xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 054123550fcaddf261a4ebd23644bc59e3f04691)
1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SelectionDAGBuilder.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/BranchProbabilityInfo.h"
22 #include "llvm/Analysis/ConstantFolding.h"
23 #include "llvm/Analysis/TargetLibraryInfo.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/Analysis/VectorUtils.h"
26 #include "llvm/CodeGen/FastISel.h"
27 #include "llvm/CodeGen/FunctionLoweringInfo.h"
28 #include "llvm/CodeGen/GCMetadata.h"
29 #include "llvm/CodeGen/GCStrategy.h"
30 #include "llvm/CodeGen/MachineFrameInfo.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/CodeGen/MachineInstrBuilder.h"
33 #include "llvm/CodeGen/MachineJumpTableInfo.h"
34 #include "llvm/CodeGen/MachineModuleInfo.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/SelectionDAG.h"
37 #include "llvm/CodeGen/StackMaps.h"
38 #include "llvm/CodeGen/WinEHFuncInfo.h"
39 #include "llvm/IR/CallingConv.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/DebugInfo.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GlobalVariable.h"
46 #include "llvm/IR/InlineAsm.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/IntrinsicInst.h"
49 #include "llvm/IR/Intrinsics.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/Statepoint.h"
53 #include "llvm/MC/MCSymbol.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/MathExtras.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include "llvm/Target/TargetFrameLowering.h"
60 #include "llvm/Target/TargetInstrInfo.h"
61 #include "llvm/Target/TargetIntrinsicInfo.h"
62 #include "llvm/Target/TargetLowering.h"
63 #include "llvm/Target/TargetOptions.h"
64 #include "llvm/Target/TargetSelectionDAGInfo.h"
65 #include "llvm/Target/TargetSubtargetInfo.h"
66 #include <algorithm>
67 #include <utility>
68 using namespace llvm;
69 
70 #define DEBUG_TYPE "isel"
71 
72 /// LimitFloatPrecision - Generate low-precision inline sequences for
73 /// some float libcalls (6, 8 or 12 bits).
74 static unsigned LimitFloatPrecision;
75 
76 static cl::opt<unsigned, true>
77 LimitFPPrecision("limit-float-precision",
78                  cl::desc("Generate low-precision inline sequences "
79                           "for some float libcalls"),
80                  cl::location(LimitFloatPrecision),
81                  cl::init(0));
82 
83 static cl::opt<bool>
84 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden,
85                 cl::desc("Enable fast-math-flags for DAG nodes"));
86 
87 // Limit the width of DAG chains. This is important in general to prevent
88 // DAG-based analysis from blowing up. For example, alias analysis and
89 // load clustering may not complete in reasonable time. It is difficult to
90 // recognize and avoid this situation within each individual analysis, and
91 // future analyses are likely to have the same behavior. Limiting DAG width is
92 // the safe approach and will be especially important with global DAGs.
93 //
94 // MaxParallelChains default is arbitrarily high to avoid affecting
95 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
96 // sequence over this should have been converted to llvm.memcpy by the
97 // frontend. It easy to induce this behavior with .ll code such as:
98 // %buffer = alloca [4096 x i8]
99 // %data = load [4096 x i8]* %argPtr
100 // store [4096 x i8] %data, [4096 x i8]* %buffer
101 static const unsigned MaxParallelChains = 64;
102 
103 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
104                                       const SDValue *Parts, unsigned NumParts,
105                                       MVT PartVT, EVT ValueVT, const Value *V);
106 
107 /// getCopyFromParts - Create a value that contains the specified legal parts
108 /// combined into the value they represent.  If the parts combine to a type
109 /// larger then ValueVT then AssertOp can be used to specify whether the extra
110 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
111 /// (ISD::AssertSext).
112 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL,
113                                 const SDValue *Parts,
114                                 unsigned NumParts, MVT PartVT, EVT ValueVT,
115                                 const Value *V,
116                                 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
117   if (ValueVT.isVector())
118     return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
119                                   PartVT, ValueVT, V);
120 
121   assert(NumParts > 0 && "No parts to assemble!");
122   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
123   SDValue Val = Parts[0];
124 
125   if (NumParts > 1) {
126     // Assemble the value from multiple parts.
127     if (ValueVT.isInteger()) {
128       unsigned PartBits = PartVT.getSizeInBits();
129       unsigned ValueBits = ValueVT.getSizeInBits();
130 
131       // Assemble the power of 2 part.
132       unsigned RoundParts = NumParts & (NumParts - 1) ?
133         1 << Log2_32(NumParts) : NumParts;
134       unsigned RoundBits = PartBits * RoundParts;
135       EVT RoundVT = RoundBits == ValueBits ?
136         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
137       SDValue Lo, Hi;
138 
139       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
140 
141       if (RoundParts > 2) {
142         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
143                               PartVT, HalfVT, V);
144         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
145                               RoundParts / 2, PartVT, HalfVT, V);
146       } else {
147         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
148         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
149       }
150 
151       if (DAG.getDataLayout().isBigEndian())
152         std::swap(Lo, Hi);
153 
154       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
155 
156       if (RoundParts < NumParts) {
157         // Assemble the trailing non-power-of-2 part.
158         unsigned OddParts = NumParts - RoundParts;
159         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
160         Hi = getCopyFromParts(DAG, DL,
161                               Parts + RoundParts, OddParts, PartVT, OddVT, V);
162 
163         // Combine the round and odd parts.
164         Lo = Val;
165         if (DAG.getDataLayout().isBigEndian())
166           std::swap(Lo, Hi);
167         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
168         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
169         Hi =
170             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
171                         DAG.getConstant(Lo.getValueType().getSizeInBits(), DL,
172                                         TLI.getPointerTy(DAG.getDataLayout())));
173         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
174         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
175       }
176     } else if (PartVT.isFloatingPoint()) {
177       // FP split into multiple FP parts (for ppcf128)
178       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
179              "Unexpected split");
180       SDValue Lo, Hi;
181       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
182       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
183       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
184         std::swap(Lo, Hi);
185       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
186     } else {
187       // FP split into integer parts (soft fp)
188       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
189              !PartVT.isVector() && "Unexpected split");
190       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
191       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
192     }
193   }
194 
195   // There is now one part, held in Val.  Correct it to match ValueVT.
196   EVT PartEVT = Val.getValueType();
197 
198   if (PartEVT == ValueVT)
199     return Val;
200 
201   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
202       ValueVT.bitsLT(PartEVT)) {
203     // For an FP value in an integer part, we need to truncate to the right
204     // width first.
205     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
206     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
207   }
208 
209   if (PartEVT.isInteger() && ValueVT.isInteger()) {
210     if (ValueVT.bitsLT(PartEVT)) {
211       // For a truncate, see if we have any information to
212       // indicate whether the truncated bits will always be
213       // zero or sign-extension.
214       if (AssertOp != ISD::DELETED_NODE)
215         Val = DAG.getNode(AssertOp, DL, PartEVT, Val,
216                           DAG.getValueType(ValueVT));
217       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
218     }
219     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
220   }
221 
222   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
223     // FP_ROUND's are always exact here.
224     if (ValueVT.bitsLT(Val.getValueType()))
225       return DAG.getNode(
226           ISD::FP_ROUND, DL, ValueVT, Val,
227           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
228 
229     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
230   }
231 
232   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
233     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
234 
235   llvm_unreachable("Unknown mismatch!");
236 }
237 
238 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
239                                               const Twine &ErrMsg) {
240   const Instruction *I = dyn_cast_or_null<Instruction>(V);
241   if (!V)
242     return Ctx.emitError(ErrMsg);
243 
244   const char *AsmError = ", possible invalid constraint for vector type";
245   if (const CallInst *CI = dyn_cast<CallInst>(I))
246     if (isa<InlineAsm>(CI->getCalledValue()))
247       return Ctx.emitError(I, ErrMsg + AsmError);
248 
249   return Ctx.emitError(I, ErrMsg);
250 }
251 
252 /// getCopyFromPartsVector - Create a value that contains the specified legal
253 /// parts combined into the value they represent.  If the parts combine to a
254 /// type larger then ValueVT then AssertOp can be used to specify whether the
255 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
256 /// ValueVT (ISD::AssertSext).
257 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
258                                       const SDValue *Parts, unsigned NumParts,
259                                       MVT PartVT, EVT ValueVT, const Value *V) {
260   assert(ValueVT.isVector() && "Not a vector value");
261   assert(NumParts > 0 && "No parts to assemble!");
262   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
263   SDValue Val = Parts[0];
264 
265   // Handle a multi-element vector.
266   if (NumParts > 1) {
267     EVT IntermediateVT;
268     MVT RegisterVT;
269     unsigned NumIntermediates;
270     unsigned NumRegs =
271     TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
272                                NumIntermediates, RegisterVT);
273     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
274     NumParts = NumRegs; // Silence a compiler warning.
275     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
276     assert(RegisterVT.getSizeInBits() ==
277            Parts[0].getSimpleValueType().getSizeInBits() &&
278            "Part type sizes don't match!");
279 
280     // Assemble the parts into intermediate operands.
281     SmallVector<SDValue, 8> Ops(NumIntermediates);
282     if (NumIntermediates == NumParts) {
283       // If the register was not expanded, truncate or copy the value,
284       // as appropriate.
285       for (unsigned i = 0; i != NumParts; ++i)
286         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
287                                   PartVT, IntermediateVT, V);
288     } else if (NumParts > 0) {
289       // If the intermediate type was expanded, build the intermediate
290       // operands from the parts.
291       assert(NumParts % NumIntermediates == 0 &&
292              "Must expand into a divisible number of parts!");
293       unsigned Factor = NumParts / NumIntermediates;
294       for (unsigned i = 0; i != NumIntermediates; ++i)
295         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
296                                   PartVT, IntermediateVT, V);
297     }
298 
299     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
300     // intermediate operands.
301     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
302                                                 : ISD::BUILD_VECTOR,
303                       DL, ValueVT, Ops);
304   }
305 
306   // There is now one part, held in Val.  Correct it to match ValueVT.
307   EVT PartEVT = Val.getValueType();
308 
309   if (PartEVT == ValueVT)
310     return Val;
311 
312   if (PartEVT.isVector()) {
313     // If the element type of the source/dest vectors are the same, but the
314     // parts vector has more elements than the value vector, then we have a
315     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
316     // elements we want.
317     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
318       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
319              "Cannot narrow, it would be a lossy transformation");
320       return DAG.getNode(
321           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
322           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
323     }
324 
325     // Vector/Vector bitcast.
326     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
327       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
328 
329     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
330       "Cannot handle this kind of promotion");
331     // Promoted vector extract
332     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
333 
334   }
335 
336   // Trivial bitcast if the types are the same size and the destination
337   // vector type is legal.
338   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
339       TLI.isTypeLegal(ValueVT))
340     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
341 
342   // Handle cases such as i8 -> <1 x i1>
343   if (ValueVT.getVectorNumElements() != 1) {
344     diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
345                                       "non-trivial scalar-to-vector conversion");
346     return DAG.getUNDEF(ValueVT);
347   }
348 
349   if (ValueVT.getVectorNumElements() == 1 &&
350       ValueVT.getVectorElementType() != PartEVT)
351     Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType());
352 
353   return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
354 }
355 
356 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl,
357                                  SDValue Val, SDValue *Parts, unsigned NumParts,
358                                  MVT PartVT, const Value *V);
359 
360 /// getCopyToParts - Create a series of nodes that contain the specified value
361 /// split into legal parts.  If the parts contain more bits than Val, then, for
362 /// integers, ExtendKind can be used to specify how to generate the extra bits.
363 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL,
364                            SDValue Val, SDValue *Parts, unsigned NumParts,
365                            MVT PartVT, const Value *V,
366                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
367   EVT ValueVT = Val.getValueType();
368 
369   // Handle the vector case separately.
370   if (ValueVT.isVector())
371     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
372 
373   unsigned PartBits = PartVT.getSizeInBits();
374   unsigned OrigNumParts = NumParts;
375   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
376          "Copying to an illegal type!");
377 
378   if (NumParts == 0)
379     return;
380 
381   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
382   EVT PartEVT = PartVT;
383   if (PartEVT == ValueVT) {
384     assert(NumParts == 1 && "No-op copy with multiple parts!");
385     Parts[0] = Val;
386     return;
387   }
388 
389   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
390     // If the parts cover more bits than the value has, promote the value.
391     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
392       assert(NumParts == 1 && "Do not know what to promote to!");
393       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
394     } else {
395       if (ValueVT.isFloatingPoint()) {
396         // FP values need to be bitcast, then extended if they are being put
397         // into a larger container.
398         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
399         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
400       }
401       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
402              ValueVT.isInteger() &&
403              "Unknown mismatch!");
404       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
405       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
406       if (PartVT == MVT::x86mmx)
407         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
408     }
409   } else if (PartBits == ValueVT.getSizeInBits()) {
410     // Different types of the same size.
411     assert(NumParts == 1 && PartEVT != ValueVT);
412     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
413   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
414     // If the parts cover less bits than value has, truncate the value.
415     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
416            ValueVT.isInteger() &&
417            "Unknown mismatch!");
418     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
419     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
420     if (PartVT == MVT::x86mmx)
421       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
422   }
423 
424   // The value may have changed - recompute ValueVT.
425   ValueVT = Val.getValueType();
426   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
427          "Failed to tile the value with PartVT!");
428 
429   if (NumParts == 1) {
430     if (PartEVT != ValueVT)
431       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
432                                         "scalar-to-vector conversion failed");
433 
434     Parts[0] = Val;
435     return;
436   }
437 
438   // Expand the value into multiple parts.
439   if (NumParts & (NumParts - 1)) {
440     // The number of parts is not a power of 2.  Split off and copy the tail.
441     assert(PartVT.isInteger() && ValueVT.isInteger() &&
442            "Do not know what to expand to!");
443     unsigned RoundParts = 1 << Log2_32(NumParts);
444     unsigned RoundBits = RoundParts * PartBits;
445     unsigned OddParts = NumParts - RoundParts;
446     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
447                                  DAG.getIntPtrConstant(RoundBits, DL));
448     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
449 
450     if (DAG.getDataLayout().isBigEndian())
451       // The odd parts were reversed by getCopyToParts - unreverse them.
452       std::reverse(Parts + RoundParts, Parts + NumParts);
453 
454     NumParts = RoundParts;
455     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
456     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
457   }
458 
459   // The number of parts is a power of 2.  Repeatedly bisect the value using
460   // EXTRACT_ELEMENT.
461   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
462                          EVT::getIntegerVT(*DAG.getContext(),
463                                            ValueVT.getSizeInBits()),
464                          Val);
465 
466   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
467     for (unsigned i = 0; i < NumParts; i += StepSize) {
468       unsigned ThisBits = StepSize * PartBits / 2;
469       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
470       SDValue &Part0 = Parts[i];
471       SDValue &Part1 = Parts[i+StepSize/2];
472 
473       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
474                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
475       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
476                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
477 
478       if (ThisBits == PartBits && ThisVT != PartVT) {
479         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
480         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
481       }
482     }
483   }
484 
485   if (DAG.getDataLayout().isBigEndian())
486     std::reverse(Parts, Parts + OrigNumParts);
487 }
488 
489 
490 /// getCopyToPartsVector - Create a series of nodes that contain the specified
491 /// value split into legal parts.
492 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL,
493                                  SDValue Val, SDValue *Parts, unsigned NumParts,
494                                  MVT PartVT, const Value *V) {
495   EVT ValueVT = Val.getValueType();
496   assert(ValueVT.isVector() && "Not a vector");
497   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
498 
499   if (NumParts == 1) {
500     EVT PartEVT = PartVT;
501     if (PartEVT == ValueVT) {
502       // Nothing to do.
503     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
504       // Bitconvert vector->vector case.
505       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
506     } else if (PartVT.isVector() &&
507                PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
508                PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
509       EVT ElementVT = PartVT.getVectorElementType();
510       // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
511       // undef elements.
512       SmallVector<SDValue, 16> Ops;
513       for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
514         Ops.push_back(DAG.getNode(
515             ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val,
516             DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))));
517 
518       for (unsigned i = ValueVT.getVectorNumElements(),
519            e = PartVT.getVectorNumElements(); i != e; ++i)
520         Ops.push_back(DAG.getUNDEF(ElementVT));
521 
522       Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops);
523 
524       // FIXME: Use CONCAT for 2x -> 4x.
525 
526       //SDValue UndefElts = DAG.getUNDEF(VectorTy);
527       //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
528     } else if (PartVT.isVector() &&
529                PartEVT.getVectorElementType().bitsGE(
530                  ValueVT.getVectorElementType()) &&
531                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
532 
533       // Promoted vector extract
534       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
535     } else{
536       // Vector -> scalar conversion.
537       assert(ValueVT.getVectorNumElements() == 1 &&
538              "Only trivial vector-to-scalar conversions should get here!");
539       Val = DAG.getNode(
540           ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
541           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
542 
543       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
544     }
545 
546     Parts[0] = Val;
547     return;
548   }
549 
550   // Handle a multi-element vector.
551   EVT IntermediateVT;
552   MVT RegisterVT;
553   unsigned NumIntermediates;
554   unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
555                                                 IntermediateVT,
556                                                 NumIntermediates, RegisterVT);
557   unsigned NumElements = ValueVT.getVectorNumElements();
558 
559   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
560   NumParts = NumRegs; // Silence a compiler warning.
561   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
562 
563   // Split the vector into intermediate operands.
564   SmallVector<SDValue, 8> Ops(NumIntermediates);
565   for (unsigned i = 0; i != NumIntermediates; ++i) {
566     if (IntermediateVT.isVector())
567       Ops[i] =
568           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
569                       DAG.getConstant(i * (NumElements / NumIntermediates), DL,
570                                       TLI.getVectorIdxTy(DAG.getDataLayout())));
571     else
572       Ops[i] = DAG.getNode(
573           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
574           DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
575   }
576 
577   // Split the intermediate operands into legal parts.
578   if (NumParts == NumIntermediates) {
579     // If the register was not expanded, promote or copy the value,
580     // as appropriate.
581     for (unsigned i = 0; i != NumParts; ++i)
582       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
583   } else if (NumParts > 0) {
584     // If the intermediate type was expanded, split each the value into
585     // legal parts.
586     assert(NumIntermediates != 0 && "division by zero");
587     assert(NumParts % NumIntermediates == 0 &&
588            "Must expand into a divisible number of parts!");
589     unsigned Factor = NumParts / NumIntermediates;
590     for (unsigned i = 0; i != NumIntermediates; ++i)
591       getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
592   }
593 }
594 
595 RegsForValue::RegsForValue() {}
596 
597 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
598                            EVT valuevt)
599     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
600 
601 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
602                            const DataLayout &DL, unsigned Reg, Type *Ty) {
603   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
604 
605   for (EVT ValueVT : ValueVTs) {
606     unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT);
607     MVT RegisterVT = TLI.getRegisterType(Context, ValueVT);
608     for (unsigned i = 0; i != NumRegs; ++i)
609       Regs.push_back(Reg + i);
610     RegVTs.push_back(RegisterVT);
611     Reg += NumRegs;
612   }
613 }
614 
615 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
616 /// this value and returns the result as a ValueVT value.  This uses
617 /// Chain/Flag as the input and updates them for the output Chain/Flag.
618 /// If the Flag pointer is NULL, no flag is used.
619 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
620                                       FunctionLoweringInfo &FuncInfo,
621                                       SDLoc dl,
622                                       SDValue &Chain, SDValue *Flag,
623                                       const Value *V) const {
624   // A Value with type {} or [0 x %t] needs no registers.
625   if (ValueVTs.empty())
626     return SDValue();
627 
628   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
629 
630   // Assemble the legal parts into the final values.
631   SmallVector<SDValue, 4> Values(ValueVTs.size());
632   SmallVector<SDValue, 8> Parts;
633   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
634     // Copy the legal parts from the registers.
635     EVT ValueVT = ValueVTs[Value];
636     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
637     MVT RegisterVT = RegVTs[Value];
638 
639     Parts.resize(NumRegs);
640     for (unsigned i = 0; i != NumRegs; ++i) {
641       SDValue P;
642       if (!Flag) {
643         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
644       } else {
645         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
646         *Flag = P.getValue(2);
647       }
648 
649       Chain = P.getValue(1);
650       Parts[i] = P;
651 
652       // If the source register was virtual and if we know something about it,
653       // add an assert node.
654       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
655           !RegisterVT.isInteger() || RegisterVT.isVector())
656         continue;
657 
658       const FunctionLoweringInfo::LiveOutInfo *LOI =
659         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
660       if (!LOI)
661         continue;
662 
663       unsigned RegSize = RegisterVT.getSizeInBits();
664       unsigned NumSignBits = LOI->NumSignBits;
665       unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
666 
667       if (NumZeroBits == RegSize) {
668         // The current value is a zero.
669         // Explicitly express that as it would be easier for
670         // optimizations to kick in.
671         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
672         continue;
673       }
674 
675       // FIXME: We capture more information than the dag can represent.  For
676       // now, just use the tightest assertzext/assertsext possible.
677       bool isSExt = true;
678       EVT FromVT(MVT::Other);
679       if (NumSignBits == RegSize)
680         isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
681       else if (NumZeroBits >= RegSize-1)
682         isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
683       else if (NumSignBits > RegSize-8)
684         isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
685       else if (NumZeroBits >= RegSize-8)
686         isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
687       else if (NumSignBits > RegSize-16)
688         isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
689       else if (NumZeroBits >= RegSize-16)
690         isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
691       else if (NumSignBits > RegSize-32)
692         isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
693       else if (NumZeroBits >= RegSize-32)
694         isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
695       else
696         continue;
697 
698       // Add an assertion node.
699       assert(FromVT != MVT::Other);
700       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
701                              RegisterVT, P, DAG.getValueType(FromVT));
702     }
703 
704     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
705                                      NumRegs, RegisterVT, ValueVT, V);
706     Part += NumRegs;
707     Parts.clear();
708   }
709 
710   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
711 }
712 
713 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
714 /// specified value into the registers specified by this object.  This uses
715 /// Chain/Flag as the input and updates them for the output Chain/Flag.
716 /// If the Flag pointer is NULL, no flag is used.
717 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
718                                  SDValue &Chain, SDValue *Flag, const Value *V,
719                                  ISD::NodeType PreferredExtendType) const {
720   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
721   ISD::NodeType ExtendKind = PreferredExtendType;
722 
723   // Get the list of the values's legal parts.
724   unsigned NumRegs = Regs.size();
725   SmallVector<SDValue, 8> Parts(NumRegs);
726   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
727     EVT ValueVT = ValueVTs[Value];
728     unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
729     MVT RegisterVT = RegVTs[Value];
730 
731     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
732       ExtendKind = ISD::ZERO_EXTEND;
733 
734     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
735                    &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
736     Part += NumParts;
737   }
738 
739   // Copy the parts into the registers.
740   SmallVector<SDValue, 8> Chains(NumRegs);
741   for (unsigned i = 0; i != NumRegs; ++i) {
742     SDValue Part;
743     if (!Flag) {
744       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
745     } else {
746       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
747       *Flag = Part.getValue(1);
748     }
749 
750     Chains[i] = Part.getValue(0);
751   }
752 
753   if (NumRegs == 1 || Flag)
754     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
755     // flagged to it. That is the CopyToReg nodes and the user are considered
756     // a single scheduling unit. If we create a TokenFactor and return it as
757     // chain, then the TokenFactor is both a predecessor (operand) of the
758     // user as well as a successor (the TF operands are flagged to the user).
759     // c1, f1 = CopyToReg
760     // c2, f2 = CopyToReg
761     // c3     = TokenFactor c1, c2
762     // ...
763     //        = op c3, ..., f2
764     Chain = Chains[NumRegs-1];
765   else
766     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
767 }
768 
769 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
770 /// operand list.  This adds the code marker and includes the number of
771 /// values added into it.
772 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
773                                         unsigned MatchingIdx, SDLoc dl,
774                                         SelectionDAG &DAG,
775                                         std::vector<SDValue> &Ops) const {
776   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
777 
778   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
779   if (HasMatching)
780     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
781   else if (!Regs.empty() &&
782            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
783     // Put the register class of the virtual registers in the flag word.  That
784     // way, later passes can recompute register class constraints for inline
785     // assembly as well as normal instructions.
786     // Don't do this for tied operands that can use the regclass information
787     // from the def.
788     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
789     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
790     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
791   }
792 
793   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
794   Ops.push_back(Res);
795 
796   unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
797   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
798     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
799     MVT RegisterVT = RegVTs[Value];
800     for (unsigned i = 0; i != NumRegs; ++i) {
801       assert(Reg < Regs.size() && "Mismatch in # registers expected");
802       unsigned TheReg = Regs[Reg++];
803       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
804 
805       if (TheReg == SP && Code == InlineAsm::Kind_Clobber) {
806         // If we clobbered the stack pointer, MFI should know about it.
807         assert(DAG.getMachineFunction().getFrameInfo()->
808             hasOpaqueSPAdjustment());
809       }
810     }
811   }
812 }
813 
814 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
815                                const TargetLibraryInfo *li) {
816   AA = &aa;
817   GFI = gfi;
818   LibInfo = li;
819   DL = &DAG.getDataLayout();
820   Context = DAG.getContext();
821   LPadToCallSiteMap.clear();
822 }
823 
824 /// clear - Clear out the current SelectionDAG and the associated
825 /// state and prepare this SelectionDAGBuilder object to be used
826 /// for a new block. This doesn't clear out information about
827 /// additional blocks that are needed to complete switch lowering
828 /// or PHI node updating; that information is cleared out as it is
829 /// consumed.
830 void SelectionDAGBuilder::clear() {
831   NodeMap.clear();
832   UnusedArgNodeMap.clear();
833   PendingLoads.clear();
834   PendingExports.clear();
835   CurInst = nullptr;
836   HasTailCall = false;
837   SDNodeOrder = LowestSDNodeOrder;
838   StatepointLowering.clear();
839 }
840 
841 /// clearDanglingDebugInfo - Clear the dangling debug information
842 /// map. This function is separated from the clear so that debug
843 /// information that is dangling in a basic block can be properly
844 /// resolved in a different basic block. This allows the
845 /// SelectionDAG to resolve dangling debug information attached
846 /// to PHI nodes.
847 void SelectionDAGBuilder::clearDanglingDebugInfo() {
848   DanglingDebugInfoMap.clear();
849 }
850 
851 /// getRoot - Return the current virtual root of the Selection DAG,
852 /// flushing any PendingLoad items. This must be done before emitting
853 /// a store or any other node that may need to be ordered after any
854 /// prior load instructions.
855 ///
856 SDValue SelectionDAGBuilder::getRoot() {
857   if (PendingLoads.empty())
858     return DAG.getRoot();
859 
860   if (PendingLoads.size() == 1) {
861     SDValue Root = PendingLoads[0];
862     DAG.setRoot(Root);
863     PendingLoads.clear();
864     return Root;
865   }
866 
867   // Otherwise, we have to make a token factor node.
868   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
869                              PendingLoads);
870   PendingLoads.clear();
871   DAG.setRoot(Root);
872   return Root;
873 }
874 
875 /// getControlRoot - Similar to getRoot, but instead of flushing all the
876 /// PendingLoad items, flush all the PendingExports items. It is necessary
877 /// to do this before emitting a terminator instruction.
878 ///
879 SDValue SelectionDAGBuilder::getControlRoot() {
880   SDValue Root = DAG.getRoot();
881 
882   if (PendingExports.empty())
883     return Root;
884 
885   // Turn all of the CopyToReg chains into one factored node.
886   if (Root.getOpcode() != ISD::EntryToken) {
887     unsigned i = 0, e = PendingExports.size();
888     for (; i != e; ++i) {
889       assert(PendingExports[i].getNode()->getNumOperands() > 1);
890       if (PendingExports[i].getNode()->getOperand(0) == Root)
891         break;  // Don't add the root if we already indirectly depend on it.
892     }
893 
894     if (i == e)
895       PendingExports.push_back(Root);
896   }
897 
898   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
899                      PendingExports);
900   PendingExports.clear();
901   DAG.setRoot(Root);
902   return Root;
903 }
904 
905 void SelectionDAGBuilder::visit(const Instruction &I) {
906   // Set up outgoing PHI node register values before emitting the terminator.
907   if (isa<TerminatorInst>(&I))
908     HandlePHINodesInSuccessorBlocks(I.getParent());
909 
910   ++SDNodeOrder;
911 
912   CurInst = &I;
913 
914   visit(I.getOpcode(), I);
915 
916   if (!isa<TerminatorInst>(&I) && !HasTailCall &&
917       !isStatepoint(&I)) // statepoints handle their exports internally
918     CopyToExportRegsIfNeeded(&I);
919 
920   CurInst = nullptr;
921 }
922 
923 void SelectionDAGBuilder::visitPHI(const PHINode &) {
924   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
925 }
926 
927 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
928   // Note: this doesn't use InstVisitor, because it has to work with
929   // ConstantExpr's in addition to instructions.
930   switch (Opcode) {
931   default: llvm_unreachable("Unknown instruction type encountered!");
932     // Build the switch statement using the Instruction.def file.
933 #define HANDLE_INST(NUM, OPCODE, CLASS) \
934     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
935 #include "llvm/IR/Instruction.def"
936   }
937 }
938 
939 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
940 // generate the debug data structures now that we've seen its definition.
941 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
942                                                    SDValue Val) {
943   DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
944   if (DDI.getDI()) {
945     const DbgValueInst *DI = DDI.getDI();
946     DebugLoc dl = DDI.getdl();
947     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
948     DILocalVariable *Variable = DI->getVariable();
949     DIExpression *Expr = DI->getExpression();
950     assert(Variable->isValidLocationForIntrinsic(dl) &&
951            "Expected inlined-at fields to agree");
952     uint64_t Offset = DI->getOffset();
953     SDDbgValue *SDV;
954     if (Val.getNode()) {
955       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, false,
956                                     Val)) {
957         SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(),
958                               false, Offset, dl, DbgSDNodeOrder);
959         DAG.AddDbgValue(SDV, Val.getNode(), false);
960       }
961     } else
962       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
963     DanglingDebugInfoMap[V] = DanglingDebugInfo();
964   }
965 }
966 
967 /// getCopyFromRegs - If there was virtual register allocated for the value V
968 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
969 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
970   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
971   SDValue Result;
972 
973   if (It != FuncInfo.ValueMap.end()) {
974     unsigned InReg = It->second;
975     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
976                      DAG.getDataLayout(), InReg, Ty);
977     SDValue Chain = DAG.getEntryNode();
978     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
979     resolveDanglingDebugInfo(V, Result);
980   }
981 
982   return Result;
983 }
984 
985 /// getValue - Return an SDValue for the given Value.
986 SDValue SelectionDAGBuilder::getValue(const Value *V) {
987   // If we already have an SDValue for this value, use it. It's important
988   // to do this first, so that we don't create a CopyFromReg if we already
989   // have a regular SDValue.
990   SDValue &N = NodeMap[V];
991   if (N.getNode()) return N;
992 
993   // If there's a virtual register allocated and initialized for this
994   // value, use it.
995   SDValue copyFromReg = getCopyFromRegs(V, V->getType());
996   if (copyFromReg.getNode()) {
997     return copyFromReg;
998   }
999 
1000   // Otherwise create a new SDValue and remember it.
1001   SDValue Val = getValueImpl(V);
1002   NodeMap[V] = Val;
1003   resolveDanglingDebugInfo(V, Val);
1004   return Val;
1005 }
1006 
1007 // Return true if SDValue exists for the given Value
1008 bool SelectionDAGBuilder::findValue(const Value *V) const {
1009   return (NodeMap.find(V) != NodeMap.end()) ||
1010     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1011 }
1012 
1013 /// getNonRegisterValue - Return an SDValue for the given Value, but
1014 /// don't look in FuncInfo.ValueMap for a virtual register.
1015 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1016   // If we already have an SDValue for this value, use it.
1017   SDValue &N = NodeMap[V];
1018   if (N.getNode()) {
1019     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1020       // Remove the debug location from the node as the node is about to be used
1021       // in a location which may differ from the original debug location.  This
1022       // is relevant to Constant and ConstantFP nodes because they can appear
1023       // as constant expressions inside PHI nodes.
1024       N->setDebugLoc(DebugLoc());
1025     }
1026     return N;
1027   }
1028 
1029   // Otherwise create a new SDValue and remember it.
1030   SDValue Val = getValueImpl(V);
1031   NodeMap[V] = Val;
1032   resolveDanglingDebugInfo(V, Val);
1033   return Val;
1034 }
1035 
1036 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1037 /// Create an SDValue for the given value.
1038 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1039   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1040 
1041   if (const Constant *C = dyn_cast<Constant>(V)) {
1042     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1043 
1044     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1045       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1046 
1047     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1048       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1049 
1050     if (isa<ConstantPointerNull>(C)) {
1051       unsigned AS = V->getType()->getPointerAddressSpace();
1052       return DAG.getConstant(0, getCurSDLoc(),
1053                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1054     }
1055 
1056     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1057       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1058 
1059     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1060       return DAG.getUNDEF(VT);
1061 
1062     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1063       visit(CE->getOpcode(), *CE);
1064       SDValue N1 = NodeMap[V];
1065       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1066       return N1;
1067     }
1068 
1069     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1070       SmallVector<SDValue, 4> Constants;
1071       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1072            OI != OE; ++OI) {
1073         SDNode *Val = getValue(*OI).getNode();
1074         // If the operand is an empty aggregate, there are no values.
1075         if (!Val) continue;
1076         // Add each leaf value from the operand to the Constants list
1077         // to form a flattened list of all the values.
1078         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1079           Constants.push_back(SDValue(Val, i));
1080       }
1081 
1082       return DAG.getMergeValues(Constants, getCurSDLoc());
1083     }
1084 
1085     if (const ConstantDataSequential *CDS =
1086           dyn_cast<ConstantDataSequential>(C)) {
1087       SmallVector<SDValue, 4> Ops;
1088       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1089         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1090         // Add each leaf value from the operand to the Constants list
1091         // to form a flattened list of all the values.
1092         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1093           Ops.push_back(SDValue(Val, i));
1094       }
1095 
1096       if (isa<ArrayType>(CDS->getType()))
1097         return DAG.getMergeValues(Ops, getCurSDLoc());
1098       return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
1099                                       VT, Ops);
1100     }
1101 
1102     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1103       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1104              "Unknown struct or array constant!");
1105 
1106       SmallVector<EVT, 4> ValueVTs;
1107       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1108       unsigned NumElts = ValueVTs.size();
1109       if (NumElts == 0)
1110         return SDValue(); // empty struct
1111       SmallVector<SDValue, 4> Constants(NumElts);
1112       for (unsigned i = 0; i != NumElts; ++i) {
1113         EVT EltVT = ValueVTs[i];
1114         if (isa<UndefValue>(C))
1115           Constants[i] = DAG.getUNDEF(EltVT);
1116         else if (EltVT.isFloatingPoint())
1117           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1118         else
1119           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1120       }
1121 
1122       return DAG.getMergeValues(Constants, getCurSDLoc());
1123     }
1124 
1125     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1126       return DAG.getBlockAddress(BA, VT);
1127 
1128     VectorType *VecTy = cast<VectorType>(V->getType());
1129     unsigned NumElements = VecTy->getNumElements();
1130 
1131     // Now that we know the number and type of the elements, get that number of
1132     // elements into the Ops array based on what kind of constant it is.
1133     SmallVector<SDValue, 16> Ops;
1134     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1135       for (unsigned i = 0; i != NumElements; ++i)
1136         Ops.push_back(getValue(CV->getOperand(i)));
1137     } else {
1138       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1139       EVT EltVT =
1140           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1141 
1142       SDValue Op;
1143       if (EltVT.isFloatingPoint())
1144         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1145       else
1146         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1147       Ops.assign(NumElements, Op);
1148     }
1149 
1150     // Create a BUILD_VECTOR node.
1151     return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops);
1152   }
1153 
1154   // If this is a static alloca, generate it as the frameindex instead of
1155   // computation.
1156   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1157     DenseMap<const AllocaInst*, int>::iterator SI =
1158       FuncInfo.StaticAllocaMap.find(AI);
1159     if (SI != FuncInfo.StaticAllocaMap.end())
1160       return DAG.getFrameIndex(SI->second,
1161                                TLI.getPointerTy(DAG.getDataLayout()));
1162   }
1163 
1164   // If this is an instruction which fast-isel has deferred, select it now.
1165   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1166     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1167     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1168                      Inst->getType());
1169     SDValue Chain = DAG.getEntryNode();
1170     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1171   }
1172 
1173   llvm_unreachable("Can't get register for value!");
1174 }
1175 
1176 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1177   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1178   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1179   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1180   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1181   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1182   if (IsMSVCCXX || IsCoreCLR)
1183     CatchPadMBB->setIsEHFuncletEntry();
1184 
1185   DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot()));
1186 }
1187 
1188 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1189   // Update machine-CFG edge.
1190   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1191   FuncInfo.MBB->addSuccessor(TargetMBB);
1192 
1193   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1194   bool IsSEH = isAsynchronousEHPersonality(Pers);
1195   if (IsSEH) {
1196     // If this is not a fall-through branch or optimizations are switched off,
1197     // emit the branch.
1198     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1199         TM.getOptLevel() == CodeGenOpt::None)
1200       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1201                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1202     return;
1203   }
1204 
1205   // Figure out the funclet membership for the catchret's successor.
1206   // This will be used by the FuncletLayout pass to determine how to order the
1207   // BB's.
1208   // A 'catchret' returns to the outer scope's color.
1209   Value *ParentPad = I.getParentPad();
1210   const BasicBlock *SuccessorColor;
1211   if (isa<ConstantTokenNone>(ParentPad))
1212     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1213   else
1214     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1215   assert(SuccessorColor && "No parent funclet for catchret!");
1216   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1217   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1218 
1219   // Create the terminator node.
1220   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1221                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1222                             DAG.getBasicBlock(SuccessorColorMBB));
1223   DAG.setRoot(Ret);
1224 }
1225 
1226 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1227   // Don't emit any special code for the cleanuppad instruction. It just marks
1228   // the start of a funclet.
1229   FuncInfo.MBB->setIsEHFuncletEntry();
1230   FuncInfo.MBB->setIsCleanupFuncletEntry();
1231 }
1232 
1233 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1234 /// many places it could ultimately go. In the IR, we have a single unwind
1235 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1236 /// This function skips over imaginary basic blocks that hold catchswitch
1237 /// instructions, and finds all the "real" machine
1238 /// basic block destinations. As those destinations may not be successors of
1239 /// EHPadBB, here we also calculate the edge probability to those destinations.
1240 /// The passed-in Prob is the edge probability to EHPadBB.
1241 static void findUnwindDestinations(
1242     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1243     BranchProbability Prob,
1244     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1245         &UnwindDests) {
1246   EHPersonality Personality =
1247     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1248   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1249   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1250 
1251   while (EHPadBB) {
1252     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1253     BasicBlock *NewEHPadBB = nullptr;
1254     if (isa<LandingPadInst>(Pad)) {
1255       // Stop on landingpads. They are not funclets.
1256       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1257       break;
1258     } else if (isa<CleanupPadInst>(Pad)) {
1259       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1260       // personalities.
1261       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1262       UnwindDests.back().first->setIsEHFuncletEntry();
1263       break;
1264     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1265       // Add the catchpad handlers to the possible destinations.
1266       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1267         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1268         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1269         if (IsMSVCCXX || IsCoreCLR)
1270           UnwindDests.back().first->setIsEHFuncletEntry();
1271       }
1272       NewEHPadBB = CatchSwitch->getUnwindDest();
1273     } else {
1274       continue;
1275     }
1276 
1277     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1278     if (BPI && NewEHPadBB)
1279       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1280     EHPadBB = NewEHPadBB;
1281   }
1282 }
1283 
1284 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1285   // Update successor info.
1286   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1287   auto UnwindDest = I.getUnwindDest();
1288   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1289   BranchProbability UnwindDestProb =
1290       (BPI && UnwindDest)
1291           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1292           : BranchProbability::getZero();
1293   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1294   for (auto &UnwindDest : UnwindDests) {
1295     UnwindDest.first->setIsEHPad();
1296     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1297   }
1298   FuncInfo.MBB->normalizeSuccProbs();
1299 
1300   // Create the terminator node.
1301   SDValue Ret =
1302       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1303   DAG.setRoot(Ret);
1304 }
1305 
1306 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1307   report_fatal_error("visitCatchSwitch not yet implemented!");
1308 }
1309 
1310 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1311   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1312   auto &DL = DAG.getDataLayout();
1313   SDValue Chain = getControlRoot();
1314   SmallVector<ISD::OutputArg, 8> Outs;
1315   SmallVector<SDValue, 8> OutVals;
1316 
1317   if (!FuncInfo.CanLowerReturn) {
1318     unsigned DemoteReg = FuncInfo.DemoteRegister;
1319     const Function *F = I.getParent()->getParent();
1320 
1321     // Emit a store of the return value through the virtual register.
1322     // Leave Outs empty so that LowerReturn won't try to load return
1323     // registers the usual way.
1324     SmallVector<EVT, 1> PtrValueVTs;
1325     ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()),
1326                     PtrValueVTs);
1327 
1328     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1329                                         DemoteReg, PtrValueVTs[0]);
1330     SDValue RetOp = getValue(I.getOperand(0));
1331 
1332     SmallVector<EVT, 4> ValueVTs;
1333     SmallVector<uint64_t, 4> Offsets;
1334     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1335     unsigned NumValues = ValueVTs.size();
1336 
1337     // An aggregate return value cannot wrap around the address space, so
1338     // offsets to its parts don't wrap either.
1339     SDNodeFlags Flags;
1340     Flags.setNoUnsignedWrap(true);
1341 
1342     SmallVector<SDValue, 4> Chains(NumValues);
1343     for (unsigned i = 0; i != NumValues; ++i) {
1344       SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(),
1345                                 RetPtr.getValueType(), RetPtr,
1346                                 DAG.getIntPtrConstant(Offsets[i],
1347                                                       getCurSDLoc()),
1348                                 &Flags);
1349       Chains[i] =
1350         DAG.getStore(Chain, getCurSDLoc(),
1351                      SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1352                      // FIXME: better loc info would be nice.
1353                      Add, MachinePointerInfo(), false, false, 0);
1354     }
1355 
1356     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1357                         MVT::Other, Chains);
1358   } else if (I.getNumOperands() != 0) {
1359     SmallVector<EVT, 4> ValueVTs;
1360     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1361     unsigned NumValues = ValueVTs.size();
1362     if (NumValues) {
1363       SDValue RetOp = getValue(I.getOperand(0));
1364 
1365       const Function *F = I.getParent()->getParent();
1366 
1367       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1368       if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1369                                           Attribute::SExt))
1370         ExtendKind = ISD::SIGN_EXTEND;
1371       else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1372                                                Attribute::ZExt))
1373         ExtendKind = ISD::ZERO_EXTEND;
1374 
1375       LLVMContext &Context = F->getContext();
1376       bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1377                                                       Attribute::InReg);
1378 
1379       for (unsigned j = 0; j != NumValues; ++j) {
1380         EVT VT = ValueVTs[j];
1381 
1382         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1383           VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind);
1384 
1385         unsigned NumParts = TLI.getNumRegisters(Context, VT);
1386         MVT PartVT = TLI.getRegisterType(Context, VT);
1387         SmallVector<SDValue, 4> Parts(NumParts);
1388         getCopyToParts(DAG, getCurSDLoc(),
1389                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1390                        &Parts[0], NumParts, PartVT, &I, ExtendKind);
1391 
1392         // 'inreg' on function refers to return value
1393         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1394         if (RetInReg)
1395           Flags.setInReg();
1396 
1397         // Propagate extension type if any
1398         if (ExtendKind == ISD::SIGN_EXTEND)
1399           Flags.setSExt();
1400         else if (ExtendKind == ISD::ZERO_EXTEND)
1401           Flags.setZExt();
1402 
1403         for (unsigned i = 0; i < NumParts; ++i) {
1404           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1405                                         VT, /*isfixed=*/true, 0, 0));
1406           OutVals.push_back(Parts[i]);
1407         }
1408       }
1409     }
1410   }
1411 
1412   bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1413   CallingConv::ID CallConv =
1414     DAG.getMachineFunction().getFunction()->getCallingConv();
1415   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1416       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1417 
1418   // Verify that the target's LowerReturn behaved as expected.
1419   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1420          "LowerReturn didn't return a valid chain!");
1421 
1422   // Update the DAG with the new chain value resulting from return lowering.
1423   DAG.setRoot(Chain);
1424 }
1425 
1426 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1427 /// created for it, emit nodes to copy the value into the virtual
1428 /// registers.
1429 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1430   // Skip empty types
1431   if (V->getType()->isEmptyTy())
1432     return;
1433 
1434   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1435   if (VMI != FuncInfo.ValueMap.end()) {
1436     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1437     CopyValueToVirtualRegister(V, VMI->second);
1438   }
1439 }
1440 
1441 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1442 /// the current basic block, add it to ValueMap now so that we'll get a
1443 /// CopyTo/FromReg.
1444 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1445   // No need to export constants.
1446   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1447 
1448   // Already exported?
1449   if (FuncInfo.isExportedInst(V)) return;
1450 
1451   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1452   CopyValueToVirtualRegister(V, Reg);
1453 }
1454 
1455 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1456                                                      const BasicBlock *FromBB) {
1457   // The operands of the setcc have to be in this block.  We don't know
1458   // how to export them from some other block.
1459   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1460     // Can export from current BB.
1461     if (VI->getParent() == FromBB)
1462       return true;
1463 
1464     // Is already exported, noop.
1465     return FuncInfo.isExportedInst(V);
1466   }
1467 
1468   // If this is an argument, we can export it if the BB is the entry block or
1469   // if it is already exported.
1470   if (isa<Argument>(V)) {
1471     if (FromBB == &FromBB->getParent()->getEntryBlock())
1472       return true;
1473 
1474     // Otherwise, can only export this if it is already exported.
1475     return FuncInfo.isExportedInst(V);
1476   }
1477 
1478   // Otherwise, constants can always be exported.
1479   return true;
1480 }
1481 
1482 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1483 BranchProbability
1484 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1485                                         const MachineBasicBlock *Dst) const {
1486   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1487   const BasicBlock *SrcBB = Src->getBasicBlock();
1488   const BasicBlock *DstBB = Dst->getBasicBlock();
1489   if (!BPI) {
1490     // If BPI is not available, set the default probability as 1 / N, where N is
1491     // the number of successors.
1492     auto SuccSize = std::max<uint32_t>(
1493         std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1);
1494     return BranchProbability(1, SuccSize);
1495   }
1496   return BPI->getEdgeProbability(SrcBB, DstBB);
1497 }
1498 
1499 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
1500                                                MachineBasicBlock *Dst,
1501                                                BranchProbability Prob) {
1502   if (!FuncInfo.BPI)
1503     Src->addSuccessorWithoutProb(Dst);
1504   else {
1505     if (Prob.isUnknown())
1506       Prob = getEdgeProbability(Src, Dst);
1507     Src->addSuccessor(Dst, Prob);
1508   }
1509 }
1510 
1511 static bool InBlock(const Value *V, const BasicBlock *BB) {
1512   if (const Instruction *I = dyn_cast<Instruction>(V))
1513     return I->getParent() == BB;
1514   return true;
1515 }
1516 
1517 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1518 /// This function emits a branch and is used at the leaves of an OR or an
1519 /// AND operator tree.
1520 ///
1521 void
1522 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1523                                                   MachineBasicBlock *TBB,
1524                                                   MachineBasicBlock *FBB,
1525                                                   MachineBasicBlock *CurBB,
1526                                                   MachineBasicBlock *SwitchBB,
1527                                                   BranchProbability TProb,
1528                                                   BranchProbability FProb) {
1529   const BasicBlock *BB = CurBB->getBasicBlock();
1530 
1531   // If the leaf of the tree is a comparison, merge the condition into
1532   // the caseblock.
1533   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1534     // The operands of the cmp have to be in this block.  We don't know
1535     // how to export them from some other block.  If this is the first block
1536     // of the sequence, no exporting is needed.
1537     if (CurBB == SwitchBB ||
1538         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1539          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1540       ISD::CondCode Condition;
1541       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1542         Condition = getICmpCondCode(IC->getPredicate());
1543       } else {
1544         const FCmpInst *FC = cast<FCmpInst>(Cond);
1545         Condition = getFCmpCondCode(FC->getPredicate());
1546         if (TM.Options.NoNaNsFPMath)
1547           Condition = getFCmpCodeWithoutNaN(Condition);
1548       }
1549 
1550       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
1551                    TBB, FBB, CurBB, TProb, FProb);
1552       SwitchCases.push_back(CB);
1553       return;
1554     }
1555   }
1556 
1557   // Create a CaseBlock record representing this branch.
1558   CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1559                nullptr, TBB, FBB, CurBB, TProb, FProb);
1560   SwitchCases.push_back(CB);
1561 }
1562 
1563 /// FindMergedConditions - If Cond is an expression like
1564 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1565                                                MachineBasicBlock *TBB,
1566                                                MachineBasicBlock *FBB,
1567                                                MachineBasicBlock *CurBB,
1568                                                MachineBasicBlock *SwitchBB,
1569                                                Instruction::BinaryOps Opc,
1570                                                BranchProbability TProb,
1571                                                BranchProbability FProb) {
1572   // If this node is not part of the or/and tree, emit it as a branch.
1573   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1574   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1575       (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1576       BOp->getParent() != CurBB->getBasicBlock() ||
1577       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1578       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1579     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
1580                                  TProb, FProb);
1581     return;
1582   }
1583 
1584   //  Create TmpBB after CurBB.
1585   MachineFunction::iterator BBI(CurBB);
1586   MachineFunction &MF = DAG.getMachineFunction();
1587   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1588   CurBB->getParent()->insert(++BBI, TmpBB);
1589 
1590   if (Opc == Instruction::Or) {
1591     // Codegen X | Y as:
1592     // BB1:
1593     //   jmp_if_X TBB
1594     //   jmp TmpBB
1595     // TmpBB:
1596     //   jmp_if_Y TBB
1597     //   jmp FBB
1598     //
1599 
1600     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1601     // The requirement is that
1602     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
1603     //     = TrueProb for original BB.
1604     // Assuming the original probabilities are A and B, one choice is to set
1605     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
1606     // A/(1+B) and 2B/(1+B). This choice assumes that
1607     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
1608     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
1609     // TmpBB, but the math is more complicated.
1610 
1611     auto NewTrueProb = TProb / 2;
1612     auto NewFalseProb = TProb / 2 + FProb;
1613     // Emit the LHS condition.
1614     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
1615                          NewTrueProb, NewFalseProb);
1616 
1617     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
1618     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
1619     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1620     // Emit the RHS condition into TmpBB.
1621     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1622                          Probs[0], Probs[1]);
1623   } else {
1624     assert(Opc == Instruction::And && "Unknown merge op!");
1625     // Codegen X & Y as:
1626     // BB1:
1627     //   jmp_if_X TmpBB
1628     //   jmp FBB
1629     // TmpBB:
1630     //   jmp_if_Y TBB
1631     //   jmp FBB
1632     //
1633     //  This requires creation of TmpBB after CurBB.
1634 
1635     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1636     // The requirement is that
1637     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
1638     //     = FalseProb for original BB.
1639     // Assuming the original probabilities are A and B, one choice is to set
1640     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
1641     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
1642     // TrueProb for BB1 * FalseProb for TmpBB.
1643 
1644     auto NewTrueProb = TProb + FProb / 2;
1645     auto NewFalseProb = FProb / 2;
1646     // Emit the LHS condition.
1647     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
1648                          NewTrueProb, NewFalseProb);
1649 
1650     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
1651     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
1652     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1653     // Emit the RHS condition into TmpBB.
1654     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1655                          Probs[0], Probs[1]);
1656   }
1657 }
1658 
1659 /// If the set of cases should be emitted as a series of branches, return true.
1660 /// If we should emit this as a bunch of and/or'd together conditions, return
1661 /// false.
1662 bool
1663 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1664   if (Cases.size() != 2) return true;
1665 
1666   // If this is two comparisons of the same values or'd or and'd together, they
1667   // will get folded into a single comparison, so don't emit two blocks.
1668   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1669        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1670       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1671        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1672     return false;
1673   }
1674 
1675   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1676   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1677   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1678       Cases[0].CC == Cases[1].CC &&
1679       isa<Constant>(Cases[0].CmpRHS) &&
1680       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1681     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1682       return false;
1683     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1684       return false;
1685   }
1686 
1687   return true;
1688 }
1689 
1690 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1691   MachineBasicBlock *BrMBB = FuncInfo.MBB;
1692 
1693   // Update machine-CFG edges.
1694   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1695 
1696   if (I.isUnconditional()) {
1697     // Update machine-CFG edges.
1698     BrMBB->addSuccessor(Succ0MBB);
1699 
1700     // If this is not a fall-through branch or optimizations are switched off,
1701     // emit the branch.
1702     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
1703       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1704                               MVT::Other, getControlRoot(),
1705                               DAG.getBasicBlock(Succ0MBB)));
1706 
1707     return;
1708   }
1709 
1710   // If this condition is one of the special cases we handle, do special stuff
1711   // now.
1712   const Value *CondVal = I.getCondition();
1713   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1714 
1715   // If this is a series of conditions that are or'd or and'd together, emit
1716   // this as a sequence of branches instead of setcc's with and/or operations.
1717   // As long as jumps are not expensive, this should improve performance.
1718   // For example, instead of something like:
1719   //     cmp A, B
1720   //     C = seteq
1721   //     cmp D, E
1722   //     F = setle
1723   //     or C, F
1724   //     jnz foo
1725   // Emit:
1726   //     cmp A, B
1727   //     je foo
1728   //     cmp D, E
1729   //     jle foo
1730   //
1731   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1732     Instruction::BinaryOps Opcode = BOp->getOpcode();
1733     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
1734         !I.getMetadata(LLVMContext::MD_unpredictable) &&
1735         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
1736       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1737                            Opcode,
1738                            getEdgeProbability(BrMBB, Succ0MBB),
1739                            getEdgeProbability(BrMBB, Succ1MBB));
1740       // If the compares in later blocks need to use values not currently
1741       // exported from this block, export them now.  This block should always
1742       // be the first entry.
1743       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1744 
1745       // Allow some cases to be rejected.
1746       if (ShouldEmitAsBranches(SwitchCases)) {
1747         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1748           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1749           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1750         }
1751 
1752         // Emit the branch for this block.
1753         visitSwitchCase(SwitchCases[0], BrMBB);
1754         SwitchCases.erase(SwitchCases.begin());
1755         return;
1756       }
1757 
1758       // Okay, we decided not to do this, remove any inserted MBB's and clear
1759       // SwitchCases.
1760       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1761         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1762 
1763       SwitchCases.clear();
1764     }
1765   }
1766 
1767   // Create a CaseBlock record representing this branch.
1768   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1769                nullptr, Succ0MBB, Succ1MBB, BrMBB);
1770 
1771   // Use visitSwitchCase to actually insert the fast branch sequence for this
1772   // cond branch.
1773   visitSwitchCase(CB, BrMBB);
1774 }
1775 
1776 /// visitSwitchCase - Emits the necessary code to represent a single node in
1777 /// the binary search tree resulting from lowering a switch instruction.
1778 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1779                                           MachineBasicBlock *SwitchBB) {
1780   SDValue Cond;
1781   SDValue CondLHS = getValue(CB.CmpLHS);
1782   SDLoc dl = getCurSDLoc();
1783 
1784   // Build the setcc now.
1785   if (!CB.CmpMHS) {
1786     // Fold "(X == true)" to X and "(X == false)" to !X to
1787     // handle common cases produced by branch lowering.
1788     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1789         CB.CC == ISD::SETEQ)
1790       Cond = CondLHS;
1791     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1792              CB.CC == ISD::SETEQ) {
1793       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
1794       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1795     } else
1796       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1797   } else {
1798     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1799 
1800     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1801     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
1802 
1803     SDValue CmpOp = getValue(CB.CmpMHS);
1804     EVT VT = CmpOp.getValueType();
1805 
1806     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1807       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
1808                           ISD::SETLE);
1809     } else {
1810       SDValue SUB = DAG.getNode(ISD::SUB, dl,
1811                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
1812       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1813                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
1814     }
1815   }
1816 
1817   // Update successor info
1818   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
1819   // TrueBB and FalseBB are always different unless the incoming IR is
1820   // degenerate. This only happens when running llc on weird IR.
1821   if (CB.TrueBB != CB.FalseBB)
1822     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
1823   SwitchBB->normalizeSuccProbs();
1824 
1825   // If the lhs block is the next block, invert the condition so that we can
1826   // fall through to the lhs instead of the rhs block.
1827   if (CB.TrueBB == NextBlock(SwitchBB)) {
1828     std::swap(CB.TrueBB, CB.FalseBB);
1829     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
1830     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1831   }
1832 
1833   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1834                                MVT::Other, getControlRoot(), Cond,
1835                                DAG.getBasicBlock(CB.TrueBB));
1836 
1837   // Insert the false branch. Do this even if it's a fall through branch,
1838   // this makes it easier to do DAG optimizations which require inverting
1839   // the branch condition.
1840   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1841                        DAG.getBasicBlock(CB.FalseBB));
1842 
1843   DAG.setRoot(BrCond);
1844 }
1845 
1846 /// visitJumpTable - Emit JumpTable node in the current MBB
1847 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1848   // Emit the code for the jump table
1849   assert(JT.Reg != -1U && "Should lower JT Header first!");
1850   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
1851   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1852                                      JT.Reg, PTy);
1853   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1854   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
1855                                     MVT::Other, Index.getValue(1),
1856                                     Table, Index);
1857   DAG.setRoot(BrJumpTable);
1858 }
1859 
1860 /// visitJumpTableHeader - This function emits necessary code to produce index
1861 /// in the JumpTable from switch case.
1862 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1863                                                JumpTableHeader &JTH,
1864                                                MachineBasicBlock *SwitchBB) {
1865   SDLoc dl = getCurSDLoc();
1866 
1867   // Subtract the lowest switch case value from the value being switched on and
1868   // conditional branch to default mbb if the result is greater than the
1869   // difference between smallest and largest cases.
1870   SDValue SwitchOp = getValue(JTH.SValue);
1871   EVT VT = SwitchOp.getValueType();
1872   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
1873                             DAG.getConstant(JTH.First, dl, VT));
1874 
1875   // The SDNode we just created, which holds the value being switched on minus
1876   // the smallest case value, needs to be copied to a virtual register so it
1877   // can be used as an index into the jump table in a subsequent basic block.
1878   // This value may be smaller or larger than the target's pointer type, and
1879   // therefore require extension or truncating.
1880   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1881   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
1882 
1883   unsigned JumpTableReg =
1884       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
1885   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
1886                                     JumpTableReg, SwitchOp);
1887   JT.Reg = JumpTableReg;
1888 
1889   // Emit the range check for the jump table, and branch to the default block
1890   // for the switch statement if the value being switched on exceeds the largest
1891   // case in the switch.
1892   SDValue CMP = DAG.getSetCC(
1893       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
1894                                  Sub.getValueType()),
1895       Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
1896 
1897   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1898                                MVT::Other, CopyTo, CMP,
1899                                DAG.getBasicBlock(JT.Default));
1900 
1901   // Avoid emitting unnecessary branches to the next block.
1902   if (JT.MBB != NextBlock(SwitchBB))
1903     BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1904                          DAG.getBasicBlock(JT.MBB));
1905 
1906   DAG.setRoot(BrCond);
1907 }
1908 
1909 /// Codegen a new tail for a stack protector check ParentMBB which has had its
1910 /// tail spliced into a stack protector check success bb.
1911 ///
1912 /// For a high level explanation of how this fits into the stack protector
1913 /// generation see the comment on the declaration of class
1914 /// StackProtectorDescriptor.
1915 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
1916                                                   MachineBasicBlock *ParentBB) {
1917 
1918   // First create the loads to the guard/stack slot for the comparison.
1919   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1920   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
1921 
1922   MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo();
1923   int FI = MFI->getStackProtectorIndex();
1924 
1925   const Value *IRGuard = SPD.getGuard();
1926   SDValue GuardPtr = getValue(IRGuard);
1927   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
1928 
1929   unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType());
1930 
1931   SDValue Guard;
1932   SDLoc dl = getCurSDLoc();
1933 
1934   // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the
1935   // guard value from the virtual register holding the value. Otherwise, emit a
1936   // volatile load to retrieve the stack guard value.
1937   unsigned GuardReg = SPD.getGuardReg();
1938 
1939   if (GuardReg && TLI.useLoadStackGuardNode())
1940     Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg,
1941                                PtrTy);
1942   else
1943     Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(),
1944                         GuardPtr, MachinePointerInfo(IRGuard, 0),
1945                         true, false, false, Align);
1946 
1947   SDValue StackSlot = DAG.getLoad(
1948       PtrTy, dl, DAG.getEntryNode(), StackSlotPtr,
1949       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true,
1950       false, false, Align);
1951 
1952   // Perform the comparison via a subtract/getsetcc.
1953   EVT VT = Guard.getValueType();
1954   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot);
1955 
1956   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
1957                                                         *DAG.getContext(),
1958                                                         Sub.getValueType()),
1959                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
1960 
1961   // If the sub is not 0, then we know the guard/stackslot do not equal, so
1962   // branch to failure MBB.
1963   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1964                                MVT::Other, StackSlot.getOperand(0),
1965                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
1966   // Otherwise branch to success MBB.
1967   SDValue Br = DAG.getNode(ISD::BR, dl,
1968                            MVT::Other, BrCond,
1969                            DAG.getBasicBlock(SPD.getSuccessMBB()));
1970 
1971   DAG.setRoot(Br);
1972 }
1973 
1974 /// Codegen the failure basic block for a stack protector check.
1975 ///
1976 /// A failure stack protector machine basic block consists simply of a call to
1977 /// __stack_chk_fail().
1978 ///
1979 /// For a high level explanation of how this fits into the stack protector
1980 /// generation see the comment on the declaration of class
1981 /// StackProtectorDescriptor.
1982 void
1983 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
1984   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1985   SDValue Chain =
1986       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
1987                       None, false, getCurSDLoc(), false, false).second;
1988   DAG.setRoot(Chain);
1989 }
1990 
1991 /// visitBitTestHeader - This function emits necessary code to produce value
1992 /// suitable for "bit tests"
1993 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1994                                              MachineBasicBlock *SwitchBB) {
1995   SDLoc dl = getCurSDLoc();
1996 
1997   // Subtract the minimum value
1998   SDValue SwitchOp = getValue(B.SValue);
1999   EVT VT = SwitchOp.getValueType();
2000   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2001                             DAG.getConstant(B.First, dl, VT));
2002 
2003   // Check range
2004   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2005   SDValue RangeCmp = DAG.getSetCC(
2006       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2007                                  Sub.getValueType()),
2008       Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2009 
2010   // Determine the type of the test operands.
2011   bool UsePtrType = false;
2012   if (!TLI.isTypeLegal(VT))
2013     UsePtrType = true;
2014   else {
2015     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2016       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2017         // Switch table case range are encoded into series of masks.
2018         // Just use pointer type, it's guaranteed to fit.
2019         UsePtrType = true;
2020         break;
2021       }
2022   }
2023   if (UsePtrType) {
2024     VT = TLI.getPointerTy(DAG.getDataLayout());
2025     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2026   }
2027 
2028   B.RegVT = VT.getSimpleVT();
2029   B.Reg = FuncInfo.CreateReg(B.RegVT);
2030   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2031 
2032   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2033 
2034   addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2035   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2036   SwitchBB->normalizeSuccProbs();
2037 
2038   SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2039                                 MVT::Other, CopyTo, RangeCmp,
2040                                 DAG.getBasicBlock(B.Default));
2041 
2042   // Avoid emitting unnecessary branches to the next block.
2043   if (MBB != NextBlock(SwitchBB))
2044     BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2045                           DAG.getBasicBlock(MBB));
2046 
2047   DAG.setRoot(BrRange);
2048 }
2049 
2050 /// visitBitTestCase - this function produces one "bit test"
2051 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2052                                            MachineBasicBlock* NextMBB,
2053                                            BranchProbability BranchProbToNext,
2054                                            unsigned Reg,
2055                                            BitTestCase &B,
2056                                            MachineBasicBlock *SwitchBB) {
2057   SDLoc dl = getCurSDLoc();
2058   MVT VT = BB.RegVT;
2059   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2060   SDValue Cmp;
2061   unsigned PopCount = countPopulation(B.Mask);
2062   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2063   if (PopCount == 1) {
2064     // Testing for a single bit; just compare the shift count with what it
2065     // would need to be to shift a 1 bit in that position.
2066     Cmp = DAG.getSetCC(
2067         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2068         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2069         ISD::SETEQ);
2070   } else if (PopCount == BB.Range) {
2071     // There is only one zero bit in the range, test for it directly.
2072     Cmp = DAG.getSetCC(
2073         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2074         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2075         ISD::SETNE);
2076   } else {
2077     // Make desired shift
2078     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2079                                     DAG.getConstant(1, dl, VT), ShiftOp);
2080 
2081     // Emit bit tests and jumps
2082     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2083                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2084     Cmp = DAG.getSetCC(
2085         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2086         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2087   }
2088 
2089   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2090   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2091   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2092   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2093   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2094   // one as they are relative probabilities (and thus work more like weights),
2095   // and hence we need to normalize them to let the sum of them become one.
2096   SwitchBB->normalizeSuccProbs();
2097 
2098   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2099                               MVT::Other, getControlRoot(),
2100                               Cmp, DAG.getBasicBlock(B.TargetBB));
2101 
2102   // Avoid emitting unnecessary branches to the next block.
2103   if (NextMBB != NextBlock(SwitchBB))
2104     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2105                         DAG.getBasicBlock(NextMBB));
2106 
2107   DAG.setRoot(BrAnd);
2108 }
2109 
2110 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2111   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2112 
2113   // Retrieve successors. Look through artificial IR level blocks like
2114   // catchswitch for successors.
2115   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2116   const BasicBlock *EHPadBB = I.getSuccessor(1);
2117 
2118   const Value *Callee(I.getCalledValue());
2119   const Function *Fn = dyn_cast<Function>(Callee);
2120   if (isa<InlineAsm>(Callee))
2121     visitInlineAsm(&I);
2122   else if (Fn && Fn->isIntrinsic()) {
2123     switch (Fn->getIntrinsicID()) {
2124     default:
2125       llvm_unreachable("Cannot invoke this intrinsic");
2126     case Intrinsic::donothing:
2127       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2128       break;
2129     case Intrinsic::experimental_patchpoint_void:
2130     case Intrinsic::experimental_patchpoint_i64:
2131       visitPatchpoint(&I, EHPadBB);
2132       break;
2133     case Intrinsic::experimental_gc_statepoint:
2134       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2135       break;
2136     }
2137   } else
2138     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2139 
2140   // If the value of the invoke is used outside of its defining block, make it
2141   // available as a virtual register.
2142   // We already took care of the exported value for the statepoint instruction
2143   // during call to the LowerStatepoint.
2144   if (!isStatepoint(I)) {
2145     CopyToExportRegsIfNeeded(&I);
2146   }
2147 
2148   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2149   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2150   BranchProbability EHPadBBProb =
2151       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2152           : BranchProbability::getZero();
2153   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2154 
2155   // Update successor info.
2156   addSuccessorWithProb(InvokeMBB, Return);
2157   for (auto &UnwindDest : UnwindDests) {
2158     UnwindDest.first->setIsEHPad();
2159     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2160   }
2161   InvokeMBB->normalizeSuccProbs();
2162 
2163   // Drop into normal successor.
2164   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2165                           MVT::Other, getControlRoot(),
2166                           DAG.getBasicBlock(Return)));
2167 }
2168 
2169 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2170   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2171 }
2172 
2173 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2174   assert(FuncInfo.MBB->isEHPad() &&
2175          "Call to landingpad not in landing pad!");
2176 
2177   MachineBasicBlock *MBB = FuncInfo.MBB;
2178   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
2179   AddLandingPadInfo(LP, MMI, MBB);
2180 
2181   // If there aren't registers to copy the values into (e.g., during SjLj
2182   // exceptions), then don't bother to create these DAG nodes.
2183   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2184   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2185   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2186       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2187     return;
2188 
2189   // If landingpad's return type is token type, we don't create DAG nodes
2190   // for its exception pointer and selector value. The extraction of exception
2191   // pointer or selector value from token type landingpads is not currently
2192   // supported.
2193   if (LP.getType()->isTokenTy())
2194     return;
2195 
2196   SmallVector<EVT, 2> ValueVTs;
2197   SDLoc dl = getCurSDLoc();
2198   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2199   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2200 
2201   // Get the two live-in registers as SDValues. The physregs have already been
2202   // copied into virtual registers.
2203   SDValue Ops[2];
2204   if (FuncInfo.ExceptionPointerVirtReg) {
2205     Ops[0] = DAG.getZExtOrTrunc(
2206         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2207                            FuncInfo.ExceptionPointerVirtReg,
2208                            TLI.getPointerTy(DAG.getDataLayout())),
2209         dl, ValueVTs[0]);
2210   } else {
2211     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2212   }
2213   Ops[1] = DAG.getZExtOrTrunc(
2214       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2215                          FuncInfo.ExceptionSelectorVirtReg,
2216                          TLI.getPointerTy(DAG.getDataLayout())),
2217       dl, ValueVTs[1]);
2218 
2219   // Merge into one.
2220   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2221                             DAG.getVTList(ValueVTs), Ops);
2222   setValue(&LP, Res);
2223 }
2224 
2225 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2226 #ifndef NDEBUG
2227   for (const CaseCluster &CC : Clusters)
2228     assert(CC.Low == CC.High && "Input clusters must be single-case");
2229 #endif
2230 
2231   std::sort(Clusters.begin(), Clusters.end(),
2232             [](const CaseCluster &a, const CaseCluster &b) {
2233     return a.Low->getValue().slt(b.Low->getValue());
2234   });
2235 
2236   // Merge adjacent clusters with the same destination.
2237   const unsigned N = Clusters.size();
2238   unsigned DstIndex = 0;
2239   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2240     CaseCluster &CC = Clusters[SrcIndex];
2241     const ConstantInt *CaseVal = CC.Low;
2242     MachineBasicBlock *Succ = CC.MBB;
2243 
2244     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2245         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2246       // If this case has the same successor and is a neighbour, merge it into
2247       // the previous cluster.
2248       Clusters[DstIndex - 1].High = CaseVal;
2249       Clusters[DstIndex - 1].Prob += CC.Prob;
2250     } else {
2251       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2252                    sizeof(Clusters[SrcIndex]));
2253     }
2254   }
2255   Clusters.resize(DstIndex);
2256 }
2257 
2258 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2259                                            MachineBasicBlock *Last) {
2260   // Update JTCases.
2261   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2262     if (JTCases[i].first.HeaderBB == First)
2263       JTCases[i].first.HeaderBB = Last;
2264 
2265   // Update BitTestCases.
2266   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2267     if (BitTestCases[i].Parent == First)
2268       BitTestCases[i].Parent = Last;
2269 }
2270 
2271 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2272   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2273 
2274   // Update machine-CFG edges with unique successors.
2275   SmallSet<BasicBlock*, 32> Done;
2276   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2277     BasicBlock *BB = I.getSuccessor(i);
2278     bool Inserted = Done.insert(BB).second;
2279     if (!Inserted)
2280         continue;
2281 
2282     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2283     addSuccessorWithProb(IndirectBrMBB, Succ);
2284   }
2285   IndirectBrMBB->normalizeSuccProbs();
2286 
2287   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2288                           MVT::Other, getControlRoot(),
2289                           getValue(I.getAddress())));
2290 }
2291 
2292 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2293   if (DAG.getTarget().Options.TrapUnreachable)
2294     DAG.setRoot(
2295         DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2296 }
2297 
2298 void SelectionDAGBuilder::visitFSub(const User &I) {
2299   // -0.0 - X --> fneg
2300   Type *Ty = I.getType();
2301   if (isa<Constant>(I.getOperand(0)) &&
2302       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2303     SDValue Op2 = getValue(I.getOperand(1));
2304     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2305                              Op2.getValueType(), Op2));
2306     return;
2307   }
2308 
2309   visitBinary(I, ISD::FSUB);
2310 }
2311 
2312 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2313   SDValue Op1 = getValue(I.getOperand(0));
2314   SDValue Op2 = getValue(I.getOperand(1));
2315 
2316   bool nuw = false;
2317   bool nsw = false;
2318   bool exact = false;
2319   FastMathFlags FMF;
2320 
2321   if (const OverflowingBinaryOperator *OFBinOp =
2322           dyn_cast<const OverflowingBinaryOperator>(&I)) {
2323     nuw = OFBinOp->hasNoUnsignedWrap();
2324     nsw = OFBinOp->hasNoSignedWrap();
2325   }
2326   if (const PossiblyExactOperator *ExactOp =
2327           dyn_cast<const PossiblyExactOperator>(&I))
2328     exact = ExactOp->isExact();
2329   if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I))
2330     FMF = FPOp->getFastMathFlags();
2331 
2332   SDNodeFlags Flags;
2333   Flags.setExact(exact);
2334   Flags.setNoSignedWrap(nsw);
2335   Flags.setNoUnsignedWrap(nuw);
2336   if (EnableFMFInDAG) {
2337     Flags.setAllowReciprocal(FMF.allowReciprocal());
2338     Flags.setNoInfs(FMF.noInfs());
2339     Flags.setNoNaNs(FMF.noNaNs());
2340     Flags.setNoSignedZeros(FMF.noSignedZeros());
2341     Flags.setUnsafeAlgebra(FMF.unsafeAlgebra());
2342   }
2343   SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(),
2344                                      Op1, Op2, &Flags);
2345   setValue(&I, BinNodeValue);
2346 }
2347 
2348 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2349   SDValue Op1 = getValue(I.getOperand(0));
2350   SDValue Op2 = getValue(I.getOperand(1));
2351 
2352   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
2353       Op2.getValueType(), DAG.getDataLayout());
2354 
2355   // Coerce the shift amount to the right type if we can.
2356   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2357     unsigned ShiftSize = ShiftTy.getSizeInBits();
2358     unsigned Op2Size = Op2.getValueType().getSizeInBits();
2359     SDLoc DL = getCurSDLoc();
2360 
2361     // If the operand is smaller than the shift count type, promote it.
2362     if (ShiftSize > Op2Size)
2363       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2364 
2365     // If the operand is larger than the shift count type but the shift
2366     // count type has enough bits to represent any shift value, truncate
2367     // it now. This is a common case and it exposes the truncate to
2368     // optimization early.
2369     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2370       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2371     // Otherwise we'll need to temporarily settle for some other convenient
2372     // type.  Type legalization will make adjustments once the shiftee is split.
2373     else
2374       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2375   }
2376 
2377   bool nuw = false;
2378   bool nsw = false;
2379   bool exact = false;
2380 
2381   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
2382 
2383     if (const OverflowingBinaryOperator *OFBinOp =
2384             dyn_cast<const OverflowingBinaryOperator>(&I)) {
2385       nuw = OFBinOp->hasNoUnsignedWrap();
2386       nsw = OFBinOp->hasNoSignedWrap();
2387     }
2388     if (const PossiblyExactOperator *ExactOp =
2389             dyn_cast<const PossiblyExactOperator>(&I))
2390       exact = ExactOp->isExact();
2391   }
2392   SDNodeFlags Flags;
2393   Flags.setExact(exact);
2394   Flags.setNoSignedWrap(nsw);
2395   Flags.setNoUnsignedWrap(nuw);
2396   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
2397                             &Flags);
2398   setValue(&I, Res);
2399 }
2400 
2401 void SelectionDAGBuilder::visitSDiv(const User &I) {
2402   SDValue Op1 = getValue(I.getOperand(0));
2403   SDValue Op2 = getValue(I.getOperand(1));
2404 
2405   SDNodeFlags Flags;
2406   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
2407                  cast<PossiblyExactOperator>(&I)->isExact());
2408   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
2409                            Op2, &Flags));
2410 }
2411 
2412 void SelectionDAGBuilder::visitICmp(const User &I) {
2413   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2414   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2415     predicate = IC->getPredicate();
2416   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2417     predicate = ICmpInst::Predicate(IC->getPredicate());
2418   SDValue Op1 = getValue(I.getOperand(0));
2419   SDValue Op2 = getValue(I.getOperand(1));
2420   ISD::CondCode Opcode = getICmpCondCode(predicate);
2421 
2422   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2423                                                         I.getType());
2424   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2425 }
2426 
2427 void SelectionDAGBuilder::visitFCmp(const User &I) {
2428   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2429   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2430     predicate = FC->getPredicate();
2431   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2432     predicate = FCmpInst::Predicate(FC->getPredicate());
2433   SDValue Op1 = getValue(I.getOperand(0));
2434   SDValue Op2 = getValue(I.getOperand(1));
2435   ISD::CondCode Condition = getFCmpCondCode(predicate);
2436 
2437   // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them.
2438   // FIXME: We should propagate the fast-math-flags to the DAG node itself for
2439   // further optimization, but currently FMF is only applicable to binary nodes.
2440   if (TM.Options.NoNaNsFPMath)
2441     Condition = getFCmpCodeWithoutNaN(Condition);
2442   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2443                                                         I.getType());
2444   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2445 }
2446 
2447 void SelectionDAGBuilder::visitSelect(const User &I) {
2448   SmallVector<EVT, 4> ValueVTs;
2449   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
2450                   ValueVTs);
2451   unsigned NumValues = ValueVTs.size();
2452   if (NumValues == 0) return;
2453 
2454   SmallVector<SDValue, 4> Values(NumValues);
2455   SDValue Cond     = getValue(I.getOperand(0));
2456   SDValue LHSVal   = getValue(I.getOperand(1));
2457   SDValue RHSVal   = getValue(I.getOperand(2));
2458   auto BaseOps = {Cond};
2459   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2460     ISD::VSELECT : ISD::SELECT;
2461 
2462   // Min/max matching is only viable if all output VTs are the same.
2463   if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) {
2464     EVT VT = ValueVTs[0];
2465     LLVMContext &Ctx = *DAG.getContext();
2466     auto &TLI = DAG.getTargetLoweringInfo();
2467 
2468     // We care about the legality of the operation after it has been type
2469     // legalized.
2470     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
2471            VT != TLI.getTypeToTransformTo(Ctx, VT))
2472       VT = TLI.getTypeToTransformTo(Ctx, VT);
2473 
2474     // If the vselect is legal, assume we want to leave this as a vector setcc +
2475     // vselect. Otherwise, if this is going to be scalarized, we want to see if
2476     // min/max is legal on the scalar type.
2477     bool UseScalarMinMax = VT.isVector() &&
2478       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
2479 
2480     Value *LHS, *RHS;
2481     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
2482     ISD::NodeType Opc = ISD::DELETED_NODE;
2483     switch (SPR.Flavor) {
2484     case SPF_UMAX:    Opc = ISD::UMAX; break;
2485     case SPF_UMIN:    Opc = ISD::UMIN; break;
2486     case SPF_SMAX:    Opc = ISD::SMAX; break;
2487     case SPF_SMIN:    Opc = ISD::SMIN; break;
2488     case SPF_FMINNUM:
2489       switch (SPR.NaNBehavior) {
2490       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2491       case SPNB_RETURNS_NAN:   Opc = ISD::FMINNAN; break;
2492       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
2493       case SPNB_RETURNS_ANY: {
2494         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
2495           Opc = ISD::FMINNUM;
2496         else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT))
2497           Opc = ISD::FMINNAN;
2498         else if (UseScalarMinMax)
2499           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
2500             ISD::FMINNUM : ISD::FMINNAN;
2501         break;
2502       }
2503       }
2504       break;
2505     case SPF_FMAXNUM:
2506       switch (SPR.NaNBehavior) {
2507       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2508       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXNAN; break;
2509       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
2510       case SPNB_RETURNS_ANY:
2511 
2512         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
2513           Opc = ISD::FMAXNUM;
2514         else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT))
2515           Opc = ISD::FMAXNAN;
2516         else if (UseScalarMinMax)
2517           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
2518             ISD::FMAXNUM : ISD::FMAXNAN;
2519         break;
2520       }
2521       break;
2522     default: break;
2523     }
2524 
2525     if (Opc != ISD::DELETED_NODE &&
2526         (TLI.isOperationLegalOrCustom(Opc, VT) ||
2527          (UseScalarMinMax &&
2528           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
2529         // If the underlying comparison instruction is used by any other
2530         // instruction, the consumed instructions won't be destroyed, so it is
2531         // not profitable to convert to a min/max.
2532         cast<SelectInst>(&I)->getCondition()->hasOneUse()) {
2533       OpCode = Opc;
2534       LHSVal = getValue(LHS);
2535       RHSVal = getValue(RHS);
2536       BaseOps = {};
2537     }
2538   }
2539 
2540   for (unsigned i = 0; i != NumValues; ++i) {
2541     SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
2542     Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
2543     Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
2544     Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
2545                             LHSVal.getNode()->getValueType(LHSVal.getResNo()+i),
2546                             Ops);
2547   }
2548 
2549   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2550                            DAG.getVTList(ValueVTs), Values));
2551 }
2552 
2553 void SelectionDAGBuilder::visitTrunc(const User &I) {
2554   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2555   SDValue N = getValue(I.getOperand(0));
2556   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2557                                                         I.getType());
2558   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
2559 }
2560 
2561 void SelectionDAGBuilder::visitZExt(const User &I) {
2562   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2563   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2564   SDValue N = getValue(I.getOperand(0));
2565   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2566                                                         I.getType());
2567   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
2568 }
2569 
2570 void SelectionDAGBuilder::visitSExt(const User &I) {
2571   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2572   // SExt also can't be a cast to bool for same reason. So, nothing much to do
2573   SDValue N = getValue(I.getOperand(0));
2574   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2575                                                         I.getType());
2576   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
2577 }
2578 
2579 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2580   // FPTrunc is never a no-op cast, no need to check
2581   SDValue N = getValue(I.getOperand(0));
2582   SDLoc dl = getCurSDLoc();
2583   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2584   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2585   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
2586                            DAG.getTargetConstant(
2587                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
2588 }
2589 
2590 void SelectionDAGBuilder::visitFPExt(const User &I) {
2591   // FPExt is never a no-op cast, no need to check
2592   SDValue N = getValue(I.getOperand(0));
2593   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2594                                                         I.getType());
2595   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
2596 }
2597 
2598 void SelectionDAGBuilder::visitFPToUI(const User &I) {
2599   // FPToUI is never a no-op cast, no need to check
2600   SDValue N = getValue(I.getOperand(0));
2601   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2602                                                         I.getType());
2603   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
2604 }
2605 
2606 void SelectionDAGBuilder::visitFPToSI(const User &I) {
2607   // FPToSI is never a no-op cast, no need to check
2608   SDValue N = getValue(I.getOperand(0));
2609   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2610                                                         I.getType());
2611   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
2612 }
2613 
2614 void SelectionDAGBuilder::visitUIToFP(const User &I) {
2615   // UIToFP is never a no-op cast, no need to check
2616   SDValue N = getValue(I.getOperand(0));
2617   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2618                                                         I.getType());
2619   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
2620 }
2621 
2622 void SelectionDAGBuilder::visitSIToFP(const User &I) {
2623   // SIToFP is never a no-op cast, no need to check
2624   SDValue N = getValue(I.getOperand(0));
2625   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2626                                                         I.getType());
2627   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
2628 }
2629 
2630 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2631   // What to do depends on the size of the integer and the size of the pointer.
2632   // We can either truncate, zero extend, or no-op, accordingly.
2633   SDValue N = getValue(I.getOperand(0));
2634   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2635                                                         I.getType());
2636   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2637 }
2638 
2639 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2640   // What to do depends on the size of the integer and the size of the pointer.
2641   // We can either truncate, zero extend, or no-op, accordingly.
2642   SDValue N = getValue(I.getOperand(0));
2643   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2644                                                         I.getType());
2645   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2646 }
2647 
2648 void SelectionDAGBuilder::visitBitCast(const User &I) {
2649   SDValue N = getValue(I.getOperand(0));
2650   SDLoc dl = getCurSDLoc();
2651   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2652                                                         I.getType());
2653 
2654   // BitCast assures us that source and destination are the same size so this is
2655   // either a BITCAST or a no-op.
2656   if (DestVT != N.getValueType())
2657     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
2658                              DestVT, N)); // convert types.
2659   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
2660   // might fold any kind of constant expression to an integer constant and that
2661   // is not what we are looking for. Only regcognize a bitcast of a genuine
2662   // constant integer as an opaque constant.
2663   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
2664     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
2665                                  /*isOpaque*/true));
2666   else
2667     setValue(&I, N);            // noop cast.
2668 }
2669 
2670 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
2671   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2672   const Value *SV = I.getOperand(0);
2673   SDValue N = getValue(SV);
2674   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2675 
2676   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
2677   unsigned DestAS = I.getType()->getPointerAddressSpace();
2678 
2679   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
2680     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
2681 
2682   setValue(&I, N);
2683 }
2684 
2685 void SelectionDAGBuilder::visitInsertElement(const User &I) {
2686   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2687   SDValue InVec = getValue(I.getOperand(0));
2688   SDValue InVal = getValue(I.getOperand(1));
2689   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
2690                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
2691   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
2692                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
2693                            InVec, InVal, InIdx));
2694 }
2695 
2696 void SelectionDAGBuilder::visitExtractElement(const User &I) {
2697   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2698   SDValue InVec = getValue(I.getOperand(0));
2699   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
2700                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
2701   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
2702                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
2703                            InVec, InIdx));
2704 }
2705 
2706 // Utility for visitShuffleVector - Return true if every element in Mask,
2707 // beginning from position Pos and ending in Pos+Size, falls within the
2708 // specified sequential range [L, L+Pos). or is undef.
2709 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
2710                                 unsigned Pos, unsigned Size, int Low) {
2711   for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
2712     if (Mask[i] >= 0 && Mask[i] != Low)
2713       return false;
2714   return true;
2715 }
2716 
2717 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2718   SDValue Src1 = getValue(I.getOperand(0));
2719   SDValue Src2 = getValue(I.getOperand(1));
2720 
2721   SmallVector<int, 8> Mask;
2722   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
2723   unsigned MaskNumElts = Mask.size();
2724 
2725   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2726   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2727   EVT SrcVT = Src1.getValueType();
2728   unsigned SrcNumElts = SrcVT.getVectorNumElements();
2729 
2730   if (SrcNumElts == MaskNumElts) {
2731     setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
2732                                       &Mask[0]));
2733     return;
2734   }
2735 
2736   // Normalize the shuffle vector since mask and vector length don't match.
2737   if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2738     // Mask is longer than the source vectors and is a multiple of the source
2739     // vectors.  We can use concatenate vector to make the mask and vectors
2740     // lengths match.
2741     if (SrcNumElts*2 == MaskNumElts) {
2742       // First check for Src1 in low and Src2 in high
2743       if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
2744           isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
2745         // The shuffle is concatenating two vectors together.
2746         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
2747                                  VT, Src1, Src2));
2748         return;
2749       }
2750       // Then check for Src2 in low and Src1 in high
2751       if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
2752           isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
2753         // The shuffle is concatenating two vectors together.
2754         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
2755                                  VT, Src2, Src1));
2756         return;
2757       }
2758     }
2759 
2760     // Pad both vectors with undefs to make them the same length as the mask.
2761     unsigned NumConcat = MaskNumElts / SrcNumElts;
2762     bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2763     bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2764     SDValue UndefVal = DAG.getUNDEF(SrcVT);
2765 
2766     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2767     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2768     MOps1[0] = Src1;
2769     MOps2[0] = Src2;
2770 
2771     Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2772                                                   getCurSDLoc(), VT, MOps1);
2773     Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2774                                                   getCurSDLoc(), VT, MOps2);
2775 
2776     // Readjust mask for new input vector length.
2777     SmallVector<int, 8> MappedOps;
2778     for (unsigned i = 0; i != MaskNumElts; ++i) {
2779       int Idx = Mask[i];
2780       if (Idx >= (int)SrcNumElts)
2781         Idx -= SrcNumElts - MaskNumElts;
2782       MappedOps.push_back(Idx);
2783     }
2784 
2785     setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
2786                                       &MappedOps[0]));
2787     return;
2788   }
2789 
2790   if (SrcNumElts > MaskNumElts) {
2791     // Analyze the access pattern of the vector to see if we can extract
2792     // two subvectors and do the shuffle. The analysis is done by calculating
2793     // the range of elements the mask access on both vectors.
2794     int MinRange[2] = { static_cast<int>(SrcNumElts),
2795                         static_cast<int>(SrcNumElts)};
2796     int MaxRange[2] = {-1, -1};
2797 
2798     for (unsigned i = 0; i != MaskNumElts; ++i) {
2799       int Idx = Mask[i];
2800       unsigned Input = 0;
2801       if (Idx < 0)
2802         continue;
2803 
2804       if (Idx >= (int)SrcNumElts) {
2805         Input = 1;
2806         Idx -= SrcNumElts;
2807       }
2808       if (Idx > MaxRange[Input])
2809         MaxRange[Input] = Idx;
2810       if (Idx < MinRange[Input])
2811         MinRange[Input] = Idx;
2812     }
2813 
2814     // Check if the access is smaller than the vector size and can we find
2815     // a reasonable extract index.
2816     int RangeUse[2] = { -1, -1 };  // 0 = Unused, 1 = Extract, -1 = Can not
2817                                    // Extract.
2818     int StartIdx[2];  // StartIdx to extract from
2819     for (unsigned Input = 0; Input < 2; ++Input) {
2820       if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
2821         RangeUse[Input] = 0; // Unused
2822         StartIdx[Input] = 0;
2823         continue;
2824       }
2825 
2826       // Find a good start index that is a multiple of the mask length. Then
2827       // see if the rest of the elements are in range.
2828       StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2829       if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2830           StartIdx[Input] + MaskNumElts <= SrcNumElts)
2831         RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2832     }
2833 
2834     if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2835       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2836       return;
2837     }
2838     if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
2839       // Extract appropriate subvector and generate a vector shuffle
2840       for (unsigned Input = 0; Input < 2; ++Input) {
2841         SDValue &Src = Input == 0 ? Src1 : Src2;
2842         if (RangeUse[Input] == 0)
2843           Src = DAG.getUNDEF(VT);
2844         else {
2845           SDLoc dl = getCurSDLoc();
2846           Src = DAG.getNode(
2847               ISD::EXTRACT_SUBVECTOR, dl, VT, Src,
2848               DAG.getConstant(StartIdx[Input], dl,
2849                               TLI.getVectorIdxTy(DAG.getDataLayout())));
2850         }
2851       }
2852 
2853       // Calculate new mask.
2854       SmallVector<int, 8> MappedOps;
2855       for (unsigned i = 0; i != MaskNumElts; ++i) {
2856         int Idx = Mask[i];
2857         if (Idx >= 0) {
2858           if (Idx < (int)SrcNumElts)
2859             Idx -= StartIdx[0];
2860           else
2861             Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
2862         }
2863         MappedOps.push_back(Idx);
2864       }
2865 
2866       setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
2867                                         &MappedOps[0]));
2868       return;
2869     }
2870   }
2871 
2872   // We can't use either concat vectors or extract subvectors so fall back to
2873   // replacing the shuffle with extract and build vector.
2874   // to insert and build vector.
2875   EVT EltVT = VT.getVectorElementType();
2876   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
2877   SDLoc dl = getCurSDLoc();
2878   SmallVector<SDValue,8> Ops;
2879   for (unsigned i = 0; i != MaskNumElts; ++i) {
2880     int Idx = Mask[i];
2881     SDValue Res;
2882 
2883     if (Idx < 0) {
2884       Res = DAG.getUNDEF(EltVT);
2885     } else {
2886       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
2887       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
2888 
2889       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
2890                         EltVT, Src, DAG.getConstant(Idx, dl, IdxVT));
2891     }
2892 
2893     Ops.push_back(Res);
2894   }
2895 
2896   setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops));
2897 }
2898 
2899 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2900   const Value *Op0 = I.getOperand(0);
2901   const Value *Op1 = I.getOperand(1);
2902   Type *AggTy = I.getType();
2903   Type *ValTy = Op1->getType();
2904   bool IntoUndef = isa<UndefValue>(Op0);
2905   bool FromUndef = isa<UndefValue>(Op1);
2906 
2907   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
2908 
2909   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2910   SmallVector<EVT, 4> AggValueVTs;
2911   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
2912   SmallVector<EVT, 4> ValValueVTs;
2913   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
2914 
2915   unsigned NumAggValues = AggValueVTs.size();
2916   unsigned NumValValues = ValValueVTs.size();
2917   SmallVector<SDValue, 4> Values(NumAggValues);
2918 
2919   // Ignore an insertvalue that produces an empty object
2920   if (!NumAggValues) {
2921     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
2922     return;
2923   }
2924 
2925   SDValue Agg = getValue(Op0);
2926   unsigned i = 0;
2927   // Copy the beginning value(s) from the original aggregate.
2928   for (; i != LinearIndex; ++i)
2929     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2930                 SDValue(Agg.getNode(), Agg.getResNo() + i);
2931   // Copy values from the inserted value(s).
2932   if (NumValValues) {
2933     SDValue Val = getValue(Op1);
2934     for (; i != LinearIndex + NumValValues; ++i)
2935       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2936                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2937   }
2938   // Copy remaining value(s) from the original aggregate.
2939   for (; i != NumAggValues; ++i)
2940     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2941                 SDValue(Agg.getNode(), Agg.getResNo() + i);
2942 
2943   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2944                            DAG.getVTList(AggValueVTs), Values));
2945 }
2946 
2947 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
2948   const Value *Op0 = I.getOperand(0);
2949   Type *AggTy = Op0->getType();
2950   Type *ValTy = I.getType();
2951   bool OutOfUndef = isa<UndefValue>(Op0);
2952 
2953   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
2954 
2955   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2956   SmallVector<EVT, 4> ValValueVTs;
2957   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
2958 
2959   unsigned NumValValues = ValValueVTs.size();
2960 
2961   // Ignore a extractvalue that produces an empty object
2962   if (!NumValValues) {
2963     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
2964     return;
2965   }
2966 
2967   SmallVector<SDValue, 4> Values(NumValValues);
2968 
2969   SDValue Agg = getValue(Op0);
2970   // Copy out the selected value(s).
2971   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2972     Values[i - LinearIndex] =
2973       OutOfUndef ?
2974         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2975         SDValue(Agg.getNode(), Agg.getResNo() + i);
2976 
2977   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2978                            DAG.getVTList(ValValueVTs), Values));
2979 }
2980 
2981 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
2982   Value *Op0 = I.getOperand(0);
2983   // Note that the pointer operand may be a vector of pointers. Take the scalar
2984   // element which holds a pointer.
2985   Type *Ty = Op0->getType()->getScalarType();
2986   unsigned AS = Ty->getPointerAddressSpace();
2987   SDValue N = getValue(Op0);
2988   SDLoc dl = getCurSDLoc();
2989 
2990   // Normalize Vector GEP - all scalar operands should be converted to the
2991   // splat vector.
2992   unsigned VectorWidth = I.getType()->isVectorTy() ?
2993     cast<VectorType>(I.getType())->getVectorNumElements() : 0;
2994 
2995   if (VectorWidth && !N.getValueType().isVector()) {
2996     MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth);
2997     SmallVector<SDValue, 16> Ops(VectorWidth, N);
2998     N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
2999   }
3000   for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
3001        OI != E; ++OI) {
3002     const Value *Idx = *OI;
3003     if (StructType *StTy = dyn_cast<StructType>(Ty)) {
3004       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3005       if (Field) {
3006         // N = N + Offset
3007         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3008 
3009         // In an inbouds GEP with an offset that is nonnegative even when
3010         // interpreted as signed, assume there is no unsigned overflow.
3011         SDNodeFlags Flags;
3012         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3013           Flags.setNoUnsignedWrap(true);
3014 
3015         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3016                         DAG.getConstant(Offset, dl, N.getValueType()), &Flags);
3017       }
3018 
3019       Ty = StTy->getElementType(Field);
3020     } else {
3021       Ty = cast<SequentialType>(Ty)->getElementType();
3022       MVT PtrTy =
3023           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS);
3024       unsigned PtrSize = PtrTy.getSizeInBits();
3025       APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty));
3026 
3027       // If this is a scalar constant or a splat vector of constants,
3028       // handle it quickly.
3029       const auto *CI = dyn_cast<ConstantInt>(Idx);
3030       if (!CI && isa<ConstantDataVector>(Idx) &&
3031           cast<ConstantDataVector>(Idx)->getSplatValue())
3032         CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3033 
3034       if (CI) {
3035         if (CI->isZero())
3036           continue;
3037         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize);
3038         SDValue OffsVal = VectorWidth ?
3039           DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) :
3040           DAG.getConstant(Offs, dl, PtrTy);
3041 
3042         // In an inbouds GEP with an offset that is nonnegative even when
3043         // interpreted as signed, assume there is no unsigned overflow.
3044         SDNodeFlags Flags;
3045         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3046           Flags.setNoUnsignedWrap(true);
3047 
3048         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, &Flags);
3049         continue;
3050       }
3051 
3052       // N = N + Idx * ElementSize;
3053       SDValue IdxN = getValue(Idx);
3054 
3055       if (!IdxN.getValueType().isVector() && VectorWidth) {
3056         MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth);
3057         SmallVector<SDValue, 16> Ops(VectorWidth, IdxN);
3058         IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
3059       }
3060       // If the index is smaller or larger than intptr_t, truncate or extend
3061       // it.
3062       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3063 
3064       // If this is a multiply by a power of two, turn it into a shl
3065       // immediately.  This is a very common case.
3066       if (ElementSize != 1) {
3067         if (ElementSize.isPowerOf2()) {
3068           unsigned Amt = ElementSize.logBase2();
3069           IdxN = DAG.getNode(ISD::SHL, dl,
3070                              N.getValueType(), IdxN,
3071                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3072         } else {
3073           SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
3074           IdxN = DAG.getNode(ISD::MUL, dl,
3075                              N.getValueType(), IdxN, Scale);
3076         }
3077       }
3078 
3079       N = DAG.getNode(ISD::ADD, dl,
3080                       N.getValueType(), N, IdxN);
3081     }
3082   }
3083 
3084   setValue(&I, N);
3085 }
3086 
3087 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3088   // If this is a fixed sized alloca in the entry block of the function,
3089   // allocate it statically on the stack.
3090   if (FuncInfo.StaticAllocaMap.count(&I))
3091     return;   // getValue will auto-populate this.
3092 
3093   SDLoc dl = getCurSDLoc();
3094   Type *Ty = I.getAllocatedType();
3095   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3096   auto &DL = DAG.getDataLayout();
3097   uint64_t TySize = DL.getTypeAllocSize(Ty);
3098   unsigned Align =
3099       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3100 
3101   SDValue AllocSize = getValue(I.getArraySize());
3102 
3103   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout());
3104   if (AllocSize.getValueType() != IntPtr)
3105     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3106 
3107   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3108                           AllocSize,
3109                           DAG.getConstant(TySize, dl, IntPtr));
3110 
3111   // Handle alignment.  If the requested alignment is less than or equal to
3112   // the stack alignment, ignore it.  If the size is greater than or equal to
3113   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3114   unsigned StackAlign =
3115       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3116   if (Align <= StackAlign)
3117     Align = 0;
3118 
3119   // Round the size of the allocation up to the stack alignment size
3120   // by add SA-1 to the size. This doesn't overflow because we're computing
3121   // an address inside an alloca.
3122   SDNodeFlags Flags;
3123   Flags.setNoUnsignedWrap(true);
3124   AllocSize = DAG.getNode(ISD::ADD, dl,
3125                           AllocSize.getValueType(), AllocSize,
3126                           DAG.getIntPtrConstant(StackAlign - 1, dl), &Flags);
3127 
3128   // Mask out the low bits for alignment purposes.
3129   AllocSize = DAG.getNode(ISD::AND, dl,
3130                           AllocSize.getValueType(), AllocSize,
3131                           DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1),
3132                                                 dl));
3133 
3134   SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) };
3135   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3136   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3137   setValue(&I, DSA);
3138   DAG.setRoot(DSA.getValue(1));
3139 
3140   assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects());
3141 }
3142 
3143 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3144   if (I.isAtomic())
3145     return visitAtomicLoad(I);
3146 
3147   const Value *SV = I.getOperand(0);
3148   SDValue Ptr = getValue(SV);
3149 
3150   Type *Ty = I.getType();
3151 
3152   bool isVolatile = I.isVolatile();
3153   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3154 
3155   // The IR notion of invariant_load only guarantees that all *non-faulting*
3156   // invariant loads result in the same value.  The MI notion of invariant load
3157   // guarantees that the load can be legally moved to any location within its
3158   // containing function.  The MI notion of invariant_load is stronger than the
3159   // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load
3160   // with a guarantee that the location being loaded from is dereferenceable
3161   // throughout the function's lifetime.
3162 
3163   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr &&
3164                      isDereferenceablePointer(SV, DAG.getDataLayout());
3165   unsigned Alignment = I.getAlignment();
3166 
3167   AAMDNodes AAInfo;
3168   I.getAAMetadata(AAInfo);
3169   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3170 
3171   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3172   SmallVector<EVT, 4> ValueVTs;
3173   SmallVector<uint64_t, 4> Offsets;
3174   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets);
3175   unsigned NumValues = ValueVTs.size();
3176   if (NumValues == 0)
3177     return;
3178 
3179   SDValue Root;
3180   bool ConstantMemory = false;
3181   if (isVolatile || NumValues > MaxParallelChains)
3182     // Serialize volatile loads with other side effects.
3183     Root = getRoot();
3184   else if (AA->pointsToConstantMemory(MemoryLocation(
3185                SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) {
3186     // Do not serialize (non-volatile) loads of constant memory with anything.
3187     Root = DAG.getEntryNode();
3188     ConstantMemory = true;
3189   } else {
3190     // Do not serialize non-volatile loads against each other.
3191     Root = DAG.getRoot();
3192   }
3193 
3194   SDLoc dl = getCurSDLoc();
3195 
3196   if (isVolatile)
3197     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3198 
3199   // An aggregate load cannot wrap around the address space, so offsets to its
3200   // parts don't wrap either.
3201   SDNodeFlags Flags;
3202   Flags.setNoUnsignedWrap(true);
3203 
3204   SmallVector<SDValue, 4> Values(NumValues);
3205   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3206   EVT PtrVT = Ptr.getValueType();
3207   unsigned ChainI = 0;
3208   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3209     // Serializing loads here may result in excessive register pressure, and
3210     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3211     // could recover a bit by hoisting nodes upward in the chain by recognizing
3212     // they are side-effect free or do not alias. The optimizer should really
3213     // avoid this case by converting large object/array copies to llvm.memcpy
3214     // (MaxParallelChains should always remain as failsafe).
3215     if (ChainI == MaxParallelChains) {
3216       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3217       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3218                                   makeArrayRef(Chains.data(), ChainI));
3219       Root = Chain;
3220       ChainI = 0;
3221     }
3222     SDValue A = DAG.getNode(ISD::ADD, dl,
3223                             PtrVT, Ptr,
3224                             DAG.getConstant(Offsets[i], dl, PtrVT),
3225                             &Flags);
3226     SDValue L = DAG.getLoad(ValueVTs[i], dl, Root,
3227                             A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3228                             isNonTemporal, isInvariant, Alignment, AAInfo,
3229                             Ranges);
3230 
3231     Values[i] = L;
3232     Chains[ChainI] = L.getValue(1);
3233   }
3234 
3235   if (!ConstantMemory) {
3236     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3237                                 makeArrayRef(Chains.data(), ChainI));
3238     if (isVolatile)
3239       DAG.setRoot(Chain);
3240     else
3241       PendingLoads.push_back(Chain);
3242   }
3243 
3244   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
3245                            DAG.getVTList(ValueVTs), Values));
3246 }
3247 
3248 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3249   if (I.isAtomic())
3250     return visitAtomicStore(I);
3251 
3252   const Value *SrcV = I.getOperand(0);
3253   const Value *PtrV = I.getOperand(1);
3254 
3255   SmallVector<EVT, 4> ValueVTs;
3256   SmallVector<uint64_t, 4> Offsets;
3257   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3258                   SrcV->getType(), ValueVTs, &Offsets);
3259   unsigned NumValues = ValueVTs.size();
3260   if (NumValues == 0)
3261     return;
3262 
3263   // Get the lowered operands. Note that we do this after
3264   // checking if NumResults is zero, because with zero results
3265   // the operands won't have values in the map.
3266   SDValue Src = getValue(SrcV);
3267   SDValue Ptr = getValue(PtrV);
3268 
3269   SDValue Root = getRoot();
3270   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3271   EVT PtrVT = Ptr.getValueType();
3272   bool isVolatile = I.isVolatile();
3273   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3274   unsigned Alignment = I.getAlignment();
3275   SDLoc dl = getCurSDLoc();
3276 
3277   AAMDNodes AAInfo;
3278   I.getAAMetadata(AAInfo);
3279 
3280   // An aggregate load cannot wrap around the address space, so offsets to its
3281   // parts don't wrap either.
3282   SDNodeFlags Flags;
3283   Flags.setNoUnsignedWrap(true);
3284 
3285   unsigned ChainI = 0;
3286   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3287     // See visitLoad comments.
3288     if (ChainI == MaxParallelChains) {
3289       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3290                                   makeArrayRef(Chains.data(), ChainI));
3291       Root = Chain;
3292       ChainI = 0;
3293     }
3294     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
3295                               DAG.getConstant(Offsets[i], dl, PtrVT), &Flags);
3296     SDValue St = DAG.getStore(Root, dl,
3297                               SDValue(Src.getNode(), Src.getResNo() + i),
3298                               Add, MachinePointerInfo(PtrV, Offsets[i]),
3299                               isVolatile, isNonTemporal, Alignment, AAInfo);
3300     Chains[ChainI] = St;
3301   }
3302 
3303   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3304                                   makeArrayRef(Chains.data(), ChainI));
3305   DAG.setRoot(StoreNode);
3306 }
3307 
3308 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) {
3309   SDLoc sdl = getCurSDLoc();
3310 
3311   // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
3312   Value  *PtrOperand = I.getArgOperand(1);
3313   SDValue Ptr = getValue(PtrOperand);
3314   SDValue Src0 = getValue(I.getArgOperand(0));
3315   SDValue Mask = getValue(I.getArgOperand(3));
3316   EVT VT = Src0.getValueType();
3317   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3318   if (!Alignment)
3319     Alignment = DAG.getEVTAlignment(VT);
3320 
3321   AAMDNodes AAInfo;
3322   I.getAAMetadata(AAInfo);
3323 
3324   MachineMemOperand *MMO =
3325     DAG.getMachineFunction().
3326     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3327                           MachineMemOperand::MOStore,  VT.getStoreSize(),
3328                           Alignment, AAInfo);
3329   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
3330                                          MMO, false);
3331   DAG.setRoot(StoreNode);
3332   setValue(&I, StoreNode);
3333 }
3334 
3335 // Get a uniform base for the Gather/Scatter intrinsic.
3336 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
3337 // We try to represent it as a base pointer + vector of indices.
3338 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
3339 // The first operand of the GEP may be a single pointer or a vector of pointers
3340 // Example:
3341 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
3342 //  or
3343 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
3344 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
3345 //
3346 // When the first GEP operand is a single pointer - it is the uniform base we
3347 // are looking for. If first operand of the GEP is a splat vector - we
3348 // extract the spalt value and use it as a uniform base.
3349 // In all other cases the function returns 'false'.
3350 //
3351 static bool getUniformBase(const Value *& Ptr, SDValue& Base, SDValue& Index,
3352                            SelectionDAGBuilder* SDB) {
3353 
3354   SelectionDAG& DAG = SDB->DAG;
3355   LLVMContext &Context = *DAG.getContext();
3356 
3357   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
3358   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3359   if (!GEP || GEP->getNumOperands() > 2)
3360     return false;
3361 
3362   const Value *GEPPtr = GEP->getPointerOperand();
3363   if (!GEPPtr->getType()->isVectorTy())
3364     Ptr = GEPPtr;
3365   else if (!(Ptr = getSplatValue(GEPPtr)))
3366     return false;
3367 
3368   Value *IndexVal = GEP->getOperand(1);
3369 
3370   // The operands of the GEP may be defined in another basic block.
3371   // In this case we'll not find nodes for the operands.
3372   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
3373     return false;
3374 
3375   Base = SDB->getValue(Ptr);
3376   Index = SDB->getValue(IndexVal);
3377 
3378   // Suppress sign extension.
3379   if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) {
3380     if (SDB->findValue(Sext->getOperand(0))) {
3381       IndexVal = Sext->getOperand(0);
3382       Index = SDB->getValue(IndexVal);
3383     }
3384   }
3385   if (!Index.getValueType().isVector()) {
3386     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
3387     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
3388     SmallVector<SDValue, 16> Ops(GEPWidth, Index);
3389     Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops);
3390   }
3391   return true;
3392 }
3393 
3394 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
3395   SDLoc sdl = getCurSDLoc();
3396 
3397   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
3398   const Value *Ptr = I.getArgOperand(1);
3399   SDValue Src0 = getValue(I.getArgOperand(0));
3400   SDValue Mask = getValue(I.getArgOperand(3));
3401   EVT VT = Src0.getValueType();
3402   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3403   if (!Alignment)
3404     Alignment = DAG.getEVTAlignment(VT);
3405   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3406 
3407   AAMDNodes AAInfo;
3408   I.getAAMetadata(AAInfo);
3409 
3410   SDValue Base;
3411   SDValue Index;
3412   const Value *BasePtr = Ptr;
3413   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3414 
3415   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
3416   MachineMemOperand *MMO = DAG.getMachineFunction().
3417     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
3418                          MachineMemOperand::MOStore,  VT.getStoreSize(),
3419                          Alignment, AAInfo);
3420   if (!UniformBase) {
3421     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3422     Index = getValue(Ptr);
3423   }
3424   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index };
3425   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
3426                                          Ops, MMO);
3427   DAG.setRoot(Scatter);
3428   setValue(&I, Scatter);
3429 }
3430 
3431 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) {
3432   SDLoc sdl = getCurSDLoc();
3433 
3434   // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
3435   Value  *PtrOperand = I.getArgOperand(0);
3436   SDValue Ptr = getValue(PtrOperand);
3437   SDValue Src0 = getValue(I.getArgOperand(3));
3438   SDValue Mask = getValue(I.getArgOperand(2));
3439 
3440   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3441   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3442   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
3443   if (!Alignment)
3444     Alignment = DAG.getEVTAlignment(VT);
3445 
3446   AAMDNodes AAInfo;
3447   I.getAAMetadata(AAInfo);
3448   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3449 
3450   SDValue InChain = DAG.getRoot();
3451   if (AA->pointsToConstantMemory(MemoryLocation(
3452           PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()),
3453           AAInfo))) {
3454     // Do not serialize (non-volatile) loads of constant memory with anything.
3455     InChain = DAG.getEntryNode();
3456   }
3457 
3458   MachineMemOperand *MMO =
3459     DAG.getMachineFunction().
3460     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3461                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
3462                           Alignment, AAInfo, Ranges);
3463 
3464   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
3465                                    ISD::NON_EXTLOAD);
3466   SDValue OutChain = Load.getValue(1);
3467   DAG.setRoot(OutChain);
3468   setValue(&I, Load);
3469 }
3470 
3471 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
3472   SDLoc sdl = getCurSDLoc();
3473 
3474   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
3475   const Value *Ptr = I.getArgOperand(0);
3476   SDValue Src0 = getValue(I.getArgOperand(3));
3477   SDValue Mask = getValue(I.getArgOperand(2));
3478 
3479   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3480   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3481   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
3482   if (!Alignment)
3483     Alignment = DAG.getEVTAlignment(VT);
3484 
3485   AAMDNodes AAInfo;
3486   I.getAAMetadata(AAInfo);
3487   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3488 
3489   SDValue Root = DAG.getRoot();
3490   SDValue Base;
3491   SDValue Index;
3492   const Value *BasePtr = Ptr;
3493   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3494   bool ConstantMemory = false;
3495   if (UniformBase &&
3496       AA->pointsToConstantMemory(MemoryLocation(
3497           BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()),
3498           AAInfo))) {
3499     // Do not serialize (non-volatile) loads of constant memory with anything.
3500     Root = DAG.getEntryNode();
3501     ConstantMemory = true;
3502   }
3503 
3504   MachineMemOperand *MMO =
3505     DAG.getMachineFunction().
3506     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
3507                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
3508                          Alignment, AAInfo, Ranges);
3509 
3510   if (!UniformBase) {
3511     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3512     Index = getValue(Ptr);
3513   }
3514   SDValue Ops[] = { Root, Src0, Mask, Base, Index };
3515   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
3516                                        Ops, MMO);
3517 
3518   SDValue OutChain = Gather.getValue(1);
3519   if (!ConstantMemory)
3520     PendingLoads.push_back(OutChain);
3521   setValue(&I, Gather);
3522 }
3523 
3524 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3525   SDLoc dl = getCurSDLoc();
3526   AtomicOrdering SuccessOrder = I.getSuccessOrdering();
3527   AtomicOrdering FailureOrder = I.getFailureOrdering();
3528   SynchronizationScope Scope = I.getSynchScope();
3529 
3530   SDValue InChain = getRoot();
3531 
3532   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
3533   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
3534   SDValue L = DAG.getAtomicCmpSwap(
3535       ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
3536       getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
3537       getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
3538       /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope);
3539 
3540   SDValue OutChain = L.getValue(2);
3541 
3542   setValue(&I, L);
3543   DAG.setRoot(OutChain);
3544 }
3545 
3546 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3547   SDLoc dl = getCurSDLoc();
3548   ISD::NodeType NT;
3549   switch (I.getOperation()) {
3550   default: llvm_unreachable("Unknown atomicrmw operation");
3551   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3552   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3553   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3554   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3555   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3556   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3557   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3558   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3559   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3560   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3561   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3562   }
3563   AtomicOrdering Order = I.getOrdering();
3564   SynchronizationScope Scope = I.getSynchScope();
3565 
3566   SDValue InChain = getRoot();
3567 
3568   SDValue L =
3569     DAG.getAtomic(NT, dl,
3570                   getValue(I.getValOperand()).getSimpleValueType(),
3571                   InChain,
3572                   getValue(I.getPointerOperand()),
3573                   getValue(I.getValOperand()),
3574                   I.getPointerOperand(),
3575                   /* Alignment=*/ 0, Order, Scope);
3576 
3577   SDValue OutChain = L.getValue(1);
3578 
3579   setValue(&I, L);
3580   DAG.setRoot(OutChain);
3581 }
3582 
3583 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3584   SDLoc dl = getCurSDLoc();
3585   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3586   SDValue Ops[3];
3587   Ops[0] = getRoot();
3588   Ops[1] = DAG.getConstant(I.getOrdering(), dl,
3589                            TLI.getPointerTy(DAG.getDataLayout()));
3590   Ops[2] = DAG.getConstant(I.getSynchScope(), dl,
3591                            TLI.getPointerTy(DAG.getDataLayout()));
3592   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
3593 }
3594 
3595 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3596   SDLoc dl = getCurSDLoc();
3597   AtomicOrdering Order = I.getOrdering();
3598   SynchronizationScope Scope = I.getSynchScope();
3599 
3600   SDValue InChain = getRoot();
3601 
3602   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3603   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3604 
3605   if (I.getAlignment() < VT.getSizeInBits() / 8)
3606     report_fatal_error("Cannot generate unaligned atomic load");
3607 
3608   MachineMemOperand *MMO =
3609       DAG.getMachineFunction().
3610       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
3611                            MachineMemOperand::MOVolatile |
3612                            MachineMemOperand::MOLoad,
3613                            VT.getStoreSize(),
3614                            I.getAlignment() ? I.getAlignment() :
3615                                               DAG.getEVTAlignment(VT));
3616 
3617   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
3618   SDValue L =
3619       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3620                     getValue(I.getPointerOperand()), MMO,
3621                     Order, Scope);
3622 
3623   SDValue OutChain = L.getValue(1);
3624 
3625   setValue(&I, L);
3626   DAG.setRoot(OutChain);
3627 }
3628 
3629 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3630   SDLoc dl = getCurSDLoc();
3631 
3632   AtomicOrdering Order = I.getOrdering();
3633   SynchronizationScope Scope = I.getSynchScope();
3634 
3635   SDValue InChain = getRoot();
3636 
3637   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3638   EVT VT =
3639       TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
3640 
3641   if (I.getAlignment() < VT.getSizeInBits() / 8)
3642     report_fatal_error("Cannot generate unaligned atomic store");
3643 
3644   SDValue OutChain =
3645     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3646                   InChain,
3647                   getValue(I.getPointerOperand()),
3648                   getValue(I.getValueOperand()),
3649                   I.getPointerOperand(), I.getAlignment(),
3650                   Order, Scope);
3651 
3652   DAG.setRoot(OutChain);
3653 }
3654 
3655 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3656 /// node.
3657 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3658                                                unsigned Intrinsic) {
3659   bool HasChain = !I.doesNotAccessMemory();
3660   bool OnlyLoad = HasChain && I.onlyReadsMemory();
3661 
3662   // Build the operand list.
3663   SmallVector<SDValue, 8> Ops;
3664   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3665     if (OnlyLoad) {
3666       // We don't need to serialize loads against other loads.
3667       Ops.push_back(DAG.getRoot());
3668     } else {
3669       Ops.push_back(getRoot());
3670     }
3671   }
3672 
3673   // Info is set by getTgtMemInstrinsic
3674   TargetLowering::IntrinsicInfo Info;
3675   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3676   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3677 
3678   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3679   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3680       Info.opc == ISD::INTRINSIC_W_CHAIN)
3681     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
3682                                         TLI.getPointerTy(DAG.getDataLayout())));
3683 
3684   // Add all operands of the call to the operand list.
3685   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3686     SDValue Op = getValue(I.getArgOperand(i));
3687     Ops.push_back(Op);
3688   }
3689 
3690   SmallVector<EVT, 4> ValueVTs;
3691   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
3692 
3693   if (HasChain)
3694     ValueVTs.push_back(MVT::Other);
3695 
3696   SDVTList VTs = DAG.getVTList(ValueVTs);
3697 
3698   // Create the node.
3699   SDValue Result;
3700   if (IsTgtIntrinsic) {
3701     // This is target intrinsic that touches memory
3702     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(),
3703                                      VTs, Ops, Info.memVT,
3704                                    MachinePointerInfo(Info.ptrVal, Info.offset),
3705                                      Info.align, Info.vol,
3706                                      Info.readMem, Info.writeMem, Info.size);
3707   } else if (!HasChain) {
3708     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
3709   } else if (!I.getType()->isVoidTy()) {
3710     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
3711   } else {
3712     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
3713   }
3714 
3715   if (HasChain) {
3716     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3717     if (OnlyLoad)
3718       PendingLoads.push_back(Chain);
3719     else
3720       DAG.setRoot(Chain);
3721   }
3722 
3723   if (!I.getType()->isVoidTy()) {
3724     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3725       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
3726       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
3727     }
3728 
3729     setValue(&I, Result);
3730   }
3731 }
3732 
3733 /// GetSignificand - Get the significand and build it into a floating-point
3734 /// number with exponent of 1:
3735 ///
3736 ///   Op = (Op & 0x007fffff) | 0x3f800000;
3737 ///
3738 /// where Op is the hexadecimal representation of floating point value.
3739 static SDValue
3740 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) {
3741   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3742                            DAG.getConstant(0x007fffff, dl, MVT::i32));
3743   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3744                            DAG.getConstant(0x3f800000, dl, MVT::i32));
3745   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3746 }
3747 
3748 /// GetExponent - Get the exponent:
3749 ///
3750 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3751 ///
3752 /// where Op is the hexadecimal representation of floating point value.
3753 static SDValue
3754 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3755             SDLoc dl) {
3756   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3757                            DAG.getConstant(0x7f800000, dl, MVT::i32));
3758   SDValue t1 = DAG.getNode(
3759       ISD::SRL, dl, MVT::i32, t0,
3760       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
3761   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3762                            DAG.getConstant(127, dl, MVT::i32));
3763   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3764 }
3765 
3766 /// getF32Constant - Get 32-bit floating point constant.
3767 static SDValue
3768 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) {
3769   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl,
3770                            MVT::f32);
3771 }
3772 
3773 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl,
3774                                        SelectionDAG &DAG) {
3775   // TODO: What fast-math-flags should be set on the floating-point nodes?
3776 
3777   //   IntegerPartOfX = ((int32_t)(t0);
3778   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3779 
3780   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
3781   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3782   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3783 
3784   //   IntegerPartOfX <<= 23;
3785   IntegerPartOfX = DAG.getNode(
3786       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3787       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
3788                                   DAG.getDataLayout())));
3789 
3790   SDValue TwoToFractionalPartOfX;
3791   if (LimitFloatPrecision <= 6) {
3792     // For floating-point precision of 6:
3793     //
3794     //   TwoToFractionalPartOfX =
3795     //     0.997535578f +
3796     //       (0.735607626f + 0.252464424f * x) * x;
3797     //
3798     // error 0.0144103317, which is 6 bits
3799     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3800                              getF32Constant(DAG, 0x3e814304, dl));
3801     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3802                              getF32Constant(DAG, 0x3f3c50c8, dl));
3803     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3804     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3805                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
3806   } else if (LimitFloatPrecision <= 12) {
3807     // For floating-point precision of 12:
3808     //
3809     //   TwoToFractionalPartOfX =
3810     //     0.999892986f +
3811     //       (0.696457318f +
3812     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3813     //
3814     // error 0.000107046256, which is 13 to 14 bits
3815     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3816                              getF32Constant(DAG, 0x3da235e3, dl));
3817     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3818                              getF32Constant(DAG, 0x3e65b8f3, dl));
3819     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3820     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3821                              getF32Constant(DAG, 0x3f324b07, dl));
3822     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3823     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3824                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
3825   } else { // LimitFloatPrecision <= 18
3826     // For floating-point precision of 18:
3827     //
3828     //   TwoToFractionalPartOfX =
3829     //     0.999999982f +
3830     //       (0.693148872f +
3831     //         (0.240227044f +
3832     //           (0.554906021e-1f +
3833     //             (0.961591928e-2f +
3834     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3835     // error 2.47208000*10^(-7), which is better than 18 bits
3836     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3837                              getF32Constant(DAG, 0x3924b03e, dl));
3838     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3839                              getF32Constant(DAG, 0x3ab24b87, dl));
3840     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3841     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3842                              getF32Constant(DAG, 0x3c1d8c17, dl));
3843     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3844     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3845                              getF32Constant(DAG, 0x3d634a1d, dl));
3846     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3847     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3848                              getF32Constant(DAG, 0x3e75fe14, dl));
3849     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3850     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3851                               getF32Constant(DAG, 0x3f317234, dl));
3852     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3853     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3854                                          getF32Constant(DAG, 0x3f800000, dl));
3855   }
3856 
3857   // Add the exponent into the result in integer domain.
3858   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
3859   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3860                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
3861 }
3862 
3863 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
3864 /// limited-precision mode.
3865 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3866                          const TargetLowering &TLI) {
3867   if (Op.getValueType() == MVT::f32 &&
3868       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3869 
3870     // Put the exponent in the right bit position for later addition to the
3871     // final result:
3872     //
3873     //   #define LOG2OFe 1.4426950f
3874     //   t0 = Op * LOG2OFe
3875 
3876     // TODO: What fast-math-flags should be set here?
3877     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3878                              getF32Constant(DAG, 0x3fb8aa3b, dl));
3879     return getLimitedPrecisionExp2(t0, dl, DAG);
3880   }
3881 
3882   // No special expansion.
3883   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
3884 }
3885 
3886 /// expandLog - Lower a log intrinsic. Handles the special sequences for
3887 /// limited-precision mode.
3888 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3889                          const TargetLowering &TLI) {
3890 
3891   // TODO: What fast-math-flags should be set on the floating-point nodes?
3892 
3893   if (Op.getValueType() == MVT::f32 &&
3894       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3895     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3896 
3897     // Scale the exponent by log(2) [0.69314718f].
3898     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3899     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3900                                         getF32Constant(DAG, 0x3f317218, dl));
3901 
3902     // Get the significand and build it into a floating-point number with
3903     // exponent of 1.
3904     SDValue X = GetSignificand(DAG, Op1, dl);
3905 
3906     SDValue LogOfMantissa;
3907     if (LimitFloatPrecision <= 6) {
3908       // For floating-point precision of 6:
3909       //
3910       //   LogofMantissa =
3911       //     -1.1609546f +
3912       //       (1.4034025f - 0.23903021f * x) * x;
3913       //
3914       // error 0.0034276066, which is better than 8 bits
3915       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3916                                getF32Constant(DAG, 0xbe74c456, dl));
3917       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3918                                getF32Constant(DAG, 0x3fb3a2b1, dl));
3919       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3920       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3921                                   getF32Constant(DAG, 0x3f949a29, dl));
3922     } else if (LimitFloatPrecision <= 12) {
3923       // For floating-point precision of 12:
3924       //
3925       //   LogOfMantissa =
3926       //     -1.7417939f +
3927       //       (2.8212026f +
3928       //         (-1.4699568f +
3929       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3930       //
3931       // error 0.000061011436, which is 14 bits
3932       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3933                                getF32Constant(DAG, 0xbd67b6d6, dl));
3934       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3935                                getF32Constant(DAG, 0x3ee4f4b8, dl));
3936       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3937       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3938                                getF32Constant(DAG, 0x3fbc278b, dl));
3939       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3940       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3941                                getF32Constant(DAG, 0x40348e95, dl));
3942       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3943       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3944                                   getF32Constant(DAG, 0x3fdef31a, dl));
3945     } else { // LimitFloatPrecision <= 18
3946       // For floating-point precision of 18:
3947       //
3948       //   LogOfMantissa =
3949       //     -2.1072184f +
3950       //       (4.2372794f +
3951       //         (-3.7029485f +
3952       //           (2.2781945f +
3953       //             (-0.87823314f +
3954       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3955       //
3956       // error 0.0000023660568, which is better than 18 bits
3957       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3958                                getF32Constant(DAG, 0xbc91e5ac, dl));
3959       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3960                                getF32Constant(DAG, 0x3e4350aa, dl));
3961       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3962       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3963                                getF32Constant(DAG, 0x3f60d3e3, dl));
3964       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3965       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3966                                getF32Constant(DAG, 0x4011cdf0, dl));
3967       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3968       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3969                                getF32Constant(DAG, 0x406cfd1c, dl));
3970       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3971       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3972                                getF32Constant(DAG, 0x408797cb, dl));
3973       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3974       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3975                                   getF32Constant(DAG, 0x4006dcab, dl));
3976     }
3977 
3978     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
3979   }
3980 
3981   // No special expansion.
3982   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
3983 }
3984 
3985 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
3986 /// limited-precision mode.
3987 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3988                           const TargetLowering &TLI) {
3989 
3990   // TODO: What fast-math-flags should be set on the floating-point nodes?
3991 
3992   if (Op.getValueType() == MVT::f32 &&
3993       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3994     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3995 
3996     // Get the exponent.
3997     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3998 
3999     // Get the significand and build it into a floating-point number with
4000     // exponent of 1.
4001     SDValue X = GetSignificand(DAG, Op1, dl);
4002 
4003     // Different possible minimax approximations of significand in
4004     // floating-point for various degrees of accuracy over [1,2].
4005     SDValue Log2ofMantissa;
4006     if (LimitFloatPrecision <= 6) {
4007       // For floating-point precision of 6:
4008       //
4009       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4010       //
4011       // error 0.0049451742, which is more than 7 bits
4012       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4013                                getF32Constant(DAG, 0xbeb08fe0, dl));
4014       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4015                                getF32Constant(DAG, 0x40019463, dl));
4016       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4017       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4018                                    getF32Constant(DAG, 0x3fd6633d, dl));
4019     } else if (LimitFloatPrecision <= 12) {
4020       // For floating-point precision of 12:
4021       //
4022       //   Log2ofMantissa =
4023       //     -2.51285454f +
4024       //       (4.07009056f +
4025       //         (-2.12067489f +
4026       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4027       //
4028       // error 0.0000876136000, which is better than 13 bits
4029       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4030                                getF32Constant(DAG, 0xbda7262e, dl));
4031       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4032                                getF32Constant(DAG, 0x3f25280b, dl));
4033       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4034       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4035                                getF32Constant(DAG, 0x4007b923, dl));
4036       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4037       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4038                                getF32Constant(DAG, 0x40823e2f, dl));
4039       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4040       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4041                                    getF32Constant(DAG, 0x4020d29c, dl));
4042     } else { // LimitFloatPrecision <= 18
4043       // For floating-point precision of 18:
4044       //
4045       //   Log2ofMantissa =
4046       //     -3.0400495f +
4047       //       (6.1129976f +
4048       //         (-5.3420409f +
4049       //           (3.2865683f +
4050       //             (-1.2669343f +
4051       //               (0.27515199f -
4052       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4053       //
4054       // error 0.0000018516, which is better than 18 bits
4055       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4056                                getF32Constant(DAG, 0xbcd2769e, dl));
4057       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4058                                getF32Constant(DAG, 0x3e8ce0b9, dl));
4059       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4060       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4061                                getF32Constant(DAG, 0x3fa22ae7, dl));
4062       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4063       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4064                                getF32Constant(DAG, 0x40525723, dl));
4065       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4066       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4067                                getF32Constant(DAG, 0x40aaf200, dl));
4068       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4069       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4070                                getF32Constant(DAG, 0x40c39dad, dl));
4071       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4072       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4073                                    getF32Constant(DAG, 0x4042902c, dl));
4074     }
4075 
4076     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4077   }
4078 
4079   // No special expansion.
4080   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4081 }
4082 
4083 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4084 /// limited-precision mode.
4085 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4086                            const TargetLowering &TLI) {
4087 
4088   // TODO: What fast-math-flags should be set on the floating-point nodes?
4089 
4090   if (Op.getValueType() == MVT::f32 &&
4091       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4092     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4093 
4094     // Scale the exponent by log10(2) [0.30102999f].
4095     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4096     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4097                                         getF32Constant(DAG, 0x3e9a209a, dl));
4098 
4099     // Get the significand and build it into a floating-point number with
4100     // exponent of 1.
4101     SDValue X = GetSignificand(DAG, Op1, dl);
4102 
4103     SDValue Log10ofMantissa;
4104     if (LimitFloatPrecision <= 6) {
4105       // For floating-point precision of 6:
4106       //
4107       //   Log10ofMantissa =
4108       //     -0.50419619f +
4109       //       (0.60948995f - 0.10380950f * x) * x;
4110       //
4111       // error 0.0014886165, which is 6 bits
4112       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4113                                getF32Constant(DAG, 0xbdd49a13, dl));
4114       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4115                                getF32Constant(DAG, 0x3f1c0789, dl));
4116       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4117       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4118                                     getF32Constant(DAG, 0x3f011300, dl));
4119     } else if (LimitFloatPrecision <= 12) {
4120       // For floating-point precision of 12:
4121       //
4122       //   Log10ofMantissa =
4123       //     -0.64831180f +
4124       //       (0.91751397f +
4125       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4126       //
4127       // error 0.00019228036, which is better than 12 bits
4128       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4129                                getF32Constant(DAG, 0x3d431f31, dl));
4130       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4131                                getF32Constant(DAG, 0x3ea21fb2, dl));
4132       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4133       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4134                                getF32Constant(DAG, 0x3f6ae232, dl));
4135       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4136       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4137                                     getF32Constant(DAG, 0x3f25f7c3, dl));
4138     } else { // LimitFloatPrecision <= 18
4139       // For floating-point precision of 18:
4140       //
4141       //   Log10ofMantissa =
4142       //     -0.84299375f +
4143       //       (1.5327582f +
4144       //         (-1.0688956f +
4145       //           (0.49102474f +
4146       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4147       //
4148       // error 0.0000037995730, which is better than 18 bits
4149       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4150                                getF32Constant(DAG, 0x3c5d51ce, dl));
4151       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4152                                getF32Constant(DAG, 0x3e00685a, dl));
4153       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4154       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4155                                getF32Constant(DAG, 0x3efb6798, dl));
4156       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4157       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4158                                getF32Constant(DAG, 0x3f88d192, dl));
4159       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4160       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4161                                getF32Constant(DAG, 0x3fc4316c, dl));
4162       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4163       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4164                                     getF32Constant(DAG, 0x3f57ce70, dl));
4165     }
4166 
4167     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4168   }
4169 
4170   // No special expansion.
4171   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4172 }
4173 
4174 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4175 /// limited-precision mode.
4176 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4177                           const TargetLowering &TLI) {
4178   if (Op.getValueType() == MVT::f32 &&
4179       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
4180     return getLimitedPrecisionExp2(Op, dl, DAG);
4181 
4182   // No special expansion.
4183   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4184 }
4185 
4186 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4187 /// limited-precision mode with x == 10.0f.
4188 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS,
4189                          SelectionDAG &DAG, const TargetLowering &TLI) {
4190   bool IsExp10 = false;
4191   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
4192       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4193     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4194       APFloat Ten(10.0f);
4195       IsExp10 = LHSC->isExactlyValue(Ten);
4196     }
4197   }
4198 
4199   // TODO: What fast-math-flags should be set on the FMUL node?
4200   if (IsExp10) {
4201     // Put the exponent in the right bit position for later addition to the
4202     // final result:
4203     //
4204     //   #define LOG2OF10 3.3219281f
4205     //   t0 = Op * LOG2OF10;
4206     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4207                              getF32Constant(DAG, 0x40549a78, dl));
4208     return getLimitedPrecisionExp2(t0, dl, DAG);
4209   }
4210 
4211   // No special expansion.
4212   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4213 }
4214 
4215 
4216 /// ExpandPowI - Expand a llvm.powi intrinsic.
4217 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS,
4218                           SelectionDAG &DAG) {
4219   // If RHS is a constant, we can expand this out to a multiplication tree,
4220   // otherwise we end up lowering to a call to __powidf2 (for example).  When
4221   // optimizing for size, we only want to do this if the expansion would produce
4222   // a small number of multiplies, otherwise we do the full expansion.
4223   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4224     // Get the exponent as a positive value.
4225     unsigned Val = RHSC->getSExtValue();
4226     if ((int)Val < 0) Val = -Val;
4227 
4228     // powi(x, 0) -> 1.0
4229     if (Val == 0)
4230       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
4231 
4232     const Function *F = DAG.getMachineFunction().getFunction();
4233     if (!F->optForSize() ||
4234         // If optimizing for size, don't insert too many multiplies.
4235         // This inserts up to 5 multiplies.
4236         countPopulation(Val) + Log2_32(Val) < 7) {
4237       // We use the simple binary decomposition method to generate the multiply
4238       // sequence.  There are more optimal ways to do this (for example,
4239       // powi(x,15) generates one more multiply than it should), but this has
4240       // the benefit of being both really simple and much better than a libcall.
4241       SDValue Res;  // Logically starts equal to 1.0
4242       SDValue CurSquare = LHS;
4243       // TODO: Intrinsics should have fast-math-flags that propagate to these
4244       // nodes.
4245       while (Val) {
4246         if (Val & 1) {
4247           if (Res.getNode())
4248             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4249           else
4250             Res = CurSquare;  // 1.0*CurSquare.
4251         }
4252 
4253         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4254                                 CurSquare, CurSquare);
4255         Val >>= 1;
4256       }
4257 
4258       // If the original was negative, invert the result, producing 1/(x*x*x).
4259       if (RHSC->getSExtValue() < 0)
4260         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4261                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
4262       return Res;
4263     }
4264   }
4265 
4266   // Otherwise, expand to a libcall.
4267   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4268 }
4269 
4270 // getUnderlyingArgReg - Find underlying register used for a truncated or
4271 // bitcasted argument.
4272 static unsigned getUnderlyingArgReg(const SDValue &N) {
4273   switch (N.getOpcode()) {
4274   case ISD::CopyFromReg:
4275     return cast<RegisterSDNode>(N.getOperand(1))->getReg();
4276   case ISD::BITCAST:
4277   case ISD::AssertZext:
4278   case ISD::AssertSext:
4279   case ISD::TRUNCATE:
4280     return getUnderlyingArgReg(N.getOperand(0));
4281   default:
4282     return 0;
4283   }
4284 }
4285 
4286 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4287 /// argument, create the corresponding DBG_VALUE machine instruction for it now.
4288 /// At the end of instruction selection, they will be inserted to the entry BB.
4289 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
4290     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
4291     DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) {
4292   const Argument *Arg = dyn_cast<Argument>(V);
4293   if (!Arg)
4294     return false;
4295 
4296   MachineFunction &MF = DAG.getMachineFunction();
4297   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
4298 
4299   // Ignore inlined function arguments here.
4300   //
4301   // FIXME: Should we be checking DL->inlinedAt() to determine this?
4302   if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction()))
4303     return false;
4304 
4305   Optional<MachineOperand> Op;
4306   // Some arguments' frame index is recorded during argument lowering.
4307   if (int FI = FuncInfo.getArgumentFrameIndex(Arg))
4308     Op = MachineOperand::CreateFI(FI);
4309 
4310   if (!Op && N.getNode()) {
4311     unsigned Reg = getUnderlyingArgReg(N);
4312     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4313       MachineRegisterInfo &RegInfo = MF.getRegInfo();
4314       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4315       if (PR)
4316         Reg = PR;
4317     }
4318     if (Reg)
4319       Op = MachineOperand::CreateReg(Reg, false);
4320   }
4321 
4322   if (!Op) {
4323     // Check if ValueMap has reg number.
4324     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4325     if (VMI != FuncInfo.ValueMap.end())
4326       Op = MachineOperand::CreateReg(VMI->second, false);
4327   }
4328 
4329   if (!Op && N.getNode())
4330     // Check if frame index is available.
4331     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4332       if (FrameIndexSDNode *FINode =
4333           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4334         Op = MachineOperand::CreateFI(FINode->getIndex());
4335 
4336   if (!Op)
4337     return false;
4338 
4339   assert(Variable->isValidLocationForIntrinsic(DL) &&
4340          "Expected inlined-at fields to agree");
4341   if (Op->isReg())
4342     FuncInfo.ArgDbgValues.push_back(
4343         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
4344                 Op->getReg(), Offset, Variable, Expr));
4345   else
4346     FuncInfo.ArgDbgValues.push_back(
4347         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE))
4348             .addOperand(*Op)
4349             .addImm(Offset)
4350             .addMetadata(Variable)
4351             .addMetadata(Expr));
4352 
4353   return true;
4354 }
4355 
4356 // VisualStudio defines setjmp as _setjmp
4357 #if defined(_MSC_VER) && defined(setjmp) && \
4358                          !defined(setjmp_undefined_for_msvc)
4359 #  pragma push_macro("setjmp")
4360 #  undef setjmp
4361 #  define setjmp_undefined_for_msvc
4362 #endif
4363 
4364 /// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4365 /// we want to emit this as a call to a named external function, return the name
4366 /// otherwise lower it and return null.
4367 const char *
4368 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4369   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4370   SDLoc sdl = getCurSDLoc();
4371   DebugLoc dl = getCurDebugLoc();
4372   SDValue Res;
4373 
4374   switch (Intrinsic) {
4375   default:
4376     // By default, turn this into a target intrinsic node.
4377     visitTargetIntrinsic(I, Intrinsic);
4378     return nullptr;
4379   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
4380   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
4381   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
4382   case Intrinsic::returnaddress:
4383     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
4384                              TLI.getPointerTy(DAG.getDataLayout()),
4385                              getValue(I.getArgOperand(0))));
4386     return nullptr;
4387   case Intrinsic::frameaddress:
4388     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
4389                              TLI.getPointerTy(DAG.getDataLayout()),
4390                              getValue(I.getArgOperand(0))));
4391     return nullptr;
4392   case Intrinsic::read_register: {
4393     Value *Reg = I.getArgOperand(0);
4394     SDValue Chain = getRoot();
4395     SDValue RegName =
4396         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4397     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4398     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
4399       DAG.getVTList(VT, MVT::Other), Chain, RegName);
4400     setValue(&I, Res);
4401     DAG.setRoot(Res.getValue(1));
4402     return nullptr;
4403   }
4404   case Intrinsic::write_register: {
4405     Value *Reg = I.getArgOperand(0);
4406     Value *RegValue = I.getArgOperand(1);
4407     SDValue Chain = getRoot();
4408     SDValue RegName =
4409         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4410     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
4411                             RegName, getValue(RegValue)));
4412     return nullptr;
4413   }
4414   case Intrinsic::setjmp:
4415     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
4416   case Intrinsic::longjmp:
4417     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
4418   case Intrinsic::memcpy: {
4419     SDValue Op1 = getValue(I.getArgOperand(0));
4420     SDValue Op2 = getValue(I.getArgOperand(1));
4421     SDValue Op3 = getValue(I.getArgOperand(2));
4422     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4423     if (!Align)
4424       Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
4425     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4426     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4427     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4428                                false, isTC,
4429                                MachinePointerInfo(I.getArgOperand(0)),
4430                                MachinePointerInfo(I.getArgOperand(1)));
4431     updateDAGForMaybeTailCall(MC);
4432     return nullptr;
4433   }
4434   case Intrinsic::memset: {
4435     SDValue Op1 = getValue(I.getArgOperand(0));
4436     SDValue Op2 = getValue(I.getArgOperand(1));
4437     SDValue Op3 = getValue(I.getArgOperand(2));
4438     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4439     if (!Align)
4440       Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
4441     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4442     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4443     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4444                                isTC, MachinePointerInfo(I.getArgOperand(0)));
4445     updateDAGForMaybeTailCall(MS);
4446     return nullptr;
4447   }
4448   case Intrinsic::memmove: {
4449     SDValue Op1 = getValue(I.getArgOperand(0));
4450     SDValue Op2 = getValue(I.getArgOperand(1));
4451     SDValue Op3 = getValue(I.getArgOperand(2));
4452     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4453     if (!Align)
4454       Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
4455     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4456     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4457     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4458                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
4459                                 MachinePointerInfo(I.getArgOperand(1)));
4460     updateDAGForMaybeTailCall(MM);
4461     return nullptr;
4462   }
4463   case Intrinsic::dbg_declare: {
4464     const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4465     DILocalVariable *Variable = DI.getVariable();
4466     DIExpression *Expression = DI.getExpression();
4467     const Value *Address = DI.getAddress();
4468     assert(Variable && "Missing variable");
4469     if (!Address) {
4470       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4471       return nullptr;
4472     }
4473 
4474     // Check if address has undef value.
4475     if (isa<UndefValue>(Address) ||
4476         (Address->use_empty() && !isa<Argument>(Address))) {
4477       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4478       return nullptr;
4479     }
4480 
4481     SDValue &N = NodeMap[Address];
4482     if (!N.getNode() && isa<Argument>(Address))
4483       // Check unused arguments map.
4484       N = UnusedArgNodeMap[Address];
4485     SDDbgValue *SDV;
4486     if (N.getNode()) {
4487       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4488         Address = BCI->getOperand(0);
4489       // Parameters are handled specially.
4490       bool isParameter = Variable->isParameter() || isa<Argument>(Address);
4491       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4492       if (isParameter && FINode) {
4493         // Byval parameter. We have a frame index at this point.
4494         SDV = DAG.getFrameIndexDbgValue(Variable, Expression,
4495                                         FINode->getIndex(), 0, dl, SDNodeOrder);
4496       } else if (isa<Argument>(Address)) {
4497         // Address is an argument, so try to emit its dbg value using
4498         // virtual register info from the FuncInfo.ValueMap.
4499         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
4500                                  N);
4501         return nullptr;
4502       } else {
4503         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
4504                               true, 0, dl, SDNodeOrder);
4505       }
4506       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4507     } else {
4508       // If Address is an argument then try to emit its dbg value using
4509       // virtual register info from the FuncInfo.ValueMap.
4510       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
4511                                     N)) {
4512         // If variable is pinned by a alloca in dominating bb then
4513         // use StaticAllocaMap.
4514         if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4515           if (AI->getParent() != DI.getParent()) {
4516             DenseMap<const AllocaInst*, int>::iterator SI =
4517               FuncInfo.StaticAllocaMap.find(AI);
4518             if (SI != FuncInfo.StaticAllocaMap.end()) {
4519               SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second,
4520                                               0, dl, SDNodeOrder);
4521               DAG.AddDbgValue(SDV, nullptr, false);
4522               return nullptr;
4523             }
4524           }
4525         }
4526         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4527       }
4528     }
4529     return nullptr;
4530   }
4531   case Intrinsic::dbg_value: {
4532     const DbgValueInst &DI = cast<DbgValueInst>(I);
4533     assert(DI.getVariable() && "Missing variable");
4534 
4535     DILocalVariable *Variable = DI.getVariable();
4536     DIExpression *Expression = DI.getExpression();
4537     uint64_t Offset = DI.getOffset();
4538     const Value *V = DI.getValue();
4539     if (!V)
4540       return nullptr;
4541 
4542     SDDbgValue *SDV;
4543     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4544       SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl,
4545                                     SDNodeOrder);
4546       DAG.AddDbgValue(SDV, nullptr, false);
4547     } else {
4548       // Do not use getValue() in here; we don't want to generate code at
4549       // this point if it hasn't been done yet.
4550       SDValue N = NodeMap[V];
4551       if (!N.getNode() && isa<Argument>(V))
4552         // Check unused arguments map.
4553         N = UnusedArgNodeMap[V];
4554       if (N.getNode()) {
4555         if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset,
4556                                       false, N)) {
4557           SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
4558                                 false, Offset, dl, SDNodeOrder);
4559           DAG.AddDbgValue(SDV, N.getNode(), false);
4560         }
4561       } else if (!V->use_empty() ) {
4562         // Do not call getValue(V) yet, as we don't want to generate code.
4563         // Remember it for later.
4564         DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4565         DanglingDebugInfoMap[V] = DDI;
4566       } else {
4567         // We may expand this to cover more cases.  One case where we have no
4568         // data available is an unreferenced parameter.
4569         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4570       }
4571     }
4572 
4573     // Build a debug info table entry.
4574     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4575       V = BCI->getOperand(0);
4576     const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4577     // Don't handle byval struct arguments or VLAs, for example.
4578     if (!AI) {
4579       DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
4580       DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
4581       return nullptr;
4582     }
4583     DenseMap<const AllocaInst*, int>::iterator SI =
4584       FuncInfo.StaticAllocaMap.find(AI);
4585     if (SI == FuncInfo.StaticAllocaMap.end())
4586       return nullptr; // VLAs.
4587     return nullptr;
4588   }
4589 
4590   case Intrinsic::eh_typeid_for: {
4591     // Find the type id for the given typeinfo.
4592     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
4593     unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4594     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
4595     setValue(&I, Res);
4596     return nullptr;
4597   }
4598 
4599   case Intrinsic::eh_return_i32:
4600   case Intrinsic::eh_return_i64:
4601     DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4602     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
4603                             MVT::Other,
4604                             getControlRoot(),
4605                             getValue(I.getArgOperand(0)),
4606                             getValue(I.getArgOperand(1))));
4607     return nullptr;
4608   case Intrinsic::eh_unwind_init:
4609     DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4610     return nullptr;
4611   case Intrinsic::eh_dwarf_cfa: {
4612     SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl,
4613                                         TLI.getPointerTy(DAG.getDataLayout()));
4614     SDValue Offset = DAG.getNode(ISD::ADD, sdl,
4615                                  CfaArg.getValueType(),
4616                                  DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl,
4617                                              CfaArg.getValueType()),
4618                                  CfaArg);
4619     SDValue FA = DAG.getNode(
4620         ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()),
4621         DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
4622     setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(),
4623                              FA, Offset));
4624     return nullptr;
4625   }
4626   case Intrinsic::eh_sjlj_callsite: {
4627     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4628     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4629     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4630     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4631 
4632     MMI.setCurrentCallSite(CI->getZExtValue());
4633     return nullptr;
4634   }
4635   case Intrinsic::eh_sjlj_functioncontext: {
4636     // Get and store the index of the function context.
4637     MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4638     AllocaInst *FnCtx =
4639       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4640     int FI = FuncInfo.StaticAllocaMap[FnCtx];
4641     MFI->setFunctionContextIndex(FI);
4642     return nullptr;
4643   }
4644   case Intrinsic::eh_sjlj_setjmp: {
4645     SDValue Ops[2];
4646     Ops[0] = getRoot();
4647     Ops[1] = getValue(I.getArgOperand(0));
4648     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
4649                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
4650     setValue(&I, Op.getValue(0));
4651     DAG.setRoot(Op.getValue(1));
4652     return nullptr;
4653   }
4654   case Intrinsic::eh_sjlj_longjmp: {
4655     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
4656                             getRoot(), getValue(I.getArgOperand(0))));
4657     return nullptr;
4658   }
4659   case Intrinsic::eh_sjlj_setup_dispatch: {
4660     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
4661                             getRoot()));
4662     return nullptr;
4663   }
4664 
4665   case Intrinsic::masked_gather:
4666     visitMaskedGather(I);
4667     return nullptr;
4668   case Intrinsic::masked_load:
4669     visitMaskedLoad(I);
4670     return nullptr;
4671   case Intrinsic::masked_scatter:
4672     visitMaskedScatter(I);
4673     return nullptr;
4674   case Intrinsic::masked_store:
4675     visitMaskedStore(I);
4676     return nullptr;
4677   case Intrinsic::x86_mmx_pslli_w:
4678   case Intrinsic::x86_mmx_pslli_d:
4679   case Intrinsic::x86_mmx_pslli_q:
4680   case Intrinsic::x86_mmx_psrli_w:
4681   case Intrinsic::x86_mmx_psrli_d:
4682   case Intrinsic::x86_mmx_psrli_q:
4683   case Intrinsic::x86_mmx_psrai_w:
4684   case Intrinsic::x86_mmx_psrai_d: {
4685     SDValue ShAmt = getValue(I.getArgOperand(1));
4686     if (isa<ConstantSDNode>(ShAmt)) {
4687       visitTargetIntrinsic(I, Intrinsic);
4688       return nullptr;
4689     }
4690     unsigned NewIntrinsic = 0;
4691     EVT ShAmtVT = MVT::v2i32;
4692     switch (Intrinsic) {
4693     case Intrinsic::x86_mmx_pslli_w:
4694       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4695       break;
4696     case Intrinsic::x86_mmx_pslli_d:
4697       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4698       break;
4699     case Intrinsic::x86_mmx_pslli_q:
4700       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4701       break;
4702     case Intrinsic::x86_mmx_psrli_w:
4703       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4704       break;
4705     case Intrinsic::x86_mmx_psrli_d:
4706       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4707       break;
4708     case Intrinsic::x86_mmx_psrli_q:
4709       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4710       break;
4711     case Intrinsic::x86_mmx_psrai_w:
4712       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4713       break;
4714     case Intrinsic::x86_mmx_psrai_d:
4715       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4716       break;
4717     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4718     }
4719 
4720     // The vector shift intrinsics with scalars uses 32b shift amounts but
4721     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4722     // to be zero.
4723     // We must do this early because v2i32 is not a legal type.
4724     SDValue ShOps[2];
4725     ShOps[0] = ShAmt;
4726     ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
4727     ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps);
4728     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4729     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
4730     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
4731                        DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
4732                        getValue(I.getArgOperand(0)), ShAmt);
4733     setValue(&I, Res);
4734     return nullptr;
4735   }
4736   case Intrinsic::convertff:
4737   case Intrinsic::convertfsi:
4738   case Intrinsic::convertfui:
4739   case Intrinsic::convertsif:
4740   case Intrinsic::convertuif:
4741   case Intrinsic::convertss:
4742   case Intrinsic::convertsu:
4743   case Intrinsic::convertus:
4744   case Intrinsic::convertuu: {
4745     ISD::CvtCode Code = ISD::CVT_INVALID;
4746     switch (Intrinsic) {
4747     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4748     case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4749     case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4750     case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4751     case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4752     case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4753     case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4754     case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4755     case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4756     case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4757     }
4758     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4759     const Value *Op1 = I.getArgOperand(0);
4760     Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1),
4761                                DAG.getValueType(DestVT),
4762                                DAG.getValueType(getValue(Op1).getValueType()),
4763                                getValue(I.getArgOperand(1)),
4764                                getValue(I.getArgOperand(2)),
4765                                Code);
4766     setValue(&I, Res);
4767     return nullptr;
4768   }
4769   case Intrinsic::powi:
4770     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
4771                             getValue(I.getArgOperand(1)), DAG));
4772     return nullptr;
4773   case Intrinsic::log:
4774     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4775     return nullptr;
4776   case Intrinsic::log2:
4777     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4778     return nullptr;
4779   case Intrinsic::log10:
4780     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4781     return nullptr;
4782   case Intrinsic::exp:
4783     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4784     return nullptr;
4785   case Intrinsic::exp2:
4786     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4787     return nullptr;
4788   case Intrinsic::pow:
4789     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
4790                            getValue(I.getArgOperand(1)), DAG, TLI));
4791     return nullptr;
4792   case Intrinsic::sqrt:
4793   case Intrinsic::fabs:
4794   case Intrinsic::sin:
4795   case Intrinsic::cos:
4796   case Intrinsic::floor:
4797   case Intrinsic::ceil:
4798   case Intrinsic::trunc:
4799   case Intrinsic::rint:
4800   case Intrinsic::nearbyint:
4801   case Intrinsic::round: {
4802     unsigned Opcode;
4803     switch (Intrinsic) {
4804     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4805     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
4806     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
4807     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
4808     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
4809     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
4810     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
4811     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
4812     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
4813     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
4814     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
4815     }
4816 
4817     setValue(&I, DAG.getNode(Opcode, sdl,
4818                              getValue(I.getArgOperand(0)).getValueType(),
4819                              getValue(I.getArgOperand(0))));
4820     return nullptr;
4821   }
4822   case Intrinsic::minnum:
4823     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
4824                              getValue(I.getArgOperand(0)).getValueType(),
4825                              getValue(I.getArgOperand(0)),
4826                              getValue(I.getArgOperand(1))));
4827     return nullptr;
4828   case Intrinsic::maxnum:
4829     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
4830                              getValue(I.getArgOperand(0)).getValueType(),
4831                              getValue(I.getArgOperand(0)),
4832                              getValue(I.getArgOperand(1))));
4833     return nullptr;
4834   case Intrinsic::copysign:
4835     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
4836                              getValue(I.getArgOperand(0)).getValueType(),
4837                              getValue(I.getArgOperand(0)),
4838                              getValue(I.getArgOperand(1))));
4839     return nullptr;
4840   case Intrinsic::fma:
4841     setValue(&I, DAG.getNode(ISD::FMA, sdl,
4842                              getValue(I.getArgOperand(0)).getValueType(),
4843                              getValue(I.getArgOperand(0)),
4844                              getValue(I.getArgOperand(1)),
4845                              getValue(I.getArgOperand(2))));
4846     return nullptr;
4847   case Intrinsic::fmuladd: {
4848     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4849     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
4850         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
4851       setValue(&I, DAG.getNode(ISD::FMA, sdl,
4852                                getValue(I.getArgOperand(0)).getValueType(),
4853                                getValue(I.getArgOperand(0)),
4854                                getValue(I.getArgOperand(1)),
4855                                getValue(I.getArgOperand(2))));
4856     } else {
4857       // TODO: Intrinsic calls should have fast-math-flags.
4858       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
4859                                 getValue(I.getArgOperand(0)).getValueType(),
4860                                 getValue(I.getArgOperand(0)),
4861                                 getValue(I.getArgOperand(1)));
4862       SDValue Add = DAG.getNode(ISD::FADD, sdl,
4863                                 getValue(I.getArgOperand(0)).getValueType(),
4864                                 Mul,
4865                                 getValue(I.getArgOperand(2)));
4866       setValue(&I, Add);
4867     }
4868     return nullptr;
4869   }
4870   case Intrinsic::convert_to_fp16:
4871     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
4872                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
4873                                          getValue(I.getArgOperand(0)),
4874                                          DAG.getTargetConstant(0, sdl,
4875                                                                MVT::i32))));
4876     return nullptr;
4877   case Intrinsic::convert_from_fp16:
4878     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
4879                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
4880                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
4881                                          getValue(I.getArgOperand(0)))));
4882     return nullptr;
4883   case Intrinsic::pcmarker: {
4884     SDValue Tmp = getValue(I.getArgOperand(0));
4885     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
4886     return nullptr;
4887   }
4888   case Intrinsic::readcyclecounter: {
4889     SDValue Op = getRoot();
4890     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
4891                       DAG.getVTList(MVT::i64, MVT::Other), Op);
4892     setValue(&I, Res);
4893     DAG.setRoot(Res.getValue(1));
4894     return nullptr;
4895   }
4896   case Intrinsic::bitreverse:
4897     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
4898                              getValue(I.getArgOperand(0)).getValueType(),
4899                              getValue(I.getArgOperand(0))));
4900     return nullptr;
4901   case Intrinsic::bswap:
4902     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
4903                              getValue(I.getArgOperand(0)).getValueType(),
4904                              getValue(I.getArgOperand(0))));
4905     return nullptr;
4906   case Intrinsic::cttz: {
4907     SDValue Arg = getValue(I.getArgOperand(0));
4908     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4909     EVT Ty = Arg.getValueType();
4910     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
4911                              sdl, Ty, Arg));
4912     return nullptr;
4913   }
4914   case Intrinsic::ctlz: {
4915     SDValue Arg = getValue(I.getArgOperand(0));
4916     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4917     EVT Ty = Arg.getValueType();
4918     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
4919                              sdl, Ty, Arg));
4920     return nullptr;
4921   }
4922   case Intrinsic::ctpop: {
4923     SDValue Arg = getValue(I.getArgOperand(0));
4924     EVT Ty = Arg.getValueType();
4925     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
4926     return nullptr;
4927   }
4928   case Intrinsic::stacksave: {
4929     SDValue Op = getRoot();
4930     Res = DAG.getNode(
4931         ISD::STACKSAVE, sdl,
4932         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
4933     setValue(&I, Res);
4934     DAG.setRoot(Res.getValue(1));
4935     return nullptr;
4936   }
4937   case Intrinsic::stackrestore: {
4938     Res = getValue(I.getArgOperand(0));
4939     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
4940     return nullptr;
4941   }
4942   case Intrinsic::get_dynamic_area_offset: {
4943     SDValue Op = getRoot();
4944     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
4945     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
4946     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
4947     // target.
4948     if (PtrTy != ResTy)
4949       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
4950                          " intrinsic!");
4951     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
4952                       Op);
4953     DAG.setRoot(Op);
4954     setValue(&I, Res);
4955     return nullptr;
4956   }
4957   case Intrinsic::stackprotector: {
4958     // Emit code into the DAG to store the stack guard onto the stack.
4959     MachineFunction &MF = DAG.getMachineFunction();
4960     MachineFrameInfo *MFI = MF.getFrameInfo();
4961     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
4962     SDValue Src, Chain = getRoot();
4963     const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand();
4964     const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr);
4965 
4966     // See if Ptr is a bitcast. If it is, look through it and see if we can get
4967     // global variable __stack_chk_guard.
4968     if (!GV)
4969       if (const Operator *BC = dyn_cast<Operator>(Ptr))
4970         if (BC->getOpcode() == Instruction::BitCast)
4971           GV = dyn_cast<GlobalVariable>(BC->getOperand(0));
4972 
4973     if (GV && TLI.useLoadStackGuardNode()) {
4974       // Emit a LOAD_STACK_GUARD node.
4975       MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD,
4976                                                sdl, PtrTy, Chain);
4977       MachinePointerInfo MPInfo(GV);
4978       MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1);
4979       unsigned Flags = MachineMemOperand::MOLoad |
4980                        MachineMemOperand::MOInvariant;
4981       *MemRefs = MF.getMachineMemOperand(MPInfo, Flags,
4982                                          PtrTy.getSizeInBits() / 8,
4983                                          DAG.getEVTAlignment(PtrTy));
4984       Node->setMemRefs(MemRefs, MemRefs + 1);
4985 
4986       // Copy the guard value to a virtual register so that it can be
4987       // retrieved in the epilogue.
4988       Src = SDValue(Node, 0);
4989       const TargetRegisterClass *RC =
4990           TLI.getRegClassFor(Src.getSimpleValueType());
4991       unsigned Reg = MF.getRegInfo().createVirtualRegister(RC);
4992 
4993       SPDescriptor.setGuardReg(Reg);
4994       Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src);
4995     } else {
4996       Src = getValue(I.getArgOperand(0));   // The guard's value.
4997     }
4998 
4999     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5000 
5001     int FI = FuncInfo.StaticAllocaMap[Slot];
5002     MFI->setStackProtectorIndex(FI);
5003 
5004     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5005 
5006     // Store the stack protector onto the stack.
5007     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
5008                                                  DAG.getMachineFunction(), FI),
5009                        true, false, 0);
5010     setValue(&I, Res);
5011     DAG.setRoot(Res);
5012     return nullptr;
5013   }
5014   case Intrinsic::objectsize: {
5015     // If we don't know by now, we're never going to know.
5016     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5017 
5018     assert(CI && "Non-constant type in __builtin_object_size?");
5019 
5020     SDValue Arg = getValue(I.getCalledValue());
5021     EVT Ty = Arg.getValueType();
5022 
5023     if (CI->isZero())
5024       Res = DAG.getConstant(-1ULL, sdl, Ty);
5025     else
5026       Res = DAG.getConstant(0, sdl, Ty);
5027 
5028     setValue(&I, Res);
5029     return nullptr;
5030   }
5031   case Intrinsic::annotation:
5032   case Intrinsic::ptr_annotation:
5033     // Drop the intrinsic, but forward the value
5034     setValue(&I, getValue(I.getOperand(0)));
5035     return nullptr;
5036   case Intrinsic::assume:
5037   case Intrinsic::var_annotation:
5038     // Discard annotate attributes and assumptions
5039     return nullptr;
5040 
5041   case Intrinsic::init_trampoline: {
5042     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5043 
5044     SDValue Ops[6];
5045     Ops[0] = getRoot();
5046     Ops[1] = getValue(I.getArgOperand(0));
5047     Ops[2] = getValue(I.getArgOperand(1));
5048     Ops[3] = getValue(I.getArgOperand(2));
5049     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5050     Ops[5] = DAG.getSrcValue(F);
5051 
5052     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
5053 
5054     DAG.setRoot(Res);
5055     return nullptr;
5056   }
5057   case Intrinsic::adjust_trampoline: {
5058     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5059                              TLI.getPointerTy(DAG.getDataLayout()),
5060                              getValue(I.getArgOperand(0))));
5061     return nullptr;
5062   }
5063   case Intrinsic::gcroot: {
5064     MachineFunction &MF = DAG.getMachineFunction();
5065     const Function *F = MF.getFunction();
5066     (void)F;
5067     assert(F->hasGC() &&
5068            "only valid in functions with gc specified, enforced by Verifier");
5069     assert(GFI && "implied by previous");
5070     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5071     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5072 
5073     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5074     GFI->addStackRoot(FI->getIndex(), TypeMap);
5075     return nullptr;
5076   }
5077   case Intrinsic::gcread:
5078   case Intrinsic::gcwrite:
5079     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5080   case Intrinsic::flt_rounds:
5081     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5082     return nullptr;
5083 
5084   case Intrinsic::expect: {
5085     // Just replace __builtin_expect(exp, c) with EXP.
5086     setValue(&I, getValue(I.getArgOperand(0)));
5087     return nullptr;
5088   }
5089 
5090   case Intrinsic::debugtrap:
5091   case Intrinsic::trap: {
5092     StringRef TrapFuncName =
5093         I.getAttributes()
5094             .getAttribute(AttributeSet::FunctionIndex, "trap-func-name")
5095             .getValueAsString();
5096     if (TrapFuncName.empty()) {
5097       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5098         ISD::TRAP : ISD::DEBUGTRAP;
5099       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5100       return nullptr;
5101     }
5102     TargetLowering::ArgListTy Args;
5103 
5104     TargetLowering::CallLoweringInfo CLI(DAG);
5105     CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee(
5106         CallingConv::C, I.getType(),
5107         DAG.getExternalSymbol(TrapFuncName.data(),
5108                               TLI.getPointerTy(DAG.getDataLayout())),
5109         std::move(Args), 0);
5110 
5111     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5112     DAG.setRoot(Result.second);
5113     return nullptr;
5114   }
5115 
5116   case Intrinsic::uadd_with_overflow:
5117   case Intrinsic::sadd_with_overflow:
5118   case Intrinsic::usub_with_overflow:
5119   case Intrinsic::ssub_with_overflow:
5120   case Intrinsic::umul_with_overflow:
5121   case Intrinsic::smul_with_overflow: {
5122     ISD::NodeType Op;
5123     switch (Intrinsic) {
5124     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5125     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5126     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5127     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5128     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5129     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5130     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5131     }
5132     SDValue Op1 = getValue(I.getArgOperand(0));
5133     SDValue Op2 = getValue(I.getArgOperand(1));
5134 
5135     SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5136     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5137     return nullptr;
5138   }
5139   case Intrinsic::prefetch: {
5140     SDValue Ops[5];
5141     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5142     Ops[0] = getRoot();
5143     Ops[1] = getValue(I.getArgOperand(0));
5144     Ops[2] = getValue(I.getArgOperand(1));
5145     Ops[3] = getValue(I.getArgOperand(2));
5146     Ops[4] = getValue(I.getArgOperand(3));
5147     DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5148                                         DAG.getVTList(MVT::Other), Ops,
5149                                         EVT::getIntegerVT(*Context, 8),
5150                                         MachinePointerInfo(I.getArgOperand(0)),
5151                                         0, /* align */
5152                                         false, /* volatile */
5153                                         rw==0, /* read */
5154                                         rw==1)); /* write */
5155     return nullptr;
5156   }
5157   case Intrinsic::lifetime_start:
5158   case Intrinsic::lifetime_end: {
5159     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5160     // Stack coloring is not enabled in O0, discard region information.
5161     if (TM.getOptLevel() == CodeGenOpt::None)
5162       return nullptr;
5163 
5164     SmallVector<Value *, 4> Allocas;
5165     GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL);
5166 
5167     for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
5168            E = Allocas.end(); Object != E; ++Object) {
5169       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5170 
5171       // Could not find an Alloca.
5172       if (!LifetimeObject)
5173         continue;
5174 
5175       // First check that the Alloca is static, otherwise it won't have a
5176       // valid frame index.
5177       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
5178       if (SI == FuncInfo.StaticAllocaMap.end())
5179         return nullptr;
5180 
5181       int FI = SI->second;
5182 
5183       SDValue Ops[2];
5184       Ops[0] = getRoot();
5185       Ops[1] =
5186           DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true);
5187       unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5188 
5189       Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops);
5190       DAG.setRoot(Res);
5191     }
5192     return nullptr;
5193   }
5194   case Intrinsic::invariant_start:
5195     // Discard region information.
5196     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
5197     return nullptr;
5198   case Intrinsic::invariant_end:
5199     // Discard region information.
5200     return nullptr;
5201   case Intrinsic::stackprotectorcheck: {
5202     // Do not actually emit anything for this basic block. Instead we initialize
5203     // the stack protector descriptor and export the guard variable so we can
5204     // access it in FinishBasicBlock.
5205     const BasicBlock *BB = I.getParent();
5206     SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I);
5207     ExportFromCurrentBlock(SPDescriptor.getGuard());
5208 
5209     // Flush our exports since we are going to process a terminator.
5210     (void)getControlRoot();
5211     return nullptr;
5212   }
5213   case Intrinsic::clear_cache:
5214     return TLI.getClearCacheBuiltinName();
5215   case Intrinsic::donothing:
5216     // ignore
5217     return nullptr;
5218   case Intrinsic::experimental_stackmap: {
5219     visitStackmap(I);
5220     return nullptr;
5221   }
5222   case Intrinsic::experimental_patchpoint_void:
5223   case Intrinsic::experimental_patchpoint_i64: {
5224     visitPatchpoint(&I);
5225     return nullptr;
5226   }
5227   case Intrinsic::experimental_gc_statepoint: {
5228     visitStatepoint(I);
5229     return nullptr;
5230   }
5231   case Intrinsic::experimental_gc_result: {
5232     visitGCResult(I);
5233     return nullptr;
5234   }
5235   case Intrinsic::experimental_gc_relocate: {
5236     visitGCRelocate(cast<GCRelocateInst>(I));
5237     return nullptr;
5238   }
5239   case Intrinsic::instrprof_increment:
5240     llvm_unreachable("instrprof failed to lower an increment");
5241   case Intrinsic::instrprof_value_profile:
5242     llvm_unreachable("instrprof failed to lower a value profiling call");
5243   case Intrinsic::localescape: {
5244     MachineFunction &MF = DAG.getMachineFunction();
5245     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5246 
5247     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
5248     // is the same on all targets.
5249     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
5250       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
5251       if (isa<ConstantPointerNull>(Arg))
5252         continue; // Skip null pointers. They represent a hole in index space.
5253       AllocaInst *Slot = cast<AllocaInst>(Arg);
5254       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
5255              "can only escape static allocas");
5256       int FI = FuncInfo.StaticAllocaMap[Slot];
5257       MCSymbol *FrameAllocSym =
5258           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5259               GlobalValue::getRealLinkageName(MF.getName()), Idx);
5260       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
5261               TII->get(TargetOpcode::LOCAL_ESCAPE))
5262           .addSym(FrameAllocSym)
5263           .addFrameIndex(FI);
5264     }
5265 
5266     return nullptr;
5267   }
5268 
5269   case Intrinsic::localrecover: {
5270     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
5271     MachineFunction &MF = DAG.getMachineFunction();
5272     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
5273 
5274     // Get the symbol that defines the frame offset.
5275     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
5276     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
5277     unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX));
5278     MCSymbol *FrameAllocSym =
5279         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5280             GlobalValue::getRealLinkageName(Fn->getName()), IdxVal);
5281 
5282     // Create a MCSymbol for the label to avoid any target lowering
5283     // that would make this PC relative.
5284     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
5285     SDValue OffsetVal =
5286         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
5287 
5288     // Add the offset to the FP.
5289     Value *FP = I.getArgOperand(1);
5290     SDValue FPVal = getValue(FP);
5291     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
5292     setValue(&I, Add);
5293 
5294     return nullptr;
5295   }
5296 
5297   case Intrinsic::eh_exceptionpointer:
5298   case Intrinsic::eh_exceptioncode: {
5299     // Get the exception pointer vreg, copy from it, and resize it to fit.
5300     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
5301     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
5302     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
5303     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
5304     SDValue N =
5305         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
5306     if (Intrinsic == Intrinsic::eh_exceptioncode)
5307       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
5308     setValue(&I, N);
5309     return nullptr;
5310   }
5311   }
5312 }
5313 
5314 std::pair<SDValue, SDValue>
5315 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
5316                                     const BasicBlock *EHPadBB) {
5317   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5318   MCSymbol *BeginLabel = nullptr;
5319 
5320   if (EHPadBB) {
5321     // Insert a label before the invoke call to mark the try range.  This can be
5322     // used to detect deletion of the invoke via the MachineModuleInfo.
5323     BeginLabel = MMI.getContext().createTempSymbol();
5324 
5325     // For SjLj, keep track of which landing pads go with which invokes
5326     // so as to maintain the ordering of pads in the LSDA.
5327     unsigned CallSiteIndex = MMI.getCurrentCallSite();
5328     if (CallSiteIndex) {
5329       MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5330       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
5331 
5332       // Now that the call site is handled, stop tracking it.
5333       MMI.setCurrentCallSite(0);
5334     }
5335 
5336     // Both PendingLoads and PendingExports must be flushed here;
5337     // this call might not return.
5338     (void)getRoot();
5339     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
5340 
5341     CLI.setChain(getRoot());
5342   }
5343   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5344   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5345 
5346   assert((CLI.IsTailCall || Result.second.getNode()) &&
5347          "Non-null chain expected with non-tail call!");
5348   assert((Result.second.getNode() || !Result.first.getNode()) &&
5349          "Null value expected with tail call!");
5350 
5351   if (!Result.second.getNode()) {
5352     // As a special case, a null chain means that a tail call has been emitted
5353     // and the DAG root is already updated.
5354     HasTailCall = true;
5355 
5356     // Since there's no actual continuation from this block, nothing can be
5357     // relying on us setting vregs for them.
5358     PendingExports.clear();
5359   } else {
5360     DAG.setRoot(Result.second);
5361   }
5362 
5363   if (EHPadBB) {
5364     // Insert a label at the end of the invoke call to mark the try range.  This
5365     // can be used to detect deletion of the invoke via the MachineModuleInfo.
5366     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
5367     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
5368 
5369     // Inform MachineModuleInfo of range.
5370     if (MMI.hasEHFunclets()) {
5371       assert(CLI.CS);
5372       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
5373       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS->getInstruction()),
5374                                 BeginLabel, EndLabel);
5375     } else {
5376       MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
5377     }
5378   }
5379 
5380   return Result;
5381 }
5382 
5383 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5384                                       bool isTailCall,
5385                                       const BasicBlock *EHPadBB) {
5386   PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
5387   FunctionType *FTy = cast<FunctionType>(PT->getElementType());
5388   Type *RetTy = FTy->getReturnType();
5389 
5390   TargetLowering::ArgListTy Args;
5391   TargetLowering::ArgListEntry Entry;
5392   Args.reserve(CS.arg_size());
5393 
5394   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5395        i != e; ++i) {
5396     const Value *V = *i;
5397 
5398     // Skip empty types
5399     if (V->getType()->isEmptyTy())
5400       continue;
5401 
5402     SDValue ArgNode = getValue(V);
5403     Entry.Node = ArgNode; Entry.Ty = V->getType();
5404 
5405     // Skip the first return-type Attribute to get to params.
5406     Entry.setAttributes(&CS, i - CS.arg_begin() + 1);
5407     Args.push_back(Entry);
5408 
5409     // If we have an explicit sret argument that is an Instruction, (i.e., it
5410     // might point to function-local memory), we can't meaningfully tail-call.
5411     if (Entry.isSRet && isa<Instruction>(V))
5412       isTailCall = false;
5413   }
5414 
5415   // Check if target-independent constraints permit a tail call here.
5416   // Target-dependent constraints are checked within TLI->LowerCallTo.
5417   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
5418     isTailCall = false;
5419 
5420   TargetLowering::CallLoweringInfo CLI(DAG);
5421   CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot())
5422     .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
5423     .setTailCall(isTailCall);
5424   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
5425 
5426   if (Result.first.getNode())
5427     setValue(CS.getInstruction(), Result.first);
5428 }
5429 
5430 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5431 /// value is equal or not-equal to zero.
5432 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5433   for (const User *U : V->users()) {
5434     if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
5435       if (IC->isEquality())
5436         if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5437           if (C->isNullValue())
5438             continue;
5439     // Unknown instruction.
5440     return false;
5441   }
5442   return true;
5443 }
5444 
5445 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5446                              Type *LoadTy,
5447                              SelectionDAGBuilder &Builder) {
5448 
5449   // Check to see if this load can be trivially constant folded, e.g. if the
5450   // input is from a string literal.
5451   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5452     // Cast pointer to the type we really want to load.
5453     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5454                                          PointerType::getUnqual(LoadTy));
5455 
5456     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
5457             const_cast<Constant *>(LoadInput), *Builder.DL))
5458       return Builder.getValue(LoadCst);
5459   }
5460 
5461   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5462   // still constant memory, the input chain can be the entry node.
5463   SDValue Root;
5464   bool ConstantMemory = false;
5465 
5466   // Do not serialize (non-volatile) loads of constant memory with anything.
5467   if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5468     Root = Builder.DAG.getEntryNode();
5469     ConstantMemory = true;
5470   } else {
5471     // Do not serialize non-volatile loads against each other.
5472     Root = Builder.DAG.getRoot();
5473   }
5474 
5475   SDValue Ptr = Builder.getValue(PtrVal);
5476   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
5477                                         Ptr, MachinePointerInfo(PtrVal),
5478                                         false /*volatile*/,
5479                                         false /*nontemporal*/,
5480                                         false /*isinvariant*/, 1 /* align=1 */);
5481 
5482   if (!ConstantMemory)
5483     Builder.PendingLoads.push_back(LoadVal.getValue(1));
5484   return LoadVal;
5485 }
5486 
5487 /// processIntegerCallValue - Record the value for an instruction that
5488 /// produces an integer result, converting the type where necessary.
5489 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
5490                                                   SDValue Value,
5491                                                   bool IsSigned) {
5492   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
5493                                                     I.getType(), true);
5494   if (IsSigned)
5495     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
5496   else
5497     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
5498   setValue(&I, Value);
5499 }
5500 
5501 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5502 /// If so, return true and lower it, otherwise return false and it will be
5503 /// lowered like a normal call.
5504 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5505   // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5506   if (I.getNumArgOperands() != 3)
5507     return false;
5508 
5509   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5510   if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5511       !I.getArgOperand(2)->getType()->isIntegerTy() ||
5512       !I.getType()->isIntegerTy())
5513     return false;
5514 
5515   const Value *Size = I.getArgOperand(2);
5516   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
5517   if (CSize && CSize->getZExtValue() == 0) {
5518     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
5519                                                           I.getType(), true);
5520     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
5521     return true;
5522   }
5523 
5524   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5525   std::pair<SDValue, SDValue> Res =
5526     TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(),
5527                                 getValue(LHS), getValue(RHS), getValue(Size),
5528                                 MachinePointerInfo(LHS),
5529                                 MachinePointerInfo(RHS));
5530   if (Res.first.getNode()) {
5531     processIntegerCallValue(I, Res.first, true);
5532     PendingLoads.push_back(Res.second);
5533     return true;
5534   }
5535 
5536   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5537   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5538   if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) {
5539     bool ActuallyDoIt = true;
5540     MVT LoadVT;
5541     Type *LoadTy;
5542     switch (CSize->getZExtValue()) {
5543     default:
5544       LoadVT = MVT::Other;
5545       LoadTy = nullptr;
5546       ActuallyDoIt = false;
5547       break;
5548     case 2:
5549       LoadVT = MVT::i16;
5550       LoadTy = Type::getInt16Ty(CSize->getContext());
5551       break;
5552     case 4:
5553       LoadVT = MVT::i32;
5554       LoadTy = Type::getInt32Ty(CSize->getContext());
5555       break;
5556     case 8:
5557       LoadVT = MVT::i64;
5558       LoadTy = Type::getInt64Ty(CSize->getContext());
5559       break;
5560         /*
5561     case 16:
5562       LoadVT = MVT::v4i32;
5563       LoadTy = Type::getInt32Ty(CSize->getContext());
5564       LoadTy = VectorType::get(LoadTy, 4);
5565       break;
5566          */
5567     }
5568 
5569     // This turns into unaligned loads.  We only do this if the target natively
5570     // supports the MVT we'll be loading or if it is small enough (<= 4) that
5571     // we'll only produce a small number of byte loads.
5572 
5573     // Require that we can find a legal MVT, and only do this if the target
5574     // supports unaligned loads of that type.  Expanding into byte loads would
5575     // bloat the code.
5576     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5577     if (ActuallyDoIt && CSize->getZExtValue() > 4) {
5578       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
5579       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
5580       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5581       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5582       // TODO: Check alignment of src and dest ptrs.
5583       if (!TLI.isTypeLegal(LoadVT) ||
5584           !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) ||
5585           !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS))
5586         ActuallyDoIt = false;
5587     }
5588 
5589     if (ActuallyDoIt) {
5590       SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5591       SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5592 
5593       SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal,
5594                                  ISD::SETNE);
5595       processIntegerCallValue(I, Res, false);
5596       return true;
5597     }
5598   }
5599 
5600 
5601   return false;
5602 }
5603 
5604 /// visitMemChrCall -- See if we can lower a memchr call into an optimized
5605 /// form.  If so, return true and lower it, otherwise return false and it
5606 /// will be lowered like a normal call.
5607 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
5608   // Verify that the prototype makes sense.  void *memchr(void *, int, size_t)
5609   if (I.getNumArgOperands() != 3)
5610     return false;
5611 
5612   const Value *Src = I.getArgOperand(0);
5613   const Value *Char = I.getArgOperand(1);
5614   const Value *Length = I.getArgOperand(2);
5615   if (!Src->getType()->isPointerTy() ||
5616       !Char->getType()->isIntegerTy() ||
5617       !Length->getType()->isIntegerTy() ||
5618       !I.getType()->isPointerTy())
5619     return false;
5620 
5621   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5622   std::pair<SDValue, SDValue> Res =
5623     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
5624                                 getValue(Src), getValue(Char), getValue(Length),
5625                                 MachinePointerInfo(Src));
5626   if (Res.first.getNode()) {
5627     setValue(&I, Res.first);
5628     PendingLoads.push_back(Res.second);
5629     return true;
5630   }
5631 
5632   return false;
5633 }
5634 
5635 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an
5636 /// optimized form.  If so, return true and lower it, otherwise return false
5637 /// and it will be lowered like a normal call.
5638 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
5639   // Verify that the prototype makes sense.  char *strcpy(char *, char *)
5640   if (I.getNumArgOperands() != 2)
5641     return false;
5642 
5643   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5644   if (!Arg0->getType()->isPointerTy() ||
5645       !Arg1->getType()->isPointerTy() ||
5646       !I.getType()->isPointerTy())
5647     return false;
5648 
5649   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5650   std::pair<SDValue, SDValue> Res =
5651     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
5652                                 getValue(Arg0), getValue(Arg1),
5653                                 MachinePointerInfo(Arg0),
5654                                 MachinePointerInfo(Arg1), isStpcpy);
5655   if (Res.first.getNode()) {
5656     setValue(&I, Res.first);
5657     DAG.setRoot(Res.second);
5658     return true;
5659   }
5660 
5661   return false;
5662 }
5663 
5664 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form.
5665 /// If so, return true and lower it, otherwise return false and it will be
5666 /// lowered like a normal call.
5667 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
5668   // Verify that the prototype makes sense.  int strcmp(void*,void*)
5669   if (I.getNumArgOperands() != 2)
5670     return false;
5671 
5672   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5673   if (!Arg0->getType()->isPointerTy() ||
5674       !Arg1->getType()->isPointerTy() ||
5675       !I.getType()->isIntegerTy())
5676     return false;
5677 
5678   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5679   std::pair<SDValue, SDValue> Res =
5680     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
5681                                 getValue(Arg0), getValue(Arg1),
5682                                 MachinePointerInfo(Arg0),
5683                                 MachinePointerInfo(Arg1));
5684   if (Res.first.getNode()) {
5685     processIntegerCallValue(I, Res.first, true);
5686     PendingLoads.push_back(Res.second);
5687     return true;
5688   }
5689 
5690   return false;
5691 }
5692 
5693 /// visitStrLenCall -- See if we can lower a strlen call into an optimized
5694 /// form.  If so, return true and lower it, otherwise return false and it
5695 /// will be lowered like a normal call.
5696 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
5697   // Verify that the prototype makes sense.  size_t strlen(char *)
5698   if (I.getNumArgOperands() != 1)
5699     return false;
5700 
5701   const Value *Arg0 = I.getArgOperand(0);
5702   if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy())
5703     return false;
5704 
5705   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5706   std::pair<SDValue, SDValue> Res =
5707     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
5708                                 getValue(Arg0), MachinePointerInfo(Arg0));
5709   if (Res.first.getNode()) {
5710     processIntegerCallValue(I, Res.first, false);
5711     PendingLoads.push_back(Res.second);
5712     return true;
5713   }
5714 
5715   return false;
5716 }
5717 
5718 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized
5719 /// form.  If so, return true and lower it, otherwise return false and it
5720 /// will be lowered like a normal call.
5721 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
5722   // Verify that the prototype makes sense.  size_t strnlen(char *, size_t)
5723   if (I.getNumArgOperands() != 2)
5724     return false;
5725 
5726   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5727   if (!Arg0->getType()->isPointerTy() ||
5728       !Arg1->getType()->isIntegerTy() ||
5729       !I.getType()->isIntegerTy())
5730     return false;
5731 
5732   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5733   std::pair<SDValue, SDValue> Res =
5734     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
5735                                  getValue(Arg0), getValue(Arg1),
5736                                  MachinePointerInfo(Arg0));
5737   if (Res.first.getNode()) {
5738     processIntegerCallValue(I, Res.first, false);
5739     PendingLoads.push_back(Res.second);
5740     return true;
5741   }
5742 
5743   return false;
5744 }
5745 
5746 /// visitUnaryFloatCall - If a call instruction is a unary floating-point
5747 /// operation (as expected), translate it to an SDNode with the specified opcode
5748 /// and return true.
5749 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
5750                                               unsigned Opcode) {
5751   // Sanity check that it really is a unary floating-point call.
5752   if (I.getNumArgOperands() != 1 ||
5753       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
5754       I.getType() != I.getArgOperand(0)->getType() ||
5755       !I.onlyReadsMemory())
5756     return false;
5757 
5758   SDValue Tmp = getValue(I.getArgOperand(0));
5759   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
5760   return true;
5761 }
5762 
5763 /// visitBinaryFloatCall - If a call instruction is a binary floating-point
5764 /// operation (as expected), translate it to an SDNode with the specified opcode
5765 /// and return true.
5766 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
5767                                                unsigned Opcode) {
5768   // Sanity check that it really is a binary floating-point call.
5769   if (I.getNumArgOperands() != 2 ||
5770       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
5771       I.getType() != I.getArgOperand(0)->getType() ||
5772       I.getType() != I.getArgOperand(1)->getType() ||
5773       !I.onlyReadsMemory())
5774     return false;
5775 
5776   SDValue Tmp0 = getValue(I.getArgOperand(0));
5777   SDValue Tmp1 = getValue(I.getArgOperand(1));
5778   EVT VT = Tmp0.getValueType();
5779   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
5780   return true;
5781 }
5782 
5783 void SelectionDAGBuilder::visitCall(const CallInst &I) {
5784   // Handle inline assembly differently.
5785   if (isa<InlineAsm>(I.getCalledValue())) {
5786     visitInlineAsm(&I);
5787     return;
5788   }
5789 
5790   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5791   ComputeUsesVAFloatArgument(I, &MMI);
5792 
5793   const char *RenameFn = nullptr;
5794   if (Function *F = I.getCalledFunction()) {
5795     if (F->isDeclaration()) {
5796       if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5797         if (unsigned IID = II->getIntrinsicID(F)) {
5798           RenameFn = visitIntrinsicCall(I, IID);
5799           if (!RenameFn)
5800             return;
5801         }
5802       }
5803       if (Intrinsic::ID IID = F->getIntrinsicID()) {
5804         RenameFn = visitIntrinsicCall(I, IID);
5805         if (!RenameFn)
5806           return;
5807       }
5808     }
5809 
5810     // Check for well-known libc/libm calls.  If the function is internal, it
5811     // can't be a library call.
5812     LibFunc::Func Func;
5813     if (!F->hasLocalLinkage() && F->hasName() &&
5814         LibInfo->getLibFunc(F->getName(), Func) &&
5815         LibInfo->hasOptimizedCodeGen(Func)) {
5816       switch (Func) {
5817       default: break;
5818       case LibFunc::copysign:
5819       case LibFunc::copysignf:
5820       case LibFunc::copysignl:
5821         if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5822             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5823             I.getType() == I.getArgOperand(0)->getType() &&
5824             I.getType() == I.getArgOperand(1)->getType() &&
5825             I.onlyReadsMemory()) {
5826           SDValue LHS = getValue(I.getArgOperand(0));
5827           SDValue RHS = getValue(I.getArgOperand(1));
5828           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
5829                                    LHS.getValueType(), LHS, RHS));
5830           return;
5831         }
5832         break;
5833       case LibFunc::fabs:
5834       case LibFunc::fabsf:
5835       case LibFunc::fabsl:
5836         if (visitUnaryFloatCall(I, ISD::FABS))
5837           return;
5838         break;
5839       case LibFunc::fmin:
5840       case LibFunc::fminf:
5841       case LibFunc::fminl:
5842         if (visitBinaryFloatCall(I, ISD::FMINNUM))
5843           return;
5844         break;
5845       case LibFunc::fmax:
5846       case LibFunc::fmaxf:
5847       case LibFunc::fmaxl:
5848         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
5849           return;
5850         break;
5851       case LibFunc::sin:
5852       case LibFunc::sinf:
5853       case LibFunc::sinl:
5854         if (visitUnaryFloatCall(I, ISD::FSIN))
5855           return;
5856         break;
5857       case LibFunc::cos:
5858       case LibFunc::cosf:
5859       case LibFunc::cosl:
5860         if (visitUnaryFloatCall(I, ISD::FCOS))
5861           return;
5862         break;
5863       case LibFunc::sqrt:
5864       case LibFunc::sqrtf:
5865       case LibFunc::sqrtl:
5866       case LibFunc::sqrt_finite:
5867       case LibFunc::sqrtf_finite:
5868       case LibFunc::sqrtl_finite:
5869         if (visitUnaryFloatCall(I, ISD::FSQRT))
5870           return;
5871         break;
5872       case LibFunc::floor:
5873       case LibFunc::floorf:
5874       case LibFunc::floorl:
5875         if (visitUnaryFloatCall(I, ISD::FFLOOR))
5876           return;
5877         break;
5878       case LibFunc::nearbyint:
5879       case LibFunc::nearbyintf:
5880       case LibFunc::nearbyintl:
5881         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
5882           return;
5883         break;
5884       case LibFunc::ceil:
5885       case LibFunc::ceilf:
5886       case LibFunc::ceill:
5887         if (visitUnaryFloatCall(I, ISD::FCEIL))
5888           return;
5889         break;
5890       case LibFunc::rint:
5891       case LibFunc::rintf:
5892       case LibFunc::rintl:
5893         if (visitUnaryFloatCall(I, ISD::FRINT))
5894           return;
5895         break;
5896       case LibFunc::round:
5897       case LibFunc::roundf:
5898       case LibFunc::roundl:
5899         if (visitUnaryFloatCall(I, ISD::FROUND))
5900           return;
5901         break;
5902       case LibFunc::trunc:
5903       case LibFunc::truncf:
5904       case LibFunc::truncl:
5905         if (visitUnaryFloatCall(I, ISD::FTRUNC))
5906           return;
5907         break;
5908       case LibFunc::log2:
5909       case LibFunc::log2f:
5910       case LibFunc::log2l:
5911         if (visitUnaryFloatCall(I, ISD::FLOG2))
5912           return;
5913         break;
5914       case LibFunc::exp2:
5915       case LibFunc::exp2f:
5916       case LibFunc::exp2l:
5917         if (visitUnaryFloatCall(I, ISD::FEXP2))
5918           return;
5919         break;
5920       case LibFunc::memcmp:
5921         if (visitMemCmpCall(I))
5922           return;
5923         break;
5924       case LibFunc::memchr:
5925         if (visitMemChrCall(I))
5926           return;
5927         break;
5928       case LibFunc::strcpy:
5929         if (visitStrCpyCall(I, false))
5930           return;
5931         break;
5932       case LibFunc::stpcpy:
5933         if (visitStrCpyCall(I, true))
5934           return;
5935         break;
5936       case LibFunc::strcmp:
5937         if (visitStrCmpCall(I))
5938           return;
5939         break;
5940       case LibFunc::strlen:
5941         if (visitStrLenCall(I))
5942           return;
5943         break;
5944       case LibFunc::strnlen:
5945         if (visitStrNLenCall(I))
5946           return;
5947         break;
5948       }
5949     }
5950   }
5951 
5952   SDValue Callee;
5953   if (!RenameFn)
5954     Callee = getValue(I.getCalledValue());
5955   else
5956     Callee = DAG.getExternalSymbol(
5957         RenameFn,
5958         DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5959 
5960   // Check if we can potentially perform a tail call. More detailed checking is
5961   // be done within LowerCallTo, after more information about the call is known.
5962   LowerCallTo(&I, Callee, I.isTailCall());
5963 }
5964 
5965 namespace {
5966 
5967 /// AsmOperandInfo - This contains information for each constraint that we are
5968 /// lowering.
5969 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5970 public:
5971   /// CallOperand - If this is the result output operand or a clobber
5972   /// this is null, otherwise it is the incoming operand to the CallInst.
5973   /// This gets modified as the asm is processed.
5974   SDValue CallOperand;
5975 
5976   /// AssignedRegs - If this is a register or register class operand, this
5977   /// contains the set of register corresponding to the operand.
5978   RegsForValue AssignedRegs;
5979 
5980   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5981     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) {
5982   }
5983 
5984   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5985   /// corresponds to.  If there is no Value* for this operand, it returns
5986   /// MVT::Other.
5987   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
5988                            const DataLayout &DL) const {
5989     if (!CallOperandVal) return MVT::Other;
5990 
5991     if (isa<BasicBlock>(CallOperandVal))
5992       return TLI.getPointerTy(DL);
5993 
5994     llvm::Type *OpTy = CallOperandVal->getType();
5995 
5996     // FIXME: code duplicated from TargetLowering::ParseConstraints().
5997     // If this is an indirect operand, the operand is a pointer to the
5998     // accessed type.
5999     if (isIndirect) {
6000       llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
6001       if (!PtrTy)
6002         report_fatal_error("Indirect operand for inline asm not a pointer!");
6003       OpTy = PtrTy->getElementType();
6004     }
6005 
6006     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
6007     if (StructType *STy = dyn_cast<StructType>(OpTy))
6008       if (STy->getNumElements() == 1)
6009         OpTy = STy->getElementType(0);
6010 
6011     // If OpTy is not a single value, it may be a struct/union that we
6012     // can tile with integers.
6013     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
6014       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
6015       switch (BitSize) {
6016       default: break;
6017       case 1:
6018       case 8:
6019       case 16:
6020       case 32:
6021       case 64:
6022       case 128:
6023         OpTy = IntegerType::get(Context, BitSize);
6024         break;
6025       }
6026     }
6027 
6028     return TLI.getValueType(DL, OpTy, true);
6029   }
6030 };
6031 
6032 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
6033 
6034 } // end anonymous namespace
6035 
6036 /// GetRegistersForValue - Assign registers (virtual or physical) for the
6037 /// specified operand.  We prefer to assign virtual registers, to allow the
6038 /// register allocator to handle the assignment process.  However, if the asm
6039 /// uses features that we can't model on machineinstrs, we have SDISel do the
6040 /// allocation.  This produces generally horrible, but correct, code.
6041 ///
6042 ///   OpInfo describes the operand.
6043 ///
6044 static void GetRegistersForValue(SelectionDAG &DAG,
6045                                  const TargetLowering &TLI,
6046                                  SDLoc DL,
6047                                  SDISelAsmOperandInfo &OpInfo) {
6048   LLVMContext &Context = *DAG.getContext();
6049 
6050   MachineFunction &MF = DAG.getMachineFunction();
6051   SmallVector<unsigned, 4> Regs;
6052 
6053   // If this is a constraint for a single physreg, or a constraint for a
6054   // register class, find it.
6055   std::pair<unsigned, const TargetRegisterClass *> PhysReg =
6056       TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(),
6057                                        OpInfo.ConstraintCode,
6058                                        OpInfo.ConstraintVT);
6059 
6060   unsigned NumRegs = 1;
6061   if (OpInfo.ConstraintVT != MVT::Other) {
6062     // If this is a FP input in an integer register (or visa versa) insert a bit
6063     // cast of the input value.  More generally, handle any case where the input
6064     // value disagrees with the register class we plan to stick this in.
6065     if (OpInfo.Type == InlineAsm::isInput &&
6066         PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
6067       // Try to convert to the first EVT that the reg class contains.  If the
6068       // types are identical size, use a bitcast to convert (e.g. two differing
6069       // vector types).
6070       MVT RegVT = *PhysReg.second->vt_begin();
6071       if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) {
6072         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6073                                          RegVT, OpInfo.CallOperand);
6074         OpInfo.ConstraintVT = RegVT;
6075       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
6076         // If the input is a FP value and we want it in FP registers, do a
6077         // bitcast to the corresponding integer type.  This turns an f64 value
6078         // into i64, which can be passed with two i32 values on a 32-bit
6079         // machine.
6080         RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
6081         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6082                                          RegVT, OpInfo.CallOperand);
6083         OpInfo.ConstraintVT = RegVT;
6084       }
6085     }
6086 
6087     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
6088   }
6089 
6090   MVT RegVT;
6091   EVT ValueVT = OpInfo.ConstraintVT;
6092 
6093   // If this is a constraint for a specific physical register, like {r17},
6094   // assign it now.
6095   if (unsigned AssignedReg = PhysReg.first) {
6096     const TargetRegisterClass *RC = PhysReg.second;
6097     if (OpInfo.ConstraintVT == MVT::Other)
6098       ValueVT = *RC->vt_begin();
6099 
6100     // Get the actual register value type.  This is important, because the user
6101     // may have asked for (e.g.) the AX register in i32 type.  We need to
6102     // remember that AX is actually i16 to get the right extension.
6103     RegVT = *RC->vt_begin();
6104 
6105     // This is a explicit reference to a physical register.
6106     Regs.push_back(AssignedReg);
6107 
6108     // If this is an expanded reference, add the rest of the regs to Regs.
6109     if (NumRegs != 1) {
6110       TargetRegisterClass::iterator I = RC->begin();
6111       for (; *I != AssignedReg; ++I)
6112         assert(I != RC->end() && "Didn't find reg!");
6113 
6114       // Already added the first reg.
6115       --NumRegs; ++I;
6116       for (; NumRegs; --NumRegs, ++I) {
6117         assert(I != RC->end() && "Ran out of registers to allocate!");
6118         Regs.push_back(*I);
6119       }
6120     }
6121 
6122     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6123     return;
6124   }
6125 
6126   // Otherwise, if this was a reference to an LLVM register class, create vregs
6127   // for this reference.
6128   if (const TargetRegisterClass *RC = PhysReg.second) {
6129     RegVT = *RC->vt_begin();
6130     if (OpInfo.ConstraintVT == MVT::Other)
6131       ValueVT = RegVT;
6132 
6133     // Create the appropriate number of virtual registers.
6134     MachineRegisterInfo &RegInfo = MF.getRegInfo();
6135     for (; NumRegs; --NumRegs)
6136       Regs.push_back(RegInfo.createVirtualRegister(RC));
6137 
6138     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6139     return;
6140   }
6141 
6142   // Otherwise, we couldn't allocate enough registers for this.
6143 }
6144 
6145 /// visitInlineAsm - Handle a call to an InlineAsm object.
6146 ///
6147 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
6148   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
6149 
6150   /// ConstraintOperands - Information about all of the constraints.
6151   SDISelAsmOperandInfoVector ConstraintOperands;
6152 
6153   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6154   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
6155       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
6156 
6157   bool hasMemory = false;
6158 
6159   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
6160   unsigned ResNo = 0;   // ResNo - The result number of the next output.
6161   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6162     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
6163     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
6164 
6165     MVT OpVT = MVT::Other;
6166 
6167     // Compute the value type for each operand.
6168     switch (OpInfo.Type) {
6169     case InlineAsm::isOutput:
6170       // Indirect outputs just consume an argument.
6171       if (OpInfo.isIndirect) {
6172         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6173         break;
6174       }
6175 
6176       // The return value of the call is this value.  As such, there is no
6177       // corresponding argument.
6178       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6179       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
6180         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(),
6181                                       STy->getElementType(ResNo));
6182       } else {
6183         assert(ResNo == 0 && "Asm only has one result!");
6184         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
6185       }
6186       ++ResNo;
6187       break;
6188     case InlineAsm::isInput:
6189       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6190       break;
6191     case InlineAsm::isClobber:
6192       // Nothing to do.
6193       break;
6194     }
6195 
6196     // If this is an input or an indirect output, process the call argument.
6197     // BasicBlocks are labels, currently appearing only in asm's.
6198     if (OpInfo.CallOperandVal) {
6199       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
6200         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
6201       } else {
6202         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
6203       }
6204 
6205       OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI,
6206                                          DAG.getDataLayout()).getSimpleVT();
6207     }
6208 
6209     OpInfo.ConstraintVT = OpVT;
6210 
6211     // Indirect operand accesses access memory.
6212     if (OpInfo.isIndirect)
6213       hasMemory = true;
6214     else {
6215       for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
6216         TargetLowering::ConstraintType
6217           CType = TLI.getConstraintType(OpInfo.Codes[j]);
6218         if (CType == TargetLowering::C_Memory) {
6219           hasMemory = true;
6220           break;
6221         }
6222       }
6223     }
6224   }
6225 
6226   SDValue Chain, Flag;
6227 
6228   // We won't need to flush pending loads if this asm doesn't touch
6229   // memory and is nonvolatile.
6230   if (hasMemory || IA->hasSideEffects())
6231     Chain = getRoot();
6232   else
6233     Chain = DAG.getRoot();
6234 
6235   // Second pass over the constraints: compute which constraint option to use
6236   // and assign registers to constraints that want a specific physreg.
6237   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6238     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6239 
6240     // If this is an output operand with a matching input operand, look up the
6241     // matching input. If their types mismatch, e.g. one is an integer, the
6242     // other is floating point, or their sizes are different, flag it as an
6243     // error.
6244     if (OpInfo.hasMatchingInput()) {
6245       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
6246 
6247       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
6248         const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
6249         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
6250             TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
6251                                              OpInfo.ConstraintVT);
6252         std::pair<unsigned, const TargetRegisterClass *> InputRC =
6253             TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
6254                                              Input.ConstraintVT);
6255         if ((OpInfo.ConstraintVT.isInteger() !=
6256              Input.ConstraintVT.isInteger()) ||
6257             (MatchRC.second != InputRC.second)) {
6258           report_fatal_error("Unsupported asm: input constraint"
6259                              " with a matching output constraint of"
6260                              " incompatible type!");
6261         }
6262         Input.ConstraintVT = OpInfo.ConstraintVT;
6263       }
6264     }
6265 
6266     // Compute the constraint code and ConstraintType to use.
6267     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
6268 
6269     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6270         OpInfo.Type == InlineAsm::isClobber)
6271       continue;
6272 
6273     // If this is a memory input, and if the operand is not indirect, do what we
6274     // need to to provide an address for the memory input.
6275     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6276         !OpInfo.isIndirect) {
6277       assert((OpInfo.isMultipleAlternative ||
6278               (OpInfo.Type == InlineAsm::isInput)) &&
6279              "Can only indirectify direct input operands!");
6280 
6281       // Memory operands really want the address of the value.  If we don't have
6282       // an indirect input, put it in the constpool if we can, otherwise spill
6283       // it to a stack slot.
6284       // TODO: This isn't quite right. We need to handle these according to
6285       // the addressing mode that the constraint wants. Also, this may take
6286       // an additional register for the computation and we don't want that
6287       // either.
6288 
6289       // If the operand is a float, integer, or vector constant, spill to a
6290       // constant pool entry to get its address.
6291       const Value *OpVal = OpInfo.CallOperandVal;
6292       if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
6293           isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
6294         OpInfo.CallOperand = DAG.getConstantPool(
6295             cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
6296       } else {
6297         // Otherwise, create a stack slot and emit a store to it before the
6298         // asm.
6299         Type *Ty = OpVal->getType();
6300         auto &DL = DAG.getDataLayout();
6301         uint64_t TySize = DL.getTypeAllocSize(Ty);
6302         unsigned Align = DL.getPrefTypeAlignment(Ty);
6303         MachineFunction &MF = DAG.getMachineFunction();
6304         int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
6305         SDValue StackSlot =
6306             DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout()));
6307         Chain = DAG.getStore(
6308             Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot,
6309             MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI),
6310             false, false, 0);
6311         OpInfo.CallOperand = StackSlot;
6312       }
6313 
6314       // There is no longer a Value* corresponding to this operand.
6315       OpInfo.CallOperandVal = nullptr;
6316 
6317       // It is now an indirect operand.
6318       OpInfo.isIndirect = true;
6319     }
6320 
6321     // If this constraint is for a specific register, allocate it before
6322     // anything else.
6323     if (OpInfo.ConstraintType == TargetLowering::C_Register)
6324       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6325   }
6326 
6327   // Second pass - Loop over all of the operands, assigning virtual or physregs
6328   // to register class operands.
6329   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6330     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6331 
6332     // C_Register operands have already been allocated, Other/Memory don't need
6333     // to be.
6334     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6335       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6336   }
6337 
6338   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6339   std::vector<SDValue> AsmNodeOperands;
6340   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6341   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
6342       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
6343 
6344   // If we have a !srcloc metadata node associated with it, we want to attach
6345   // this to the ultimately generated inline asm machineinstr.  To do this, we
6346   // pass in the third operand as this (potentially null) inline asm MDNode.
6347   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6348   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6349 
6350   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6351   // bits as operand 3.
6352   unsigned ExtraInfo = 0;
6353   if (IA->hasSideEffects())
6354     ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6355   if (IA->isAlignStack())
6356     ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6357   // Set the asm dialect.
6358   ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
6359 
6360   // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
6361   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6362     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
6363 
6364     // Compute the constraint code and ConstraintType to use.
6365     TLI.ComputeConstraintToUse(OpInfo, SDValue());
6366 
6367     // Ideally, we would only check against memory constraints.  However, the
6368     // meaning of an other constraint can be target-specific and we can't easily
6369     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
6370     // for other constriants as well.
6371     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
6372         OpInfo.ConstraintType == TargetLowering::C_Other) {
6373       if (OpInfo.Type == InlineAsm::isInput)
6374         ExtraInfo |= InlineAsm::Extra_MayLoad;
6375       else if (OpInfo.Type == InlineAsm::isOutput)
6376         ExtraInfo |= InlineAsm::Extra_MayStore;
6377       else if (OpInfo.Type == InlineAsm::isClobber)
6378         ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
6379     }
6380   }
6381 
6382   AsmNodeOperands.push_back(DAG.getTargetConstant(
6383       ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
6384 
6385   // Loop over all of the inputs, copying the operand values into the
6386   // appropriate registers and processing the output regs.
6387   RegsForValue RetValRegs;
6388 
6389   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6390   std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6391 
6392   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6393     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6394 
6395     switch (OpInfo.Type) {
6396     case InlineAsm::isOutput: {
6397       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6398           OpInfo.ConstraintType != TargetLowering::C_Register) {
6399         // Memory output, or 'other' output (e.g. 'X' constraint).
6400         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6401 
6402         unsigned ConstraintID =
6403             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
6404         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
6405                "Failed to convert memory constraint code to constraint id.");
6406 
6407         // Add information to the INLINEASM node to know about this output.
6408         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6409         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
6410         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
6411                                                         MVT::i32));
6412         AsmNodeOperands.push_back(OpInfo.CallOperand);
6413         break;
6414       }
6415 
6416       // Otherwise, this is a register or register class output.
6417 
6418       // Copy the output from the appropriate register.  Find a register that
6419       // we can use.
6420       if (OpInfo.AssignedRegs.Regs.empty()) {
6421         LLVMContext &Ctx = *DAG.getContext();
6422         Ctx.emitError(CS.getInstruction(),
6423                       "couldn't allocate output register for constraint '" +
6424                           Twine(OpInfo.ConstraintCode) + "'");
6425         return;
6426       }
6427 
6428       // If this is an indirect operand, store through the pointer after the
6429       // asm.
6430       if (OpInfo.isIndirect) {
6431         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6432                                                       OpInfo.CallOperandVal));
6433       } else {
6434         // This is the result value of the call.
6435         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6436         // Concatenate this output onto the outputs list.
6437         RetValRegs.append(OpInfo.AssignedRegs);
6438       }
6439 
6440       // Add information to the INLINEASM node to know that this register is
6441       // set.
6442       OpInfo.AssignedRegs
6443           .AddInlineAsmOperands(OpInfo.isEarlyClobber
6444                                     ? InlineAsm::Kind_RegDefEarlyClobber
6445                                     : InlineAsm::Kind_RegDef,
6446                                 false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
6447       break;
6448     }
6449     case InlineAsm::isInput: {
6450       SDValue InOperandVal = OpInfo.CallOperand;
6451 
6452       if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6453         // If this is required to match an output register we have already set,
6454         // just use its register.
6455         unsigned OperandNo = OpInfo.getMatchedOperand();
6456 
6457         // Scan until we find the definition we already emitted of this operand.
6458         // When we find it, create a RegsForValue operand.
6459         unsigned CurOp = InlineAsm::Op_FirstOperand;
6460         for (; OperandNo; --OperandNo) {
6461           // Advance to the next operand.
6462           unsigned OpFlag =
6463             cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6464           assert((InlineAsm::isRegDefKind(OpFlag) ||
6465                   InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6466                   InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6467           CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6468         }
6469 
6470         unsigned OpFlag =
6471           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6472         if (InlineAsm::isRegDefKind(OpFlag) ||
6473             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6474           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6475           if (OpInfo.isIndirect) {
6476             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6477             LLVMContext &Ctx = *DAG.getContext();
6478             Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:"
6479                                                " don't know how to handle tied "
6480                                                "indirect register inputs");
6481             return;
6482           }
6483 
6484           RegsForValue MatchedRegs;
6485           MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6486           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
6487           MatchedRegs.RegVTs.push_back(RegVT);
6488           MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6489           for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6490                i != e; ++i) {
6491             if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT))
6492               MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC));
6493             else {
6494               LLVMContext &Ctx = *DAG.getContext();
6495               Ctx.emitError(CS.getInstruction(),
6496                             "inline asm error: This value"
6497                             " type register class is not natively supported!");
6498               return;
6499             }
6500           }
6501           SDLoc dl = getCurSDLoc();
6502           // Use the produced MatchedRegs object to
6503           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl,
6504                                     Chain, &Flag, CS.getInstruction());
6505           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6506                                            true, OpInfo.getMatchedOperand(), dl,
6507                                            DAG, AsmNodeOperands);
6508           break;
6509         }
6510 
6511         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6512         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6513                "Unexpected number of operands");
6514         // Add information to the INLINEASM node to know about this input.
6515         // See InlineAsm.h isUseOperandTiedToDef.
6516         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
6517         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6518                                                     OpInfo.getMatchedOperand());
6519         AsmNodeOperands.push_back(DAG.getTargetConstant(
6520             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
6521         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6522         break;
6523       }
6524 
6525       // Treat indirect 'X' constraint as memory.
6526       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6527           OpInfo.isIndirect)
6528         OpInfo.ConstraintType = TargetLowering::C_Memory;
6529 
6530       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6531         std::vector<SDValue> Ops;
6532         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6533                                           Ops, DAG);
6534         if (Ops.empty()) {
6535           LLVMContext &Ctx = *DAG.getContext();
6536           Ctx.emitError(CS.getInstruction(),
6537                         "invalid operand for inline asm constraint '" +
6538                             Twine(OpInfo.ConstraintCode) + "'");
6539           return;
6540         }
6541 
6542         // Add information to the INLINEASM node to know about this input.
6543         unsigned ResOpType =
6544           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6545         AsmNodeOperands.push_back(DAG.getTargetConstant(
6546             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
6547         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6548         break;
6549       }
6550 
6551       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6552         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6553         assert(InOperandVal.getValueType() ==
6554                    TLI.getPointerTy(DAG.getDataLayout()) &&
6555                "Memory operands expect pointer values");
6556 
6557         unsigned ConstraintID =
6558             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
6559         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
6560                "Failed to convert memory constraint code to constraint id.");
6561 
6562         // Add information to the INLINEASM node to know about this input.
6563         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6564         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
6565         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6566                                                         getCurSDLoc(),
6567                                                         MVT::i32));
6568         AsmNodeOperands.push_back(InOperandVal);
6569         break;
6570       }
6571 
6572       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6573               OpInfo.ConstraintType == TargetLowering::C_Register) &&
6574              "Unknown constraint type!");
6575 
6576       // TODO: Support this.
6577       if (OpInfo.isIndirect) {
6578         LLVMContext &Ctx = *DAG.getContext();
6579         Ctx.emitError(CS.getInstruction(),
6580                       "Don't know how to handle indirect register inputs yet "
6581                       "for constraint '" +
6582                           Twine(OpInfo.ConstraintCode) + "'");
6583         return;
6584       }
6585 
6586       // Copy the input into the appropriate registers.
6587       if (OpInfo.AssignedRegs.Regs.empty()) {
6588         LLVMContext &Ctx = *DAG.getContext();
6589         Ctx.emitError(CS.getInstruction(),
6590                       "couldn't allocate input reg for constraint '" +
6591                           Twine(OpInfo.ConstraintCode) + "'");
6592         return;
6593       }
6594 
6595       SDLoc dl = getCurSDLoc();
6596 
6597       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
6598                                         Chain, &Flag, CS.getInstruction());
6599 
6600       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6601                                                dl, DAG, AsmNodeOperands);
6602       break;
6603     }
6604     case InlineAsm::isClobber: {
6605       // Add the clobbered value to the operand list, so that the register
6606       // allocator is aware that the physreg got clobbered.
6607       if (!OpInfo.AssignedRegs.Regs.empty())
6608         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6609                                                  false, 0, getCurSDLoc(), DAG,
6610                                                  AsmNodeOperands);
6611       break;
6612     }
6613     }
6614   }
6615 
6616   // Finish up input operands.  Set the input chain and add the flag last.
6617   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6618   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6619 
6620   Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
6621                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
6622   Flag = Chain.getValue(1);
6623 
6624   // If this asm returns a register value, copy the result from that register
6625   // and set it as the value of the call.
6626   if (!RetValRegs.Regs.empty()) {
6627     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6628                                              Chain, &Flag, CS.getInstruction());
6629 
6630     // FIXME: Why don't we do this for inline asms with MRVs?
6631     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6632       EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType());
6633 
6634       // If any of the results of the inline asm is a vector, it may have the
6635       // wrong width/num elts.  This can happen for register classes that can
6636       // contain multiple different value types.  The preg or vreg allocated may
6637       // not have the same VT as was expected.  Convert it to the right type
6638       // with bit_convert.
6639       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6640         Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
6641                           ResultType, Val);
6642 
6643       } else if (ResultType != Val.getValueType() &&
6644                  ResultType.isInteger() && Val.getValueType().isInteger()) {
6645         // If a result value was tied to an input value, the computed result may
6646         // have a wider width than the expected result.  Extract the relevant
6647         // portion.
6648         Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
6649       }
6650 
6651       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6652     }
6653 
6654     setValue(CS.getInstruction(), Val);
6655     // Don't need to use this as a chain in this case.
6656     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6657       return;
6658   }
6659 
6660   std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6661 
6662   // Process indirect outputs, first output all of the flagged copies out of
6663   // physregs.
6664   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6665     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6666     const Value *Ptr = IndirectStoresToEmit[i].second;
6667     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6668                                              Chain, &Flag, IA);
6669     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6670   }
6671 
6672   // Emit the non-flagged stores from the physregs.
6673   SmallVector<SDValue, 8> OutChains;
6674   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6675     SDValue Val = DAG.getStore(Chain, getCurSDLoc(),
6676                                StoresToEmit[i].first,
6677                                getValue(StoresToEmit[i].second),
6678                                MachinePointerInfo(StoresToEmit[i].second),
6679                                false, false, 0);
6680     OutChains.push_back(Val);
6681   }
6682 
6683   if (!OutChains.empty())
6684     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
6685 
6686   DAG.setRoot(Chain);
6687 }
6688 
6689 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6690   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
6691                           MVT::Other, getRoot(),
6692                           getValue(I.getArgOperand(0)),
6693                           DAG.getSrcValue(I.getArgOperand(0))));
6694 }
6695 
6696 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6697   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6698   const DataLayout &DL = DAG.getDataLayout();
6699   SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()),
6700                            getCurSDLoc(), getRoot(), getValue(I.getOperand(0)),
6701                            DAG.getSrcValue(I.getOperand(0)),
6702                            DL.getABITypeAlignment(I.getType()));
6703   setValue(&I, V);
6704   DAG.setRoot(V.getValue(1));
6705 }
6706 
6707 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6708   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
6709                           MVT::Other, getRoot(),
6710                           getValue(I.getArgOperand(0)),
6711                           DAG.getSrcValue(I.getArgOperand(0))));
6712 }
6713 
6714 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6715   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
6716                           MVT::Other, getRoot(),
6717                           getValue(I.getArgOperand(0)),
6718                           getValue(I.getArgOperand(1)),
6719                           DAG.getSrcValue(I.getArgOperand(0)),
6720                           DAG.getSrcValue(I.getArgOperand(1))));
6721 }
6722 
6723 /// \brief Lower an argument list according to the target calling convention.
6724 ///
6725 /// \return A tuple of <return-value, token-chain>
6726 ///
6727 /// This is a helper for lowering intrinsics that follow a target calling
6728 /// convention or require stack pointer adjustment. Only a subset of the
6729 /// intrinsic's operands need to participate in the calling convention.
6730 std::pair<SDValue, SDValue> SelectionDAGBuilder::lowerCallOperands(
6731     ImmutableCallSite CS, unsigned ArgIdx, unsigned NumArgs, SDValue Callee,
6732     Type *ReturnTy, const BasicBlock *EHPadBB, bool IsPatchPoint) {
6733   TargetLowering::ArgListTy Args;
6734   Args.reserve(NumArgs);
6735 
6736   // Populate the argument list.
6737   // Attributes for args start at offset 1, after the return attribute.
6738   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1;
6739        ArgI != ArgE; ++ArgI) {
6740     const Value *V = CS->getOperand(ArgI);
6741 
6742     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
6743 
6744     TargetLowering::ArgListEntry Entry;
6745     Entry.Node = getValue(V);
6746     Entry.Ty = V->getType();
6747     Entry.setAttributes(&CS, AttrI);
6748     Args.push_back(Entry);
6749   }
6750 
6751   TargetLowering::CallLoweringInfo CLI(DAG);
6752   CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot())
6753     .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs)
6754     .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint);
6755 
6756   return lowerInvokable(CLI, EHPadBB);
6757 }
6758 
6759 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap
6760 /// or patchpoint target node's operand list.
6761 ///
6762 /// Constants are converted to TargetConstants purely as an optimization to
6763 /// avoid constant materialization and register allocation.
6764 ///
6765 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
6766 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
6767 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
6768 /// address materialization and register allocation, but may also be required
6769 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
6770 /// alloca in the entry block, then the runtime may assume that the alloca's
6771 /// StackMap location can be read immediately after compilation and that the
6772 /// location is valid at any point during execution (this is similar to the
6773 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
6774 /// only available in a register, then the runtime would need to trap when
6775 /// execution reaches the StackMap in order to read the alloca's location.
6776 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
6777                                 SDLoc DL, SmallVectorImpl<SDValue> &Ops,
6778                                 SelectionDAGBuilder &Builder) {
6779   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
6780     SDValue OpVal = Builder.getValue(CS.getArgument(i));
6781     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
6782       Ops.push_back(
6783         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
6784       Ops.push_back(
6785         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
6786     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
6787       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
6788       Ops.push_back(Builder.DAG.getTargetFrameIndex(
6789           FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout())));
6790     } else
6791       Ops.push_back(OpVal);
6792   }
6793 }
6794 
6795 /// \brief Lower llvm.experimental.stackmap directly to its target opcode.
6796 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
6797   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
6798   //                                  [live variables...])
6799 
6800   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
6801 
6802   SDValue Chain, InFlag, Callee, NullPtr;
6803   SmallVector<SDValue, 32> Ops;
6804 
6805   SDLoc DL = getCurSDLoc();
6806   Callee = getValue(CI.getCalledValue());
6807   NullPtr = DAG.getIntPtrConstant(0, DL, true);
6808 
6809   // The stackmap intrinsic only records the live variables (the arguemnts
6810   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
6811   // intrinsic, this won't be lowered to a function call. This means we don't
6812   // have to worry about calling conventions and target specific lowering code.
6813   // Instead we perform the call lowering right here.
6814   //
6815   // chain, flag = CALLSEQ_START(chain, 0)
6816   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
6817   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
6818   //
6819   Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL);
6820   InFlag = Chain.getValue(1);
6821 
6822   // Add the <id> and <numBytes> constants.
6823   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
6824   Ops.push_back(DAG.getTargetConstant(
6825                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
6826   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
6827   Ops.push_back(DAG.getTargetConstant(
6828                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
6829                   MVT::i32));
6830 
6831   // Push live variables for the stack map.
6832   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
6833 
6834   // We are not pushing any register mask info here on the operands list,
6835   // because the stackmap doesn't clobber anything.
6836 
6837   // Push the chain and the glue flag.
6838   Ops.push_back(Chain);
6839   Ops.push_back(InFlag);
6840 
6841   // Create the STACKMAP node.
6842   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6843   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
6844   Chain = SDValue(SM, 0);
6845   InFlag = Chain.getValue(1);
6846 
6847   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
6848 
6849   // Stackmaps don't generate values, so nothing goes into the NodeMap.
6850 
6851   // Set the root to the target-lowered call chain.
6852   DAG.setRoot(Chain);
6853 
6854   // Inform the Frame Information that we have a stackmap in this function.
6855   FuncInfo.MF->getFrameInfo()->setHasStackMap();
6856 }
6857 
6858 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode.
6859 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
6860                                           const BasicBlock *EHPadBB) {
6861   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
6862   //                                                 i32 <numBytes>,
6863   //                                                 i8* <target>,
6864   //                                                 i32 <numArgs>,
6865   //                                                 [Args...],
6866   //                                                 [live variables...])
6867 
6868   CallingConv::ID CC = CS.getCallingConv();
6869   bool IsAnyRegCC = CC == CallingConv::AnyReg;
6870   bool HasDef = !CS->getType()->isVoidTy();
6871   SDLoc dl = getCurSDLoc();
6872   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
6873 
6874   // Handle immediate and symbolic callees.
6875   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
6876     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
6877                                    /*isTarget=*/true);
6878   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
6879     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
6880                                          SDLoc(SymbolicCallee),
6881                                          SymbolicCallee->getValueType(0));
6882 
6883   // Get the real number of arguments participating in the call <numArgs>
6884   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
6885   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
6886 
6887   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
6888   // Intrinsics include all meta-operands up to but not including CC.
6889   unsigned NumMetaOpers = PatchPointOpers::CCPos;
6890   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
6891          "Not enough arguments provided to the patchpoint intrinsic");
6892 
6893   // For AnyRegCC the arguments are lowered later on manually.
6894   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
6895   Type *ReturnTy =
6896     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
6897   std::pair<SDValue, SDValue> Result = lowerCallOperands(
6898       CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, EHPadBB, true);
6899 
6900   SDNode *CallEnd = Result.second.getNode();
6901   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
6902     CallEnd = CallEnd->getOperand(0).getNode();
6903 
6904   /// Get a call instruction from the call sequence chain.
6905   /// Tail calls are not allowed.
6906   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
6907          "Expected a callseq node.");
6908   SDNode *Call = CallEnd->getOperand(0).getNode();
6909   bool HasGlue = Call->getGluedNode();
6910 
6911   // Replace the target specific call node with the patchable intrinsic.
6912   SmallVector<SDValue, 8> Ops;
6913 
6914   // Add the <id> and <numBytes> constants.
6915   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
6916   Ops.push_back(DAG.getTargetConstant(
6917                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
6918   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
6919   Ops.push_back(DAG.getTargetConstant(
6920                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
6921                   MVT::i32));
6922 
6923   // Add the callee.
6924   Ops.push_back(Callee);
6925 
6926   // Adjust <numArgs> to account for any arguments that have been passed on the
6927   // stack instead.
6928   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
6929   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
6930   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
6931   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
6932 
6933   // Add the calling convention
6934   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
6935 
6936   // Add the arguments we omitted previously. The register allocator should
6937   // place these in any free register.
6938   if (IsAnyRegCC)
6939     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
6940       Ops.push_back(getValue(CS.getArgument(i)));
6941 
6942   // Push the arguments from the call instruction up to the register mask.
6943   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
6944   Ops.append(Call->op_begin() + 2, e);
6945 
6946   // Push live variables for the stack map.
6947   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
6948 
6949   // Push the register mask info.
6950   if (HasGlue)
6951     Ops.push_back(*(Call->op_end()-2));
6952   else
6953     Ops.push_back(*(Call->op_end()-1));
6954 
6955   // Push the chain (this is originally the first operand of the call, but
6956   // becomes now the last or second to last operand).
6957   Ops.push_back(*(Call->op_begin()));
6958 
6959   // Push the glue flag (last operand).
6960   if (HasGlue)
6961     Ops.push_back(*(Call->op_end()-1));
6962 
6963   SDVTList NodeTys;
6964   if (IsAnyRegCC && HasDef) {
6965     // Create the return types based on the intrinsic definition
6966     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6967     SmallVector<EVT, 3> ValueVTs;
6968     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
6969     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
6970 
6971     // There is always a chain and a glue type at the end
6972     ValueVTs.push_back(MVT::Other);
6973     ValueVTs.push_back(MVT::Glue);
6974     NodeTys = DAG.getVTList(ValueVTs);
6975   } else
6976     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6977 
6978   // Replace the target specific call node with a PATCHPOINT node.
6979   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
6980                                          dl, NodeTys, Ops);
6981 
6982   // Update the NodeMap.
6983   if (HasDef) {
6984     if (IsAnyRegCC)
6985       setValue(CS.getInstruction(), SDValue(MN, 0));
6986     else
6987       setValue(CS.getInstruction(), Result.first);
6988   }
6989 
6990   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
6991   // call sequence. Furthermore the location of the chain and glue can change
6992   // when the AnyReg calling convention is used and the intrinsic returns a
6993   // value.
6994   if (IsAnyRegCC && HasDef) {
6995     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
6996     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
6997     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
6998   } else
6999     DAG.ReplaceAllUsesWith(Call, MN);
7000   DAG.DeleteNode(Call);
7001 
7002   // Inform the Frame Information that we have a patchpoint in this function.
7003   FuncInfo.MF->getFrameInfo()->setHasPatchPoint();
7004 }
7005 
7006 /// Returns an AttributeSet representing the attributes applied to the return
7007 /// value of the given call.
7008 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
7009   SmallVector<Attribute::AttrKind, 2> Attrs;
7010   if (CLI.RetSExt)
7011     Attrs.push_back(Attribute::SExt);
7012   if (CLI.RetZExt)
7013     Attrs.push_back(Attribute::ZExt);
7014   if (CLI.IsInReg)
7015     Attrs.push_back(Attribute::InReg);
7016 
7017   return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex,
7018                            Attrs);
7019 }
7020 
7021 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
7022 /// implementation, which just calls LowerCall.
7023 /// FIXME: When all targets are
7024 /// migrated to using LowerCall, this hook should be integrated into SDISel.
7025 std::pair<SDValue, SDValue>
7026 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
7027   // Handle the incoming return values from the call.
7028   CLI.Ins.clear();
7029   Type *OrigRetTy = CLI.RetTy;
7030   SmallVector<EVT, 4> RetTys;
7031   SmallVector<uint64_t, 4> Offsets;
7032   auto &DL = CLI.DAG.getDataLayout();
7033   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
7034 
7035   SmallVector<ISD::OutputArg, 4> Outs;
7036   GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
7037 
7038   bool CanLowerReturn =
7039       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
7040                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
7041 
7042   SDValue DemoteStackSlot;
7043   int DemoteStackIdx = -100;
7044   if (!CanLowerReturn) {
7045     // FIXME: equivalent assert?
7046     // assert(!CS.hasInAllocaArgument() &&
7047     //        "sret demotion is incompatible with inalloca");
7048     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
7049     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
7050     MachineFunction &MF = CLI.DAG.getMachineFunction();
7051     DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
7052     Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy);
7053 
7054     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL));
7055     ArgListEntry Entry;
7056     Entry.Node = DemoteStackSlot;
7057     Entry.Ty = StackSlotPtrType;
7058     Entry.isSExt = false;
7059     Entry.isZExt = false;
7060     Entry.isInReg = false;
7061     Entry.isSRet = true;
7062     Entry.isNest = false;
7063     Entry.isByVal = false;
7064     Entry.isReturned = false;
7065     Entry.Alignment = Align;
7066     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
7067     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
7068 
7069     // sret demotion isn't compatible with tail-calls, since the sret argument
7070     // points into the callers stack frame.
7071     CLI.IsTailCall = false;
7072   } else {
7073     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7074       EVT VT = RetTys[I];
7075       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7076       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7077       for (unsigned i = 0; i != NumRegs; ++i) {
7078         ISD::InputArg MyFlags;
7079         MyFlags.VT = RegisterVT;
7080         MyFlags.ArgVT = VT;
7081         MyFlags.Used = CLI.IsReturnValueUsed;
7082         if (CLI.RetSExt)
7083           MyFlags.Flags.setSExt();
7084         if (CLI.RetZExt)
7085           MyFlags.Flags.setZExt();
7086         if (CLI.IsInReg)
7087           MyFlags.Flags.setInReg();
7088         CLI.Ins.push_back(MyFlags);
7089       }
7090     }
7091   }
7092 
7093   // Handle all of the outgoing arguments.
7094   CLI.Outs.clear();
7095   CLI.OutVals.clear();
7096   ArgListTy &Args = CLI.getArgs();
7097   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
7098     SmallVector<EVT, 4> ValueVTs;
7099     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
7100     Type *FinalType = Args[i].Ty;
7101     if (Args[i].isByVal)
7102       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
7103     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
7104         FinalType, CLI.CallConv, CLI.IsVarArg);
7105     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
7106          ++Value) {
7107       EVT VT = ValueVTs[Value];
7108       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
7109       SDValue Op = SDValue(Args[i].Node.getNode(),
7110                            Args[i].Node.getResNo() + Value);
7111       ISD::ArgFlagsTy Flags;
7112       unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
7113 
7114       if (Args[i].isZExt)
7115         Flags.setZExt();
7116       if (Args[i].isSExt)
7117         Flags.setSExt();
7118       if (Args[i].isInReg)
7119         Flags.setInReg();
7120       if (Args[i].isSRet)
7121         Flags.setSRet();
7122       if (Args[i].isByVal)
7123         Flags.setByVal();
7124       if (Args[i].isInAlloca) {
7125         Flags.setInAlloca();
7126         // Set the byval flag for CCAssignFn callbacks that don't know about
7127         // inalloca.  This way we can know how many bytes we should've allocated
7128         // and how many bytes a callee cleanup function will pop.  If we port
7129         // inalloca to more targets, we'll have to add custom inalloca handling
7130         // in the various CC lowering callbacks.
7131         Flags.setByVal();
7132       }
7133       if (Args[i].isByVal || Args[i].isInAlloca) {
7134         PointerType *Ty = cast<PointerType>(Args[i].Ty);
7135         Type *ElementTy = Ty->getElementType();
7136         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
7137         // For ByVal, alignment should come from FE.  BE will guess if this
7138         // info is not there but there are cases it cannot get right.
7139         unsigned FrameAlign;
7140         if (Args[i].Alignment)
7141           FrameAlign = Args[i].Alignment;
7142         else
7143           FrameAlign = getByValTypeAlignment(ElementTy, DL);
7144         Flags.setByValAlign(FrameAlign);
7145       }
7146       if (Args[i].isNest)
7147         Flags.setNest();
7148       if (NeedsRegBlock)
7149         Flags.setInConsecutiveRegs();
7150       Flags.setOrigAlign(OriginalAlignment);
7151 
7152       MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
7153       unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
7154       SmallVector<SDValue, 4> Parts(NumParts);
7155       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
7156 
7157       if (Args[i].isSExt)
7158         ExtendKind = ISD::SIGN_EXTEND;
7159       else if (Args[i].isZExt)
7160         ExtendKind = ISD::ZERO_EXTEND;
7161 
7162       // Conservatively only handle 'returned' on non-vectors for now
7163       if (Args[i].isReturned && !Op.getValueType().isVector()) {
7164         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
7165                "unexpected use of 'returned'");
7166         // Before passing 'returned' to the target lowering code, ensure that
7167         // either the register MVT and the actual EVT are the same size or that
7168         // the return value and argument are extended in the same way; in these
7169         // cases it's safe to pass the argument register value unchanged as the
7170         // return register value (although it's at the target's option whether
7171         // to do so)
7172         // TODO: allow code generation to take advantage of partially preserved
7173         // registers rather than clobbering the entire register when the
7174         // parameter extension method is not compatible with the return
7175         // extension method
7176         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
7177             (ExtendKind != ISD::ANY_EXTEND &&
7178              CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt))
7179         Flags.setReturned();
7180       }
7181 
7182       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
7183                      CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind);
7184 
7185       for (unsigned j = 0; j != NumParts; ++j) {
7186         // if it isn't first piece, alignment must be 1
7187         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
7188                                i < CLI.NumFixedArgs,
7189                                i, j*Parts[j].getValueType().getStoreSize());
7190         if (NumParts > 1 && j == 0)
7191           MyFlags.Flags.setSplit();
7192         else if (j != 0) {
7193           MyFlags.Flags.setOrigAlign(1);
7194           if (j == NumParts - 1)
7195             MyFlags.Flags.setSplitEnd();
7196         }
7197 
7198         CLI.Outs.push_back(MyFlags);
7199         CLI.OutVals.push_back(Parts[j]);
7200       }
7201 
7202       if (NeedsRegBlock && Value == NumValues - 1)
7203         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
7204     }
7205   }
7206 
7207   SmallVector<SDValue, 4> InVals;
7208   CLI.Chain = LowerCall(CLI, InVals);
7209 
7210   // Verify that the target's LowerCall behaved as expected.
7211   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
7212          "LowerCall didn't return a valid chain!");
7213   assert((!CLI.IsTailCall || InVals.empty()) &&
7214          "LowerCall emitted a return value for a tail call!");
7215   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
7216          "LowerCall didn't emit the correct number of values!");
7217 
7218   // For a tail call, the return value is merely live-out and there aren't
7219   // any nodes in the DAG representing it. Return a special value to
7220   // indicate that a tail call has been emitted and no more Instructions
7221   // should be processed in the current block.
7222   if (CLI.IsTailCall) {
7223     CLI.DAG.setRoot(CLI.Chain);
7224     return std::make_pair(SDValue(), SDValue());
7225   }
7226 
7227   DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
7228           assert(InVals[i].getNode() &&
7229                  "LowerCall emitted a null value!");
7230           assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
7231                  "LowerCall emitted a value with the wrong type!");
7232         });
7233 
7234   SmallVector<SDValue, 4> ReturnValues;
7235   if (!CanLowerReturn) {
7236     // The instruction result is the result of loading from the
7237     // hidden sret parameter.
7238     SmallVector<EVT, 1> PVTs;
7239     Type *PtrRetTy = PointerType::getUnqual(OrigRetTy);
7240 
7241     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
7242     assert(PVTs.size() == 1 && "Pointers should fit in one register");
7243     EVT PtrVT = PVTs[0];
7244 
7245     unsigned NumValues = RetTys.size();
7246     ReturnValues.resize(NumValues);
7247     SmallVector<SDValue, 4> Chains(NumValues);
7248 
7249     // An aggregate return value cannot wrap around the address space, so
7250     // offsets to its parts don't wrap either.
7251     SDNodeFlags Flags;
7252     Flags.setNoUnsignedWrap(true);
7253 
7254     for (unsigned i = 0; i < NumValues; ++i) {
7255       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
7256                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
7257                                                         PtrVT), &Flags);
7258       SDValue L = CLI.DAG.getLoad(
7259           RetTys[i], CLI.DL, CLI.Chain, Add,
7260           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
7261                                             DemoteStackIdx, Offsets[i]),
7262           false, false, false, 1);
7263       ReturnValues[i] = L;
7264       Chains[i] = L.getValue(1);
7265     }
7266 
7267     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
7268   } else {
7269     // Collect the legal value parts into potentially illegal values
7270     // that correspond to the original function's return values.
7271     ISD::NodeType AssertOp = ISD::DELETED_NODE;
7272     if (CLI.RetSExt)
7273       AssertOp = ISD::AssertSext;
7274     else if (CLI.RetZExt)
7275       AssertOp = ISD::AssertZext;
7276     unsigned CurReg = 0;
7277     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7278       EVT VT = RetTys[I];
7279       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7280       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7281 
7282       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
7283                                               NumRegs, RegisterVT, VT, nullptr,
7284                                               AssertOp));
7285       CurReg += NumRegs;
7286     }
7287 
7288     // For a function returning void, there is no return value. We can't create
7289     // such a node, so we just return a null return value in that case. In
7290     // that case, nothing will actually look at the value.
7291     if (ReturnValues.empty())
7292       return std::make_pair(SDValue(), CLI.Chain);
7293   }
7294 
7295   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
7296                                 CLI.DAG.getVTList(RetTys), ReturnValues);
7297   return std::make_pair(Res, CLI.Chain);
7298 }
7299 
7300 void TargetLowering::LowerOperationWrapper(SDNode *N,
7301                                            SmallVectorImpl<SDValue> &Results,
7302                                            SelectionDAG &DAG) const {
7303   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
7304   if (Res.getNode())
7305     Results.push_back(Res);
7306 }
7307 
7308 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
7309   llvm_unreachable("LowerOperation not implemented for this target!");
7310 }
7311 
7312 void
7313 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
7314   SDValue Op = getNonRegisterValue(V);
7315   assert((Op.getOpcode() != ISD::CopyFromReg ||
7316           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
7317          "Copy from a reg to the same reg!");
7318   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
7319 
7320   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7321   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
7322                    V->getType());
7323   SDValue Chain = DAG.getEntryNode();
7324 
7325   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
7326                               FuncInfo.PreferredExtendType.end())
7327                                  ? ISD::ANY_EXTEND
7328                                  : FuncInfo.PreferredExtendType[V];
7329   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
7330   PendingExports.push_back(Chain);
7331 }
7332 
7333 #include "llvm/CodeGen/SelectionDAGISel.h"
7334 
7335 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
7336 /// entry block, return true.  This includes arguments used by switches, since
7337 /// the switch may expand into multiple basic blocks.
7338 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
7339   // With FastISel active, we may be splitting blocks, so force creation
7340   // of virtual registers for all non-dead arguments.
7341   if (FastISel)
7342     return A->use_empty();
7343 
7344   const BasicBlock &Entry = A->getParent()->front();
7345   for (const User *U : A->users())
7346     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
7347       return false;  // Use not in entry block.
7348 
7349   return true;
7350 }
7351 
7352 void SelectionDAGISel::LowerArguments(const Function &F) {
7353   SelectionDAG &DAG = SDB->DAG;
7354   SDLoc dl = SDB->getCurSDLoc();
7355   const DataLayout &DL = DAG.getDataLayout();
7356   SmallVector<ISD::InputArg, 16> Ins;
7357 
7358   if (!FuncInfo->CanLowerReturn) {
7359     // Put in an sret pointer parameter before all the other parameters.
7360     SmallVector<EVT, 1> ValueVTs;
7361     ComputeValueVTs(*TLI, DAG.getDataLayout(),
7362                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
7363 
7364     // NOTE: Assuming that a pointer will never break down to more than one VT
7365     // or one register.
7366     ISD::ArgFlagsTy Flags;
7367     Flags.setSRet();
7368     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
7369     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
7370                          ISD::InputArg::NoArgIndex, 0);
7371     Ins.push_back(RetArg);
7372   }
7373 
7374   // Set up the incoming argument description vector.
7375   unsigned Idx = 1;
7376   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
7377        I != E; ++I, ++Idx) {
7378     SmallVector<EVT, 4> ValueVTs;
7379     ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs);
7380     bool isArgValueUsed = !I->use_empty();
7381     unsigned PartBase = 0;
7382     Type *FinalType = I->getType();
7383     if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
7384       FinalType = cast<PointerType>(FinalType)->getElementType();
7385     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
7386         FinalType, F.getCallingConv(), F.isVarArg());
7387     for (unsigned Value = 0, NumValues = ValueVTs.size();
7388          Value != NumValues; ++Value) {
7389       EVT VT = ValueVTs[Value];
7390       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
7391       ISD::ArgFlagsTy Flags;
7392       unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
7393 
7394       if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
7395         Flags.setZExt();
7396       if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
7397         Flags.setSExt();
7398       if (F.getAttributes().hasAttribute(Idx, Attribute::InReg))
7399         Flags.setInReg();
7400       if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet))
7401         Flags.setSRet();
7402       if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
7403         Flags.setByVal();
7404       if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) {
7405         Flags.setInAlloca();
7406         // Set the byval flag for CCAssignFn callbacks that don't know about
7407         // inalloca.  This way we can know how many bytes we should've allocated
7408         // and how many bytes a callee cleanup function will pop.  If we port
7409         // inalloca to more targets, we'll have to add custom inalloca handling
7410         // in the various CC lowering callbacks.
7411         Flags.setByVal();
7412       }
7413       if (F.getCallingConv() == CallingConv::X86_INTR) {
7414         // IA Interrupt passes frame (1st parameter) by value in the stack.
7415         if (Idx == 1)
7416           Flags.setByVal();
7417       }
7418       if (Flags.isByVal() || Flags.isInAlloca()) {
7419         PointerType *Ty = cast<PointerType>(I->getType());
7420         Type *ElementTy = Ty->getElementType();
7421         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
7422         // For ByVal, alignment should be passed from FE.  BE will guess if
7423         // this info is not there but there are cases it cannot get right.
7424         unsigned FrameAlign;
7425         if (F.getParamAlignment(Idx))
7426           FrameAlign = F.getParamAlignment(Idx);
7427         else
7428           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
7429         Flags.setByValAlign(FrameAlign);
7430       }
7431       if (F.getAttributes().hasAttribute(Idx, Attribute::Nest))
7432         Flags.setNest();
7433       if (NeedsRegBlock)
7434         Flags.setInConsecutiveRegs();
7435       Flags.setOrigAlign(OriginalAlignment);
7436 
7437       MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7438       unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT);
7439       for (unsigned i = 0; i != NumRegs; ++i) {
7440         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
7441                               Idx-1, PartBase+i*RegisterVT.getStoreSize());
7442         if (NumRegs > 1 && i == 0)
7443           MyFlags.Flags.setSplit();
7444         // if it isn't first piece, alignment must be 1
7445         else if (i > 0) {
7446           MyFlags.Flags.setOrigAlign(1);
7447           if (i == NumRegs - 1)
7448             MyFlags.Flags.setSplitEnd();
7449         }
7450         Ins.push_back(MyFlags);
7451       }
7452       if (NeedsRegBlock && Value == NumValues - 1)
7453         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
7454       PartBase += VT.getStoreSize();
7455     }
7456   }
7457 
7458   // Call the target to set up the argument values.
7459   SmallVector<SDValue, 8> InVals;
7460   SDValue NewRoot = TLI->LowerFormalArguments(
7461       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
7462 
7463   // Verify that the target's LowerFormalArguments behaved as expected.
7464   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
7465          "LowerFormalArguments didn't return a valid chain!");
7466   assert(InVals.size() == Ins.size() &&
7467          "LowerFormalArguments didn't emit the correct number of values!");
7468   DEBUG({
7469       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
7470         assert(InVals[i].getNode() &&
7471                "LowerFormalArguments emitted a null value!");
7472         assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
7473                "LowerFormalArguments emitted a value with the wrong type!");
7474       }
7475     });
7476 
7477   // Update the DAG with the new chain value resulting from argument lowering.
7478   DAG.setRoot(NewRoot);
7479 
7480   // Set up the argument values.
7481   unsigned i = 0;
7482   Idx = 1;
7483   if (!FuncInfo->CanLowerReturn) {
7484     // Create a virtual register for the sret pointer, and put in a copy
7485     // from the sret argument into it.
7486     SmallVector<EVT, 1> ValueVTs;
7487     ComputeValueVTs(*TLI, DAG.getDataLayout(),
7488                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
7489     MVT VT = ValueVTs[0].getSimpleVT();
7490     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7491     ISD::NodeType AssertOp = ISD::DELETED_NODE;
7492     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
7493                                         RegVT, VT, nullptr, AssertOp);
7494 
7495     MachineFunction& MF = SDB->DAG.getMachineFunction();
7496     MachineRegisterInfo& RegInfo = MF.getRegInfo();
7497     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
7498     FuncInfo->DemoteRegister = SRetReg;
7499     NewRoot =
7500         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
7501     DAG.setRoot(NewRoot);
7502 
7503     // i indexes lowered arguments.  Bump it past the hidden sret argument.
7504     // Idx indexes LLVM arguments.  Don't touch it.
7505     ++i;
7506   }
7507 
7508   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
7509       ++I, ++Idx) {
7510     SmallVector<SDValue, 4> ArgValues;
7511     SmallVector<EVT, 4> ValueVTs;
7512     ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs);
7513     unsigned NumValues = ValueVTs.size();
7514 
7515     // If this argument is unused then remember its value. It is used to generate
7516     // debugging information.
7517     if (I->use_empty() && NumValues) {
7518       SDB->setUnusedArgValue(&*I, InVals[i]);
7519 
7520       // Also remember any frame index for use in FastISel.
7521       if (FrameIndexSDNode *FI =
7522           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
7523         FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
7524     }
7525 
7526     for (unsigned Val = 0; Val != NumValues; ++Val) {
7527       EVT VT = ValueVTs[Val];
7528       MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7529       unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT);
7530 
7531       if (!I->use_empty()) {
7532         ISD::NodeType AssertOp = ISD::DELETED_NODE;
7533         if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
7534           AssertOp = ISD::AssertSext;
7535         else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
7536           AssertOp = ISD::AssertZext;
7537 
7538         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
7539                                              NumParts, PartVT, VT,
7540                                              nullptr, AssertOp));
7541       }
7542 
7543       i += NumParts;
7544     }
7545 
7546     // We don't need to do anything else for unused arguments.
7547     if (ArgValues.empty())
7548       continue;
7549 
7550     // Note down frame index.
7551     if (FrameIndexSDNode *FI =
7552         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
7553       FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
7554 
7555     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
7556                                      SDB->getCurSDLoc());
7557 
7558     SDB->setValue(&*I, Res);
7559     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
7560       if (LoadSDNode *LNode =
7561           dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
7562         if (FrameIndexSDNode *FI =
7563             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
7564         FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
7565     }
7566 
7567     // If this argument is live outside of the entry block, insert a copy from
7568     // wherever we got it to the vreg that other BB's will reference it as.
7569     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
7570       // If we can, though, try to skip creating an unnecessary vreg.
7571       // FIXME: This isn't very clean... it would be nice to make this more
7572       // general.  It's also subtly incompatible with the hacks FastISel
7573       // uses with vregs.
7574       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
7575       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
7576         FuncInfo->ValueMap[&*I] = Reg;
7577         continue;
7578       }
7579     }
7580     if (!isOnlyUsedInEntryBlock(&*I, TM.Options.EnableFastISel)) {
7581       FuncInfo->InitializeRegForValue(&*I);
7582       SDB->CopyToExportRegsIfNeeded(&*I);
7583     }
7584   }
7585 
7586   assert(i == InVals.size() && "Argument register count mismatch!");
7587 
7588   // Finally, if the target has anything special to do, allow it to do so.
7589   EmitFunctionEntryCode();
7590 }
7591 
7592 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
7593 /// ensure constants are generated when needed.  Remember the virtual registers
7594 /// that need to be added to the Machine PHI nodes as input.  We cannot just
7595 /// directly add them, because expansion might result in multiple MBB's for one
7596 /// BB.  As such, the start of the BB might correspond to a different MBB than
7597 /// the end.
7598 ///
7599 void
7600 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
7601   const TerminatorInst *TI = LLVMBB->getTerminator();
7602 
7603   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
7604 
7605   // Check PHI nodes in successors that expect a value to be available from this
7606   // block.
7607   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
7608     const BasicBlock *SuccBB = TI->getSuccessor(succ);
7609     if (!isa<PHINode>(SuccBB->begin())) continue;
7610     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
7611 
7612     // If this terminator has multiple identical successors (common for
7613     // switches), only handle each succ once.
7614     if (!SuccsHandled.insert(SuccMBB).second)
7615       continue;
7616 
7617     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
7618 
7619     // At this point we know that there is a 1-1 correspondence between LLVM PHI
7620     // nodes and Machine PHI nodes, but the incoming operands have not been
7621     // emitted yet.
7622     for (BasicBlock::const_iterator I = SuccBB->begin();
7623          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
7624       // Ignore dead phi's.
7625       if (PN->use_empty()) continue;
7626 
7627       // Skip empty types
7628       if (PN->getType()->isEmptyTy())
7629         continue;
7630 
7631       unsigned Reg;
7632       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
7633 
7634       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
7635         unsigned &RegOut = ConstantsOut[C];
7636         if (RegOut == 0) {
7637           RegOut = FuncInfo.CreateRegs(C->getType());
7638           CopyValueToVirtualRegister(C, RegOut);
7639         }
7640         Reg = RegOut;
7641       } else {
7642         DenseMap<const Value *, unsigned>::iterator I =
7643           FuncInfo.ValueMap.find(PHIOp);
7644         if (I != FuncInfo.ValueMap.end())
7645           Reg = I->second;
7646         else {
7647           assert(isa<AllocaInst>(PHIOp) &&
7648                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
7649                  "Didn't codegen value into a register!??");
7650           Reg = FuncInfo.CreateRegs(PHIOp->getType());
7651           CopyValueToVirtualRegister(PHIOp, Reg);
7652         }
7653       }
7654 
7655       // Remember that this register needs to added to the machine PHI node as
7656       // the input for this MBB.
7657       SmallVector<EVT, 4> ValueVTs;
7658       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7659       ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs);
7660       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
7661         EVT VT = ValueVTs[vti];
7662         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
7663         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
7664           FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
7665         Reg += NumRegisters;
7666       }
7667     }
7668   }
7669 
7670   ConstantsOut.clear();
7671 }
7672 
7673 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
7674 /// is 0.
7675 MachineBasicBlock *
7676 SelectionDAGBuilder::StackProtectorDescriptor::
7677 AddSuccessorMBB(const BasicBlock *BB,
7678                 MachineBasicBlock *ParentMBB,
7679                 bool IsLikely,
7680                 MachineBasicBlock *SuccMBB) {
7681   // If SuccBB has not been created yet, create it.
7682   if (!SuccMBB) {
7683     MachineFunction *MF = ParentMBB->getParent();
7684     MachineFunction::iterator BBI(ParentMBB);
7685     SuccMBB = MF->CreateMachineBasicBlock(BB);
7686     MF->insert(++BBI, SuccMBB);
7687   }
7688   // Add it as a successor of ParentMBB.
7689   ParentMBB->addSuccessor(
7690       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
7691   return SuccMBB;
7692 }
7693 
7694 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
7695   MachineFunction::iterator I(MBB);
7696   if (++I == FuncInfo.MF->end())
7697     return nullptr;
7698   return &*I;
7699 }
7700 
7701 /// During lowering new call nodes can be created (such as memset, etc.).
7702 /// Those will become new roots of the current DAG, but complications arise
7703 /// when they are tail calls. In such cases, the call lowering will update
7704 /// the root, but the builder still needs to know that a tail call has been
7705 /// lowered in order to avoid generating an additional return.
7706 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
7707   // If the node is null, we do have a tail call.
7708   if (MaybeTC.getNode() != nullptr)
7709     DAG.setRoot(MaybeTC);
7710   else
7711     HasTailCall = true;
7712 }
7713 
7714 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters,
7715                                   unsigned *TotalCases, unsigned First,
7716                                   unsigned Last) {
7717   assert(Last >= First);
7718   assert(TotalCases[Last] >= TotalCases[First]);
7719 
7720   APInt LowCase = Clusters[First].Low->getValue();
7721   APInt HighCase = Clusters[Last].High->getValue();
7722   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
7723 
7724   // FIXME: A range of consecutive cases has 100% density, but only requires one
7725   // comparison to lower. We should discriminate against such consecutive ranges
7726   // in jump tables.
7727 
7728   uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100);
7729   uint64_t Range = Diff + 1;
7730 
7731   uint64_t NumCases =
7732       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
7733 
7734   assert(NumCases < UINT64_MAX / 100);
7735   assert(Range >= NumCases);
7736 
7737   return NumCases * 100 >= Range * MinJumpTableDensity;
7738 }
7739 
7740 static inline bool areJTsAllowed(const TargetLowering &TLI) {
7741   return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
7742          TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
7743 }
7744 
7745 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters,
7746                                          unsigned First, unsigned Last,
7747                                          const SwitchInst *SI,
7748                                          MachineBasicBlock *DefaultMBB,
7749                                          CaseCluster &JTCluster) {
7750   assert(First <= Last);
7751 
7752   auto Prob = BranchProbability::getZero();
7753   unsigned NumCmps = 0;
7754   std::vector<MachineBasicBlock*> Table;
7755   DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
7756 
7757   // Initialize probabilities in JTProbs.
7758   for (unsigned I = First; I <= Last; ++I)
7759     JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
7760 
7761   for (unsigned I = First; I <= Last; ++I) {
7762     assert(Clusters[I].Kind == CC_Range);
7763     Prob += Clusters[I].Prob;
7764     APInt Low = Clusters[I].Low->getValue();
7765     APInt High = Clusters[I].High->getValue();
7766     NumCmps += (Low == High) ? 1 : 2;
7767     if (I != First) {
7768       // Fill the gap between this and the previous cluster.
7769       APInt PreviousHigh = Clusters[I - 1].High->getValue();
7770       assert(PreviousHigh.slt(Low));
7771       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
7772       for (uint64_t J = 0; J < Gap; J++)
7773         Table.push_back(DefaultMBB);
7774     }
7775     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
7776     for (uint64_t J = 0; J < ClusterSize; ++J)
7777       Table.push_back(Clusters[I].MBB);
7778     JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
7779   }
7780 
7781   unsigned NumDests = JTProbs.size();
7782   if (isSuitableForBitTests(NumDests, NumCmps,
7783                             Clusters[First].Low->getValue(),
7784                             Clusters[Last].High->getValue())) {
7785     // Clusters[First..Last] should be lowered as bit tests instead.
7786     return false;
7787   }
7788 
7789   // Create the MBB that will load from and jump through the table.
7790   // Note: We create it here, but it's not inserted into the function yet.
7791   MachineFunction *CurMF = FuncInfo.MF;
7792   MachineBasicBlock *JumpTableMBB =
7793       CurMF->CreateMachineBasicBlock(SI->getParent());
7794 
7795   // Add successors. Note: use table order for determinism.
7796   SmallPtrSet<MachineBasicBlock *, 8> Done;
7797   for (MachineBasicBlock *Succ : Table) {
7798     if (Done.count(Succ))
7799       continue;
7800     addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
7801     Done.insert(Succ);
7802   }
7803   JumpTableMBB->normalizeSuccProbs();
7804 
7805   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7806   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
7807                      ->createJumpTableIndex(Table);
7808 
7809   // Set up the jump table info.
7810   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
7811   JumpTableHeader JTH(Clusters[First].Low->getValue(),
7812                       Clusters[Last].High->getValue(), SI->getCondition(),
7813                       nullptr, false);
7814   JTCases.emplace_back(std::move(JTH), std::move(JT));
7815 
7816   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
7817                                      JTCases.size() - 1, Prob);
7818   return true;
7819 }
7820 
7821 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
7822                                          const SwitchInst *SI,
7823                                          MachineBasicBlock *DefaultMBB) {
7824 #ifndef NDEBUG
7825   // Clusters must be non-empty, sorted, and only contain Range clusters.
7826   assert(!Clusters.empty());
7827   for (CaseCluster &C : Clusters)
7828     assert(C.Kind == CC_Range);
7829   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
7830     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
7831 #endif
7832 
7833   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7834   if (!areJTsAllowed(TLI))
7835     return;
7836 
7837   const int64_t N = Clusters.size();
7838   const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries();
7839 
7840   // TotalCases[i]: Total nbr of cases in Clusters[0..i].
7841   SmallVector<unsigned, 8> TotalCases(N);
7842 
7843   for (unsigned i = 0; i < N; ++i) {
7844     APInt Hi = Clusters[i].High->getValue();
7845     APInt Lo = Clusters[i].Low->getValue();
7846     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
7847     if (i != 0)
7848       TotalCases[i] += TotalCases[i - 1];
7849   }
7850 
7851   if (N >= MinJumpTableSize && isDense(Clusters, &TotalCases[0], 0, N - 1)) {
7852     // Cheap case: the whole range might be suitable for jump table.
7853     CaseCluster JTCluster;
7854     if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
7855       Clusters[0] = JTCluster;
7856       Clusters.resize(1);
7857       return;
7858     }
7859   }
7860 
7861   // The algorithm below is not suitable for -O0.
7862   if (TM.getOptLevel() == CodeGenOpt::None)
7863     return;
7864 
7865   // Split Clusters into minimum number of dense partitions. The algorithm uses
7866   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
7867   // for the Case Statement'" (1994), but builds the MinPartitions array in
7868   // reverse order to make it easier to reconstruct the partitions in ascending
7869   // order. In the choice between two optimal partitionings, it picks the one
7870   // which yields more jump tables.
7871 
7872   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
7873   SmallVector<unsigned, 8> MinPartitions(N);
7874   // LastElement[i] is the last element of the partition starting at i.
7875   SmallVector<unsigned, 8> LastElement(N);
7876   // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1].
7877   SmallVector<unsigned, 8> NumTables(N);
7878 
7879   // Base case: There is only one way to partition Clusters[N-1].
7880   MinPartitions[N - 1] = 1;
7881   LastElement[N - 1] = N - 1;
7882   assert(MinJumpTableSize > 1);
7883   NumTables[N - 1] = 0;
7884 
7885   // Note: loop indexes are signed to avoid underflow.
7886   for (int64_t i = N - 2; i >= 0; i--) {
7887     // Find optimal partitioning of Clusters[i..N-1].
7888     // Baseline: Put Clusters[i] into a partition on its own.
7889     MinPartitions[i] = MinPartitions[i + 1] + 1;
7890     LastElement[i] = i;
7891     NumTables[i] = NumTables[i + 1];
7892 
7893     // Search for a solution that results in fewer partitions.
7894     for (int64_t j = N - 1; j > i; j--) {
7895       // Try building a partition from Clusters[i..j].
7896       if (isDense(Clusters, &TotalCases[0], i, j)) {
7897         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
7898         bool IsTable = j - i + 1 >= MinJumpTableSize;
7899         unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]);
7900 
7901         // If this j leads to fewer partitions, or same number of partitions
7902         // with more lookup tables, it is a better partitioning.
7903         if (NumPartitions < MinPartitions[i] ||
7904             (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) {
7905           MinPartitions[i] = NumPartitions;
7906           LastElement[i] = j;
7907           NumTables[i] = Tables;
7908         }
7909       }
7910     }
7911   }
7912 
7913   // Iterate over the partitions, replacing some with jump tables in-place.
7914   unsigned DstIndex = 0;
7915   for (unsigned First = 0, Last; First < N; First = Last + 1) {
7916     Last = LastElement[First];
7917     assert(Last >= First);
7918     assert(DstIndex <= First);
7919     unsigned NumClusters = Last - First + 1;
7920 
7921     CaseCluster JTCluster;
7922     if (NumClusters >= MinJumpTableSize &&
7923         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
7924       Clusters[DstIndex++] = JTCluster;
7925     } else {
7926       for (unsigned I = First; I <= Last; ++I)
7927         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
7928     }
7929   }
7930   Clusters.resize(DstIndex);
7931 }
7932 
7933 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) {
7934   // FIXME: Using the pointer type doesn't seem ideal.
7935   uint64_t BW = DAG.getDataLayout().getPointerSizeInBits();
7936   uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1;
7937   return Range <= BW;
7938 }
7939 
7940 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests,
7941                                                 unsigned NumCmps,
7942                                                 const APInt &Low,
7943                                                 const APInt &High) {
7944   // FIXME: I don't think NumCmps is the correct metric: a single case and a
7945   // range of cases both require only one branch to lower. Just looking at the
7946   // number of clusters and destinations should be enough to decide whether to
7947   // build bit tests.
7948 
7949   // To lower a range with bit tests, the range must fit the bitwidth of a
7950   // machine word.
7951   if (!rangeFitsInWord(Low, High))
7952     return false;
7953 
7954   // Decide whether it's profitable to lower this range with bit tests. Each
7955   // destination requires a bit test and branch, and there is an overall range
7956   // check branch. For a small number of clusters, separate comparisons might be
7957   // cheaper, and for many destinations, splitting the range might be better.
7958   return (NumDests == 1 && NumCmps >= 3) ||
7959          (NumDests == 2 && NumCmps >= 5) ||
7960          (NumDests == 3 && NumCmps >= 6);
7961 }
7962 
7963 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
7964                                         unsigned First, unsigned Last,
7965                                         const SwitchInst *SI,
7966                                         CaseCluster &BTCluster) {
7967   assert(First <= Last);
7968   if (First == Last)
7969     return false;
7970 
7971   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
7972   unsigned NumCmps = 0;
7973   for (int64_t I = First; I <= Last; ++I) {
7974     assert(Clusters[I].Kind == CC_Range);
7975     Dests.set(Clusters[I].MBB->getNumber());
7976     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
7977   }
7978   unsigned NumDests = Dests.count();
7979 
7980   APInt Low = Clusters[First].Low->getValue();
7981   APInt High = Clusters[Last].High->getValue();
7982   assert(Low.slt(High));
7983 
7984   if (!isSuitableForBitTests(NumDests, NumCmps, Low, High))
7985     return false;
7986 
7987   APInt LowBound;
7988   APInt CmpRange;
7989 
7990   const int BitWidth = DAG.getTargetLoweringInfo()
7991                            .getPointerTy(DAG.getDataLayout())
7992                            .getSizeInBits();
7993   assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!");
7994 
7995   // Check if the clusters cover a contiguous range such that no value in the
7996   // range will jump to the default statement.
7997   bool ContiguousRange = true;
7998   for (int64_t I = First + 1; I <= Last; ++I) {
7999     if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
8000       ContiguousRange = false;
8001       break;
8002     }
8003   }
8004 
8005   if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
8006     // Optimize the case where all the case values fit in a word without having
8007     // to subtract minValue. In this case, we can optimize away the subtraction.
8008     LowBound = APInt::getNullValue(Low.getBitWidth());
8009     CmpRange = High;
8010     ContiguousRange = false;
8011   } else {
8012     LowBound = Low;
8013     CmpRange = High - Low;
8014   }
8015 
8016   CaseBitsVector CBV;
8017   auto TotalProb = BranchProbability::getZero();
8018   for (unsigned i = First; i <= Last; ++i) {
8019     // Find the CaseBits for this destination.
8020     unsigned j;
8021     for (j = 0; j < CBV.size(); ++j)
8022       if (CBV[j].BB == Clusters[i].MBB)
8023         break;
8024     if (j == CBV.size())
8025       CBV.push_back(
8026           CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
8027     CaseBits *CB = &CBV[j];
8028 
8029     // Update Mask, Bits and ExtraProb.
8030     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
8031     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
8032     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
8033     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
8034     CB->Bits += Hi - Lo + 1;
8035     CB->ExtraProb += Clusters[i].Prob;
8036     TotalProb += Clusters[i].Prob;
8037   }
8038 
8039   BitTestInfo BTI;
8040   std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) {
8041     // Sort by probability first, number of bits second.
8042     if (a.ExtraProb != b.ExtraProb)
8043       return a.ExtraProb > b.ExtraProb;
8044     return a.Bits > b.Bits;
8045   });
8046 
8047   for (auto &CB : CBV) {
8048     MachineBasicBlock *BitTestBB =
8049         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
8050     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
8051   }
8052   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
8053                             SI->getCondition(), -1U, MVT::Other, false,
8054                             ContiguousRange, nullptr, nullptr, std::move(BTI),
8055                             TotalProb);
8056 
8057   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
8058                                     BitTestCases.size() - 1, TotalProb);
8059   return true;
8060 }
8061 
8062 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
8063                                               const SwitchInst *SI) {
8064 // Partition Clusters into as few subsets as possible, where each subset has a
8065 // range that fits in a machine word and has <= 3 unique destinations.
8066 
8067 #ifndef NDEBUG
8068   // Clusters must be sorted and contain Range or JumpTable clusters.
8069   assert(!Clusters.empty());
8070   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
8071   for (const CaseCluster &C : Clusters)
8072     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
8073   for (unsigned i = 1; i < Clusters.size(); ++i)
8074     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
8075 #endif
8076 
8077   // The algorithm below is not suitable for -O0.
8078   if (TM.getOptLevel() == CodeGenOpt::None)
8079     return;
8080 
8081   // If target does not have legal shift left, do not emit bit tests at all.
8082   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8083   EVT PTy = TLI.getPointerTy(DAG.getDataLayout());
8084   if (!TLI.isOperationLegal(ISD::SHL, PTy))
8085     return;
8086 
8087   int BitWidth = PTy.getSizeInBits();
8088   const int64_t N = Clusters.size();
8089 
8090   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
8091   SmallVector<unsigned, 8> MinPartitions(N);
8092   // LastElement[i] is the last element of the partition starting at i.
8093   SmallVector<unsigned, 8> LastElement(N);
8094 
8095   // FIXME: This might not be the best algorithm for finding bit test clusters.
8096 
8097   // Base case: There is only one way to partition Clusters[N-1].
8098   MinPartitions[N - 1] = 1;
8099   LastElement[N - 1] = N - 1;
8100 
8101   // Note: loop indexes are signed to avoid underflow.
8102   for (int64_t i = N - 2; i >= 0; --i) {
8103     // Find optimal partitioning of Clusters[i..N-1].
8104     // Baseline: Put Clusters[i] into a partition on its own.
8105     MinPartitions[i] = MinPartitions[i + 1] + 1;
8106     LastElement[i] = i;
8107 
8108     // Search for a solution that results in fewer partitions.
8109     // Note: the search is limited by BitWidth, reducing time complexity.
8110     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
8111       // Try building a partition from Clusters[i..j].
8112 
8113       // Check the range.
8114       if (!rangeFitsInWord(Clusters[i].Low->getValue(),
8115                            Clusters[j].High->getValue()))
8116         continue;
8117 
8118       // Check nbr of destinations and cluster types.
8119       // FIXME: This works, but doesn't seem very efficient.
8120       bool RangesOnly = true;
8121       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
8122       for (int64_t k = i; k <= j; k++) {
8123         if (Clusters[k].Kind != CC_Range) {
8124           RangesOnly = false;
8125           break;
8126         }
8127         Dests.set(Clusters[k].MBB->getNumber());
8128       }
8129       if (!RangesOnly || Dests.count() > 3)
8130         break;
8131 
8132       // Check if it's a better partition.
8133       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
8134       if (NumPartitions < MinPartitions[i]) {
8135         // Found a better partition.
8136         MinPartitions[i] = NumPartitions;
8137         LastElement[i] = j;
8138       }
8139     }
8140   }
8141 
8142   // Iterate over the partitions, replacing with bit-test clusters in-place.
8143   unsigned DstIndex = 0;
8144   for (unsigned First = 0, Last; First < N; First = Last + 1) {
8145     Last = LastElement[First];
8146     assert(First <= Last);
8147     assert(DstIndex <= First);
8148 
8149     CaseCluster BitTestCluster;
8150     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
8151       Clusters[DstIndex++] = BitTestCluster;
8152     } else {
8153       size_t NumClusters = Last - First + 1;
8154       std::memmove(&Clusters[DstIndex], &Clusters[First],
8155                    sizeof(Clusters[0]) * NumClusters);
8156       DstIndex += NumClusters;
8157     }
8158   }
8159   Clusters.resize(DstIndex);
8160 }
8161 
8162 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
8163                                         MachineBasicBlock *SwitchMBB,
8164                                         MachineBasicBlock *DefaultMBB) {
8165   MachineFunction *CurMF = FuncInfo.MF;
8166   MachineBasicBlock *NextMBB = nullptr;
8167   MachineFunction::iterator BBI(W.MBB);
8168   if (++BBI != FuncInfo.MF->end())
8169     NextMBB = &*BBI;
8170 
8171   unsigned Size = W.LastCluster - W.FirstCluster + 1;
8172 
8173   BranchProbabilityInfo *BPI = FuncInfo.BPI;
8174 
8175   if (Size == 2 && W.MBB == SwitchMBB) {
8176     // If any two of the cases has the same destination, and if one value
8177     // is the same as the other, but has one bit unset that the other has set,
8178     // use bit manipulation to do two compares at once.  For example:
8179     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
8180     // TODO: This could be extended to merge any 2 cases in switches with 3
8181     // cases.
8182     // TODO: Handle cases where W.CaseBB != SwitchBB.
8183     CaseCluster &Small = *W.FirstCluster;
8184     CaseCluster &Big = *W.LastCluster;
8185 
8186     if (Small.Low == Small.High && Big.Low == Big.High &&
8187         Small.MBB == Big.MBB) {
8188       const APInt &SmallValue = Small.Low->getValue();
8189       const APInt &BigValue = Big.Low->getValue();
8190 
8191       // Check that there is only one bit different.
8192       APInt CommonBit = BigValue ^ SmallValue;
8193       if (CommonBit.isPowerOf2()) {
8194         SDValue CondLHS = getValue(Cond);
8195         EVT VT = CondLHS.getValueType();
8196         SDLoc DL = getCurSDLoc();
8197 
8198         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
8199                                  DAG.getConstant(CommonBit, DL, VT));
8200         SDValue Cond = DAG.getSetCC(
8201             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
8202             ISD::SETEQ);
8203 
8204         // Update successor info.
8205         // Both Small and Big will jump to Small.BB, so we sum up the
8206         // probabilities.
8207         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
8208         if (BPI)
8209           addSuccessorWithProb(
8210               SwitchMBB, DefaultMBB,
8211               // The default destination is the first successor in IR.
8212               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
8213         else
8214           addSuccessorWithProb(SwitchMBB, DefaultMBB);
8215 
8216         // Insert the true branch.
8217         SDValue BrCond =
8218             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
8219                         DAG.getBasicBlock(Small.MBB));
8220         // Insert the false branch.
8221         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
8222                              DAG.getBasicBlock(DefaultMBB));
8223 
8224         DAG.setRoot(BrCond);
8225         return;
8226       }
8227     }
8228   }
8229 
8230   if (TM.getOptLevel() != CodeGenOpt::None) {
8231     // Order cases by probability so the most likely case will be checked first.
8232     std::sort(W.FirstCluster, W.LastCluster + 1,
8233               [](const CaseCluster &a, const CaseCluster &b) {
8234       return a.Prob > b.Prob;
8235     });
8236 
8237     // Rearrange the case blocks so that the last one falls through if possible
8238     // without without changing the order of probabilities.
8239     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
8240       --I;
8241       if (I->Prob > W.LastCluster->Prob)
8242         break;
8243       if (I->Kind == CC_Range && I->MBB == NextMBB) {
8244         std::swap(*I, *W.LastCluster);
8245         break;
8246       }
8247     }
8248   }
8249 
8250   // Compute total probability.
8251   BranchProbability DefaultProb = W.DefaultProb;
8252   BranchProbability UnhandledProbs = DefaultProb;
8253   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
8254     UnhandledProbs += I->Prob;
8255 
8256   MachineBasicBlock *CurMBB = W.MBB;
8257   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
8258     MachineBasicBlock *Fallthrough;
8259     if (I == W.LastCluster) {
8260       // For the last cluster, fall through to the default destination.
8261       Fallthrough = DefaultMBB;
8262     } else {
8263       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
8264       CurMF->insert(BBI, Fallthrough);
8265       // Put Cond in a virtual register to make it available from the new blocks.
8266       ExportFromCurrentBlock(Cond);
8267     }
8268     UnhandledProbs -= I->Prob;
8269 
8270     switch (I->Kind) {
8271       case CC_JumpTable: {
8272         // FIXME: Optimize away range check based on pivot comparisons.
8273         JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
8274         JumpTable *JT = &JTCases[I->JTCasesIndex].second;
8275 
8276         // The jump block hasn't been inserted yet; insert it here.
8277         MachineBasicBlock *JumpMBB = JT->MBB;
8278         CurMF->insert(BBI, JumpMBB);
8279 
8280         auto JumpProb = I->Prob;
8281         auto FallthroughProb = UnhandledProbs;
8282 
8283         // If the default statement is a target of the jump table, we evenly
8284         // distribute the default probability to successors of CurMBB. Also
8285         // update the probability on the edge from JumpMBB to Fallthrough.
8286         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
8287                                               SE = JumpMBB->succ_end();
8288              SI != SE; ++SI) {
8289           if (*SI == DefaultMBB) {
8290             JumpProb += DefaultProb / 2;
8291             FallthroughProb -= DefaultProb / 2;
8292             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
8293             JumpMBB->normalizeSuccProbs();
8294             break;
8295           }
8296         }
8297 
8298         addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
8299         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
8300         CurMBB->normalizeSuccProbs();
8301 
8302         // The jump table header will be inserted in our current block, do the
8303         // range check, and fall through to our fallthrough block.
8304         JTH->HeaderBB = CurMBB;
8305         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
8306 
8307         // If we're in the right place, emit the jump table header right now.
8308         if (CurMBB == SwitchMBB) {
8309           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
8310           JTH->Emitted = true;
8311         }
8312         break;
8313       }
8314       case CC_BitTests: {
8315         // FIXME: Optimize away range check based on pivot comparisons.
8316         BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
8317 
8318         // The bit test blocks haven't been inserted yet; insert them here.
8319         for (BitTestCase &BTC : BTB->Cases)
8320           CurMF->insert(BBI, BTC.ThisBB);
8321 
8322         // Fill in fields of the BitTestBlock.
8323         BTB->Parent = CurMBB;
8324         BTB->Default = Fallthrough;
8325 
8326         BTB->DefaultProb = UnhandledProbs;
8327         // If the cases in bit test don't form a contiguous range, we evenly
8328         // distribute the probability on the edge to Fallthrough to two
8329         // successors of CurMBB.
8330         if (!BTB->ContiguousRange) {
8331           BTB->Prob += DefaultProb / 2;
8332           BTB->DefaultProb -= DefaultProb / 2;
8333         }
8334 
8335         // If we're in the right place, emit the bit test header right now.
8336         if (CurMBB == SwitchMBB) {
8337           visitBitTestHeader(*BTB, SwitchMBB);
8338           BTB->Emitted = true;
8339         }
8340         break;
8341       }
8342       case CC_Range: {
8343         const Value *RHS, *LHS, *MHS;
8344         ISD::CondCode CC;
8345         if (I->Low == I->High) {
8346           // Check Cond == I->Low.
8347           CC = ISD::SETEQ;
8348           LHS = Cond;
8349           RHS=I->Low;
8350           MHS = nullptr;
8351         } else {
8352           // Check I->Low <= Cond <= I->High.
8353           CC = ISD::SETLE;
8354           LHS = I->Low;
8355           MHS = Cond;
8356           RHS = I->High;
8357         }
8358 
8359         // The false probability is the sum of all unhandled cases.
8360         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob,
8361                      UnhandledProbs);
8362 
8363         if (CurMBB == SwitchMBB)
8364           visitSwitchCase(CB, SwitchMBB);
8365         else
8366           SwitchCases.push_back(CB);
8367 
8368         break;
8369       }
8370     }
8371     CurMBB = Fallthrough;
8372   }
8373 }
8374 
8375 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
8376                                               CaseClusterIt First,
8377                                               CaseClusterIt Last) {
8378   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
8379     if (X.Prob != CC.Prob)
8380       return X.Prob > CC.Prob;
8381 
8382     // Ties are broken by comparing the case value.
8383     return X.Low->getValue().slt(CC.Low->getValue());
8384   });
8385 }
8386 
8387 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
8388                                         const SwitchWorkListItem &W,
8389                                         Value *Cond,
8390                                         MachineBasicBlock *SwitchMBB) {
8391   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
8392          "Clusters not sorted?");
8393 
8394   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
8395 
8396   // Balance the tree based on branch probabilities to create a near-optimal (in
8397   // terms of search time given key frequency) binary search tree. See e.g. Kurt
8398   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
8399   CaseClusterIt LastLeft = W.FirstCluster;
8400   CaseClusterIt FirstRight = W.LastCluster;
8401   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
8402   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
8403 
8404   // Move LastLeft and FirstRight towards each other from opposite directions to
8405   // find a partitioning of the clusters which balances the probability on both
8406   // sides. If LeftProb and RightProb are equal, alternate which side is
8407   // taken to ensure 0-probability nodes are distributed evenly.
8408   unsigned I = 0;
8409   while (LastLeft + 1 < FirstRight) {
8410     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
8411       LeftProb += (++LastLeft)->Prob;
8412     else
8413       RightProb += (--FirstRight)->Prob;
8414     I++;
8415   }
8416 
8417   for (;;) {
8418     // Our binary search tree differs from a typical BST in that ours can have up
8419     // to three values in each leaf. The pivot selection above doesn't take that
8420     // into account, which means the tree might require more nodes and be less
8421     // efficient. We compensate for this here.
8422 
8423     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
8424     unsigned NumRight = W.LastCluster - FirstRight + 1;
8425 
8426     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
8427       // If one side has less than 3 clusters, and the other has more than 3,
8428       // consider taking a cluster from the other side.
8429 
8430       if (NumLeft < NumRight) {
8431         // Consider moving the first cluster on the right to the left side.
8432         CaseCluster &CC = *FirstRight;
8433         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
8434         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
8435         if (LeftSideRank <= RightSideRank) {
8436           // Moving the cluster to the left does not demote it.
8437           ++LastLeft;
8438           ++FirstRight;
8439           continue;
8440         }
8441       } else {
8442         assert(NumRight < NumLeft);
8443         // Consider moving the last element on the left to the right side.
8444         CaseCluster &CC = *LastLeft;
8445         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
8446         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
8447         if (RightSideRank <= LeftSideRank) {
8448           // Moving the cluster to the right does not demot it.
8449           --LastLeft;
8450           --FirstRight;
8451           continue;
8452         }
8453       }
8454     }
8455     break;
8456   }
8457 
8458   assert(LastLeft + 1 == FirstRight);
8459   assert(LastLeft >= W.FirstCluster);
8460   assert(FirstRight <= W.LastCluster);
8461 
8462   // Use the first element on the right as pivot since we will make less-than
8463   // comparisons against it.
8464   CaseClusterIt PivotCluster = FirstRight;
8465   assert(PivotCluster > W.FirstCluster);
8466   assert(PivotCluster <= W.LastCluster);
8467 
8468   CaseClusterIt FirstLeft = W.FirstCluster;
8469   CaseClusterIt LastRight = W.LastCluster;
8470 
8471   const ConstantInt *Pivot = PivotCluster->Low;
8472 
8473   // New blocks will be inserted immediately after the current one.
8474   MachineFunction::iterator BBI(W.MBB);
8475   ++BBI;
8476 
8477   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
8478   // we can branch to its destination directly if it's squeezed exactly in
8479   // between the known lower bound and Pivot - 1.
8480   MachineBasicBlock *LeftMBB;
8481   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
8482       FirstLeft->Low == W.GE &&
8483       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
8484     LeftMBB = FirstLeft->MBB;
8485   } else {
8486     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
8487     FuncInfo.MF->insert(BBI, LeftMBB);
8488     WorkList.push_back(
8489         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
8490     // Put Cond in a virtual register to make it available from the new blocks.
8491     ExportFromCurrentBlock(Cond);
8492   }
8493 
8494   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
8495   // single cluster, RHS.Low == Pivot, and we can branch to its destination
8496   // directly if RHS.High equals the current upper bound.
8497   MachineBasicBlock *RightMBB;
8498   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
8499       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
8500     RightMBB = FirstRight->MBB;
8501   } else {
8502     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
8503     FuncInfo.MF->insert(BBI, RightMBB);
8504     WorkList.push_back(
8505         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
8506     // Put Cond in a virtual register to make it available from the new blocks.
8507     ExportFromCurrentBlock(Cond);
8508   }
8509 
8510   // Create the CaseBlock record that will be used to lower the branch.
8511   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
8512                LeftProb, RightProb);
8513 
8514   if (W.MBB == SwitchMBB)
8515     visitSwitchCase(CB, SwitchMBB);
8516   else
8517     SwitchCases.push_back(CB);
8518 }
8519 
8520 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
8521   // Extract cases from the switch.
8522   BranchProbabilityInfo *BPI = FuncInfo.BPI;
8523   CaseClusterVector Clusters;
8524   Clusters.reserve(SI.getNumCases());
8525   for (auto I : SI.cases()) {
8526     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
8527     const ConstantInt *CaseVal = I.getCaseValue();
8528     BranchProbability Prob =
8529         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
8530             : BranchProbability(1, SI.getNumCases() + 1);
8531     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
8532   }
8533 
8534   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
8535 
8536   // Cluster adjacent cases with the same destination. We do this at all
8537   // optimization levels because it's cheap to do and will make codegen faster
8538   // if there are many clusters.
8539   sortAndRangeify(Clusters);
8540 
8541   if (TM.getOptLevel() != CodeGenOpt::None) {
8542     // Replace an unreachable default with the most popular destination.
8543     // FIXME: Exploit unreachable default more aggressively.
8544     bool UnreachableDefault =
8545         isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg());
8546     if (UnreachableDefault && !Clusters.empty()) {
8547       DenseMap<const BasicBlock *, unsigned> Popularity;
8548       unsigned MaxPop = 0;
8549       const BasicBlock *MaxBB = nullptr;
8550       for (auto I : SI.cases()) {
8551         const BasicBlock *BB = I.getCaseSuccessor();
8552         if (++Popularity[BB] > MaxPop) {
8553           MaxPop = Popularity[BB];
8554           MaxBB = BB;
8555         }
8556       }
8557       // Set new default.
8558       assert(MaxPop > 0 && MaxBB);
8559       DefaultMBB = FuncInfo.MBBMap[MaxBB];
8560 
8561       // Remove cases that were pointing to the destination that is now the
8562       // default.
8563       CaseClusterVector New;
8564       New.reserve(Clusters.size());
8565       for (CaseCluster &CC : Clusters) {
8566         if (CC.MBB != DefaultMBB)
8567           New.push_back(CC);
8568       }
8569       Clusters = std::move(New);
8570     }
8571   }
8572 
8573   // If there is only the default destination, jump there directly.
8574   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
8575   if (Clusters.empty()) {
8576     SwitchMBB->addSuccessor(DefaultMBB);
8577     if (DefaultMBB != NextBlock(SwitchMBB)) {
8578       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
8579                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
8580     }
8581     return;
8582   }
8583 
8584   findJumpTables(Clusters, &SI, DefaultMBB);
8585   findBitTestClusters(Clusters, &SI);
8586 
8587   DEBUG({
8588     dbgs() << "Case clusters: ";
8589     for (const CaseCluster &C : Clusters) {
8590       if (C.Kind == CC_JumpTable) dbgs() << "JT:";
8591       if (C.Kind == CC_BitTests) dbgs() << "BT:";
8592 
8593       C.Low->getValue().print(dbgs(), true);
8594       if (C.Low != C.High) {
8595         dbgs() << '-';
8596         C.High->getValue().print(dbgs(), true);
8597       }
8598       dbgs() << ' ';
8599     }
8600     dbgs() << '\n';
8601   });
8602 
8603   assert(!Clusters.empty());
8604   SwitchWorkList WorkList;
8605   CaseClusterIt First = Clusters.begin();
8606   CaseClusterIt Last = Clusters.end() - 1;
8607   auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB);
8608   WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
8609 
8610   while (!WorkList.empty()) {
8611     SwitchWorkListItem W = WorkList.back();
8612     WorkList.pop_back();
8613     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
8614 
8615     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) {
8616       // For optimized builds, lower large range as a balanced binary tree.
8617       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
8618       continue;
8619     }
8620 
8621     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
8622   }
8623 }
8624