1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/Analysis/VectorUtils.h" 26 #include "llvm/CodeGen/FastISel.h" 27 #include "llvm/CodeGen/FunctionLoweringInfo.h" 28 #include "llvm/CodeGen/GCMetadata.h" 29 #include "llvm/CodeGen/GCStrategy.h" 30 #include "llvm/CodeGen/MachineFrameInfo.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineJumpTableInfo.h" 34 #include "llvm/CodeGen/MachineModuleInfo.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/SelectionDAG.h" 37 #include "llvm/CodeGen/StackMaps.h" 38 #include "llvm/CodeGen/WinEHFuncInfo.h" 39 #include "llvm/IR/CallingConv.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfo.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/Statepoint.h" 53 #include "llvm/MC/MCSymbol.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Target/TargetFrameLowering.h" 60 #include "llvm/Target/TargetInstrInfo.h" 61 #include "llvm/Target/TargetIntrinsicInfo.h" 62 #include "llvm/Target/TargetLowering.h" 63 #include "llvm/Target/TargetOptions.h" 64 #include "llvm/Target/TargetSelectionDAGInfo.h" 65 #include "llvm/Target/TargetSubtargetInfo.h" 66 #include <algorithm> 67 #include <utility> 68 using namespace llvm; 69 70 #define DEBUG_TYPE "isel" 71 72 /// LimitFloatPrecision - Generate low-precision inline sequences for 73 /// some float libcalls (6, 8 or 12 bits). 74 static unsigned LimitFloatPrecision; 75 76 static cl::opt<unsigned, true> 77 LimitFPPrecision("limit-float-precision", 78 cl::desc("Generate low-precision inline sequences " 79 "for some float libcalls"), 80 cl::location(LimitFloatPrecision), 81 cl::init(0)); 82 83 static cl::opt<bool> 84 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden, 85 cl::desc("Enable fast-math-flags for DAG nodes")); 86 87 // Limit the width of DAG chains. This is important in general to prevent 88 // DAG-based analysis from blowing up. For example, alias analysis and 89 // load clustering may not complete in reasonable time. It is difficult to 90 // recognize and avoid this situation within each individual analysis, and 91 // future analyses are likely to have the same behavior. Limiting DAG width is 92 // the safe approach and will be especially important with global DAGs. 93 // 94 // MaxParallelChains default is arbitrarily high to avoid affecting 95 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 96 // sequence over this should have been converted to llvm.memcpy by the 97 // frontend. It easy to induce this behavior with .ll code such as: 98 // %buffer = alloca [4096 x i8] 99 // %data = load [4096 x i8]* %argPtr 100 // store [4096 x i8] %data, [4096 x i8]* %buffer 101 static const unsigned MaxParallelChains = 64; 102 103 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 104 const SDValue *Parts, unsigned NumParts, 105 MVT PartVT, EVT ValueVT, const Value *V); 106 107 /// getCopyFromParts - Create a value that contains the specified legal parts 108 /// combined into the value they represent. If the parts combine to a type 109 /// larger then ValueVT then AssertOp can be used to specify whether the extra 110 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 111 /// (ISD::AssertSext). 112 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 113 const SDValue *Parts, 114 unsigned NumParts, MVT PartVT, EVT ValueVT, 115 const Value *V, 116 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 117 if (ValueVT.isVector()) 118 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 119 PartVT, ValueVT, V); 120 121 assert(NumParts > 0 && "No parts to assemble!"); 122 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 123 SDValue Val = Parts[0]; 124 125 if (NumParts > 1) { 126 // Assemble the value from multiple parts. 127 if (ValueVT.isInteger()) { 128 unsigned PartBits = PartVT.getSizeInBits(); 129 unsigned ValueBits = ValueVT.getSizeInBits(); 130 131 // Assemble the power of 2 part. 132 unsigned RoundParts = NumParts & (NumParts - 1) ? 133 1 << Log2_32(NumParts) : NumParts; 134 unsigned RoundBits = PartBits * RoundParts; 135 EVT RoundVT = RoundBits == ValueBits ? 136 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 137 SDValue Lo, Hi; 138 139 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 140 141 if (RoundParts > 2) { 142 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 143 PartVT, HalfVT, V); 144 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 145 RoundParts / 2, PartVT, HalfVT, V); 146 } else { 147 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 148 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 149 } 150 151 if (DAG.getDataLayout().isBigEndian()) 152 std::swap(Lo, Hi); 153 154 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 155 156 if (RoundParts < NumParts) { 157 // Assemble the trailing non-power-of-2 part. 158 unsigned OddParts = NumParts - RoundParts; 159 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 160 Hi = getCopyFromParts(DAG, DL, 161 Parts + RoundParts, OddParts, PartVT, OddVT, V); 162 163 // Combine the round and odd parts. 164 Lo = Val; 165 if (DAG.getDataLayout().isBigEndian()) 166 std::swap(Lo, Hi); 167 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 168 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 169 Hi = 170 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 171 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 172 TLI.getPointerTy(DAG.getDataLayout()))); 173 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 174 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 175 } 176 } else if (PartVT.isFloatingPoint()) { 177 // FP split into multiple FP parts (for ppcf128) 178 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 179 "Unexpected split"); 180 SDValue Lo, Hi; 181 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 182 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 183 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 184 std::swap(Lo, Hi); 185 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 186 } else { 187 // FP split into integer parts (soft fp) 188 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 189 !PartVT.isVector() && "Unexpected split"); 190 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 191 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 192 } 193 } 194 195 // There is now one part, held in Val. Correct it to match ValueVT. 196 EVT PartEVT = Val.getValueType(); 197 198 if (PartEVT == ValueVT) 199 return Val; 200 201 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 202 ValueVT.bitsLT(PartEVT)) { 203 // For an FP value in an integer part, we need to truncate to the right 204 // width first. 205 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 206 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 207 } 208 209 if (PartEVT.isInteger() && ValueVT.isInteger()) { 210 if (ValueVT.bitsLT(PartEVT)) { 211 // For a truncate, see if we have any information to 212 // indicate whether the truncated bits will always be 213 // zero or sign-extension. 214 if (AssertOp != ISD::DELETED_NODE) 215 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 216 DAG.getValueType(ValueVT)); 217 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 218 } 219 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 220 } 221 222 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 223 // FP_ROUND's are always exact here. 224 if (ValueVT.bitsLT(Val.getValueType())) 225 return DAG.getNode( 226 ISD::FP_ROUND, DL, ValueVT, Val, 227 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 228 229 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 230 } 231 232 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 233 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 234 235 llvm_unreachable("Unknown mismatch!"); 236 } 237 238 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 239 const Twine &ErrMsg) { 240 const Instruction *I = dyn_cast_or_null<Instruction>(V); 241 if (!V) 242 return Ctx.emitError(ErrMsg); 243 244 const char *AsmError = ", possible invalid constraint for vector type"; 245 if (const CallInst *CI = dyn_cast<CallInst>(I)) 246 if (isa<InlineAsm>(CI->getCalledValue())) 247 return Ctx.emitError(I, ErrMsg + AsmError); 248 249 return Ctx.emitError(I, ErrMsg); 250 } 251 252 /// getCopyFromPartsVector - Create a value that contains the specified legal 253 /// parts combined into the value they represent. If the parts combine to a 254 /// type larger then ValueVT then AssertOp can be used to specify whether the 255 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 256 /// ValueVT (ISD::AssertSext). 257 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 258 const SDValue *Parts, unsigned NumParts, 259 MVT PartVT, EVT ValueVT, const Value *V) { 260 assert(ValueVT.isVector() && "Not a vector value"); 261 assert(NumParts > 0 && "No parts to assemble!"); 262 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 263 SDValue Val = Parts[0]; 264 265 // Handle a multi-element vector. 266 if (NumParts > 1) { 267 EVT IntermediateVT; 268 MVT RegisterVT; 269 unsigned NumIntermediates; 270 unsigned NumRegs = 271 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 272 NumIntermediates, RegisterVT); 273 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 274 NumParts = NumRegs; // Silence a compiler warning. 275 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 276 assert(RegisterVT.getSizeInBits() == 277 Parts[0].getSimpleValueType().getSizeInBits() && 278 "Part type sizes don't match!"); 279 280 // Assemble the parts into intermediate operands. 281 SmallVector<SDValue, 8> Ops(NumIntermediates); 282 if (NumIntermediates == NumParts) { 283 // If the register was not expanded, truncate or copy the value, 284 // as appropriate. 285 for (unsigned i = 0; i != NumParts; ++i) 286 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 287 PartVT, IntermediateVT, V); 288 } else if (NumParts > 0) { 289 // If the intermediate type was expanded, build the intermediate 290 // operands from the parts. 291 assert(NumParts % NumIntermediates == 0 && 292 "Must expand into a divisible number of parts!"); 293 unsigned Factor = NumParts / NumIntermediates; 294 for (unsigned i = 0; i != NumIntermediates; ++i) 295 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 296 PartVT, IntermediateVT, V); 297 } 298 299 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 300 // intermediate operands. 301 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 302 : ISD::BUILD_VECTOR, 303 DL, ValueVT, Ops); 304 } 305 306 // There is now one part, held in Val. Correct it to match ValueVT. 307 EVT PartEVT = Val.getValueType(); 308 309 if (PartEVT == ValueVT) 310 return Val; 311 312 if (PartEVT.isVector()) { 313 // If the element type of the source/dest vectors are the same, but the 314 // parts vector has more elements than the value vector, then we have a 315 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 316 // elements we want. 317 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 318 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 319 "Cannot narrow, it would be a lossy transformation"); 320 return DAG.getNode( 321 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 322 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 323 } 324 325 // Vector/Vector bitcast. 326 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 327 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 328 329 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 330 "Cannot handle this kind of promotion"); 331 // Promoted vector extract 332 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 333 334 } 335 336 // Trivial bitcast if the types are the same size and the destination 337 // vector type is legal. 338 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 339 TLI.isTypeLegal(ValueVT)) 340 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 341 342 // Handle cases such as i8 -> <1 x i1> 343 if (ValueVT.getVectorNumElements() != 1) { 344 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 345 "non-trivial scalar-to-vector conversion"); 346 return DAG.getUNDEF(ValueVT); 347 } 348 349 if (ValueVT.getVectorNumElements() == 1 && 350 ValueVT.getVectorElementType() != PartEVT) 351 Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType()); 352 353 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 354 } 355 356 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 357 SDValue Val, SDValue *Parts, unsigned NumParts, 358 MVT PartVT, const Value *V); 359 360 /// getCopyToParts - Create a series of nodes that contain the specified value 361 /// split into legal parts. If the parts contain more bits than Val, then, for 362 /// integers, ExtendKind can be used to specify how to generate the extra bits. 363 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 364 SDValue Val, SDValue *Parts, unsigned NumParts, 365 MVT PartVT, const Value *V, 366 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 367 EVT ValueVT = Val.getValueType(); 368 369 // Handle the vector case separately. 370 if (ValueVT.isVector()) 371 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 372 373 unsigned PartBits = PartVT.getSizeInBits(); 374 unsigned OrigNumParts = NumParts; 375 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 376 "Copying to an illegal type!"); 377 378 if (NumParts == 0) 379 return; 380 381 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 382 EVT PartEVT = PartVT; 383 if (PartEVT == ValueVT) { 384 assert(NumParts == 1 && "No-op copy with multiple parts!"); 385 Parts[0] = Val; 386 return; 387 } 388 389 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 390 // If the parts cover more bits than the value has, promote the value. 391 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 392 assert(NumParts == 1 && "Do not know what to promote to!"); 393 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 394 } else { 395 if (ValueVT.isFloatingPoint()) { 396 // FP values need to be bitcast, then extended if they are being put 397 // into a larger container. 398 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 399 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 400 } 401 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 402 ValueVT.isInteger() && 403 "Unknown mismatch!"); 404 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 405 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 406 if (PartVT == MVT::x86mmx) 407 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 408 } 409 } else if (PartBits == ValueVT.getSizeInBits()) { 410 // Different types of the same size. 411 assert(NumParts == 1 && PartEVT != ValueVT); 412 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 413 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 414 // If the parts cover less bits than value has, truncate the value. 415 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 416 ValueVT.isInteger() && 417 "Unknown mismatch!"); 418 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 419 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 420 if (PartVT == MVT::x86mmx) 421 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 422 } 423 424 // The value may have changed - recompute ValueVT. 425 ValueVT = Val.getValueType(); 426 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 427 "Failed to tile the value with PartVT!"); 428 429 if (NumParts == 1) { 430 if (PartEVT != ValueVT) 431 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 432 "scalar-to-vector conversion failed"); 433 434 Parts[0] = Val; 435 return; 436 } 437 438 // Expand the value into multiple parts. 439 if (NumParts & (NumParts - 1)) { 440 // The number of parts is not a power of 2. Split off and copy the tail. 441 assert(PartVT.isInteger() && ValueVT.isInteger() && 442 "Do not know what to expand to!"); 443 unsigned RoundParts = 1 << Log2_32(NumParts); 444 unsigned RoundBits = RoundParts * PartBits; 445 unsigned OddParts = NumParts - RoundParts; 446 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 447 DAG.getIntPtrConstant(RoundBits, DL)); 448 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 449 450 if (DAG.getDataLayout().isBigEndian()) 451 // The odd parts were reversed by getCopyToParts - unreverse them. 452 std::reverse(Parts + RoundParts, Parts + NumParts); 453 454 NumParts = RoundParts; 455 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 456 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 457 } 458 459 // The number of parts is a power of 2. Repeatedly bisect the value using 460 // EXTRACT_ELEMENT. 461 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 462 EVT::getIntegerVT(*DAG.getContext(), 463 ValueVT.getSizeInBits()), 464 Val); 465 466 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 467 for (unsigned i = 0; i < NumParts; i += StepSize) { 468 unsigned ThisBits = StepSize * PartBits / 2; 469 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 470 SDValue &Part0 = Parts[i]; 471 SDValue &Part1 = Parts[i+StepSize/2]; 472 473 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 474 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 475 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 476 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 477 478 if (ThisBits == PartBits && ThisVT != PartVT) { 479 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 480 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 481 } 482 } 483 } 484 485 if (DAG.getDataLayout().isBigEndian()) 486 std::reverse(Parts, Parts + OrigNumParts); 487 } 488 489 490 /// getCopyToPartsVector - Create a series of nodes that contain the specified 491 /// value split into legal parts. 492 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 493 SDValue Val, SDValue *Parts, unsigned NumParts, 494 MVT PartVT, const Value *V) { 495 EVT ValueVT = Val.getValueType(); 496 assert(ValueVT.isVector() && "Not a vector"); 497 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 498 499 if (NumParts == 1) { 500 EVT PartEVT = PartVT; 501 if (PartEVT == ValueVT) { 502 // Nothing to do. 503 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 504 // Bitconvert vector->vector case. 505 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 506 } else if (PartVT.isVector() && 507 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 508 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 509 EVT ElementVT = PartVT.getVectorElementType(); 510 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 511 // undef elements. 512 SmallVector<SDValue, 16> Ops; 513 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 514 Ops.push_back(DAG.getNode( 515 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 516 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 517 518 for (unsigned i = ValueVT.getVectorNumElements(), 519 e = PartVT.getVectorNumElements(); i != e; ++i) 520 Ops.push_back(DAG.getUNDEF(ElementVT)); 521 522 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 523 524 // FIXME: Use CONCAT for 2x -> 4x. 525 526 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 527 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 528 } else if (PartVT.isVector() && 529 PartEVT.getVectorElementType().bitsGE( 530 ValueVT.getVectorElementType()) && 531 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 532 533 // Promoted vector extract 534 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 535 } else{ 536 // Vector -> scalar conversion. 537 assert(ValueVT.getVectorNumElements() == 1 && 538 "Only trivial vector-to-scalar conversions should get here!"); 539 Val = DAG.getNode( 540 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 541 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 542 543 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 544 } 545 546 Parts[0] = Val; 547 return; 548 } 549 550 // Handle a multi-element vector. 551 EVT IntermediateVT; 552 MVT RegisterVT; 553 unsigned NumIntermediates; 554 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 555 IntermediateVT, 556 NumIntermediates, RegisterVT); 557 unsigned NumElements = ValueVT.getVectorNumElements(); 558 559 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 560 NumParts = NumRegs; // Silence a compiler warning. 561 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 562 563 // Split the vector into intermediate operands. 564 SmallVector<SDValue, 8> Ops(NumIntermediates); 565 for (unsigned i = 0; i != NumIntermediates; ++i) { 566 if (IntermediateVT.isVector()) 567 Ops[i] = 568 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 569 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 570 TLI.getVectorIdxTy(DAG.getDataLayout()))); 571 else 572 Ops[i] = DAG.getNode( 573 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 574 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 575 } 576 577 // Split the intermediate operands into legal parts. 578 if (NumParts == NumIntermediates) { 579 // If the register was not expanded, promote or copy the value, 580 // as appropriate. 581 for (unsigned i = 0; i != NumParts; ++i) 582 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 583 } else if (NumParts > 0) { 584 // If the intermediate type was expanded, split each the value into 585 // legal parts. 586 assert(NumIntermediates != 0 && "division by zero"); 587 assert(NumParts % NumIntermediates == 0 && 588 "Must expand into a divisible number of parts!"); 589 unsigned Factor = NumParts / NumIntermediates; 590 for (unsigned i = 0; i != NumIntermediates; ++i) 591 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 592 } 593 } 594 595 RegsForValue::RegsForValue() {} 596 597 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 598 EVT valuevt) 599 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 600 601 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 602 const DataLayout &DL, unsigned Reg, Type *Ty) { 603 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 604 605 for (EVT ValueVT : ValueVTs) { 606 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); 607 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); 608 for (unsigned i = 0; i != NumRegs; ++i) 609 Regs.push_back(Reg + i); 610 RegVTs.push_back(RegisterVT); 611 Reg += NumRegs; 612 } 613 } 614 615 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 616 /// this value and returns the result as a ValueVT value. This uses 617 /// Chain/Flag as the input and updates them for the output Chain/Flag. 618 /// If the Flag pointer is NULL, no flag is used. 619 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 620 FunctionLoweringInfo &FuncInfo, 621 SDLoc dl, 622 SDValue &Chain, SDValue *Flag, 623 const Value *V) const { 624 // A Value with type {} or [0 x %t] needs no registers. 625 if (ValueVTs.empty()) 626 return SDValue(); 627 628 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 629 630 // Assemble the legal parts into the final values. 631 SmallVector<SDValue, 4> Values(ValueVTs.size()); 632 SmallVector<SDValue, 8> Parts; 633 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 634 // Copy the legal parts from the registers. 635 EVT ValueVT = ValueVTs[Value]; 636 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 637 MVT RegisterVT = RegVTs[Value]; 638 639 Parts.resize(NumRegs); 640 for (unsigned i = 0; i != NumRegs; ++i) { 641 SDValue P; 642 if (!Flag) { 643 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 644 } else { 645 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 646 *Flag = P.getValue(2); 647 } 648 649 Chain = P.getValue(1); 650 Parts[i] = P; 651 652 // If the source register was virtual and if we know something about it, 653 // add an assert node. 654 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 655 !RegisterVT.isInteger() || RegisterVT.isVector()) 656 continue; 657 658 const FunctionLoweringInfo::LiveOutInfo *LOI = 659 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 660 if (!LOI) 661 continue; 662 663 unsigned RegSize = RegisterVT.getSizeInBits(); 664 unsigned NumSignBits = LOI->NumSignBits; 665 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 666 667 if (NumZeroBits == RegSize) { 668 // The current value is a zero. 669 // Explicitly express that as it would be easier for 670 // optimizations to kick in. 671 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 672 continue; 673 } 674 675 // FIXME: We capture more information than the dag can represent. For 676 // now, just use the tightest assertzext/assertsext possible. 677 bool isSExt = true; 678 EVT FromVT(MVT::Other); 679 if (NumSignBits == RegSize) 680 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 681 else if (NumZeroBits >= RegSize-1) 682 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 683 else if (NumSignBits > RegSize-8) 684 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 685 else if (NumZeroBits >= RegSize-8) 686 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 687 else if (NumSignBits > RegSize-16) 688 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 689 else if (NumZeroBits >= RegSize-16) 690 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 691 else if (NumSignBits > RegSize-32) 692 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 693 else if (NumZeroBits >= RegSize-32) 694 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 695 else 696 continue; 697 698 // Add an assertion node. 699 assert(FromVT != MVT::Other); 700 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 701 RegisterVT, P, DAG.getValueType(FromVT)); 702 } 703 704 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 705 NumRegs, RegisterVT, ValueVT, V); 706 Part += NumRegs; 707 Parts.clear(); 708 } 709 710 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 711 } 712 713 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 714 /// specified value into the registers specified by this object. This uses 715 /// Chain/Flag as the input and updates them for the output Chain/Flag. 716 /// If the Flag pointer is NULL, no flag is used. 717 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 718 SDValue &Chain, SDValue *Flag, const Value *V, 719 ISD::NodeType PreferredExtendType) const { 720 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 721 ISD::NodeType ExtendKind = PreferredExtendType; 722 723 // Get the list of the values's legal parts. 724 unsigned NumRegs = Regs.size(); 725 SmallVector<SDValue, 8> Parts(NumRegs); 726 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 727 EVT ValueVT = ValueVTs[Value]; 728 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 729 MVT RegisterVT = RegVTs[Value]; 730 731 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 732 ExtendKind = ISD::ZERO_EXTEND; 733 734 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 735 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 736 Part += NumParts; 737 } 738 739 // Copy the parts into the registers. 740 SmallVector<SDValue, 8> Chains(NumRegs); 741 for (unsigned i = 0; i != NumRegs; ++i) { 742 SDValue Part; 743 if (!Flag) { 744 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 745 } else { 746 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 747 *Flag = Part.getValue(1); 748 } 749 750 Chains[i] = Part.getValue(0); 751 } 752 753 if (NumRegs == 1 || Flag) 754 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 755 // flagged to it. That is the CopyToReg nodes and the user are considered 756 // a single scheduling unit. If we create a TokenFactor and return it as 757 // chain, then the TokenFactor is both a predecessor (operand) of the 758 // user as well as a successor (the TF operands are flagged to the user). 759 // c1, f1 = CopyToReg 760 // c2, f2 = CopyToReg 761 // c3 = TokenFactor c1, c2 762 // ... 763 // = op c3, ..., f2 764 Chain = Chains[NumRegs-1]; 765 else 766 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 767 } 768 769 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 770 /// operand list. This adds the code marker and includes the number of 771 /// values added into it. 772 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 773 unsigned MatchingIdx, SDLoc dl, 774 SelectionDAG &DAG, 775 std::vector<SDValue> &Ops) const { 776 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 777 778 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 779 if (HasMatching) 780 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 781 else if (!Regs.empty() && 782 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 783 // Put the register class of the virtual registers in the flag word. That 784 // way, later passes can recompute register class constraints for inline 785 // assembly as well as normal instructions. 786 // Don't do this for tied operands that can use the regclass information 787 // from the def. 788 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 789 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 790 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 791 } 792 793 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 794 Ops.push_back(Res); 795 796 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 797 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 798 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 799 MVT RegisterVT = RegVTs[Value]; 800 for (unsigned i = 0; i != NumRegs; ++i) { 801 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 802 unsigned TheReg = Regs[Reg++]; 803 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 804 805 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 806 // If we clobbered the stack pointer, MFI should know about it. 807 assert(DAG.getMachineFunction().getFrameInfo()-> 808 hasOpaqueSPAdjustment()); 809 } 810 } 811 } 812 } 813 814 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 815 const TargetLibraryInfo *li) { 816 AA = &aa; 817 GFI = gfi; 818 LibInfo = li; 819 DL = &DAG.getDataLayout(); 820 Context = DAG.getContext(); 821 LPadToCallSiteMap.clear(); 822 } 823 824 /// clear - Clear out the current SelectionDAG and the associated 825 /// state and prepare this SelectionDAGBuilder object to be used 826 /// for a new block. This doesn't clear out information about 827 /// additional blocks that are needed to complete switch lowering 828 /// or PHI node updating; that information is cleared out as it is 829 /// consumed. 830 void SelectionDAGBuilder::clear() { 831 NodeMap.clear(); 832 UnusedArgNodeMap.clear(); 833 PendingLoads.clear(); 834 PendingExports.clear(); 835 CurInst = nullptr; 836 HasTailCall = false; 837 SDNodeOrder = LowestSDNodeOrder; 838 StatepointLowering.clear(); 839 } 840 841 /// clearDanglingDebugInfo - Clear the dangling debug information 842 /// map. This function is separated from the clear so that debug 843 /// information that is dangling in a basic block can be properly 844 /// resolved in a different basic block. This allows the 845 /// SelectionDAG to resolve dangling debug information attached 846 /// to PHI nodes. 847 void SelectionDAGBuilder::clearDanglingDebugInfo() { 848 DanglingDebugInfoMap.clear(); 849 } 850 851 /// getRoot - Return the current virtual root of the Selection DAG, 852 /// flushing any PendingLoad items. This must be done before emitting 853 /// a store or any other node that may need to be ordered after any 854 /// prior load instructions. 855 /// 856 SDValue SelectionDAGBuilder::getRoot() { 857 if (PendingLoads.empty()) 858 return DAG.getRoot(); 859 860 if (PendingLoads.size() == 1) { 861 SDValue Root = PendingLoads[0]; 862 DAG.setRoot(Root); 863 PendingLoads.clear(); 864 return Root; 865 } 866 867 // Otherwise, we have to make a token factor node. 868 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 869 PendingLoads); 870 PendingLoads.clear(); 871 DAG.setRoot(Root); 872 return Root; 873 } 874 875 /// getControlRoot - Similar to getRoot, but instead of flushing all the 876 /// PendingLoad items, flush all the PendingExports items. It is necessary 877 /// to do this before emitting a terminator instruction. 878 /// 879 SDValue SelectionDAGBuilder::getControlRoot() { 880 SDValue Root = DAG.getRoot(); 881 882 if (PendingExports.empty()) 883 return Root; 884 885 // Turn all of the CopyToReg chains into one factored node. 886 if (Root.getOpcode() != ISD::EntryToken) { 887 unsigned i = 0, e = PendingExports.size(); 888 for (; i != e; ++i) { 889 assert(PendingExports[i].getNode()->getNumOperands() > 1); 890 if (PendingExports[i].getNode()->getOperand(0) == Root) 891 break; // Don't add the root if we already indirectly depend on it. 892 } 893 894 if (i == e) 895 PendingExports.push_back(Root); 896 } 897 898 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 899 PendingExports); 900 PendingExports.clear(); 901 DAG.setRoot(Root); 902 return Root; 903 } 904 905 void SelectionDAGBuilder::visit(const Instruction &I) { 906 // Set up outgoing PHI node register values before emitting the terminator. 907 if (isa<TerminatorInst>(&I)) 908 HandlePHINodesInSuccessorBlocks(I.getParent()); 909 910 ++SDNodeOrder; 911 912 CurInst = &I; 913 914 visit(I.getOpcode(), I); 915 916 if (!isa<TerminatorInst>(&I) && !HasTailCall && 917 !isStatepoint(&I)) // statepoints handle their exports internally 918 CopyToExportRegsIfNeeded(&I); 919 920 CurInst = nullptr; 921 } 922 923 void SelectionDAGBuilder::visitPHI(const PHINode &) { 924 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 925 } 926 927 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 928 // Note: this doesn't use InstVisitor, because it has to work with 929 // ConstantExpr's in addition to instructions. 930 switch (Opcode) { 931 default: llvm_unreachable("Unknown instruction type encountered!"); 932 // Build the switch statement using the Instruction.def file. 933 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 934 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 935 #include "llvm/IR/Instruction.def" 936 } 937 } 938 939 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 940 // generate the debug data structures now that we've seen its definition. 941 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 942 SDValue Val) { 943 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 944 if (DDI.getDI()) { 945 const DbgValueInst *DI = DDI.getDI(); 946 DebugLoc dl = DDI.getdl(); 947 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 948 DILocalVariable *Variable = DI->getVariable(); 949 DIExpression *Expr = DI->getExpression(); 950 assert(Variable->isValidLocationForIntrinsic(dl) && 951 "Expected inlined-at fields to agree"); 952 uint64_t Offset = DI->getOffset(); 953 SDDbgValue *SDV; 954 if (Val.getNode()) { 955 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, false, 956 Val)) { 957 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 958 false, Offset, dl, DbgSDNodeOrder); 959 DAG.AddDbgValue(SDV, Val.getNode(), false); 960 } 961 } else 962 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 963 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 964 } 965 } 966 967 /// getCopyFromRegs - If there was virtual register allocated for the value V 968 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 969 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 970 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 971 SDValue Result; 972 973 if (It != FuncInfo.ValueMap.end()) { 974 unsigned InReg = It->second; 975 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 976 DAG.getDataLayout(), InReg, Ty); 977 SDValue Chain = DAG.getEntryNode(); 978 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 979 resolveDanglingDebugInfo(V, Result); 980 } 981 982 return Result; 983 } 984 985 /// getValue - Return an SDValue for the given Value. 986 SDValue SelectionDAGBuilder::getValue(const Value *V) { 987 // If we already have an SDValue for this value, use it. It's important 988 // to do this first, so that we don't create a CopyFromReg if we already 989 // have a regular SDValue. 990 SDValue &N = NodeMap[V]; 991 if (N.getNode()) return N; 992 993 // If there's a virtual register allocated and initialized for this 994 // value, use it. 995 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 996 if (copyFromReg.getNode()) { 997 return copyFromReg; 998 } 999 1000 // Otherwise create a new SDValue and remember it. 1001 SDValue Val = getValueImpl(V); 1002 NodeMap[V] = Val; 1003 resolveDanglingDebugInfo(V, Val); 1004 return Val; 1005 } 1006 1007 // Return true if SDValue exists for the given Value 1008 bool SelectionDAGBuilder::findValue(const Value *V) const { 1009 return (NodeMap.find(V) != NodeMap.end()) || 1010 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1011 } 1012 1013 /// getNonRegisterValue - Return an SDValue for the given Value, but 1014 /// don't look in FuncInfo.ValueMap for a virtual register. 1015 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1016 // If we already have an SDValue for this value, use it. 1017 SDValue &N = NodeMap[V]; 1018 if (N.getNode()) { 1019 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1020 // Remove the debug location from the node as the node is about to be used 1021 // in a location which may differ from the original debug location. This 1022 // is relevant to Constant and ConstantFP nodes because they can appear 1023 // as constant expressions inside PHI nodes. 1024 N->setDebugLoc(DebugLoc()); 1025 } 1026 return N; 1027 } 1028 1029 // Otherwise create a new SDValue and remember it. 1030 SDValue Val = getValueImpl(V); 1031 NodeMap[V] = Val; 1032 resolveDanglingDebugInfo(V, Val); 1033 return Val; 1034 } 1035 1036 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1037 /// Create an SDValue for the given value. 1038 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1039 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1040 1041 if (const Constant *C = dyn_cast<Constant>(V)) { 1042 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1043 1044 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1045 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1046 1047 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1048 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1049 1050 if (isa<ConstantPointerNull>(C)) { 1051 unsigned AS = V->getType()->getPointerAddressSpace(); 1052 return DAG.getConstant(0, getCurSDLoc(), 1053 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1054 } 1055 1056 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1057 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1058 1059 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1060 return DAG.getUNDEF(VT); 1061 1062 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1063 visit(CE->getOpcode(), *CE); 1064 SDValue N1 = NodeMap[V]; 1065 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1066 return N1; 1067 } 1068 1069 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1070 SmallVector<SDValue, 4> Constants; 1071 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1072 OI != OE; ++OI) { 1073 SDNode *Val = getValue(*OI).getNode(); 1074 // If the operand is an empty aggregate, there are no values. 1075 if (!Val) continue; 1076 // Add each leaf value from the operand to the Constants list 1077 // to form a flattened list of all the values. 1078 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1079 Constants.push_back(SDValue(Val, i)); 1080 } 1081 1082 return DAG.getMergeValues(Constants, getCurSDLoc()); 1083 } 1084 1085 if (const ConstantDataSequential *CDS = 1086 dyn_cast<ConstantDataSequential>(C)) { 1087 SmallVector<SDValue, 4> Ops; 1088 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1089 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1090 // Add each leaf value from the operand to the Constants list 1091 // to form a flattened list of all the values. 1092 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1093 Ops.push_back(SDValue(Val, i)); 1094 } 1095 1096 if (isa<ArrayType>(CDS->getType())) 1097 return DAG.getMergeValues(Ops, getCurSDLoc()); 1098 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1099 VT, Ops); 1100 } 1101 1102 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1103 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1104 "Unknown struct or array constant!"); 1105 1106 SmallVector<EVT, 4> ValueVTs; 1107 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1108 unsigned NumElts = ValueVTs.size(); 1109 if (NumElts == 0) 1110 return SDValue(); // empty struct 1111 SmallVector<SDValue, 4> Constants(NumElts); 1112 for (unsigned i = 0; i != NumElts; ++i) { 1113 EVT EltVT = ValueVTs[i]; 1114 if (isa<UndefValue>(C)) 1115 Constants[i] = DAG.getUNDEF(EltVT); 1116 else if (EltVT.isFloatingPoint()) 1117 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1118 else 1119 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1120 } 1121 1122 return DAG.getMergeValues(Constants, getCurSDLoc()); 1123 } 1124 1125 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1126 return DAG.getBlockAddress(BA, VT); 1127 1128 VectorType *VecTy = cast<VectorType>(V->getType()); 1129 unsigned NumElements = VecTy->getNumElements(); 1130 1131 // Now that we know the number and type of the elements, get that number of 1132 // elements into the Ops array based on what kind of constant it is. 1133 SmallVector<SDValue, 16> Ops; 1134 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1135 for (unsigned i = 0; i != NumElements; ++i) 1136 Ops.push_back(getValue(CV->getOperand(i))); 1137 } else { 1138 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1139 EVT EltVT = 1140 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1141 1142 SDValue Op; 1143 if (EltVT.isFloatingPoint()) 1144 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1145 else 1146 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1147 Ops.assign(NumElements, Op); 1148 } 1149 1150 // Create a BUILD_VECTOR node. 1151 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1152 } 1153 1154 // If this is a static alloca, generate it as the frameindex instead of 1155 // computation. 1156 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1157 DenseMap<const AllocaInst*, int>::iterator SI = 1158 FuncInfo.StaticAllocaMap.find(AI); 1159 if (SI != FuncInfo.StaticAllocaMap.end()) 1160 return DAG.getFrameIndex(SI->second, 1161 TLI.getPointerTy(DAG.getDataLayout())); 1162 } 1163 1164 // If this is an instruction which fast-isel has deferred, select it now. 1165 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1166 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1167 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1168 Inst->getType()); 1169 SDValue Chain = DAG.getEntryNode(); 1170 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1171 } 1172 1173 llvm_unreachable("Can't get register for value!"); 1174 } 1175 1176 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1177 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1178 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1179 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1180 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1181 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1182 if (IsMSVCCXX || IsCoreCLR) 1183 CatchPadMBB->setIsEHFuncletEntry(); 1184 1185 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot())); 1186 } 1187 1188 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1189 // Update machine-CFG edge. 1190 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1191 FuncInfo.MBB->addSuccessor(TargetMBB); 1192 1193 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1194 bool IsSEH = isAsynchronousEHPersonality(Pers); 1195 if (IsSEH) { 1196 // If this is not a fall-through branch or optimizations are switched off, 1197 // emit the branch. 1198 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1199 TM.getOptLevel() == CodeGenOpt::None) 1200 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1201 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1202 return; 1203 } 1204 1205 // Figure out the funclet membership for the catchret's successor. 1206 // This will be used by the FuncletLayout pass to determine how to order the 1207 // BB's. 1208 // A 'catchret' returns to the outer scope's color. 1209 Value *ParentPad = I.getParentPad(); 1210 const BasicBlock *SuccessorColor; 1211 if (isa<ConstantTokenNone>(ParentPad)) 1212 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1213 else 1214 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1215 assert(SuccessorColor && "No parent funclet for catchret!"); 1216 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1217 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1218 1219 // Create the terminator node. 1220 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1221 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1222 DAG.getBasicBlock(SuccessorColorMBB)); 1223 DAG.setRoot(Ret); 1224 } 1225 1226 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1227 // Don't emit any special code for the cleanuppad instruction. It just marks 1228 // the start of a funclet. 1229 FuncInfo.MBB->setIsEHFuncletEntry(); 1230 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1231 } 1232 1233 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1234 /// many places it could ultimately go. In the IR, we have a single unwind 1235 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1236 /// This function skips over imaginary basic blocks that hold catchswitch 1237 /// instructions, and finds all the "real" machine 1238 /// basic block destinations. As those destinations may not be successors of 1239 /// EHPadBB, here we also calculate the edge probability to those destinations. 1240 /// The passed-in Prob is the edge probability to EHPadBB. 1241 static void findUnwindDestinations( 1242 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1243 BranchProbability Prob, 1244 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1245 &UnwindDests) { 1246 EHPersonality Personality = 1247 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1248 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1249 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1250 1251 while (EHPadBB) { 1252 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1253 BasicBlock *NewEHPadBB = nullptr; 1254 if (isa<LandingPadInst>(Pad)) { 1255 // Stop on landingpads. They are not funclets. 1256 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1257 break; 1258 } else if (isa<CleanupPadInst>(Pad)) { 1259 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1260 // personalities. 1261 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1262 UnwindDests.back().first->setIsEHFuncletEntry(); 1263 break; 1264 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1265 // Add the catchpad handlers to the possible destinations. 1266 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1267 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1268 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1269 if (IsMSVCCXX || IsCoreCLR) 1270 UnwindDests.back().first->setIsEHFuncletEntry(); 1271 } 1272 NewEHPadBB = CatchSwitch->getUnwindDest(); 1273 } else { 1274 continue; 1275 } 1276 1277 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1278 if (BPI && NewEHPadBB) 1279 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1280 EHPadBB = NewEHPadBB; 1281 } 1282 } 1283 1284 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1285 // Update successor info. 1286 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1287 auto UnwindDest = I.getUnwindDest(); 1288 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1289 BranchProbability UnwindDestProb = 1290 (BPI && UnwindDest) 1291 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1292 : BranchProbability::getZero(); 1293 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1294 for (auto &UnwindDest : UnwindDests) { 1295 UnwindDest.first->setIsEHPad(); 1296 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1297 } 1298 FuncInfo.MBB->normalizeSuccProbs(); 1299 1300 // Create the terminator node. 1301 SDValue Ret = 1302 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1303 DAG.setRoot(Ret); 1304 } 1305 1306 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1307 report_fatal_error("visitCatchSwitch not yet implemented!"); 1308 } 1309 1310 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1311 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1312 auto &DL = DAG.getDataLayout(); 1313 SDValue Chain = getControlRoot(); 1314 SmallVector<ISD::OutputArg, 8> Outs; 1315 SmallVector<SDValue, 8> OutVals; 1316 1317 if (!FuncInfo.CanLowerReturn) { 1318 unsigned DemoteReg = FuncInfo.DemoteRegister; 1319 const Function *F = I.getParent()->getParent(); 1320 1321 // Emit a store of the return value through the virtual register. 1322 // Leave Outs empty so that LowerReturn won't try to load return 1323 // registers the usual way. 1324 SmallVector<EVT, 1> PtrValueVTs; 1325 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1326 PtrValueVTs); 1327 1328 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1329 DemoteReg, PtrValueVTs[0]); 1330 SDValue RetOp = getValue(I.getOperand(0)); 1331 1332 SmallVector<EVT, 4> ValueVTs; 1333 SmallVector<uint64_t, 4> Offsets; 1334 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1335 unsigned NumValues = ValueVTs.size(); 1336 1337 // An aggregate return value cannot wrap around the address space, so 1338 // offsets to its parts don't wrap either. 1339 SDNodeFlags Flags; 1340 Flags.setNoUnsignedWrap(true); 1341 1342 SmallVector<SDValue, 4> Chains(NumValues); 1343 for (unsigned i = 0; i != NumValues; ++i) { 1344 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1345 RetPtr.getValueType(), RetPtr, 1346 DAG.getIntPtrConstant(Offsets[i], 1347 getCurSDLoc()), 1348 &Flags); 1349 Chains[i] = 1350 DAG.getStore(Chain, getCurSDLoc(), 1351 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1352 // FIXME: better loc info would be nice. 1353 Add, MachinePointerInfo(), false, false, 0); 1354 } 1355 1356 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1357 MVT::Other, Chains); 1358 } else if (I.getNumOperands() != 0) { 1359 SmallVector<EVT, 4> ValueVTs; 1360 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1361 unsigned NumValues = ValueVTs.size(); 1362 if (NumValues) { 1363 SDValue RetOp = getValue(I.getOperand(0)); 1364 1365 const Function *F = I.getParent()->getParent(); 1366 1367 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1368 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1369 Attribute::SExt)) 1370 ExtendKind = ISD::SIGN_EXTEND; 1371 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1372 Attribute::ZExt)) 1373 ExtendKind = ISD::ZERO_EXTEND; 1374 1375 LLVMContext &Context = F->getContext(); 1376 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1377 Attribute::InReg); 1378 1379 for (unsigned j = 0; j != NumValues; ++j) { 1380 EVT VT = ValueVTs[j]; 1381 1382 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1383 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1384 1385 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1386 MVT PartVT = TLI.getRegisterType(Context, VT); 1387 SmallVector<SDValue, 4> Parts(NumParts); 1388 getCopyToParts(DAG, getCurSDLoc(), 1389 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1390 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1391 1392 // 'inreg' on function refers to return value 1393 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1394 if (RetInReg) 1395 Flags.setInReg(); 1396 1397 // Propagate extension type if any 1398 if (ExtendKind == ISD::SIGN_EXTEND) 1399 Flags.setSExt(); 1400 else if (ExtendKind == ISD::ZERO_EXTEND) 1401 Flags.setZExt(); 1402 1403 for (unsigned i = 0; i < NumParts; ++i) { 1404 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1405 VT, /*isfixed=*/true, 0, 0)); 1406 OutVals.push_back(Parts[i]); 1407 } 1408 } 1409 } 1410 } 1411 1412 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1413 CallingConv::ID CallConv = 1414 DAG.getMachineFunction().getFunction()->getCallingConv(); 1415 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1416 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1417 1418 // Verify that the target's LowerReturn behaved as expected. 1419 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1420 "LowerReturn didn't return a valid chain!"); 1421 1422 // Update the DAG with the new chain value resulting from return lowering. 1423 DAG.setRoot(Chain); 1424 } 1425 1426 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1427 /// created for it, emit nodes to copy the value into the virtual 1428 /// registers. 1429 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1430 // Skip empty types 1431 if (V->getType()->isEmptyTy()) 1432 return; 1433 1434 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1435 if (VMI != FuncInfo.ValueMap.end()) { 1436 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1437 CopyValueToVirtualRegister(V, VMI->second); 1438 } 1439 } 1440 1441 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1442 /// the current basic block, add it to ValueMap now so that we'll get a 1443 /// CopyTo/FromReg. 1444 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1445 // No need to export constants. 1446 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1447 1448 // Already exported? 1449 if (FuncInfo.isExportedInst(V)) return; 1450 1451 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1452 CopyValueToVirtualRegister(V, Reg); 1453 } 1454 1455 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1456 const BasicBlock *FromBB) { 1457 // The operands of the setcc have to be in this block. We don't know 1458 // how to export them from some other block. 1459 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1460 // Can export from current BB. 1461 if (VI->getParent() == FromBB) 1462 return true; 1463 1464 // Is already exported, noop. 1465 return FuncInfo.isExportedInst(V); 1466 } 1467 1468 // If this is an argument, we can export it if the BB is the entry block or 1469 // if it is already exported. 1470 if (isa<Argument>(V)) { 1471 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1472 return true; 1473 1474 // Otherwise, can only export this if it is already exported. 1475 return FuncInfo.isExportedInst(V); 1476 } 1477 1478 // Otherwise, constants can always be exported. 1479 return true; 1480 } 1481 1482 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1483 BranchProbability 1484 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1485 const MachineBasicBlock *Dst) const { 1486 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1487 const BasicBlock *SrcBB = Src->getBasicBlock(); 1488 const BasicBlock *DstBB = Dst->getBasicBlock(); 1489 if (!BPI) { 1490 // If BPI is not available, set the default probability as 1 / N, where N is 1491 // the number of successors. 1492 auto SuccSize = std::max<uint32_t>( 1493 std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1); 1494 return BranchProbability(1, SuccSize); 1495 } 1496 return BPI->getEdgeProbability(SrcBB, DstBB); 1497 } 1498 1499 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1500 MachineBasicBlock *Dst, 1501 BranchProbability Prob) { 1502 if (!FuncInfo.BPI) 1503 Src->addSuccessorWithoutProb(Dst); 1504 else { 1505 if (Prob.isUnknown()) 1506 Prob = getEdgeProbability(Src, Dst); 1507 Src->addSuccessor(Dst, Prob); 1508 } 1509 } 1510 1511 static bool InBlock(const Value *V, const BasicBlock *BB) { 1512 if (const Instruction *I = dyn_cast<Instruction>(V)) 1513 return I->getParent() == BB; 1514 return true; 1515 } 1516 1517 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1518 /// This function emits a branch and is used at the leaves of an OR or an 1519 /// AND operator tree. 1520 /// 1521 void 1522 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1523 MachineBasicBlock *TBB, 1524 MachineBasicBlock *FBB, 1525 MachineBasicBlock *CurBB, 1526 MachineBasicBlock *SwitchBB, 1527 BranchProbability TProb, 1528 BranchProbability FProb) { 1529 const BasicBlock *BB = CurBB->getBasicBlock(); 1530 1531 // If the leaf of the tree is a comparison, merge the condition into 1532 // the caseblock. 1533 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1534 // The operands of the cmp have to be in this block. We don't know 1535 // how to export them from some other block. If this is the first block 1536 // of the sequence, no exporting is needed. 1537 if (CurBB == SwitchBB || 1538 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1539 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1540 ISD::CondCode Condition; 1541 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1542 Condition = getICmpCondCode(IC->getPredicate()); 1543 } else { 1544 const FCmpInst *FC = cast<FCmpInst>(Cond); 1545 Condition = getFCmpCondCode(FC->getPredicate()); 1546 if (TM.Options.NoNaNsFPMath) 1547 Condition = getFCmpCodeWithoutNaN(Condition); 1548 } 1549 1550 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1551 TBB, FBB, CurBB, TProb, FProb); 1552 SwitchCases.push_back(CB); 1553 return; 1554 } 1555 } 1556 1557 // Create a CaseBlock record representing this branch. 1558 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1559 nullptr, TBB, FBB, CurBB, TProb, FProb); 1560 SwitchCases.push_back(CB); 1561 } 1562 1563 /// FindMergedConditions - If Cond is an expression like 1564 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1565 MachineBasicBlock *TBB, 1566 MachineBasicBlock *FBB, 1567 MachineBasicBlock *CurBB, 1568 MachineBasicBlock *SwitchBB, 1569 Instruction::BinaryOps Opc, 1570 BranchProbability TProb, 1571 BranchProbability FProb) { 1572 // If this node is not part of the or/and tree, emit it as a branch. 1573 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1574 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1575 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1576 BOp->getParent() != CurBB->getBasicBlock() || 1577 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1578 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1579 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1580 TProb, FProb); 1581 return; 1582 } 1583 1584 // Create TmpBB after CurBB. 1585 MachineFunction::iterator BBI(CurBB); 1586 MachineFunction &MF = DAG.getMachineFunction(); 1587 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1588 CurBB->getParent()->insert(++BBI, TmpBB); 1589 1590 if (Opc == Instruction::Or) { 1591 // Codegen X | Y as: 1592 // BB1: 1593 // jmp_if_X TBB 1594 // jmp TmpBB 1595 // TmpBB: 1596 // jmp_if_Y TBB 1597 // jmp FBB 1598 // 1599 1600 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1601 // The requirement is that 1602 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1603 // = TrueProb for original BB. 1604 // Assuming the original probabilities are A and B, one choice is to set 1605 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 1606 // A/(1+B) and 2B/(1+B). This choice assumes that 1607 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1608 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1609 // TmpBB, but the math is more complicated. 1610 1611 auto NewTrueProb = TProb / 2; 1612 auto NewFalseProb = TProb / 2 + FProb; 1613 // Emit the LHS condition. 1614 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1615 NewTrueProb, NewFalseProb); 1616 1617 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 1618 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 1619 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1620 // Emit the RHS condition into TmpBB. 1621 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1622 Probs[0], Probs[1]); 1623 } else { 1624 assert(Opc == Instruction::And && "Unknown merge op!"); 1625 // Codegen X & Y as: 1626 // BB1: 1627 // jmp_if_X TmpBB 1628 // jmp FBB 1629 // TmpBB: 1630 // jmp_if_Y TBB 1631 // jmp FBB 1632 // 1633 // This requires creation of TmpBB after CurBB. 1634 1635 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1636 // The requirement is that 1637 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1638 // = FalseProb for original BB. 1639 // Assuming the original probabilities are A and B, one choice is to set 1640 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 1641 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 1642 // TrueProb for BB1 * FalseProb for TmpBB. 1643 1644 auto NewTrueProb = TProb + FProb / 2; 1645 auto NewFalseProb = FProb / 2; 1646 // Emit the LHS condition. 1647 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1648 NewTrueProb, NewFalseProb); 1649 1650 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 1651 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 1652 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1653 // Emit the RHS condition into TmpBB. 1654 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1655 Probs[0], Probs[1]); 1656 } 1657 } 1658 1659 /// If the set of cases should be emitted as a series of branches, return true. 1660 /// If we should emit this as a bunch of and/or'd together conditions, return 1661 /// false. 1662 bool 1663 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1664 if (Cases.size() != 2) return true; 1665 1666 // If this is two comparisons of the same values or'd or and'd together, they 1667 // will get folded into a single comparison, so don't emit two blocks. 1668 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1669 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1670 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1671 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1672 return false; 1673 } 1674 1675 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1676 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1677 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1678 Cases[0].CC == Cases[1].CC && 1679 isa<Constant>(Cases[0].CmpRHS) && 1680 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1681 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1682 return false; 1683 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1684 return false; 1685 } 1686 1687 return true; 1688 } 1689 1690 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1691 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1692 1693 // Update machine-CFG edges. 1694 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1695 1696 if (I.isUnconditional()) { 1697 // Update machine-CFG edges. 1698 BrMBB->addSuccessor(Succ0MBB); 1699 1700 // If this is not a fall-through branch or optimizations are switched off, 1701 // emit the branch. 1702 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1703 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1704 MVT::Other, getControlRoot(), 1705 DAG.getBasicBlock(Succ0MBB))); 1706 1707 return; 1708 } 1709 1710 // If this condition is one of the special cases we handle, do special stuff 1711 // now. 1712 const Value *CondVal = I.getCondition(); 1713 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1714 1715 // If this is a series of conditions that are or'd or and'd together, emit 1716 // this as a sequence of branches instead of setcc's with and/or operations. 1717 // As long as jumps are not expensive, this should improve performance. 1718 // For example, instead of something like: 1719 // cmp A, B 1720 // C = seteq 1721 // cmp D, E 1722 // F = setle 1723 // or C, F 1724 // jnz foo 1725 // Emit: 1726 // cmp A, B 1727 // je foo 1728 // cmp D, E 1729 // jle foo 1730 // 1731 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1732 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1733 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1734 !I.getMetadata(LLVMContext::MD_unpredictable) && 1735 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1736 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1737 Opcode, 1738 getEdgeProbability(BrMBB, Succ0MBB), 1739 getEdgeProbability(BrMBB, Succ1MBB)); 1740 // If the compares in later blocks need to use values not currently 1741 // exported from this block, export them now. This block should always 1742 // be the first entry. 1743 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1744 1745 // Allow some cases to be rejected. 1746 if (ShouldEmitAsBranches(SwitchCases)) { 1747 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1748 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1749 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1750 } 1751 1752 // Emit the branch for this block. 1753 visitSwitchCase(SwitchCases[0], BrMBB); 1754 SwitchCases.erase(SwitchCases.begin()); 1755 return; 1756 } 1757 1758 // Okay, we decided not to do this, remove any inserted MBB's and clear 1759 // SwitchCases. 1760 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1761 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1762 1763 SwitchCases.clear(); 1764 } 1765 } 1766 1767 // Create a CaseBlock record representing this branch. 1768 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1769 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1770 1771 // Use visitSwitchCase to actually insert the fast branch sequence for this 1772 // cond branch. 1773 visitSwitchCase(CB, BrMBB); 1774 } 1775 1776 /// visitSwitchCase - Emits the necessary code to represent a single node in 1777 /// the binary search tree resulting from lowering a switch instruction. 1778 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1779 MachineBasicBlock *SwitchBB) { 1780 SDValue Cond; 1781 SDValue CondLHS = getValue(CB.CmpLHS); 1782 SDLoc dl = getCurSDLoc(); 1783 1784 // Build the setcc now. 1785 if (!CB.CmpMHS) { 1786 // Fold "(X == true)" to X and "(X == false)" to !X to 1787 // handle common cases produced by branch lowering. 1788 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1789 CB.CC == ISD::SETEQ) 1790 Cond = CondLHS; 1791 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1792 CB.CC == ISD::SETEQ) { 1793 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1794 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1795 } else 1796 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1797 } else { 1798 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1799 1800 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1801 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1802 1803 SDValue CmpOp = getValue(CB.CmpMHS); 1804 EVT VT = CmpOp.getValueType(); 1805 1806 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1807 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1808 ISD::SETLE); 1809 } else { 1810 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1811 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1812 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1813 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1814 } 1815 } 1816 1817 // Update successor info 1818 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 1819 // TrueBB and FalseBB are always different unless the incoming IR is 1820 // degenerate. This only happens when running llc on weird IR. 1821 if (CB.TrueBB != CB.FalseBB) 1822 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 1823 SwitchBB->normalizeSuccProbs(); 1824 1825 // If the lhs block is the next block, invert the condition so that we can 1826 // fall through to the lhs instead of the rhs block. 1827 if (CB.TrueBB == NextBlock(SwitchBB)) { 1828 std::swap(CB.TrueBB, CB.FalseBB); 1829 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1830 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1831 } 1832 1833 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1834 MVT::Other, getControlRoot(), Cond, 1835 DAG.getBasicBlock(CB.TrueBB)); 1836 1837 // Insert the false branch. Do this even if it's a fall through branch, 1838 // this makes it easier to do DAG optimizations which require inverting 1839 // the branch condition. 1840 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1841 DAG.getBasicBlock(CB.FalseBB)); 1842 1843 DAG.setRoot(BrCond); 1844 } 1845 1846 /// visitJumpTable - Emit JumpTable node in the current MBB 1847 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1848 // Emit the code for the jump table 1849 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1850 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1851 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1852 JT.Reg, PTy); 1853 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1854 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1855 MVT::Other, Index.getValue(1), 1856 Table, Index); 1857 DAG.setRoot(BrJumpTable); 1858 } 1859 1860 /// visitJumpTableHeader - This function emits necessary code to produce index 1861 /// in the JumpTable from switch case. 1862 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1863 JumpTableHeader &JTH, 1864 MachineBasicBlock *SwitchBB) { 1865 SDLoc dl = getCurSDLoc(); 1866 1867 // Subtract the lowest switch case value from the value being switched on and 1868 // conditional branch to default mbb if the result is greater than the 1869 // difference between smallest and largest cases. 1870 SDValue SwitchOp = getValue(JTH.SValue); 1871 EVT VT = SwitchOp.getValueType(); 1872 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1873 DAG.getConstant(JTH.First, dl, VT)); 1874 1875 // The SDNode we just created, which holds the value being switched on minus 1876 // the smallest case value, needs to be copied to a virtual register so it 1877 // can be used as an index into the jump table in a subsequent basic block. 1878 // This value may be smaller or larger than the target's pointer type, and 1879 // therefore require extension or truncating. 1880 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1881 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 1882 1883 unsigned JumpTableReg = 1884 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 1885 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1886 JumpTableReg, SwitchOp); 1887 JT.Reg = JumpTableReg; 1888 1889 // Emit the range check for the jump table, and branch to the default block 1890 // for the switch statement if the value being switched on exceeds the largest 1891 // case in the switch. 1892 SDValue CMP = DAG.getSetCC( 1893 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1894 Sub.getValueType()), 1895 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 1896 1897 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1898 MVT::Other, CopyTo, CMP, 1899 DAG.getBasicBlock(JT.Default)); 1900 1901 // Avoid emitting unnecessary branches to the next block. 1902 if (JT.MBB != NextBlock(SwitchBB)) 1903 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1904 DAG.getBasicBlock(JT.MBB)); 1905 1906 DAG.setRoot(BrCond); 1907 } 1908 1909 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1910 /// tail spliced into a stack protector check success bb. 1911 /// 1912 /// For a high level explanation of how this fits into the stack protector 1913 /// generation see the comment on the declaration of class 1914 /// StackProtectorDescriptor. 1915 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1916 MachineBasicBlock *ParentBB) { 1917 1918 // First create the loads to the guard/stack slot for the comparison. 1919 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1920 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 1921 1922 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1923 int FI = MFI->getStackProtectorIndex(); 1924 1925 const Value *IRGuard = SPD.getGuard(); 1926 SDValue GuardPtr = getValue(IRGuard); 1927 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1928 1929 unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType()); 1930 1931 SDValue Guard; 1932 SDLoc dl = getCurSDLoc(); 1933 1934 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1935 // guard value from the virtual register holding the value. Otherwise, emit a 1936 // volatile load to retrieve the stack guard value. 1937 unsigned GuardReg = SPD.getGuardReg(); 1938 1939 if (GuardReg && TLI.useLoadStackGuardNode()) 1940 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 1941 PtrTy); 1942 else 1943 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1944 GuardPtr, MachinePointerInfo(IRGuard, 0), 1945 true, false, false, Align); 1946 1947 SDValue StackSlot = DAG.getLoad( 1948 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 1949 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true, 1950 false, false, Align); 1951 1952 // Perform the comparison via a subtract/getsetcc. 1953 EVT VT = Guard.getValueType(); 1954 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 1955 1956 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 1957 *DAG.getContext(), 1958 Sub.getValueType()), 1959 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 1960 1961 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1962 // branch to failure MBB. 1963 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1964 MVT::Other, StackSlot.getOperand(0), 1965 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1966 // Otherwise branch to success MBB. 1967 SDValue Br = DAG.getNode(ISD::BR, dl, 1968 MVT::Other, BrCond, 1969 DAG.getBasicBlock(SPD.getSuccessMBB())); 1970 1971 DAG.setRoot(Br); 1972 } 1973 1974 /// Codegen the failure basic block for a stack protector check. 1975 /// 1976 /// A failure stack protector machine basic block consists simply of a call to 1977 /// __stack_chk_fail(). 1978 /// 1979 /// For a high level explanation of how this fits into the stack protector 1980 /// generation see the comment on the declaration of class 1981 /// StackProtectorDescriptor. 1982 void 1983 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1984 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1985 SDValue Chain = 1986 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1987 None, false, getCurSDLoc(), false, false).second; 1988 DAG.setRoot(Chain); 1989 } 1990 1991 /// visitBitTestHeader - This function emits necessary code to produce value 1992 /// suitable for "bit tests" 1993 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1994 MachineBasicBlock *SwitchBB) { 1995 SDLoc dl = getCurSDLoc(); 1996 1997 // Subtract the minimum value 1998 SDValue SwitchOp = getValue(B.SValue); 1999 EVT VT = SwitchOp.getValueType(); 2000 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2001 DAG.getConstant(B.First, dl, VT)); 2002 2003 // Check range 2004 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2005 SDValue RangeCmp = DAG.getSetCC( 2006 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2007 Sub.getValueType()), 2008 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2009 2010 // Determine the type of the test operands. 2011 bool UsePtrType = false; 2012 if (!TLI.isTypeLegal(VT)) 2013 UsePtrType = true; 2014 else { 2015 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2016 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2017 // Switch table case range are encoded into series of masks. 2018 // Just use pointer type, it's guaranteed to fit. 2019 UsePtrType = true; 2020 break; 2021 } 2022 } 2023 if (UsePtrType) { 2024 VT = TLI.getPointerTy(DAG.getDataLayout()); 2025 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2026 } 2027 2028 B.RegVT = VT.getSimpleVT(); 2029 B.Reg = FuncInfo.CreateReg(B.RegVT); 2030 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2031 2032 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2033 2034 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2035 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2036 SwitchBB->normalizeSuccProbs(); 2037 2038 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2039 MVT::Other, CopyTo, RangeCmp, 2040 DAG.getBasicBlock(B.Default)); 2041 2042 // Avoid emitting unnecessary branches to the next block. 2043 if (MBB != NextBlock(SwitchBB)) 2044 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2045 DAG.getBasicBlock(MBB)); 2046 2047 DAG.setRoot(BrRange); 2048 } 2049 2050 /// visitBitTestCase - this function produces one "bit test" 2051 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2052 MachineBasicBlock* NextMBB, 2053 BranchProbability BranchProbToNext, 2054 unsigned Reg, 2055 BitTestCase &B, 2056 MachineBasicBlock *SwitchBB) { 2057 SDLoc dl = getCurSDLoc(); 2058 MVT VT = BB.RegVT; 2059 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2060 SDValue Cmp; 2061 unsigned PopCount = countPopulation(B.Mask); 2062 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2063 if (PopCount == 1) { 2064 // Testing for a single bit; just compare the shift count with what it 2065 // would need to be to shift a 1 bit in that position. 2066 Cmp = DAG.getSetCC( 2067 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2068 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2069 ISD::SETEQ); 2070 } else if (PopCount == BB.Range) { 2071 // There is only one zero bit in the range, test for it directly. 2072 Cmp = DAG.getSetCC( 2073 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2074 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2075 ISD::SETNE); 2076 } else { 2077 // Make desired shift 2078 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2079 DAG.getConstant(1, dl, VT), ShiftOp); 2080 2081 // Emit bit tests and jumps 2082 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2083 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2084 Cmp = DAG.getSetCC( 2085 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2086 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2087 } 2088 2089 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2090 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2091 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2092 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2093 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2094 // one as they are relative probabilities (and thus work more like weights), 2095 // and hence we need to normalize them to let the sum of them become one. 2096 SwitchBB->normalizeSuccProbs(); 2097 2098 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2099 MVT::Other, getControlRoot(), 2100 Cmp, DAG.getBasicBlock(B.TargetBB)); 2101 2102 // Avoid emitting unnecessary branches to the next block. 2103 if (NextMBB != NextBlock(SwitchBB)) 2104 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2105 DAG.getBasicBlock(NextMBB)); 2106 2107 DAG.setRoot(BrAnd); 2108 } 2109 2110 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2111 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2112 2113 // Retrieve successors. Look through artificial IR level blocks like 2114 // catchswitch for successors. 2115 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2116 const BasicBlock *EHPadBB = I.getSuccessor(1); 2117 2118 const Value *Callee(I.getCalledValue()); 2119 const Function *Fn = dyn_cast<Function>(Callee); 2120 if (isa<InlineAsm>(Callee)) 2121 visitInlineAsm(&I); 2122 else if (Fn && Fn->isIntrinsic()) { 2123 switch (Fn->getIntrinsicID()) { 2124 default: 2125 llvm_unreachable("Cannot invoke this intrinsic"); 2126 case Intrinsic::donothing: 2127 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2128 break; 2129 case Intrinsic::experimental_patchpoint_void: 2130 case Intrinsic::experimental_patchpoint_i64: 2131 visitPatchpoint(&I, EHPadBB); 2132 break; 2133 case Intrinsic::experimental_gc_statepoint: 2134 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2135 break; 2136 } 2137 } else 2138 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2139 2140 // If the value of the invoke is used outside of its defining block, make it 2141 // available as a virtual register. 2142 // We already took care of the exported value for the statepoint instruction 2143 // during call to the LowerStatepoint. 2144 if (!isStatepoint(I)) { 2145 CopyToExportRegsIfNeeded(&I); 2146 } 2147 2148 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2149 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2150 BranchProbability EHPadBBProb = 2151 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2152 : BranchProbability::getZero(); 2153 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2154 2155 // Update successor info. 2156 addSuccessorWithProb(InvokeMBB, Return); 2157 for (auto &UnwindDest : UnwindDests) { 2158 UnwindDest.first->setIsEHPad(); 2159 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2160 } 2161 InvokeMBB->normalizeSuccProbs(); 2162 2163 // Drop into normal successor. 2164 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2165 MVT::Other, getControlRoot(), 2166 DAG.getBasicBlock(Return))); 2167 } 2168 2169 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2170 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2171 } 2172 2173 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2174 assert(FuncInfo.MBB->isEHPad() && 2175 "Call to landingpad not in landing pad!"); 2176 2177 MachineBasicBlock *MBB = FuncInfo.MBB; 2178 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2179 AddLandingPadInfo(LP, MMI, MBB); 2180 2181 // If there aren't registers to copy the values into (e.g., during SjLj 2182 // exceptions), then don't bother to create these DAG nodes. 2183 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2184 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2185 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2186 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2187 return; 2188 2189 // If landingpad's return type is token type, we don't create DAG nodes 2190 // for its exception pointer and selector value. The extraction of exception 2191 // pointer or selector value from token type landingpads is not currently 2192 // supported. 2193 if (LP.getType()->isTokenTy()) 2194 return; 2195 2196 SmallVector<EVT, 2> ValueVTs; 2197 SDLoc dl = getCurSDLoc(); 2198 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2199 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2200 2201 // Get the two live-in registers as SDValues. The physregs have already been 2202 // copied into virtual registers. 2203 SDValue Ops[2]; 2204 if (FuncInfo.ExceptionPointerVirtReg) { 2205 Ops[0] = DAG.getZExtOrTrunc( 2206 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2207 FuncInfo.ExceptionPointerVirtReg, 2208 TLI.getPointerTy(DAG.getDataLayout())), 2209 dl, ValueVTs[0]); 2210 } else { 2211 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2212 } 2213 Ops[1] = DAG.getZExtOrTrunc( 2214 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2215 FuncInfo.ExceptionSelectorVirtReg, 2216 TLI.getPointerTy(DAG.getDataLayout())), 2217 dl, ValueVTs[1]); 2218 2219 // Merge into one. 2220 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2221 DAG.getVTList(ValueVTs), Ops); 2222 setValue(&LP, Res); 2223 } 2224 2225 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2226 #ifndef NDEBUG 2227 for (const CaseCluster &CC : Clusters) 2228 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2229 #endif 2230 2231 std::sort(Clusters.begin(), Clusters.end(), 2232 [](const CaseCluster &a, const CaseCluster &b) { 2233 return a.Low->getValue().slt(b.Low->getValue()); 2234 }); 2235 2236 // Merge adjacent clusters with the same destination. 2237 const unsigned N = Clusters.size(); 2238 unsigned DstIndex = 0; 2239 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2240 CaseCluster &CC = Clusters[SrcIndex]; 2241 const ConstantInt *CaseVal = CC.Low; 2242 MachineBasicBlock *Succ = CC.MBB; 2243 2244 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2245 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2246 // If this case has the same successor and is a neighbour, merge it into 2247 // the previous cluster. 2248 Clusters[DstIndex - 1].High = CaseVal; 2249 Clusters[DstIndex - 1].Prob += CC.Prob; 2250 } else { 2251 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2252 sizeof(Clusters[SrcIndex])); 2253 } 2254 } 2255 Clusters.resize(DstIndex); 2256 } 2257 2258 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2259 MachineBasicBlock *Last) { 2260 // Update JTCases. 2261 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2262 if (JTCases[i].first.HeaderBB == First) 2263 JTCases[i].first.HeaderBB = Last; 2264 2265 // Update BitTestCases. 2266 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2267 if (BitTestCases[i].Parent == First) 2268 BitTestCases[i].Parent = Last; 2269 } 2270 2271 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2272 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2273 2274 // Update machine-CFG edges with unique successors. 2275 SmallSet<BasicBlock*, 32> Done; 2276 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2277 BasicBlock *BB = I.getSuccessor(i); 2278 bool Inserted = Done.insert(BB).second; 2279 if (!Inserted) 2280 continue; 2281 2282 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2283 addSuccessorWithProb(IndirectBrMBB, Succ); 2284 } 2285 IndirectBrMBB->normalizeSuccProbs(); 2286 2287 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2288 MVT::Other, getControlRoot(), 2289 getValue(I.getAddress()))); 2290 } 2291 2292 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2293 if (DAG.getTarget().Options.TrapUnreachable) 2294 DAG.setRoot( 2295 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2296 } 2297 2298 void SelectionDAGBuilder::visitFSub(const User &I) { 2299 // -0.0 - X --> fneg 2300 Type *Ty = I.getType(); 2301 if (isa<Constant>(I.getOperand(0)) && 2302 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2303 SDValue Op2 = getValue(I.getOperand(1)); 2304 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2305 Op2.getValueType(), Op2)); 2306 return; 2307 } 2308 2309 visitBinary(I, ISD::FSUB); 2310 } 2311 2312 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2313 SDValue Op1 = getValue(I.getOperand(0)); 2314 SDValue Op2 = getValue(I.getOperand(1)); 2315 2316 bool nuw = false; 2317 bool nsw = false; 2318 bool exact = false; 2319 FastMathFlags FMF; 2320 2321 if (const OverflowingBinaryOperator *OFBinOp = 2322 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2323 nuw = OFBinOp->hasNoUnsignedWrap(); 2324 nsw = OFBinOp->hasNoSignedWrap(); 2325 } 2326 if (const PossiblyExactOperator *ExactOp = 2327 dyn_cast<const PossiblyExactOperator>(&I)) 2328 exact = ExactOp->isExact(); 2329 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2330 FMF = FPOp->getFastMathFlags(); 2331 2332 SDNodeFlags Flags; 2333 Flags.setExact(exact); 2334 Flags.setNoSignedWrap(nsw); 2335 Flags.setNoUnsignedWrap(nuw); 2336 if (EnableFMFInDAG) { 2337 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2338 Flags.setNoInfs(FMF.noInfs()); 2339 Flags.setNoNaNs(FMF.noNaNs()); 2340 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2341 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2342 } 2343 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2344 Op1, Op2, &Flags); 2345 setValue(&I, BinNodeValue); 2346 } 2347 2348 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2349 SDValue Op1 = getValue(I.getOperand(0)); 2350 SDValue Op2 = getValue(I.getOperand(1)); 2351 2352 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2353 Op2.getValueType(), DAG.getDataLayout()); 2354 2355 // Coerce the shift amount to the right type if we can. 2356 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2357 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2358 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2359 SDLoc DL = getCurSDLoc(); 2360 2361 // If the operand is smaller than the shift count type, promote it. 2362 if (ShiftSize > Op2Size) 2363 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2364 2365 // If the operand is larger than the shift count type but the shift 2366 // count type has enough bits to represent any shift value, truncate 2367 // it now. This is a common case and it exposes the truncate to 2368 // optimization early. 2369 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2370 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2371 // Otherwise we'll need to temporarily settle for some other convenient 2372 // type. Type legalization will make adjustments once the shiftee is split. 2373 else 2374 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2375 } 2376 2377 bool nuw = false; 2378 bool nsw = false; 2379 bool exact = false; 2380 2381 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2382 2383 if (const OverflowingBinaryOperator *OFBinOp = 2384 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2385 nuw = OFBinOp->hasNoUnsignedWrap(); 2386 nsw = OFBinOp->hasNoSignedWrap(); 2387 } 2388 if (const PossiblyExactOperator *ExactOp = 2389 dyn_cast<const PossiblyExactOperator>(&I)) 2390 exact = ExactOp->isExact(); 2391 } 2392 SDNodeFlags Flags; 2393 Flags.setExact(exact); 2394 Flags.setNoSignedWrap(nsw); 2395 Flags.setNoUnsignedWrap(nuw); 2396 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2397 &Flags); 2398 setValue(&I, Res); 2399 } 2400 2401 void SelectionDAGBuilder::visitSDiv(const User &I) { 2402 SDValue Op1 = getValue(I.getOperand(0)); 2403 SDValue Op2 = getValue(I.getOperand(1)); 2404 2405 SDNodeFlags Flags; 2406 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2407 cast<PossiblyExactOperator>(&I)->isExact()); 2408 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2409 Op2, &Flags)); 2410 } 2411 2412 void SelectionDAGBuilder::visitICmp(const User &I) { 2413 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2414 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2415 predicate = IC->getPredicate(); 2416 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2417 predicate = ICmpInst::Predicate(IC->getPredicate()); 2418 SDValue Op1 = getValue(I.getOperand(0)); 2419 SDValue Op2 = getValue(I.getOperand(1)); 2420 ISD::CondCode Opcode = getICmpCondCode(predicate); 2421 2422 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2423 I.getType()); 2424 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2425 } 2426 2427 void SelectionDAGBuilder::visitFCmp(const User &I) { 2428 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2429 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2430 predicate = FC->getPredicate(); 2431 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2432 predicate = FCmpInst::Predicate(FC->getPredicate()); 2433 SDValue Op1 = getValue(I.getOperand(0)); 2434 SDValue Op2 = getValue(I.getOperand(1)); 2435 ISD::CondCode Condition = getFCmpCondCode(predicate); 2436 2437 // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them. 2438 // FIXME: We should propagate the fast-math-flags to the DAG node itself for 2439 // further optimization, but currently FMF is only applicable to binary nodes. 2440 if (TM.Options.NoNaNsFPMath) 2441 Condition = getFCmpCodeWithoutNaN(Condition); 2442 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2443 I.getType()); 2444 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2445 } 2446 2447 void SelectionDAGBuilder::visitSelect(const User &I) { 2448 SmallVector<EVT, 4> ValueVTs; 2449 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2450 ValueVTs); 2451 unsigned NumValues = ValueVTs.size(); 2452 if (NumValues == 0) return; 2453 2454 SmallVector<SDValue, 4> Values(NumValues); 2455 SDValue Cond = getValue(I.getOperand(0)); 2456 SDValue LHSVal = getValue(I.getOperand(1)); 2457 SDValue RHSVal = getValue(I.getOperand(2)); 2458 auto BaseOps = {Cond}; 2459 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2460 ISD::VSELECT : ISD::SELECT; 2461 2462 // Min/max matching is only viable if all output VTs are the same. 2463 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2464 EVT VT = ValueVTs[0]; 2465 LLVMContext &Ctx = *DAG.getContext(); 2466 auto &TLI = DAG.getTargetLoweringInfo(); 2467 2468 // We care about the legality of the operation after it has been type 2469 // legalized. 2470 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 2471 VT != TLI.getTypeToTransformTo(Ctx, VT)) 2472 VT = TLI.getTypeToTransformTo(Ctx, VT); 2473 2474 // If the vselect is legal, assume we want to leave this as a vector setcc + 2475 // vselect. Otherwise, if this is going to be scalarized, we want to see if 2476 // min/max is legal on the scalar type. 2477 bool UseScalarMinMax = VT.isVector() && 2478 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 2479 2480 Value *LHS, *RHS; 2481 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2482 ISD::NodeType Opc = ISD::DELETED_NODE; 2483 switch (SPR.Flavor) { 2484 case SPF_UMAX: Opc = ISD::UMAX; break; 2485 case SPF_UMIN: Opc = ISD::UMIN; break; 2486 case SPF_SMAX: Opc = ISD::SMAX; break; 2487 case SPF_SMIN: Opc = ISD::SMIN; break; 2488 case SPF_FMINNUM: 2489 switch (SPR.NaNBehavior) { 2490 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2491 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2492 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2493 case SPNB_RETURNS_ANY: { 2494 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 2495 Opc = ISD::FMINNUM; 2496 else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)) 2497 Opc = ISD::FMINNAN; 2498 else if (UseScalarMinMax) 2499 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 2500 ISD::FMINNUM : ISD::FMINNAN; 2501 break; 2502 } 2503 } 2504 break; 2505 case SPF_FMAXNUM: 2506 switch (SPR.NaNBehavior) { 2507 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2508 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2509 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2510 case SPNB_RETURNS_ANY: 2511 2512 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 2513 Opc = ISD::FMAXNUM; 2514 else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)) 2515 Opc = ISD::FMAXNAN; 2516 else if (UseScalarMinMax) 2517 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 2518 ISD::FMAXNUM : ISD::FMAXNAN; 2519 break; 2520 } 2521 break; 2522 default: break; 2523 } 2524 2525 if (Opc != ISD::DELETED_NODE && 2526 (TLI.isOperationLegalOrCustom(Opc, VT) || 2527 (UseScalarMinMax && 2528 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 2529 // If the underlying comparison instruction is used by any other 2530 // instruction, the consumed instructions won't be destroyed, so it is 2531 // not profitable to convert to a min/max. 2532 cast<SelectInst>(&I)->getCondition()->hasOneUse()) { 2533 OpCode = Opc; 2534 LHSVal = getValue(LHS); 2535 RHSVal = getValue(RHS); 2536 BaseOps = {}; 2537 } 2538 } 2539 2540 for (unsigned i = 0; i != NumValues; ++i) { 2541 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2542 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2543 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2544 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2545 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2546 Ops); 2547 } 2548 2549 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2550 DAG.getVTList(ValueVTs), Values)); 2551 } 2552 2553 void SelectionDAGBuilder::visitTrunc(const User &I) { 2554 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2555 SDValue N = getValue(I.getOperand(0)); 2556 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2557 I.getType()); 2558 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2559 } 2560 2561 void SelectionDAGBuilder::visitZExt(const User &I) { 2562 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2563 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2564 SDValue N = getValue(I.getOperand(0)); 2565 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2566 I.getType()); 2567 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2568 } 2569 2570 void SelectionDAGBuilder::visitSExt(const User &I) { 2571 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2572 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2573 SDValue N = getValue(I.getOperand(0)); 2574 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2575 I.getType()); 2576 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2577 } 2578 2579 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2580 // FPTrunc is never a no-op cast, no need to check 2581 SDValue N = getValue(I.getOperand(0)); 2582 SDLoc dl = getCurSDLoc(); 2583 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2584 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2585 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2586 DAG.getTargetConstant( 2587 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2588 } 2589 2590 void SelectionDAGBuilder::visitFPExt(const User &I) { 2591 // FPExt is never a no-op cast, no need to check 2592 SDValue N = getValue(I.getOperand(0)); 2593 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2594 I.getType()); 2595 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2596 } 2597 2598 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2599 // FPToUI is never a no-op cast, no need to check 2600 SDValue N = getValue(I.getOperand(0)); 2601 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2602 I.getType()); 2603 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2604 } 2605 2606 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2607 // FPToSI is never a no-op cast, no need to check 2608 SDValue N = getValue(I.getOperand(0)); 2609 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2610 I.getType()); 2611 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2612 } 2613 2614 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2615 // UIToFP is never a no-op cast, no need to check 2616 SDValue N = getValue(I.getOperand(0)); 2617 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2618 I.getType()); 2619 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2620 } 2621 2622 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2623 // SIToFP is never a no-op cast, no need to check 2624 SDValue N = getValue(I.getOperand(0)); 2625 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2626 I.getType()); 2627 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2628 } 2629 2630 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2631 // What to do depends on the size of the integer and the size of the pointer. 2632 // We can either truncate, zero extend, or no-op, accordingly. 2633 SDValue N = getValue(I.getOperand(0)); 2634 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2635 I.getType()); 2636 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2637 } 2638 2639 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2640 // What to do depends on the size of the integer and the size of the pointer. 2641 // We can either truncate, zero extend, or no-op, accordingly. 2642 SDValue N = getValue(I.getOperand(0)); 2643 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2644 I.getType()); 2645 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2646 } 2647 2648 void SelectionDAGBuilder::visitBitCast(const User &I) { 2649 SDValue N = getValue(I.getOperand(0)); 2650 SDLoc dl = getCurSDLoc(); 2651 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2652 I.getType()); 2653 2654 // BitCast assures us that source and destination are the same size so this is 2655 // either a BITCAST or a no-op. 2656 if (DestVT != N.getValueType()) 2657 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2658 DestVT, N)); // convert types. 2659 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2660 // might fold any kind of constant expression to an integer constant and that 2661 // is not what we are looking for. Only regcognize a bitcast of a genuine 2662 // constant integer as an opaque constant. 2663 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2664 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2665 /*isOpaque*/true)); 2666 else 2667 setValue(&I, N); // noop cast. 2668 } 2669 2670 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2671 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2672 const Value *SV = I.getOperand(0); 2673 SDValue N = getValue(SV); 2674 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2675 2676 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2677 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2678 2679 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2680 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2681 2682 setValue(&I, N); 2683 } 2684 2685 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2686 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2687 SDValue InVec = getValue(I.getOperand(0)); 2688 SDValue InVal = getValue(I.getOperand(1)); 2689 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 2690 TLI.getVectorIdxTy(DAG.getDataLayout())); 2691 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2692 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2693 InVec, InVal, InIdx)); 2694 } 2695 2696 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2697 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2698 SDValue InVec = getValue(I.getOperand(0)); 2699 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 2700 TLI.getVectorIdxTy(DAG.getDataLayout())); 2701 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2702 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2703 InVec, InIdx)); 2704 } 2705 2706 // Utility for visitShuffleVector - Return true if every element in Mask, 2707 // beginning from position Pos and ending in Pos+Size, falls within the 2708 // specified sequential range [L, L+Pos). or is undef. 2709 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2710 unsigned Pos, unsigned Size, int Low) { 2711 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2712 if (Mask[i] >= 0 && Mask[i] != Low) 2713 return false; 2714 return true; 2715 } 2716 2717 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2718 SDValue Src1 = getValue(I.getOperand(0)); 2719 SDValue Src2 = getValue(I.getOperand(1)); 2720 2721 SmallVector<int, 8> Mask; 2722 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2723 unsigned MaskNumElts = Mask.size(); 2724 2725 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2726 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2727 EVT SrcVT = Src1.getValueType(); 2728 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2729 2730 if (SrcNumElts == MaskNumElts) { 2731 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2732 &Mask[0])); 2733 return; 2734 } 2735 2736 // Normalize the shuffle vector since mask and vector length don't match. 2737 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2738 // Mask is longer than the source vectors and is a multiple of the source 2739 // vectors. We can use concatenate vector to make the mask and vectors 2740 // lengths match. 2741 if (SrcNumElts*2 == MaskNumElts) { 2742 // First check for Src1 in low and Src2 in high 2743 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2744 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2745 // The shuffle is concatenating two vectors together. 2746 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2747 VT, Src1, Src2)); 2748 return; 2749 } 2750 // Then check for Src2 in low and Src1 in high 2751 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2752 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2753 // The shuffle is concatenating two vectors together. 2754 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2755 VT, Src2, Src1)); 2756 return; 2757 } 2758 } 2759 2760 // Pad both vectors with undefs to make them the same length as the mask. 2761 unsigned NumConcat = MaskNumElts / SrcNumElts; 2762 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2763 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2764 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2765 2766 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2767 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2768 MOps1[0] = Src1; 2769 MOps2[0] = Src2; 2770 2771 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2772 getCurSDLoc(), VT, MOps1); 2773 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2774 getCurSDLoc(), VT, MOps2); 2775 2776 // Readjust mask for new input vector length. 2777 SmallVector<int, 8> MappedOps; 2778 for (unsigned i = 0; i != MaskNumElts; ++i) { 2779 int Idx = Mask[i]; 2780 if (Idx >= (int)SrcNumElts) 2781 Idx -= SrcNumElts - MaskNumElts; 2782 MappedOps.push_back(Idx); 2783 } 2784 2785 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2786 &MappedOps[0])); 2787 return; 2788 } 2789 2790 if (SrcNumElts > MaskNumElts) { 2791 // Analyze the access pattern of the vector to see if we can extract 2792 // two subvectors and do the shuffle. The analysis is done by calculating 2793 // the range of elements the mask access on both vectors. 2794 int MinRange[2] = { static_cast<int>(SrcNumElts), 2795 static_cast<int>(SrcNumElts)}; 2796 int MaxRange[2] = {-1, -1}; 2797 2798 for (unsigned i = 0; i != MaskNumElts; ++i) { 2799 int Idx = Mask[i]; 2800 unsigned Input = 0; 2801 if (Idx < 0) 2802 continue; 2803 2804 if (Idx >= (int)SrcNumElts) { 2805 Input = 1; 2806 Idx -= SrcNumElts; 2807 } 2808 if (Idx > MaxRange[Input]) 2809 MaxRange[Input] = Idx; 2810 if (Idx < MinRange[Input]) 2811 MinRange[Input] = Idx; 2812 } 2813 2814 // Check if the access is smaller than the vector size and can we find 2815 // a reasonable extract index. 2816 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2817 // Extract. 2818 int StartIdx[2]; // StartIdx to extract from 2819 for (unsigned Input = 0; Input < 2; ++Input) { 2820 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2821 RangeUse[Input] = 0; // Unused 2822 StartIdx[Input] = 0; 2823 continue; 2824 } 2825 2826 // Find a good start index that is a multiple of the mask length. Then 2827 // see if the rest of the elements are in range. 2828 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2829 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2830 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2831 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2832 } 2833 2834 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2835 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2836 return; 2837 } 2838 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2839 // Extract appropriate subvector and generate a vector shuffle 2840 for (unsigned Input = 0; Input < 2; ++Input) { 2841 SDValue &Src = Input == 0 ? Src1 : Src2; 2842 if (RangeUse[Input] == 0) 2843 Src = DAG.getUNDEF(VT); 2844 else { 2845 SDLoc dl = getCurSDLoc(); 2846 Src = DAG.getNode( 2847 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 2848 DAG.getConstant(StartIdx[Input], dl, 2849 TLI.getVectorIdxTy(DAG.getDataLayout()))); 2850 } 2851 } 2852 2853 // Calculate new mask. 2854 SmallVector<int, 8> MappedOps; 2855 for (unsigned i = 0; i != MaskNumElts; ++i) { 2856 int Idx = Mask[i]; 2857 if (Idx >= 0) { 2858 if (Idx < (int)SrcNumElts) 2859 Idx -= StartIdx[0]; 2860 else 2861 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2862 } 2863 MappedOps.push_back(Idx); 2864 } 2865 2866 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2867 &MappedOps[0])); 2868 return; 2869 } 2870 } 2871 2872 // We can't use either concat vectors or extract subvectors so fall back to 2873 // replacing the shuffle with extract and build vector. 2874 // to insert and build vector. 2875 EVT EltVT = VT.getVectorElementType(); 2876 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 2877 SDLoc dl = getCurSDLoc(); 2878 SmallVector<SDValue,8> Ops; 2879 for (unsigned i = 0; i != MaskNumElts; ++i) { 2880 int Idx = Mask[i]; 2881 SDValue Res; 2882 2883 if (Idx < 0) { 2884 Res = DAG.getUNDEF(EltVT); 2885 } else { 2886 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2887 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2888 2889 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 2890 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 2891 } 2892 2893 Ops.push_back(Res); 2894 } 2895 2896 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 2897 } 2898 2899 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2900 const Value *Op0 = I.getOperand(0); 2901 const Value *Op1 = I.getOperand(1); 2902 Type *AggTy = I.getType(); 2903 Type *ValTy = Op1->getType(); 2904 bool IntoUndef = isa<UndefValue>(Op0); 2905 bool FromUndef = isa<UndefValue>(Op1); 2906 2907 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2908 2909 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2910 SmallVector<EVT, 4> AggValueVTs; 2911 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 2912 SmallVector<EVT, 4> ValValueVTs; 2913 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2914 2915 unsigned NumAggValues = AggValueVTs.size(); 2916 unsigned NumValValues = ValValueVTs.size(); 2917 SmallVector<SDValue, 4> Values(NumAggValues); 2918 2919 // Ignore an insertvalue that produces an empty object 2920 if (!NumAggValues) { 2921 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2922 return; 2923 } 2924 2925 SDValue Agg = getValue(Op0); 2926 unsigned i = 0; 2927 // Copy the beginning value(s) from the original aggregate. 2928 for (; i != LinearIndex; ++i) 2929 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2930 SDValue(Agg.getNode(), Agg.getResNo() + i); 2931 // Copy values from the inserted value(s). 2932 if (NumValValues) { 2933 SDValue Val = getValue(Op1); 2934 for (; i != LinearIndex + NumValValues; ++i) 2935 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2936 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2937 } 2938 // Copy remaining value(s) from the original aggregate. 2939 for (; i != NumAggValues; ++i) 2940 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2941 SDValue(Agg.getNode(), Agg.getResNo() + i); 2942 2943 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2944 DAG.getVTList(AggValueVTs), Values)); 2945 } 2946 2947 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2948 const Value *Op0 = I.getOperand(0); 2949 Type *AggTy = Op0->getType(); 2950 Type *ValTy = I.getType(); 2951 bool OutOfUndef = isa<UndefValue>(Op0); 2952 2953 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2954 2955 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2956 SmallVector<EVT, 4> ValValueVTs; 2957 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2958 2959 unsigned NumValValues = ValValueVTs.size(); 2960 2961 // Ignore a extractvalue that produces an empty object 2962 if (!NumValValues) { 2963 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2964 return; 2965 } 2966 2967 SmallVector<SDValue, 4> Values(NumValValues); 2968 2969 SDValue Agg = getValue(Op0); 2970 // Copy out the selected value(s). 2971 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2972 Values[i - LinearIndex] = 2973 OutOfUndef ? 2974 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2975 SDValue(Agg.getNode(), Agg.getResNo() + i); 2976 2977 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2978 DAG.getVTList(ValValueVTs), Values)); 2979 } 2980 2981 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2982 Value *Op0 = I.getOperand(0); 2983 // Note that the pointer operand may be a vector of pointers. Take the scalar 2984 // element which holds a pointer. 2985 Type *Ty = Op0->getType()->getScalarType(); 2986 unsigned AS = Ty->getPointerAddressSpace(); 2987 SDValue N = getValue(Op0); 2988 SDLoc dl = getCurSDLoc(); 2989 2990 // Normalize Vector GEP - all scalar operands should be converted to the 2991 // splat vector. 2992 unsigned VectorWidth = I.getType()->isVectorTy() ? 2993 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 2994 2995 if (VectorWidth && !N.getValueType().isVector()) { 2996 MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth); 2997 SmallVector<SDValue, 16> Ops(VectorWidth, N); 2998 N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 2999 } 3000 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 3001 OI != E; ++OI) { 3002 const Value *Idx = *OI; 3003 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 3004 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3005 if (Field) { 3006 // N = N + Offset 3007 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3008 3009 // In an inbouds GEP with an offset that is nonnegative even when 3010 // interpreted as signed, assume there is no unsigned overflow. 3011 SDNodeFlags Flags; 3012 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3013 Flags.setNoUnsignedWrap(true); 3014 3015 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3016 DAG.getConstant(Offset, dl, N.getValueType()), &Flags); 3017 } 3018 3019 Ty = StTy->getElementType(Field); 3020 } else { 3021 Ty = cast<SequentialType>(Ty)->getElementType(); 3022 MVT PtrTy = 3023 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 3024 unsigned PtrSize = PtrTy.getSizeInBits(); 3025 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 3026 3027 // If this is a scalar constant or a splat vector of constants, 3028 // handle it quickly. 3029 const auto *CI = dyn_cast<ConstantInt>(Idx); 3030 if (!CI && isa<ConstantDataVector>(Idx) && 3031 cast<ConstantDataVector>(Idx)->getSplatValue()) 3032 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3033 3034 if (CI) { 3035 if (CI->isZero()) 3036 continue; 3037 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 3038 SDValue OffsVal = VectorWidth ? 3039 DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) : 3040 DAG.getConstant(Offs, dl, PtrTy); 3041 3042 // In an inbouds GEP with an offset that is nonnegative even when 3043 // interpreted as signed, assume there is no unsigned overflow. 3044 SDNodeFlags Flags; 3045 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3046 Flags.setNoUnsignedWrap(true); 3047 3048 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, &Flags); 3049 continue; 3050 } 3051 3052 // N = N + Idx * ElementSize; 3053 SDValue IdxN = getValue(Idx); 3054 3055 if (!IdxN.getValueType().isVector() && VectorWidth) { 3056 MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth); 3057 SmallVector<SDValue, 16> Ops(VectorWidth, IdxN); 3058 IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 3059 } 3060 // If the index is smaller or larger than intptr_t, truncate or extend 3061 // it. 3062 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3063 3064 // If this is a multiply by a power of two, turn it into a shl 3065 // immediately. This is a very common case. 3066 if (ElementSize != 1) { 3067 if (ElementSize.isPowerOf2()) { 3068 unsigned Amt = ElementSize.logBase2(); 3069 IdxN = DAG.getNode(ISD::SHL, dl, 3070 N.getValueType(), IdxN, 3071 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3072 } else { 3073 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3074 IdxN = DAG.getNode(ISD::MUL, dl, 3075 N.getValueType(), IdxN, Scale); 3076 } 3077 } 3078 3079 N = DAG.getNode(ISD::ADD, dl, 3080 N.getValueType(), N, IdxN); 3081 } 3082 } 3083 3084 setValue(&I, N); 3085 } 3086 3087 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3088 // If this is a fixed sized alloca in the entry block of the function, 3089 // allocate it statically on the stack. 3090 if (FuncInfo.StaticAllocaMap.count(&I)) 3091 return; // getValue will auto-populate this. 3092 3093 SDLoc dl = getCurSDLoc(); 3094 Type *Ty = I.getAllocatedType(); 3095 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3096 auto &DL = DAG.getDataLayout(); 3097 uint64_t TySize = DL.getTypeAllocSize(Ty); 3098 unsigned Align = 3099 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3100 3101 SDValue AllocSize = getValue(I.getArraySize()); 3102 3103 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 3104 if (AllocSize.getValueType() != IntPtr) 3105 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3106 3107 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3108 AllocSize, 3109 DAG.getConstant(TySize, dl, IntPtr)); 3110 3111 // Handle alignment. If the requested alignment is less than or equal to 3112 // the stack alignment, ignore it. If the size is greater than or equal to 3113 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3114 unsigned StackAlign = 3115 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3116 if (Align <= StackAlign) 3117 Align = 0; 3118 3119 // Round the size of the allocation up to the stack alignment size 3120 // by add SA-1 to the size. This doesn't overflow because we're computing 3121 // an address inside an alloca. 3122 SDNodeFlags Flags; 3123 Flags.setNoUnsignedWrap(true); 3124 AllocSize = DAG.getNode(ISD::ADD, dl, 3125 AllocSize.getValueType(), AllocSize, 3126 DAG.getIntPtrConstant(StackAlign - 1, dl), &Flags); 3127 3128 // Mask out the low bits for alignment purposes. 3129 AllocSize = DAG.getNode(ISD::AND, dl, 3130 AllocSize.getValueType(), AllocSize, 3131 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 3132 dl)); 3133 3134 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 3135 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3136 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3137 setValue(&I, DSA); 3138 DAG.setRoot(DSA.getValue(1)); 3139 3140 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3141 } 3142 3143 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3144 if (I.isAtomic()) 3145 return visitAtomicLoad(I); 3146 3147 const Value *SV = I.getOperand(0); 3148 SDValue Ptr = getValue(SV); 3149 3150 Type *Ty = I.getType(); 3151 3152 bool isVolatile = I.isVolatile(); 3153 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3154 3155 // The IR notion of invariant_load only guarantees that all *non-faulting* 3156 // invariant loads result in the same value. The MI notion of invariant load 3157 // guarantees that the load can be legally moved to any location within its 3158 // containing function. The MI notion of invariant_load is stronger than the 3159 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load 3160 // with a guarantee that the location being loaded from is dereferenceable 3161 // throughout the function's lifetime. 3162 3163 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr && 3164 isDereferenceablePointer(SV, DAG.getDataLayout()); 3165 unsigned Alignment = I.getAlignment(); 3166 3167 AAMDNodes AAInfo; 3168 I.getAAMetadata(AAInfo); 3169 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3170 3171 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3172 SmallVector<EVT, 4> ValueVTs; 3173 SmallVector<uint64_t, 4> Offsets; 3174 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3175 unsigned NumValues = ValueVTs.size(); 3176 if (NumValues == 0) 3177 return; 3178 3179 SDValue Root; 3180 bool ConstantMemory = false; 3181 if (isVolatile || NumValues > MaxParallelChains) 3182 // Serialize volatile loads with other side effects. 3183 Root = getRoot(); 3184 else if (AA->pointsToConstantMemory(MemoryLocation( 3185 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3186 // Do not serialize (non-volatile) loads of constant memory with anything. 3187 Root = DAG.getEntryNode(); 3188 ConstantMemory = true; 3189 } else { 3190 // Do not serialize non-volatile loads against each other. 3191 Root = DAG.getRoot(); 3192 } 3193 3194 SDLoc dl = getCurSDLoc(); 3195 3196 if (isVolatile) 3197 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3198 3199 // An aggregate load cannot wrap around the address space, so offsets to its 3200 // parts don't wrap either. 3201 SDNodeFlags Flags; 3202 Flags.setNoUnsignedWrap(true); 3203 3204 SmallVector<SDValue, 4> Values(NumValues); 3205 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3206 EVT PtrVT = Ptr.getValueType(); 3207 unsigned ChainI = 0; 3208 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3209 // Serializing loads here may result in excessive register pressure, and 3210 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3211 // could recover a bit by hoisting nodes upward in the chain by recognizing 3212 // they are side-effect free or do not alias. The optimizer should really 3213 // avoid this case by converting large object/array copies to llvm.memcpy 3214 // (MaxParallelChains should always remain as failsafe). 3215 if (ChainI == MaxParallelChains) { 3216 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3217 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3218 makeArrayRef(Chains.data(), ChainI)); 3219 Root = Chain; 3220 ChainI = 0; 3221 } 3222 SDValue A = DAG.getNode(ISD::ADD, dl, 3223 PtrVT, Ptr, 3224 DAG.getConstant(Offsets[i], dl, PtrVT), 3225 &Flags); 3226 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 3227 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3228 isNonTemporal, isInvariant, Alignment, AAInfo, 3229 Ranges); 3230 3231 Values[i] = L; 3232 Chains[ChainI] = L.getValue(1); 3233 } 3234 3235 if (!ConstantMemory) { 3236 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3237 makeArrayRef(Chains.data(), ChainI)); 3238 if (isVolatile) 3239 DAG.setRoot(Chain); 3240 else 3241 PendingLoads.push_back(Chain); 3242 } 3243 3244 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3245 DAG.getVTList(ValueVTs), Values)); 3246 } 3247 3248 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3249 if (I.isAtomic()) 3250 return visitAtomicStore(I); 3251 3252 const Value *SrcV = I.getOperand(0); 3253 const Value *PtrV = I.getOperand(1); 3254 3255 SmallVector<EVT, 4> ValueVTs; 3256 SmallVector<uint64_t, 4> Offsets; 3257 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3258 SrcV->getType(), ValueVTs, &Offsets); 3259 unsigned NumValues = ValueVTs.size(); 3260 if (NumValues == 0) 3261 return; 3262 3263 // Get the lowered operands. Note that we do this after 3264 // checking if NumResults is zero, because with zero results 3265 // the operands won't have values in the map. 3266 SDValue Src = getValue(SrcV); 3267 SDValue Ptr = getValue(PtrV); 3268 3269 SDValue Root = getRoot(); 3270 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3271 EVT PtrVT = Ptr.getValueType(); 3272 bool isVolatile = I.isVolatile(); 3273 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3274 unsigned Alignment = I.getAlignment(); 3275 SDLoc dl = getCurSDLoc(); 3276 3277 AAMDNodes AAInfo; 3278 I.getAAMetadata(AAInfo); 3279 3280 // An aggregate load cannot wrap around the address space, so offsets to its 3281 // parts don't wrap either. 3282 SDNodeFlags Flags; 3283 Flags.setNoUnsignedWrap(true); 3284 3285 unsigned ChainI = 0; 3286 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3287 // See visitLoad comments. 3288 if (ChainI == MaxParallelChains) { 3289 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3290 makeArrayRef(Chains.data(), ChainI)); 3291 Root = Chain; 3292 ChainI = 0; 3293 } 3294 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3295 DAG.getConstant(Offsets[i], dl, PtrVT), &Flags); 3296 SDValue St = DAG.getStore(Root, dl, 3297 SDValue(Src.getNode(), Src.getResNo() + i), 3298 Add, MachinePointerInfo(PtrV, Offsets[i]), 3299 isVolatile, isNonTemporal, Alignment, AAInfo); 3300 Chains[ChainI] = St; 3301 } 3302 3303 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3304 makeArrayRef(Chains.data(), ChainI)); 3305 DAG.setRoot(StoreNode); 3306 } 3307 3308 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3309 SDLoc sdl = getCurSDLoc(); 3310 3311 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3312 Value *PtrOperand = I.getArgOperand(1); 3313 SDValue Ptr = getValue(PtrOperand); 3314 SDValue Src0 = getValue(I.getArgOperand(0)); 3315 SDValue Mask = getValue(I.getArgOperand(3)); 3316 EVT VT = Src0.getValueType(); 3317 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3318 if (!Alignment) 3319 Alignment = DAG.getEVTAlignment(VT); 3320 3321 AAMDNodes AAInfo; 3322 I.getAAMetadata(AAInfo); 3323 3324 MachineMemOperand *MMO = 3325 DAG.getMachineFunction(). 3326 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3327 MachineMemOperand::MOStore, VT.getStoreSize(), 3328 Alignment, AAInfo); 3329 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3330 MMO, false); 3331 DAG.setRoot(StoreNode); 3332 setValue(&I, StoreNode); 3333 } 3334 3335 // Get a uniform base for the Gather/Scatter intrinsic. 3336 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3337 // We try to represent it as a base pointer + vector of indices. 3338 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3339 // The first operand of the GEP may be a single pointer or a vector of pointers 3340 // Example: 3341 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3342 // or 3343 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3344 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3345 // 3346 // When the first GEP operand is a single pointer - it is the uniform base we 3347 // are looking for. If first operand of the GEP is a splat vector - we 3348 // extract the spalt value and use it as a uniform base. 3349 // In all other cases the function returns 'false'. 3350 // 3351 static bool getUniformBase(const Value *& Ptr, SDValue& Base, SDValue& Index, 3352 SelectionDAGBuilder* SDB) { 3353 3354 SelectionDAG& DAG = SDB->DAG; 3355 LLVMContext &Context = *DAG.getContext(); 3356 3357 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3358 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3359 if (!GEP || GEP->getNumOperands() > 2) 3360 return false; 3361 3362 const Value *GEPPtr = GEP->getPointerOperand(); 3363 if (!GEPPtr->getType()->isVectorTy()) 3364 Ptr = GEPPtr; 3365 else if (!(Ptr = getSplatValue(GEPPtr))) 3366 return false; 3367 3368 Value *IndexVal = GEP->getOperand(1); 3369 3370 // The operands of the GEP may be defined in another basic block. 3371 // In this case we'll not find nodes for the operands. 3372 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3373 return false; 3374 3375 Base = SDB->getValue(Ptr); 3376 Index = SDB->getValue(IndexVal); 3377 3378 // Suppress sign extension. 3379 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3380 if (SDB->findValue(Sext->getOperand(0))) { 3381 IndexVal = Sext->getOperand(0); 3382 Index = SDB->getValue(IndexVal); 3383 } 3384 } 3385 if (!Index.getValueType().isVector()) { 3386 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3387 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3388 SmallVector<SDValue, 16> Ops(GEPWidth, Index); 3389 Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops); 3390 } 3391 return true; 3392 } 3393 3394 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3395 SDLoc sdl = getCurSDLoc(); 3396 3397 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3398 const Value *Ptr = I.getArgOperand(1); 3399 SDValue Src0 = getValue(I.getArgOperand(0)); 3400 SDValue Mask = getValue(I.getArgOperand(3)); 3401 EVT VT = Src0.getValueType(); 3402 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3403 if (!Alignment) 3404 Alignment = DAG.getEVTAlignment(VT); 3405 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3406 3407 AAMDNodes AAInfo; 3408 I.getAAMetadata(AAInfo); 3409 3410 SDValue Base; 3411 SDValue Index; 3412 const Value *BasePtr = Ptr; 3413 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3414 3415 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3416 MachineMemOperand *MMO = DAG.getMachineFunction(). 3417 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3418 MachineMemOperand::MOStore, VT.getStoreSize(), 3419 Alignment, AAInfo); 3420 if (!UniformBase) { 3421 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3422 Index = getValue(Ptr); 3423 } 3424 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3425 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3426 Ops, MMO); 3427 DAG.setRoot(Scatter); 3428 setValue(&I, Scatter); 3429 } 3430 3431 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3432 SDLoc sdl = getCurSDLoc(); 3433 3434 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3435 Value *PtrOperand = I.getArgOperand(0); 3436 SDValue Ptr = getValue(PtrOperand); 3437 SDValue Src0 = getValue(I.getArgOperand(3)); 3438 SDValue Mask = getValue(I.getArgOperand(2)); 3439 3440 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3441 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3442 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3443 if (!Alignment) 3444 Alignment = DAG.getEVTAlignment(VT); 3445 3446 AAMDNodes AAInfo; 3447 I.getAAMetadata(AAInfo); 3448 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3449 3450 SDValue InChain = DAG.getRoot(); 3451 if (AA->pointsToConstantMemory(MemoryLocation( 3452 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3453 AAInfo))) { 3454 // Do not serialize (non-volatile) loads of constant memory with anything. 3455 InChain = DAG.getEntryNode(); 3456 } 3457 3458 MachineMemOperand *MMO = 3459 DAG.getMachineFunction(). 3460 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3461 MachineMemOperand::MOLoad, VT.getStoreSize(), 3462 Alignment, AAInfo, Ranges); 3463 3464 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3465 ISD::NON_EXTLOAD); 3466 SDValue OutChain = Load.getValue(1); 3467 DAG.setRoot(OutChain); 3468 setValue(&I, Load); 3469 } 3470 3471 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3472 SDLoc sdl = getCurSDLoc(); 3473 3474 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3475 const Value *Ptr = I.getArgOperand(0); 3476 SDValue Src0 = getValue(I.getArgOperand(3)); 3477 SDValue Mask = getValue(I.getArgOperand(2)); 3478 3479 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3480 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3481 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3482 if (!Alignment) 3483 Alignment = DAG.getEVTAlignment(VT); 3484 3485 AAMDNodes AAInfo; 3486 I.getAAMetadata(AAInfo); 3487 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3488 3489 SDValue Root = DAG.getRoot(); 3490 SDValue Base; 3491 SDValue Index; 3492 const Value *BasePtr = Ptr; 3493 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3494 bool ConstantMemory = false; 3495 if (UniformBase && 3496 AA->pointsToConstantMemory(MemoryLocation( 3497 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3498 AAInfo))) { 3499 // Do not serialize (non-volatile) loads of constant memory with anything. 3500 Root = DAG.getEntryNode(); 3501 ConstantMemory = true; 3502 } 3503 3504 MachineMemOperand *MMO = 3505 DAG.getMachineFunction(). 3506 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3507 MachineMemOperand::MOLoad, VT.getStoreSize(), 3508 Alignment, AAInfo, Ranges); 3509 3510 if (!UniformBase) { 3511 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3512 Index = getValue(Ptr); 3513 } 3514 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3515 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3516 Ops, MMO); 3517 3518 SDValue OutChain = Gather.getValue(1); 3519 if (!ConstantMemory) 3520 PendingLoads.push_back(OutChain); 3521 setValue(&I, Gather); 3522 } 3523 3524 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3525 SDLoc dl = getCurSDLoc(); 3526 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3527 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3528 SynchronizationScope Scope = I.getSynchScope(); 3529 3530 SDValue InChain = getRoot(); 3531 3532 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3533 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3534 SDValue L = DAG.getAtomicCmpSwap( 3535 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3536 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3537 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3538 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3539 3540 SDValue OutChain = L.getValue(2); 3541 3542 setValue(&I, L); 3543 DAG.setRoot(OutChain); 3544 } 3545 3546 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3547 SDLoc dl = getCurSDLoc(); 3548 ISD::NodeType NT; 3549 switch (I.getOperation()) { 3550 default: llvm_unreachable("Unknown atomicrmw operation"); 3551 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3552 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3553 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3554 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3555 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3556 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3557 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3558 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3559 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3560 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3561 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3562 } 3563 AtomicOrdering Order = I.getOrdering(); 3564 SynchronizationScope Scope = I.getSynchScope(); 3565 3566 SDValue InChain = getRoot(); 3567 3568 SDValue L = 3569 DAG.getAtomic(NT, dl, 3570 getValue(I.getValOperand()).getSimpleValueType(), 3571 InChain, 3572 getValue(I.getPointerOperand()), 3573 getValue(I.getValOperand()), 3574 I.getPointerOperand(), 3575 /* Alignment=*/ 0, Order, Scope); 3576 3577 SDValue OutChain = L.getValue(1); 3578 3579 setValue(&I, L); 3580 DAG.setRoot(OutChain); 3581 } 3582 3583 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3584 SDLoc dl = getCurSDLoc(); 3585 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3586 SDValue Ops[3]; 3587 Ops[0] = getRoot(); 3588 Ops[1] = DAG.getConstant(I.getOrdering(), dl, 3589 TLI.getPointerTy(DAG.getDataLayout())); 3590 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, 3591 TLI.getPointerTy(DAG.getDataLayout())); 3592 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3593 } 3594 3595 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3596 SDLoc dl = getCurSDLoc(); 3597 AtomicOrdering Order = I.getOrdering(); 3598 SynchronizationScope Scope = I.getSynchScope(); 3599 3600 SDValue InChain = getRoot(); 3601 3602 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3603 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3604 3605 if (I.getAlignment() < VT.getSizeInBits() / 8) 3606 report_fatal_error("Cannot generate unaligned atomic load"); 3607 3608 MachineMemOperand *MMO = 3609 DAG.getMachineFunction(). 3610 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3611 MachineMemOperand::MOVolatile | 3612 MachineMemOperand::MOLoad, 3613 VT.getStoreSize(), 3614 I.getAlignment() ? I.getAlignment() : 3615 DAG.getEVTAlignment(VT)); 3616 3617 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3618 SDValue L = 3619 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3620 getValue(I.getPointerOperand()), MMO, 3621 Order, Scope); 3622 3623 SDValue OutChain = L.getValue(1); 3624 3625 setValue(&I, L); 3626 DAG.setRoot(OutChain); 3627 } 3628 3629 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3630 SDLoc dl = getCurSDLoc(); 3631 3632 AtomicOrdering Order = I.getOrdering(); 3633 SynchronizationScope Scope = I.getSynchScope(); 3634 3635 SDValue InChain = getRoot(); 3636 3637 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3638 EVT VT = 3639 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 3640 3641 if (I.getAlignment() < VT.getSizeInBits() / 8) 3642 report_fatal_error("Cannot generate unaligned atomic store"); 3643 3644 SDValue OutChain = 3645 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3646 InChain, 3647 getValue(I.getPointerOperand()), 3648 getValue(I.getValueOperand()), 3649 I.getPointerOperand(), I.getAlignment(), 3650 Order, Scope); 3651 3652 DAG.setRoot(OutChain); 3653 } 3654 3655 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3656 /// node. 3657 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3658 unsigned Intrinsic) { 3659 bool HasChain = !I.doesNotAccessMemory(); 3660 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3661 3662 // Build the operand list. 3663 SmallVector<SDValue, 8> Ops; 3664 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3665 if (OnlyLoad) { 3666 // We don't need to serialize loads against other loads. 3667 Ops.push_back(DAG.getRoot()); 3668 } else { 3669 Ops.push_back(getRoot()); 3670 } 3671 } 3672 3673 // Info is set by getTgtMemInstrinsic 3674 TargetLowering::IntrinsicInfo Info; 3675 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3676 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3677 3678 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3679 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3680 Info.opc == ISD::INTRINSIC_W_CHAIN) 3681 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 3682 TLI.getPointerTy(DAG.getDataLayout()))); 3683 3684 // Add all operands of the call to the operand list. 3685 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3686 SDValue Op = getValue(I.getArgOperand(i)); 3687 Ops.push_back(Op); 3688 } 3689 3690 SmallVector<EVT, 4> ValueVTs; 3691 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 3692 3693 if (HasChain) 3694 ValueVTs.push_back(MVT::Other); 3695 3696 SDVTList VTs = DAG.getVTList(ValueVTs); 3697 3698 // Create the node. 3699 SDValue Result; 3700 if (IsTgtIntrinsic) { 3701 // This is target intrinsic that touches memory 3702 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3703 VTs, Ops, Info.memVT, 3704 MachinePointerInfo(Info.ptrVal, Info.offset), 3705 Info.align, Info.vol, 3706 Info.readMem, Info.writeMem, Info.size); 3707 } else if (!HasChain) { 3708 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3709 } else if (!I.getType()->isVoidTy()) { 3710 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3711 } else { 3712 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3713 } 3714 3715 if (HasChain) { 3716 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3717 if (OnlyLoad) 3718 PendingLoads.push_back(Chain); 3719 else 3720 DAG.setRoot(Chain); 3721 } 3722 3723 if (!I.getType()->isVoidTy()) { 3724 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3725 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 3726 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3727 } 3728 3729 setValue(&I, Result); 3730 } 3731 } 3732 3733 /// GetSignificand - Get the significand and build it into a floating-point 3734 /// number with exponent of 1: 3735 /// 3736 /// Op = (Op & 0x007fffff) | 0x3f800000; 3737 /// 3738 /// where Op is the hexadecimal representation of floating point value. 3739 static SDValue 3740 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3741 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3742 DAG.getConstant(0x007fffff, dl, MVT::i32)); 3743 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3744 DAG.getConstant(0x3f800000, dl, MVT::i32)); 3745 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3746 } 3747 3748 /// GetExponent - Get the exponent: 3749 /// 3750 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3751 /// 3752 /// where Op is the hexadecimal representation of floating point value. 3753 static SDValue 3754 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3755 SDLoc dl) { 3756 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3757 DAG.getConstant(0x7f800000, dl, MVT::i32)); 3758 SDValue t1 = DAG.getNode( 3759 ISD::SRL, dl, MVT::i32, t0, 3760 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 3761 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3762 DAG.getConstant(127, dl, MVT::i32)); 3763 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3764 } 3765 3766 /// getF32Constant - Get 32-bit floating point constant. 3767 static SDValue 3768 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 3769 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 3770 MVT::f32); 3771 } 3772 3773 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3774 SelectionDAG &DAG) { 3775 // TODO: What fast-math-flags should be set on the floating-point nodes? 3776 3777 // IntegerPartOfX = ((int32_t)(t0); 3778 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3779 3780 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3781 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3782 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3783 3784 // IntegerPartOfX <<= 23; 3785 IntegerPartOfX = DAG.getNode( 3786 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3787 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 3788 DAG.getDataLayout()))); 3789 3790 SDValue TwoToFractionalPartOfX; 3791 if (LimitFloatPrecision <= 6) { 3792 // For floating-point precision of 6: 3793 // 3794 // TwoToFractionalPartOfX = 3795 // 0.997535578f + 3796 // (0.735607626f + 0.252464424f * x) * x; 3797 // 3798 // error 0.0144103317, which is 6 bits 3799 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3800 getF32Constant(DAG, 0x3e814304, dl)); 3801 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3802 getF32Constant(DAG, 0x3f3c50c8, dl)); 3803 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3804 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3805 getF32Constant(DAG, 0x3f7f5e7e, dl)); 3806 } else if (LimitFloatPrecision <= 12) { 3807 // For floating-point precision of 12: 3808 // 3809 // TwoToFractionalPartOfX = 3810 // 0.999892986f + 3811 // (0.696457318f + 3812 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3813 // 3814 // error 0.000107046256, which is 13 to 14 bits 3815 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3816 getF32Constant(DAG, 0x3da235e3, dl)); 3817 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3818 getF32Constant(DAG, 0x3e65b8f3, dl)); 3819 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3820 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3821 getF32Constant(DAG, 0x3f324b07, dl)); 3822 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3823 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3824 getF32Constant(DAG, 0x3f7ff8fd, dl)); 3825 } else { // LimitFloatPrecision <= 18 3826 // For floating-point precision of 18: 3827 // 3828 // TwoToFractionalPartOfX = 3829 // 0.999999982f + 3830 // (0.693148872f + 3831 // (0.240227044f + 3832 // (0.554906021e-1f + 3833 // (0.961591928e-2f + 3834 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3835 // error 2.47208000*10^(-7), which is better than 18 bits 3836 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3837 getF32Constant(DAG, 0x3924b03e, dl)); 3838 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3839 getF32Constant(DAG, 0x3ab24b87, dl)); 3840 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3841 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3842 getF32Constant(DAG, 0x3c1d8c17, dl)); 3843 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3844 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3845 getF32Constant(DAG, 0x3d634a1d, dl)); 3846 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3847 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3848 getF32Constant(DAG, 0x3e75fe14, dl)); 3849 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3850 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3851 getF32Constant(DAG, 0x3f317234, dl)); 3852 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3853 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3854 getF32Constant(DAG, 0x3f800000, dl)); 3855 } 3856 3857 // Add the exponent into the result in integer domain. 3858 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 3859 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3860 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 3861 } 3862 3863 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3864 /// limited-precision mode. 3865 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3866 const TargetLowering &TLI) { 3867 if (Op.getValueType() == MVT::f32 && 3868 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3869 3870 // Put the exponent in the right bit position for later addition to the 3871 // final result: 3872 // 3873 // #define LOG2OFe 1.4426950f 3874 // t0 = Op * LOG2OFe 3875 3876 // TODO: What fast-math-flags should be set here? 3877 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3878 getF32Constant(DAG, 0x3fb8aa3b, dl)); 3879 return getLimitedPrecisionExp2(t0, dl, DAG); 3880 } 3881 3882 // No special expansion. 3883 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3884 } 3885 3886 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3887 /// limited-precision mode. 3888 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3889 const TargetLowering &TLI) { 3890 3891 // TODO: What fast-math-flags should be set on the floating-point nodes? 3892 3893 if (Op.getValueType() == MVT::f32 && 3894 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3895 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3896 3897 // Scale the exponent by log(2) [0.69314718f]. 3898 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3899 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3900 getF32Constant(DAG, 0x3f317218, dl)); 3901 3902 // Get the significand and build it into a floating-point number with 3903 // exponent of 1. 3904 SDValue X = GetSignificand(DAG, Op1, dl); 3905 3906 SDValue LogOfMantissa; 3907 if (LimitFloatPrecision <= 6) { 3908 // For floating-point precision of 6: 3909 // 3910 // LogofMantissa = 3911 // -1.1609546f + 3912 // (1.4034025f - 0.23903021f * x) * x; 3913 // 3914 // error 0.0034276066, which is better than 8 bits 3915 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3916 getF32Constant(DAG, 0xbe74c456, dl)); 3917 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3918 getF32Constant(DAG, 0x3fb3a2b1, dl)); 3919 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3920 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3921 getF32Constant(DAG, 0x3f949a29, dl)); 3922 } else if (LimitFloatPrecision <= 12) { 3923 // For floating-point precision of 12: 3924 // 3925 // LogOfMantissa = 3926 // -1.7417939f + 3927 // (2.8212026f + 3928 // (-1.4699568f + 3929 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3930 // 3931 // error 0.000061011436, which is 14 bits 3932 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3933 getF32Constant(DAG, 0xbd67b6d6, dl)); 3934 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3935 getF32Constant(DAG, 0x3ee4f4b8, dl)); 3936 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3937 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3938 getF32Constant(DAG, 0x3fbc278b, dl)); 3939 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3940 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3941 getF32Constant(DAG, 0x40348e95, dl)); 3942 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3943 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3944 getF32Constant(DAG, 0x3fdef31a, dl)); 3945 } else { // LimitFloatPrecision <= 18 3946 // For floating-point precision of 18: 3947 // 3948 // LogOfMantissa = 3949 // -2.1072184f + 3950 // (4.2372794f + 3951 // (-3.7029485f + 3952 // (2.2781945f + 3953 // (-0.87823314f + 3954 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3955 // 3956 // error 0.0000023660568, which is better than 18 bits 3957 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3958 getF32Constant(DAG, 0xbc91e5ac, dl)); 3959 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3960 getF32Constant(DAG, 0x3e4350aa, dl)); 3961 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3962 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3963 getF32Constant(DAG, 0x3f60d3e3, dl)); 3964 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3965 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3966 getF32Constant(DAG, 0x4011cdf0, dl)); 3967 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3968 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3969 getF32Constant(DAG, 0x406cfd1c, dl)); 3970 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3971 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3972 getF32Constant(DAG, 0x408797cb, dl)); 3973 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3974 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3975 getF32Constant(DAG, 0x4006dcab, dl)); 3976 } 3977 3978 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3979 } 3980 3981 // No special expansion. 3982 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3983 } 3984 3985 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3986 /// limited-precision mode. 3987 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3988 const TargetLowering &TLI) { 3989 3990 // TODO: What fast-math-flags should be set on the floating-point nodes? 3991 3992 if (Op.getValueType() == MVT::f32 && 3993 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3994 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3995 3996 // Get the exponent. 3997 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3998 3999 // Get the significand and build it into a floating-point number with 4000 // exponent of 1. 4001 SDValue X = GetSignificand(DAG, Op1, dl); 4002 4003 // Different possible minimax approximations of significand in 4004 // floating-point for various degrees of accuracy over [1,2]. 4005 SDValue Log2ofMantissa; 4006 if (LimitFloatPrecision <= 6) { 4007 // For floating-point precision of 6: 4008 // 4009 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4010 // 4011 // error 0.0049451742, which is more than 7 bits 4012 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4013 getF32Constant(DAG, 0xbeb08fe0, dl)); 4014 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4015 getF32Constant(DAG, 0x40019463, dl)); 4016 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4017 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4018 getF32Constant(DAG, 0x3fd6633d, dl)); 4019 } else if (LimitFloatPrecision <= 12) { 4020 // For floating-point precision of 12: 4021 // 4022 // Log2ofMantissa = 4023 // -2.51285454f + 4024 // (4.07009056f + 4025 // (-2.12067489f + 4026 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4027 // 4028 // error 0.0000876136000, which is better than 13 bits 4029 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4030 getF32Constant(DAG, 0xbda7262e, dl)); 4031 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4032 getF32Constant(DAG, 0x3f25280b, dl)); 4033 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4034 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4035 getF32Constant(DAG, 0x4007b923, dl)); 4036 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4037 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4038 getF32Constant(DAG, 0x40823e2f, dl)); 4039 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4040 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4041 getF32Constant(DAG, 0x4020d29c, dl)); 4042 } else { // LimitFloatPrecision <= 18 4043 // For floating-point precision of 18: 4044 // 4045 // Log2ofMantissa = 4046 // -3.0400495f + 4047 // (6.1129976f + 4048 // (-5.3420409f + 4049 // (3.2865683f + 4050 // (-1.2669343f + 4051 // (0.27515199f - 4052 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4053 // 4054 // error 0.0000018516, which is better than 18 bits 4055 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4056 getF32Constant(DAG, 0xbcd2769e, dl)); 4057 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4058 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4059 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4060 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4061 getF32Constant(DAG, 0x3fa22ae7, dl)); 4062 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4063 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4064 getF32Constant(DAG, 0x40525723, dl)); 4065 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4066 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4067 getF32Constant(DAG, 0x40aaf200, dl)); 4068 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4069 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4070 getF32Constant(DAG, 0x40c39dad, dl)); 4071 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4072 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4073 getF32Constant(DAG, 0x4042902c, dl)); 4074 } 4075 4076 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4077 } 4078 4079 // No special expansion. 4080 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4081 } 4082 4083 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4084 /// limited-precision mode. 4085 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4086 const TargetLowering &TLI) { 4087 4088 // TODO: What fast-math-flags should be set on the floating-point nodes? 4089 4090 if (Op.getValueType() == MVT::f32 && 4091 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4092 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4093 4094 // Scale the exponent by log10(2) [0.30102999f]. 4095 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4096 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4097 getF32Constant(DAG, 0x3e9a209a, dl)); 4098 4099 // Get the significand and build it into a floating-point number with 4100 // exponent of 1. 4101 SDValue X = GetSignificand(DAG, Op1, dl); 4102 4103 SDValue Log10ofMantissa; 4104 if (LimitFloatPrecision <= 6) { 4105 // For floating-point precision of 6: 4106 // 4107 // Log10ofMantissa = 4108 // -0.50419619f + 4109 // (0.60948995f - 0.10380950f * x) * x; 4110 // 4111 // error 0.0014886165, which is 6 bits 4112 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4113 getF32Constant(DAG, 0xbdd49a13, dl)); 4114 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4115 getF32Constant(DAG, 0x3f1c0789, dl)); 4116 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4117 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4118 getF32Constant(DAG, 0x3f011300, dl)); 4119 } else if (LimitFloatPrecision <= 12) { 4120 // For floating-point precision of 12: 4121 // 4122 // Log10ofMantissa = 4123 // -0.64831180f + 4124 // (0.91751397f + 4125 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4126 // 4127 // error 0.00019228036, which is better than 12 bits 4128 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4129 getF32Constant(DAG, 0x3d431f31, dl)); 4130 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4131 getF32Constant(DAG, 0x3ea21fb2, dl)); 4132 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4133 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4134 getF32Constant(DAG, 0x3f6ae232, dl)); 4135 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4136 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4137 getF32Constant(DAG, 0x3f25f7c3, dl)); 4138 } else { // LimitFloatPrecision <= 18 4139 // For floating-point precision of 18: 4140 // 4141 // Log10ofMantissa = 4142 // -0.84299375f + 4143 // (1.5327582f + 4144 // (-1.0688956f + 4145 // (0.49102474f + 4146 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4147 // 4148 // error 0.0000037995730, which is better than 18 bits 4149 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4150 getF32Constant(DAG, 0x3c5d51ce, dl)); 4151 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4152 getF32Constant(DAG, 0x3e00685a, dl)); 4153 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4154 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4155 getF32Constant(DAG, 0x3efb6798, dl)); 4156 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4157 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4158 getF32Constant(DAG, 0x3f88d192, dl)); 4159 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4160 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4161 getF32Constant(DAG, 0x3fc4316c, dl)); 4162 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4163 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4164 getF32Constant(DAG, 0x3f57ce70, dl)); 4165 } 4166 4167 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4168 } 4169 4170 // No special expansion. 4171 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4172 } 4173 4174 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4175 /// limited-precision mode. 4176 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4177 const TargetLowering &TLI) { 4178 if (Op.getValueType() == MVT::f32 && 4179 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4180 return getLimitedPrecisionExp2(Op, dl, DAG); 4181 4182 // No special expansion. 4183 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4184 } 4185 4186 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4187 /// limited-precision mode with x == 10.0f. 4188 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4189 SelectionDAG &DAG, const TargetLowering &TLI) { 4190 bool IsExp10 = false; 4191 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4192 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4193 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4194 APFloat Ten(10.0f); 4195 IsExp10 = LHSC->isExactlyValue(Ten); 4196 } 4197 } 4198 4199 // TODO: What fast-math-flags should be set on the FMUL node? 4200 if (IsExp10) { 4201 // Put the exponent in the right bit position for later addition to the 4202 // final result: 4203 // 4204 // #define LOG2OF10 3.3219281f 4205 // t0 = Op * LOG2OF10; 4206 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4207 getF32Constant(DAG, 0x40549a78, dl)); 4208 return getLimitedPrecisionExp2(t0, dl, DAG); 4209 } 4210 4211 // No special expansion. 4212 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4213 } 4214 4215 4216 /// ExpandPowI - Expand a llvm.powi intrinsic. 4217 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4218 SelectionDAG &DAG) { 4219 // If RHS is a constant, we can expand this out to a multiplication tree, 4220 // otherwise we end up lowering to a call to __powidf2 (for example). When 4221 // optimizing for size, we only want to do this if the expansion would produce 4222 // a small number of multiplies, otherwise we do the full expansion. 4223 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4224 // Get the exponent as a positive value. 4225 unsigned Val = RHSC->getSExtValue(); 4226 if ((int)Val < 0) Val = -Val; 4227 4228 // powi(x, 0) -> 1.0 4229 if (Val == 0) 4230 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4231 4232 const Function *F = DAG.getMachineFunction().getFunction(); 4233 if (!F->optForSize() || 4234 // If optimizing for size, don't insert too many multiplies. 4235 // This inserts up to 5 multiplies. 4236 countPopulation(Val) + Log2_32(Val) < 7) { 4237 // We use the simple binary decomposition method to generate the multiply 4238 // sequence. There are more optimal ways to do this (for example, 4239 // powi(x,15) generates one more multiply than it should), but this has 4240 // the benefit of being both really simple and much better than a libcall. 4241 SDValue Res; // Logically starts equal to 1.0 4242 SDValue CurSquare = LHS; 4243 // TODO: Intrinsics should have fast-math-flags that propagate to these 4244 // nodes. 4245 while (Val) { 4246 if (Val & 1) { 4247 if (Res.getNode()) 4248 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4249 else 4250 Res = CurSquare; // 1.0*CurSquare. 4251 } 4252 4253 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4254 CurSquare, CurSquare); 4255 Val >>= 1; 4256 } 4257 4258 // If the original was negative, invert the result, producing 1/(x*x*x). 4259 if (RHSC->getSExtValue() < 0) 4260 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4261 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4262 return Res; 4263 } 4264 } 4265 4266 // Otherwise, expand to a libcall. 4267 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4268 } 4269 4270 // getUnderlyingArgReg - Find underlying register used for a truncated or 4271 // bitcasted argument. 4272 static unsigned getUnderlyingArgReg(const SDValue &N) { 4273 switch (N.getOpcode()) { 4274 case ISD::CopyFromReg: 4275 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4276 case ISD::BITCAST: 4277 case ISD::AssertZext: 4278 case ISD::AssertSext: 4279 case ISD::TRUNCATE: 4280 return getUnderlyingArgReg(N.getOperand(0)); 4281 default: 4282 return 0; 4283 } 4284 } 4285 4286 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4287 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4288 /// At the end of instruction selection, they will be inserted to the entry BB. 4289 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4290 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4291 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4292 const Argument *Arg = dyn_cast<Argument>(V); 4293 if (!Arg) 4294 return false; 4295 4296 MachineFunction &MF = DAG.getMachineFunction(); 4297 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4298 4299 // Ignore inlined function arguments here. 4300 // 4301 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4302 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4303 return false; 4304 4305 Optional<MachineOperand> Op; 4306 // Some arguments' frame index is recorded during argument lowering. 4307 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4308 Op = MachineOperand::CreateFI(FI); 4309 4310 if (!Op && N.getNode()) { 4311 unsigned Reg = getUnderlyingArgReg(N); 4312 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4313 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4314 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4315 if (PR) 4316 Reg = PR; 4317 } 4318 if (Reg) 4319 Op = MachineOperand::CreateReg(Reg, false); 4320 } 4321 4322 if (!Op) { 4323 // Check if ValueMap has reg number. 4324 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4325 if (VMI != FuncInfo.ValueMap.end()) 4326 Op = MachineOperand::CreateReg(VMI->second, false); 4327 } 4328 4329 if (!Op && N.getNode()) 4330 // Check if frame index is available. 4331 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4332 if (FrameIndexSDNode *FINode = 4333 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4334 Op = MachineOperand::CreateFI(FINode->getIndex()); 4335 4336 if (!Op) 4337 return false; 4338 4339 assert(Variable->isValidLocationForIntrinsic(DL) && 4340 "Expected inlined-at fields to agree"); 4341 if (Op->isReg()) 4342 FuncInfo.ArgDbgValues.push_back( 4343 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4344 Op->getReg(), Offset, Variable, Expr)); 4345 else 4346 FuncInfo.ArgDbgValues.push_back( 4347 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4348 .addOperand(*Op) 4349 .addImm(Offset) 4350 .addMetadata(Variable) 4351 .addMetadata(Expr)); 4352 4353 return true; 4354 } 4355 4356 // VisualStudio defines setjmp as _setjmp 4357 #if defined(_MSC_VER) && defined(setjmp) && \ 4358 !defined(setjmp_undefined_for_msvc) 4359 # pragma push_macro("setjmp") 4360 # undef setjmp 4361 # define setjmp_undefined_for_msvc 4362 #endif 4363 4364 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4365 /// we want to emit this as a call to a named external function, return the name 4366 /// otherwise lower it and return null. 4367 const char * 4368 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4369 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4370 SDLoc sdl = getCurSDLoc(); 4371 DebugLoc dl = getCurDebugLoc(); 4372 SDValue Res; 4373 4374 switch (Intrinsic) { 4375 default: 4376 // By default, turn this into a target intrinsic node. 4377 visitTargetIntrinsic(I, Intrinsic); 4378 return nullptr; 4379 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4380 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4381 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4382 case Intrinsic::returnaddress: 4383 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4384 TLI.getPointerTy(DAG.getDataLayout()), 4385 getValue(I.getArgOperand(0)))); 4386 return nullptr; 4387 case Intrinsic::frameaddress: 4388 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4389 TLI.getPointerTy(DAG.getDataLayout()), 4390 getValue(I.getArgOperand(0)))); 4391 return nullptr; 4392 case Intrinsic::read_register: { 4393 Value *Reg = I.getArgOperand(0); 4394 SDValue Chain = getRoot(); 4395 SDValue RegName = 4396 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4397 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4398 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4399 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4400 setValue(&I, Res); 4401 DAG.setRoot(Res.getValue(1)); 4402 return nullptr; 4403 } 4404 case Intrinsic::write_register: { 4405 Value *Reg = I.getArgOperand(0); 4406 Value *RegValue = I.getArgOperand(1); 4407 SDValue Chain = getRoot(); 4408 SDValue RegName = 4409 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4410 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4411 RegName, getValue(RegValue))); 4412 return nullptr; 4413 } 4414 case Intrinsic::setjmp: 4415 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4416 case Intrinsic::longjmp: 4417 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4418 case Intrinsic::memcpy: { 4419 SDValue Op1 = getValue(I.getArgOperand(0)); 4420 SDValue Op2 = getValue(I.getArgOperand(1)); 4421 SDValue Op3 = getValue(I.getArgOperand(2)); 4422 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4423 if (!Align) 4424 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4425 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4426 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4427 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4428 false, isTC, 4429 MachinePointerInfo(I.getArgOperand(0)), 4430 MachinePointerInfo(I.getArgOperand(1))); 4431 updateDAGForMaybeTailCall(MC); 4432 return nullptr; 4433 } 4434 case Intrinsic::memset: { 4435 SDValue Op1 = getValue(I.getArgOperand(0)); 4436 SDValue Op2 = getValue(I.getArgOperand(1)); 4437 SDValue Op3 = getValue(I.getArgOperand(2)); 4438 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4439 if (!Align) 4440 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4441 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4442 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4443 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4444 isTC, MachinePointerInfo(I.getArgOperand(0))); 4445 updateDAGForMaybeTailCall(MS); 4446 return nullptr; 4447 } 4448 case Intrinsic::memmove: { 4449 SDValue Op1 = getValue(I.getArgOperand(0)); 4450 SDValue Op2 = getValue(I.getArgOperand(1)); 4451 SDValue Op3 = getValue(I.getArgOperand(2)); 4452 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4453 if (!Align) 4454 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4455 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4456 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4457 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4458 isTC, MachinePointerInfo(I.getArgOperand(0)), 4459 MachinePointerInfo(I.getArgOperand(1))); 4460 updateDAGForMaybeTailCall(MM); 4461 return nullptr; 4462 } 4463 case Intrinsic::dbg_declare: { 4464 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4465 DILocalVariable *Variable = DI.getVariable(); 4466 DIExpression *Expression = DI.getExpression(); 4467 const Value *Address = DI.getAddress(); 4468 assert(Variable && "Missing variable"); 4469 if (!Address) { 4470 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4471 return nullptr; 4472 } 4473 4474 // Check if address has undef value. 4475 if (isa<UndefValue>(Address) || 4476 (Address->use_empty() && !isa<Argument>(Address))) { 4477 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4478 return nullptr; 4479 } 4480 4481 SDValue &N = NodeMap[Address]; 4482 if (!N.getNode() && isa<Argument>(Address)) 4483 // Check unused arguments map. 4484 N = UnusedArgNodeMap[Address]; 4485 SDDbgValue *SDV; 4486 if (N.getNode()) { 4487 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4488 Address = BCI->getOperand(0); 4489 // Parameters are handled specially. 4490 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 4491 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4492 if (isParameter && FINode) { 4493 // Byval parameter. We have a frame index at this point. 4494 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, 4495 FINode->getIndex(), 0, dl, SDNodeOrder); 4496 } else if (isa<Argument>(Address)) { 4497 // Address is an argument, so try to emit its dbg value using 4498 // virtual register info from the FuncInfo.ValueMap. 4499 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4500 N); 4501 return nullptr; 4502 } else { 4503 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4504 true, 0, dl, SDNodeOrder); 4505 } 4506 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4507 } else { 4508 // If Address is an argument then try to emit its dbg value using 4509 // virtual register info from the FuncInfo.ValueMap. 4510 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4511 N)) { 4512 // If variable is pinned by a alloca in dominating bb then 4513 // use StaticAllocaMap. 4514 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4515 if (AI->getParent() != DI.getParent()) { 4516 DenseMap<const AllocaInst*, int>::iterator SI = 4517 FuncInfo.StaticAllocaMap.find(AI); 4518 if (SI != FuncInfo.StaticAllocaMap.end()) { 4519 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4520 0, dl, SDNodeOrder); 4521 DAG.AddDbgValue(SDV, nullptr, false); 4522 return nullptr; 4523 } 4524 } 4525 } 4526 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4527 } 4528 } 4529 return nullptr; 4530 } 4531 case Intrinsic::dbg_value: { 4532 const DbgValueInst &DI = cast<DbgValueInst>(I); 4533 assert(DI.getVariable() && "Missing variable"); 4534 4535 DILocalVariable *Variable = DI.getVariable(); 4536 DIExpression *Expression = DI.getExpression(); 4537 uint64_t Offset = DI.getOffset(); 4538 const Value *V = DI.getValue(); 4539 if (!V) 4540 return nullptr; 4541 4542 SDDbgValue *SDV; 4543 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4544 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4545 SDNodeOrder); 4546 DAG.AddDbgValue(SDV, nullptr, false); 4547 } else { 4548 // Do not use getValue() in here; we don't want to generate code at 4549 // this point if it hasn't been done yet. 4550 SDValue N = NodeMap[V]; 4551 if (!N.getNode() && isa<Argument>(V)) 4552 // Check unused arguments map. 4553 N = UnusedArgNodeMap[V]; 4554 if (N.getNode()) { 4555 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4556 false, N)) { 4557 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4558 false, Offset, dl, SDNodeOrder); 4559 DAG.AddDbgValue(SDV, N.getNode(), false); 4560 } 4561 } else if (!V->use_empty() ) { 4562 // Do not call getValue(V) yet, as we don't want to generate code. 4563 // Remember it for later. 4564 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4565 DanglingDebugInfoMap[V] = DDI; 4566 } else { 4567 // We may expand this to cover more cases. One case where we have no 4568 // data available is an unreferenced parameter. 4569 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4570 } 4571 } 4572 4573 // Build a debug info table entry. 4574 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4575 V = BCI->getOperand(0); 4576 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4577 // Don't handle byval struct arguments or VLAs, for example. 4578 if (!AI) { 4579 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4580 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4581 return nullptr; 4582 } 4583 DenseMap<const AllocaInst*, int>::iterator SI = 4584 FuncInfo.StaticAllocaMap.find(AI); 4585 if (SI == FuncInfo.StaticAllocaMap.end()) 4586 return nullptr; // VLAs. 4587 return nullptr; 4588 } 4589 4590 case Intrinsic::eh_typeid_for: { 4591 // Find the type id for the given typeinfo. 4592 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4593 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4594 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4595 setValue(&I, Res); 4596 return nullptr; 4597 } 4598 4599 case Intrinsic::eh_return_i32: 4600 case Intrinsic::eh_return_i64: 4601 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4602 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4603 MVT::Other, 4604 getControlRoot(), 4605 getValue(I.getArgOperand(0)), 4606 getValue(I.getArgOperand(1)))); 4607 return nullptr; 4608 case Intrinsic::eh_unwind_init: 4609 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4610 return nullptr; 4611 case Intrinsic::eh_dwarf_cfa: { 4612 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4613 TLI.getPointerTy(DAG.getDataLayout())); 4614 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4615 CfaArg.getValueType(), 4616 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4617 CfaArg.getValueType()), 4618 CfaArg); 4619 SDValue FA = DAG.getNode( 4620 ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()), 4621 DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 4622 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4623 FA, Offset)); 4624 return nullptr; 4625 } 4626 case Intrinsic::eh_sjlj_callsite: { 4627 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4628 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4629 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4630 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4631 4632 MMI.setCurrentCallSite(CI->getZExtValue()); 4633 return nullptr; 4634 } 4635 case Intrinsic::eh_sjlj_functioncontext: { 4636 // Get and store the index of the function context. 4637 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4638 AllocaInst *FnCtx = 4639 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4640 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4641 MFI->setFunctionContextIndex(FI); 4642 return nullptr; 4643 } 4644 case Intrinsic::eh_sjlj_setjmp: { 4645 SDValue Ops[2]; 4646 Ops[0] = getRoot(); 4647 Ops[1] = getValue(I.getArgOperand(0)); 4648 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4649 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4650 setValue(&I, Op.getValue(0)); 4651 DAG.setRoot(Op.getValue(1)); 4652 return nullptr; 4653 } 4654 case Intrinsic::eh_sjlj_longjmp: { 4655 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4656 getRoot(), getValue(I.getArgOperand(0)))); 4657 return nullptr; 4658 } 4659 case Intrinsic::eh_sjlj_setup_dispatch: { 4660 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 4661 getRoot())); 4662 return nullptr; 4663 } 4664 4665 case Intrinsic::masked_gather: 4666 visitMaskedGather(I); 4667 return nullptr; 4668 case Intrinsic::masked_load: 4669 visitMaskedLoad(I); 4670 return nullptr; 4671 case Intrinsic::masked_scatter: 4672 visitMaskedScatter(I); 4673 return nullptr; 4674 case Intrinsic::masked_store: 4675 visitMaskedStore(I); 4676 return nullptr; 4677 case Intrinsic::x86_mmx_pslli_w: 4678 case Intrinsic::x86_mmx_pslli_d: 4679 case Intrinsic::x86_mmx_pslli_q: 4680 case Intrinsic::x86_mmx_psrli_w: 4681 case Intrinsic::x86_mmx_psrli_d: 4682 case Intrinsic::x86_mmx_psrli_q: 4683 case Intrinsic::x86_mmx_psrai_w: 4684 case Intrinsic::x86_mmx_psrai_d: { 4685 SDValue ShAmt = getValue(I.getArgOperand(1)); 4686 if (isa<ConstantSDNode>(ShAmt)) { 4687 visitTargetIntrinsic(I, Intrinsic); 4688 return nullptr; 4689 } 4690 unsigned NewIntrinsic = 0; 4691 EVT ShAmtVT = MVT::v2i32; 4692 switch (Intrinsic) { 4693 case Intrinsic::x86_mmx_pslli_w: 4694 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4695 break; 4696 case Intrinsic::x86_mmx_pslli_d: 4697 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4698 break; 4699 case Intrinsic::x86_mmx_pslli_q: 4700 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4701 break; 4702 case Intrinsic::x86_mmx_psrli_w: 4703 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4704 break; 4705 case Intrinsic::x86_mmx_psrli_d: 4706 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4707 break; 4708 case Intrinsic::x86_mmx_psrli_q: 4709 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4710 break; 4711 case Intrinsic::x86_mmx_psrai_w: 4712 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4713 break; 4714 case Intrinsic::x86_mmx_psrai_d: 4715 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4716 break; 4717 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4718 } 4719 4720 // The vector shift intrinsics with scalars uses 32b shift amounts but 4721 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4722 // to be zero. 4723 // We must do this early because v2i32 is not a legal type. 4724 SDValue ShOps[2]; 4725 ShOps[0] = ShAmt; 4726 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 4727 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4728 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4729 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4730 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4731 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 4732 getValue(I.getArgOperand(0)), ShAmt); 4733 setValue(&I, Res); 4734 return nullptr; 4735 } 4736 case Intrinsic::convertff: 4737 case Intrinsic::convertfsi: 4738 case Intrinsic::convertfui: 4739 case Intrinsic::convertsif: 4740 case Intrinsic::convertuif: 4741 case Intrinsic::convertss: 4742 case Intrinsic::convertsu: 4743 case Intrinsic::convertus: 4744 case Intrinsic::convertuu: { 4745 ISD::CvtCode Code = ISD::CVT_INVALID; 4746 switch (Intrinsic) { 4747 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4748 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4749 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4750 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4751 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4752 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4753 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4754 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4755 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4756 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4757 } 4758 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4759 const Value *Op1 = I.getArgOperand(0); 4760 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4761 DAG.getValueType(DestVT), 4762 DAG.getValueType(getValue(Op1).getValueType()), 4763 getValue(I.getArgOperand(1)), 4764 getValue(I.getArgOperand(2)), 4765 Code); 4766 setValue(&I, Res); 4767 return nullptr; 4768 } 4769 case Intrinsic::powi: 4770 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4771 getValue(I.getArgOperand(1)), DAG)); 4772 return nullptr; 4773 case Intrinsic::log: 4774 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4775 return nullptr; 4776 case Intrinsic::log2: 4777 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4778 return nullptr; 4779 case Intrinsic::log10: 4780 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4781 return nullptr; 4782 case Intrinsic::exp: 4783 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4784 return nullptr; 4785 case Intrinsic::exp2: 4786 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4787 return nullptr; 4788 case Intrinsic::pow: 4789 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4790 getValue(I.getArgOperand(1)), DAG, TLI)); 4791 return nullptr; 4792 case Intrinsic::sqrt: 4793 case Intrinsic::fabs: 4794 case Intrinsic::sin: 4795 case Intrinsic::cos: 4796 case Intrinsic::floor: 4797 case Intrinsic::ceil: 4798 case Intrinsic::trunc: 4799 case Intrinsic::rint: 4800 case Intrinsic::nearbyint: 4801 case Intrinsic::round: { 4802 unsigned Opcode; 4803 switch (Intrinsic) { 4804 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4805 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4806 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4807 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4808 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4809 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4810 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4811 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4812 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4813 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4814 case Intrinsic::round: Opcode = ISD::FROUND; break; 4815 } 4816 4817 setValue(&I, DAG.getNode(Opcode, sdl, 4818 getValue(I.getArgOperand(0)).getValueType(), 4819 getValue(I.getArgOperand(0)))); 4820 return nullptr; 4821 } 4822 case Intrinsic::minnum: 4823 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4824 getValue(I.getArgOperand(0)).getValueType(), 4825 getValue(I.getArgOperand(0)), 4826 getValue(I.getArgOperand(1)))); 4827 return nullptr; 4828 case Intrinsic::maxnum: 4829 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4830 getValue(I.getArgOperand(0)).getValueType(), 4831 getValue(I.getArgOperand(0)), 4832 getValue(I.getArgOperand(1)))); 4833 return nullptr; 4834 case Intrinsic::copysign: 4835 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4836 getValue(I.getArgOperand(0)).getValueType(), 4837 getValue(I.getArgOperand(0)), 4838 getValue(I.getArgOperand(1)))); 4839 return nullptr; 4840 case Intrinsic::fma: 4841 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4842 getValue(I.getArgOperand(0)).getValueType(), 4843 getValue(I.getArgOperand(0)), 4844 getValue(I.getArgOperand(1)), 4845 getValue(I.getArgOperand(2)))); 4846 return nullptr; 4847 case Intrinsic::fmuladd: { 4848 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4849 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4850 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 4851 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4852 getValue(I.getArgOperand(0)).getValueType(), 4853 getValue(I.getArgOperand(0)), 4854 getValue(I.getArgOperand(1)), 4855 getValue(I.getArgOperand(2)))); 4856 } else { 4857 // TODO: Intrinsic calls should have fast-math-flags. 4858 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4859 getValue(I.getArgOperand(0)).getValueType(), 4860 getValue(I.getArgOperand(0)), 4861 getValue(I.getArgOperand(1))); 4862 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4863 getValue(I.getArgOperand(0)).getValueType(), 4864 Mul, 4865 getValue(I.getArgOperand(2))); 4866 setValue(&I, Add); 4867 } 4868 return nullptr; 4869 } 4870 case Intrinsic::convert_to_fp16: 4871 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 4872 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 4873 getValue(I.getArgOperand(0)), 4874 DAG.getTargetConstant(0, sdl, 4875 MVT::i32)))); 4876 return nullptr; 4877 case Intrinsic::convert_from_fp16: 4878 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 4879 TLI.getValueType(DAG.getDataLayout(), I.getType()), 4880 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 4881 getValue(I.getArgOperand(0))))); 4882 return nullptr; 4883 case Intrinsic::pcmarker: { 4884 SDValue Tmp = getValue(I.getArgOperand(0)); 4885 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4886 return nullptr; 4887 } 4888 case Intrinsic::readcyclecounter: { 4889 SDValue Op = getRoot(); 4890 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4891 DAG.getVTList(MVT::i64, MVT::Other), Op); 4892 setValue(&I, Res); 4893 DAG.setRoot(Res.getValue(1)); 4894 return nullptr; 4895 } 4896 case Intrinsic::bitreverse: 4897 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 4898 getValue(I.getArgOperand(0)).getValueType(), 4899 getValue(I.getArgOperand(0)))); 4900 return nullptr; 4901 case Intrinsic::bswap: 4902 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4903 getValue(I.getArgOperand(0)).getValueType(), 4904 getValue(I.getArgOperand(0)))); 4905 return nullptr; 4906 case Intrinsic::cttz: { 4907 SDValue Arg = getValue(I.getArgOperand(0)); 4908 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4909 EVT Ty = Arg.getValueType(); 4910 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4911 sdl, Ty, Arg)); 4912 return nullptr; 4913 } 4914 case Intrinsic::ctlz: { 4915 SDValue Arg = getValue(I.getArgOperand(0)); 4916 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4917 EVT Ty = Arg.getValueType(); 4918 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4919 sdl, Ty, Arg)); 4920 return nullptr; 4921 } 4922 case Intrinsic::ctpop: { 4923 SDValue Arg = getValue(I.getArgOperand(0)); 4924 EVT Ty = Arg.getValueType(); 4925 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4926 return nullptr; 4927 } 4928 case Intrinsic::stacksave: { 4929 SDValue Op = getRoot(); 4930 Res = DAG.getNode( 4931 ISD::STACKSAVE, sdl, 4932 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 4933 setValue(&I, Res); 4934 DAG.setRoot(Res.getValue(1)); 4935 return nullptr; 4936 } 4937 case Intrinsic::stackrestore: { 4938 Res = getValue(I.getArgOperand(0)); 4939 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 4940 return nullptr; 4941 } 4942 case Intrinsic::get_dynamic_area_offset: { 4943 SDValue Op = getRoot(); 4944 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 4945 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4946 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 4947 // target. 4948 if (PtrTy != ResTy) 4949 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 4950 " intrinsic!"); 4951 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 4952 Op); 4953 DAG.setRoot(Op); 4954 setValue(&I, Res); 4955 return nullptr; 4956 } 4957 case Intrinsic::stackprotector: { 4958 // Emit code into the DAG to store the stack guard onto the stack. 4959 MachineFunction &MF = DAG.getMachineFunction(); 4960 MachineFrameInfo *MFI = MF.getFrameInfo(); 4961 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 4962 SDValue Src, Chain = getRoot(); 4963 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 4964 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 4965 4966 // See if Ptr is a bitcast. If it is, look through it and see if we can get 4967 // global variable __stack_chk_guard. 4968 if (!GV) 4969 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 4970 if (BC->getOpcode() == Instruction::BitCast) 4971 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 4972 4973 if (GV && TLI.useLoadStackGuardNode()) { 4974 // Emit a LOAD_STACK_GUARD node. 4975 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 4976 sdl, PtrTy, Chain); 4977 MachinePointerInfo MPInfo(GV); 4978 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 4979 unsigned Flags = MachineMemOperand::MOLoad | 4980 MachineMemOperand::MOInvariant; 4981 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 4982 PtrTy.getSizeInBits() / 8, 4983 DAG.getEVTAlignment(PtrTy)); 4984 Node->setMemRefs(MemRefs, MemRefs + 1); 4985 4986 // Copy the guard value to a virtual register so that it can be 4987 // retrieved in the epilogue. 4988 Src = SDValue(Node, 0); 4989 const TargetRegisterClass *RC = 4990 TLI.getRegClassFor(Src.getSimpleValueType()); 4991 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 4992 4993 SPDescriptor.setGuardReg(Reg); 4994 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 4995 } else { 4996 Src = getValue(I.getArgOperand(0)); // The guard's value. 4997 } 4998 4999 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5000 5001 int FI = FuncInfo.StaticAllocaMap[Slot]; 5002 MFI->setStackProtectorIndex(FI); 5003 5004 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5005 5006 // Store the stack protector onto the stack. 5007 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 5008 DAG.getMachineFunction(), FI), 5009 true, false, 0); 5010 setValue(&I, Res); 5011 DAG.setRoot(Res); 5012 return nullptr; 5013 } 5014 case Intrinsic::objectsize: { 5015 // If we don't know by now, we're never going to know. 5016 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5017 5018 assert(CI && "Non-constant type in __builtin_object_size?"); 5019 5020 SDValue Arg = getValue(I.getCalledValue()); 5021 EVT Ty = Arg.getValueType(); 5022 5023 if (CI->isZero()) 5024 Res = DAG.getConstant(-1ULL, sdl, Ty); 5025 else 5026 Res = DAG.getConstant(0, sdl, Ty); 5027 5028 setValue(&I, Res); 5029 return nullptr; 5030 } 5031 case Intrinsic::annotation: 5032 case Intrinsic::ptr_annotation: 5033 // Drop the intrinsic, but forward the value 5034 setValue(&I, getValue(I.getOperand(0))); 5035 return nullptr; 5036 case Intrinsic::assume: 5037 case Intrinsic::var_annotation: 5038 // Discard annotate attributes and assumptions 5039 return nullptr; 5040 5041 case Intrinsic::init_trampoline: { 5042 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5043 5044 SDValue Ops[6]; 5045 Ops[0] = getRoot(); 5046 Ops[1] = getValue(I.getArgOperand(0)); 5047 Ops[2] = getValue(I.getArgOperand(1)); 5048 Ops[3] = getValue(I.getArgOperand(2)); 5049 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5050 Ops[5] = DAG.getSrcValue(F); 5051 5052 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5053 5054 DAG.setRoot(Res); 5055 return nullptr; 5056 } 5057 case Intrinsic::adjust_trampoline: { 5058 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5059 TLI.getPointerTy(DAG.getDataLayout()), 5060 getValue(I.getArgOperand(0)))); 5061 return nullptr; 5062 } 5063 case Intrinsic::gcroot: { 5064 MachineFunction &MF = DAG.getMachineFunction(); 5065 const Function *F = MF.getFunction(); 5066 (void)F; 5067 assert(F->hasGC() && 5068 "only valid in functions with gc specified, enforced by Verifier"); 5069 assert(GFI && "implied by previous"); 5070 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5071 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5072 5073 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5074 GFI->addStackRoot(FI->getIndex(), TypeMap); 5075 return nullptr; 5076 } 5077 case Intrinsic::gcread: 5078 case Intrinsic::gcwrite: 5079 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5080 case Intrinsic::flt_rounds: 5081 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5082 return nullptr; 5083 5084 case Intrinsic::expect: { 5085 // Just replace __builtin_expect(exp, c) with EXP. 5086 setValue(&I, getValue(I.getArgOperand(0))); 5087 return nullptr; 5088 } 5089 5090 case Intrinsic::debugtrap: 5091 case Intrinsic::trap: { 5092 StringRef TrapFuncName = 5093 I.getAttributes() 5094 .getAttribute(AttributeSet::FunctionIndex, "trap-func-name") 5095 .getValueAsString(); 5096 if (TrapFuncName.empty()) { 5097 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5098 ISD::TRAP : ISD::DEBUGTRAP; 5099 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5100 return nullptr; 5101 } 5102 TargetLowering::ArgListTy Args; 5103 5104 TargetLowering::CallLoweringInfo CLI(DAG); 5105 CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee( 5106 CallingConv::C, I.getType(), 5107 DAG.getExternalSymbol(TrapFuncName.data(), 5108 TLI.getPointerTy(DAG.getDataLayout())), 5109 std::move(Args), 0); 5110 5111 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5112 DAG.setRoot(Result.second); 5113 return nullptr; 5114 } 5115 5116 case Intrinsic::uadd_with_overflow: 5117 case Intrinsic::sadd_with_overflow: 5118 case Intrinsic::usub_with_overflow: 5119 case Intrinsic::ssub_with_overflow: 5120 case Intrinsic::umul_with_overflow: 5121 case Intrinsic::smul_with_overflow: { 5122 ISD::NodeType Op; 5123 switch (Intrinsic) { 5124 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5125 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5126 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5127 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5128 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5129 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5130 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5131 } 5132 SDValue Op1 = getValue(I.getArgOperand(0)); 5133 SDValue Op2 = getValue(I.getArgOperand(1)); 5134 5135 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5136 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5137 return nullptr; 5138 } 5139 case Intrinsic::prefetch: { 5140 SDValue Ops[5]; 5141 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5142 Ops[0] = getRoot(); 5143 Ops[1] = getValue(I.getArgOperand(0)); 5144 Ops[2] = getValue(I.getArgOperand(1)); 5145 Ops[3] = getValue(I.getArgOperand(2)); 5146 Ops[4] = getValue(I.getArgOperand(3)); 5147 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5148 DAG.getVTList(MVT::Other), Ops, 5149 EVT::getIntegerVT(*Context, 8), 5150 MachinePointerInfo(I.getArgOperand(0)), 5151 0, /* align */ 5152 false, /* volatile */ 5153 rw==0, /* read */ 5154 rw==1)); /* write */ 5155 return nullptr; 5156 } 5157 case Intrinsic::lifetime_start: 5158 case Intrinsic::lifetime_end: { 5159 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5160 // Stack coloring is not enabled in O0, discard region information. 5161 if (TM.getOptLevel() == CodeGenOpt::None) 5162 return nullptr; 5163 5164 SmallVector<Value *, 4> Allocas; 5165 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5166 5167 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5168 E = Allocas.end(); Object != E; ++Object) { 5169 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5170 5171 // Could not find an Alloca. 5172 if (!LifetimeObject) 5173 continue; 5174 5175 // First check that the Alloca is static, otherwise it won't have a 5176 // valid frame index. 5177 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5178 if (SI == FuncInfo.StaticAllocaMap.end()) 5179 return nullptr; 5180 5181 int FI = SI->second; 5182 5183 SDValue Ops[2]; 5184 Ops[0] = getRoot(); 5185 Ops[1] = 5186 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true); 5187 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5188 5189 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5190 DAG.setRoot(Res); 5191 } 5192 return nullptr; 5193 } 5194 case Intrinsic::invariant_start: 5195 // Discard region information. 5196 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5197 return nullptr; 5198 case Intrinsic::invariant_end: 5199 // Discard region information. 5200 return nullptr; 5201 case Intrinsic::stackprotectorcheck: { 5202 // Do not actually emit anything for this basic block. Instead we initialize 5203 // the stack protector descriptor and export the guard variable so we can 5204 // access it in FinishBasicBlock. 5205 const BasicBlock *BB = I.getParent(); 5206 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5207 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5208 5209 // Flush our exports since we are going to process a terminator. 5210 (void)getControlRoot(); 5211 return nullptr; 5212 } 5213 case Intrinsic::clear_cache: 5214 return TLI.getClearCacheBuiltinName(); 5215 case Intrinsic::donothing: 5216 // ignore 5217 return nullptr; 5218 case Intrinsic::experimental_stackmap: { 5219 visitStackmap(I); 5220 return nullptr; 5221 } 5222 case Intrinsic::experimental_patchpoint_void: 5223 case Intrinsic::experimental_patchpoint_i64: { 5224 visitPatchpoint(&I); 5225 return nullptr; 5226 } 5227 case Intrinsic::experimental_gc_statepoint: { 5228 visitStatepoint(I); 5229 return nullptr; 5230 } 5231 case Intrinsic::experimental_gc_result: { 5232 visitGCResult(I); 5233 return nullptr; 5234 } 5235 case Intrinsic::experimental_gc_relocate: { 5236 visitGCRelocate(cast<GCRelocateInst>(I)); 5237 return nullptr; 5238 } 5239 case Intrinsic::instrprof_increment: 5240 llvm_unreachable("instrprof failed to lower an increment"); 5241 case Intrinsic::instrprof_value_profile: 5242 llvm_unreachable("instrprof failed to lower a value profiling call"); 5243 case Intrinsic::localescape: { 5244 MachineFunction &MF = DAG.getMachineFunction(); 5245 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5246 5247 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5248 // is the same on all targets. 5249 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5250 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5251 if (isa<ConstantPointerNull>(Arg)) 5252 continue; // Skip null pointers. They represent a hole in index space. 5253 AllocaInst *Slot = cast<AllocaInst>(Arg); 5254 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5255 "can only escape static allocas"); 5256 int FI = FuncInfo.StaticAllocaMap[Slot]; 5257 MCSymbol *FrameAllocSym = 5258 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5259 GlobalValue::getRealLinkageName(MF.getName()), Idx); 5260 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5261 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5262 .addSym(FrameAllocSym) 5263 .addFrameIndex(FI); 5264 } 5265 5266 return nullptr; 5267 } 5268 5269 case Intrinsic::localrecover: { 5270 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5271 MachineFunction &MF = DAG.getMachineFunction(); 5272 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5273 5274 // Get the symbol that defines the frame offset. 5275 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5276 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5277 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5278 MCSymbol *FrameAllocSym = 5279 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5280 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5281 5282 // Create a MCSymbol for the label to avoid any target lowering 5283 // that would make this PC relative. 5284 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5285 SDValue OffsetVal = 5286 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5287 5288 // Add the offset to the FP. 5289 Value *FP = I.getArgOperand(1); 5290 SDValue FPVal = getValue(FP); 5291 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5292 setValue(&I, Add); 5293 5294 return nullptr; 5295 } 5296 5297 case Intrinsic::eh_exceptionpointer: 5298 case Intrinsic::eh_exceptioncode: { 5299 // Get the exception pointer vreg, copy from it, and resize it to fit. 5300 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 5301 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5302 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5303 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 5304 SDValue N = 5305 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5306 if (Intrinsic == Intrinsic::eh_exceptioncode) 5307 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5308 setValue(&I, N); 5309 return nullptr; 5310 } 5311 } 5312 } 5313 5314 std::pair<SDValue, SDValue> 5315 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5316 const BasicBlock *EHPadBB) { 5317 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5318 MCSymbol *BeginLabel = nullptr; 5319 5320 if (EHPadBB) { 5321 // Insert a label before the invoke call to mark the try range. This can be 5322 // used to detect deletion of the invoke via the MachineModuleInfo. 5323 BeginLabel = MMI.getContext().createTempSymbol(); 5324 5325 // For SjLj, keep track of which landing pads go with which invokes 5326 // so as to maintain the ordering of pads in the LSDA. 5327 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5328 if (CallSiteIndex) { 5329 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5330 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 5331 5332 // Now that the call site is handled, stop tracking it. 5333 MMI.setCurrentCallSite(0); 5334 } 5335 5336 // Both PendingLoads and PendingExports must be flushed here; 5337 // this call might not return. 5338 (void)getRoot(); 5339 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5340 5341 CLI.setChain(getRoot()); 5342 } 5343 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5344 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5345 5346 assert((CLI.IsTailCall || Result.second.getNode()) && 5347 "Non-null chain expected with non-tail call!"); 5348 assert((Result.second.getNode() || !Result.first.getNode()) && 5349 "Null value expected with tail call!"); 5350 5351 if (!Result.second.getNode()) { 5352 // As a special case, a null chain means that a tail call has been emitted 5353 // and the DAG root is already updated. 5354 HasTailCall = true; 5355 5356 // Since there's no actual continuation from this block, nothing can be 5357 // relying on us setting vregs for them. 5358 PendingExports.clear(); 5359 } else { 5360 DAG.setRoot(Result.second); 5361 } 5362 5363 if (EHPadBB) { 5364 // Insert a label at the end of the invoke call to mark the try range. This 5365 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5366 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5367 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5368 5369 // Inform MachineModuleInfo of range. 5370 if (MMI.hasEHFunclets()) { 5371 assert(CLI.CS); 5372 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 5373 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS->getInstruction()), 5374 BeginLabel, EndLabel); 5375 } else { 5376 MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 5377 } 5378 } 5379 5380 return Result; 5381 } 5382 5383 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5384 bool isTailCall, 5385 const BasicBlock *EHPadBB) { 5386 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5387 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5388 Type *RetTy = FTy->getReturnType(); 5389 5390 TargetLowering::ArgListTy Args; 5391 TargetLowering::ArgListEntry Entry; 5392 Args.reserve(CS.arg_size()); 5393 5394 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5395 i != e; ++i) { 5396 const Value *V = *i; 5397 5398 // Skip empty types 5399 if (V->getType()->isEmptyTy()) 5400 continue; 5401 5402 SDValue ArgNode = getValue(V); 5403 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5404 5405 // Skip the first return-type Attribute to get to params. 5406 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5407 Args.push_back(Entry); 5408 5409 // If we have an explicit sret argument that is an Instruction, (i.e., it 5410 // might point to function-local memory), we can't meaningfully tail-call. 5411 if (Entry.isSRet && isa<Instruction>(V)) 5412 isTailCall = false; 5413 } 5414 5415 // Check if target-independent constraints permit a tail call here. 5416 // Target-dependent constraints are checked within TLI->LowerCallTo. 5417 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5418 isTailCall = false; 5419 5420 TargetLowering::CallLoweringInfo CLI(DAG); 5421 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5422 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5423 .setTailCall(isTailCall); 5424 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 5425 5426 if (Result.first.getNode()) 5427 setValue(CS.getInstruction(), Result.first); 5428 } 5429 5430 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5431 /// value is equal or not-equal to zero. 5432 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5433 for (const User *U : V->users()) { 5434 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5435 if (IC->isEquality()) 5436 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5437 if (C->isNullValue()) 5438 continue; 5439 // Unknown instruction. 5440 return false; 5441 } 5442 return true; 5443 } 5444 5445 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5446 Type *LoadTy, 5447 SelectionDAGBuilder &Builder) { 5448 5449 // Check to see if this load can be trivially constant folded, e.g. if the 5450 // input is from a string literal. 5451 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5452 // Cast pointer to the type we really want to load. 5453 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5454 PointerType::getUnqual(LoadTy)); 5455 5456 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5457 const_cast<Constant *>(LoadInput), *Builder.DL)) 5458 return Builder.getValue(LoadCst); 5459 } 5460 5461 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5462 // still constant memory, the input chain can be the entry node. 5463 SDValue Root; 5464 bool ConstantMemory = false; 5465 5466 // Do not serialize (non-volatile) loads of constant memory with anything. 5467 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5468 Root = Builder.DAG.getEntryNode(); 5469 ConstantMemory = true; 5470 } else { 5471 // Do not serialize non-volatile loads against each other. 5472 Root = Builder.DAG.getRoot(); 5473 } 5474 5475 SDValue Ptr = Builder.getValue(PtrVal); 5476 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5477 Ptr, MachinePointerInfo(PtrVal), 5478 false /*volatile*/, 5479 false /*nontemporal*/, 5480 false /*isinvariant*/, 1 /* align=1 */); 5481 5482 if (!ConstantMemory) 5483 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5484 return LoadVal; 5485 } 5486 5487 /// processIntegerCallValue - Record the value for an instruction that 5488 /// produces an integer result, converting the type where necessary. 5489 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5490 SDValue Value, 5491 bool IsSigned) { 5492 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5493 I.getType(), true); 5494 if (IsSigned) 5495 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5496 else 5497 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5498 setValue(&I, Value); 5499 } 5500 5501 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5502 /// If so, return true and lower it, otherwise return false and it will be 5503 /// lowered like a normal call. 5504 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5505 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5506 if (I.getNumArgOperands() != 3) 5507 return false; 5508 5509 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5510 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5511 !I.getArgOperand(2)->getType()->isIntegerTy() || 5512 !I.getType()->isIntegerTy()) 5513 return false; 5514 5515 const Value *Size = I.getArgOperand(2); 5516 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5517 if (CSize && CSize->getZExtValue() == 0) { 5518 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5519 I.getType(), true); 5520 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5521 return true; 5522 } 5523 5524 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5525 std::pair<SDValue, SDValue> Res = 5526 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5527 getValue(LHS), getValue(RHS), getValue(Size), 5528 MachinePointerInfo(LHS), 5529 MachinePointerInfo(RHS)); 5530 if (Res.first.getNode()) { 5531 processIntegerCallValue(I, Res.first, true); 5532 PendingLoads.push_back(Res.second); 5533 return true; 5534 } 5535 5536 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5537 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5538 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5539 bool ActuallyDoIt = true; 5540 MVT LoadVT; 5541 Type *LoadTy; 5542 switch (CSize->getZExtValue()) { 5543 default: 5544 LoadVT = MVT::Other; 5545 LoadTy = nullptr; 5546 ActuallyDoIt = false; 5547 break; 5548 case 2: 5549 LoadVT = MVT::i16; 5550 LoadTy = Type::getInt16Ty(CSize->getContext()); 5551 break; 5552 case 4: 5553 LoadVT = MVT::i32; 5554 LoadTy = Type::getInt32Ty(CSize->getContext()); 5555 break; 5556 case 8: 5557 LoadVT = MVT::i64; 5558 LoadTy = Type::getInt64Ty(CSize->getContext()); 5559 break; 5560 /* 5561 case 16: 5562 LoadVT = MVT::v4i32; 5563 LoadTy = Type::getInt32Ty(CSize->getContext()); 5564 LoadTy = VectorType::get(LoadTy, 4); 5565 break; 5566 */ 5567 } 5568 5569 // This turns into unaligned loads. We only do this if the target natively 5570 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5571 // we'll only produce a small number of byte loads. 5572 5573 // Require that we can find a legal MVT, and only do this if the target 5574 // supports unaligned loads of that type. Expanding into byte loads would 5575 // bloat the code. 5576 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5577 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5578 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5579 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5580 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5581 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5582 // TODO: Check alignment of src and dest ptrs. 5583 if (!TLI.isTypeLegal(LoadVT) || 5584 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5585 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5586 ActuallyDoIt = false; 5587 } 5588 5589 if (ActuallyDoIt) { 5590 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5591 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5592 5593 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5594 ISD::SETNE); 5595 processIntegerCallValue(I, Res, false); 5596 return true; 5597 } 5598 } 5599 5600 5601 return false; 5602 } 5603 5604 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5605 /// form. If so, return true and lower it, otherwise return false and it 5606 /// will be lowered like a normal call. 5607 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5608 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5609 if (I.getNumArgOperands() != 3) 5610 return false; 5611 5612 const Value *Src = I.getArgOperand(0); 5613 const Value *Char = I.getArgOperand(1); 5614 const Value *Length = I.getArgOperand(2); 5615 if (!Src->getType()->isPointerTy() || 5616 !Char->getType()->isIntegerTy() || 5617 !Length->getType()->isIntegerTy() || 5618 !I.getType()->isPointerTy()) 5619 return false; 5620 5621 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5622 std::pair<SDValue, SDValue> Res = 5623 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5624 getValue(Src), getValue(Char), getValue(Length), 5625 MachinePointerInfo(Src)); 5626 if (Res.first.getNode()) { 5627 setValue(&I, Res.first); 5628 PendingLoads.push_back(Res.second); 5629 return true; 5630 } 5631 5632 return false; 5633 } 5634 5635 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5636 /// optimized form. If so, return true and lower it, otherwise return false 5637 /// and it will be lowered like a normal call. 5638 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5639 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5640 if (I.getNumArgOperands() != 2) 5641 return false; 5642 5643 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5644 if (!Arg0->getType()->isPointerTy() || 5645 !Arg1->getType()->isPointerTy() || 5646 !I.getType()->isPointerTy()) 5647 return false; 5648 5649 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5650 std::pair<SDValue, SDValue> Res = 5651 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5652 getValue(Arg0), getValue(Arg1), 5653 MachinePointerInfo(Arg0), 5654 MachinePointerInfo(Arg1), isStpcpy); 5655 if (Res.first.getNode()) { 5656 setValue(&I, Res.first); 5657 DAG.setRoot(Res.second); 5658 return true; 5659 } 5660 5661 return false; 5662 } 5663 5664 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5665 /// If so, return true and lower it, otherwise return false and it will be 5666 /// lowered like a normal call. 5667 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5668 // Verify that the prototype makes sense. int strcmp(void*,void*) 5669 if (I.getNumArgOperands() != 2) 5670 return false; 5671 5672 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5673 if (!Arg0->getType()->isPointerTy() || 5674 !Arg1->getType()->isPointerTy() || 5675 !I.getType()->isIntegerTy()) 5676 return false; 5677 5678 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5679 std::pair<SDValue, SDValue> Res = 5680 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5681 getValue(Arg0), getValue(Arg1), 5682 MachinePointerInfo(Arg0), 5683 MachinePointerInfo(Arg1)); 5684 if (Res.first.getNode()) { 5685 processIntegerCallValue(I, Res.first, true); 5686 PendingLoads.push_back(Res.second); 5687 return true; 5688 } 5689 5690 return false; 5691 } 5692 5693 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5694 /// form. If so, return true and lower it, otherwise return false and it 5695 /// will be lowered like a normal call. 5696 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5697 // Verify that the prototype makes sense. size_t strlen(char *) 5698 if (I.getNumArgOperands() != 1) 5699 return false; 5700 5701 const Value *Arg0 = I.getArgOperand(0); 5702 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5703 return false; 5704 5705 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5706 std::pair<SDValue, SDValue> Res = 5707 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5708 getValue(Arg0), MachinePointerInfo(Arg0)); 5709 if (Res.first.getNode()) { 5710 processIntegerCallValue(I, Res.first, false); 5711 PendingLoads.push_back(Res.second); 5712 return true; 5713 } 5714 5715 return false; 5716 } 5717 5718 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5719 /// form. If so, return true and lower it, otherwise return false and it 5720 /// will be lowered like a normal call. 5721 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5722 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5723 if (I.getNumArgOperands() != 2) 5724 return false; 5725 5726 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5727 if (!Arg0->getType()->isPointerTy() || 5728 !Arg1->getType()->isIntegerTy() || 5729 !I.getType()->isIntegerTy()) 5730 return false; 5731 5732 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5733 std::pair<SDValue, SDValue> Res = 5734 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5735 getValue(Arg0), getValue(Arg1), 5736 MachinePointerInfo(Arg0)); 5737 if (Res.first.getNode()) { 5738 processIntegerCallValue(I, Res.first, false); 5739 PendingLoads.push_back(Res.second); 5740 return true; 5741 } 5742 5743 return false; 5744 } 5745 5746 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5747 /// operation (as expected), translate it to an SDNode with the specified opcode 5748 /// and return true. 5749 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5750 unsigned Opcode) { 5751 // Sanity check that it really is a unary floating-point call. 5752 if (I.getNumArgOperands() != 1 || 5753 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5754 I.getType() != I.getArgOperand(0)->getType() || 5755 !I.onlyReadsMemory()) 5756 return false; 5757 5758 SDValue Tmp = getValue(I.getArgOperand(0)); 5759 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5760 return true; 5761 } 5762 5763 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5764 /// operation (as expected), translate it to an SDNode with the specified opcode 5765 /// and return true. 5766 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5767 unsigned Opcode) { 5768 // Sanity check that it really is a binary floating-point call. 5769 if (I.getNumArgOperands() != 2 || 5770 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5771 I.getType() != I.getArgOperand(0)->getType() || 5772 I.getType() != I.getArgOperand(1)->getType() || 5773 !I.onlyReadsMemory()) 5774 return false; 5775 5776 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5777 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5778 EVT VT = Tmp0.getValueType(); 5779 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5780 return true; 5781 } 5782 5783 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5784 // Handle inline assembly differently. 5785 if (isa<InlineAsm>(I.getCalledValue())) { 5786 visitInlineAsm(&I); 5787 return; 5788 } 5789 5790 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5791 ComputeUsesVAFloatArgument(I, &MMI); 5792 5793 const char *RenameFn = nullptr; 5794 if (Function *F = I.getCalledFunction()) { 5795 if (F->isDeclaration()) { 5796 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5797 if (unsigned IID = II->getIntrinsicID(F)) { 5798 RenameFn = visitIntrinsicCall(I, IID); 5799 if (!RenameFn) 5800 return; 5801 } 5802 } 5803 if (Intrinsic::ID IID = F->getIntrinsicID()) { 5804 RenameFn = visitIntrinsicCall(I, IID); 5805 if (!RenameFn) 5806 return; 5807 } 5808 } 5809 5810 // Check for well-known libc/libm calls. If the function is internal, it 5811 // can't be a library call. 5812 LibFunc::Func Func; 5813 if (!F->hasLocalLinkage() && F->hasName() && 5814 LibInfo->getLibFunc(F->getName(), Func) && 5815 LibInfo->hasOptimizedCodeGen(Func)) { 5816 switch (Func) { 5817 default: break; 5818 case LibFunc::copysign: 5819 case LibFunc::copysignf: 5820 case LibFunc::copysignl: 5821 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5822 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5823 I.getType() == I.getArgOperand(0)->getType() && 5824 I.getType() == I.getArgOperand(1)->getType() && 5825 I.onlyReadsMemory()) { 5826 SDValue LHS = getValue(I.getArgOperand(0)); 5827 SDValue RHS = getValue(I.getArgOperand(1)); 5828 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5829 LHS.getValueType(), LHS, RHS)); 5830 return; 5831 } 5832 break; 5833 case LibFunc::fabs: 5834 case LibFunc::fabsf: 5835 case LibFunc::fabsl: 5836 if (visitUnaryFloatCall(I, ISD::FABS)) 5837 return; 5838 break; 5839 case LibFunc::fmin: 5840 case LibFunc::fminf: 5841 case LibFunc::fminl: 5842 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5843 return; 5844 break; 5845 case LibFunc::fmax: 5846 case LibFunc::fmaxf: 5847 case LibFunc::fmaxl: 5848 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5849 return; 5850 break; 5851 case LibFunc::sin: 5852 case LibFunc::sinf: 5853 case LibFunc::sinl: 5854 if (visitUnaryFloatCall(I, ISD::FSIN)) 5855 return; 5856 break; 5857 case LibFunc::cos: 5858 case LibFunc::cosf: 5859 case LibFunc::cosl: 5860 if (visitUnaryFloatCall(I, ISD::FCOS)) 5861 return; 5862 break; 5863 case LibFunc::sqrt: 5864 case LibFunc::sqrtf: 5865 case LibFunc::sqrtl: 5866 case LibFunc::sqrt_finite: 5867 case LibFunc::sqrtf_finite: 5868 case LibFunc::sqrtl_finite: 5869 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5870 return; 5871 break; 5872 case LibFunc::floor: 5873 case LibFunc::floorf: 5874 case LibFunc::floorl: 5875 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5876 return; 5877 break; 5878 case LibFunc::nearbyint: 5879 case LibFunc::nearbyintf: 5880 case LibFunc::nearbyintl: 5881 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5882 return; 5883 break; 5884 case LibFunc::ceil: 5885 case LibFunc::ceilf: 5886 case LibFunc::ceill: 5887 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5888 return; 5889 break; 5890 case LibFunc::rint: 5891 case LibFunc::rintf: 5892 case LibFunc::rintl: 5893 if (visitUnaryFloatCall(I, ISD::FRINT)) 5894 return; 5895 break; 5896 case LibFunc::round: 5897 case LibFunc::roundf: 5898 case LibFunc::roundl: 5899 if (visitUnaryFloatCall(I, ISD::FROUND)) 5900 return; 5901 break; 5902 case LibFunc::trunc: 5903 case LibFunc::truncf: 5904 case LibFunc::truncl: 5905 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5906 return; 5907 break; 5908 case LibFunc::log2: 5909 case LibFunc::log2f: 5910 case LibFunc::log2l: 5911 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5912 return; 5913 break; 5914 case LibFunc::exp2: 5915 case LibFunc::exp2f: 5916 case LibFunc::exp2l: 5917 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5918 return; 5919 break; 5920 case LibFunc::memcmp: 5921 if (visitMemCmpCall(I)) 5922 return; 5923 break; 5924 case LibFunc::memchr: 5925 if (visitMemChrCall(I)) 5926 return; 5927 break; 5928 case LibFunc::strcpy: 5929 if (visitStrCpyCall(I, false)) 5930 return; 5931 break; 5932 case LibFunc::stpcpy: 5933 if (visitStrCpyCall(I, true)) 5934 return; 5935 break; 5936 case LibFunc::strcmp: 5937 if (visitStrCmpCall(I)) 5938 return; 5939 break; 5940 case LibFunc::strlen: 5941 if (visitStrLenCall(I)) 5942 return; 5943 break; 5944 case LibFunc::strnlen: 5945 if (visitStrNLenCall(I)) 5946 return; 5947 break; 5948 } 5949 } 5950 } 5951 5952 SDValue Callee; 5953 if (!RenameFn) 5954 Callee = getValue(I.getCalledValue()); 5955 else 5956 Callee = DAG.getExternalSymbol( 5957 RenameFn, 5958 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5959 5960 // Check if we can potentially perform a tail call. More detailed checking is 5961 // be done within LowerCallTo, after more information about the call is known. 5962 LowerCallTo(&I, Callee, I.isTailCall()); 5963 } 5964 5965 namespace { 5966 5967 /// AsmOperandInfo - This contains information for each constraint that we are 5968 /// lowering. 5969 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5970 public: 5971 /// CallOperand - If this is the result output operand or a clobber 5972 /// this is null, otherwise it is the incoming operand to the CallInst. 5973 /// This gets modified as the asm is processed. 5974 SDValue CallOperand; 5975 5976 /// AssignedRegs - If this is a register or register class operand, this 5977 /// contains the set of register corresponding to the operand. 5978 RegsForValue AssignedRegs; 5979 5980 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5981 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 5982 } 5983 5984 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5985 /// corresponds to. If there is no Value* for this operand, it returns 5986 /// MVT::Other. 5987 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 5988 const DataLayout &DL) const { 5989 if (!CallOperandVal) return MVT::Other; 5990 5991 if (isa<BasicBlock>(CallOperandVal)) 5992 return TLI.getPointerTy(DL); 5993 5994 llvm::Type *OpTy = CallOperandVal->getType(); 5995 5996 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5997 // If this is an indirect operand, the operand is a pointer to the 5998 // accessed type. 5999 if (isIndirect) { 6000 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6001 if (!PtrTy) 6002 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6003 OpTy = PtrTy->getElementType(); 6004 } 6005 6006 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6007 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6008 if (STy->getNumElements() == 1) 6009 OpTy = STy->getElementType(0); 6010 6011 // If OpTy is not a single value, it may be a struct/union that we 6012 // can tile with integers. 6013 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6014 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 6015 switch (BitSize) { 6016 default: break; 6017 case 1: 6018 case 8: 6019 case 16: 6020 case 32: 6021 case 64: 6022 case 128: 6023 OpTy = IntegerType::get(Context, BitSize); 6024 break; 6025 } 6026 } 6027 6028 return TLI.getValueType(DL, OpTy, true); 6029 } 6030 }; 6031 6032 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6033 6034 } // end anonymous namespace 6035 6036 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6037 /// specified operand. We prefer to assign virtual registers, to allow the 6038 /// register allocator to handle the assignment process. However, if the asm 6039 /// uses features that we can't model on machineinstrs, we have SDISel do the 6040 /// allocation. This produces generally horrible, but correct, code. 6041 /// 6042 /// OpInfo describes the operand. 6043 /// 6044 static void GetRegistersForValue(SelectionDAG &DAG, 6045 const TargetLowering &TLI, 6046 SDLoc DL, 6047 SDISelAsmOperandInfo &OpInfo) { 6048 LLVMContext &Context = *DAG.getContext(); 6049 6050 MachineFunction &MF = DAG.getMachineFunction(); 6051 SmallVector<unsigned, 4> Regs; 6052 6053 // If this is a constraint for a single physreg, or a constraint for a 6054 // register class, find it. 6055 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 6056 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 6057 OpInfo.ConstraintCode, 6058 OpInfo.ConstraintVT); 6059 6060 unsigned NumRegs = 1; 6061 if (OpInfo.ConstraintVT != MVT::Other) { 6062 // If this is a FP input in an integer register (or visa versa) insert a bit 6063 // cast of the input value. More generally, handle any case where the input 6064 // value disagrees with the register class we plan to stick this in. 6065 if (OpInfo.Type == InlineAsm::isInput && 6066 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6067 // Try to convert to the first EVT that the reg class contains. If the 6068 // types are identical size, use a bitcast to convert (e.g. two differing 6069 // vector types). 6070 MVT RegVT = *PhysReg.second->vt_begin(); 6071 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6072 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6073 RegVT, OpInfo.CallOperand); 6074 OpInfo.ConstraintVT = RegVT; 6075 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6076 // If the input is a FP value and we want it in FP registers, do a 6077 // bitcast to the corresponding integer type. This turns an f64 value 6078 // into i64, which can be passed with two i32 values on a 32-bit 6079 // machine. 6080 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6081 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6082 RegVT, OpInfo.CallOperand); 6083 OpInfo.ConstraintVT = RegVT; 6084 } 6085 } 6086 6087 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6088 } 6089 6090 MVT RegVT; 6091 EVT ValueVT = OpInfo.ConstraintVT; 6092 6093 // If this is a constraint for a specific physical register, like {r17}, 6094 // assign it now. 6095 if (unsigned AssignedReg = PhysReg.first) { 6096 const TargetRegisterClass *RC = PhysReg.second; 6097 if (OpInfo.ConstraintVT == MVT::Other) 6098 ValueVT = *RC->vt_begin(); 6099 6100 // Get the actual register value type. This is important, because the user 6101 // may have asked for (e.g.) the AX register in i32 type. We need to 6102 // remember that AX is actually i16 to get the right extension. 6103 RegVT = *RC->vt_begin(); 6104 6105 // This is a explicit reference to a physical register. 6106 Regs.push_back(AssignedReg); 6107 6108 // If this is an expanded reference, add the rest of the regs to Regs. 6109 if (NumRegs != 1) { 6110 TargetRegisterClass::iterator I = RC->begin(); 6111 for (; *I != AssignedReg; ++I) 6112 assert(I != RC->end() && "Didn't find reg!"); 6113 6114 // Already added the first reg. 6115 --NumRegs; ++I; 6116 for (; NumRegs; --NumRegs, ++I) { 6117 assert(I != RC->end() && "Ran out of registers to allocate!"); 6118 Regs.push_back(*I); 6119 } 6120 } 6121 6122 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6123 return; 6124 } 6125 6126 // Otherwise, if this was a reference to an LLVM register class, create vregs 6127 // for this reference. 6128 if (const TargetRegisterClass *RC = PhysReg.second) { 6129 RegVT = *RC->vt_begin(); 6130 if (OpInfo.ConstraintVT == MVT::Other) 6131 ValueVT = RegVT; 6132 6133 // Create the appropriate number of virtual registers. 6134 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6135 for (; NumRegs; --NumRegs) 6136 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6137 6138 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6139 return; 6140 } 6141 6142 // Otherwise, we couldn't allocate enough registers for this. 6143 } 6144 6145 /// visitInlineAsm - Handle a call to an InlineAsm object. 6146 /// 6147 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6148 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6149 6150 /// ConstraintOperands - Information about all of the constraints. 6151 SDISelAsmOperandInfoVector ConstraintOperands; 6152 6153 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6154 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 6155 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 6156 6157 bool hasMemory = false; 6158 6159 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6160 unsigned ResNo = 0; // ResNo - The result number of the next output. 6161 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6162 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6163 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6164 6165 MVT OpVT = MVT::Other; 6166 6167 // Compute the value type for each operand. 6168 switch (OpInfo.Type) { 6169 case InlineAsm::isOutput: 6170 // Indirect outputs just consume an argument. 6171 if (OpInfo.isIndirect) { 6172 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6173 break; 6174 } 6175 6176 // The return value of the call is this value. As such, there is no 6177 // corresponding argument. 6178 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6179 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6180 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 6181 STy->getElementType(ResNo)); 6182 } else { 6183 assert(ResNo == 0 && "Asm only has one result!"); 6184 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 6185 } 6186 ++ResNo; 6187 break; 6188 case InlineAsm::isInput: 6189 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6190 break; 6191 case InlineAsm::isClobber: 6192 // Nothing to do. 6193 break; 6194 } 6195 6196 // If this is an input or an indirect output, process the call argument. 6197 // BasicBlocks are labels, currently appearing only in asm's. 6198 if (OpInfo.CallOperandVal) { 6199 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6200 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6201 } else { 6202 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6203 } 6204 6205 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 6206 DAG.getDataLayout()).getSimpleVT(); 6207 } 6208 6209 OpInfo.ConstraintVT = OpVT; 6210 6211 // Indirect operand accesses access memory. 6212 if (OpInfo.isIndirect) 6213 hasMemory = true; 6214 else { 6215 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6216 TargetLowering::ConstraintType 6217 CType = TLI.getConstraintType(OpInfo.Codes[j]); 6218 if (CType == TargetLowering::C_Memory) { 6219 hasMemory = true; 6220 break; 6221 } 6222 } 6223 } 6224 } 6225 6226 SDValue Chain, Flag; 6227 6228 // We won't need to flush pending loads if this asm doesn't touch 6229 // memory and is nonvolatile. 6230 if (hasMemory || IA->hasSideEffects()) 6231 Chain = getRoot(); 6232 else 6233 Chain = DAG.getRoot(); 6234 6235 // Second pass over the constraints: compute which constraint option to use 6236 // and assign registers to constraints that want a specific physreg. 6237 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6238 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6239 6240 // If this is an output operand with a matching input operand, look up the 6241 // matching input. If their types mismatch, e.g. one is an integer, the 6242 // other is floating point, or their sizes are different, flag it as an 6243 // error. 6244 if (OpInfo.hasMatchingInput()) { 6245 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6246 6247 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6248 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6249 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6250 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6251 OpInfo.ConstraintVT); 6252 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6253 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 6254 Input.ConstraintVT); 6255 if ((OpInfo.ConstraintVT.isInteger() != 6256 Input.ConstraintVT.isInteger()) || 6257 (MatchRC.second != InputRC.second)) { 6258 report_fatal_error("Unsupported asm: input constraint" 6259 " with a matching output constraint of" 6260 " incompatible type!"); 6261 } 6262 Input.ConstraintVT = OpInfo.ConstraintVT; 6263 } 6264 } 6265 6266 // Compute the constraint code and ConstraintType to use. 6267 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6268 6269 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6270 OpInfo.Type == InlineAsm::isClobber) 6271 continue; 6272 6273 // If this is a memory input, and if the operand is not indirect, do what we 6274 // need to to provide an address for the memory input. 6275 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6276 !OpInfo.isIndirect) { 6277 assert((OpInfo.isMultipleAlternative || 6278 (OpInfo.Type == InlineAsm::isInput)) && 6279 "Can only indirectify direct input operands!"); 6280 6281 // Memory operands really want the address of the value. If we don't have 6282 // an indirect input, put it in the constpool if we can, otherwise spill 6283 // it to a stack slot. 6284 // TODO: This isn't quite right. We need to handle these according to 6285 // the addressing mode that the constraint wants. Also, this may take 6286 // an additional register for the computation and we don't want that 6287 // either. 6288 6289 // If the operand is a float, integer, or vector constant, spill to a 6290 // constant pool entry to get its address. 6291 const Value *OpVal = OpInfo.CallOperandVal; 6292 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6293 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6294 OpInfo.CallOperand = DAG.getConstantPool( 6295 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6296 } else { 6297 // Otherwise, create a stack slot and emit a store to it before the 6298 // asm. 6299 Type *Ty = OpVal->getType(); 6300 auto &DL = DAG.getDataLayout(); 6301 uint64_t TySize = DL.getTypeAllocSize(Ty); 6302 unsigned Align = DL.getPrefTypeAlignment(Ty); 6303 MachineFunction &MF = DAG.getMachineFunction(); 6304 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6305 SDValue StackSlot = 6306 DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout())); 6307 Chain = DAG.getStore( 6308 Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot, 6309 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), 6310 false, false, 0); 6311 OpInfo.CallOperand = StackSlot; 6312 } 6313 6314 // There is no longer a Value* corresponding to this operand. 6315 OpInfo.CallOperandVal = nullptr; 6316 6317 // It is now an indirect operand. 6318 OpInfo.isIndirect = true; 6319 } 6320 6321 // If this constraint is for a specific register, allocate it before 6322 // anything else. 6323 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6324 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6325 } 6326 6327 // Second pass - Loop over all of the operands, assigning virtual or physregs 6328 // to register class operands. 6329 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6330 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6331 6332 // C_Register operands have already been allocated, Other/Memory don't need 6333 // to be. 6334 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6335 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6336 } 6337 6338 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6339 std::vector<SDValue> AsmNodeOperands; 6340 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6341 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 6342 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 6343 6344 // If we have a !srcloc metadata node associated with it, we want to attach 6345 // this to the ultimately generated inline asm machineinstr. To do this, we 6346 // pass in the third operand as this (potentially null) inline asm MDNode. 6347 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6348 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6349 6350 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6351 // bits as operand 3. 6352 unsigned ExtraInfo = 0; 6353 if (IA->hasSideEffects()) 6354 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6355 if (IA->isAlignStack()) 6356 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6357 // Set the asm dialect. 6358 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6359 6360 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6361 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6362 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6363 6364 // Compute the constraint code and ConstraintType to use. 6365 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6366 6367 // Ideally, we would only check against memory constraints. However, the 6368 // meaning of an other constraint can be target-specific and we can't easily 6369 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6370 // for other constriants as well. 6371 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6372 OpInfo.ConstraintType == TargetLowering::C_Other) { 6373 if (OpInfo.Type == InlineAsm::isInput) 6374 ExtraInfo |= InlineAsm::Extra_MayLoad; 6375 else if (OpInfo.Type == InlineAsm::isOutput) 6376 ExtraInfo |= InlineAsm::Extra_MayStore; 6377 else if (OpInfo.Type == InlineAsm::isClobber) 6378 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6379 } 6380 } 6381 6382 AsmNodeOperands.push_back(DAG.getTargetConstant( 6383 ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6384 6385 // Loop over all of the inputs, copying the operand values into the 6386 // appropriate registers and processing the output regs. 6387 RegsForValue RetValRegs; 6388 6389 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6390 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6391 6392 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6393 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6394 6395 switch (OpInfo.Type) { 6396 case InlineAsm::isOutput: { 6397 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6398 OpInfo.ConstraintType != TargetLowering::C_Register) { 6399 // Memory output, or 'other' output (e.g. 'X' constraint). 6400 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6401 6402 unsigned ConstraintID = 6403 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6404 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6405 "Failed to convert memory constraint code to constraint id."); 6406 6407 // Add information to the INLINEASM node to know about this output. 6408 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6409 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6410 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6411 MVT::i32)); 6412 AsmNodeOperands.push_back(OpInfo.CallOperand); 6413 break; 6414 } 6415 6416 // Otherwise, this is a register or register class output. 6417 6418 // Copy the output from the appropriate register. Find a register that 6419 // we can use. 6420 if (OpInfo.AssignedRegs.Regs.empty()) { 6421 LLVMContext &Ctx = *DAG.getContext(); 6422 Ctx.emitError(CS.getInstruction(), 6423 "couldn't allocate output register for constraint '" + 6424 Twine(OpInfo.ConstraintCode) + "'"); 6425 return; 6426 } 6427 6428 // If this is an indirect operand, store through the pointer after the 6429 // asm. 6430 if (OpInfo.isIndirect) { 6431 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6432 OpInfo.CallOperandVal)); 6433 } else { 6434 // This is the result value of the call. 6435 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6436 // Concatenate this output onto the outputs list. 6437 RetValRegs.append(OpInfo.AssignedRegs); 6438 } 6439 6440 // Add information to the INLINEASM node to know that this register is 6441 // set. 6442 OpInfo.AssignedRegs 6443 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6444 ? InlineAsm::Kind_RegDefEarlyClobber 6445 : InlineAsm::Kind_RegDef, 6446 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6447 break; 6448 } 6449 case InlineAsm::isInput: { 6450 SDValue InOperandVal = OpInfo.CallOperand; 6451 6452 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6453 // If this is required to match an output register we have already set, 6454 // just use its register. 6455 unsigned OperandNo = OpInfo.getMatchedOperand(); 6456 6457 // Scan until we find the definition we already emitted of this operand. 6458 // When we find it, create a RegsForValue operand. 6459 unsigned CurOp = InlineAsm::Op_FirstOperand; 6460 for (; OperandNo; --OperandNo) { 6461 // Advance to the next operand. 6462 unsigned OpFlag = 6463 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6464 assert((InlineAsm::isRegDefKind(OpFlag) || 6465 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6466 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6467 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6468 } 6469 6470 unsigned OpFlag = 6471 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6472 if (InlineAsm::isRegDefKind(OpFlag) || 6473 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6474 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6475 if (OpInfo.isIndirect) { 6476 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6477 LLVMContext &Ctx = *DAG.getContext(); 6478 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6479 " don't know how to handle tied " 6480 "indirect register inputs"); 6481 return; 6482 } 6483 6484 RegsForValue MatchedRegs; 6485 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6486 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6487 MatchedRegs.RegVTs.push_back(RegVT); 6488 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6489 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6490 i != e; ++i) { 6491 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6492 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6493 else { 6494 LLVMContext &Ctx = *DAG.getContext(); 6495 Ctx.emitError(CS.getInstruction(), 6496 "inline asm error: This value" 6497 " type register class is not natively supported!"); 6498 return; 6499 } 6500 } 6501 SDLoc dl = getCurSDLoc(); 6502 // Use the produced MatchedRegs object to 6503 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6504 Chain, &Flag, CS.getInstruction()); 6505 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6506 true, OpInfo.getMatchedOperand(), dl, 6507 DAG, AsmNodeOperands); 6508 break; 6509 } 6510 6511 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6512 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6513 "Unexpected number of operands"); 6514 // Add information to the INLINEASM node to know about this input. 6515 // See InlineAsm.h isUseOperandTiedToDef. 6516 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6517 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6518 OpInfo.getMatchedOperand()); 6519 AsmNodeOperands.push_back(DAG.getTargetConstant( 6520 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6521 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6522 break; 6523 } 6524 6525 // Treat indirect 'X' constraint as memory. 6526 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6527 OpInfo.isIndirect) 6528 OpInfo.ConstraintType = TargetLowering::C_Memory; 6529 6530 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6531 std::vector<SDValue> Ops; 6532 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6533 Ops, DAG); 6534 if (Ops.empty()) { 6535 LLVMContext &Ctx = *DAG.getContext(); 6536 Ctx.emitError(CS.getInstruction(), 6537 "invalid operand for inline asm constraint '" + 6538 Twine(OpInfo.ConstraintCode) + "'"); 6539 return; 6540 } 6541 6542 // Add information to the INLINEASM node to know about this input. 6543 unsigned ResOpType = 6544 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6545 AsmNodeOperands.push_back(DAG.getTargetConstant( 6546 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6547 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6548 break; 6549 } 6550 6551 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6552 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6553 assert(InOperandVal.getValueType() == 6554 TLI.getPointerTy(DAG.getDataLayout()) && 6555 "Memory operands expect pointer values"); 6556 6557 unsigned ConstraintID = 6558 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6559 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6560 "Failed to convert memory constraint code to constraint id."); 6561 6562 // Add information to the INLINEASM node to know about this input. 6563 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6564 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6565 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6566 getCurSDLoc(), 6567 MVT::i32)); 6568 AsmNodeOperands.push_back(InOperandVal); 6569 break; 6570 } 6571 6572 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6573 OpInfo.ConstraintType == TargetLowering::C_Register) && 6574 "Unknown constraint type!"); 6575 6576 // TODO: Support this. 6577 if (OpInfo.isIndirect) { 6578 LLVMContext &Ctx = *DAG.getContext(); 6579 Ctx.emitError(CS.getInstruction(), 6580 "Don't know how to handle indirect register inputs yet " 6581 "for constraint '" + 6582 Twine(OpInfo.ConstraintCode) + "'"); 6583 return; 6584 } 6585 6586 // Copy the input into the appropriate registers. 6587 if (OpInfo.AssignedRegs.Regs.empty()) { 6588 LLVMContext &Ctx = *DAG.getContext(); 6589 Ctx.emitError(CS.getInstruction(), 6590 "couldn't allocate input reg for constraint '" + 6591 Twine(OpInfo.ConstraintCode) + "'"); 6592 return; 6593 } 6594 6595 SDLoc dl = getCurSDLoc(); 6596 6597 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6598 Chain, &Flag, CS.getInstruction()); 6599 6600 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6601 dl, DAG, AsmNodeOperands); 6602 break; 6603 } 6604 case InlineAsm::isClobber: { 6605 // Add the clobbered value to the operand list, so that the register 6606 // allocator is aware that the physreg got clobbered. 6607 if (!OpInfo.AssignedRegs.Regs.empty()) 6608 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6609 false, 0, getCurSDLoc(), DAG, 6610 AsmNodeOperands); 6611 break; 6612 } 6613 } 6614 } 6615 6616 // Finish up input operands. Set the input chain and add the flag last. 6617 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6618 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6619 6620 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6621 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6622 Flag = Chain.getValue(1); 6623 6624 // If this asm returns a register value, copy the result from that register 6625 // and set it as the value of the call. 6626 if (!RetValRegs.Regs.empty()) { 6627 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6628 Chain, &Flag, CS.getInstruction()); 6629 6630 // FIXME: Why don't we do this for inline asms with MRVs? 6631 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6632 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 6633 6634 // If any of the results of the inline asm is a vector, it may have the 6635 // wrong width/num elts. This can happen for register classes that can 6636 // contain multiple different value types. The preg or vreg allocated may 6637 // not have the same VT as was expected. Convert it to the right type 6638 // with bit_convert. 6639 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6640 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6641 ResultType, Val); 6642 6643 } else if (ResultType != Val.getValueType() && 6644 ResultType.isInteger() && Val.getValueType().isInteger()) { 6645 // If a result value was tied to an input value, the computed result may 6646 // have a wider width than the expected result. Extract the relevant 6647 // portion. 6648 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6649 } 6650 6651 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6652 } 6653 6654 setValue(CS.getInstruction(), Val); 6655 // Don't need to use this as a chain in this case. 6656 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6657 return; 6658 } 6659 6660 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6661 6662 // Process indirect outputs, first output all of the flagged copies out of 6663 // physregs. 6664 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6665 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6666 const Value *Ptr = IndirectStoresToEmit[i].second; 6667 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6668 Chain, &Flag, IA); 6669 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6670 } 6671 6672 // Emit the non-flagged stores from the physregs. 6673 SmallVector<SDValue, 8> OutChains; 6674 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6675 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6676 StoresToEmit[i].first, 6677 getValue(StoresToEmit[i].second), 6678 MachinePointerInfo(StoresToEmit[i].second), 6679 false, false, 0); 6680 OutChains.push_back(Val); 6681 } 6682 6683 if (!OutChains.empty()) 6684 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6685 6686 DAG.setRoot(Chain); 6687 } 6688 6689 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6690 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6691 MVT::Other, getRoot(), 6692 getValue(I.getArgOperand(0)), 6693 DAG.getSrcValue(I.getArgOperand(0)))); 6694 } 6695 6696 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6697 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6698 const DataLayout &DL = DAG.getDataLayout(); 6699 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6700 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 6701 DAG.getSrcValue(I.getOperand(0)), 6702 DL.getABITypeAlignment(I.getType())); 6703 setValue(&I, V); 6704 DAG.setRoot(V.getValue(1)); 6705 } 6706 6707 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6708 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6709 MVT::Other, getRoot(), 6710 getValue(I.getArgOperand(0)), 6711 DAG.getSrcValue(I.getArgOperand(0)))); 6712 } 6713 6714 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6715 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6716 MVT::Other, getRoot(), 6717 getValue(I.getArgOperand(0)), 6718 getValue(I.getArgOperand(1)), 6719 DAG.getSrcValue(I.getArgOperand(0)), 6720 DAG.getSrcValue(I.getArgOperand(1)))); 6721 } 6722 6723 /// \brief Lower an argument list according to the target calling convention. 6724 /// 6725 /// \return A tuple of <return-value, token-chain> 6726 /// 6727 /// This is a helper for lowering intrinsics that follow a target calling 6728 /// convention or require stack pointer adjustment. Only a subset of the 6729 /// intrinsic's operands need to participate in the calling convention. 6730 std::pair<SDValue, SDValue> SelectionDAGBuilder::lowerCallOperands( 6731 ImmutableCallSite CS, unsigned ArgIdx, unsigned NumArgs, SDValue Callee, 6732 Type *ReturnTy, const BasicBlock *EHPadBB, bool IsPatchPoint) { 6733 TargetLowering::ArgListTy Args; 6734 Args.reserve(NumArgs); 6735 6736 // Populate the argument list. 6737 // Attributes for args start at offset 1, after the return attribute. 6738 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6739 ArgI != ArgE; ++ArgI) { 6740 const Value *V = CS->getOperand(ArgI); 6741 6742 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6743 6744 TargetLowering::ArgListEntry Entry; 6745 Entry.Node = getValue(V); 6746 Entry.Ty = V->getType(); 6747 Entry.setAttributes(&CS, AttrI); 6748 Args.push_back(Entry); 6749 } 6750 6751 TargetLowering::CallLoweringInfo CLI(DAG); 6752 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6753 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs) 6754 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6755 6756 return lowerInvokable(CLI, EHPadBB); 6757 } 6758 6759 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6760 /// or patchpoint target node's operand list. 6761 /// 6762 /// Constants are converted to TargetConstants purely as an optimization to 6763 /// avoid constant materialization and register allocation. 6764 /// 6765 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6766 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6767 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6768 /// address materialization and register allocation, but may also be required 6769 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6770 /// alloca in the entry block, then the runtime may assume that the alloca's 6771 /// StackMap location can be read immediately after compilation and that the 6772 /// location is valid at any point during execution (this is similar to the 6773 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6774 /// only available in a register, then the runtime would need to trap when 6775 /// execution reaches the StackMap in order to read the alloca's location. 6776 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6777 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 6778 SelectionDAGBuilder &Builder) { 6779 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6780 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6781 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6782 Ops.push_back( 6783 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 6784 Ops.push_back( 6785 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 6786 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6787 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6788 Ops.push_back(Builder.DAG.getTargetFrameIndex( 6789 FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout()))); 6790 } else 6791 Ops.push_back(OpVal); 6792 } 6793 } 6794 6795 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6796 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6797 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6798 // [live variables...]) 6799 6800 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6801 6802 SDValue Chain, InFlag, Callee, NullPtr; 6803 SmallVector<SDValue, 32> Ops; 6804 6805 SDLoc DL = getCurSDLoc(); 6806 Callee = getValue(CI.getCalledValue()); 6807 NullPtr = DAG.getIntPtrConstant(0, DL, true); 6808 6809 // The stackmap intrinsic only records the live variables (the arguemnts 6810 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6811 // intrinsic, this won't be lowered to a function call. This means we don't 6812 // have to worry about calling conventions and target specific lowering code. 6813 // Instead we perform the call lowering right here. 6814 // 6815 // chain, flag = CALLSEQ_START(chain, 0) 6816 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6817 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6818 // 6819 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6820 InFlag = Chain.getValue(1); 6821 6822 // Add the <id> and <numBytes> constants. 6823 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6824 Ops.push_back(DAG.getTargetConstant( 6825 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 6826 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6827 Ops.push_back(DAG.getTargetConstant( 6828 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 6829 MVT::i32)); 6830 6831 // Push live variables for the stack map. 6832 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 6833 6834 // We are not pushing any register mask info here on the operands list, 6835 // because the stackmap doesn't clobber anything. 6836 6837 // Push the chain and the glue flag. 6838 Ops.push_back(Chain); 6839 Ops.push_back(InFlag); 6840 6841 // Create the STACKMAP node. 6842 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6843 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6844 Chain = SDValue(SM, 0); 6845 InFlag = Chain.getValue(1); 6846 6847 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6848 6849 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6850 6851 // Set the root to the target-lowered call chain. 6852 DAG.setRoot(Chain); 6853 6854 // Inform the Frame Information that we have a stackmap in this function. 6855 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6856 } 6857 6858 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6859 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6860 const BasicBlock *EHPadBB) { 6861 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6862 // i32 <numBytes>, 6863 // i8* <target>, 6864 // i32 <numArgs>, 6865 // [Args...], 6866 // [live variables...]) 6867 6868 CallingConv::ID CC = CS.getCallingConv(); 6869 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6870 bool HasDef = !CS->getType()->isVoidTy(); 6871 SDLoc dl = getCurSDLoc(); 6872 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 6873 6874 // Handle immediate and symbolic callees. 6875 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 6876 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 6877 /*isTarget=*/true); 6878 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 6879 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 6880 SDLoc(SymbolicCallee), 6881 SymbolicCallee->getValueType(0)); 6882 6883 // Get the real number of arguments participating in the call <numArgs> 6884 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6885 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6886 6887 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6888 // Intrinsics include all meta-operands up to but not including CC. 6889 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6890 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 6891 "Not enough arguments provided to the patchpoint intrinsic"); 6892 6893 // For AnyRegCC the arguments are lowered later on manually. 6894 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 6895 Type *ReturnTy = 6896 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6897 std::pair<SDValue, SDValue> Result = lowerCallOperands( 6898 CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, EHPadBB, true); 6899 6900 SDNode *CallEnd = Result.second.getNode(); 6901 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6902 CallEnd = CallEnd->getOperand(0).getNode(); 6903 6904 /// Get a call instruction from the call sequence chain. 6905 /// Tail calls are not allowed. 6906 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6907 "Expected a callseq node."); 6908 SDNode *Call = CallEnd->getOperand(0).getNode(); 6909 bool HasGlue = Call->getGluedNode(); 6910 6911 // Replace the target specific call node with the patchable intrinsic. 6912 SmallVector<SDValue, 8> Ops; 6913 6914 // Add the <id> and <numBytes> constants. 6915 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 6916 Ops.push_back(DAG.getTargetConstant( 6917 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 6918 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 6919 Ops.push_back(DAG.getTargetConstant( 6920 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 6921 MVT::i32)); 6922 6923 // Add the callee. 6924 Ops.push_back(Callee); 6925 6926 // Adjust <numArgs> to account for any arguments that have been passed on the 6927 // stack instead. 6928 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6929 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 6930 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 6931 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 6932 6933 // Add the calling convention 6934 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 6935 6936 // Add the arguments we omitted previously. The register allocator should 6937 // place these in any free register. 6938 if (IsAnyRegCC) 6939 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6940 Ops.push_back(getValue(CS.getArgument(i))); 6941 6942 // Push the arguments from the call instruction up to the register mask. 6943 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 6944 Ops.append(Call->op_begin() + 2, e); 6945 6946 // Push live variables for the stack map. 6947 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 6948 6949 // Push the register mask info. 6950 if (HasGlue) 6951 Ops.push_back(*(Call->op_end()-2)); 6952 else 6953 Ops.push_back(*(Call->op_end()-1)); 6954 6955 // Push the chain (this is originally the first operand of the call, but 6956 // becomes now the last or second to last operand). 6957 Ops.push_back(*(Call->op_begin())); 6958 6959 // Push the glue flag (last operand). 6960 if (HasGlue) 6961 Ops.push_back(*(Call->op_end()-1)); 6962 6963 SDVTList NodeTys; 6964 if (IsAnyRegCC && HasDef) { 6965 // Create the return types based on the intrinsic definition 6966 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6967 SmallVector<EVT, 3> ValueVTs; 6968 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 6969 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 6970 6971 // There is always a chain and a glue type at the end 6972 ValueVTs.push_back(MVT::Other); 6973 ValueVTs.push_back(MVT::Glue); 6974 NodeTys = DAG.getVTList(ValueVTs); 6975 } else 6976 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6977 6978 // Replace the target specific call node with a PATCHPOINT node. 6979 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 6980 dl, NodeTys, Ops); 6981 6982 // Update the NodeMap. 6983 if (HasDef) { 6984 if (IsAnyRegCC) 6985 setValue(CS.getInstruction(), SDValue(MN, 0)); 6986 else 6987 setValue(CS.getInstruction(), Result.first); 6988 } 6989 6990 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 6991 // call sequence. Furthermore the location of the chain and glue can change 6992 // when the AnyReg calling convention is used and the intrinsic returns a 6993 // value. 6994 if (IsAnyRegCC && HasDef) { 6995 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 6996 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 6997 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 6998 } else 6999 DAG.ReplaceAllUsesWith(Call, MN); 7000 DAG.DeleteNode(Call); 7001 7002 // Inform the Frame Information that we have a patchpoint in this function. 7003 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 7004 } 7005 7006 /// Returns an AttributeSet representing the attributes applied to the return 7007 /// value of the given call. 7008 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 7009 SmallVector<Attribute::AttrKind, 2> Attrs; 7010 if (CLI.RetSExt) 7011 Attrs.push_back(Attribute::SExt); 7012 if (CLI.RetZExt) 7013 Attrs.push_back(Attribute::ZExt); 7014 if (CLI.IsInReg) 7015 Attrs.push_back(Attribute::InReg); 7016 7017 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 7018 Attrs); 7019 } 7020 7021 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7022 /// implementation, which just calls LowerCall. 7023 /// FIXME: When all targets are 7024 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7025 std::pair<SDValue, SDValue> 7026 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7027 // Handle the incoming return values from the call. 7028 CLI.Ins.clear(); 7029 Type *OrigRetTy = CLI.RetTy; 7030 SmallVector<EVT, 4> RetTys; 7031 SmallVector<uint64_t, 4> Offsets; 7032 auto &DL = CLI.DAG.getDataLayout(); 7033 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 7034 7035 SmallVector<ISD::OutputArg, 4> Outs; 7036 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 7037 7038 bool CanLowerReturn = 7039 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 7040 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7041 7042 SDValue DemoteStackSlot; 7043 int DemoteStackIdx = -100; 7044 if (!CanLowerReturn) { 7045 // FIXME: equivalent assert? 7046 // assert(!CS.hasInAllocaArgument() && 7047 // "sret demotion is incompatible with inalloca"); 7048 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 7049 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 7050 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7051 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 7052 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7053 7054 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL)); 7055 ArgListEntry Entry; 7056 Entry.Node = DemoteStackSlot; 7057 Entry.Ty = StackSlotPtrType; 7058 Entry.isSExt = false; 7059 Entry.isZExt = false; 7060 Entry.isInReg = false; 7061 Entry.isSRet = true; 7062 Entry.isNest = false; 7063 Entry.isByVal = false; 7064 Entry.isReturned = false; 7065 Entry.Alignment = Align; 7066 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7067 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7068 7069 // sret demotion isn't compatible with tail-calls, since the sret argument 7070 // points into the callers stack frame. 7071 CLI.IsTailCall = false; 7072 } else { 7073 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7074 EVT VT = RetTys[I]; 7075 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7076 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7077 for (unsigned i = 0; i != NumRegs; ++i) { 7078 ISD::InputArg MyFlags; 7079 MyFlags.VT = RegisterVT; 7080 MyFlags.ArgVT = VT; 7081 MyFlags.Used = CLI.IsReturnValueUsed; 7082 if (CLI.RetSExt) 7083 MyFlags.Flags.setSExt(); 7084 if (CLI.RetZExt) 7085 MyFlags.Flags.setZExt(); 7086 if (CLI.IsInReg) 7087 MyFlags.Flags.setInReg(); 7088 CLI.Ins.push_back(MyFlags); 7089 } 7090 } 7091 } 7092 7093 // Handle all of the outgoing arguments. 7094 CLI.Outs.clear(); 7095 CLI.OutVals.clear(); 7096 ArgListTy &Args = CLI.getArgs(); 7097 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7098 SmallVector<EVT, 4> ValueVTs; 7099 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 7100 Type *FinalType = Args[i].Ty; 7101 if (Args[i].isByVal) 7102 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7103 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7104 FinalType, CLI.CallConv, CLI.IsVarArg); 7105 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7106 ++Value) { 7107 EVT VT = ValueVTs[Value]; 7108 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7109 SDValue Op = SDValue(Args[i].Node.getNode(), 7110 Args[i].Node.getResNo() + Value); 7111 ISD::ArgFlagsTy Flags; 7112 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7113 7114 if (Args[i].isZExt) 7115 Flags.setZExt(); 7116 if (Args[i].isSExt) 7117 Flags.setSExt(); 7118 if (Args[i].isInReg) 7119 Flags.setInReg(); 7120 if (Args[i].isSRet) 7121 Flags.setSRet(); 7122 if (Args[i].isByVal) 7123 Flags.setByVal(); 7124 if (Args[i].isInAlloca) { 7125 Flags.setInAlloca(); 7126 // Set the byval flag for CCAssignFn callbacks that don't know about 7127 // inalloca. This way we can know how many bytes we should've allocated 7128 // and how many bytes a callee cleanup function will pop. If we port 7129 // inalloca to more targets, we'll have to add custom inalloca handling 7130 // in the various CC lowering callbacks. 7131 Flags.setByVal(); 7132 } 7133 if (Args[i].isByVal || Args[i].isInAlloca) { 7134 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7135 Type *ElementTy = Ty->getElementType(); 7136 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7137 // For ByVal, alignment should come from FE. BE will guess if this 7138 // info is not there but there are cases it cannot get right. 7139 unsigned FrameAlign; 7140 if (Args[i].Alignment) 7141 FrameAlign = Args[i].Alignment; 7142 else 7143 FrameAlign = getByValTypeAlignment(ElementTy, DL); 7144 Flags.setByValAlign(FrameAlign); 7145 } 7146 if (Args[i].isNest) 7147 Flags.setNest(); 7148 if (NeedsRegBlock) 7149 Flags.setInConsecutiveRegs(); 7150 Flags.setOrigAlign(OriginalAlignment); 7151 7152 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7153 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7154 SmallVector<SDValue, 4> Parts(NumParts); 7155 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7156 7157 if (Args[i].isSExt) 7158 ExtendKind = ISD::SIGN_EXTEND; 7159 else if (Args[i].isZExt) 7160 ExtendKind = ISD::ZERO_EXTEND; 7161 7162 // Conservatively only handle 'returned' on non-vectors for now 7163 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7164 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7165 "unexpected use of 'returned'"); 7166 // Before passing 'returned' to the target lowering code, ensure that 7167 // either the register MVT and the actual EVT are the same size or that 7168 // the return value and argument are extended in the same way; in these 7169 // cases it's safe to pass the argument register value unchanged as the 7170 // return register value (although it's at the target's option whether 7171 // to do so) 7172 // TODO: allow code generation to take advantage of partially preserved 7173 // registers rather than clobbering the entire register when the 7174 // parameter extension method is not compatible with the return 7175 // extension method 7176 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7177 (ExtendKind != ISD::ANY_EXTEND && 7178 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7179 Flags.setReturned(); 7180 } 7181 7182 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7183 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7184 7185 for (unsigned j = 0; j != NumParts; ++j) { 7186 // if it isn't first piece, alignment must be 1 7187 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7188 i < CLI.NumFixedArgs, 7189 i, j*Parts[j].getValueType().getStoreSize()); 7190 if (NumParts > 1 && j == 0) 7191 MyFlags.Flags.setSplit(); 7192 else if (j != 0) { 7193 MyFlags.Flags.setOrigAlign(1); 7194 if (j == NumParts - 1) 7195 MyFlags.Flags.setSplitEnd(); 7196 } 7197 7198 CLI.Outs.push_back(MyFlags); 7199 CLI.OutVals.push_back(Parts[j]); 7200 } 7201 7202 if (NeedsRegBlock && Value == NumValues - 1) 7203 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 7204 } 7205 } 7206 7207 SmallVector<SDValue, 4> InVals; 7208 CLI.Chain = LowerCall(CLI, InVals); 7209 7210 // Verify that the target's LowerCall behaved as expected. 7211 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7212 "LowerCall didn't return a valid chain!"); 7213 assert((!CLI.IsTailCall || InVals.empty()) && 7214 "LowerCall emitted a return value for a tail call!"); 7215 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7216 "LowerCall didn't emit the correct number of values!"); 7217 7218 // For a tail call, the return value is merely live-out and there aren't 7219 // any nodes in the DAG representing it. Return a special value to 7220 // indicate that a tail call has been emitted and no more Instructions 7221 // should be processed in the current block. 7222 if (CLI.IsTailCall) { 7223 CLI.DAG.setRoot(CLI.Chain); 7224 return std::make_pair(SDValue(), SDValue()); 7225 } 7226 7227 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7228 assert(InVals[i].getNode() && 7229 "LowerCall emitted a null value!"); 7230 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7231 "LowerCall emitted a value with the wrong type!"); 7232 }); 7233 7234 SmallVector<SDValue, 4> ReturnValues; 7235 if (!CanLowerReturn) { 7236 // The instruction result is the result of loading from the 7237 // hidden sret parameter. 7238 SmallVector<EVT, 1> PVTs; 7239 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7240 7241 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 7242 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7243 EVT PtrVT = PVTs[0]; 7244 7245 unsigned NumValues = RetTys.size(); 7246 ReturnValues.resize(NumValues); 7247 SmallVector<SDValue, 4> Chains(NumValues); 7248 7249 // An aggregate return value cannot wrap around the address space, so 7250 // offsets to its parts don't wrap either. 7251 SDNodeFlags Flags; 7252 Flags.setNoUnsignedWrap(true); 7253 7254 for (unsigned i = 0; i < NumValues; ++i) { 7255 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7256 CLI.DAG.getConstant(Offsets[i], CLI.DL, 7257 PtrVT), &Flags); 7258 SDValue L = CLI.DAG.getLoad( 7259 RetTys[i], CLI.DL, CLI.Chain, Add, 7260 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 7261 DemoteStackIdx, Offsets[i]), 7262 false, false, false, 1); 7263 ReturnValues[i] = L; 7264 Chains[i] = L.getValue(1); 7265 } 7266 7267 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7268 } else { 7269 // Collect the legal value parts into potentially illegal values 7270 // that correspond to the original function's return values. 7271 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7272 if (CLI.RetSExt) 7273 AssertOp = ISD::AssertSext; 7274 else if (CLI.RetZExt) 7275 AssertOp = ISD::AssertZext; 7276 unsigned CurReg = 0; 7277 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7278 EVT VT = RetTys[I]; 7279 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7280 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7281 7282 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7283 NumRegs, RegisterVT, VT, nullptr, 7284 AssertOp)); 7285 CurReg += NumRegs; 7286 } 7287 7288 // For a function returning void, there is no return value. We can't create 7289 // such a node, so we just return a null return value in that case. In 7290 // that case, nothing will actually look at the value. 7291 if (ReturnValues.empty()) 7292 return std::make_pair(SDValue(), CLI.Chain); 7293 } 7294 7295 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7296 CLI.DAG.getVTList(RetTys), ReturnValues); 7297 return std::make_pair(Res, CLI.Chain); 7298 } 7299 7300 void TargetLowering::LowerOperationWrapper(SDNode *N, 7301 SmallVectorImpl<SDValue> &Results, 7302 SelectionDAG &DAG) const { 7303 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7304 if (Res.getNode()) 7305 Results.push_back(Res); 7306 } 7307 7308 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7309 llvm_unreachable("LowerOperation not implemented for this target!"); 7310 } 7311 7312 void 7313 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7314 SDValue Op = getNonRegisterValue(V); 7315 assert((Op.getOpcode() != ISD::CopyFromReg || 7316 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7317 "Copy from a reg to the same reg!"); 7318 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7319 7320 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7321 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 7322 V->getType()); 7323 SDValue Chain = DAG.getEntryNode(); 7324 7325 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7326 FuncInfo.PreferredExtendType.end()) 7327 ? ISD::ANY_EXTEND 7328 : FuncInfo.PreferredExtendType[V]; 7329 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7330 PendingExports.push_back(Chain); 7331 } 7332 7333 #include "llvm/CodeGen/SelectionDAGISel.h" 7334 7335 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7336 /// entry block, return true. This includes arguments used by switches, since 7337 /// the switch may expand into multiple basic blocks. 7338 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7339 // With FastISel active, we may be splitting blocks, so force creation 7340 // of virtual registers for all non-dead arguments. 7341 if (FastISel) 7342 return A->use_empty(); 7343 7344 const BasicBlock &Entry = A->getParent()->front(); 7345 for (const User *U : A->users()) 7346 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 7347 return false; // Use not in entry block. 7348 7349 return true; 7350 } 7351 7352 void SelectionDAGISel::LowerArguments(const Function &F) { 7353 SelectionDAG &DAG = SDB->DAG; 7354 SDLoc dl = SDB->getCurSDLoc(); 7355 const DataLayout &DL = DAG.getDataLayout(); 7356 SmallVector<ISD::InputArg, 16> Ins; 7357 7358 if (!FuncInfo->CanLowerReturn) { 7359 // Put in an sret pointer parameter before all the other parameters. 7360 SmallVector<EVT, 1> ValueVTs; 7361 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7362 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7363 7364 // NOTE: Assuming that a pointer will never break down to more than one VT 7365 // or one register. 7366 ISD::ArgFlagsTy Flags; 7367 Flags.setSRet(); 7368 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7369 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7370 ISD::InputArg::NoArgIndex, 0); 7371 Ins.push_back(RetArg); 7372 } 7373 7374 // Set up the incoming argument description vector. 7375 unsigned Idx = 1; 7376 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7377 I != E; ++I, ++Idx) { 7378 SmallVector<EVT, 4> ValueVTs; 7379 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7380 bool isArgValueUsed = !I->use_empty(); 7381 unsigned PartBase = 0; 7382 Type *FinalType = I->getType(); 7383 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7384 FinalType = cast<PointerType>(FinalType)->getElementType(); 7385 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7386 FinalType, F.getCallingConv(), F.isVarArg()); 7387 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7388 Value != NumValues; ++Value) { 7389 EVT VT = ValueVTs[Value]; 7390 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7391 ISD::ArgFlagsTy Flags; 7392 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7393 7394 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7395 Flags.setZExt(); 7396 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7397 Flags.setSExt(); 7398 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7399 Flags.setInReg(); 7400 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7401 Flags.setSRet(); 7402 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7403 Flags.setByVal(); 7404 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7405 Flags.setInAlloca(); 7406 // Set the byval flag for CCAssignFn callbacks that don't know about 7407 // inalloca. This way we can know how many bytes we should've allocated 7408 // and how many bytes a callee cleanup function will pop. If we port 7409 // inalloca to more targets, we'll have to add custom inalloca handling 7410 // in the various CC lowering callbacks. 7411 Flags.setByVal(); 7412 } 7413 if (F.getCallingConv() == CallingConv::X86_INTR) { 7414 // IA Interrupt passes frame (1st parameter) by value in the stack. 7415 if (Idx == 1) 7416 Flags.setByVal(); 7417 } 7418 if (Flags.isByVal() || Flags.isInAlloca()) { 7419 PointerType *Ty = cast<PointerType>(I->getType()); 7420 Type *ElementTy = Ty->getElementType(); 7421 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7422 // For ByVal, alignment should be passed from FE. BE will guess if 7423 // this info is not there but there are cases it cannot get right. 7424 unsigned FrameAlign; 7425 if (F.getParamAlignment(Idx)) 7426 FrameAlign = F.getParamAlignment(Idx); 7427 else 7428 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 7429 Flags.setByValAlign(FrameAlign); 7430 } 7431 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7432 Flags.setNest(); 7433 if (NeedsRegBlock) 7434 Flags.setInConsecutiveRegs(); 7435 Flags.setOrigAlign(OriginalAlignment); 7436 7437 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7438 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7439 for (unsigned i = 0; i != NumRegs; ++i) { 7440 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7441 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7442 if (NumRegs > 1 && i == 0) 7443 MyFlags.Flags.setSplit(); 7444 // if it isn't first piece, alignment must be 1 7445 else if (i > 0) { 7446 MyFlags.Flags.setOrigAlign(1); 7447 if (i == NumRegs - 1) 7448 MyFlags.Flags.setSplitEnd(); 7449 } 7450 Ins.push_back(MyFlags); 7451 } 7452 if (NeedsRegBlock && Value == NumValues - 1) 7453 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7454 PartBase += VT.getStoreSize(); 7455 } 7456 } 7457 7458 // Call the target to set up the argument values. 7459 SmallVector<SDValue, 8> InVals; 7460 SDValue NewRoot = TLI->LowerFormalArguments( 7461 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7462 7463 // Verify that the target's LowerFormalArguments behaved as expected. 7464 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7465 "LowerFormalArguments didn't return a valid chain!"); 7466 assert(InVals.size() == Ins.size() && 7467 "LowerFormalArguments didn't emit the correct number of values!"); 7468 DEBUG({ 7469 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7470 assert(InVals[i].getNode() && 7471 "LowerFormalArguments emitted a null value!"); 7472 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7473 "LowerFormalArguments emitted a value with the wrong type!"); 7474 } 7475 }); 7476 7477 // Update the DAG with the new chain value resulting from argument lowering. 7478 DAG.setRoot(NewRoot); 7479 7480 // Set up the argument values. 7481 unsigned i = 0; 7482 Idx = 1; 7483 if (!FuncInfo->CanLowerReturn) { 7484 // Create a virtual register for the sret pointer, and put in a copy 7485 // from the sret argument into it. 7486 SmallVector<EVT, 1> ValueVTs; 7487 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7488 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7489 MVT VT = ValueVTs[0].getSimpleVT(); 7490 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7491 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7492 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7493 RegVT, VT, nullptr, AssertOp); 7494 7495 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7496 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7497 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7498 FuncInfo->DemoteRegister = SRetReg; 7499 NewRoot = 7500 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7501 DAG.setRoot(NewRoot); 7502 7503 // i indexes lowered arguments. Bump it past the hidden sret argument. 7504 // Idx indexes LLVM arguments. Don't touch it. 7505 ++i; 7506 } 7507 7508 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7509 ++I, ++Idx) { 7510 SmallVector<SDValue, 4> ArgValues; 7511 SmallVector<EVT, 4> ValueVTs; 7512 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7513 unsigned NumValues = ValueVTs.size(); 7514 7515 // If this argument is unused then remember its value. It is used to generate 7516 // debugging information. 7517 if (I->use_empty() && NumValues) { 7518 SDB->setUnusedArgValue(&*I, InVals[i]); 7519 7520 // Also remember any frame index for use in FastISel. 7521 if (FrameIndexSDNode *FI = 7522 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7523 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7524 } 7525 7526 for (unsigned Val = 0; Val != NumValues; ++Val) { 7527 EVT VT = ValueVTs[Val]; 7528 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7529 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7530 7531 if (!I->use_empty()) { 7532 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7533 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7534 AssertOp = ISD::AssertSext; 7535 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7536 AssertOp = ISD::AssertZext; 7537 7538 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7539 NumParts, PartVT, VT, 7540 nullptr, AssertOp)); 7541 } 7542 7543 i += NumParts; 7544 } 7545 7546 // We don't need to do anything else for unused arguments. 7547 if (ArgValues.empty()) 7548 continue; 7549 7550 // Note down frame index. 7551 if (FrameIndexSDNode *FI = 7552 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7553 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7554 7555 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7556 SDB->getCurSDLoc()); 7557 7558 SDB->setValue(&*I, Res); 7559 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7560 if (LoadSDNode *LNode = 7561 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7562 if (FrameIndexSDNode *FI = 7563 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7564 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7565 } 7566 7567 // If this argument is live outside of the entry block, insert a copy from 7568 // wherever we got it to the vreg that other BB's will reference it as. 7569 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7570 // If we can, though, try to skip creating an unnecessary vreg. 7571 // FIXME: This isn't very clean... it would be nice to make this more 7572 // general. It's also subtly incompatible with the hacks FastISel 7573 // uses with vregs. 7574 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7575 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7576 FuncInfo->ValueMap[&*I] = Reg; 7577 continue; 7578 } 7579 } 7580 if (!isOnlyUsedInEntryBlock(&*I, TM.Options.EnableFastISel)) { 7581 FuncInfo->InitializeRegForValue(&*I); 7582 SDB->CopyToExportRegsIfNeeded(&*I); 7583 } 7584 } 7585 7586 assert(i == InVals.size() && "Argument register count mismatch!"); 7587 7588 // Finally, if the target has anything special to do, allow it to do so. 7589 EmitFunctionEntryCode(); 7590 } 7591 7592 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7593 /// ensure constants are generated when needed. Remember the virtual registers 7594 /// that need to be added to the Machine PHI nodes as input. We cannot just 7595 /// directly add them, because expansion might result in multiple MBB's for one 7596 /// BB. As such, the start of the BB might correspond to a different MBB than 7597 /// the end. 7598 /// 7599 void 7600 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7601 const TerminatorInst *TI = LLVMBB->getTerminator(); 7602 7603 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7604 7605 // Check PHI nodes in successors that expect a value to be available from this 7606 // block. 7607 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7608 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7609 if (!isa<PHINode>(SuccBB->begin())) continue; 7610 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7611 7612 // If this terminator has multiple identical successors (common for 7613 // switches), only handle each succ once. 7614 if (!SuccsHandled.insert(SuccMBB).second) 7615 continue; 7616 7617 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7618 7619 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7620 // nodes and Machine PHI nodes, but the incoming operands have not been 7621 // emitted yet. 7622 for (BasicBlock::const_iterator I = SuccBB->begin(); 7623 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7624 // Ignore dead phi's. 7625 if (PN->use_empty()) continue; 7626 7627 // Skip empty types 7628 if (PN->getType()->isEmptyTy()) 7629 continue; 7630 7631 unsigned Reg; 7632 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7633 7634 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7635 unsigned &RegOut = ConstantsOut[C]; 7636 if (RegOut == 0) { 7637 RegOut = FuncInfo.CreateRegs(C->getType()); 7638 CopyValueToVirtualRegister(C, RegOut); 7639 } 7640 Reg = RegOut; 7641 } else { 7642 DenseMap<const Value *, unsigned>::iterator I = 7643 FuncInfo.ValueMap.find(PHIOp); 7644 if (I != FuncInfo.ValueMap.end()) 7645 Reg = I->second; 7646 else { 7647 assert(isa<AllocaInst>(PHIOp) && 7648 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7649 "Didn't codegen value into a register!??"); 7650 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7651 CopyValueToVirtualRegister(PHIOp, Reg); 7652 } 7653 } 7654 7655 // Remember that this register needs to added to the machine PHI node as 7656 // the input for this MBB. 7657 SmallVector<EVT, 4> ValueVTs; 7658 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7659 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 7660 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7661 EVT VT = ValueVTs[vti]; 7662 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7663 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7664 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7665 Reg += NumRegisters; 7666 } 7667 } 7668 } 7669 7670 ConstantsOut.clear(); 7671 } 7672 7673 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7674 /// is 0. 7675 MachineBasicBlock * 7676 SelectionDAGBuilder::StackProtectorDescriptor:: 7677 AddSuccessorMBB(const BasicBlock *BB, 7678 MachineBasicBlock *ParentMBB, 7679 bool IsLikely, 7680 MachineBasicBlock *SuccMBB) { 7681 // If SuccBB has not been created yet, create it. 7682 if (!SuccMBB) { 7683 MachineFunction *MF = ParentMBB->getParent(); 7684 MachineFunction::iterator BBI(ParentMBB); 7685 SuccMBB = MF->CreateMachineBasicBlock(BB); 7686 MF->insert(++BBI, SuccMBB); 7687 } 7688 // Add it as a successor of ParentMBB. 7689 ParentMBB->addSuccessor( 7690 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 7691 return SuccMBB; 7692 } 7693 7694 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7695 MachineFunction::iterator I(MBB); 7696 if (++I == FuncInfo.MF->end()) 7697 return nullptr; 7698 return &*I; 7699 } 7700 7701 /// During lowering new call nodes can be created (such as memset, etc.). 7702 /// Those will become new roots of the current DAG, but complications arise 7703 /// when they are tail calls. In such cases, the call lowering will update 7704 /// the root, but the builder still needs to know that a tail call has been 7705 /// lowered in order to avoid generating an additional return. 7706 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7707 // If the node is null, we do have a tail call. 7708 if (MaybeTC.getNode() != nullptr) 7709 DAG.setRoot(MaybeTC); 7710 else 7711 HasTailCall = true; 7712 } 7713 7714 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7715 unsigned *TotalCases, unsigned First, 7716 unsigned Last) { 7717 assert(Last >= First); 7718 assert(TotalCases[Last] >= TotalCases[First]); 7719 7720 APInt LowCase = Clusters[First].Low->getValue(); 7721 APInt HighCase = Clusters[Last].High->getValue(); 7722 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7723 7724 // FIXME: A range of consecutive cases has 100% density, but only requires one 7725 // comparison to lower. We should discriminate against such consecutive ranges 7726 // in jump tables. 7727 7728 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7729 uint64_t Range = Diff + 1; 7730 7731 uint64_t NumCases = 7732 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7733 7734 assert(NumCases < UINT64_MAX / 100); 7735 assert(Range >= NumCases); 7736 7737 return NumCases * 100 >= Range * MinJumpTableDensity; 7738 } 7739 7740 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7741 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7742 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7743 } 7744 7745 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7746 unsigned First, unsigned Last, 7747 const SwitchInst *SI, 7748 MachineBasicBlock *DefaultMBB, 7749 CaseCluster &JTCluster) { 7750 assert(First <= Last); 7751 7752 auto Prob = BranchProbability::getZero(); 7753 unsigned NumCmps = 0; 7754 std::vector<MachineBasicBlock*> Table; 7755 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 7756 7757 // Initialize probabilities in JTProbs. 7758 for (unsigned I = First; I <= Last; ++I) 7759 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 7760 7761 for (unsigned I = First; I <= Last; ++I) { 7762 assert(Clusters[I].Kind == CC_Range); 7763 Prob += Clusters[I].Prob; 7764 APInt Low = Clusters[I].Low->getValue(); 7765 APInt High = Clusters[I].High->getValue(); 7766 NumCmps += (Low == High) ? 1 : 2; 7767 if (I != First) { 7768 // Fill the gap between this and the previous cluster. 7769 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7770 assert(PreviousHigh.slt(Low)); 7771 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7772 for (uint64_t J = 0; J < Gap; J++) 7773 Table.push_back(DefaultMBB); 7774 } 7775 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7776 for (uint64_t J = 0; J < ClusterSize; ++J) 7777 Table.push_back(Clusters[I].MBB); 7778 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 7779 } 7780 7781 unsigned NumDests = JTProbs.size(); 7782 if (isSuitableForBitTests(NumDests, NumCmps, 7783 Clusters[First].Low->getValue(), 7784 Clusters[Last].High->getValue())) { 7785 // Clusters[First..Last] should be lowered as bit tests instead. 7786 return false; 7787 } 7788 7789 // Create the MBB that will load from and jump through the table. 7790 // Note: We create it here, but it's not inserted into the function yet. 7791 MachineFunction *CurMF = FuncInfo.MF; 7792 MachineBasicBlock *JumpTableMBB = 7793 CurMF->CreateMachineBasicBlock(SI->getParent()); 7794 7795 // Add successors. Note: use table order for determinism. 7796 SmallPtrSet<MachineBasicBlock *, 8> Done; 7797 for (MachineBasicBlock *Succ : Table) { 7798 if (Done.count(Succ)) 7799 continue; 7800 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 7801 Done.insert(Succ); 7802 } 7803 JumpTableMBB->normalizeSuccProbs(); 7804 7805 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7806 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 7807 ->createJumpTableIndex(Table); 7808 7809 // Set up the jump table info. 7810 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 7811 JumpTableHeader JTH(Clusters[First].Low->getValue(), 7812 Clusters[Last].High->getValue(), SI->getCondition(), 7813 nullptr, false); 7814 JTCases.emplace_back(std::move(JTH), std::move(JT)); 7815 7816 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 7817 JTCases.size() - 1, Prob); 7818 return true; 7819 } 7820 7821 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 7822 const SwitchInst *SI, 7823 MachineBasicBlock *DefaultMBB) { 7824 #ifndef NDEBUG 7825 // Clusters must be non-empty, sorted, and only contain Range clusters. 7826 assert(!Clusters.empty()); 7827 for (CaseCluster &C : Clusters) 7828 assert(C.Kind == CC_Range); 7829 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 7830 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 7831 #endif 7832 7833 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7834 if (!areJTsAllowed(TLI)) 7835 return; 7836 7837 const int64_t N = Clusters.size(); 7838 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 7839 7840 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 7841 SmallVector<unsigned, 8> TotalCases(N); 7842 7843 for (unsigned i = 0; i < N; ++i) { 7844 APInt Hi = Clusters[i].High->getValue(); 7845 APInt Lo = Clusters[i].Low->getValue(); 7846 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 7847 if (i != 0) 7848 TotalCases[i] += TotalCases[i - 1]; 7849 } 7850 7851 if (N >= MinJumpTableSize && isDense(Clusters, &TotalCases[0], 0, N - 1)) { 7852 // Cheap case: the whole range might be suitable for jump table. 7853 CaseCluster JTCluster; 7854 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 7855 Clusters[0] = JTCluster; 7856 Clusters.resize(1); 7857 return; 7858 } 7859 } 7860 7861 // The algorithm below is not suitable for -O0. 7862 if (TM.getOptLevel() == CodeGenOpt::None) 7863 return; 7864 7865 // Split Clusters into minimum number of dense partitions. The algorithm uses 7866 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 7867 // for the Case Statement'" (1994), but builds the MinPartitions array in 7868 // reverse order to make it easier to reconstruct the partitions in ascending 7869 // order. In the choice between two optimal partitionings, it picks the one 7870 // which yields more jump tables. 7871 7872 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7873 SmallVector<unsigned, 8> MinPartitions(N); 7874 // LastElement[i] is the last element of the partition starting at i. 7875 SmallVector<unsigned, 8> LastElement(N); 7876 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 7877 SmallVector<unsigned, 8> NumTables(N); 7878 7879 // Base case: There is only one way to partition Clusters[N-1]. 7880 MinPartitions[N - 1] = 1; 7881 LastElement[N - 1] = N - 1; 7882 assert(MinJumpTableSize > 1); 7883 NumTables[N - 1] = 0; 7884 7885 // Note: loop indexes are signed to avoid underflow. 7886 for (int64_t i = N - 2; i >= 0; i--) { 7887 // Find optimal partitioning of Clusters[i..N-1]. 7888 // Baseline: Put Clusters[i] into a partition on its own. 7889 MinPartitions[i] = MinPartitions[i + 1] + 1; 7890 LastElement[i] = i; 7891 NumTables[i] = NumTables[i + 1]; 7892 7893 // Search for a solution that results in fewer partitions. 7894 for (int64_t j = N - 1; j > i; j--) { 7895 // Try building a partition from Clusters[i..j]. 7896 if (isDense(Clusters, &TotalCases[0], i, j)) { 7897 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7898 bool IsTable = j - i + 1 >= MinJumpTableSize; 7899 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 7900 7901 // If this j leads to fewer partitions, or same number of partitions 7902 // with more lookup tables, it is a better partitioning. 7903 if (NumPartitions < MinPartitions[i] || 7904 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 7905 MinPartitions[i] = NumPartitions; 7906 LastElement[i] = j; 7907 NumTables[i] = Tables; 7908 } 7909 } 7910 } 7911 } 7912 7913 // Iterate over the partitions, replacing some with jump tables in-place. 7914 unsigned DstIndex = 0; 7915 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7916 Last = LastElement[First]; 7917 assert(Last >= First); 7918 assert(DstIndex <= First); 7919 unsigned NumClusters = Last - First + 1; 7920 7921 CaseCluster JTCluster; 7922 if (NumClusters >= MinJumpTableSize && 7923 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 7924 Clusters[DstIndex++] = JTCluster; 7925 } else { 7926 for (unsigned I = First; I <= Last; ++I) 7927 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7928 } 7929 } 7930 Clusters.resize(DstIndex); 7931 } 7932 7933 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 7934 // FIXME: Using the pointer type doesn't seem ideal. 7935 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); 7936 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 7937 return Range <= BW; 7938 } 7939 7940 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 7941 unsigned NumCmps, 7942 const APInt &Low, 7943 const APInt &High) { 7944 // FIXME: I don't think NumCmps is the correct metric: a single case and a 7945 // range of cases both require only one branch to lower. Just looking at the 7946 // number of clusters and destinations should be enough to decide whether to 7947 // build bit tests. 7948 7949 // To lower a range with bit tests, the range must fit the bitwidth of a 7950 // machine word. 7951 if (!rangeFitsInWord(Low, High)) 7952 return false; 7953 7954 // Decide whether it's profitable to lower this range with bit tests. Each 7955 // destination requires a bit test and branch, and there is an overall range 7956 // check branch. For a small number of clusters, separate comparisons might be 7957 // cheaper, and for many destinations, splitting the range might be better. 7958 return (NumDests == 1 && NumCmps >= 3) || 7959 (NumDests == 2 && NumCmps >= 5) || 7960 (NumDests == 3 && NumCmps >= 6); 7961 } 7962 7963 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 7964 unsigned First, unsigned Last, 7965 const SwitchInst *SI, 7966 CaseCluster &BTCluster) { 7967 assert(First <= Last); 7968 if (First == Last) 7969 return false; 7970 7971 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7972 unsigned NumCmps = 0; 7973 for (int64_t I = First; I <= Last; ++I) { 7974 assert(Clusters[I].Kind == CC_Range); 7975 Dests.set(Clusters[I].MBB->getNumber()); 7976 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 7977 } 7978 unsigned NumDests = Dests.count(); 7979 7980 APInt Low = Clusters[First].Low->getValue(); 7981 APInt High = Clusters[Last].High->getValue(); 7982 assert(Low.slt(High)); 7983 7984 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 7985 return false; 7986 7987 APInt LowBound; 7988 APInt CmpRange; 7989 7990 const int BitWidth = DAG.getTargetLoweringInfo() 7991 .getPointerTy(DAG.getDataLayout()) 7992 .getSizeInBits(); 7993 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 7994 7995 // Check if the clusters cover a contiguous range such that no value in the 7996 // range will jump to the default statement. 7997 bool ContiguousRange = true; 7998 for (int64_t I = First + 1; I <= Last; ++I) { 7999 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 8000 ContiguousRange = false; 8001 break; 8002 } 8003 } 8004 8005 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 8006 // Optimize the case where all the case values fit in a word without having 8007 // to subtract minValue. In this case, we can optimize away the subtraction. 8008 LowBound = APInt::getNullValue(Low.getBitWidth()); 8009 CmpRange = High; 8010 ContiguousRange = false; 8011 } else { 8012 LowBound = Low; 8013 CmpRange = High - Low; 8014 } 8015 8016 CaseBitsVector CBV; 8017 auto TotalProb = BranchProbability::getZero(); 8018 for (unsigned i = First; i <= Last; ++i) { 8019 // Find the CaseBits for this destination. 8020 unsigned j; 8021 for (j = 0; j < CBV.size(); ++j) 8022 if (CBV[j].BB == Clusters[i].MBB) 8023 break; 8024 if (j == CBV.size()) 8025 CBV.push_back( 8026 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 8027 CaseBits *CB = &CBV[j]; 8028 8029 // Update Mask, Bits and ExtraProb. 8030 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 8031 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 8032 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 8033 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 8034 CB->Bits += Hi - Lo + 1; 8035 CB->ExtraProb += Clusters[i].Prob; 8036 TotalProb += Clusters[i].Prob; 8037 } 8038 8039 BitTestInfo BTI; 8040 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 8041 // Sort by probability first, number of bits second. 8042 if (a.ExtraProb != b.ExtraProb) 8043 return a.ExtraProb > b.ExtraProb; 8044 return a.Bits > b.Bits; 8045 }); 8046 8047 for (auto &CB : CBV) { 8048 MachineBasicBlock *BitTestBB = 8049 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 8050 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 8051 } 8052 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 8053 SI->getCondition(), -1U, MVT::Other, false, 8054 ContiguousRange, nullptr, nullptr, std::move(BTI), 8055 TotalProb); 8056 8057 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 8058 BitTestCases.size() - 1, TotalProb); 8059 return true; 8060 } 8061 8062 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 8063 const SwitchInst *SI) { 8064 // Partition Clusters into as few subsets as possible, where each subset has a 8065 // range that fits in a machine word and has <= 3 unique destinations. 8066 8067 #ifndef NDEBUG 8068 // Clusters must be sorted and contain Range or JumpTable clusters. 8069 assert(!Clusters.empty()); 8070 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 8071 for (const CaseCluster &C : Clusters) 8072 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 8073 for (unsigned i = 1; i < Clusters.size(); ++i) 8074 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 8075 #endif 8076 8077 // The algorithm below is not suitable for -O0. 8078 if (TM.getOptLevel() == CodeGenOpt::None) 8079 return; 8080 8081 // If target does not have legal shift left, do not emit bit tests at all. 8082 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8083 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 8084 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 8085 return; 8086 8087 int BitWidth = PTy.getSizeInBits(); 8088 const int64_t N = Clusters.size(); 8089 8090 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 8091 SmallVector<unsigned, 8> MinPartitions(N); 8092 // LastElement[i] is the last element of the partition starting at i. 8093 SmallVector<unsigned, 8> LastElement(N); 8094 8095 // FIXME: This might not be the best algorithm for finding bit test clusters. 8096 8097 // Base case: There is only one way to partition Clusters[N-1]. 8098 MinPartitions[N - 1] = 1; 8099 LastElement[N - 1] = N - 1; 8100 8101 // Note: loop indexes are signed to avoid underflow. 8102 for (int64_t i = N - 2; i >= 0; --i) { 8103 // Find optimal partitioning of Clusters[i..N-1]. 8104 // Baseline: Put Clusters[i] into a partition on its own. 8105 MinPartitions[i] = MinPartitions[i + 1] + 1; 8106 LastElement[i] = i; 8107 8108 // Search for a solution that results in fewer partitions. 8109 // Note: the search is limited by BitWidth, reducing time complexity. 8110 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 8111 // Try building a partition from Clusters[i..j]. 8112 8113 // Check the range. 8114 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 8115 Clusters[j].High->getValue())) 8116 continue; 8117 8118 // Check nbr of destinations and cluster types. 8119 // FIXME: This works, but doesn't seem very efficient. 8120 bool RangesOnly = true; 8121 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 8122 for (int64_t k = i; k <= j; k++) { 8123 if (Clusters[k].Kind != CC_Range) { 8124 RangesOnly = false; 8125 break; 8126 } 8127 Dests.set(Clusters[k].MBB->getNumber()); 8128 } 8129 if (!RangesOnly || Dests.count() > 3) 8130 break; 8131 8132 // Check if it's a better partition. 8133 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 8134 if (NumPartitions < MinPartitions[i]) { 8135 // Found a better partition. 8136 MinPartitions[i] = NumPartitions; 8137 LastElement[i] = j; 8138 } 8139 } 8140 } 8141 8142 // Iterate over the partitions, replacing with bit-test clusters in-place. 8143 unsigned DstIndex = 0; 8144 for (unsigned First = 0, Last; First < N; First = Last + 1) { 8145 Last = LastElement[First]; 8146 assert(First <= Last); 8147 assert(DstIndex <= First); 8148 8149 CaseCluster BitTestCluster; 8150 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 8151 Clusters[DstIndex++] = BitTestCluster; 8152 } else { 8153 size_t NumClusters = Last - First + 1; 8154 std::memmove(&Clusters[DstIndex], &Clusters[First], 8155 sizeof(Clusters[0]) * NumClusters); 8156 DstIndex += NumClusters; 8157 } 8158 } 8159 Clusters.resize(DstIndex); 8160 } 8161 8162 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 8163 MachineBasicBlock *SwitchMBB, 8164 MachineBasicBlock *DefaultMBB) { 8165 MachineFunction *CurMF = FuncInfo.MF; 8166 MachineBasicBlock *NextMBB = nullptr; 8167 MachineFunction::iterator BBI(W.MBB); 8168 if (++BBI != FuncInfo.MF->end()) 8169 NextMBB = &*BBI; 8170 8171 unsigned Size = W.LastCluster - W.FirstCluster + 1; 8172 8173 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8174 8175 if (Size == 2 && W.MBB == SwitchMBB) { 8176 // If any two of the cases has the same destination, and if one value 8177 // is the same as the other, but has one bit unset that the other has set, 8178 // use bit manipulation to do two compares at once. For example: 8179 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 8180 // TODO: This could be extended to merge any 2 cases in switches with 3 8181 // cases. 8182 // TODO: Handle cases where W.CaseBB != SwitchBB. 8183 CaseCluster &Small = *W.FirstCluster; 8184 CaseCluster &Big = *W.LastCluster; 8185 8186 if (Small.Low == Small.High && Big.Low == Big.High && 8187 Small.MBB == Big.MBB) { 8188 const APInt &SmallValue = Small.Low->getValue(); 8189 const APInt &BigValue = Big.Low->getValue(); 8190 8191 // Check that there is only one bit different. 8192 APInt CommonBit = BigValue ^ SmallValue; 8193 if (CommonBit.isPowerOf2()) { 8194 SDValue CondLHS = getValue(Cond); 8195 EVT VT = CondLHS.getValueType(); 8196 SDLoc DL = getCurSDLoc(); 8197 8198 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 8199 DAG.getConstant(CommonBit, DL, VT)); 8200 SDValue Cond = DAG.getSetCC( 8201 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 8202 ISD::SETEQ); 8203 8204 // Update successor info. 8205 // Both Small and Big will jump to Small.BB, so we sum up the 8206 // probabilities. 8207 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 8208 if (BPI) 8209 addSuccessorWithProb( 8210 SwitchMBB, DefaultMBB, 8211 // The default destination is the first successor in IR. 8212 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 8213 else 8214 addSuccessorWithProb(SwitchMBB, DefaultMBB); 8215 8216 // Insert the true branch. 8217 SDValue BrCond = 8218 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 8219 DAG.getBasicBlock(Small.MBB)); 8220 // Insert the false branch. 8221 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 8222 DAG.getBasicBlock(DefaultMBB)); 8223 8224 DAG.setRoot(BrCond); 8225 return; 8226 } 8227 } 8228 } 8229 8230 if (TM.getOptLevel() != CodeGenOpt::None) { 8231 // Order cases by probability so the most likely case will be checked first. 8232 std::sort(W.FirstCluster, W.LastCluster + 1, 8233 [](const CaseCluster &a, const CaseCluster &b) { 8234 return a.Prob > b.Prob; 8235 }); 8236 8237 // Rearrange the case blocks so that the last one falls through if possible 8238 // without without changing the order of probabilities. 8239 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 8240 --I; 8241 if (I->Prob > W.LastCluster->Prob) 8242 break; 8243 if (I->Kind == CC_Range && I->MBB == NextMBB) { 8244 std::swap(*I, *W.LastCluster); 8245 break; 8246 } 8247 } 8248 } 8249 8250 // Compute total probability. 8251 BranchProbability DefaultProb = W.DefaultProb; 8252 BranchProbability UnhandledProbs = DefaultProb; 8253 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 8254 UnhandledProbs += I->Prob; 8255 8256 MachineBasicBlock *CurMBB = W.MBB; 8257 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 8258 MachineBasicBlock *Fallthrough; 8259 if (I == W.LastCluster) { 8260 // For the last cluster, fall through to the default destination. 8261 Fallthrough = DefaultMBB; 8262 } else { 8263 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 8264 CurMF->insert(BBI, Fallthrough); 8265 // Put Cond in a virtual register to make it available from the new blocks. 8266 ExportFromCurrentBlock(Cond); 8267 } 8268 UnhandledProbs -= I->Prob; 8269 8270 switch (I->Kind) { 8271 case CC_JumpTable: { 8272 // FIXME: Optimize away range check based on pivot comparisons. 8273 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 8274 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 8275 8276 // The jump block hasn't been inserted yet; insert it here. 8277 MachineBasicBlock *JumpMBB = JT->MBB; 8278 CurMF->insert(BBI, JumpMBB); 8279 8280 auto JumpProb = I->Prob; 8281 auto FallthroughProb = UnhandledProbs; 8282 8283 // If the default statement is a target of the jump table, we evenly 8284 // distribute the default probability to successors of CurMBB. Also 8285 // update the probability on the edge from JumpMBB to Fallthrough. 8286 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 8287 SE = JumpMBB->succ_end(); 8288 SI != SE; ++SI) { 8289 if (*SI == DefaultMBB) { 8290 JumpProb += DefaultProb / 2; 8291 FallthroughProb -= DefaultProb / 2; 8292 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 8293 JumpMBB->normalizeSuccProbs(); 8294 break; 8295 } 8296 } 8297 8298 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 8299 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 8300 CurMBB->normalizeSuccProbs(); 8301 8302 // The jump table header will be inserted in our current block, do the 8303 // range check, and fall through to our fallthrough block. 8304 JTH->HeaderBB = CurMBB; 8305 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 8306 8307 // If we're in the right place, emit the jump table header right now. 8308 if (CurMBB == SwitchMBB) { 8309 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 8310 JTH->Emitted = true; 8311 } 8312 break; 8313 } 8314 case CC_BitTests: { 8315 // FIXME: Optimize away range check based on pivot comparisons. 8316 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 8317 8318 // The bit test blocks haven't been inserted yet; insert them here. 8319 for (BitTestCase &BTC : BTB->Cases) 8320 CurMF->insert(BBI, BTC.ThisBB); 8321 8322 // Fill in fields of the BitTestBlock. 8323 BTB->Parent = CurMBB; 8324 BTB->Default = Fallthrough; 8325 8326 BTB->DefaultProb = UnhandledProbs; 8327 // If the cases in bit test don't form a contiguous range, we evenly 8328 // distribute the probability on the edge to Fallthrough to two 8329 // successors of CurMBB. 8330 if (!BTB->ContiguousRange) { 8331 BTB->Prob += DefaultProb / 2; 8332 BTB->DefaultProb -= DefaultProb / 2; 8333 } 8334 8335 // If we're in the right place, emit the bit test header right now. 8336 if (CurMBB == SwitchMBB) { 8337 visitBitTestHeader(*BTB, SwitchMBB); 8338 BTB->Emitted = true; 8339 } 8340 break; 8341 } 8342 case CC_Range: { 8343 const Value *RHS, *LHS, *MHS; 8344 ISD::CondCode CC; 8345 if (I->Low == I->High) { 8346 // Check Cond == I->Low. 8347 CC = ISD::SETEQ; 8348 LHS = Cond; 8349 RHS=I->Low; 8350 MHS = nullptr; 8351 } else { 8352 // Check I->Low <= Cond <= I->High. 8353 CC = ISD::SETLE; 8354 LHS = I->Low; 8355 MHS = Cond; 8356 RHS = I->High; 8357 } 8358 8359 // The false probability is the sum of all unhandled cases. 8360 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob, 8361 UnhandledProbs); 8362 8363 if (CurMBB == SwitchMBB) 8364 visitSwitchCase(CB, SwitchMBB); 8365 else 8366 SwitchCases.push_back(CB); 8367 8368 break; 8369 } 8370 } 8371 CurMBB = Fallthrough; 8372 } 8373 } 8374 8375 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 8376 CaseClusterIt First, 8377 CaseClusterIt Last) { 8378 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 8379 if (X.Prob != CC.Prob) 8380 return X.Prob > CC.Prob; 8381 8382 // Ties are broken by comparing the case value. 8383 return X.Low->getValue().slt(CC.Low->getValue()); 8384 }); 8385 } 8386 8387 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 8388 const SwitchWorkListItem &W, 8389 Value *Cond, 8390 MachineBasicBlock *SwitchMBB) { 8391 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 8392 "Clusters not sorted?"); 8393 8394 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 8395 8396 // Balance the tree based on branch probabilities to create a near-optimal (in 8397 // terms of search time given key frequency) binary search tree. See e.g. Kurt 8398 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 8399 CaseClusterIt LastLeft = W.FirstCluster; 8400 CaseClusterIt FirstRight = W.LastCluster; 8401 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 8402 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 8403 8404 // Move LastLeft and FirstRight towards each other from opposite directions to 8405 // find a partitioning of the clusters which balances the probability on both 8406 // sides. If LeftProb and RightProb are equal, alternate which side is 8407 // taken to ensure 0-probability nodes are distributed evenly. 8408 unsigned I = 0; 8409 while (LastLeft + 1 < FirstRight) { 8410 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 8411 LeftProb += (++LastLeft)->Prob; 8412 else 8413 RightProb += (--FirstRight)->Prob; 8414 I++; 8415 } 8416 8417 for (;;) { 8418 // Our binary search tree differs from a typical BST in that ours can have up 8419 // to three values in each leaf. The pivot selection above doesn't take that 8420 // into account, which means the tree might require more nodes and be less 8421 // efficient. We compensate for this here. 8422 8423 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 8424 unsigned NumRight = W.LastCluster - FirstRight + 1; 8425 8426 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 8427 // If one side has less than 3 clusters, and the other has more than 3, 8428 // consider taking a cluster from the other side. 8429 8430 if (NumLeft < NumRight) { 8431 // Consider moving the first cluster on the right to the left side. 8432 CaseCluster &CC = *FirstRight; 8433 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8434 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8435 if (LeftSideRank <= RightSideRank) { 8436 // Moving the cluster to the left does not demote it. 8437 ++LastLeft; 8438 ++FirstRight; 8439 continue; 8440 } 8441 } else { 8442 assert(NumRight < NumLeft); 8443 // Consider moving the last element on the left to the right side. 8444 CaseCluster &CC = *LastLeft; 8445 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8446 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8447 if (RightSideRank <= LeftSideRank) { 8448 // Moving the cluster to the right does not demot it. 8449 --LastLeft; 8450 --FirstRight; 8451 continue; 8452 } 8453 } 8454 } 8455 break; 8456 } 8457 8458 assert(LastLeft + 1 == FirstRight); 8459 assert(LastLeft >= W.FirstCluster); 8460 assert(FirstRight <= W.LastCluster); 8461 8462 // Use the first element on the right as pivot since we will make less-than 8463 // comparisons against it. 8464 CaseClusterIt PivotCluster = FirstRight; 8465 assert(PivotCluster > W.FirstCluster); 8466 assert(PivotCluster <= W.LastCluster); 8467 8468 CaseClusterIt FirstLeft = W.FirstCluster; 8469 CaseClusterIt LastRight = W.LastCluster; 8470 8471 const ConstantInt *Pivot = PivotCluster->Low; 8472 8473 // New blocks will be inserted immediately after the current one. 8474 MachineFunction::iterator BBI(W.MBB); 8475 ++BBI; 8476 8477 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8478 // we can branch to its destination directly if it's squeezed exactly in 8479 // between the known lower bound and Pivot - 1. 8480 MachineBasicBlock *LeftMBB; 8481 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8482 FirstLeft->Low == W.GE && 8483 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8484 LeftMBB = FirstLeft->MBB; 8485 } else { 8486 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8487 FuncInfo.MF->insert(BBI, LeftMBB); 8488 WorkList.push_back( 8489 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 8490 // Put Cond in a virtual register to make it available from the new blocks. 8491 ExportFromCurrentBlock(Cond); 8492 } 8493 8494 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8495 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8496 // directly if RHS.High equals the current upper bound. 8497 MachineBasicBlock *RightMBB; 8498 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8499 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8500 RightMBB = FirstRight->MBB; 8501 } else { 8502 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8503 FuncInfo.MF->insert(BBI, RightMBB); 8504 WorkList.push_back( 8505 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 8506 // Put Cond in a virtual register to make it available from the new blocks. 8507 ExportFromCurrentBlock(Cond); 8508 } 8509 8510 // Create the CaseBlock record that will be used to lower the branch. 8511 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8512 LeftProb, RightProb); 8513 8514 if (W.MBB == SwitchMBB) 8515 visitSwitchCase(CB, SwitchMBB); 8516 else 8517 SwitchCases.push_back(CB); 8518 } 8519 8520 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8521 // Extract cases from the switch. 8522 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8523 CaseClusterVector Clusters; 8524 Clusters.reserve(SI.getNumCases()); 8525 for (auto I : SI.cases()) { 8526 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8527 const ConstantInt *CaseVal = I.getCaseValue(); 8528 BranchProbability Prob = 8529 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 8530 : BranchProbability(1, SI.getNumCases() + 1); 8531 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 8532 } 8533 8534 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8535 8536 // Cluster adjacent cases with the same destination. We do this at all 8537 // optimization levels because it's cheap to do and will make codegen faster 8538 // if there are many clusters. 8539 sortAndRangeify(Clusters); 8540 8541 if (TM.getOptLevel() != CodeGenOpt::None) { 8542 // Replace an unreachable default with the most popular destination. 8543 // FIXME: Exploit unreachable default more aggressively. 8544 bool UnreachableDefault = 8545 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8546 if (UnreachableDefault && !Clusters.empty()) { 8547 DenseMap<const BasicBlock *, unsigned> Popularity; 8548 unsigned MaxPop = 0; 8549 const BasicBlock *MaxBB = nullptr; 8550 for (auto I : SI.cases()) { 8551 const BasicBlock *BB = I.getCaseSuccessor(); 8552 if (++Popularity[BB] > MaxPop) { 8553 MaxPop = Popularity[BB]; 8554 MaxBB = BB; 8555 } 8556 } 8557 // Set new default. 8558 assert(MaxPop > 0 && MaxBB); 8559 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8560 8561 // Remove cases that were pointing to the destination that is now the 8562 // default. 8563 CaseClusterVector New; 8564 New.reserve(Clusters.size()); 8565 for (CaseCluster &CC : Clusters) { 8566 if (CC.MBB != DefaultMBB) 8567 New.push_back(CC); 8568 } 8569 Clusters = std::move(New); 8570 } 8571 } 8572 8573 // If there is only the default destination, jump there directly. 8574 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 8575 if (Clusters.empty()) { 8576 SwitchMBB->addSuccessor(DefaultMBB); 8577 if (DefaultMBB != NextBlock(SwitchMBB)) { 8578 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 8579 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 8580 } 8581 return; 8582 } 8583 8584 findJumpTables(Clusters, &SI, DefaultMBB); 8585 findBitTestClusters(Clusters, &SI); 8586 8587 DEBUG({ 8588 dbgs() << "Case clusters: "; 8589 for (const CaseCluster &C : Clusters) { 8590 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 8591 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 8592 8593 C.Low->getValue().print(dbgs(), true); 8594 if (C.Low != C.High) { 8595 dbgs() << '-'; 8596 C.High->getValue().print(dbgs(), true); 8597 } 8598 dbgs() << ' '; 8599 } 8600 dbgs() << '\n'; 8601 }); 8602 8603 assert(!Clusters.empty()); 8604 SwitchWorkList WorkList; 8605 CaseClusterIt First = Clusters.begin(); 8606 CaseClusterIt Last = Clusters.end() - 1; 8607 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); 8608 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 8609 8610 while (!WorkList.empty()) { 8611 SwitchWorkListItem W = WorkList.back(); 8612 WorkList.pop_back(); 8613 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 8614 8615 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 8616 // For optimized builds, lower large range as a balanced binary tree. 8617 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 8618 continue; 8619 } 8620 8621 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 8622 } 8623 } 8624