1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "isel" 15 #include "SDNodeDbgValue.h" 16 #include "SelectionDAGBuilder.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/ConstantFolding.h" 21 #include "llvm/Constants.h" 22 #include "llvm/CallingConv.h" 23 #include "llvm/DerivedTypes.h" 24 #include "llvm/Function.h" 25 #include "llvm/GlobalVariable.h" 26 #include "llvm/InlineAsm.h" 27 #include "llvm/Instructions.h" 28 #include "llvm/Intrinsics.h" 29 #include "llvm/IntrinsicInst.h" 30 #include "llvm/LLVMContext.h" 31 #include "llvm/Module.h" 32 #include "llvm/CodeGen/Analysis.h" 33 #include "llvm/CodeGen/FastISel.h" 34 #include "llvm/CodeGen/FunctionLoweringInfo.h" 35 #include "llvm/CodeGen/GCStrategy.h" 36 #include "llvm/CodeGen/GCMetadata.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineFrameInfo.h" 39 #include "llvm/CodeGen/MachineInstrBuilder.h" 40 #include "llvm/CodeGen/MachineJumpTableInfo.h" 41 #include "llvm/CodeGen/MachineModuleInfo.h" 42 #include "llvm/CodeGen/MachineRegisterInfo.h" 43 #include "llvm/CodeGen/PseudoSourceValue.h" 44 #include "llvm/CodeGen/SelectionDAG.h" 45 #include "llvm/Analysis/DebugInfo.h" 46 #include "llvm/Target/TargetRegisterInfo.h" 47 #include "llvm/Target/TargetData.h" 48 #include "llvm/Target/TargetFrameInfo.h" 49 #include "llvm/Target/TargetInstrInfo.h" 50 #include "llvm/Target/TargetIntrinsicInfo.h" 51 #include "llvm/Target/TargetLowering.h" 52 #include "llvm/Target/TargetOptions.h" 53 #include "llvm/Support/Compiler.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include <algorithm> 60 using namespace llvm; 61 62 /// LimitFloatPrecision - Generate low-precision inline sequences for 63 /// some float libcalls (6, 8 or 12 bits). 64 static unsigned LimitFloatPrecision; 65 66 static cl::opt<unsigned, true> 67 LimitFPPrecision("limit-float-precision", 68 cl::desc("Generate low-precision inline sequences " 69 "for some float libcalls"), 70 cl::location(LimitFloatPrecision), 71 cl::init(0)); 72 73 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 74 const SDValue *Parts, unsigned NumParts, 75 EVT PartVT, EVT ValueVT); 76 77 /// getCopyFromParts - Create a value that contains the specified legal parts 78 /// combined into the value they represent. If the parts combine to a type 79 /// larger then ValueVT then AssertOp can be used to specify whether the extra 80 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 81 /// (ISD::AssertSext). 82 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL, 83 const SDValue *Parts, 84 unsigned NumParts, EVT PartVT, EVT ValueVT, 85 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 86 if (ValueVT.isVector()) 87 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT); 88 89 assert(NumParts > 0 && "No parts to assemble!"); 90 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 91 SDValue Val = Parts[0]; 92 93 if (NumParts > 1) { 94 // Assemble the value from multiple parts. 95 if (ValueVT.isInteger()) { 96 unsigned PartBits = PartVT.getSizeInBits(); 97 unsigned ValueBits = ValueVT.getSizeInBits(); 98 99 // Assemble the power of 2 part. 100 unsigned RoundParts = NumParts & (NumParts - 1) ? 101 1 << Log2_32(NumParts) : NumParts; 102 unsigned RoundBits = PartBits * RoundParts; 103 EVT RoundVT = RoundBits == ValueBits ? 104 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 105 SDValue Lo, Hi; 106 107 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 108 109 if (RoundParts > 2) { 110 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 111 PartVT, HalfVT); 112 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 113 RoundParts / 2, PartVT, HalfVT); 114 } else { 115 Lo = DAG.getNode(ISD::BIT_CONVERT, DL, HalfVT, Parts[0]); 116 Hi = DAG.getNode(ISD::BIT_CONVERT, DL, HalfVT, Parts[1]); 117 } 118 119 if (TLI.isBigEndian()) 120 std::swap(Lo, Hi); 121 122 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 123 124 if (RoundParts < NumParts) { 125 // Assemble the trailing non-power-of-2 part. 126 unsigned OddParts = NumParts - RoundParts; 127 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 128 Hi = getCopyFromParts(DAG, DL, 129 Parts + RoundParts, OddParts, PartVT, OddVT); 130 131 // Combine the round and odd parts. 132 Lo = Val; 133 if (TLI.isBigEndian()) 134 std::swap(Lo, Hi); 135 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 136 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 137 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 138 DAG.getConstant(Lo.getValueType().getSizeInBits(), 139 TLI.getPointerTy())); 140 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 141 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 142 } 143 } else if (PartVT.isFloatingPoint()) { 144 // FP split into multiple FP parts (for ppcf128) 145 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) && 146 "Unexpected split"); 147 SDValue Lo, Hi; 148 Lo = DAG.getNode(ISD::BIT_CONVERT, DL, EVT(MVT::f64), Parts[0]); 149 Hi = DAG.getNode(ISD::BIT_CONVERT, DL, EVT(MVT::f64), Parts[1]); 150 if (TLI.isBigEndian()) 151 std::swap(Lo, Hi); 152 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 153 } else { 154 // FP split into integer parts (soft fp) 155 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 156 !PartVT.isVector() && "Unexpected split"); 157 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 158 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT); 159 } 160 } 161 162 // There is now one part, held in Val. Correct it to match ValueVT. 163 PartVT = Val.getValueType(); 164 165 if (PartVT == ValueVT) 166 return Val; 167 168 if (PartVT.isInteger() && ValueVT.isInteger()) { 169 if (ValueVT.bitsLT(PartVT)) { 170 // For a truncate, see if we have any information to 171 // indicate whether the truncated bits will always be 172 // zero or sign-extension. 173 if (AssertOp != ISD::DELETED_NODE) 174 Val = DAG.getNode(AssertOp, DL, PartVT, Val, 175 DAG.getValueType(ValueVT)); 176 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 177 } 178 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 179 } 180 181 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 182 // FP_ROUND's are always exact here. 183 if (ValueVT.bitsLT(Val.getValueType())) 184 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 185 DAG.getIntPtrConstant(1)); 186 187 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 188 } 189 190 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) 191 return DAG.getNode(ISD::BIT_CONVERT, DL, ValueVT, Val); 192 193 llvm_unreachable("Unknown mismatch!"); 194 return SDValue(); 195 } 196 197 /// getCopyFromParts - Create a value that contains the specified legal parts 198 /// combined into the value they represent. If the parts combine to a type 199 /// larger then ValueVT then AssertOp can be used to specify whether the extra 200 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 201 /// (ISD::AssertSext). 202 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 203 const SDValue *Parts, unsigned NumParts, 204 EVT PartVT, EVT ValueVT) { 205 assert(ValueVT.isVector() && "Not a vector value"); 206 assert(NumParts > 0 && "No parts to assemble!"); 207 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 208 SDValue Val = Parts[0]; 209 210 // Handle a multi-element vector. 211 if (NumParts > 1) { 212 EVT IntermediateVT, RegisterVT; 213 unsigned NumIntermediates; 214 unsigned NumRegs = 215 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 216 NumIntermediates, RegisterVT); 217 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 218 NumParts = NumRegs; // Silence a compiler warning. 219 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 220 assert(RegisterVT == Parts[0].getValueType() && 221 "Part type doesn't match part!"); 222 223 // Assemble the parts into intermediate operands. 224 SmallVector<SDValue, 8> Ops(NumIntermediates); 225 if (NumIntermediates == NumParts) { 226 // If the register was not expanded, truncate or copy the value, 227 // as appropriate. 228 for (unsigned i = 0; i != NumParts; ++i) 229 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 230 PartVT, IntermediateVT); 231 } else if (NumParts > 0) { 232 // If the intermediate type was expanded, build the intermediate 233 // operands from the parts. 234 assert(NumParts % NumIntermediates == 0 && 235 "Must expand into a divisible number of parts!"); 236 unsigned Factor = NumParts / NumIntermediates; 237 for (unsigned i = 0; i != NumIntermediates; ++i) 238 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 239 PartVT, IntermediateVT); 240 } 241 242 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 243 // intermediate operands. 244 Val = DAG.getNode(IntermediateVT.isVector() ? 245 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL, 246 ValueVT, &Ops[0], NumIntermediates); 247 } 248 249 // There is now one part, held in Val. Correct it to match ValueVT. 250 PartVT = Val.getValueType(); 251 252 if (PartVT == ValueVT) 253 return Val; 254 255 if (PartVT.isVector()) // Vector/Vector bitcast. 256 return DAG.getNode(ISD::BIT_CONVERT, DL, ValueVT, Val); 257 258 assert(ValueVT.getVectorElementType() == PartVT && 259 ValueVT.getVectorNumElements() == 1 && 260 "Only trivial scalar-to-vector conversions should get here!"); 261 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 262 } 263 264 265 266 267 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl, 268 SDValue Val, SDValue *Parts, unsigned NumParts, 269 EVT PartVT); 270 271 /// getCopyToParts - Create a series of nodes that contain the specified value 272 /// split into legal parts. If the parts contain more bits than Val, then, for 273 /// integers, ExtendKind can be used to specify how to generate the extra bits. 274 static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL, 275 SDValue Val, SDValue *Parts, unsigned NumParts, 276 EVT PartVT, 277 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 278 EVT ValueVT = Val.getValueType(); 279 280 // Handle the vector case separately. 281 if (ValueVT.isVector()) 282 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT); 283 284 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 285 unsigned PartBits = PartVT.getSizeInBits(); 286 unsigned OrigNumParts = NumParts; 287 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 288 289 if (NumParts == 0) 290 return; 291 292 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 293 if (PartVT == ValueVT) { 294 assert(NumParts == 1 && "No-op copy with multiple parts!"); 295 Parts[0] = Val; 296 return; 297 } 298 299 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 300 // If the parts cover more bits than the value has, promote the value. 301 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 302 assert(NumParts == 1 && "Do not know what to promote to!"); 303 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 304 } else { 305 assert(PartVT.isInteger() && ValueVT.isInteger() && 306 "Unknown mismatch!"); 307 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 308 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 309 } 310 } else if (PartBits == ValueVT.getSizeInBits()) { 311 // Different types of the same size. 312 assert(NumParts == 1 && PartVT != ValueVT); 313 Val = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Val); 314 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 315 // If the parts cover less bits than value has, truncate the value. 316 assert(PartVT.isInteger() && ValueVT.isInteger() && 317 "Unknown mismatch!"); 318 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 319 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 320 } 321 322 // The value may have changed - recompute ValueVT. 323 ValueVT = Val.getValueType(); 324 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 325 "Failed to tile the value with PartVT!"); 326 327 if (NumParts == 1) { 328 assert(PartVT == ValueVT && "Type conversion failed!"); 329 Parts[0] = Val; 330 return; 331 } 332 333 // Expand the value into multiple parts. 334 if (NumParts & (NumParts - 1)) { 335 // The number of parts is not a power of 2. Split off and copy the tail. 336 assert(PartVT.isInteger() && ValueVT.isInteger() && 337 "Do not know what to expand to!"); 338 unsigned RoundParts = 1 << Log2_32(NumParts); 339 unsigned RoundBits = RoundParts * PartBits; 340 unsigned OddParts = NumParts - RoundParts; 341 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 342 DAG.getIntPtrConstant(RoundBits)); 343 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT); 344 345 if (TLI.isBigEndian()) 346 // The odd parts were reversed by getCopyToParts - unreverse them. 347 std::reverse(Parts + RoundParts, Parts + NumParts); 348 349 NumParts = RoundParts; 350 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 351 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 352 } 353 354 // The number of parts is a power of 2. Repeatedly bisect the value using 355 // EXTRACT_ELEMENT. 356 Parts[0] = DAG.getNode(ISD::BIT_CONVERT, DL, 357 EVT::getIntegerVT(*DAG.getContext(), 358 ValueVT.getSizeInBits()), 359 Val); 360 361 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 362 for (unsigned i = 0; i < NumParts; i += StepSize) { 363 unsigned ThisBits = StepSize * PartBits / 2; 364 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 365 SDValue &Part0 = Parts[i]; 366 SDValue &Part1 = Parts[i+StepSize/2]; 367 368 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 369 ThisVT, Part0, DAG.getIntPtrConstant(1)); 370 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 371 ThisVT, Part0, DAG.getIntPtrConstant(0)); 372 373 if (ThisBits == PartBits && ThisVT != PartVT) { 374 Part0 = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Part0); 375 Part1 = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Part1); 376 } 377 } 378 } 379 380 if (TLI.isBigEndian()) 381 std::reverse(Parts, Parts + OrigNumParts); 382 } 383 384 385 /// getCopyToPartsVector - Create a series of nodes that contain the specified 386 /// value split into legal parts. 387 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL, 388 SDValue Val, SDValue *Parts, unsigned NumParts, 389 EVT PartVT) { 390 EVT ValueVT = Val.getValueType(); 391 assert(ValueVT.isVector() && "Not a vector"); 392 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 393 394 if (NumParts == 1) { 395 if (PartVT != ValueVT) { 396 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 397 Val = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Val); 398 } else { 399 assert(ValueVT.getVectorElementType() == PartVT && 400 ValueVT.getVectorNumElements() == 1 && 401 "Only trivial vector-to-scalar conversions should get here!"); 402 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 403 PartVT, Val, DAG.getIntPtrConstant(0)); 404 } 405 } 406 407 Parts[0] = Val; 408 return; 409 } 410 411 // Handle a multi-element vector. 412 EVT IntermediateVT, RegisterVT; 413 unsigned NumIntermediates; 414 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 415 IntermediateVT, NumIntermediates, RegisterVT); 416 unsigned NumElements = ValueVT.getVectorNumElements(); 417 418 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 419 NumParts = NumRegs; // Silence a compiler warning. 420 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 421 422 // Split the vector into intermediate operands. 423 SmallVector<SDValue, 8> Ops(NumIntermediates); 424 for (unsigned i = 0; i != NumIntermediates; ++i) { 425 if (IntermediateVT.isVector()) 426 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 427 IntermediateVT, Val, 428 DAG.getIntPtrConstant(i * (NumElements / NumIntermediates))); 429 else 430 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 431 IntermediateVT, Val, 432 DAG.getIntPtrConstant(i)); 433 } 434 435 // Split the intermediate operands into legal parts. 436 if (NumParts == NumIntermediates) { 437 // If the register was not expanded, promote or copy the value, 438 // as appropriate. 439 for (unsigned i = 0; i != NumParts; ++i) 440 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT); 441 } else if (NumParts > 0) { 442 // If the intermediate type was expanded, split each the value into 443 // legal parts. 444 assert(NumParts % NumIntermediates == 0 && 445 "Must expand into a divisible number of parts!"); 446 unsigned Factor = NumParts / NumIntermediates; 447 for (unsigned i = 0; i != NumIntermediates; ++i) 448 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT); 449 } 450 } 451 452 453 454 455 namespace { 456 /// RegsForValue - This struct represents the registers (physical or virtual) 457 /// that a particular set of values is assigned, and the type information 458 /// about the value. The most common situation is to represent one value at a 459 /// time, but struct or array values are handled element-wise as multiple 460 /// values. The splitting of aggregates is performed recursively, so that we 461 /// never have aggregate-typed registers. The values at this point do not 462 /// necessarily have legal types, so each value may require one or more 463 /// registers of some legal type. 464 /// 465 struct RegsForValue { 466 /// ValueVTs - The value types of the values, which may not be legal, and 467 /// may need be promoted or synthesized from one or more registers. 468 /// 469 SmallVector<EVT, 4> ValueVTs; 470 471 /// RegVTs - The value types of the registers. This is the same size as 472 /// ValueVTs and it records, for each value, what the type of the assigned 473 /// register or registers are. (Individual values are never synthesized 474 /// from more than one type of register.) 475 /// 476 /// With virtual registers, the contents of RegVTs is redundant with TLI's 477 /// getRegisterType member function, however when with physical registers 478 /// it is necessary to have a separate record of the types. 479 /// 480 SmallVector<EVT, 4> RegVTs; 481 482 /// Regs - This list holds the registers assigned to the values. 483 /// Each legal or promoted value requires one register, and each 484 /// expanded value requires multiple registers. 485 /// 486 SmallVector<unsigned, 4> Regs; 487 488 RegsForValue() {} 489 490 RegsForValue(const SmallVector<unsigned, 4> ®s, 491 EVT regvt, EVT valuevt) 492 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 493 494 RegsForValue(const SmallVector<unsigned, 4> ®s, 495 const SmallVector<EVT, 4> ®vts, 496 const SmallVector<EVT, 4> &valuevts) 497 : ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {} 498 499 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 500 unsigned Reg, const Type *Ty) { 501 ComputeValueVTs(tli, Ty, ValueVTs); 502 503 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 504 EVT ValueVT = ValueVTs[Value]; 505 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 506 EVT RegisterVT = tli.getRegisterType(Context, ValueVT); 507 for (unsigned i = 0; i != NumRegs; ++i) 508 Regs.push_back(Reg + i); 509 RegVTs.push_back(RegisterVT); 510 Reg += NumRegs; 511 } 512 } 513 514 /// areValueTypesLegal - Return true if types of all the values are legal. 515 bool areValueTypesLegal(const TargetLowering &TLI) { 516 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 517 EVT RegisterVT = RegVTs[Value]; 518 if (!TLI.isTypeLegal(RegisterVT)) 519 return false; 520 } 521 return true; 522 } 523 524 /// append - Add the specified values to this one. 525 void append(const RegsForValue &RHS) { 526 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 527 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 528 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 529 } 530 531 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 532 /// this value and returns the result as a ValueVTs value. This uses 533 /// Chain/Flag as the input and updates them for the output Chain/Flag. 534 /// If the Flag pointer is NULL, no flag is used. 535 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 536 DebugLoc dl, 537 SDValue &Chain, SDValue *Flag) const; 538 539 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 540 /// specified value into the registers specified by this object. This uses 541 /// Chain/Flag as the input and updates them for the output Chain/Flag. 542 /// If the Flag pointer is NULL, no flag is used. 543 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 544 SDValue &Chain, SDValue *Flag) const; 545 546 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 547 /// operand list. This adds the code marker, matching input operand index 548 /// (if applicable), and includes the number of values added into it. 549 void AddInlineAsmOperands(unsigned Kind, 550 bool HasMatching, unsigned MatchingIdx, 551 SelectionDAG &DAG, 552 std::vector<SDValue> &Ops) const; 553 }; 554 } 555 556 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 557 /// this value and returns the result as a ValueVT value. This uses 558 /// Chain/Flag as the input and updates them for the output Chain/Flag. 559 /// If the Flag pointer is NULL, no flag is used. 560 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 561 FunctionLoweringInfo &FuncInfo, 562 DebugLoc dl, 563 SDValue &Chain, SDValue *Flag) const { 564 // A Value with type {} or [0 x %t] needs no registers. 565 if (ValueVTs.empty()) 566 return SDValue(); 567 568 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 569 570 // Assemble the legal parts into the final values. 571 SmallVector<SDValue, 4> Values(ValueVTs.size()); 572 SmallVector<SDValue, 8> Parts; 573 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 574 // Copy the legal parts from the registers. 575 EVT ValueVT = ValueVTs[Value]; 576 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 577 EVT RegisterVT = RegVTs[Value]; 578 579 Parts.resize(NumRegs); 580 for (unsigned i = 0; i != NumRegs; ++i) { 581 SDValue P; 582 if (Flag == 0) { 583 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 584 } else { 585 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 586 *Flag = P.getValue(2); 587 } 588 589 Chain = P.getValue(1); 590 591 // If the source register was virtual and if we know something about it, 592 // add an assert node. 593 if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) && 594 RegisterVT.isInteger() && !RegisterVT.isVector()) { 595 unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister; 596 if (FuncInfo.LiveOutRegInfo.size() > SlotNo) { 597 const FunctionLoweringInfo::LiveOutInfo &LOI = 598 FuncInfo.LiveOutRegInfo[SlotNo]; 599 600 unsigned RegSize = RegisterVT.getSizeInBits(); 601 unsigned NumSignBits = LOI.NumSignBits; 602 unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes(); 603 604 // FIXME: We capture more information than the dag can represent. For 605 // now, just use the tightest assertzext/assertsext possible. 606 bool isSExt = true; 607 EVT FromVT(MVT::Other); 608 if (NumSignBits == RegSize) 609 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 610 else if (NumZeroBits >= RegSize-1) 611 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 612 else if (NumSignBits > RegSize-8) 613 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 614 else if (NumZeroBits >= RegSize-8) 615 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 616 else if (NumSignBits > RegSize-16) 617 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 618 else if (NumZeroBits >= RegSize-16) 619 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 620 else if (NumSignBits > RegSize-32) 621 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 622 else if (NumZeroBits >= RegSize-32) 623 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 624 625 if (FromVT != MVT::Other) 626 P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 627 RegisterVT, P, DAG.getValueType(FromVT)); 628 } 629 } 630 631 Parts[i] = P; 632 } 633 634 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 635 NumRegs, RegisterVT, ValueVT); 636 Part += NumRegs; 637 Parts.clear(); 638 } 639 640 return DAG.getNode(ISD::MERGE_VALUES, dl, 641 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 642 &Values[0], ValueVTs.size()); 643 } 644 645 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 646 /// specified value into the registers specified by this object. This uses 647 /// Chain/Flag as the input and updates them for the output Chain/Flag. 648 /// If the Flag pointer is NULL, no flag is used. 649 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 650 SDValue &Chain, SDValue *Flag) const { 651 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 652 653 // Get the list of the values's legal parts. 654 unsigned NumRegs = Regs.size(); 655 SmallVector<SDValue, 8> Parts(NumRegs); 656 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 657 EVT ValueVT = ValueVTs[Value]; 658 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 659 EVT RegisterVT = RegVTs[Value]; 660 661 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 662 &Parts[Part], NumParts, RegisterVT); 663 Part += NumParts; 664 } 665 666 // Copy the parts into the registers. 667 SmallVector<SDValue, 8> Chains(NumRegs); 668 for (unsigned i = 0; i != NumRegs; ++i) { 669 SDValue Part; 670 if (Flag == 0) { 671 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 672 } else { 673 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 674 *Flag = Part.getValue(1); 675 } 676 677 Chains[i] = Part.getValue(0); 678 } 679 680 if (NumRegs == 1 || Flag) 681 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 682 // flagged to it. That is the CopyToReg nodes and the user are considered 683 // a single scheduling unit. If we create a TokenFactor and return it as 684 // chain, then the TokenFactor is both a predecessor (operand) of the 685 // user as well as a successor (the TF operands are flagged to the user). 686 // c1, f1 = CopyToReg 687 // c2, f2 = CopyToReg 688 // c3 = TokenFactor c1, c2 689 // ... 690 // = op c3, ..., f2 691 Chain = Chains[NumRegs-1]; 692 else 693 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); 694 } 695 696 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 697 /// operand list. This adds the code marker and includes the number of 698 /// values added into it. 699 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 700 unsigned MatchingIdx, 701 SelectionDAG &DAG, 702 std::vector<SDValue> &Ops) const { 703 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 704 705 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 706 if (HasMatching) 707 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 708 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 709 Ops.push_back(Res); 710 711 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 712 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 713 EVT RegisterVT = RegVTs[Value]; 714 for (unsigned i = 0; i != NumRegs; ++i) { 715 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 716 Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT)); 717 } 718 } 719 } 720 721 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) { 722 AA = &aa; 723 GFI = gfi; 724 TD = DAG.getTarget().getTargetData(); 725 } 726 727 /// clear - Clear out the current SelectionDAG and the associated 728 /// state and prepare this SelectionDAGBuilder object to be used 729 /// for a new block. This doesn't clear out information about 730 /// additional blocks that are needed to complete switch lowering 731 /// or PHI node updating; that information is cleared out as it is 732 /// consumed. 733 void SelectionDAGBuilder::clear() { 734 NodeMap.clear(); 735 UnusedArgNodeMap.clear(); 736 PendingLoads.clear(); 737 PendingExports.clear(); 738 DanglingDebugInfoMap.clear(); 739 CurDebugLoc = DebugLoc(); 740 HasTailCall = false; 741 } 742 743 /// getRoot - Return the current virtual root of the Selection DAG, 744 /// flushing any PendingLoad items. This must be done before emitting 745 /// a store or any other node that may need to be ordered after any 746 /// prior load instructions. 747 /// 748 SDValue SelectionDAGBuilder::getRoot() { 749 if (PendingLoads.empty()) 750 return DAG.getRoot(); 751 752 if (PendingLoads.size() == 1) { 753 SDValue Root = PendingLoads[0]; 754 DAG.setRoot(Root); 755 PendingLoads.clear(); 756 return Root; 757 } 758 759 // Otherwise, we have to make a token factor node. 760 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 761 &PendingLoads[0], PendingLoads.size()); 762 PendingLoads.clear(); 763 DAG.setRoot(Root); 764 return Root; 765 } 766 767 /// getControlRoot - Similar to getRoot, but instead of flushing all the 768 /// PendingLoad items, flush all the PendingExports items. It is necessary 769 /// to do this before emitting a terminator instruction. 770 /// 771 SDValue SelectionDAGBuilder::getControlRoot() { 772 SDValue Root = DAG.getRoot(); 773 774 if (PendingExports.empty()) 775 return Root; 776 777 // Turn all of the CopyToReg chains into one factored node. 778 if (Root.getOpcode() != ISD::EntryToken) { 779 unsigned i = 0, e = PendingExports.size(); 780 for (; i != e; ++i) { 781 assert(PendingExports[i].getNode()->getNumOperands() > 1); 782 if (PendingExports[i].getNode()->getOperand(0) == Root) 783 break; // Don't add the root if we already indirectly depend on it. 784 } 785 786 if (i == e) 787 PendingExports.push_back(Root); 788 } 789 790 Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 791 &PendingExports[0], 792 PendingExports.size()); 793 PendingExports.clear(); 794 DAG.setRoot(Root); 795 return Root; 796 } 797 798 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) { 799 if (DAG.GetOrdering(Node) != 0) return; // Already has ordering. 800 DAG.AssignOrdering(Node, SDNodeOrder); 801 802 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) 803 AssignOrderingToNode(Node->getOperand(I).getNode()); 804 } 805 806 void SelectionDAGBuilder::visit(const Instruction &I) { 807 // Set up outgoing PHI node register values before emitting the terminator. 808 if (isa<TerminatorInst>(&I)) 809 HandlePHINodesInSuccessorBlocks(I.getParent()); 810 811 CurDebugLoc = I.getDebugLoc(); 812 813 visit(I.getOpcode(), I); 814 815 if (!isa<TerminatorInst>(&I) && !HasTailCall) 816 CopyToExportRegsIfNeeded(&I); 817 818 CurDebugLoc = DebugLoc(); 819 } 820 821 void SelectionDAGBuilder::visitPHI(const PHINode &) { 822 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 823 } 824 825 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 826 // Note: this doesn't use InstVisitor, because it has to work with 827 // ConstantExpr's in addition to instructions. 828 switch (Opcode) { 829 default: llvm_unreachable("Unknown instruction type encountered!"); 830 // Build the switch statement using the Instruction.def file. 831 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 832 case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break; 833 #include "llvm/Instruction.def" 834 } 835 836 // Assign the ordering to the freshly created DAG nodes. 837 if (NodeMap.count(&I)) { 838 ++SDNodeOrder; 839 AssignOrderingToNode(getValue(&I).getNode()); 840 } 841 } 842 843 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 844 // generate the debug data structures now that we've seen its definition. 845 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 846 SDValue Val) { 847 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 848 if (DDI.getDI()) { 849 const DbgValueInst *DI = DDI.getDI(); 850 DebugLoc dl = DDI.getdl(); 851 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 852 MDNode *Variable = DI->getVariable(); 853 uint64_t Offset = DI->getOffset(); 854 SDDbgValue *SDV; 855 if (Val.getNode()) { 856 if (!EmitFuncArgumentDbgValue(*DI, V, Variable, Offset, Val)) { 857 SDV = DAG.getDbgValue(Variable, Val.getNode(), 858 Val.getResNo(), Offset, dl, DbgSDNodeOrder); 859 DAG.AddDbgValue(SDV, Val.getNode(), false); 860 } 861 } else { 862 SDV = DAG.getDbgValue(Variable, UndefValue::get(V->getType()), 863 Offset, dl, SDNodeOrder); 864 DAG.AddDbgValue(SDV, 0, false); 865 } 866 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 867 } 868 } 869 870 // getValue - Return an SDValue for the given Value. 871 SDValue SelectionDAGBuilder::getValue(const Value *V) { 872 // If we already have an SDValue for this value, use it. It's important 873 // to do this first, so that we don't create a CopyFromReg if we already 874 // have a regular SDValue. 875 SDValue &N = NodeMap[V]; 876 if (N.getNode()) return N; 877 878 // If there's a virtual register allocated and initialized for this 879 // value, use it. 880 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 881 if (It != FuncInfo.ValueMap.end()) { 882 unsigned InReg = It->second; 883 RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType()); 884 SDValue Chain = DAG.getEntryNode(); 885 return N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain,NULL); 886 } 887 888 // Otherwise create a new SDValue and remember it. 889 SDValue Val = getValueImpl(V); 890 NodeMap[V] = Val; 891 resolveDanglingDebugInfo(V, Val); 892 return Val; 893 } 894 895 /// getNonRegisterValue - Return an SDValue for the given Value, but 896 /// don't look in FuncInfo.ValueMap for a virtual register. 897 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 898 // If we already have an SDValue for this value, use it. 899 SDValue &N = NodeMap[V]; 900 if (N.getNode()) return N; 901 902 // Otherwise create a new SDValue and remember it. 903 SDValue Val = getValueImpl(V); 904 NodeMap[V] = Val; 905 resolveDanglingDebugInfo(V, Val); 906 return Val; 907 } 908 909 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 910 /// Create an SDValue for the given value. 911 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 912 if (const Constant *C = dyn_cast<Constant>(V)) { 913 EVT VT = TLI.getValueType(V->getType(), true); 914 915 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 916 return DAG.getConstant(*CI, VT); 917 918 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 919 return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT); 920 921 if (isa<ConstantPointerNull>(C)) 922 return DAG.getConstant(0, TLI.getPointerTy()); 923 924 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 925 return DAG.getConstantFP(*CFP, VT); 926 927 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 928 return DAG.getUNDEF(VT); 929 930 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 931 visit(CE->getOpcode(), *CE); 932 SDValue N1 = NodeMap[V]; 933 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 934 return N1; 935 } 936 937 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 938 SmallVector<SDValue, 4> Constants; 939 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 940 OI != OE; ++OI) { 941 SDNode *Val = getValue(*OI).getNode(); 942 // If the operand is an empty aggregate, there are no values. 943 if (!Val) continue; 944 // Add each leaf value from the operand to the Constants list 945 // to form a flattened list of all the values. 946 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 947 Constants.push_back(SDValue(Val, i)); 948 } 949 950 return DAG.getMergeValues(&Constants[0], Constants.size(), 951 getCurDebugLoc()); 952 } 953 954 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 955 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 956 "Unknown struct or array constant!"); 957 958 SmallVector<EVT, 4> ValueVTs; 959 ComputeValueVTs(TLI, C->getType(), ValueVTs); 960 unsigned NumElts = ValueVTs.size(); 961 if (NumElts == 0) 962 return SDValue(); // empty struct 963 SmallVector<SDValue, 4> Constants(NumElts); 964 for (unsigned i = 0; i != NumElts; ++i) { 965 EVT EltVT = ValueVTs[i]; 966 if (isa<UndefValue>(C)) 967 Constants[i] = DAG.getUNDEF(EltVT); 968 else if (EltVT.isFloatingPoint()) 969 Constants[i] = DAG.getConstantFP(0, EltVT); 970 else 971 Constants[i] = DAG.getConstant(0, EltVT); 972 } 973 974 return DAG.getMergeValues(&Constants[0], NumElts, 975 getCurDebugLoc()); 976 } 977 978 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 979 return DAG.getBlockAddress(BA, VT); 980 981 const VectorType *VecTy = cast<VectorType>(V->getType()); 982 unsigned NumElements = VecTy->getNumElements(); 983 984 // Now that we know the number and type of the elements, get that number of 985 // elements into the Ops array based on what kind of constant it is. 986 SmallVector<SDValue, 16> Ops; 987 if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) { 988 for (unsigned i = 0; i != NumElements; ++i) 989 Ops.push_back(getValue(CP->getOperand(i))); 990 } else { 991 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 992 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 993 994 SDValue Op; 995 if (EltVT.isFloatingPoint()) 996 Op = DAG.getConstantFP(0, EltVT); 997 else 998 Op = DAG.getConstant(0, EltVT); 999 Ops.assign(NumElements, Op); 1000 } 1001 1002 // Create a BUILD_VECTOR node. 1003 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 1004 VT, &Ops[0], Ops.size()); 1005 } 1006 1007 // If this is a static alloca, generate it as the frameindex instead of 1008 // computation. 1009 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1010 DenseMap<const AllocaInst*, int>::iterator SI = 1011 FuncInfo.StaticAllocaMap.find(AI); 1012 if (SI != FuncInfo.StaticAllocaMap.end()) 1013 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1014 } 1015 1016 // If this is an instruction which fast-isel has deferred, select it now. 1017 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1018 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1019 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1020 SDValue Chain = DAG.getEntryNode(); 1021 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL); 1022 } 1023 1024 llvm_unreachable("Can't get register for value!"); 1025 return SDValue(); 1026 } 1027 1028 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1029 SDValue Chain = getControlRoot(); 1030 SmallVector<ISD::OutputArg, 8> Outs; 1031 SmallVector<SDValue, 8> OutVals; 1032 1033 if (!FuncInfo.CanLowerReturn) { 1034 unsigned DemoteReg = FuncInfo.DemoteRegister; 1035 const Function *F = I.getParent()->getParent(); 1036 1037 // Emit a store of the return value through the virtual register. 1038 // Leave Outs empty so that LowerReturn won't try to load return 1039 // registers the usual way. 1040 SmallVector<EVT, 1> PtrValueVTs; 1041 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1042 PtrValueVTs); 1043 1044 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1045 SDValue RetOp = getValue(I.getOperand(0)); 1046 1047 SmallVector<EVT, 4> ValueVTs; 1048 SmallVector<uint64_t, 4> Offsets; 1049 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1050 unsigned NumValues = ValueVTs.size(); 1051 1052 SmallVector<SDValue, 4> Chains(NumValues); 1053 for (unsigned i = 0; i != NumValues; ++i) { 1054 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), 1055 RetPtr.getValueType(), RetPtr, 1056 DAG.getIntPtrConstant(Offsets[i])); 1057 Chains[i] = 1058 DAG.getStore(Chain, getCurDebugLoc(), 1059 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1060 Add, NULL, Offsets[i], false, false, 0); 1061 } 1062 1063 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 1064 MVT::Other, &Chains[0], NumValues); 1065 } else if (I.getNumOperands() != 0) { 1066 SmallVector<EVT, 4> ValueVTs; 1067 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1068 unsigned NumValues = ValueVTs.size(); 1069 if (NumValues) { 1070 SDValue RetOp = getValue(I.getOperand(0)); 1071 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1072 EVT VT = ValueVTs[j]; 1073 1074 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1075 1076 const Function *F = I.getParent()->getParent(); 1077 if (F->paramHasAttr(0, Attribute::SExt)) 1078 ExtendKind = ISD::SIGN_EXTEND; 1079 else if (F->paramHasAttr(0, Attribute::ZExt)) 1080 ExtendKind = ISD::ZERO_EXTEND; 1081 1082 // FIXME: C calling convention requires the return type to be promoted 1083 // to at least 32-bit. But this is not necessary for non-C calling 1084 // conventions. The frontend should mark functions whose return values 1085 // require promoting with signext or zeroext attributes. 1086 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { 1087 EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32); 1088 if (VT.bitsLT(MinVT)) 1089 VT = MinVT; 1090 } 1091 1092 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT); 1093 EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT); 1094 SmallVector<SDValue, 4> Parts(NumParts); 1095 getCopyToParts(DAG, getCurDebugLoc(), 1096 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1097 &Parts[0], NumParts, PartVT, ExtendKind); 1098 1099 // 'inreg' on function refers to return value 1100 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1101 if (F->paramHasAttr(0, Attribute::InReg)) 1102 Flags.setInReg(); 1103 1104 // Propagate extension type if any 1105 if (F->paramHasAttr(0, Attribute::SExt)) 1106 Flags.setSExt(); 1107 else if (F->paramHasAttr(0, Attribute::ZExt)) 1108 Flags.setZExt(); 1109 1110 for (unsigned i = 0; i < NumParts; ++i) { 1111 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1112 /*isfixed=*/true)); 1113 OutVals.push_back(Parts[i]); 1114 } 1115 } 1116 } 1117 } 1118 1119 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1120 CallingConv::ID CallConv = 1121 DAG.getMachineFunction().getFunction()->getCallingConv(); 1122 Chain = TLI.LowerReturn(Chain, CallConv, isVarArg, 1123 Outs, OutVals, getCurDebugLoc(), DAG); 1124 1125 // Verify that the target's LowerReturn behaved as expected. 1126 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1127 "LowerReturn didn't return a valid chain!"); 1128 1129 // Update the DAG with the new chain value resulting from return lowering. 1130 DAG.setRoot(Chain); 1131 } 1132 1133 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1134 /// created for it, emit nodes to copy the value into the virtual 1135 /// registers. 1136 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1137 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1138 if (VMI != FuncInfo.ValueMap.end()) { 1139 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1140 CopyValueToVirtualRegister(V, VMI->second); 1141 } 1142 } 1143 1144 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1145 /// the current basic block, add it to ValueMap now so that we'll get a 1146 /// CopyTo/FromReg. 1147 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1148 // No need to export constants. 1149 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1150 1151 // Already exported? 1152 if (FuncInfo.isExportedInst(V)) return; 1153 1154 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1155 CopyValueToVirtualRegister(V, Reg); 1156 } 1157 1158 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1159 const BasicBlock *FromBB) { 1160 // The operands of the setcc have to be in this block. We don't know 1161 // how to export them from some other block. 1162 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1163 // Can export from current BB. 1164 if (VI->getParent() == FromBB) 1165 return true; 1166 1167 // Is already exported, noop. 1168 return FuncInfo.isExportedInst(V); 1169 } 1170 1171 // If this is an argument, we can export it if the BB is the entry block or 1172 // if it is already exported. 1173 if (isa<Argument>(V)) { 1174 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1175 return true; 1176 1177 // Otherwise, can only export this if it is already exported. 1178 return FuncInfo.isExportedInst(V); 1179 } 1180 1181 // Otherwise, constants can always be exported. 1182 return true; 1183 } 1184 1185 static bool InBlock(const Value *V, const BasicBlock *BB) { 1186 if (const Instruction *I = dyn_cast<Instruction>(V)) 1187 return I->getParent() == BB; 1188 return true; 1189 } 1190 1191 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1192 /// This function emits a branch and is used at the leaves of an OR or an 1193 /// AND operator tree. 1194 /// 1195 void 1196 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1197 MachineBasicBlock *TBB, 1198 MachineBasicBlock *FBB, 1199 MachineBasicBlock *CurBB, 1200 MachineBasicBlock *SwitchBB) { 1201 const BasicBlock *BB = CurBB->getBasicBlock(); 1202 1203 // If the leaf of the tree is a comparison, merge the condition into 1204 // the caseblock. 1205 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1206 // The operands of the cmp have to be in this block. We don't know 1207 // how to export them from some other block. If this is the first block 1208 // of the sequence, no exporting is needed. 1209 if (CurBB == SwitchBB || 1210 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1211 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1212 ISD::CondCode Condition; 1213 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1214 Condition = getICmpCondCode(IC->getPredicate()); 1215 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1216 Condition = getFCmpCondCode(FC->getPredicate()); 1217 } else { 1218 Condition = ISD::SETEQ; // silence warning. 1219 llvm_unreachable("Unknown compare instruction"); 1220 } 1221 1222 CaseBlock CB(Condition, BOp->getOperand(0), 1223 BOp->getOperand(1), NULL, TBB, FBB, CurBB); 1224 SwitchCases.push_back(CB); 1225 return; 1226 } 1227 } 1228 1229 // Create a CaseBlock record representing this branch. 1230 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1231 NULL, TBB, FBB, CurBB); 1232 SwitchCases.push_back(CB); 1233 } 1234 1235 /// FindMergedConditions - If Cond is an expression like 1236 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1237 MachineBasicBlock *TBB, 1238 MachineBasicBlock *FBB, 1239 MachineBasicBlock *CurBB, 1240 MachineBasicBlock *SwitchBB, 1241 unsigned Opc) { 1242 // If this node is not part of the or/and tree, emit it as a branch. 1243 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1244 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1245 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1246 BOp->getParent() != CurBB->getBasicBlock() || 1247 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1248 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1249 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB); 1250 return; 1251 } 1252 1253 // Create TmpBB after CurBB. 1254 MachineFunction::iterator BBI = CurBB; 1255 MachineFunction &MF = DAG.getMachineFunction(); 1256 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1257 CurBB->getParent()->insert(++BBI, TmpBB); 1258 1259 if (Opc == Instruction::Or) { 1260 // Codegen X | Y as: 1261 // jmp_if_X TBB 1262 // jmp TmpBB 1263 // TmpBB: 1264 // jmp_if_Y TBB 1265 // jmp FBB 1266 // 1267 1268 // Emit the LHS condition. 1269 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc); 1270 1271 // Emit the RHS condition into TmpBB. 1272 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1273 } else { 1274 assert(Opc == Instruction::And && "Unknown merge op!"); 1275 // Codegen X & Y as: 1276 // jmp_if_X TmpBB 1277 // jmp FBB 1278 // TmpBB: 1279 // jmp_if_Y TBB 1280 // jmp FBB 1281 // 1282 // This requires creation of TmpBB after CurBB. 1283 1284 // Emit the LHS condition. 1285 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc); 1286 1287 // Emit the RHS condition into TmpBB. 1288 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1289 } 1290 } 1291 1292 /// If the set of cases should be emitted as a series of branches, return true. 1293 /// If we should emit this as a bunch of and/or'd together conditions, return 1294 /// false. 1295 bool 1296 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){ 1297 if (Cases.size() != 2) return true; 1298 1299 // If this is two comparisons of the same values or'd or and'd together, they 1300 // will get folded into a single comparison, so don't emit two blocks. 1301 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1302 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1303 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1304 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1305 return false; 1306 } 1307 1308 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1309 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1310 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1311 Cases[0].CC == Cases[1].CC && 1312 isa<Constant>(Cases[0].CmpRHS) && 1313 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1314 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1315 return false; 1316 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1317 return false; 1318 } 1319 1320 return true; 1321 } 1322 1323 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1324 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1325 1326 // Update machine-CFG edges. 1327 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1328 1329 // Figure out which block is immediately after the current one. 1330 MachineBasicBlock *NextBlock = 0; 1331 MachineFunction::iterator BBI = BrMBB; 1332 if (++BBI != FuncInfo.MF->end()) 1333 NextBlock = BBI; 1334 1335 if (I.isUnconditional()) { 1336 // Update machine-CFG edges. 1337 BrMBB->addSuccessor(Succ0MBB); 1338 1339 // If this is not a fall-through branch, emit the branch. 1340 if (Succ0MBB != NextBlock) 1341 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1342 MVT::Other, getControlRoot(), 1343 DAG.getBasicBlock(Succ0MBB))); 1344 1345 return; 1346 } 1347 1348 // If this condition is one of the special cases we handle, do special stuff 1349 // now. 1350 const Value *CondVal = I.getCondition(); 1351 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1352 1353 // If this is a series of conditions that are or'd or and'd together, emit 1354 // this as a sequence of branches instead of setcc's with and/or operations. 1355 // For example, instead of something like: 1356 // cmp A, B 1357 // C = seteq 1358 // cmp D, E 1359 // F = setle 1360 // or C, F 1361 // jnz foo 1362 // Emit: 1363 // cmp A, B 1364 // je foo 1365 // cmp D, E 1366 // jle foo 1367 // 1368 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1369 if (BOp->hasOneUse() && 1370 (BOp->getOpcode() == Instruction::And || 1371 BOp->getOpcode() == Instruction::Or)) { 1372 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1373 BOp->getOpcode()); 1374 // If the compares in later blocks need to use values not currently 1375 // exported from this block, export them now. This block should always 1376 // be the first entry. 1377 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1378 1379 // Allow some cases to be rejected. 1380 if (ShouldEmitAsBranches(SwitchCases)) { 1381 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1382 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1383 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1384 } 1385 1386 // Emit the branch for this block. 1387 visitSwitchCase(SwitchCases[0], BrMBB); 1388 SwitchCases.erase(SwitchCases.begin()); 1389 return; 1390 } 1391 1392 // Okay, we decided not to do this, remove any inserted MBB's and clear 1393 // SwitchCases. 1394 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1395 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1396 1397 SwitchCases.clear(); 1398 } 1399 } 1400 1401 // Create a CaseBlock record representing this branch. 1402 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1403 NULL, Succ0MBB, Succ1MBB, BrMBB); 1404 1405 // Use visitSwitchCase to actually insert the fast branch sequence for this 1406 // cond branch. 1407 visitSwitchCase(CB, BrMBB); 1408 } 1409 1410 /// visitSwitchCase - Emits the necessary code to represent a single node in 1411 /// the binary search tree resulting from lowering a switch instruction. 1412 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1413 MachineBasicBlock *SwitchBB) { 1414 SDValue Cond; 1415 SDValue CondLHS = getValue(CB.CmpLHS); 1416 DebugLoc dl = getCurDebugLoc(); 1417 1418 // Build the setcc now. 1419 if (CB.CmpMHS == NULL) { 1420 // Fold "(X == true)" to X and "(X == false)" to !X to 1421 // handle common cases produced by branch lowering. 1422 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1423 CB.CC == ISD::SETEQ) 1424 Cond = CondLHS; 1425 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1426 CB.CC == ISD::SETEQ) { 1427 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1428 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1429 } else 1430 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1431 } else { 1432 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1433 1434 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1435 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1436 1437 SDValue CmpOp = getValue(CB.CmpMHS); 1438 EVT VT = CmpOp.getValueType(); 1439 1440 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1441 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1442 ISD::SETLE); 1443 } else { 1444 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1445 VT, CmpOp, DAG.getConstant(Low, VT)); 1446 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1447 DAG.getConstant(High-Low, VT), ISD::SETULE); 1448 } 1449 } 1450 1451 // Update successor info 1452 SwitchBB->addSuccessor(CB.TrueBB); 1453 SwitchBB->addSuccessor(CB.FalseBB); 1454 1455 // Set NextBlock to be the MBB immediately after the current one, if any. 1456 // This is used to avoid emitting unnecessary branches to the next block. 1457 MachineBasicBlock *NextBlock = 0; 1458 MachineFunction::iterator BBI = SwitchBB; 1459 if (++BBI != FuncInfo.MF->end()) 1460 NextBlock = BBI; 1461 1462 // If the lhs block is the next block, invert the condition so that we can 1463 // fall through to the lhs instead of the rhs block. 1464 if (CB.TrueBB == NextBlock) { 1465 std::swap(CB.TrueBB, CB.FalseBB); 1466 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1467 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1468 } 1469 1470 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1471 MVT::Other, getControlRoot(), Cond, 1472 DAG.getBasicBlock(CB.TrueBB)); 1473 1474 // Insert the false branch. 1475 if (CB.FalseBB != NextBlock) 1476 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1477 DAG.getBasicBlock(CB.FalseBB)); 1478 1479 DAG.setRoot(BrCond); 1480 } 1481 1482 /// visitJumpTable - Emit JumpTable node in the current MBB 1483 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1484 // Emit the code for the jump table 1485 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1486 EVT PTy = TLI.getPointerTy(); 1487 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1488 JT.Reg, PTy); 1489 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1490 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(), 1491 MVT::Other, Index.getValue(1), 1492 Table, Index); 1493 DAG.setRoot(BrJumpTable); 1494 } 1495 1496 /// visitJumpTableHeader - This function emits necessary code to produce index 1497 /// in the JumpTable from switch case. 1498 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1499 JumpTableHeader &JTH, 1500 MachineBasicBlock *SwitchBB) { 1501 // Subtract the lowest switch case value from the value being switched on and 1502 // conditional branch to default mbb if the result is greater than the 1503 // difference between smallest and largest cases. 1504 SDValue SwitchOp = getValue(JTH.SValue); 1505 EVT VT = SwitchOp.getValueType(); 1506 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1507 DAG.getConstant(JTH.First, VT)); 1508 1509 // The SDNode we just created, which holds the value being switched on minus 1510 // the smallest case value, needs to be copied to a virtual register so it 1511 // can be used as an index into the jump table in a subsequent basic block. 1512 // This value may be smaller or larger than the target's pointer type, and 1513 // therefore require extension or truncating. 1514 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy()); 1515 1516 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1517 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1518 JumpTableReg, SwitchOp); 1519 JT.Reg = JumpTableReg; 1520 1521 // Emit the range check for the jump table, and branch to the default block 1522 // for the switch statement if the value being switched on exceeds the largest 1523 // case in the switch. 1524 SDValue CMP = DAG.getSetCC(getCurDebugLoc(), 1525 TLI.getSetCCResultType(Sub.getValueType()), Sub, 1526 DAG.getConstant(JTH.Last-JTH.First,VT), 1527 ISD::SETUGT); 1528 1529 // Set NextBlock to be the MBB immediately after the current one, if any. 1530 // This is used to avoid emitting unnecessary branches to the next block. 1531 MachineBasicBlock *NextBlock = 0; 1532 MachineFunction::iterator BBI = SwitchBB; 1533 1534 if (++BBI != FuncInfo.MF->end()) 1535 NextBlock = BBI; 1536 1537 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1538 MVT::Other, CopyTo, CMP, 1539 DAG.getBasicBlock(JT.Default)); 1540 1541 if (JT.MBB != NextBlock) 1542 BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond, 1543 DAG.getBasicBlock(JT.MBB)); 1544 1545 DAG.setRoot(BrCond); 1546 } 1547 1548 /// visitBitTestHeader - This function emits necessary code to produce value 1549 /// suitable for "bit tests" 1550 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1551 MachineBasicBlock *SwitchBB) { 1552 // Subtract the minimum value 1553 SDValue SwitchOp = getValue(B.SValue); 1554 EVT VT = SwitchOp.getValueType(); 1555 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1556 DAG.getConstant(B.First, VT)); 1557 1558 // Check range 1559 SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(), 1560 TLI.getSetCCResultType(Sub.getValueType()), 1561 Sub, DAG.getConstant(B.Range, VT), 1562 ISD::SETUGT); 1563 1564 SDValue ShiftOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), 1565 TLI.getPointerTy()); 1566 1567 B.Reg = FuncInfo.CreateReg(TLI.getPointerTy()); 1568 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1569 B.Reg, ShiftOp); 1570 1571 // Set NextBlock to be the MBB immediately after the current one, if any. 1572 // This is used to avoid emitting unnecessary branches to the next block. 1573 MachineBasicBlock *NextBlock = 0; 1574 MachineFunction::iterator BBI = SwitchBB; 1575 if (++BBI != FuncInfo.MF->end()) 1576 NextBlock = BBI; 1577 1578 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1579 1580 SwitchBB->addSuccessor(B.Default); 1581 SwitchBB->addSuccessor(MBB); 1582 1583 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1584 MVT::Other, CopyTo, RangeCmp, 1585 DAG.getBasicBlock(B.Default)); 1586 1587 if (MBB != NextBlock) 1588 BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo, 1589 DAG.getBasicBlock(MBB)); 1590 1591 DAG.setRoot(BrRange); 1592 } 1593 1594 /// visitBitTestCase - this function produces one "bit test" 1595 void SelectionDAGBuilder::visitBitTestCase(MachineBasicBlock* NextMBB, 1596 unsigned Reg, 1597 BitTestCase &B, 1598 MachineBasicBlock *SwitchBB) { 1599 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg, 1600 TLI.getPointerTy()); 1601 SDValue Cmp; 1602 if (CountPopulation_64(B.Mask) == 1) { 1603 // Testing for a single bit; just compare the shift count with what it 1604 // would need to be to shift a 1 bit in that position. 1605 Cmp = DAG.getSetCC(getCurDebugLoc(), 1606 TLI.getSetCCResultType(ShiftOp.getValueType()), 1607 ShiftOp, 1608 DAG.getConstant(CountTrailingZeros_64(B.Mask), 1609 TLI.getPointerTy()), 1610 ISD::SETEQ); 1611 } else { 1612 // Make desired shift 1613 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), 1614 TLI.getPointerTy(), 1615 DAG.getConstant(1, TLI.getPointerTy()), 1616 ShiftOp); 1617 1618 // Emit bit tests and jumps 1619 SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(), 1620 TLI.getPointerTy(), SwitchVal, 1621 DAG.getConstant(B.Mask, TLI.getPointerTy())); 1622 Cmp = DAG.getSetCC(getCurDebugLoc(), 1623 TLI.getSetCCResultType(AndOp.getValueType()), 1624 AndOp, DAG.getConstant(0, TLI.getPointerTy()), 1625 ISD::SETNE); 1626 } 1627 1628 SwitchBB->addSuccessor(B.TargetBB); 1629 SwitchBB->addSuccessor(NextMBB); 1630 1631 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1632 MVT::Other, getControlRoot(), 1633 Cmp, DAG.getBasicBlock(B.TargetBB)); 1634 1635 // Set NextBlock to be the MBB immediately after the current one, if any. 1636 // This is used to avoid emitting unnecessary branches to the next block. 1637 MachineBasicBlock *NextBlock = 0; 1638 MachineFunction::iterator BBI = SwitchBB; 1639 if (++BBI != FuncInfo.MF->end()) 1640 NextBlock = BBI; 1641 1642 if (NextMBB != NextBlock) 1643 BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd, 1644 DAG.getBasicBlock(NextMBB)); 1645 1646 DAG.setRoot(BrAnd); 1647 } 1648 1649 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1650 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1651 1652 // Retrieve successors. 1653 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1654 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1655 1656 const Value *Callee(I.getCalledValue()); 1657 if (isa<InlineAsm>(Callee)) 1658 visitInlineAsm(&I); 1659 else 1660 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1661 1662 // If the value of the invoke is used outside of its defining block, make it 1663 // available as a virtual register. 1664 CopyToExportRegsIfNeeded(&I); 1665 1666 // Update successor info 1667 InvokeMBB->addSuccessor(Return); 1668 InvokeMBB->addSuccessor(LandingPad); 1669 1670 // Drop into normal successor. 1671 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1672 MVT::Other, getControlRoot(), 1673 DAG.getBasicBlock(Return))); 1674 } 1675 1676 void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) { 1677 } 1678 1679 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 1680 /// small case ranges). 1681 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 1682 CaseRecVector& WorkList, 1683 const Value* SV, 1684 MachineBasicBlock *Default, 1685 MachineBasicBlock *SwitchBB) { 1686 Case& BackCase = *(CR.Range.second-1); 1687 1688 // Size is the number of Cases represented by this range. 1689 size_t Size = CR.Range.second - CR.Range.first; 1690 if (Size > 3) 1691 return false; 1692 1693 // Get the MachineFunction which holds the current MBB. This is used when 1694 // inserting any additional MBBs necessary to represent the switch. 1695 MachineFunction *CurMF = FuncInfo.MF; 1696 1697 // Figure out which block is immediately after the current one. 1698 MachineBasicBlock *NextBlock = 0; 1699 MachineFunction::iterator BBI = CR.CaseBB; 1700 1701 if (++BBI != FuncInfo.MF->end()) 1702 NextBlock = BBI; 1703 1704 // TODO: If any two of the cases has the same destination, and if one value 1705 // is the same as the other, but has one bit unset that the other has set, 1706 // use bit manipulation to do two compares at once. For example: 1707 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 1708 1709 // Rearrange the case blocks so that the last one falls through if possible. 1710 if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 1711 // The last case block won't fall through into 'NextBlock' if we emit the 1712 // branches in this order. See if rearranging a case value would help. 1713 for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) { 1714 if (I->BB == NextBlock) { 1715 std::swap(*I, BackCase); 1716 break; 1717 } 1718 } 1719 } 1720 1721 // Create a CaseBlock record representing a conditional branch to 1722 // the Case's target mbb if the value being switched on SV is equal 1723 // to C. 1724 MachineBasicBlock *CurBlock = CR.CaseBB; 1725 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 1726 MachineBasicBlock *FallThrough; 1727 if (I != E-1) { 1728 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 1729 CurMF->insert(BBI, FallThrough); 1730 1731 // Put SV in a virtual register to make it available from the new blocks. 1732 ExportFromCurrentBlock(SV); 1733 } else { 1734 // If the last case doesn't match, go to the default block. 1735 FallThrough = Default; 1736 } 1737 1738 const Value *RHS, *LHS, *MHS; 1739 ISD::CondCode CC; 1740 if (I->High == I->Low) { 1741 // This is just small small case range :) containing exactly 1 case 1742 CC = ISD::SETEQ; 1743 LHS = SV; RHS = I->High; MHS = NULL; 1744 } else { 1745 CC = ISD::SETLE; 1746 LHS = I->Low; MHS = SV; RHS = I->High; 1747 } 1748 CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock); 1749 1750 // If emitting the first comparison, just call visitSwitchCase to emit the 1751 // code into the current block. Otherwise, push the CaseBlock onto the 1752 // vector to be later processed by SDISel, and insert the node's MBB 1753 // before the next MBB. 1754 if (CurBlock == SwitchBB) 1755 visitSwitchCase(CB, SwitchBB); 1756 else 1757 SwitchCases.push_back(CB); 1758 1759 CurBlock = FallThrough; 1760 } 1761 1762 return true; 1763 } 1764 1765 static inline bool areJTsAllowed(const TargetLowering &TLI) { 1766 return !DisableJumpTables && 1767 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 1768 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 1769 } 1770 1771 static APInt ComputeRange(const APInt &First, const APInt &Last) { 1772 APInt LastExt(Last), FirstExt(First); 1773 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 1774 LastExt.sext(BitWidth); FirstExt.sext(BitWidth); 1775 return (LastExt - FirstExt + 1ULL); 1776 } 1777 1778 /// handleJTSwitchCase - Emit jumptable for current switch case range 1779 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR, 1780 CaseRecVector& WorkList, 1781 const Value* SV, 1782 MachineBasicBlock* Default, 1783 MachineBasicBlock *SwitchBB) { 1784 Case& FrontCase = *CR.Range.first; 1785 Case& BackCase = *(CR.Range.second-1); 1786 1787 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 1788 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 1789 1790 APInt TSize(First.getBitWidth(), 0); 1791 for (CaseItr I = CR.Range.first, E = CR.Range.second; 1792 I!=E; ++I) 1793 TSize += I->size(); 1794 1795 if (!areJTsAllowed(TLI) || TSize.ult(4)) 1796 return false; 1797 1798 APInt Range = ComputeRange(First, Last); 1799 double Density = TSize.roundToDouble() / Range.roundToDouble(); 1800 if (Density < 0.4) 1801 return false; 1802 1803 DEBUG(dbgs() << "Lowering jump table\n" 1804 << "First entry: " << First << ". Last entry: " << Last << '\n' 1805 << "Range: " << Range 1806 << "Size: " << TSize << ". Density: " << Density << "\n\n"); 1807 1808 // Get the MachineFunction which holds the current MBB. This is used when 1809 // inserting any additional MBBs necessary to represent the switch. 1810 MachineFunction *CurMF = FuncInfo.MF; 1811 1812 // Figure out which block is immediately after the current one. 1813 MachineFunction::iterator BBI = CR.CaseBB; 1814 ++BBI; 1815 1816 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 1817 1818 // Create a new basic block to hold the code for loading the address 1819 // of the jump table, and jumping to it. Update successor information; 1820 // we will either branch to the default case for the switch, or the jump 1821 // table. 1822 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1823 CurMF->insert(BBI, JumpTableBB); 1824 CR.CaseBB->addSuccessor(Default); 1825 CR.CaseBB->addSuccessor(JumpTableBB); 1826 1827 // Build a vector of destination BBs, corresponding to each target 1828 // of the jump table. If the value of the jump table slot corresponds to 1829 // a case statement, push the case's BB onto the vector, otherwise, push 1830 // the default BB. 1831 std::vector<MachineBasicBlock*> DestBBs; 1832 APInt TEI = First; 1833 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 1834 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 1835 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 1836 1837 if (Low.sle(TEI) && TEI.sle(High)) { 1838 DestBBs.push_back(I->BB); 1839 if (TEI==High) 1840 ++I; 1841 } else { 1842 DestBBs.push_back(Default); 1843 } 1844 } 1845 1846 // Update successor info. Add one edge to each unique successor. 1847 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 1848 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 1849 E = DestBBs.end(); I != E; ++I) { 1850 if (!SuccsHandled[(*I)->getNumber()]) { 1851 SuccsHandled[(*I)->getNumber()] = true; 1852 JumpTableBB->addSuccessor(*I); 1853 } 1854 } 1855 1856 // Create a jump table index for this jump table. 1857 unsigned JTEncoding = TLI.getJumpTableEncoding(); 1858 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 1859 ->createJumpTableIndex(DestBBs); 1860 1861 // Set the jump table information so that we can codegen it as a second 1862 // MachineBasicBlock 1863 JumpTable JT(-1U, JTI, JumpTableBB, Default); 1864 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 1865 if (CR.CaseBB == SwitchBB) 1866 visitJumpTableHeader(JT, JTH, SwitchBB); 1867 1868 JTCases.push_back(JumpTableBlock(JTH, JT)); 1869 1870 return true; 1871 } 1872 1873 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 1874 /// 2 subtrees. 1875 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 1876 CaseRecVector& WorkList, 1877 const Value* SV, 1878 MachineBasicBlock *Default, 1879 MachineBasicBlock *SwitchBB) { 1880 // Get the MachineFunction which holds the current MBB. This is used when 1881 // inserting any additional MBBs necessary to represent the switch. 1882 MachineFunction *CurMF = FuncInfo.MF; 1883 1884 // Figure out which block is immediately after the current one. 1885 MachineFunction::iterator BBI = CR.CaseBB; 1886 ++BBI; 1887 1888 Case& FrontCase = *CR.Range.first; 1889 Case& BackCase = *(CR.Range.second-1); 1890 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 1891 1892 // Size is the number of Cases represented by this range. 1893 unsigned Size = CR.Range.second - CR.Range.first; 1894 1895 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 1896 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 1897 double FMetric = 0; 1898 CaseItr Pivot = CR.Range.first + Size/2; 1899 1900 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 1901 // (heuristically) allow us to emit JumpTable's later. 1902 APInt TSize(First.getBitWidth(), 0); 1903 for (CaseItr I = CR.Range.first, E = CR.Range.second; 1904 I!=E; ++I) 1905 TSize += I->size(); 1906 1907 APInt LSize = FrontCase.size(); 1908 APInt RSize = TSize-LSize; 1909 DEBUG(dbgs() << "Selecting best pivot: \n" 1910 << "First: " << First << ", Last: " << Last <<'\n' 1911 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 1912 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 1913 J!=E; ++I, ++J) { 1914 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 1915 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 1916 APInt Range = ComputeRange(LEnd, RBegin); 1917 assert((Range - 2ULL).isNonNegative() && 1918 "Invalid case distance"); 1919 double LDensity = (double)LSize.roundToDouble() / 1920 (LEnd - First + 1ULL).roundToDouble(); 1921 double RDensity = (double)RSize.roundToDouble() / 1922 (Last - RBegin + 1ULL).roundToDouble(); 1923 double Metric = Range.logBase2()*(LDensity+RDensity); 1924 // Should always split in some non-trivial place 1925 DEBUG(dbgs() <<"=>Step\n" 1926 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 1927 << "LDensity: " << LDensity 1928 << ", RDensity: " << RDensity << '\n' 1929 << "Metric: " << Metric << '\n'); 1930 if (FMetric < Metric) { 1931 Pivot = J; 1932 FMetric = Metric; 1933 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 1934 } 1935 1936 LSize += J->size(); 1937 RSize -= J->size(); 1938 } 1939 if (areJTsAllowed(TLI)) { 1940 // If our case is dense we *really* should handle it earlier! 1941 assert((FMetric > 0) && "Should handle dense range earlier!"); 1942 } else { 1943 Pivot = CR.Range.first + Size/2; 1944 } 1945 1946 CaseRange LHSR(CR.Range.first, Pivot); 1947 CaseRange RHSR(Pivot, CR.Range.second); 1948 Constant *C = Pivot->Low; 1949 MachineBasicBlock *FalseBB = 0, *TrueBB = 0; 1950 1951 // We know that we branch to the LHS if the Value being switched on is 1952 // less than the Pivot value, C. We use this to optimize our binary 1953 // tree a bit, by recognizing that if SV is greater than or equal to the 1954 // LHS's Case Value, and that Case Value is exactly one less than the 1955 // Pivot's Value, then we can branch directly to the LHS's Target, 1956 // rather than creating a leaf node for it. 1957 if ((LHSR.second - LHSR.first) == 1 && 1958 LHSR.first->High == CR.GE && 1959 cast<ConstantInt>(C)->getValue() == 1960 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 1961 TrueBB = LHSR.first->BB; 1962 } else { 1963 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1964 CurMF->insert(BBI, TrueBB); 1965 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 1966 1967 // Put SV in a virtual register to make it available from the new blocks. 1968 ExportFromCurrentBlock(SV); 1969 } 1970 1971 // Similar to the optimization above, if the Value being switched on is 1972 // known to be less than the Constant CR.LT, and the current Case Value 1973 // is CR.LT - 1, then we can branch directly to the target block for 1974 // the current Case Value, rather than emitting a RHS leaf node for it. 1975 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 1976 cast<ConstantInt>(RHSR.first->Low)->getValue() == 1977 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 1978 FalseBB = RHSR.first->BB; 1979 } else { 1980 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1981 CurMF->insert(BBI, FalseBB); 1982 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 1983 1984 // Put SV in a virtual register to make it available from the new blocks. 1985 ExportFromCurrentBlock(SV); 1986 } 1987 1988 // Create a CaseBlock record representing a conditional branch to 1989 // the LHS node if the value being switched on SV is less than C. 1990 // Otherwise, branch to LHS. 1991 CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); 1992 1993 if (CR.CaseBB == SwitchBB) 1994 visitSwitchCase(CB, SwitchBB); 1995 else 1996 SwitchCases.push_back(CB); 1997 1998 return true; 1999 } 2000 2001 /// handleBitTestsSwitchCase - if current case range has few destination and 2002 /// range span less, than machine word bitwidth, encode case range into series 2003 /// of masks and emit bit tests with these masks. 2004 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2005 CaseRecVector& WorkList, 2006 const Value* SV, 2007 MachineBasicBlock* Default, 2008 MachineBasicBlock *SwitchBB){ 2009 EVT PTy = TLI.getPointerTy(); 2010 unsigned IntPtrBits = PTy.getSizeInBits(); 2011 2012 Case& FrontCase = *CR.Range.first; 2013 Case& BackCase = *(CR.Range.second-1); 2014 2015 // Get the MachineFunction which holds the current MBB. This is used when 2016 // inserting any additional MBBs necessary to represent the switch. 2017 MachineFunction *CurMF = FuncInfo.MF; 2018 2019 // If target does not have legal shift left, do not emit bit tests at all. 2020 if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy())) 2021 return false; 2022 2023 size_t numCmps = 0; 2024 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2025 I!=E; ++I) { 2026 // Single case counts one, case range - two. 2027 numCmps += (I->Low == I->High ? 1 : 2); 2028 } 2029 2030 // Count unique destinations 2031 SmallSet<MachineBasicBlock*, 4> Dests; 2032 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2033 Dests.insert(I->BB); 2034 if (Dests.size() > 3) 2035 // Don't bother the code below, if there are too much unique destinations 2036 return false; 2037 } 2038 DEBUG(dbgs() << "Total number of unique destinations: " 2039 << Dests.size() << '\n' 2040 << "Total number of comparisons: " << numCmps << '\n'); 2041 2042 // Compute span of values. 2043 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2044 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2045 APInt cmpRange = maxValue - minValue; 2046 2047 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2048 << "Low bound: " << minValue << '\n' 2049 << "High bound: " << maxValue << '\n'); 2050 2051 if (cmpRange.uge(IntPtrBits) || 2052 (!(Dests.size() == 1 && numCmps >= 3) && 2053 !(Dests.size() == 2 && numCmps >= 5) && 2054 !(Dests.size() >= 3 && numCmps >= 6))) 2055 return false; 2056 2057 DEBUG(dbgs() << "Emitting bit tests\n"); 2058 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2059 2060 // Optimize the case where all the case values fit in a 2061 // word without having to subtract minValue. In this case, 2062 // we can optimize away the subtraction. 2063 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 2064 cmpRange = maxValue; 2065 } else { 2066 lowBound = minValue; 2067 } 2068 2069 CaseBitsVector CasesBits; 2070 unsigned i, count = 0; 2071 2072 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2073 MachineBasicBlock* Dest = I->BB; 2074 for (i = 0; i < count; ++i) 2075 if (Dest == CasesBits[i].BB) 2076 break; 2077 2078 if (i == count) { 2079 assert((count < 3) && "Too much destinations to test!"); 2080 CasesBits.push_back(CaseBits(0, Dest, 0)); 2081 count++; 2082 } 2083 2084 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2085 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2086 2087 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2088 uint64_t hi = (highValue - lowBound).getZExtValue(); 2089 2090 for (uint64_t j = lo; j <= hi; j++) { 2091 CasesBits[i].Mask |= 1ULL << j; 2092 CasesBits[i].Bits++; 2093 } 2094 2095 } 2096 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2097 2098 BitTestInfo BTC; 2099 2100 // Figure out which block is immediately after the current one. 2101 MachineFunction::iterator BBI = CR.CaseBB; 2102 ++BBI; 2103 2104 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2105 2106 DEBUG(dbgs() << "Cases:\n"); 2107 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2108 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2109 << ", Bits: " << CasesBits[i].Bits 2110 << ", BB: " << CasesBits[i].BB << '\n'); 2111 2112 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2113 CurMF->insert(BBI, CaseBB); 2114 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2115 CaseBB, 2116 CasesBits[i].BB)); 2117 2118 // Put SV in a virtual register to make it available from the new blocks. 2119 ExportFromCurrentBlock(SV); 2120 } 2121 2122 BitTestBlock BTB(lowBound, cmpRange, SV, 2123 -1U, (CR.CaseBB == SwitchBB), 2124 CR.CaseBB, Default, BTC); 2125 2126 if (CR.CaseBB == SwitchBB) 2127 visitBitTestHeader(BTB, SwitchBB); 2128 2129 BitTestCases.push_back(BTB); 2130 2131 return true; 2132 } 2133 2134 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2135 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2136 const SwitchInst& SI) { 2137 size_t numCmps = 0; 2138 2139 // Start with "simple" cases 2140 for (size_t i = 1; i < SI.getNumSuccessors(); ++i) { 2141 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)]; 2142 Cases.push_back(Case(SI.getSuccessorValue(i), 2143 SI.getSuccessorValue(i), 2144 SMBB)); 2145 } 2146 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 2147 2148 // Merge case into clusters 2149 if (Cases.size() >= 2) 2150 // Must recompute end() each iteration because it may be 2151 // invalidated by erase if we hold on to it 2152 for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) { 2153 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 2154 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 2155 MachineBasicBlock* nextBB = J->BB; 2156 MachineBasicBlock* currentBB = I->BB; 2157 2158 // If the two neighboring cases go to the same destination, merge them 2159 // into a single case. 2160 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 2161 I->High = J->High; 2162 J = Cases.erase(J); 2163 } else { 2164 I = J++; 2165 } 2166 } 2167 2168 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { 2169 if (I->Low != I->High) 2170 // A range counts double, since it requires two compares. 2171 ++numCmps; 2172 } 2173 2174 return numCmps; 2175 } 2176 2177 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2178 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2179 2180 // Figure out which block is immediately after the current one. 2181 MachineBasicBlock *NextBlock = 0; 2182 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2183 2184 // If there is only the default destination, branch to it if it is not the 2185 // next basic block. Otherwise, just fall through. 2186 if (SI.getNumOperands() == 2) { 2187 // Update machine-CFG edges. 2188 2189 // If this is not a fall-through branch, emit the branch. 2190 SwitchMBB->addSuccessor(Default); 2191 if (Default != NextBlock) 2192 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 2193 MVT::Other, getControlRoot(), 2194 DAG.getBasicBlock(Default))); 2195 2196 return; 2197 } 2198 2199 // If there are any non-default case statements, create a vector of Cases 2200 // representing each one, and sort the vector so that we can efficiently 2201 // create a binary search tree from them. 2202 CaseVector Cases; 2203 size_t numCmps = Clusterify(Cases, SI); 2204 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2205 << ". Total compares: " << numCmps << '\n'); 2206 numCmps = 0; 2207 2208 // Get the Value to be switched on and default basic blocks, which will be 2209 // inserted into CaseBlock records, representing basic blocks in the binary 2210 // search tree. 2211 const Value *SV = SI.getOperand(0); 2212 2213 // Push the initial CaseRec onto the worklist 2214 CaseRecVector WorkList; 2215 WorkList.push_back(CaseRec(SwitchMBB,0,0, 2216 CaseRange(Cases.begin(),Cases.end()))); 2217 2218 while (!WorkList.empty()) { 2219 // Grab a record representing a case range to process off the worklist 2220 CaseRec CR = WorkList.back(); 2221 WorkList.pop_back(); 2222 2223 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2224 continue; 2225 2226 // If the range has few cases (two or less) emit a series of specific 2227 // tests. 2228 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2229 continue; 2230 2231 // If the switch has more than 5 blocks, and at least 40% dense, and the 2232 // target supports indirect branches, then emit a jump table rather than 2233 // lowering the switch to a binary tree of conditional branches. 2234 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2235 continue; 2236 2237 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2238 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2239 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); 2240 } 2241 } 2242 2243 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2244 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2245 2246 // Update machine-CFG edges with unique successors. 2247 SmallVector<BasicBlock*, 32> succs; 2248 succs.reserve(I.getNumSuccessors()); 2249 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) 2250 succs.push_back(I.getSuccessor(i)); 2251 array_pod_sort(succs.begin(), succs.end()); 2252 succs.erase(std::unique(succs.begin(), succs.end()), succs.end()); 2253 for (unsigned i = 0, e = succs.size(); i != e; ++i) 2254 IndirectBrMBB->addSuccessor(FuncInfo.MBBMap[succs[i]]); 2255 2256 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(), 2257 MVT::Other, getControlRoot(), 2258 getValue(I.getAddress()))); 2259 } 2260 2261 void SelectionDAGBuilder::visitFSub(const User &I) { 2262 // -0.0 - X --> fneg 2263 const Type *Ty = I.getType(); 2264 if (Ty->isVectorTy()) { 2265 if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) { 2266 const VectorType *DestTy = cast<VectorType>(I.getType()); 2267 const Type *ElTy = DestTy->getElementType(); 2268 unsigned VL = DestTy->getNumElements(); 2269 std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy)); 2270 Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size()); 2271 if (CV == CNZ) { 2272 SDValue Op2 = getValue(I.getOperand(1)); 2273 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2274 Op2.getValueType(), Op2)); 2275 return; 2276 } 2277 } 2278 } 2279 2280 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0))) 2281 if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) { 2282 SDValue Op2 = getValue(I.getOperand(1)); 2283 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2284 Op2.getValueType(), Op2)); 2285 return; 2286 } 2287 2288 visitBinary(I, ISD::FSUB); 2289 } 2290 2291 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2292 SDValue Op1 = getValue(I.getOperand(0)); 2293 SDValue Op2 = getValue(I.getOperand(1)); 2294 setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(), 2295 Op1.getValueType(), Op1, Op2)); 2296 } 2297 2298 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2299 SDValue Op1 = getValue(I.getOperand(0)); 2300 SDValue Op2 = getValue(I.getOperand(1)); 2301 if (!I.getType()->isVectorTy() && 2302 Op2.getValueType() != TLI.getShiftAmountTy()) { 2303 // If the operand is smaller than the shift count type, promote it. 2304 EVT PTy = TLI.getPointerTy(); 2305 EVT STy = TLI.getShiftAmountTy(); 2306 if (STy.bitsGT(Op2.getValueType())) 2307 Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(), 2308 TLI.getShiftAmountTy(), Op2); 2309 // If the operand is larger than the shift count type but the shift 2310 // count type has enough bits to represent any shift value, truncate 2311 // it now. This is a common case and it exposes the truncate to 2312 // optimization early. 2313 else if (STy.getSizeInBits() >= 2314 Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2315 Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2316 TLI.getShiftAmountTy(), Op2); 2317 // Otherwise we'll need to temporarily settle for some other 2318 // convenient type; type legalization will make adjustments as 2319 // needed. 2320 else if (PTy.bitsLT(Op2.getValueType())) 2321 Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2322 TLI.getPointerTy(), Op2); 2323 else if (PTy.bitsGT(Op2.getValueType())) 2324 Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(), 2325 TLI.getPointerTy(), Op2); 2326 } 2327 2328 setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), 2329 Op1.getValueType(), Op1, Op2)); 2330 } 2331 2332 void SelectionDAGBuilder::visitICmp(const User &I) { 2333 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2334 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2335 predicate = IC->getPredicate(); 2336 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2337 predicate = ICmpInst::Predicate(IC->getPredicate()); 2338 SDValue Op1 = getValue(I.getOperand(0)); 2339 SDValue Op2 = getValue(I.getOperand(1)); 2340 ISD::CondCode Opcode = getICmpCondCode(predicate); 2341 2342 EVT DestVT = TLI.getValueType(I.getType()); 2343 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode)); 2344 } 2345 2346 void SelectionDAGBuilder::visitFCmp(const User &I) { 2347 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2348 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2349 predicate = FC->getPredicate(); 2350 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2351 predicate = FCmpInst::Predicate(FC->getPredicate()); 2352 SDValue Op1 = getValue(I.getOperand(0)); 2353 SDValue Op2 = getValue(I.getOperand(1)); 2354 ISD::CondCode Condition = getFCmpCondCode(predicate); 2355 EVT DestVT = TLI.getValueType(I.getType()); 2356 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition)); 2357 } 2358 2359 void SelectionDAGBuilder::visitSelect(const User &I) { 2360 SmallVector<EVT, 4> ValueVTs; 2361 ComputeValueVTs(TLI, I.getType(), ValueVTs); 2362 unsigned NumValues = ValueVTs.size(); 2363 if (NumValues == 0) return; 2364 2365 SmallVector<SDValue, 4> Values(NumValues); 2366 SDValue Cond = getValue(I.getOperand(0)); 2367 SDValue TrueVal = getValue(I.getOperand(1)); 2368 SDValue FalseVal = getValue(I.getOperand(2)); 2369 2370 for (unsigned i = 0; i != NumValues; ++i) 2371 Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(), 2372 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2373 Cond, 2374 SDValue(TrueVal.getNode(), 2375 TrueVal.getResNo() + i), 2376 SDValue(FalseVal.getNode(), 2377 FalseVal.getResNo() + i)); 2378 2379 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2380 DAG.getVTList(&ValueVTs[0], NumValues), 2381 &Values[0], NumValues)); 2382 } 2383 2384 void SelectionDAGBuilder::visitTrunc(const User &I) { 2385 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2386 SDValue N = getValue(I.getOperand(0)); 2387 EVT DestVT = TLI.getValueType(I.getType()); 2388 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N)); 2389 } 2390 2391 void SelectionDAGBuilder::visitZExt(const User &I) { 2392 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2393 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2394 SDValue N = getValue(I.getOperand(0)); 2395 EVT DestVT = TLI.getValueType(I.getType()); 2396 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N)); 2397 } 2398 2399 void SelectionDAGBuilder::visitSExt(const User &I) { 2400 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2401 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2402 SDValue N = getValue(I.getOperand(0)); 2403 EVT DestVT = TLI.getValueType(I.getType()); 2404 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N)); 2405 } 2406 2407 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2408 // FPTrunc is never a no-op cast, no need to check 2409 SDValue N = getValue(I.getOperand(0)); 2410 EVT DestVT = TLI.getValueType(I.getType()); 2411 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(), 2412 DestVT, N, DAG.getIntPtrConstant(0))); 2413 } 2414 2415 void SelectionDAGBuilder::visitFPExt(const User &I){ 2416 // FPTrunc is never a no-op cast, no need to check 2417 SDValue N = getValue(I.getOperand(0)); 2418 EVT DestVT = TLI.getValueType(I.getType()); 2419 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N)); 2420 } 2421 2422 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2423 // FPToUI is never a no-op cast, no need to check 2424 SDValue N = getValue(I.getOperand(0)); 2425 EVT DestVT = TLI.getValueType(I.getType()); 2426 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N)); 2427 } 2428 2429 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2430 // FPToSI is never a no-op cast, no need to check 2431 SDValue N = getValue(I.getOperand(0)); 2432 EVT DestVT = TLI.getValueType(I.getType()); 2433 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N)); 2434 } 2435 2436 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2437 // UIToFP is never a no-op cast, no need to check 2438 SDValue N = getValue(I.getOperand(0)); 2439 EVT DestVT = TLI.getValueType(I.getType()); 2440 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2441 } 2442 2443 void SelectionDAGBuilder::visitSIToFP(const User &I){ 2444 // SIToFP is never a no-op cast, no need to check 2445 SDValue N = getValue(I.getOperand(0)); 2446 EVT DestVT = TLI.getValueType(I.getType()); 2447 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2448 } 2449 2450 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2451 // What to do depends on the size of the integer and the size of the pointer. 2452 // We can either truncate, zero extend, or no-op, accordingly. 2453 SDValue N = getValue(I.getOperand(0)); 2454 EVT DestVT = TLI.getValueType(I.getType()); 2455 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2456 } 2457 2458 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2459 // What to do depends on the size of the integer and the size of the pointer. 2460 // We can either truncate, zero extend, or no-op, accordingly. 2461 SDValue N = getValue(I.getOperand(0)); 2462 EVT DestVT = TLI.getValueType(I.getType()); 2463 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2464 } 2465 2466 void SelectionDAGBuilder::visitBitCast(const User &I) { 2467 SDValue N = getValue(I.getOperand(0)); 2468 EVT DestVT = TLI.getValueType(I.getType()); 2469 2470 // BitCast assures us that source and destination are the same size so this is 2471 // either a BIT_CONVERT or a no-op. 2472 if (DestVT != N.getValueType()) 2473 setValue(&I, DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 2474 DestVT, N)); // convert types. 2475 else 2476 setValue(&I, N); // noop cast. 2477 } 2478 2479 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2480 SDValue InVec = getValue(I.getOperand(0)); 2481 SDValue InVal = getValue(I.getOperand(1)); 2482 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2483 TLI.getPointerTy(), 2484 getValue(I.getOperand(2))); 2485 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(), 2486 TLI.getValueType(I.getType()), 2487 InVec, InVal, InIdx)); 2488 } 2489 2490 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2491 SDValue InVec = getValue(I.getOperand(0)); 2492 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2493 TLI.getPointerTy(), 2494 getValue(I.getOperand(1))); 2495 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2496 TLI.getValueType(I.getType()), InVec, InIdx)); 2497 } 2498 2499 // Utility for visitShuffleVector - Returns true if the mask is mask starting 2500 // from SIndx and increasing to the element length (undefs are allowed). 2501 static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) { 2502 unsigned MaskNumElts = Mask.size(); 2503 for (unsigned i = 0; i != MaskNumElts; ++i) 2504 if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx))) 2505 return false; 2506 return true; 2507 } 2508 2509 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2510 SmallVector<int, 8> Mask; 2511 SDValue Src1 = getValue(I.getOperand(0)); 2512 SDValue Src2 = getValue(I.getOperand(1)); 2513 2514 // Convert the ConstantVector mask operand into an array of ints, with -1 2515 // representing undef values. 2516 SmallVector<Constant*, 8> MaskElts; 2517 cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts); 2518 unsigned MaskNumElts = MaskElts.size(); 2519 for (unsigned i = 0; i != MaskNumElts; ++i) { 2520 if (isa<UndefValue>(MaskElts[i])) 2521 Mask.push_back(-1); 2522 else 2523 Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue()); 2524 } 2525 2526 EVT VT = TLI.getValueType(I.getType()); 2527 EVT SrcVT = Src1.getValueType(); 2528 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2529 2530 if (SrcNumElts == MaskNumElts) { 2531 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2532 &Mask[0])); 2533 return; 2534 } 2535 2536 // Normalize the shuffle vector since mask and vector length don't match. 2537 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2538 // Mask is longer than the source vectors and is a multiple of the source 2539 // vectors. We can use concatenate vector to make the mask and vectors 2540 // lengths match. 2541 if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) { 2542 // The shuffle is concatenating two vectors together. 2543 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), 2544 VT, Src1, Src2)); 2545 return; 2546 } 2547 2548 // Pad both vectors with undefs to make them the same length as the mask. 2549 unsigned NumConcat = MaskNumElts / SrcNumElts; 2550 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2551 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2552 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2553 2554 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2555 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2556 MOps1[0] = Src1; 2557 MOps2[0] = Src2; 2558 2559 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2560 getCurDebugLoc(), VT, 2561 &MOps1[0], NumConcat); 2562 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2563 getCurDebugLoc(), VT, 2564 &MOps2[0], NumConcat); 2565 2566 // Readjust mask for new input vector length. 2567 SmallVector<int, 8> MappedOps; 2568 for (unsigned i = 0; i != MaskNumElts; ++i) { 2569 int Idx = Mask[i]; 2570 if (Idx < (int)SrcNumElts) 2571 MappedOps.push_back(Idx); 2572 else 2573 MappedOps.push_back(Idx + MaskNumElts - SrcNumElts); 2574 } 2575 2576 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2577 &MappedOps[0])); 2578 return; 2579 } 2580 2581 if (SrcNumElts > MaskNumElts) { 2582 // Analyze the access pattern of the vector to see if we can extract 2583 // two subvectors and do the shuffle. The analysis is done by calculating 2584 // the range of elements the mask access on both vectors. 2585 int MinRange[2] = { SrcNumElts+1, SrcNumElts+1}; 2586 int MaxRange[2] = {-1, -1}; 2587 2588 for (unsigned i = 0; i != MaskNumElts; ++i) { 2589 int Idx = Mask[i]; 2590 int Input = 0; 2591 if (Idx < 0) 2592 continue; 2593 2594 if (Idx >= (int)SrcNumElts) { 2595 Input = 1; 2596 Idx -= SrcNumElts; 2597 } 2598 if (Idx > MaxRange[Input]) 2599 MaxRange[Input] = Idx; 2600 if (Idx < MinRange[Input]) 2601 MinRange[Input] = Idx; 2602 } 2603 2604 // Check if the access is smaller than the vector size and can we find 2605 // a reasonable extract index. 2606 int RangeUse[2] = { 2, 2 }; // 0 = Unused, 1 = Extract, 2 = Can not 2607 // Extract. 2608 int StartIdx[2]; // StartIdx to extract from 2609 for (int Input=0; Input < 2; ++Input) { 2610 if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) { 2611 RangeUse[Input] = 0; // Unused 2612 StartIdx[Input] = 0; 2613 } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) { 2614 // Fits within range but we should see if we can find a good 2615 // start index that is a multiple of the mask length. 2616 if (MaxRange[Input] < (int)MaskNumElts) { 2617 RangeUse[Input] = 1; // Extract from beginning of the vector 2618 StartIdx[Input] = 0; 2619 } else { 2620 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2621 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2622 StartIdx[Input] + MaskNumElts < SrcNumElts) 2623 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2624 } 2625 } 2626 } 2627 2628 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2629 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2630 return; 2631 } 2632 else if (RangeUse[0] < 2 && RangeUse[1] < 2) { 2633 // Extract appropriate subvector and generate a vector shuffle 2634 for (int Input=0; Input < 2; ++Input) { 2635 SDValue &Src = Input == 0 ? Src1 : Src2; 2636 if (RangeUse[Input] == 0) 2637 Src = DAG.getUNDEF(VT); 2638 else 2639 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT, 2640 Src, DAG.getIntPtrConstant(StartIdx[Input])); 2641 } 2642 2643 // Calculate new mask. 2644 SmallVector<int, 8> MappedOps; 2645 for (unsigned i = 0; i != MaskNumElts; ++i) { 2646 int Idx = Mask[i]; 2647 if (Idx < 0) 2648 MappedOps.push_back(Idx); 2649 else if (Idx < (int)SrcNumElts) 2650 MappedOps.push_back(Idx - StartIdx[0]); 2651 else 2652 MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts); 2653 } 2654 2655 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2656 &MappedOps[0])); 2657 return; 2658 } 2659 } 2660 2661 // We can't use either concat vectors or extract subvectors so fall back to 2662 // replacing the shuffle with extract and build vector. 2663 // to insert and build vector. 2664 EVT EltVT = VT.getVectorElementType(); 2665 EVT PtrVT = TLI.getPointerTy(); 2666 SmallVector<SDValue,8> Ops; 2667 for (unsigned i = 0; i != MaskNumElts; ++i) { 2668 if (Mask[i] < 0) { 2669 Ops.push_back(DAG.getUNDEF(EltVT)); 2670 } else { 2671 int Idx = Mask[i]; 2672 SDValue Res; 2673 2674 if (Idx < (int)SrcNumElts) 2675 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2676 EltVT, Src1, DAG.getConstant(Idx, PtrVT)); 2677 else 2678 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2679 EltVT, Src2, 2680 DAG.getConstant(Idx - SrcNumElts, PtrVT)); 2681 2682 Ops.push_back(Res); 2683 } 2684 } 2685 2686 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 2687 VT, &Ops[0], Ops.size())); 2688 } 2689 2690 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2691 const Value *Op0 = I.getOperand(0); 2692 const Value *Op1 = I.getOperand(1); 2693 const Type *AggTy = I.getType(); 2694 const Type *ValTy = Op1->getType(); 2695 bool IntoUndef = isa<UndefValue>(Op0); 2696 bool FromUndef = isa<UndefValue>(Op1); 2697 2698 unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy, 2699 I.idx_begin(), I.idx_end()); 2700 2701 SmallVector<EVT, 4> AggValueVTs; 2702 ComputeValueVTs(TLI, AggTy, AggValueVTs); 2703 SmallVector<EVT, 4> ValValueVTs; 2704 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2705 2706 unsigned NumAggValues = AggValueVTs.size(); 2707 unsigned NumValValues = ValValueVTs.size(); 2708 SmallVector<SDValue, 4> Values(NumAggValues); 2709 2710 SDValue Agg = getValue(Op0); 2711 SDValue Val = getValue(Op1); 2712 unsigned i = 0; 2713 // Copy the beginning value(s) from the original aggregate. 2714 for (; i != LinearIndex; ++i) 2715 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2716 SDValue(Agg.getNode(), Agg.getResNo() + i); 2717 // Copy values from the inserted value(s). 2718 for (; i != LinearIndex + NumValValues; ++i) 2719 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2720 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2721 // Copy remaining value(s) from the original aggregate. 2722 for (; i != NumAggValues; ++i) 2723 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2724 SDValue(Agg.getNode(), Agg.getResNo() + i); 2725 2726 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2727 DAG.getVTList(&AggValueVTs[0], NumAggValues), 2728 &Values[0], NumAggValues)); 2729 } 2730 2731 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2732 const Value *Op0 = I.getOperand(0); 2733 const Type *AggTy = Op0->getType(); 2734 const Type *ValTy = I.getType(); 2735 bool OutOfUndef = isa<UndefValue>(Op0); 2736 2737 unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy, 2738 I.idx_begin(), I.idx_end()); 2739 2740 SmallVector<EVT, 4> ValValueVTs; 2741 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2742 2743 unsigned NumValValues = ValValueVTs.size(); 2744 SmallVector<SDValue, 4> Values(NumValValues); 2745 2746 SDValue Agg = getValue(Op0); 2747 // Copy out the selected value(s). 2748 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2749 Values[i - LinearIndex] = 2750 OutOfUndef ? 2751 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2752 SDValue(Agg.getNode(), Agg.getResNo() + i); 2753 2754 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2755 DAG.getVTList(&ValValueVTs[0], NumValValues), 2756 &Values[0], NumValValues)); 2757 } 2758 2759 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2760 SDValue N = getValue(I.getOperand(0)); 2761 const Type *Ty = I.getOperand(0)->getType(); 2762 2763 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2764 OI != E; ++OI) { 2765 const Value *Idx = *OI; 2766 if (const StructType *StTy = dyn_cast<StructType>(Ty)) { 2767 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 2768 if (Field) { 2769 // N = N + Offset 2770 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); 2771 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 2772 DAG.getIntPtrConstant(Offset)); 2773 } 2774 2775 Ty = StTy->getElementType(Field); 2776 } else if (const UnionType *UnTy = dyn_cast<UnionType>(Ty)) { 2777 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 2778 2779 // Offset canonically 0 for unions, but type changes 2780 Ty = UnTy->getElementType(Field); 2781 } else { 2782 Ty = cast<SequentialType>(Ty)->getElementType(); 2783 2784 // If this is a constant subscript, handle it quickly. 2785 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 2786 if (CI->isZero()) continue; 2787 uint64_t Offs = 2788 TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 2789 SDValue OffsVal; 2790 EVT PTy = TLI.getPointerTy(); 2791 unsigned PtrBits = PTy.getSizeInBits(); 2792 if (PtrBits < 64) 2793 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2794 TLI.getPointerTy(), 2795 DAG.getConstant(Offs, MVT::i64)); 2796 else 2797 OffsVal = DAG.getIntPtrConstant(Offs); 2798 2799 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 2800 OffsVal); 2801 continue; 2802 } 2803 2804 // N = N + Idx * ElementSize; 2805 APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(), 2806 TD->getTypeAllocSize(Ty)); 2807 SDValue IdxN = getValue(Idx); 2808 2809 // If the index is smaller or larger than intptr_t, truncate or extend 2810 // it. 2811 IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType()); 2812 2813 // If this is a multiply by a power of two, turn it into a shl 2814 // immediately. This is a very common case. 2815 if (ElementSize != 1) { 2816 if (ElementSize.isPowerOf2()) { 2817 unsigned Amt = ElementSize.logBase2(); 2818 IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(), 2819 N.getValueType(), IdxN, 2820 DAG.getConstant(Amt, TLI.getPointerTy())); 2821 } else { 2822 SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy()); 2823 IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(), 2824 N.getValueType(), IdxN, Scale); 2825 } 2826 } 2827 2828 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2829 N.getValueType(), N, IdxN); 2830 } 2831 } 2832 2833 setValue(&I, N); 2834 } 2835 2836 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 2837 // If this is a fixed sized alloca in the entry block of the function, 2838 // allocate it statically on the stack. 2839 if (FuncInfo.StaticAllocaMap.count(&I)) 2840 return; // getValue will auto-populate this. 2841 2842 const Type *Ty = I.getAllocatedType(); 2843 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 2844 unsigned Align = 2845 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), 2846 I.getAlignment()); 2847 2848 SDValue AllocSize = getValue(I.getArraySize()); 2849 2850 EVT IntPtr = TLI.getPointerTy(); 2851 if (AllocSize.getValueType() != IntPtr) 2852 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr); 2853 2854 AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr, 2855 AllocSize, 2856 DAG.getConstant(TySize, IntPtr)); 2857 2858 // Handle alignment. If the requested alignment is less than or equal to 2859 // the stack alignment, ignore it. If the size is greater than or equal to 2860 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 2861 unsigned StackAlign = TM.getFrameInfo()->getStackAlignment(); 2862 if (Align <= StackAlign) 2863 Align = 0; 2864 2865 // Round the size of the allocation up to the stack alignment size 2866 // by add SA-1 to the size. 2867 AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2868 AllocSize.getValueType(), AllocSize, 2869 DAG.getIntPtrConstant(StackAlign-1)); 2870 2871 // Mask out the low bits for alignment purposes. 2872 AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(), 2873 AllocSize.getValueType(), AllocSize, 2874 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 2875 2876 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 2877 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 2878 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(), 2879 VTs, Ops, 3); 2880 setValue(&I, DSA); 2881 DAG.setRoot(DSA.getValue(1)); 2882 2883 // Inform the Frame Information that we have just allocated a variable-sized 2884 // object. 2885 FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1); 2886 } 2887 2888 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 2889 const Value *SV = I.getOperand(0); 2890 SDValue Ptr = getValue(SV); 2891 2892 const Type *Ty = I.getType(); 2893 2894 bool isVolatile = I.isVolatile(); 2895 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 2896 unsigned Alignment = I.getAlignment(); 2897 2898 SmallVector<EVT, 4> ValueVTs; 2899 SmallVector<uint64_t, 4> Offsets; 2900 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 2901 unsigned NumValues = ValueVTs.size(); 2902 if (NumValues == 0) 2903 return; 2904 2905 SDValue Root; 2906 bool ConstantMemory = false; 2907 if (I.isVolatile()) 2908 // Serialize volatile loads with other side effects. 2909 Root = getRoot(); 2910 else if (AA->pointsToConstantMemory(SV)) { 2911 // Do not serialize (non-volatile) loads of constant memory with anything. 2912 Root = DAG.getEntryNode(); 2913 ConstantMemory = true; 2914 } else { 2915 // Do not serialize non-volatile loads against each other. 2916 Root = DAG.getRoot(); 2917 } 2918 2919 SmallVector<SDValue, 4> Values(NumValues); 2920 SmallVector<SDValue, 4> Chains(NumValues); 2921 EVT PtrVT = Ptr.getValueType(); 2922 for (unsigned i = 0; i != NumValues; ++i) { 2923 SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2924 PtrVT, Ptr, 2925 DAG.getConstant(Offsets[i], PtrVT)); 2926 SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root, 2927 A, SV, Offsets[i], isVolatile, 2928 isNonTemporal, Alignment); 2929 2930 Values[i] = L; 2931 Chains[i] = L.getValue(1); 2932 } 2933 2934 if (!ConstantMemory) { 2935 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 2936 MVT::Other, &Chains[0], NumValues); 2937 if (isVolatile) 2938 DAG.setRoot(Chain); 2939 else 2940 PendingLoads.push_back(Chain); 2941 } 2942 2943 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2944 DAG.getVTList(&ValueVTs[0], NumValues), 2945 &Values[0], NumValues)); 2946 } 2947 2948 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 2949 const Value *SrcV = I.getOperand(0); 2950 const Value *PtrV = I.getOperand(1); 2951 2952 SmallVector<EVT, 4> ValueVTs; 2953 SmallVector<uint64_t, 4> Offsets; 2954 ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets); 2955 unsigned NumValues = ValueVTs.size(); 2956 if (NumValues == 0) 2957 return; 2958 2959 // Get the lowered operands. Note that we do this after 2960 // checking if NumResults is zero, because with zero results 2961 // the operands won't have values in the map. 2962 SDValue Src = getValue(SrcV); 2963 SDValue Ptr = getValue(PtrV); 2964 2965 SDValue Root = getRoot(); 2966 SmallVector<SDValue, 4> Chains(NumValues); 2967 EVT PtrVT = Ptr.getValueType(); 2968 bool isVolatile = I.isVolatile(); 2969 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 2970 unsigned Alignment = I.getAlignment(); 2971 2972 for (unsigned i = 0; i != NumValues; ++i) { 2973 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr, 2974 DAG.getConstant(Offsets[i], PtrVT)); 2975 Chains[i] = DAG.getStore(Root, getCurDebugLoc(), 2976 SDValue(Src.getNode(), Src.getResNo() + i), 2977 Add, PtrV, Offsets[i], isVolatile, 2978 isNonTemporal, Alignment); 2979 } 2980 2981 DAG.setRoot(DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 2982 MVT::Other, &Chains[0], NumValues)); 2983 } 2984 2985 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 2986 /// node. 2987 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 2988 unsigned Intrinsic) { 2989 bool HasChain = !I.doesNotAccessMemory(); 2990 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 2991 2992 // Build the operand list. 2993 SmallVector<SDValue, 8> Ops; 2994 if (HasChain) { // If this intrinsic has side-effects, chainify it. 2995 if (OnlyLoad) { 2996 // We don't need to serialize loads against other loads. 2997 Ops.push_back(DAG.getRoot()); 2998 } else { 2999 Ops.push_back(getRoot()); 3000 } 3001 } 3002 3003 // Info is set by getTgtMemInstrinsic 3004 TargetLowering::IntrinsicInfo Info; 3005 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3006 3007 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3008 if (!IsTgtIntrinsic) 3009 Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy())); 3010 3011 // Add all operands of the call to the operand list. 3012 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3013 SDValue Op = getValue(I.getArgOperand(i)); 3014 assert(TLI.isTypeLegal(Op.getValueType()) && 3015 "Intrinsic uses a non-legal type?"); 3016 Ops.push_back(Op); 3017 } 3018 3019 SmallVector<EVT, 4> ValueVTs; 3020 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3021 #ifndef NDEBUG 3022 for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) { 3023 assert(TLI.isTypeLegal(ValueVTs[Val]) && 3024 "Intrinsic uses a non-legal type?"); 3025 } 3026 #endif // NDEBUG 3027 3028 if (HasChain) 3029 ValueVTs.push_back(MVT::Other); 3030 3031 SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); 3032 3033 // Create the node. 3034 SDValue Result; 3035 if (IsTgtIntrinsic) { 3036 // This is target intrinsic that touches memory 3037 Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(), 3038 VTs, &Ops[0], Ops.size(), 3039 Info.memVT, Info.ptrVal, Info.offset, 3040 Info.align, Info.vol, 3041 Info.readMem, Info.writeMem); 3042 } else if (!HasChain) { 3043 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(), 3044 VTs, &Ops[0], Ops.size()); 3045 } else if (!I.getType()->isVoidTy()) { 3046 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(), 3047 VTs, &Ops[0], Ops.size()); 3048 } else { 3049 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(), 3050 VTs, &Ops[0], Ops.size()); 3051 } 3052 3053 if (HasChain) { 3054 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3055 if (OnlyLoad) 3056 PendingLoads.push_back(Chain); 3057 else 3058 DAG.setRoot(Chain); 3059 } 3060 3061 if (!I.getType()->isVoidTy()) { 3062 if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3063 EVT VT = TLI.getValueType(PTy); 3064 Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result); 3065 } 3066 3067 setValue(&I, Result); 3068 } 3069 } 3070 3071 /// GetSignificand - Get the significand and build it into a floating-point 3072 /// number with exponent of 1: 3073 /// 3074 /// Op = (Op & 0x007fffff) | 0x3f800000; 3075 /// 3076 /// where Op is the hexidecimal representation of floating point value. 3077 static SDValue 3078 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) { 3079 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3080 DAG.getConstant(0x007fffff, MVT::i32)); 3081 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3082 DAG.getConstant(0x3f800000, MVT::i32)); 3083 return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t2); 3084 } 3085 3086 /// GetExponent - Get the exponent: 3087 /// 3088 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3089 /// 3090 /// where Op is the hexidecimal representation of floating point value. 3091 static SDValue 3092 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3093 DebugLoc dl) { 3094 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3095 DAG.getConstant(0x7f800000, MVT::i32)); 3096 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3097 DAG.getConstant(23, TLI.getPointerTy())); 3098 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3099 DAG.getConstant(127, MVT::i32)); 3100 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3101 } 3102 3103 /// getF32Constant - Get 32-bit floating point constant. 3104 static SDValue 3105 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3106 return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32); 3107 } 3108 3109 /// Inlined utility function to implement binary input atomic intrinsics for 3110 /// visitIntrinsicCall: I is a call instruction 3111 /// Op is the associated NodeType for I 3112 const char * 3113 SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I, 3114 ISD::NodeType Op) { 3115 SDValue Root = getRoot(); 3116 SDValue L = 3117 DAG.getAtomic(Op, getCurDebugLoc(), 3118 getValue(I.getArgOperand(1)).getValueType().getSimpleVT(), 3119 Root, 3120 getValue(I.getArgOperand(0)), 3121 getValue(I.getArgOperand(1)), 3122 I.getArgOperand(0)); 3123 setValue(&I, L); 3124 DAG.setRoot(L.getValue(1)); 3125 return 0; 3126 } 3127 3128 // implVisitAluOverflow - Lower arithmetic overflow instrinsics. 3129 const char * 3130 SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) { 3131 SDValue Op1 = getValue(I.getArgOperand(0)); 3132 SDValue Op2 = getValue(I.getArgOperand(1)); 3133 3134 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 3135 setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2)); 3136 return 0; 3137 } 3138 3139 /// visitExp - Lower an exp intrinsic. Handles the special sequences for 3140 /// limited-precision mode. 3141 void 3142 SelectionDAGBuilder::visitExp(const CallInst &I) { 3143 SDValue result; 3144 DebugLoc dl = getCurDebugLoc(); 3145 3146 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3147 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3148 SDValue Op = getValue(I.getArgOperand(0)); 3149 3150 // Put the exponent in the right bit position for later addition to the 3151 // final result: 3152 // 3153 // #define LOG2OFe 1.4426950f 3154 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3155 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3156 getF32Constant(DAG, 0x3fb8aa3b)); 3157 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3158 3159 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3160 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3161 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3162 3163 // IntegerPartOfX <<= 23; 3164 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3165 DAG.getConstant(23, TLI.getPointerTy())); 3166 3167 if (LimitFloatPrecision <= 6) { 3168 // For floating-point precision of 6: 3169 // 3170 // TwoToFractionalPartOfX = 3171 // 0.997535578f + 3172 // (0.735607626f + 0.252464424f * x) * x; 3173 // 3174 // error 0.0144103317, which is 6 bits 3175 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3176 getF32Constant(DAG, 0x3e814304)); 3177 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3178 getF32Constant(DAG, 0x3f3c50c8)); 3179 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3180 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3181 getF32Constant(DAG, 0x3f7f5e7e)); 3182 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t5); 3183 3184 // Add the exponent into the result in integer domain. 3185 SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3186 TwoToFracPartOfX, IntegerPartOfX); 3187 3188 result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t6); 3189 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3190 // For floating-point precision of 12: 3191 // 3192 // TwoToFractionalPartOfX = 3193 // 0.999892986f + 3194 // (0.696457318f + 3195 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3196 // 3197 // 0.000107046256 error, which is 13 to 14 bits 3198 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3199 getF32Constant(DAG, 0x3da235e3)); 3200 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3201 getF32Constant(DAG, 0x3e65b8f3)); 3202 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3203 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3204 getF32Constant(DAG, 0x3f324b07)); 3205 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3206 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3207 getF32Constant(DAG, 0x3f7ff8fd)); 3208 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t7); 3209 3210 // Add the exponent into the result in integer domain. 3211 SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3212 TwoToFracPartOfX, IntegerPartOfX); 3213 3214 result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t8); 3215 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3216 // For floating-point precision of 18: 3217 // 3218 // TwoToFractionalPartOfX = 3219 // 0.999999982f + 3220 // (0.693148872f + 3221 // (0.240227044f + 3222 // (0.554906021e-1f + 3223 // (0.961591928e-2f + 3224 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3225 // 3226 // error 2.47208000*10^(-7), which is better than 18 bits 3227 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3228 getF32Constant(DAG, 0x3924b03e)); 3229 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3230 getF32Constant(DAG, 0x3ab24b87)); 3231 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3232 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3233 getF32Constant(DAG, 0x3c1d8c17)); 3234 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3235 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3236 getF32Constant(DAG, 0x3d634a1d)); 3237 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3238 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3239 getF32Constant(DAG, 0x3e75fe14)); 3240 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3241 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3242 getF32Constant(DAG, 0x3f317234)); 3243 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3244 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3245 getF32Constant(DAG, 0x3f800000)); 3246 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl, 3247 MVT::i32, t13); 3248 3249 // Add the exponent into the result in integer domain. 3250 SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3251 TwoToFracPartOfX, IntegerPartOfX); 3252 3253 result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t14); 3254 } 3255 } else { 3256 // No special expansion. 3257 result = DAG.getNode(ISD::FEXP, dl, 3258 getValue(I.getArgOperand(0)).getValueType(), 3259 getValue(I.getArgOperand(0))); 3260 } 3261 3262 setValue(&I, result); 3263 } 3264 3265 /// visitLog - Lower a log intrinsic. Handles the special sequences for 3266 /// limited-precision mode. 3267 void 3268 SelectionDAGBuilder::visitLog(const CallInst &I) { 3269 SDValue result; 3270 DebugLoc dl = getCurDebugLoc(); 3271 3272 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3273 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3274 SDValue Op = getValue(I.getArgOperand(0)); 3275 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); 3276 3277 // Scale the exponent by log(2) [0.69314718f]. 3278 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3279 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3280 getF32Constant(DAG, 0x3f317218)); 3281 3282 // Get the significand and build it into a floating-point number with 3283 // exponent of 1. 3284 SDValue X = GetSignificand(DAG, Op1, dl); 3285 3286 if (LimitFloatPrecision <= 6) { 3287 // For floating-point precision of 6: 3288 // 3289 // LogofMantissa = 3290 // -1.1609546f + 3291 // (1.4034025f - 0.23903021f * x) * x; 3292 // 3293 // error 0.0034276066, which is better than 8 bits 3294 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3295 getF32Constant(DAG, 0xbe74c456)); 3296 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3297 getF32Constant(DAG, 0x3fb3a2b1)); 3298 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3299 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3300 getF32Constant(DAG, 0x3f949a29)); 3301 3302 result = DAG.getNode(ISD::FADD, dl, 3303 MVT::f32, LogOfExponent, LogOfMantissa); 3304 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3305 // For floating-point precision of 12: 3306 // 3307 // LogOfMantissa = 3308 // -1.7417939f + 3309 // (2.8212026f + 3310 // (-1.4699568f + 3311 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3312 // 3313 // error 0.000061011436, which is 14 bits 3314 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3315 getF32Constant(DAG, 0xbd67b6d6)); 3316 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3317 getF32Constant(DAG, 0x3ee4f4b8)); 3318 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3319 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3320 getF32Constant(DAG, 0x3fbc278b)); 3321 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3322 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3323 getF32Constant(DAG, 0x40348e95)); 3324 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3325 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3326 getF32Constant(DAG, 0x3fdef31a)); 3327 3328 result = DAG.getNode(ISD::FADD, dl, 3329 MVT::f32, LogOfExponent, LogOfMantissa); 3330 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3331 // For floating-point precision of 18: 3332 // 3333 // LogOfMantissa = 3334 // -2.1072184f + 3335 // (4.2372794f + 3336 // (-3.7029485f + 3337 // (2.2781945f + 3338 // (-0.87823314f + 3339 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3340 // 3341 // error 0.0000023660568, which is better than 18 bits 3342 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3343 getF32Constant(DAG, 0xbc91e5ac)); 3344 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3345 getF32Constant(DAG, 0x3e4350aa)); 3346 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3347 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3348 getF32Constant(DAG, 0x3f60d3e3)); 3349 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3350 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3351 getF32Constant(DAG, 0x4011cdf0)); 3352 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3353 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3354 getF32Constant(DAG, 0x406cfd1c)); 3355 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3356 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3357 getF32Constant(DAG, 0x408797cb)); 3358 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3359 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3360 getF32Constant(DAG, 0x4006dcab)); 3361 3362 result = DAG.getNode(ISD::FADD, dl, 3363 MVT::f32, LogOfExponent, LogOfMantissa); 3364 } 3365 } else { 3366 // No special expansion. 3367 result = DAG.getNode(ISD::FLOG, dl, 3368 getValue(I.getArgOperand(0)).getValueType(), 3369 getValue(I.getArgOperand(0))); 3370 } 3371 3372 setValue(&I, result); 3373 } 3374 3375 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for 3376 /// limited-precision mode. 3377 void 3378 SelectionDAGBuilder::visitLog2(const CallInst &I) { 3379 SDValue result; 3380 DebugLoc dl = getCurDebugLoc(); 3381 3382 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3383 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3384 SDValue Op = getValue(I.getArgOperand(0)); 3385 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); 3386 3387 // Get the exponent. 3388 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3389 3390 // Get the significand and build it into a floating-point number with 3391 // exponent of 1. 3392 SDValue X = GetSignificand(DAG, Op1, dl); 3393 3394 // Different possible minimax approximations of significand in 3395 // floating-point for various degrees of accuracy over [1,2]. 3396 if (LimitFloatPrecision <= 6) { 3397 // For floating-point precision of 6: 3398 // 3399 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3400 // 3401 // error 0.0049451742, which is more than 7 bits 3402 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3403 getF32Constant(DAG, 0xbeb08fe0)); 3404 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3405 getF32Constant(DAG, 0x40019463)); 3406 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3407 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3408 getF32Constant(DAG, 0x3fd6633d)); 3409 3410 result = DAG.getNode(ISD::FADD, dl, 3411 MVT::f32, LogOfExponent, Log2ofMantissa); 3412 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3413 // For floating-point precision of 12: 3414 // 3415 // Log2ofMantissa = 3416 // -2.51285454f + 3417 // (4.07009056f + 3418 // (-2.12067489f + 3419 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3420 // 3421 // error 0.0000876136000, which is better than 13 bits 3422 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3423 getF32Constant(DAG, 0xbda7262e)); 3424 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3425 getF32Constant(DAG, 0x3f25280b)); 3426 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3427 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3428 getF32Constant(DAG, 0x4007b923)); 3429 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3430 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3431 getF32Constant(DAG, 0x40823e2f)); 3432 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3433 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3434 getF32Constant(DAG, 0x4020d29c)); 3435 3436 result = DAG.getNode(ISD::FADD, dl, 3437 MVT::f32, LogOfExponent, Log2ofMantissa); 3438 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3439 // For floating-point precision of 18: 3440 // 3441 // Log2ofMantissa = 3442 // -3.0400495f + 3443 // (6.1129976f + 3444 // (-5.3420409f + 3445 // (3.2865683f + 3446 // (-1.2669343f + 3447 // (0.27515199f - 3448 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3449 // 3450 // error 0.0000018516, which is better than 18 bits 3451 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3452 getF32Constant(DAG, 0xbcd2769e)); 3453 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3454 getF32Constant(DAG, 0x3e8ce0b9)); 3455 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3456 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3457 getF32Constant(DAG, 0x3fa22ae7)); 3458 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3459 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3460 getF32Constant(DAG, 0x40525723)); 3461 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3462 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3463 getF32Constant(DAG, 0x40aaf200)); 3464 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3465 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3466 getF32Constant(DAG, 0x40c39dad)); 3467 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3468 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3469 getF32Constant(DAG, 0x4042902c)); 3470 3471 result = DAG.getNode(ISD::FADD, dl, 3472 MVT::f32, LogOfExponent, Log2ofMantissa); 3473 } 3474 } else { 3475 // No special expansion. 3476 result = DAG.getNode(ISD::FLOG2, dl, 3477 getValue(I.getArgOperand(0)).getValueType(), 3478 getValue(I.getArgOperand(0))); 3479 } 3480 3481 setValue(&I, result); 3482 } 3483 3484 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for 3485 /// limited-precision mode. 3486 void 3487 SelectionDAGBuilder::visitLog10(const CallInst &I) { 3488 SDValue result; 3489 DebugLoc dl = getCurDebugLoc(); 3490 3491 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3492 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3493 SDValue Op = getValue(I.getArgOperand(0)); 3494 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); 3495 3496 // Scale the exponent by log10(2) [0.30102999f]. 3497 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3498 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3499 getF32Constant(DAG, 0x3e9a209a)); 3500 3501 // Get the significand and build it into a floating-point number with 3502 // exponent of 1. 3503 SDValue X = GetSignificand(DAG, Op1, dl); 3504 3505 if (LimitFloatPrecision <= 6) { 3506 // For floating-point precision of 6: 3507 // 3508 // Log10ofMantissa = 3509 // -0.50419619f + 3510 // (0.60948995f - 0.10380950f * x) * x; 3511 // 3512 // error 0.0014886165, which is 6 bits 3513 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3514 getF32Constant(DAG, 0xbdd49a13)); 3515 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3516 getF32Constant(DAG, 0x3f1c0789)); 3517 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3518 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3519 getF32Constant(DAG, 0x3f011300)); 3520 3521 result = DAG.getNode(ISD::FADD, dl, 3522 MVT::f32, LogOfExponent, Log10ofMantissa); 3523 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3524 // For floating-point precision of 12: 3525 // 3526 // Log10ofMantissa = 3527 // -0.64831180f + 3528 // (0.91751397f + 3529 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3530 // 3531 // error 0.00019228036, which is better than 12 bits 3532 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3533 getF32Constant(DAG, 0x3d431f31)); 3534 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3535 getF32Constant(DAG, 0x3ea21fb2)); 3536 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3537 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3538 getF32Constant(DAG, 0x3f6ae232)); 3539 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3540 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3541 getF32Constant(DAG, 0x3f25f7c3)); 3542 3543 result = DAG.getNode(ISD::FADD, dl, 3544 MVT::f32, LogOfExponent, Log10ofMantissa); 3545 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3546 // For floating-point precision of 18: 3547 // 3548 // Log10ofMantissa = 3549 // -0.84299375f + 3550 // (1.5327582f + 3551 // (-1.0688956f + 3552 // (0.49102474f + 3553 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 3554 // 3555 // error 0.0000037995730, which is better than 18 bits 3556 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3557 getF32Constant(DAG, 0x3c5d51ce)); 3558 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3559 getF32Constant(DAG, 0x3e00685a)); 3560 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3561 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3562 getF32Constant(DAG, 0x3efb6798)); 3563 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3564 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3565 getF32Constant(DAG, 0x3f88d192)); 3566 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3567 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3568 getF32Constant(DAG, 0x3fc4316c)); 3569 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3570 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 3571 getF32Constant(DAG, 0x3f57ce70)); 3572 3573 result = DAG.getNode(ISD::FADD, dl, 3574 MVT::f32, LogOfExponent, Log10ofMantissa); 3575 } 3576 } else { 3577 // No special expansion. 3578 result = DAG.getNode(ISD::FLOG10, dl, 3579 getValue(I.getArgOperand(0)).getValueType(), 3580 getValue(I.getArgOperand(0))); 3581 } 3582 3583 setValue(&I, result); 3584 } 3585 3586 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for 3587 /// limited-precision mode. 3588 void 3589 SelectionDAGBuilder::visitExp2(const CallInst &I) { 3590 SDValue result; 3591 DebugLoc dl = getCurDebugLoc(); 3592 3593 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3594 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3595 SDValue Op = getValue(I.getArgOperand(0)); 3596 3597 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 3598 3599 // FractionalPartOfX = x - (float)IntegerPartOfX; 3600 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3601 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 3602 3603 // IntegerPartOfX <<= 23; 3604 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3605 DAG.getConstant(23, TLI.getPointerTy())); 3606 3607 if (LimitFloatPrecision <= 6) { 3608 // For floating-point precision of 6: 3609 // 3610 // TwoToFractionalPartOfX = 3611 // 0.997535578f + 3612 // (0.735607626f + 0.252464424f * x) * x; 3613 // 3614 // error 0.0144103317, which is 6 bits 3615 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3616 getF32Constant(DAG, 0x3e814304)); 3617 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3618 getF32Constant(DAG, 0x3f3c50c8)); 3619 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3620 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3621 getF32Constant(DAG, 0x3f7f5e7e)); 3622 SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5); 3623 SDValue TwoToFractionalPartOfX = 3624 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 3625 3626 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3627 MVT::f32, TwoToFractionalPartOfX); 3628 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3629 // For floating-point precision of 12: 3630 // 3631 // TwoToFractionalPartOfX = 3632 // 0.999892986f + 3633 // (0.696457318f + 3634 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3635 // 3636 // error 0.000107046256, which is 13 to 14 bits 3637 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3638 getF32Constant(DAG, 0x3da235e3)); 3639 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3640 getF32Constant(DAG, 0x3e65b8f3)); 3641 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3642 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3643 getF32Constant(DAG, 0x3f324b07)); 3644 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3645 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3646 getF32Constant(DAG, 0x3f7ff8fd)); 3647 SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7); 3648 SDValue TwoToFractionalPartOfX = 3649 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 3650 3651 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3652 MVT::f32, TwoToFractionalPartOfX); 3653 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3654 // For floating-point precision of 18: 3655 // 3656 // TwoToFractionalPartOfX = 3657 // 0.999999982f + 3658 // (0.693148872f + 3659 // (0.240227044f + 3660 // (0.554906021e-1f + 3661 // (0.961591928e-2f + 3662 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3663 // error 2.47208000*10^(-7), which is better than 18 bits 3664 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3665 getF32Constant(DAG, 0x3924b03e)); 3666 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3667 getF32Constant(DAG, 0x3ab24b87)); 3668 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3669 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3670 getF32Constant(DAG, 0x3c1d8c17)); 3671 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3672 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3673 getF32Constant(DAG, 0x3d634a1d)); 3674 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3675 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3676 getF32Constant(DAG, 0x3e75fe14)); 3677 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3678 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3679 getF32Constant(DAG, 0x3f317234)); 3680 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3681 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3682 getF32Constant(DAG, 0x3f800000)); 3683 SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13); 3684 SDValue TwoToFractionalPartOfX = 3685 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 3686 3687 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3688 MVT::f32, TwoToFractionalPartOfX); 3689 } 3690 } else { 3691 // No special expansion. 3692 result = DAG.getNode(ISD::FEXP2, dl, 3693 getValue(I.getArgOperand(0)).getValueType(), 3694 getValue(I.getArgOperand(0))); 3695 } 3696 3697 setValue(&I, result); 3698 } 3699 3700 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 3701 /// limited-precision mode with x == 10.0f. 3702 void 3703 SelectionDAGBuilder::visitPow(const CallInst &I) { 3704 SDValue result; 3705 const Value *Val = I.getArgOperand(0); 3706 DebugLoc dl = getCurDebugLoc(); 3707 bool IsExp10 = false; 3708 3709 if (getValue(Val).getValueType() == MVT::f32 && 3710 getValue(I.getArgOperand(1)).getValueType() == MVT::f32 && 3711 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3712 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) { 3713 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3714 APFloat Ten(10.0f); 3715 IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten); 3716 } 3717 } 3718 } 3719 3720 if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3721 SDValue Op = getValue(I.getArgOperand(1)); 3722 3723 // Put the exponent in the right bit position for later addition to the 3724 // final result: 3725 // 3726 // #define LOG2OF10 3.3219281f 3727 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 3728 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3729 getF32Constant(DAG, 0x40549a78)); 3730 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3731 3732 // FractionalPartOfX = x - (float)IntegerPartOfX; 3733 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3734 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3735 3736 // IntegerPartOfX <<= 23; 3737 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3738 DAG.getConstant(23, TLI.getPointerTy())); 3739 3740 if (LimitFloatPrecision <= 6) { 3741 // For floating-point precision of 6: 3742 // 3743 // twoToFractionalPartOfX = 3744 // 0.997535578f + 3745 // (0.735607626f + 0.252464424f * x) * x; 3746 // 3747 // error 0.0144103317, which is 6 bits 3748 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3749 getF32Constant(DAG, 0x3e814304)); 3750 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3751 getF32Constant(DAG, 0x3f3c50c8)); 3752 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3753 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3754 getF32Constant(DAG, 0x3f7f5e7e)); 3755 SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5); 3756 SDValue TwoToFractionalPartOfX = 3757 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 3758 3759 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3760 MVT::f32, TwoToFractionalPartOfX); 3761 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3762 // For floating-point precision of 12: 3763 // 3764 // TwoToFractionalPartOfX = 3765 // 0.999892986f + 3766 // (0.696457318f + 3767 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3768 // 3769 // error 0.000107046256, which is 13 to 14 bits 3770 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3771 getF32Constant(DAG, 0x3da235e3)); 3772 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3773 getF32Constant(DAG, 0x3e65b8f3)); 3774 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3775 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3776 getF32Constant(DAG, 0x3f324b07)); 3777 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3778 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3779 getF32Constant(DAG, 0x3f7ff8fd)); 3780 SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7); 3781 SDValue TwoToFractionalPartOfX = 3782 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 3783 3784 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3785 MVT::f32, TwoToFractionalPartOfX); 3786 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3787 // For floating-point precision of 18: 3788 // 3789 // TwoToFractionalPartOfX = 3790 // 0.999999982f + 3791 // (0.693148872f + 3792 // (0.240227044f + 3793 // (0.554906021e-1f + 3794 // (0.961591928e-2f + 3795 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3796 // error 2.47208000*10^(-7), which is better than 18 bits 3797 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3798 getF32Constant(DAG, 0x3924b03e)); 3799 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3800 getF32Constant(DAG, 0x3ab24b87)); 3801 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3802 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3803 getF32Constant(DAG, 0x3c1d8c17)); 3804 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3805 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3806 getF32Constant(DAG, 0x3d634a1d)); 3807 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3808 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3809 getF32Constant(DAG, 0x3e75fe14)); 3810 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3811 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3812 getF32Constant(DAG, 0x3f317234)); 3813 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3814 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3815 getF32Constant(DAG, 0x3f800000)); 3816 SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13); 3817 SDValue TwoToFractionalPartOfX = 3818 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 3819 3820 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3821 MVT::f32, TwoToFractionalPartOfX); 3822 } 3823 } else { 3824 // No special expansion. 3825 result = DAG.getNode(ISD::FPOW, dl, 3826 getValue(I.getArgOperand(0)).getValueType(), 3827 getValue(I.getArgOperand(0)), 3828 getValue(I.getArgOperand(1))); 3829 } 3830 3831 setValue(&I, result); 3832 } 3833 3834 3835 /// ExpandPowI - Expand a llvm.powi intrinsic. 3836 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS, 3837 SelectionDAG &DAG) { 3838 // If RHS is a constant, we can expand this out to a multiplication tree, 3839 // otherwise we end up lowering to a call to __powidf2 (for example). When 3840 // optimizing for size, we only want to do this if the expansion would produce 3841 // a small number of multiplies, otherwise we do the full expansion. 3842 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 3843 // Get the exponent as a positive value. 3844 unsigned Val = RHSC->getSExtValue(); 3845 if ((int)Val < 0) Val = -Val; 3846 3847 // powi(x, 0) -> 1.0 3848 if (Val == 0) 3849 return DAG.getConstantFP(1.0, LHS.getValueType()); 3850 3851 const Function *F = DAG.getMachineFunction().getFunction(); 3852 if (!F->hasFnAttr(Attribute::OptimizeForSize) || 3853 // If optimizing for size, don't insert too many multiplies. This 3854 // inserts up to 5 multiplies. 3855 CountPopulation_32(Val)+Log2_32(Val) < 7) { 3856 // We use the simple binary decomposition method to generate the multiply 3857 // sequence. There are more optimal ways to do this (for example, 3858 // powi(x,15) generates one more multiply than it should), but this has 3859 // the benefit of being both really simple and much better than a libcall. 3860 SDValue Res; // Logically starts equal to 1.0 3861 SDValue CurSquare = LHS; 3862 while (Val) { 3863 if (Val & 1) { 3864 if (Res.getNode()) 3865 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 3866 else 3867 Res = CurSquare; // 1.0*CurSquare. 3868 } 3869 3870 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 3871 CurSquare, CurSquare); 3872 Val >>= 1; 3873 } 3874 3875 // If the original was negative, invert the result, producing 1/(x*x*x). 3876 if (RHSC->getSExtValue() < 0) 3877 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 3878 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 3879 return Res; 3880 } 3881 } 3882 3883 // Otherwise, expand to a libcall. 3884 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 3885 } 3886 3887 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 3888 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 3889 /// At the end of instruction selection, they will be inserted to the entry BB. 3890 bool 3891 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const DbgValueInst &DI, 3892 const Value *V, MDNode *Variable, 3893 uint64_t Offset, 3894 const SDValue &N) { 3895 if (!isa<Argument>(V)) 3896 return false; 3897 3898 MachineFunction &MF = DAG.getMachineFunction(); 3899 // Ignore inlined function arguments here. 3900 DIVariable DV(Variable); 3901 if (DV.isInlinedFnArgument(MF.getFunction())) 3902 return false; 3903 3904 MachineBasicBlock *MBB = FuncInfo.MBB; 3905 if (MBB != &MF.front()) 3906 return false; 3907 3908 unsigned Reg = 0; 3909 if (N.getOpcode() == ISD::CopyFromReg) { 3910 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 3911 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 3912 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 3913 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 3914 if (PR) 3915 Reg = PR; 3916 } 3917 } 3918 3919 if (!Reg) { 3920 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 3921 if (VMI == FuncInfo.ValueMap.end()) 3922 return false; 3923 Reg = VMI->second; 3924 } 3925 3926 const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo(); 3927 MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(), 3928 TII->get(TargetOpcode::DBG_VALUE)) 3929 .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable); 3930 FuncInfo.ArgDbgValues.push_back(&*MIB); 3931 return true; 3932 } 3933 3934 // VisualStudio defines setjmp as _setjmp 3935 #if defined(_MSC_VER) && defined(setjmp) 3936 #define setjmp_undefined_for_visual_studio 3937 #undef setjmp 3938 #endif 3939 3940 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 3941 /// we want to emit this as a call to a named external function, return the name 3942 /// otherwise lower it and return null. 3943 const char * 3944 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 3945 DebugLoc dl = getCurDebugLoc(); 3946 SDValue Res; 3947 3948 switch (Intrinsic) { 3949 default: 3950 // By default, turn this into a target intrinsic node. 3951 visitTargetIntrinsic(I, Intrinsic); 3952 return 0; 3953 case Intrinsic::vastart: visitVAStart(I); return 0; 3954 case Intrinsic::vaend: visitVAEnd(I); return 0; 3955 case Intrinsic::vacopy: visitVACopy(I); return 0; 3956 case Intrinsic::returnaddress: 3957 setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(), 3958 getValue(I.getArgOperand(0)))); 3959 return 0; 3960 case Intrinsic::frameaddress: 3961 setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(), 3962 getValue(I.getArgOperand(0)))); 3963 return 0; 3964 case Intrinsic::setjmp: 3965 return "_setjmp"+!TLI.usesUnderscoreSetJmp(); 3966 case Intrinsic::longjmp: 3967 return "_longjmp"+!TLI.usesUnderscoreLongJmp(); 3968 case Intrinsic::memcpy: { 3969 // Assert for address < 256 since we support only user defined address 3970 // spaces. 3971 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 3972 < 256 && 3973 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 3974 < 256 && 3975 "Unknown address space"); 3976 SDValue Op1 = getValue(I.getArgOperand(0)); 3977 SDValue Op2 = getValue(I.getArgOperand(1)); 3978 SDValue Op3 = getValue(I.getArgOperand(2)); 3979 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 3980 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 3981 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false, 3982 I.getArgOperand(0), 0, I.getArgOperand(1), 0)); 3983 return 0; 3984 } 3985 case Intrinsic::memset: { 3986 // Assert for address < 256 since we support only user defined address 3987 // spaces. 3988 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 3989 < 256 && 3990 "Unknown address space"); 3991 SDValue Op1 = getValue(I.getArgOperand(0)); 3992 SDValue Op2 = getValue(I.getArgOperand(1)); 3993 SDValue Op3 = getValue(I.getArgOperand(2)); 3994 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 3995 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 3996 DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 3997 I.getArgOperand(0), 0)); 3998 return 0; 3999 } 4000 case Intrinsic::memmove: { 4001 // Assert for address < 256 since we support only user defined address 4002 // spaces. 4003 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4004 < 256 && 4005 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4006 < 256 && 4007 "Unknown address space"); 4008 SDValue Op1 = getValue(I.getArgOperand(0)); 4009 SDValue Op2 = getValue(I.getArgOperand(1)); 4010 SDValue Op3 = getValue(I.getArgOperand(2)); 4011 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4012 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4013 4014 // If the source and destination are known to not be aliases, we can 4015 // lower memmove as memcpy. 4016 uint64_t Size = -1ULL; 4017 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3)) 4018 Size = C->getZExtValue(); 4019 if (AA->alias(I.getArgOperand(0), Size, I.getArgOperand(1), Size) == 4020 AliasAnalysis::NoAlias) { 4021 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4022 false, I.getArgOperand(0), 0, 4023 I.getArgOperand(1), 0)); 4024 return 0; 4025 } 4026 4027 DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4028 I.getArgOperand(0), 0, I.getArgOperand(1), 0)); 4029 return 0; 4030 } 4031 case Intrinsic::dbg_declare: { 4032 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4033 if (!DIVariable(DI.getVariable()).Verify()) 4034 return 0; 4035 4036 MDNode *Variable = DI.getVariable(); 4037 // Parameters are handled specially. 4038 bool isParameter = 4039 DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable; 4040 const Value *Address = DI.getAddress(); 4041 if (!Address) 4042 return 0; 4043 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4044 Address = BCI->getOperand(0); 4045 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4046 4047 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4048 // but do not always have a corresponding SDNode built. The SDNodeOrder 4049 // absolute, but not relative, values are different depending on whether 4050 // debug info exists. 4051 ++SDNodeOrder; 4052 SDValue &N = NodeMap[Address]; 4053 SDDbgValue *SDV; 4054 if (N.getNode()) { 4055 if (isParameter && !AI) { 4056 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4057 if (FINode) 4058 // Byval parameter. We have a frame index at this point. 4059 SDV = DAG.getDbgValue(Variable, FINode->getIndex(), 4060 0, dl, SDNodeOrder); 4061 else 4062 // Can't do anything with other non-AI cases yet. This might be a 4063 // parameter of a callee function that got inlined, for example. 4064 return 0; 4065 } else if (AI) 4066 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(), 4067 0, dl, SDNodeOrder); 4068 else 4069 // Can't do anything with other non-AI cases yet. 4070 return 0; 4071 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4072 } else { 4073 // This isn't useful, but it shows what we're missing. 4074 SDV = DAG.getDbgValue(Variable, UndefValue::get(Address->getType()), 4075 0, dl, SDNodeOrder); 4076 DAG.AddDbgValue(SDV, 0, isParameter); 4077 } 4078 return 0; 4079 } 4080 case Intrinsic::dbg_value: { 4081 const DbgValueInst &DI = cast<DbgValueInst>(I); 4082 if (!DIVariable(DI.getVariable()).Verify()) 4083 return 0; 4084 4085 MDNode *Variable = DI.getVariable(); 4086 uint64_t Offset = DI.getOffset(); 4087 const Value *V = DI.getValue(); 4088 if (!V) 4089 return 0; 4090 4091 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4092 // but do not always have a corresponding SDNode built. The SDNodeOrder 4093 // absolute, but not relative, values are different depending on whether 4094 // debug info exists. 4095 ++SDNodeOrder; 4096 SDDbgValue *SDV; 4097 if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) { 4098 SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder); 4099 DAG.AddDbgValue(SDV, 0, false); 4100 } else { 4101 bool createUndef = false; 4102 // Do not use getValue() in here; we don't want to generate code at 4103 // this point if it hasn't been done yet. 4104 SDValue N = NodeMap[V]; 4105 if (!N.getNode() && isa<Argument>(V)) 4106 // Check unused arguments map. 4107 N = UnusedArgNodeMap[V]; 4108 if (N.getNode()) { 4109 if (!EmitFuncArgumentDbgValue(DI, V, Variable, Offset, N)) { 4110 SDV = DAG.getDbgValue(Variable, N.getNode(), 4111 N.getResNo(), Offset, dl, SDNodeOrder); 4112 DAG.AddDbgValue(SDV, N.getNode(), false); 4113 } 4114 } else if (isa<PHINode>(V) && !V->use_empty() ) { 4115 // Do not call getValue(V) yet, as we don't want to generate code. 4116 // Remember it for later. 4117 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4118 DanglingDebugInfoMap[V] = DDI; 4119 } else 4120 createUndef = true; 4121 if (createUndef) { 4122 // We may expand this to cover more cases. One case where we have no 4123 // data available is an unreferenced parameter; we need this fallback. 4124 SDV = DAG.getDbgValue(Variable, UndefValue::get(V->getType()), 4125 Offset, dl, SDNodeOrder); 4126 DAG.AddDbgValue(SDV, 0, false); 4127 } 4128 } 4129 4130 // Build a debug info table entry. 4131 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4132 V = BCI->getOperand(0); 4133 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4134 // Don't handle byval struct arguments or VLAs, for example. 4135 if (!AI) 4136 return 0; 4137 DenseMap<const AllocaInst*, int>::iterator SI = 4138 FuncInfo.StaticAllocaMap.find(AI); 4139 if (SI == FuncInfo.StaticAllocaMap.end()) 4140 return 0; // VLAs. 4141 int FI = SI->second; 4142 4143 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4144 if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo()) 4145 MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc()); 4146 return 0; 4147 } 4148 case Intrinsic::eh_exception: { 4149 // Insert the EXCEPTIONADDR instruction. 4150 assert(FuncInfo.MBB->isLandingPad() && 4151 "Call to eh.exception not in landing pad!"); 4152 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 4153 SDValue Ops[1]; 4154 Ops[0] = DAG.getRoot(); 4155 SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1); 4156 setValue(&I, Op); 4157 DAG.setRoot(Op.getValue(1)); 4158 return 0; 4159 } 4160 4161 case Intrinsic::eh_selector: { 4162 MachineBasicBlock *CallMBB = FuncInfo.MBB; 4163 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4164 if (CallMBB->isLandingPad()) 4165 AddCatchInfo(I, &MMI, CallMBB); 4166 else { 4167 #ifndef NDEBUG 4168 FuncInfo.CatchInfoLost.insert(&I); 4169 #endif 4170 // FIXME: Mark exception selector register as live in. Hack for PR1508. 4171 unsigned Reg = TLI.getExceptionSelectorRegister(); 4172 if (Reg) FuncInfo.MBB->addLiveIn(Reg); 4173 } 4174 4175 // Insert the EHSELECTION instruction. 4176 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 4177 SDValue Ops[2]; 4178 Ops[0] = getValue(I.getArgOperand(0)); 4179 Ops[1] = getRoot(); 4180 SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2); 4181 DAG.setRoot(Op.getValue(1)); 4182 setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32)); 4183 return 0; 4184 } 4185 4186 case Intrinsic::eh_typeid_for: { 4187 // Find the type id for the given typeinfo. 4188 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); 4189 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4190 Res = DAG.getConstant(TypeID, MVT::i32); 4191 setValue(&I, Res); 4192 return 0; 4193 } 4194 4195 case Intrinsic::eh_return_i32: 4196 case Intrinsic::eh_return_i64: 4197 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4198 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl, 4199 MVT::Other, 4200 getControlRoot(), 4201 getValue(I.getArgOperand(0)), 4202 getValue(I.getArgOperand(1)))); 4203 return 0; 4204 case Intrinsic::eh_unwind_init: 4205 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4206 return 0; 4207 case Intrinsic::eh_dwarf_cfa: { 4208 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl, 4209 TLI.getPointerTy()); 4210 SDValue Offset = DAG.getNode(ISD::ADD, dl, 4211 TLI.getPointerTy(), 4212 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 4213 TLI.getPointerTy()), 4214 CfaArg); 4215 SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl, 4216 TLI.getPointerTy(), 4217 DAG.getConstant(0, TLI.getPointerTy())); 4218 setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), 4219 FA, Offset)); 4220 return 0; 4221 } 4222 case Intrinsic::eh_sjlj_callsite: { 4223 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4224 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4225 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4226 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4227 4228 MMI.setCurrentCallSite(CI->getZExtValue()); 4229 return 0; 4230 } 4231 case Intrinsic::eh_sjlj_setjmp: { 4232 setValue(&I, DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, MVT::i32, getRoot(), 4233 getValue(I.getArgOperand(0)))); 4234 return 0; 4235 } 4236 case Intrinsic::eh_sjlj_longjmp: { 4237 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other, 4238 getRoot(), 4239 getValue(I.getArgOperand(0)))); 4240 return 0; 4241 } 4242 4243 case Intrinsic::convertff: 4244 case Intrinsic::convertfsi: 4245 case Intrinsic::convertfui: 4246 case Intrinsic::convertsif: 4247 case Intrinsic::convertuif: 4248 case Intrinsic::convertss: 4249 case Intrinsic::convertsu: 4250 case Intrinsic::convertus: 4251 case Intrinsic::convertuu: { 4252 ISD::CvtCode Code = ISD::CVT_INVALID; 4253 switch (Intrinsic) { 4254 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4255 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4256 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4257 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4258 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4259 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4260 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4261 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4262 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4263 } 4264 EVT DestVT = TLI.getValueType(I.getType()); 4265 const Value *Op1 = I.getArgOperand(0); 4266 Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1), 4267 DAG.getValueType(DestVT), 4268 DAG.getValueType(getValue(Op1).getValueType()), 4269 getValue(I.getArgOperand(1)), 4270 getValue(I.getArgOperand(2)), 4271 Code); 4272 setValue(&I, Res); 4273 return 0; 4274 } 4275 case Intrinsic::sqrt: 4276 setValue(&I, DAG.getNode(ISD::FSQRT, dl, 4277 getValue(I.getArgOperand(0)).getValueType(), 4278 getValue(I.getArgOperand(0)))); 4279 return 0; 4280 case Intrinsic::powi: 4281 setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)), 4282 getValue(I.getArgOperand(1)), DAG)); 4283 return 0; 4284 case Intrinsic::sin: 4285 setValue(&I, DAG.getNode(ISD::FSIN, dl, 4286 getValue(I.getArgOperand(0)).getValueType(), 4287 getValue(I.getArgOperand(0)))); 4288 return 0; 4289 case Intrinsic::cos: 4290 setValue(&I, DAG.getNode(ISD::FCOS, dl, 4291 getValue(I.getArgOperand(0)).getValueType(), 4292 getValue(I.getArgOperand(0)))); 4293 return 0; 4294 case Intrinsic::log: 4295 visitLog(I); 4296 return 0; 4297 case Intrinsic::log2: 4298 visitLog2(I); 4299 return 0; 4300 case Intrinsic::log10: 4301 visitLog10(I); 4302 return 0; 4303 case Intrinsic::exp: 4304 visitExp(I); 4305 return 0; 4306 case Intrinsic::exp2: 4307 visitExp2(I); 4308 return 0; 4309 case Intrinsic::pow: 4310 visitPow(I); 4311 return 0; 4312 case Intrinsic::convert_to_fp16: 4313 setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl, 4314 MVT::i16, getValue(I.getArgOperand(0)))); 4315 return 0; 4316 case Intrinsic::convert_from_fp16: 4317 setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl, 4318 MVT::f32, getValue(I.getArgOperand(0)))); 4319 return 0; 4320 case Intrinsic::pcmarker: { 4321 SDValue Tmp = getValue(I.getArgOperand(0)); 4322 DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp)); 4323 return 0; 4324 } 4325 case Intrinsic::readcyclecounter: { 4326 SDValue Op = getRoot(); 4327 Res = DAG.getNode(ISD::READCYCLECOUNTER, dl, 4328 DAG.getVTList(MVT::i64, MVT::Other), 4329 &Op, 1); 4330 setValue(&I, Res); 4331 DAG.setRoot(Res.getValue(1)); 4332 return 0; 4333 } 4334 case Intrinsic::bswap: 4335 setValue(&I, DAG.getNode(ISD::BSWAP, dl, 4336 getValue(I.getArgOperand(0)).getValueType(), 4337 getValue(I.getArgOperand(0)))); 4338 return 0; 4339 case Intrinsic::cttz: { 4340 SDValue Arg = getValue(I.getArgOperand(0)); 4341 EVT Ty = Arg.getValueType(); 4342 setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg)); 4343 return 0; 4344 } 4345 case Intrinsic::ctlz: { 4346 SDValue Arg = getValue(I.getArgOperand(0)); 4347 EVT Ty = Arg.getValueType(); 4348 setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg)); 4349 return 0; 4350 } 4351 case Intrinsic::ctpop: { 4352 SDValue Arg = getValue(I.getArgOperand(0)); 4353 EVT Ty = Arg.getValueType(); 4354 setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg)); 4355 return 0; 4356 } 4357 case Intrinsic::stacksave: { 4358 SDValue Op = getRoot(); 4359 Res = DAG.getNode(ISD::STACKSAVE, dl, 4360 DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1); 4361 setValue(&I, Res); 4362 DAG.setRoot(Res.getValue(1)); 4363 return 0; 4364 } 4365 case Intrinsic::stackrestore: { 4366 Res = getValue(I.getArgOperand(0)); 4367 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res)); 4368 return 0; 4369 } 4370 case Intrinsic::stackprotector: { 4371 // Emit code into the DAG to store the stack guard onto the stack. 4372 MachineFunction &MF = DAG.getMachineFunction(); 4373 MachineFrameInfo *MFI = MF.getFrameInfo(); 4374 EVT PtrTy = TLI.getPointerTy(); 4375 4376 SDValue Src = getValue(I.getArgOperand(0)); // The guard's value. 4377 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4378 4379 int FI = FuncInfo.StaticAllocaMap[Slot]; 4380 MFI->setStackProtectorIndex(FI); 4381 4382 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4383 4384 // Store the stack protector onto the stack. 4385 Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN, 4386 PseudoSourceValue::getFixedStack(FI), 4387 0, true, false, 0); 4388 setValue(&I, Res); 4389 DAG.setRoot(Res); 4390 return 0; 4391 } 4392 case Intrinsic::objectsize: { 4393 // If we don't know by now, we're never going to know. 4394 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4395 4396 assert(CI && "Non-constant type in __builtin_object_size?"); 4397 4398 SDValue Arg = getValue(I.getCalledValue()); 4399 EVT Ty = Arg.getValueType(); 4400 4401 if (CI->isZero()) 4402 Res = DAG.getConstant(-1ULL, Ty); 4403 else 4404 Res = DAG.getConstant(0, Ty); 4405 4406 setValue(&I, Res); 4407 return 0; 4408 } 4409 case Intrinsic::var_annotation: 4410 // Discard annotate attributes 4411 return 0; 4412 4413 case Intrinsic::init_trampoline: { 4414 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 4415 4416 SDValue Ops[6]; 4417 Ops[0] = getRoot(); 4418 Ops[1] = getValue(I.getArgOperand(0)); 4419 Ops[2] = getValue(I.getArgOperand(1)); 4420 Ops[3] = getValue(I.getArgOperand(2)); 4421 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 4422 Ops[5] = DAG.getSrcValue(F); 4423 4424 Res = DAG.getNode(ISD::TRAMPOLINE, dl, 4425 DAG.getVTList(TLI.getPointerTy(), MVT::Other), 4426 Ops, 6); 4427 4428 setValue(&I, Res); 4429 DAG.setRoot(Res.getValue(1)); 4430 return 0; 4431 } 4432 case Intrinsic::gcroot: 4433 if (GFI) { 4434 const Value *Alloca = I.getArgOperand(0); 4435 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 4436 4437 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4438 GFI->addStackRoot(FI->getIndex(), TypeMap); 4439 } 4440 return 0; 4441 case Intrinsic::gcread: 4442 case Intrinsic::gcwrite: 4443 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4444 return 0; 4445 case Intrinsic::flt_rounds: 4446 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32)); 4447 return 0; 4448 case Intrinsic::trap: 4449 DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot())); 4450 return 0; 4451 case Intrinsic::uadd_with_overflow: 4452 return implVisitAluOverflow(I, ISD::UADDO); 4453 case Intrinsic::sadd_with_overflow: 4454 return implVisitAluOverflow(I, ISD::SADDO); 4455 case Intrinsic::usub_with_overflow: 4456 return implVisitAluOverflow(I, ISD::USUBO); 4457 case Intrinsic::ssub_with_overflow: 4458 return implVisitAluOverflow(I, ISD::SSUBO); 4459 case Intrinsic::umul_with_overflow: 4460 return implVisitAluOverflow(I, ISD::UMULO); 4461 case Intrinsic::smul_with_overflow: 4462 return implVisitAluOverflow(I, ISD::SMULO); 4463 4464 case Intrinsic::prefetch: { 4465 SDValue Ops[4]; 4466 Ops[0] = getRoot(); 4467 Ops[1] = getValue(I.getArgOperand(0)); 4468 Ops[2] = getValue(I.getArgOperand(1)); 4469 Ops[3] = getValue(I.getArgOperand(2)); 4470 DAG.setRoot(DAG.getNode(ISD::PREFETCH, dl, MVT::Other, &Ops[0], 4)); 4471 return 0; 4472 } 4473 4474 case Intrinsic::memory_barrier: { 4475 SDValue Ops[6]; 4476 Ops[0] = getRoot(); 4477 for (int x = 1; x < 6; ++x) 4478 Ops[x] = getValue(I.getArgOperand(x - 1)); 4479 4480 DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6)); 4481 return 0; 4482 } 4483 case Intrinsic::atomic_cmp_swap: { 4484 SDValue Root = getRoot(); 4485 SDValue L = 4486 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(), 4487 getValue(I.getArgOperand(1)).getValueType().getSimpleVT(), 4488 Root, 4489 getValue(I.getArgOperand(0)), 4490 getValue(I.getArgOperand(1)), 4491 getValue(I.getArgOperand(2)), 4492 I.getArgOperand(0)); 4493 setValue(&I, L); 4494 DAG.setRoot(L.getValue(1)); 4495 return 0; 4496 } 4497 case Intrinsic::atomic_load_add: 4498 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD); 4499 case Intrinsic::atomic_load_sub: 4500 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB); 4501 case Intrinsic::atomic_load_or: 4502 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR); 4503 case Intrinsic::atomic_load_xor: 4504 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR); 4505 case Intrinsic::atomic_load_and: 4506 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND); 4507 case Intrinsic::atomic_load_nand: 4508 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND); 4509 case Intrinsic::atomic_load_max: 4510 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX); 4511 case Intrinsic::atomic_load_min: 4512 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN); 4513 case Intrinsic::atomic_load_umin: 4514 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN); 4515 case Intrinsic::atomic_load_umax: 4516 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX); 4517 case Intrinsic::atomic_swap: 4518 return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP); 4519 4520 case Intrinsic::invariant_start: 4521 case Intrinsic::lifetime_start: 4522 // Discard region information. 4523 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 4524 return 0; 4525 case Intrinsic::invariant_end: 4526 case Intrinsic::lifetime_end: 4527 // Discard region information. 4528 return 0; 4529 } 4530 } 4531 4532 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 4533 bool isTailCall, 4534 MachineBasicBlock *LandingPad) { 4535 const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 4536 const FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 4537 const Type *RetTy = FTy->getReturnType(); 4538 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4539 MCSymbol *BeginLabel = 0; 4540 4541 TargetLowering::ArgListTy Args; 4542 TargetLowering::ArgListEntry Entry; 4543 Args.reserve(CS.arg_size()); 4544 4545 // Check whether the function can return without sret-demotion. 4546 SmallVector<ISD::OutputArg, 4> Outs; 4547 SmallVector<uint64_t, 4> Offsets; 4548 GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(), 4549 Outs, TLI, &Offsets); 4550 4551 bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(), 4552 FTy->isVarArg(), Outs, FTy->getContext()); 4553 4554 SDValue DemoteStackSlot; 4555 4556 if (!CanLowerReturn) { 4557 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize( 4558 FTy->getReturnType()); 4559 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment( 4560 FTy->getReturnType()); 4561 MachineFunction &MF = DAG.getMachineFunction(); 4562 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 4563 const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); 4564 4565 DemoteStackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 4566 Entry.Node = DemoteStackSlot; 4567 Entry.Ty = StackSlotPtrType; 4568 Entry.isSExt = false; 4569 Entry.isZExt = false; 4570 Entry.isInReg = false; 4571 Entry.isSRet = true; 4572 Entry.isNest = false; 4573 Entry.isByVal = false; 4574 Entry.Alignment = Align; 4575 Args.push_back(Entry); 4576 RetTy = Type::getVoidTy(FTy->getContext()); 4577 } 4578 4579 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 4580 i != e; ++i) { 4581 SDValue ArgNode = getValue(*i); 4582 Entry.Node = ArgNode; Entry.Ty = (*i)->getType(); 4583 4584 unsigned attrInd = i - CS.arg_begin() + 1; 4585 Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt); 4586 Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt); 4587 Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg); 4588 Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet); 4589 Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest); 4590 Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal); 4591 Entry.Alignment = CS.getParamAlignment(attrInd); 4592 Args.push_back(Entry); 4593 } 4594 4595 if (LandingPad) { 4596 // Insert a label before the invoke call to mark the try range. This can be 4597 // used to detect deletion of the invoke via the MachineModuleInfo. 4598 BeginLabel = MMI.getContext().CreateTempSymbol(); 4599 4600 // For SjLj, keep track of which landing pads go with which invokes 4601 // so as to maintain the ordering of pads in the LSDA. 4602 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 4603 if (CallSiteIndex) { 4604 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 4605 // Now that the call site is handled, stop tracking it. 4606 MMI.setCurrentCallSite(0); 4607 } 4608 4609 // Both PendingLoads and PendingExports must be flushed here; 4610 // this call might not return. 4611 (void)getRoot(); 4612 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel)); 4613 } 4614 4615 // Check if target-independent constraints permit a tail call here. 4616 // Target-dependent constraints are checked within TLI.LowerCallTo. 4617 if (isTailCall && 4618 !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI)) 4619 isTailCall = false; 4620 4621 std::pair<SDValue,SDValue> Result = 4622 TLI.LowerCallTo(getRoot(), RetTy, 4623 CS.paramHasAttr(0, Attribute::SExt), 4624 CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(), 4625 CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(), 4626 CS.getCallingConv(), 4627 isTailCall, 4628 !CS.getInstruction()->use_empty(), 4629 Callee, Args, DAG, getCurDebugLoc()); 4630 assert((isTailCall || Result.second.getNode()) && 4631 "Non-null chain expected with non-tail call!"); 4632 assert((Result.second.getNode() || !Result.first.getNode()) && 4633 "Null value expected with tail call!"); 4634 if (Result.first.getNode()) { 4635 setValue(CS.getInstruction(), Result.first); 4636 } else if (!CanLowerReturn && Result.second.getNode()) { 4637 // The instruction result is the result of loading from the 4638 // hidden sret parameter. 4639 SmallVector<EVT, 1> PVTs; 4640 const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); 4641 4642 ComputeValueVTs(TLI, PtrRetTy, PVTs); 4643 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 4644 EVT PtrVT = PVTs[0]; 4645 unsigned NumValues = Outs.size(); 4646 SmallVector<SDValue, 4> Values(NumValues); 4647 SmallVector<SDValue, 4> Chains(NumValues); 4648 4649 for (unsigned i = 0; i < NumValues; ++i) { 4650 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, 4651 DemoteStackSlot, 4652 DAG.getConstant(Offsets[i], PtrVT)); 4653 SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second, 4654 Add, NULL, Offsets[i], false, false, 1); 4655 Values[i] = L; 4656 Chains[i] = L.getValue(1); 4657 } 4658 4659 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 4660 MVT::Other, &Chains[0], NumValues); 4661 PendingLoads.push_back(Chain); 4662 4663 // Collect the legal value parts into potentially illegal values 4664 // that correspond to the original function's return values. 4665 SmallVector<EVT, 4> RetTys; 4666 RetTy = FTy->getReturnType(); 4667 ComputeValueVTs(TLI, RetTy, RetTys); 4668 ISD::NodeType AssertOp = ISD::DELETED_NODE; 4669 SmallVector<SDValue, 4> ReturnValues; 4670 unsigned CurReg = 0; 4671 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 4672 EVT VT = RetTys[I]; 4673 EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT); 4674 unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT); 4675 4676 SDValue ReturnValue = 4677 getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs, 4678 RegisterVT, VT, AssertOp); 4679 ReturnValues.push_back(ReturnValue); 4680 CurReg += NumRegs; 4681 } 4682 4683 setValue(CS.getInstruction(), 4684 DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 4685 DAG.getVTList(&RetTys[0], RetTys.size()), 4686 &ReturnValues[0], ReturnValues.size())); 4687 4688 } 4689 4690 // As a special case, a null chain means that a tail call has been emitted and 4691 // the DAG root is already updated. 4692 if (Result.second.getNode()) 4693 DAG.setRoot(Result.second); 4694 else 4695 HasTailCall = true; 4696 4697 if (LandingPad) { 4698 // Insert a label at the end of the invoke call to mark the try range. This 4699 // can be used to detect deletion of the invoke via the MachineModuleInfo. 4700 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 4701 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel)); 4702 4703 // Inform MachineModuleInfo of range. 4704 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 4705 } 4706 } 4707 4708 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 4709 /// value is equal or not-equal to zero. 4710 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 4711 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); 4712 UI != E; ++UI) { 4713 if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) 4714 if (IC->isEquality()) 4715 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 4716 if (C->isNullValue()) 4717 continue; 4718 // Unknown instruction. 4719 return false; 4720 } 4721 return true; 4722 } 4723 4724 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 4725 const Type *LoadTy, 4726 SelectionDAGBuilder &Builder) { 4727 4728 // Check to see if this load can be trivially constant folded, e.g. if the 4729 // input is from a string literal. 4730 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 4731 // Cast pointer to the type we really want to load. 4732 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 4733 PointerType::getUnqual(LoadTy)); 4734 4735 if (const Constant *LoadCst = 4736 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 4737 Builder.TD)) 4738 return Builder.getValue(LoadCst); 4739 } 4740 4741 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 4742 // still constant memory, the input chain can be the entry node. 4743 SDValue Root; 4744 bool ConstantMemory = false; 4745 4746 // Do not serialize (non-volatile) loads of constant memory with anything. 4747 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 4748 Root = Builder.DAG.getEntryNode(); 4749 ConstantMemory = true; 4750 } else { 4751 // Do not serialize non-volatile loads against each other. 4752 Root = Builder.DAG.getRoot(); 4753 } 4754 4755 SDValue Ptr = Builder.getValue(PtrVal); 4756 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root, 4757 Ptr, PtrVal /*SrcValue*/, 0/*SVOffset*/, 4758 false /*volatile*/, 4759 false /*nontemporal*/, 1 /* align=1 */); 4760 4761 if (!ConstantMemory) 4762 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 4763 return LoadVal; 4764 } 4765 4766 4767 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 4768 /// If so, return true and lower it, otherwise return false and it will be 4769 /// lowered like a normal call. 4770 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 4771 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 4772 if (I.getNumArgOperands() != 3) 4773 return false; 4774 4775 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 4776 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 4777 !I.getArgOperand(2)->getType()->isIntegerTy() || 4778 !I.getType()->isIntegerTy()) 4779 return false; 4780 4781 const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2)); 4782 4783 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 4784 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 4785 if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) { 4786 bool ActuallyDoIt = true; 4787 MVT LoadVT; 4788 const Type *LoadTy; 4789 switch (Size->getZExtValue()) { 4790 default: 4791 LoadVT = MVT::Other; 4792 LoadTy = 0; 4793 ActuallyDoIt = false; 4794 break; 4795 case 2: 4796 LoadVT = MVT::i16; 4797 LoadTy = Type::getInt16Ty(Size->getContext()); 4798 break; 4799 case 4: 4800 LoadVT = MVT::i32; 4801 LoadTy = Type::getInt32Ty(Size->getContext()); 4802 break; 4803 case 8: 4804 LoadVT = MVT::i64; 4805 LoadTy = Type::getInt64Ty(Size->getContext()); 4806 break; 4807 /* 4808 case 16: 4809 LoadVT = MVT::v4i32; 4810 LoadTy = Type::getInt32Ty(Size->getContext()); 4811 LoadTy = VectorType::get(LoadTy, 4); 4812 break; 4813 */ 4814 } 4815 4816 // This turns into unaligned loads. We only do this if the target natively 4817 // supports the MVT we'll be loading or if it is small enough (<= 4) that 4818 // we'll only produce a small number of byte loads. 4819 4820 // Require that we can find a legal MVT, and only do this if the target 4821 // supports unaligned loads of that type. Expanding into byte loads would 4822 // bloat the code. 4823 if (ActuallyDoIt && Size->getZExtValue() > 4) { 4824 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 4825 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 4826 if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT)) 4827 ActuallyDoIt = false; 4828 } 4829 4830 if (ActuallyDoIt) { 4831 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 4832 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 4833 4834 SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal, 4835 ISD::SETNE); 4836 EVT CallVT = TLI.getValueType(I.getType(), true); 4837 setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT)); 4838 return true; 4839 } 4840 } 4841 4842 4843 return false; 4844 } 4845 4846 4847 void SelectionDAGBuilder::visitCall(const CallInst &I) { 4848 // Handle inline assembly differently. 4849 if (isa<InlineAsm>(I.getCalledValue())) { 4850 visitInlineAsm(&I); 4851 return; 4852 } 4853 4854 const char *RenameFn = 0; 4855 if (Function *F = I.getCalledFunction()) { 4856 if (F->isDeclaration()) { 4857 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 4858 if (unsigned IID = II->getIntrinsicID(F)) { 4859 RenameFn = visitIntrinsicCall(I, IID); 4860 if (!RenameFn) 4861 return; 4862 } 4863 } 4864 if (unsigned IID = F->getIntrinsicID()) { 4865 RenameFn = visitIntrinsicCall(I, IID); 4866 if (!RenameFn) 4867 return; 4868 } 4869 } 4870 4871 // Check for well-known libc/libm calls. If the function is internal, it 4872 // can't be a library call. 4873 if (!F->hasLocalLinkage() && F->hasName()) { 4874 StringRef Name = F->getName(); 4875 if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") { 4876 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 4877 I.getArgOperand(0)->getType()->isFloatingPointTy() && 4878 I.getType() == I.getArgOperand(0)->getType() && 4879 I.getType() == I.getArgOperand(1)->getType()) { 4880 SDValue LHS = getValue(I.getArgOperand(0)); 4881 SDValue RHS = getValue(I.getArgOperand(1)); 4882 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(), 4883 LHS.getValueType(), LHS, RHS)); 4884 return; 4885 } 4886 } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") { 4887 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 4888 I.getArgOperand(0)->getType()->isFloatingPointTy() && 4889 I.getType() == I.getArgOperand(0)->getType()) { 4890 SDValue Tmp = getValue(I.getArgOperand(0)); 4891 setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(), 4892 Tmp.getValueType(), Tmp)); 4893 return; 4894 } 4895 } else if (Name == "sin" || Name == "sinf" || Name == "sinl") { 4896 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 4897 I.getArgOperand(0)->getType()->isFloatingPointTy() && 4898 I.getType() == I.getArgOperand(0)->getType() && 4899 I.onlyReadsMemory()) { 4900 SDValue Tmp = getValue(I.getArgOperand(0)); 4901 setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(), 4902 Tmp.getValueType(), Tmp)); 4903 return; 4904 } 4905 } else if (Name == "cos" || Name == "cosf" || Name == "cosl") { 4906 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 4907 I.getArgOperand(0)->getType()->isFloatingPointTy() && 4908 I.getType() == I.getArgOperand(0)->getType() && 4909 I.onlyReadsMemory()) { 4910 SDValue Tmp = getValue(I.getArgOperand(0)); 4911 setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(), 4912 Tmp.getValueType(), Tmp)); 4913 return; 4914 } 4915 } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") { 4916 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 4917 I.getArgOperand(0)->getType()->isFloatingPointTy() && 4918 I.getType() == I.getArgOperand(0)->getType() && 4919 I.onlyReadsMemory()) { 4920 SDValue Tmp = getValue(I.getArgOperand(0)); 4921 setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(), 4922 Tmp.getValueType(), Tmp)); 4923 return; 4924 } 4925 } else if (Name == "memcmp") { 4926 if (visitMemCmpCall(I)) 4927 return; 4928 } 4929 } 4930 } 4931 4932 SDValue Callee; 4933 if (!RenameFn) 4934 Callee = getValue(I.getCalledValue()); 4935 else 4936 Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); 4937 4938 // Check if we can potentially perform a tail call. More detailed checking is 4939 // be done within LowerCallTo, after more information about the call is known. 4940 LowerCallTo(&I, Callee, I.isTailCall()); 4941 } 4942 4943 namespace llvm { 4944 4945 /// AsmOperandInfo - This contains information for each constraint that we are 4946 /// lowering. 4947 class LLVM_LIBRARY_VISIBILITY SDISelAsmOperandInfo : 4948 public TargetLowering::AsmOperandInfo { 4949 public: 4950 /// CallOperand - If this is the result output operand or a clobber 4951 /// this is null, otherwise it is the incoming operand to the CallInst. 4952 /// This gets modified as the asm is processed. 4953 SDValue CallOperand; 4954 4955 /// AssignedRegs - If this is a register or register class operand, this 4956 /// contains the set of register corresponding to the operand. 4957 RegsForValue AssignedRegs; 4958 4959 explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info) 4960 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { 4961 } 4962 4963 /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers 4964 /// busy in OutputRegs/InputRegs. 4965 void MarkAllocatedRegs(bool isOutReg, bool isInReg, 4966 std::set<unsigned> &OutputRegs, 4967 std::set<unsigned> &InputRegs, 4968 const TargetRegisterInfo &TRI) const { 4969 if (isOutReg) { 4970 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 4971 MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI); 4972 } 4973 if (isInReg) { 4974 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 4975 MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI); 4976 } 4977 } 4978 4979 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 4980 /// corresponds to. If there is no Value* for this operand, it returns 4981 /// MVT::Other. 4982 EVT getCallOperandValEVT(LLVMContext &Context, 4983 const TargetLowering &TLI, 4984 const TargetData *TD) const { 4985 if (CallOperandVal == 0) return MVT::Other; 4986 4987 if (isa<BasicBlock>(CallOperandVal)) 4988 return TLI.getPointerTy(); 4989 4990 const llvm::Type *OpTy = CallOperandVal->getType(); 4991 4992 // If this is an indirect operand, the operand is a pointer to the 4993 // accessed type. 4994 if (isIndirect) { 4995 const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 4996 if (!PtrTy) 4997 report_fatal_error("Indirect operand for inline asm not a pointer!"); 4998 OpTy = PtrTy->getElementType(); 4999 } 5000 5001 // If OpTy is not a single value, it may be a struct/union that we 5002 // can tile with integers. 5003 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5004 unsigned BitSize = TD->getTypeSizeInBits(OpTy); 5005 switch (BitSize) { 5006 default: break; 5007 case 1: 5008 case 8: 5009 case 16: 5010 case 32: 5011 case 64: 5012 case 128: 5013 OpTy = IntegerType::get(Context, BitSize); 5014 break; 5015 } 5016 } 5017 5018 return TLI.getValueType(OpTy, true); 5019 } 5020 5021 private: 5022 /// MarkRegAndAliases - Mark the specified register and all aliases in the 5023 /// specified set. 5024 static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs, 5025 const TargetRegisterInfo &TRI) { 5026 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg"); 5027 Regs.insert(Reg); 5028 if (const unsigned *Aliases = TRI.getAliasSet(Reg)) 5029 for (; *Aliases; ++Aliases) 5030 Regs.insert(*Aliases); 5031 } 5032 }; 5033 5034 } // end llvm namespace. 5035 5036 /// isAllocatableRegister - If the specified register is safe to allocate, 5037 /// i.e. it isn't a stack pointer or some other special register, return the 5038 /// register class for the register. Otherwise, return null. 5039 static const TargetRegisterClass * 5040 isAllocatableRegister(unsigned Reg, MachineFunction &MF, 5041 const TargetLowering &TLI, 5042 const TargetRegisterInfo *TRI) { 5043 EVT FoundVT = MVT::Other; 5044 const TargetRegisterClass *FoundRC = 0; 5045 for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(), 5046 E = TRI->regclass_end(); RCI != E; ++RCI) { 5047 EVT ThisVT = MVT::Other; 5048 5049 const TargetRegisterClass *RC = *RCI; 5050 // If none of the value types for this register class are valid, we 5051 // can't use it. For example, 64-bit reg classes on 32-bit targets. 5052 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end(); 5053 I != E; ++I) { 5054 if (TLI.isTypeLegal(*I)) { 5055 // If we have already found this register in a different register class, 5056 // choose the one with the largest VT specified. For example, on 5057 // PowerPC, we favor f64 register classes over f32. 5058 if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) { 5059 ThisVT = *I; 5060 break; 5061 } 5062 } 5063 } 5064 5065 if (ThisVT == MVT::Other) continue; 5066 5067 // NOTE: This isn't ideal. In particular, this might allocate the 5068 // frame pointer in functions that need it (due to them not being taken 5069 // out of allocation, because a variable sized allocation hasn't been seen 5070 // yet). This is a slight code pessimization, but should still work. 5071 for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF), 5072 E = RC->allocation_order_end(MF); I != E; ++I) 5073 if (*I == Reg) { 5074 // We found a matching register class. Keep looking at others in case 5075 // we find one with larger registers that this physreg is also in. 5076 FoundRC = RC; 5077 FoundVT = ThisVT; 5078 break; 5079 } 5080 } 5081 return FoundRC; 5082 } 5083 5084 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5085 /// specified operand. We prefer to assign virtual registers, to allow the 5086 /// register allocator to handle the assignment process. However, if the asm 5087 /// uses features that we can't model on machineinstrs, we have SDISel do the 5088 /// allocation. This produces generally horrible, but correct, code. 5089 /// 5090 /// OpInfo describes the operand. 5091 /// Input and OutputRegs are the set of already allocated physical registers. 5092 /// 5093 void SelectionDAGBuilder:: 5094 GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, 5095 std::set<unsigned> &OutputRegs, 5096 std::set<unsigned> &InputRegs) { 5097 LLVMContext &Context = FuncInfo.Fn->getContext(); 5098 5099 // Compute whether this value requires an input register, an output register, 5100 // or both. 5101 bool isOutReg = false; 5102 bool isInReg = false; 5103 switch (OpInfo.Type) { 5104 case InlineAsm::isOutput: 5105 isOutReg = true; 5106 5107 // If there is an input constraint that matches this, we need to reserve 5108 // the input register so no other inputs allocate to it. 5109 isInReg = OpInfo.hasMatchingInput(); 5110 break; 5111 case InlineAsm::isInput: 5112 isInReg = true; 5113 isOutReg = false; 5114 break; 5115 case InlineAsm::isClobber: 5116 isOutReg = true; 5117 isInReg = true; 5118 break; 5119 } 5120 5121 5122 MachineFunction &MF = DAG.getMachineFunction(); 5123 SmallVector<unsigned, 4> Regs; 5124 5125 // If this is a constraint for a single physreg, or a constraint for a 5126 // register class, find it. 5127 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 5128 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 5129 OpInfo.ConstraintVT); 5130 5131 unsigned NumRegs = 1; 5132 if (OpInfo.ConstraintVT != MVT::Other) { 5133 // If this is a FP input in an integer register (or visa versa) insert a bit 5134 // cast of the input value. More generally, handle any case where the input 5135 // value disagrees with the register class we plan to stick this in. 5136 if (OpInfo.Type == InlineAsm::isInput && 5137 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5138 // Try to convert to the first EVT that the reg class contains. If the 5139 // types are identical size, use a bitcast to convert (e.g. two differing 5140 // vector types). 5141 EVT RegVT = *PhysReg.second->vt_begin(); 5142 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 5143 OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 5144 RegVT, OpInfo.CallOperand); 5145 OpInfo.ConstraintVT = RegVT; 5146 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5147 // If the input is a FP value and we want it in FP registers, do a 5148 // bitcast to the corresponding integer type. This turns an f64 value 5149 // into i64, which can be passed with two i32 values on a 32-bit 5150 // machine. 5151 RegVT = EVT::getIntegerVT(Context, 5152 OpInfo.ConstraintVT.getSizeInBits()); 5153 OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 5154 RegVT, OpInfo.CallOperand); 5155 OpInfo.ConstraintVT = RegVT; 5156 } 5157 } 5158 5159 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5160 } 5161 5162 EVT RegVT; 5163 EVT ValueVT = OpInfo.ConstraintVT; 5164 5165 // If this is a constraint for a specific physical register, like {r17}, 5166 // assign it now. 5167 if (unsigned AssignedReg = PhysReg.first) { 5168 const TargetRegisterClass *RC = PhysReg.second; 5169 if (OpInfo.ConstraintVT == MVT::Other) 5170 ValueVT = *RC->vt_begin(); 5171 5172 // Get the actual register value type. This is important, because the user 5173 // may have asked for (e.g.) the AX register in i32 type. We need to 5174 // remember that AX is actually i16 to get the right extension. 5175 RegVT = *RC->vt_begin(); 5176 5177 // This is a explicit reference to a physical register. 5178 Regs.push_back(AssignedReg); 5179 5180 // If this is an expanded reference, add the rest of the regs to Regs. 5181 if (NumRegs != 1) { 5182 TargetRegisterClass::iterator I = RC->begin(); 5183 for (; *I != AssignedReg; ++I) 5184 assert(I != RC->end() && "Didn't find reg!"); 5185 5186 // Already added the first reg. 5187 --NumRegs; ++I; 5188 for (; NumRegs; --NumRegs, ++I) { 5189 assert(I != RC->end() && "Ran out of registers to allocate!"); 5190 Regs.push_back(*I); 5191 } 5192 } 5193 5194 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5195 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 5196 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); 5197 return; 5198 } 5199 5200 // Otherwise, if this was a reference to an LLVM register class, create vregs 5201 // for this reference. 5202 if (const TargetRegisterClass *RC = PhysReg.second) { 5203 RegVT = *RC->vt_begin(); 5204 if (OpInfo.ConstraintVT == MVT::Other) 5205 ValueVT = RegVT; 5206 5207 // Create the appropriate number of virtual registers. 5208 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5209 for (; NumRegs; --NumRegs) 5210 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5211 5212 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5213 return; 5214 } 5215 5216 // This is a reference to a register class that doesn't directly correspond 5217 // to an LLVM register class. Allocate NumRegs consecutive, available, 5218 // registers from the class. 5219 std::vector<unsigned> RegClassRegs 5220 = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode, 5221 OpInfo.ConstraintVT); 5222 5223 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 5224 unsigned NumAllocated = 0; 5225 for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) { 5226 unsigned Reg = RegClassRegs[i]; 5227 // See if this register is available. 5228 if ((isOutReg && OutputRegs.count(Reg)) || // Already used. 5229 (isInReg && InputRegs.count(Reg))) { // Already used. 5230 // Make sure we find consecutive registers. 5231 NumAllocated = 0; 5232 continue; 5233 } 5234 5235 // Check to see if this register is allocatable (i.e. don't give out the 5236 // stack pointer). 5237 const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI); 5238 if (!RC) { // Couldn't allocate this register. 5239 // Reset NumAllocated to make sure we return consecutive registers. 5240 NumAllocated = 0; 5241 continue; 5242 } 5243 5244 // Okay, this register is good, we can use it. 5245 ++NumAllocated; 5246 5247 // If we allocated enough consecutive registers, succeed. 5248 if (NumAllocated == NumRegs) { 5249 unsigned RegStart = (i-NumAllocated)+1; 5250 unsigned RegEnd = i+1; 5251 // Mark all of the allocated registers used. 5252 for (unsigned i = RegStart; i != RegEnd; ++i) 5253 Regs.push_back(RegClassRegs[i]); 5254 5255 OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(), 5256 OpInfo.ConstraintVT); 5257 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); 5258 return; 5259 } 5260 } 5261 5262 // Otherwise, we couldn't allocate enough registers for this. 5263 } 5264 5265 /// visitInlineAsm - Handle a call to an InlineAsm object. 5266 /// 5267 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5268 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5269 5270 /// ConstraintOperands - Information about all of the constraints. 5271 std::vector<SDISelAsmOperandInfo> ConstraintOperands; 5272 5273 std::set<unsigned> OutputRegs, InputRegs; 5274 5275 // Do a prepass over the constraints, canonicalizing them, and building up the 5276 // ConstraintOperands list. 5277 std::vector<InlineAsm::ConstraintInfo> 5278 ConstraintInfos = IA->ParseConstraints(); 5279 5280 bool hasMemory = hasInlineAsmMemConstraint(ConstraintInfos, TLI); 5281 5282 SDValue Chain, Flag; 5283 5284 // We won't need to flush pending loads if this asm doesn't touch 5285 // memory and is nonvolatile. 5286 if (hasMemory || IA->hasSideEffects()) 5287 Chain = getRoot(); 5288 else 5289 Chain = DAG.getRoot(); 5290 5291 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5292 unsigned ResNo = 0; // ResNo - The result number of the next output. 5293 for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { 5294 ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i])); 5295 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5296 5297 EVT OpVT = MVT::Other; 5298 5299 // Compute the value type for each operand. 5300 switch (OpInfo.Type) { 5301 case InlineAsm::isOutput: 5302 // Indirect outputs just consume an argument. 5303 if (OpInfo.isIndirect) { 5304 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5305 break; 5306 } 5307 5308 // The return value of the call is this value. As such, there is no 5309 // corresponding argument. 5310 assert(!CS.getType()->isVoidTy() && 5311 "Bad inline asm!"); 5312 if (const StructType *STy = dyn_cast<StructType>(CS.getType())) { 5313 OpVT = TLI.getValueType(STy->getElementType(ResNo)); 5314 } else { 5315 assert(ResNo == 0 && "Asm only has one result!"); 5316 OpVT = TLI.getValueType(CS.getType()); 5317 } 5318 ++ResNo; 5319 break; 5320 case InlineAsm::isInput: 5321 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5322 break; 5323 case InlineAsm::isClobber: 5324 // Nothing to do. 5325 break; 5326 } 5327 5328 // If this is an input or an indirect output, process the call argument. 5329 // BasicBlocks are labels, currently appearing only in asm's. 5330 if (OpInfo.CallOperandVal) { 5331 // Strip bitcasts, if any. This mostly comes up for functions. 5332 OpInfo.CallOperandVal = OpInfo.CallOperandVal->stripPointerCasts(); 5333 5334 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5335 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5336 } else { 5337 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5338 } 5339 5340 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD); 5341 } 5342 5343 OpInfo.ConstraintVT = OpVT; 5344 } 5345 5346 // Second pass over the constraints: compute which constraint option to use 5347 // and assign registers to constraints that want a specific physreg. 5348 for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { 5349 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5350 5351 // If this is an output operand with a matching input operand, look up the 5352 // matching input. If their types mismatch, e.g. one is an integer, the 5353 // other is floating point, or their sizes are different, flag it as an 5354 // error. 5355 if (OpInfo.hasMatchingInput()) { 5356 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5357 5358 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5359 if ((OpInfo.ConstraintVT.isInteger() != 5360 Input.ConstraintVT.isInteger()) || 5361 (OpInfo.ConstraintVT.getSizeInBits() != 5362 Input.ConstraintVT.getSizeInBits())) { 5363 report_fatal_error("Unsupported asm: input constraint" 5364 " with a matching output constraint of" 5365 " incompatible type!"); 5366 } 5367 Input.ConstraintVT = OpInfo.ConstraintVT; 5368 } 5369 } 5370 5371 // Compute the constraint code and ConstraintType to use. 5372 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 5373 5374 // If this is a memory input, and if the operand is not indirect, do what we 5375 // need to to provide an address for the memory input. 5376 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5377 !OpInfo.isIndirect) { 5378 assert(OpInfo.Type == InlineAsm::isInput && 5379 "Can only indirectify direct input operands!"); 5380 5381 // Memory operands really want the address of the value. If we don't have 5382 // an indirect input, put it in the constpool if we can, otherwise spill 5383 // it to a stack slot. 5384 5385 // If the operand is a float, integer, or vector constant, spill to a 5386 // constant pool entry to get its address. 5387 const Value *OpVal = OpInfo.CallOperandVal; 5388 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 5389 isa<ConstantVector>(OpVal)) { 5390 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 5391 TLI.getPointerTy()); 5392 } else { 5393 // Otherwise, create a stack slot and emit a store to it before the 5394 // asm. 5395 const Type *Ty = OpVal->getType(); 5396 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 5397 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty); 5398 MachineFunction &MF = DAG.getMachineFunction(); 5399 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5400 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 5401 Chain = DAG.getStore(Chain, getCurDebugLoc(), 5402 OpInfo.CallOperand, StackSlot, NULL, 0, 5403 false, false, 0); 5404 OpInfo.CallOperand = StackSlot; 5405 } 5406 5407 // There is no longer a Value* corresponding to this operand. 5408 OpInfo.CallOperandVal = 0; 5409 5410 // It is now an indirect operand. 5411 OpInfo.isIndirect = true; 5412 } 5413 5414 // If this constraint is for a specific register, allocate it before 5415 // anything else. 5416 if (OpInfo.ConstraintType == TargetLowering::C_Register) 5417 GetRegistersForValue(OpInfo, OutputRegs, InputRegs); 5418 } 5419 5420 ConstraintInfos.clear(); 5421 5422 // Second pass - Loop over all of the operands, assigning virtual or physregs 5423 // to register class operands. 5424 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5425 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5426 5427 // C_Register operands have already been allocated, Other/Memory don't need 5428 // to be. 5429 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 5430 GetRegistersForValue(OpInfo, OutputRegs, InputRegs); 5431 } 5432 5433 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 5434 std::vector<SDValue> AsmNodeOperands; 5435 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 5436 AsmNodeOperands.push_back( 5437 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 5438 TLI.getPointerTy())); 5439 5440 // If we have a !srcloc metadata node associated with it, we want to attach 5441 // this to the ultimately generated inline asm machineinstr. To do this, we 5442 // pass in the third operand as this (potentially null) inline asm MDNode. 5443 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 5444 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 5445 5446 // Remember the AlignStack bit as operand 3. 5447 AsmNodeOperands.push_back(DAG.getTargetConstant(IA->isAlignStack() ? 1 : 0, 5448 MVT::i1)); 5449 5450 // Loop over all of the inputs, copying the operand values into the 5451 // appropriate registers and processing the output regs. 5452 RegsForValue RetValRegs; 5453 5454 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 5455 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 5456 5457 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5458 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5459 5460 switch (OpInfo.Type) { 5461 case InlineAsm::isOutput: { 5462 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 5463 OpInfo.ConstraintType != TargetLowering::C_Register) { 5464 // Memory output, or 'other' output (e.g. 'X' constraint). 5465 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 5466 5467 // Add information to the INLINEASM node to know about this output. 5468 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 5469 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 5470 TLI.getPointerTy())); 5471 AsmNodeOperands.push_back(OpInfo.CallOperand); 5472 break; 5473 } 5474 5475 // Otherwise, this is a register or register class output. 5476 5477 // Copy the output from the appropriate register. Find a register that 5478 // we can use. 5479 if (OpInfo.AssignedRegs.Regs.empty()) 5480 report_fatal_error("Couldn't allocate output reg for constraint '" + 5481 Twine(OpInfo.ConstraintCode) + "'!"); 5482 5483 // If this is an indirect operand, store through the pointer after the 5484 // asm. 5485 if (OpInfo.isIndirect) { 5486 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 5487 OpInfo.CallOperandVal)); 5488 } else { 5489 // This is the result value of the call. 5490 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5491 // Concatenate this output onto the outputs list. 5492 RetValRegs.append(OpInfo.AssignedRegs); 5493 } 5494 5495 // Add information to the INLINEASM node to know that this register is 5496 // set. 5497 OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ? 5498 InlineAsm::Kind_RegDefEarlyClobber : 5499 InlineAsm::Kind_RegDef, 5500 false, 5501 0, 5502 DAG, 5503 AsmNodeOperands); 5504 break; 5505 } 5506 case InlineAsm::isInput: { 5507 SDValue InOperandVal = OpInfo.CallOperand; 5508 5509 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 5510 // If this is required to match an output register we have already set, 5511 // just use its register. 5512 unsigned OperandNo = OpInfo.getMatchedOperand(); 5513 5514 // Scan until we find the definition we already emitted of this operand. 5515 // When we find it, create a RegsForValue operand. 5516 unsigned CurOp = InlineAsm::Op_FirstOperand; 5517 for (; OperandNo; --OperandNo) { 5518 // Advance to the next operand. 5519 unsigned OpFlag = 5520 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 5521 assert((InlineAsm::isRegDefKind(OpFlag) || 5522 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 5523 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 5524 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 5525 } 5526 5527 unsigned OpFlag = 5528 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 5529 if (InlineAsm::isRegDefKind(OpFlag) || 5530 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 5531 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 5532 if (OpInfo.isIndirect) { 5533 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 5534 LLVMContext &Ctx = *DAG.getContext(); 5535 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 5536 " don't know how to handle tied " 5537 "indirect register inputs"); 5538 } 5539 5540 RegsForValue MatchedRegs; 5541 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 5542 EVT RegVT = AsmNodeOperands[CurOp+1].getValueType(); 5543 MatchedRegs.RegVTs.push_back(RegVT); 5544 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 5545 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 5546 i != e; ++i) 5547 MatchedRegs.Regs.push_back 5548 (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT))); 5549 5550 // Use the produced MatchedRegs object to 5551 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 5552 Chain, &Flag); 5553 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 5554 true, OpInfo.getMatchedOperand(), 5555 DAG, AsmNodeOperands); 5556 break; 5557 } 5558 5559 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 5560 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 5561 "Unexpected number of operands"); 5562 // Add information to the INLINEASM node to know about this input. 5563 // See InlineAsm.h isUseOperandTiedToDef. 5564 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 5565 OpInfo.getMatchedOperand()); 5566 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 5567 TLI.getPointerTy())); 5568 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 5569 break; 5570 } 5571 5572 // Treat indirect 'X' constraint as memory. 5573 if (OpInfo.ConstraintType == TargetLowering::C_Other && 5574 OpInfo.isIndirect) 5575 OpInfo.ConstraintType = TargetLowering::C_Memory; 5576 5577 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 5578 std::vector<SDValue> Ops; 5579 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0], 5580 Ops, DAG); 5581 if (Ops.empty()) 5582 report_fatal_error("Invalid operand for inline asm constraint '" + 5583 Twine(OpInfo.ConstraintCode) + "'!"); 5584 5585 // Add information to the INLINEASM node to know about this input. 5586 unsigned ResOpType = 5587 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 5588 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 5589 TLI.getPointerTy())); 5590 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 5591 break; 5592 } 5593 5594 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 5595 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 5596 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 5597 "Memory operands expect pointer values"); 5598 5599 // Add information to the INLINEASM node to know about this input. 5600 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 5601 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 5602 TLI.getPointerTy())); 5603 AsmNodeOperands.push_back(InOperandVal); 5604 break; 5605 } 5606 5607 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 5608 OpInfo.ConstraintType == TargetLowering::C_Register) && 5609 "Unknown constraint type!"); 5610 assert(!OpInfo.isIndirect && 5611 "Don't know how to handle indirect register inputs yet!"); 5612 5613 // Copy the input into the appropriate registers. 5614 if (OpInfo.AssignedRegs.Regs.empty() || 5615 !OpInfo.AssignedRegs.areValueTypesLegal(TLI)) 5616 report_fatal_error("Couldn't allocate input reg for constraint '" + 5617 Twine(OpInfo.ConstraintCode) + "'!"); 5618 5619 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 5620 Chain, &Flag); 5621 5622 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 5623 DAG, AsmNodeOperands); 5624 break; 5625 } 5626 case InlineAsm::isClobber: { 5627 // Add the clobbered value to the operand list, so that the register 5628 // allocator is aware that the physreg got clobbered. 5629 if (!OpInfo.AssignedRegs.Regs.empty()) 5630 OpInfo.AssignedRegs.AddInlineAsmOperands( 5631 InlineAsm::Kind_RegDefEarlyClobber, 5632 false, 0, DAG, 5633 AsmNodeOperands); 5634 break; 5635 } 5636 } 5637 } 5638 5639 // Finish up input operands. Set the input chain and add the flag last. 5640 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 5641 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 5642 5643 Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(), 5644 DAG.getVTList(MVT::Other, MVT::Flag), 5645 &AsmNodeOperands[0], AsmNodeOperands.size()); 5646 Flag = Chain.getValue(1); 5647 5648 // If this asm returns a register value, copy the result from that register 5649 // and set it as the value of the call. 5650 if (!RetValRegs.Regs.empty()) { 5651 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 5652 Chain, &Flag); 5653 5654 // FIXME: Why don't we do this for inline asms with MRVs? 5655 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 5656 EVT ResultType = TLI.getValueType(CS.getType()); 5657 5658 // If any of the results of the inline asm is a vector, it may have the 5659 // wrong width/num elts. This can happen for register classes that can 5660 // contain multiple different value types. The preg or vreg allocated may 5661 // not have the same VT as was expected. Convert it to the right type 5662 // with bit_convert. 5663 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 5664 Val = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 5665 ResultType, Val); 5666 5667 } else if (ResultType != Val.getValueType() && 5668 ResultType.isInteger() && Val.getValueType().isInteger()) { 5669 // If a result value was tied to an input value, the computed result may 5670 // have a wider width than the expected result. Extract the relevant 5671 // portion. 5672 Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val); 5673 } 5674 5675 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 5676 } 5677 5678 setValue(CS.getInstruction(), Val); 5679 // Don't need to use this as a chain in this case. 5680 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 5681 return; 5682 } 5683 5684 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 5685 5686 // Process indirect outputs, first output all of the flagged copies out of 5687 // physregs. 5688 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 5689 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 5690 const Value *Ptr = IndirectStoresToEmit[i].second; 5691 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 5692 Chain, &Flag); 5693 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 5694 } 5695 5696 // Emit the non-flagged stores from the physregs. 5697 SmallVector<SDValue, 8> OutChains; 5698 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 5699 SDValue Val = DAG.getStore(Chain, getCurDebugLoc(), 5700 StoresToEmit[i].first, 5701 getValue(StoresToEmit[i].second), 5702 StoresToEmit[i].second, 0, 5703 false, false, 0); 5704 OutChains.push_back(Val); 5705 } 5706 5707 if (!OutChains.empty()) 5708 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 5709 &OutChains[0], OutChains.size()); 5710 5711 DAG.setRoot(Chain); 5712 } 5713 5714 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 5715 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(), 5716 MVT::Other, getRoot(), 5717 getValue(I.getArgOperand(0)), 5718 DAG.getSrcValue(I.getArgOperand(0)))); 5719 } 5720 5721 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 5722 const TargetData &TD = *TLI.getTargetData(); 5723 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(), 5724 getRoot(), getValue(I.getOperand(0)), 5725 DAG.getSrcValue(I.getOperand(0)), 5726 TD.getABITypeAlignment(I.getType())); 5727 setValue(&I, V); 5728 DAG.setRoot(V.getValue(1)); 5729 } 5730 5731 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 5732 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(), 5733 MVT::Other, getRoot(), 5734 getValue(I.getArgOperand(0)), 5735 DAG.getSrcValue(I.getArgOperand(0)))); 5736 } 5737 5738 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 5739 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(), 5740 MVT::Other, getRoot(), 5741 getValue(I.getArgOperand(0)), 5742 getValue(I.getArgOperand(1)), 5743 DAG.getSrcValue(I.getArgOperand(0)), 5744 DAG.getSrcValue(I.getArgOperand(1)))); 5745 } 5746 5747 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 5748 /// implementation, which just calls LowerCall. 5749 /// FIXME: When all targets are 5750 /// migrated to using LowerCall, this hook should be integrated into SDISel. 5751 std::pair<SDValue, SDValue> 5752 TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy, 5753 bool RetSExt, bool RetZExt, bool isVarArg, 5754 bool isInreg, unsigned NumFixedArgs, 5755 CallingConv::ID CallConv, bool isTailCall, 5756 bool isReturnValueUsed, 5757 SDValue Callee, 5758 ArgListTy &Args, SelectionDAG &DAG, 5759 DebugLoc dl) const { 5760 // Handle all of the outgoing arguments. 5761 SmallVector<ISD::OutputArg, 32> Outs; 5762 SmallVector<SDValue, 32> OutVals; 5763 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 5764 SmallVector<EVT, 4> ValueVTs; 5765 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 5766 for (unsigned Value = 0, NumValues = ValueVTs.size(); 5767 Value != NumValues; ++Value) { 5768 EVT VT = ValueVTs[Value]; 5769 const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext()); 5770 SDValue Op = SDValue(Args[i].Node.getNode(), 5771 Args[i].Node.getResNo() + Value); 5772 ISD::ArgFlagsTy Flags; 5773 unsigned OriginalAlignment = 5774 getTargetData()->getABITypeAlignment(ArgTy); 5775 5776 if (Args[i].isZExt) 5777 Flags.setZExt(); 5778 if (Args[i].isSExt) 5779 Flags.setSExt(); 5780 if (Args[i].isInReg) 5781 Flags.setInReg(); 5782 if (Args[i].isSRet) 5783 Flags.setSRet(); 5784 if (Args[i].isByVal) { 5785 Flags.setByVal(); 5786 const PointerType *Ty = cast<PointerType>(Args[i].Ty); 5787 const Type *ElementTy = Ty->getElementType(); 5788 unsigned FrameAlign = getByValTypeAlignment(ElementTy); 5789 unsigned FrameSize = getTargetData()->getTypeAllocSize(ElementTy); 5790 // For ByVal, alignment should come from FE. BE will guess if this 5791 // info is not there but there are cases it cannot get right. 5792 if (Args[i].Alignment) 5793 FrameAlign = Args[i].Alignment; 5794 Flags.setByValAlign(FrameAlign); 5795 Flags.setByValSize(FrameSize); 5796 } 5797 if (Args[i].isNest) 5798 Flags.setNest(); 5799 Flags.setOrigAlign(OriginalAlignment); 5800 5801 EVT PartVT = getRegisterType(RetTy->getContext(), VT); 5802 unsigned NumParts = getNumRegisters(RetTy->getContext(), VT); 5803 SmallVector<SDValue, 4> Parts(NumParts); 5804 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 5805 5806 if (Args[i].isSExt) 5807 ExtendKind = ISD::SIGN_EXTEND; 5808 else if (Args[i].isZExt) 5809 ExtendKind = ISD::ZERO_EXTEND; 5810 5811 getCopyToParts(DAG, dl, Op, &Parts[0], NumParts, 5812 PartVT, ExtendKind); 5813 5814 for (unsigned j = 0; j != NumParts; ++j) { 5815 // if it isn't first piece, alignment must be 1 5816 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), 5817 i < NumFixedArgs); 5818 if (NumParts > 1 && j == 0) 5819 MyFlags.Flags.setSplit(); 5820 else if (j != 0) 5821 MyFlags.Flags.setOrigAlign(1); 5822 5823 Outs.push_back(MyFlags); 5824 OutVals.push_back(Parts[j]); 5825 } 5826 } 5827 } 5828 5829 // Handle the incoming return values from the call. 5830 SmallVector<ISD::InputArg, 32> Ins; 5831 SmallVector<EVT, 4> RetTys; 5832 ComputeValueVTs(*this, RetTy, RetTys); 5833 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 5834 EVT VT = RetTys[I]; 5835 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 5836 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 5837 for (unsigned i = 0; i != NumRegs; ++i) { 5838 ISD::InputArg MyFlags; 5839 MyFlags.VT = RegisterVT; 5840 MyFlags.Used = isReturnValueUsed; 5841 if (RetSExt) 5842 MyFlags.Flags.setSExt(); 5843 if (RetZExt) 5844 MyFlags.Flags.setZExt(); 5845 if (isInreg) 5846 MyFlags.Flags.setInReg(); 5847 Ins.push_back(MyFlags); 5848 } 5849 } 5850 5851 SmallVector<SDValue, 4> InVals; 5852 Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall, 5853 Outs, OutVals, Ins, dl, DAG, InVals); 5854 5855 // Verify that the target's LowerCall behaved as expected. 5856 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 5857 "LowerCall didn't return a valid chain!"); 5858 assert((!isTailCall || InVals.empty()) && 5859 "LowerCall emitted a return value for a tail call!"); 5860 assert((isTailCall || InVals.size() == Ins.size()) && 5861 "LowerCall didn't emit the correct number of values!"); 5862 5863 // For a tail call, the return value is merely live-out and there aren't 5864 // any nodes in the DAG representing it. Return a special value to 5865 // indicate that a tail call has been emitted and no more Instructions 5866 // should be processed in the current block. 5867 if (isTailCall) { 5868 DAG.setRoot(Chain); 5869 return std::make_pair(SDValue(), SDValue()); 5870 } 5871 5872 DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 5873 assert(InVals[i].getNode() && 5874 "LowerCall emitted a null value!"); 5875 assert(Ins[i].VT == InVals[i].getValueType() && 5876 "LowerCall emitted a value with the wrong type!"); 5877 }); 5878 5879 // Collect the legal value parts into potentially illegal values 5880 // that correspond to the original function's return values. 5881 ISD::NodeType AssertOp = ISD::DELETED_NODE; 5882 if (RetSExt) 5883 AssertOp = ISD::AssertSext; 5884 else if (RetZExt) 5885 AssertOp = ISD::AssertZext; 5886 SmallVector<SDValue, 4> ReturnValues; 5887 unsigned CurReg = 0; 5888 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 5889 EVT VT = RetTys[I]; 5890 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 5891 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 5892 5893 ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg], 5894 NumRegs, RegisterVT, VT, 5895 AssertOp)); 5896 CurReg += NumRegs; 5897 } 5898 5899 // For a function returning void, there is no return value. We can't create 5900 // such a node, so we just return a null return value in that case. In 5901 // that case, nothing will actualy look at the value. 5902 if (ReturnValues.empty()) 5903 return std::make_pair(SDValue(), Chain); 5904 5905 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 5906 DAG.getVTList(&RetTys[0], RetTys.size()), 5907 &ReturnValues[0], ReturnValues.size()); 5908 return std::make_pair(Res, Chain); 5909 } 5910 5911 void TargetLowering::LowerOperationWrapper(SDNode *N, 5912 SmallVectorImpl<SDValue> &Results, 5913 SelectionDAG &DAG) const { 5914 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 5915 if (Res.getNode()) 5916 Results.push_back(Res); 5917 } 5918 5919 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 5920 llvm_unreachable("LowerOperation not implemented for this target!"); 5921 return SDValue(); 5922 } 5923 5924 void 5925 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 5926 SDValue Op = getNonRegisterValue(V); 5927 assert((Op.getOpcode() != ISD::CopyFromReg || 5928 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 5929 "Copy from a reg to the same reg!"); 5930 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 5931 5932 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 5933 SDValue Chain = DAG.getEntryNode(); 5934 RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0); 5935 PendingExports.push_back(Chain); 5936 } 5937 5938 #include "llvm/CodeGen/SelectionDAGISel.h" 5939 5940 void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) { 5941 // If this is the entry block, emit arguments. 5942 const Function &F = *LLVMBB->getParent(); 5943 SelectionDAG &DAG = SDB->DAG; 5944 DebugLoc dl = SDB->getCurDebugLoc(); 5945 const TargetData *TD = TLI.getTargetData(); 5946 SmallVector<ISD::InputArg, 16> Ins; 5947 5948 // Check whether the function can return without sret-demotion. 5949 SmallVector<ISD::OutputArg, 4> Outs; 5950 GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(), 5951 Outs, TLI); 5952 5953 if (!FuncInfo->CanLowerReturn) { 5954 // Put in an sret pointer parameter before all the other parameters. 5955 SmallVector<EVT, 1> ValueVTs; 5956 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 5957 5958 // NOTE: Assuming that a pointer will never break down to more than one VT 5959 // or one register. 5960 ISD::ArgFlagsTy Flags; 5961 Flags.setSRet(); 5962 EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]); 5963 ISD::InputArg RetArg(Flags, RegisterVT, true); 5964 Ins.push_back(RetArg); 5965 } 5966 5967 // Set up the incoming argument description vector. 5968 unsigned Idx = 1; 5969 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 5970 I != E; ++I, ++Idx) { 5971 SmallVector<EVT, 4> ValueVTs; 5972 ComputeValueVTs(TLI, I->getType(), ValueVTs); 5973 bool isArgValueUsed = !I->use_empty(); 5974 for (unsigned Value = 0, NumValues = ValueVTs.size(); 5975 Value != NumValues; ++Value) { 5976 EVT VT = ValueVTs[Value]; 5977 const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 5978 ISD::ArgFlagsTy Flags; 5979 unsigned OriginalAlignment = 5980 TD->getABITypeAlignment(ArgTy); 5981 5982 if (F.paramHasAttr(Idx, Attribute::ZExt)) 5983 Flags.setZExt(); 5984 if (F.paramHasAttr(Idx, Attribute::SExt)) 5985 Flags.setSExt(); 5986 if (F.paramHasAttr(Idx, Attribute::InReg)) 5987 Flags.setInReg(); 5988 if (F.paramHasAttr(Idx, Attribute::StructRet)) 5989 Flags.setSRet(); 5990 if (F.paramHasAttr(Idx, Attribute::ByVal)) { 5991 Flags.setByVal(); 5992 const PointerType *Ty = cast<PointerType>(I->getType()); 5993 const Type *ElementTy = Ty->getElementType(); 5994 unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy); 5995 unsigned FrameSize = TD->getTypeAllocSize(ElementTy); 5996 // For ByVal, alignment should be passed from FE. BE will guess if 5997 // this info is not there but there are cases it cannot get right. 5998 if (F.getParamAlignment(Idx)) 5999 FrameAlign = F.getParamAlignment(Idx); 6000 Flags.setByValAlign(FrameAlign); 6001 Flags.setByValSize(FrameSize); 6002 } 6003 if (F.paramHasAttr(Idx, Attribute::Nest)) 6004 Flags.setNest(); 6005 Flags.setOrigAlign(OriginalAlignment); 6006 6007 EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6008 unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6009 for (unsigned i = 0; i != NumRegs; ++i) { 6010 ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed); 6011 if (NumRegs > 1 && i == 0) 6012 MyFlags.Flags.setSplit(); 6013 // if it isn't first piece, alignment must be 1 6014 else if (i > 0) 6015 MyFlags.Flags.setOrigAlign(1); 6016 Ins.push_back(MyFlags); 6017 } 6018 } 6019 } 6020 6021 // Call the target to set up the argument values. 6022 SmallVector<SDValue, 8> InVals; 6023 SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 6024 F.isVarArg(), Ins, 6025 dl, DAG, InVals); 6026 6027 // Verify that the target's LowerFormalArguments behaved as expected. 6028 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 6029 "LowerFormalArguments didn't return a valid chain!"); 6030 assert(InVals.size() == Ins.size() && 6031 "LowerFormalArguments didn't emit the correct number of values!"); 6032 DEBUG({ 6033 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 6034 assert(InVals[i].getNode() && 6035 "LowerFormalArguments emitted a null value!"); 6036 assert(Ins[i].VT == InVals[i].getValueType() && 6037 "LowerFormalArguments emitted a value with the wrong type!"); 6038 } 6039 }); 6040 6041 // Update the DAG with the new chain value resulting from argument lowering. 6042 DAG.setRoot(NewRoot); 6043 6044 // Set up the argument values. 6045 unsigned i = 0; 6046 Idx = 1; 6047 if (!FuncInfo->CanLowerReturn) { 6048 // Create a virtual register for the sret pointer, and put in a copy 6049 // from the sret argument into it. 6050 SmallVector<EVT, 1> ValueVTs; 6051 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6052 EVT VT = ValueVTs[0]; 6053 EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6054 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6055 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 6056 RegVT, VT, AssertOp); 6057 6058 MachineFunction& MF = SDB->DAG.getMachineFunction(); 6059 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 6060 unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)); 6061 FuncInfo->DemoteRegister = SRetReg; 6062 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(), 6063 SRetReg, ArgValue); 6064 DAG.setRoot(NewRoot); 6065 6066 // i indexes lowered arguments. Bump it past the hidden sret argument. 6067 // Idx indexes LLVM arguments. Don't touch it. 6068 ++i; 6069 } 6070 6071 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 6072 ++I, ++Idx) { 6073 SmallVector<SDValue, 4> ArgValues; 6074 SmallVector<EVT, 4> ValueVTs; 6075 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6076 unsigned NumValues = ValueVTs.size(); 6077 6078 // If this argument is unused then remember its value. It is used to generate 6079 // debugging information. 6080 if (I->use_empty() && NumValues) 6081 SDB->setUnusedArgValue(I, InVals[i]); 6082 6083 for (unsigned Value = 0; Value != NumValues; ++Value) { 6084 EVT VT = ValueVTs[Value]; 6085 EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6086 unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6087 6088 if (!I->use_empty()) { 6089 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6090 if (F.paramHasAttr(Idx, Attribute::SExt)) 6091 AssertOp = ISD::AssertSext; 6092 else if (F.paramHasAttr(Idx, Attribute::ZExt)) 6093 AssertOp = ISD::AssertZext; 6094 6095 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 6096 NumParts, PartVT, VT, 6097 AssertOp)); 6098 } 6099 6100 i += NumParts; 6101 } 6102 6103 if (!I->use_empty()) { 6104 SDValue Res; 6105 if (!ArgValues.empty()) 6106 Res = DAG.getMergeValues(&ArgValues[0], NumValues, 6107 SDB->getCurDebugLoc()); 6108 SDB->setValue(I, Res); 6109 6110 // If this argument is live outside of the entry block, insert a copy from 6111 // whereever we got it to the vreg that other BB's will reference it as. 6112 SDB->CopyToExportRegsIfNeeded(I); 6113 } 6114 } 6115 6116 assert(i == InVals.size() && "Argument register count mismatch!"); 6117 6118 // Finally, if the target has anything special to do, allow it to do so. 6119 // FIXME: this should insert code into the DAG! 6120 EmitFunctionEntryCode(); 6121 } 6122 6123 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 6124 /// ensure constants are generated when needed. Remember the virtual registers 6125 /// that need to be added to the Machine PHI nodes as input. We cannot just 6126 /// directly add them, because expansion might result in multiple MBB's for one 6127 /// BB. As such, the start of the BB might correspond to a different MBB than 6128 /// the end. 6129 /// 6130 void 6131 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 6132 const TerminatorInst *TI = LLVMBB->getTerminator(); 6133 6134 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 6135 6136 // Check successor nodes' PHI nodes that expect a constant to be available 6137 // from this block. 6138 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 6139 const BasicBlock *SuccBB = TI->getSuccessor(succ); 6140 if (!isa<PHINode>(SuccBB->begin())) continue; 6141 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 6142 6143 // If this terminator has multiple identical successors (common for 6144 // switches), only handle each succ once. 6145 if (!SuccsHandled.insert(SuccMBB)) continue; 6146 6147 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 6148 6149 // At this point we know that there is a 1-1 correspondence between LLVM PHI 6150 // nodes and Machine PHI nodes, but the incoming operands have not been 6151 // emitted yet. 6152 for (BasicBlock::const_iterator I = SuccBB->begin(); 6153 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 6154 // Ignore dead phi's. 6155 if (PN->use_empty()) continue; 6156 6157 unsigned Reg; 6158 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 6159 6160 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 6161 unsigned &RegOut = ConstantsOut[C]; 6162 if (RegOut == 0) { 6163 RegOut = FuncInfo.CreateRegs(C->getType()); 6164 CopyValueToVirtualRegister(C, RegOut); 6165 } 6166 Reg = RegOut; 6167 } else { 6168 DenseMap<const Value *, unsigned>::iterator I = 6169 FuncInfo.ValueMap.find(PHIOp); 6170 if (I != FuncInfo.ValueMap.end()) 6171 Reg = I->second; 6172 else { 6173 assert(isa<AllocaInst>(PHIOp) && 6174 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 6175 "Didn't codegen value into a register!??"); 6176 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 6177 CopyValueToVirtualRegister(PHIOp, Reg); 6178 } 6179 } 6180 6181 // Remember that this register needs to added to the machine PHI node as 6182 // the input for this MBB. 6183 SmallVector<EVT, 4> ValueVTs; 6184 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 6185 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 6186 EVT VT = ValueVTs[vti]; 6187 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 6188 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 6189 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 6190 Reg += NumRegisters; 6191 } 6192 } 6193 } 6194 ConstantsOut.clear(); 6195 } 6196