
7333         break;
7334       case LibFunc_fmax:
7335       case LibFunc_fmaxf:
7336       case LibFunc_fmaxl:
7337         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
7338           return;
7339         break;
7340       case LibFunc_sin:
7341       case LibFunc_sinf:
7342       case LibFunc_sinl:
7343         if (visitUnaryFloatCall(I, ISD::FSIN))
7344           return;
7345         break;
7346       case LibFunc_cos:
7347       case LibFunc_cosf:
7348       case LibFunc_cosl:
7349         if (visitUnaryFloatCall(I, ISD::FCOS))
7350           return;
7351         break;
7352       case LibFunc_sqrt:
7353       case LibFunc_sqrtf:
7354       case LibFunc_sqrtl:
7355       case LibFunc_sqrt_finite:
7356       case LibFunc_sqrtf_finite:
7357       case LibFunc_sqrtl_finite:
7358         if (visitUnaryFloatCall(I, ISD::FSQRT))
7359           return;
7360         break;
7361       case LibFunc_floor:
7362       case LibFunc_floorf:
7363       case LibFunc_floorl:
7364         if (visitUnaryFloatCall(I, ISD::FFLOOR))
7365           return;
7366         break;
7367       case LibFunc_nearbyint:
7368       case LibFunc_nearbyintf:
7369       case LibFunc_nearbyintl:
7370         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
7371           return;
7372         break;
7373       case LibFunc_ceil:
7374       case LibFunc_ceilf:
7375       case LibFunc_ceill:
7376         if (visitUnaryFloatCall(I, ISD::FCEIL))
7377           return;
7378         break;
7379       case LibFunc_rint:
7380       case LibFunc_rintf:
7381       case LibFunc_rintl:
7382         if (visitUnaryFloatCall(I, ISD::FRINT))
7383           return;
7384         break;
7385       case LibFunc_round:
7386       case LibFunc_roundf:
7387       case LibFunc_roundl:
7388         if (visitUnaryFloatCall(I, ISD::FROUND))
7389           return;
7390         break;
7391       case LibFunc_trunc:
7392       case LibFunc_truncf:
7393       case LibFunc_truncl:
7394         if (visitUnaryFloatCall(I, ISD::FTRUNC))
7395           return;
7396         break;
7397       case LibFunc_log2:
7398       case LibFunc_log2f:
7399       case LibFunc_log2l:
7400         if (visitUnaryFloatCall(I, ISD::FLOG2))
7401           return;
7402         break;
7403       case LibFunc_exp2:
7404       case LibFunc_exp2f:
7405       case LibFunc_exp2l:
7406         if (visitUnaryFloatCall(I, ISD::FEXP2))
7407           return;
7408         break;
7409       case LibFunc_memcmp:
7410         if (visitMemCmpCall(I))
7411           return;
7412         break;
7413       case LibFunc_mempcpy:
7414         if (visitMemPCpyCall(I))
7415           return;
7416         break;
7417       case LibFunc_memchr:
7418         if (visitMemChrCall(I))
7419           return;
7420         break;
7421       case LibFunc_strcpy:
7422         if (visitStrCpyCall(I, false))
7423           return;
7424         break;
7425       case LibFunc_stpcpy:
7426         if (visitStrCpyCall(I, true))
7427           return;
7428         break;
7429       case LibFunc_strcmp:
7430         if (visitStrCmpCall(I))
7431           return;
7432         break;
7433       case LibFunc_strlen:
7434         if (visitStrLenCall(I))
7435           return;
7436         break;
7437       case LibFunc_strnlen:
7438         if (visitStrNLenCall(I))
7439           return;
7440         break;
7441       }
7442     }
7443   }
7444 
7445   SDValue Callee;
7446   if (!RenameFn)
7447     Callee = getValue(I.getCalledValue());
7448   else
7449     Callee = DAG.getExternalSymbol(
7450         RenameFn,
7451         DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
7452 
7453   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
7454   // have to do anything here to lower funclet bundles.
7455   assert(!I.hasOperandBundlesOtherThan(
7456              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
7457          "Cannot lower calls with arbitrary operand bundles!");
7458 
7459   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
7460     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
7461   else
7462     // Check if we can potentially perform a tail call. More detailed checking
7463     // is be done within LowerCallTo, after more information about the call is
7464     // known.
7465     LowerCallTo(&I, Callee, I.isTailCall());
7466 }
7467 
7468 namespace {
7469 
7470 /// AsmOperandInfo - This contains information for each constraint that we are
7471 /// lowering.
7472 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
7473 public:
7474   /// CallOperand - If this is the result output operand or a clobber
7475   /// this is null, otherwise it is the incoming operand to the CallInst.
7476   /// This gets modified as the asm is processed.
7477   SDValue CallOperand;
7478 
7479   /// AssignedRegs - If this is a register or register class operand, this
7480   /// contains the set of register corresponding to the operand.
7481   RegsForValue AssignedRegs;
7482 
7483   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
7484     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
7485   }
7486 
7487   /// Whether or not this operand accesses memory
7488   bool hasMemory(const TargetLowering &TLI) const {
7489     // Indirect operand accesses access memory.
7490     if (isIndirect)
7491       return true;
7492 
7493     for (const auto &Code : Codes)
7494       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
7495         return true;
7496 
7497     return false;
7498   }
7499 
7500   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
7501   /// corresponds to.  If there is no Value* for this operand, it returns
7502   /// MVT::Other.
7503   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
7504                            const DataLayout &DL) const {
7505     if (!CallOperandVal) return MVT::Other;
7506 
7507     if (isa<BasicBlock>(CallOperandVal))
7508       return TLI.getPointerTy(DL);
7509 
7510     llvm::Type *OpTy = CallOperandVal->getType();
7511 
7512     // FIXME: code duplicated from TargetLowering::ParseConstraints().
7513     // If this is an indirect operand, the operand is a pointer to the
7514     // accessed type.
7515     if (isIndirect) {
7516       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
7517       if (!PtrTy)
7518         report_fatal_error("Indirect operand for inline asm not a pointer!");
7519       OpTy = PtrTy->getElementType();
7520     }
7521 
7522     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
7523     if (StructType *STy = dyn_cast<StructType>(OpTy))
7524       if (STy->getNumElements() == 1)
7525         OpTy = STy->getElementType(0);
7526 
7527     // If OpTy is not a single value, it may be a struct/union that we
7528     // can tile with integers.
7529     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
7530       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
7531       switch (BitSize) {
7532       default: break;
7533       case 1:
7534       case 8:
7535       case 16:
7536       case 32:
7537       case 64:
7538       case 128:
7539         OpTy = IntegerType::get(Context, BitSize);
7540         break;
7541       }
7542     }
7543 
7544     return TLI.getValueType(DL, OpTy, true);
7545   }
7546 };
7547 
7548 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>;
7549 
7550 } // end anonymous namespace
7551 
7552 /// Make sure that the output operand \p OpInfo and its corresponding input
7553 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7554 /// out).
7555 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
7556                                SDISelAsmOperandInfo &MatchingOpInfo,
7557                                SelectionDAG &DAG) {
7558   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
7559     return;
7560 
7561   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
7562   const auto &TLI = DAG.getTargetLoweringInfo();
7563 
7564   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
7565       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
7566                                        OpInfo.ConstraintVT);
7567   std::pair<unsigned, const TargetRegisterClass *> InputRC =
7568       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
7569                                        MatchingOpInfo.ConstraintVT);
7570   if ((OpInfo.ConstraintVT.isInteger() !=
7571        MatchingOpInfo.ConstraintVT.isInteger()) ||
7572       (MatchRC.second != InputRC.second)) {
7573     // FIXME: error out in a more elegant fashion
7574     report_fatal_error("Unsupported asm: input constraint"
7575                        " with a matching output constraint of"
7576                        " incompatible type!");
7577   }
7578   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
7579 }
7580 
7581 /// Get a direct memory input to behave well as an indirect operand.
7582 /// This may introduce stores, hence the need for a \p Chain.
7583 /// \return The (possibly updated) chain.
7584 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
7585                                         SDISelAsmOperandInfo &OpInfo,
7586                                         SelectionDAG &DAG) {
7587   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7588 
7589   // If we don't have an indirect input, put it in the constpool if we can,
7590   // otherwise spill it to a stack slot.
7591   // TODO: This isn't quite right. We need to handle these according to
7592   // the addressing mode that the constraint wants. Also, this may take
7593   // an additional register for the computation and we don't want that
7594   // either.
7595 
7596   // If the operand is a float, integer, or vector constant, spill to a
7597   // constant pool entry to get its address.
7598   const Value *OpVal = OpInfo.CallOperandVal;
7599   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
7600       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
7601     OpInfo.CallOperand = DAG.getConstantPool(
7602         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
7603     return Chain;
7604   }
7605 
7606   // Otherwise, create a stack slot and emit a store to it before the asm.
7607   Type *Ty = OpVal->getType();
7608   auto &DL = DAG.getDataLayout();
7609   uint64_t TySize = DL.getTypeAllocSize(Ty);
7610   unsigned Align = DL.getPrefTypeAlignment(Ty);
7611   MachineFunction &MF = DAG.getMachineFunction();
7612   int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
7613   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
7614   Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot,
7615                        MachinePointerInfo::getFixedStack(MF, SSFI));
7616   OpInfo.CallOperand = StackSlot;
7617 
7618   return Chain;
7619 }
7620 
7621 /// GetRegistersForValue - Assign registers (virtual or physical) for the
7622 /// specified operand.  We prefer to assign virtual registers, to allow the
7623 /// register allocator to handle the assignment process.  However, if the asm
7624 /// uses features that we can't model on machineinstrs, we have SDISel do the
7625 /// allocation.  This produces generally horrible, but correct, code.
7626 ///
7627 ///   OpInfo describes the operand
7628 ///   RefOpInfo describes the matching operand if any, the operand otherwise
7629 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
7630                                  SDISelAsmOperandInfo &OpInfo,
7631                                  SDISelAsmOperandInfo &RefOpInfo) {
7632   LLVMContext &Context = *DAG.getContext();
7633   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7634 
7635   MachineFunction &MF = DAG.getMachineFunction();
7636   SmallVector<unsigned, 4> Regs;
7637   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7638 
7639   // No work to do for memory operations.
7640   if (OpInfo.ConstraintType == TargetLowering::C_Memory)
7641     return;
7642 
7643   // If this is a constraint for a single physreg, or a constraint for a
7644   // register class, find it.
7645   unsigned AssignedReg;
7646   const TargetRegisterClass *RC;
7647   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
7648       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
7649   // RC is unset only on failure. Return immediately.
7650   if (!RC)
7651     return;
7652 
7653   // Get the actual register value type.  This is important, because the user
7654   // may have asked for (e.g.) the AX register in i32 type.  We need to
7655   // remember that AX is actually i16 to get the right extension.
7656   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
7657 
7658   if (OpInfo.ConstraintVT != MVT::Other) {
7659     // If this is an FP operand in an integer register (or visa versa), or more
7660     // generally if the operand value disagrees with the register class we plan
7661     // to stick it in, fix the operand type.
7662     //
7663     // If this is an input value, the bitcast to the new type is done now.
7664     // Bitcast for output value is done at the end of visitInlineAsm().
7665     if ((OpInfo.Type == InlineAsm::isOutput ||
7666          OpInfo.Type == InlineAsm::isInput) &&
7667         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
7668       // Try to convert to the first EVT that the reg class contains.  If the
7669       // types are identical size, use a bitcast to convert (e.g. two differing
7670       // vector types).  Note: output bitcast is done at the end of
7671       // visitInlineAsm().
7672       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
7673         // Exclude indirect inputs while they are unsupported because the code
7674         // to perform the load is missing and thus OpInfo.CallOperand still
7675         // refers to the input address rather than the pointed-to value.
7676         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
7677           OpInfo.CallOperand =
7678               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
7679         OpInfo.ConstraintVT = RegVT;
7680         // If the operand is an FP value and we want it in integer registers,
7681         // use the corresponding integer type. This turns an f64 value into
7682         // i64, which can be passed with two i32 values on a 32-bit machine.
7683       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
7684         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
7685         if (OpInfo.Type == InlineAsm::isInput)
7686           OpInfo.CallOperand =
7687               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
7688         OpInfo.ConstraintVT = VT;
7689       }
7690     }
7691   }
7692 
7693   // No need to allocate a matching input constraint since the constraint it's
7694   // matching to has already been allocated.
7695   if (OpInfo.isMatchingInputConstraint())
7696     return;
7697 
7698   EVT ValueVT = OpInfo.ConstraintVT;
7699   if (OpInfo.ConstraintVT == MVT::Other)
7700     ValueVT = RegVT;
7701 
7702   // Initialize NumRegs.
7703   unsigned NumRegs = 1;
7704   if (OpInfo.ConstraintVT != MVT::Other)
7705     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
7706 
7707   // If this is a constraint for a specific physical register, like {r17},
7708   // assign it now.
7709 
7710   // If this associated to a specific register, initialize iterator to correct
7711   // place. If virtual, make sure we have enough registers
7712 
7713   // Initialize iterator if necessary
7714   TargetRegisterClass::iterator I = RC->begin();
7715   MachineRegisterInfo &RegInfo = MF.getRegInfo();
7716 
7717   // Do not check for single registers.
7718   if (AssignedReg) {
7719       for (; *I != AssignedReg; ++I)
7720         assert(I != RC->end() && "AssignedReg should be member of RC");
7721   }
7722 
7723   for (; NumRegs; --NumRegs, ++I) {
7724     assert(I != RC->end() && "Ran out of registers to allocate!");
7725     auto R = (AssignedReg) ? *I : RegInfo.createVirtualRegister(RC);
7726     Regs.push_back(R);
7727   }
7728 
7729   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7730 }
7731 
7732 static unsigned
7733 findMatchingInlineAsmOperand(unsigned OperandNo,
7734                              const std::vector<SDValue> &AsmNodeOperands) {
7735   // Scan until we find the definition we already emitted of this operand.
7736   unsigned CurOp = InlineAsm::Op_FirstOperand;
7737   for (; OperandNo; --OperandNo) {
7738     // Advance to the next operand.
7739     unsigned OpFlag =
7740         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7741     assert((InlineAsm::isRegDefKind(OpFlag) ||
7742             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
7743             InlineAsm::isMemKind(OpFlag)) &&
7744            "Skipped past definitions?");
7745     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
7746   }
7747   return CurOp;
7748 }
7749 
7750 namespace {
7751 
7752 class ExtraFlags {
7753   unsigned Flags = 0;
7754 
7755 public:
7756   explicit ExtraFlags(ImmutableCallSite CS) {
7757     const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7758     if (IA->hasSideEffects())
7759       Flags |= InlineAsm::Extra_HasSideEffects;
7760     if (IA->isAlignStack())
7761       Flags |= InlineAsm::Extra_IsAlignStack;
7762     if (CS.isConvergent())
7763       Flags |= InlineAsm::Extra_IsConvergent;
7764     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
7765   }
7766 
7767   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
7768     // Ideally, we would only check against memory constraints.  However, the
7769     // meaning of an Other constraint can be target-specific and we can't easily
7770     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
7771     // for Other constraints as well.
7772     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
7773         OpInfo.ConstraintType == TargetLowering::C_Other) {
7774       if (OpInfo.Type == InlineAsm::isInput)
7775         Flags |= InlineAsm::Extra_MayLoad;
7776       else if (OpInfo.Type == InlineAsm::isOutput)
7777         Flags |= InlineAsm::Extra_MayStore;
7778       else if (OpInfo.Type == InlineAsm::isClobber)
7779         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
7780     }
7781   }
7782 
7783   unsigned get() const { return Flags; }
7784 };
7785 
7786 } // end anonymous namespace
7787 
7788 /// visitInlineAsm - Handle a call to an InlineAsm object.
7789 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
7790   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7791 
7792   /// ConstraintOperands - Information about all of the constraints.
7793   SDISelAsmOperandInfoVector ConstraintOperands;
7794 
7795   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7796   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
7797       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
7798 
7799   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
7800   // AsmDialect, MayLoad, MayStore).
7801   bool HasSideEffect = IA->hasSideEffects();
7802   ExtraFlags ExtraInfo(CS);
7803 
7804   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
7805   unsigned ResNo = 0;   // ResNo - The result number of the next output.
7806   for (auto &T : TargetConstraints) {
7807     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
7808     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
7809 
7810     // Compute the value type for each operand.
7811     if (OpInfo.Type == InlineAsm::isInput ||
7812         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
7813       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
7814 
7815       // Process the call argument. BasicBlocks are labels, currently appearing
7816       // only in asm's.
7817       const Instruction *I = CS.getInstruction();
7818       if (isa<CallBrInst>(I) &&
7819           (ArgNo - 1) >= (cast<CallBrInst>(I)->getNumArgOperands() -
7820                           cast<CallBrInst>(I)->getNumIndirectDests())) {
7821         const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal);
7822         EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true);
7823         OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT);
7824       } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
7825         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
7826       } else {
7827         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
7828       }
7829 
7830       OpInfo.ConstraintVT =
7831           OpInfo
7832               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
7833               .getSimpleVT();
7834     } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
7835       // The return value of the call is this value.  As such, there is no
7836       // corresponding argument.
7837       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
7838       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
7839         OpInfo.ConstraintVT = TLI.getSimpleValueType(
7840             DAG.getDataLayout(), STy->getElementType(ResNo));
7841       } else {
7842         assert(ResNo == 0 && "Asm only has one result!");
7843         OpInfo.ConstraintVT =
7844             TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
7845       }
7846       ++ResNo;
7847     } else {
7848       OpInfo.ConstraintVT = MVT::Other;
7849     }
7850 
7851     if (!HasSideEffect)
7852       HasSideEffect = OpInfo.hasMemory(TLI);
7853 
7854     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
7855     // FIXME: Could we compute this on OpInfo rather than T?
7856 
7857     // Compute the constraint code and ConstraintType to use.
7858     TLI.ComputeConstraintToUse(T, SDValue());
7859 
7860     ExtraInfo.update(T);
7861   }
7862 
7863   // We won't need to flush pending loads if this asm doesn't touch
7864   // memory and is nonvolatile.
7865   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
7866 
7867   // Second pass over the constraints: compute which constraint option to use.
7868   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
7869     // If this is an output operand with a matching input operand, look up the
7870     // matching input. If their types mismatch, e.g. one is an integer, the
7871     // other is floating point, or their sizes are different, flag it as an
7872     // error.
7873     if (OpInfo.hasMatchingInput()) {
7874       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
7875       patchMatchingInput(OpInfo, Input, DAG);
7876     }
7877 
7878     // Compute the constraint code and ConstraintType to use.
7879     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
7880 
7881     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7882         OpInfo.Type == InlineAsm::isClobber)
7883       continue;
7884 
7885     // If this is a memory input, and if the operand is not indirect, do what we
7886     // need to provide an address for the memory input.
7887     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7888         !OpInfo.isIndirect) {
7889       assert((OpInfo.isMultipleAlternative ||
7890               (OpInfo.Type == InlineAsm::isInput)) &&
7891              "Can only indirectify direct input operands!");
7892 
7893       // Memory operands really want the address of the value.
7894       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
7895 
7896       // There is no longer a Value* corresponding to this operand.
7897       OpInfo.CallOperandVal = nullptr;
7898 
7899       // It is now an indirect operand.
7900       OpInfo.isIndirect = true;
7901     }
7902 
7903   }
7904 
7905   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
7906   std::vector<SDValue> AsmNodeOperands;
7907   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
7908   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
7909       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
7910 
7911   // If we have a !srcloc metadata node associated with it, we want to attach
7912   // this to the ultimately generated inline asm machineinstr.  To do this, we
7913   // pass in the third operand as this (potentially null) inline asm MDNode.
7914   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
7915   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
7916 
7917   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
7918   // bits as operand 3.
7919   AsmNodeOperands.push_back(DAG.getTargetConstant(
7920       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7921 
7922   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
7923   // this, assign virtual and physical registers for inputs and otput.
7924   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
7925     // Assign Registers.
7926     SDISelAsmOperandInfo &RefOpInfo =
7927         OpInfo.isMatchingInputConstraint()
7928             ? ConstraintOperands[OpInfo.getMatchedOperand()]
7929             : OpInfo;
7930     GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
7931 
7932     switch (OpInfo.Type) {
7933     case InlineAsm::isOutput:
7934       if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
7935           (OpInfo.ConstraintType == TargetLowering::C_Other &&
7936            OpInfo.isIndirect)) {
7937         unsigned ConstraintID =
7938             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7939         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7940                "Failed to convert memory constraint code to constraint id.");
7941 
7942         // Add information to the INLINEASM node to know about this output.
7943         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7944         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
7945         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
7946                                                         MVT::i32));
7947         AsmNodeOperands.push_back(OpInfo.CallOperand);
7948         break;
7949       } else if ((OpInfo.ConstraintType == TargetLowering::C_Other &&
7950                   !OpInfo.isIndirect) ||
7951                  OpInfo.ConstraintType == TargetLowering::C_Register ||
7952                  OpInfo.ConstraintType == TargetLowering::C_RegisterClass) {
7953         // Otherwise, this outputs to a register (directly for C_Register /
7954         // C_RegisterClass, and a target-defined fashion for C_Other). Find a
7955         // register that we can use.
7956         if (OpInfo.AssignedRegs.Regs.empty()) {
7957           emitInlineAsmError(
7958               CS, "couldn't allocate output register for constraint '" +
7959                       Twine(OpInfo.ConstraintCode) + "'");
7960           return;
7961         }
7962 
7963         // Add information to the INLINEASM node to know that this register is
7964         // set.
7965         OpInfo.AssignedRegs.AddInlineAsmOperands(
7966             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
7967                                   : InlineAsm::Kind_RegDef,
7968             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
7969       }
7970       break;
7971 
7972     case InlineAsm::isInput: {
7973       SDValue InOperandVal = OpInfo.CallOperand;
7974 
7975       if (OpInfo.isMatchingInputConstraint()) {
7976         // If this is required to match an output register we have already set,
7977         // just use its register.
7978         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
7979                                                   AsmNodeOperands);
7980         unsigned OpFlag =
7981           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7982         if (InlineAsm::isRegDefKind(OpFlag) ||
7983             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
7984           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
7985           if (OpInfo.isIndirect) {
7986             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
7987             emitInlineAsmError(CS, "inline asm not supported yet:"
7988                                    " don't know how to handle tied "
7989                                    "indirect register inputs");
7990             return;
7991           }
7992 
7993           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
7994           SmallVector<unsigned, 4> Regs;
7995 
7996           if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) {
7997             unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
7998             MachineRegisterInfo &RegInfo =
7999                 DAG.getMachineFunction().getRegInfo();
8000             for (unsigned i = 0; i != NumRegs; ++i)
8001               Regs.push_back(RegInfo.createVirtualRegister(RC));
8002           } else {
8003             emitInlineAsmError(CS, "inline asm error: This value type register "
8004                                    "class is not natively supported!");
8005             return;
8006           }
8007 
8008           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8009 
8010           SDLoc dl = getCurSDLoc();
8011           // Use the produced MatchedRegs object to
8012           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
8013                                     CS.getInstruction());
8014           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8015                                            true, OpInfo.getMatchedOperand(), dl,
8016                                            DAG, AsmNodeOperands);
8017           break;
8018         }
8019 
8020         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8021         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8022                "Unexpected number of operands");
8023         // Add information to the INLINEASM node to know about this input.
8024         // See InlineAsm.h isUseOperandTiedToDef.
8025         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8026         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8027                                                     OpInfo.getMatchedOperand());
8028         AsmNodeOperands.push_back(DAG.getTargetConstant(
8029             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8030         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8031         break;
8032       }
8033 
8034       // Treat indirect 'X' constraint as memory.
8035       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
8036           OpInfo.isIndirect)
8037         OpInfo.ConstraintType = TargetLowering::C_Memory;
8038 
8039       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
8040         std::vector<SDValue> Ops;
8041         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
8042                                           Ops, DAG);
8043         if (Ops.empty()) {
8044           emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
8045                                      Twine(OpInfo.ConstraintCode) + "'");
8046           return;
8047         }
8048 
8049         // Add information to the INLINEASM node to know about this input.
8050         unsigned ResOpType =
8051           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
8052         AsmNodeOperands.push_back(DAG.getTargetConstant(
8053             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8054         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
8055         break;
8056       }
8057 
8058       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8059         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
8060         assert(InOperandVal.getValueType() ==
8061                    TLI.getPointerTy(DAG.getDataLayout()) &&
8062                "Memory operands expect pointer values");
8063 
8064         unsigned ConstraintID =
8065             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8066         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8067                "Failed to convert memory constraint code to constraint id.");
8068 
8069         // Add information to the INLINEASM node to know about this input.
8070         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8071         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
8072         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
8073                                                         getCurSDLoc(),
8074                                                         MVT::i32));
8075         AsmNodeOperands.push_back(InOperandVal);
8076         break;
8077       }
8078 
8079       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
8080               OpInfo.ConstraintType == TargetLowering::C_Register) &&
8081              "Unknown constraint type!");
8082 
8083       // TODO: Support this.
8084       if (OpInfo.isIndirect) {
8085         emitInlineAsmError(
8086             CS, "Don't know how to handle indirect register inputs yet "
8087                 "for constraint '" +
8088                     Twine(OpInfo.ConstraintCode) + "'");
8089         return;
8090       }
8091 
8092       // Copy the input into the appropriate registers.
8093       if (OpInfo.AssignedRegs.Regs.empty()) {
8094         emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
8095                                    Twine(OpInfo.ConstraintCode) + "'");
8096         return;
8097       }
8098 
8099       SDLoc dl = getCurSDLoc();
8100 
8101       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
8102                                         Chain, &Flag, CS.getInstruction());
8103 
8104       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
8105                                                dl, DAG, AsmNodeOperands);
8106       break;
8107     }
8108     case InlineAsm::isClobber:
8109       // Add the clobbered value to the operand list, so that the register
8110       // allocator is aware that the physreg got clobbered.
8111       if (!OpInfo.AssignedRegs.Regs.empty())
8112         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
8113                                                  false, 0, getCurSDLoc(), DAG,
8114                                                  AsmNodeOperands);
8115       break;
8116     }
8117   }
8118 
8119   // Finish up input operands.  Set the input chain and add the flag last.
8120   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
8121   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
8122 
8123   unsigned ISDOpc = isa<CallBrInst>(CS.getInstruction()) ? ISD::INLINEASM_BR : ISD::INLINEASM;
8124   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
8125                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
8126   Flag = Chain.getValue(1);
8127 
8128   // Do additional work to generate outputs.
8129 
8130   SmallVector<EVT, 1> ResultVTs;
8131   SmallVector<SDValue, 1> ResultValues;
8132   SmallVector<SDValue, 8> OutChains;
8133 
8134   llvm::Type *CSResultType = CS.getType();
8135   ArrayRef<Type *> ResultTypes;
8136   if (StructType *StructResult = dyn_cast<StructType>(CSResultType))
8137     ResultTypes = StructResult->elements();
8138   else if (!CSResultType->isVoidTy())
8139     ResultTypes = makeArrayRef(CSResultType);
8140 
8141   auto CurResultType = ResultTypes.begin();
8142   auto handleRegAssign = [&](SDValue V) {
8143     assert(CurResultType != ResultTypes.end() && "Unexpected value");
8144     assert((*CurResultType)->isSized() && "Unexpected unsized type");
8145     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
8146     ++CurResultType;
8147     // If the type of the inline asm call site return value is different but has
8148     // same size as the type of the asm output bitcast it.  One example of this
8149     // is for vectors with different width / number of elements.  This can
8150     // happen for register classes that can contain multiple different value
8151     // types.  The preg or vreg allocated may not have the same VT as was
8152     // expected.
8153     //
8154     // This can also happen for a return value that disagrees with the register
8155     // class it is put in, eg. a double in a general-purpose register on a
8156     // 32-bit machine.
8157     if (ResultVT != V.getValueType() &&
8158         ResultVT.getSizeInBits() == V.getValueSizeInBits())
8159       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
8160     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
8161              V.getValueType().isInteger()) {
8162       // If a result value was tied to an input value, the computed result
8163       // may have a wider width than the expected result.  Extract the
8164       // relevant portion.
8165       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
8166     }
8167     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
8168     ResultVTs.push_back(ResultVT);
8169     ResultValues.push_back(V);
8170   };
8171 
8172   // Deal with output operands.
8173   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8174     if (OpInfo.Type == InlineAsm::isOutput) {
8175       SDValue Val;
8176       // Skip trivial output operands.
8177       if (OpInfo.AssignedRegs.Regs.empty())
8178         continue;
8179 
8180       switch (OpInfo.ConstraintType) {
8181       case TargetLowering::C_Register:
8182       case TargetLowering::C_RegisterClass:
8183         Val = OpInfo.AssignedRegs.getCopyFromRegs(
8184             DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction());
8185         break;
8186       case TargetLowering::C_Other:
8187         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
8188                                               OpInfo, DAG);
8189         break;
8190       case TargetLowering::C_Memory:
8191         break; // Already handled.
8192       case TargetLowering::C_Unknown:
8193         assert(false && "Unexpected unknown constraint");
8194       }
8195 
8196       // Indirect output manifest as stores. Record output chains.
8197       if (OpInfo.isIndirect) {
8198         const Value *Ptr = OpInfo.CallOperandVal;
8199         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
8200         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
8201                                      MachinePointerInfo(Ptr));
8202         OutChains.push_back(Store);
8203       } else {
8204         // generate CopyFromRegs to associated registers.
8205         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
8206         if (Val.getOpcode() == ISD::MERGE_VALUES) {
8207           for (const SDValue &V : Val->op_values())
8208             handleRegAssign(V);
8209         } else
8210           handleRegAssign(Val);
8211       }
8212     }
8213   }
8214 
8215   // Set results.
8216   if (!ResultValues.empty()) {
8217     assert(CurResultType == ResultTypes.end() &&
8218            "Mismatch in number of ResultTypes");
8219     assert(ResultValues.size() == ResultTypes.size() &&
8220            "Mismatch in number of output operands in asm result");
8221 
8222     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
8223                             DAG.getVTList(ResultVTs), ResultValues);
8224     setValue(CS.getInstruction(), V);
8225   }
8226 
8227   // Collect store chains.
8228   if (!OutChains.empty())
8229     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
8230 
8231   // Only Update Root if inline assembly has a memory effect.
8232   if (ResultValues.empty() || HasSideEffect || !OutChains.empty())
8233     DAG.setRoot(Chain);
8234 }
8235 
8236 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
8237                                              const Twine &Message) {
8238   LLVMContext &Ctx = *DAG.getContext();
8239   Ctx.emitError(CS.getInstruction(), Message);
8240 
8241   // Make sure we leave the DAG in a valid state
8242   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8243   SmallVector<EVT, 1> ValueVTs;
8244   ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8245 
8246   if (ValueVTs.empty())
8247     return;
8248 
8249   SmallVector<SDValue, 1> Ops;
8250   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
8251     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
8252 
8253   setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc()));
8254 }
8255 
8256 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
8257   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
8258                           MVT::Other, getRoot(),
8259                           getValue(I.getArgOperand(0)),
8260                           DAG.getSrcValue(I.getArgOperand(0))));
8261 }
8262 
8263 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
8264   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8265   const DataLayout &DL = DAG.getDataLayout();
8266   SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()),
8267                            getCurSDLoc(), getRoot(), getValue(I.getOperand(0)),
8268                            DAG.getSrcValue(I.getOperand(0)),
8269                            DL.getABITypeAlignment(I.getType()));
8270   setValue(&I, V);
8271   DAG.setRoot(V.getValue(1));
8272 }
8273 
8274 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
8275   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
8276                           MVT::Other, getRoot(),
8277                           getValue(I.getArgOperand(0)),
8278                           DAG.getSrcValue(I.getArgOperand(0))));
8279 }
8280 
8281 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
8282   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
8283                           MVT::Other, getRoot(),
8284                           getValue(I.getArgOperand(0)),
8285                           getValue(I.getArgOperand(1)),
8286                           DAG.getSrcValue(I.getArgOperand(0)),
8287                           DAG.getSrcValue(I.getArgOperand(1))));
8288 }
8289 
8290 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
8291                                                     const Instruction &I,
8292                                                     SDValue Op) {
8293   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
8294   if (!Range)
8295     return Op;
8296 
8297   ConstantRange CR = getConstantRangeFromMetadata(*Range);
8298   if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet())
8299     return Op;
8300 
8301   APInt Lo = CR.getUnsignedMin();
8302   if (!Lo.isMinValue())
8303     return Op;
8304 
8305   APInt Hi = CR.getUnsignedMax();
8306   unsigned Bits = std::max(Hi.getActiveBits(),
8307                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
8308 
8309   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
8310 
8311   SDLoc SL = getCurSDLoc();
8312 
8313   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
8314                              DAG.getValueType(SmallVT));
8315   unsigned NumVals = Op.getNode()->getNumValues();
8316   if (NumVals == 1)
8317     return ZExt;
8318 
8319   SmallVector<SDValue, 4> Ops;
8320 
8321   Ops.push_back(ZExt);
8322   for (unsigned I = 1; I != NumVals; ++I)
8323     Ops.push_back(Op.getValue(I));
8324 
8325   return DAG.getMergeValues(Ops, SL);
8326 }
8327 
8328 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
8329 /// the call being lowered.
8330 ///
8331 /// This is a helper for lowering intrinsics that follow a target calling
8332 /// convention or require stack pointer adjustment. Only a subset of the
8333 /// intrinsic's operands need to participate in the calling convention.
8334 void SelectionDAGBuilder::populateCallLoweringInfo(
8335     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
8336     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
8337     bool IsPatchPoint) {
8338   TargetLowering::ArgListTy Args;
8339   Args.reserve(NumArgs);
8340 
8341   // Populate the argument list.
8342   // Attributes for args start at offset 1, after the return attribute.
8343   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
8344        ArgI != ArgE; ++ArgI) {
8345     const Value *V = Call->getOperand(ArgI);
8346 
8347     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
8348 
8349     TargetLowering::ArgListEntry Entry;
8350     Entry.Node = getValue(V);
8351     Entry.Ty = V->getType();
8352     Entry.setAttributes(Call, ArgI);
8353     Args.push_back(Entry);
8354   }
8355 
8356   CLI.setDebugLoc(getCurSDLoc())
8357       .setChain(getRoot())
8358       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
8359       .setDiscardResult(Call->use_empty())
8360       .setIsPatchPoint(IsPatchPoint);
8361 }
8362 
8363 /// Add a stack map intrinsic call's live variable operands to a stackmap
8364 /// or patchpoint target node's operand list.
8365 ///
8366 /// Constants are converted to TargetConstants purely as an optimization to
8367 /// avoid constant materialization and register allocation.
8368 ///
8369 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
8370 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
8371 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
8372 /// address materialization and register allocation, but may also be required
8373 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
8374 /// alloca in the entry block, then the runtime may assume that the alloca's
8375 /// StackMap location can be read immediately after compilation and that the
8376 /// location is valid at any point during execution (this is similar to the
8377 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
8378 /// only available in a register, then the runtime would need to trap when
8379 /// execution reaches the StackMap in order to read the alloca's location.
8380 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
8381                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
8382                                 SelectionDAGBuilder &Builder) {
8383   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
8384     SDValue OpVal = Builder.getValue(CS.getArgument(i));
8385     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
8386       Ops.push_back(
8387         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
8388       Ops.push_back(
8389         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
8390     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
8391       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
8392       Ops.push_back(Builder.DAG.getTargetFrameIndex(
8393           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
8394     } else
8395       Ops.push_back(OpVal);
8396   }
8397 }
8398 
8399 /// Lower llvm.experimental.stackmap directly to its target opcode.
8400 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
8401   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
8402   //                                  [live variables...])
8403 
8404   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
8405 
8406   SDValue Chain, InFlag, Callee, NullPtr;
8407   SmallVector<SDValue, 32> Ops;
8408 
8409   SDLoc DL = getCurSDLoc();
8410   Callee = getValue(CI.getCalledValue());
8411   NullPtr = DAG.getIntPtrConstant(0, DL, true);
8412 
8413   // The stackmap intrinsic only records the live variables (the arguemnts
8414   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
8415   // intrinsic, this won't be lowered to a function call. This means we don't
8416   // have to worry about calling conventions and target specific lowering code.
8417   // Instead we perform the call lowering right here.
8418   //
8419   // chain, flag = CALLSEQ_START(chain, 0, 0)
8420   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
8421   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
8422   //
8423   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
8424   InFlag = Chain.getValue(1);
8425 
8426   // Add the <id> and <numBytes> constants.
8427   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
8428   Ops.push_back(DAG.getTargetConstant(
8429                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
8430   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
8431   Ops.push_back(DAG.getTargetConstant(
8432                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
8433                   MVT::i32));
8434 
8435   // Push live variables for the stack map.
8436   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
8437 
8438   // We are not pushing any register mask info here on the operands list,
8439   // because the stackmap doesn't clobber anything.
8440 
8441   // Push the chain and the glue flag.
8442   Ops.push_back(Chain);
8443   Ops.push_back(InFlag);
8444 
8445   // Create the STACKMAP node.
8446   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8447   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
8448   Chain = SDValue(SM, 0);
8449   InFlag = Chain.getValue(1);
8450 
8451   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
8452 
8453   // Stackmaps don't generate values, so nothing goes into the NodeMap.
8454 
8455   // Set the root to the target-lowered call chain.
8456   DAG.setRoot(Chain);
8457 
8458   // Inform the Frame Information that we have a stackmap in this function.
8459   FuncInfo.MF->getFrameInfo().setHasStackMap();
8460 }
8461 
8462 /// Lower llvm.experimental.patchpoint directly to its target opcode.
8463 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
8464                                           const BasicBlock *EHPadBB) {
8465   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
8466   //                                                 i32 <numBytes>,
8467   //                                                 i8* <target>,
8468   //                                                 i32 <numArgs>,
8469   //                                                 [Args...],
8470   //                                                 [live variables...])
8471 
8472   CallingConv::ID CC = CS.getCallingConv();
8473   bool IsAnyRegCC = CC == CallingConv::AnyReg;
8474   bool HasDef = !CS->getType()->isVoidTy();
8475   SDLoc dl = getCurSDLoc();
8476   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
8477 
8478   // Handle immediate and symbolic callees.
8479   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
8480     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
8481                                    /*isTarget=*/true);
8482   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
8483     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
8484                                          SDLoc(SymbolicCallee),
8485                                          SymbolicCallee->getValueType(0));
8486 
8487   // Get the real number of arguments participating in the call <numArgs>
8488   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
8489   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
8490 
8491   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
8492   // Intrinsics include all meta-operands up to but not including CC.
8493   unsigned NumMetaOpers = PatchPointOpers::CCPos;
8494   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
8495          "Not enough arguments provided to the patchpoint intrinsic");
8496 
8497   // For AnyRegCC the arguments are lowered later on manually.
8498   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
8499   Type *ReturnTy =
8500     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
8501 
8502   TargetLowering::CallLoweringInfo CLI(DAG);
8503   populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()),
8504                            NumMetaOpers, NumCallArgs, Callee, ReturnTy, true);
8505   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8506 
8507   SDNode *CallEnd = Result.second.getNode();
8508   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
8509     CallEnd = CallEnd->getOperand(0).getNode();
8510 
8511   /// Get a call instruction from the call sequence chain.
8512   /// Tail calls are not allowed.
8513   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
8514          "Expected a callseq node.");
8515   SDNode *Call = CallEnd->getOperand(0).getNode();
8516   bool HasGlue = Call->getGluedNode();
8517 
8518   // Replace the target specific call node with the patchable intrinsic.
8519   SmallVector<SDValue, 8> Ops;
8520 
8521   // Add the <id> and <numBytes> constants.
8522   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
8523   Ops.push_back(DAG.getTargetConstant(
8524                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
8525   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
8526   Ops.push_back(DAG.getTargetConstant(
8527                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
8528                   MVT::i32));
8529 
8530   // Add the callee.
8531   Ops.push_back(Callee);
8532 
8533   // Adjust <numArgs> to account for any arguments that have been passed on the
8534   // stack instead.
8535   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
8536   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
8537   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
8538   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
8539 
8540   // Add the calling convention
8541   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
8542 
8543   // Add the arguments we omitted previously. The register allocator should
8544   // place these in any free register.
8545   if (IsAnyRegCC)
8546     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
8547       Ops.push_back(getValue(CS.getArgument(i)));
8548 
8549   // Push the arguments from the call instruction up to the register mask.
8550   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
8551   Ops.append(Call->op_begin() + 2, e);
8552 
8553   // Push live variables for the stack map.
8554   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
8555 
8556   // Push the register mask info.
8557   if (HasGlue)
8558     Ops.push_back(*(Call->op_end()-2));
8559   else
8560     Ops.push_back(*(Call->op_end()-1));
8561 
8562   // Push the chain (this is originally the first operand of the call, but
8563   // becomes now the last or second to last operand).
8564   Ops.push_back(*(Call->op_begin()));
8565 
8566   // Push the glue flag (last operand).
8567   if (HasGlue)
8568     Ops.push_back(*(Call->op_end()-1));
8569 
8570   SDVTList NodeTys;
8571   if (IsAnyRegCC && HasDef) {
8572     // Create the return types based on the intrinsic definition
8573     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8574     SmallVector<EVT, 3> ValueVTs;
8575     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8576     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
8577 
8578     // There is always a chain and a glue type at the end
8579     ValueVTs.push_back(MVT::Other);
8580     ValueVTs.push_back(MVT::Glue);
8581     NodeTys = DAG.getVTList(ValueVTs);
8582   } else
8583     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8584 
8585   // Replace the target specific call node with a PATCHPOINT node.
8586   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
8587                                          dl, NodeTys, Ops);
8588 
8589   // Update the NodeMap.
8590   if (HasDef) {
8591     if (IsAnyRegCC)
8592       setValue(CS.getInstruction(), SDValue(MN, 0));
8593     else
8594       setValue(CS.getInstruction(), Result.first);
8595   }
8596 
8597   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
8598   // call sequence. Furthermore the location of the chain and glue can change
8599   // when the AnyReg calling convention is used and the intrinsic returns a
8600   // value.
8601   if (IsAnyRegCC && HasDef) {
8602     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
8603     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
8604     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8605   } else
8606     DAG.ReplaceAllUsesWith(Call, MN);
8607   DAG.DeleteNode(Call);
8608 
8609   // Inform the Frame Information that we have a patchpoint in this function.
8610   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
8611 }
8612 
8613 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
8614                                             unsigned Intrinsic) {
8615   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8616   SDValue Op1 = getValue(I.getArgOperand(0));
8617   SDValue Op2;
8618   if (I.getNumArgOperands() > 1)
8619     Op2 = getValue(I.getArgOperand(1));
8620   SDLoc dl = getCurSDLoc();
8621   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8622   SDValue Res;
8623   FastMathFlags FMF;
8624   if (isa<FPMathOperator>(I))
8625     FMF = I.getFastMathFlags();
8626 
8627   switch (Intrinsic) {
8628   case Intrinsic::experimental_vector_reduce_fadd:
8629     if (FMF.isFast())
8630       Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2);
8631     else
8632       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2);
8633     break;
8634   case Intrinsic::experimental_vector_reduce_fmul:
8635     if (FMF.isFast())
8636       Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2);
8637     else
8638       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2);
8639     break;
8640   case Intrinsic::experimental_vector_reduce_add:
8641     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
8642     break;
8643   case Intrinsic::experimental_vector_reduce_mul:
8644     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
8645     break;
8646   case Intrinsic::experimental_vector_reduce_and:
8647     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
8648     break;
8649   case Intrinsic::experimental_vector_reduce_or:
8650     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
8651     break;
8652   case Intrinsic::experimental_vector_reduce_xor:
8653     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
8654     break;
8655   case Intrinsic::experimental_vector_reduce_smax:
8656     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
8657     break;
8658   case Intrinsic::experimental_vector_reduce_smin:
8659     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
8660     break;
8661   case Intrinsic::experimental_vector_reduce_umax:
8662     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
8663     break;
8664   case Intrinsic::experimental_vector_reduce_umin:
8665     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
8666     break;
8667   case Intrinsic::experimental_vector_reduce_fmax:
8668     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1);
8669     break;
8670   case Intrinsic::experimental_vector_reduce_fmin:
8671     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1);
8672     break;
8673   default:
8674     llvm_unreachable("Unhandled vector reduce intrinsic");
8675   }
8676   setValue(&I, Res);
8677 }
8678 
8679 /// Returns an AttributeList representing the attributes applied to the return
8680 /// value of the given call.
8681 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
8682   SmallVector<Attribute::AttrKind, 2> Attrs;
8683   if (CLI.RetSExt)
8684     Attrs.push_back(Attribute::SExt);
8685   if (CLI.RetZExt)
8686     Attrs.push_back(Attribute::ZExt);
8687   if (CLI.IsInReg)
8688     Attrs.push_back(Attribute::InReg);
8689 
8690   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
8691                             Attrs);
8692 }
8693 
8694 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
8695 /// implementation, which just calls LowerCall.
8696 /// FIXME: When all targets are
8697 /// migrated to using LowerCall, this hook should be integrated into SDISel.
8698 std::pair<SDValue, SDValue>
8699 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
8700   // Handle the incoming return values from the call.
8701   CLI.Ins.clear();
8702   Type *OrigRetTy = CLI.RetTy;
8703   SmallVector<EVT, 4> RetTys;
8704   SmallVector<uint64_t, 4> Offsets;
8705   auto &DL = CLI.DAG.getDataLayout();
8706   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
8707 
8708   if (CLI.IsPostTypeLegalization) {
8709     // If we are lowering a libcall after legalization, split the return type.
8710     SmallVector<EVT, 4> OldRetTys = std::move(RetTys);
8711     SmallVector<uint64_t, 4> OldOffsets = std::move(Offsets);
8712     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
8713       EVT RetVT = OldRetTys[i];
8714       uint64_t Offset = OldOffsets[i];
8715       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
8716       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
8717       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
8718       RetTys.append(NumRegs, RegisterVT);
8719       for (unsigned j = 0; j != NumRegs; ++j)
8720         Offsets.push_back(Offset + j * RegisterVTByteSZ);
8721     }
8722   }
8723 
8724   SmallVector<ISD::OutputArg, 4> Outs;
8725   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
8726 
8727   bool CanLowerReturn =
8728       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
8729                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
8730 
8731   SDValue DemoteStackSlot;
8732   int DemoteStackIdx = -100;
8733   if (!CanLowerReturn) {
8734     // FIXME: equivalent assert?
8735     // assert(!CS.hasInAllocaArgument() &&
8736     //        "sret demotion is incompatible with inalloca");
8737     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
8738     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
8739     MachineFunction &MF = CLI.DAG.getMachineFunction();
8740     DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
8741     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
8742                                               DL.getAllocaAddrSpace());
8743 
8744     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
8745     ArgListEntry Entry;
8746     Entry.Node = DemoteStackSlot;
8747     Entry.Ty = StackSlotPtrType;
8748     Entry.IsSExt = false;
8749     Entry.IsZExt = false;
8750     Entry.IsInReg = false;
8751     Entry.IsSRet = true;
8752     Entry.IsNest = false;
8753     Entry.IsByVal = false;
8754     Entry.IsReturned = false;
8755     Entry.IsSwiftSelf = false;
8756     Entry.IsSwiftError = false;
8757     Entry.Alignment = Align;
8758     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
8759     CLI.NumFixedArgs += 1;
8760     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
8761 
8762     // sret demotion isn't compatible with tail-calls, since the sret argument
8763     // points into the callers stack frame.
8764     CLI.IsTailCall = false;
8765   } else {
8766     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
8767       EVT VT = RetTys[I];
8768       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
8769                                                      CLI.CallConv, VT);
8770       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
8771                                                        CLI.CallConv, VT);
8772       for (unsigned i = 0; i != NumRegs; ++i) {
8773         ISD::InputArg MyFlags;
8774         MyFlags.VT = RegisterVT;
8775         MyFlags.ArgVT = VT;
8776         MyFlags.Used = CLI.IsReturnValueUsed;
8777         if (CLI.RetSExt)
8778           MyFlags.Flags.setSExt();
8779         if (CLI.RetZExt)
8780           MyFlags.Flags.setZExt();
8781         if (CLI.IsInReg)
8782           MyFlags.Flags.setInReg();
8783         CLI.Ins.push_back(MyFlags);
8784       }
8785     }
8786   }
8787 
8788   // We push in swifterror return as the last element of CLI.Ins.
8789   ArgListTy &Args = CLI.getArgs();
8790   if (supportSwiftError()) {
8791     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
8792       if (Args[i].IsSwiftError) {
8793         ISD::InputArg MyFlags;
8794         MyFlags.VT = getPointerTy(DL);
8795         MyFlags.ArgVT = EVT(getPointerTy(DL));
8796         MyFlags.Flags.setSwiftError();
8797         CLI.Ins.push_back(MyFlags);
8798       }
8799     }
8800   }
8801 
8802   // Handle all of the outgoing arguments.
8803   CLI.Outs.clear();
8804   CLI.OutVals.clear();
8805   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
8806     SmallVector<EVT, 4> ValueVTs;
8807     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
8808     // FIXME: Split arguments if CLI.IsPostTypeLegalization
8809     Type *FinalType = Args[i].Ty;
8810     if (Args[i].IsByVal)
8811       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
8812     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
8813         FinalType, CLI.CallConv, CLI.IsVarArg);
8814     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
8815          ++Value) {
8816       EVT VT = ValueVTs[Value];
8817       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
8818       SDValue Op = SDValue(Args[i].Node.getNode(),
8819                            Args[i].Node.getResNo() + Value);
8820       ISD::ArgFlagsTy Flags;
8821 
8822       // Certain targets (such as MIPS), may have a different ABI alignment
8823       // for a type depending on the context. Give the target a chance to
8824       // specify the alignment it wants.
8825       unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL);
8826 
8827       if (Args[i].IsZExt)
8828         Flags.setZExt();
8829       if (Args[i].IsSExt)
8830         Flags.setSExt();
8831       if (Args[i].IsInReg) {
8832         // If we are using vectorcall calling convention, a structure that is
8833         // passed InReg - is surely an HVA
8834         if (CLI.CallConv == CallingConv::X86_VectorCall &&
8835             isa<StructType>(FinalType)) {
8836           // The first value of a structure is marked
8837           if (0 == Value)
8838             Flags.setHvaStart();
8839           Flags.setHva();
8840         }
8841         // Set InReg Flag
8842         Flags.setInReg();
8843       }
8844       if (Args[i].IsSRet)
8845         Flags.setSRet();
8846       if (Args[i].IsSwiftSelf)
8847         Flags.setSwiftSelf();
8848       if (Args[i].IsSwiftError)
8849         Flags.setSwiftError();
8850       if (Args[i].IsByVal)
8851         Flags.setByVal();
8852       if (Args[i].IsInAlloca) {
8853         Flags.setInAlloca();
8854         // Set the byval flag for CCAssignFn callbacks that don't know about
8855         // inalloca.  This way we can know how many bytes we should've allocated
8856         // and how many bytes a callee cleanup function will pop.  If we port
8857         // inalloca to more targets, we'll have to add custom inalloca handling
8858         // in the various CC lowering callbacks.
8859         Flags.setByVal();
8860       }
8861       if (Args[i].IsByVal || Args[i].IsInAlloca) {
8862         PointerType *Ty = cast<PointerType>(Args[i].Ty);
8863         Type *ElementTy = Ty->getElementType();
8864         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
8865         // For ByVal, alignment should come from FE.  BE will guess if this
8866         // info is not there but there are cases it cannot get right.
8867         unsigned FrameAlign;
8868         if (Args[i].Alignment)
8869           FrameAlign = Args[i].Alignment;
8870         else
8871           FrameAlign = getByValTypeAlignment(ElementTy, DL);
8872         Flags.setByValAlign(FrameAlign);
8873       }
8874       if (Args[i].IsNest)
8875         Flags.setNest();
8876       if (NeedsRegBlock)
8877         Flags.setInConsecutiveRegs();
8878       Flags.setOrigAlign(OriginalAlignment);
8879 
8880       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
8881                                                  CLI.CallConv, VT);
8882       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
8883                                                         CLI.CallConv, VT);
8884       SmallVector<SDValue, 4> Parts(NumParts);
8885       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
8886 
8887       if (Args[i].IsSExt)
8888         ExtendKind = ISD::SIGN_EXTEND;
8889       else if (Args[i].IsZExt)
8890         ExtendKind = ISD::ZERO_EXTEND;
8891 
8892       // Conservatively only handle 'returned' on non-vectors that can be lowered,
8893       // for now.
8894       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
8895           CanLowerReturn) {
8896         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
8897                "unexpected use of 'returned'");
8898         // Before passing 'returned' to the target lowering code, ensure that
8899         // either the register MVT and the actual EVT are the same size or that
8900         // the return value and argument are extended in the same way; in these
8901         // cases it's safe to pass the argument register value unchanged as the
8902         // return register value (although it's at the target's option whether
8903         // to do so)
8904         // TODO: allow code generation to take advantage of partially preserved
8905         // registers rather than clobbering the entire register when the
8906         // parameter extension method is not compatible with the return
8907         // extension method
8908         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
8909             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
8910              CLI.RetZExt == Args[i].IsZExt))
8911           Flags.setReturned();
8912       }
8913 
8914       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
8915                      CLI.CS.getInstruction(), CLI.CallConv, ExtendKind);
8916 
8917       for (unsigned j = 0; j != NumParts; ++j) {
8918         // if it isn't first piece, alignment must be 1
8919         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
8920                                i < CLI.NumFixedArgs,
8921                                i, j*Parts[j].getValueType().getStoreSize());
8922         if (NumParts > 1 && j == 0)
8923           MyFlags.Flags.setSplit();
8924         else if (j != 0) {
8925           MyFlags.Flags.setOrigAlign(1);
8926           if (j == NumParts - 1)
8927             MyFlags.Flags.setSplitEnd();
8928         }
8929 
8930         CLI.Outs.push_back(MyFlags);
8931         CLI.OutVals.push_back(Parts[j]);
8932       }
8933 
8934       if (NeedsRegBlock && Value == NumValues - 1)
8935         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
8936     }
8937   }
8938 
8939   SmallVector<SDValue, 4> InVals;
8940   CLI.Chain = LowerCall(CLI, InVals);
8941 
8942   // Update CLI.InVals to use outside of this function.
8943   CLI.InVals = InVals;
8944 
8945   // Verify that the target's LowerCall behaved as expected.
8946   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
8947          "LowerCall didn't return a valid chain!");
8948   assert((!CLI.IsTailCall || InVals.empty()) &&
8949          "LowerCall emitted a return value for a tail call!");
8950   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
8951          "LowerCall didn't emit the correct number of values!");
8952 
8953   // For a tail call, the return value is merely live-out and there aren't
8954   // any nodes in the DAG representing it. Return a special value to
8955   // indicate that a tail call has been emitted and no more Instructions
8956   // should be processed in the current block.
8957   if (CLI.IsTailCall) {
8958     CLI.DAG.setRoot(CLI.Chain);
8959     return std::make_pair(SDValue(), SDValue());
8960   }
8961 
8962 #ifndef NDEBUG
8963   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
8964     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
8965     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
8966            "LowerCall emitted a value with the wrong type!");
8967   }
8968 #endif
8969 
8970   SmallVector<SDValue, 4> ReturnValues;
8971   if (!CanLowerReturn) {
8972     // The instruction result is the result of loading from the
8973     // hidden sret parameter.
8974     SmallVector<EVT, 1> PVTs;
8975     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
8976 
8977     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
8978     assert(PVTs.size() == 1 && "Pointers should fit in one register");
8979     EVT PtrVT = PVTs[0];
8980 
8981     unsigned NumValues = RetTys.size();
8982     ReturnValues.resize(NumValues);
8983     SmallVector<SDValue, 4> Chains(NumValues);
8984 
8985     // An aggregate return value cannot wrap around the address space, so
8986     // offsets to its parts don't wrap either.
8987     SDNodeFlags Flags;
8988     Flags.setNoUnsignedWrap(true);
8989 
8990     for (unsigned i = 0; i < NumValues; ++i) {
8991       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
8992                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
8993                                                         PtrVT), Flags);
8994       SDValue L = CLI.DAG.getLoad(
8995           RetTys[i], CLI.DL, CLI.Chain, Add,
8996           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
8997                                             DemoteStackIdx, Offsets[i]),
8998           /* Alignment = */ 1);
8999       ReturnValues[i] = L;
9000       Chains[i] = L.getValue(1);
9001     }
9002 
9003     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
9004   } else {
9005     // Collect the legal value parts into potentially illegal values
9006     // that correspond to the original function's return values.
9007     Optional<ISD::NodeType> AssertOp;
9008     if (CLI.RetSExt)
9009       AssertOp = ISD::AssertSext;
9010     else if (CLI.RetZExt)
9011       AssertOp = ISD::AssertZext;
9012     unsigned CurReg = 0;
9013     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9014       EVT VT = RetTys[I];
9015       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9016                                                      CLI.CallConv, VT);
9017       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9018                                                        CLI.CallConv, VT);
9019 
9020       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
9021                                               NumRegs, RegisterVT, VT, nullptr,
9022                                               CLI.CallConv, AssertOp));
9023       CurReg += NumRegs;
9024     }
9025 
9026     // For a function returning void, there is no return value. We can't create
9027     // such a node, so we just return a null return value in that case. In
9028     // that case, nothing will actually look at the value.
9029     if (ReturnValues.empty())
9030       return std::make_pair(SDValue(), CLI.Chain);
9031   }
9032 
9033   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
9034                                 CLI.DAG.getVTList(RetTys), ReturnValues);
9035   return std::make_pair(Res, CLI.Chain);
9036 }
9037 
9038 void TargetLowering::LowerOperationWrapper(SDNode *N,
9039                                            SmallVectorImpl<SDValue> &Results,
9040                                            SelectionDAG &DAG) const {
9041   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
9042     Results.push_back(Res);
9043 }
9044 
9045 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9046   llvm_unreachable("LowerOperation not implemented for this target!");
9047 }
9048 
9049 void
9050 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
9051   SDValue Op = getNonRegisterValue(V);
9052   assert((Op.getOpcode() != ISD::CopyFromReg ||
9053           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
9054          "Copy from a reg to the same reg!");
9055   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
9056 
9057   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9058   // If this is an InlineAsm we have to match the registers required, not the
9059   // notional registers required by the type.
9060 
9061   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
9062                    None); // This is not an ABI copy.
9063   SDValue Chain = DAG.getEntryNode();
9064 
9065   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
9066                               FuncInfo.PreferredExtendType.end())
9067                                  ? ISD::ANY_EXTEND
9068                                  : FuncInfo.PreferredExtendType[V];
9069   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
9070   PendingExports.push_back(Chain);
9071 }
9072 
9073 #include "llvm/CodeGen/SelectionDAGISel.h"
9074 
9075 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
9076 /// entry block, return true.  This includes arguments used by switches, since
9077 /// the switch may expand into multiple basic blocks.
9078 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
9079   // With FastISel active, we may be splitting blocks, so force creation
9080   // of virtual registers for all non-dead arguments.
9081   if (FastISel)
9082     return A->use_empty();
9083 
9084   const BasicBlock &Entry = A->getParent()->front();
9085   for (const User *U : A->users())
9086     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
9087       return false;  // Use not in entry block.
9088 
9089   return true;
9090 }
9091 
9092 using ArgCopyElisionMapTy =
9093     DenseMap<const Argument *,
9094              std::pair<const AllocaInst *, const StoreInst *>>;
9095 
9096 /// Scan the entry block of the function in FuncInfo for arguments that look
9097 /// like copies into a local alloca. Record any copied arguments in
9098 /// ArgCopyElisionCandidates.
9099 static void
9100 findArgumentCopyElisionCandidates(const DataLayout &DL,
9101                                   FunctionLoweringInfo *FuncInfo,
9102                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
9103   // Record the state of every static alloca used in the entry block. Argument
9104   // allocas are all used in the entry block, so we need approximately as many
9105   // entries as we have arguments.
9106   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
9107   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
9108   unsigned NumArgs = FuncInfo->Fn->arg_size();
9109   StaticAllocas.reserve(NumArgs * 2);
9110 
9111   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
9112     if (!V)
9113       return nullptr;
9114     V = V->stripPointerCasts();
9115     const auto *AI = dyn_cast<AllocaInst>(V);
9116     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
9117       return nullptr;
9118     auto Iter = StaticAllocas.insert({AI, Unknown});
9119     return &Iter.first->second;
9120   };
9121 
9122   // Look for stores of arguments to static allocas. Look through bitcasts and
9123   // GEPs to handle type coercions, as long as the alloca is fully initialized
9124   // by the store. Any non-store use of an alloca escapes it and any subsequent
9125   // unanalyzed store might write it.
9126   // FIXME: Handle structs initialized with multiple stores.
9127   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
9128     // Look for stores, and handle non-store uses conservatively.
9129     const auto *SI = dyn_cast<StoreInst>(&I);
9130     if (!SI) {
9131       // We will look through cast uses, so ignore them completely.
9132       if (I.isCast())
9133         continue;
9134       // Ignore debug info intrinsics, they don't escape or store to allocas.
9135       if (isa<DbgInfoIntrinsic>(I))
9136         continue;
9137       // This is an unknown instruction. Assume it escapes or writes to all
9138       // static alloca operands.
9139       for (const Use &U : I.operands()) {
9140         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
9141           *Info = StaticAllocaInfo::Clobbered;
9142       }
9143       continue;
9144     }
9145 
9146     // If the stored value is a static alloca, mark it as escaped.
9147     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
9148       *Info = StaticAllocaInfo::Clobbered;
9149 
9150     // Check if the destination is a static alloca.
9151     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
9152     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
9153     if (!Info)
9154       continue;
9155     const AllocaInst *AI = cast<AllocaInst>(Dst);
9156 
9157     // Skip allocas that have been initialized or clobbered.
9158     if (*Info != StaticAllocaInfo::Unknown)
9159       continue;
9160 
9161     // Check if the stored value is an argument, and that this store fully
9162     // initializes the alloca. Don't elide copies from the same argument twice.
9163     const Value *Val = SI->getValueOperand()->stripPointerCasts();
9164     const auto *Arg = dyn_cast<Argument>(Val);
9165     if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() ||
9166         Arg->getType()->isEmptyTy() ||
9167         DL.getTypeStoreSize(Arg->getType()) !=
9168             DL.getTypeAllocSize(AI->getAllocatedType()) ||
9169         ArgCopyElisionCandidates.count(Arg)) {
9170       *Info = StaticAllocaInfo::Clobbered;
9171       continue;
9172     }
9173 
9174     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
9175                       << '\n');
9176 
9177     // Mark this alloca and store for argument copy elision.
9178     *Info = StaticAllocaInfo::Elidable;
9179     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
9180 
9181     // Stop scanning if we've seen all arguments. This will happen early in -O0
9182     // builds, which is useful, because -O0 builds have large entry blocks and
9183     // many allocas.
9184     if (ArgCopyElisionCandidates.size() == NumArgs)
9185       break;
9186   }
9187 }
9188 
9189 /// Try to elide argument copies from memory into a local alloca. Succeeds if
9190 /// ArgVal is a load from a suitable fixed stack object.
9191 static void tryToElideArgumentCopy(
9192     FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains,
9193     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
9194     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
9195     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
9196     SDValue ArgVal, bool &ArgHasUses) {
9197   // Check if this is a load from a fixed stack object.
9198   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
9199   if (!LNode)
9200     return;
9201   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
9202   if (!FINode)
9203     return;
9204 
9205   // Check that the fixed stack object is the right size and alignment.
9206   // Look at the alignment that the user wrote on the alloca instead of looking
9207   // at the stack object.
9208   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
9209   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
9210   const AllocaInst *AI = ArgCopyIter->second.first;
9211   int FixedIndex = FINode->getIndex();
9212   int &AllocaIndex = FuncInfo->StaticAllocaMap[AI];
9213   int OldIndex = AllocaIndex;
9214   MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo();
9215   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
9216     LLVM_DEBUG(
9217         dbgs() << "  argument copy elision failed due to bad fixed stack "
9218                   "object size\n");
9219     return;
9220   }
9221   unsigned RequiredAlignment = AI->getAlignment();
9222   if (!RequiredAlignment) {
9223     RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment(
9224         AI->getAllocatedType());
9225   }
9226   if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) {
9227     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
9228                          "greater than stack argument alignment ("
9229                       << RequiredAlignment << " vs "
9230                       << MFI.getObjectAlignment(FixedIndex) << ")\n");
9231     return;
9232   }
9233 
9234   // Perform the elision. Delete the old stack object and replace its only use
9235   // in the variable info map. Mark the stack object as mutable.
9236   LLVM_DEBUG({
9237     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
9238            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
9239            << '\n';
9240   });
9241   MFI.RemoveStackObject(OldIndex);
9242   MFI.setIsImmutableObjectIndex(FixedIndex, false);
9243   AllocaIndex = FixedIndex;
9244   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
9245   Chains.push_back(ArgVal.getValue(1));
9246 
9247   // Avoid emitting code for the store implementing the copy.
9248   const StoreInst *SI = ArgCopyIter->second.second;
9249   ElidedArgCopyInstrs.insert(SI);
9250 
9251   // Check for uses of the argument again so that we can avoid exporting ArgVal
9252   // if it is't used by anything other than the store.
9253   for (const Value *U : Arg.users()) {
9254     if (U != SI) {
9255       ArgHasUses = true;
9256       break;
9257     }
9258   }
9259 }
9260 
9261 void SelectionDAGISel::LowerArguments(const Function &F) {
9262   SelectionDAG &DAG = SDB->DAG;
9263   SDLoc dl = SDB->getCurSDLoc();
9264   const DataLayout &DL = DAG.getDataLayout();
9265   SmallVector<ISD::InputArg, 16> Ins;
9266 
9267   if (!FuncInfo->CanLowerReturn) {
9268     // Put in an sret pointer parameter before all the other parameters.
9269     SmallVector<EVT, 1> ValueVTs;
9270     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9271                     F.getReturnType()->getPointerTo(
9272                         DAG.getDataLayout().getAllocaAddrSpace()),
9273                     ValueVTs);
9274 
9275     // NOTE: Assuming that a pointer will never break down to more than one VT
9276     // or one register.
9277     ISD::ArgFlagsTy Flags;
9278     Flags.setSRet();
9279     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
9280     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
9281                          ISD::InputArg::NoArgIndex, 0);
9282     Ins.push_back(RetArg);
9283   }
9284 
9285   // Look for stores of arguments to static allocas. Mark such arguments with a
9286   // flag to ask the target to give us the memory location of that argument if
9287   // available.
9288   ArgCopyElisionMapTy ArgCopyElisionCandidates;
9289   findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates);
9290 
9291   // Set up the incoming argument description vector.
9292   for (const Argument &Arg : F.args()) {
9293     unsigned ArgNo = Arg.getArgNo();
9294     SmallVector<EVT, 4> ValueVTs;
9295     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9296     bool isArgValueUsed = !Arg.use_empty();
9297     unsigned PartBase = 0;
9298     Type *FinalType = Arg.getType();
9299     if (Arg.hasAttribute(Attribute::ByVal))
9300       FinalType = cast<PointerType>(FinalType)->getElementType();
9301     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
9302         FinalType, F.getCallingConv(), F.isVarArg());
9303     for (unsigned Value = 0, NumValues = ValueVTs.size();
9304          Value != NumValues; ++Value) {
9305       EVT VT = ValueVTs[Value];
9306       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
9307       ISD::ArgFlagsTy Flags;
9308 
9309       // Certain targets (such as MIPS), may have a different ABI alignment
9310       // for a type depending on the context. Give the target a chance to
9311       // specify the alignment it wants.
9312       unsigned OriginalAlignment =
9313           TLI->getABIAlignmentForCallingConv(ArgTy, DL);
9314 
9315       if (Arg.hasAttribute(Attribute::ZExt))
9316         Flags.setZExt();
9317       if (Arg.hasAttribute(Attribute::SExt))
9318         Flags.setSExt();
9319       if (Arg.hasAttribute(Attribute::InReg)) {
9320         // If we are using vectorcall calling convention, a structure that is
9321         // passed InReg - is surely an HVA
9322         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
9323             isa<StructType>(Arg.getType())) {
9324           // The first value of a structure is marked
9325           if (0 == Value)
9326             Flags.setHvaStart();
9327           Flags.setHva();
9328         }
9329         // Set InReg Flag
9330         Flags.setInReg();
9331       }
9332       if (Arg.hasAttribute(Attribute::StructRet))
9333         Flags.setSRet();
9334       if (Arg.hasAttribute(Attribute::SwiftSelf))
9335         Flags.setSwiftSelf();
9336       if (Arg.hasAttribute(Attribute::SwiftError))
9337         Flags.setSwiftError();
9338       if (Arg.hasAttribute(Attribute::ByVal))
9339         Flags.setByVal();
9340       if (Arg.hasAttribute(Attribute::InAlloca)) {
9341         Flags.setInAlloca();
9342         // Set the byval flag for CCAssignFn callbacks that don't know about
9343         // inalloca.  This way we can know how many bytes we should've allocated
9344         // and how many bytes a callee cleanup function will pop.  If we port
9345         // inalloca to more targets, we'll have to add custom inalloca handling
9346         // in the various CC lowering callbacks.
9347         Flags.setByVal();
9348       }
9349       if (F.getCallingConv() == CallingConv::X86_INTR) {
9350         // IA Interrupt passes frame (1st parameter) by value in the stack.
9351         if (ArgNo == 0)
9352           Flags.setByVal();
9353       }
9354       if (Flags.isByVal() || Flags.isInAlloca()) {
9355         PointerType *Ty = cast<PointerType>(Arg.getType());
9356         Type *ElementTy = Ty->getElementType();
9357         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
9358         // For ByVal, alignment should be passed from FE.  BE will guess if
9359         // this info is not there but there are cases it cannot get right.
9360         unsigned FrameAlign;
9361         if (Arg.getParamAlignment())
9362           FrameAlign = Arg.getParamAlignment();
9363         else
9364           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
9365         Flags.setByValAlign(FrameAlign);
9366       }
9367       if (Arg.hasAttribute(Attribute::Nest))
9368         Flags.setNest();
9369       if (NeedsRegBlock)
9370         Flags.setInConsecutiveRegs();
9371       Flags.setOrigAlign(OriginalAlignment);
9372       if (ArgCopyElisionCandidates.count(&Arg))
9373         Flags.setCopyElisionCandidate();
9374 
9375       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
9376           *CurDAG->getContext(), F.getCallingConv(), VT);
9377       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
9378           *CurDAG->getContext(), F.getCallingConv(), VT);
9379       for (unsigned i = 0; i != NumRegs; ++i) {
9380         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
9381                               ArgNo, PartBase+i*RegisterVT.getStoreSize());
9382         if (NumRegs > 1 && i == 0)
9383           MyFlags.Flags.setSplit();
9384         // if it isn't first piece, alignment must be 1
9385         else if (i > 0) {
9386           MyFlags.Flags.setOrigAlign(1);
9387           if (i == NumRegs - 1)
9388             MyFlags.Flags.setSplitEnd();
9389         }
9390         Ins.push_back(MyFlags);
9391       }
9392       if (NeedsRegBlock && Value == NumValues - 1)
9393         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
9394       PartBase += VT.getStoreSize();
9395     }
9396   }
9397 
9398   // Call the target to set up the argument values.
9399   SmallVector<SDValue, 8> InVals;
9400   SDValue NewRoot = TLI->LowerFormalArguments(
9401       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
9402 
9403   // Verify that the target's LowerFormalArguments behaved as expected.
9404   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
9405          "LowerFormalArguments didn't return a valid chain!");
9406   assert(InVals.size() == Ins.size() &&
9407          "LowerFormalArguments didn't emit the correct number of values!");
9408   LLVM_DEBUG({
9409     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
9410       assert(InVals[i].getNode() &&
9411              "LowerFormalArguments emitted a null value!");
9412       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
9413              "LowerFormalArguments emitted a value with the wrong type!");
9414     }
9415   });
9416 
9417   // Update the DAG with the new chain value resulting from argument lowering.
9418   DAG.setRoot(NewRoot);
9419 
9420   // Set up the argument values.
9421   unsigned i = 0;
9422   if (!FuncInfo->CanLowerReturn) {
9423     // Create a virtual register for the sret pointer, and put in a copy
9424     // from the sret argument into it.
9425     SmallVector<EVT, 1> ValueVTs;
9426     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9427                     F.getReturnType()->getPointerTo(
9428                         DAG.getDataLayout().getAllocaAddrSpace()),
9429                     ValueVTs);
9430     MVT VT = ValueVTs[0].getSimpleVT();
9431     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
9432     Optional<ISD::NodeType> AssertOp = None;
9433     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
9434                                         nullptr, F.getCallingConv(), AssertOp);
9435 
9436     MachineFunction& MF = SDB->DAG.getMachineFunction();
9437     MachineRegisterInfo& RegInfo = MF.getRegInfo();
9438     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
9439     FuncInfo->DemoteRegister = SRetReg;
9440     NewRoot =
9441         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
9442     DAG.setRoot(NewRoot);
9443 
9444     // i indexes lowered arguments.  Bump it past the hidden sret argument.
9445     ++i;
9446   }
9447 
9448   SmallVector<SDValue, 4> Chains;
9449   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
9450   for (const Argument &Arg : F.args()) {
9451     SmallVector<SDValue, 4> ArgValues;
9452     SmallVector<EVT, 4> ValueVTs;
9453     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9454     unsigned NumValues = ValueVTs.size();
9455     if (NumValues == 0)
9456       continue;
9457 
9458     bool ArgHasUses = !Arg.use_empty();
9459 
9460     // Elide the copying store if the target loaded this argument from a
9461     // suitable fixed stack object.
9462     if (Ins[i].Flags.isCopyElisionCandidate()) {
9463       tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
9464                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
9465                              InVals[i], ArgHasUses);
9466     }
9467 
9468     // If this argument is unused then remember its value. It is used to generate
9469     // debugging information.
9470     bool isSwiftErrorArg =
9471         TLI->supportSwiftError() &&
9472         Arg.hasAttribute(Attribute::SwiftError);
9473     if (!ArgHasUses && !isSwiftErrorArg) {
9474       SDB->setUnusedArgValue(&Arg, InVals[i]);
9475 
9476       // Also remember any frame index for use in FastISel.
9477       if (FrameIndexSDNode *FI =
9478           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
9479         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9480     }
9481 
9482     for (unsigned Val = 0; Val != NumValues; ++Val) {
9483       EVT VT = ValueVTs[Val];
9484       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
9485                                                       F.getCallingConv(), VT);
9486       unsigned NumParts = TLI->getNumRegistersForCallingConv(
9487           *CurDAG->getContext(), F.getCallingConv(), VT);
9488 
9489       // Even an apparant 'unused' swifterror argument needs to be returned. So
9490       // we do generate a copy for it that can be used on return from the
9491       // function.
9492       if (ArgHasUses || isSwiftErrorArg) {
9493         Optional<ISD::NodeType> AssertOp;
9494         if (Arg.hasAttribute(Attribute::SExt))
9495           AssertOp = ISD::AssertSext;
9496         else if (Arg.hasAttribute(Attribute::ZExt))
9497           AssertOp = ISD::AssertZext;
9498 
9499         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
9500                                              PartVT, VT, nullptr,
9501                                              F.getCallingConv(), AssertOp));
9502       }
9503 
9504       i += NumParts;
9505     }
9506 
9507     // We don't need to do anything else for unused arguments.
9508     if (ArgValues.empty())
9509       continue;
9510 
9511     // Note down frame index.
9512     if (FrameIndexSDNode *FI =
9513         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
9514       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9515 
9516     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
9517                                      SDB->getCurSDLoc());
9518 
9519     SDB->setValue(&Arg, Res);
9520     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
9521       // We want to associate the argument with the frame index, among
9522       // involved operands, that correspond to the lowest address. The
9523       // getCopyFromParts function, called earlier, is swapping the order of
9524       // the operands to BUILD_PAIR depending on endianness. The result of
9525       // that swapping is that the least significant bits of the argument will
9526       // be in the first operand of the BUILD_PAIR node, and the most
9527       // significant bits will be in the second operand.
9528       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
9529       if (LoadSDNode *LNode =
9530           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
9531         if (FrameIndexSDNode *FI =
9532             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
9533           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9534     }
9535 
9536     // Update the SwiftErrorVRegDefMap.
9537     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
9538       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9539       if (TargetRegisterInfo::isVirtualRegister(Reg))
9540         FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB,
9541                                            FuncInfo->SwiftErrorArg, Reg);
9542     }
9543 
9544     // If this argument is live outside of the entry block, insert a copy from
9545     // wherever we got it to the vreg that other BB's will reference it as.
9546     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
9547       // If we can, though, try to skip creating an unnecessary vreg.
9548       // FIXME: This isn't very clean... it would be nice to make this more
9549       // general.  It's also subtly incompatible with the hacks FastISel
9550       // uses with vregs.
9551       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9552       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
9553         FuncInfo->ValueMap[&Arg] = Reg;
9554         continue;
9555       }
9556     }
9557     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
9558       FuncInfo->InitializeRegForValue(&Arg);
9559       SDB->CopyToExportRegsIfNeeded(&Arg);
9560     }
9561   }
9562 
9563   if (!Chains.empty()) {
9564     Chains.push_back(NewRoot);
9565     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
9566   }
9567 
9568   DAG.setRoot(NewRoot);
9569 
9570   assert(i == InVals.size() && "Argument register count mismatch!");
9571 
9572   // If any argument copy elisions occurred and we have debug info, update the
9573   // stale frame indices used in the dbg.declare variable info table.
9574   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
9575   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
9576     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
9577       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
9578       if (I != ArgCopyElisionFrameIndexMap.end())
9579         VI.Slot = I->second;
9580     }
9581   }
9582 
9583   // Finally, if the target has anything special to do, allow it to do so.
9584   EmitFunctionEntryCode();
9585 }
9586 
9587 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
9588 /// ensure constants are generated when needed.  Remember the virtual registers
9589 /// that need to be added to the Machine PHI nodes as input.  We cannot just
9590 /// directly add them, because expansion might result in multiple MBB's for one
9591 /// BB.  As such, the start of the BB might correspond to a different MBB than
9592 /// the end.
9593 void
9594 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
9595   const Instruction *TI = LLVMBB->getTerminator();
9596 
9597   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
9598 
9599   // Check PHI nodes in successors that expect a value to be available from this
9600   // block.
9601   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
9602     const BasicBlock *SuccBB = TI->getSuccessor(succ);
9603     if (!isa<PHINode>(SuccBB->begin())) continue;
9604     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
9605 
9606     // If this terminator has multiple identical successors (common for
9607     // switches), only handle each succ once.
9608     if (!SuccsHandled.insert(SuccMBB).second)
9609       continue;
9610 
9611     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
9612 
9613     // At this point we know that there is a 1-1 correspondence between LLVM PHI
9614     // nodes and Machine PHI nodes, but the incoming operands have not been
9615     // emitted yet.
9616     for (const PHINode &PN : SuccBB->phis()) {
9617       // Ignore dead phi's.
9618       if (PN.use_empty())
9619         continue;
9620 
9621       // Skip empty types
9622       if (PN.getType()->isEmptyTy())
9623         continue;
9624 
9625       unsigned Reg;
9626       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
9627 
9628       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
9629         unsigned &RegOut = ConstantsOut[C];
9630         if (RegOut == 0) {
9631           RegOut = FuncInfo.CreateRegs(C->getType());
9632           CopyValueToVirtualRegister(C, RegOut);
9633         }
9634         Reg = RegOut;
9635       } else {
9636         DenseMap<const Value *, unsigned>::iterator I =
9637           FuncInfo.ValueMap.find(PHIOp);
9638         if (I != FuncInfo.ValueMap.end())
9639           Reg = I->second;
9640         else {
9641           assert(isa<AllocaInst>(PHIOp) &&
9642                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
9643                  "Didn't codegen value into a register!??");
9644           Reg = FuncInfo.CreateRegs(PHIOp->getType());
9645           CopyValueToVirtualRegister(PHIOp, Reg);
9646         }
9647       }
9648 
9649       // Remember that this register needs to added to the machine PHI node as
9650       // the input for this MBB.
9651       SmallVector<EVT, 4> ValueVTs;
9652       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9653       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
9654       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
9655         EVT VT = ValueVTs[vti];
9656         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
9657         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
9658           FuncInfo.PHINodesToUpdate.push_back(
9659               std::make_pair(&*MBBI++, Reg + i));
9660         Reg += NumRegisters;
9661       }
9662     }
9663   }
9664 
9665   ConstantsOut.clear();
9666 }
9667 
9668 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
9669 /// is 0.
9670 MachineBasicBlock *
9671 SelectionDAGBuilder::StackProtectorDescriptor::
9672 AddSuccessorMBB(const BasicBlock *BB,
9673                 MachineBasicBlock *ParentMBB,
9674                 bool IsLikely,
9675                 MachineBasicBlock *SuccMBB) {
9676   // If SuccBB has not been created yet, create it.
9677   if (!SuccMBB) {
9678     MachineFunction *MF = ParentMBB->getParent();
9679     MachineFunction::iterator BBI(ParentMBB);
9680     SuccMBB = MF->CreateMachineBasicBlock(BB);
9681     MF->insert(++BBI, SuccMBB);
9682   }
9683   // Add it as a successor of ParentMBB.
9684   ParentMBB->addSuccessor(
9685       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
9686   return SuccMBB;
9687 }
9688 
9689 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
9690   MachineFunction::iterator I(MBB);
9691   if (++I == FuncInfo.MF->end())
9692     return nullptr;
9693   return &*I;
9694 }
9695 
9696 /// During lowering new call nodes can be created (such as memset, etc.).
9697 /// Those will become new roots of the current DAG, but complications arise
9698 /// when they are tail calls. In such cases, the call lowering will update
9699 /// the root, but the builder still needs to know that a tail call has been
9700 /// lowered in order to avoid generating an additional return.
9701 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
9702   // If the node is null, we do have a tail call.
9703   if (MaybeTC.getNode() != nullptr)
9704     DAG.setRoot(MaybeTC);
9705   else
9706     HasTailCall = true;
9707 }
9708 
9709 uint64_t
9710 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters,
9711                                        unsigned First, unsigned Last) const {
9712   assert(Last >= First);
9713   const APInt &LowCase = Clusters[First].Low->getValue();
9714   const APInt &HighCase = Clusters[Last].High->getValue();
9715   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
9716 
9717   // FIXME: A range of consecutive cases has 100% density, but only requires one
9718   // comparison to lower. We should discriminate against such consecutive ranges
9719   // in jump tables.
9720 
9721   return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1;
9722 }
9723 
9724 uint64_t SelectionDAGBuilder::getJumpTableNumCases(
9725     const SmallVectorImpl<unsigned> &TotalCases, unsigned First,
9726     unsigned Last) const {
9727   assert(Last >= First);
9728   assert(TotalCases[Last] >= TotalCases[First]);
9729   uint64_t NumCases =
9730       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
9731   return NumCases;
9732 }
9733 
9734 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters,
9735                                          unsigned First, unsigned Last,
9736                                          const SwitchInst *SI,
9737                                          MachineBasicBlock *DefaultMBB,
9738                                          CaseCluster &JTCluster) {
9739   assert(First <= Last);
9740 
9741   auto Prob = BranchProbability::getZero();
9742   unsigned NumCmps = 0;
9743   std::vector<MachineBasicBlock*> Table;
9744   DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
9745 
9746   // Initialize probabilities in JTProbs.
9747   for (unsigned I = First; I <= Last; ++I)
9748     JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
9749 
9750   for (unsigned I = First; I <= Last; ++I) {
9751     assert(Clusters[I].Kind == CC_Range);
9752     Prob += Clusters[I].Prob;
9753     const APInt &Low = Clusters[I].Low->getValue();
9754     const APInt &High = Clusters[I].High->getValue();
9755     NumCmps += (Low == High) ? 1 : 2;
9756     if (I != First) {
9757       // Fill the gap between this and the previous cluster.
9758       const APInt &PreviousHigh = Clusters[I - 1].High->getValue();
9759       assert(PreviousHigh.slt(Low));
9760       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
9761       for (uint64_t J = 0; J < Gap; J++)
9762         Table.push_back(DefaultMBB);
9763     }
9764     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
9765     for (uint64_t J = 0; J < ClusterSize; ++J)
9766       Table.push_back(Clusters[I].MBB);
9767     JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
9768   }
9769 
9770   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9771   unsigned NumDests = JTProbs.size();
9772   if (TLI.isSuitableForBitTests(
9773           NumDests, NumCmps, Clusters[First].Low->getValue(),
9774           Clusters[Last].High->getValue(), DAG.getDataLayout())) {
9775     // Clusters[First..Last] should be lowered as bit tests instead.
9776     return false;
9777   }
9778 
9779   // Create the MBB that will load from and jump through the table.
9780   // Note: We create it here, but it's not inserted into the function yet.
9781   MachineFunction *CurMF = FuncInfo.MF;
9782   MachineBasicBlock *JumpTableMBB =
9783       CurMF->CreateMachineBasicBlock(SI->getParent());
9784 
9785   // Add successors. Note: use table order for determinism.
9786   SmallPtrSet<MachineBasicBlock *, 8> Done;
9787   for (MachineBasicBlock *Succ : Table) {
9788     if (Done.count(Succ))
9789       continue;
9790     addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
9791     Done.insert(Succ);
9792   }
9793   JumpTableMBB->normalizeSuccProbs();
9794 
9795   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
9796                      ->createJumpTableIndex(Table);
9797 
9798   // Set up the jump table info.
9799   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
9800   JumpTableHeader JTH(Clusters[First].Low->getValue(),
9801                       Clusters[Last].High->getValue(), SI->getCondition(),
9802                       nullptr, false);
9803   JTCases.emplace_back(std::move(JTH), std::move(JT));
9804 
9805   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
9806                                      JTCases.size() - 1, Prob);
9807   return true;
9808 }
9809 
9810 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
9811                                          const SwitchInst *SI,
9812                                          MachineBasicBlock *DefaultMBB) {
9813 #ifndef NDEBUG
9814   // Clusters must be non-empty, sorted, and only contain Range clusters.
9815   assert(!Clusters.empty());
9816   for (CaseCluster &C : Clusters)
9817     assert(C.Kind == CC_Range);
9818   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
9819     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
9820 #endif
9821 
9822   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9823   if (!TLI.areJTsAllowed(SI->getParent()->getParent()))
9824     return;
9825 
9826   const int64_t N = Clusters.size();
9827   const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries();
9828   const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2;
9829 
9830   if (N < 2 || N < MinJumpTableEntries)
9831     return;
9832 
9833   // TotalCases[i]: Total nbr of cases in Clusters[0..i].
9834   SmallVector<unsigned, 8> TotalCases(N);
9835   for (unsigned i = 0; i < N; ++i) {
9836     const APInt &Hi = Clusters[i].High->getValue();
9837     const APInt &Lo = Clusters[i].Low->getValue();
9838     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
9839     if (i != 0)
9840       TotalCases[i] += TotalCases[i - 1];
9841   }
9842 
9843   // Cheap case: the whole range may be suitable for jump table.
9844   uint64_t Range = getJumpTableRange(Clusters,0, N - 1);
9845   uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1);
9846   assert(NumCases < UINT64_MAX / 100);
9847   assert(Range >= NumCases);
9848   if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
9849     CaseCluster JTCluster;
9850     if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
9851       Clusters[0] = JTCluster;
9852       Clusters.resize(1);
9853       return;
9854     }
9855   }
9856 
9857   // The algorithm below is not suitable for -O0.
9858   if (TM.getOptLevel() == CodeGenOpt::None)
9859     return;
9860 
9861   // Split Clusters into minimum number of dense partitions. The algorithm uses
9862   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
9863   // for the Case Statement'" (1994), but builds the MinPartitions array in
9864   // reverse order to make it easier to reconstruct the partitions in ascending
9865   // order. In the choice between two optimal partitionings, it picks the one
9866   // which yields more jump tables.
9867 
9868   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
9869   SmallVector<unsigned, 8> MinPartitions(N);
9870   // LastElement[i] is the last element of the partition starting at i.
9871   SmallVector<unsigned, 8> LastElement(N);
9872   // PartitionsScore[i] is used to break ties when choosing between two
9873   // partitionings resulting in the same number of partitions.
9874   SmallVector<unsigned, 8> PartitionsScore(N);
9875   // For PartitionsScore, a small number of comparisons is considered as good as
9876   // a jump table and a single comparison is considered better than a jump
9877   // table.
9878   enum PartitionScores : unsigned {
9879     NoTable = 0,
9880     Table = 1,
9881     FewCases = 1,
9882     SingleCase = 2
9883   };
9884 
9885   // Base case: There is only one way to partition Clusters[N-1].
9886   MinPartitions[N - 1] = 1;
9887   LastElement[N - 1] = N - 1;
9888   PartitionsScore[N - 1] = PartitionScores::SingleCase;
9889 
9890   // Note: loop indexes are signed to avoid underflow.
9891   for (int64_t i = N - 2; i >= 0; i--) {
9892     // Find optimal partitioning of Clusters[i..N-1].
9893     // Baseline: Put Clusters[i] into a partition on its own.
9894     MinPartitions[i] = MinPartitions[i + 1] + 1;
9895     LastElement[i] = i;
9896     PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase;
9897 
9898     // Search for a solution that results in fewer partitions.
9899     for (int64_t j = N - 1; j > i; j--) {
9900       // Try building a partition from Clusters[i..j].
9901       uint64_t Range = getJumpTableRange(Clusters, i, j);
9902       uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j);
9903       assert(NumCases < UINT64_MAX / 100);
9904       assert(Range >= NumCases);
9905       if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
9906         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
9907         unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1];
9908         int64_t NumEntries = j - i + 1;
9909 
9910         if (NumEntries == 1)
9911           Score += PartitionScores::SingleCase;
9912         else if (NumEntries <= SmallNumberOfEntries)
9913           Score += PartitionScores::FewCases;
9914         else if (NumEntries >= MinJumpTableEntries)
9915           Score += PartitionScores::Table;
9916 
9917         // If this leads to fewer partitions, or to the same number of
9918         // partitions with better score, it is a better partitioning.
9919         if (NumPartitions < MinPartitions[i] ||
9920             (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) {
9921           MinPartitions[i] = NumPartitions;
9922           LastElement[i] = j;
9923           PartitionsScore[i] = Score;
9924         }
9925       }
9926     }
9927   }
9928 
9929   // Iterate over the partitions, replacing some with jump tables in-place.
9930   unsigned DstIndex = 0;
9931   for (unsigned First = 0, Last; First < N; First = Last + 1) {
9932     Last = LastElement[First];
9933     assert(Last >= First);
9934     assert(DstIndex <= First);
9935     unsigned NumClusters = Last - First + 1;
9936 
9937     CaseCluster JTCluster;
9938     if (NumClusters >= MinJumpTableEntries &&
9939         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
9940       Clusters[DstIndex++] = JTCluster;
9941     } else {
9942       for (unsigned I = First; I <= Last; ++I)
9943         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
9944     }
9945   }
9946   Clusters.resize(DstIndex);
9947 }
9948 
9949 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
9950                                         unsigned First, unsigned Last,
9951                                         const SwitchInst *SI,
9952                                         CaseCluster &BTCluster) {
9953   assert(First <= Last);
9954   if (First == Last)
9955     return false;
9956 
9957   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
9958   unsigned NumCmps = 0;
9959   for (int64_t I = First; I <= Last; ++I) {
9960     assert(Clusters[I].Kind == CC_Range);
9961     Dests.set(Clusters[I].MBB->getNumber());
9962     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
9963   }
9964   unsigned NumDests = Dests.count();
9965 
9966   APInt Low = Clusters[First].Low->getValue();
9967   APInt High = Clusters[Last].High->getValue();
9968   assert(Low.slt(High));
9969 
9970   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9971   const DataLayout &DL = DAG.getDataLayout();
9972   if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL))
9973     return false;
9974 
9975   APInt LowBound;
9976   APInt CmpRange;
9977 
9978   const int BitWidth = TLI.getPointerTy(DL).getSizeInBits();
9979   assert(TLI.rangeFitsInWord(Low, High, DL) &&
9980          "Case range must fit in bit mask!");
9981 
9982   // Check if the clusters cover a contiguous range such that no value in the
9983   // range will jump to the default statement.
9984   bool ContiguousRange = true;
9985   for (int64_t I = First + 1; I <= Last; ++I) {
9986     if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
9987       ContiguousRange = false;
9988       break;
9989     }
9990   }
9991 
9992   if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
9993     // Optimize the case where all the case values fit in a word without having
9994     // to subtract minValue. In this case, we can optimize away the subtraction.
9995     LowBound = APInt::getNullValue(Low.getBitWidth());
9996     CmpRange = High;
9997     ContiguousRange = false;
9998   } else {
9999     LowBound = Low;
10000     CmpRange = High - Low;
10001   }
10002 
10003   CaseBitsVector CBV;
10004   auto TotalProb = BranchProbability::getZero();
10005   for (unsigned i = First; i <= Last; ++i) {
10006     // Find the CaseBits for this destination.
10007     unsigned j;
10008     for (j = 0; j < CBV.size(); ++j)
10009       if (CBV[j].BB == Clusters[i].MBB)
10010         break;
10011     if (j == CBV.size())
10012       CBV.push_back(
10013           CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
10014     CaseBits *CB = &CBV[j];
10015 
10016     // Update Mask, Bits and ExtraProb.
10017     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
10018     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
10019     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
10020     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
10021     CB->Bits += Hi - Lo + 1;
10022     CB->ExtraProb += Clusters[i].Prob;
10023     TotalProb += Clusters[i].Prob;
10024   }
10025 
10026   BitTestInfo BTI;
10027   llvm::sort(CBV, [](const CaseBits &a, const CaseBits &b) {
10028     // Sort by probability first, number of bits second, bit mask third.
10029     if (a.ExtraProb != b.ExtraProb)
10030       return a.ExtraProb > b.ExtraProb;
10031     if (a.Bits != b.Bits)
10032       return a.Bits > b.Bits;
10033     return a.Mask < b.Mask;
10034   });
10035 
10036   for (auto &CB : CBV) {
10037     MachineBasicBlock *BitTestBB =
10038         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
10039     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
10040   }
10041   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
10042                             SI->getCondition(), -1U, MVT::Other, false,
10043                             ContiguousRange, nullptr, nullptr, std::move(BTI),
10044                             TotalProb);
10045 
10046   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
10047                                     BitTestCases.size() - 1, TotalProb);
10048   return true;
10049 }
10050 
10051 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
10052                                               const SwitchInst *SI) {
10053 // Partition Clusters into as few subsets as possible, where each subset has a
10054 // range that fits in a machine word and has <= 3 unique destinations.
10055 
10056 #ifndef NDEBUG
10057   // Clusters must be sorted and contain Range or JumpTable clusters.
10058   assert(!Clusters.empty());
10059   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
10060   for (const CaseCluster &C : Clusters)
10061     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
10062   for (unsigned i = 1; i < Clusters.size(); ++i)
10063     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
10064 #endif
10065 
10066   // The algorithm below is not suitable for -O0.
10067   if (TM.getOptLevel() == CodeGenOpt::None)
10068     return;
10069 
10070   // If target does not have legal shift left, do not emit bit tests at all.
10071   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10072   const DataLayout &DL = DAG.getDataLayout();
10073 
10074   EVT PTy = TLI.getPointerTy(DL);
10075   if (!TLI.isOperationLegal(ISD::SHL, PTy))
10076     return;
10077 
10078   int BitWidth = PTy.getSizeInBits();
10079   const int64_t N = Clusters.size();
10080 
10081   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
10082   SmallVector<unsigned, 8> MinPartitions(N);
10083   // LastElement[i] is the last element of the partition starting at i.
10084   SmallVector<unsigned, 8> LastElement(N);
10085 
10086   // FIXME: This might not be the best algorithm for finding bit test clusters.
10087 
10088   // Base case: There is only one way to partition Clusters[N-1].
10089   MinPartitions[N - 1] = 1;
10090   LastElement[N - 1] = N - 1;
10091 
10092   // Note: loop indexes are signed to avoid underflow.
10093   for (int64_t i = N - 2; i >= 0; --i) {
10094     // Find optimal partitioning of Clusters[i..N-1].
10095     // Baseline: Put Clusters[i] into a partition on its own.
10096     MinPartitions[i] = MinPartitions[i + 1] + 1;
10097     LastElement[i] = i;
10098 
10099     // Search for a solution that results in fewer partitions.
10100     // Note: the search is limited by BitWidth, reducing time complexity.
10101     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
10102       // Try building a partition from Clusters[i..j].
10103 
10104       // Check the range.
10105       if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(),
10106                                Clusters[j].High->getValue(), DL))
10107         continue;
10108 
10109       // Check nbr of destinations and cluster types.
10110       // FIXME: This works, but doesn't seem very efficient.
10111       bool RangesOnly = true;
10112       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
10113       for (int64_t k = i; k <= j; k++) {
10114         if (Clusters[k].Kind != CC_Range) {
10115           RangesOnly = false;
10116           break;
10117         }
10118         Dests.set(Clusters[k].MBB->getNumber());
10119       }
10120       if (!RangesOnly || Dests.count() > 3)
10121         break;
10122 
10123       // Check if it's a better partition.
10124       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
10125       if (NumPartitions < MinPartitions[i]) {
10126         // Found a better partition.
10127         MinPartitions[i] = NumPartitions;
10128         LastElement[i] = j;
10129       }
10130     }
10131   }
10132 
10133   // Iterate over the partitions, replacing with bit-test clusters in-place.
10134   unsigned DstIndex = 0;
10135   for (unsigned First = 0, Last; First < N; First = Last + 1) {
10136     Last = LastElement[First];
10137     assert(First <= Last);
10138     assert(DstIndex <= First);
10139 
10140     CaseCluster BitTestCluster;
10141     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
10142       Clusters[DstIndex++] = BitTestCluster;
10143     } else {
10144       size_t NumClusters = Last - First + 1;
10145       std::memmove(&Clusters[DstIndex], &Clusters[First],
10146                    sizeof(Clusters[0]) * NumClusters);
10147       DstIndex += NumClusters;
10148     }
10149   }
10150   Clusters.resize(DstIndex);
10151 }
10152 
10153 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10154                                         MachineBasicBlock *SwitchMBB,
10155                                         MachineBasicBlock *DefaultMBB) {
10156   MachineFunction *CurMF = FuncInfo.MF;
10157   MachineBasicBlock *NextMBB = nullptr;
10158   MachineFunction::iterator BBI(W.MBB);
10159   if (++BBI != FuncInfo.MF->end())
10160     NextMBB = &*BBI;
10161 
10162   unsigned Size = W.LastCluster - W.FirstCluster + 1;
10163 
10164   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10165 
10166   if (Size == 2 && W.MBB == SwitchMBB) {
10167     // If any two of the cases has the same destination, and if one value
10168     // is the same as the other, but has one bit unset that the other has set,
10169     // use bit manipulation to do two compares at once.  For example:
10170     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10171     // TODO: This could be extended to merge any 2 cases in switches with 3
10172     // cases.
10173     // TODO: Handle cases where W.CaseBB != SwitchBB.
10174     CaseCluster &Small = *W.FirstCluster;
10175     CaseCluster &Big = *W.LastCluster;
10176 
10177     if (Small.Low == Small.High && Big.Low == Big.High &&
10178         Small.MBB == Big.MBB) {
10179       const APInt &SmallValue = Small.Low->getValue();
10180       const APInt &BigValue = Big.Low->getValue();
10181 
10182       // Check that there is only one bit different.
10183       APInt CommonBit = BigValue ^ SmallValue;
10184       if (CommonBit.isPowerOf2()) {
10185         SDValue CondLHS = getValue(Cond);
10186         EVT VT = CondLHS.getValueType();
10187         SDLoc DL = getCurSDLoc();
10188 
10189         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10190                                  DAG.getConstant(CommonBit, DL, VT));
10191         SDValue Cond = DAG.getSetCC(
10192             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10193             ISD::SETEQ);
10194 
10195         // Update successor info.
10196         // Both Small and Big will jump to Small.BB, so we sum up the
10197         // probabilities.
10198         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10199         if (BPI)
10200           addSuccessorWithProb(
10201               SwitchMBB, DefaultMBB,
10202               // The default destination is the first successor in IR.
10203               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10204         else
10205           addSuccessorWithProb(SwitchMBB, DefaultMBB);
10206 
10207         // Insert the true branch.
10208         SDValue BrCond =
10209             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10210                         DAG.getBasicBlock(Small.MBB));
10211         // Insert the false branch.
10212         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10213                              DAG.getBasicBlock(DefaultMBB));
10214 
10215         DAG.setRoot(BrCond);
10216         return;
10217       }
10218     }
10219   }
10220 
10221   if (TM.getOptLevel() != CodeGenOpt::None) {
10222     // Here, we order cases by probability so the most likely case will be
10223     // checked first. However, two clusters can have the same probability in
10224     // which case their relative ordering is non-deterministic. So we use Low
10225     // as a tie-breaker as clusters are guaranteed to never overlap.
10226     llvm::sort(W.FirstCluster, W.LastCluster + 1,
10227                [](const CaseCluster &a, const CaseCluster &b) {
10228       return a.Prob != b.Prob ?
10229              a.Prob > b.Prob :
10230              a.Low->getValue().slt(b.Low->getValue());
10231     });
10232 
10233     // Rearrange the case blocks so that the last one falls through if possible
10234     // without changing the order of probabilities.
10235     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10236       --I;
10237       if (I->Prob > W.LastCluster->Prob)
10238         break;
10239       if (I->Kind == CC_Range && I->MBB == NextMBB) {
10240         std::swap(*I, *W.LastCluster);
10241         break;
10242       }
10243     }
10244   }
10245 
10246   // Compute total probability.
10247   BranchProbability DefaultProb = W.DefaultProb;
10248   BranchProbability UnhandledProbs = DefaultProb;
10249   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10250     UnhandledProbs += I->Prob;
10251 
10252   MachineBasicBlock *CurMBB = W.MBB;
10253   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10254     MachineBasicBlock *Fallthrough;
10255     if (I == W.LastCluster) {
10256       // For the last cluster, fall through to the default destination.
10257       Fallthrough = DefaultMBB;
10258     } else {
10259       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10260       CurMF->insert(BBI, Fallthrough);
10261       // Put Cond in a virtual register to make it available from the new blocks.
10262       ExportFromCurrentBlock(Cond);
10263     }
10264     UnhandledProbs -= I->Prob;
10265 
10266     switch (I->Kind) {
10267       case CC_JumpTable: {
10268         // FIXME: Optimize away range check based on pivot comparisons.
10269         JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
10270         JumpTable *JT = &JTCases[I->JTCasesIndex].second;
10271 
10272         // The jump block hasn't been inserted yet; insert it here.
10273         MachineBasicBlock *JumpMBB = JT->MBB;
10274         CurMF->insert(BBI, JumpMBB);
10275 
10276         auto JumpProb = I->Prob;
10277         auto FallthroughProb = UnhandledProbs;
10278 
10279         // If the default statement is a target of the jump table, we evenly
10280         // distribute the default probability to successors of CurMBB. Also
10281         // update the probability on the edge from JumpMBB to Fallthrough.
10282         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10283                                               SE = JumpMBB->succ_end();
10284              SI != SE; ++SI) {
10285           if (*SI == DefaultMBB) {
10286             JumpProb += DefaultProb / 2;
10287             FallthroughProb -= DefaultProb / 2;
10288             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10289             JumpMBB->normalizeSuccProbs();
10290             break;
10291           }
10292         }
10293 
10294         addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10295         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10296         CurMBB->normalizeSuccProbs();
10297 
10298         // The jump table header will be inserted in our current block, do the
10299         // range check, and fall through to our fallthrough block.
10300         JTH->HeaderBB = CurMBB;
10301         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10302 
10303         // If we're in the right place, emit the jump table header right now.
10304         if (CurMBB == SwitchMBB) {
10305           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10306           JTH->Emitted = true;
10307         }
10308         break;
10309       }
10310       case CC_BitTests: {
10311         // FIXME: Optimize away range check based on pivot comparisons.
10312         BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
10313 
10314         // The bit test blocks haven't been inserted yet; insert them here.
10315         for (BitTestCase &BTC : BTB->Cases)
10316           CurMF->insert(BBI, BTC.ThisBB);
10317 
10318         // Fill in fields of the BitTestBlock.
10319         BTB->Parent = CurMBB;
10320         BTB->Default = Fallthrough;
10321 
10322         BTB->DefaultProb = UnhandledProbs;
10323         // If the cases in bit test don't form a contiguous range, we evenly
10324         // distribute the probability on the edge to Fallthrough to two
10325         // successors of CurMBB.
10326         if (!BTB->ContiguousRange) {
10327           BTB->Prob += DefaultProb / 2;
10328           BTB->DefaultProb -= DefaultProb / 2;
10329         }
10330 
10331         // If we're in the right place, emit the bit test header right now.
10332         if (CurMBB == SwitchMBB) {
10333           visitBitTestHeader(*BTB, SwitchMBB);
10334           BTB->Emitted = true;
10335         }
10336         break;
10337       }
10338       case CC_Range: {
10339         const Value *RHS, *LHS, *MHS;
10340         ISD::CondCode CC;
10341         if (I->Low == I->High) {
10342           // Check Cond == I->Low.
10343           CC = ISD::SETEQ;
10344           LHS = Cond;
10345           RHS=I->Low;
10346           MHS = nullptr;
10347         } else {
10348           // Check I->Low <= Cond <= I->High.
10349           CC = ISD::SETLE;
10350           LHS = I->Low;
10351           MHS = Cond;
10352           RHS = I->High;
10353         }
10354 
10355         // The false probability is the sum of all unhandled cases.
10356         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10357                      getCurSDLoc(), I->Prob, UnhandledProbs);
10358 
10359         if (CurMBB == SwitchMBB)
10360           visitSwitchCase(CB, SwitchMBB);
10361         else
10362           SwitchCases.push_back(CB);
10363 
10364         break;
10365       }
10366     }
10367     CurMBB = Fallthrough;
10368   }
10369 }
10370 
10371 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10372                                               CaseClusterIt First,
10373                                               CaseClusterIt Last) {
10374   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10375     if (X.Prob != CC.Prob)
10376       return X.Prob > CC.Prob;
10377 
10378     // Ties are broken by comparing the case value.
10379     return X.Low->getValue().slt(CC.Low->getValue());
10380   });
10381 }
10382 
10383 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10384                                         const SwitchWorkListItem &W,
10385                                         Value *Cond,
10386                                         MachineBasicBlock *SwitchMBB) {
10387   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10388          "Clusters not sorted?");
10389 
10390   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10391 
10392   // Balance the tree based on branch probabilities to create a near-optimal (in
10393   // terms of search time given key frequency) binary search tree. See e.g. Kurt
10394   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10395   CaseClusterIt LastLeft = W.FirstCluster;
10396   CaseClusterIt FirstRight = W.LastCluster;
10397   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10398   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10399 
10400   // Move LastLeft and FirstRight towards each other from opposite directions to
10401   // find a partitioning of the clusters which balances the probability on both
10402   // sides. If LeftProb and RightProb are equal, alternate which side is
10403   // taken to ensure 0-probability nodes are distributed evenly.
10404   unsigned I = 0;
10405   while (LastLeft + 1 < FirstRight) {
10406     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10407       LeftProb += (++LastLeft)->Prob;
10408     else
10409       RightProb += (--FirstRight)->Prob;
10410     I++;
10411   }
10412 
10413   while (true) {
10414     // Our binary search tree differs from a typical BST in that ours can have up
10415     // to three values in each leaf. The pivot selection above doesn't take that
10416     // into account, which means the tree might require more nodes and be less
10417     // efficient. We compensate for this here.
10418 
10419     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10420     unsigned NumRight = W.LastCluster - FirstRight + 1;
10421 
10422     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10423       // If one side has less than 3 clusters, and the other has more than 3,
10424       // consider taking a cluster from the other side.
10425 
10426       if (NumLeft < NumRight) {
10427         // Consider moving the first cluster on the right to the left side.
10428         CaseCluster &CC = *FirstRight;
10429         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10430         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10431         if (LeftSideRank <= RightSideRank) {
10432           // Moving the cluster to the left does not demote it.
10433           ++LastLeft;
10434           ++FirstRight;
10435           continue;
10436         }
10437       } else {
10438         assert(NumRight < NumLeft);
10439         // Consider moving the last element on the left to the right side.
10440         CaseCluster &CC = *LastLeft;
10441         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10442         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10443         if (RightSideRank <= LeftSideRank) {
10444           // Moving the cluster to the right does not demot it.
10445           --LastLeft;
10446           --FirstRight;
10447           continue;
10448         }
10449       }
10450     }
10451     break;
10452   }
10453 
10454   assert(LastLeft + 1 == FirstRight);
10455   assert(LastLeft >= W.FirstCluster);
10456   assert(FirstRight <= W.LastCluster);
10457 
10458   // Use the first element on the right as pivot since we will make less-than
10459   // comparisons against it.
10460   CaseClusterIt PivotCluster = FirstRight;
10461   assert(PivotCluster > W.FirstCluster);
10462   assert(PivotCluster <= W.LastCluster);
10463 
10464   CaseClusterIt FirstLeft = W.FirstCluster;
10465   CaseClusterIt LastRight = W.LastCluster;
10466 
10467   const ConstantInt *Pivot = PivotCluster->Low;
10468 
10469   // New blocks will be inserted immediately after the current one.
10470   MachineFunction::iterator BBI(W.MBB);
10471   ++BBI;
10472 
10473   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10474   // we can branch to its destination directly if it's squeezed exactly in
10475   // between the known lower bound and Pivot - 1.
10476   MachineBasicBlock *LeftMBB;
10477   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10478       FirstLeft->Low == W.GE &&
10479       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10480     LeftMBB = FirstLeft->MBB;
10481   } else {
10482     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10483     FuncInfo.MF->insert(BBI, LeftMBB);
10484     WorkList.push_back(
10485         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10486     // Put Cond in a virtual register to make it available from the new blocks.
10487     ExportFromCurrentBlock(Cond);
10488   }
10489 
10490   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10491   // single cluster, RHS.Low == Pivot, and we can branch to its destination
10492   // directly if RHS.High equals the current upper bound.
10493   MachineBasicBlock *RightMBB;
10494   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10495       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10496     RightMBB = FirstRight->MBB;
10497   } else {
10498     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10499     FuncInfo.MF->insert(BBI, RightMBB);
10500     WorkList.push_back(
10501         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10502     // Put Cond in a virtual register to make it available from the new blocks.
10503     ExportFromCurrentBlock(Cond);
10504   }
10505 
10506   // Create the CaseBlock record that will be used to lower the branch.
10507   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10508                getCurSDLoc(), LeftProb, RightProb);
10509 
10510   if (W.MBB == SwitchMBB)
10511     visitSwitchCase(CB, SwitchMBB);
10512   else
10513     SwitchCases.push_back(CB);
10514 }
10515 
10516 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10517 // from the swith statement.
10518 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10519                                             BranchProbability PeeledCaseProb) {
10520   if (PeeledCaseProb == BranchProbability::getOne())
10521     return BranchProbability::getZero();
10522   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10523 
10524   uint32_t Numerator = CaseProb.getNumerator();
10525   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10526   return BranchProbability(Numerator, std::max(Numerator, Denominator));
10527 }
10528 
10529 // Try to peel the top probability case if it exceeds the threshold.
10530 // Return current MachineBasicBlock for the switch statement if the peeling
10531 // does not occur.
10532 // If the peeling is performed, return the newly created MachineBasicBlock
10533 // for the peeled switch statement. Also update Clusters to remove the peeled
10534 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10535 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10536     const SwitchInst &SI, CaseClusterVector &Clusters,
10537     BranchProbability &PeeledCaseProb) {
10538   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10539   // Don't perform if there is only one cluster or optimizing for size.
10540   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10541       TM.getOptLevel() == CodeGenOpt::None ||
10542       SwitchMBB->getParent()->getFunction().optForMinSize())
10543     return SwitchMBB;
10544 
10545   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10546   unsigned PeeledCaseIndex = 0;
10547   bool SwitchPeeled = false;
10548   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10549     CaseCluster &CC = Clusters[Index];
10550     if (CC.Prob < TopCaseProb)
10551       continue;
10552     TopCaseProb = CC.Prob;
10553     PeeledCaseIndex = Index;
10554     SwitchPeeled = true;
10555   }
10556   if (!SwitchPeeled)
10557     return SwitchMBB;
10558 
10559   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10560                     << TopCaseProb << "\n");
10561 
10562   // Record the MBB for the peeled switch statement.
10563   MachineFunction::iterator BBI(SwitchMBB);
10564   ++BBI;
10565   MachineBasicBlock *PeeledSwitchMBB =
10566       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10567   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10568 
10569   ExportFromCurrentBlock(SI.getCondition());
10570   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10571   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10572                           nullptr,   nullptr,      TopCaseProb.getCompl()};
10573   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10574 
10575   Clusters.erase(PeeledCaseIt);
10576   for (CaseCluster &CC : Clusters) {
10577     LLVM_DEBUG(
10578         dbgs() << "Scale the probablity for one cluster, before scaling: "
10579                << CC.Prob << "\n");
10580     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10581     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10582   }
10583   PeeledCaseProb = TopCaseProb;
10584   return PeeledSwitchMBB;
10585 }
10586 
10587 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10588   // Extract cases from the switch.
10589   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10590   CaseClusterVector Clusters;
10591   Clusters.reserve(SI.getNumCases());
10592   for (auto I : SI.cases()) {
10593     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10594     const ConstantInt *CaseVal = I.getCaseValue();
10595     BranchProbability Prob =
10596         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10597             : BranchProbability(1, SI.getNumCases() + 1);
10598     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10599   }
10600 
10601   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10602 
10603   // Cluster adjacent cases with the same destination. We do this at all
10604   // optimization levels because it's cheap to do and will make codegen faster
10605   // if there are many clusters.
10606   sortAndRangeify(Clusters);
10607 
10608   if (TM.getOptLevel() != CodeGenOpt::None) {
10609     // Replace an unreachable default with the most popular destination.
10610     // FIXME: Exploit unreachable default more aggressively.
10611     bool UnreachableDefault =
10612         isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg());
10613     if (UnreachableDefault && !Clusters.empty()) {
10614       DenseMap<const BasicBlock *, unsigned> Popularity;
10615       unsigned MaxPop = 0;
10616       const BasicBlock *MaxBB = nullptr;
10617       for (auto I : SI.cases()) {
10618         const BasicBlock *BB = I.getCaseSuccessor();
10619         if (++Popularity[BB] > MaxPop) {
10620           MaxPop = Popularity[BB];
10621           MaxBB = BB;
10622         }
10623       }
10624       // Set new default.
10625       assert(MaxPop > 0 && MaxBB);
10626       DefaultMBB = FuncInfo.MBBMap[MaxBB];
10627 
10628       // Remove cases that were pointing to the destination that is now the
10629       // default.
10630       CaseClusterVector New;
10631       New.reserve(Clusters.size());
10632       for (CaseCluster &CC : Clusters) {
10633         if (CC.MBB != DefaultMBB)
10634           New.push_back(CC);
10635       }
10636       Clusters = std::move(New);
10637     }
10638   }
10639 
10640   // The branch probablity of the peeled case.
10641   BranchProbability PeeledCaseProb = BranchProbability::getZero();
10642   MachineBasicBlock *PeeledSwitchMBB =
10643       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10644 
10645   // If there is only the default destination, jump there directly.
10646   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10647   if (Clusters.empty()) {
10648     assert(PeeledSwitchMBB == SwitchMBB);
10649     SwitchMBB->addSuccessor(DefaultMBB);
10650     if (DefaultMBB != NextBlock(SwitchMBB)) {
10651       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10652                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10653     }
10654     return;
10655   }
10656 
10657   findJumpTables(Clusters, &SI, DefaultMBB);
10658   findBitTestClusters(Clusters, &SI);
10659 
10660   LLVM_DEBUG({
10661     dbgs() << "Case clusters: ";
10662     for (const CaseCluster &C : Clusters) {
10663       if (C.Kind == CC_JumpTable)
10664         dbgs() << "JT:";
10665       if (C.Kind == CC_BitTests)
10666         dbgs() << "BT:";
10667 
10668       C.Low->getValue().print(dbgs(), true);
10669       if (C.Low != C.High) {
10670         dbgs() << '-';
10671         C.High->getValue().print(dbgs(), true);
10672       }
10673       dbgs() << ' ';
10674     }
10675     dbgs() << '\n';
10676   });
10677 
10678   assert(!Clusters.empty());
10679   SwitchWorkList WorkList;
10680   CaseClusterIt First = Clusters.begin();
10681   CaseClusterIt Last = Clusters.end() - 1;
10682   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10683   // Scale the branchprobability for DefaultMBB if the peel occurs and
10684   // DefaultMBB is not replaced.
10685   if (PeeledCaseProb != BranchProbability::getZero() &&
10686       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10687     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10688   WorkList.push_back(
10689       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10690 
10691   while (!WorkList.empty()) {
10692     SwitchWorkListItem W = WorkList.back();
10693     WorkList.pop_back();
10694     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10695 
10696     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10697         !DefaultMBB->getParent()->getFunction().optForMinSize()) {
10698       // For optimized builds, lower large range as a balanced binary tree.
10699       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10700       continue;
10701     }
10702 
10703     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
10704   }
10705 }
10706