1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/Analysis/BranchProbabilityInfo.h" 31 #include "llvm/Analysis/ConstantFolding.h" 32 #include "llvm/Analysis/EHPersonalities.h" 33 #include "llvm/Analysis/Loads.h" 34 #include "llvm/Analysis/MemoryLocation.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/Analysis/VectorUtils.h" 38 #include "llvm/CodeGen/Analysis.h" 39 #include "llvm/CodeGen/FunctionLoweringInfo.h" 40 #include "llvm/CodeGen/GCMetadata.h" 41 #include "llvm/CodeGen/ISDOpcodes.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineFrameInfo.h" 44 #include "llvm/CodeGen/MachineFunction.h" 45 #include "llvm/CodeGen/MachineInstr.h" 46 #include "llvm/CodeGen/MachineInstrBuilder.h" 47 #include "llvm/CodeGen/MachineJumpTableInfo.h" 48 #include "llvm/CodeGen/MachineMemOperand.h" 49 #include "llvm/CodeGen/MachineModuleInfo.h" 50 #include "llvm/CodeGen/MachineOperand.h" 51 #include "llvm/CodeGen/MachineRegisterInfo.h" 52 #include "llvm/CodeGen/RuntimeLibcalls.h" 53 #include "llvm/CodeGen/SelectionDAG.h" 54 #include "llvm/CodeGen/SelectionDAGNodes.h" 55 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 56 #include "llvm/CodeGen/StackMaps.h" 57 #include "llvm/CodeGen/TargetFrameLowering.h" 58 #include "llvm/CodeGen/TargetInstrInfo.h" 59 #include "llvm/CodeGen/TargetLowering.h" 60 #include "llvm/CodeGen/TargetOpcodes.h" 61 #include "llvm/CodeGen/TargetRegisterInfo.h" 62 #include "llvm/CodeGen/TargetSubtargetInfo.h" 63 #include "llvm/CodeGen/ValueTypes.h" 64 #include "llvm/CodeGen/WinEHFuncInfo.h" 65 #include "llvm/IR/Argument.h" 66 #include "llvm/IR/Attributes.h" 67 #include "llvm/IR/BasicBlock.h" 68 #include "llvm/IR/CFG.h" 69 #include "llvm/IR/CallSite.h" 70 #include "llvm/IR/CallingConv.h" 71 #include "llvm/IR/Constant.h" 72 #include "llvm/IR/ConstantRange.h" 73 #include "llvm/IR/Constants.h" 74 #include "llvm/IR/DataLayout.h" 75 #include "llvm/IR/DebugInfoMetadata.h" 76 #include "llvm/IR/DebugLoc.h" 77 #include "llvm/IR/DerivedTypes.h" 78 #include "llvm/IR/Function.h" 79 #include "llvm/IR/GetElementPtrTypeIterator.h" 80 #include "llvm/IR/InlineAsm.h" 81 #include "llvm/IR/InstrTypes.h" 82 #include "llvm/IR/Instruction.h" 83 #include "llvm/IR/Instructions.h" 84 #include "llvm/IR/IntrinsicInst.h" 85 #include "llvm/IR/Intrinsics.h" 86 #include "llvm/IR/LLVMContext.h" 87 #include "llvm/IR/Metadata.h" 88 #include "llvm/IR/Module.h" 89 #include "llvm/IR/Operator.h" 90 #include "llvm/IR/PatternMatch.h" 91 #include "llvm/IR/Statepoint.h" 92 #include "llvm/IR/Type.h" 93 #include "llvm/IR/User.h" 94 #include "llvm/IR/Value.h" 95 #include "llvm/MC/MCContext.h" 96 #include "llvm/MC/MCSymbol.h" 97 #include "llvm/Support/AtomicOrdering.h" 98 #include "llvm/Support/BranchProbability.h" 99 #include "llvm/Support/Casting.h" 100 #include "llvm/Support/CodeGen.h" 101 #include "llvm/Support/CommandLine.h" 102 #include "llvm/Support/Compiler.h" 103 #include "llvm/Support/Debug.h" 104 #include "llvm/Support/ErrorHandling.h" 105 #include "llvm/Support/MachineValueType.h" 106 #include "llvm/Support/MathExtras.h" 107 #include "llvm/Support/raw_ostream.h" 108 #include "llvm/Target/TargetIntrinsicInfo.h" 109 #include "llvm/Target/TargetMachine.h" 110 #include "llvm/Target/TargetOptions.h" 111 #include "llvm/Transforms/Utils/Local.h" 112 #include <algorithm> 113 #include <cassert> 114 #include <cstddef> 115 #include <cstdint> 116 #include <cstring> 117 #include <iterator> 118 #include <limits> 119 #include <numeric> 120 #include <tuple> 121 #include <utility> 122 #include <vector> 123 124 using namespace llvm; 125 using namespace PatternMatch; 126 127 #define DEBUG_TYPE "isel" 128 129 /// LimitFloatPrecision - Generate low-precision inline sequences for 130 /// some float libcalls (6, 8 or 12 bits). 131 static unsigned LimitFloatPrecision; 132 133 static cl::opt<unsigned, true> 134 LimitFPPrecision("limit-float-precision", 135 cl::desc("Generate low-precision inline sequences " 136 "for some float libcalls"), 137 cl::location(LimitFloatPrecision), cl::Hidden, 138 cl::init(0)); 139 140 static cl::opt<unsigned> SwitchPeelThreshold( 141 "switch-peel-threshold", cl::Hidden, cl::init(66), 142 cl::desc("Set the case probability threshold for peeling the case from a " 143 "switch statement. A value greater than 100 will void this " 144 "optimization")); 145 146 // Limit the width of DAG chains. This is important in general to prevent 147 // DAG-based analysis from blowing up. For example, alias analysis and 148 // load clustering may not complete in reasonable time. It is difficult to 149 // recognize and avoid this situation within each individual analysis, and 150 // future analyses are likely to have the same behavior. Limiting DAG width is 151 // the safe approach and will be especially important with global DAGs. 152 // 153 // MaxParallelChains default is arbitrarily high to avoid affecting 154 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 155 // sequence over this should have been converted to llvm.memcpy by the 156 // frontend. It is easy to induce this behavior with .ll code such as: 157 // %buffer = alloca [4096 x i8] 158 // %data = load [4096 x i8]* %argPtr 159 // store [4096 x i8] %data, [4096 x i8]* %buffer 160 static const unsigned MaxParallelChains = 64; 161 162 // Return the calling convention if the Value passed requires ABI mangling as it 163 // is a parameter to a function or a return value from a function which is not 164 // an intrinsic. 165 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) { 166 if (auto *R = dyn_cast<ReturnInst>(V)) 167 return R->getParent()->getParent()->getCallingConv(); 168 169 if (auto *CI = dyn_cast<CallInst>(V)) { 170 const bool IsInlineAsm = CI->isInlineAsm(); 171 const bool IsIndirectFunctionCall = 172 !IsInlineAsm && !CI->getCalledFunction(); 173 174 // It is possible that the call instruction is an inline asm statement or an 175 // indirect function call in which case the return value of 176 // getCalledFunction() would be nullptr. 177 const bool IsInstrinsicCall = 178 !IsInlineAsm && !IsIndirectFunctionCall && 179 CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic; 180 181 if (!IsInlineAsm && !IsInstrinsicCall) 182 return CI->getCallingConv(); 183 } 184 185 return None; 186 } 187 188 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 189 const SDValue *Parts, unsigned NumParts, 190 MVT PartVT, EVT ValueVT, const Value *V, 191 Optional<CallingConv::ID> CC); 192 193 /// getCopyFromParts - Create a value that contains the specified legal parts 194 /// combined into the value they represent. If the parts combine to a type 195 /// larger than ValueVT then AssertOp can be used to specify whether the extra 196 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 197 /// (ISD::AssertSext). 198 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 199 const SDValue *Parts, unsigned NumParts, 200 MVT PartVT, EVT ValueVT, const Value *V, 201 Optional<CallingConv::ID> CC = None, 202 Optional<ISD::NodeType> AssertOp = None) { 203 if (ValueVT.isVector()) 204 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 205 CC); 206 207 assert(NumParts > 0 && "No parts to assemble!"); 208 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 209 SDValue Val = Parts[0]; 210 211 if (NumParts > 1) { 212 // Assemble the value from multiple parts. 213 if (ValueVT.isInteger()) { 214 unsigned PartBits = PartVT.getSizeInBits(); 215 unsigned ValueBits = ValueVT.getSizeInBits(); 216 217 // Assemble the power of 2 part. 218 unsigned RoundParts = NumParts & (NumParts - 1) ? 219 1 << Log2_32(NumParts) : NumParts; 220 unsigned RoundBits = PartBits * RoundParts; 221 EVT RoundVT = RoundBits == ValueBits ? 222 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 223 SDValue Lo, Hi; 224 225 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 226 227 if (RoundParts > 2) { 228 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 229 PartVT, HalfVT, V); 230 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 231 RoundParts / 2, PartVT, HalfVT, V); 232 } else { 233 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 234 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 235 } 236 237 if (DAG.getDataLayout().isBigEndian()) 238 std::swap(Lo, Hi); 239 240 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 241 242 if (RoundParts < NumParts) { 243 // Assemble the trailing non-power-of-2 part. 244 unsigned OddParts = NumParts - RoundParts; 245 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 246 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 247 OddVT, V, CC); 248 249 // Combine the round and odd parts. 250 Lo = Val; 251 if (DAG.getDataLayout().isBigEndian()) 252 std::swap(Lo, Hi); 253 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 254 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 255 Hi = 256 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 257 DAG.getConstant(Lo.getValueSizeInBits(), DL, 258 TLI.getPointerTy(DAG.getDataLayout()))); 259 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 260 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 261 } 262 } else if (PartVT.isFloatingPoint()) { 263 // FP split into multiple FP parts (for ppcf128) 264 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 265 "Unexpected split"); 266 SDValue Lo, Hi; 267 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 268 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 269 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 270 std::swap(Lo, Hi); 271 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 272 } else { 273 // FP split into integer parts (soft fp) 274 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 275 !PartVT.isVector() && "Unexpected split"); 276 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 277 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 278 } 279 } 280 281 // There is now one part, held in Val. Correct it to match ValueVT. 282 // PartEVT is the type of the register class that holds the value. 283 // ValueVT is the type of the inline asm operation. 284 EVT PartEVT = Val.getValueType(); 285 286 if (PartEVT == ValueVT) 287 return Val; 288 289 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 290 ValueVT.bitsLT(PartEVT)) { 291 // For an FP value in an integer part, we need to truncate to the right 292 // width first. 293 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 294 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 295 } 296 297 // Handle types that have the same size. 298 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 299 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 300 301 // Handle types with different sizes. 302 if (PartEVT.isInteger() && ValueVT.isInteger()) { 303 if (ValueVT.bitsLT(PartEVT)) { 304 // For a truncate, see if we have any information to 305 // indicate whether the truncated bits will always be 306 // zero or sign-extension. 307 if (AssertOp.hasValue()) 308 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 309 DAG.getValueType(ValueVT)); 310 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 311 } 312 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 313 } 314 315 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 316 // FP_ROUND's are always exact here. 317 if (ValueVT.bitsLT(Val.getValueType())) 318 return DAG.getNode( 319 ISD::FP_ROUND, DL, ValueVT, Val, 320 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 321 322 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 323 } 324 325 llvm_unreachable("Unknown mismatch!"); 326 } 327 328 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 329 const Twine &ErrMsg) { 330 const Instruction *I = dyn_cast_or_null<Instruction>(V); 331 if (!V) 332 return Ctx.emitError(ErrMsg); 333 334 const char *AsmError = ", possible invalid constraint for vector type"; 335 if (const CallInst *CI = dyn_cast<CallInst>(I)) 336 if (isa<InlineAsm>(CI->getCalledValue())) 337 return Ctx.emitError(I, ErrMsg + AsmError); 338 339 return Ctx.emitError(I, ErrMsg); 340 } 341 342 /// getCopyFromPartsVector - Create a value that contains the specified legal 343 /// parts combined into the value they represent. If the parts combine to a 344 /// type larger than ValueVT then AssertOp can be used to specify whether the 345 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 346 /// ValueVT (ISD::AssertSext). 347 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 348 const SDValue *Parts, unsigned NumParts, 349 MVT PartVT, EVT ValueVT, const Value *V, 350 Optional<CallingConv::ID> CallConv) { 351 assert(ValueVT.isVector() && "Not a vector value"); 352 assert(NumParts > 0 && "No parts to assemble!"); 353 const bool IsABIRegCopy = CallConv.hasValue(); 354 355 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 356 SDValue Val = Parts[0]; 357 358 // Handle a multi-element vector. 359 if (NumParts > 1) { 360 EVT IntermediateVT; 361 MVT RegisterVT; 362 unsigned NumIntermediates; 363 unsigned NumRegs; 364 365 if (IsABIRegCopy) { 366 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 367 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 368 NumIntermediates, RegisterVT); 369 } else { 370 NumRegs = 371 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 372 NumIntermediates, RegisterVT); 373 } 374 375 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 376 NumParts = NumRegs; // Silence a compiler warning. 377 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 378 assert(RegisterVT.getSizeInBits() == 379 Parts[0].getSimpleValueType().getSizeInBits() && 380 "Part type sizes don't match!"); 381 382 // Assemble the parts into intermediate operands. 383 SmallVector<SDValue, 8> Ops(NumIntermediates); 384 if (NumIntermediates == NumParts) { 385 // If the register was not expanded, truncate or copy the value, 386 // as appropriate. 387 for (unsigned i = 0; i != NumParts; ++i) 388 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 389 PartVT, IntermediateVT, V); 390 } else if (NumParts > 0) { 391 // If the intermediate type was expanded, build the intermediate 392 // operands from the parts. 393 assert(NumParts % NumIntermediates == 0 && 394 "Must expand into a divisible number of parts!"); 395 unsigned Factor = NumParts / NumIntermediates; 396 for (unsigned i = 0; i != NumIntermediates; ++i) 397 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 398 PartVT, IntermediateVT, V); 399 } 400 401 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 402 // intermediate operands. 403 EVT BuiltVectorTy = 404 EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(), 405 (IntermediateVT.isVector() 406 ? IntermediateVT.getVectorNumElements() * NumParts 407 : NumIntermediates)); 408 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 409 : ISD::BUILD_VECTOR, 410 DL, BuiltVectorTy, Ops); 411 } 412 413 // There is now one part, held in Val. Correct it to match ValueVT. 414 EVT PartEVT = Val.getValueType(); 415 416 if (PartEVT == ValueVT) 417 return Val; 418 419 if (PartEVT.isVector()) { 420 // If the element type of the source/dest vectors are the same, but the 421 // parts vector has more elements than the value vector, then we have a 422 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 423 // elements we want. 424 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 425 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 426 "Cannot narrow, it would be a lossy transformation"); 427 return DAG.getNode( 428 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 429 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 430 } 431 432 // Vector/Vector bitcast. 433 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 434 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 435 436 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 437 "Cannot handle this kind of promotion"); 438 // Promoted vector extract 439 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 440 441 } 442 443 // Trivial bitcast if the types are the same size and the destination 444 // vector type is legal. 445 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 446 TLI.isTypeLegal(ValueVT)) 447 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 448 449 if (ValueVT.getVectorNumElements() != 1) { 450 // Certain ABIs require that vectors are passed as integers. For vectors 451 // are the same size, this is an obvious bitcast. 452 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 453 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 454 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 455 // Bitcast Val back the original type and extract the corresponding 456 // vector we want. 457 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 458 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 459 ValueVT.getVectorElementType(), Elts); 460 Val = DAG.getBitcast(WiderVecType, Val); 461 return DAG.getNode( 462 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 463 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 464 } 465 466 diagnosePossiblyInvalidConstraint( 467 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 468 return DAG.getUNDEF(ValueVT); 469 } 470 471 // Handle cases such as i8 -> <1 x i1> 472 EVT ValueSVT = ValueVT.getVectorElementType(); 473 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) 474 Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 475 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 476 477 return DAG.getBuildVector(ValueVT, DL, Val); 478 } 479 480 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 481 SDValue Val, SDValue *Parts, unsigned NumParts, 482 MVT PartVT, const Value *V, 483 Optional<CallingConv::ID> CallConv); 484 485 /// getCopyToParts - Create a series of nodes that contain the specified value 486 /// split into legal parts. If the parts contain more bits than Val, then, for 487 /// integers, ExtendKind can be used to specify how to generate the extra bits. 488 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 489 SDValue *Parts, unsigned NumParts, MVT PartVT, 490 const Value *V, 491 Optional<CallingConv::ID> CallConv = None, 492 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 493 EVT ValueVT = Val.getValueType(); 494 495 // Handle the vector case separately. 496 if (ValueVT.isVector()) 497 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 498 CallConv); 499 500 unsigned PartBits = PartVT.getSizeInBits(); 501 unsigned OrigNumParts = NumParts; 502 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 503 "Copying to an illegal type!"); 504 505 if (NumParts == 0) 506 return; 507 508 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 509 EVT PartEVT = PartVT; 510 if (PartEVT == ValueVT) { 511 assert(NumParts == 1 && "No-op copy with multiple parts!"); 512 Parts[0] = Val; 513 return; 514 } 515 516 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 517 // If the parts cover more bits than the value has, promote the value. 518 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 519 assert(NumParts == 1 && "Do not know what to promote to!"); 520 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 521 } else { 522 if (ValueVT.isFloatingPoint()) { 523 // FP values need to be bitcast, then extended if they are being put 524 // into a larger container. 525 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 526 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 527 } 528 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 529 ValueVT.isInteger() && 530 "Unknown mismatch!"); 531 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 532 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 533 if (PartVT == MVT::x86mmx) 534 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 535 } 536 } else if (PartBits == ValueVT.getSizeInBits()) { 537 // Different types of the same size. 538 assert(NumParts == 1 && PartEVT != ValueVT); 539 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 540 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 541 // If the parts cover less bits than value has, truncate the value. 542 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 543 ValueVT.isInteger() && 544 "Unknown mismatch!"); 545 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 546 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 547 if (PartVT == MVT::x86mmx) 548 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 549 } 550 551 // The value may have changed - recompute ValueVT. 552 ValueVT = Val.getValueType(); 553 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 554 "Failed to tile the value with PartVT!"); 555 556 if (NumParts == 1) { 557 if (PartEVT != ValueVT) { 558 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 559 "scalar-to-vector conversion failed"); 560 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 561 } 562 563 Parts[0] = Val; 564 return; 565 } 566 567 // Expand the value into multiple parts. 568 if (NumParts & (NumParts - 1)) { 569 // The number of parts is not a power of 2. Split off and copy the tail. 570 assert(PartVT.isInteger() && ValueVT.isInteger() && 571 "Do not know what to expand to!"); 572 unsigned RoundParts = 1 << Log2_32(NumParts); 573 unsigned RoundBits = RoundParts * PartBits; 574 unsigned OddParts = NumParts - RoundParts; 575 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 576 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false)); 577 578 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 579 CallConv); 580 581 if (DAG.getDataLayout().isBigEndian()) 582 // The odd parts were reversed by getCopyToParts - unreverse them. 583 std::reverse(Parts + RoundParts, Parts + NumParts); 584 585 NumParts = RoundParts; 586 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 587 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 588 } 589 590 // The number of parts is a power of 2. Repeatedly bisect the value using 591 // EXTRACT_ELEMENT. 592 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 593 EVT::getIntegerVT(*DAG.getContext(), 594 ValueVT.getSizeInBits()), 595 Val); 596 597 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 598 for (unsigned i = 0; i < NumParts; i += StepSize) { 599 unsigned ThisBits = StepSize * PartBits / 2; 600 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 601 SDValue &Part0 = Parts[i]; 602 SDValue &Part1 = Parts[i+StepSize/2]; 603 604 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 605 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 606 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 607 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 608 609 if (ThisBits == PartBits && ThisVT != PartVT) { 610 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 611 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 612 } 613 } 614 } 615 616 if (DAG.getDataLayout().isBigEndian()) 617 std::reverse(Parts, Parts + OrigNumParts); 618 } 619 620 static SDValue widenVectorToPartType(SelectionDAG &DAG, 621 SDValue Val, const SDLoc &DL, EVT PartVT) { 622 if (!PartVT.isVector()) 623 return SDValue(); 624 625 EVT ValueVT = Val.getValueType(); 626 unsigned PartNumElts = PartVT.getVectorNumElements(); 627 unsigned ValueNumElts = ValueVT.getVectorNumElements(); 628 if (PartNumElts > ValueNumElts && 629 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 630 EVT ElementVT = PartVT.getVectorElementType(); 631 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 632 // undef elements. 633 SmallVector<SDValue, 16> Ops; 634 DAG.ExtractVectorElements(Val, Ops); 635 SDValue EltUndef = DAG.getUNDEF(ElementVT); 636 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i) 637 Ops.push_back(EltUndef); 638 639 // FIXME: Use CONCAT for 2x -> 4x. 640 return DAG.getBuildVector(PartVT, DL, Ops); 641 } 642 643 return SDValue(); 644 } 645 646 /// getCopyToPartsVector - Create a series of nodes that contain the specified 647 /// value split into legal parts. 648 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 649 SDValue Val, SDValue *Parts, unsigned NumParts, 650 MVT PartVT, const Value *V, 651 Optional<CallingConv::ID> CallConv) { 652 EVT ValueVT = Val.getValueType(); 653 assert(ValueVT.isVector() && "Not a vector"); 654 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 655 const bool IsABIRegCopy = CallConv.hasValue(); 656 657 if (NumParts == 1) { 658 EVT PartEVT = PartVT; 659 if (PartEVT == ValueVT) { 660 // Nothing to do. 661 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 662 // Bitconvert vector->vector case. 663 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 664 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 665 Val = Widened; 666 } else if (PartVT.isVector() && 667 PartEVT.getVectorElementType().bitsGE( 668 ValueVT.getVectorElementType()) && 669 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 670 671 // Promoted vector extract 672 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 673 } else { 674 if (ValueVT.getVectorNumElements() == 1) { 675 Val = DAG.getNode( 676 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 677 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 678 } else { 679 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 680 "lossy conversion of vector to scalar type"); 681 EVT IntermediateType = 682 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 683 Val = DAG.getBitcast(IntermediateType, Val); 684 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 685 } 686 } 687 688 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 689 Parts[0] = Val; 690 return; 691 } 692 693 // Handle a multi-element vector. 694 EVT IntermediateVT; 695 MVT RegisterVT; 696 unsigned NumIntermediates; 697 unsigned NumRegs; 698 if (IsABIRegCopy) { 699 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 700 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 701 NumIntermediates, RegisterVT); 702 } else { 703 NumRegs = 704 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 705 NumIntermediates, RegisterVT); 706 } 707 708 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 709 NumParts = NumRegs; // Silence a compiler warning. 710 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 711 712 unsigned IntermediateNumElts = IntermediateVT.isVector() ? 713 IntermediateVT.getVectorNumElements() : 1; 714 715 // Convert the vector to the appropiate type if necessary. 716 unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts; 717 718 EVT BuiltVectorTy = EVT::getVectorVT( 719 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts); 720 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 721 if (ValueVT != BuiltVectorTy) { 722 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) 723 Val = Widened; 724 725 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 726 } 727 728 // Split the vector into intermediate operands. 729 SmallVector<SDValue, 8> Ops(NumIntermediates); 730 for (unsigned i = 0; i != NumIntermediates; ++i) { 731 if (IntermediateVT.isVector()) { 732 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 733 DAG.getConstant(i * IntermediateNumElts, DL, IdxVT)); 734 } else { 735 Ops[i] = DAG.getNode( 736 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 737 DAG.getConstant(i, DL, IdxVT)); 738 } 739 } 740 741 // Split the intermediate operands into legal parts. 742 if (NumParts == NumIntermediates) { 743 // If the register was not expanded, promote or copy the value, 744 // as appropriate. 745 for (unsigned i = 0; i != NumParts; ++i) 746 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 747 } else if (NumParts > 0) { 748 // If the intermediate type was expanded, split each the value into 749 // legal parts. 750 assert(NumIntermediates != 0 && "division by zero"); 751 assert(NumParts % NumIntermediates == 0 && 752 "Must expand into a divisible number of parts!"); 753 unsigned Factor = NumParts / NumIntermediates; 754 for (unsigned i = 0; i != NumIntermediates; ++i) 755 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 756 CallConv); 757 } 758 } 759 760 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 761 EVT valuevt, Optional<CallingConv::ID> CC) 762 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 763 RegCount(1, regs.size()), CallConv(CC) {} 764 765 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 766 const DataLayout &DL, unsigned Reg, Type *Ty, 767 Optional<CallingConv::ID> CC) { 768 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 769 770 CallConv = CC; 771 772 for (EVT ValueVT : ValueVTs) { 773 unsigned NumRegs = 774 isABIMangled() 775 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 776 : TLI.getNumRegisters(Context, ValueVT); 777 MVT RegisterVT = 778 isABIMangled() 779 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 780 : TLI.getRegisterType(Context, ValueVT); 781 for (unsigned i = 0; i != NumRegs; ++i) 782 Regs.push_back(Reg + i); 783 RegVTs.push_back(RegisterVT); 784 RegCount.push_back(NumRegs); 785 Reg += NumRegs; 786 } 787 } 788 789 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 790 FunctionLoweringInfo &FuncInfo, 791 const SDLoc &dl, SDValue &Chain, 792 SDValue *Flag, const Value *V) const { 793 // A Value with type {} or [0 x %t] needs no registers. 794 if (ValueVTs.empty()) 795 return SDValue(); 796 797 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 798 799 // Assemble the legal parts into the final values. 800 SmallVector<SDValue, 4> Values(ValueVTs.size()); 801 SmallVector<SDValue, 8> Parts; 802 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 803 // Copy the legal parts from the registers. 804 EVT ValueVT = ValueVTs[Value]; 805 unsigned NumRegs = RegCount[Value]; 806 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 807 *DAG.getContext(), 808 CallConv.getValue(), RegVTs[Value]) 809 : RegVTs[Value]; 810 811 Parts.resize(NumRegs); 812 for (unsigned i = 0; i != NumRegs; ++i) { 813 SDValue P; 814 if (!Flag) { 815 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 816 } else { 817 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 818 *Flag = P.getValue(2); 819 } 820 821 Chain = P.getValue(1); 822 Parts[i] = P; 823 824 // If the source register was virtual and if we know something about it, 825 // add an assert node. 826 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 827 !RegisterVT.isInteger()) 828 continue; 829 830 const FunctionLoweringInfo::LiveOutInfo *LOI = 831 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 832 if (!LOI) 833 continue; 834 835 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 836 unsigned NumSignBits = LOI->NumSignBits; 837 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 838 839 if (NumZeroBits == RegSize) { 840 // The current value is a zero. 841 // Explicitly express that as it would be easier for 842 // optimizations to kick in. 843 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 844 continue; 845 } 846 847 // FIXME: We capture more information than the dag can represent. For 848 // now, just use the tightest assertzext/assertsext possible. 849 bool isSExt; 850 EVT FromVT(MVT::Other); 851 if (NumZeroBits) { 852 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 853 isSExt = false; 854 } else if (NumSignBits > 1) { 855 FromVT = 856 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 857 isSExt = true; 858 } else { 859 continue; 860 } 861 // Add an assertion node. 862 assert(FromVT != MVT::Other); 863 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 864 RegisterVT, P, DAG.getValueType(FromVT)); 865 } 866 867 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 868 RegisterVT, ValueVT, V, CallConv); 869 Part += NumRegs; 870 Parts.clear(); 871 } 872 873 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 874 } 875 876 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 877 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 878 const Value *V, 879 ISD::NodeType PreferredExtendType) const { 880 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 881 ISD::NodeType ExtendKind = PreferredExtendType; 882 883 // Get the list of the values's legal parts. 884 unsigned NumRegs = Regs.size(); 885 SmallVector<SDValue, 8> Parts(NumRegs); 886 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 887 unsigned NumParts = RegCount[Value]; 888 889 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 890 *DAG.getContext(), 891 CallConv.getValue(), RegVTs[Value]) 892 : RegVTs[Value]; 893 894 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 895 ExtendKind = ISD::ZERO_EXTEND; 896 897 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 898 NumParts, RegisterVT, V, CallConv, ExtendKind); 899 Part += NumParts; 900 } 901 902 // Copy the parts into the registers. 903 SmallVector<SDValue, 8> Chains(NumRegs); 904 for (unsigned i = 0; i != NumRegs; ++i) { 905 SDValue Part; 906 if (!Flag) { 907 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 908 } else { 909 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 910 *Flag = Part.getValue(1); 911 } 912 913 Chains[i] = Part.getValue(0); 914 } 915 916 if (NumRegs == 1 || Flag) 917 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 918 // flagged to it. That is the CopyToReg nodes and the user are considered 919 // a single scheduling unit. If we create a TokenFactor and return it as 920 // chain, then the TokenFactor is both a predecessor (operand) of the 921 // user as well as a successor (the TF operands are flagged to the user). 922 // c1, f1 = CopyToReg 923 // c2, f2 = CopyToReg 924 // c3 = TokenFactor c1, c2 925 // ... 926 // = op c3, ..., f2 927 Chain = Chains[NumRegs-1]; 928 else 929 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 930 } 931 932 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 933 unsigned MatchingIdx, const SDLoc &dl, 934 SelectionDAG &DAG, 935 std::vector<SDValue> &Ops) const { 936 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 937 938 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 939 if (HasMatching) 940 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 941 else if (!Regs.empty() && 942 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 943 // Put the register class of the virtual registers in the flag word. That 944 // way, later passes can recompute register class constraints for inline 945 // assembly as well as normal instructions. 946 // Don't do this for tied operands that can use the regclass information 947 // from the def. 948 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 949 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 950 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 951 } 952 953 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 954 Ops.push_back(Res); 955 956 if (Code == InlineAsm::Kind_Clobber) { 957 // Clobbers should always have a 1:1 mapping with registers, and may 958 // reference registers that have illegal (e.g. vector) types. Hence, we 959 // shouldn't try to apply any sort of splitting logic to them. 960 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 961 "No 1:1 mapping from clobbers to regs?"); 962 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 963 (void)SP; 964 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 965 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 966 assert( 967 (Regs[I] != SP || 968 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 969 "If we clobbered the stack pointer, MFI should know about it."); 970 } 971 return; 972 } 973 974 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 975 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 976 MVT RegisterVT = RegVTs[Value]; 977 for (unsigned i = 0; i != NumRegs; ++i) { 978 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 979 unsigned TheReg = Regs[Reg++]; 980 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 981 } 982 } 983 } 984 985 SmallVector<std::pair<unsigned, unsigned>, 4> 986 RegsForValue::getRegsAndSizes() const { 987 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec; 988 unsigned I = 0; 989 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 990 unsigned RegCount = std::get<0>(CountAndVT); 991 MVT RegisterVT = std::get<1>(CountAndVT); 992 unsigned RegisterSize = RegisterVT.getSizeInBits(); 993 for (unsigned E = I + RegCount; I != E; ++I) 994 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 995 } 996 return OutVec; 997 } 998 999 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1000 const TargetLibraryInfo *li) { 1001 AA = aa; 1002 GFI = gfi; 1003 LibInfo = li; 1004 DL = &DAG.getDataLayout(); 1005 Context = DAG.getContext(); 1006 LPadToCallSiteMap.clear(); 1007 } 1008 1009 void SelectionDAGBuilder::clear() { 1010 NodeMap.clear(); 1011 UnusedArgNodeMap.clear(); 1012 PendingLoads.clear(); 1013 PendingExports.clear(); 1014 CurInst = nullptr; 1015 HasTailCall = false; 1016 SDNodeOrder = LowestSDNodeOrder; 1017 StatepointLowering.clear(); 1018 } 1019 1020 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1021 DanglingDebugInfoMap.clear(); 1022 } 1023 1024 SDValue SelectionDAGBuilder::getRoot() { 1025 if (PendingLoads.empty()) 1026 return DAG.getRoot(); 1027 1028 if (PendingLoads.size() == 1) { 1029 SDValue Root = PendingLoads[0]; 1030 DAG.setRoot(Root); 1031 PendingLoads.clear(); 1032 return Root; 1033 } 1034 1035 // Otherwise, we have to make a token factor node. 1036 SDValue Root = DAG.getTokenFactor(getCurSDLoc(), PendingLoads); 1037 PendingLoads.clear(); 1038 DAG.setRoot(Root); 1039 return Root; 1040 } 1041 1042 SDValue SelectionDAGBuilder::getControlRoot() { 1043 SDValue Root = DAG.getRoot(); 1044 1045 if (PendingExports.empty()) 1046 return Root; 1047 1048 // Turn all of the CopyToReg chains into one factored node. 1049 if (Root.getOpcode() != ISD::EntryToken) { 1050 unsigned i = 0, e = PendingExports.size(); 1051 for (; i != e; ++i) { 1052 assert(PendingExports[i].getNode()->getNumOperands() > 1); 1053 if (PendingExports[i].getNode()->getOperand(0) == Root) 1054 break; // Don't add the root if we already indirectly depend on it. 1055 } 1056 1057 if (i == e) 1058 PendingExports.push_back(Root); 1059 } 1060 1061 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 1062 PendingExports); 1063 PendingExports.clear(); 1064 DAG.setRoot(Root); 1065 return Root; 1066 } 1067 1068 void SelectionDAGBuilder::visit(const Instruction &I) { 1069 // Set up outgoing PHI node register values before emitting the terminator. 1070 if (I.isTerminator()) { 1071 HandlePHINodesInSuccessorBlocks(I.getParent()); 1072 } 1073 1074 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1075 if (!isa<DbgInfoIntrinsic>(I)) 1076 ++SDNodeOrder; 1077 1078 CurInst = &I; 1079 1080 visit(I.getOpcode(), I); 1081 1082 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) { 1083 // Propagate the fast-math-flags of this IR instruction to the DAG node that 1084 // maps to this instruction. 1085 // TODO: We could handle all flags (nsw, etc) here. 1086 // TODO: If an IR instruction maps to >1 node, only the final node will have 1087 // flags set. 1088 if (SDNode *Node = getNodeForIRValue(&I)) { 1089 SDNodeFlags IncomingFlags; 1090 IncomingFlags.copyFMF(*FPMO); 1091 if (!Node->getFlags().isDefined()) 1092 Node->setFlags(IncomingFlags); 1093 else 1094 Node->intersectFlagsWith(IncomingFlags); 1095 } 1096 } 1097 1098 if (!I.isTerminator() && !HasTailCall && 1099 !isStatepoint(&I)) // statepoints handle their exports internally 1100 CopyToExportRegsIfNeeded(&I); 1101 1102 CurInst = nullptr; 1103 } 1104 1105 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1106 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1107 } 1108 1109 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1110 // Note: this doesn't use InstVisitor, because it has to work with 1111 // ConstantExpr's in addition to instructions. 1112 switch (Opcode) { 1113 default: llvm_unreachable("Unknown instruction type encountered!"); 1114 // Build the switch statement using the Instruction.def file. 1115 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1116 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1117 #include "llvm/IR/Instruction.def" 1118 } 1119 } 1120 1121 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1122 const DIExpression *Expr) { 1123 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1124 const DbgValueInst *DI = DDI.getDI(); 1125 DIVariable *DanglingVariable = DI->getVariable(); 1126 DIExpression *DanglingExpr = DI->getExpression(); 1127 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1128 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1129 return true; 1130 } 1131 return false; 1132 }; 1133 1134 for (auto &DDIMI : DanglingDebugInfoMap) { 1135 DanglingDebugInfoVector &DDIV = DDIMI.second; 1136 1137 // If debug info is to be dropped, run it through final checks to see 1138 // whether it can be salvaged. 1139 for (auto &DDI : DDIV) 1140 if (isMatchingDbgValue(DDI)) 1141 salvageUnresolvedDbgValue(DDI); 1142 1143 DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end()); 1144 } 1145 } 1146 1147 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1148 // generate the debug data structures now that we've seen its definition. 1149 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1150 SDValue Val) { 1151 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1152 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1153 return; 1154 1155 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1156 for (auto &DDI : DDIV) { 1157 const DbgValueInst *DI = DDI.getDI(); 1158 assert(DI && "Ill-formed DanglingDebugInfo"); 1159 DebugLoc dl = DDI.getdl(); 1160 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1161 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1162 DILocalVariable *Variable = DI->getVariable(); 1163 DIExpression *Expr = DI->getExpression(); 1164 assert(Variable->isValidLocationForIntrinsic(dl) && 1165 "Expected inlined-at fields to agree"); 1166 SDDbgValue *SDV; 1167 if (Val.getNode()) { 1168 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1169 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1170 // we couldn't resolve it directly when examining the DbgValue intrinsic 1171 // in the first place we should not be more successful here). Unless we 1172 // have some test case that prove this to be correct we should avoid 1173 // calling EmitFuncArgumentDbgValue here. 1174 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1175 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1176 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1177 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1178 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1179 // inserted after the definition of Val when emitting the instructions 1180 // after ISel. An alternative could be to teach 1181 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1182 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1183 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1184 << ValSDNodeOrder << "\n"); 1185 SDV = getDbgValue(Val, Variable, Expr, dl, 1186 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1187 DAG.AddDbgValue(SDV, Val.getNode(), false); 1188 } else 1189 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1190 << "in EmitFuncArgumentDbgValue\n"); 1191 } else { 1192 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1193 auto Undef = 1194 UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1195 auto SDV = 1196 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1197 DAG.AddDbgValue(SDV, nullptr, false); 1198 } 1199 } 1200 DDIV.clear(); 1201 } 1202 1203 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1204 Value *V = DDI.getDI()->getValue(); 1205 DILocalVariable *Var = DDI.getDI()->getVariable(); 1206 DIExpression *Expr = DDI.getDI()->getExpression(); 1207 DebugLoc DL = DDI.getdl(); 1208 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1209 unsigned SDOrder = DDI.getSDNodeOrder(); 1210 1211 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1212 // that DW_OP_stack_value is desired. 1213 assert(isa<DbgValueInst>(DDI.getDI())); 1214 bool StackValue = true; 1215 1216 // Can this Value can be encoded without any further work? 1217 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) 1218 return; 1219 1220 // Attempt to salvage back through as many instructions as possible. Bail if 1221 // a non-instruction is seen, such as a constant expression or global 1222 // variable. FIXME: Further work could recover those too. 1223 while (isa<Instruction>(V)) { 1224 Instruction &VAsInst = *cast<Instruction>(V); 1225 DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue); 1226 1227 // If we cannot salvage any further, and haven't yet found a suitable debug 1228 // expression, bail out. 1229 if (!NewExpr) 1230 break; 1231 1232 // New value and expr now represent this debuginfo. 1233 V = VAsInst.getOperand(0); 1234 Expr = NewExpr; 1235 1236 // Some kind of simplification occurred: check whether the operand of the 1237 // salvaged debug expression can be encoded in this DAG. 1238 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) { 1239 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1240 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1241 return; 1242 } 1243 } 1244 1245 // This was the final opportunity to salvage this debug information, and it 1246 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1247 // any earlier variable location. 1248 auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1249 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1250 DAG.AddDbgValue(SDV, nullptr, false); 1251 1252 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1253 << "\n"); 1254 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1255 << "\n"); 1256 } 1257 1258 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var, 1259 DIExpression *Expr, DebugLoc dl, 1260 DebugLoc InstDL, unsigned Order) { 1261 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1262 SDDbgValue *SDV; 1263 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1264 isa<ConstantPointerNull>(V)) { 1265 SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder); 1266 DAG.AddDbgValue(SDV, nullptr, false); 1267 return true; 1268 } 1269 1270 // If the Value is a frame index, we can create a FrameIndex debug value 1271 // without relying on the DAG at all. 1272 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1273 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1274 if (SI != FuncInfo.StaticAllocaMap.end()) { 1275 auto SDV = 1276 DAG.getFrameIndexDbgValue(Var, Expr, SI->second, 1277 /*IsIndirect*/ false, dl, SDNodeOrder); 1278 // Do not attach the SDNodeDbgValue to an SDNode: this variable location 1279 // is still available even if the SDNode gets optimized out. 1280 DAG.AddDbgValue(SDV, nullptr, false); 1281 return true; 1282 } 1283 } 1284 1285 // Do not use getValue() in here; we don't want to generate code at 1286 // this point if it hasn't been done yet. 1287 SDValue N = NodeMap[V]; 1288 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1289 N = UnusedArgNodeMap[V]; 1290 if (N.getNode()) { 1291 if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) 1292 return true; 1293 SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder); 1294 DAG.AddDbgValue(SDV, N.getNode(), false); 1295 return true; 1296 } 1297 1298 // Special rules apply for the first dbg.values of parameter variables in a 1299 // function. Identify them by the fact they reference Argument Values, that 1300 // they're parameters, and they are parameters of the current function. We 1301 // need to let them dangle until they get an SDNode. 1302 bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() && 1303 !InstDL.getInlinedAt(); 1304 if (!IsParamOfFunc) { 1305 // The value is not used in this block yet (or it would have an SDNode). 1306 // We still want the value to appear for the user if possible -- if it has 1307 // an associated VReg, we can refer to that instead. 1308 auto VMI = FuncInfo.ValueMap.find(V); 1309 if (VMI != FuncInfo.ValueMap.end()) { 1310 unsigned Reg = VMI->second; 1311 // If this is a PHI node, it may be split up into several MI PHI nodes 1312 // (in FunctionLoweringInfo::set). 1313 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1314 V->getType(), None); 1315 if (RFV.occupiesMultipleRegs()) { 1316 unsigned Offset = 0; 1317 unsigned BitsToDescribe = 0; 1318 if (auto VarSize = Var->getSizeInBits()) 1319 BitsToDescribe = *VarSize; 1320 if (auto Fragment = Expr->getFragmentInfo()) 1321 BitsToDescribe = Fragment->SizeInBits; 1322 for (auto RegAndSize : RFV.getRegsAndSizes()) { 1323 unsigned RegisterSize = RegAndSize.second; 1324 // Bail out if all bits are described already. 1325 if (Offset >= BitsToDescribe) 1326 break; 1327 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1328 ? BitsToDescribe - Offset 1329 : RegisterSize; 1330 auto FragmentExpr = DIExpression::createFragmentExpression( 1331 Expr, Offset, FragmentSize); 1332 if (!FragmentExpr) 1333 continue; 1334 SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first, 1335 false, dl, SDNodeOrder); 1336 DAG.AddDbgValue(SDV, nullptr, false); 1337 Offset += RegisterSize; 1338 } 1339 } else { 1340 SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder); 1341 DAG.AddDbgValue(SDV, nullptr, false); 1342 } 1343 return true; 1344 } 1345 } 1346 1347 return false; 1348 } 1349 1350 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1351 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1352 for (auto &Pair : DanglingDebugInfoMap) 1353 for (auto &DDI : Pair.getSecond()) 1354 salvageUnresolvedDbgValue(DDI); 1355 clearDanglingDebugInfo(); 1356 } 1357 1358 /// getCopyFromRegs - If there was virtual register allocated for the value V 1359 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1360 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1361 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1362 SDValue Result; 1363 1364 if (It != FuncInfo.ValueMap.end()) { 1365 unsigned InReg = It->second; 1366 1367 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1368 DAG.getDataLayout(), InReg, Ty, 1369 None); // This is not an ABI copy. 1370 SDValue Chain = DAG.getEntryNode(); 1371 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1372 V); 1373 resolveDanglingDebugInfo(V, Result); 1374 } 1375 1376 return Result; 1377 } 1378 1379 /// getValue - Return an SDValue for the given Value. 1380 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1381 // If we already have an SDValue for this value, use it. It's important 1382 // to do this first, so that we don't create a CopyFromReg if we already 1383 // have a regular SDValue. 1384 SDValue &N = NodeMap[V]; 1385 if (N.getNode()) return N; 1386 1387 // If there's a virtual register allocated and initialized for this 1388 // value, use it. 1389 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1390 return copyFromReg; 1391 1392 // Otherwise create a new SDValue and remember it. 1393 SDValue Val = getValueImpl(V); 1394 NodeMap[V] = Val; 1395 resolveDanglingDebugInfo(V, Val); 1396 return Val; 1397 } 1398 1399 // Return true if SDValue exists for the given Value 1400 bool SelectionDAGBuilder::findValue(const Value *V) const { 1401 return (NodeMap.find(V) != NodeMap.end()) || 1402 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1403 } 1404 1405 /// getNonRegisterValue - Return an SDValue for the given Value, but 1406 /// don't look in FuncInfo.ValueMap for a virtual register. 1407 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1408 // If we already have an SDValue for this value, use it. 1409 SDValue &N = NodeMap[V]; 1410 if (N.getNode()) { 1411 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1412 // Remove the debug location from the node as the node is about to be used 1413 // in a location which may differ from the original debug location. This 1414 // is relevant to Constant and ConstantFP nodes because they can appear 1415 // as constant expressions inside PHI nodes. 1416 N->setDebugLoc(DebugLoc()); 1417 } 1418 return N; 1419 } 1420 1421 // Otherwise create a new SDValue and remember it. 1422 SDValue Val = getValueImpl(V); 1423 NodeMap[V] = Val; 1424 resolveDanglingDebugInfo(V, Val); 1425 return Val; 1426 } 1427 1428 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1429 /// Create an SDValue for the given value. 1430 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1431 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1432 1433 if (const Constant *C = dyn_cast<Constant>(V)) { 1434 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1435 1436 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1437 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1438 1439 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1440 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1441 1442 if (isa<ConstantPointerNull>(C)) { 1443 unsigned AS = V->getType()->getPointerAddressSpace(); 1444 return DAG.getConstant(0, getCurSDLoc(), 1445 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1446 } 1447 1448 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1449 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1450 1451 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1452 return DAG.getUNDEF(VT); 1453 1454 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1455 visit(CE->getOpcode(), *CE); 1456 SDValue N1 = NodeMap[V]; 1457 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1458 return N1; 1459 } 1460 1461 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1462 SmallVector<SDValue, 4> Constants; 1463 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1464 OI != OE; ++OI) { 1465 SDNode *Val = getValue(*OI).getNode(); 1466 // If the operand is an empty aggregate, there are no values. 1467 if (!Val) continue; 1468 // Add each leaf value from the operand to the Constants list 1469 // to form a flattened list of all the values. 1470 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1471 Constants.push_back(SDValue(Val, i)); 1472 } 1473 1474 return DAG.getMergeValues(Constants, getCurSDLoc()); 1475 } 1476 1477 if (const ConstantDataSequential *CDS = 1478 dyn_cast<ConstantDataSequential>(C)) { 1479 SmallVector<SDValue, 4> Ops; 1480 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1481 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1482 // Add each leaf value from the operand to the Constants list 1483 // to form a flattened list of all the values. 1484 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1485 Ops.push_back(SDValue(Val, i)); 1486 } 1487 1488 if (isa<ArrayType>(CDS->getType())) 1489 return DAG.getMergeValues(Ops, getCurSDLoc()); 1490 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1491 } 1492 1493 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1494 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1495 "Unknown struct or array constant!"); 1496 1497 SmallVector<EVT, 4> ValueVTs; 1498 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1499 unsigned NumElts = ValueVTs.size(); 1500 if (NumElts == 0) 1501 return SDValue(); // empty struct 1502 SmallVector<SDValue, 4> Constants(NumElts); 1503 for (unsigned i = 0; i != NumElts; ++i) { 1504 EVT EltVT = ValueVTs[i]; 1505 if (isa<UndefValue>(C)) 1506 Constants[i] = DAG.getUNDEF(EltVT); 1507 else if (EltVT.isFloatingPoint()) 1508 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1509 else 1510 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1511 } 1512 1513 return DAG.getMergeValues(Constants, getCurSDLoc()); 1514 } 1515 1516 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1517 return DAG.getBlockAddress(BA, VT); 1518 1519 VectorType *VecTy = cast<VectorType>(V->getType()); 1520 unsigned NumElements = VecTy->getNumElements(); 1521 1522 // Now that we know the number and type of the elements, get that number of 1523 // elements into the Ops array based on what kind of constant it is. 1524 SmallVector<SDValue, 16> Ops; 1525 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1526 for (unsigned i = 0; i != NumElements; ++i) 1527 Ops.push_back(getValue(CV->getOperand(i))); 1528 } else { 1529 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1530 EVT EltVT = 1531 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1532 1533 SDValue Op; 1534 if (EltVT.isFloatingPoint()) 1535 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1536 else 1537 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1538 Ops.assign(NumElements, Op); 1539 } 1540 1541 // Create a BUILD_VECTOR node. 1542 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1543 } 1544 1545 // If this is a static alloca, generate it as the frameindex instead of 1546 // computation. 1547 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1548 DenseMap<const AllocaInst*, int>::iterator SI = 1549 FuncInfo.StaticAllocaMap.find(AI); 1550 if (SI != FuncInfo.StaticAllocaMap.end()) 1551 return DAG.getFrameIndex(SI->second, 1552 TLI.getFrameIndexTy(DAG.getDataLayout())); 1553 } 1554 1555 // If this is an instruction which fast-isel has deferred, select it now. 1556 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1557 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1558 1559 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1560 Inst->getType(), getABIRegCopyCC(V)); 1561 SDValue Chain = DAG.getEntryNode(); 1562 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1563 } 1564 1565 llvm_unreachable("Can't get register for value!"); 1566 } 1567 1568 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1569 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1570 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1571 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1572 bool IsSEH = isAsynchronousEHPersonality(Pers); 1573 bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX; 1574 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1575 if (!IsSEH) 1576 CatchPadMBB->setIsEHScopeEntry(); 1577 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1578 if (IsMSVCCXX || IsCoreCLR) 1579 CatchPadMBB->setIsEHFuncletEntry(); 1580 // Wasm does not need catchpads anymore 1581 if (!IsWasmCXX) 1582 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, 1583 getControlRoot())); 1584 } 1585 1586 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1587 // Update machine-CFG edge. 1588 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1589 FuncInfo.MBB->addSuccessor(TargetMBB); 1590 1591 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1592 bool IsSEH = isAsynchronousEHPersonality(Pers); 1593 if (IsSEH) { 1594 // If this is not a fall-through branch or optimizations are switched off, 1595 // emit the branch. 1596 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1597 TM.getOptLevel() == CodeGenOpt::None) 1598 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1599 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1600 return; 1601 } 1602 1603 // Figure out the funclet membership for the catchret's successor. 1604 // This will be used by the FuncletLayout pass to determine how to order the 1605 // BB's. 1606 // A 'catchret' returns to the outer scope's color. 1607 Value *ParentPad = I.getCatchSwitchParentPad(); 1608 const BasicBlock *SuccessorColor; 1609 if (isa<ConstantTokenNone>(ParentPad)) 1610 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1611 else 1612 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1613 assert(SuccessorColor && "No parent funclet for catchret!"); 1614 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1615 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1616 1617 // Create the terminator node. 1618 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1619 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1620 DAG.getBasicBlock(SuccessorColorMBB)); 1621 DAG.setRoot(Ret); 1622 } 1623 1624 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1625 // Don't emit any special code for the cleanuppad instruction. It just marks 1626 // the start of an EH scope/funclet. 1627 FuncInfo.MBB->setIsEHScopeEntry(); 1628 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1629 if (Pers != EHPersonality::Wasm_CXX) { 1630 FuncInfo.MBB->setIsEHFuncletEntry(); 1631 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1632 } 1633 } 1634 1635 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and 1636 // the control flow always stops at the single catch pad, as it does for a 1637 // cleanup pad. In case the exception caught is not of the types the catch pad 1638 // catches, it will be rethrown by a rethrow. 1639 static void findWasmUnwindDestinations( 1640 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1641 BranchProbability Prob, 1642 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1643 &UnwindDests) { 1644 while (EHPadBB) { 1645 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1646 if (isa<CleanupPadInst>(Pad)) { 1647 // Stop on cleanup pads. 1648 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1649 UnwindDests.back().first->setIsEHScopeEntry(); 1650 break; 1651 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1652 // Add the catchpad handlers to the possible destinations. We don't 1653 // continue to the unwind destination of the catchswitch for wasm. 1654 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1655 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1656 UnwindDests.back().first->setIsEHScopeEntry(); 1657 } 1658 break; 1659 } else { 1660 continue; 1661 } 1662 } 1663 } 1664 1665 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1666 /// many places it could ultimately go. In the IR, we have a single unwind 1667 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1668 /// This function skips over imaginary basic blocks that hold catchswitch 1669 /// instructions, and finds all the "real" machine 1670 /// basic block destinations. As those destinations may not be successors of 1671 /// EHPadBB, here we also calculate the edge probability to those destinations. 1672 /// The passed-in Prob is the edge probability to EHPadBB. 1673 static void findUnwindDestinations( 1674 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1675 BranchProbability Prob, 1676 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1677 &UnwindDests) { 1678 EHPersonality Personality = 1679 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1680 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1681 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1682 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1683 bool IsSEH = isAsynchronousEHPersonality(Personality); 1684 1685 if (IsWasmCXX) { 1686 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1687 assert(UnwindDests.size() <= 1 && 1688 "There should be at most one unwind destination for wasm"); 1689 return; 1690 } 1691 1692 while (EHPadBB) { 1693 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1694 BasicBlock *NewEHPadBB = nullptr; 1695 if (isa<LandingPadInst>(Pad)) { 1696 // Stop on landingpads. They are not funclets. 1697 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1698 break; 1699 } else if (isa<CleanupPadInst>(Pad)) { 1700 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1701 // personalities. 1702 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1703 UnwindDests.back().first->setIsEHScopeEntry(); 1704 UnwindDests.back().first->setIsEHFuncletEntry(); 1705 break; 1706 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1707 // Add the catchpad handlers to the possible destinations. 1708 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1709 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1710 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1711 if (IsMSVCCXX || IsCoreCLR) 1712 UnwindDests.back().first->setIsEHFuncletEntry(); 1713 if (!IsSEH) 1714 UnwindDests.back().first->setIsEHScopeEntry(); 1715 } 1716 NewEHPadBB = CatchSwitch->getUnwindDest(); 1717 } else { 1718 continue; 1719 } 1720 1721 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1722 if (BPI && NewEHPadBB) 1723 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1724 EHPadBB = NewEHPadBB; 1725 } 1726 } 1727 1728 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1729 // Update successor info. 1730 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1731 auto UnwindDest = I.getUnwindDest(); 1732 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1733 BranchProbability UnwindDestProb = 1734 (BPI && UnwindDest) 1735 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1736 : BranchProbability::getZero(); 1737 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1738 for (auto &UnwindDest : UnwindDests) { 1739 UnwindDest.first->setIsEHPad(); 1740 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1741 } 1742 FuncInfo.MBB->normalizeSuccProbs(); 1743 1744 // Create the terminator node. 1745 SDValue Ret = 1746 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1747 DAG.setRoot(Ret); 1748 } 1749 1750 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1751 report_fatal_error("visitCatchSwitch not yet implemented!"); 1752 } 1753 1754 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1755 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1756 auto &DL = DAG.getDataLayout(); 1757 SDValue Chain = getControlRoot(); 1758 SmallVector<ISD::OutputArg, 8> Outs; 1759 SmallVector<SDValue, 8> OutVals; 1760 1761 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1762 // lower 1763 // 1764 // %val = call <ty> @llvm.experimental.deoptimize() 1765 // ret <ty> %val 1766 // 1767 // differently. 1768 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1769 LowerDeoptimizingReturn(); 1770 return; 1771 } 1772 1773 if (!FuncInfo.CanLowerReturn) { 1774 unsigned DemoteReg = FuncInfo.DemoteRegister; 1775 const Function *F = I.getParent()->getParent(); 1776 1777 // Emit a store of the return value through the virtual register. 1778 // Leave Outs empty so that LowerReturn won't try to load return 1779 // registers the usual way. 1780 SmallVector<EVT, 1> PtrValueVTs; 1781 ComputeValueVTs(TLI, DL, 1782 F->getReturnType()->getPointerTo( 1783 DAG.getDataLayout().getAllocaAddrSpace()), 1784 PtrValueVTs); 1785 1786 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1787 DemoteReg, PtrValueVTs[0]); 1788 SDValue RetOp = getValue(I.getOperand(0)); 1789 1790 SmallVector<EVT, 4> ValueVTs; 1791 SmallVector<uint64_t, 4> Offsets; 1792 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1793 unsigned NumValues = ValueVTs.size(); 1794 1795 SmallVector<SDValue, 4> Chains(NumValues); 1796 for (unsigned i = 0; i != NumValues; ++i) { 1797 // An aggregate return value cannot wrap around the address space, so 1798 // offsets to its parts don't wrap either. 1799 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]); 1800 Chains[i] = DAG.getStore( 1801 Chain, getCurSDLoc(), SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1802 // FIXME: better loc info would be nice. 1803 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1804 } 1805 1806 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1807 MVT::Other, Chains); 1808 } else if (I.getNumOperands() != 0) { 1809 SmallVector<EVT, 4> ValueVTs; 1810 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1811 unsigned NumValues = ValueVTs.size(); 1812 if (NumValues) { 1813 SDValue RetOp = getValue(I.getOperand(0)); 1814 1815 const Function *F = I.getParent()->getParent(); 1816 1817 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1818 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1819 Attribute::SExt)) 1820 ExtendKind = ISD::SIGN_EXTEND; 1821 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1822 Attribute::ZExt)) 1823 ExtendKind = ISD::ZERO_EXTEND; 1824 1825 LLVMContext &Context = F->getContext(); 1826 bool RetInReg = F->getAttributes().hasAttribute( 1827 AttributeList::ReturnIndex, Attribute::InReg); 1828 1829 for (unsigned j = 0; j != NumValues; ++j) { 1830 EVT VT = ValueVTs[j]; 1831 1832 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1833 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1834 1835 CallingConv::ID CC = F->getCallingConv(); 1836 1837 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1838 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1839 SmallVector<SDValue, 4> Parts(NumParts); 1840 getCopyToParts(DAG, getCurSDLoc(), 1841 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1842 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1843 1844 // 'inreg' on function refers to return value 1845 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1846 if (RetInReg) 1847 Flags.setInReg(); 1848 1849 // Propagate extension type if any 1850 if (ExtendKind == ISD::SIGN_EXTEND) 1851 Flags.setSExt(); 1852 else if (ExtendKind == ISD::ZERO_EXTEND) 1853 Flags.setZExt(); 1854 1855 for (unsigned i = 0; i < NumParts; ++i) { 1856 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1857 VT, /*isfixed=*/true, 0, 0)); 1858 OutVals.push_back(Parts[i]); 1859 } 1860 } 1861 } 1862 } 1863 1864 // Push in swifterror virtual register as the last element of Outs. This makes 1865 // sure swifterror virtual register will be returned in the swifterror 1866 // physical register. 1867 const Function *F = I.getParent()->getParent(); 1868 if (TLI.supportSwiftError() && 1869 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1870 assert(FuncInfo.SwiftErrorArg && "Need a swift error argument"); 1871 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1872 Flags.setSwiftError(); 1873 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1874 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1875 true /*isfixed*/, 1 /*origidx*/, 1876 0 /*partOffs*/)); 1877 // Create SDNode for the swifterror virtual register. 1878 OutVals.push_back( 1879 DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt( 1880 &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first, 1881 EVT(TLI.getPointerTy(DL)))); 1882 } 1883 1884 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1885 CallingConv::ID CallConv = 1886 DAG.getMachineFunction().getFunction().getCallingConv(); 1887 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1888 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1889 1890 // Verify that the target's LowerReturn behaved as expected. 1891 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1892 "LowerReturn didn't return a valid chain!"); 1893 1894 // Update the DAG with the new chain value resulting from return lowering. 1895 DAG.setRoot(Chain); 1896 } 1897 1898 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1899 /// created for it, emit nodes to copy the value into the virtual 1900 /// registers. 1901 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1902 // Skip empty types 1903 if (V->getType()->isEmptyTy()) 1904 return; 1905 1906 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1907 if (VMI != FuncInfo.ValueMap.end()) { 1908 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1909 CopyValueToVirtualRegister(V, VMI->second); 1910 } 1911 } 1912 1913 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1914 /// the current basic block, add it to ValueMap now so that we'll get a 1915 /// CopyTo/FromReg. 1916 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1917 // No need to export constants. 1918 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1919 1920 // Already exported? 1921 if (FuncInfo.isExportedInst(V)) return; 1922 1923 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1924 CopyValueToVirtualRegister(V, Reg); 1925 } 1926 1927 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1928 const BasicBlock *FromBB) { 1929 // The operands of the setcc have to be in this block. We don't know 1930 // how to export them from some other block. 1931 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1932 // Can export from current BB. 1933 if (VI->getParent() == FromBB) 1934 return true; 1935 1936 // Is already exported, noop. 1937 return FuncInfo.isExportedInst(V); 1938 } 1939 1940 // If this is an argument, we can export it if the BB is the entry block or 1941 // if it is already exported. 1942 if (isa<Argument>(V)) { 1943 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1944 return true; 1945 1946 // Otherwise, can only export this if it is already exported. 1947 return FuncInfo.isExportedInst(V); 1948 } 1949 1950 // Otherwise, constants can always be exported. 1951 return true; 1952 } 1953 1954 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1955 BranchProbability 1956 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1957 const MachineBasicBlock *Dst) const { 1958 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1959 const BasicBlock *SrcBB = Src->getBasicBlock(); 1960 const BasicBlock *DstBB = Dst->getBasicBlock(); 1961 if (!BPI) { 1962 // If BPI is not available, set the default probability as 1 / N, where N is 1963 // the number of successors. 1964 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 1965 return BranchProbability(1, SuccSize); 1966 } 1967 return BPI->getEdgeProbability(SrcBB, DstBB); 1968 } 1969 1970 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1971 MachineBasicBlock *Dst, 1972 BranchProbability Prob) { 1973 if (!FuncInfo.BPI) 1974 Src->addSuccessorWithoutProb(Dst); 1975 else { 1976 if (Prob.isUnknown()) 1977 Prob = getEdgeProbability(Src, Dst); 1978 Src->addSuccessor(Dst, Prob); 1979 } 1980 } 1981 1982 static bool InBlock(const Value *V, const BasicBlock *BB) { 1983 if (const Instruction *I = dyn_cast<Instruction>(V)) 1984 return I->getParent() == BB; 1985 return true; 1986 } 1987 1988 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1989 /// This function emits a branch and is used at the leaves of an OR or an 1990 /// AND operator tree. 1991 void 1992 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1993 MachineBasicBlock *TBB, 1994 MachineBasicBlock *FBB, 1995 MachineBasicBlock *CurBB, 1996 MachineBasicBlock *SwitchBB, 1997 BranchProbability TProb, 1998 BranchProbability FProb, 1999 bool InvertCond) { 2000 const BasicBlock *BB = CurBB->getBasicBlock(); 2001 2002 // If the leaf of the tree is a comparison, merge the condition into 2003 // the caseblock. 2004 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2005 // The operands of the cmp have to be in this block. We don't know 2006 // how to export them from some other block. If this is the first block 2007 // of the sequence, no exporting is needed. 2008 if (CurBB == SwitchBB || 2009 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2010 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2011 ISD::CondCode Condition; 2012 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2013 ICmpInst::Predicate Pred = 2014 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2015 Condition = getICmpCondCode(Pred); 2016 } else { 2017 const FCmpInst *FC = cast<FCmpInst>(Cond); 2018 FCmpInst::Predicate Pred = 2019 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2020 Condition = getFCmpCondCode(Pred); 2021 if (TM.Options.NoNaNsFPMath) 2022 Condition = getFCmpCodeWithoutNaN(Condition); 2023 } 2024 2025 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2026 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2027 SwitchCases.push_back(CB); 2028 return; 2029 } 2030 } 2031 2032 // Create a CaseBlock record representing this branch. 2033 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2034 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2035 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2036 SwitchCases.push_back(CB); 2037 } 2038 2039 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2040 MachineBasicBlock *TBB, 2041 MachineBasicBlock *FBB, 2042 MachineBasicBlock *CurBB, 2043 MachineBasicBlock *SwitchBB, 2044 Instruction::BinaryOps Opc, 2045 BranchProbability TProb, 2046 BranchProbability FProb, 2047 bool InvertCond) { 2048 // Skip over not part of the tree and remember to invert op and operands at 2049 // next level. 2050 Value *NotCond; 2051 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2052 InBlock(NotCond, CurBB->getBasicBlock())) { 2053 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2054 !InvertCond); 2055 return; 2056 } 2057 2058 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2059 // Compute the effective opcode for Cond, taking into account whether it needs 2060 // to be inverted, e.g. 2061 // and (not (or A, B)), C 2062 // gets lowered as 2063 // and (and (not A, not B), C) 2064 unsigned BOpc = 0; 2065 if (BOp) { 2066 BOpc = BOp->getOpcode(); 2067 if (InvertCond) { 2068 if (BOpc == Instruction::And) 2069 BOpc = Instruction::Or; 2070 else if (BOpc == Instruction::Or) 2071 BOpc = Instruction::And; 2072 } 2073 } 2074 2075 // If this node is not part of the or/and tree, emit it as a branch. 2076 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 2077 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 2078 BOp->getParent() != CurBB->getBasicBlock() || 2079 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 2080 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 2081 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2082 TProb, FProb, InvertCond); 2083 return; 2084 } 2085 2086 // Create TmpBB after CurBB. 2087 MachineFunction::iterator BBI(CurBB); 2088 MachineFunction &MF = DAG.getMachineFunction(); 2089 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2090 CurBB->getParent()->insert(++BBI, TmpBB); 2091 2092 if (Opc == Instruction::Or) { 2093 // Codegen X | Y as: 2094 // BB1: 2095 // jmp_if_X TBB 2096 // jmp TmpBB 2097 // TmpBB: 2098 // jmp_if_Y TBB 2099 // jmp FBB 2100 // 2101 2102 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2103 // The requirement is that 2104 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2105 // = TrueProb for original BB. 2106 // Assuming the original probabilities are A and B, one choice is to set 2107 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2108 // A/(1+B) and 2B/(1+B). This choice assumes that 2109 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2110 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2111 // TmpBB, but the math is more complicated. 2112 2113 auto NewTrueProb = TProb / 2; 2114 auto NewFalseProb = TProb / 2 + FProb; 2115 // Emit the LHS condition. 2116 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 2117 NewTrueProb, NewFalseProb, InvertCond); 2118 2119 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2120 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2121 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2122 // Emit the RHS condition into TmpBB. 2123 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2124 Probs[0], Probs[1], InvertCond); 2125 } else { 2126 assert(Opc == Instruction::And && "Unknown merge op!"); 2127 // Codegen X & Y as: 2128 // BB1: 2129 // jmp_if_X TmpBB 2130 // jmp FBB 2131 // TmpBB: 2132 // jmp_if_Y TBB 2133 // jmp FBB 2134 // 2135 // This requires creation of TmpBB after CurBB. 2136 2137 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2138 // The requirement is that 2139 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2140 // = FalseProb for original BB. 2141 // Assuming the original probabilities are A and B, one choice is to set 2142 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2143 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2144 // TrueProb for BB1 * FalseProb for TmpBB. 2145 2146 auto NewTrueProb = TProb + FProb / 2; 2147 auto NewFalseProb = FProb / 2; 2148 // Emit the LHS condition. 2149 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 2150 NewTrueProb, NewFalseProb, InvertCond); 2151 2152 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2153 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2154 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2155 // Emit the RHS condition into TmpBB. 2156 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2157 Probs[0], Probs[1], InvertCond); 2158 } 2159 } 2160 2161 /// If the set of cases should be emitted as a series of branches, return true. 2162 /// If we should emit this as a bunch of and/or'd together conditions, return 2163 /// false. 2164 bool 2165 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2166 if (Cases.size() != 2) return true; 2167 2168 // If this is two comparisons of the same values or'd or and'd together, they 2169 // will get folded into a single comparison, so don't emit two blocks. 2170 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2171 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2172 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2173 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2174 return false; 2175 } 2176 2177 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2178 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2179 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2180 Cases[0].CC == Cases[1].CC && 2181 isa<Constant>(Cases[0].CmpRHS) && 2182 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2183 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2184 return false; 2185 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2186 return false; 2187 } 2188 2189 return true; 2190 } 2191 2192 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2193 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2194 2195 // Update machine-CFG edges. 2196 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2197 2198 if (I.isUnconditional()) { 2199 // Update machine-CFG edges. 2200 BrMBB->addSuccessor(Succ0MBB); 2201 2202 // If this is not a fall-through branch or optimizations are switched off, 2203 // emit the branch. 2204 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2205 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2206 MVT::Other, getControlRoot(), 2207 DAG.getBasicBlock(Succ0MBB))); 2208 2209 return; 2210 } 2211 2212 // If this condition is one of the special cases we handle, do special stuff 2213 // now. 2214 const Value *CondVal = I.getCondition(); 2215 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2216 2217 // If this is a series of conditions that are or'd or and'd together, emit 2218 // this as a sequence of branches instead of setcc's with and/or operations. 2219 // As long as jumps are not expensive, this should improve performance. 2220 // For example, instead of something like: 2221 // cmp A, B 2222 // C = seteq 2223 // cmp D, E 2224 // F = setle 2225 // or C, F 2226 // jnz foo 2227 // Emit: 2228 // cmp A, B 2229 // je foo 2230 // cmp D, E 2231 // jle foo 2232 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 2233 Instruction::BinaryOps Opcode = BOp->getOpcode(); 2234 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 2235 !I.getMetadata(LLVMContext::MD_unpredictable) && 2236 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 2237 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 2238 Opcode, 2239 getEdgeProbability(BrMBB, Succ0MBB), 2240 getEdgeProbability(BrMBB, Succ1MBB), 2241 /*InvertCond=*/false); 2242 // If the compares in later blocks need to use values not currently 2243 // exported from this block, export them now. This block should always 2244 // be the first entry. 2245 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2246 2247 // Allow some cases to be rejected. 2248 if (ShouldEmitAsBranches(SwitchCases)) { 2249 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 2250 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 2251 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 2252 } 2253 2254 // Emit the branch for this block. 2255 visitSwitchCase(SwitchCases[0], BrMBB); 2256 SwitchCases.erase(SwitchCases.begin()); 2257 return; 2258 } 2259 2260 // Okay, we decided not to do this, remove any inserted MBB's and clear 2261 // SwitchCases. 2262 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 2263 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 2264 2265 SwitchCases.clear(); 2266 } 2267 } 2268 2269 // Create a CaseBlock record representing this branch. 2270 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2271 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2272 2273 // Use visitSwitchCase to actually insert the fast branch sequence for this 2274 // cond branch. 2275 visitSwitchCase(CB, BrMBB); 2276 } 2277 2278 /// visitSwitchCase - Emits the necessary code to represent a single node in 2279 /// the binary search tree resulting from lowering a switch instruction. 2280 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2281 MachineBasicBlock *SwitchBB) { 2282 SDValue Cond; 2283 SDValue CondLHS = getValue(CB.CmpLHS); 2284 SDLoc dl = CB.DL; 2285 2286 // Build the setcc now. 2287 if (!CB.CmpMHS) { 2288 // Fold "(X == true)" to X and "(X == false)" to !X to 2289 // handle common cases produced by branch lowering. 2290 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2291 CB.CC == ISD::SETEQ) 2292 Cond = CondLHS; 2293 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2294 CB.CC == ISD::SETEQ) { 2295 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2296 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2297 } else 2298 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 2299 } else { 2300 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2301 2302 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2303 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2304 2305 SDValue CmpOp = getValue(CB.CmpMHS); 2306 EVT VT = CmpOp.getValueType(); 2307 2308 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2309 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2310 ISD::SETLE); 2311 } else { 2312 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2313 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2314 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2315 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2316 } 2317 } 2318 2319 // Update successor info 2320 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2321 // TrueBB and FalseBB are always different unless the incoming IR is 2322 // degenerate. This only happens when running llc on weird IR. 2323 if (CB.TrueBB != CB.FalseBB) 2324 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2325 SwitchBB->normalizeSuccProbs(); 2326 2327 // If the lhs block is the next block, invert the condition so that we can 2328 // fall through to the lhs instead of the rhs block. 2329 if (CB.TrueBB == NextBlock(SwitchBB)) { 2330 std::swap(CB.TrueBB, CB.FalseBB); 2331 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2332 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2333 } 2334 2335 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2336 MVT::Other, getControlRoot(), Cond, 2337 DAG.getBasicBlock(CB.TrueBB)); 2338 2339 // Insert the false branch. Do this even if it's a fall through branch, 2340 // this makes it easier to do DAG optimizations which require inverting 2341 // the branch condition. 2342 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2343 DAG.getBasicBlock(CB.FalseBB)); 2344 2345 DAG.setRoot(BrCond); 2346 } 2347 2348 /// visitJumpTable - Emit JumpTable node in the current MBB 2349 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 2350 // Emit the code for the jump table 2351 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2352 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2353 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2354 JT.Reg, PTy); 2355 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2356 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2357 MVT::Other, Index.getValue(1), 2358 Table, Index); 2359 DAG.setRoot(BrJumpTable); 2360 } 2361 2362 /// visitJumpTableHeader - This function emits necessary code to produce index 2363 /// in the JumpTable from switch case. 2364 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 2365 JumpTableHeader &JTH, 2366 MachineBasicBlock *SwitchBB) { 2367 SDLoc dl = getCurSDLoc(); 2368 2369 // Subtract the lowest switch case value from the value being switched on and 2370 // conditional branch to default mbb if the result is greater than the 2371 // difference between smallest and largest cases. 2372 SDValue SwitchOp = getValue(JTH.SValue); 2373 EVT VT = SwitchOp.getValueType(); 2374 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2375 DAG.getConstant(JTH.First, dl, VT)); 2376 2377 // The SDNode we just created, which holds the value being switched on minus 2378 // the smallest case value, needs to be copied to a virtual register so it 2379 // can be used as an index into the jump table in a subsequent basic block. 2380 // This value may be smaller or larger than the target's pointer type, and 2381 // therefore require extension or truncating. 2382 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2383 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2384 2385 unsigned JumpTableReg = 2386 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2387 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2388 JumpTableReg, SwitchOp); 2389 JT.Reg = JumpTableReg; 2390 2391 // Emit the range check for the jump table, and branch to the default block 2392 // for the switch statement if the value being switched on exceeds the largest 2393 // case in the switch. 2394 SDValue CMP = DAG.getSetCC( 2395 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2396 Sub.getValueType()), 2397 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2398 2399 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2400 MVT::Other, CopyTo, CMP, 2401 DAG.getBasicBlock(JT.Default)); 2402 2403 // Avoid emitting unnecessary branches to the next block. 2404 if (JT.MBB != NextBlock(SwitchBB)) 2405 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2406 DAG.getBasicBlock(JT.MBB)); 2407 2408 DAG.setRoot(BrCond); 2409 } 2410 2411 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2412 /// variable if there exists one. 2413 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2414 SDValue &Chain) { 2415 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2416 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2417 MachineFunction &MF = DAG.getMachineFunction(); 2418 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2419 MachineSDNode *Node = 2420 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2421 if (Global) { 2422 MachinePointerInfo MPInfo(Global); 2423 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2424 MachineMemOperand::MODereferenceable; 2425 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2426 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy)); 2427 DAG.setNodeMemRefs(Node, {MemRef}); 2428 } 2429 return SDValue(Node, 0); 2430 } 2431 2432 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2433 /// tail spliced into a stack protector check success bb. 2434 /// 2435 /// For a high level explanation of how this fits into the stack protector 2436 /// generation see the comment on the declaration of class 2437 /// StackProtectorDescriptor. 2438 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2439 MachineBasicBlock *ParentBB) { 2440 2441 // First create the loads to the guard/stack slot for the comparison. 2442 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2443 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2444 2445 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2446 int FI = MFI.getStackProtectorIndex(); 2447 2448 SDValue Guard; 2449 SDLoc dl = getCurSDLoc(); 2450 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2451 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2452 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2453 2454 // Generate code to load the content of the guard slot. 2455 SDValue GuardVal = DAG.getLoad( 2456 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 2457 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2458 MachineMemOperand::MOVolatile); 2459 2460 if (TLI.useStackGuardXorFP()) 2461 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2462 2463 // Retrieve guard check function, nullptr if instrumentation is inlined. 2464 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2465 // The target provides a guard check function to validate the guard value. 2466 // Generate a call to that function with the content of the guard slot as 2467 // argument. 2468 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2469 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2470 2471 TargetLowering::ArgListTy Args; 2472 TargetLowering::ArgListEntry Entry; 2473 Entry.Node = GuardVal; 2474 Entry.Ty = FnTy->getParamType(0); 2475 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) 2476 Entry.IsInReg = true; 2477 Args.push_back(Entry); 2478 2479 TargetLowering::CallLoweringInfo CLI(DAG); 2480 CLI.setDebugLoc(getCurSDLoc()) 2481 .setChain(DAG.getEntryNode()) 2482 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2483 getValue(GuardCheckFn), std::move(Args)); 2484 2485 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2486 DAG.setRoot(Result.second); 2487 return; 2488 } 2489 2490 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2491 // Otherwise, emit a volatile load to retrieve the stack guard value. 2492 SDValue Chain = DAG.getEntryNode(); 2493 if (TLI.useLoadStackGuardNode()) { 2494 Guard = getLoadStackGuard(DAG, dl, Chain); 2495 } else { 2496 const Value *IRGuard = TLI.getSDagStackGuard(M); 2497 SDValue GuardPtr = getValue(IRGuard); 2498 2499 Guard = 2500 DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0), 2501 Align, MachineMemOperand::MOVolatile); 2502 } 2503 2504 // Perform the comparison via a subtract/getsetcc. 2505 EVT VT = Guard.getValueType(); 2506 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal); 2507 2508 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2509 *DAG.getContext(), 2510 Sub.getValueType()), 2511 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2512 2513 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2514 // branch to failure MBB. 2515 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2516 MVT::Other, GuardVal.getOperand(0), 2517 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2518 // Otherwise branch to success MBB. 2519 SDValue Br = DAG.getNode(ISD::BR, dl, 2520 MVT::Other, BrCond, 2521 DAG.getBasicBlock(SPD.getSuccessMBB())); 2522 2523 DAG.setRoot(Br); 2524 } 2525 2526 /// Codegen the failure basic block for a stack protector check. 2527 /// 2528 /// A failure stack protector machine basic block consists simply of a call to 2529 /// __stack_chk_fail(). 2530 /// 2531 /// For a high level explanation of how this fits into the stack protector 2532 /// generation see the comment on the declaration of class 2533 /// StackProtectorDescriptor. 2534 void 2535 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2536 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2537 SDValue Chain = 2538 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2539 None, false, getCurSDLoc(), false, false).second; 2540 // On PS4, the "return address" must still be within the calling function, 2541 // even if it's at the very end, so emit an explicit TRAP here. 2542 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2543 if (TM.getTargetTriple().isPS4CPU()) 2544 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2545 2546 DAG.setRoot(Chain); 2547 } 2548 2549 /// visitBitTestHeader - This function emits necessary code to produce value 2550 /// suitable for "bit tests" 2551 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2552 MachineBasicBlock *SwitchBB) { 2553 SDLoc dl = getCurSDLoc(); 2554 2555 // Subtract the minimum value 2556 SDValue SwitchOp = getValue(B.SValue); 2557 EVT VT = SwitchOp.getValueType(); 2558 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2559 DAG.getConstant(B.First, dl, VT)); 2560 2561 // Check range 2562 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2563 SDValue RangeCmp = DAG.getSetCC( 2564 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2565 Sub.getValueType()), 2566 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2567 2568 // Determine the type of the test operands. 2569 bool UsePtrType = false; 2570 if (!TLI.isTypeLegal(VT)) 2571 UsePtrType = true; 2572 else { 2573 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2574 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2575 // Switch table case range are encoded into series of masks. 2576 // Just use pointer type, it's guaranteed to fit. 2577 UsePtrType = true; 2578 break; 2579 } 2580 } 2581 if (UsePtrType) { 2582 VT = TLI.getPointerTy(DAG.getDataLayout()); 2583 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2584 } 2585 2586 B.RegVT = VT.getSimpleVT(); 2587 B.Reg = FuncInfo.CreateReg(B.RegVT); 2588 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2589 2590 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2591 2592 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2593 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2594 SwitchBB->normalizeSuccProbs(); 2595 2596 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2597 MVT::Other, CopyTo, RangeCmp, 2598 DAG.getBasicBlock(B.Default)); 2599 2600 // Avoid emitting unnecessary branches to the next block. 2601 if (MBB != NextBlock(SwitchBB)) 2602 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2603 DAG.getBasicBlock(MBB)); 2604 2605 DAG.setRoot(BrRange); 2606 } 2607 2608 /// visitBitTestCase - this function produces one "bit test" 2609 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2610 MachineBasicBlock* NextMBB, 2611 BranchProbability BranchProbToNext, 2612 unsigned Reg, 2613 BitTestCase &B, 2614 MachineBasicBlock *SwitchBB) { 2615 SDLoc dl = getCurSDLoc(); 2616 MVT VT = BB.RegVT; 2617 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2618 SDValue Cmp; 2619 unsigned PopCount = countPopulation(B.Mask); 2620 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2621 if (PopCount == 1) { 2622 // Testing for a single bit; just compare the shift count with what it 2623 // would need to be to shift a 1 bit in that position. 2624 Cmp = DAG.getSetCC( 2625 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2626 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2627 ISD::SETEQ); 2628 } else if (PopCount == BB.Range) { 2629 // There is only one zero bit in the range, test for it directly. 2630 Cmp = DAG.getSetCC( 2631 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2632 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2633 ISD::SETNE); 2634 } else { 2635 // Make desired shift 2636 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2637 DAG.getConstant(1, dl, VT), ShiftOp); 2638 2639 // Emit bit tests and jumps 2640 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2641 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2642 Cmp = DAG.getSetCC( 2643 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2644 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2645 } 2646 2647 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2648 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2649 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2650 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2651 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2652 // one as they are relative probabilities (and thus work more like weights), 2653 // and hence we need to normalize them to let the sum of them become one. 2654 SwitchBB->normalizeSuccProbs(); 2655 2656 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2657 MVT::Other, getControlRoot(), 2658 Cmp, DAG.getBasicBlock(B.TargetBB)); 2659 2660 // Avoid emitting unnecessary branches to the next block. 2661 if (NextMBB != NextBlock(SwitchBB)) 2662 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2663 DAG.getBasicBlock(NextMBB)); 2664 2665 DAG.setRoot(BrAnd); 2666 } 2667 2668 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2669 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2670 2671 // Retrieve successors. Look through artificial IR level blocks like 2672 // catchswitch for successors. 2673 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2674 const BasicBlock *EHPadBB = I.getSuccessor(1); 2675 2676 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2677 // have to do anything here to lower funclet bundles. 2678 assert(!I.hasOperandBundlesOtherThan( 2679 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2680 "Cannot lower invokes with arbitrary operand bundles yet!"); 2681 2682 const Value *Callee(I.getCalledValue()); 2683 const Function *Fn = dyn_cast<Function>(Callee); 2684 if (isa<InlineAsm>(Callee)) 2685 visitInlineAsm(&I); 2686 else if (Fn && Fn->isIntrinsic()) { 2687 switch (Fn->getIntrinsicID()) { 2688 default: 2689 llvm_unreachable("Cannot invoke this intrinsic"); 2690 case Intrinsic::donothing: 2691 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2692 break; 2693 case Intrinsic::experimental_patchpoint_void: 2694 case Intrinsic::experimental_patchpoint_i64: 2695 visitPatchpoint(&I, EHPadBB); 2696 break; 2697 case Intrinsic::experimental_gc_statepoint: 2698 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2699 break; 2700 } 2701 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2702 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2703 // Eventually we will support lowering the @llvm.experimental.deoptimize 2704 // intrinsic, and right now there are no plans to support other intrinsics 2705 // with deopt state. 2706 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2707 } else { 2708 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2709 } 2710 2711 // If the value of the invoke is used outside of its defining block, make it 2712 // available as a virtual register. 2713 // We already took care of the exported value for the statepoint instruction 2714 // during call to the LowerStatepoint. 2715 if (!isStatepoint(I)) { 2716 CopyToExportRegsIfNeeded(&I); 2717 } 2718 2719 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2720 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2721 BranchProbability EHPadBBProb = 2722 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2723 : BranchProbability::getZero(); 2724 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2725 2726 // Update successor info. 2727 addSuccessorWithProb(InvokeMBB, Return); 2728 for (auto &UnwindDest : UnwindDests) { 2729 UnwindDest.first->setIsEHPad(); 2730 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2731 } 2732 InvokeMBB->normalizeSuccProbs(); 2733 2734 // Drop into normal successor. 2735 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2736 DAG.getBasicBlock(Return))); 2737 } 2738 2739 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2740 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2741 2742 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2743 // have to do anything here to lower funclet bundles. 2744 assert(!I.hasOperandBundlesOtherThan( 2745 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2746 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2747 2748 assert(isa<InlineAsm>(I.getCalledValue()) && 2749 "Only know how to handle inlineasm callbr"); 2750 visitInlineAsm(&I); 2751 2752 // Retrieve successors. 2753 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2754 2755 // Update successor info. 2756 addSuccessorWithProb(CallBrMBB, Return); 2757 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2758 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 2759 addSuccessorWithProb(CallBrMBB, Target); 2760 } 2761 CallBrMBB->normalizeSuccProbs(); 2762 2763 // Drop into default successor. 2764 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2765 MVT::Other, getControlRoot(), 2766 DAG.getBasicBlock(Return))); 2767 } 2768 2769 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2770 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2771 } 2772 2773 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2774 assert(FuncInfo.MBB->isEHPad() && 2775 "Call to landingpad not in landing pad!"); 2776 2777 // If there aren't registers to copy the values into (e.g., during SjLj 2778 // exceptions), then don't bother to create these DAG nodes. 2779 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2780 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2781 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2782 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2783 return; 2784 2785 // If landingpad's return type is token type, we don't create DAG nodes 2786 // for its exception pointer and selector value. The extraction of exception 2787 // pointer or selector value from token type landingpads is not currently 2788 // supported. 2789 if (LP.getType()->isTokenTy()) 2790 return; 2791 2792 SmallVector<EVT, 2> ValueVTs; 2793 SDLoc dl = getCurSDLoc(); 2794 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2795 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2796 2797 // Get the two live-in registers as SDValues. The physregs have already been 2798 // copied into virtual registers. 2799 SDValue Ops[2]; 2800 if (FuncInfo.ExceptionPointerVirtReg) { 2801 Ops[0] = DAG.getZExtOrTrunc( 2802 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2803 FuncInfo.ExceptionPointerVirtReg, 2804 TLI.getPointerTy(DAG.getDataLayout())), 2805 dl, ValueVTs[0]); 2806 } else { 2807 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2808 } 2809 Ops[1] = DAG.getZExtOrTrunc( 2810 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2811 FuncInfo.ExceptionSelectorVirtReg, 2812 TLI.getPointerTy(DAG.getDataLayout())), 2813 dl, ValueVTs[1]); 2814 2815 // Merge into one. 2816 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2817 DAG.getVTList(ValueVTs), Ops); 2818 setValue(&LP, Res); 2819 } 2820 2821 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2822 #ifndef NDEBUG 2823 for (const CaseCluster &CC : Clusters) 2824 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2825 #endif 2826 2827 llvm::sort(Clusters, [](const CaseCluster &a, const CaseCluster &b) { 2828 return a.Low->getValue().slt(b.Low->getValue()); 2829 }); 2830 2831 // Merge adjacent clusters with the same destination. 2832 const unsigned N = Clusters.size(); 2833 unsigned DstIndex = 0; 2834 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2835 CaseCluster &CC = Clusters[SrcIndex]; 2836 const ConstantInt *CaseVal = CC.Low; 2837 MachineBasicBlock *Succ = CC.MBB; 2838 2839 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2840 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2841 // If this case has the same successor and is a neighbour, merge it into 2842 // the previous cluster. 2843 Clusters[DstIndex - 1].High = CaseVal; 2844 Clusters[DstIndex - 1].Prob += CC.Prob; 2845 } else { 2846 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2847 sizeof(Clusters[SrcIndex])); 2848 } 2849 } 2850 Clusters.resize(DstIndex); 2851 } 2852 2853 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2854 MachineBasicBlock *Last) { 2855 // Update JTCases. 2856 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2857 if (JTCases[i].first.HeaderBB == First) 2858 JTCases[i].first.HeaderBB = Last; 2859 2860 // Update BitTestCases. 2861 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2862 if (BitTestCases[i].Parent == First) 2863 BitTestCases[i].Parent = Last; 2864 } 2865 2866 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2867 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2868 2869 // Update machine-CFG edges with unique successors. 2870 SmallSet<BasicBlock*, 32> Done; 2871 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2872 BasicBlock *BB = I.getSuccessor(i); 2873 bool Inserted = Done.insert(BB).second; 2874 if (!Inserted) 2875 continue; 2876 2877 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2878 addSuccessorWithProb(IndirectBrMBB, Succ); 2879 } 2880 IndirectBrMBB->normalizeSuccProbs(); 2881 2882 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2883 MVT::Other, getControlRoot(), 2884 getValue(I.getAddress()))); 2885 } 2886 2887 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2888 if (!DAG.getTarget().Options.TrapUnreachable) 2889 return; 2890 2891 // We may be able to ignore unreachable behind a noreturn call. 2892 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 2893 const BasicBlock &BB = *I.getParent(); 2894 if (&I != &BB.front()) { 2895 BasicBlock::const_iterator PredI = 2896 std::prev(BasicBlock::const_iterator(&I)); 2897 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 2898 if (Call->doesNotReturn()) 2899 return; 2900 } 2901 } 2902 } 2903 2904 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2905 } 2906 2907 void SelectionDAGBuilder::visitFSub(const User &I) { 2908 // -0.0 - X --> fneg 2909 Type *Ty = I.getType(); 2910 if (isa<Constant>(I.getOperand(0)) && 2911 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2912 SDValue Op2 = getValue(I.getOperand(1)); 2913 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2914 Op2.getValueType(), Op2)); 2915 return; 2916 } 2917 2918 visitBinary(I, ISD::FSUB); 2919 } 2920 2921 /// Checks if the given instruction performs a vector reduction, in which case 2922 /// we have the freedom to alter the elements in the result as long as the 2923 /// reduction of them stays unchanged. 2924 static bool isVectorReductionOp(const User *I) { 2925 const Instruction *Inst = dyn_cast<Instruction>(I); 2926 if (!Inst || !Inst->getType()->isVectorTy()) 2927 return false; 2928 2929 auto OpCode = Inst->getOpcode(); 2930 switch (OpCode) { 2931 case Instruction::Add: 2932 case Instruction::Mul: 2933 case Instruction::And: 2934 case Instruction::Or: 2935 case Instruction::Xor: 2936 break; 2937 case Instruction::FAdd: 2938 case Instruction::FMul: 2939 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2940 if (FPOp->getFastMathFlags().isFast()) 2941 break; 2942 LLVM_FALLTHROUGH; 2943 default: 2944 return false; 2945 } 2946 2947 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 2948 // Ensure the reduction size is a power of 2. 2949 if (!isPowerOf2_32(ElemNum)) 2950 return false; 2951 2952 unsigned ElemNumToReduce = ElemNum; 2953 2954 // Do DFS search on the def-use chain from the given instruction. We only 2955 // allow four kinds of operations during the search until we reach the 2956 // instruction that extracts the first element from the vector: 2957 // 2958 // 1. The reduction operation of the same opcode as the given instruction. 2959 // 2960 // 2. PHI node. 2961 // 2962 // 3. ShuffleVector instruction together with a reduction operation that 2963 // does a partial reduction. 2964 // 2965 // 4. ExtractElement that extracts the first element from the vector, and we 2966 // stop searching the def-use chain here. 2967 // 2968 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 2969 // from 1-3 to the stack to continue the DFS. The given instruction is not 2970 // a reduction operation if we meet any other instructions other than those 2971 // listed above. 2972 2973 SmallVector<const User *, 16> UsersToVisit{Inst}; 2974 SmallPtrSet<const User *, 16> Visited; 2975 bool ReduxExtracted = false; 2976 2977 while (!UsersToVisit.empty()) { 2978 auto User = UsersToVisit.back(); 2979 UsersToVisit.pop_back(); 2980 if (!Visited.insert(User).second) 2981 continue; 2982 2983 for (const auto &U : User->users()) { 2984 auto Inst = dyn_cast<Instruction>(U); 2985 if (!Inst) 2986 return false; 2987 2988 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 2989 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2990 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast()) 2991 return false; 2992 UsersToVisit.push_back(U); 2993 } else if (const ShuffleVectorInst *ShufInst = 2994 dyn_cast<ShuffleVectorInst>(U)) { 2995 // Detect the following pattern: A ShuffleVector instruction together 2996 // with a reduction that do partial reduction on the first and second 2997 // ElemNumToReduce / 2 elements, and store the result in 2998 // ElemNumToReduce / 2 elements in another vector. 2999 3000 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 3001 if (ResultElements < ElemNum) 3002 return false; 3003 3004 if (ElemNumToReduce == 1) 3005 return false; 3006 if (!isa<UndefValue>(U->getOperand(1))) 3007 return false; 3008 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 3009 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 3010 return false; 3011 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 3012 if (ShufInst->getMaskValue(i) != -1) 3013 return false; 3014 3015 // There is only one user of this ShuffleVector instruction, which 3016 // must be a reduction operation. 3017 if (!U->hasOneUse()) 3018 return false; 3019 3020 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 3021 if (!U2 || U2->getOpcode() != OpCode) 3022 return false; 3023 3024 // Check operands of the reduction operation. 3025 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 3026 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 3027 UsersToVisit.push_back(U2); 3028 ElemNumToReduce /= 2; 3029 } else 3030 return false; 3031 } else if (isa<ExtractElementInst>(U)) { 3032 // At this moment we should have reduced all elements in the vector. 3033 if (ElemNumToReduce != 1) 3034 return false; 3035 3036 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 3037 if (!Val || !Val->isZero()) 3038 return false; 3039 3040 ReduxExtracted = true; 3041 } else 3042 return false; 3043 } 3044 } 3045 return ReduxExtracted; 3046 } 3047 3048 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3049 SDNodeFlags Flags; 3050 3051 SDValue Op = getValue(I.getOperand(0)); 3052 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3053 Op, Flags); 3054 setValue(&I, UnNodeValue); 3055 } 3056 3057 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3058 SDNodeFlags Flags; 3059 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3060 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3061 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3062 } 3063 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) { 3064 Flags.setExact(ExactOp->isExact()); 3065 } 3066 if (isVectorReductionOp(&I)) { 3067 Flags.setVectorReduction(true); 3068 LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 3069 } 3070 3071 SDValue Op1 = getValue(I.getOperand(0)); 3072 SDValue Op2 = getValue(I.getOperand(1)); 3073 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3074 Op1, Op2, Flags); 3075 setValue(&I, BinNodeValue); 3076 } 3077 3078 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3079 SDValue Op1 = getValue(I.getOperand(0)); 3080 SDValue Op2 = getValue(I.getOperand(1)); 3081 3082 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3083 Op1.getValueType(), DAG.getDataLayout()); 3084 3085 // Coerce the shift amount to the right type if we can. 3086 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3087 unsigned ShiftSize = ShiftTy.getSizeInBits(); 3088 unsigned Op2Size = Op2.getValueSizeInBits(); 3089 SDLoc DL = getCurSDLoc(); 3090 3091 // If the operand is smaller than the shift count type, promote it. 3092 if (ShiftSize > Op2Size) 3093 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 3094 3095 // If the operand is larger than the shift count type but the shift 3096 // count type has enough bits to represent any shift value, truncate 3097 // it now. This is a common case and it exposes the truncate to 3098 // optimization early. 3099 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 3100 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 3101 // Otherwise we'll need to temporarily settle for some other convenient 3102 // type. Type legalization will make adjustments once the shiftee is split. 3103 else 3104 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 3105 } 3106 3107 bool nuw = false; 3108 bool nsw = false; 3109 bool exact = false; 3110 3111 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3112 3113 if (const OverflowingBinaryOperator *OFBinOp = 3114 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3115 nuw = OFBinOp->hasNoUnsignedWrap(); 3116 nsw = OFBinOp->hasNoSignedWrap(); 3117 } 3118 if (const PossiblyExactOperator *ExactOp = 3119 dyn_cast<const PossiblyExactOperator>(&I)) 3120 exact = ExactOp->isExact(); 3121 } 3122 SDNodeFlags Flags; 3123 Flags.setExact(exact); 3124 Flags.setNoSignedWrap(nsw); 3125 Flags.setNoUnsignedWrap(nuw); 3126 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3127 Flags); 3128 setValue(&I, Res); 3129 } 3130 3131 void SelectionDAGBuilder::visitSDiv(const User &I) { 3132 SDValue Op1 = getValue(I.getOperand(0)); 3133 SDValue Op2 = getValue(I.getOperand(1)); 3134 3135 SDNodeFlags Flags; 3136 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3137 cast<PossiblyExactOperator>(&I)->isExact()); 3138 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3139 Op2, Flags)); 3140 } 3141 3142 void SelectionDAGBuilder::visitICmp(const User &I) { 3143 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3144 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3145 predicate = IC->getPredicate(); 3146 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3147 predicate = ICmpInst::Predicate(IC->getPredicate()); 3148 SDValue Op1 = getValue(I.getOperand(0)); 3149 SDValue Op2 = getValue(I.getOperand(1)); 3150 ISD::CondCode Opcode = getICmpCondCode(predicate); 3151 3152 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3153 I.getType()); 3154 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3155 } 3156 3157 void SelectionDAGBuilder::visitFCmp(const User &I) { 3158 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3159 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3160 predicate = FC->getPredicate(); 3161 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3162 predicate = FCmpInst::Predicate(FC->getPredicate()); 3163 SDValue Op1 = getValue(I.getOperand(0)); 3164 SDValue Op2 = getValue(I.getOperand(1)); 3165 3166 ISD::CondCode Condition = getFCmpCondCode(predicate); 3167 auto *FPMO = dyn_cast<FPMathOperator>(&I); 3168 if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath) 3169 Condition = getFCmpCodeWithoutNaN(Condition); 3170 3171 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3172 I.getType()); 3173 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3174 } 3175 3176 // Check if the condition of the select has one use or two users that are both 3177 // selects with the same condition. 3178 static bool hasOnlySelectUsers(const Value *Cond) { 3179 return llvm::all_of(Cond->users(), [](const Value *V) { 3180 return isa<SelectInst>(V); 3181 }); 3182 } 3183 3184 void SelectionDAGBuilder::visitSelect(const User &I) { 3185 SmallVector<EVT, 4> ValueVTs; 3186 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3187 ValueVTs); 3188 unsigned NumValues = ValueVTs.size(); 3189 if (NumValues == 0) return; 3190 3191 SmallVector<SDValue, 4> Values(NumValues); 3192 SDValue Cond = getValue(I.getOperand(0)); 3193 SDValue LHSVal = getValue(I.getOperand(1)); 3194 SDValue RHSVal = getValue(I.getOperand(2)); 3195 auto BaseOps = {Cond}; 3196 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 3197 ISD::VSELECT : ISD::SELECT; 3198 3199 // Min/max matching is only viable if all output VTs are the same. 3200 if (is_splat(ValueVTs)) { 3201 EVT VT = ValueVTs[0]; 3202 LLVMContext &Ctx = *DAG.getContext(); 3203 auto &TLI = DAG.getTargetLoweringInfo(); 3204 3205 // We care about the legality of the operation after it has been type 3206 // legalized. 3207 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 3208 VT != TLI.getTypeToTransformTo(Ctx, VT)) 3209 VT = TLI.getTypeToTransformTo(Ctx, VT); 3210 3211 // If the vselect is legal, assume we want to leave this as a vector setcc + 3212 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3213 // min/max is legal on the scalar type. 3214 bool UseScalarMinMax = VT.isVector() && 3215 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3216 3217 Value *LHS, *RHS; 3218 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3219 ISD::NodeType Opc = ISD::DELETED_NODE; 3220 switch (SPR.Flavor) { 3221 case SPF_UMAX: Opc = ISD::UMAX; break; 3222 case SPF_UMIN: Opc = ISD::UMIN; break; 3223 case SPF_SMAX: Opc = ISD::SMAX; break; 3224 case SPF_SMIN: Opc = ISD::SMIN; break; 3225 case SPF_FMINNUM: 3226 switch (SPR.NaNBehavior) { 3227 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3228 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3229 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3230 case SPNB_RETURNS_ANY: { 3231 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3232 Opc = ISD::FMINNUM; 3233 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3234 Opc = ISD::FMINIMUM; 3235 else if (UseScalarMinMax) 3236 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3237 ISD::FMINNUM : ISD::FMINIMUM; 3238 break; 3239 } 3240 } 3241 break; 3242 case SPF_FMAXNUM: 3243 switch (SPR.NaNBehavior) { 3244 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3245 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3246 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3247 case SPNB_RETURNS_ANY: 3248 3249 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3250 Opc = ISD::FMAXNUM; 3251 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3252 Opc = ISD::FMAXIMUM; 3253 else if (UseScalarMinMax) 3254 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3255 ISD::FMAXNUM : ISD::FMAXIMUM; 3256 break; 3257 } 3258 break; 3259 default: break; 3260 } 3261 3262 if (Opc != ISD::DELETED_NODE && 3263 (TLI.isOperationLegalOrCustom(Opc, VT) || 3264 (UseScalarMinMax && 3265 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3266 // If the underlying comparison instruction is used by any other 3267 // instruction, the consumed instructions won't be destroyed, so it is 3268 // not profitable to convert to a min/max. 3269 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3270 OpCode = Opc; 3271 LHSVal = getValue(LHS); 3272 RHSVal = getValue(RHS); 3273 BaseOps = {}; 3274 } 3275 } 3276 3277 for (unsigned i = 0; i != NumValues; ++i) { 3278 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3279 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3280 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3281 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 3282 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 3283 Ops); 3284 } 3285 3286 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3287 DAG.getVTList(ValueVTs), Values)); 3288 } 3289 3290 void SelectionDAGBuilder::visitTrunc(const User &I) { 3291 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3292 SDValue N = getValue(I.getOperand(0)); 3293 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3294 I.getType()); 3295 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3296 } 3297 3298 void SelectionDAGBuilder::visitZExt(const User &I) { 3299 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3300 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3301 SDValue N = getValue(I.getOperand(0)); 3302 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3303 I.getType()); 3304 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3305 } 3306 3307 void SelectionDAGBuilder::visitSExt(const User &I) { 3308 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3309 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3310 SDValue N = getValue(I.getOperand(0)); 3311 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3312 I.getType()); 3313 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3314 } 3315 3316 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3317 // FPTrunc is never a no-op cast, no need to check 3318 SDValue N = getValue(I.getOperand(0)); 3319 SDLoc dl = getCurSDLoc(); 3320 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3321 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3322 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3323 DAG.getTargetConstant( 3324 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3325 } 3326 3327 void SelectionDAGBuilder::visitFPExt(const User &I) { 3328 // FPExt is never a no-op cast, no need to check 3329 SDValue N = getValue(I.getOperand(0)); 3330 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3331 I.getType()); 3332 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3333 } 3334 3335 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3336 // FPToUI is never a no-op cast, no need to check 3337 SDValue N = getValue(I.getOperand(0)); 3338 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3339 I.getType()); 3340 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3341 } 3342 3343 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3344 // FPToSI is never a no-op cast, no need to check 3345 SDValue N = getValue(I.getOperand(0)); 3346 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3347 I.getType()); 3348 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3349 } 3350 3351 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3352 // UIToFP is never a no-op cast, no need to check 3353 SDValue N = getValue(I.getOperand(0)); 3354 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3355 I.getType()); 3356 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3357 } 3358 3359 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3360 // SIToFP is never a no-op cast, no need to check 3361 SDValue N = getValue(I.getOperand(0)); 3362 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3363 I.getType()); 3364 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3365 } 3366 3367 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3368 // What to do depends on the size of the integer and the size of the pointer. 3369 // We can either truncate, zero extend, or no-op, accordingly. 3370 SDValue N = getValue(I.getOperand(0)); 3371 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3372 I.getType()); 3373 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3374 } 3375 3376 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3377 // What to do depends on the size of the integer and the size of the pointer. 3378 // We can either truncate, zero extend, or no-op, accordingly. 3379 SDValue N = getValue(I.getOperand(0)); 3380 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3381 I.getType()); 3382 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3383 } 3384 3385 void SelectionDAGBuilder::visitBitCast(const User &I) { 3386 SDValue N = getValue(I.getOperand(0)); 3387 SDLoc dl = getCurSDLoc(); 3388 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3389 I.getType()); 3390 3391 // BitCast assures us that source and destination are the same size so this is 3392 // either a BITCAST or a no-op. 3393 if (DestVT != N.getValueType()) 3394 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3395 DestVT, N)); // convert types. 3396 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3397 // might fold any kind of constant expression to an integer constant and that 3398 // is not what we are looking for. Only recognize a bitcast of a genuine 3399 // constant integer as an opaque constant. 3400 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3401 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3402 /*isOpaque*/true)); 3403 else 3404 setValue(&I, N); // noop cast. 3405 } 3406 3407 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3408 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3409 const Value *SV = I.getOperand(0); 3410 SDValue N = getValue(SV); 3411 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3412 3413 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3414 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3415 3416 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3417 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3418 3419 setValue(&I, N); 3420 } 3421 3422 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3423 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3424 SDValue InVec = getValue(I.getOperand(0)); 3425 SDValue InVal = getValue(I.getOperand(1)); 3426 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3427 TLI.getVectorIdxTy(DAG.getDataLayout())); 3428 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3429 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3430 InVec, InVal, InIdx)); 3431 } 3432 3433 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3434 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3435 SDValue InVec = getValue(I.getOperand(0)); 3436 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3437 TLI.getVectorIdxTy(DAG.getDataLayout())); 3438 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3439 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3440 InVec, InIdx)); 3441 } 3442 3443 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3444 SDValue Src1 = getValue(I.getOperand(0)); 3445 SDValue Src2 = getValue(I.getOperand(1)); 3446 SDLoc DL = getCurSDLoc(); 3447 3448 SmallVector<int, 8> Mask; 3449 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3450 unsigned MaskNumElts = Mask.size(); 3451 3452 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3453 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3454 EVT SrcVT = Src1.getValueType(); 3455 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3456 3457 if (SrcNumElts == MaskNumElts) { 3458 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3459 return; 3460 } 3461 3462 // Normalize the shuffle vector since mask and vector length don't match. 3463 if (SrcNumElts < MaskNumElts) { 3464 // Mask is longer than the source vectors. We can use concatenate vector to 3465 // make the mask and vectors lengths match. 3466 3467 if (MaskNumElts % SrcNumElts == 0) { 3468 // Mask length is a multiple of the source vector length. 3469 // Check if the shuffle is some kind of concatenation of the input 3470 // vectors. 3471 unsigned NumConcat = MaskNumElts / SrcNumElts; 3472 bool IsConcat = true; 3473 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3474 for (unsigned i = 0; i != MaskNumElts; ++i) { 3475 int Idx = Mask[i]; 3476 if (Idx < 0) 3477 continue; 3478 // Ensure the indices in each SrcVT sized piece are sequential and that 3479 // the same source is used for the whole piece. 3480 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3481 (ConcatSrcs[i / SrcNumElts] >= 0 && 3482 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3483 IsConcat = false; 3484 break; 3485 } 3486 // Remember which source this index came from. 3487 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3488 } 3489 3490 // The shuffle is concatenating multiple vectors together. Just emit 3491 // a CONCAT_VECTORS operation. 3492 if (IsConcat) { 3493 SmallVector<SDValue, 8> ConcatOps; 3494 for (auto Src : ConcatSrcs) { 3495 if (Src < 0) 3496 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3497 else if (Src == 0) 3498 ConcatOps.push_back(Src1); 3499 else 3500 ConcatOps.push_back(Src2); 3501 } 3502 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3503 return; 3504 } 3505 } 3506 3507 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3508 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3509 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3510 PaddedMaskNumElts); 3511 3512 // Pad both vectors with undefs to make them the same length as the mask. 3513 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3514 3515 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3516 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3517 MOps1[0] = Src1; 3518 MOps2[0] = Src2; 3519 3520 Src1 = Src1.isUndef() 3521 ? DAG.getUNDEF(PaddedVT) 3522 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3523 Src2 = Src2.isUndef() 3524 ? DAG.getUNDEF(PaddedVT) 3525 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3526 3527 // Readjust mask for new input vector length. 3528 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3529 for (unsigned i = 0; i != MaskNumElts; ++i) { 3530 int Idx = Mask[i]; 3531 if (Idx >= (int)SrcNumElts) 3532 Idx -= SrcNumElts - PaddedMaskNumElts; 3533 MappedOps[i] = Idx; 3534 } 3535 3536 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3537 3538 // If the concatenated vector was padded, extract a subvector with the 3539 // correct number of elements. 3540 if (MaskNumElts != PaddedMaskNumElts) 3541 Result = DAG.getNode( 3542 ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3543 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3544 3545 setValue(&I, Result); 3546 return; 3547 } 3548 3549 if (SrcNumElts > MaskNumElts) { 3550 // Analyze the access pattern of the vector to see if we can extract 3551 // two subvectors and do the shuffle. 3552 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3553 bool CanExtract = true; 3554 for (int Idx : Mask) { 3555 unsigned Input = 0; 3556 if (Idx < 0) 3557 continue; 3558 3559 if (Idx >= (int)SrcNumElts) { 3560 Input = 1; 3561 Idx -= SrcNumElts; 3562 } 3563 3564 // If all the indices come from the same MaskNumElts sized portion of 3565 // the sources we can use extract. Also make sure the extract wouldn't 3566 // extract past the end of the source. 3567 int NewStartIdx = alignDown(Idx, MaskNumElts); 3568 if (NewStartIdx + MaskNumElts > SrcNumElts || 3569 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3570 CanExtract = false; 3571 // Make sure we always update StartIdx as we use it to track if all 3572 // elements are undef. 3573 StartIdx[Input] = NewStartIdx; 3574 } 3575 3576 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3577 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3578 return; 3579 } 3580 if (CanExtract) { 3581 // Extract appropriate subvector and generate a vector shuffle 3582 for (unsigned Input = 0; Input < 2; ++Input) { 3583 SDValue &Src = Input == 0 ? Src1 : Src2; 3584 if (StartIdx[Input] < 0) 3585 Src = DAG.getUNDEF(VT); 3586 else { 3587 Src = DAG.getNode( 3588 ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3589 DAG.getConstant(StartIdx[Input], DL, 3590 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3591 } 3592 } 3593 3594 // Calculate new mask. 3595 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3596 for (int &Idx : MappedOps) { 3597 if (Idx >= (int)SrcNumElts) 3598 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3599 else if (Idx >= 0) 3600 Idx -= StartIdx[0]; 3601 } 3602 3603 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3604 return; 3605 } 3606 } 3607 3608 // We can't use either concat vectors or extract subvectors so fall back to 3609 // replacing the shuffle with extract and build vector. 3610 // to insert and build vector. 3611 EVT EltVT = VT.getVectorElementType(); 3612 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3613 SmallVector<SDValue,8> Ops; 3614 for (int Idx : Mask) { 3615 SDValue Res; 3616 3617 if (Idx < 0) { 3618 Res = DAG.getUNDEF(EltVT); 3619 } else { 3620 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3621 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3622 3623 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3624 EltVT, Src, DAG.getConstant(Idx, DL, IdxVT)); 3625 } 3626 3627 Ops.push_back(Res); 3628 } 3629 3630 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3631 } 3632 3633 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3634 ArrayRef<unsigned> Indices; 3635 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3636 Indices = IV->getIndices(); 3637 else 3638 Indices = cast<ConstantExpr>(&I)->getIndices(); 3639 3640 const Value *Op0 = I.getOperand(0); 3641 const Value *Op1 = I.getOperand(1); 3642 Type *AggTy = I.getType(); 3643 Type *ValTy = Op1->getType(); 3644 bool IntoUndef = isa<UndefValue>(Op0); 3645 bool FromUndef = isa<UndefValue>(Op1); 3646 3647 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3648 3649 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3650 SmallVector<EVT, 4> AggValueVTs; 3651 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3652 SmallVector<EVT, 4> ValValueVTs; 3653 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3654 3655 unsigned NumAggValues = AggValueVTs.size(); 3656 unsigned NumValValues = ValValueVTs.size(); 3657 SmallVector<SDValue, 4> Values(NumAggValues); 3658 3659 // Ignore an insertvalue that produces an empty object 3660 if (!NumAggValues) { 3661 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3662 return; 3663 } 3664 3665 SDValue Agg = getValue(Op0); 3666 unsigned i = 0; 3667 // Copy the beginning value(s) from the original aggregate. 3668 for (; i != LinearIndex; ++i) 3669 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3670 SDValue(Agg.getNode(), Agg.getResNo() + i); 3671 // Copy values from the inserted value(s). 3672 if (NumValValues) { 3673 SDValue Val = getValue(Op1); 3674 for (; i != LinearIndex + NumValValues; ++i) 3675 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3676 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3677 } 3678 // Copy remaining value(s) from the original aggregate. 3679 for (; i != NumAggValues; ++i) 3680 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3681 SDValue(Agg.getNode(), Agg.getResNo() + i); 3682 3683 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3684 DAG.getVTList(AggValueVTs), Values)); 3685 } 3686 3687 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3688 ArrayRef<unsigned> Indices; 3689 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3690 Indices = EV->getIndices(); 3691 else 3692 Indices = cast<ConstantExpr>(&I)->getIndices(); 3693 3694 const Value *Op0 = I.getOperand(0); 3695 Type *AggTy = Op0->getType(); 3696 Type *ValTy = I.getType(); 3697 bool OutOfUndef = isa<UndefValue>(Op0); 3698 3699 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3700 3701 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3702 SmallVector<EVT, 4> ValValueVTs; 3703 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3704 3705 unsigned NumValValues = ValValueVTs.size(); 3706 3707 // Ignore a extractvalue that produces an empty object 3708 if (!NumValValues) { 3709 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3710 return; 3711 } 3712 3713 SmallVector<SDValue, 4> Values(NumValValues); 3714 3715 SDValue Agg = getValue(Op0); 3716 // Copy out the selected value(s). 3717 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3718 Values[i - LinearIndex] = 3719 OutOfUndef ? 3720 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3721 SDValue(Agg.getNode(), Agg.getResNo() + i); 3722 3723 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3724 DAG.getVTList(ValValueVTs), Values)); 3725 } 3726 3727 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3728 Value *Op0 = I.getOperand(0); 3729 // Note that the pointer operand may be a vector of pointers. Take the scalar 3730 // element which holds a pointer. 3731 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3732 SDValue N = getValue(Op0); 3733 SDLoc dl = getCurSDLoc(); 3734 3735 // Normalize Vector GEP - all scalar operands should be converted to the 3736 // splat vector. 3737 unsigned VectorWidth = I.getType()->isVectorTy() ? 3738 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 3739 3740 if (VectorWidth && !N.getValueType().isVector()) { 3741 LLVMContext &Context = *DAG.getContext(); 3742 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); 3743 N = DAG.getSplatBuildVector(VT, dl, N); 3744 } 3745 3746 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3747 GTI != E; ++GTI) { 3748 const Value *Idx = GTI.getOperand(); 3749 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3750 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3751 if (Field) { 3752 // N = N + Offset 3753 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3754 3755 // In an inbounds GEP with an offset that is nonnegative even when 3756 // interpreted as signed, assume there is no unsigned overflow. 3757 SDNodeFlags Flags; 3758 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3759 Flags.setNoUnsignedWrap(true); 3760 3761 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3762 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3763 } 3764 } else { 3765 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3766 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3767 APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3768 3769 // If this is a scalar constant or a splat vector of constants, 3770 // handle it quickly. 3771 const auto *CI = dyn_cast<ConstantInt>(Idx); 3772 if (!CI && isa<ConstantDataVector>(Idx) && 3773 cast<ConstantDataVector>(Idx)->getSplatValue()) 3774 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3775 3776 if (CI) { 3777 if (CI->isZero()) 3778 continue; 3779 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize); 3780 LLVMContext &Context = *DAG.getContext(); 3781 SDValue OffsVal = VectorWidth ? 3782 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) : 3783 DAG.getConstant(Offs, dl, IdxTy); 3784 3785 // In an inbouds GEP with an offset that is nonnegative even when 3786 // interpreted as signed, assume there is no unsigned overflow. 3787 SDNodeFlags Flags; 3788 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3789 Flags.setNoUnsignedWrap(true); 3790 3791 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3792 continue; 3793 } 3794 3795 // N = N + Idx * ElementSize; 3796 SDValue IdxN = getValue(Idx); 3797 3798 if (!IdxN.getValueType().isVector() && VectorWidth) { 3799 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth); 3800 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3801 } 3802 3803 // If the index is smaller or larger than intptr_t, truncate or extend 3804 // it. 3805 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3806 3807 // If this is a multiply by a power of two, turn it into a shl 3808 // immediately. This is a very common case. 3809 if (ElementSize != 1) { 3810 if (ElementSize.isPowerOf2()) { 3811 unsigned Amt = ElementSize.logBase2(); 3812 IdxN = DAG.getNode(ISD::SHL, dl, 3813 N.getValueType(), IdxN, 3814 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3815 } else { 3816 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3817 IdxN = DAG.getNode(ISD::MUL, dl, 3818 N.getValueType(), IdxN, Scale); 3819 } 3820 } 3821 3822 N = DAG.getNode(ISD::ADD, dl, 3823 N.getValueType(), N, IdxN); 3824 } 3825 } 3826 3827 setValue(&I, N); 3828 } 3829 3830 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3831 // If this is a fixed sized alloca in the entry block of the function, 3832 // allocate it statically on the stack. 3833 if (FuncInfo.StaticAllocaMap.count(&I)) 3834 return; // getValue will auto-populate this. 3835 3836 SDLoc dl = getCurSDLoc(); 3837 Type *Ty = I.getAllocatedType(); 3838 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3839 auto &DL = DAG.getDataLayout(); 3840 uint64_t TySize = DL.getTypeAllocSize(Ty); 3841 unsigned Align = 3842 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3843 3844 SDValue AllocSize = getValue(I.getArraySize()); 3845 3846 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3847 if (AllocSize.getValueType() != IntPtr) 3848 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3849 3850 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3851 AllocSize, 3852 DAG.getConstant(TySize, dl, IntPtr)); 3853 3854 // Handle alignment. If the requested alignment is less than or equal to 3855 // the stack alignment, ignore it. If the size is greater than or equal to 3856 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3857 unsigned StackAlign = 3858 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3859 if (Align <= StackAlign) 3860 Align = 0; 3861 3862 // Round the size of the allocation up to the stack alignment size 3863 // by add SA-1 to the size. This doesn't overflow because we're computing 3864 // an address inside an alloca. 3865 SDNodeFlags Flags; 3866 Flags.setNoUnsignedWrap(true); 3867 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 3868 DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags); 3869 3870 // Mask out the low bits for alignment purposes. 3871 AllocSize = 3872 DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 3873 DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr)); 3874 3875 SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)}; 3876 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3877 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3878 setValue(&I, DSA); 3879 DAG.setRoot(DSA.getValue(1)); 3880 3881 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3882 } 3883 3884 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3885 if (I.isAtomic()) 3886 return visitAtomicLoad(I); 3887 3888 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3889 const Value *SV = I.getOperand(0); 3890 if (TLI.supportSwiftError()) { 3891 // Swifterror values can come from either a function parameter with 3892 // swifterror attribute or an alloca with swifterror attribute. 3893 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3894 if (Arg->hasSwiftErrorAttr()) 3895 return visitLoadFromSwiftError(I); 3896 } 3897 3898 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3899 if (Alloca->isSwiftError()) 3900 return visitLoadFromSwiftError(I); 3901 } 3902 } 3903 3904 SDValue Ptr = getValue(SV); 3905 3906 Type *Ty = I.getType(); 3907 3908 bool isVolatile = I.isVolatile(); 3909 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3910 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 3911 bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout()); 3912 unsigned Alignment = I.getAlignment(); 3913 3914 AAMDNodes AAInfo; 3915 I.getAAMetadata(AAInfo); 3916 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3917 3918 SmallVector<EVT, 4> ValueVTs; 3919 SmallVector<uint64_t, 4> Offsets; 3920 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3921 unsigned NumValues = ValueVTs.size(); 3922 if (NumValues == 0) 3923 return; 3924 3925 SDValue Root; 3926 bool ConstantMemory = false; 3927 if (isVolatile || NumValues > MaxParallelChains) 3928 // Serialize volatile loads with other side effects. 3929 Root = getRoot(); 3930 else if (AA && 3931 AA->pointsToConstantMemory(MemoryLocation( 3932 SV, 3933 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 3934 AAInfo))) { 3935 // Do not serialize (non-volatile) loads of constant memory with anything. 3936 Root = DAG.getEntryNode(); 3937 ConstantMemory = true; 3938 } else { 3939 // Do not serialize non-volatile loads against each other. 3940 Root = DAG.getRoot(); 3941 } 3942 3943 SDLoc dl = getCurSDLoc(); 3944 3945 if (isVolatile) 3946 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3947 3948 // An aggregate load cannot wrap around the address space, so offsets to its 3949 // parts don't wrap either. 3950 SDNodeFlags Flags; 3951 Flags.setNoUnsignedWrap(true); 3952 3953 SmallVector<SDValue, 4> Values(NumValues); 3954 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3955 EVT PtrVT = Ptr.getValueType(); 3956 unsigned ChainI = 0; 3957 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3958 // Serializing loads here may result in excessive register pressure, and 3959 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3960 // could recover a bit by hoisting nodes upward in the chain by recognizing 3961 // they are side-effect free or do not alias. The optimizer should really 3962 // avoid this case by converting large object/array copies to llvm.memcpy 3963 // (MaxParallelChains should always remain as failsafe). 3964 if (ChainI == MaxParallelChains) { 3965 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3966 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3967 makeArrayRef(Chains.data(), ChainI)); 3968 Root = Chain; 3969 ChainI = 0; 3970 } 3971 SDValue A = DAG.getNode(ISD::ADD, dl, 3972 PtrVT, Ptr, 3973 DAG.getConstant(Offsets[i], dl, PtrVT), 3974 Flags); 3975 auto MMOFlags = MachineMemOperand::MONone; 3976 if (isVolatile) 3977 MMOFlags |= MachineMemOperand::MOVolatile; 3978 if (isNonTemporal) 3979 MMOFlags |= MachineMemOperand::MONonTemporal; 3980 if (isInvariant) 3981 MMOFlags |= MachineMemOperand::MOInvariant; 3982 if (isDereferenceable) 3983 MMOFlags |= MachineMemOperand::MODereferenceable; 3984 MMOFlags |= TLI.getMMOFlags(I); 3985 3986 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A, 3987 MachinePointerInfo(SV, Offsets[i]), Alignment, 3988 MMOFlags, AAInfo, Ranges); 3989 3990 Values[i] = L; 3991 Chains[ChainI] = L.getValue(1); 3992 } 3993 3994 if (!ConstantMemory) { 3995 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3996 makeArrayRef(Chains.data(), ChainI)); 3997 if (isVolatile) 3998 DAG.setRoot(Chain); 3999 else 4000 PendingLoads.push_back(Chain); 4001 } 4002 4003 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4004 DAG.getVTList(ValueVTs), Values)); 4005 } 4006 4007 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4008 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4009 "call visitStoreToSwiftError when backend supports swifterror"); 4010 4011 SmallVector<EVT, 4> ValueVTs; 4012 SmallVector<uint64_t, 4> Offsets; 4013 const Value *SrcV = I.getOperand(0); 4014 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4015 SrcV->getType(), ValueVTs, &Offsets); 4016 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4017 "expect a single EVT for swifterror"); 4018 4019 SDValue Src = getValue(SrcV); 4020 // Create a virtual register, then update the virtual register. 4021 unsigned VReg; bool CreatedVReg; 4022 std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I); 4023 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4024 // Chain can be getRoot or getControlRoot. 4025 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4026 SDValue(Src.getNode(), Src.getResNo())); 4027 DAG.setRoot(CopyNode); 4028 if (CreatedVReg) 4029 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg); 4030 } 4031 4032 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4033 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4034 "call visitLoadFromSwiftError when backend supports swifterror"); 4035 4036 assert(!I.isVolatile() && 4037 I.getMetadata(LLVMContext::MD_nontemporal) == nullptr && 4038 I.getMetadata(LLVMContext::MD_invariant_load) == nullptr && 4039 "Support volatile, non temporal, invariant for load_from_swift_error"); 4040 4041 const Value *SV = I.getOperand(0); 4042 Type *Ty = I.getType(); 4043 AAMDNodes AAInfo; 4044 I.getAAMetadata(AAInfo); 4045 assert( 4046 (!AA || 4047 !AA->pointsToConstantMemory(MemoryLocation( 4048 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4049 AAInfo))) && 4050 "load_from_swift_error should not be constant memory"); 4051 4052 SmallVector<EVT, 4> ValueVTs; 4053 SmallVector<uint64_t, 4> Offsets; 4054 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4055 ValueVTs, &Offsets); 4056 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4057 "expect a single EVT for swifterror"); 4058 4059 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4060 SDValue L = DAG.getCopyFromReg( 4061 getRoot(), getCurSDLoc(), 4062 FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first, 4063 ValueVTs[0]); 4064 4065 setValue(&I, L); 4066 } 4067 4068 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4069 if (I.isAtomic()) 4070 return visitAtomicStore(I); 4071 4072 const Value *SrcV = I.getOperand(0); 4073 const Value *PtrV = I.getOperand(1); 4074 4075 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4076 if (TLI.supportSwiftError()) { 4077 // Swifterror values can come from either a function parameter with 4078 // swifterror attribute or an alloca with swifterror attribute. 4079 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4080 if (Arg->hasSwiftErrorAttr()) 4081 return visitStoreToSwiftError(I); 4082 } 4083 4084 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4085 if (Alloca->isSwiftError()) 4086 return visitStoreToSwiftError(I); 4087 } 4088 } 4089 4090 SmallVector<EVT, 4> ValueVTs; 4091 SmallVector<uint64_t, 4> Offsets; 4092 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4093 SrcV->getType(), ValueVTs, &Offsets); 4094 unsigned NumValues = ValueVTs.size(); 4095 if (NumValues == 0) 4096 return; 4097 4098 // Get the lowered operands. Note that we do this after 4099 // checking if NumResults is zero, because with zero results 4100 // the operands won't have values in the map. 4101 SDValue Src = getValue(SrcV); 4102 SDValue Ptr = getValue(PtrV); 4103 4104 SDValue Root = getRoot(); 4105 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4106 SDLoc dl = getCurSDLoc(); 4107 EVT PtrVT = Ptr.getValueType(); 4108 unsigned Alignment = I.getAlignment(); 4109 AAMDNodes AAInfo; 4110 I.getAAMetadata(AAInfo); 4111 4112 auto MMOFlags = MachineMemOperand::MONone; 4113 if (I.isVolatile()) 4114 MMOFlags |= MachineMemOperand::MOVolatile; 4115 if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr) 4116 MMOFlags |= MachineMemOperand::MONonTemporal; 4117 MMOFlags |= TLI.getMMOFlags(I); 4118 4119 // An aggregate load cannot wrap around the address space, so offsets to its 4120 // parts don't wrap either. 4121 SDNodeFlags Flags; 4122 Flags.setNoUnsignedWrap(true); 4123 4124 unsigned ChainI = 0; 4125 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4126 // See visitLoad comments. 4127 if (ChainI == MaxParallelChains) { 4128 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4129 makeArrayRef(Chains.data(), ChainI)); 4130 Root = Chain; 4131 ChainI = 0; 4132 } 4133 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 4134 DAG.getConstant(Offsets[i], dl, PtrVT), Flags); 4135 SDValue St = DAG.getStore( 4136 Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add, 4137 MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo); 4138 Chains[ChainI] = St; 4139 } 4140 4141 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4142 makeArrayRef(Chains.data(), ChainI)); 4143 DAG.setRoot(StoreNode); 4144 } 4145 4146 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4147 bool IsCompressing) { 4148 SDLoc sdl = getCurSDLoc(); 4149 4150 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4151 unsigned& Alignment) { 4152 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4153 Src0 = I.getArgOperand(0); 4154 Ptr = I.getArgOperand(1); 4155 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 4156 Mask = I.getArgOperand(3); 4157 }; 4158 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4159 unsigned& Alignment) { 4160 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4161 Src0 = I.getArgOperand(0); 4162 Ptr = I.getArgOperand(1); 4163 Mask = I.getArgOperand(2); 4164 Alignment = 0; 4165 }; 4166 4167 Value *PtrOperand, *MaskOperand, *Src0Operand; 4168 unsigned Alignment; 4169 if (IsCompressing) 4170 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4171 else 4172 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4173 4174 SDValue Ptr = getValue(PtrOperand); 4175 SDValue Src0 = getValue(Src0Operand); 4176 SDValue Mask = getValue(MaskOperand); 4177 4178 EVT VT = Src0.getValueType(); 4179 if (!Alignment) 4180 Alignment = DAG.getEVTAlignment(VT); 4181 4182 AAMDNodes AAInfo; 4183 I.getAAMetadata(AAInfo); 4184 4185 MachineMemOperand *MMO = 4186 DAG.getMachineFunction(). 4187 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4188 MachineMemOperand::MOStore, VT.getStoreSize(), 4189 Alignment, AAInfo); 4190 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 4191 MMO, false /* Truncating */, 4192 IsCompressing); 4193 DAG.setRoot(StoreNode); 4194 setValue(&I, StoreNode); 4195 } 4196 4197 // Get a uniform base for the Gather/Scatter intrinsic. 4198 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4199 // We try to represent it as a base pointer + vector of indices. 4200 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4201 // The first operand of the GEP may be a single pointer or a vector of pointers 4202 // Example: 4203 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4204 // or 4205 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4206 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4207 // 4208 // When the first GEP operand is a single pointer - it is the uniform base we 4209 // are looking for. If first operand of the GEP is a splat vector - we 4210 // extract the splat value and use it as a uniform base. 4211 // In all other cases the function returns 'false'. 4212 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index, 4213 SDValue &Scale, SelectionDAGBuilder* SDB) { 4214 SelectionDAG& DAG = SDB->DAG; 4215 LLVMContext &Context = *DAG.getContext(); 4216 4217 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 4218 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4219 if (!GEP) 4220 return false; 4221 4222 const Value *GEPPtr = GEP->getPointerOperand(); 4223 if (!GEPPtr->getType()->isVectorTy()) 4224 Ptr = GEPPtr; 4225 else if (!(Ptr = getSplatValue(GEPPtr))) 4226 return false; 4227 4228 unsigned FinalIndex = GEP->getNumOperands() - 1; 4229 Value *IndexVal = GEP->getOperand(FinalIndex); 4230 4231 // Ensure all the other indices are 0. 4232 for (unsigned i = 1; i < FinalIndex; ++i) { 4233 auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i)); 4234 if (!C || !C->isZero()) 4235 return false; 4236 } 4237 4238 // The operands of the GEP may be defined in another basic block. 4239 // In this case we'll not find nodes for the operands. 4240 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 4241 return false; 4242 4243 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4244 const DataLayout &DL = DAG.getDataLayout(); 4245 Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()), 4246 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4247 Base = SDB->getValue(Ptr); 4248 Index = SDB->getValue(IndexVal); 4249 4250 if (!Index.getValueType().isVector()) { 4251 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 4252 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 4253 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 4254 } 4255 return true; 4256 } 4257 4258 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4259 SDLoc sdl = getCurSDLoc(); 4260 4261 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 4262 const Value *Ptr = I.getArgOperand(1); 4263 SDValue Src0 = getValue(I.getArgOperand(0)); 4264 SDValue Mask = getValue(I.getArgOperand(3)); 4265 EVT VT = Src0.getValueType(); 4266 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 4267 if (!Alignment) 4268 Alignment = DAG.getEVTAlignment(VT); 4269 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4270 4271 AAMDNodes AAInfo; 4272 I.getAAMetadata(AAInfo); 4273 4274 SDValue Base; 4275 SDValue Index; 4276 SDValue Scale; 4277 const Value *BasePtr = Ptr; 4278 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); 4279 4280 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 4281 MachineMemOperand *MMO = DAG.getMachineFunction(). 4282 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 4283 MachineMemOperand::MOStore, VT.getStoreSize(), 4284 Alignment, AAInfo); 4285 if (!UniformBase) { 4286 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4287 Index = getValue(Ptr); 4288 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4289 } 4290 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale }; 4291 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4292 Ops, MMO); 4293 DAG.setRoot(Scatter); 4294 setValue(&I, Scatter); 4295 } 4296 4297 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4298 SDLoc sdl = getCurSDLoc(); 4299 4300 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4301 unsigned& Alignment) { 4302 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4303 Ptr = I.getArgOperand(0); 4304 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4305 Mask = I.getArgOperand(2); 4306 Src0 = I.getArgOperand(3); 4307 }; 4308 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4309 unsigned& Alignment) { 4310 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4311 Ptr = I.getArgOperand(0); 4312 Alignment = 0; 4313 Mask = I.getArgOperand(1); 4314 Src0 = I.getArgOperand(2); 4315 }; 4316 4317 Value *PtrOperand, *MaskOperand, *Src0Operand; 4318 unsigned Alignment; 4319 if (IsExpanding) 4320 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4321 else 4322 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4323 4324 SDValue Ptr = getValue(PtrOperand); 4325 SDValue Src0 = getValue(Src0Operand); 4326 SDValue Mask = getValue(MaskOperand); 4327 4328 EVT VT = Src0.getValueType(); 4329 if (!Alignment) 4330 Alignment = DAG.getEVTAlignment(VT); 4331 4332 AAMDNodes AAInfo; 4333 I.getAAMetadata(AAInfo); 4334 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4335 4336 // Do not serialize masked loads of constant memory with anything. 4337 bool AddToChain = 4338 !AA || !AA->pointsToConstantMemory(MemoryLocation( 4339 PtrOperand, 4340 LocationSize::precise( 4341 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4342 AAInfo)); 4343 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4344 4345 MachineMemOperand *MMO = 4346 DAG.getMachineFunction(). 4347 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4348 MachineMemOperand::MOLoad, VT.getStoreSize(), 4349 Alignment, AAInfo, Ranges); 4350 4351 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 4352 ISD::NON_EXTLOAD, IsExpanding); 4353 if (AddToChain) 4354 PendingLoads.push_back(Load.getValue(1)); 4355 setValue(&I, Load); 4356 } 4357 4358 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4359 SDLoc sdl = getCurSDLoc(); 4360 4361 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4362 const Value *Ptr = I.getArgOperand(0); 4363 SDValue Src0 = getValue(I.getArgOperand(3)); 4364 SDValue Mask = getValue(I.getArgOperand(2)); 4365 4366 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4367 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4368 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 4369 if (!Alignment) 4370 Alignment = DAG.getEVTAlignment(VT); 4371 4372 AAMDNodes AAInfo; 4373 I.getAAMetadata(AAInfo); 4374 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4375 4376 SDValue Root = DAG.getRoot(); 4377 SDValue Base; 4378 SDValue Index; 4379 SDValue Scale; 4380 const Value *BasePtr = Ptr; 4381 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); 4382 bool ConstantMemory = false; 4383 if (UniformBase && AA && 4384 AA->pointsToConstantMemory( 4385 MemoryLocation(BasePtr, 4386 LocationSize::precise( 4387 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4388 AAInfo))) { 4389 // Do not serialize (non-volatile) loads of constant memory with anything. 4390 Root = DAG.getEntryNode(); 4391 ConstantMemory = true; 4392 } 4393 4394 MachineMemOperand *MMO = 4395 DAG.getMachineFunction(). 4396 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 4397 MachineMemOperand::MOLoad, VT.getStoreSize(), 4398 Alignment, AAInfo, Ranges); 4399 4400 if (!UniformBase) { 4401 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4402 Index = getValue(Ptr); 4403 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4404 } 4405 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4406 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4407 Ops, MMO); 4408 4409 SDValue OutChain = Gather.getValue(1); 4410 if (!ConstantMemory) 4411 PendingLoads.push_back(OutChain); 4412 setValue(&I, Gather); 4413 } 4414 4415 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4416 SDLoc dl = getCurSDLoc(); 4417 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4418 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4419 SyncScope::ID SSID = I.getSyncScopeID(); 4420 4421 SDValue InChain = getRoot(); 4422 4423 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4424 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4425 4426 auto Alignment = DAG.getEVTAlignment(MemVT); 4427 4428 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 4429 if (I.isVolatile()) 4430 Flags |= MachineMemOperand::MOVolatile; 4431 Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I); 4432 4433 MachineFunction &MF = DAG.getMachineFunction(); 4434 MachineMemOperand *MMO = 4435 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4436 Flags, MemVT.getStoreSize(), Alignment, 4437 AAMDNodes(), nullptr, SSID, SuccessOrdering, 4438 FailureOrdering); 4439 4440 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4441 dl, MemVT, VTs, InChain, 4442 getValue(I.getPointerOperand()), 4443 getValue(I.getCompareOperand()), 4444 getValue(I.getNewValOperand()), MMO); 4445 4446 SDValue OutChain = L.getValue(2); 4447 4448 setValue(&I, L); 4449 DAG.setRoot(OutChain); 4450 } 4451 4452 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4453 SDLoc dl = getCurSDLoc(); 4454 ISD::NodeType NT; 4455 switch (I.getOperation()) { 4456 default: llvm_unreachable("Unknown atomicrmw operation"); 4457 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4458 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4459 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4460 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4461 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4462 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4463 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4464 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4465 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4466 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4467 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4468 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4469 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4470 } 4471 AtomicOrdering Ordering = I.getOrdering(); 4472 SyncScope::ID SSID = I.getSyncScopeID(); 4473 4474 SDValue InChain = getRoot(); 4475 4476 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4477 auto Alignment = DAG.getEVTAlignment(MemVT); 4478 4479 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 4480 if (I.isVolatile()) 4481 Flags |= MachineMemOperand::MOVolatile; 4482 Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I); 4483 4484 MachineFunction &MF = DAG.getMachineFunction(); 4485 MachineMemOperand *MMO = 4486 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags, 4487 MemVT.getStoreSize(), Alignment, AAMDNodes(), 4488 nullptr, SSID, Ordering); 4489 4490 SDValue L = 4491 DAG.getAtomic(NT, dl, MemVT, InChain, 4492 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4493 MMO); 4494 4495 SDValue OutChain = L.getValue(1); 4496 4497 setValue(&I, L); 4498 DAG.setRoot(OutChain); 4499 } 4500 4501 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4502 SDLoc dl = getCurSDLoc(); 4503 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4504 SDValue Ops[3]; 4505 Ops[0] = getRoot(); 4506 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl, 4507 TLI.getFenceOperandTy(DAG.getDataLayout())); 4508 Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl, 4509 TLI.getFenceOperandTy(DAG.getDataLayout())); 4510 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4511 } 4512 4513 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4514 SDLoc dl = getCurSDLoc(); 4515 AtomicOrdering Order = I.getOrdering(); 4516 SyncScope::ID SSID = I.getSyncScopeID(); 4517 4518 SDValue InChain = getRoot(); 4519 4520 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4521 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4522 4523 if (!TLI.supportsUnalignedAtomics() && 4524 I.getAlignment() < VT.getStoreSize()) 4525 report_fatal_error("Cannot generate unaligned atomic load"); 4526 4527 auto Flags = MachineMemOperand::MOLoad; 4528 if (I.isVolatile()) 4529 Flags |= MachineMemOperand::MOVolatile; 4530 Flags |= TLI.getMMOFlags(I); 4531 4532 MachineMemOperand *MMO = 4533 DAG.getMachineFunction(). 4534 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4535 Flags, VT.getStoreSize(), 4536 I.getAlignment() ? I.getAlignment() : 4537 DAG.getEVTAlignment(VT), 4538 AAMDNodes(), nullptr, SSID, Order); 4539 4540 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4541 SDValue L = 4542 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 4543 getValue(I.getPointerOperand()), MMO); 4544 4545 SDValue OutChain = L.getValue(1); 4546 4547 setValue(&I, L); 4548 DAG.setRoot(OutChain); 4549 } 4550 4551 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4552 SDLoc dl = getCurSDLoc(); 4553 4554 AtomicOrdering Ordering = I.getOrdering(); 4555 SyncScope::ID SSID = I.getSyncScopeID(); 4556 4557 SDValue InChain = getRoot(); 4558 4559 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4560 EVT VT = 4561 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4562 4563 if (I.getAlignment() < VT.getStoreSize()) 4564 report_fatal_error("Cannot generate unaligned atomic store"); 4565 4566 auto Flags = MachineMemOperand::MOStore; 4567 if (I.isVolatile()) 4568 Flags |= MachineMemOperand::MOVolatile; 4569 Flags |= TLI.getMMOFlags(I); 4570 4571 MachineFunction &MF = DAG.getMachineFunction(); 4572 MachineMemOperand *MMO = 4573 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags, 4574 VT.getStoreSize(), I.getAlignment(), AAMDNodes(), 4575 nullptr, SSID, Ordering); 4576 SDValue OutChain = 4577 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, InChain, 4578 getValue(I.getPointerOperand()), getValue(I.getValueOperand()), 4579 MMO); 4580 4581 4582 DAG.setRoot(OutChain); 4583 } 4584 4585 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4586 /// node. 4587 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4588 unsigned Intrinsic) { 4589 // Ignore the callsite's attributes. A specific call site may be marked with 4590 // readnone, but the lowering code will expect the chain based on the 4591 // definition. 4592 const Function *F = I.getCalledFunction(); 4593 bool HasChain = !F->doesNotAccessMemory(); 4594 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4595 4596 // Build the operand list. 4597 SmallVector<SDValue, 8> Ops; 4598 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4599 if (OnlyLoad) { 4600 // We don't need to serialize loads against other loads. 4601 Ops.push_back(DAG.getRoot()); 4602 } else { 4603 Ops.push_back(getRoot()); 4604 } 4605 } 4606 4607 // Info is set by getTgtMemInstrinsic 4608 TargetLowering::IntrinsicInfo Info; 4609 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4610 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4611 DAG.getMachineFunction(), 4612 Intrinsic); 4613 4614 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4615 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4616 Info.opc == ISD::INTRINSIC_W_CHAIN) 4617 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4618 TLI.getPointerTy(DAG.getDataLayout()))); 4619 4620 // Add all operands of the call to the operand list. 4621 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4622 SDValue Op = getValue(I.getArgOperand(i)); 4623 Ops.push_back(Op); 4624 } 4625 4626 SmallVector<EVT, 4> ValueVTs; 4627 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4628 4629 if (HasChain) 4630 ValueVTs.push_back(MVT::Other); 4631 4632 SDVTList VTs = DAG.getVTList(ValueVTs); 4633 4634 // Create the node. 4635 SDValue Result; 4636 if (IsTgtIntrinsic) { 4637 // This is target intrinsic that touches memory 4638 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, 4639 Ops, Info.memVT, 4640 MachinePointerInfo(Info.ptrVal, Info.offset), Info.align, 4641 Info.flags, Info.size); 4642 } else if (!HasChain) { 4643 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4644 } else if (!I.getType()->isVoidTy()) { 4645 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4646 } else { 4647 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4648 } 4649 4650 if (HasChain) { 4651 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4652 if (OnlyLoad) 4653 PendingLoads.push_back(Chain); 4654 else 4655 DAG.setRoot(Chain); 4656 } 4657 4658 if (!I.getType()->isVoidTy()) { 4659 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4660 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4661 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4662 } else 4663 Result = lowerRangeToAssertZExt(DAG, I, Result); 4664 4665 setValue(&I, Result); 4666 } 4667 } 4668 4669 /// GetSignificand - Get the significand and build it into a floating-point 4670 /// number with exponent of 1: 4671 /// 4672 /// Op = (Op & 0x007fffff) | 0x3f800000; 4673 /// 4674 /// where Op is the hexadecimal representation of floating point value. 4675 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4676 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4677 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4678 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4679 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4680 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4681 } 4682 4683 /// GetExponent - Get the exponent: 4684 /// 4685 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4686 /// 4687 /// where Op is the hexadecimal representation of floating point value. 4688 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4689 const TargetLowering &TLI, const SDLoc &dl) { 4690 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4691 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4692 SDValue t1 = DAG.getNode( 4693 ISD::SRL, dl, MVT::i32, t0, 4694 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4695 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4696 DAG.getConstant(127, dl, MVT::i32)); 4697 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4698 } 4699 4700 /// getF32Constant - Get 32-bit floating point constant. 4701 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4702 const SDLoc &dl) { 4703 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4704 MVT::f32); 4705 } 4706 4707 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4708 SelectionDAG &DAG) { 4709 // TODO: What fast-math-flags should be set on the floating-point nodes? 4710 4711 // IntegerPartOfX = ((int32_t)(t0); 4712 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4713 4714 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4715 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4716 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4717 4718 // IntegerPartOfX <<= 23; 4719 IntegerPartOfX = DAG.getNode( 4720 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4721 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4722 DAG.getDataLayout()))); 4723 4724 SDValue TwoToFractionalPartOfX; 4725 if (LimitFloatPrecision <= 6) { 4726 // For floating-point precision of 6: 4727 // 4728 // TwoToFractionalPartOfX = 4729 // 0.997535578f + 4730 // (0.735607626f + 0.252464424f * x) * x; 4731 // 4732 // error 0.0144103317, which is 6 bits 4733 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4734 getF32Constant(DAG, 0x3e814304, dl)); 4735 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4736 getF32Constant(DAG, 0x3f3c50c8, dl)); 4737 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4738 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4739 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4740 } else if (LimitFloatPrecision <= 12) { 4741 // For floating-point precision of 12: 4742 // 4743 // TwoToFractionalPartOfX = 4744 // 0.999892986f + 4745 // (0.696457318f + 4746 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4747 // 4748 // error 0.000107046256, which is 13 to 14 bits 4749 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4750 getF32Constant(DAG, 0x3da235e3, dl)); 4751 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4752 getF32Constant(DAG, 0x3e65b8f3, dl)); 4753 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4754 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4755 getF32Constant(DAG, 0x3f324b07, dl)); 4756 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4757 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4758 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4759 } else { // LimitFloatPrecision <= 18 4760 // For floating-point precision of 18: 4761 // 4762 // TwoToFractionalPartOfX = 4763 // 0.999999982f + 4764 // (0.693148872f + 4765 // (0.240227044f + 4766 // (0.554906021e-1f + 4767 // (0.961591928e-2f + 4768 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4769 // error 2.47208000*10^(-7), which is better than 18 bits 4770 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4771 getF32Constant(DAG, 0x3924b03e, dl)); 4772 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4773 getF32Constant(DAG, 0x3ab24b87, dl)); 4774 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4775 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4776 getF32Constant(DAG, 0x3c1d8c17, dl)); 4777 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4778 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4779 getF32Constant(DAG, 0x3d634a1d, dl)); 4780 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4781 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4782 getF32Constant(DAG, 0x3e75fe14, dl)); 4783 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4784 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4785 getF32Constant(DAG, 0x3f317234, dl)); 4786 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4787 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4788 getF32Constant(DAG, 0x3f800000, dl)); 4789 } 4790 4791 // Add the exponent into the result in integer domain. 4792 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4793 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4794 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4795 } 4796 4797 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4798 /// limited-precision mode. 4799 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4800 const TargetLowering &TLI) { 4801 if (Op.getValueType() == MVT::f32 && 4802 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4803 4804 // Put the exponent in the right bit position for later addition to the 4805 // final result: 4806 // 4807 // #define LOG2OFe 1.4426950f 4808 // t0 = Op * LOG2OFe 4809 4810 // TODO: What fast-math-flags should be set here? 4811 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4812 getF32Constant(DAG, 0x3fb8aa3b, dl)); 4813 return getLimitedPrecisionExp2(t0, dl, DAG); 4814 } 4815 4816 // No special expansion. 4817 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4818 } 4819 4820 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4821 /// limited-precision mode. 4822 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4823 const TargetLowering &TLI) { 4824 // TODO: What fast-math-flags should be set on the floating-point nodes? 4825 4826 if (Op.getValueType() == MVT::f32 && 4827 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4828 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4829 4830 // Scale the exponent by log(2) [0.69314718f]. 4831 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4832 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4833 getF32Constant(DAG, 0x3f317218, dl)); 4834 4835 // Get the significand and build it into a floating-point number with 4836 // exponent of 1. 4837 SDValue X = GetSignificand(DAG, Op1, dl); 4838 4839 SDValue LogOfMantissa; 4840 if (LimitFloatPrecision <= 6) { 4841 // For floating-point precision of 6: 4842 // 4843 // LogofMantissa = 4844 // -1.1609546f + 4845 // (1.4034025f - 0.23903021f * x) * x; 4846 // 4847 // error 0.0034276066, which is better than 8 bits 4848 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4849 getF32Constant(DAG, 0xbe74c456, dl)); 4850 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4851 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4852 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4853 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4854 getF32Constant(DAG, 0x3f949a29, dl)); 4855 } else if (LimitFloatPrecision <= 12) { 4856 // For floating-point precision of 12: 4857 // 4858 // LogOfMantissa = 4859 // -1.7417939f + 4860 // (2.8212026f + 4861 // (-1.4699568f + 4862 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4863 // 4864 // error 0.000061011436, which is 14 bits 4865 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4866 getF32Constant(DAG, 0xbd67b6d6, dl)); 4867 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4868 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4869 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4870 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4871 getF32Constant(DAG, 0x3fbc278b, dl)); 4872 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4873 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4874 getF32Constant(DAG, 0x40348e95, dl)); 4875 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4876 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4877 getF32Constant(DAG, 0x3fdef31a, dl)); 4878 } else { // LimitFloatPrecision <= 18 4879 // For floating-point precision of 18: 4880 // 4881 // LogOfMantissa = 4882 // -2.1072184f + 4883 // (4.2372794f + 4884 // (-3.7029485f + 4885 // (2.2781945f + 4886 // (-0.87823314f + 4887 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4888 // 4889 // error 0.0000023660568, which is better than 18 bits 4890 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4891 getF32Constant(DAG, 0xbc91e5ac, dl)); 4892 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4893 getF32Constant(DAG, 0x3e4350aa, dl)); 4894 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4895 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4896 getF32Constant(DAG, 0x3f60d3e3, dl)); 4897 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4898 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4899 getF32Constant(DAG, 0x4011cdf0, dl)); 4900 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4901 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4902 getF32Constant(DAG, 0x406cfd1c, dl)); 4903 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4904 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4905 getF32Constant(DAG, 0x408797cb, dl)); 4906 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4907 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4908 getF32Constant(DAG, 0x4006dcab, dl)); 4909 } 4910 4911 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4912 } 4913 4914 // No special expansion. 4915 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4916 } 4917 4918 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4919 /// limited-precision mode. 4920 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4921 const TargetLowering &TLI) { 4922 // TODO: What fast-math-flags should be set on the floating-point nodes? 4923 4924 if (Op.getValueType() == MVT::f32 && 4925 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4926 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4927 4928 // Get the exponent. 4929 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4930 4931 // Get the significand and build it into a floating-point number with 4932 // exponent of 1. 4933 SDValue X = GetSignificand(DAG, Op1, dl); 4934 4935 // Different possible minimax approximations of significand in 4936 // floating-point for various degrees of accuracy over [1,2]. 4937 SDValue Log2ofMantissa; 4938 if (LimitFloatPrecision <= 6) { 4939 // For floating-point precision of 6: 4940 // 4941 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4942 // 4943 // error 0.0049451742, which is more than 7 bits 4944 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4945 getF32Constant(DAG, 0xbeb08fe0, dl)); 4946 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4947 getF32Constant(DAG, 0x40019463, dl)); 4948 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4949 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4950 getF32Constant(DAG, 0x3fd6633d, dl)); 4951 } else if (LimitFloatPrecision <= 12) { 4952 // For floating-point precision of 12: 4953 // 4954 // Log2ofMantissa = 4955 // -2.51285454f + 4956 // (4.07009056f + 4957 // (-2.12067489f + 4958 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4959 // 4960 // error 0.0000876136000, which is better than 13 bits 4961 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4962 getF32Constant(DAG, 0xbda7262e, dl)); 4963 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4964 getF32Constant(DAG, 0x3f25280b, dl)); 4965 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4966 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4967 getF32Constant(DAG, 0x4007b923, dl)); 4968 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4969 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4970 getF32Constant(DAG, 0x40823e2f, dl)); 4971 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4972 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4973 getF32Constant(DAG, 0x4020d29c, dl)); 4974 } else { // LimitFloatPrecision <= 18 4975 // For floating-point precision of 18: 4976 // 4977 // Log2ofMantissa = 4978 // -3.0400495f + 4979 // (6.1129976f + 4980 // (-5.3420409f + 4981 // (3.2865683f + 4982 // (-1.2669343f + 4983 // (0.27515199f - 4984 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4985 // 4986 // error 0.0000018516, which is better than 18 bits 4987 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4988 getF32Constant(DAG, 0xbcd2769e, dl)); 4989 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4990 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4991 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4992 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4993 getF32Constant(DAG, 0x3fa22ae7, dl)); 4994 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4995 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4996 getF32Constant(DAG, 0x40525723, dl)); 4997 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4998 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4999 getF32Constant(DAG, 0x40aaf200, dl)); 5000 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5001 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5002 getF32Constant(DAG, 0x40c39dad, dl)); 5003 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5004 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5005 getF32Constant(DAG, 0x4042902c, dl)); 5006 } 5007 5008 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5009 } 5010 5011 // No special expansion. 5012 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 5013 } 5014 5015 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5016 /// limited-precision mode. 5017 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5018 const TargetLowering &TLI) { 5019 // TODO: What fast-math-flags should be set on the floating-point nodes? 5020 5021 if (Op.getValueType() == MVT::f32 && 5022 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5023 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5024 5025 // Scale the exponent by log10(2) [0.30102999f]. 5026 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5027 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5028 getF32Constant(DAG, 0x3e9a209a, dl)); 5029 5030 // Get the significand and build it into a floating-point number with 5031 // exponent of 1. 5032 SDValue X = GetSignificand(DAG, Op1, dl); 5033 5034 SDValue Log10ofMantissa; 5035 if (LimitFloatPrecision <= 6) { 5036 // For floating-point precision of 6: 5037 // 5038 // Log10ofMantissa = 5039 // -0.50419619f + 5040 // (0.60948995f - 0.10380950f * x) * x; 5041 // 5042 // error 0.0014886165, which is 6 bits 5043 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5044 getF32Constant(DAG, 0xbdd49a13, dl)); 5045 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5046 getF32Constant(DAG, 0x3f1c0789, dl)); 5047 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5048 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5049 getF32Constant(DAG, 0x3f011300, dl)); 5050 } else if (LimitFloatPrecision <= 12) { 5051 // For floating-point precision of 12: 5052 // 5053 // Log10ofMantissa = 5054 // -0.64831180f + 5055 // (0.91751397f + 5056 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5057 // 5058 // error 0.00019228036, which is better than 12 bits 5059 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5060 getF32Constant(DAG, 0x3d431f31, dl)); 5061 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5062 getF32Constant(DAG, 0x3ea21fb2, dl)); 5063 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5064 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5065 getF32Constant(DAG, 0x3f6ae232, dl)); 5066 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5067 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5068 getF32Constant(DAG, 0x3f25f7c3, dl)); 5069 } else { // LimitFloatPrecision <= 18 5070 // For floating-point precision of 18: 5071 // 5072 // Log10ofMantissa = 5073 // -0.84299375f + 5074 // (1.5327582f + 5075 // (-1.0688956f + 5076 // (0.49102474f + 5077 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5078 // 5079 // error 0.0000037995730, which is better than 18 bits 5080 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5081 getF32Constant(DAG, 0x3c5d51ce, dl)); 5082 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5083 getF32Constant(DAG, 0x3e00685a, dl)); 5084 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5085 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5086 getF32Constant(DAG, 0x3efb6798, dl)); 5087 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5088 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5089 getF32Constant(DAG, 0x3f88d192, dl)); 5090 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5091 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5092 getF32Constant(DAG, 0x3fc4316c, dl)); 5093 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5094 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5095 getF32Constant(DAG, 0x3f57ce70, dl)); 5096 } 5097 5098 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5099 } 5100 5101 // No special expansion. 5102 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 5103 } 5104 5105 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5106 /// limited-precision mode. 5107 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5108 const TargetLowering &TLI) { 5109 if (Op.getValueType() == MVT::f32 && 5110 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5111 return getLimitedPrecisionExp2(Op, dl, DAG); 5112 5113 // No special expansion. 5114 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 5115 } 5116 5117 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5118 /// limited-precision mode with x == 10.0f. 5119 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5120 SelectionDAG &DAG, const TargetLowering &TLI) { 5121 bool IsExp10 = false; 5122 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5123 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5124 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5125 APFloat Ten(10.0f); 5126 IsExp10 = LHSC->isExactlyValue(Ten); 5127 } 5128 } 5129 5130 // TODO: What fast-math-flags should be set on the FMUL node? 5131 if (IsExp10) { 5132 // Put the exponent in the right bit position for later addition to the 5133 // final result: 5134 // 5135 // #define LOG2OF10 3.3219281f 5136 // t0 = Op * LOG2OF10; 5137 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5138 getF32Constant(DAG, 0x40549a78, dl)); 5139 return getLimitedPrecisionExp2(t0, dl, DAG); 5140 } 5141 5142 // No special expansion. 5143 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 5144 } 5145 5146 /// ExpandPowI - Expand a llvm.powi intrinsic. 5147 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5148 SelectionDAG &DAG) { 5149 // If RHS is a constant, we can expand this out to a multiplication tree, 5150 // otherwise we end up lowering to a call to __powidf2 (for example). When 5151 // optimizing for size, we only want to do this if the expansion would produce 5152 // a small number of multiplies, otherwise we do the full expansion. 5153 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5154 // Get the exponent as a positive value. 5155 unsigned Val = RHSC->getSExtValue(); 5156 if ((int)Val < 0) Val = -Val; 5157 5158 // powi(x, 0) -> 1.0 5159 if (Val == 0) 5160 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5161 5162 const Function &F = DAG.getMachineFunction().getFunction(); 5163 if (!F.optForSize() || 5164 // If optimizing for size, don't insert too many multiplies. 5165 // This inserts up to 5 multiplies. 5166 countPopulation(Val) + Log2_32(Val) < 7) { 5167 // We use the simple binary decomposition method to generate the multiply 5168 // sequence. There are more optimal ways to do this (for example, 5169 // powi(x,15) generates one more multiply than it should), but this has 5170 // the benefit of being both really simple and much better than a libcall. 5171 SDValue Res; // Logically starts equal to 1.0 5172 SDValue CurSquare = LHS; 5173 // TODO: Intrinsics should have fast-math-flags that propagate to these 5174 // nodes. 5175 while (Val) { 5176 if (Val & 1) { 5177 if (Res.getNode()) 5178 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 5179 else 5180 Res = CurSquare; // 1.0*CurSquare. 5181 } 5182 5183 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5184 CurSquare, CurSquare); 5185 Val >>= 1; 5186 } 5187 5188 // If the original was negative, invert the result, producing 1/(x*x*x). 5189 if (RHSC->getSExtValue() < 0) 5190 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5191 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5192 return Res; 5193 } 5194 } 5195 5196 // Otherwise, expand to a libcall. 5197 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5198 } 5199 5200 // getUnderlyingArgReg - Find underlying register used for a truncated or 5201 // bitcasted argument. 5202 static unsigned getUnderlyingArgReg(const SDValue &N) { 5203 switch (N.getOpcode()) { 5204 case ISD::CopyFromReg: 5205 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 5206 case ISD::BITCAST: 5207 case ISD::AssertZext: 5208 case ISD::AssertSext: 5209 case ISD::TRUNCATE: 5210 return getUnderlyingArgReg(N.getOperand(0)); 5211 default: 5212 return 0; 5213 } 5214 } 5215 5216 /// If the DbgValueInst is a dbg_value of a function argument, create the 5217 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5218 /// instruction selection, they will be inserted to the entry BB. 5219 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5220 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5221 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 5222 const Argument *Arg = dyn_cast<Argument>(V); 5223 if (!Arg) 5224 return false; 5225 5226 if (!IsDbgDeclare) { 5227 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5228 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5229 // the entry block. 5230 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5231 if (!IsInEntryBlock) 5232 return false; 5233 5234 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5235 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5236 // variable that also is a param. 5237 // 5238 // Although, if we are at the top of the entry block already, we can still 5239 // emit using ArgDbgValue. This might catch some situations when the 5240 // dbg.value refers to an argument that isn't used in the entry block, so 5241 // any CopyToReg node would be optimized out and the only way to express 5242 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5243 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5244 // we should only emit as ArgDbgValue if the Variable is an argument to the 5245 // current function, and the dbg.value intrinsic is found in the entry 5246 // block. 5247 bool VariableIsFunctionInputArg = Variable->isParameter() && 5248 !DL->getInlinedAt(); 5249 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5250 if (!IsInPrologue && !VariableIsFunctionInputArg) 5251 return false; 5252 5253 // Here we assume that a function argument on IR level only can be used to 5254 // describe one input parameter on source level. If we for example have 5255 // source code like this 5256 // 5257 // struct A { long x, y; }; 5258 // void foo(struct A a, long b) { 5259 // ... 5260 // b = a.x; 5261 // ... 5262 // } 5263 // 5264 // and IR like this 5265 // 5266 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5267 // entry: 5268 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5269 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5270 // call void @llvm.dbg.value(metadata i32 %b, "b", 5271 // ... 5272 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5273 // ... 5274 // 5275 // then the last dbg.value is describing a parameter "b" using a value that 5276 // is an argument. But since we already has used %a1 to describe a parameter 5277 // we should not handle that last dbg.value here (that would result in an 5278 // incorrect hoisting of the DBG_VALUE to the function entry). 5279 // Notice that we allow one dbg.value per IR level argument, to accomodate 5280 // for the situation with fragments above. 5281 if (VariableIsFunctionInputArg) { 5282 unsigned ArgNo = Arg->getArgNo(); 5283 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5284 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5285 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5286 return false; 5287 FuncInfo.DescribedArgs.set(ArgNo); 5288 } 5289 } 5290 5291 MachineFunction &MF = DAG.getMachineFunction(); 5292 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5293 5294 bool IsIndirect = false; 5295 Optional<MachineOperand> Op; 5296 // Some arguments' frame index is recorded during argument lowering. 5297 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5298 if (FI != std::numeric_limits<int>::max()) 5299 Op = MachineOperand::CreateFI(FI); 5300 5301 if (!Op && N.getNode()) { 5302 unsigned Reg = getUnderlyingArgReg(N); 5303 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 5304 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5305 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 5306 if (PR) 5307 Reg = PR; 5308 } 5309 if (Reg) { 5310 Op = MachineOperand::CreateReg(Reg, false); 5311 IsIndirect = IsDbgDeclare; 5312 } 5313 } 5314 5315 if (!Op && N.getNode()) 5316 // Check if frame index is available. 5317 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 5318 if (FrameIndexSDNode *FINode = 5319 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5320 Op = MachineOperand::CreateFI(FINode->getIndex()); 5321 5322 if (!Op) { 5323 // Check if ValueMap has reg number. 5324 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 5325 if (VMI != FuncInfo.ValueMap.end()) { 5326 const auto &TLI = DAG.getTargetLoweringInfo(); 5327 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5328 V->getType(), getABIRegCopyCC(V)); 5329 if (RFV.occupiesMultipleRegs()) { 5330 unsigned Offset = 0; 5331 for (auto RegAndSize : RFV.getRegsAndSizes()) { 5332 Op = MachineOperand::CreateReg(RegAndSize.first, false); 5333 auto FragmentExpr = DIExpression::createFragmentExpression( 5334 Expr, Offset, RegAndSize.second); 5335 if (!FragmentExpr) 5336 continue; 5337 FuncInfo.ArgDbgValues.push_back( 5338 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, 5339 Op->getReg(), Variable, *FragmentExpr)); 5340 Offset += RegAndSize.second; 5341 } 5342 return true; 5343 } 5344 Op = MachineOperand::CreateReg(VMI->second, false); 5345 IsIndirect = IsDbgDeclare; 5346 } 5347 } 5348 5349 if (!Op) 5350 return false; 5351 5352 assert(Variable->isValidLocationForIntrinsic(DL) && 5353 "Expected inlined-at fields to agree"); 5354 IsIndirect = (Op->isReg()) ? IsIndirect : true; 5355 FuncInfo.ArgDbgValues.push_back( 5356 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 5357 *Op, Variable, Expr)); 5358 5359 return true; 5360 } 5361 5362 /// Return the appropriate SDDbgValue based on N. 5363 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5364 DILocalVariable *Variable, 5365 DIExpression *Expr, 5366 const DebugLoc &dl, 5367 unsigned DbgSDNodeOrder) { 5368 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5369 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5370 // stack slot locations. 5371 // 5372 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5373 // debug values here after optimization: 5374 // 5375 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5376 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5377 // 5378 // Both describe the direct values of their associated variables. 5379 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5380 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5381 } 5382 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5383 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5384 } 5385 5386 // VisualStudio defines setjmp as _setjmp 5387 #if defined(_MSC_VER) && defined(setjmp) && \ 5388 !defined(setjmp_undefined_for_msvc) 5389 # pragma push_macro("setjmp") 5390 # undef setjmp 5391 # define setjmp_undefined_for_msvc 5392 #endif 5393 5394 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5395 switch (Intrinsic) { 5396 case Intrinsic::smul_fix: 5397 return ISD::SMULFIX; 5398 case Intrinsic::umul_fix: 5399 return ISD::UMULFIX; 5400 default: 5401 llvm_unreachable("Unhandled fixed point intrinsic"); 5402 } 5403 } 5404 5405 /// Lower the call to the specified intrinsic function. If we want to emit this 5406 /// as a call to a named external function, return the name. Otherwise, lower it 5407 /// and return null. 5408 const char * 5409 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 5410 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5411 SDLoc sdl = getCurSDLoc(); 5412 DebugLoc dl = getCurDebugLoc(); 5413 SDValue Res; 5414 5415 switch (Intrinsic) { 5416 default: 5417 // By default, turn this into a target intrinsic node. 5418 visitTargetIntrinsic(I, Intrinsic); 5419 return nullptr; 5420 case Intrinsic::vastart: visitVAStart(I); return nullptr; 5421 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 5422 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 5423 case Intrinsic::returnaddress: 5424 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5425 TLI.getPointerTy(DAG.getDataLayout()), 5426 getValue(I.getArgOperand(0)))); 5427 return nullptr; 5428 case Intrinsic::addressofreturnaddress: 5429 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5430 TLI.getPointerTy(DAG.getDataLayout()))); 5431 return nullptr; 5432 case Intrinsic::sponentry: 5433 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5434 TLI.getPointerTy(DAG.getDataLayout()))); 5435 return nullptr; 5436 case Intrinsic::frameaddress: 5437 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5438 TLI.getPointerTy(DAG.getDataLayout()), 5439 getValue(I.getArgOperand(0)))); 5440 return nullptr; 5441 case Intrinsic::read_register: { 5442 Value *Reg = I.getArgOperand(0); 5443 SDValue Chain = getRoot(); 5444 SDValue RegName = 5445 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5446 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5447 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5448 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5449 setValue(&I, Res); 5450 DAG.setRoot(Res.getValue(1)); 5451 return nullptr; 5452 } 5453 case Intrinsic::write_register: { 5454 Value *Reg = I.getArgOperand(0); 5455 Value *RegValue = I.getArgOperand(1); 5456 SDValue Chain = getRoot(); 5457 SDValue RegName = 5458 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5459 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5460 RegName, getValue(RegValue))); 5461 return nullptr; 5462 } 5463 case Intrinsic::setjmp: 5464 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 5465 case Intrinsic::longjmp: 5466 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 5467 case Intrinsic::memcpy: { 5468 const auto &MCI = cast<MemCpyInst>(I); 5469 SDValue Op1 = getValue(I.getArgOperand(0)); 5470 SDValue Op2 = getValue(I.getArgOperand(1)); 5471 SDValue Op3 = getValue(I.getArgOperand(2)); 5472 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5473 unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1); 5474 unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1); 5475 unsigned Align = MinAlign(DstAlign, SrcAlign); 5476 bool isVol = MCI.isVolatile(); 5477 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5478 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5479 // node. 5480 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5481 false, isTC, 5482 MachinePointerInfo(I.getArgOperand(0)), 5483 MachinePointerInfo(I.getArgOperand(1))); 5484 updateDAGForMaybeTailCall(MC); 5485 return nullptr; 5486 } 5487 case Intrinsic::memset: { 5488 const auto &MSI = cast<MemSetInst>(I); 5489 SDValue Op1 = getValue(I.getArgOperand(0)); 5490 SDValue Op2 = getValue(I.getArgOperand(1)); 5491 SDValue Op3 = getValue(I.getArgOperand(2)); 5492 // @llvm.memset defines 0 and 1 to both mean no alignment. 5493 unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1); 5494 bool isVol = MSI.isVolatile(); 5495 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5496 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5497 isTC, MachinePointerInfo(I.getArgOperand(0))); 5498 updateDAGForMaybeTailCall(MS); 5499 return nullptr; 5500 } 5501 case Intrinsic::memmove: { 5502 const auto &MMI = cast<MemMoveInst>(I); 5503 SDValue Op1 = getValue(I.getArgOperand(0)); 5504 SDValue Op2 = getValue(I.getArgOperand(1)); 5505 SDValue Op3 = getValue(I.getArgOperand(2)); 5506 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5507 unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1); 5508 unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1); 5509 unsigned Align = MinAlign(DstAlign, SrcAlign); 5510 bool isVol = MMI.isVolatile(); 5511 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5512 // FIXME: Support passing different dest/src alignments to the memmove DAG 5513 // node. 5514 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5515 isTC, MachinePointerInfo(I.getArgOperand(0)), 5516 MachinePointerInfo(I.getArgOperand(1))); 5517 updateDAGForMaybeTailCall(MM); 5518 return nullptr; 5519 } 5520 case Intrinsic::memcpy_element_unordered_atomic: { 5521 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5522 SDValue Dst = getValue(MI.getRawDest()); 5523 SDValue Src = getValue(MI.getRawSource()); 5524 SDValue Length = getValue(MI.getLength()); 5525 5526 unsigned DstAlign = MI.getDestAlignment(); 5527 unsigned SrcAlign = MI.getSourceAlignment(); 5528 Type *LengthTy = MI.getLength()->getType(); 5529 unsigned ElemSz = MI.getElementSizeInBytes(); 5530 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5531 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5532 SrcAlign, Length, LengthTy, ElemSz, isTC, 5533 MachinePointerInfo(MI.getRawDest()), 5534 MachinePointerInfo(MI.getRawSource())); 5535 updateDAGForMaybeTailCall(MC); 5536 return nullptr; 5537 } 5538 case Intrinsic::memmove_element_unordered_atomic: { 5539 auto &MI = cast<AtomicMemMoveInst>(I); 5540 SDValue Dst = getValue(MI.getRawDest()); 5541 SDValue Src = getValue(MI.getRawSource()); 5542 SDValue Length = getValue(MI.getLength()); 5543 5544 unsigned DstAlign = MI.getDestAlignment(); 5545 unsigned SrcAlign = MI.getSourceAlignment(); 5546 Type *LengthTy = MI.getLength()->getType(); 5547 unsigned ElemSz = MI.getElementSizeInBytes(); 5548 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5549 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5550 SrcAlign, Length, LengthTy, ElemSz, isTC, 5551 MachinePointerInfo(MI.getRawDest()), 5552 MachinePointerInfo(MI.getRawSource())); 5553 updateDAGForMaybeTailCall(MC); 5554 return nullptr; 5555 } 5556 case Intrinsic::memset_element_unordered_atomic: { 5557 auto &MI = cast<AtomicMemSetInst>(I); 5558 SDValue Dst = getValue(MI.getRawDest()); 5559 SDValue Val = getValue(MI.getValue()); 5560 SDValue Length = getValue(MI.getLength()); 5561 5562 unsigned DstAlign = MI.getDestAlignment(); 5563 Type *LengthTy = MI.getLength()->getType(); 5564 unsigned ElemSz = MI.getElementSizeInBytes(); 5565 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5566 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5567 LengthTy, ElemSz, isTC, 5568 MachinePointerInfo(MI.getRawDest())); 5569 updateDAGForMaybeTailCall(MC); 5570 return nullptr; 5571 } 5572 case Intrinsic::dbg_addr: 5573 case Intrinsic::dbg_declare: { 5574 const auto &DI = cast<DbgVariableIntrinsic>(I); 5575 DILocalVariable *Variable = DI.getVariable(); 5576 DIExpression *Expression = DI.getExpression(); 5577 dropDanglingDebugInfo(Variable, Expression); 5578 assert(Variable && "Missing variable"); 5579 5580 // Check if address has undef value. 5581 const Value *Address = DI.getVariableLocation(); 5582 if (!Address || isa<UndefValue>(Address) || 5583 (Address->use_empty() && !isa<Argument>(Address))) { 5584 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5585 return nullptr; 5586 } 5587 5588 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5589 5590 // Check if this variable can be described by a frame index, typically 5591 // either as a static alloca or a byval parameter. 5592 int FI = std::numeric_limits<int>::max(); 5593 if (const auto *AI = 5594 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5595 if (AI->isStaticAlloca()) { 5596 auto I = FuncInfo.StaticAllocaMap.find(AI); 5597 if (I != FuncInfo.StaticAllocaMap.end()) 5598 FI = I->second; 5599 } 5600 } else if (const auto *Arg = dyn_cast<Argument>( 5601 Address->stripInBoundsConstantOffsets())) { 5602 FI = FuncInfo.getArgumentFrameIndex(Arg); 5603 } 5604 5605 // llvm.dbg.addr is control dependent and always generates indirect 5606 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5607 // the MachineFunction variable table. 5608 if (FI != std::numeric_limits<int>::max()) { 5609 if (Intrinsic == Intrinsic::dbg_addr) { 5610 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 5611 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder); 5612 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 5613 } 5614 return nullptr; 5615 } 5616 5617 SDValue &N = NodeMap[Address]; 5618 if (!N.getNode() && isa<Argument>(Address)) 5619 // Check unused arguments map. 5620 N = UnusedArgNodeMap[Address]; 5621 SDDbgValue *SDV; 5622 if (N.getNode()) { 5623 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5624 Address = BCI->getOperand(0); 5625 // Parameters are handled specially. 5626 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5627 if (isParameter && FINode) { 5628 // Byval parameter. We have a frame index at this point. 5629 SDV = 5630 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 5631 /*IsIndirect*/ true, dl, SDNodeOrder); 5632 } else if (isa<Argument>(Address)) { 5633 // Address is an argument, so try to emit its dbg value using 5634 // virtual register info from the FuncInfo.ValueMap. 5635 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5636 return nullptr; 5637 } else { 5638 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5639 true, dl, SDNodeOrder); 5640 } 5641 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5642 } else { 5643 // If Address is an argument then try to emit its dbg value using 5644 // virtual register info from the FuncInfo.ValueMap. 5645 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5646 N)) { 5647 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5648 } 5649 } 5650 return nullptr; 5651 } 5652 case Intrinsic::dbg_label: { 5653 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 5654 DILabel *Label = DI.getLabel(); 5655 assert(Label && "Missing label"); 5656 5657 SDDbgLabel *SDV; 5658 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 5659 DAG.AddDbgLabel(SDV); 5660 return nullptr; 5661 } 5662 case Intrinsic::dbg_value: { 5663 const DbgValueInst &DI = cast<DbgValueInst>(I); 5664 assert(DI.getVariable() && "Missing variable"); 5665 5666 DILocalVariable *Variable = DI.getVariable(); 5667 DIExpression *Expression = DI.getExpression(); 5668 dropDanglingDebugInfo(Variable, Expression); 5669 const Value *V = DI.getValue(); 5670 if (!V) 5671 return nullptr; 5672 5673 if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(), 5674 SDNodeOrder)) 5675 return nullptr; 5676 5677 // TODO: Dangling debug info will eventually either be resolved or produce 5678 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 5679 // between the original dbg.value location and its resolved DBG_VALUE, which 5680 // we should ideally fill with an extra Undef DBG_VALUE. 5681 5682 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder); 5683 return nullptr; 5684 } 5685 5686 case Intrinsic::eh_typeid_for: { 5687 // Find the type id for the given typeinfo. 5688 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5689 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5690 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5691 setValue(&I, Res); 5692 return nullptr; 5693 } 5694 5695 case Intrinsic::eh_return_i32: 5696 case Intrinsic::eh_return_i64: 5697 DAG.getMachineFunction().setCallsEHReturn(true); 5698 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5699 MVT::Other, 5700 getControlRoot(), 5701 getValue(I.getArgOperand(0)), 5702 getValue(I.getArgOperand(1)))); 5703 return nullptr; 5704 case Intrinsic::eh_unwind_init: 5705 DAG.getMachineFunction().setCallsUnwindInit(true); 5706 return nullptr; 5707 case Intrinsic::eh_dwarf_cfa: 5708 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5709 TLI.getPointerTy(DAG.getDataLayout()), 5710 getValue(I.getArgOperand(0)))); 5711 return nullptr; 5712 case Intrinsic::eh_sjlj_callsite: { 5713 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5714 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5715 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5716 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5717 5718 MMI.setCurrentCallSite(CI->getZExtValue()); 5719 return nullptr; 5720 } 5721 case Intrinsic::eh_sjlj_functioncontext: { 5722 // Get and store the index of the function context. 5723 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5724 AllocaInst *FnCtx = 5725 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5726 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5727 MFI.setFunctionContextIndex(FI); 5728 return nullptr; 5729 } 5730 case Intrinsic::eh_sjlj_setjmp: { 5731 SDValue Ops[2]; 5732 Ops[0] = getRoot(); 5733 Ops[1] = getValue(I.getArgOperand(0)); 5734 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5735 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5736 setValue(&I, Op.getValue(0)); 5737 DAG.setRoot(Op.getValue(1)); 5738 return nullptr; 5739 } 5740 case Intrinsic::eh_sjlj_longjmp: 5741 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5742 getRoot(), getValue(I.getArgOperand(0)))); 5743 return nullptr; 5744 case Intrinsic::eh_sjlj_setup_dispatch: 5745 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 5746 getRoot())); 5747 return nullptr; 5748 case Intrinsic::masked_gather: 5749 visitMaskedGather(I); 5750 return nullptr; 5751 case Intrinsic::masked_load: 5752 visitMaskedLoad(I); 5753 return nullptr; 5754 case Intrinsic::masked_scatter: 5755 visitMaskedScatter(I); 5756 return nullptr; 5757 case Intrinsic::masked_store: 5758 visitMaskedStore(I); 5759 return nullptr; 5760 case Intrinsic::masked_expandload: 5761 visitMaskedLoad(I, true /* IsExpanding */); 5762 return nullptr; 5763 case Intrinsic::masked_compressstore: 5764 visitMaskedStore(I, true /* IsCompressing */); 5765 return nullptr; 5766 case Intrinsic::x86_mmx_pslli_w: 5767 case Intrinsic::x86_mmx_pslli_d: 5768 case Intrinsic::x86_mmx_pslli_q: 5769 case Intrinsic::x86_mmx_psrli_w: 5770 case Intrinsic::x86_mmx_psrli_d: 5771 case Intrinsic::x86_mmx_psrli_q: 5772 case Intrinsic::x86_mmx_psrai_w: 5773 case Intrinsic::x86_mmx_psrai_d: { 5774 SDValue ShAmt = getValue(I.getArgOperand(1)); 5775 if (isa<ConstantSDNode>(ShAmt)) { 5776 visitTargetIntrinsic(I, Intrinsic); 5777 return nullptr; 5778 } 5779 unsigned NewIntrinsic = 0; 5780 EVT ShAmtVT = MVT::v2i32; 5781 switch (Intrinsic) { 5782 case Intrinsic::x86_mmx_pslli_w: 5783 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5784 break; 5785 case Intrinsic::x86_mmx_pslli_d: 5786 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5787 break; 5788 case Intrinsic::x86_mmx_pslli_q: 5789 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5790 break; 5791 case Intrinsic::x86_mmx_psrli_w: 5792 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5793 break; 5794 case Intrinsic::x86_mmx_psrli_d: 5795 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5796 break; 5797 case Intrinsic::x86_mmx_psrli_q: 5798 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5799 break; 5800 case Intrinsic::x86_mmx_psrai_w: 5801 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5802 break; 5803 case Intrinsic::x86_mmx_psrai_d: 5804 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5805 break; 5806 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5807 } 5808 5809 // The vector shift intrinsics with scalars uses 32b shift amounts but 5810 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5811 // to be zero. 5812 // We must do this early because v2i32 is not a legal type. 5813 SDValue ShOps[2]; 5814 ShOps[0] = ShAmt; 5815 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 5816 ShAmt = DAG.getBuildVector(ShAmtVT, sdl, ShOps); 5817 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5818 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5819 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5820 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 5821 getValue(I.getArgOperand(0)), ShAmt); 5822 setValue(&I, Res); 5823 return nullptr; 5824 } 5825 case Intrinsic::powi: 5826 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5827 getValue(I.getArgOperand(1)), DAG)); 5828 return nullptr; 5829 case Intrinsic::log: 5830 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5831 return nullptr; 5832 case Intrinsic::log2: 5833 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5834 return nullptr; 5835 case Intrinsic::log10: 5836 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5837 return nullptr; 5838 case Intrinsic::exp: 5839 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5840 return nullptr; 5841 case Intrinsic::exp2: 5842 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5843 return nullptr; 5844 case Intrinsic::pow: 5845 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5846 getValue(I.getArgOperand(1)), DAG, TLI)); 5847 return nullptr; 5848 case Intrinsic::sqrt: 5849 case Intrinsic::fabs: 5850 case Intrinsic::sin: 5851 case Intrinsic::cos: 5852 case Intrinsic::floor: 5853 case Intrinsic::ceil: 5854 case Intrinsic::trunc: 5855 case Intrinsic::rint: 5856 case Intrinsic::nearbyint: 5857 case Intrinsic::round: 5858 case Intrinsic::canonicalize: { 5859 unsigned Opcode; 5860 switch (Intrinsic) { 5861 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5862 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5863 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5864 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5865 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5866 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5867 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5868 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5869 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5870 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5871 case Intrinsic::round: Opcode = ISD::FROUND; break; 5872 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 5873 } 5874 5875 setValue(&I, DAG.getNode(Opcode, sdl, 5876 getValue(I.getArgOperand(0)).getValueType(), 5877 getValue(I.getArgOperand(0)))); 5878 return nullptr; 5879 } 5880 case Intrinsic::minnum: { 5881 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5882 unsigned Opc = 5883 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT) 5884 ? ISD::FMINIMUM 5885 : ISD::FMINNUM; 5886 setValue(&I, DAG.getNode(Opc, sdl, VT, 5887 getValue(I.getArgOperand(0)), 5888 getValue(I.getArgOperand(1)))); 5889 return nullptr; 5890 } 5891 case Intrinsic::maxnum: { 5892 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5893 unsigned Opc = 5894 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT) 5895 ? ISD::FMAXIMUM 5896 : ISD::FMAXNUM; 5897 setValue(&I, DAG.getNode(Opc, sdl, VT, 5898 getValue(I.getArgOperand(0)), 5899 getValue(I.getArgOperand(1)))); 5900 return nullptr; 5901 } 5902 case Intrinsic::minimum: 5903 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 5904 getValue(I.getArgOperand(0)).getValueType(), 5905 getValue(I.getArgOperand(0)), 5906 getValue(I.getArgOperand(1)))); 5907 return nullptr; 5908 case Intrinsic::maximum: 5909 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 5910 getValue(I.getArgOperand(0)).getValueType(), 5911 getValue(I.getArgOperand(0)), 5912 getValue(I.getArgOperand(1)))); 5913 return nullptr; 5914 case Intrinsic::copysign: 5915 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5916 getValue(I.getArgOperand(0)).getValueType(), 5917 getValue(I.getArgOperand(0)), 5918 getValue(I.getArgOperand(1)))); 5919 return nullptr; 5920 case Intrinsic::fma: 5921 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5922 getValue(I.getArgOperand(0)).getValueType(), 5923 getValue(I.getArgOperand(0)), 5924 getValue(I.getArgOperand(1)), 5925 getValue(I.getArgOperand(2)))); 5926 return nullptr; 5927 case Intrinsic::experimental_constrained_fadd: 5928 case Intrinsic::experimental_constrained_fsub: 5929 case Intrinsic::experimental_constrained_fmul: 5930 case Intrinsic::experimental_constrained_fdiv: 5931 case Intrinsic::experimental_constrained_frem: 5932 case Intrinsic::experimental_constrained_fma: 5933 case Intrinsic::experimental_constrained_sqrt: 5934 case Intrinsic::experimental_constrained_pow: 5935 case Intrinsic::experimental_constrained_powi: 5936 case Intrinsic::experimental_constrained_sin: 5937 case Intrinsic::experimental_constrained_cos: 5938 case Intrinsic::experimental_constrained_exp: 5939 case Intrinsic::experimental_constrained_exp2: 5940 case Intrinsic::experimental_constrained_log: 5941 case Intrinsic::experimental_constrained_log10: 5942 case Intrinsic::experimental_constrained_log2: 5943 case Intrinsic::experimental_constrained_rint: 5944 case Intrinsic::experimental_constrained_nearbyint: 5945 case Intrinsic::experimental_constrained_maxnum: 5946 case Intrinsic::experimental_constrained_minnum: 5947 case Intrinsic::experimental_constrained_ceil: 5948 case Intrinsic::experimental_constrained_floor: 5949 case Intrinsic::experimental_constrained_round: 5950 case Intrinsic::experimental_constrained_trunc: 5951 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 5952 return nullptr; 5953 case Intrinsic::fmuladd: { 5954 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5955 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5956 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 5957 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5958 getValue(I.getArgOperand(0)).getValueType(), 5959 getValue(I.getArgOperand(0)), 5960 getValue(I.getArgOperand(1)), 5961 getValue(I.getArgOperand(2)))); 5962 } else { 5963 // TODO: Intrinsic calls should have fast-math-flags. 5964 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5965 getValue(I.getArgOperand(0)).getValueType(), 5966 getValue(I.getArgOperand(0)), 5967 getValue(I.getArgOperand(1))); 5968 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5969 getValue(I.getArgOperand(0)).getValueType(), 5970 Mul, 5971 getValue(I.getArgOperand(2))); 5972 setValue(&I, Add); 5973 } 5974 return nullptr; 5975 } 5976 case Intrinsic::convert_to_fp16: 5977 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5978 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5979 getValue(I.getArgOperand(0)), 5980 DAG.getTargetConstant(0, sdl, 5981 MVT::i32)))); 5982 return nullptr; 5983 case Intrinsic::convert_from_fp16: 5984 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 5985 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5986 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5987 getValue(I.getArgOperand(0))))); 5988 return nullptr; 5989 case Intrinsic::pcmarker: { 5990 SDValue Tmp = getValue(I.getArgOperand(0)); 5991 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5992 return nullptr; 5993 } 5994 case Intrinsic::readcyclecounter: { 5995 SDValue Op = getRoot(); 5996 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5997 DAG.getVTList(MVT::i64, MVT::Other), Op); 5998 setValue(&I, Res); 5999 DAG.setRoot(Res.getValue(1)); 6000 return nullptr; 6001 } 6002 case Intrinsic::bitreverse: 6003 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6004 getValue(I.getArgOperand(0)).getValueType(), 6005 getValue(I.getArgOperand(0)))); 6006 return nullptr; 6007 case Intrinsic::bswap: 6008 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6009 getValue(I.getArgOperand(0)).getValueType(), 6010 getValue(I.getArgOperand(0)))); 6011 return nullptr; 6012 case Intrinsic::cttz: { 6013 SDValue Arg = getValue(I.getArgOperand(0)); 6014 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6015 EVT Ty = Arg.getValueType(); 6016 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6017 sdl, Ty, Arg)); 6018 return nullptr; 6019 } 6020 case Intrinsic::ctlz: { 6021 SDValue Arg = getValue(I.getArgOperand(0)); 6022 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6023 EVT Ty = Arg.getValueType(); 6024 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6025 sdl, Ty, Arg)); 6026 return nullptr; 6027 } 6028 case Intrinsic::ctpop: { 6029 SDValue Arg = getValue(I.getArgOperand(0)); 6030 EVT Ty = Arg.getValueType(); 6031 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6032 return nullptr; 6033 } 6034 case Intrinsic::fshl: 6035 case Intrinsic::fshr: { 6036 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6037 SDValue X = getValue(I.getArgOperand(0)); 6038 SDValue Y = getValue(I.getArgOperand(1)); 6039 SDValue Z = getValue(I.getArgOperand(2)); 6040 EVT VT = X.getValueType(); 6041 SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT); 6042 SDValue Zero = DAG.getConstant(0, sdl, VT); 6043 SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC); 6044 6045 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6046 if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) { 6047 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6048 return nullptr; 6049 } 6050 6051 // When X == Y, this is rotate. If the data type has a power-of-2 size, we 6052 // avoid the select that is necessary in the general case to filter out 6053 // the 0-shift possibility that leads to UB. 6054 if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) { 6055 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6056 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6057 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6058 return nullptr; 6059 } 6060 6061 // Some targets only rotate one way. Try the opposite direction. 6062 RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL; 6063 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6064 // Negate the shift amount because it is safe to ignore the high bits. 6065 SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6066 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt)); 6067 return nullptr; 6068 } 6069 6070 // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW)) 6071 // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW)) 6072 SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6073 SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC); 6074 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt); 6075 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt); 6076 setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY)); 6077 return nullptr; 6078 } 6079 6080 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 6081 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 6082 SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt); 6083 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt); 6084 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6085 SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY); 6086 6087 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 6088 // and that is undefined. We must compare and select to avoid UB. 6089 EVT CCVT = MVT::i1; 6090 if (VT.isVector()) 6091 CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements()); 6092 6093 // For fshl, 0-shift returns the 1st arg (X). 6094 // For fshr, 0-shift returns the 2nd arg (Y). 6095 SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ); 6096 setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or)); 6097 return nullptr; 6098 } 6099 case Intrinsic::sadd_sat: { 6100 SDValue Op1 = getValue(I.getArgOperand(0)); 6101 SDValue Op2 = getValue(I.getArgOperand(1)); 6102 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6103 return nullptr; 6104 } 6105 case Intrinsic::uadd_sat: { 6106 SDValue Op1 = getValue(I.getArgOperand(0)); 6107 SDValue Op2 = getValue(I.getArgOperand(1)); 6108 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6109 return nullptr; 6110 } 6111 case Intrinsic::ssub_sat: { 6112 SDValue Op1 = getValue(I.getArgOperand(0)); 6113 SDValue Op2 = getValue(I.getArgOperand(1)); 6114 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6115 return nullptr; 6116 } 6117 case Intrinsic::usub_sat: { 6118 SDValue Op1 = getValue(I.getArgOperand(0)); 6119 SDValue Op2 = getValue(I.getArgOperand(1)); 6120 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6121 return nullptr; 6122 } 6123 case Intrinsic::smul_fix: 6124 case Intrinsic::umul_fix: { 6125 SDValue Op1 = getValue(I.getArgOperand(0)); 6126 SDValue Op2 = getValue(I.getArgOperand(1)); 6127 SDValue Op3 = getValue(I.getArgOperand(2)); 6128 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6129 Op1.getValueType(), Op1, Op2, Op3)); 6130 return nullptr; 6131 } 6132 case Intrinsic::stacksave: { 6133 SDValue Op = getRoot(); 6134 Res = DAG.getNode( 6135 ISD::STACKSAVE, sdl, 6136 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 6137 setValue(&I, Res); 6138 DAG.setRoot(Res.getValue(1)); 6139 return nullptr; 6140 } 6141 case Intrinsic::stackrestore: 6142 Res = getValue(I.getArgOperand(0)); 6143 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6144 return nullptr; 6145 case Intrinsic::get_dynamic_area_offset: { 6146 SDValue Op = getRoot(); 6147 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6148 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6149 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6150 // target. 6151 if (PtrTy != ResTy) 6152 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6153 " intrinsic!"); 6154 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6155 Op); 6156 DAG.setRoot(Op); 6157 setValue(&I, Res); 6158 return nullptr; 6159 } 6160 case Intrinsic::stackguard: { 6161 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6162 MachineFunction &MF = DAG.getMachineFunction(); 6163 const Module &M = *MF.getFunction().getParent(); 6164 SDValue Chain = getRoot(); 6165 if (TLI.useLoadStackGuardNode()) { 6166 Res = getLoadStackGuard(DAG, sdl, Chain); 6167 } else { 6168 const Value *Global = TLI.getSDagStackGuard(M); 6169 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 6170 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6171 MachinePointerInfo(Global, 0), Align, 6172 MachineMemOperand::MOVolatile); 6173 } 6174 if (TLI.useStackGuardXorFP()) 6175 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6176 DAG.setRoot(Chain); 6177 setValue(&I, Res); 6178 return nullptr; 6179 } 6180 case Intrinsic::stackprotector: { 6181 // Emit code into the DAG to store the stack guard onto the stack. 6182 MachineFunction &MF = DAG.getMachineFunction(); 6183 MachineFrameInfo &MFI = MF.getFrameInfo(); 6184 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6185 SDValue Src, Chain = getRoot(); 6186 6187 if (TLI.useLoadStackGuardNode()) 6188 Src = getLoadStackGuard(DAG, sdl, Chain); 6189 else 6190 Src = getValue(I.getArgOperand(0)); // The guard's value. 6191 6192 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6193 6194 int FI = FuncInfo.StaticAllocaMap[Slot]; 6195 MFI.setStackProtectorIndex(FI); 6196 6197 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6198 6199 // Store the stack protector onto the stack. 6200 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 6201 DAG.getMachineFunction(), FI), 6202 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 6203 setValue(&I, Res); 6204 DAG.setRoot(Res); 6205 return nullptr; 6206 } 6207 case Intrinsic::objectsize: { 6208 // If we don't know by now, we're never going to know. 6209 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 6210 6211 assert(CI && "Non-constant type in __builtin_object_size?"); 6212 6213 SDValue Arg = getValue(I.getCalledValue()); 6214 EVT Ty = Arg.getValueType(); 6215 6216 if (CI->isZero()) 6217 Res = DAG.getConstant(-1ULL, sdl, Ty); 6218 else 6219 Res = DAG.getConstant(0, sdl, Ty); 6220 6221 setValue(&I, Res); 6222 return nullptr; 6223 } 6224 6225 case Intrinsic::is_constant: 6226 // If this wasn't constant-folded away by now, then it's not a 6227 // constant. 6228 setValue(&I, DAG.getConstant(0, sdl, MVT::i1)); 6229 return nullptr; 6230 6231 case Intrinsic::annotation: 6232 case Intrinsic::ptr_annotation: 6233 case Intrinsic::launder_invariant_group: 6234 case Intrinsic::strip_invariant_group: 6235 // Drop the intrinsic, but forward the value 6236 setValue(&I, getValue(I.getOperand(0))); 6237 return nullptr; 6238 case Intrinsic::assume: 6239 case Intrinsic::var_annotation: 6240 case Intrinsic::sideeffect: 6241 // Discard annotate attributes, assumptions, and artificial side-effects. 6242 return nullptr; 6243 6244 case Intrinsic::codeview_annotation: { 6245 // Emit a label associated with this metadata. 6246 MachineFunction &MF = DAG.getMachineFunction(); 6247 MCSymbol *Label = 6248 MF.getMMI().getContext().createTempSymbol("annotation", true); 6249 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6250 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6251 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6252 DAG.setRoot(Res); 6253 return nullptr; 6254 } 6255 6256 case Intrinsic::init_trampoline: { 6257 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6258 6259 SDValue Ops[6]; 6260 Ops[0] = getRoot(); 6261 Ops[1] = getValue(I.getArgOperand(0)); 6262 Ops[2] = getValue(I.getArgOperand(1)); 6263 Ops[3] = getValue(I.getArgOperand(2)); 6264 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6265 Ops[5] = DAG.getSrcValue(F); 6266 6267 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6268 6269 DAG.setRoot(Res); 6270 return nullptr; 6271 } 6272 case Intrinsic::adjust_trampoline: 6273 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6274 TLI.getPointerTy(DAG.getDataLayout()), 6275 getValue(I.getArgOperand(0)))); 6276 return nullptr; 6277 case Intrinsic::gcroot: { 6278 assert(DAG.getMachineFunction().getFunction().hasGC() && 6279 "only valid in functions with gc specified, enforced by Verifier"); 6280 assert(GFI && "implied by previous"); 6281 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6282 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6283 6284 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6285 GFI->addStackRoot(FI->getIndex(), TypeMap); 6286 return nullptr; 6287 } 6288 case Intrinsic::gcread: 6289 case Intrinsic::gcwrite: 6290 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6291 case Intrinsic::flt_rounds: 6292 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 6293 return nullptr; 6294 6295 case Intrinsic::expect: 6296 // Just replace __builtin_expect(exp, c) with EXP. 6297 setValue(&I, getValue(I.getArgOperand(0))); 6298 return nullptr; 6299 6300 case Intrinsic::debugtrap: 6301 case Intrinsic::trap: { 6302 StringRef TrapFuncName = 6303 I.getAttributes() 6304 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 6305 .getValueAsString(); 6306 if (TrapFuncName.empty()) { 6307 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 6308 ISD::TRAP : ISD::DEBUGTRAP; 6309 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 6310 return nullptr; 6311 } 6312 TargetLowering::ArgListTy Args; 6313 6314 TargetLowering::CallLoweringInfo CLI(DAG); 6315 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6316 CallingConv::C, I.getType(), 6317 DAG.getExternalSymbol(TrapFuncName.data(), 6318 TLI.getPointerTy(DAG.getDataLayout())), 6319 std::move(Args)); 6320 6321 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6322 DAG.setRoot(Result.second); 6323 return nullptr; 6324 } 6325 6326 case Intrinsic::uadd_with_overflow: 6327 case Intrinsic::sadd_with_overflow: 6328 case Intrinsic::usub_with_overflow: 6329 case Intrinsic::ssub_with_overflow: 6330 case Intrinsic::umul_with_overflow: 6331 case Intrinsic::smul_with_overflow: { 6332 ISD::NodeType Op; 6333 switch (Intrinsic) { 6334 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6335 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6336 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6337 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6338 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6339 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6340 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6341 } 6342 SDValue Op1 = getValue(I.getArgOperand(0)); 6343 SDValue Op2 = getValue(I.getArgOperand(1)); 6344 6345 EVT ResultVT = Op1.getValueType(); 6346 EVT OverflowVT = MVT::i1; 6347 if (ResultVT.isVector()) 6348 OverflowVT = EVT::getVectorVT( 6349 *Context, OverflowVT, ResultVT.getVectorNumElements()); 6350 6351 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6352 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6353 return nullptr; 6354 } 6355 case Intrinsic::prefetch: { 6356 SDValue Ops[5]; 6357 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6358 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6359 Ops[0] = DAG.getRoot(); 6360 Ops[1] = getValue(I.getArgOperand(0)); 6361 Ops[2] = getValue(I.getArgOperand(1)); 6362 Ops[3] = getValue(I.getArgOperand(2)); 6363 Ops[4] = getValue(I.getArgOperand(3)); 6364 SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 6365 DAG.getVTList(MVT::Other), Ops, 6366 EVT::getIntegerVT(*Context, 8), 6367 MachinePointerInfo(I.getArgOperand(0)), 6368 0, /* align */ 6369 Flags); 6370 6371 // Chain the prefetch in parallell with any pending loads, to stay out of 6372 // the way of later optimizations. 6373 PendingLoads.push_back(Result); 6374 Result = getRoot(); 6375 DAG.setRoot(Result); 6376 return nullptr; 6377 } 6378 case Intrinsic::lifetime_start: 6379 case Intrinsic::lifetime_end: { 6380 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6381 // Stack coloring is not enabled in O0, discard region information. 6382 if (TM.getOptLevel() == CodeGenOpt::None) 6383 return nullptr; 6384 6385 const int64_t ObjectSize = 6386 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6387 Value *const ObjectPtr = I.getArgOperand(1); 6388 SmallVector<Value *, 4> Allocas; 6389 GetUnderlyingObjects(ObjectPtr, Allocas, *DL); 6390 6391 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 6392 E = Allocas.end(); Object != E; ++Object) { 6393 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 6394 6395 // Could not find an Alloca. 6396 if (!LifetimeObject) 6397 continue; 6398 6399 // First check that the Alloca is static, otherwise it won't have a 6400 // valid frame index. 6401 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6402 if (SI == FuncInfo.StaticAllocaMap.end()) 6403 return nullptr; 6404 6405 const int FrameIndex = SI->second; 6406 int64_t Offset; 6407 if (GetPointerBaseWithConstantOffset( 6408 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6409 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6410 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6411 Offset); 6412 DAG.setRoot(Res); 6413 } 6414 return nullptr; 6415 } 6416 case Intrinsic::invariant_start: 6417 // Discard region information. 6418 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6419 return nullptr; 6420 case Intrinsic::invariant_end: 6421 // Discard region information. 6422 return nullptr; 6423 case Intrinsic::clear_cache: 6424 return TLI.getClearCacheBuiltinName(); 6425 case Intrinsic::donothing: 6426 // ignore 6427 return nullptr; 6428 case Intrinsic::experimental_stackmap: 6429 visitStackmap(I); 6430 return nullptr; 6431 case Intrinsic::experimental_patchpoint_void: 6432 case Intrinsic::experimental_patchpoint_i64: 6433 visitPatchpoint(&I); 6434 return nullptr; 6435 case Intrinsic::experimental_gc_statepoint: 6436 LowerStatepoint(ImmutableStatepoint(&I)); 6437 return nullptr; 6438 case Intrinsic::experimental_gc_result: 6439 visitGCResult(cast<GCResultInst>(I)); 6440 return nullptr; 6441 case Intrinsic::experimental_gc_relocate: 6442 visitGCRelocate(cast<GCRelocateInst>(I)); 6443 return nullptr; 6444 case Intrinsic::instrprof_increment: 6445 llvm_unreachable("instrprof failed to lower an increment"); 6446 case Intrinsic::instrprof_value_profile: 6447 llvm_unreachable("instrprof failed to lower a value profiling call"); 6448 case Intrinsic::localescape: { 6449 MachineFunction &MF = DAG.getMachineFunction(); 6450 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6451 6452 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6453 // is the same on all targets. 6454 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 6455 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6456 if (isa<ConstantPointerNull>(Arg)) 6457 continue; // Skip null pointers. They represent a hole in index space. 6458 AllocaInst *Slot = cast<AllocaInst>(Arg); 6459 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6460 "can only escape static allocas"); 6461 int FI = FuncInfo.StaticAllocaMap[Slot]; 6462 MCSymbol *FrameAllocSym = 6463 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6464 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6465 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6466 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6467 .addSym(FrameAllocSym) 6468 .addFrameIndex(FI); 6469 } 6470 6471 return nullptr; 6472 } 6473 6474 case Intrinsic::localrecover: { 6475 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6476 MachineFunction &MF = DAG.getMachineFunction(); 6477 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 6478 6479 // Get the symbol that defines the frame offset. 6480 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6481 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6482 unsigned IdxVal = 6483 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6484 MCSymbol *FrameAllocSym = 6485 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6486 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6487 6488 // Create a MCSymbol for the label to avoid any target lowering 6489 // that would make this PC relative. 6490 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6491 SDValue OffsetVal = 6492 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6493 6494 // Add the offset to the FP. 6495 Value *FP = I.getArgOperand(1); 6496 SDValue FPVal = getValue(FP); 6497 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 6498 setValue(&I, Add); 6499 6500 return nullptr; 6501 } 6502 6503 case Intrinsic::eh_exceptionpointer: 6504 case Intrinsic::eh_exceptioncode: { 6505 // Get the exception pointer vreg, copy from it, and resize it to fit. 6506 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6507 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6508 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6509 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6510 SDValue N = 6511 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6512 if (Intrinsic == Intrinsic::eh_exceptioncode) 6513 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6514 setValue(&I, N); 6515 return nullptr; 6516 } 6517 case Intrinsic::xray_customevent: { 6518 // Here we want to make sure that the intrinsic behaves as if it has a 6519 // specific calling convention, and only for x86_64. 6520 // FIXME: Support other platforms later. 6521 const auto &Triple = DAG.getTarget().getTargetTriple(); 6522 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6523 return nullptr; 6524 6525 SDLoc DL = getCurSDLoc(); 6526 SmallVector<SDValue, 8> Ops; 6527 6528 // We want to say that we always want the arguments in registers. 6529 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6530 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6531 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6532 SDValue Chain = getRoot(); 6533 Ops.push_back(LogEntryVal); 6534 Ops.push_back(StrSizeVal); 6535 Ops.push_back(Chain); 6536 6537 // We need to enforce the calling convention for the callsite, so that 6538 // argument ordering is enforced correctly, and that register allocation can 6539 // see that some registers may be assumed clobbered and have to preserve 6540 // them across calls to the intrinsic. 6541 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6542 DL, NodeTys, Ops); 6543 SDValue patchableNode = SDValue(MN, 0); 6544 DAG.setRoot(patchableNode); 6545 setValue(&I, patchableNode); 6546 return nullptr; 6547 } 6548 case Intrinsic::xray_typedevent: { 6549 // Here we want to make sure that the intrinsic behaves as if it has a 6550 // specific calling convention, and only for x86_64. 6551 // FIXME: Support other platforms later. 6552 const auto &Triple = DAG.getTarget().getTargetTriple(); 6553 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6554 return nullptr; 6555 6556 SDLoc DL = getCurSDLoc(); 6557 SmallVector<SDValue, 8> Ops; 6558 6559 // We want to say that we always want the arguments in registers. 6560 // It's unclear to me how manipulating the selection DAG here forces callers 6561 // to provide arguments in registers instead of on the stack. 6562 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6563 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6564 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6565 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6566 SDValue Chain = getRoot(); 6567 Ops.push_back(LogTypeId); 6568 Ops.push_back(LogEntryVal); 6569 Ops.push_back(StrSizeVal); 6570 Ops.push_back(Chain); 6571 6572 // We need to enforce the calling convention for the callsite, so that 6573 // argument ordering is enforced correctly, and that register allocation can 6574 // see that some registers may be assumed clobbered and have to preserve 6575 // them across calls to the intrinsic. 6576 MachineSDNode *MN = DAG.getMachineNode( 6577 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6578 SDValue patchableNode = SDValue(MN, 0); 6579 DAG.setRoot(patchableNode); 6580 setValue(&I, patchableNode); 6581 return nullptr; 6582 } 6583 case Intrinsic::experimental_deoptimize: 6584 LowerDeoptimizeCall(&I); 6585 return nullptr; 6586 6587 case Intrinsic::experimental_vector_reduce_fadd: 6588 case Intrinsic::experimental_vector_reduce_fmul: 6589 case Intrinsic::experimental_vector_reduce_add: 6590 case Intrinsic::experimental_vector_reduce_mul: 6591 case Intrinsic::experimental_vector_reduce_and: 6592 case Intrinsic::experimental_vector_reduce_or: 6593 case Intrinsic::experimental_vector_reduce_xor: 6594 case Intrinsic::experimental_vector_reduce_smax: 6595 case Intrinsic::experimental_vector_reduce_smin: 6596 case Intrinsic::experimental_vector_reduce_umax: 6597 case Intrinsic::experimental_vector_reduce_umin: 6598 case Intrinsic::experimental_vector_reduce_fmax: 6599 case Intrinsic::experimental_vector_reduce_fmin: 6600 visitVectorReduce(I, Intrinsic); 6601 return nullptr; 6602 6603 case Intrinsic::icall_branch_funnel: { 6604 SmallVector<SDValue, 16> Ops; 6605 Ops.push_back(DAG.getRoot()); 6606 Ops.push_back(getValue(I.getArgOperand(0))); 6607 6608 int64_t Offset; 6609 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6610 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6611 if (!Base) 6612 report_fatal_error( 6613 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6614 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6615 6616 struct BranchFunnelTarget { 6617 int64_t Offset; 6618 SDValue Target; 6619 }; 6620 SmallVector<BranchFunnelTarget, 8> Targets; 6621 6622 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6623 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6624 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6625 if (ElemBase != Base) 6626 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6627 "to the same GlobalValue"); 6628 6629 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6630 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6631 if (!GA) 6632 report_fatal_error( 6633 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6634 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6635 GA->getGlobal(), getCurSDLoc(), 6636 Val.getValueType(), GA->getOffset())}); 6637 } 6638 llvm::sort(Targets, 6639 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6640 return T1.Offset < T2.Offset; 6641 }); 6642 6643 for (auto &T : Targets) { 6644 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6645 Ops.push_back(T.Target); 6646 } 6647 6648 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6649 getCurSDLoc(), MVT::Other, Ops), 6650 0); 6651 DAG.setRoot(N); 6652 setValue(&I, N); 6653 HasTailCall = true; 6654 return nullptr; 6655 } 6656 6657 case Intrinsic::wasm_landingpad_index: 6658 // Information this intrinsic contained has been transferred to 6659 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 6660 // delete it now. 6661 return nullptr; 6662 } 6663 } 6664 6665 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6666 const ConstrainedFPIntrinsic &FPI) { 6667 SDLoc sdl = getCurSDLoc(); 6668 unsigned Opcode; 6669 switch (FPI.getIntrinsicID()) { 6670 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6671 case Intrinsic::experimental_constrained_fadd: 6672 Opcode = ISD::STRICT_FADD; 6673 break; 6674 case Intrinsic::experimental_constrained_fsub: 6675 Opcode = ISD::STRICT_FSUB; 6676 break; 6677 case Intrinsic::experimental_constrained_fmul: 6678 Opcode = ISD::STRICT_FMUL; 6679 break; 6680 case Intrinsic::experimental_constrained_fdiv: 6681 Opcode = ISD::STRICT_FDIV; 6682 break; 6683 case Intrinsic::experimental_constrained_frem: 6684 Opcode = ISD::STRICT_FREM; 6685 break; 6686 case Intrinsic::experimental_constrained_fma: 6687 Opcode = ISD::STRICT_FMA; 6688 break; 6689 case Intrinsic::experimental_constrained_sqrt: 6690 Opcode = ISD::STRICT_FSQRT; 6691 break; 6692 case Intrinsic::experimental_constrained_pow: 6693 Opcode = ISD::STRICT_FPOW; 6694 break; 6695 case Intrinsic::experimental_constrained_powi: 6696 Opcode = ISD::STRICT_FPOWI; 6697 break; 6698 case Intrinsic::experimental_constrained_sin: 6699 Opcode = ISD::STRICT_FSIN; 6700 break; 6701 case Intrinsic::experimental_constrained_cos: 6702 Opcode = ISD::STRICT_FCOS; 6703 break; 6704 case Intrinsic::experimental_constrained_exp: 6705 Opcode = ISD::STRICT_FEXP; 6706 break; 6707 case Intrinsic::experimental_constrained_exp2: 6708 Opcode = ISD::STRICT_FEXP2; 6709 break; 6710 case Intrinsic::experimental_constrained_log: 6711 Opcode = ISD::STRICT_FLOG; 6712 break; 6713 case Intrinsic::experimental_constrained_log10: 6714 Opcode = ISD::STRICT_FLOG10; 6715 break; 6716 case Intrinsic::experimental_constrained_log2: 6717 Opcode = ISD::STRICT_FLOG2; 6718 break; 6719 case Intrinsic::experimental_constrained_rint: 6720 Opcode = ISD::STRICT_FRINT; 6721 break; 6722 case Intrinsic::experimental_constrained_nearbyint: 6723 Opcode = ISD::STRICT_FNEARBYINT; 6724 break; 6725 case Intrinsic::experimental_constrained_maxnum: 6726 Opcode = ISD::STRICT_FMAXNUM; 6727 break; 6728 case Intrinsic::experimental_constrained_minnum: 6729 Opcode = ISD::STRICT_FMINNUM; 6730 break; 6731 case Intrinsic::experimental_constrained_ceil: 6732 Opcode = ISD::STRICT_FCEIL; 6733 break; 6734 case Intrinsic::experimental_constrained_floor: 6735 Opcode = ISD::STRICT_FFLOOR; 6736 break; 6737 case Intrinsic::experimental_constrained_round: 6738 Opcode = ISD::STRICT_FROUND; 6739 break; 6740 case Intrinsic::experimental_constrained_trunc: 6741 Opcode = ISD::STRICT_FTRUNC; 6742 break; 6743 } 6744 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6745 SDValue Chain = getRoot(); 6746 SmallVector<EVT, 4> ValueVTs; 6747 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6748 ValueVTs.push_back(MVT::Other); // Out chain 6749 6750 SDVTList VTs = DAG.getVTList(ValueVTs); 6751 SDValue Result; 6752 if (FPI.isUnaryOp()) 6753 Result = DAG.getNode(Opcode, sdl, VTs, 6754 { Chain, getValue(FPI.getArgOperand(0)) }); 6755 else if (FPI.isTernaryOp()) 6756 Result = DAG.getNode(Opcode, sdl, VTs, 6757 { Chain, getValue(FPI.getArgOperand(0)), 6758 getValue(FPI.getArgOperand(1)), 6759 getValue(FPI.getArgOperand(2)) }); 6760 else 6761 Result = DAG.getNode(Opcode, sdl, VTs, 6762 { Chain, getValue(FPI.getArgOperand(0)), 6763 getValue(FPI.getArgOperand(1)) }); 6764 6765 assert(Result.getNode()->getNumValues() == 2); 6766 SDValue OutChain = Result.getValue(1); 6767 DAG.setRoot(OutChain); 6768 SDValue FPResult = Result.getValue(0); 6769 setValue(&FPI, FPResult); 6770 } 6771 6772 std::pair<SDValue, SDValue> 6773 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 6774 const BasicBlock *EHPadBB) { 6775 MachineFunction &MF = DAG.getMachineFunction(); 6776 MachineModuleInfo &MMI = MF.getMMI(); 6777 MCSymbol *BeginLabel = nullptr; 6778 6779 if (EHPadBB) { 6780 // Insert a label before the invoke call to mark the try range. This can be 6781 // used to detect deletion of the invoke via the MachineModuleInfo. 6782 BeginLabel = MMI.getContext().createTempSymbol(); 6783 6784 // For SjLj, keep track of which landing pads go with which invokes 6785 // so as to maintain the ordering of pads in the LSDA. 6786 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 6787 if (CallSiteIndex) { 6788 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 6789 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 6790 6791 // Now that the call site is handled, stop tracking it. 6792 MMI.setCurrentCallSite(0); 6793 } 6794 6795 // Both PendingLoads and PendingExports must be flushed here; 6796 // this call might not return. 6797 (void)getRoot(); 6798 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 6799 6800 CLI.setChain(getRoot()); 6801 } 6802 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6803 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6804 6805 assert((CLI.IsTailCall || Result.second.getNode()) && 6806 "Non-null chain expected with non-tail call!"); 6807 assert((Result.second.getNode() || !Result.first.getNode()) && 6808 "Null value expected with tail call!"); 6809 6810 if (!Result.second.getNode()) { 6811 // As a special case, a null chain means that a tail call has been emitted 6812 // and the DAG root is already updated. 6813 HasTailCall = true; 6814 6815 // Since there's no actual continuation from this block, nothing can be 6816 // relying on us setting vregs for them. 6817 PendingExports.clear(); 6818 } else { 6819 DAG.setRoot(Result.second); 6820 } 6821 6822 if (EHPadBB) { 6823 // Insert a label at the end of the invoke call to mark the try range. This 6824 // can be used to detect deletion of the invoke via the MachineModuleInfo. 6825 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 6826 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 6827 6828 // Inform MachineModuleInfo of range. 6829 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 6830 // There is a platform (e.g. wasm) that uses funclet style IR but does not 6831 // actually use outlined funclets and their LSDA info style. 6832 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 6833 assert(CLI.CS); 6834 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 6835 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()), 6836 BeginLabel, EndLabel); 6837 } else if (!isScopedEHPersonality(Pers)) { 6838 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 6839 } 6840 } 6841 6842 return Result; 6843 } 6844 6845 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 6846 bool isTailCall, 6847 const BasicBlock *EHPadBB) { 6848 auto &DL = DAG.getDataLayout(); 6849 FunctionType *FTy = CS.getFunctionType(); 6850 Type *RetTy = CS.getType(); 6851 6852 TargetLowering::ArgListTy Args; 6853 Args.reserve(CS.arg_size()); 6854 6855 const Value *SwiftErrorVal = nullptr; 6856 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6857 6858 // We can't tail call inside a function with a swifterror argument. Lowering 6859 // does not support this yet. It would have to move into the swifterror 6860 // register before the call. 6861 auto *Caller = CS.getInstruction()->getParent()->getParent(); 6862 if (TLI.supportSwiftError() && 6863 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 6864 isTailCall = false; 6865 6866 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 6867 i != e; ++i) { 6868 TargetLowering::ArgListEntry Entry; 6869 const Value *V = *i; 6870 6871 // Skip empty types 6872 if (V->getType()->isEmptyTy()) 6873 continue; 6874 6875 SDValue ArgNode = getValue(V); 6876 Entry.Node = ArgNode; Entry.Ty = V->getType(); 6877 6878 Entry.setAttributes(&CS, i - CS.arg_begin()); 6879 6880 // Use swifterror virtual register as input to the call. 6881 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 6882 SwiftErrorVal = V; 6883 // We find the virtual register for the actual swifterror argument. 6884 // Instead of using the Value, we use the virtual register instead. 6885 Entry.Node = DAG.getRegister(FuncInfo 6886 .getOrCreateSwiftErrorVRegUseAt( 6887 CS.getInstruction(), FuncInfo.MBB, V) 6888 .first, 6889 EVT(TLI.getPointerTy(DL))); 6890 } 6891 6892 Args.push_back(Entry); 6893 6894 // If we have an explicit sret argument that is an Instruction, (i.e., it 6895 // might point to function-local memory), we can't meaningfully tail-call. 6896 if (Entry.IsSRet && isa<Instruction>(V)) 6897 isTailCall = false; 6898 } 6899 6900 // Check if target-independent constraints permit a tail call here. 6901 // Target-dependent constraints are checked within TLI->LowerCallTo. 6902 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 6903 isTailCall = false; 6904 6905 // Disable tail calls if there is an swifterror argument. Targets have not 6906 // been updated to support tail calls. 6907 if (TLI.supportSwiftError() && SwiftErrorVal) 6908 isTailCall = false; 6909 6910 TargetLowering::CallLoweringInfo CLI(DAG); 6911 CLI.setDebugLoc(getCurSDLoc()) 6912 .setChain(getRoot()) 6913 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 6914 .setTailCall(isTailCall) 6915 .setConvergent(CS.isConvergent()); 6916 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 6917 6918 if (Result.first.getNode()) { 6919 const Instruction *Inst = CS.getInstruction(); 6920 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 6921 setValue(Inst, Result.first); 6922 } 6923 6924 // The last element of CLI.InVals has the SDValue for swifterror return. 6925 // Here we copy it to a virtual register and update SwiftErrorMap for 6926 // book-keeping. 6927 if (SwiftErrorVal && TLI.supportSwiftError()) { 6928 // Get the last element of InVals. 6929 SDValue Src = CLI.InVals.back(); 6930 unsigned VReg; bool CreatedVReg; 6931 std::tie(VReg, CreatedVReg) = 6932 FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction()); 6933 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 6934 // We update the virtual register for the actual swifterror argument. 6935 if (CreatedVReg) 6936 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg); 6937 DAG.setRoot(CopyNode); 6938 } 6939 } 6940 6941 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 6942 SelectionDAGBuilder &Builder) { 6943 // Check to see if this load can be trivially constant folded, e.g. if the 6944 // input is from a string literal. 6945 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 6946 // Cast pointer to the type we really want to load. 6947 Type *LoadTy = 6948 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 6949 if (LoadVT.isVector()) 6950 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 6951 6952 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 6953 PointerType::getUnqual(LoadTy)); 6954 6955 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 6956 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 6957 return Builder.getValue(LoadCst); 6958 } 6959 6960 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 6961 // still constant memory, the input chain can be the entry node. 6962 SDValue Root; 6963 bool ConstantMemory = false; 6964 6965 // Do not serialize (non-volatile) loads of constant memory with anything. 6966 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 6967 Root = Builder.DAG.getEntryNode(); 6968 ConstantMemory = true; 6969 } else { 6970 // Do not serialize non-volatile loads against each other. 6971 Root = Builder.DAG.getRoot(); 6972 } 6973 6974 SDValue Ptr = Builder.getValue(PtrVal); 6975 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 6976 Ptr, MachinePointerInfo(PtrVal), 6977 /* Alignment = */ 1); 6978 6979 if (!ConstantMemory) 6980 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 6981 return LoadVal; 6982 } 6983 6984 /// Record the value for an instruction that produces an integer result, 6985 /// converting the type where necessary. 6986 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 6987 SDValue Value, 6988 bool IsSigned) { 6989 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6990 I.getType(), true); 6991 if (IsSigned) 6992 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 6993 else 6994 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 6995 setValue(&I, Value); 6996 } 6997 6998 /// See if we can lower a memcmp call into an optimized form. If so, return 6999 /// true and lower it. Otherwise return false, and it will be lowered like a 7000 /// normal call. 7001 /// The caller already checked that \p I calls the appropriate LibFunc with a 7002 /// correct prototype. 7003 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 7004 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7005 const Value *Size = I.getArgOperand(2); 7006 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 7007 if (CSize && CSize->getZExtValue() == 0) { 7008 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7009 I.getType(), true); 7010 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7011 return true; 7012 } 7013 7014 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7015 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7016 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7017 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7018 if (Res.first.getNode()) { 7019 processIntegerCallValue(I, Res.first, true); 7020 PendingLoads.push_back(Res.second); 7021 return true; 7022 } 7023 7024 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7025 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7026 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7027 return false; 7028 7029 // If the target has a fast compare for the given size, it will return a 7030 // preferred load type for that size. Require that the load VT is legal and 7031 // that the target supports unaligned loads of that type. Otherwise, return 7032 // INVALID. 7033 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7034 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7035 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7036 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7037 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7038 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7039 // TODO: Check alignment of src and dest ptrs. 7040 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7041 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7042 if (!TLI.isTypeLegal(LVT) || 7043 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7044 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7045 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7046 } 7047 7048 return LVT; 7049 }; 7050 7051 // This turns into unaligned loads. We only do this if the target natively 7052 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7053 // we'll only produce a small number of byte loads. 7054 MVT LoadVT; 7055 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7056 switch (NumBitsToCompare) { 7057 default: 7058 return false; 7059 case 16: 7060 LoadVT = MVT::i16; 7061 break; 7062 case 32: 7063 LoadVT = MVT::i32; 7064 break; 7065 case 64: 7066 case 128: 7067 case 256: 7068 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7069 break; 7070 } 7071 7072 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7073 return false; 7074 7075 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7076 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7077 7078 // Bitcast to a wide integer type if the loads are vectors. 7079 if (LoadVT.isVector()) { 7080 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7081 LoadL = DAG.getBitcast(CmpVT, LoadL); 7082 LoadR = DAG.getBitcast(CmpVT, LoadR); 7083 } 7084 7085 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7086 processIntegerCallValue(I, Cmp, false); 7087 return true; 7088 } 7089 7090 /// See if we can lower a memchr call into an optimized form. If so, return 7091 /// true and lower it. Otherwise return false, and it will be lowered like a 7092 /// normal call. 7093 /// The caller already checked that \p I calls the appropriate LibFunc with a 7094 /// correct prototype. 7095 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 7096 const Value *Src = I.getArgOperand(0); 7097 const Value *Char = I.getArgOperand(1); 7098 const Value *Length = I.getArgOperand(2); 7099 7100 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7101 std::pair<SDValue, SDValue> Res = 7102 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 7103 getValue(Src), getValue(Char), getValue(Length), 7104 MachinePointerInfo(Src)); 7105 if (Res.first.getNode()) { 7106 setValue(&I, Res.first); 7107 PendingLoads.push_back(Res.second); 7108 return true; 7109 } 7110 7111 return false; 7112 } 7113 7114 /// See if we can lower a mempcpy call into an optimized form. If so, return 7115 /// true and lower it. Otherwise return false, and it will be lowered like a 7116 /// normal call. 7117 /// The caller already checked that \p I calls the appropriate LibFunc with a 7118 /// correct prototype. 7119 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 7120 SDValue Dst = getValue(I.getArgOperand(0)); 7121 SDValue Src = getValue(I.getArgOperand(1)); 7122 SDValue Size = getValue(I.getArgOperand(2)); 7123 7124 unsigned DstAlign = DAG.InferPtrAlignment(Dst); 7125 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 7126 unsigned Align = std::min(DstAlign, SrcAlign); 7127 if (Align == 0) // Alignment of one or both could not be inferred. 7128 Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved. 7129 7130 bool isVol = false; 7131 SDLoc sdl = getCurSDLoc(); 7132 7133 // In the mempcpy context we need to pass in a false value for isTailCall 7134 // because the return pointer needs to be adjusted by the size of 7135 // the copied memory. 7136 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol, 7137 false, /*isTailCall=*/false, 7138 MachinePointerInfo(I.getArgOperand(0)), 7139 MachinePointerInfo(I.getArgOperand(1))); 7140 assert(MC.getNode() != nullptr && 7141 "** memcpy should not be lowered as TailCall in mempcpy context **"); 7142 DAG.setRoot(MC); 7143 7144 // Check if Size needs to be truncated or extended. 7145 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 7146 7147 // Adjust return pointer to point just past the last dst byte. 7148 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 7149 Dst, Size); 7150 setValue(&I, DstPlusSize); 7151 return true; 7152 } 7153 7154 /// See if we can lower a strcpy call into an optimized form. If so, return 7155 /// true and lower it, otherwise return false and it will be lowered like a 7156 /// normal call. 7157 /// The caller already checked that \p I calls the appropriate LibFunc with a 7158 /// correct prototype. 7159 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 7160 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7161 7162 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7163 std::pair<SDValue, SDValue> Res = 7164 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 7165 getValue(Arg0), getValue(Arg1), 7166 MachinePointerInfo(Arg0), 7167 MachinePointerInfo(Arg1), isStpcpy); 7168 if (Res.first.getNode()) { 7169 setValue(&I, Res.first); 7170 DAG.setRoot(Res.second); 7171 return true; 7172 } 7173 7174 return false; 7175 } 7176 7177 /// See if we can lower a strcmp call into an optimized form. If so, return 7178 /// true and lower it, otherwise return false and it will be lowered like a 7179 /// normal call. 7180 /// The caller already checked that \p I calls the appropriate LibFunc with a 7181 /// correct prototype. 7182 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 7183 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7184 7185 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7186 std::pair<SDValue, SDValue> Res = 7187 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 7188 getValue(Arg0), getValue(Arg1), 7189 MachinePointerInfo(Arg0), 7190 MachinePointerInfo(Arg1)); 7191 if (Res.first.getNode()) { 7192 processIntegerCallValue(I, Res.first, true); 7193 PendingLoads.push_back(Res.second); 7194 return true; 7195 } 7196 7197 return false; 7198 } 7199 7200 /// See if we can lower a strlen call into an optimized form. If so, return 7201 /// true and lower it, otherwise return false and it will be lowered like a 7202 /// normal call. 7203 /// The caller already checked that \p I calls the appropriate LibFunc with a 7204 /// correct prototype. 7205 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 7206 const Value *Arg0 = I.getArgOperand(0); 7207 7208 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7209 std::pair<SDValue, SDValue> Res = 7210 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 7211 getValue(Arg0), MachinePointerInfo(Arg0)); 7212 if (Res.first.getNode()) { 7213 processIntegerCallValue(I, Res.first, false); 7214 PendingLoads.push_back(Res.second); 7215 return true; 7216 } 7217 7218 return false; 7219 } 7220 7221 /// See if we can lower a strnlen call into an optimized form. If so, return 7222 /// true and lower it, otherwise return false and it will be lowered like a 7223 /// normal call. 7224 /// The caller already checked that \p I calls the appropriate LibFunc with a 7225 /// correct prototype. 7226 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 7227 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7228 7229 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7230 std::pair<SDValue, SDValue> Res = 7231 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 7232 getValue(Arg0), getValue(Arg1), 7233 MachinePointerInfo(Arg0)); 7234 if (Res.first.getNode()) { 7235 processIntegerCallValue(I, Res.first, false); 7236 PendingLoads.push_back(Res.second); 7237 return true; 7238 } 7239 7240 return false; 7241 } 7242 7243 /// See if we can lower a unary floating-point operation into an SDNode with 7244 /// the specified Opcode. If so, return true and lower it, otherwise return 7245 /// false and it will be lowered like a normal call. 7246 /// The caller already checked that \p I calls the appropriate LibFunc with a 7247 /// correct prototype. 7248 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 7249 unsigned Opcode) { 7250 // We already checked this call's prototype; verify it doesn't modify errno. 7251 if (!I.onlyReadsMemory()) 7252 return false; 7253 7254 SDValue Tmp = getValue(I.getArgOperand(0)); 7255 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 7256 return true; 7257 } 7258 7259 /// See if we can lower a binary floating-point operation into an SDNode with 7260 /// the specified Opcode. If so, return true and lower it. Otherwise return 7261 /// false, and it will be lowered like a normal call. 7262 /// The caller already checked that \p I calls the appropriate LibFunc with a 7263 /// correct prototype. 7264 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 7265 unsigned Opcode) { 7266 // We already checked this call's prototype; verify it doesn't modify errno. 7267 if (!I.onlyReadsMemory()) 7268 return false; 7269 7270 SDValue Tmp0 = getValue(I.getArgOperand(0)); 7271 SDValue Tmp1 = getValue(I.getArgOperand(1)); 7272 EVT VT = Tmp0.getValueType(); 7273 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 7274 return true; 7275 } 7276 7277 void SelectionDAGBuilder::visitCall(const CallInst &I) { 7278 // Handle inline assembly differently. 7279 if (isa<InlineAsm>(I.getCalledValue())) { 7280 visitInlineAsm(&I); 7281 return; 7282 } 7283 7284 const char *RenameFn = nullptr; 7285 if (Function *F = I.getCalledFunction()) { 7286 if (F->isDeclaration()) { 7287 // Is this an LLVM intrinsic or a target-specific intrinsic? 7288 unsigned IID = F->getIntrinsicID(); 7289 if (!IID) 7290 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 7291 IID = II->getIntrinsicID(F); 7292 7293 if (IID) { 7294 RenameFn = visitIntrinsicCall(I, IID); 7295 if (!RenameFn) 7296 return; 7297 } 7298 } 7299 7300 // Check for well-known libc/libm calls. If the function is internal, it 7301 // can't be a library call. Don't do the check if marked as nobuiltin for 7302 // some reason or the call site requires strict floating point semantics. 7303 LibFunc Func; 7304 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 7305 F->hasName() && LibInfo->getLibFunc(*F, Func) && 7306 LibInfo->hasOptimizedCodeGen(Func)) { 7307 switch (Func) { 7308 default: break; 7309 case LibFunc_copysign: 7310 case LibFunc_copysignf: 7311 case LibFunc_copysignl: 7312 // We already checked this call's prototype; verify it doesn't modify 7313 // errno. 7314 if (I.onlyReadsMemory()) { 7315 SDValue LHS = getValue(I.getArgOperand(0)); 7316 SDValue RHS = getValue(I.getArgOperand(1)); 7317 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 7318 LHS.getValueType(), LHS, RHS)); 7319 return; 7320 } 7321 break; 7322 case LibFunc_fabs: 7323 case LibFunc_fabsf: 7324 case LibFunc_fabsl: 7325 if (visitUnaryFloatCall(I, ISD::FABS)) 7326 return; 7327 break; 7328 case LibFunc_fmin: 7329 case LibFunc_fminf: 7330 case LibFunc_fminl: 7331 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 7332 return; 7333 break; 7334 case LibFunc_fmax: 7335 case LibFunc_fmaxf: 7336 case LibFunc_fmaxl: 7337 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 7338 return; 7339 break; 7340 case LibFunc_sin: 7341 case LibFunc_sinf: 7342 case LibFunc_sinl: 7343 if (visitUnaryFloatCall(I, ISD::FSIN)) 7344 return; 7345 break; 7346 case LibFunc_cos: 7347 case LibFunc_cosf: 7348 case LibFunc_cosl: 7349 if (visitUnaryFloatCall(I, ISD::FCOS)) 7350 return; 7351 break; 7352 case LibFunc_sqrt: 7353 case LibFunc_sqrtf: 7354 case LibFunc_sqrtl: 7355 case LibFunc_sqrt_finite: 7356 case LibFunc_sqrtf_finite: 7357 case LibFunc_sqrtl_finite: 7358 if (visitUnaryFloatCall(I, ISD::FSQRT)) 7359 return; 7360 break; 7361 case LibFunc_floor: 7362 case LibFunc_floorf: 7363 case LibFunc_floorl: 7364 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 7365 return; 7366 break; 7367 case LibFunc_nearbyint: 7368 case LibFunc_nearbyintf: 7369 case LibFunc_nearbyintl: 7370 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 7371 return; 7372 break; 7373 case LibFunc_ceil: 7374 case LibFunc_ceilf: 7375 case LibFunc_ceill: 7376 if (visitUnaryFloatCall(I, ISD::FCEIL)) 7377 return; 7378 break; 7379 case LibFunc_rint: 7380 case LibFunc_rintf: 7381 case LibFunc_rintl: 7382 if (visitUnaryFloatCall(I, ISD::FRINT)) 7383 return; 7384 break; 7385 case LibFunc_round: 7386 case LibFunc_roundf: 7387 case LibFunc_roundl: 7388 if (visitUnaryFloatCall(I, ISD::FROUND)) 7389 return; 7390 break; 7391 case LibFunc_trunc: 7392 case LibFunc_truncf: 7393 case LibFunc_truncl: 7394 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 7395 return; 7396 break; 7397 case LibFunc_log2: 7398 case LibFunc_log2f: 7399 case LibFunc_log2l: 7400 if (visitUnaryFloatCall(I, ISD::FLOG2)) 7401 return; 7402 break; 7403 case LibFunc_exp2: 7404 case LibFunc_exp2f: 7405 case LibFunc_exp2l: 7406 if (visitUnaryFloatCall(I, ISD::FEXP2)) 7407 return; 7408 break; 7409 case LibFunc_memcmp: 7410 if (visitMemCmpCall(I)) 7411 return; 7412 break; 7413 case LibFunc_mempcpy: 7414 if (visitMemPCpyCall(I)) 7415 return; 7416 break; 7417 case LibFunc_memchr: 7418 if (visitMemChrCall(I)) 7419 return; 7420 break; 7421 case LibFunc_strcpy: 7422 if (visitStrCpyCall(I, false)) 7423 return; 7424 break; 7425 case LibFunc_stpcpy: 7426 if (visitStrCpyCall(I, true)) 7427 return; 7428 break; 7429 case LibFunc_strcmp: 7430 if (visitStrCmpCall(I)) 7431 return; 7432 break; 7433 case LibFunc_strlen: 7434 if (visitStrLenCall(I)) 7435 return; 7436 break; 7437 case LibFunc_strnlen: 7438 if (visitStrNLenCall(I)) 7439 return; 7440 break; 7441 } 7442 } 7443 } 7444 7445 SDValue Callee; 7446 if (!RenameFn) 7447 Callee = getValue(I.getCalledValue()); 7448 else 7449 Callee = DAG.getExternalSymbol( 7450 RenameFn, 7451 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 7452 7453 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 7454 // have to do anything here to lower funclet bundles. 7455 assert(!I.hasOperandBundlesOtherThan( 7456 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 7457 "Cannot lower calls with arbitrary operand bundles!"); 7458 7459 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 7460 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 7461 else 7462 // Check if we can potentially perform a tail call. More detailed checking 7463 // is be done within LowerCallTo, after more information about the call is 7464 // known. 7465 LowerCallTo(&I, Callee, I.isTailCall()); 7466 } 7467 7468 namespace { 7469 7470 /// AsmOperandInfo - This contains information for each constraint that we are 7471 /// lowering. 7472 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 7473 public: 7474 /// CallOperand - If this is the result output operand or a clobber 7475 /// this is null, otherwise it is the incoming operand to the CallInst. 7476 /// This gets modified as the asm is processed. 7477 SDValue CallOperand; 7478 7479 /// AssignedRegs - If this is a register or register class operand, this 7480 /// contains the set of register corresponding to the operand. 7481 RegsForValue AssignedRegs; 7482 7483 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 7484 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 7485 } 7486 7487 /// Whether or not this operand accesses memory 7488 bool hasMemory(const TargetLowering &TLI) const { 7489 // Indirect operand accesses access memory. 7490 if (isIndirect) 7491 return true; 7492 7493 for (const auto &Code : Codes) 7494 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 7495 return true; 7496 7497 return false; 7498 } 7499 7500 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 7501 /// corresponds to. If there is no Value* for this operand, it returns 7502 /// MVT::Other. 7503 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 7504 const DataLayout &DL) const { 7505 if (!CallOperandVal) return MVT::Other; 7506 7507 if (isa<BasicBlock>(CallOperandVal)) 7508 return TLI.getPointerTy(DL); 7509 7510 llvm::Type *OpTy = CallOperandVal->getType(); 7511 7512 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 7513 // If this is an indirect operand, the operand is a pointer to the 7514 // accessed type. 7515 if (isIndirect) { 7516 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 7517 if (!PtrTy) 7518 report_fatal_error("Indirect operand for inline asm not a pointer!"); 7519 OpTy = PtrTy->getElementType(); 7520 } 7521 7522 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 7523 if (StructType *STy = dyn_cast<StructType>(OpTy)) 7524 if (STy->getNumElements() == 1) 7525 OpTy = STy->getElementType(0); 7526 7527 // If OpTy is not a single value, it may be a struct/union that we 7528 // can tile with integers. 7529 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7530 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7531 switch (BitSize) { 7532 default: break; 7533 case 1: 7534 case 8: 7535 case 16: 7536 case 32: 7537 case 64: 7538 case 128: 7539 OpTy = IntegerType::get(Context, BitSize); 7540 break; 7541 } 7542 } 7543 7544 return TLI.getValueType(DL, OpTy, true); 7545 } 7546 }; 7547 7548 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>; 7549 7550 } // end anonymous namespace 7551 7552 /// Make sure that the output operand \p OpInfo and its corresponding input 7553 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7554 /// out). 7555 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7556 SDISelAsmOperandInfo &MatchingOpInfo, 7557 SelectionDAG &DAG) { 7558 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7559 return; 7560 7561 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7562 const auto &TLI = DAG.getTargetLoweringInfo(); 7563 7564 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7565 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7566 OpInfo.ConstraintVT); 7567 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7568 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7569 MatchingOpInfo.ConstraintVT); 7570 if ((OpInfo.ConstraintVT.isInteger() != 7571 MatchingOpInfo.ConstraintVT.isInteger()) || 7572 (MatchRC.second != InputRC.second)) { 7573 // FIXME: error out in a more elegant fashion 7574 report_fatal_error("Unsupported asm: input constraint" 7575 " with a matching output constraint of" 7576 " incompatible type!"); 7577 } 7578 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 7579 } 7580 7581 /// Get a direct memory input to behave well as an indirect operand. 7582 /// This may introduce stores, hence the need for a \p Chain. 7583 /// \return The (possibly updated) chain. 7584 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 7585 SDISelAsmOperandInfo &OpInfo, 7586 SelectionDAG &DAG) { 7587 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7588 7589 // If we don't have an indirect input, put it in the constpool if we can, 7590 // otherwise spill it to a stack slot. 7591 // TODO: This isn't quite right. We need to handle these according to 7592 // the addressing mode that the constraint wants. Also, this may take 7593 // an additional register for the computation and we don't want that 7594 // either. 7595 7596 // If the operand is a float, integer, or vector constant, spill to a 7597 // constant pool entry to get its address. 7598 const Value *OpVal = OpInfo.CallOperandVal; 7599 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 7600 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 7601 OpInfo.CallOperand = DAG.getConstantPool( 7602 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 7603 return Chain; 7604 } 7605 7606 // Otherwise, create a stack slot and emit a store to it before the asm. 7607 Type *Ty = OpVal->getType(); 7608 auto &DL = DAG.getDataLayout(); 7609 uint64_t TySize = DL.getTypeAllocSize(Ty); 7610 unsigned Align = DL.getPrefTypeAlignment(Ty); 7611 MachineFunction &MF = DAG.getMachineFunction(); 7612 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7613 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 7614 Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot, 7615 MachinePointerInfo::getFixedStack(MF, SSFI)); 7616 OpInfo.CallOperand = StackSlot; 7617 7618 return Chain; 7619 } 7620 7621 /// GetRegistersForValue - Assign registers (virtual or physical) for the 7622 /// specified operand. We prefer to assign virtual registers, to allow the 7623 /// register allocator to handle the assignment process. However, if the asm 7624 /// uses features that we can't model on machineinstrs, we have SDISel do the 7625 /// allocation. This produces generally horrible, but correct, code. 7626 /// 7627 /// OpInfo describes the operand 7628 /// RefOpInfo describes the matching operand if any, the operand otherwise 7629 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 7630 SDISelAsmOperandInfo &OpInfo, 7631 SDISelAsmOperandInfo &RefOpInfo) { 7632 LLVMContext &Context = *DAG.getContext(); 7633 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7634 7635 MachineFunction &MF = DAG.getMachineFunction(); 7636 SmallVector<unsigned, 4> Regs; 7637 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7638 7639 // No work to do for memory operations. 7640 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 7641 return; 7642 7643 // If this is a constraint for a single physreg, or a constraint for a 7644 // register class, find it. 7645 unsigned AssignedReg; 7646 const TargetRegisterClass *RC; 7647 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 7648 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 7649 // RC is unset only on failure. Return immediately. 7650 if (!RC) 7651 return; 7652 7653 // Get the actual register value type. This is important, because the user 7654 // may have asked for (e.g.) the AX register in i32 type. We need to 7655 // remember that AX is actually i16 to get the right extension. 7656 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 7657 7658 if (OpInfo.ConstraintVT != MVT::Other) { 7659 // If this is an FP operand in an integer register (or visa versa), or more 7660 // generally if the operand value disagrees with the register class we plan 7661 // to stick it in, fix the operand type. 7662 // 7663 // If this is an input value, the bitcast to the new type is done now. 7664 // Bitcast for output value is done at the end of visitInlineAsm(). 7665 if ((OpInfo.Type == InlineAsm::isOutput || 7666 OpInfo.Type == InlineAsm::isInput) && 7667 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 7668 // Try to convert to the first EVT that the reg class contains. If the 7669 // types are identical size, use a bitcast to convert (e.g. two differing 7670 // vector types). Note: output bitcast is done at the end of 7671 // visitInlineAsm(). 7672 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 7673 // Exclude indirect inputs while they are unsupported because the code 7674 // to perform the load is missing and thus OpInfo.CallOperand still 7675 // refers to the input address rather than the pointed-to value. 7676 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 7677 OpInfo.CallOperand = 7678 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 7679 OpInfo.ConstraintVT = RegVT; 7680 // If the operand is an FP value and we want it in integer registers, 7681 // use the corresponding integer type. This turns an f64 value into 7682 // i64, which can be passed with two i32 values on a 32-bit machine. 7683 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7684 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7685 if (OpInfo.Type == InlineAsm::isInput) 7686 OpInfo.CallOperand = 7687 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 7688 OpInfo.ConstraintVT = VT; 7689 } 7690 } 7691 } 7692 7693 // No need to allocate a matching input constraint since the constraint it's 7694 // matching to has already been allocated. 7695 if (OpInfo.isMatchingInputConstraint()) 7696 return; 7697 7698 EVT ValueVT = OpInfo.ConstraintVT; 7699 if (OpInfo.ConstraintVT == MVT::Other) 7700 ValueVT = RegVT; 7701 7702 // Initialize NumRegs. 7703 unsigned NumRegs = 1; 7704 if (OpInfo.ConstraintVT != MVT::Other) 7705 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 7706 7707 // If this is a constraint for a specific physical register, like {r17}, 7708 // assign it now. 7709 7710 // If this associated to a specific register, initialize iterator to correct 7711 // place. If virtual, make sure we have enough registers 7712 7713 // Initialize iterator if necessary 7714 TargetRegisterClass::iterator I = RC->begin(); 7715 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7716 7717 // Do not check for single registers. 7718 if (AssignedReg) { 7719 for (; *I != AssignedReg; ++I) 7720 assert(I != RC->end() && "AssignedReg should be member of RC"); 7721 } 7722 7723 for (; NumRegs; --NumRegs, ++I) { 7724 assert(I != RC->end() && "Ran out of registers to allocate!"); 7725 auto R = (AssignedReg) ? *I : RegInfo.createVirtualRegister(RC); 7726 Regs.push_back(R); 7727 } 7728 7729 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7730 } 7731 7732 static unsigned 7733 findMatchingInlineAsmOperand(unsigned OperandNo, 7734 const std::vector<SDValue> &AsmNodeOperands) { 7735 // Scan until we find the definition we already emitted of this operand. 7736 unsigned CurOp = InlineAsm::Op_FirstOperand; 7737 for (; OperandNo; --OperandNo) { 7738 // Advance to the next operand. 7739 unsigned OpFlag = 7740 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7741 assert((InlineAsm::isRegDefKind(OpFlag) || 7742 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 7743 InlineAsm::isMemKind(OpFlag)) && 7744 "Skipped past definitions?"); 7745 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 7746 } 7747 return CurOp; 7748 } 7749 7750 namespace { 7751 7752 class ExtraFlags { 7753 unsigned Flags = 0; 7754 7755 public: 7756 explicit ExtraFlags(ImmutableCallSite CS) { 7757 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7758 if (IA->hasSideEffects()) 7759 Flags |= InlineAsm::Extra_HasSideEffects; 7760 if (IA->isAlignStack()) 7761 Flags |= InlineAsm::Extra_IsAlignStack; 7762 if (CS.isConvergent()) 7763 Flags |= InlineAsm::Extra_IsConvergent; 7764 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 7765 } 7766 7767 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 7768 // Ideally, we would only check against memory constraints. However, the 7769 // meaning of an Other constraint can be target-specific and we can't easily 7770 // reason about it. Therefore, be conservative and set MayLoad/MayStore 7771 // for Other constraints as well. 7772 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 7773 OpInfo.ConstraintType == TargetLowering::C_Other) { 7774 if (OpInfo.Type == InlineAsm::isInput) 7775 Flags |= InlineAsm::Extra_MayLoad; 7776 else if (OpInfo.Type == InlineAsm::isOutput) 7777 Flags |= InlineAsm::Extra_MayStore; 7778 else if (OpInfo.Type == InlineAsm::isClobber) 7779 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 7780 } 7781 } 7782 7783 unsigned get() const { return Flags; } 7784 }; 7785 7786 } // end anonymous namespace 7787 7788 /// visitInlineAsm - Handle a call to an InlineAsm object. 7789 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 7790 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7791 7792 /// ConstraintOperands - Information about all of the constraints. 7793 SDISelAsmOperandInfoVector ConstraintOperands; 7794 7795 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7796 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 7797 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 7798 7799 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 7800 // AsmDialect, MayLoad, MayStore). 7801 bool HasSideEffect = IA->hasSideEffects(); 7802 ExtraFlags ExtraInfo(CS); 7803 7804 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 7805 unsigned ResNo = 0; // ResNo - The result number of the next output. 7806 for (auto &T : TargetConstraints) { 7807 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 7808 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 7809 7810 // Compute the value type for each operand. 7811 if (OpInfo.Type == InlineAsm::isInput || 7812 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 7813 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 7814 7815 // Process the call argument. BasicBlocks are labels, currently appearing 7816 // only in asm's. 7817 const Instruction *I = CS.getInstruction(); 7818 if (isa<CallBrInst>(I) && 7819 (ArgNo - 1) >= (cast<CallBrInst>(I)->getNumArgOperands() - 7820 cast<CallBrInst>(I)->getNumIndirectDests())) { 7821 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal); 7822 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true); 7823 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT); 7824 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 7825 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 7826 } else { 7827 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 7828 } 7829 7830 OpInfo.ConstraintVT = 7831 OpInfo 7832 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 7833 .getSimpleVT(); 7834 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 7835 // The return value of the call is this value. As such, there is no 7836 // corresponding argument. 7837 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7838 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 7839 OpInfo.ConstraintVT = TLI.getSimpleValueType( 7840 DAG.getDataLayout(), STy->getElementType(ResNo)); 7841 } else { 7842 assert(ResNo == 0 && "Asm only has one result!"); 7843 OpInfo.ConstraintVT = 7844 TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 7845 } 7846 ++ResNo; 7847 } else { 7848 OpInfo.ConstraintVT = MVT::Other; 7849 } 7850 7851 if (!HasSideEffect) 7852 HasSideEffect = OpInfo.hasMemory(TLI); 7853 7854 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 7855 // FIXME: Could we compute this on OpInfo rather than T? 7856 7857 // Compute the constraint code and ConstraintType to use. 7858 TLI.ComputeConstraintToUse(T, SDValue()); 7859 7860 ExtraInfo.update(T); 7861 } 7862 7863 // We won't need to flush pending loads if this asm doesn't touch 7864 // memory and is nonvolatile. 7865 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 7866 7867 // Second pass over the constraints: compute which constraint option to use. 7868 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 7869 // If this is an output operand with a matching input operand, look up the 7870 // matching input. If their types mismatch, e.g. one is an integer, the 7871 // other is floating point, or their sizes are different, flag it as an 7872 // error. 7873 if (OpInfo.hasMatchingInput()) { 7874 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 7875 patchMatchingInput(OpInfo, Input, DAG); 7876 } 7877 7878 // Compute the constraint code and ConstraintType to use. 7879 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 7880 7881 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7882 OpInfo.Type == InlineAsm::isClobber) 7883 continue; 7884 7885 // If this is a memory input, and if the operand is not indirect, do what we 7886 // need to provide an address for the memory input. 7887 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7888 !OpInfo.isIndirect) { 7889 assert((OpInfo.isMultipleAlternative || 7890 (OpInfo.Type == InlineAsm::isInput)) && 7891 "Can only indirectify direct input operands!"); 7892 7893 // Memory operands really want the address of the value. 7894 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 7895 7896 // There is no longer a Value* corresponding to this operand. 7897 OpInfo.CallOperandVal = nullptr; 7898 7899 // It is now an indirect operand. 7900 OpInfo.isIndirect = true; 7901 } 7902 7903 } 7904 7905 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 7906 std::vector<SDValue> AsmNodeOperands; 7907 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 7908 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 7909 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 7910 7911 // If we have a !srcloc metadata node associated with it, we want to attach 7912 // this to the ultimately generated inline asm machineinstr. To do this, we 7913 // pass in the third operand as this (potentially null) inline asm MDNode. 7914 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 7915 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 7916 7917 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 7918 // bits as operand 3. 7919 AsmNodeOperands.push_back(DAG.getTargetConstant( 7920 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7921 7922 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 7923 // this, assign virtual and physical registers for inputs and otput. 7924 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 7925 // Assign Registers. 7926 SDISelAsmOperandInfo &RefOpInfo = 7927 OpInfo.isMatchingInputConstraint() 7928 ? ConstraintOperands[OpInfo.getMatchedOperand()] 7929 : OpInfo; 7930 GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 7931 7932 switch (OpInfo.Type) { 7933 case InlineAsm::isOutput: 7934 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 7935 (OpInfo.ConstraintType == TargetLowering::C_Other && 7936 OpInfo.isIndirect)) { 7937 unsigned ConstraintID = 7938 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7939 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7940 "Failed to convert memory constraint code to constraint id."); 7941 7942 // Add information to the INLINEASM node to know about this output. 7943 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7944 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 7945 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 7946 MVT::i32)); 7947 AsmNodeOperands.push_back(OpInfo.CallOperand); 7948 break; 7949 } else if ((OpInfo.ConstraintType == TargetLowering::C_Other && 7950 !OpInfo.isIndirect) || 7951 OpInfo.ConstraintType == TargetLowering::C_Register || 7952 OpInfo.ConstraintType == TargetLowering::C_RegisterClass) { 7953 // Otherwise, this outputs to a register (directly for C_Register / 7954 // C_RegisterClass, and a target-defined fashion for C_Other). Find a 7955 // register that we can use. 7956 if (OpInfo.AssignedRegs.Regs.empty()) { 7957 emitInlineAsmError( 7958 CS, "couldn't allocate output register for constraint '" + 7959 Twine(OpInfo.ConstraintCode) + "'"); 7960 return; 7961 } 7962 7963 // Add information to the INLINEASM node to know that this register is 7964 // set. 7965 OpInfo.AssignedRegs.AddInlineAsmOperands( 7966 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 7967 : InlineAsm::Kind_RegDef, 7968 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 7969 } 7970 break; 7971 7972 case InlineAsm::isInput: { 7973 SDValue InOperandVal = OpInfo.CallOperand; 7974 7975 if (OpInfo.isMatchingInputConstraint()) { 7976 // If this is required to match an output register we have already set, 7977 // just use its register. 7978 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 7979 AsmNodeOperands); 7980 unsigned OpFlag = 7981 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7982 if (InlineAsm::isRegDefKind(OpFlag) || 7983 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 7984 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 7985 if (OpInfo.isIndirect) { 7986 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 7987 emitInlineAsmError(CS, "inline asm not supported yet:" 7988 " don't know how to handle tied " 7989 "indirect register inputs"); 7990 return; 7991 } 7992 7993 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 7994 SmallVector<unsigned, 4> Regs; 7995 7996 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) { 7997 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 7998 MachineRegisterInfo &RegInfo = 7999 DAG.getMachineFunction().getRegInfo(); 8000 for (unsigned i = 0; i != NumRegs; ++i) 8001 Regs.push_back(RegInfo.createVirtualRegister(RC)); 8002 } else { 8003 emitInlineAsmError(CS, "inline asm error: This value type register " 8004 "class is not natively supported!"); 8005 return; 8006 } 8007 8008 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8009 8010 SDLoc dl = getCurSDLoc(); 8011 // Use the produced MatchedRegs object to 8012 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 8013 CS.getInstruction()); 8014 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8015 true, OpInfo.getMatchedOperand(), dl, 8016 DAG, AsmNodeOperands); 8017 break; 8018 } 8019 8020 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8021 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8022 "Unexpected number of operands"); 8023 // Add information to the INLINEASM node to know about this input. 8024 // See InlineAsm.h isUseOperandTiedToDef. 8025 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8026 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8027 OpInfo.getMatchedOperand()); 8028 AsmNodeOperands.push_back(DAG.getTargetConstant( 8029 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8030 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8031 break; 8032 } 8033 8034 // Treat indirect 'X' constraint as memory. 8035 if (OpInfo.ConstraintType == TargetLowering::C_Other && 8036 OpInfo.isIndirect) 8037 OpInfo.ConstraintType = TargetLowering::C_Memory; 8038 8039 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 8040 std::vector<SDValue> Ops; 8041 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8042 Ops, DAG); 8043 if (Ops.empty()) { 8044 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 8045 Twine(OpInfo.ConstraintCode) + "'"); 8046 return; 8047 } 8048 8049 // Add information to the INLINEASM node to know about this input. 8050 unsigned ResOpType = 8051 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8052 AsmNodeOperands.push_back(DAG.getTargetConstant( 8053 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8054 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 8055 break; 8056 } 8057 8058 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8059 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 8060 assert(InOperandVal.getValueType() == 8061 TLI.getPointerTy(DAG.getDataLayout()) && 8062 "Memory operands expect pointer values"); 8063 8064 unsigned ConstraintID = 8065 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8066 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8067 "Failed to convert memory constraint code to constraint id."); 8068 8069 // Add information to the INLINEASM node to know about this input. 8070 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8071 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8072 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8073 getCurSDLoc(), 8074 MVT::i32)); 8075 AsmNodeOperands.push_back(InOperandVal); 8076 break; 8077 } 8078 8079 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 8080 OpInfo.ConstraintType == TargetLowering::C_Register) && 8081 "Unknown constraint type!"); 8082 8083 // TODO: Support this. 8084 if (OpInfo.isIndirect) { 8085 emitInlineAsmError( 8086 CS, "Don't know how to handle indirect register inputs yet " 8087 "for constraint '" + 8088 Twine(OpInfo.ConstraintCode) + "'"); 8089 return; 8090 } 8091 8092 // Copy the input into the appropriate registers. 8093 if (OpInfo.AssignedRegs.Regs.empty()) { 8094 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 8095 Twine(OpInfo.ConstraintCode) + "'"); 8096 return; 8097 } 8098 8099 SDLoc dl = getCurSDLoc(); 8100 8101 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 8102 Chain, &Flag, CS.getInstruction()); 8103 8104 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 8105 dl, DAG, AsmNodeOperands); 8106 break; 8107 } 8108 case InlineAsm::isClobber: 8109 // Add the clobbered value to the operand list, so that the register 8110 // allocator is aware that the physreg got clobbered. 8111 if (!OpInfo.AssignedRegs.Regs.empty()) 8112 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 8113 false, 0, getCurSDLoc(), DAG, 8114 AsmNodeOperands); 8115 break; 8116 } 8117 } 8118 8119 // Finish up input operands. Set the input chain and add the flag last. 8120 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 8121 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 8122 8123 unsigned ISDOpc = isa<CallBrInst>(CS.getInstruction()) ? ISD::INLINEASM_BR : ISD::INLINEASM; 8124 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 8125 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 8126 Flag = Chain.getValue(1); 8127 8128 // Do additional work to generate outputs. 8129 8130 SmallVector<EVT, 1> ResultVTs; 8131 SmallVector<SDValue, 1> ResultValues; 8132 SmallVector<SDValue, 8> OutChains; 8133 8134 llvm::Type *CSResultType = CS.getType(); 8135 ArrayRef<Type *> ResultTypes; 8136 if (StructType *StructResult = dyn_cast<StructType>(CSResultType)) 8137 ResultTypes = StructResult->elements(); 8138 else if (!CSResultType->isVoidTy()) 8139 ResultTypes = makeArrayRef(CSResultType); 8140 8141 auto CurResultType = ResultTypes.begin(); 8142 auto handleRegAssign = [&](SDValue V) { 8143 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 8144 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 8145 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 8146 ++CurResultType; 8147 // If the type of the inline asm call site return value is different but has 8148 // same size as the type of the asm output bitcast it. One example of this 8149 // is for vectors with different width / number of elements. This can 8150 // happen for register classes that can contain multiple different value 8151 // types. The preg or vreg allocated may not have the same VT as was 8152 // expected. 8153 // 8154 // This can also happen for a return value that disagrees with the register 8155 // class it is put in, eg. a double in a general-purpose register on a 8156 // 32-bit machine. 8157 if (ResultVT != V.getValueType() && 8158 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 8159 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 8160 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 8161 V.getValueType().isInteger()) { 8162 // If a result value was tied to an input value, the computed result 8163 // may have a wider width than the expected result. Extract the 8164 // relevant portion. 8165 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 8166 } 8167 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 8168 ResultVTs.push_back(ResultVT); 8169 ResultValues.push_back(V); 8170 }; 8171 8172 // Deal with output operands. 8173 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8174 if (OpInfo.Type == InlineAsm::isOutput) { 8175 SDValue Val; 8176 // Skip trivial output operands. 8177 if (OpInfo.AssignedRegs.Regs.empty()) 8178 continue; 8179 8180 switch (OpInfo.ConstraintType) { 8181 case TargetLowering::C_Register: 8182 case TargetLowering::C_RegisterClass: 8183 Val = OpInfo.AssignedRegs.getCopyFromRegs( 8184 DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction()); 8185 break; 8186 case TargetLowering::C_Other: 8187 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 8188 OpInfo, DAG); 8189 break; 8190 case TargetLowering::C_Memory: 8191 break; // Already handled. 8192 case TargetLowering::C_Unknown: 8193 assert(false && "Unexpected unknown constraint"); 8194 } 8195 8196 // Indirect output manifest as stores. Record output chains. 8197 if (OpInfo.isIndirect) { 8198 const Value *Ptr = OpInfo.CallOperandVal; 8199 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 8200 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 8201 MachinePointerInfo(Ptr)); 8202 OutChains.push_back(Store); 8203 } else { 8204 // generate CopyFromRegs to associated registers. 8205 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 8206 if (Val.getOpcode() == ISD::MERGE_VALUES) { 8207 for (const SDValue &V : Val->op_values()) 8208 handleRegAssign(V); 8209 } else 8210 handleRegAssign(Val); 8211 } 8212 } 8213 } 8214 8215 // Set results. 8216 if (!ResultValues.empty()) { 8217 assert(CurResultType == ResultTypes.end() && 8218 "Mismatch in number of ResultTypes"); 8219 assert(ResultValues.size() == ResultTypes.size() && 8220 "Mismatch in number of output operands in asm result"); 8221 8222 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 8223 DAG.getVTList(ResultVTs), ResultValues); 8224 setValue(CS.getInstruction(), V); 8225 } 8226 8227 // Collect store chains. 8228 if (!OutChains.empty()) 8229 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 8230 8231 // Only Update Root if inline assembly has a memory effect. 8232 if (ResultValues.empty() || HasSideEffect || !OutChains.empty()) 8233 DAG.setRoot(Chain); 8234 } 8235 8236 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 8237 const Twine &Message) { 8238 LLVMContext &Ctx = *DAG.getContext(); 8239 Ctx.emitError(CS.getInstruction(), Message); 8240 8241 // Make sure we leave the DAG in a valid state 8242 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8243 SmallVector<EVT, 1> ValueVTs; 8244 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8245 8246 if (ValueVTs.empty()) 8247 return; 8248 8249 SmallVector<SDValue, 1> Ops; 8250 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 8251 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 8252 8253 setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc())); 8254 } 8255 8256 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 8257 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 8258 MVT::Other, getRoot(), 8259 getValue(I.getArgOperand(0)), 8260 DAG.getSrcValue(I.getArgOperand(0)))); 8261 } 8262 8263 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 8264 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8265 const DataLayout &DL = DAG.getDataLayout(); 8266 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 8267 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 8268 DAG.getSrcValue(I.getOperand(0)), 8269 DL.getABITypeAlignment(I.getType())); 8270 setValue(&I, V); 8271 DAG.setRoot(V.getValue(1)); 8272 } 8273 8274 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 8275 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 8276 MVT::Other, getRoot(), 8277 getValue(I.getArgOperand(0)), 8278 DAG.getSrcValue(I.getArgOperand(0)))); 8279 } 8280 8281 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 8282 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 8283 MVT::Other, getRoot(), 8284 getValue(I.getArgOperand(0)), 8285 getValue(I.getArgOperand(1)), 8286 DAG.getSrcValue(I.getArgOperand(0)), 8287 DAG.getSrcValue(I.getArgOperand(1)))); 8288 } 8289 8290 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 8291 const Instruction &I, 8292 SDValue Op) { 8293 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 8294 if (!Range) 8295 return Op; 8296 8297 ConstantRange CR = getConstantRangeFromMetadata(*Range); 8298 if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet()) 8299 return Op; 8300 8301 APInt Lo = CR.getUnsignedMin(); 8302 if (!Lo.isMinValue()) 8303 return Op; 8304 8305 APInt Hi = CR.getUnsignedMax(); 8306 unsigned Bits = std::max(Hi.getActiveBits(), 8307 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 8308 8309 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 8310 8311 SDLoc SL = getCurSDLoc(); 8312 8313 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 8314 DAG.getValueType(SmallVT)); 8315 unsigned NumVals = Op.getNode()->getNumValues(); 8316 if (NumVals == 1) 8317 return ZExt; 8318 8319 SmallVector<SDValue, 4> Ops; 8320 8321 Ops.push_back(ZExt); 8322 for (unsigned I = 1; I != NumVals; ++I) 8323 Ops.push_back(Op.getValue(I)); 8324 8325 return DAG.getMergeValues(Ops, SL); 8326 } 8327 8328 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 8329 /// the call being lowered. 8330 /// 8331 /// This is a helper for lowering intrinsics that follow a target calling 8332 /// convention or require stack pointer adjustment. Only a subset of the 8333 /// intrinsic's operands need to participate in the calling convention. 8334 void SelectionDAGBuilder::populateCallLoweringInfo( 8335 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 8336 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 8337 bool IsPatchPoint) { 8338 TargetLowering::ArgListTy Args; 8339 Args.reserve(NumArgs); 8340 8341 // Populate the argument list. 8342 // Attributes for args start at offset 1, after the return attribute. 8343 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 8344 ArgI != ArgE; ++ArgI) { 8345 const Value *V = Call->getOperand(ArgI); 8346 8347 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 8348 8349 TargetLowering::ArgListEntry Entry; 8350 Entry.Node = getValue(V); 8351 Entry.Ty = V->getType(); 8352 Entry.setAttributes(Call, ArgI); 8353 Args.push_back(Entry); 8354 } 8355 8356 CLI.setDebugLoc(getCurSDLoc()) 8357 .setChain(getRoot()) 8358 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 8359 .setDiscardResult(Call->use_empty()) 8360 .setIsPatchPoint(IsPatchPoint); 8361 } 8362 8363 /// Add a stack map intrinsic call's live variable operands to a stackmap 8364 /// or patchpoint target node's operand list. 8365 /// 8366 /// Constants are converted to TargetConstants purely as an optimization to 8367 /// avoid constant materialization and register allocation. 8368 /// 8369 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 8370 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 8371 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 8372 /// address materialization and register allocation, but may also be required 8373 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 8374 /// alloca in the entry block, then the runtime may assume that the alloca's 8375 /// StackMap location can be read immediately after compilation and that the 8376 /// location is valid at any point during execution (this is similar to the 8377 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 8378 /// only available in a register, then the runtime would need to trap when 8379 /// execution reaches the StackMap in order to read the alloca's location. 8380 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 8381 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 8382 SelectionDAGBuilder &Builder) { 8383 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 8384 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 8385 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 8386 Ops.push_back( 8387 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 8388 Ops.push_back( 8389 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 8390 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 8391 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 8392 Ops.push_back(Builder.DAG.getTargetFrameIndex( 8393 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 8394 } else 8395 Ops.push_back(OpVal); 8396 } 8397 } 8398 8399 /// Lower llvm.experimental.stackmap directly to its target opcode. 8400 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 8401 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 8402 // [live variables...]) 8403 8404 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 8405 8406 SDValue Chain, InFlag, Callee, NullPtr; 8407 SmallVector<SDValue, 32> Ops; 8408 8409 SDLoc DL = getCurSDLoc(); 8410 Callee = getValue(CI.getCalledValue()); 8411 NullPtr = DAG.getIntPtrConstant(0, DL, true); 8412 8413 // The stackmap intrinsic only records the live variables (the arguemnts 8414 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 8415 // intrinsic, this won't be lowered to a function call. This means we don't 8416 // have to worry about calling conventions and target specific lowering code. 8417 // Instead we perform the call lowering right here. 8418 // 8419 // chain, flag = CALLSEQ_START(chain, 0, 0) 8420 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 8421 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 8422 // 8423 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 8424 InFlag = Chain.getValue(1); 8425 8426 // Add the <id> and <numBytes> constants. 8427 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 8428 Ops.push_back(DAG.getTargetConstant( 8429 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 8430 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 8431 Ops.push_back(DAG.getTargetConstant( 8432 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 8433 MVT::i32)); 8434 8435 // Push live variables for the stack map. 8436 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 8437 8438 // We are not pushing any register mask info here on the operands list, 8439 // because the stackmap doesn't clobber anything. 8440 8441 // Push the chain and the glue flag. 8442 Ops.push_back(Chain); 8443 Ops.push_back(InFlag); 8444 8445 // Create the STACKMAP node. 8446 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8447 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 8448 Chain = SDValue(SM, 0); 8449 InFlag = Chain.getValue(1); 8450 8451 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 8452 8453 // Stackmaps don't generate values, so nothing goes into the NodeMap. 8454 8455 // Set the root to the target-lowered call chain. 8456 DAG.setRoot(Chain); 8457 8458 // Inform the Frame Information that we have a stackmap in this function. 8459 FuncInfo.MF->getFrameInfo().setHasStackMap(); 8460 } 8461 8462 /// Lower llvm.experimental.patchpoint directly to its target opcode. 8463 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 8464 const BasicBlock *EHPadBB) { 8465 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 8466 // i32 <numBytes>, 8467 // i8* <target>, 8468 // i32 <numArgs>, 8469 // [Args...], 8470 // [live variables...]) 8471 8472 CallingConv::ID CC = CS.getCallingConv(); 8473 bool IsAnyRegCC = CC == CallingConv::AnyReg; 8474 bool HasDef = !CS->getType()->isVoidTy(); 8475 SDLoc dl = getCurSDLoc(); 8476 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 8477 8478 // Handle immediate and symbolic callees. 8479 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 8480 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 8481 /*isTarget=*/true); 8482 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 8483 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 8484 SDLoc(SymbolicCallee), 8485 SymbolicCallee->getValueType(0)); 8486 8487 // Get the real number of arguments participating in the call <numArgs> 8488 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 8489 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 8490 8491 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 8492 // Intrinsics include all meta-operands up to but not including CC. 8493 unsigned NumMetaOpers = PatchPointOpers::CCPos; 8494 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 8495 "Not enough arguments provided to the patchpoint intrinsic"); 8496 8497 // For AnyRegCC the arguments are lowered later on manually. 8498 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 8499 Type *ReturnTy = 8500 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 8501 8502 TargetLowering::CallLoweringInfo CLI(DAG); 8503 populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()), 8504 NumMetaOpers, NumCallArgs, Callee, ReturnTy, true); 8505 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8506 8507 SDNode *CallEnd = Result.second.getNode(); 8508 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 8509 CallEnd = CallEnd->getOperand(0).getNode(); 8510 8511 /// Get a call instruction from the call sequence chain. 8512 /// Tail calls are not allowed. 8513 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 8514 "Expected a callseq node."); 8515 SDNode *Call = CallEnd->getOperand(0).getNode(); 8516 bool HasGlue = Call->getGluedNode(); 8517 8518 // Replace the target specific call node with the patchable intrinsic. 8519 SmallVector<SDValue, 8> Ops; 8520 8521 // Add the <id> and <numBytes> constants. 8522 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 8523 Ops.push_back(DAG.getTargetConstant( 8524 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 8525 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 8526 Ops.push_back(DAG.getTargetConstant( 8527 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 8528 MVT::i32)); 8529 8530 // Add the callee. 8531 Ops.push_back(Callee); 8532 8533 // Adjust <numArgs> to account for any arguments that have been passed on the 8534 // stack instead. 8535 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 8536 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 8537 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 8538 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 8539 8540 // Add the calling convention 8541 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 8542 8543 // Add the arguments we omitted previously. The register allocator should 8544 // place these in any free register. 8545 if (IsAnyRegCC) 8546 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 8547 Ops.push_back(getValue(CS.getArgument(i))); 8548 8549 // Push the arguments from the call instruction up to the register mask. 8550 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 8551 Ops.append(Call->op_begin() + 2, e); 8552 8553 // Push live variables for the stack map. 8554 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 8555 8556 // Push the register mask info. 8557 if (HasGlue) 8558 Ops.push_back(*(Call->op_end()-2)); 8559 else 8560 Ops.push_back(*(Call->op_end()-1)); 8561 8562 // Push the chain (this is originally the first operand of the call, but 8563 // becomes now the last or second to last operand). 8564 Ops.push_back(*(Call->op_begin())); 8565 8566 // Push the glue flag (last operand). 8567 if (HasGlue) 8568 Ops.push_back(*(Call->op_end()-1)); 8569 8570 SDVTList NodeTys; 8571 if (IsAnyRegCC && HasDef) { 8572 // Create the return types based on the intrinsic definition 8573 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8574 SmallVector<EVT, 3> ValueVTs; 8575 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8576 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 8577 8578 // There is always a chain and a glue type at the end 8579 ValueVTs.push_back(MVT::Other); 8580 ValueVTs.push_back(MVT::Glue); 8581 NodeTys = DAG.getVTList(ValueVTs); 8582 } else 8583 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8584 8585 // Replace the target specific call node with a PATCHPOINT node. 8586 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 8587 dl, NodeTys, Ops); 8588 8589 // Update the NodeMap. 8590 if (HasDef) { 8591 if (IsAnyRegCC) 8592 setValue(CS.getInstruction(), SDValue(MN, 0)); 8593 else 8594 setValue(CS.getInstruction(), Result.first); 8595 } 8596 8597 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 8598 // call sequence. Furthermore the location of the chain and glue can change 8599 // when the AnyReg calling convention is used and the intrinsic returns a 8600 // value. 8601 if (IsAnyRegCC && HasDef) { 8602 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 8603 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 8604 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 8605 } else 8606 DAG.ReplaceAllUsesWith(Call, MN); 8607 DAG.DeleteNode(Call); 8608 8609 // Inform the Frame Information that we have a patchpoint in this function. 8610 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 8611 } 8612 8613 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 8614 unsigned Intrinsic) { 8615 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8616 SDValue Op1 = getValue(I.getArgOperand(0)); 8617 SDValue Op2; 8618 if (I.getNumArgOperands() > 1) 8619 Op2 = getValue(I.getArgOperand(1)); 8620 SDLoc dl = getCurSDLoc(); 8621 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8622 SDValue Res; 8623 FastMathFlags FMF; 8624 if (isa<FPMathOperator>(I)) 8625 FMF = I.getFastMathFlags(); 8626 8627 switch (Intrinsic) { 8628 case Intrinsic::experimental_vector_reduce_fadd: 8629 if (FMF.isFast()) 8630 Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2); 8631 else 8632 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 8633 break; 8634 case Intrinsic::experimental_vector_reduce_fmul: 8635 if (FMF.isFast()) 8636 Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2); 8637 else 8638 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 8639 break; 8640 case Intrinsic::experimental_vector_reduce_add: 8641 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 8642 break; 8643 case Intrinsic::experimental_vector_reduce_mul: 8644 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 8645 break; 8646 case Intrinsic::experimental_vector_reduce_and: 8647 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 8648 break; 8649 case Intrinsic::experimental_vector_reduce_or: 8650 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 8651 break; 8652 case Intrinsic::experimental_vector_reduce_xor: 8653 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 8654 break; 8655 case Intrinsic::experimental_vector_reduce_smax: 8656 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 8657 break; 8658 case Intrinsic::experimental_vector_reduce_smin: 8659 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 8660 break; 8661 case Intrinsic::experimental_vector_reduce_umax: 8662 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 8663 break; 8664 case Intrinsic::experimental_vector_reduce_umin: 8665 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 8666 break; 8667 case Intrinsic::experimental_vector_reduce_fmax: 8668 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1); 8669 break; 8670 case Intrinsic::experimental_vector_reduce_fmin: 8671 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1); 8672 break; 8673 default: 8674 llvm_unreachable("Unhandled vector reduce intrinsic"); 8675 } 8676 setValue(&I, Res); 8677 } 8678 8679 /// Returns an AttributeList representing the attributes applied to the return 8680 /// value of the given call. 8681 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 8682 SmallVector<Attribute::AttrKind, 2> Attrs; 8683 if (CLI.RetSExt) 8684 Attrs.push_back(Attribute::SExt); 8685 if (CLI.RetZExt) 8686 Attrs.push_back(Attribute::ZExt); 8687 if (CLI.IsInReg) 8688 Attrs.push_back(Attribute::InReg); 8689 8690 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 8691 Attrs); 8692 } 8693 8694 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 8695 /// implementation, which just calls LowerCall. 8696 /// FIXME: When all targets are 8697 /// migrated to using LowerCall, this hook should be integrated into SDISel. 8698 std::pair<SDValue, SDValue> 8699 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 8700 // Handle the incoming return values from the call. 8701 CLI.Ins.clear(); 8702 Type *OrigRetTy = CLI.RetTy; 8703 SmallVector<EVT, 4> RetTys; 8704 SmallVector<uint64_t, 4> Offsets; 8705 auto &DL = CLI.DAG.getDataLayout(); 8706 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 8707 8708 if (CLI.IsPostTypeLegalization) { 8709 // If we are lowering a libcall after legalization, split the return type. 8710 SmallVector<EVT, 4> OldRetTys = std::move(RetTys); 8711 SmallVector<uint64_t, 4> OldOffsets = std::move(Offsets); 8712 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 8713 EVT RetVT = OldRetTys[i]; 8714 uint64_t Offset = OldOffsets[i]; 8715 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 8716 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 8717 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 8718 RetTys.append(NumRegs, RegisterVT); 8719 for (unsigned j = 0; j != NumRegs; ++j) 8720 Offsets.push_back(Offset + j * RegisterVTByteSZ); 8721 } 8722 } 8723 8724 SmallVector<ISD::OutputArg, 4> Outs; 8725 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 8726 8727 bool CanLowerReturn = 8728 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 8729 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 8730 8731 SDValue DemoteStackSlot; 8732 int DemoteStackIdx = -100; 8733 if (!CanLowerReturn) { 8734 // FIXME: equivalent assert? 8735 // assert(!CS.hasInAllocaArgument() && 8736 // "sret demotion is incompatible with inalloca"); 8737 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 8738 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 8739 MachineFunction &MF = CLI.DAG.getMachineFunction(); 8740 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 8741 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 8742 DL.getAllocaAddrSpace()); 8743 8744 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 8745 ArgListEntry Entry; 8746 Entry.Node = DemoteStackSlot; 8747 Entry.Ty = StackSlotPtrType; 8748 Entry.IsSExt = false; 8749 Entry.IsZExt = false; 8750 Entry.IsInReg = false; 8751 Entry.IsSRet = true; 8752 Entry.IsNest = false; 8753 Entry.IsByVal = false; 8754 Entry.IsReturned = false; 8755 Entry.IsSwiftSelf = false; 8756 Entry.IsSwiftError = false; 8757 Entry.Alignment = Align; 8758 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 8759 CLI.NumFixedArgs += 1; 8760 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 8761 8762 // sret demotion isn't compatible with tail-calls, since the sret argument 8763 // points into the callers stack frame. 8764 CLI.IsTailCall = false; 8765 } else { 8766 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 8767 EVT VT = RetTys[I]; 8768 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 8769 CLI.CallConv, VT); 8770 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 8771 CLI.CallConv, VT); 8772 for (unsigned i = 0; i != NumRegs; ++i) { 8773 ISD::InputArg MyFlags; 8774 MyFlags.VT = RegisterVT; 8775 MyFlags.ArgVT = VT; 8776 MyFlags.Used = CLI.IsReturnValueUsed; 8777 if (CLI.RetSExt) 8778 MyFlags.Flags.setSExt(); 8779 if (CLI.RetZExt) 8780 MyFlags.Flags.setZExt(); 8781 if (CLI.IsInReg) 8782 MyFlags.Flags.setInReg(); 8783 CLI.Ins.push_back(MyFlags); 8784 } 8785 } 8786 } 8787 8788 // We push in swifterror return as the last element of CLI.Ins. 8789 ArgListTy &Args = CLI.getArgs(); 8790 if (supportSwiftError()) { 8791 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8792 if (Args[i].IsSwiftError) { 8793 ISD::InputArg MyFlags; 8794 MyFlags.VT = getPointerTy(DL); 8795 MyFlags.ArgVT = EVT(getPointerTy(DL)); 8796 MyFlags.Flags.setSwiftError(); 8797 CLI.Ins.push_back(MyFlags); 8798 } 8799 } 8800 } 8801 8802 // Handle all of the outgoing arguments. 8803 CLI.Outs.clear(); 8804 CLI.OutVals.clear(); 8805 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8806 SmallVector<EVT, 4> ValueVTs; 8807 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 8808 // FIXME: Split arguments if CLI.IsPostTypeLegalization 8809 Type *FinalType = Args[i].Ty; 8810 if (Args[i].IsByVal) 8811 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 8812 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 8813 FinalType, CLI.CallConv, CLI.IsVarArg); 8814 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 8815 ++Value) { 8816 EVT VT = ValueVTs[Value]; 8817 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 8818 SDValue Op = SDValue(Args[i].Node.getNode(), 8819 Args[i].Node.getResNo() + Value); 8820 ISD::ArgFlagsTy Flags; 8821 8822 // Certain targets (such as MIPS), may have a different ABI alignment 8823 // for a type depending on the context. Give the target a chance to 8824 // specify the alignment it wants. 8825 unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL); 8826 8827 if (Args[i].IsZExt) 8828 Flags.setZExt(); 8829 if (Args[i].IsSExt) 8830 Flags.setSExt(); 8831 if (Args[i].IsInReg) { 8832 // If we are using vectorcall calling convention, a structure that is 8833 // passed InReg - is surely an HVA 8834 if (CLI.CallConv == CallingConv::X86_VectorCall && 8835 isa<StructType>(FinalType)) { 8836 // The first value of a structure is marked 8837 if (0 == Value) 8838 Flags.setHvaStart(); 8839 Flags.setHva(); 8840 } 8841 // Set InReg Flag 8842 Flags.setInReg(); 8843 } 8844 if (Args[i].IsSRet) 8845 Flags.setSRet(); 8846 if (Args[i].IsSwiftSelf) 8847 Flags.setSwiftSelf(); 8848 if (Args[i].IsSwiftError) 8849 Flags.setSwiftError(); 8850 if (Args[i].IsByVal) 8851 Flags.setByVal(); 8852 if (Args[i].IsInAlloca) { 8853 Flags.setInAlloca(); 8854 // Set the byval flag for CCAssignFn callbacks that don't know about 8855 // inalloca. This way we can know how many bytes we should've allocated 8856 // and how many bytes a callee cleanup function will pop. If we port 8857 // inalloca to more targets, we'll have to add custom inalloca handling 8858 // in the various CC lowering callbacks. 8859 Flags.setByVal(); 8860 } 8861 if (Args[i].IsByVal || Args[i].IsInAlloca) { 8862 PointerType *Ty = cast<PointerType>(Args[i].Ty); 8863 Type *ElementTy = Ty->getElementType(); 8864 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 8865 // For ByVal, alignment should come from FE. BE will guess if this 8866 // info is not there but there are cases it cannot get right. 8867 unsigned FrameAlign; 8868 if (Args[i].Alignment) 8869 FrameAlign = Args[i].Alignment; 8870 else 8871 FrameAlign = getByValTypeAlignment(ElementTy, DL); 8872 Flags.setByValAlign(FrameAlign); 8873 } 8874 if (Args[i].IsNest) 8875 Flags.setNest(); 8876 if (NeedsRegBlock) 8877 Flags.setInConsecutiveRegs(); 8878 Flags.setOrigAlign(OriginalAlignment); 8879 8880 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 8881 CLI.CallConv, VT); 8882 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 8883 CLI.CallConv, VT); 8884 SmallVector<SDValue, 4> Parts(NumParts); 8885 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 8886 8887 if (Args[i].IsSExt) 8888 ExtendKind = ISD::SIGN_EXTEND; 8889 else if (Args[i].IsZExt) 8890 ExtendKind = ISD::ZERO_EXTEND; 8891 8892 // Conservatively only handle 'returned' on non-vectors that can be lowered, 8893 // for now. 8894 if (Args[i].IsReturned && !Op.getValueType().isVector() && 8895 CanLowerReturn) { 8896 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 8897 "unexpected use of 'returned'"); 8898 // Before passing 'returned' to the target lowering code, ensure that 8899 // either the register MVT and the actual EVT are the same size or that 8900 // the return value and argument are extended in the same way; in these 8901 // cases it's safe to pass the argument register value unchanged as the 8902 // return register value (although it's at the target's option whether 8903 // to do so) 8904 // TODO: allow code generation to take advantage of partially preserved 8905 // registers rather than clobbering the entire register when the 8906 // parameter extension method is not compatible with the return 8907 // extension method 8908 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 8909 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 8910 CLI.RetZExt == Args[i].IsZExt)) 8911 Flags.setReturned(); 8912 } 8913 8914 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 8915 CLI.CS.getInstruction(), CLI.CallConv, ExtendKind); 8916 8917 for (unsigned j = 0; j != NumParts; ++j) { 8918 // if it isn't first piece, alignment must be 1 8919 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 8920 i < CLI.NumFixedArgs, 8921 i, j*Parts[j].getValueType().getStoreSize()); 8922 if (NumParts > 1 && j == 0) 8923 MyFlags.Flags.setSplit(); 8924 else if (j != 0) { 8925 MyFlags.Flags.setOrigAlign(1); 8926 if (j == NumParts - 1) 8927 MyFlags.Flags.setSplitEnd(); 8928 } 8929 8930 CLI.Outs.push_back(MyFlags); 8931 CLI.OutVals.push_back(Parts[j]); 8932 } 8933 8934 if (NeedsRegBlock && Value == NumValues - 1) 8935 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 8936 } 8937 } 8938 8939 SmallVector<SDValue, 4> InVals; 8940 CLI.Chain = LowerCall(CLI, InVals); 8941 8942 // Update CLI.InVals to use outside of this function. 8943 CLI.InVals = InVals; 8944 8945 // Verify that the target's LowerCall behaved as expected. 8946 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 8947 "LowerCall didn't return a valid chain!"); 8948 assert((!CLI.IsTailCall || InVals.empty()) && 8949 "LowerCall emitted a return value for a tail call!"); 8950 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 8951 "LowerCall didn't emit the correct number of values!"); 8952 8953 // For a tail call, the return value is merely live-out and there aren't 8954 // any nodes in the DAG representing it. Return a special value to 8955 // indicate that a tail call has been emitted and no more Instructions 8956 // should be processed in the current block. 8957 if (CLI.IsTailCall) { 8958 CLI.DAG.setRoot(CLI.Chain); 8959 return std::make_pair(SDValue(), SDValue()); 8960 } 8961 8962 #ifndef NDEBUG 8963 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 8964 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 8965 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 8966 "LowerCall emitted a value with the wrong type!"); 8967 } 8968 #endif 8969 8970 SmallVector<SDValue, 4> ReturnValues; 8971 if (!CanLowerReturn) { 8972 // The instruction result is the result of loading from the 8973 // hidden sret parameter. 8974 SmallVector<EVT, 1> PVTs; 8975 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 8976 8977 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 8978 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 8979 EVT PtrVT = PVTs[0]; 8980 8981 unsigned NumValues = RetTys.size(); 8982 ReturnValues.resize(NumValues); 8983 SmallVector<SDValue, 4> Chains(NumValues); 8984 8985 // An aggregate return value cannot wrap around the address space, so 8986 // offsets to its parts don't wrap either. 8987 SDNodeFlags Flags; 8988 Flags.setNoUnsignedWrap(true); 8989 8990 for (unsigned i = 0; i < NumValues; ++i) { 8991 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 8992 CLI.DAG.getConstant(Offsets[i], CLI.DL, 8993 PtrVT), Flags); 8994 SDValue L = CLI.DAG.getLoad( 8995 RetTys[i], CLI.DL, CLI.Chain, Add, 8996 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 8997 DemoteStackIdx, Offsets[i]), 8998 /* Alignment = */ 1); 8999 ReturnValues[i] = L; 9000 Chains[i] = L.getValue(1); 9001 } 9002 9003 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 9004 } else { 9005 // Collect the legal value parts into potentially illegal values 9006 // that correspond to the original function's return values. 9007 Optional<ISD::NodeType> AssertOp; 9008 if (CLI.RetSExt) 9009 AssertOp = ISD::AssertSext; 9010 else if (CLI.RetZExt) 9011 AssertOp = ISD::AssertZext; 9012 unsigned CurReg = 0; 9013 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9014 EVT VT = RetTys[I]; 9015 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9016 CLI.CallConv, VT); 9017 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9018 CLI.CallConv, VT); 9019 9020 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 9021 NumRegs, RegisterVT, VT, nullptr, 9022 CLI.CallConv, AssertOp)); 9023 CurReg += NumRegs; 9024 } 9025 9026 // For a function returning void, there is no return value. We can't create 9027 // such a node, so we just return a null return value in that case. In 9028 // that case, nothing will actually look at the value. 9029 if (ReturnValues.empty()) 9030 return std::make_pair(SDValue(), CLI.Chain); 9031 } 9032 9033 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 9034 CLI.DAG.getVTList(RetTys), ReturnValues); 9035 return std::make_pair(Res, CLI.Chain); 9036 } 9037 9038 void TargetLowering::LowerOperationWrapper(SDNode *N, 9039 SmallVectorImpl<SDValue> &Results, 9040 SelectionDAG &DAG) const { 9041 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 9042 Results.push_back(Res); 9043 } 9044 9045 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9046 llvm_unreachable("LowerOperation not implemented for this target!"); 9047 } 9048 9049 void 9050 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 9051 SDValue Op = getNonRegisterValue(V); 9052 assert((Op.getOpcode() != ISD::CopyFromReg || 9053 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 9054 "Copy from a reg to the same reg!"); 9055 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 9056 9057 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9058 // If this is an InlineAsm we have to match the registers required, not the 9059 // notional registers required by the type. 9060 9061 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 9062 None); // This is not an ABI copy. 9063 SDValue Chain = DAG.getEntryNode(); 9064 9065 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 9066 FuncInfo.PreferredExtendType.end()) 9067 ? ISD::ANY_EXTEND 9068 : FuncInfo.PreferredExtendType[V]; 9069 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 9070 PendingExports.push_back(Chain); 9071 } 9072 9073 #include "llvm/CodeGen/SelectionDAGISel.h" 9074 9075 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 9076 /// entry block, return true. This includes arguments used by switches, since 9077 /// the switch may expand into multiple basic blocks. 9078 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 9079 // With FastISel active, we may be splitting blocks, so force creation 9080 // of virtual registers for all non-dead arguments. 9081 if (FastISel) 9082 return A->use_empty(); 9083 9084 const BasicBlock &Entry = A->getParent()->front(); 9085 for (const User *U : A->users()) 9086 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 9087 return false; // Use not in entry block. 9088 9089 return true; 9090 } 9091 9092 using ArgCopyElisionMapTy = 9093 DenseMap<const Argument *, 9094 std::pair<const AllocaInst *, const StoreInst *>>; 9095 9096 /// Scan the entry block of the function in FuncInfo for arguments that look 9097 /// like copies into a local alloca. Record any copied arguments in 9098 /// ArgCopyElisionCandidates. 9099 static void 9100 findArgumentCopyElisionCandidates(const DataLayout &DL, 9101 FunctionLoweringInfo *FuncInfo, 9102 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 9103 // Record the state of every static alloca used in the entry block. Argument 9104 // allocas are all used in the entry block, so we need approximately as many 9105 // entries as we have arguments. 9106 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 9107 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 9108 unsigned NumArgs = FuncInfo->Fn->arg_size(); 9109 StaticAllocas.reserve(NumArgs * 2); 9110 9111 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 9112 if (!V) 9113 return nullptr; 9114 V = V->stripPointerCasts(); 9115 const auto *AI = dyn_cast<AllocaInst>(V); 9116 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 9117 return nullptr; 9118 auto Iter = StaticAllocas.insert({AI, Unknown}); 9119 return &Iter.first->second; 9120 }; 9121 9122 // Look for stores of arguments to static allocas. Look through bitcasts and 9123 // GEPs to handle type coercions, as long as the alloca is fully initialized 9124 // by the store. Any non-store use of an alloca escapes it and any subsequent 9125 // unanalyzed store might write it. 9126 // FIXME: Handle structs initialized with multiple stores. 9127 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 9128 // Look for stores, and handle non-store uses conservatively. 9129 const auto *SI = dyn_cast<StoreInst>(&I); 9130 if (!SI) { 9131 // We will look through cast uses, so ignore them completely. 9132 if (I.isCast()) 9133 continue; 9134 // Ignore debug info intrinsics, they don't escape or store to allocas. 9135 if (isa<DbgInfoIntrinsic>(I)) 9136 continue; 9137 // This is an unknown instruction. Assume it escapes or writes to all 9138 // static alloca operands. 9139 for (const Use &U : I.operands()) { 9140 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 9141 *Info = StaticAllocaInfo::Clobbered; 9142 } 9143 continue; 9144 } 9145 9146 // If the stored value is a static alloca, mark it as escaped. 9147 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 9148 *Info = StaticAllocaInfo::Clobbered; 9149 9150 // Check if the destination is a static alloca. 9151 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 9152 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 9153 if (!Info) 9154 continue; 9155 const AllocaInst *AI = cast<AllocaInst>(Dst); 9156 9157 // Skip allocas that have been initialized or clobbered. 9158 if (*Info != StaticAllocaInfo::Unknown) 9159 continue; 9160 9161 // Check if the stored value is an argument, and that this store fully 9162 // initializes the alloca. Don't elide copies from the same argument twice. 9163 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 9164 const auto *Arg = dyn_cast<Argument>(Val); 9165 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 9166 Arg->getType()->isEmptyTy() || 9167 DL.getTypeStoreSize(Arg->getType()) != 9168 DL.getTypeAllocSize(AI->getAllocatedType()) || 9169 ArgCopyElisionCandidates.count(Arg)) { 9170 *Info = StaticAllocaInfo::Clobbered; 9171 continue; 9172 } 9173 9174 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 9175 << '\n'); 9176 9177 // Mark this alloca and store for argument copy elision. 9178 *Info = StaticAllocaInfo::Elidable; 9179 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 9180 9181 // Stop scanning if we've seen all arguments. This will happen early in -O0 9182 // builds, which is useful, because -O0 builds have large entry blocks and 9183 // many allocas. 9184 if (ArgCopyElisionCandidates.size() == NumArgs) 9185 break; 9186 } 9187 } 9188 9189 /// Try to elide argument copies from memory into a local alloca. Succeeds if 9190 /// ArgVal is a load from a suitable fixed stack object. 9191 static void tryToElideArgumentCopy( 9192 FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains, 9193 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 9194 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 9195 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 9196 SDValue ArgVal, bool &ArgHasUses) { 9197 // Check if this is a load from a fixed stack object. 9198 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 9199 if (!LNode) 9200 return; 9201 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 9202 if (!FINode) 9203 return; 9204 9205 // Check that the fixed stack object is the right size and alignment. 9206 // Look at the alignment that the user wrote on the alloca instead of looking 9207 // at the stack object. 9208 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 9209 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 9210 const AllocaInst *AI = ArgCopyIter->second.first; 9211 int FixedIndex = FINode->getIndex(); 9212 int &AllocaIndex = FuncInfo->StaticAllocaMap[AI]; 9213 int OldIndex = AllocaIndex; 9214 MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo(); 9215 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 9216 LLVM_DEBUG( 9217 dbgs() << " argument copy elision failed due to bad fixed stack " 9218 "object size\n"); 9219 return; 9220 } 9221 unsigned RequiredAlignment = AI->getAlignment(); 9222 if (!RequiredAlignment) { 9223 RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment( 9224 AI->getAllocatedType()); 9225 } 9226 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) { 9227 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 9228 "greater than stack argument alignment (" 9229 << RequiredAlignment << " vs " 9230 << MFI.getObjectAlignment(FixedIndex) << ")\n"); 9231 return; 9232 } 9233 9234 // Perform the elision. Delete the old stack object and replace its only use 9235 // in the variable info map. Mark the stack object as mutable. 9236 LLVM_DEBUG({ 9237 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 9238 << " Replacing frame index " << OldIndex << " with " << FixedIndex 9239 << '\n'; 9240 }); 9241 MFI.RemoveStackObject(OldIndex); 9242 MFI.setIsImmutableObjectIndex(FixedIndex, false); 9243 AllocaIndex = FixedIndex; 9244 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 9245 Chains.push_back(ArgVal.getValue(1)); 9246 9247 // Avoid emitting code for the store implementing the copy. 9248 const StoreInst *SI = ArgCopyIter->second.second; 9249 ElidedArgCopyInstrs.insert(SI); 9250 9251 // Check for uses of the argument again so that we can avoid exporting ArgVal 9252 // if it is't used by anything other than the store. 9253 for (const Value *U : Arg.users()) { 9254 if (U != SI) { 9255 ArgHasUses = true; 9256 break; 9257 } 9258 } 9259 } 9260 9261 void SelectionDAGISel::LowerArguments(const Function &F) { 9262 SelectionDAG &DAG = SDB->DAG; 9263 SDLoc dl = SDB->getCurSDLoc(); 9264 const DataLayout &DL = DAG.getDataLayout(); 9265 SmallVector<ISD::InputArg, 16> Ins; 9266 9267 if (!FuncInfo->CanLowerReturn) { 9268 // Put in an sret pointer parameter before all the other parameters. 9269 SmallVector<EVT, 1> ValueVTs; 9270 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9271 F.getReturnType()->getPointerTo( 9272 DAG.getDataLayout().getAllocaAddrSpace()), 9273 ValueVTs); 9274 9275 // NOTE: Assuming that a pointer will never break down to more than one VT 9276 // or one register. 9277 ISD::ArgFlagsTy Flags; 9278 Flags.setSRet(); 9279 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 9280 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 9281 ISD::InputArg::NoArgIndex, 0); 9282 Ins.push_back(RetArg); 9283 } 9284 9285 // Look for stores of arguments to static allocas. Mark such arguments with a 9286 // flag to ask the target to give us the memory location of that argument if 9287 // available. 9288 ArgCopyElisionMapTy ArgCopyElisionCandidates; 9289 findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates); 9290 9291 // Set up the incoming argument description vector. 9292 for (const Argument &Arg : F.args()) { 9293 unsigned ArgNo = Arg.getArgNo(); 9294 SmallVector<EVT, 4> ValueVTs; 9295 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9296 bool isArgValueUsed = !Arg.use_empty(); 9297 unsigned PartBase = 0; 9298 Type *FinalType = Arg.getType(); 9299 if (Arg.hasAttribute(Attribute::ByVal)) 9300 FinalType = cast<PointerType>(FinalType)->getElementType(); 9301 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 9302 FinalType, F.getCallingConv(), F.isVarArg()); 9303 for (unsigned Value = 0, NumValues = ValueVTs.size(); 9304 Value != NumValues; ++Value) { 9305 EVT VT = ValueVTs[Value]; 9306 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 9307 ISD::ArgFlagsTy Flags; 9308 9309 // Certain targets (such as MIPS), may have a different ABI alignment 9310 // for a type depending on the context. Give the target a chance to 9311 // specify the alignment it wants. 9312 unsigned OriginalAlignment = 9313 TLI->getABIAlignmentForCallingConv(ArgTy, DL); 9314 9315 if (Arg.hasAttribute(Attribute::ZExt)) 9316 Flags.setZExt(); 9317 if (Arg.hasAttribute(Attribute::SExt)) 9318 Flags.setSExt(); 9319 if (Arg.hasAttribute(Attribute::InReg)) { 9320 // If we are using vectorcall calling convention, a structure that is 9321 // passed InReg - is surely an HVA 9322 if (F.getCallingConv() == CallingConv::X86_VectorCall && 9323 isa<StructType>(Arg.getType())) { 9324 // The first value of a structure is marked 9325 if (0 == Value) 9326 Flags.setHvaStart(); 9327 Flags.setHva(); 9328 } 9329 // Set InReg Flag 9330 Flags.setInReg(); 9331 } 9332 if (Arg.hasAttribute(Attribute::StructRet)) 9333 Flags.setSRet(); 9334 if (Arg.hasAttribute(Attribute::SwiftSelf)) 9335 Flags.setSwiftSelf(); 9336 if (Arg.hasAttribute(Attribute::SwiftError)) 9337 Flags.setSwiftError(); 9338 if (Arg.hasAttribute(Attribute::ByVal)) 9339 Flags.setByVal(); 9340 if (Arg.hasAttribute(Attribute::InAlloca)) { 9341 Flags.setInAlloca(); 9342 // Set the byval flag for CCAssignFn callbacks that don't know about 9343 // inalloca. This way we can know how many bytes we should've allocated 9344 // and how many bytes a callee cleanup function will pop. If we port 9345 // inalloca to more targets, we'll have to add custom inalloca handling 9346 // in the various CC lowering callbacks. 9347 Flags.setByVal(); 9348 } 9349 if (F.getCallingConv() == CallingConv::X86_INTR) { 9350 // IA Interrupt passes frame (1st parameter) by value in the stack. 9351 if (ArgNo == 0) 9352 Flags.setByVal(); 9353 } 9354 if (Flags.isByVal() || Flags.isInAlloca()) { 9355 PointerType *Ty = cast<PointerType>(Arg.getType()); 9356 Type *ElementTy = Ty->getElementType(); 9357 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 9358 // For ByVal, alignment should be passed from FE. BE will guess if 9359 // this info is not there but there are cases it cannot get right. 9360 unsigned FrameAlign; 9361 if (Arg.getParamAlignment()) 9362 FrameAlign = Arg.getParamAlignment(); 9363 else 9364 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 9365 Flags.setByValAlign(FrameAlign); 9366 } 9367 if (Arg.hasAttribute(Attribute::Nest)) 9368 Flags.setNest(); 9369 if (NeedsRegBlock) 9370 Flags.setInConsecutiveRegs(); 9371 Flags.setOrigAlign(OriginalAlignment); 9372 if (ArgCopyElisionCandidates.count(&Arg)) 9373 Flags.setCopyElisionCandidate(); 9374 9375 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 9376 *CurDAG->getContext(), F.getCallingConv(), VT); 9377 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 9378 *CurDAG->getContext(), F.getCallingConv(), VT); 9379 for (unsigned i = 0; i != NumRegs; ++i) { 9380 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 9381 ArgNo, PartBase+i*RegisterVT.getStoreSize()); 9382 if (NumRegs > 1 && i == 0) 9383 MyFlags.Flags.setSplit(); 9384 // if it isn't first piece, alignment must be 1 9385 else if (i > 0) { 9386 MyFlags.Flags.setOrigAlign(1); 9387 if (i == NumRegs - 1) 9388 MyFlags.Flags.setSplitEnd(); 9389 } 9390 Ins.push_back(MyFlags); 9391 } 9392 if (NeedsRegBlock && Value == NumValues - 1) 9393 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 9394 PartBase += VT.getStoreSize(); 9395 } 9396 } 9397 9398 // Call the target to set up the argument values. 9399 SmallVector<SDValue, 8> InVals; 9400 SDValue NewRoot = TLI->LowerFormalArguments( 9401 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 9402 9403 // Verify that the target's LowerFormalArguments behaved as expected. 9404 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 9405 "LowerFormalArguments didn't return a valid chain!"); 9406 assert(InVals.size() == Ins.size() && 9407 "LowerFormalArguments didn't emit the correct number of values!"); 9408 LLVM_DEBUG({ 9409 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 9410 assert(InVals[i].getNode() && 9411 "LowerFormalArguments emitted a null value!"); 9412 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 9413 "LowerFormalArguments emitted a value with the wrong type!"); 9414 } 9415 }); 9416 9417 // Update the DAG with the new chain value resulting from argument lowering. 9418 DAG.setRoot(NewRoot); 9419 9420 // Set up the argument values. 9421 unsigned i = 0; 9422 if (!FuncInfo->CanLowerReturn) { 9423 // Create a virtual register for the sret pointer, and put in a copy 9424 // from the sret argument into it. 9425 SmallVector<EVT, 1> ValueVTs; 9426 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9427 F.getReturnType()->getPointerTo( 9428 DAG.getDataLayout().getAllocaAddrSpace()), 9429 ValueVTs); 9430 MVT VT = ValueVTs[0].getSimpleVT(); 9431 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 9432 Optional<ISD::NodeType> AssertOp = None; 9433 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 9434 nullptr, F.getCallingConv(), AssertOp); 9435 9436 MachineFunction& MF = SDB->DAG.getMachineFunction(); 9437 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 9438 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 9439 FuncInfo->DemoteRegister = SRetReg; 9440 NewRoot = 9441 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 9442 DAG.setRoot(NewRoot); 9443 9444 // i indexes lowered arguments. Bump it past the hidden sret argument. 9445 ++i; 9446 } 9447 9448 SmallVector<SDValue, 4> Chains; 9449 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 9450 for (const Argument &Arg : F.args()) { 9451 SmallVector<SDValue, 4> ArgValues; 9452 SmallVector<EVT, 4> ValueVTs; 9453 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9454 unsigned NumValues = ValueVTs.size(); 9455 if (NumValues == 0) 9456 continue; 9457 9458 bool ArgHasUses = !Arg.use_empty(); 9459 9460 // Elide the copying store if the target loaded this argument from a 9461 // suitable fixed stack object. 9462 if (Ins[i].Flags.isCopyElisionCandidate()) { 9463 tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 9464 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 9465 InVals[i], ArgHasUses); 9466 } 9467 9468 // If this argument is unused then remember its value. It is used to generate 9469 // debugging information. 9470 bool isSwiftErrorArg = 9471 TLI->supportSwiftError() && 9472 Arg.hasAttribute(Attribute::SwiftError); 9473 if (!ArgHasUses && !isSwiftErrorArg) { 9474 SDB->setUnusedArgValue(&Arg, InVals[i]); 9475 9476 // Also remember any frame index for use in FastISel. 9477 if (FrameIndexSDNode *FI = 9478 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 9479 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9480 } 9481 9482 for (unsigned Val = 0; Val != NumValues; ++Val) { 9483 EVT VT = ValueVTs[Val]; 9484 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 9485 F.getCallingConv(), VT); 9486 unsigned NumParts = TLI->getNumRegistersForCallingConv( 9487 *CurDAG->getContext(), F.getCallingConv(), VT); 9488 9489 // Even an apparant 'unused' swifterror argument needs to be returned. So 9490 // we do generate a copy for it that can be used on return from the 9491 // function. 9492 if (ArgHasUses || isSwiftErrorArg) { 9493 Optional<ISD::NodeType> AssertOp; 9494 if (Arg.hasAttribute(Attribute::SExt)) 9495 AssertOp = ISD::AssertSext; 9496 else if (Arg.hasAttribute(Attribute::ZExt)) 9497 AssertOp = ISD::AssertZext; 9498 9499 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 9500 PartVT, VT, nullptr, 9501 F.getCallingConv(), AssertOp)); 9502 } 9503 9504 i += NumParts; 9505 } 9506 9507 // We don't need to do anything else for unused arguments. 9508 if (ArgValues.empty()) 9509 continue; 9510 9511 // Note down frame index. 9512 if (FrameIndexSDNode *FI = 9513 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 9514 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9515 9516 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 9517 SDB->getCurSDLoc()); 9518 9519 SDB->setValue(&Arg, Res); 9520 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 9521 // We want to associate the argument with the frame index, among 9522 // involved operands, that correspond to the lowest address. The 9523 // getCopyFromParts function, called earlier, is swapping the order of 9524 // the operands to BUILD_PAIR depending on endianness. The result of 9525 // that swapping is that the least significant bits of the argument will 9526 // be in the first operand of the BUILD_PAIR node, and the most 9527 // significant bits will be in the second operand. 9528 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 9529 if (LoadSDNode *LNode = 9530 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 9531 if (FrameIndexSDNode *FI = 9532 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 9533 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9534 } 9535 9536 // Update the SwiftErrorVRegDefMap. 9537 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 9538 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9539 if (TargetRegisterInfo::isVirtualRegister(Reg)) 9540 FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, 9541 FuncInfo->SwiftErrorArg, Reg); 9542 } 9543 9544 // If this argument is live outside of the entry block, insert a copy from 9545 // wherever we got it to the vreg that other BB's will reference it as. 9546 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 9547 // If we can, though, try to skip creating an unnecessary vreg. 9548 // FIXME: This isn't very clean... it would be nice to make this more 9549 // general. It's also subtly incompatible with the hacks FastISel 9550 // uses with vregs. 9551 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9552 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 9553 FuncInfo->ValueMap[&Arg] = Reg; 9554 continue; 9555 } 9556 } 9557 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 9558 FuncInfo->InitializeRegForValue(&Arg); 9559 SDB->CopyToExportRegsIfNeeded(&Arg); 9560 } 9561 } 9562 9563 if (!Chains.empty()) { 9564 Chains.push_back(NewRoot); 9565 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 9566 } 9567 9568 DAG.setRoot(NewRoot); 9569 9570 assert(i == InVals.size() && "Argument register count mismatch!"); 9571 9572 // If any argument copy elisions occurred and we have debug info, update the 9573 // stale frame indices used in the dbg.declare variable info table. 9574 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 9575 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 9576 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 9577 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 9578 if (I != ArgCopyElisionFrameIndexMap.end()) 9579 VI.Slot = I->second; 9580 } 9581 } 9582 9583 // Finally, if the target has anything special to do, allow it to do so. 9584 EmitFunctionEntryCode(); 9585 } 9586 9587 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 9588 /// ensure constants are generated when needed. Remember the virtual registers 9589 /// that need to be added to the Machine PHI nodes as input. We cannot just 9590 /// directly add them, because expansion might result in multiple MBB's for one 9591 /// BB. As such, the start of the BB might correspond to a different MBB than 9592 /// the end. 9593 void 9594 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 9595 const Instruction *TI = LLVMBB->getTerminator(); 9596 9597 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 9598 9599 // Check PHI nodes in successors that expect a value to be available from this 9600 // block. 9601 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 9602 const BasicBlock *SuccBB = TI->getSuccessor(succ); 9603 if (!isa<PHINode>(SuccBB->begin())) continue; 9604 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 9605 9606 // If this terminator has multiple identical successors (common for 9607 // switches), only handle each succ once. 9608 if (!SuccsHandled.insert(SuccMBB).second) 9609 continue; 9610 9611 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 9612 9613 // At this point we know that there is a 1-1 correspondence between LLVM PHI 9614 // nodes and Machine PHI nodes, but the incoming operands have not been 9615 // emitted yet. 9616 for (const PHINode &PN : SuccBB->phis()) { 9617 // Ignore dead phi's. 9618 if (PN.use_empty()) 9619 continue; 9620 9621 // Skip empty types 9622 if (PN.getType()->isEmptyTy()) 9623 continue; 9624 9625 unsigned Reg; 9626 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 9627 9628 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 9629 unsigned &RegOut = ConstantsOut[C]; 9630 if (RegOut == 0) { 9631 RegOut = FuncInfo.CreateRegs(C->getType()); 9632 CopyValueToVirtualRegister(C, RegOut); 9633 } 9634 Reg = RegOut; 9635 } else { 9636 DenseMap<const Value *, unsigned>::iterator I = 9637 FuncInfo.ValueMap.find(PHIOp); 9638 if (I != FuncInfo.ValueMap.end()) 9639 Reg = I->second; 9640 else { 9641 assert(isa<AllocaInst>(PHIOp) && 9642 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 9643 "Didn't codegen value into a register!??"); 9644 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 9645 CopyValueToVirtualRegister(PHIOp, Reg); 9646 } 9647 } 9648 9649 // Remember that this register needs to added to the machine PHI node as 9650 // the input for this MBB. 9651 SmallVector<EVT, 4> ValueVTs; 9652 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9653 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 9654 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 9655 EVT VT = ValueVTs[vti]; 9656 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 9657 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 9658 FuncInfo.PHINodesToUpdate.push_back( 9659 std::make_pair(&*MBBI++, Reg + i)); 9660 Reg += NumRegisters; 9661 } 9662 } 9663 } 9664 9665 ConstantsOut.clear(); 9666 } 9667 9668 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 9669 /// is 0. 9670 MachineBasicBlock * 9671 SelectionDAGBuilder::StackProtectorDescriptor:: 9672 AddSuccessorMBB(const BasicBlock *BB, 9673 MachineBasicBlock *ParentMBB, 9674 bool IsLikely, 9675 MachineBasicBlock *SuccMBB) { 9676 // If SuccBB has not been created yet, create it. 9677 if (!SuccMBB) { 9678 MachineFunction *MF = ParentMBB->getParent(); 9679 MachineFunction::iterator BBI(ParentMBB); 9680 SuccMBB = MF->CreateMachineBasicBlock(BB); 9681 MF->insert(++BBI, SuccMBB); 9682 } 9683 // Add it as a successor of ParentMBB. 9684 ParentMBB->addSuccessor( 9685 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 9686 return SuccMBB; 9687 } 9688 9689 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 9690 MachineFunction::iterator I(MBB); 9691 if (++I == FuncInfo.MF->end()) 9692 return nullptr; 9693 return &*I; 9694 } 9695 9696 /// During lowering new call nodes can be created (such as memset, etc.). 9697 /// Those will become new roots of the current DAG, but complications arise 9698 /// when they are tail calls. In such cases, the call lowering will update 9699 /// the root, but the builder still needs to know that a tail call has been 9700 /// lowered in order to avoid generating an additional return. 9701 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 9702 // If the node is null, we do have a tail call. 9703 if (MaybeTC.getNode() != nullptr) 9704 DAG.setRoot(MaybeTC); 9705 else 9706 HasTailCall = true; 9707 } 9708 9709 uint64_t 9710 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters, 9711 unsigned First, unsigned Last) const { 9712 assert(Last >= First); 9713 const APInt &LowCase = Clusters[First].Low->getValue(); 9714 const APInt &HighCase = Clusters[Last].High->getValue(); 9715 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 9716 9717 // FIXME: A range of consecutive cases has 100% density, but only requires one 9718 // comparison to lower. We should discriminate against such consecutive ranges 9719 // in jump tables. 9720 9721 return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1; 9722 } 9723 9724 uint64_t SelectionDAGBuilder::getJumpTableNumCases( 9725 const SmallVectorImpl<unsigned> &TotalCases, unsigned First, 9726 unsigned Last) const { 9727 assert(Last >= First); 9728 assert(TotalCases[Last] >= TotalCases[First]); 9729 uint64_t NumCases = 9730 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 9731 return NumCases; 9732 } 9733 9734 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters, 9735 unsigned First, unsigned Last, 9736 const SwitchInst *SI, 9737 MachineBasicBlock *DefaultMBB, 9738 CaseCluster &JTCluster) { 9739 assert(First <= Last); 9740 9741 auto Prob = BranchProbability::getZero(); 9742 unsigned NumCmps = 0; 9743 std::vector<MachineBasicBlock*> Table; 9744 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 9745 9746 // Initialize probabilities in JTProbs. 9747 for (unsigned I = First; I <= Last; ++I) 9748 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 9749 9750 for (unsigned I = First; I <= Last; ++I) { 9751 assert(Clusters[I].Kind == CC_Range); 9752 Prob += Clusters[I].Prob; 9753 const APInt &Low = Clusters[I].Low->getValue(); 9754 const APInt &High = Clusters[I].High->getValue(); 9755 NumCmps += (Low == High) ? 1 : 2; 9756 if (I != First) { 9757 // Fill the gap between this and the previous cluster. 9758 const APInt &PreviousHigh = Clusters[I - 1].High->getValue(); 9759 assert(PreviousHigh.slt(Low)); 9760 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 9761 for (uint64_t J = 0; J < Gap; J++) 9762 Table.push_back(DefaultMBB); 9763 } 9764 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 9765 for (uint64_t J = 0; J < ClusterSize; ++J) 9766 Table.push_back(Clusters[I].MBB); 9767 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 9768 } 9769 9770 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9771 unsigned NumDests = JTProbs.size(); 9772 if (TLI.isSuitableForBitTests( 9773 NumDests, NumCmps, Clusters[First].Low->getValue(), 9774 Clusters[Last].High->getValue(), DAG.getDataLayout())) { 9775 // Clusters[First..Last] should be lowered as bit tests instead. 9776 return false; 9777 } 9778 9779 // Create the MBB that will load from and jump through the table. 9780 // Note: We create it here, but it's not inserted into the function yet. 9781 MachineFunction *CurMF = FuncInfo.MF; 9782 MachineBasicBlock *JumpTableMBB = 9783 CurMF->CreateMachineBasicBlock(SI->getParent()); 9784 9785 // Add successors. Note: use table order for determinism. 9786 SmallPtrSet<MachineBasicBlock *, 8> Done; 9787 for (MachineBasicBlock *Succ : Table) { 9788 if (Done.count(Succ)) 9789 continue; 9790 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 9791 Done.insert(Succ); 9792 } 9793 JumpTableMBB->normalizeSuccProbs(); 9794 9795 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 9796 ->createJumpTableIndex(Table); 9797 9798 // Set up the jump table info. 9799 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 9800 JumpTableHeader JTH(Clusters[First].Low->getValue(), 9801 Clusters[Last].High->getValue(), SI->getCondition(), 9802 nullptr, false); 9803 JTCases.emplace_back(std::move(JTH), std::move(JT)); 9804 9805 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 9806 JTCases.size() - 1, Prob); 9807 return true; 9808 } 9809 9810 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 9811 const SwitchInst *SI, 9812 MachineBasicBlock *DefaultMBB) { 9813 #ifndef NDEBUG 9814 // Clusters must be non-empty, sorted, and only contain Range clusters. 9815 assert(!Clusters.empty()); 9816 for (CaseCluster &C : Clusters) 9817 assert(C.Kind == CC_Range); 9818 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 9819 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 9820 #endif 9821 9822 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9823 if (!TLI.areJTsAllowed(SI->getParent()->getParent())) 9824 return; 9825 9826 const int64_t N = Clusters.size(); 9827 const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries(); 9828 const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2; 9829 9830 if (N < 2 || N < MinJumpTableEntries) 9831 return; 9832 9833 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 9834 SmallVector<unsigned, 8> TotalCases(N); 9835 for (unsigned i = 0; i < N; ++i) { 9836 const APInt &Hi = Clusters[i].High->getValue(); 9837 const APInt &Lo = Clusters[i].Low->getValue(); 9838 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 9839 if (i != 0) 9840 TotalCases[i] += TotalCases[i - 1]; 9841 } 9842 9843 // Cheap case: the whole range may be suitable for jump table. 9844 uint64_t Range = getJumpTableRange(Clusters,0, N - 1); 9845 uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1); 9846 assert(NumCases < UINT64_MAX / 100); 9847 assert(Range >= NumCases); 9848 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 9849 CaseCluster JTCluster; 9850 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 9851 Clusters[0] = JTCluster; 9852 Clusters.resize(1); 9853 return; 9854 } 9855 } 9856 9857 // The algorithm below is not suitable for -O0. 9858 if (TM.getOptLevel() == CodeGenOpt::None) 9859 return; 9860 9861 // Split Clusters into minimum number of dense partitions. The algorithm uses 9862 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 9863 // for the Case Statement'" (1994), but builds the MinPartitions array in 9864 // reverse order to make it easier to reconstruct the partitions in ascending 9865 // order. In the choice between two optimal partitionings, it picks the one 9866 // which yields more jump tables. 9867 9868 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 9869 SmallVector<unsigned, 8> MinPartitions(N); 9870 // LastElement[i] is the last element of the partition starting at i. 9871 SmallVector<unsigned, 8> LastElement(N); 9872 // PartitionsScore[i] is used to break ties when choosing between two 9873 // partitionings resulting in the same number of partitions. 9874 SmallVector<unsigned, 8> PartitionsScore(N); 9875 // For PartitionsScore, a small number of comparisons is considered as good as 9876 // a jump table and a single comparison is considered better than a jump 9877 // table. 9878 enum PartitionScores : unsigned { 9879 NoTable = 0, 9880 Table = 1, 9881 FewCases = 1, 9882 SingleCase = 2 9883 }; 9884 9885 // Base case: There is only one way to partition Clusters[N-1]. 9886 MinPartitions[N - 1] = 1; 9887 LastElement[N - 1] = N - 1; 9888 PartitionsScore[N - 1] = PartitionScores::SingleCase; 9889 9890 // Note: loop indexes are signed to avoid underflow. 9891 for (int64_t i = N - 2; i >= 0; i--) { 9892 // Find optimal partitioning of Clusters[i..N-1]. 9893 // Baseline: Put Clusters[i] into a partition on its own. 9894 MinPartitions[i] = MinPartitions[i + 1] + 1; 9895 LastElement[i] = i; 9896 PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase; 9897 9898 // Search for a solution that results in fewer partitions. 9899 for (int64_t j = N - 1; j > i; j--) { 9900 // Try building a partition from Clusters[i..j]. 9901 uint64_t Range = getJumpTableRange(Clusters, i, j); 9902 uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j); 9903 assert(NumCases < UINT64_MAX / 100); 9904 assert(Range >= NumCases); 9905 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 9906 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 9907 unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1]; 9908 int64_t NumEntries = j - i + 1; 9909 9910 if (NumEntries == 1) 9911 Score += PartitionScores::SingleCase; 9912 else if (NumEntries <= SmallNumberOfEntries) 9913 Score += PartitionScores::FewCases; 9914 else if (NumEntries >= MinJumpTableEntries) 9915 Score += PartitionScores::Table; 9916 9917 // If this leads to fewer partitions, or to the same number of 9918 // partitions with better score, it is a better partitioning. 9919 if (NumPartitions < MinPartitions[i] || 9920 (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) { 9921 MinPartitions[i] = NumPartitions; 9922 LastElement[i] = j; 9923 PartitionsScore[i] = Score; 9924 } 9925 } 9926 } 9927 } 9928 9929 // Iterate over the partitions, replacing some with jump tables in-place. 9930 unsigned DstIndex = 0; 9931 for (unsigned First = 0, Last; First < N; First = Last + 1) { 9932 Last = LastElement[First]; 9933 assert(Last >= First); 9934 assert(DstIndex <= First); 9935 unsigned NumClusters = Last - First + 1; 9936 9937 CaseCluster JTCluster; 9938 if (NumClusters >= MinJumpTableEntries && 9939 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 9940 Clusters[DstIndex++] = JTCluster; 9941 } else { 9942 for (unsigned I = First; I <= Last; ++I) 9943 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 9944 } 9945 } 9946 Clusters.resize(DstIndex); 9947 } 9948 9949 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 9950 unsigned First, unsigned Last, 9951 const SwitchInst *SI, 9952 CaseCluster &BTCluster) { 9953 assert(First <= Last); 9954 if (First == Last) 9955 return false; 9956 9957 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 9958 unsigned NumCmps = 0; 9959 for (int64_t I = First; I <= Last; ++I) { 9960 assert(Clusters[I].Kind == CC_Range); 9961 Dests.set(Clusters[I].MBB->getNumber()); 9962 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 9963 } 9964 unsigned NumDests = Dests.count(); 9965 9966 APInt Low = Clusters[First].Low->getValue(); 9967 APInt High = Clusters[Last].High->getValue(); 9968 assert(Low.slt(High)); 9969 9970 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9971 const DataLayout &DL = DAG.getDataLayout(); 9972 if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL)) 9973 return false; 9974 9975 APInt LowBound; 9976 APInt CmpRange; 9977 9978 const int BitWidth = TLI.getPointerTy(DL).getSizeInBits(); 9979 assert(TLI.rangeFitsInWord(Low, High, DL) && 9980 "Case range must fit in bit mask!"); 9981 9982 // Check if the clusters cover a contiguous range such that no value in the 9983 // range will jump to the default statement. 9984 bool ContiguousRange = true; 9985 for (int64_t I = First + 1; I <= Last; ++I) { 9986 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 9987 ContiguousRange = false; 9988 break; 9989 } 9990 } 9991 9992 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 9993 // Optimize the case where all the case values fit in a word without having 9994 // to subtract minValue. In this case, we can optimize away the subtraction. 9995 LowBound = APInt::getNullValue(Low.getBitWidth()); 9996 CmpRange = High; 9997 ContiguousRange = false; 9998 } else { 9999 LowBound = Low; 10000 CmpRange = High - Low; 10001 } 10002 10003 CaseBitsVector CBV; 10004 auto TotalProb = BranchProbability::getZero(); 10005 for (unsigned i = First; i <= Last; ++i) { 10006 // Find the CaseBits for this destination. 10007 unsigned j; 10008 for (j = 0; j < CBV.size(); ++j) 10009 if (CBV[j].BB == Clusters[i].MBB) 10010 break; 10011 if (j == CBV.size()) 10012 CBV.push_back( 10013 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 10014 CaseBits *CB = &CBV[j]; 10015 10016 // Update Mask, Bits and ExtraProb. 10017 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 10018 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 10019 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 10020 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 10021 CB->Bits += Hi - Lo + 1; 10022 CB->ExtraProb += Clusters[i].Prob; 10023 TotalProb += Clusters[i].Prob; 10024 } 10025 10026 BitTestInfo BTI; 10027 llvm::sort(CBV, [](const CaseBits &a, const CaseBits &b) { 10028 // Sort by probability first, number of bits second, bit mask third. 10029 if (a.ExtraProb != b.ExtraProb) 10030 return a.ExtraProb > b.ExtraProb; 10031 if (a.Bits != b.Bits) 10032 return a.Bits > b.Bits; 10033 return a.Mask < b.Mask; 10034 }); 10035 10036 for (auto &CB : CBV) { 10037 MachineBasicBlock *BitTestBB = 10038 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 10039 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 10040 } 10041 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 10042 SI->getCondition(), -1U, MVT::Other, false, 10043 ContiguousRange, nullptr, nullptr, std::move(BTI), 10044 TotalProb); 10045 10046 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 10047 BitTestCases.size() - 1, TotalProb); 10048 return true; 10049 } 10050 10051 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 10052 const SwitchInst *SI) { 10053 // Partition Clusters into as few subsets as possible, where each subset has a 10054 // range that fits in a machine word and has <= 3 unique destinations. 10055 10056 #ifndef NDEBUG 10057 // Clusters must be sorted and contain Range or JumpTable clusters. 10058 assert(!Clusters.empty()); 10059 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 10060 for (const CaseCluster &C : Clusters) 10061 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 10062 for (unsigned i = 1; i < Clusters.size(); ++i) 10063 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 10064 #endif 10065 10066 // The algorithm below is not suitable for -O0. 10067 if (TM.getOptLevel() == CodeGenOpt::None) 10068 return; 10069 10070 // If target does not have legal shift left, do not emit bit tests at all. 10071 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10072 const DataLayout &DL = DAG.getDataLayout(); 10073 10074 EVT PTy = TLI.getPointerTy(DL); 10075 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 10076 return; 10077 10078 int BitWidth = PTy.getSizeInBits(); 10079 const int64_t N = Clusters.size(); 10080 10081 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 10082 SmallVector<unsigned, 8> MinPartitions(N); 10083 // LastElement[i] is the last element of the partition starting at i. 10084 SmallVector<unsigned, 8> LastElement(N); 10085 10086 // FIXME: This might not be the best algorithm for finding bit test clusters. 10087 10088 // Base case: There is only one way to partition Clusters[N-1]. 10089 MinPartitions[N - 1] = 1; 10090 LastElement[N - 1] = N - 1; 10091 10092 // Note: loop indexes are signed to avoid underflow. 10093 for (int64_t i = N - 2; i >= 0; --i) { 10094 // Find optimal partitioning of Clusters[i..N-1]. 10095 // Baseline: Put Clusters[i] into a partition on its own. 10096 MinPartitions[i] = MinPartitions[i + 1] + 1; 10097 LastElement[i] = i; 10098 10099 // Search for a solution that results in fewer partitions. 10100 // Note: the search is limited by BitWidth, reducing time complexity. 10101 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 10102 // Try building a partition from Clusters[i..j]. 10103 10104 // Check the range. 10105 if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(), 10106 Clusters[j].High->getValue(), DL)) 10107 continue; 10108 10109 // Check nbr of destinations and cluster types. 10110 // FIXME: This works, but doesn't seem very efficient. 10111 bool RangesOnly = true; 10112 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 10113 for (int64_t k = i; k <= j; k++) { 10114 if (Clusters[k].Kind != CC_Range) { 10115 RangesOnly = false; 10116 break; 10117 } 10118 Dests.set(Clusters[k].MBB->getNumber()); 10119 } 10120 if (!RangesOnly || Dests.count() > 3) 10121 break; 10122 10123 // Check if it's a better partition. 10124 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 10125 if (NumPartitions < MinPartitions[i]) { 10126 // Found a better partition. 10127 MinPartitions[i] = NumPartitions; 10128 LastElement[i] = j; 10129 } 10130 } 10131 } 10132 10133 // Iterate over the partitions, replacing with bit-test clusters in-place. 10134 unsigned DstIndex = 0; 10135 for (unsigned First = 0, Last; First < N; First = Last + 1) { 10136 Last = LastElement[First]; 10137 assert(First <= Last); 10138 assert(DstIndex <= First); 10139 10140 CaseCluster BitTestCluster; 10141 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 10142 Clusters[DstIndex++] = BitTestCluster; 10143 } else { 10144 size_t NumClusters = Last - First + 1; 10145 std::memmove(&Clusters[DstIndex], &Clusters[First], 10146 sizeof(Clusters[0]) * NumClusters); 10147 DstIndex += NumClusters; 10148 } 10149 } 10150 Clusters.resize(DstIndex); 10151 } 10152 10153 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10154 MachineBasicBlock *SwitchMBB, 10155 MachineBasicBlock *DefaultMBB) { 10156 MachineFunction *CurMF = FuncInfo.MF; 10157 MachineBasicBlock *NextMBB = nullptr; 10158 MachineFunction::iterator BBI(W.MBB); 10159 if (++BBI != FuncInfo.MF->end()) 10160 NextMBB = &*BBI; 10161 10162 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10163 10164 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10165 10166 if (Size == 2 && W.MBB == SwitchMBB) { 10167 // If any two of the cases has the same destination, and if one value 10168 // is the same as the other, but has one bit unset that the other has set, 10169 // use bit manipulation to do two compares at once. For example: 10170 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10171 // TODO: This could be extended to merge any 2 cases in switches with 3 10172 // cases. 10173 // TODO: Handle cases where W.CaseBB != SwitchBB. 10174 CaseCluster &Small = *W.FirstCluster; 10175 CaseCluster &Big = *W.LastCluster; 10176 10177 if (Small.Low == Small.High && Big.Low == Big.High && 10178 Small.MBB == Big.MBB) { 10179 const APInt &SmallValue = Small.Low->getValue(); 10180 const APInt &BigValue = Big.Low->getValue(); 10181 10182 // Check that there is only one bit different. 10183 APInt CommonBit = BigValue ^ SmallValue; 10184 if (CommonBit.isPowerOf2()) { 10185 SDValue CondLHS = getValue(Cond); 10186 EVT VT = CondLHS.getValueType(); 10187 SDLoc DL = getCurSDLoc(); 10188 10189 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10190 DAG.getConstant(CommonBit, DL, VT)); 10191 SDValue Cond = DAG.getSetCC( 10192 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10193 ISD::SETEQ); 10194 10195 // Update successor info. 10196 // Both Small and Big will jump to Small.BB, so we sum up the 10197 // probabilities. 10198 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10199 if (BPI) 10200 addSuccessorWithProb( 10201 SwitchMBB, DefaultMBB, 10202 // The default destination is the first successor in IR. 10203 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10204 else 10205 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10206 10207 // Insert the true branch. 10208 SDValue BrCond = 10209 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10210 DAG.getBasicBlock(Small.MBB)); 10211 // Insert the false branch. 10212 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10213 DAG.getBasicBlock(DefaultMBB)); 10214 10215 DAG.setRoot(BrCond); 10216 return; 10217 } 10218 } 10219 } 10220 10221 if (TM.getOptLevel() != CodeGenOpt::None) { 10222 // Here, we order cases by probability so the most likely case will be 10223 // checked first. However, two clusters can have the same probability in 10224 // which case their relative ordering is non-deterministic. So we use Low 10225 // as a tie-breaker as clusters are guaranteed to never overlap. 10226 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10227 [](const CaseCluster &a, const CaseCluster &b) { 10228 return a.Prob != b.Prob ? 10229 a.Prob > b.Prob : 10230 a.Low->getValue().slt(b.Low->getValue()); 10231 }); 10232 10233 // Rearrange the case blocks so that the last one falls through if possible 10234 // without changing the order of probabilities. 10235 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10236 --I; 10237 if (I->Prob > W.LastCluster->Prob) 10238 break; 10239 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10240 std::swap(*I, *W.LastCluster); 10241 break; 10242 } 10243 } 10244 } 10245 10246 // Compute total probability. 10247 BranchProbability DefaultProb = W.DefaultProb; 10248 BranchProbability UnhandledProbs = DefaultProb; 10249 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10250 UnhandledProbs += I->Prob; 10251 10252 MachineBasicBlock *CurMBB = W.MBB; 10253 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10254 MachineBasicBlock *Fallthrough; 10255 if (I == W.LastCluster) { 10256 // For the last cluster, fall through to the default destination. 10257 Fallthrough = DefaultMBB; 10258 } else { 10259 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10260 CurMF->insert(BBI, Fallthrough); 10261 // Put Cond in a virtual register to make it available from the new blocks. 10262 ExportFromCurrentBlock(Cond); 10263 } 10264 UnhandledProbs -= I->Prob; 10265 10266 switch (I->Kind) { 10267 case CC_JumpTable: { 10268 // FIXME: Optimize away range check based on pivot comparisons. 10269 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 10270 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 10271 10272 // The jump block hasn't been inserted yet; insert it here. 10273 MachineBasicBlock *JumpMBB = JT->MBB; 10274 CurMF->insert(BBI, JumpMBB); 10275 10276 auto JumpProb = I->Prob; 10277 auto FallthroughProb = UnhandledProbs; 10278 10279 // If the default statement is a target of the jump table, we evenly 10280 // distribute the default probability to successors of CurMBB. Also 10281 // update the probability on the edge from JumpMBB to Fallthrough. 10282 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10283 SE = JumpMBB->succ_end(); 10284 SI != SE; ++SI) { 10285 if (*SI == DefaultMBB) { 10286 JumpProb += DefaultProb / 2; 10287 FallthroughProb -= DefaultProb / 2; 10288 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10289 JumpMBB->normalizeSuccProbs(); 10290 break; 10291 } 10292 } 10293 10294 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10295 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10296 CurMBB->normalizeSuccProbs(); 10297 10298 // The jump table header will be inserted in our current block, do the 10299 // range check, and fall through to our fallthrough block. 10300 JTH->HeaderBB = CurMBB; 10301 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10302 10303 // If we're in the right place, emit the jump table header right now. 10304 if (CurMBB == SwitchMBB) { 10305 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10306 JTH->Emitted = true; 10307 } 10308 break; 10309 } 10310 case CC_BitTests: { 10311 // FIXME: Optimize away range check based on pivot comparisons. 10312 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 10313 10314 // The bit test blocks haven't been inserted yet; insert them here. 10315 for (BitTestCase &BTC : BTB->Cases) 10316 CurMF->insert(BBI, BTC.ThisBB); 10317 10318 // Fill in fields of the BitTestBlock. 10319 BTB->Parent = CurMBB; 10320 BTB->Default = Fallthrough; 10321 10322 BTB->DefaultProb = UnhandledProbs; 10323 // If the cases in bit test don't form a contiguous range, we evenly 10324 // distribute the probability on the edge to Fallthrough to two 10325 // successors of CurMBB. 10326 if (!BTB->ContiguousRange) { 10327 BTB->Prob += DefaultProb / 2; 10328 BTB->DefaultProb -= DefaultProb / 2; 10329 } 10330 10331 // If we're in the right place, emit the bit test header right now. 10332 if (CurMBB == SwitchMBB) { 10333 visitBitTestHeader(*BTB, SwitchMBB); 10334 BTB->Emitted = true; 10335 } 10336 break; 10337 } 10338 case CC_Range: { 10339 const Value *RHS, *LHS, *MHS; 10340 ISD::CondCode CC; 10341 if (I->Low == I->High) { 10342 // Check Cond == I->Low. 10343 CC = ISD::SETEQ; 10344 LHS = Cond; 10345 RHS=I->Low; 10346 MHS = nullptr; 10347 } else { 10348 // Check I->Low <= Cond <= I->High. 10349 CC = ISD::SETLE; 10350 LHS = I->Low; 10351 MHS = Cond; 10352 RHS = I->High; 10353 } 10354 10355 // The false probability is the sum of all unhandled cases. 10356 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10357 getCurSDLoc(), I->Prob, UnhandledProbs); 10358 10359 if (CurMBB == SwitchMBB) 10360 visitSwitchCase(CB, SwitchMBB); 10361 else 10362 SwitchCases.push_back(CB); 10363 10364 break; 10365 } 10366 } 10367 CurMBB = Fallthrough; 10368 } 10369 } 10370 10371 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10372 CaseClusterIt First, 10373 CaseClusterIt Last) { 10374 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10375 if (X.Prob != CC.Prob) 10376 return X.Prob > CC.Prob; 10377 10378 // Ties are broken by comparing the case value. 10379 return X.Low->getValue().slt(CC.Low->getValue()); 10380 }); 10381 } 10382 10383 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10384 const SwitchWorkListItem &W, 10385 Value *Cond, 10386 MachineBasicBlock *SwitchMBB) { 10387 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10388 "Clusters not sorted?"); 10389 10390 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10391 10392 // Balance the tree based on branch probabilities to create a near-optimal (in 10393 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10394 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10395 CaseClusterIt LastLeft = W.FirstCluster; 10396 CaseClusterIt FirstRight = W.LastCluster; 10397 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10398 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10399 10400 // Move LastLeft and FirstRight towards each other from opposite directions to 10401 // find a partitioning of the clusters which balances the probability on both 10402 // sides. If LeftProb and RightProb are equal, alternate which side is 10403 // taken to ensure 0-probability nodes are distributed evenly. 10404 unsigned I = 0; 10405 while (LastLeft + 1 < FirstRight) { 10406 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10407 LeftProb += (++LastLeft)->Prob; 10408 else 10409 RightProb += (--FirstRight)->Prob; 10410 I++; 10411 } 10412 10413 while (true) { 10414 // Our binary search tree differs from a typical BST in that ours can have up 10415 // to three values in each leaf. The pivot selection above doesn't take that 10416 // into account, which means the tree might require more nodes and be less 10417 // efficient. We compensate for this here. 10418 10419 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10420 unsigned NumRight = W.LastCluster - FirstRight + 1; 10421 10422 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10423 // If one side has less than 3 clusters, and the other has more than 3, 10424 // consider taking a cluster from the other side. 10425 10426 if (NumLeft < NumRight) { 10427 // Consider moving the first cluster on the right to the left side. 10428 CaseCluster &CC = *FirstRight; 10429 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10430 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10431 if (LeftSideRank <= RightSideRank) { 10432 // Moving the cluster to the left does not demote it. 10433 ++LastLeft; 10434 ++FirstRight; 10435 continue; 10436 } 10437 } else { 10438 assert(NumRight < NumLeft); 10439 // Consider moving the last element on the left to the right side. 10440 CaseCluster &CC = *LastLeft; 10441 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10442 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10443 if (RightSideRank <= LeftSideRank) { 10444 // Moving the cluster to the right does not demot it. 10445 --LastLeft; 10446 --FirstRight; 10447 continue; 10448 } 10449 } 10450 } 10451 break; 10452 } 10453 10454 assert(LastLeft + 1 == FirstRight); 10455 assert(LastLeft >= W.FirstCluster); 10456 assert(FirstRight <= W.LastCluster); 10457 10458 // Use the first element on the right as pivot since we will make less-than 10459 // comparisons against it. 10460 CaseClusterIt PivotCluster = FirstRight; 10461 assert(PivotCluster > W.FirstCluster); 10462 assert(PivotCluster <= W.LastCluster); 10463 10464 CaseClusterIt FirstLeft = W.FirstCluster; 10465 CaseClusterIt LastRight = W.LastCluster; 10466 10467 const ConstantInt *Pivot = PivotCluster->Low; 10468 10469 // New blocks will be inserted immediately after the current one. 10470 MachineFunction::iterator BBI(W.MBB); 10471 ++BBI; 10472 10473 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10474 // we can branch to its destination directly if it's squeezed exactly in 10475 // between the known lower bound and Pivot - 1. 10476 MachineBasicBlock *LeftMBB; 10477 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10478 FirstLeft->Low == W.GE && 10479 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10480 LeftMBB = FirstLeft->MBB; 10481 } else { 10482 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10483 FuncInfo.MF->insert(BBI, LeftMBB); 10484 WorkList.push_back( 10485 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10486 // Put Cond in a virtual register to make it available from the new blocks. 10487 ExportFromCurrentBlock(Cond); 10488 } 10489 10490 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10491 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10492 // directly if RHS.High equals the current upper bound. 10493 MachineBasicBlock *RightMBB; 10494 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10495 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10496 RightMBB = FirstRight->MBB; 10497 } else { 10498 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10499 FuncInfo.MF->insert(BBI, RightMBB); 10500 WorkList.push_back( 10501 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10502 // Put Cond in a virtual register to make it available from the new blocks. 10503 ExportFromCurrentBlock(Cond); 10504 } 10505 10506 // Create the CaseBlock record that will be used to lower the branch. 10507 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10508 getCurSDLoc(), LeftProb, RightProb); 10509 10510 if (W.MBB == SwitchMBB) 10511 visitSwitchCase(CB, SwitchMBB); 10512 else 10513 SwitchCases.push_back(CB); 10514 } 10515 10516 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10517 // from the swith statement. 10518 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10519 BranchProbability PeeledCaseProb) { 10520 if (PeeledCaseProb == BranchProbability::getOne()) 10521 return BranchProbability::getZero(); 10522 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10523 10524 uint32_t Numerator = CaseProb.getNumerator(); 10525 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10526 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10527 } 10528 10529 // Try to peel the top probability case if it exceeds the threshold. 10530 // Return current MachineBasicBlock for the switch statement if the peeling 10531 // does not occur. 10532 // If the peeling is performed, return the newly created MachineBasicBlock 10533 // for the peeled switch statement. Also update Clusters to remove the peeled 10534 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10535 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10536 const SwitchInst &SI, CaseClusterVector &Clusters, 10537 BranchProbability &PeeledCaseProb) { 10538 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10539 // Don't perform if there is only one cluster or optimizing for size. 10540 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10541 TM.getOptLevel() == CodeGenOpt::None || 10542 SwitchMBB->getParent()->getFunction().optForMinSize()) 10543 return SwitchMBB; 10544 10545 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10546 unsigned PeeledCaseIndex = 0; 10547 bool SwitchPeeled = false; 10548 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10549 CaseCluster &CC = Clusters[Index]; 10550 if (CC.Prob < TopCaseProb) 10551 continue; 10552 TopCaseProb = CC.Prob; 10553 PeeledCaseIndex = Index; 10554 SwitchPeeled = true; 10555 } 10556 if (!SwitchPeeled) 10557 return SwitchMBB; 10558 10559 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10560 << TopCaseProb << "\n"); 10561 10562 // Record the MBB for the peeled switch statement. 10563 MachineFunction::iterator BBI(SwitchMBB); 10564 ++BBI; 10565 MachineBasicBlock *PeeledSwitchMBB = 10566 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10567 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10568 10569 ExportFromCurrentBlock(SI.getCondition()); 10570 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10571 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10572 nullptr, nullptr, TopCaseProb.getCompl()}; 10573 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10574 10575 Clusters.erase(PeeledCaseIt); 10576 for (CaseCluster &CC : Clusters) { 10577 LLVM_DEBUG( 10578 dbgs() << "Scale the probablity for one cluster, before scaling: " 10579 << CC.Prob << "\n"); 10580 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10581 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10582 } 10583 PeeledCaseProb = TopCaseProb; 10584 return PeeledSwitchMBB; 10585 } 10586 10587 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10588 // Extract cases from the switch. 10589 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10590 CaseClusterVector Clusters; 10591 Clusters.reserve(SI.getNumCases()); 10592 for (auto I : SI.cases()) { 10593 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10594 const ConstantInt *CaseVal = I.getCaseValue(); 10595 BranchProbability Prob = 10596 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10597 : BranchProbability(1, SI.getNumCases() + 1); 10598 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10599 } 10600 10601 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10602 10603 // Cluster adjacent cases with the same destination. We do this at all 10604 // optimization levels because it's cheap to do and will make codegen faster 10605 // if there are many clusters. 10606 sortAndRangeify(Clusters); 10607 10608 if (TM.getOptLevel() != CodeGenOpt::None) { 10609 // Replace an unreachable default with the most popular destination. 10610 // FIXME: Exploit unreachable default more aggressively. 10611 bool UnreachableDefault = 10612 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 10613 if (UnreachableDefault && !Clusters.empty()) { 10614 DenseMap<const BasicBlock *, unsigned> Popularity; 10615 unsigned MaxPop = 0; 10616 const BasicBlock *MaxBB = nullptr; 10617 for (auto I : SI.cases()) { 10618 const BasicBlock *BB = I.getCaseSuccessor(); 10619 if (++Popularity[BB] > MaxPop) { 10620 MaxPop = Popularity[BB]; 10621 MaxBB = BB; 10622 } 10623 } 10624 // Set new default. 10625 assert(MaxPop > 0 && MaxBB); 10626 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 10627 10628 // Remove cases that were pointing to the destination that is now the 10629 // default. 10630 CaseClusterVector New; 10631 New.reserve(Clusters.size()); 10632 for (CaseCluster &CC : Clusters) { 10633 if (CC.MBB != DefaultMBB) 10634 New.push_back(CC); 10635 } 10636 Clusters = std::move(New); 10637 } 10638 } 10639 10640 // The branch probablity of the peeled case. 10641 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10642 MachineBasicBlock *PeeledSwitchMBB = 10643 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10644 10645 // If there is only the default destination, jump there directly. 10646 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10647 if (Clusters.empty()) { 10648 assert(PeeledSwitchMBB == SwitchMBB); 10649 SwitchMBB->addSuccessor(DefaultMBB); 10650 if (DefaultMBB != NextBlock(SwitchMBB)) { 10651 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10652 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10653 } 10654 return; 10655 } 10656 10657 findJumpTables(Clusters, &SI, DefaultMBB); 10658 findBitTestClusters(Clusters, &SI); 10659 10660 LLVM_DEBUG({ 10661 dbgs() << "Case clusters: "; 10662 for (const CaseCluster &C : Clusters) { 10663 if (C.Kind == CC_JumpTable) 10664 dbgs() << "JT:"; 10665 if (C.Kind == CC_BitTests) 10666 dbgs() << "BT:"; 10667 10668 C.Low->getValue().print(dbgs(), true); 10669 if (C.Low != C.High) { 10670 dbgs() << '-'; 10671 C.High->getValue().print(dbgs(), true); 10672 } 10673 dbgs() << ' '; 10674 } 10675 dbgs() << '\n'; 10676 }); 10677 10678 assert(!Clusters.empty()); 10679 SwitchWorkList WorkList; 10680 CaseClusterIt First = Clusters.begin(); 10681 CaseClusterIt Last = Clusters.end() - 1; 10682 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10683 // Scale the branchprobability for DefaultMBB if the peel occurs and 10684 // DefaultMBB is not replaced. 10685 if (PeeledCaseProb != BranchProbability::getZero() && 10686 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10687 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10688 WorkList.push_back( 10689 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10690 10691 while (!WorkList.empty()) { 10692 SwitchWorkListItem W = WorkList.back(); 10693 WorkList.pop_back(); 10694 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10695 10696 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10697 !DefaultMBB->getParent()->getFunction().optForMinSize()) { 10698 // For optimized builds, lower large range as a balanced binary tree. 10699 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10700 continue; 10701 } 10702 10703 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10704 } 10705 } 10706