1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/Analysis/BlockFrequencyInfo.h" 31 #include "llvm/Analysis/BranchProbabilityInfo.h" 32 #include "llvm/Analysis/ConstantFolding.h" 33 #include "llvm/Analysis/EHPersonalities.h" 34 #include "llvm/Analysis/Loads.h" 35 #include "llvm/Analysis/MemoryLocation.h" 36 #include "llvm/Analysis/ProfileSummaryInfo.h" 37 #include "llvm/Analysis/TargetLibraryInfo.h" 38 #include "llvm/Analysis/ValueTracking.h" 39 #include "llvm/Analysis/VectorUtils.h" 40 #include "llvm/CodeGen/Analysis.h" 41 #include "llvm/CodeGen/FunctionLoweringInfo.h" 42 #include "llvm/CodeGen/GCMetadata.h" 43 #include "llvm/CodeGen/ISDOpcodes.h" 44 #include "llvm/CodeGen/MachineBasicBlock.h" 45 #include "llvm/CodeGen/MachineFrameInfo.h" 46 #include "llvm/CodeGen/MachineFunction.h" 47 #include "llvm/CodeGen/MachineInstr.h" 48 #include "llvm/CodeGen/MachineInstrBuilder.h" 49 #include "llvm/CodeGen/MachineJumpTableInfo.h" 50 #include "llvm/CodeGen/MachineMemOperand.h" 51 #include "llvm/CodeGen/MachineModuleInfo.h" 52 #include "llvm/CodeGen/MachineOperand.h" 53 #include "llvm/CodeGen/MachineRegisterInfo.h" 54 #include "llvm/CodeGen/RuntimeLibcalls.h" 55 #include "llvm/CodeGen/SelectionDAG.h" 56 #include "llvm/CodeGen/SelectionDAGNodes.h" 57 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 58 #include "llvm/CodeGen/StackMaps.h" 59 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 60 #include "llvm/CodeGen/TargetFrameLowering.h" 61 #include "llvm/CodeGen/TargetInstrInfo.h" 62 #include "llvm/CodeGen/TargetLowering.h" 63 #include "llvm/CodeGen/TargetOpcodes.h" 64 #include "llvm/CodeGen/TargetRegisterInfo.h" 65 #include "llvm/CodeGen/TargetSubtargetInfo.h" 66 #include "llvm/CodeGen/ValueTypes.h" 67 #include "llvm/CodeGen/WinEHFuncInfo.h" 68 #include "llvm/IR/Argument.h" 69 #include "llvm/IR/Attributes.h" 70 #include "llvm/IR/BasicBlock.h" 71 #include "llvm/IR/CFG.h" 72 #include "llvm/IR/CallSite.h" 73 #include "llvm/IR/CallingConv.h" 74 #include "llvm/IR/Constant.h" 75 #include "llvm/IR/ConstantRange.h" 76 #include "llvm/IR/Constants.h" 77 #include "llvm/IR/DataLayout.h" 78 #include "llvm/IR/DebugInfoMetadata.h" 79 #include "llvm/IR/DebugLoc.h" 80 #include "llvm/IR/DerivedTypes.h" 81 #include "llvm/IR/Function.h" 82 #include "llvm/IR/GetElementPtrTypeIterator.h" 83 #include "llvm/IR/InlineAsm.h" 84 #include "llvm/IR/InstrTypes.h" 85 #include "llvm/IR/Instruction.h" 86 #include "llvm/IR/Instructions.h" 87 #include "llvm/IR/IntrinsicInst.h" 88 #include "llvm/IR/Intrinsics.h" 89 #include "llvm/IR/IntrinsicsAArch64.h" 90 #include "llvm/IR/IntrinsicsWebAssembly.h" 91 #include "llvm/IR/LLVMContext.h" 92 #include "llvm/IR/Metadata.h" 93 #include "llvm/IR/Module.h" 94 #include "llvm/IR/Operator.h" 95 #include "llvm/IR/PatternMatch.h" 96 #include "llvm/IR/Statepoint.h" 97 #include "llvm/IR/Type.h" 98 #include "llvm/IR/User.h" 99 #include "llvm/IR/Value.h" 100 #include "llvm/MC/MCContext.h" 101 #include "llvm/MC/MCSymbol.h" 102 #include "llvm/Support/AtomicOrdering.h" 103 #include "llvm/Support/BranchProbability.h" 104 #include "llvm/Support/Casting.h" 105 #include "llvm/Support/CodeGen.h" 106 #include "llvm/Support/CommandLine.h" 107 #include "llvm/Support/Compiler.h" 108 #include "llvm/Support/Debug.h" 109 #include "llvm/Support/ErrorHandling.h" 110 #include "llvm/Support/MachineValueType.h" 111 #include "llvm/Support/MathExtras.h" 112 #include "llvm/Support/raw_ostream.h" 113 #include "llvm/Target/TargetIntrinsicInfo.h" 114 #include "llvm/Target/TargetMachine.h" 115 #include "llvm/Target/TargetOptions.h" 116 #include "llvm/Transforms/Utils/Local.h" 117 #include <algorithm> 118 #include <cassert> 119 #include <cstddef> 120 #include <cstdint> 121 #include <cstring> 122 #include <iterator> 123 #include <limits> 124 #include <numeric> 125 #include <tuple> 126 #include <utility> 127 #include <vector> 128 129 using namespace llvm; 130 using namespace PatternMatch; 131 using namespace SwitchCG; 132 133 #define DEBUG_TYPE "isel" 134 135 /// LimitFloatPrecision - Generate low-precision inline sequences for 136 /// some float libcalls (6, 8 or 12 bits). 137 static unsigned LimitFloatPrecision; 138 139 static cl::opt<unsigned, true> 140 LimitFPPrecision("limit-float-precision", 141 cl::desc("Generate low-precision inline sequences " 142 "for some float libcalls"), 143 cl::location(LimitFloatPrecision), cl::Hidden, 144 cl::init(0)); 145 146 static cl::opt<unsigned> SwitchPeelThreshold( 147 "switch-peel-threshold", cl::Hidden, cl::init(66), 148 cl::desc("Set the case probability threshold for peeling the case from a " 149 "switch statement. A value greater than 100 will void this " 150 "optimization")); 151 152 // Limit the width of DAG chains. This is important in general to prevent 153 // DAG-based analysis from blowing up. For example, alias analysis and 154 // load clustering may not complete in reasonable time. It is difficult to 155 // recognize and avoid this situation within each individual analysis, and 156 // future analyses are likely to have the same behavior. Limiting DAG width is 157 // the safe approach and will be especially important with global DAGs. 158 // 159 // MaxParallelChains default is arbitrarily high to avoid affecting 160 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 161 // sequence over this should have been converted to llvm.memcpy by the 162 // frontend. It is easy to induce this behavior with .ll code such as: 163 // %buffer = alloca [4096 x i8] 164 // %data = load [4096 x i8]* %argPtr 165 // store [4096 x i8] %data, [4096 x i8]* %buffer 166 static const unsigned MaxParallelChains = 64; 167 168 // Return the calling convention if the Value passed requires ABI mangling as it 169 // is a parameter to a function or a return value from a function which is not 170 // an intrinsic. 171 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) { 172 if (auto *R = dyn_cast<ReturnInst>(V)) 173 return R->getParent()->getParent()->getCallingConv(); 174 175 if (auto *CI = dyn_cast<CallInst>(V)) { 176 const bool IsInlineAsm = CI->isInlineAsm(); 177 const bool IsIndirectFunctionCall = 178 !IsInlineAsm && !CI->getCalledFunction(); 179 180 // It is possible that the call instruction is an inline asm statement or an 181 // indirect function call in which case the return value of 182 // getCalledFunction() would be nullptr. 183 const bool IsInstrinsicCall = 184 !IsInlineAsm && !IsIndirectFunctionCall && 185 CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic; 186 187 if (!IsInlineAsm && !IsInstrinsicCall) 188 return CI->getCallingConv(); 189 } 190 191 return None; 192 } 193 194 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 195 const SDValue *Parts, unsigned NumParts, 196 MVT PartVT, EVT ValueVT, const Value *V, 197 Optional<CallingConv::ID> CC); 198 199 /// getCopyFromParts - Create a value that contains the specified legal parts 200 /// combined into the value they represent. If the parts combine to a type 201 /// larger than ValueVT then AssertOp can be used to specify whether the extra 202 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 203 /// (ISD::AssertSext). 204 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 205 const SDValue *Parts, unsigned NumParts, 206 MVT PartVT, EVT ValueVT, const Value *V, 207 Optional<CallingConv::ID> CC = None, 208 Optional<ISD::NodeType> AssertOp = None) { 209 if (ValueVT.isVector()) 210 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 211 CC); 212 213 assert(NumParts > 0 && "No parts to assemble!"); 214 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 215 SDValue Val = Parts[0]; 216 217 if (NumParts > 1) { 218 // Assemble the value from multiple parts. 219 if (ValueVT.isInteger()) { 220 unsigned PartBits = PartVT.getSizeInBits(); 221 unsigned ValueBits = ValueVT.getSizeInBits(); 222 223 // Assemble the power of 2 part. 224 unsigned RoundParts = 225 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 226 unsigned RoundBits = PartBits * RoundParts; 227 EVT RoundVT = RoundBits == ValueBits ? 228 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 229 SDValue Lo, Hi; 230 231 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 232 233 if (RoundParts > 2) { 234 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 235 PartVT, HalfVT, V); 236 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 237 RoundParts / 2, PartVT, HalfVT, V); 238 } else { 239 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 240 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 241 } 242 243 if (DAG.getDataLayout().isBigEndian()) 244 std::swap(Lo, Hi); 245 246 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 247 248 if (RoundParts < NumParts) { 249 // Assemble the trailing non-power-of-2 part. 250 unsigned OddParts = NumParts - RoundParts; 251 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 252 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 253 OddVT, V, CC); 254 255 // Combine the round and odd parts. 256 Lo = Val; 257 if (DAG.getDataLayout().isBigEndian()) 258 std::swap(Lo, Hi); 259 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 260 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 261 Hi = 262 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 263 DAG.getConstant(Lo.getValueSizeInBits(), DL, 264 TLI.getPointerTy(DAG.getDataLayout()))); 265 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 266 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 267 } 268 } else if (PartVT.isFloatingPoint()) { 269 // FP split into multiple FP parts (for ppcf128) 270 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 271 "Unexpected split"); 272 SDValue Lo, Hi; 273 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 274 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 275 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 276 std::swap(Lo, Hi); 277 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 278 } else { 279 // FP split into integer parts (soft fp) 280 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 281 !PartVT.isVector() && "Unexpected split"); 282 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 283 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 284 } 285 } 286 287 // There is now one part, held in Val. Correct it to match ValueVT. 288 // PartEVT is the type of the register class that holds the value. 289 // ValueVT is the type of the inline asm operation. 290 EVT PartEVT = Val.getValueType(); 291 292 if (PartEVT == ValueVT) 293 return Val; 294 295 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 296 ValueVT.bitsLT(PartEVT)) { 297 // For an FP value in an integer part, we need to truncate to the right 298 // width first. 299 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 300 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 301 } 302 303 // Handle types that have the same size. 304 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 305 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 306 307 // Handle types with different sizes. 308 if (PartEVT.isInteger() && ValueVT.isInteger()) { 309 if (ValueVT.bitsLT(PartEVT)) { 310 // For a truncate, see if we have any information to 311 // indicate whether the truncated bits will always be 312 // zero or sign-extension. 313 if (AssertOp.hasValue()) 314 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 315 DAG.getValueType(ValueVT)); 316 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 317 } 318 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 319 } 320 321 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 322 // FP_ROUND's are always exact here. 323 if (ValueVT.bitsLT(Val.getValueType())) 324 return DAG.getNode( 325 ISD::FP_ROUND, DL, ValueVT, Val, 326 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 327 328 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 329 } 330 331 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 332 // then truncating. 333 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 334 ValueVT.bitsLT(PartEVT)) { 335 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 336 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 337 } 338 339 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 340 } 341 342 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 343 const Twine &ErrMsg) { 344 const Instruction *I = dyn_cast_or_null<Instruction>(V); 345 if (!V) 346 return Ctx.emitError(ErrMsg); 347 348 const char *AsmError = ", possible invalid constraint for vector type"; 349 if (const CallInst *CI = dyn_cast<CallInst>(I)) 350 if (isa<InlineAsm>(CI->getCalledValue())) 351 return Ctx.emitError(I, ErrMsg + AsmError); 352 353 return Ctx.emitError(I, ErrMsg); 354 } 355 356 /// getCopyFromPartsVector - Create a value that contains the specified legal 357 /// parts combined into the value they represent. If the parts combine to a 358 /// type larger than ValueVT then AssertOp can be used to specify whether the 359 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 360 /// ValueVT (ISD::AssertSext). 361 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 362 const SDValue *Parts, unsigned NumParts, 363 MVT PartVT, EVT ValueVT, const Value *V, 364 Optional<CallingConv::ID> CallConv) { 365 assert(ValueVT.isVector() && "Not a vector value"); 366 assert(NumParts > 0 && "No parts to assemble!"); 367 const bool IsABIRegCopy = CallConv.hasValue(); 368 369 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 370 SDValue Val = Parts[0]; 371 372 // Handle a multi-element vector. 373 if (NumParts > 1) { 374 EVT IntermediateVT; 375 MVT RegisterVT; 376 unsigned NumIntermediates; 377 unsigned NumRegs; 378 379 if (IsABIRegCopy) { 380 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 381 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 382 NumIntermediates, RegisterVT); 383 } else { 384 NumRegs = 385 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 386 NumIntermediates, RegisterVT); 387 } 388 389 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 390 NumParts = NumRegs; // Silence a compiler warning. 391 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 392 assert(RegisterVT.getSizeInBits() == 393 Parts[0].getSimpleValueType().getSizeInBits() && 394 "Part type sizes don't match!"); 395 396 // Assemble the parts into intermediate operands. 397 SmallVector<SDValue, 8> Ops(NumIntermediates); 398 if (NumIntermediates == NumParts) { 399 // If the register was not expanded, truncate or copy the value, 400 // as appropriate. 401 for (unsigned i = 0; i != NumParts; ++i) 402 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 403 PartVT, IntermediateVT, V); 404 } else if (NumParts > 0) { 405 // If the intermediate type was expanded, build the intermediate 406 // operands from the parts. 407 assert(NumParts % NumIntermediates == 0 && 408 "Must expand into a divisible number of parts!"); 409 unsigned Factor = NumParts / NumIntermediates; 410 for (unsigned i = 0; i != NumIntermediates; ++i) 411 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 412 PartVT, IntermediateVT, V); 413 } 414 415 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 416 // intermediate operands. 417 EVT BuiltVectorTy = 418 EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(), 419 (IntermediateVT.isVector() 420 ? IntermediateVT.getVectorNumElements() * NumParts 421 : NumIntermediates)); 422 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 423 : ISD::BUILD_VECTOR, 424 DL, BuiltVectorTy, Ops); 425 } 426 427 // There is now one part, held in Val. Correct it to match ValueVT. 428 EVT PartEVT = Val.getValueType(); 429 430 if (PartEVT == ValueVT) 431 return Val; 432 433 if (PartEVT.isVector()) { 434 // If the element type of the source/dest vectors are the same, but the 435 // parts vector has more elements than the value vector, then we have a 436 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 437 // elements we want. 438 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 439 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 440 "Cannot narrow, it would be a lossy transformation"); 441 return DAG.getNode( 442 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 443 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 444 } 445 446 // Vector/Vector bitcast. 447 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 448 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 449 450 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 451 "Cannot handle this kind of promotion"); 452 // Promoted vector extract 453 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 454 455 } 456 457 // Trivial bitcast if the types are the same size and the destination 458 // vector type is legal. 459 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 460 TLI.isTypeLegal(ValueVT)) 461 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 462 463 if (ValueVT.getVectorNumElements() != 1) { 464 // Certain ABIs require that vectors are passed as integers. For vectors 465 // are the same size, this is an obvious bitcast. 466 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 467 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 468 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 469 // Bitcast Val back the original type and extract the corresponding 470 // vector we want. 471 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 472 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 473 ValueVT.getVectorElementType(), Elts); 474 Val = DAG.getBitcast(WiderVecType, Val); 475 return DAG.getNode( 476 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 477 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 478 } 479 480 diagnosePossiblyInvalidConstraint( 481 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 482 return DAG.getUNDEF(ValueVT); 483 } 484 485 // Handle cases such as i8 -> <1 x i1> 486 EVT ValueSVT = ValueVT.getVectorElementType(); 487 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) 488 Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 489 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 490 491 return DAG.getBuildVector(ValueVT, DL, Val); 492 } 493 494 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 495 SDValue Val, SDValue *Parts, unsigned NumParts, 496 MVT PartVT, const Value *V, 497 Optional<CallingConv::ID> CallConv); 498 499 /// getCopyToParts - Create a series of nodes that contain the specified value 500 /// split into legal parts. If the parts contain more bits than Val, then, for 501 /// integers, ExtendKind can be used to specify how to generate the extra bits. 502 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 503 SDValue *Parts, unsigned NumParts, MVT PartVT, 504 const Value *V, 505 Optional<CallingConv::ID> CallConv = None, 506 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 507 EVT ValueVT = Val.getValueType(); 508 509 // Handle the vector case separately. 510 if (ValueVT.isVector()) 511 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 512 CallConv); 513 514 unsigned PartBits = PartVT.getSizeInBits(); 515 unsigned OrigNumParts = NumParts; 516 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 517 "Copying to an illegal type!"); 518 519 if (NumParts == 0) 520 return; 521 522 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 523 EVT PartEVT = PartVT; 524 if (PartEVT == ValueVT) { 525 assert(NumParts == 1 && "No-op copy with multiple parts!"); 526 Parts[0] = Val; 527 return; 528 } 529 530 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 531 // If the parts cover more bits than the value has, promote the value. 532 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 533 assert(NumParts == 1 && "Do not know what to promote to!"); 534 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 535 } else { 536 if (ValueVT.isFloatingPoint()) { 537 // FP values need to be bitcast, then extended if they are being put 538 // into a larger container. 539 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 540 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 541 } 542 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 543 ValueVT.isInteger() && 544 "Unknown mismatch!"); 545 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 546 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 547 if (PartVT == MVT::x86mmx) 548 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 549 } 550 } else if (PartBits == ValueVT.getSizeInBits()) { 551 // Different types of the same size. 552 assert(NumParts == 1 && PartEVT != ValueVT); 553 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 554 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 555 // If the parts cover less bits than value has, truncate the value. 556 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 557 ValueVT.isInteger() && 558 "Unknown mismatch!"); 559 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 560 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 561 if (PartVT == MVT::x86mmx) 562 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 563 } 564 565 // The value may have changed - recompute ValueVT. 566 ValueVT = Val.getValueType(); 567 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 568 "Failed to tile the value with PartVT!"); 569 570 if (NumParts == 1) { 571 if (PartEVT != ValueVT) { 572 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 573 "scalar-to-vector conversion failed"); 574 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 575 } 576 577 Parts[0] = Val; 578 return; 579 } 580 581 // Expand the value into multiple parts. 582 if (NumParts & (NumParts - 1)) { 583 // The number of parts is not a power of 2. Split off and copy the tail. 584 assert(PartVT.isInteger() && ValueVT.isInteger() && 585 "Do not know what to expand to!"); 586 unsigned RoundParts = 1 << Log2_32(NumParts); 587 unsigned RoundBits = RoundParts * PartBits; 588 unsigned OddParts = NumParts - RoundParts; 589 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 590 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false)); 591 592 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 593 CallConv); 594 595 if (DAG.getDataLayout().isBigEndian()) 596 // The odd parts were reversed by getCopyToParts - unreverse them. 597 std::reverse(Parts + RoundParts, Parts + NumParts); 598 599 NumParts = RoundParts; 600 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 601 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 602 } 603 604 // The number of parts is a power of 2. Repeatedly bisect the value using 605 // EXTRACT_ELEMENT. 606 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 607 EVT::getIntegerVT(*DAG.getContext(), 608 ValueVT.getSizeInBits()), 609 Val); 610 611 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 612 for (unsigned i = 0; i < NumParts; i += StepSize) { 613 unsigned ThisBits = StepSize * PartBits / 2; 614 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 615 SDValue &Part0 = Parts[i]; 616 SDValue &Part1 = Parts[i+StepSize/2]; 617 618 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 619 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 620 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 621 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 622 623 if (ThisBits == PartBits && ThisVT != PartVT) { 624 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 625 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 626 } 627 } 628 } 629 630 if (DAG.getDataLayout().isBigEndian()) 631 std::reverse(Parts, Parts + OrigNumParts); 632 } 633 634 static SDValue widenVectorToPartType(SelectionDAG &DAG, 635 SDValue Val, const SDLoc &DL, EVT PartVT) { 636 if (!PartVT.isVector()) 637 return SDValue(); 638 639 EVT ValueVT = Val.getValueType(); 640 unsigned PartNumElts = PartVT.getVectorNumElements(); 641 unsigned ValueNumElts = ValueVT.getVectorNumElements(); 642 if (PartNumElts > ValueNumElts && 643 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 644 EVT ElementVT = PartVT.getVectorElementType(); 645 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 646 // undef elements. 647 SmallVector<SDValue, 16> Ops; 648 DAG.ExtractVectorElements(Val, Ops); 649 SDValue EltUndef = DAG.getUNDEF(ElementVT); 650 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i) 651 Ops.push_back(EltUndef); 652 653 // FIXME: Use CONCAT for 2x -> 4x. 654 return DAG.getBuildVector(PartVT, DL, Ops); 655 } 656 657 return SDValue(); 658 } 659 660 /// getCopyToPartsVector - Create a series of nodes that contain the specified 661 /// value split into legal parts. 662 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 663 SDValue Val, SDValue *Parts, unsigned NumParts, 664 MVT PartVT, const Value *V, 665 Optional<CallingConv::ID> CallConv) { 666 EVT ValueVT = Val.getValueType(); 667 assert(ValueVT.isVector() && "Not a vector"); 668 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 669 const bool IsABIRegCopy = CallConv.hasValue(); 670 671 if (NumParts == 1) { 672 EVT PartEVT = PartVT; 673 if (PartEVT == ValueVT) { 674 // Nothing to do. 675 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 676 // Bitconvert vector->vector case. 677 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 678 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 679 Val = Widened; 680 } else if (PartVT.isVector() && 681 PartEVT.getVectorElementType().bitsGE( 682 ValueVT.getVectorElementType()) && 683 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 684 685 // Promoted vector extract 686 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 687 } else { 688 if (ValueVT.getVectorNumElements() == 1) { 689 Val = DAG.getNode( 690 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 691 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 692 } else { 693 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 694 "lossy conversion of vector to scalar type"); 695 EVT IntermediateType = 696 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 697 Val = DAG.getBitcast(IntermediateType, Val); 698 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 699 } 700 } 701 702 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 703 Parts[0] = Val; 704 return; 705 } 706 707 // Handle a multi-element vector. 708 EVT IntermediateVT; 709 MVT RegisterVT; 710 unsigned NumIntermediates; 711 unsigned NumRegs; 712 if (IsABIRegCopy) { 713 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 714 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 715 NumIntermediates, RegisterVT); 716 } else { 717 NumRegs = 718 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 719 NumIntermediates, RegisterVT); 720 } 721 722 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 723 NumParts = NumRegs; // Silence a compiler warning. 724 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 725 726 unsigned IntermediateNumElts = IntermediateVT.isVector() ? 727 IntermediateVT.getVectorNumElements() : 1; 728 729 // Convert the vector to the appropriate type if necessary. 730 unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts; 731 732 EVT BuiltVectorTy = EVT::getVectorVT( 733 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts); 734 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 735 if (ValueVT != BuiltVectorTy) { 736 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) 737 Val = Widened; 738 739 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 740 } 741 742 // Split the vector into intermediate operands. 743 SmallVector<SDValue, 8> Ops(NumIntermediates); 744 for (unsigned i = 0; i != NumIntermediates; ++i) { 745 if (IntermediateVT.isVector()) { 746 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 747 DAG.getConstant(i * IntermediateNumElts, DL, IdxVT)); 748 } else { 749 Ops[i] = DAG.getNode( 750 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 751 DAG.getConstant(i, DL, IdxVT)); 752 } 753 } 754 755 // Split the intermediate operands into legal parts. 756 if (NumParts == NumIntermediates) { 757 // If the register was not expanded, promote or copy the value, 758 // as appropriate. 759 for (unsigned i = 0; i != NumParts; ++i) 760 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 761 } else if (NumParts > 0) { 762 // If the intermediate type was expanded, split each the value into 763 // legal parts. 764 assert(NumIntermediates != 0 && "division by zero"); 765 assert(NumParts % NumIntermediates == 0 && 766 "Must expand into a divisible number of parts!"); 767 unsigned Factor = NumParts / NumIntermediates; 768 for (unsigned i = 0; i != NumIntermediates; ++i) 769 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 770 CallConv); 771 } 772 } 773 774 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 775 EVT valuevt, Optional<CallingConv::ID> CC) 776 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 777 RegCount(1, regs.size()), CallConv(CC) {} 778 779 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 780 const DataLayout &DL, unsigned Reg, Type *Ty, 781 Optional<CallingConv::ID> CC) { 782 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 783 784 CallConv = CC; 785 786 for (EVT ValueVT : ValueVTs) { 787 unsigned NumRegs = 788 isABIMangled() 789 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 790 : TLI.getNumRegisters(Context, ValueVT); 791 MVT RegisterVT = 792 isABIMangled() 793 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 794 : TLI.getRegisterType(Context, ValueVT); 795 for (unsigned i = 0; i != NumRegs; ++i) 796 Regs.push_back(Reg + i); 797 RegVTs.push_back(RegisterVT); 798 RegCount.push_back(NumRegs); 799 Reg += NumRegs; 800 } 801 } 802 803 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 804 FunctionLoweringInfo &FuncInfo, 805 const SDLoc &dl, SDValue &Chain, 806 SDValue *Flag, const Value *V) const { 807 // A Value with type {} or [0 x %t] needs no registers. 808 if (ValueVTs.empty()) 809 return SDValue(); 810 811 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 812 813 // Assemble the legal parts into the final values. 814 SmallVector<SDValue, 4> Values(ValueVTs.size()); 815 SmallVector<SDValue, 8> Parts; 816 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 817 // Copy the legal parts from the registers. 818 EVT ValueVT = ValueVTs[Value]; 819 unsigned NumRegs = RegCount[Value]; 820 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 821 *DAG.getContext(), 822 CallConv.getValue(), RegVTs[Value]) 823 : RegVTs[Value]; 824 825 Parts.resize(NumRegs); 826 for (unsigned i = 0; i != NumRegs; ++i) { 827 SDValue P; 828 if (!Flag) { 829 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 830 } else { 831 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 832 *Flag = P.getValue(2); 833 } 834 835 Chain = P.getValue(1); 836 Parts[i] = P; 837 838 // If the source register was virtual and if we know something about it, 839 // add an assert node. 840 if (!Register::isVirtualRegister(Regs[Part + i]) || 841 !RegisterVT.isInteger()) 842 continue; 843 844 const FunctionLoweringInfo::LiveOutInfo *LOI = 845 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 846 if (!LOI) 847 continue; 848 849 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 850 unsigned NumSignBits = LOI->NumSignBits; 851 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 852 853 if (NumZeroBits == RegSize) { 854 // The current value is a zero. 855 // Explicitly express that as it would be easier for 856 // optimizations to kick in. 857 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 858 continue; 859 } 860 861 // FIXME: We capture more information than the dag can represent. For 862 // now, just use the tightest assertzext/assertsext possible. 863 bool isSExt; 864 EVT FromVT(MVT::Other); 865 if (NumZeroBits) { 866 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 867 isSExt = false; 868 } else if (NumSignBits > 1) { 869 FromVT = 870 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 871 isSExt = true; 872 } else { 873 continue; 874 } 875 // Add an assertion node. 876 assert(FromVT != MVT::Other); 877 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 878 RegisterVT, P, DAG.getValueType(FromVT)); 879 } 880 881 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 882 RegisterVT, ValueVT, V, CallConv); 883 Part += NumRegs; 884 Parts.clear(); 885 } 886 887 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 888 } 889 890 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 891 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 892 const Value *V, 893 ISD::NodeType PreferredExtendType) const { 894 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 895 ISD::NodeType ExtendKind = PreferredExtendType; 896 897 // Get the list of the values's legal parts. 898 unsigned NumRegs = Regs.size(); 899 SmallVector<SDValue, 8> Parts(NumRegs); 900 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 901 unsigned NumParts = RegCount[Value]; 902 903 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 904 *DAG.getContext(), 905 CallConv.getValue(), RegVTs[Value]) 906 : RegVTs[Value]; 907 908 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 909 ExtendKind = ISD::ZERO_EXTEND; 910 911 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 912 NumParts, RegisterVT, V, CallConv, ExtendKind); 913 Part += NumParts; 914 } 915 916 // Copy the parts into the registers. 917 SmallVector<SDValue, 8> Chains(NumRegs); 918 for (unsigned i = 0; i != NumRegs; ++i) { 919 SDValue Part; 920 if (!Flag) { 921 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 922 } else { 923 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 924 *Flag = Part.getValue(1); 925 } 926 927 Chains[i] = Part.getValue(0); 928 } 929 930 if (NumRegs == 1 || Flag) 931 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 932 // flagged to it. That is the CopyToReg nodes and the user are considered 933 // a single scheduling unit. If we create a TokenFactor and return it as 934 // chain, then the TokenFactor is both a predecessor (operand) of the 935 // user as well as a successor (the TF operands are flagged to the user). 936 // c1, f1 = CopyToReg 937 // c2, f2 = CopyToReg 938 // c3 = TokenFactor c1, c2 939 // ... 940 // = op c3, ..., f2 941 Chain = Chains[NumRegs-1]; 942 else 943 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 944 } 945 946 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 947 unsigned MatchingIdx, const SDLoc &dl, 948 SelectionDAG &DAG, 949 std::vector<SDValue> &Ops) const { 950 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 951 952 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 953 if (HasMatching) 954 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 955 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 956 // Put the register class of the virtual registers in the flag word. That 957 // way, later passes can recompute register class constraints for inline 958 // assembly as well as normal instructions. 959 // Don't do this for tied operands that can use the regclass information 960 // from the def. 961 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 962 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 963 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 964 } 965 966 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 967 Ops.push_back(Res); 968 969 if (Code == InlineAsm::Kind_Clobber) { 970 // Clobbers should always have a 1:1 mapping with registers, and may 971 // reference registers that have illegal (e.g. vector) types. Hence, we 972 // shouldn't try to apply any sort of splitting logic to them. 973 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 974 "No 1:1 mapping from clobbers to regs?"); 975 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 976 (void)SP; 977 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 978 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 979 assert( 980 (Regs[I] != SP || 981 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 982 "If we clobbered the stack pointer, MFI should know about it."); 983 } 984 return; 985 } 986 987 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 988 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 989 MVT RegisterVT = RegVTs[Value]; 990 for (unsigned i = 0; i != NumRegs; ++i) { 991 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 992 unsigned TheReg = Regs[Reg++]; 993 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 994 } 995 } 996 } 997 998 SmallVector<std::pair<unsigned, unsigned>, 4> 999 RegsForValue::getRegsAndSizes() const { 1000 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec; 1001 unsigned I = 0; 1002 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1003 unsigned RegCount = std::get<0>(CountAndVT); 1004 MVT RegisterVT = std::get<1>(CountAndVT); 1005 unsigned RegisterSize = RegisterVT.getSizeInBits(); 1006 for (unsigned E = I + RegCount; I != E; ++I) 1007 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1008 } 1009 return OutVec; 1010 } 1011 1012 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1013 const TargetLibraryInfo *li) { 1014 AA = aa; 1015 GFI = gfi; 1016 LibInfo = li; 1017 DL = &DAG.getDataLayout(); 1018 Context = DAG.getContext(); 1019 LPadToCallSiteMap.clear(); 1020 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1021 } 1022 1023 void SelectionDAGBuilder::clear() { 1024 NodeMap.clear(); 1025 UnusedArgNodeMap.clear(); 1026 PendingLoads.clear(); 1027 PendingExports.clear(); 1028 PendingConstrainedFP.clear(); 1029 PendingConstrainedFPStrict.clear(); 1030 CurInst = nullptr; 1031 HasTailCall = false; 1032 SDNodeOrder = LowestSDNodeOrder; 1033 StatepointLowering.clear(); 1034 } 1035 1036 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1037 DanglingDebugInfoMap.clear(); 1038 } 1039 1040 SDValue SelectionDAGBuilder::getMemoryRoot() { 1041 if (PendingLoads.empty()) 1042 return DAG.getRoot(); 1043 1044 if (PendingLoads.size() == 1) { 1045 SDValue Root = PendingLoads[0]; 1046 DAG.setRoot(Root); 1047 PendingLoads.clear(); 1048 return Root; 1049 } 1050 1051 // Otherwise, we have to make a token factor node. 1052 SDValue Root = DAG.getTokenFactor(getCurSDLoc(), PendingLoads); 1053 PendingLoads.clear(); 1054 DAG.setRoot(Root); 1055 return Root; 1056 } 1057 1058 SDValue SelectionDAGBuilder::getRoot() { 1059 // Chain up all pending constrained intrinsics together with all 1060 // pending loads, by simply appending them to PendingLoads and 1061 // then calling getMemoryRoot(). 1062 PendingLoads.reserve(PendingLoads.size() + 1063 PendingConstrainedFP.size() + 1064 PendingConstrainedFPStrict.size()); 1065 PendingLoads.append(PendingConstrainedFP.begin(), 1066 PendingConstrainedFP.end()); 1067 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1068 PendingConstrainedFPStrict.end()); 1069 PendingConstrainedFP.clear(); 1070 PendingConstrainedFPStrict.clear(); 1071 return getMemoryRoot(); 1072 } 1073 1074 SDValue SelectionDAGBuilder::getControlRoot() { 1075 SDValue Root = DAG.getRoot(); 1076 1077 // We need to emit pending fpexcept.strict constrained intrinsics, 1078 // so append them to the PendingExports list. 1079 PendingExports.append(PendingConstrainedFPStrict.begin(), 1080 PendingConstrainedFPStrict.end()); 1081 PendingConstrainedFPStrict.clear(); 1082 1083 if (PendingExports.empty()) 1084 return Root; 1085 1086 // Turn all of the CopyToReg chains into one factored node. 1087 if (Root.getOpcode() != ISD::EntryToken) { 1088 unsigned i = 0, e = PendingExports.size(); 1089 for (; i != e; ++i) { 1090 assert(PendingExports[i].getNode()->getNumOperands() > 1); 1091 if (PendingExports[i].getNode()->getOperand(0) == Root) 1092 break; // Don't add the root if we already indirectly depend on it. 1093 } 1094 1095 if (i == e) 1096 PendingExports.push_back(Root); 1097 } 1098 1099 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 1100 PendingExports); 1101 PendingExports.clear(); 1102 DAG.setRoot(Root); 1103 return Root; 1104 } 1105 1106 void SelectionDAGBuilder::visit(const Instruction &I) { 1107 // Set up outgoing PHI node register values before emitting the terminator. 1108 if (I.isTerminator()) { 1109 HandlePHINodesInSuccessorBlocks(I.getParent()); 1110 } 1111 1112 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1113 if (!isa<DbgInfoIntrinsic>(I)) 1114 ++SDNodeOrder; 1115 1116 CurInst = &I; 1117 1118 visit(I.getOpcode(), I); 1119 1120 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) { 1121 // Propagate the fast-math-flags of this IR instruction to the DAG node that 1122 // maps to this instruction. 1123 // TODO: We could handle all flags (nsw, etc) here. 1124 // TODO: If an IR instruction maps to >1 node, only the final node will have 1125 // flags set. 1126 if (SDNode *Node = getNodeForIRValue(&I)) { 1127 SDNodeFlags IncomingFlags; 1128 IncomingFlags.copyFMF(*FPMO); 1129 if (!Node->getFlags().isDefined()) 1130 Node->setFlags(IncomingFlags); 1131 else 1132 Node->intersectFlagsWith(IncomingFlags); 1133 } 1134 } 1135 // Constrained FP intrinsics with fpexcept.ignore should also get 1136 // the NoFPExcept flag. 1137 if (auto *FPI = dyn_cast<ConstrainedFPIntrinsic>(&I)) 1138 if (FPI->getExceptionBehavior() == fp::ExceptionBehavior::ebIgnore) 1139 if (SDNode *Node = getNodeForIRValue(&I)) { 1140 SDNodeFlags Flags = Node->getFlags(); 1141 Flags.setNoFPExcept(true); 1142 Node->setFlags(Flags); 1143 } 1144 1145 if (!I.isTerminator() && !HasTailCall && 1146 !isStatepoint(&I)) // statepoints handle their exports internally 1147 CopyToExportRegsIfNeeded(&I); 1148 1149 CurInst = nullptr; 1150 } 1151 1152 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1153 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1154 } 1155 1156 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1157 // Note: this doesn't use InstVisitor, because it has to work with 1158 // ConstantExpr's in addition to instructions. 1159 switch (Opcode) { 1160 default: llvm_unreachable("Unknown instruction type encountered!"); 1161 // Build the switch statement using the Instruction.def file. 1162 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1163 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1164 #include "llvm/IR/Instruction.def" 1165 } 1166 } 1167 1168 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1169 const DIExpression *Expr) { 1170 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1171 const DbgValueInst *DI = DDI.getDI(); 1172 DIVariable *DanglingVariable = DI->getVariable(); 1173 DIExpression *DanglingExpr = DI->getExpression(); 1174 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1175 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1176 return true; 1177 } 1178 return false; 1179 }; 1180 1181 for (auto &DDIMI : DanglingDebugInfoMap) { 1182 DanglingDebugInfoVector &DDIV = DDIMI.second; 1183 1184 // If debug info is to be dropped, run it through final checks to see 1185 // whether it can be salvaged. 1186 for (auto &DDI : DDIV) 1187 if (isMatchingDbgValue(DDI)) 1188 salvageUnresolvedDbgValue(DDI); 1189 1190 DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end()); 1191 } 1192 } 1193 1194 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1195 // generate the debug data structures now that we've seen its definition. 1196 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1197 SDValue Val) { 1198 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1199 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1200 return; 1201 1202 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1203 for (auto &DDI : DDIV) { 1204 const DbgValueInst *DI = DDI.getDI(); 1205 assert(DI && "Ill-formed DanglingDebugInfo"); 1206 DebugLoc dl = DDI.getdl(); 1207 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1208 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1209 DILocalVariable *Variable = DI->getVariable(); 1210 DIExpression *Expr = DI->getExpression(); 1211 assert(Variable->isValidLocationForIntrinsic(dl) && 1212 "Expected inlined-at fields to agree"); 1213 SDDbgValue *SDV; 1214 if (Val.getNode()) { 1215 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1216 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1217 // we couldn't resolve it directly when examining the DbgValue intrinsic 1218 // in the first place we should not be more successful here). Unless we 1219 // have some test case that prove this to be correct we should avoid 1220 // calling EmitFuncArgumentDbgValue here. 1221 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1222 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1223 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1224 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1225 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1226 // inserted after the definition of Val when emitting the instructions 1227 // after ISel. An alternative could be to teach 1228 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1229 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1230 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1231 << ValSDNodeOrder << "\n"); 1232 SDV = getDbgValue(Val, Variable, Expr, dl, 1233 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1234 DAG.AddDbgValue(SDV, Val.getNode(), false); 1235 } else 1236 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1237 << "in EmitFuncArgumentDbgValue\n"); 1238 } else { 1239 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1240 auto Undef = 1241 UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1242 auto SDV = 1243 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1244 DAG.AddDbgValue(SDV, nullptr, false); 1245 } 1246 } 1247 DDIV.clear(); 1248 } 1249 1250 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1251 Value *V = DDI.getDI()->getValue(); 1252 DILocalVariable *Var = DDI.getDI()->getVariable(); 1253 DIExpression *Expr = DDI.getDI()->getExpression(); 1254 DebugLoc DL = DDI.getdl(); 1255 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1256 unsigned SDOrder = DDI.getSDNodeOrder(); 1257 1258 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1259 // that DW_OP_stack_value is desired. 1260 assert(isa<DbgValueInst>(DDI.getDI())); 1261 bool StackValue = true; 1262 1263 // Can this Value can be encoded without any further work? 1264 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) 1265 return; 1266 1267 // Attempt to salvage back through as many instructions as possible. Bail if 1268 // a non-instruction is seen, such as a constant expression or global 1269 // variable. FIXME: Further work could recover those too. 1270 while (isa<Instruction>(V)) { 1271 Instruction &VAsInst = *cast<Instruction>(V); 1272 DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue); 1273 1274 // If we cannot salvage any further, and haven't yet found a suitable debug 1275 // expression, bail out. 1276 if (!NewExpr) 1277 break; 1278 1279 // New value and expr now represent this debuginfo. 1280 V = VAsInst.getOperand(0); 1281 Expr = NewExpr; 1282 1283 // Some kind of simplification occurred: check whether the operand of the 1284 // salvaged debug expression can be encoded in this DAG. 1285 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) { 1286 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1287 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1288 return; 1289 } 1290 } 1291 1292 // This was the final opportunity to salvage this debug information, and it 1293 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1294 // any earlier variable location. 1295 auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1296 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1297 DAG.AddDbgValue(SDV, nullptr, false); 1298 1299 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1300 << "\n"); 1301 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1302 << "\n"); 1303 } 1304 1305 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var, 1306 DIExpression *Expr, DebugLoc dl, 1307 DebugLoc InstDL, unsigned Order) { 1308 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1309 SDDbgValue *SDV; 1310 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1311 isa<ConstantPointerNull>(V)) { 1312 SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder); 1313 DAG.AddDbgValue(SDV, nullptr, false); 1314 return true; 1315 } 1316 1317 // If the Value is a frame index, we can create a FrameIndex debug value 1318 // without relying on the DAG at all. 1319 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1320 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1321 if (SI != FuncInfo.StaticAllocaMap.end()) { 1322 auto SDV = 1323 DAG.getFrameIndexDbgValue(Var, Expr, SI->second, 1324 /*IsIndirect*/ false, dl, SDNodeOrder); 1325 // Do not attach the SDNodeDbgValue to an SDNode: this variable location 1326 // is still available even if the SDNode gets optimized out. 1327 DAG.AddDbgValue(SDV, nullptr, false); 1328 return true; 1329 } 1330 } 1331 1332 // Do not use getValue() in here; we don't want to generate code at 1333 // this point if it hasn't been done yet. 1334 SDValue N = NodeMap[V]; 1335 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1336 N = UnusedArgNodeMap[V]; 1337 if (N.getNode()) { 1338 if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) 1339 return true; 1340 SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder); 1341 DAG.AddDbgValue(SDV, N.getNode(), false); 1342 return true; 1343 } 1344 1345 // Special rules apply for the first dbg.values of parameter variables in a 1346 // function. Identify them by the fact they reference Argument Values, that 1347 // they're parameters, and they are parameters of the current function. We 1348 // need to let them dangle until they get an SDNode. 1349 bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() && 1350 !InstDL.getInlinedAt(); 1351 if (!IsParamOfFunc) { 1352 // The value is not used in this block yet (or it would have an SDNode). 1353 // We still want the value to appear for the user if possible -- if it has 1354 // an associated VReg, we can refer to that instead. 1355 auto VMI = FuncInfo.ValueMap.find(V); 1356 if (VMI != FuncInfo.ValueMap.end()) { 1357 unsigned Reg = VMI->second; 1358 // If this is a PHI node, it may be split up into several MI PHI nodes 1359 // (in FunctionLoweringInfo::set). 1360 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1361 V->getType(), None); 1362 if (RFV.occupiesMultipleRegs()) { 1363 unsigned Offset = 0; 1364 unsigned BitsToDescribe = 0; 1365 if (auto VarSize = Var->getSizeInBits()) 1366 BitsToDescribe = *VarSize; 1367 if (auto Fragment = Expr->getFragmentInfo()) 1368 BitsToDescribe = Fragment->SizeInBits; 1369 for (auto RegAndSize : RFV.getRegsAndSizes()) { 1370 unsigned RegisterSize = RegAndSize.second; 1371 // Bail out if all bits are described already. 1372 if (Offset >= BitsToDescribe) 1373 break; 1374 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1375 ? BitsToDescribe - Offset 1376 : RegisterSize; 1377 auto FragmentExpr = DIExpression::createFragmentExpression( 1378 Expr, Offset, FragmentSize); 1379 if (!FragmentExpr) 1380 continue; 1381 SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first, 1382 false, dl, SDNodeOrder); 1383 DAG.AddDbgValue(SDV, nullptr, false); 1384 Offset += RegisterSize; 1385 } 1386 } else { 1387 SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder); 1388 DAG.AddDbgValue(SDV, nullptr, false); 1389 } 1390 return true; 1391 } 1392 } 1393 1394 return false; 1395 } 1396 1397 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1398 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1399 for (auto &Pair : DanglingDebugInfoMap) 1400 for (auto &DDI : Pair.second) 1401 salvageUnresolvedDbgValue(DDI); 1402 clearDanglingDebugInfo(); 1403 } 1404 1405 /// getCopyFromRegs - If there was virtual register allocated for the value V 1406 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1407 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1408 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1409 SDValue Result; 1410 1411 if (It != FuncInfo.ValueMap.end()) { 1412 unsigned InReg = It->second; 1413 1414 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1415 DAG.getDataLayout(), InReg, Ty, 1416 None); // This is not an ABI copy. 1417 SDValue Chain = DAG.getEntryNode(); 1418 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1419 V); 1420 resolveDanglingDebugInfo(V, Result); 1421 } 1422 1423 return Result; 1424 } 1425 1426 /// getValue - Return an SDValue for the given Value. 1427 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1428 // If we already have an SDValue for this value, use it. It's important 1429 // to do this first, so that we don't create a CopyFromReg if we already 1430 // have a regular SDValue. 1431 SDValue &N = NodeMap[V]; 1432 if (N.getNode()) return N; 1433 1434 // If there's a virtual register allocated and initialized for this 1435 // value, use it. 1436 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1437 return copyFromReg; 1438 1439 // Otherwise create a new SDValue and remember it. 1440 SDValue Val = getValueImpl(V); 1441 NodeMap[V] = Val; 1442 resolveDanglingDebugInfo(V, Val); 1443 return Val; 1444 } 1445 1446 // Return true if SDValue exists for the given Value 1447 bool SelectionDAGBuilder::findValue(const Value *V) const { 1448 return (NodeMap.find(V) != NodeMap.end()) || 1449 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1450 } 1451 1452 /// getNonRegisterValue - Return an SDValue for the given Value, but 1453 /// don't look in FuncInfo.ValueMap for a virtual register. 1454 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1455 // If we already have an SDValue for this value, use it. 1456 SDValue &N = NodeMap[V]; 1457 if (N.getNode()) { 1458 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1459 // Remove the debug location from the node as the node is about to be used 1460 // in a location which may differ from the original debug location. This 1461 // is relevant to Constant and ConstantFP nodes because they can appear 1462 // as constant expressions inside PHI nodes. 1463 N->setDebugLoc(DebugLoc()); 1464 } 1465 return N; 1466 } 1467 1468 // Otherwise create a new SDValue and remember it. 1469 SDValue Val = getValueImpl(V); 1470 NodeMap[V] = Val; 1471 resolveDanglingDebugInfo(V, Val); 1472 return Val; 1473 } 1474 1475 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1476 /// Create an SDValue for the given value. 1477 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1478 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1479 1480 if (const Constant *C = dyn_cast<Constant>(V)) { 1481 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1482 1483 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1484 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1485 1486 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1487 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1488 1489 if (isa<ConstantPointerNull>(C)) { 1490 unsigned AS = V->getType()->getPointerAddressSpace(); 1491 return DAG.getConstant(0, getCurSDLoc(), 1492 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1493 } 1494 1495 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1496 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1497 1498 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1499 return DAG.getUNDEF(VT); 1500 1501 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1502 visit(CE->getOpcode(), *CE); 1503 SDValue N1 = NodeMap[V]; 1504 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1505 return N1; 1506 } 1507 1508 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1509 SmallVector<SDValue, 4> Constants; 1510 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1511 OI != OE; ++OI) { 1512 SDNode *Val = getValue(*OI).getNode(); 1513 // If the operand is an empty aggregate, there are no values. 1514 if (!Val) continue; 1515 // Add each leaf value from the operand to the Constants list 1516 // to form a flattened list of all the values. 1517 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1518 Constants.push_back(SDValue(Val, i)); 1519 } 1520 1521 return DAG.getMergeValues(Constants, getCurSDLoc()); 1522 } 1523 1524 if (const ConstantDataSequential *CDS = 1525 dyn_cast<ConstantDataSequential>(C)) { 1526 SmallVector<SDValue, 4> Ops; 1527 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1528 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1529 // Add each leaf value from the operand to the Constants list 1530 // to form a flattened list of all the values. 1531 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1532 Ops.push_back(SDValue(Val, i)); 1533 } 1534 1535 if (isa<ArrayType>(CDS->getType())) 1536 return DAG.getMergeValues(Ops, getCurSDLoc()); 1537 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1538 } 1539 1540 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1541 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1542 "Unknown struct or array constant!"); 1543 1544 SmallVector<EVT, 4> ValueVTs; 1545 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1546 unsigned NumElts = ValueVTs.size(); 1547 if (NumElts == 0) 1548 return SDValue(); // empty struct 1549 SmallVector<SDValue, 4> Constants(NumElts); 1550 for (unsigned i = 0; i != NumElts; ++i) { 1551 EVT EltVT = ValueVTs[i]; 1552 if (isa<UndefValue>(C)) 1553 Constants[i] = DAG.getUNDEF(EltVT); 1554 else if (EltVT.isFloatingPoint()) 1555 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1556 else 1557 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1558 } 1559 1560 return DAG.getMergeValues(Constants, getCurSDLoc()); 1561 } 1562 1563 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1564 return DAG.getBlockAddress(BA, VT); 1565 1566 VectorType *VecTy = cast<VectorType>(V->getType()); 1567 unsigned NumElements = VecTy->getNumElements(); 1568 1569 // Now that we know the number and type of the elements, get that number of 1570 // elements into the Ops array based on what kind of constant it is. 1571 SmallVector<SDValue, 16> Ops; 1572 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1573 for (unsigned i = 0; i != NumElements; ++i) 1574 Ops.push_back(getValue(CV->getOperand(i))); 1575 } else { 1576 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1577 EVT EltVT = 1578 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1579 1580 SDValue Op; 1581 if (EltVT.isFloatingPoint()) 1582 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1583 else 1584 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1585 Ops.assign(NumElements, Op); 1586 } 1587 1588 // Create a BUILD_VECTOR node. 1589 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1590 } 1591 1592 // If this is a static alloca, generate it as the frameindex instead of 1593 // computation. 1594 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1595 DenseMap<const AllocaInst*, int>::iterator SI = 1596 FuncInfo.StaticAllocaMap.find(AI); 1597 if (SI != FuncInfo.StaticAllocaMap.end()) 1598 return DAG.getFrameIndex(SI->second, 1599 TLI.getFrameIndexTy(DAG.getDataLayout())); 1600 } 1601 1602 // If this is an instruction which fast-isel has deferred, select it now. 1603 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1604 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1605 1606 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1607 Inst->getType(), getABIRegCopyCC(V)); 1608 SDValue Chain = DAG.getEntryNode(); 1609 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1610 } 1611 1612 llvm_unreachable("Can't get register for value!"); 1613 } 1614 1615 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1616 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1617 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1618 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1619 bool IsSEH = isAsynchronousEHPersonality(Pers); 1620 bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX; 1621 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1622 if (!IsSEH) 1623 CatchPadMBB->setIsEHScopeEntry(); 1624 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1625 if (IsMSVCCXX || IsCoreCLR) 1626 CatchPadMBB->setIsEHFuncletEntry(); 1627 // Wasm does not need catchpads anymore 1628 if (!IsWasmCXX) 1629 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, 1630 getControlRoot())); 1631 } 1632 1633 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1634 // Update machine-CFG edge. 1635 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1636 FuncInfo.MBB->addSuccessor(TargetMBB); 1637 1638 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1639 bool IsSEH = isAsynchronousEHPersonality(Pers); 1640 if (IsSEH) { 1641 // If this is not a fall-through branch or optimizations are switched off, 1642 // emit the branch. 1643 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1644 TM.getOptLevel() == CodeGenOpt::None) 1645 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1646 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1647 return; 1648 } 1649 1650 // Figure out the funclet membership for the catchret's successor. 1651 // This will be used by the FuncletLayout pass to determine how to order the 1652 // BB's. 1653 // A 'catchret' returns to the outer scope's color. 1654 Value *ParentPad = I.getCatchSwitchParentPad(); 1655 const BasicBlock *SuccessorColor; 1656 if (isa<ConstantTokenNone>(ParentPad)) 1657 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1658 else 1659 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1660 assert(SuccessorColor && "No parent funclet for catchret!"); 1661 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1662 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1663 1664 // Create the terminator node. 1665 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1666 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1667 DAG.getBasicBlock(SuccessorColorMBB)); 1668 DAG.setRoot(Ret); 1669 } 1670 1671 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1672 // Don't emit any special code for the cleanuppad instruction. It just marks 1673 // the start of an EH scope/funclet. 1674 FuncInfo.MBB->setIsEHScopeEntry(); 1675 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1676 if (Pers != EHPersonality::Wasm_CXX) { 1677 FuncInfo.MBB->setIsEHFuncletEntry(); 1678 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1679 } 1680 } 1681 1682 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and 1683 // the control flow always stops at the single catch pad, as it does for a 1684 // cleanup pad. In case the exception caught is not of the types the catch pad 1685 // catches, it will be rethrown by a rethrow. 1686 static void findWasmUnwindDestinations( 1687 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1688 BranchProbability Prob, 1689 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1690 &UnwindDests) { 1691 while (EHPadBB) { 1692 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1693 if (isa<CleanupPadInst>(Pad)) { 1694 // Stop on cleanup pads. 1695 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1696 UnwindDests.back().first->setIsEHScopeEntry(); 1697 break; 1698 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1699 // Add the catchpad handlers to the possible destinations. We don't 1700 // continue to the unwind destination of the catchswitch for wasm. 1701 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1702 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1703 UnwindDests.back().first->setIsEHScopeEntry(); 1704 } 1705 break; 1706 } else { 1707 continue; 1708 } 1709 } 1710 } 1711 1712 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1713 /// many places it could ultimately go. In the IR, we have a single unwind 1714 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1715 /// This function skips over imaginary basic blocks that hold catchswitch 1716 /// instructions, and finds all the "real" machine 1717 /// basic block destinations. As those destinations may not be successors of 1718 /// EHPadBB, here we also calculate the edge probability to those destinations. 1719 /// The passed-in Prob is the edge probability to EHPadBB. 1720 static void findUnwindDestinations( 1721 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1722 BranchProbability Prob, 1723 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1724 &UnwindDests) { 1725 EHPersonality Personality = 1726 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1727 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1728 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1729 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1730 bool IsSEH = isAsynchronousEHPersonality(Personality); 1731 1732 if (IsWasmCXX) { 1733 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1734 assert(UnwindDests.size() <= 1 && 1735 "There should be at most one unwind destination for wasm"); 1736 return; 1737 } 1738 1739 while (EHPadBB) { 1740 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1741 BasicBlock *NewEHPadBB = nullptr; 1742 if (isa<LandingPadInst>(Pad)) { 1743 // Stop on landingpads. They are not funclets. 1744 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1745 break; 1746 } else if (isa<CleanupPadInst>(Pad)) { 1747 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1748 // personalities. 1749 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1750 UnwindDests.back().first->setIsEHScopeEntry(); 1751 UnwindDests.back().first->setIsEHFuncletEntry(); 1752 break; 1753 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1754 // Add the catchpad handlers to the possible destinations. 1755 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1756 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1757 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1758 if (IsMSVCCXX || IsCoreCLR) 1759 UnwindDests.back().first->setIsEHFuncletEntry(); 1760 if (!IsSEH) 1761 UnwindDests.back().first->setIsEHScopeEntry(); 1762 } 1763 NewEHPadBB = CatchSwitch->getUnwindDest(); 1764 } else { 1765 continue; 1766 } 1767 1768 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1769 if (BPI && NewEHPadBB) 1770 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1771 EHPadBB = NewEHPadBB; 1772 } 1773 } 1774 1775 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1776 // Update successor info. 1777 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1778 auto UnwindDest = I.getUnwindDest(); 1779 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1780 BranchProbability UnwindDestProb = 1781 (BPI && UnwindDest) 1782 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1783 : BranchProbability::getZero(); 1784 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1785 for (auto &UnwindDest : UnwindDests) { 1786 UnwindDest.first->setIsEHPad(); 1787 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1788 } 1789 FuncInfo.MBB->normalizeSuccProbs(); 1790 1791 // Create the terminator node. 1792 SDValue Ret = 1793 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1794 DAG.setRoot(Ret); 1795 } 1796 1797 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1798 report_fatal_error("visitCatchSwitch not yet implemented!"); 1799 } 1800 1801 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1802 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1803 auto &DL = DAG.getDataLayout(); 1804 SDValue Chain = getControlRoot(); 1805 SmallVector<ISD::OutputArg, 8> Outs; 1806 SmallVector<SDValue, 8> OutVals; 1807 1808 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1809 // lower 1810 // 1811 // %val = call <ty> @llvm.experimental.deoptimize() 1812 // ret <ty> %val 1813 // 1814 // differently. 1815 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1816 LowerDeoptimizingReturn(); 1817 return; 1818 } 1819 1820 if (!FuncInfo.CanLowerReturn) { 1821 unsigned DemoteReg = FuncInfo.DemoteRegister; 1822 const Function *F = I.getParent()->getParent(); 1823 1824 // Emit a store of the return value through the virtual register. 1825 // Leave Outs empty so that LowerReturn won't try to load return 1826 // registers the usual way. 1827 SmallVector<EVT, 1> PtrValueVTs; 1828 ComputeValueVTs(TLI, DL, 1829 F->getReturnType()->getPointerTo( 1830 DAG.getDataLayout().getAllocaAddrSpace()), 1831 PtrValueVTs); 1832 1833 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1834 DemoteReg, PtrValueVTs[0]); 1835 SDValue RetOp = getValue(I.getOperand(0)); 1836 1837 SmallVector<EVT, 4> ValueVTs, MemVTs; 1838 SmallVector<uint64_t, 4> Offsets; 1839 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1840 &Offsets); 1841 unsigned NumValues = ValueVTs.size(); 1842 1843 SmallVector<SDValue, 4> Chains(NumValues); 1844 for (unsigned i = 0; i != NumValues; ++i) { 1845 // An aggregate return value cannot wrap around the address space, so 1846 // offsets to its parts don't wrap either. 1847 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]); 1848 1849 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 1850 if (MemVTs[i] != ValueVTs[i]) 1851 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1852 Chains[i] = DAG.getStore(Chain, getCurSDLoc(), Val, 1853 // FIXME: better loc info would be nice. 1854 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1855 } 1856 1857 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1858 MVT::Other, Chains); 1859 } else if (I.getNumOperands() != 0) { 1860 SmallVector<EVT, 4> ValueVTs; 1861 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1862 unsigned NumValues = ValueVTs.size(); 1863 if (NumValues) { 1864 SDValue RetOp = getValue(I.getOperand(0)); 1865 1866 const Function *F = I.getParent()->getParent(); 1867 1868 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1869 I.getOperand(0)->getType(), F->getCallingConv(), 1870 /*IsVarArg*/ false); 1871 1872 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1873 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1874 Attribute::SExt)) 1875 ExtendKind = ISD::SIGN_EXTEND; 1876 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1877 Attribute::ZExt)) 1878 ExtendKind = ISD::ZERO_EXTEND; 1879 1880 LLVMContext &Context = F->getContext(); 1881 bool RetInReg = F->getAttributes().hasAttribute( 1882 AttributeList::ReturnIndex, Attribute::InReg); 1883 1884 for (unsigned j = 0; j != NumValues; ++j) { 1885 EVT VT = ValueVTs[j]; 1886 1887 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1888 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1889 1890 CallingConv::ID CC = F->getCallingConv(); 1891 1892 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1893 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1894 SmallVector<SDValue, 4> Parts(NumParts); 1895 getCopyToParts(DAG, getCurSDLoc(), 1896 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1897 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1898 1899 // 'inreg' on function refers to return value 1900 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1901 if (RetInReg) 1902 Flags.setInReg(); 1903 1904 if (I.getOperand(0)->getType()->isPointerTy()) { 1905 Flags.setPointer(); 1906 Flags.setPointerAddrSpace( 1907 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 1908 } 1909 1910 if (NeedsRegBlock) { 1911 Flags.setInConsecutiveRegs(); 1912 if (j == NumValues - 1) 1913 Flags.setInConsecutiveRegsLast(); 1914 } 1915 1916 // Propagate extension type if any 1917 if (ExtendKind == ISD::SIGN_EXTEND) 1918 Flags.setSExt(); 1919 else if (ExtendKind == ISD::ZERO_EXTEND) 1920 Flags.setZExt(); 1921 1922 for (unsigned i = 0; i < NumParts; ++i) { 1923 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1924 VT, /*isfixed=*/true, 0, 0)); 1925 OutVals.push_back(Parts[i]); 1926 } 1927 } 1928 } 1929 } 1930 1931 // Push in swifterror virtual register as the last element of Outs. This makes 1932 // sure swifterror virtual register will be returned in the swifterror 1933 // physical register. 1934 const Function *F = I.getParent()->getParent(); 1935 if (TLI.supportSwiftError() && 1936 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1937 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 1938 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1939 Flags.setSwiftError(); 1940 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1941 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1942 true /*isfixed*/, 1 /*origidx*/, 1943 0 /*partOffs*/)); 1944 // Create SDNode for the swifterror virtual register. 1945 OutVals.push_back( 1946 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 1947 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 1948 EVT(TLI.getPointerTy(DL)))); 1949 } 1950 1951 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1952 CallingConv::ID CallConv = 1953 DAG.getMachineFunction().getFunction().getCallingConv(); 1954 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1955 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1956 1957 // Verify that the target's LowerReturn behaved as expected. 1958 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1959 "LowerReturn didn't return a valid chain!"); 1960 1961 // Update the DAG with the new chain value resulting from return lowering. 1962 DAG.setRoot(Chain); 1963 } 1964 1965 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1966 /// created for it, emit nodes to copy the value into the virtual 1967 /// registers. 1968 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1969 // Skip empty types 1970 if (V->getType()->isEmptyTy()) 1971 return; 1972 1973 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1974 if (VMI != FuncInfo.ValueMap.end()) { 1975 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1976 CopyValueToVirtualRegister(V, VMI->second); 1977 } 1978 } 1979 1980 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1981 /// the current basic block, add it to ValueMap now so that we'll get a 1982 /// CopyTo/FromReg. 1983 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1984 // No need to export constants. 1985 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1986 1987 // Already exported? 1988 if (FuncInfo.isExportedInst(V)) return; 1989 1990 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1991 CopyValueToVirtualRegister(V, Reg); 1992 } 1993 1994 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1995 const BasicBlock *FromBB) { 1996 // The operands of the setcc have to be in this block. We don't know 1997 // how to export them from some other block. 1998 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1999 // Can export from current BB. 2000 if (VI->getParent() == FromBB) 2001 return true; 2002 2003 // Is already exported, noop. 2004 return FuncInfo.isExportedInst(V); 2005 } 2006 2007 // If this is an argument, we can export it if the BB is the entry block or 2008 // if it is already exported. 2009 if (isa<Argument>(V)) { 2010 if (FromBB == &FromBB->getParent()->getEntryBlock()) 2011 return true; 2012 2013 // Otherwise, can only export this if it is already exported. 2014 return FuncInfo.isExportedInst(V); 2015 } 2016 2017 // Otherwise, constants can always be exported. 2018 return true; 2019 } 2020 2021 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2022 BranchProbability 2023 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2024 const MachineBasicBlock *Dst) const { 2025 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2026 const BasicBlock *SrcBB = Src->getBasicBlock(); 2027 const BasicBlock *DstBB = Dst->getBasicBlock(); 2028 if (!BPI) { 2029 // If BPI is not available, set the default probability as 1 / N, where N is 2030 // the number of successors. 2031 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2032 return BranchProbability(1, SuccSize); 2033 } 2034 return BPI->getEdgeProbability(SrcBB, DstBB); 2035 } 2036 2037 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2038 MachineBasicBlock *Dst, 2039 BranchProbability Prob) { 2040 if (!FuncInfo.BPI) 2041 Src->addSuccessorWithoutProb(Dst); 2042 else { 2043 if (Prob.isUnknown()) 2044 Prob = getEdgeProbability(Src, Dst); 2045 Src->addSuccessor(Dst, Prob); 2046 } 2047 } 2048 2049 static bool InBlock(const Value *V, const BasicBlock *BB) { 2050 if (const Instruction *I = dyn_cast<Instruction>(V)) 2051 return I->getParent() == BB; 2052 return true; 2053 } 2054 2055 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2056 /// This function emits a branch and is used at the leaves of an OR or an 2057 /// AND operator tree. 2058 void 2059 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2060 MachineBasicBlock *TBB, 2061 MachineBasicBlock *FBB, 2062 MachineBasicBlock *CurBB, 2063 MachineBasicBlock *SwitchBB, 2064 BranchProbability TProb, 2065 BranchProbability FProb, 2066 bool InvertCond) { 2067 const BasicBlock *BB = CurBB->getBasicBlock(); 2068 2069 // If the leaf of the tree is a comparison, merge the condition into 2070 // the caseblock. 2071 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2072 // The operands of the cmp have to be in this block. We don't know 2073 // how to export them from some other block. If this is the first block 2074 // of the sequence, no exporting is needed. 2075 if (CurBB == SwitchBB || 2076 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2077 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2078 ISD::CondCode Condition; 2079 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2080 ICmpInst::Predicate Pred = 2081 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2082 Condition = getICmpCondCode(Pred); 2083 } else { 2084 const FCmpInst *FC = cast<FCmpInst>(Cond); 2085 FCmpInst::Predicate Pred = 2086 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2087 Condition = getFCmpCondCode(Pred); 2088 if (TM.Options.NoNaNsFPMath) 2089 Condition = getFCmpCodeWithoutNaN(Condition); 2090 } 2091 2092 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2093 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2094 SL->SwitchCases.push_back(CB); 2095 return; 2096 } 2097 } 2098 2099 // Create a CaseBlock record representing this branch. 2100 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2101 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2102 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2103 SL->SwitchCases.push_back(CB); 2104 } 2105 2106 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2107 MachineBasicBlock *TBB, 2108 MachineBasicBlock *FBB, 2109 MachineBasicBlock *CurBB, 2110 MachineBasicBlock *SwitchBB, 2111 Instruction::BinaryOps Opc, 2112 BranchProbability TProb, 2113 BranchProbability FProb, 2114 bool InvertCond) { 2115 // Skip over not part of the tree and remember to invert op and operands at 2116 // next level. 2117 Value *NotCond; 2118 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2119 InBlock(NotCond, CurBB->getBasicBlock())) { 2120 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2121 !InvertCond); 2122 return; 2123 } 2124 2125 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2126 // Compute the effective opcode for Cond, taking into account whether it needs 2127 // to be inverted, e.g. 2128 // and (not (or A, B)), C 2129 // gets lowered as 2130 // and (and (not A, not B), C) 2131 unsigned BOpc = 0; 2132 if (BOp) { 2133 BOpc = BOp->getOpcode(); 2134 if (InvertCond) { 2135 if (BOpc == Instruction::And) 2136 BOpc = Instruction::Or; 2137 else if (BOpc == Instruction::Or) 2138 BOpc = Instruction::And; 2139 } 2140 } 2141 2142 // If this node is not part of the or/and tree, emit it as a branch. 2143 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 2144 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 2145 BOp->getParent() != CurBB->getBasicBlock() || 2146 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 2147 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 2148 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2149 TProb, FProb, InvertCond); 2150 return; 2151 } 2152 2153 // Create TmpBB after CurBB. 2154 MachineFunction::iterator BBI(CurBB); 2155 MachineFunction &MF = DAG.getMachineFunction(); 2156 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2157 CurBB->getParent()->insert(++BBI, TmpBB); 2158 2159 if (Opc == Instruction::Or) { 2160 // Codegen X | Y as: 2161 // BB1: 2162 // jmp_if_X TBB 2163 // jmp TmpBB 2164 // TmpBB: 2165 // jmp_if_Y TBB 2166 // jmp FBB 2167 // 2168 2169 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2170 // The requirement is that 2171 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2172 // = TrueProb for original BB. 2173 // Assuming the original probabilities are A and B, one choice is to set 2174 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2175 // A/(1+B) and 2B/(1+B). This choice assumes that 2176 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2177 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2178 // TmpBB, but the math is more complicated. 2179 2180 auto NewTrueProb = TProb / 2; 2181 auto NewFalseProb = TProb / 2 + FProb; 2182 // Emit the LHS condition. 2183 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 2184 NewTrueProb, NewFalseProb, InvertCond); 2185 2186 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2187 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2188 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2189 // Emit the RHS condition into TmpBB. 2190 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2191 Probs[0], Probs[1], InvertCond); 2192 } else { 2193 assert(Opc == Instruction::And && "Unknown merge op!"); 2194 // Codegen X & Y as: 2195 // BB1: 2196 // jmp_if_X TmpBB 2197 // jmp FBB 2198 // TmpBB: 2199 // jmp_if_Y TBB 2200 // jmp FBB 2201 // 2202 // This requires creation of TmpBB after CurBB. 2203 2204 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2205 // The requirement is that 2206 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2207 // = FalseProb for original BB. 2208 // Assuming the original probabilities are A and B, one choice is to set 2209 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2210 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2211 // TrueProb for BB1 * FalseProb for TmpBB. 2212 2213 auto NewTrueProb = TProb + FProb / 2; 2214 auto NewFalseProb = FProb / 2; 2215 // Emit the LHS condition. 2216 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 2217 NewTrueProb, NewFalseProb, InvertCond); 2218 2219 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2220 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2221 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2222 // Emit the RHS condition into TmpBB. 2223 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2224 Probs[0], Probs[1], InvertCond); 2225 } 2226 } 2227 2228 /// If the set of cases should be emitted as a series of branches, return true. 2229 /// If we should emit this as a bunch of and/or'd together conditions, return 2230 /// false. 2231 bool 2232 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2233 if (Cases.size() != 2) return true; 2234 2235 // If this is two comparisons of the same values or'd or and'd together, they 2236 // will get folded into a single comparison, so don't emit two blocks. 2237 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2238 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2239 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2240 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2241 return false; 2242 } 2243 2244 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2245 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2246 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2247 Cases[0].CC == Cases[1].CC && 2248 isa<Constant>(Cases[0].CmpRHS) && 2249 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2250 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2251 return false; 2252 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2253 return false; 2254 } 2255 2256 return true; 2257 } 2258 2259 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2260 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2261 2262 // Update machine-CFG edges. 2263 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2264 2265 if (I.isUnconditional()) { 2266 // Update machine-CFG edges. 2267 BrMBB->addSuccessor(Succ0MBB); 2268 2269 // If this is not a fall-through branch or optimizations are switched off, 2270 // emit the branch. 2271 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2272 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2273 MVT::Other, getControlRoot(), 2274 DAG.getBasicBlock(Succ0MBB))); 2275 2276 return; 2277 } 2278 2279 // If this condition is one of the special cases we handle, do special stuff 2280 // now. 2281 const Value *CondVal = I.getCondition(); 2282 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2283 2284 // If this is a series of conditions that are or'd or and'd together, emit 2285 // this as a sequence of branches instead of setcc's with and/or operations. 2286 // As long as jumps are not expensive, this should improve performance. 2287 // For example, instead of something like: 2288 // cmp A, B 2289 // C = seteq 2290 // cmp D, E 2291 // F = setle 2292 // or C, F 2293 // jnz foo 2294 // Emit: 2295 // cmp A, B 2296 // je foo 2297 // cmp D, E 2298 // jle foo 2299 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 2300 Instruction::BinaryOps Opcode = BOp->getOpcode(); 2301 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 2302 !I.hasMetadata(LLVMContext::MD_unpredictable) && 2303 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 2304 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 2305 Opcode, 2306 getEdgeProbability(BrMBB, Succ0MBB), 2307 getEdgeProbability(BrMBB, Succ1MBB), 2308 /*InvertCond=*/false); 2309 // If the compares in later blocks need to use values not currently 2310 // exported from this block, export them now. This block should always 2311 // be the first entry. 2312 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2313 2314 // Allow some cases to be rejected. 2315 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2316 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2317 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2318 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2319 } 2320 2321 // Emit the branch for this block. 2322 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2323 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2324 return; 2325 } 2326 2327 // Okay, we decided not to do this, remove any inserted MBB's and clear 2328 // SwitchCases. 2329 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2330 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2331 2332 SL->SwitchCases.clear(); 2333 } 2334 } 2335 2336 // Create a CaseBlock record representing this branch. 2337 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2338 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2339 2340 // Use visitSwitchCase to actually insert the fast branch sequence for this 2341 // cond branch. 2342 visitSwitchCase(CB, BrMBB); 2343 } 2344 2345 /// visitSwitchCase - Emits the necessary code to represent a single node in 2346 /// the binary search tree resulting from lowering a switch instruction. 2347 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2348 MachineBasicBlock *SwitchBB) { 2349 SDValue Cond; 2350 SDValue CondLHS = getValue(CB.CmpLHS); 2351 SDLoc dl = CB.DL; 2352 2353 if (CB.CC == ISD::SETTRUE) { 2354 // Branch or fall through to TrueBB. 2355 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2356 SwitchBB->normalizeSuccProbs(); 2357 if (CB.TrueBB != NextBlock(SwitchBB)) { 2358 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2359 DAG.getBasicBlock(CB.TrueBB))); 2360 } 2361 return; 2362 } 2363 2364 auto &TLI = DAG.getTargetLoweringInfo(); 2365 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2366 2367 // Build the setcc now. 2368 if (!CB.CmpMHS) { 2369 // Fold "(X == true)" to X and "(X == false)" to !X to 2370 // handle common cases produced by branch lowering. 2371 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2372 CB.CC == ISD::SETEQ) 2373 Cond = CondLHS; 2374 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2375 CB.CC == ISD::SETEQ) { 2376 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2377 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2378 } else { 2379 SDValue CondRHS = getValue(CB.CmpRHS); 2380 2381 // If a pointer's DAG type is larger than its memory type then the DAG 2382 // values are zero-extended. This breaks signed comparisons so truncate 2383 // back to the underlying type before doing the compare. 2384 if (CondLHS.getValueType() != MemVT) { 2385 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2386 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2387 } 2388 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2389 } 2390 } else { 2391 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2392 2393 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2394 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2395 2396 SDValue CmpOp = getValue(CB.CmpMHS); 2397 EVT VT = CmpOp.getValueType(); 2398 2399 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2400 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2401 ISD::SETLE); 2402 } else { 2403 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2404 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2405 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2406 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2407 } 2408 } 2409 2410 // Update successor info 2411 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2412 // TrueBB and FalseBB are always different unless the incoming IR is 2413 // degenerate. This only happens when running llc on weird IR. 2414 if (CB.TrueBB != CB.FalseBB) 2415 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2416 SwitchBB->normalizeSuccProbs(); 2417 2418 // If the lhs block is the next block, invert the condition so that we can 2419 // fall through to the lhs instead of the rhs block. 2420 if (CB.TrueBB == NextBlock(SwitchBB)) { 2421 std::swap(CB.TrueBB, CB.FalseBB); 2422 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2423 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2424 } 2425 2426 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2427 MVT::Other, getControlRoot(), Cond, 2428 DAG.getBasicBlock(CB.TrueBB)); 2429 2430 // Insert the false branch. Do this even if it's a fall through branch, 2431 // this makes it easier to do DAG optimizations which require inverting 2432 // the branch condition. 2433 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2434 DAG.getBasicBlock(CB.FalseBB)); 2435 2436 DAG.setRoot(BrCond); 2437 } 2438 2439 /// visitJumpTable - Emit JumpTable node in the current MBB 2440 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2441 // Emit the code for the jump table 2442 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2443 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2444 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2445 JT.Reg, PTy); 2446 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2447 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2448 MVT::Other, Index.getValue(1), 2449 Table, Index); 2450 DAG.setRoot(BrJumpTable); 2451 } 2452 2453 /// visitJumpTableHeader - This function emits necessary code to produce index 2454 /// in the JumpTable from switch case. 2455 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2456 JumpTableHeader &JTH, 2457 MachineBasicBlock *SwitchBB) { 2458 SDLoc dl = getCurSDLoc(); 2459 2460 // Subtract the lowest switch case value from the value being switched on. 2461 SDValue SwitchOp = getValue(JTH.SValue); 2462 EVT VT = SwitchOp.getValueType(); 2463 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2464 DAG.getConstant(JTH.First, dl, VT)); 2465 2466 // The SDNode we just created, which holds the value being switched on minus 2467 // the smallest case value, needs to be copied to a virtual register so it 2468 // can be used as an index into the jump table in a subsequent basic block. 2469 // This value may be smaller or larger than the target's pointer type, and 2470 // therefore require extension or truncating. 2471 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2472 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2473 2474 unsigned JumpTableReg = 2475 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2476 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2477 JumpTableReg, SwitchOp); 2478 JT.Reg = JumpTableReg; 2479 2480 if (!JTH.OmitRangeCheck) { 2481 // Emit the range check for the jump table, and branch to the default block 2482 // for the switch statement if the value being switched on exceeds the 2483 // largest case in the switch. 2484 SDValue CMP = DAG.getSetCC( 2485 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2486 Sub.getValueType()), 2487 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2488 2489 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2490 MVT::Other, CopyTo, CMP, 2491 DAG.getBasicBlock(JT.Default)); 2492 2493 // Avoid emitting unnecessary branches to the next block. 2494 if (JT.MBB != NextBlock(SwitchBB)) 2495 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2496 DAG.getBasicBlock(JT.MBB)); 2497 2498 DAG.setRoot(BrCond); 2499 } else { 2500 // Avoid emitting unnecessary branches to the next block. 2501 if (JT.MBB != NextBlock(SwitchBB)) 2502 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2503 DAG.getBasicBlock(JT.MBB))); 2504 else 2505 DAG.setRoot(CopyTo); 2506 } 2507 } 2508 2509 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2510 /// variable if there exists one. 2511 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2512 SDValue &Chain) { 2513 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2514 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2515 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2516 MachineFunction &MF = DAG.getMachineFunction(); 2517 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2518 MachineSDNode *Node = 2519 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2520 if (Global) { 2521 MachinePointerInfo MPInfo(Global); 2522 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2523 MachineMemOperand::MODereferenceable; 2524 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2525 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy)); 2526 DAG.setNodeMemRefs(Node, {MemRef}); 2527 } 2528 if (PtrTy != PtrMemTy) 2529 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2530 return SDValue(Node, 0); 2531 } 2532 2533 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2534 /// tail spliced into a stack protector check success bb. 2535 /// 2536 /// For a high level explanation of how this fits into the stack protector 2537 /// generation see the comment on the declaration of class 2538 /// StackProtectorDescriptor. 2539 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2540 MachineBasicBlock *ParentBB) { 2541 2542 // First create the loads to the guard/stack slot for the comparison. 2543 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2544 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2545 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2546 2547 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2548 int FI = MFI.getStackProtectorIndex(); 2549 2550 SDValue Guard; 2551 SDLoc dl = getCurSDLoc(); 2552 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2553 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2554 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2555 2556 // Generate code to load the content of the guard slot. 2557 SDValue GuardVal = DAG.getLoad( 2558 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2559 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2560 MachineMemOperand::MOVolatile); 2561 2562 if (TLI.useStackGuardXorFP()) 2563 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2564 2565 // Retrieve guard check function, nullptr if instrumentation is inlined. 2566 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2567 // The target provides a guard check function to validate the guard value. 2568 // Generate a call to that function with the content of the guard slot as 2569 // argument. 2570 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2571 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2572 2573 TargetLowering::ArgListTy Args; 2574 TargetLowering::ArgListEntry Entry; 2575 Entry.Node = GuardVal; 2576 Entry.Ty = FnTy->getParamType(0); 2577 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) 2578 Entry.IsInReg = true; 2579 Args.push_back(Entry); 2580 2581 TargetLowering::CallLoweringInfo CLI(DAG); 2582 CLI.setDebugLoc(getCurSDLoc()) 2583 .setChain(DAG.getEntryNode()) 2584 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2585 getValue(GuardCheckFn), std::move(Args)); 2586 2587 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2588 DAG.setRoot(Result.second); 2589 return; 2590 } 2591 2592 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2593 // Otherwise, emit a volatile load to retrieve the stack guard value. 2594 SDValue Chain = DAG.getEntryNode(); 2595 if (TLI.useLoadStackGuardNode()) { 2596 Guard = getLoadStackGuard(DAG, dl, Chain); 2597 } else { 2598 const Value *IRGuard = TLI.getSDagStackGuard(M); 2599 SDValue GuardPtr = getValue(IRGuard); 2600 2601 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2602 MachinePointerInfo(IRGuard, 0), Align, 2603 MachineMemOperand::MOVolatile); 2604 } 2605 2606 // Perform the comparison via a subtract/getsetcc. 2607 EVT VT = Guard.getValueType(); 2608 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal); 2609 2610 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2611 *DAG.getContext(), 2612 Sub.getValueType()), 2613 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2614 2615 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2616 // branch to failure MBB. 2617 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2618 MVT::Other, GuardVal.getOperand(0), 2619 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2620 // Otherwise branch to success MBB. 2621 SDValue Br = DAG.getNode(ISD::BR, dl, 2622 MVT::Other, BrCond, 2623 DAG.getBasicBlock(SPD.getSuccessMBB())); 2624 2625 DAG.setRoot(Br); 2626 } 2627 2628 /// Codegen the failure basic block for a stack protector check. 2629 /// 2630 /// A failure stack protector machine basic block consists simply of a call to 2631 /// __stack_chk_fail(). 2632 /// 2633 /// For a high level explanation of how this fits into the stack protector 2634 /// generation see the comment on the declaration of class 2635 /// StackProtectorDescriptor. 2636 void 2637 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2638 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2639 TargetLowering::MakeLibCallOptions CallOptions; 2640 CallOptions.setDiscardResult(true); 2641 SDValue Chain = 2642 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2643 None, CallOptions, getCurSDLoc()).second; 2644 // On PS4, the "return address" must still be within the calling function, 2645 // even if it's at the very end, so emit an explicit TRAP here. 2646 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2647 if (TM.getTargetTriple().isPS4CPU()) 2648 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2649 2650 DAG.setRoot(Chain); 2651 } 2652 2653 /// visitBitTestHeader - This function emits necessary code to produce value 2654 /// suitable for "bit tests" 2655 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2656 MachineBasicBlock *SwitchBB) { 2657 SDLoc dl = getCurSDLoc(); 2658 2659 // Subtract the minimum value. 2660 SDValue SwitchOp = getValue(B.SValue); 2661 EVT VT = SwitchOp.getValueType(); 2662 SDValue RangeSub = 2663 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2664 2665 // Determine the type of the test operands. 2666 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2667 bool UsePtrType = false; 2668 if (!TLI.isTypeLegal(VT)) { 2669 UsePtrType = true; 2670 } else { 2671 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2672 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2673 // Switch table case range are encoded into series of masks. 2674 // Just use pointer type, it's guaranteed to fit. 2675 UsePtrType = true; 2676 break; 2677 } 2678 } 2679 SDValue Sub = RangeSub; 2680 if (UsePtrType) { 2681 VT = TLI.getPointerTy(DAG.getDataLayout()); 2682 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2683 } 2684 2685 B.RegVT = VT.getSimpleVT(); 2686 B.Reg = FuncInfo.CreateReg(B.RegVT); 2687 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2688 2689 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2690 2691 if (!B.OmitRangeCheck) 2692 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2693 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2694 SwitchBB->normalizeSuccProbs(); 2695 2696 SDValue Root = CopyTo; 2697 if (!B.OmitRangeCheck) { 2698 // Conditional branch to the default block. 2699 SDValue RangeCmp = DAG.getSetCC(dl, 2700 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2701 RangeSub.getValueType()), 2702 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2703 ISD::SETUGT); 2704 2705 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2706 DAG.getBasicBlock(B.Default)); 2707 } 2708 2709 // Avoid emitting unnecessary branches to the next block. 2710 if (MBB != NextBlock(SwitchBB)) 2711 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2712 2713 DAG.setRoot(Root); 2714 } 2715 2716 /// visitBitTestCase - this function produces one "bit test" 2717 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2718 MachineBasicBlock* NextMBB, 2719 BranchProbability BranchProbToNext, 2720 unsigned Reg, 2721 BitTestCase &B, 2722 MachineBasicBlock *SwitchBB) { 2723 SDLoc dl = getCurSDLoc(); 2724 MVT VT = BB.RegVT; 2725 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2726 SDValue Cmp; 2727 unsigned PopCount = countPopulation(B.Mask); 2728 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2729 if (PopCount == 1) { 2730 // Testing for a single bit; just compare the shift count with what it 2731 // would need to be to shift a 1 bit in that position. 2732 Cmp = DAG.getSetCC( 2733 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2734 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2735 ISD::SETEQ); 2736 } else if (PopCount == BB.Range) { 2737 // There is only one zero bit in the range, test for it directly. 2738 Cmp = DAG.getSetCC( 2739 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2740 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2741 ISD::SETNE); 2742 } else { 2743 // Make desired shift 2744 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2745 DAG.getConstant(1, dl, VT), ShiftOp); 2746 2747 // Emit bit tests and jumps 2748 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2749 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2750 Cmp = DAG.getSetCC( 2751 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2752 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2753 } 2754 2755 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2756 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2757 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2758 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2759 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2760 // one as they are relative probabilities (and thus work more like weights), 2761 // and hence we need to normalize them to let the sum of them become one. 2762 SwitchBB->normalizeSuccProbs(); 2763 2764 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2765 MVT::Other, getControlRoot(), 2766 Cmp, DAG.getBasicBlock(B.TargetBB)); 2767 2768 // Avoid emitting unnecessary branches to the next block. 2769 if (NextMBB != NextBlock(SwitchBB)) 2770 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2771 DAG.getBasicBlock(NextMBB)); 2772 2773 DAG.setRoot(BrAnd); 2774 } 2775 2776 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2777 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2778 2779 // Retrieve successors. Look through artificial IR level blocks like 2780 // catchswitch for successors. 2781 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2782 const BasicBlock *EHPadBB = I.getSuccessor(1); 2783 2784 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2785 // have to do anything here to lower funclet bundles. 2786 assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt, 2787 LLVMContext::OB_funclet, 2788 LLVMContext::OB_cfguardtarget}) && 2789 "Cannot lower invokes with arbitrary operand bundles yet!"); 2790 2791 const Value *Callee(I.getCalledValue()); 2792 const Function *Fn = dyn_cast<Function>(Callee); 2793 if (isa<InlineAsm>(Callee)) 2794 visitInlineAsm(&I); 2795 else if (Fn && Fn->isIntrinsic()) { 2796 switch (Fn->getIntrinsicID()) { 2797 default: 2798 llvm_unreachable("Cannot invoke this intrinsic"); 2799 case Intrinsic::donothing: 2800 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2801 break; 2802 case Intrinsic::experimental_patchpoint_void: 2803 case Intrinsic::experimental_patchpoint_i64: 2804 visitPatchpoint(&I, EHPadBB); 2805 break; 2806 case Intrinsic::experimental_gc_statepoint: 2807 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2808 break; 2809 case Intrinsic::wasm_rethrow_in_catch: { 2810 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2811 // special because it can be invoked, so we manually lower it to a DAG 2812 // node here. 2813 SmallVector<SDValue, 8> Ops; 2814 Ops.push_back(getRoot()); // inchain 2815 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2816 Ops.push_back( 2817 DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(), 2818 TLI.getPointerTy(DAG.getDataLayout()))); 2819 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2820 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2821 break; 2822 } 2823 } 2824 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2825 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2826 // Eventually we will support lowering the @llvm.experimental.deoptimize 2827 // intrinsic, and right now there are no plans to support other intrinsics 2828 // with deopt state. 2829 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2830 } else { 2831 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2832 } 2833 2834 // If the value of the invoke is used outside of its defining block, make it 2835 // available as a virtual register. 2836 // We already took care of the exported value for the statepoint instruction 2837 // during call to the LowerStatepoint. 2838 if (!isStatepoint(I)) { 2839 CopyToExportRegsIfNeeded(&I); 2840 } 2841 2842 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2843 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2844 BranchProbability EHPadBBProb = 2845 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2846 : BranchProbability::getZero(); 2847 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2848 2849 // Update successor info. 2850 addSuccessorWithProb(InvokeMBB, Return); 2851 for (auto &UnwindDest : UnwindDests) { 2852 UnwindDest.first->setIsEHPad(); 2853 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2854 } 2855 InvokeMBB->normalizeSuccProbs(); 2856 2857 // Drop into normal successor. 2858 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2859 DAG.getBasicBlock(Return))); 2860 } 2861 2862 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2863 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2864 2865 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2866 // have to do anything here to lower funclet bundles. 2867 assert(!I.hasOperandBundlesOtherThan( 2868 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2869 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2870 2871 assert(isa<InlineAsm>(I.getCalledValue()) && 2872 "Only know how to handle inlineasm callbr"); 2873 visitInlineAsm(&I); 2874 2875 // Retrieve successors. 2876 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2877 2878 // Update successor info. 2879 addSuccessorWithProb(CallBrMBB, Return); 2880 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2881 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 2882 addSuccessorWithProb(CallBrMBB, Target); 2883 } 2884 CallBrMBB->normalizeSuccProbs(); 2885 2886 // Drop into default successor. 2887 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2888 MVT::Other, getControlRoot(), 2889 DAG.getBasicBlock(Return))); 2890 } 2891 2892 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2893 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2894 } 2895 2896 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2897 assert(FuncInfo.MBB->isEHPad() && 2898 "Call to landingpad not in landing pad!"); 2899 2900 // If there aren't registers to copy the values into (e.g., during SjLj 2901 // exceptions), then don't bother to create these DAG nodes. 2902 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2903 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2904 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2905 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2906 return; 2907 2908 // If landingpad's return type is token type, we don't create DAG nodes 2909 // for its exception pointer and selector value. The extraction of exception 2910 // pointer or selector value from token type landingpads is not currently 2911 // supported. 2912 if (LP.getType()->isTokenTy()) 2913 return; 2914 2915 SmallVector<EVT, 2> ValueVTs; 2916 SDLoc dl = getCurSDLoc(); 2917 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2918 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2919 2920 // Get the two live-in registers as SDValues. The physregs have already been 2921 // copied into virtual registers. 2922 SDValue Ops[2]; 2923 if (FuncInfo.ExceptionPointerVirtReg) { 2924 Ops[0] = DAG.getZExtOrTrunc( 2925 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2926 FuncInfo.ExceptionPointerVirtReg, 2927 TLI.getPointerTy(DAG.getDataLayout())), 2928 dl, ValueVTs[0]); 2929 } else { 2930 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2931 } 2932 Ops[1] = DAG.getZExtOrTrunc( 2933 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2934 FuncInfo.ExceptionSelectorVirtReg, 2935 TLI.getPointerTy(DAG.getDataLayout())), 2936 dl, ValueVTs[1]); 2937 2938 // Merge into one. 2939 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2940 DAG.getVTList(ValueVTs), Ops); 2941 setValue(&LP, Res); 2942 } 2943 2944 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2945 MachineBasicBlock *Last) { 2946 // Update JTCases. 2947 for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i) 2948 if (SL->JTCases[i].first.HeaderBB == First) 2949 SL->JTCases[i].first.HeaderBB = Last; 2950 2951 // Update BitTestCases. 2952 for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i) 2953 if (SL->BitTestCases[i].Parent == First) 2954 SL->BitTestCases[i].Parent = Last; 2955 } 2956 2957 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2958 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2959 2960 // Update machine-CFG edges with unique successors. 2961 SmallSet<BasicBlock*, 32> Done; 2962 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2963 BasicBlock *BB = I.getSuccessor(i); 2964 bool Inserted = Done.insert(BB).second; 2965 if (!Inserted) 2966 continue; 2967 2968 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2969 addSuccessorWithProb(IndirectBrMBB, Succ); 2970 } 2971 IndirectBrMBB->normalizeSuccProbs(); 2972 2973 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2974 MVT::Other, getControlRoot(), 2975 getValue(I.getAddress()))); 2976 } 2977 2978 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2979 if (!DAG.getTarget().Options.TrapUnreachable) 2980 return; 2981 2982 // We may be able to ignore unreachable behind a noreturn call. 2983 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 2984 const BasicBlock &BB = *I.getParent(); 2985 if (&I != &BB.front()) { 2986 BasicBlock::const_iterator PredI = 2987 std::prev(BasicBlock::const_iterator(&I)); 2988 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 2989 if (Call->doesNotReturn()) 2990 return; 2991 } 2992 } 2993 } 2994 2995 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2996 } 2997 2998 void SelectionDAGBuilder::visitFSub(const User &I) { 2999 // -0.0 - X --> fneg 3000 Type *Ty = I.getType(); 3001 if (isa<Constant>(I.getOperand(0)) && 3002 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 3003 SDValue Op2 = getValue(I.getOperand(1)); 3004 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 3005 Op2.getValueType(), Op2)); 3006 return; 3007 } 3008 3009 visitBinary(I, ISD::FSUB); 3010 } 3011 3012 /// Checks if the given instruction performs a vector reduction, in which case 3013 /// we have the freedom to alter the elements in the result as long as the 3014 /// reduction of them stays unchanged. 3015 static bool isVectorReductionOp(const User *I) { 3016 const Instruction *Inst = dyn_cast<Instruction>(I); 3017 if (!Inst || !Inst->getType()->isVectorTy()) 3018 return false; 3019 3020 auto OpCode = Inst->getOpcode(); 3021 switch (OpCode) { 3022 case Instruction::Add: 3023 case Instruction::Mul: 3024 case Instruction::And: 3025 case Instruction::Or: 3026 case Instruction::Xor: 3027 break; 3028 case Instruction::FAdd: 3029 case Instruction::FMul: 3030 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 3031 if (FPOp->getFastMathFlags().isFast()) 3032 break; 3033 LLVM_FALLTHROUGH; 3034 default: 3035 return false; 3036 } 3037 3038 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 3039 // Ensure the reduction size is a power of 2. 3040 if (!isPowerOf2_32(ElemNum)) 3041 return false; 3042 3043 unsigned ElemNumToReduce = ElemNum; 3044 3045 // Do DFS search on the def-use chain from the given instruction. We only 3046 // allow four kinds of operations during the search until we reach the 3047 // instruction that extracts the first element from the vector: 3048 // 3049 // 1. The reduction operation of the same opcode as the given instruction. 3050 // 3051 // 2. PHI node. 3052 // 3053 // 3. ShuffleVector instruction together with a reduction operation that 3054 // does a partial reduction. 3055 // 3056 // 4. ExtractElement that extracts the first element from the vector, and we 3057 // stop searching the def-use chain here. 3058 // 3059 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 3060 // from 1-3 to the stack to continue the DFS. The given instruction is not 3061 // a reduction operation if we meet any other instructions other than those 3062 // listed above. 3063 3064 SmallVector<const User *, 16> UsersToVisit{Inst}; 3065 SmallPtrSet<const User *, 16> Visited; 3066 bool ReduxExtracted = false; 3067 3068 while (!UsersToVisit.empty()) { 3069 auto User = UsersToVisit.back(); 3070 UsersToVisit.pop_back(); 3071 if (!Visited.insert(User).second) 3072 continue; 3073 3074 for (const auto *U : User->users()) { 3075 auto Inst = dyn_cast<Instruction>(U); 3076 if (!Inst) 3077 return false; 3078 3079 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 3080 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 3081 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast()) 3082 return false; 3083 UsersToVisit.push_back(U); 3084 } else if (const ShuffleVectorInst *ShufInst = 3085 dyn_cast<ShuffleVectorInst>(U)) { 3086 // Detect the following pattern: A ShuffleVector instruction together 3087 // with a reduction that do partial reduction on the first and second 3088 // ElemNumToReduce / 2 elements, and store the result in 3089 // ElemNumToReduce / 2 elements in another vector. 3090 3091 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 3092 if (ResultElements < ElemNum) 3093 return false; 3094 3095 if (ElemNumToReduce == 1) 3096 return false; 3097 if (!isa<UndefValue>(U->getOperand(1))) 3098 return false; 3099 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 3100 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 3101 return false; 3102 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 3103 if (ShufInst->getMaskValue(i) != -1) 3104 return false; 3105 3106 // There is only one user of this ShuffleVector instruction, which 3107 // must be a reduction operation. 3108 if (!U->hasOneUse()) 3109 return false; 3110 3111 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 3112 if (!U2 || U2->getOpcode() != OpCode) 3113 return false; 3114 3115 // Check operands of the reduction operation. 3116 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 3117 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 3118 UsersToVisit.push_back(U2); 3119 ElemNumToReduce /= 2; 3120 } else 3121 return false; 3122 } else if (isa<ExtractElementInst>(U)) { 3123 // At this moment we should have reduced all elements in the vector. 3124 if (ElemNumToReduce != 1) 3125 return false; 3126 3127 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 3128 if (!Val || !Val->isZero()) 3129 return false; 3130 3131 ReduxExtracted = true; 3132 } else 3133 return false; 3134 } 3135 } 3136 return ReduxExtracted; 3137 } 3138 3139 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3140 SDNodeFlags Flags; 3141 3142 SDValue Op = getValue(I.getOperand(0)); 3143 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3144 Op, Flags); 3145 setValue(&I, UnNodeValue); 3146 } 3147 3148 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3149 SDNodeFlags Flags; 3150 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3151 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3152 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3153 } 3154 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) { 3155 Flags.setExact(ExactOp->isExact()); 3156 } 3157 if (isVectorReductionOp(&I)) { 3158 Flags.setVectorReduction(true); 3159 LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 3160 3161 // If no flags are set we will propagate the incoming flags, if any flags 3162 // are set, we will intersect them with the incoming flag and so we need to 3163 // copy the FMF flags here. 3164 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) { 3165 Flags.copyFMF(*FPOp); 3166 } 3167 } 3168 3169 SDValue Op1 = getValue(I.getOperand(0)); 3170 SDValue Op2 = getValue(I.getOperand(1)); 3171 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3172 Op1, Op2, Flags); 3173 setValue(&I, BinNodeValue); 3174 } 3175 3176 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3177 SDValue Op1 = getValue(I.getOperand(0)); 3178 SDValue Op2 = getValue(I.getOperand(1)); 3179 3180 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3181 Op1.getValueType(), DAG.getDataLayout()); 3182 3183 // Coerce the shift amount to the right type if we can. 3184 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3185 unsigned ShiftSize = ShiftTy.getSizeInBits(); 3186 unsigned Op2Size = Op2.getValueSizeInBits(); 3187 SDLoc DL = getCurSDLoc(); 3188 3189 // If the operand is smaller than the shift count type, promote it. 3190 if (ShiftSize > Op2Size) 3191 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 3192 3193 // If the operand is larger than the shift count type but the shift 3194 // count type has enough bits to represent any shift value, truncate 3195 // it now. This is a common case and it exposes the truncate to 3196 // optimization early. 3197 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 3198 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 3199 // Otherwise we'll need to temporarily settle for some other convenient 3200 // type. Type legalization will make adjustments once the shiftee is split. 3201 else 3202 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 3203 } 3204 3205 bool nuw = false; 3206 bool nsw = false; 3207 bool exact = false; 3208 3209 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3210 3211 if (const OverflowingBinaryOperator *OFBinOp = 3212 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3213 nuw = OFBinOp->hasNoUnsignedWrap(); 3214 nsw = OFBinOp->hasNoSignedWrap(); 3215 } 3216 if (const PossiblyExactOperator *ExactOp = 3217 dyn_cast<const PossiblyExactOperator>(&I)) 3218 exact = ExactOp->isExact(); 3219 } 3220 SDNodeFlags Flags; 3221 Flags.setExact(exact); 3222 Flags.setNoSignedWrap(nsw); 3223 Flags.setNoUnsignedWrap(nuw); 3224 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3225 Flags); 3226 setValue(&I, Res); 3227 } 3228 3229 void SelectionDAGBuilder::visitSDiv(const User &I) { 3230 SDValue Op1 = getValue(I.getOperand(0)); 3231 SDValue Op2 = getValue(I.getOperand(1)); 3232 3233 SDNodeFlags Flags; 3234 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3235 cast<PossiblyExactOperator>(&I)->isExact()); 3236 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3237 Op2, Flags)); 3238 } 3239 3240 void SelectionDAGBuilder::visitICmp(const User &I) { 3241 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3242 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3243 predicate = IC->getPredicate(); 3244 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3245 predicate = ICmpInst::Predicate(IC->getPredicate()); 3246 SDValue Op1 = getValue(I.getOperand(0)); 3247 SDValue Op2 = getValue(I.getOperand(1)); 3248 ISD::CondCode Opcode = getICmpCondCode(predicate); 3249 3250 auto &TLI = DAG.getTargetLoweringInfo(); 3251 EVT MemVT = 3252 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3253 3254 // If a pointer's DAG type is larger than its memory type then the DAG values 3255 // are zero-extended. This breaks signed comparisons so truncate back to the 3256 // underlying type before doing the compare. 3257 if (Op1.getValueType() != MemVT) { 3258 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3259 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3260 } 3261 3262 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3263 I.getType()); 3264 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3265 } 3266 3267 void SelectionDAGBuilder::visitFCmp(const User &I) { 3268 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3269 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3270 predicate = FC->getPredicate(); 3271 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3272 predicate = FCmpInst::Predicate(FC->getPredicate()); 3273 SDValue Op1 = getValue(I.getOperand(0)); 3274 SDValue Op2 = getValue(I.getOperand(1)); 3275 3276 ISD::CondCode Condition = getFCmpCondCode(predicate); 3277 auto *FPMO = dyn_cast<FPMathOperator>(&I); 3278 if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath) 3279 Condition = getFCmpCodeWithoutNaN(Condition); 3280 3281 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3282 I.getType()); 3283 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3284 } 3285 3286 // Check if the condition of the select has one use or two users that are both 3287 // selects with the same condition. 3288 static bool hasOnlySelectUsers(const Value *Cond) { 3289 return llvm::all_of(Cond->users(), [](const Value *V) { 3290 return isa<SelectInst>(V); 3291 }); 3292 } 3293 3294 void SelectionDAGBuilder::visitSelect(const User &I) { 3295 SmallVector<EVT, 4> ValueVTs; 3296 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3297 ValueVTs); 3298 unsigned NumValues = ValueVTs.size(); 3299 if (NumValues == 0) return; 3300 3301 SmallVector<SDValue, 4> Values(NumValues); 3302 SDValue Cond = getValue(I.getOperand(0)); 3303 SDValue LHSVal = getValue(I.getOperand(1)); 3304 SDValue RHSVal = getValue(I.getOperand(2)); 3305 auto BaseOps = {Cond}; 3306 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 3307 ISD::VSELECT : ISD::SELECT; 3308 3309 bool IsUnaryAbs = false; 3310 3311 // Min/max matching is only viable if all output VTs are the same. 3312 if (is_splat(ValueVTs)) { 3313 EVT VT = ValueVTs[0]; 3314 LLVMContext &Ctx = *DAG.getContext(); 3315 auto &TLI = DAG.getTargetLoweringInfo(); 3316 3317 // We care about the legality of the operation after it has been type 3318 // legalized. 3319 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3320 VT = TLI.getTypeToTransformTo(Ctx, VT); 3321 3322 // If the vselect is legal, assume we want to leave this as a vector setcc + 3323 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3324 // min/max is legal on the scalar type. 3325 bool UseScalarMinMax = VT.isVector() && 3326 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3327 3328 Value *LHS, *RHS; 3329 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3330 ISD::NodeType Opc = ISD::DELETED_NODE; 3331 switch (SPR.Flavor) { 3332 case SPF_UMAX: Opc = ISD::UMAX; break; 3333 case SPF_UMIN: Opc = ISD::UMIN; break; 3334 case SPF_SMAX: Opc = ISD::SMAX; break; 3335 case SPF_SMIN: Opc = ISD::SMIN; break; 3336 case SPF_FMINNUM: 3337 switch (SPR.NaNBehavior) { 3338 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3339 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3340 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3341 case SPNB_RETURNS_ANY: { 3342 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3343 Opc = ISD::FMINNUM; 3344 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3345 Opc = ISD::FMINIMUM; 3346 else if (UseScalarMinMax) 3347 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3348 ISD::FMINNUM : ISD::FMINIMUM; 3349 break; 3350 } 3351 } 3352 break; 3353 case SPF_FMAXNUM: 3354 switch (SPR.NaNBehavior) { 3355 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3356 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3357 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3358 case SPNB_RETURNS_ANY: 3359 3360 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3361 Opc = ISD::FMAXNUM; 3362 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3363 Opc = ISD::FMAXIMUM; 3364 else if (UseScalarMinMax) 3365 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3366 ISD::FMAXNUM : ISD::FMAXIMUM; 3367 break; 3368 } 3369 break; 3370 case SPF_ABS: 3371 IsUnaryAbs = true; 3372 Opc = ISD::ABS; 3373 break; 3374 case SPF_NABS: 3375 // TODO: we need to produce sub(0, abs(X)). 3376 default: break; 3377 } 3378 3379 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3380 (TLI.isOperationLegalOrCustom(Opc, VT) || 3381 (UseScalarMinMax && 3382 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3383 // If the underlying comparison instruction is used by any other 3384 // instruction, the consumed instructions won't be destroyed, so it is 3385 // not profitable to convert to a min/max. 3386 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3387 OpCode = Opc; 3388 LHSVal = getValue(LHS); 3389 RHSVal = getValue(RHS); 3390 BaseOps = {}; 3391 } 3392 3393 if (IsUnaryAbs) { 3394 OpCode = Opc; 3395 LHSVal = getValue(LHS); 3396 BaseOps = {}; 3397 } 3398 } 3399 3400 if (IsUnaryAbs) { 3401 for (unsigned i = 0; i != NumValues; ++i) { 3402 Values[i] = 3403 DAG.getNode(OpCode, getCurSDLoc(), 3404 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), 3405 SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3406 } 3407 } else { 3408 for (unsigned i = 0; i != NumValues; ++i) { 3409 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3410 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3411 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3412 Values[i] = DAG.getNode( 3413 OpCode, getCurSDLoc(), 3414 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops); 3415 } 3416 } 3417 3418 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3419 DAG.getVTList(ValueVTs), Values)); 3420 } 3421 3422 void SelectionDAGBuilder::visitTrunc(const User &I) { 3423 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3424 SDValue N = getValue(I.getOperand(0)); 3425 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3426 I.getType()); 3427 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3428 } 3429 3430 void SelectionDAGBuilder::visitZExt(const User &I) { 3431 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3432 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3433 SDValue N = getValue(I.getOperand(0)); 3434 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3435 I.getType()); 3436 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3437 } 3438 3439 void SelectionDAGBuilder::visitSExt(const User &I) { 3440 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3441 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3442 SDValue N = getValue(I.getOperand(0)); 3443 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3444 I.getType()); 3445 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3446 } 3447 3448 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3449 // FPTrunc is never a no-op cast, no need to check 3450 SDValue N = getValue(I.getOperand(0)); 3451 SDLoc dl = getCurSDLoc(); 3452 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3453 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3454 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3455 DAG.getTargetConstant( 3456 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3457 } 3458 3459 void SelectionDAGBuilder::visitFPExt(const User &I) { 3460 // FPExt is never a no-op cast, no need to check 3461 SDValue N = getValue(I.getOperand(0)); 3462 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3463 I.getType()); 3464 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3465 } 3466 3467 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3468 // FPToUI is never a no-op cast, no need to check 3469 SDValue N = getValue(I.getOperand(0)); 3470 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3471 I.getType()); 3472 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3473 } 3474 3475 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3476 // FPToSI is never a no-op cast, no need to check 3477 SDValue N = getValue(I.getOperand(0)); 3478 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3479 I.getType()); 3480 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3481 } 3482 3483 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3484 // UIToFP is never a no-op cast, no need to check 3485 SDValue N = getValue(I.getOperand(0)); 3486 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3487 I.getType()); 3488 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3489 } 3490 3491 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3492 // SIToFP is never a no-op cast, no need to check 3493 SDValue N = getValue(I.getOperand(0)); 3494 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3495 I.getType()); 3496 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3497 } 3498 3499 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3500 // What to do depends on the size of the integer and the size of the pointer. 3501 // We can either truncate, zero extend, or no-op, accordingly. 3502 SDValue N = getValue(I.getOperand(0)); 3503 auto &TLI = DAG.getTargetLoweringInfo(); 3504 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3505 I.getType()); 3506 EVT PtrMemVT = 3507 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3508 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3509 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3510 setValue(&I, N); 3511 } 3512 3513 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3514 // What to do depends on the size of the integer and the size of the pointer. 3515 // We can either truncate, zero extend, or no-op, accordingly. 3516 SDValue N = getValue(I.getOperand(0)); 3517 auto &TLI = DAG.getTargetLoweringInfo(); 3518 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3519 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3520 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3521 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3522 setValue(&I, N); 3523 } 3524 3525 void SelectionDAGBuilder::visitBitCast(const User &I) { 3526 SDValue N = getValue(I.getOperand(0)); 3527 SDLoc dl = getCurSDLoc(); 3528 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3529 I.getType()); 3530 3531 // BitCast assures us that source and destination are the same size so this is 3532 // either a BITCAST or a no-op. 3533 if (DestVT != N.getValueType()) 3534 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3535 DestVT, N)); // convert types. 3536 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3537 // might fold any kind of constant expression to an integer constant and that 3538 // is not what we are looking for. Only recognize a bitcast of a genuine 3539 // constant integer as an opaque constant. 3540 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3541 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3542 /*isOpaque*/true)); 3543 else 3544 setValue(&I, N); // noop cast. 3545 } 3546 3547 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3548 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3549 const Value *SV = I.getOperand(0); 3550 SDValue N = getValue(SV); 3551 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3552 3553 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3554 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3555 3556 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3557 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3558 3559 setValue(&I, N); 3560 } 3561 3562 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3563 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3564 SDValue InVec = getValue(I.getOperand(0)); 3565 SDValue InVal = getValue(I.getOperand(1)); 3566 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3567 TLI.getVectorIdxTy(DAG.getDataLayout())); 3568 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3569 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3570 InVec, InVal, InIdx)); 3571 } 3572 3573 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3574 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3575 SDValue InVec = getValue(I.getOperand(0)); 3576 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3577 TLI.getVectorIdxTy(DAG.getDataLayout())); 3578 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3579 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3580 InVec, InIdx)); 3581 } 3582 3583 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3584 SDValue Src1 = getValue(I.getOperand(0)); 3585 SDValue Src2 = getValue(I.getOperand(1)); 3586 Constant *MaskV = cast<Constant>(I.getOperand(2)); 3587 SDLoc DL = getCurSDLoc(); 3588 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3589 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3590 EVT SrcVT = Src1.getValueType(); 3591 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3592 3593 if (MaskV->isNullValue() && VT.isScalableVector()) { 3594 // Canonical splat form of first element of first input vector. 3595 SDValue FirstElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3596 SrcVT.getScalarType(), Src1, 3597 DAG.getConstant(0, DL, 3598 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3599 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3600 return; 3601 } 3602 3603 // For now, we only handle splats for scalable vectors. 3604 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3605 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3606 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3607 3608 SmallVector<int, 8> Mask; 3609 ShuffleVectorInst::getShuffleMask(MaskV, Mask); 3610 unsigned MaskNumElts = Mask.size(); 3611 3612 if (SrcNumElts == MaskNumElts) { 3613 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3614 return; 3615 } 3616 3617 // Normalize the shuffle vector since mask and vector length don't match. 3618 if (SrcNumElts < MaskNumElts) { 3619 // Mask is longer than the source vectors. We can use concatenate vector to 3620 // make the mask and vectors lengths match. 3621 3622 if (MaskNumElts % SrcNumElts == 0) { 3623 // Mask length is a multiple of the source vector length. 3624 // Check if the shuffle is some kind of concatenation of the input 3625 // vectors. 3626 unsigned NumConcat = MaskNumElts / SrcNumElts; 3627 bool IsConcat = true; 3628 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3629 for (unsigned i = 0; i != MaskNumElts; ++i) { 3630 int Idx = Mask[i]; 3631 if (Idx < 0) 3632 continue; 3633 // Ensure the indices in each SrcVT sized piece are sequential and that 3634 // the same source is used for the whole piece. 3635 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3636 (ConcatSrcs[i / SrcNumElts] >= 0 && 3637 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3638 IsConcat = false; 3639 break; 3640 } 3641 // Remember which source this index came from. 3642 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3643 } 3644 3645 // The shuffle is concatenating multiple vectors together. Just emit 3646 // a CONCAT_VECTORS operation. 3647 if (IsConcat) { 3648 SmallVector<SDValue, 8> ConcatOps; 3649 for (auto Src : ConcatSrcs) { 3650 if (Src < 0) 3651 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3652 else if (Src == 0) 3653 ConcatOps.push_back(Src1); 3654 else 3655 ConcatOps.push_back(Src2); 3656 } 3657 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3658 return; 3659 } 3660 } 3661 3662 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3663 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3664 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3665 PaddedMaskNumElts); 3666 3667 // Pad both vectors with undefs to make them the same length as the mask. 3668 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3669 3670 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3671 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3672 MOps1[0] = Src1; 3673 MOps2[0] = Src2; 3674 3675 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3676 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3677 3678 // Readjust mask for new input vector length. 3679 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3680 for (unsigned i = 0; i != MaskNumElts; ++i) { 3681 int Idx = Mask[i]; 3682 if (Idx >= (int)SrcNumElts) 3683 Idx -= SrcNumElts - PaddedMaskNumElts; 3684 MappedOps[i] = Idx; 3685 } 3686 3687 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3688 3689 // If the concatenated vector was padded, extract a subvector with the 3690 // correct number of elements. 3691 if (MaskNumElts != PaddedMaskNumElts) 3692 Result = DAG.getNode( 3693 ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3694 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3695 3696 setValue(&I, Result); 3697 return; 3698 } 3699 3700 if (SrcNumElts > MaskNumElts) { 3701 // Analyze the access pattern of the vector to see if we can extract 3702 // two subvectors and do the shuffle. 3703 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3704 bool CanExtract = true; 3705 for (int Idx : Mask) { 3706 unsigned Input = 0; 3707 if (Idx < 0) 3708 continue; 3709 3710 if (Idx >= (int)SrcNumElts) { 3711 Input = 1; 3712 Idx -= SrcNumElts; 3713 } 3714 3715 // If all the indices come from the same MaskNumElts sized portion of 3716 // the sources we can use extract. Also make sure the extract wouldn't 3717 // extract past the end of the source. 3718 int NewStartIdx = alignDown(Idx, MaskNumElts); 3719 if (NewStartIdx + MaskNumElts > SrcNumElts || 3720 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3721 CanExtract = false; 3722 // Make sure we always update StartIdx as we use it to track if all 3723 // elements are undef. 3724 StartIdx[Input] = NewStartIdx; 3725 } 3726 3727 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3728 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3729 return; 3730 } 3731 if (CanExtract) { 3732 // Extract appropriate subvector and generate a vector shuffle 3733 for (unsigned Input = 0; Input < 2; ++Input) { 3734 SDValue &Src = Input == 0 ? Src1 : Src2; 3735 if (StartIdx[Input] < 0) 3736 Src = DAG.getUNDEF(VT); 3737 else { 3738 Src = DAG.getNode( 3739 ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3740 DAG.getConstant(StartIdx[Input], DL, 3741 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3742 } 3743 } 3744 3745 // Calculate new mask. 3746 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3747 for (int &Idx : MappedOps) { 3748 if (Idx >= (int)SrcNumElts) 3749 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3750 else if (Idx >= 0) 3751 Idx -= StartIdx[0]; 3752 } 3753 3754 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3755 return; 3756 } 3757 } 3758 3759 // We can't use either concat vectors or extract subvectors so fall back to 3760 // replacing the shuffle with extract and build vector. 3761 // to insert and build vector. 3762 EVT EltVT = VT.getVectorElementType(); 3763 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3764 SmallVector<SDValue,8> Ops; 3765 for (int Idx : Mask) { 3766 SDValue Res; 3767 3768 if (Idx < 0) { 3769 Res = DAG.getUNDEF(EltVT); 3770 } else { 3771 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3772 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3773 3774 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3775 EltVT, Src, DAG.getConstant(Idx, DL, IdxVT)); 3776 } 3777 3778 Ops.push_back(Res); 3779 } 3780 3781 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3782 } 3783 3784 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3785 ArrayRef<unsigned> Indices; 3786 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3787 Indices = IV->getIndices(); 3788 else 3789 Indices = cast<ConstantExpr>(&I)->getIndices(); 3790 3791 const Value *Op0 = I.getOperand(0); 3792 const Value *Op1 = I.getOperand(1); 3793 Type *AggTy = I.getType(); 3794 Type *ValTy = Op1->getType(); 3795 bool IntoUndef = isa<UndefValue>(Op0); 3796 bool FromUndef = isa<UndefValue>(Op1); 3797 3798 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3799 3800 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3801 SmallVector<EVT, 4> AggValueVTs; 3802 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3803 SmallVector<EVT, 4> ValValueVTs; 3804 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3805 3806 unsigned NumAggValues = AggValueVTs.size(); 3807 unsigned NumValValues = ValValueVTs.size(); 3808 SmallVector<SDValue, 4> Values(NumAggValues); 3809 3810 // Ignore an insertvalue that produces an empty object 3811 if (!NumAggValues) { 3812 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3813 return; 3814 } 3815 3816 SDValue Agg = getValue(Op0); 3817 unsigned i = 0; 3818 // Copy the beginning value(s) from the original aggregate. 3819 for (; i != LinearIndex; ++i) 3820 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3821 SDValue(Agg.getNode(), Agg.getResNo() + i); 3822 // Copy values from the inserted value(s). 3823 if (NumValValues) { 3824 SDValue Val = getValue(Op1); 3825 for (; i != LinearIndex + NumValValues; ++i) 3826 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3827 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3828 } 3829 // Copy remaining value(s) from the original aggregate. 3830 for (; i != NumAggValues; ++i) 3831 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3832 SDValue(Agg.getNode(), Agg.getResNo() + i); 3833 3834 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3835 DAG.getVTList(AggValueVTs), Values)); 3836 } 3837 3838 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3839 ArrayRef<unsigned> Indices; 3840 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3841 Indices = EV->getIndices(); 3842 else 3843 Indices = cast<ConstantExpr>(&I)->getIndices(); 3844 3845 const Value *Op0 = I.getOperand(0); 3846 Type *AggTy = Op0->getType(); 3847 Type *ValTy = I.getType(); 3848 bool OutOfUndef = isa<UndefValue>(Op0); 3849 3850 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3851 3852 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3853 SmallVector<EVT, 4> ValValueVTs; 3854 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3855 3856 unsigned NumValValues = ValValueVTs.size(); 3857 3858 // Ignore a extractvalue that produces an empty object 3859 if (!NumValValues) { 3860 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3861 return; 3862 } 3863 3864 SmallVector<SDValue, 4> Values(NumValValues); 3865 3866 SDValue Agg = getValue(Op0); 3867 // Copy out the selected value(s). 3868 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3869 Values[i - LinearIndex] = 3870 OutOfUndef ? 3871 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3872 SDValue(Agg.getNode(), Agg.getResNo() + i); 3873 3874 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3875 DAG.getVTList(ValValueVTs), Values)); 3876 } 3877 3878 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3879 Value *Op0 = I.getOperand(0); 3880 // Note that the pointer operand may be a vector of pointers. Take the scalar 3881 // element which holds a pointer. 3882 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3883 SDValue N = getValue(Op0); 3884 SDLoc dl = getCurSDLoc(); 3885 auto &TLI = DAG.getTargetLoweringInfo(); 3886 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 3887 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 3888 3889 // Normalize Vector GEP - all scalar operands should be converted to the 3890 // splat vector. 3891 unsigned VectorWidth = I.getType()->isVectorTy() ? 3892 I.getType()->getVectorNumElements() : 0; 3893 3894 if (VectorWidth && !N.getValueType().isVector()) { 3895 LLVMContext &Context = *DAG.getContext(); 3896 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); 3897 N = DAG.getSplatBuildVector(VT, dl, N); 3898 } 3899 3900 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3901 GTI != E; ++GTI) { 3902 const Value *Idx = GTI.getOperand(); 3903 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3904 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3905 if (Field) { 3906 // N = N + Offset 3907 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3908 3909 // In an inbounds GEP with an offset that is nonnegative even when 3910 // interpreted as signed, assume there is no unsigned overflow. 3911 SDNodeFlags Flags; 3912 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3913 Flags.setNoUnsignedWrap(true); 3914 3915 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3916 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3917 } 3918 } else { 3919 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3920 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3921 APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3922 3923 // If this is a scalar constant or a splat vector of constants, 3924 // handle it quickly. 3925 const auto *C = dyn_cast<Constant>(Idx); 3926 if (C && isa<VectorType>(C->getType())) 3927 C = C->getSplatValue(); 3928 3929 if (const auto *CI = dyn_cast_or_null<ConstantInt>(C)) { 3930 if (CI->isZero()) 3931 continue; 3932 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize); 3933 LLVMContext &Context = *DAG.getContext(); 3934 SDValue OffsVal = VectorWidth ? 3935 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) : 3936 DAG.getConstant(Offs, dl, IdxTy); 3937 3938 // In an inbounds GEP with an offset that is nonnegative even when 3939 // interpreted as signed, assume there is no unsigned overflow. 3940 SDNodeFlags Flags; 3941 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3942 Flags.setNoUnsignedWrap(true); 3943 3944 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3945 3946 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3947 continue; 3948 } 3949 3950 // N = N + Idx * ElementSize; 3951 SDValue IdxN = getValue(Idx); 3952 3953 if (!IdxN.getValueType().isVector() && VectorWidth) { 3954 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth); 3955 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3956 } 3957 3958 // If the index is smaller or larger than intptr_t, truncate or extend 3959 // it. 3960 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3961 3962 // If this is a multiply by a power of two, turn it into a shl 3963 // immediately. This is a very common case. 3964 if (ElementSize != 1) { 3965 if (ElementSize.isPowerOf2()) { 3966 unsigned Amt = ElementSize.logBase2(); 3967 IdxN = DAG.getNode(ISD::SHL, dl, 3968 N.getValueType(), IdxN, 3969 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3970 } else { 3971 SDValue Scale = DAG.getConstant(ElementSize.getZExtValue(), dl, 3972 IdxN.getValueType()); 3973 IdxN = DAG.getNode(ISD::MUL, dl, 3974 N.getValueType(), IdxN, Scale); 3975 } 3976 } 3977 3978 N = DAG.getNode(ISD::ADD, dl, 3979 N.getValueType(), N, IdxN); 3980 } 3981 } 3982 3983 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 3984 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 3985 3986 setValue(&I, N); 3987 } 3988 3989 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3990 // If this is a fixed sized alloca in the entry block of the function, 3991 // allocate it statically on the stack. 3992 if (FuncInfo.StaticAllocaMap.count(&I)) 3993 return; // getValue will auto-populate this. 3994 3995 SDLoc dl = getCurSDLoc(); 3996 Type *Ty = I.getAllocatedType(); 3997 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3998 auto &DL = DAG.getDataLayout(); 3999 uint64_t TySize = DL.getTypeAllocSize(Ty); 4000 unsigned Align = 4001 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 4002 4003 SDValue AllocSize = getValue(I.getArraySize()); 4004 4005 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 4006 if (AllocSize.getValueType() != IntPtr) 4007 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 4008 4009 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 4010 AllocSize, 4011 DAG.getConstant(TySize, dl, IntPtr)); 4012 4013 // Handle alignment. If the requested alignment is less than or equal to 4014 // the stack alignment, ignore it. If the size is greater than or equal to 4015 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 4016 unsigned StackAlign = 4017 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 4018 if (Align <= StackAlign) 4019 Align = 0; 4020 4021 // Round the size of the allocation up to the stack alignment size 4022 // by add SA-1 to the size. This doesn't overflow because we're computing 4023 // an address inside an alloca. 4024 SDNodeFlags Flags; 4025 Flags.setNoUnsignedWrap(true); 4026 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4027 DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags); 4028 4029 // Mask out the low bits for alignment purposes. 4030 AllocSize = 4031 DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4032 DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr)); 4033 4034 SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)}; 4035 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4036 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4037 setValue(&I, DSA); 4038 DAG.setRoot(DSA.getValue(1)); 4039 4040 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4041 } 4042 4043 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4044 if (I.isAtomic()) 4045 return visitAtomicLoad(I); 4046 4047 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4048 const Value *SV = I.getOperand(0); 4049 if (TLI.supportSwiftError()) { 4050 // Swifterror values can come from either a function parameter with 4051 // swifterror attribute or an alloca with swifterror attribute. 4052 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4053 if (Arg->hasSwiftErrorAttr()) 4054 return visitLoadFromSwiftError(I); 4055 } 4056 4057 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4058 if (Alloca->isSwiftError()) 4059 return visitLoadFromSwiftError(I); 4060 } 4061 } 4062 4063 SDValue Ptr = getValue(SV); 4064 4065 Type *Ty = I.getType(); 4066 4067 bool isVolatile = I.isVolatile(); 4068 bool isNonTemporal = I.hasMetadata(LLVMContext::MD_nontemporal); 4069 bool isInvariant = I.hasMetadata(LLVMContext::MD_invariant_load); 4070 bool isDereferenceable = 4071 isDereferenceablePointer(SV, I.getType(), DAG.getDataLayout()); 4072 unsigned Alignment = I.getAlignment(); 4073 4074 AAMDNodes AAInfo; 4075 I.getAAMetadata(AAInfo); 4076 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4077 4078 SmallVector<EVT, 4> ValueVTs, MemVTs; 4079 SmallVector<uint64_t, 4> Offsets; 4080 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4081 unsigned NumValues = ValueVTs.size(); 4082 if (NumValues == 0) 4083 return; 4084 4085 SDValue Root; 4086 bool ConstantMemory = false; 4087 if (isVolatile) 4088 // Serialize volatile loads with other side effects. 4089 Root = getRoot(); 4090 else if (NumValues > MaxParallelChains) 4091 Root = getMemoryRoot(); 4092 else if (AA && 4093 AA->pointsToConstantMemory(MemoryLocation( 4094 SV, 4095 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4096 AAInfo))) { 4097 // Do not serialize (non-volatile) loads of constant memory with anything. 4098 Root = DAG.getEntryNode(); 4099 ConstantMemory = true; 4100 } else { 4101 // Do not serialize non-volatile loads against each other. 4102 Root = DAG.getRoot(); 4103 } 4104 4105 SDLoc dl = getCurSDLoc(); 4106 4107 if (isVolatile) 4108 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4109 4110 // An aggregate load cannot wrap around the address space, so offsets to its 4111 // parts don't wrap either. 4112 SDNodeFlags Flags; 4113 Flags.setNoUnsignedWrap(true); 4114 4115 SmallVector<SDValue, 4> Values(NumValues); 4116 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4117 EVT PtrVT = Ptr.getValueType(); 4118 unsigned ChainI = 0; 4119 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4120 // Serializing loads here may result in excessive register pressure, and 4121 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4122 // could recover a bit by hoisting nodes upward in the chain by recognizing 4123 // they are side-effect free or do not alias. The optimizer should really 4124 // avoid this case by converting large object/array copies to llvm.memcpy 4125 // (MaxParallelChains should always remain as failsafe). 4126 if (ChainI == MaxParallelChains) { 4127 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4128 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4129 makeArrayRef(Chains.data(), ChainI)); 4130 Root = Chain; 4131 ChainI = 0; 4132 } 4133 SDValue A = DAG.getNode(ISD::ADD, dl, 4134 PtrVT, Ptr, 4135 DAG.getConstant(Offsets[i], dl, PtrVT), 4136 Flags); 4137 auto MMOFlags = MachineMemOperand::MONone; 4138 if (isVolatile) 4139 MMOFlags |= MachineMemOperand::MOVolatile; 4140 if (isNonTemporal) 4141 MMOFlags |= MachineMemOperand::MONonTemporal; 4142 if (isInvariant) 4143 MMOFlags |= MachineMemOperand::MOInvariant; 4144 if (isDereferenceable) 4145 MMOFlags |= MachineMemOperand::MODereferenceable; 4146 MMOFlags |= TLI.getMMOFlags(I); 4147 4148 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4149 MachinePointerInfo(SV, Offsets[i]), Alignment, 4150 MMOFlags, AAInfo, Ranges); 4151 Chains[ChainI] = L.getValue(1); 4152 4153 if (MemVTs[i] != ValueVTs[i]) 4154 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4155 4156 Values[i] = L; 4157 } 4158 4159 if (!ConstantMemory) { 4160 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4161 makeArrayRef(Chains.data(), ChainI)); 4162 if (isVolatile) 4163 DAG.setRoot(Chain); 4164 else 4165 PendingLoads.push_back(Chain); 4166 } 4167 4168 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4169 DAG.getVTList(ValueVTs), Values)); 4170 } 4171 4172 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4173 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4174 "call visitStoreToSwiftError when backend supports swifterror"); 4175 4176 SmallVector<EVT, 4> ValueVTs; 4177 SmallVector<uint64_t, 4> Offsets; 4178 const Value *SrcV = I.getOperand(0); 4179 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4180 SrcV->getType(), ValueVTs, &Offsets); 4181 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4182 "expect a single EVT for swifterror"); 4183 4184 SDValue Src = getValue(SrcV); 4185 // Create a virtual register, then update the virtual register. 4186 Register VReg = 4187 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4188 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4189 // Chain can be getRoot or getControlRoot. 4190 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4191 SDValue(Src.getNode(), Src.getResNo())); 4192 DAG.setRoot(CopyNode); 4193 } 4194 4195 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4196 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4197 "call visitLoadFromSwiftError when backend supports swifterror"); 4198 4199 assert(!I.isVolatile() && 4200 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4201 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4202 "Support volatile, non temporal, invariant for load_from_swift_error"); 4203 4204 const Value *SV = I.getOperand(0); 4205 Type *Ty = I.getType(); 4206 AAMDNodes AAInfo; 4207 I.getAAMetadata(AAInfo); 4208 assert( 4209 (!AA || 4210 !AA->pointsToConstantMemory(MemoryLocation( 4211 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4212 AAInfo))) && 4213 "load_from_swift_error should not be constant memory"); 4214 4215 SmallVector<EVT, 4> ValueVTs; 4216 SmallVector<uint64_t, 4> Offsets; 4217 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4218 ValueVTs, &Offsets); 4219 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4220 "expect a single EVT for swifterror"); 4221 4222 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4223 SDValue L = DAG.getCopyFromReg( 4224 getRoot(), getCurSDLoc(), 4225 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4226 4227 setValue(&I, L); 4228 } 4229 4230 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4231 if (I.isAtomic()) 4232 return visitAtomicStore(I); 4233 4234 const Value *SrcV = I.getOperand(0); 4235 const Value *PtrV = I.getOperand(1); 4236 4237 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4238 if (TLI.supportSwiftError()) { 4239 // Swifterror values can come from either a function parameter with 4240 // swifterror attribute or an alloca with swifterror attribute. 4241 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4242 if (Arg->hasSwiftErrorAttr()) 4243 return visitStoreToSwiftError(I); 4244 } 4245 4246 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4247 if (Alloca->isSwiftError()) 4248 return visitStoreToSwiftError(I); 4249 } 4250 } 4251 4252 SmallVector<EVT, 4> ValueVTs, MemVTs; 4253 SmallVector<uint64_t, 4> Offsets; 4254 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4255 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4256 unsigned NumValues = ValueVTs.size(); 4257 if (NumValues == 0) 4258 return; 4259 4260 // Get the lowered operands. Note that we do this after 4261 // checking if NumResults is zero, because with zero results 4262 // the operands won't have values in the map. 4263 SDValue Src = getValue(SrcV); 4264 SDValue Ptr = getValue(PtrV); 4265 4266 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4267 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4268 SDLoc dl = getCurSDLoc(); 4269 unsigned Alignment = I.getAlignment(); 4270 AAMDNodes AAInfo; 4271 I.getAAMetadata(AAInfo); 4272 4273 auto MMOFlags = MachineMemOperand::MONone; 4274 if (I.isVolatile()) 4275 MMOFlags |= MachineMemOperand::MOVolatile; 4276 if (I.hasMetadata(LLVMContext::MD_nontemporal)) 4277 MMOFlags |= MachineMemOperand::MONonTemporal; 4278 MMOFlags |= TLI.getMMOFlags(I); 4279 4280 // An aggregate load cannot wrap around the address space, so offsets to its 4281 // parts don't wrap either. 4282 SDNodeFlags Flags; 4283 Flags.setNoUnsignedWrap(true); 4284 4285 unsigned ChainI = 0; 4286 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4287 // See visitLoad comments. 4288 if (ChainI == MaxParallelChains) { 4289 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4290 makeArrayRef(Chains.data(), ChainI)); 4291 Root = Chain; 4292 ChainI = 0; 4293 } 4294 SDValue Add = DAG.getMemBasePlusOffset(Ptr, Offsets[i], dl, Flags); 4295 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4296 if (MemVTs[i] != ValueVTs[i]) 4297 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4298 SDValue St = 4299 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4300 Alignment, MMOFlags, AAInfo); 4301 Chains[ChainI] = St; 4302 } 4303 4304 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4305 makeArrayRef(Chains.data(), ChainI)); 4306 DAG.setRoot(StoreNode); 4307 } 4308 4309 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4310 bool IsCompressing) { 4311 SDLoc sdl = getCurSDLoc(); 4312 4313 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4314 unsigned& Alignment) { 4315 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4316 Src0 = I.getArgOperand(0); 4317 Ptr = I.getArgOperand(1); 4318 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 4319 Mask = I.getArgOperand(3); 4320 }; 4321 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4322 unsigned& Alignment) { 4323 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4324 Src0 = I.getArgOperand(0); 4325 Ptr = I.getArgOperand(1); 4326 Mask = I.getArgOperand(2); 4327 Alignment = 0; 4328 }; 4329 4330 Value *PtrOperand, *MaskOperand, *Src0Operand; 4331 unsigned Alignment; 4332 if (IsCompressing) 4333 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4334 else 4335 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4336 4337 SDValue Ptr = getValue(PtrOperand); 4338 SDValue Src0 = getValue(Src0Operand); 4339 SDValue Mask = getValue(MaskOperand); 4340 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4341 4342 EVT VT = Src0.getValueType(); 4343 if (!Alignment) 4344 Alignment = DAG.getEVTAlignment(VT); 4345 4346 AAMDNodes AAInfo; 4347 I.getAAMetadata(AAInfo); 4348 4349 MachineMemOperand *MMO = 4350 DAG.getMachineFunction(). 4351 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4352 MachineMemOperand::MOStore, 4353 // TODO: Make MachineMemOperands aware of scalable 4354 // vectors. 4355 VT.getStoreSize().getKnownMinSize(), 4356 Alignment, AAInfo); 4357 SDValue StoreNode = 4358 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4359 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4360 DAG.setRoot(StoreNode); 4361 setValue(&I, StoreNode); 4362 } 4363 4364 // Get a uniform base for the Gather/Scatter intrinsic. 4365 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4366 // We try to represent it as a base pointer + vector of indices. 4367 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4368 // The first operand of the GEP may be a single pointer or a vector of pointers 4369 // Example: 4370 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4371 // or 4372 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4373 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4374 // 4375 // When the first GEP operand is a single pointer - it is the uniform base we 4376 // are looking for. If first operand of the GEP is a splat vector - we 4377 // extract the splat value and use it as a uniform base. 4378 // In all other cases the function returns 'false'. 4379 static bool getUniformBase(const Value *&Ptr, SDValue &Base, SDValue &Index, 4380 ISD::MemIndexType &IndexType, SDValue &Scale, 4381 SelectionDAGBuilder *SDB) { 4382 SelectionDAG& DAG = SDB->DAG; 4383 LLVMContext &Context = *DAG.getContext(); 4384 4385 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 4386 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4387 if (!GEP) 4388 return false; 4389 4390 const Value *GEPPtr = GEP->getPointerOperand(); 4391 if (!GEPPtr->getType()->isVectorTy()) 4392 Ptr = GEPPtr; 4393 else if (!(Ptr = getSplatValue(GEPPtr))) 4394 return false; 4395 4396 unsigned FinalIndex = GEP->getNumOperands() - 1; 4397 Value *IndexVal = GEP->getOperand(FinalIndex); 4398 gep_type_iterator GTI = gep_type_begin(*GEP); 4399 4400 // Ensure all the other indices are 0. 4401 for (unsigned i = 1; i < FinalIndex; ++i, ++GTI) { 4402 auto *C = dyn_cast<Constant>(GEP->getOperand(i)); 4403 if (!C) 4404 return false; 4405 if (isa<VectorType>(C->getType())) 4406 C = C->getSplatValue(); 4407 auto *CI = dyn_cast_or_null<ConstantInt>(C); 4408 if (!CI || !CI->isZero()) 4409 return false; 4410 } 4411 4412 // The operands of the GEP may be defined in another basic block. 4413 // In this case we'll not find nodes for the operands. 4414 if (!SDB->findValue(Ptr)) 4415 return false; 4416 Constant *C = dyn_cast<Constant>(IndexVal); 4417 if (!C && !SDB->findValue(IndexVal)) 4418 return false; 4419 4420 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4421 const DataLayout &DL = DAG.getDataLayout(); 4422 StructType *STy = GTI.getStructTypeOrNull(); 4423 4424 if (STy) { 4425 const StructLayout *SL = DL.getStructLayout(STy); 4426 if (isa<VectorType>(C->getType())) { 4427 C = C->getSplatValue(); 4428 // FIXME: If getSplatValue may return nullptr for a structure? 4429 // If not, the following check can be removed. 4430 if (!C) 4431 return false; 4432 } 4433 auto *CI = cast<ConstantInt>(C); 4434 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4435 Index = DAG.getConstant(SL->getElementOffset(CI->getZExtValue()), 4436 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4437 } else { 4438 Scale = DAG.getTargetConstant( 4439 DL.getTypeAllocSize(GEP->getResultElementType()), 4440 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4441 Index = SDB->getValue(IndexVal); 4442 } 4443 Base = SDB->getValue(Ptr); 4444 IndexType = ISD::SIGNED_SCALED; 4445 4446 if (STy || !Index.getValueType().isVector()) { 4447 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 4448 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 4449 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 4450 } 4451 return true; 4452 } 4453 4454 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4455 SDLoc sdl = getCurSDLoc(); 4456 4457 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4458 const Value *Ptr = I.getArgOperand(1); 4459 SDValue Src0 = getValue(I.getArgOperand(0)); 4460 SDValue Mask = getValue(I.getArgOperand(3)); 4461 EVT VT = Src0.getValueType(); 4462 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 4463 if (!Alignment) 4464 Alignment = DAG.getEVTAlignment(VT); 4465 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4466 4467 AAMDNodes AAInfo; 4468 I.getAAMetadata(AAInfo); 4469 4470 SDValue Base; 4471 SDValue Index; 4472 ISD::MemIndexType IndexType; 4473 SDValue Scale; 4474 const Value *BasePtr = Ptr; 4475 bool UniformBase = getUniformBase(BasePtr, Base, Index, IndexType, Scale, 4476 this); 4477 4478 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 4479 MachineMemOperand *MMO = DAG.getMachineFunction(). 4480 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 4481 MachineMemOperand::MOStore, 4482 // TODO: Make MachineMemOperands aware of scalable 4483 // vectors. 4484 VT.getStoreSize().getKnownMinSize(), 4485 Alignment, AAInfo); 4486 if (!UniformBase) { 4487 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4488 Index = getValue(Ptr); 4489 IndexType = ISD::SIGNED_SCALED; 4490 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4491 } 4492 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4493 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4494 Ops, MMO, IndexType); 4495 DAG.setRoot(Scatter); 4496 setValue(&I, Scatter); 4497 } 4498 4499 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4500 SDLoc sdl = getCurSDLoc(); 4501 4502 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4503 unsigned& Alignment) { 4504 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4505 Ptr = I.getArgOperand(0); 4506 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4507 Mask = I.getArgOperand(2); 4508 Src0 = I.getArgOperand(3); 4509 }; 4510 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4511 unsigned& Alignment) { 4512 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4513 Ptr = I.getArgOperand(0); 4514 Alignment = 0; 4515 Mask = I.getArgOperand(1); 4516 Src0 = I.getArgOperand(2); 4517 }; 4518 4519 Value *PtrOperand, *MaskOperand, *Src0Operand; 4520 unsigned Alignment; 4521 if (IsExpanding) 4522 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4523 else 4524 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4525 4526 SDValue Ptr = getValue(PtrOperand); 4527 SDValue Src0 = getValue(Src0Operand); 4528 SDValue Mask = getValue(MaskOperand); 4529 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4530 4531 EVT VT = Src0.getValueType(); 4532 if (!Alignment) 4533 Alignment = DAG.getEVTAlignment(VT); 4534 4535 AAMDNodes AAInfo; 4536 I.getAAMetadata(AAInfo); 4537 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4538 4539 // Do not serialize masked loads of constant memory with anything. 4540 MemoryLocation ML; 4541 if (VT.isScalableVector()) 4542 ML = MemoryLocation(PtrOperand); 4543 else 4544 ML = MemoryLocation(PtrOperand, LocationSize::precise( 4545 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4546 AAInfo); 4547 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4548 4549 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4550 4551 MachineMemOperand *MMO = 4552 DAG.getMachineFunction(). 4553 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4554 MachineMemOperand::MOLoad, 4555 // TODO: Make MachineMemOperands aware of scalable 4556 // vectors. 4557 VT.getStoreSize().getKnownMinSize(), 4558 Alignment, AAInfo, Ranges); 4559 4560 SDValue Load = 4561 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4562 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4563 if (AddToChain) 4564 PendingLoads.push_back(Load.getValue(1)); 4565 setValue(&I, Load); 4566 } 4567 4568 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4569 SDLoc sdl = getCurSDLoc(); 4570 4571 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4572 const Value *Ptr = I.getArgOperand(0); 4573 SDValue Src0 = getValue(I.getArgOperand(3)); 4574 SDValue Mask = getValue(I.getArgOperand(2)); 4575 4576 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4577 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4578 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 4579 if (!Alignment) 4580 Alignment = DAG.getEVTAlignment(VT); 4581 4582 AAMDNodes AAInfo; 4583 I.getAAMetadata(AAInfo); 4584 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4585 4586 SDValue Root = DAG.getRoot(); 4587 SDValue Base; 4588 SDValue Index; 4589 ISD::MemIndexType IndexType; 4590 SDValue Scale; 4591 const Value *BasePtr = Ptr; 4592 bool UniformBase = getUniformBase(BasePtr, Base, Index, IndexType, Scale, 4593 this); 4594 bool ConstantMemory = false; 4595 if (UniformBase && AA && 4596 AA->pointsToConstantMemory( 4597 MemoryLocation(BasePtr, 4598 LocationSize::precise( 4599 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4600 AAInfo))) { 4601 // Do not serialize (non-volatile) loads of constant memory with anything. 4602 Root = DAG.getEntryNode(); 4603 ConstantMemory = true; 4604 } 4605 4606 MachineMemOperand *MMO = 4607 DAG.getMachineFunction(). 4608 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 4609 MachineMemOperand::MOLoad, 4610 // TODO: Make MachineMemOperands aware of scalable 4611 // vectors. 4612 VT.getStoreSize().getKnownMinSize(), 4613 Alignment, AAInfo, Ranges); 4614 4615 if (!UniformBase) { 4616 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4617 Index = getValue(Ptr); 4618 IndexType = ISD::SIGNED_SCALED; 4619 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4620 } 4621 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4622 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4623 Ops, MMO, IndexType); 4624 4625 SDValue OutChain = Gather.getValue(1); 4626 if (!ConstantMemory) 4627 PendingLoads.push_back(OutChain); 4628 setValue(&I, Gather); 4629 } 4630 4631 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4632 SDLoc dl = getCurSDLoc(); 4633 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4634 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4635 SyncScope::ID SSID = I.getSyncScopeID(); 4636 4637 SDValue InChain = getRoot(); 4638 4639 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4640 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4641 4642 auto Alignment = DAG.getEVTAlignment(MemVT); 4643 4644 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 4645 if (I.isVolatile()) 4646 Flags |= MachineMemOperand::MOVolatile; 4647 Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I); 4648 4649 MachineFunction &MF = DAG.getMachineFunction(); 4650 MachineMemOperand *MMO = 4651 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4652 Flags, MemVT.getStoreSize(), Alignment, 4653 AAMDNodes(), nullptr, SSID, SuccessOrdering, 4654 FailureOrdering); 4655 4656 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4657 dl, MemVT, VTs, InChain, 4658 getValue(I.getPointerOperand()), 4659 getValue(I.getCompareOperand()), 4660 getValue(I.getNewValOperand()), MMO); 4661 4662 SDValue OutChain = L.getValue(2); 4663 4664 setValue(&I, L); 4665 DAG.setRoot(OutChain); 4666 } 4667 4668 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4669 SDLoc dl = getCurSDLoc(); 4670 ISD::NodeType NT; 4671 switch (I.getOperation()) { 4672 default: llvm_unreachable("Unknown atomicrmw operation"); 4673 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4674 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4675 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4676 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4677 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4678 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4679 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4680 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4681 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4682 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4683 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4684 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4685 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4686 } 4687 AtomicOrdering Ordering = I.getOrdering(); 4688 SyncScope::ID SSID = I.getSyncScopeID(); 4689 4690 SDValue InChain = getRoot(); 4691 4692 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4693 auto Alignment = DAG.getEVTAlignment(MemVT); 4694 4695 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 4696 if (I.isVolatile()) 4697 Flags |= MachineMemOperand::MOVolatile; 4698 Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I); 4699 4700 MachineFunction &MF = DAG.getMachineFunction(); 4701 MachineMemOperand *MMO = 4702 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags, 4703 MemVT.getStoreSize(), Alignment, AAMDNodes(), 4704 nullptr, SSID, Ordering); 4705 4706 SDValue L = 4707 DAG.getAtomic(NT, dl, MemVT, InChain, 4708 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4709 MMO); 4710 4711 SDValue OutChain = L.getValue(1); 4712 4713 setValue(&I, L); 4714 DAG.setRoot(OutChain); 4715 } 4716 4717 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4718 SDLoc dl = getCurSDLoc(); 4719 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4720 SDValue Ops[3]; 4721 Ops[0] = getRoot(); 4722 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4723 TLI.getFenceOperandTy(DAG.getDataLayout())); 4724 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4725 TLI.getFenceOperandTy(DAG.getDataLayout())); 4726 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4727 } 4728 4729 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4730 SDLoc dl = getCurSDLoc(); 4731 AtomicOrdering Order = I.getOrdering(); 4732 SyncScope::ID SSID = I.getSyncScopeID(); 4733 4734 SDValue InChain = getRoot(); 4735 4736 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4737 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4738 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4739 4740 if (!TLI.supportsUnalignedAtomics() && 4741 I.getAlignment() < MemVT.getSizeInBits() / 8) 4742 report_fatal_error("Cannot generate unaligned atomic load"); 4743 4744 auto Flags = MachineMemOperand::MOLoad; 4745 if (I.isVolatile()) 4746 Flags |= MachineMemOperand::MOVolatile; 4747 if (I.hasMetadata(LLVMContext::MD_invariant_load)) 4748 Flags |= MachineMemOperand::MOInvariant; 4749 if (isDereferenceablePointer(I.getPointerOperand(), I.getType(), 4750 DAG.getDataLayout())) 4751 Flags |= MachineMemOperand::MODereferenceable; 4752 4753 Flags |= TLI.getMMOFlags(I); 4754 4755 MachineMemOperand *MMO = 4756 DAG.getMachineFunction(). 4757 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4758 Flags, MemVT.getStoreSize(), 4759 I.getAlignment() ? I.getAlignment() : 4760 DAG.getEVTAlignment(MemVT), 4761 AAMDNodes(), nullptr, SSID, Order); 4762 4763 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4764 4765 SDValue Ptr = getValue(I.getPointerOperand()); 4766 4767 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4768 // TODO: Once this is better exercised by tests, it should be merged with 4769 // the normal path for loads to prevent future divergence. 4770 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4771 if (MemVT != VT) 4772 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4773 4774 setValue(&I, L); 4775 SDValue OutChain = L.getValue(1); 4776 if (!I.isUnordered()) 4777 DAG.setRoot(OutChain); 4778 else 4779 PendingLoads.push_back(OutChain); 4780 return; 4781 } 4782 4783 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4784 Ptr, MMO); 4785 4786 SDValue OutChain = L.getValue(1); 4787 if (MemVT != VT) 4788 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4789 4790 setValue(&I, L); 4791 DAG.setRoot(OutChain); 4792 } 4793 4794 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4795 SDLoc dl = getCurSDLoc(); 4796 4797 AtomicOrdering Ordering = I.getOrdering(); 4798 SyncScope::ID SSID = I.getSyncScopeID(); 4799 4800 SDValue InChain = getRoot(); 4801 4802 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4803 EVT MemVT = 4804 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4805 4806 if (I.getAlignment() < MemVT.getSizeInBits() / 8) 4807 report_fatal_error("Cannot generate unaligned atomic store"); 4808 4809 auto Flags = MachineMemOperand::MOStore; 4810 if (I.isVolatile()) 4811 Flags |= MachineMemOperand::MOVolatile; 4812 Flags |= TLI.getMMOFlags(I); 4813 4814 MachineFunction &MF = DAG.getMachineFunction(); 4815 MachineMemOperand *MMO = 4816 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags, 4817 MemVT.getStoreSize(), I.getAlignment(), AAMDNodes(), 4818 nullptr, SSID, Ordering); 4819 4820 SDValue Val = getValue(I.getValueOperand()); 4821 if (Val.getValueType() != MemVT) 4822 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4823 SDValue Ptr = getValue(I.getPointerOperand()); 4824 4825 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4826 // TODO: Once this is better exercised by tests, it should be merged with 4827 // the normal path for stores to prevent future divergence. 4828 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4829 DAG.setRoot(S); 4830 return; 4831 } 4832 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4833 Ptr, Val, MMO); 4834 4835 4836 DAG.setRoot(OutChain); 4837 } 4838 4839 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4840 /// node. 4841 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4842 unsigned Intrinsic) { 4843 // Ignore the callsite's attributes. A specific call site may be marked with 4844 // readnone, but the lowering code will expect the chain based on the 4845 // definition. 4846 const Function *F = I.getCalledFunction(); 4847 bool HasChain = !F->doesNotAccessMemory(); 4848 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4849 4850 // Build the operand list. 4851 SmallVector<SDValue, 8> Ops; 4852 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4853 if (OnlyLoad) { 4854 // We don't need to serialize loads against other loads. 4855 Ops.push_back(DAG.getRoot()); 4856 } else { 4857 Ops.push_back(getRoot()); 4858 } 4859 } 4860 4861 // Info is set by getTgtMemInstrinsic 4862 TargetLowering::IntrinsicInfo Info; 4863 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4864 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4865 DAG.getMachineFunction(), 4866 Intrinsic); 4867 4868 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4869 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4870 Info.opc == ISD::INTRINSIC_W_CHAIN) 4871 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4872 TLI.getPointerTy(DAG.getDataLayout()))); 4873 4874 // Add all operands of the call to the operand list. 4875 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4876 const Value *Arg = I.getArgOperand(i); 4877 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4878 Ops.push_back(getValue(Arg)); 4879 continue; 4880 } 4881 4882 // Use TargetConstant instead of a regular constant for immarg. 4883 EVT VT = TLI.getValueType(*DL, Arg->getType(), true); 4884 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4885 assert(CI->getBitWidth() <= 64 && 4886 "large intrinsic immediates not handled"); 4887 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4888 } else { 4889 Ops.push_back( 4890 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4891 } 4892 } 4893 4894 SmallVector<EVT, 4> ValueVTs; 4895 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4896 4897 if (HasChain) 4898 ValueVTs.push_back(MVT::Other); 4899 4900 SDVTList VTs = DAG.getVTList(ValueVTs); 4901 4902 // Create the node. 4903 SDValue Result; 4904 if (IsTgtIntrinsic) { 4905 // This is target intrinsic that touches memory 4906 AAMDNodes AAInfo; 4907 I.getAAMetadata(AAInfo); 4908 Result = DAG.getMemIntrinsicNode( 4909 Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, 4910 MachinePointerInfo(Info.ptrVal, Info.offset), 4911 Info.align ? Info.align->value() : 0, Info.flags, Info.size, AAInfo); 4912 } else if (!HasChain) { 4913 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4914 } else if (!I.getType()->isVoidTy()) { 4915 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4916 } else { 4917 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4918 } 4919 4920 if (HasChain) { 4921 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4922 if (OnlyLoad) 4923 PendingLoads.push_back(Chain); 4924 else 4925 DAG.setRoot(Chain); 4926 } 4927 4928 if (!I.getType()->isVoidTy()) { 4929 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4930 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4931 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4932 } else 4933 Result = lowerRangeToAssertZExt(DAG, I, Result); 4934 4935 setValue(&I, Result); 4936 } 4937 } 4938 4939 /// GetSignificand - Get the significand and build it into a floating-point 4940 /// number with exponent of 1: 4941 /// 4942 /// Op = (Op & 0x007fffff) | 0x3f800000; 4943 /// 4944 /// where Op is the hexadecimal representation of floating point value. 4945 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4946 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4947 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4948 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4949 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4950 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4951 } 4952 4953 /// GetExponent - Get the exponent: 4954 /// 4955 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4956 /// 4957 /// where Op is the hexadecimal representation of floating point value. 4958 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4959 const TargetLowering &TLI, const SDLoc &dl) { 4960 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4961 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4962 SDValue t1 = DAG.getNode( 4963 ISD::SRL, dl, MVT::i32, t0, 4964 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4965 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4966 DAG.getConstant(127, dl, MVT::i32)); 4967 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4968 } 4969 4970 /// getF32Constant - Get 32-bit floating point constant. 4971 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4972 const SDLoc &dl) { 4973 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4974 MVT::f32); 4975 } 4976 4977 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4978 SelectionDAG &DAG) { 4979 // TODO: What fast-math-flags should be set on the floating-point nodes? 4980 4981 // IntegerPartOfX = ((int32_t)(t0); 4982 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4983 4984 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4985 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4986 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4987 4988 // IntegerPartOfX <<= 23; 4989 IntegerPartOfX = DAG.getNode( 4990 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4991 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4992 DAG.getDataLayout()))); 4993 4994 SDValue TwoToFractionalPartOfX; 4995 if (LimitFloatPrecision <= 6) { 4996 // For floating-point precision of 6: 4997 // 4998 // TwoToFractionalPartOfX = 4999 // 0.997535578f + 5000 // (0.735607626f + 0.252464424f * x) * x; 5001 // 5002 // error 0.0144103317, which is 6 bits 5003 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5004 getF32Constant(DAG, 0x3e814304, dl)); 5005 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5006 getF32Constant(DAG, 0x3f3c50c8, dl)); 5007 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5008 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5009 getF32Constant(DAG, 0x3f7f5e7e, dl)); 5010 } else if (LimitFloatPrecision <= 12) { 5011 // For floating-point precision of 12: 5012 // 5013 // TwoToFractionalPartOfX = 5014 // 0.999892986f + 5015 // (0.696457318f + 5016 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 5017 // 5018 // error 0.000107046256, which is 13 to 14 bits 5019 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5020 getF32Constant(DAG, 0x3da235e3, dl)); 5021 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5022 getF32Constant(DAG, 0x3e65b8f3, dl)); 5023 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5024 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5025 getF32Constant(DAG, 0x3f324b07, dl)); 5026 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5027 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5028 getF32Constant(DAG, 0x3f7ff8fd, dl)); 5029 } else { // LimitFloatPrecision <= 18 5030 // For floating-point precision of 18: 5031 // 5032 // TwoToFractionalPartOfX = 5033 // 0.999999982f + 5034 // (0.693148872f + 5035 // (0.240227044f + 5036 // (0.554906021e-1f + 5037 // (0.961591928e-2f + 5038 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 5039 // error 2.47208000*10^(-7), which is better than 18 bits 5040 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5041 getF32Constant(DAG, 0x3924b03e, dl)); 5042 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5043 getF32Constant(DAG, 0x3ab24b87, dl)); 5044 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5045 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5046 getF32Constant(DAG, 0x3c1d8c17, dl)); 5047 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5048 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5049 getF32Constant(DAG, 0x3d634a1d, dl)); 5050 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5051 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5052 getF32Constant(DAG, 0x3e75fe14, dl)); 5053 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5054 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 5055 getF32Constant(DAG, 0x3f317234, dl)); 5056 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 5057 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 5058 getF32Constant(DAG, 0x3f800000, dl)); 5059 } 5060 5061 // Add the exponent into the result in integer domain. 5062 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 5063 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 5064 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 5065 } 5066 5067 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 5068 /// limited-precision mode. 5069 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5070 const TargetLowering &TLI) { 5071 if (Op.getValueType() == MVT::f32 && 5072 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5073 5074 // Put the exponent in the right bit position for later addition to the 5075 // final result: 5076 // 5077 // t0 = Op * log2(e) 5078 5079 // TODO: What fast-math-flags should be set here? 5080 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5081 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5082 return getLimitedPrecisionExp2(t0, dl, DAG); 5083 } 5084 5085 // No special expansion. 5086 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 5087 } 5088 5089 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5090 /// limited-precision mode. 5091 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5092 const TargetLowering &TLI) { 5093 // TODO: What fast-math-flags should be set on the floating-point nodes? 5094 5095 if (Op.getValueType() == MVT::f32 && 5096 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5097 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5098 5099 // Scale the exponent by log(2). 5100 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5101 SDValue LogOfExponent = 5102 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5103 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5104 5105 // Get the significand and build it into a floating-point number with 5106 // exponent of 1. 5107 SDValue X = GetSignificand(DAG, Op1, dl); 5108 5109 SDValue LogOfMantissa; 5110 if (LimitFloatPrecision <= 6) { 5111 // For floating-point precision of 6: 5112 // 5113 // LogofMantissa = 5114 // -1.1609546f + 5115 // (1.4034025f - 0.23903021f * x) * x; 5116 // 5117 // error 0.0034276066, which is better than 8 bits 5118 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5119 getF32Constant(DAG, 0xbe74c456, dl)); 5120 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5121 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5122 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5123 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5124 getF32Constant(DAG, 0x3f949a29, dl)); 5125 } else if (LimitFloatPrecision <= 12) { 5126 // For floating-point precision of 12: 5127 // 5128 // LogOfMantissa = 5129 // -1.7417939f + 5130 // (2.8212026f + 5131 // (-1.4699568f + 5132 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5133 // 5134 // error 0.000061011436, which is 14 bits 5135 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5136 getF32Constant(DAG, 0xbd67b6d6, dl)); 5137 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5138 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5139 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5140 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5141 getF32Constant(DAG, 0x3fbc278b, dl)); 5142 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5143 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5144 getF32Constant(DAG, 0x40348e95, dl)); 5145 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5146 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5147 getF32Constant(DAG, 0x3fdef31a, dl)); 5148 } else { // LimitFloatPrecision <= 18 5149 // For floating-point precision of 18: 5150 // 5151 // LogOfMantissa = 5152 // -2.1072184f + 5153 // (4.2372794f + 5154 // (-3.7029485f + 5155 // (2.2781945f + 5156 // (-0.87823314f + 5157 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5158 // 5159 // error 0.0000023660568, which is better than 18 bits 5160 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5161 getF32Constant(DAG, 0xbc91e5ac, dl)); 5162 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5163 getF32Constant(DAG, 0x3e4350aa, dl)); 5164 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5165 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5166 getF32Constant(DAG, 0x3f60d3e3, dl)); 5167 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5168 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5169 getF32Constant(DAG, 0x4011cdf0, dl)); 5170 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5171 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5172 getF32Constant(DAG, 0x406cfd1c, dl)); 5173 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5174 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5175 getF32Constant(DAG, 0x408797cb, dl)); 5176 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5177 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5178 getF32Constant(DAG, 0x4006dcab, dl)); 5179 } 5180 5181 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5182 } 5183 5184 // No special expansion. 5185 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 5186 } 5187 5188 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5189 /// limited-precision mode. 5190 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5191 const TargetLowering &TLI) { 5192 // TODO: What fast-math-flags should be set on the floating-point nodes? 5193 5194 if (Op.getValueType() == MVT::f32 && 5195 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5196 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5197 5198 // Get the exponent. 5199 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5200 5201 // Get the significand and build it into a floating-point number with 5202 // exponent of 1. 5203 SDValue X = GetSignificand(DAG, Op1, dl); 5204 5205 // Different possible minimax approximations of significand in 5206 // floating-point for various degrees of accuracy over [1,2]. 5207 SDValue Log2ofMantissa; 5208 if (LimitFloatPrecision <= 6) { 5209 // For floating-point precision of 6: 5210 // 5211 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5212 // 5213 // error 0.0049451742, which is more than 7 bits 5214 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5215 getF32Constant(DAG, 0xbeb08fe0, dl)); 5216 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5217 getF32Constant(DAG, 0x40019463, dl)); 5218 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5219 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5220 getF32Constant(DAG, 0x3fd6633d, dl)); 5221 } else if (LimitFloatPrecision <= 12) { 5222 // For floating-point precision of 12: 5223 // 5224 // Log2ofMantissa = 5225 // -2.51285454f + 5226 // (4.07009056f + 5227 // (-2.12067489f + 5228 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5229 // 5230 // error 0.0000876136000, which is better than 13 bits 5231 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5232 getF32Constant(DAG, 0xbda7262e, dl)); 5233 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5234 getF32Constant(DAG, 0x3f25280b, dl)); 5235 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5236 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5237 getF32Constant(DAG, 0x4007b923, dl)); 5238 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5239 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5240 getF32Constant(DAG, 0x40823e2f, dl)); 5241 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5242 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5243 getF32Constant(DAG, 0x4020d29c, dl)); 5244 } else { // LimitFloatPrecision <= 18 5245 // For floating-point precision of 18: 5246 // 5247 // Log2ofMantissa = 5248 // -3.0400495f + 5249 // (6.1129976f + 5250 // (-5.3420409f + 5251 // (3.2865683f + 5252 // (-1.2669343f + 5253 // (0.27515199f - 5254 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5255 // 5256 // error 0.0000018516, which is better than 18 bits 5257 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5258 getF32Constant(DAG, 0xbcd2769e, dl)); 5259 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5260 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5261 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5262 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5263 getF32Constant(DAG, 0x3fa22ae7, dl)); 5264 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5265 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5266 getF32Constant(DAG, 0x40525723, dl)); 5267 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5268 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5269 getF32Constant(DAG, 0x40aaf200, dl)); 5270 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5271 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5272 getF32Constant(DAG, 0x40c39dad, dl)); 5273 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5274 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5275 getF32Constant(DAG, 0x4042902c, dl)); 5276 } 5277 5278 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5279 } 5280 5281 // No special expansion. 5282 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 5283 } 5284 5285 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5286 /// limited-precision mode. 5287 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5288 const TargetLowering &TLI) { 5289 // TODO: What fast-math-flags should be set on the floating-point nodes? 5290 5291 if (Op.getValueType() == MVT::f32 && 5292 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5293 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5294 5295 // Scale the exponent by log10(2) [0.30102999f]. 5296 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5297 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5298 getF32Constant(DAG, 0x3e9a209a, dl)); 5299 5300 // Get the significand and build it into a floating-point number with 5301 // exponent of 1. 5302 SDValue X = GetSignificand(DAG, Op1, dl); 5303 5304 SDValue Log10ofMantissa; 5305 if (LimitFloatPrecision <= 6) { 5306 // For floating-point precision of 6: 5307 // 5308 // Log10ofMantissa = 5309 // -0.50419619f + 5310 // (0.60948995f - 0.10380950f * x) * x; 5311 // 5312 // error 0.0014886165, which is 6 bits 5313 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5314 getF32Constant(DAG, 0xbdd49a13, dl)); 5315 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5316 getF32Constant(DAG, 0x3f1c0789, dl)); 5317 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5318 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5319 getF32Constant(DAG, 0x3f011300, dl)); 5320 } else if (LimitFloatPrecision <= 12) { 5321 // For floating-point precision of 12: 5322 // 5323 // Log10ofMantissa = 5324 // -0.64831180f + 5325 // (0.91751397f + 5326 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5327 // 5328 // error 0.00019228036, which is better than 12 bits 5329 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5330 getF32Constant(DAG, 0x3d431f31, dl)); 5331 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5332 getF32Constant(DAG, 0x3ea21fb2, dl)); 5333 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5334 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5335 getF32Constant(DAG, 0x3f6ae232, dl)); 5336 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5337 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5338 getF32Constant(DAG, 0x3f25f7c3, dl)); 5339 } else { // LimitFloatPrecision <= 18 5340 // For floating-point precision of 18: 5341 // 5342 // Log10ofMantissa = 5343 // -0.84299375f + 5344 // (1.5327582f + 5345 // (-1.0688956f + 5346 // (0.49102474f + 5347 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5348 // 5349 // error 0.0000037995730, which is better than 18 bits 5350 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5351 getF32Constant(DAG, 0x3c5d51ce, dl)); 5352 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5353 getF32Constant(DAG, 0x3e00685a, dl)); 5354 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5355 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5356 getF32Constant(DAG, 0x3efb6798, dl)); 5357 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5358 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5359 getF32Constant(DAG, 0x3f88d192, dl)); 5360 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5361 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5362 getF32Constant(DAG, 0x3fc4316c, dl)); 5363 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5364 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5365 getF32Constant(DAG, 0x3f57ce70, dl)); 5366 } 5367 5368 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5369 } 5370 5371 // No special expansion. 5372 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 5373 } 5374 5375 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5376 /// limited-precision mode. 5377 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5378 const TargetLowering &TLI) { 5379 if (Op.getValueType() == MVT::f32 && 5380 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5381 return getLimitedPrecisionExp2(Op, dl, DAG); 5382 5383 // No special expansion. 5384 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 5385 } 5386 5387 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5388 /// limited-precision mode with x == 10.0f. 5389 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5390 SelectionDAG &DAG, const TargetLowering &TLI) { 5391 bool IsExp10 = false; 5392 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5393 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5394 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5395 APFloat Ten(10.0f); 5396 IsExp10 = LHSC->isExactlyValue(Ten); 5397 } 5398 } 5399 5400 // TODO: What fast-math-flags should be set on the FMUL node? 5401 if (IsExp10) { 5402 // Put the exponent in the right bit position for later addition to the 5403 // final result: 5404 // 5405 // #define LOG2OF10 3.3219281f 5406 // t0 = Op * LOG2OF10; 5407 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5408 getF32Constant(DAG, 0x40549a78, dl)); 5409 return getLimitedPrecisionExp2(t0, dl, DAG); 5410 } 5411 5412 // No special expansion. 5413 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 5414 } 5415 5416 /// ExpandPowI - Expand a llvm.powi intrinsic. 5417 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5418 SelectionDAG &DAG) { 5419 // If RHS is a constant, we can expand this out to a multiplication tree, 5420 // otherwise we end up lowering to a call to __powidf2 (for example). When 5421 // optimizing for size, we only want to do this if the expansion would produce 5422 // a small number of multiplies, otherwise we do the full expansion. 5423 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5424 // Get the exponent as a positive value. 5425 unsigned Val = RHSC->getSExtValue(); 5426 if ((int)Val < 0) Val = -Val; 5427 5428 // powi(x, 0) -> 1.0 5429 if (Val == 0) 5430 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5431 5432 bool OptForSize = DAG.shouldOptForSize(); 5433 if (!OptForSize || 5434 // If optimizing for size, don't insert too many multiplies. 5435 // This inserts up to 5 multiplies. 5436 countPopulation(Val) + Log2_32(Val) < 7) { 5437 // We use the simple binary decomposition method to generate the multiply 5438 // sequence. There are more optimal ways to do this (for example, 5439 // powi(x,15) generates one more multiply than it should), but this has 5440 // the benefit of being both really simple and much better than a libcall. 5441 SDValue Res; // Logically starts equal to 1.0 5442 SDValue CurSquare = LHS; 5443 // TODO: Intrinsics should have fast-math-flags that propagate to these 5444 // nodes. 5445 while (Val) { 5446 if (Val & 1) { 5447 if (Res.getNode()) 5448 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 5449 else 5450 Res = CurSquare; // 1.0*CurSquare. 5451 } 5452 5453 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5454 CurSquare, CurSquare); 5455 Val >>= 1; 5456 } 5457 5458 // If the original was negative, invert the result, producing 1/(x*x*x). 5459 if (RHSC->getSExtValue() < 0) 5460 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5461 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5462 return Res; 5463 } 5464 } 5465 5466 // Otherwise, expand to a libcall. 5467 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5468 } 5469 5470 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5471 SDValue LHS, SDValue RHS, SDValue Scale, 5472 SelectionDAG &DAG, const TargetLowering &TLI) { 5473 EVT VT = LHS.getValueType(); 5474 bool Signed = Opcode == ISD::SDIVFIX; 5475 LLVMContext &Ctx = *DAG.getContext(); 5476 5477 // If the type is legal but the operation isn't, this node might survive all 5478 // the way to operation legalization. If we end up there and we do not have 5479 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5480 // node. 5481 5482 // Coax the legalizer into expanding the node during type legalization instead 5483 // by bumping the size by one bit. This will force it to Promote, enabling the 5484 // early expansion and avoiding the need to expand later. 5485 5486 // We don't have to do this if Scale is 0; that can always be expanded. 5487 5488 // FIXME: We wouldn't have to do this (or any of the early 5489 // expansion/promotion) if it was possible to expand a libcall of an 5490 // illegal type during operation legalization. But it's not, so things 5491 // get a bit hacky. 5492 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5493 if (ScaleInt > 0 && 5494 (TLI.isTypeLegal(VT) || 5495 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5496 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5497 Opcode, VT, ScaleInt); 5498 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5499 EVT PromVT; 5500 if (VT.isScalarInteger()) 5501 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5502 else if (VT.isVector()) { 5503 PromVT = VT.getVectorElementType(); 5504 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5505 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5506 } else 5507 llvm_unreachable("Wrong VT for DIVFIX?"); 5508 if (Signed) { 5509 LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT); 5510 RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT); 5511 } else { 5512 LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT); 5513 RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT); 5514 } 5515 // TODO: Saturation. 5516 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5517 return DAG.getZExtOrTrunc(Res, DL, VT); 5518 } 5519 } 5520 5521 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5522 } 5523 5524 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5525 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5526 static void 5527 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 5528 const SDValue &N) { 5529 switch (N.getOpcode()) { 5530 case ISD::CopyFromReg: { 5531 SDValue Op = N.getOperand(1); 5532 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5533 Op.getValueType().getSizeInBits()); 5534 return; 5535 } 5536 case ISD::BITCAST: 5537 case ISD::AssertZext: 5538 case ISD::AssertSext: 5539 case ISD::TRUNCATE: 5540 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5541 return; 5542 case ISD::BUILD_PAIR: 5543 case ISD::BUILD_VECTOR: 5544 case ISD::CONCAT_VECTORS: 5545 for (SDValue Op : N->op_values()) 5546 getUnderlyingArgRegs(Regs, Op); 5547 return; 5548 default: 5549 return; 5550 } 5551 } 5552 5553 /// If the DbgValueInst is a dbg_value of a function argument, create the 5554 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5555 /// instruction selection, they will be inserted to the entry BB. 5556 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5557 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5558 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 5559 const Argument *Arg = dyn_cast<Argument>(V); 5560 if (!Arg) 5561 return false; 5562 5563 if (!IsDbgDeclare) { 5564 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5565 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5566 // the entry block. 5567 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5568 if (!IsInEntryBlock) 5569 return false; 5570 5571 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5572 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5573 // variable that also is a param. 5574 // 5575 // Although, if we are at the top of the entry block already, we can still 5576 // emit using ArgDbgValue. This might catch some situations when the 5577 // dbg.value refers to an argument that isn't used in the entry block, so 5578 // any CopyToReg node would be optimized out and the only way to express 5579 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5580 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5581 // we should only emit as ArgDbgValue if the Variable is an argument to the 5582 // current function, and the dbg.value intrinsic is found in the entry 5583 // block. 5584 bool VariableIsFunctionInputArg = Variable->isParameter() && 5585 !DL->getInlinedAt(); 5586 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5587 if (!IsInPrologue && !VariableIsFunctionInputArg) 5588 return false; 5589 5590 // Here we assume that a function argument on IR level only can be used to 5591 // describe one input parameter on source level. If we for example have 5592 // source code like this 5593 // 5594 // struct A { long x, y; }; 5595 // void foo(struct A a, long b) { 5596 // ... 5597 // b = a.x; 5598 // ... 5599 // } 5600 // 5601 // and IR like this 5602 // 5603 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5604 // entry: 5605 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5606 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5607 // call void @llvm.dbg.value(metadata i32 %b, "b", 5608 // ... 5609 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5610 // ... 5611 // 5612 // then the last dbg.value is describing a parameter "b" using a value that 5613 // is an argument. But since we already has used %a1 to describe a parameter 5614 // we should not handle that last dbg.value here (that would result in an 5615 // incorrect hoisting of the DBG_VALUE to the function entry). 5616 // Notice that we allow one dbg.value per IR level argument, to accommodate 5617 // for the situation with fragments above. 5618 if (VariableIsFunctionInputArg) { 5619 unsigned ArgNo = Arg->getArgNo(); 5620 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5621 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5622 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5623 return false; 5624 FuncInfo.DescribedArgs.set(ArgNo); 5625 } 5626 } 5627 5628 MachineFunction &MF = DAG.getMachineFunction(); 5629 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5630 5631 Optional<MachineOperand> Op; 5632 // Some arguments' frame index is recorded during argument lowering. 5633 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5634 if (FI != std::numeric_limits<int>::max()) 5635 Op = MachineOperand::CreateFI(FI); 5636 5637 SmallVector<std::pair<unsigned, unsigned>, 8> ArgRegsAndSizes; 5638 if (!Op && N.getNode()) { 5639 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5640 Register Reg; 5641 if (ArgRegsAndSizes.size() == 1) 5642 Reg = ArgRegsAndSizes.front().first; 5643 5644 if (Reg && Reg.isVirtual()) { 5645 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5646 Register PR = RegInfo.getLiveInPhysReg(Reg); 5647 if (PR) 5648 Reg = PR; 5649 } 5650 if (Reg) { 5651 Op = MachineOperand::CreateReg(Reg, false); 5652 } 5653 } 5654 5655 if (!Op && N.getNode()) { 5656 // Check if frame index is available. 5657 SDValue LCandidate = peekThroughBitcasts(N); 5658 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5659 if (FrameIndexSDNode *FINode = 5660 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5661 Op = MachineOperand::CreateFI(FINode->getIndex()); 5662 } 5663 5664 if (!Op) { 5665 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5666 auto splitMultiRegDbgValue 5667 = [&](ArrayRef<std::pair<unsigned, unsigned>> SplitRegs) { 5668 unsigned Offset = 0; 5669 for (auto RegAndSize : SplitRegs) { 5670 // If the expression is already a fragment, the current register 5671 // offset+size might extend beyond the fragment. In this case, only 5672 // the register bits that are inside the fragment are relevant. 5673 int RegFragmentSizeInBits = RegAndSize.second; 5674 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5675 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5676 // The register is entirely outside the expression fragment, 5677 // so is irrelevant for debug info. 5678 if (Offset >= ExprFragmentSizeInBits) 5679 break; 5680 // The register is partially outside the expression fragment, only 5681 // the low bits within the fragment are relevant for debug info. 5682 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5683 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5684 } 5685 } 5686 5687 auto FragmentExpr = DIExpression::createFragmentExpression( 5688 Expr, Offset, RegFragmentSizeInBits); 5689 Offset += RegAndSize.second; 5690 // If a valid fragment expression cannot be created, the variable's 5691 // correct value cannot be determined and so it is set as Undef. 5692 if (!FragmentExpr) { 5693 SDDbgValue *SDV = DAG.getConstantDbgValue( 5694 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5695 DAG.AddDbgValue(SDV, nullptr, false); 5696 continue; 5697 } 5698 assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?"); 5699 FuncInfo.ArgDbgValues.push_back( 5700 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), false, 5701 RegAndSize.first, Variable, *FragmentExpr)); 5702 } 5703 }; 5704 5705 // Check if ValueMap has reg number. 5706 DenseMap<const Value *, unsigned>::const_iterator 5707 VMI = FuncInfo.ValueMap.find(V); 5708 if (VMI != FuncInfo.ValueMap.end()) { 5709 const auto &TLI = DAG.getTargetLoweringInfo(); 5710 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5711 V->getType(), getABIRegCopyCC(V)); 5712 if (RFV.occupiesMultipleRegs()) { 5713 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5714 return true; 5715 } 5716 5717 Op = MachineOperand::CreateReg(VMI->second, false); 5718 } else if (ArgRegsAndSizes.size() > 1) { 5719 // This was split due to the calling convention, and no virtual register 5720 // mapping exists for the value. 5721 splitMultiRegDbgValue(ArgRegsAndSizes); 5722 return true; 5723 } 5724 } 5725 5726 if (!Op) 5727 return false; 5728 5729 assert(Variable->isValidLocationForIntrinsic(DL) && 5730 "Expected inlined-at fields to agree"); 5731 5732 // If the argument arrives in a stack slot, then what the IR thought was a 5733 // normal Value is actually in memory, and we must add a deref to load it. 5734 if (Op->isFI()) { 5735 int FI = Op->getIndex(); 5736 unsigned Size = DAG.getMachineFunction().getFrameInfo().getObjectSize(FI); 5737 if (Expr->isImplicit()) { 5738 SmallVector<uint64_t, 2> Ops = {dwarf::DW_OP_deref_size, Size}; 5739 Expr = DIExpression::prependOpcodes(Expr, Ops); 5740 } else { 5741 Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore); 5742 } 5743 } 5744 5745 // If this location was specified with a dbg.declare, then it and its 5746 // expression calculate the address of the variable. Append a deref to 5747 // force it to be a memory location. 5748 if (IsDbgDeclare) 5749 Expr = DIExpression::append(Expr, {dwarf::DW_OP_deref}); 5750 5751 FuncInfo.ArgDbgValues.push_back( 5752 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), false, 5753 *Op, Variable, Expr)); 5754 5755 return true; 5756 } 5757 5758 /// Return the appropriate SDDbgValue based on N. 5759 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5760 DILocalVariable *Variable, 5761 DIExpression *Expr, 5762 const DebugLoc &dl, 5763 unsigned DbgSDNodeOrder) { 5764 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5765 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5766 // stack slot locations. 5767 // 5768 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5769 // debug values here after optimization: 5770 // 5771 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5772 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5773 // 5774 // Both describe the direct values of their associated variables. 5775 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5776 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5777 } 5778 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5779 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5780 } 5781 5782 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5783 switch (Intrinsic) { 5784 case Intrinsic::smul_fix: 5785 return ISD::SMULFIX; 5786 case Intrinsic::umul_fix: 5787 return ISD::UMULFIX; 5788 case Intrinsic::smul_fix_sat: 5789 return ISD::SMULFIXSAT; 5790 case Intrinsic::umul_fix_sat: 5791 return ISD::UMULFIXSAT; 5792 case Intrinsic::sdiv_fix: 5793 return ISD::SDIVFIX; 5794 case Intrinsic::udiv_fix: 5795 return ISD::UDIVFIX; 5796 default: 5797 llvm_unreachable("Unhandled fixed point intrinsic"); 5798 } 5799 } 5800 5801 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5802 const char *FunctionName) { 5803 assert(FunctionName && "FunctionName must not be nullptr"); 5804 SDValue Callee = DAG.getExternalSymbol( 5805 FunctionName, 5806 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5807 LowerCallTo(&I, Callee, I.isTailCall()); 5808 } 5809 5810 /// Lower the call to the specified intrinsic function. 5811 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5812 unsigned Intrinsic) { 5813 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5814 SDLoc sdl = getCurSDLoc(); 5815 DebugLoc dl = getCurDebugLoc(); 5816 SDValue Res; 5817 5818 switch (Intrinsic) { 5819 default: 5820 // By default, turn this into a target intrinsic node. 5821 visitTargetIntrinsic(I, Intrinsic); 5822 return; 5823 case Intrinsic::vastart: visitVAStart(I); return; 5824 case Intrinsic::vaend: visitVAEnd(I); return; 5825 case Intrinsic::vacopy: visitVACopy(I); return; 5826 case Intrinsic::returnaddress: 5827 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5828 TLI.getPointerTy(DAG.getDataLayout()), 5829 getValue(I.getArgOperand(0)))); 5830 return; 5831 case Intrinsic::addressofreturnaddress: 5832 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5833 TLI.getPointerTy(DAG.getDataLayout()))); 5834 return; 5835 case Intrinsic::sponentry: 5836 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5837 TLI.getFrameIndexTy(DAG.getDataLayout()))); 5838 return; 5839 case Intrinsic::frameaddress: 5840 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5841 TLI.getFrameIndexTy(DAG.getDataLayout()), 5842 getValue(I.getArgOperand(0)))); 5843 return; 5844 case Intrinsic::read_register: { 5845 Value *Reg = I.getArgOperand(0); 5846 SDValue Chain = getRoot(); 5847 SDValue RegName = 5848 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5849 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5850 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5851 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5852 setValue(&I, Res); 5853 DAG.setRoot(Res.getValue(1)); 5854 return; 5855 } 5856 case Intrinsic::write_register: { 5857 Value *Reg = I.getArgOperand(0); 5858 Value *RegValue = I.getArgOperand(1); 5859 SDValue Chain = getRoot(); 5860 SDValue RegName = 5861 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5862 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5863 RegName, getValue(RegValue))); 5864 return; 5865 } 5866 case Intrinsic::memcpy: { 5867 const auto &MCI = cast<MemCpyInst>(I); 5868 SDValue Op1 = getValue(I.getArgOperand(0)); 5869 SDValue Op2 = getValue(I.getArgOperand(1)); 5870 SDValue Op3 = getValue(I.getArgOperand(2)); 5871 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5872 unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1); 5873 unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1); 5874 unsigned Align = MinAlign(DstAlign, SrcAlign); 5875 bool isVol = MCI.isVolatile(); 5876 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5877 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5878 // node. 5879 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5880 SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Align, isVol, 5881 false, isTC, 5882 MachinePointerInfo(I.getArgOperand(0)), 5883 MachinePointerInfo(I.getArgOperand(1))); 5884 updateDAGForMaybeTailCall(MC); 5885 return; 5886 } 5887 case Intrinsic::memset: { 5888 const auto &MSI = cast<MemSetInst>(I); 5889 SDValue Op1 = getValue(I.getArgOperand(0)); 5890 SDValue Op2 = getValue(I.getArgOperand(1)); 5891 SDValue Op3 = getValue(I.getArgOperand(2)); 5892 // @llvm.memset defines 0 and 1 to both mean no alignment. 5893 unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1); 5894 bool isVol = MSI.isVolatile(); 5895 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5896 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5897 SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Align, isVol, 5898 isTC, MachinePointerInfo(I.getArgOperand(0))); 5899 updateDAGForMaybeTailCall(MS); 5900 return; 5901 } 5902 case Intrinsic::memmove: { 5903 const auto &MMI = cast<MemMoveInst>(I); 5904 SDValue Op1 = getValue(I.getArgOperand(0)); 5905 SDValue Op2 = getValue(I.getArgOperand(1)); 5906 SDValue Op3 = getValue(I.getArgOperand(2)); 5907 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5908 unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1); 5909 unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1); 5910 unsigned Align = MinAlign(DstAlign, SrcAlign); 5911 bool isVol = MMI.isVolatile(); 5912 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5913 // FIXME: Support passing different dest/src alignments to the memmove DAG 5914 // node. 5915 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5916 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Align, isVol, 5917 isTC, MachinePointerInfo(I.getArgOperand(0)), 5918 MachinePointerInfo(I.getArgOperand(1))); 5919 updateDAGForMaybeTailCall(MM); 5920 return; 5921 } 5922 case Intrinsic::memcpy_element_unordered_atomic: { 5923 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5924 SDValue Dst = getValue(MI.getRawDest()); 5925 SDValue Src = getValue(MI.getRawSource()); 5926 SDValue Length = getValue(MI.getLength()); 5927 5928 unsigned DstAlign = MI.getDestAlignment(); 5929 unsigned SrcAlign = MI.getSourceAlignment(); 5930 Type *LengthTy = MI.getLength()->getType(); 5931 unsigned ElemSz = MI.getElementSizeInBytes(); 5932 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5933 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5934 SrcAlign, Length, LengthTy, ElemSz, isTC, 5935 MachinePointerInfo(MI.getRawDest()), 5936 MachinePointerInfo(MI.getRawSource())); 5937 updateDAGForMaybeTailCall(MC); 5938 return; 5939 } 5940 case Intrinsic::memmove_element_unordered_atomic: { 5941 auto &MI = cast<AtomicMemMoveInst>(I); 5942 SDValue Dst = getValue(MI.getRawDest()); 5943 SDValue Src = getValue(MI.getRawSource()); 5944 SDValue Length = getValue(MI.getLength()); 5945 5946 unsigned DstAlign = MI.getDestAlignment(); 5947 unsigned SrcAlign = MI.getSourceAlignment(); 5948 Type *LengthTy = MI.getLength()->getType(); 5949 unsigned ElemSz = MI.getElementSizeInBytes(); 5950 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5951 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5952 SrcAlign, Length, LengthTy, ElemSz, isTC, 5953 MachinePointerInfo(MI.getRawDest()), 5954 MachinePointerInfo(MI.getRawSource())); 5955 updateDAGForMaybeTailCall(MC); 5956 return; 5957 } 5958 case Intrinsic::memset_element_unordered_atomic: { 5959 auto &MI = cast<AtomicMemSetInst>(I); 5960 SDValue Dst = getValue(MI.getRawDest()); 5961 SDValue Val = getValue(MI.getValue()); 5962 SDValue Length = getValue(MI.getLength()); 5963 5964 unsigned DstAlign = MI.getDestAlignment(); 5965 Type *LengthTy = MI.getLength()->getType(); 5966 unsigned ElemSz = MI.getElementSizeInBytes(); 5967 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5968 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5969 LengthTy, ElemSz, isTC, 5970 MachinePointerInfo(MI.getRawDest())); 5971 updateDAGForMaybeTailCall(MC); 5972 return; 5973 } 5974 case Intrinsic::dbg_addr: 5975 case Intrinsic::dbg_declare: { 5976 const auto &DI = cast<DbgVariableIntrinsic>(I); 5977 DILocalVariable *Variable = DI.getVariable(); 5978 DIExpression *Expression = DI.getExpression(); 5979 dropDanglingDebugInfo(Variable, Expression); 5980 assert(Variable && "Missing variable"); 5981 5982 // Check if address has undef value. 5983 const Value *Address = DI.getVariableLocation(); 5984 if (!Address || isa<UndefValue>(Address) || 5985 (Address->use_empty() && !isa<Argument>(Address))) { 5986 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5987 return; 5988 } 5989 5990 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5991 5992 // Check if this variable can be described by a frame index, typically 5993 // either as a static alloca or a byval parameter. 5994 int FI = std::numeric_limits<int>::max(); 5995 if (const auto *AI = 5996 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5997 if (AI->isStaticAlloca()) { 5998 auto I = FuncInfo.StaticAllocaMap.find(AI); 5999 if (I != FuncInfo.StaticAllocaMap.end()) 6000 FI = I->second; 6001 } 6002 } else if (const auto *Arg = dyn_cast<Argument>( 6003 Address->stripInBoundsConstantOffsets())) { 6004 FI = FuncInfo.getArgumentFrameIndex(Arg); 6005 } 6006 6007 // llvm.dbg.addr is control dependent and always generates indirect 6008 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 6009 // the MachineFunction variable table. 6010 if (FI != std::numeric_limits<int>::max()) { 6011 if (Intrinsic == Intrinsic::dbg_addr) { 6012 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 6013 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder); 6014 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 6015 } 6016 return; 6017 } 6018 6019 SDValue &N = NodeMap[Address]; 6020 if (!N.getNode() && isa<Argument>(Address)) 6021 // Check unused arguments map. 6022 N = UnusedArgNodeMap[Address]; 6023 SDDbgValue *SDV; 6024 if (N.getNode()) { 6025 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 6026 Address = BCI->getOperand(0); 6027 // Parameters are handled specially. 6028 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 6029 if (isParameter && FINode) { 6030 // Byval parameter. We have a frame index at this point. 6031 SDV = 6032 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 6033 /*IsIndirect*/ true, dl, SDNodeOrder); 6034 } else if (isa<Argument>(Address)) { 6035 // Address is an argument, so try to emit its dbg value using 6036 // virtual register info from the FuncInfo.ValueMap. 6037 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 6038 return; 6039 } else { 6040 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 6041 true, dl, SDNodeOrder); 6042 } 6043 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 6044 } else { 6045 // If Address is an argument then try to emit its dbg value using 6046 // virtual register info from the FuncInfo.ValueMap. 6047 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 6048 N)) { 6049 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 6050 } 6051 } 6052 return; 6053 } 6054 case Intrinsic::dbg_label: { 6055 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6056 DILabel *Label = DI.getLabel(); 6057 assert(Label && "Missing label"); 6058 6059 SDDbgLabel *SDV; 6060 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6061 DAG.AddDbgLabel(SDV); 6062 return; 6063 } 6064 case Intrinsic::dbg_value: { 6065 const DbgValueInst &DI = cast<DbgValueInst>(I); 6066 assert(DI.getVariable() && "Missing variable"); 6067 6068 DILocalVariable *Variable = DI.getVariable(); 6069 DIExpression *Expression = DI.getExpression(); 6070 dropDanglingDebugInfo(Variable, Expression); 6071 const Value *V = DI.getValue(); 6072 if (!V) 6073 return; 6074 6075 if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(), 6076 SDNodeOrder)) 6077 return; 6078 6079 // TODO: Dangling debug info will eventually either be resolved or produce 6080 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 6081 // between the original dbg.value location and its resolved DBG_VALUE, which 6082 // we should ideally fill with an extra Undef DBG_VALUE. 6083 6084 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder); 6085 return; 6086 } 6087 6088 case Intrinsic::eh_typeid_for: { 6089 // Find the type id for the given typeinfo. 6090 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6091 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6092 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6093 setValue(&I, Res); 6094 return; 6095 } 6096 6097 case Intrinsic::eh_return_i32: 6098 case Intrinsic::eh_return_i64: 6099 DAG.getMachineFunction().setCallsEHReturn(true); 6100 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6101 MVT::Other, 6102 getControlRoot(), 6103 getValue(I.getArgOperand(0)), 6104 getValue(I.getArgOperand(1)))); 6105 return; 6106 case Intrinsic::eh_unwind_init: 6107 DAG.getMachineFunction().setCallsUnwindInit(true); 6108 return; 6109 case Intrinsic::eh_dwarf_cfa: 6110 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6111 TLI.getPointerTy(DAG.getDataLayout()), 6112 getValue(I.getArgOperand(0)))); 6113 return; 6114 case Intrinsic::eh_sjlj_callsite: { 6115 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6116 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 6117 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 6118 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6119 6120 MMI.setCurrentCallSite(CI->getZExtValue()); 6121 return; 6122 } 6123 case Intrinsic::eh_sjlj_functioncontext: { 6124 // Get and store the index of the function context. 6125 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6126 AllocaInst *FnCtx = 6127 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6128 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6129 MFI.setFunctionContextIndex(FI); 6130 return; 6131 } 6132 case Intrinsic::eh_sjlj_setjmp: { 6133 SDValue Ops[2]; 6134 Ops[0] = getRoot(); 6135 Ops[1] = getValue(I.getArgOperand(0)); 6136 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6137 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6138 setValue(&I, Op.getValue(0)); 6139 DAG.setRoot(Op.getValue(1)); 6140 return; 6141 } 6142 case Intrinsic::eh_sjlj_longjmp: 6143 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6144 getRoot(), getValue(I.getArgOperand(0)))); 6145 return; 6146 case Intrinsic::eh_sjlj_setup_dispatch: 6147 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6148 getRoot())); 6149 return; 6150 case Intrinsic::masked_gather: 6151 visitMaskedGather(I); 6152 return; 6153 case Intrinsic::masked_load: 6154 visitMaskedLoad(I); 6155 return; 6156 case Intrinsic::masked_scatter: 6157 visitMaskedScatter(I); 6158 return; 6159 case Intrinsic::masked_store: 6160 visitMaskedStore(I); 6161 return; 6162 case Intrinsic::masked_expandload: 6163 visitMaskedLoad(I, true /* IsExpanding */); 6164 return; 6165 case Intrinsic::masked_compressstore: 6166 visitMaskedStore(I, true /* IsCompressing */); 6167 return; 6168 case Intrinsic::powi: 6169 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6170 getValue(I.getArgOperand(1)), DAG)); 6171 return; 6172 case Intrinsic::log: 6173 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6174 return; 6175 case Intrinsic::log2: 6176 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6177 return; 6178 case Intrinsic::log10: 6179 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6180 return; 6181 case Intrinsic::exp: 6182 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6183 return; 6184 case Intrinsic::exp2: 6185 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6186 return; 6187 case Intrinsic::pow: 6188 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6189 getValue(I.getArgOperand(1)), DAG, TLI)); 6190 return; 6191 case Intrinsic::sqrt: 6192 case Intrinsic::fabs: 6193 case Intrinsic::sin: 6194 case Intrinsic::cos: 6195 case Intrinsic::floor: 6196 case Intrinsic::ceil: 6197 case Intrinsic::trunc: 6198 case Intrinsic::rint: 6199 case Intrinsic::nearbyint: 6200 case Intrinsic::round: 6201 case Intrinsic::canonicalize: { 6202 unsigned Opcode; 6203 switch (Intrinsic) { 6204 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6205 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6206 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6207 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6208 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6209 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6210 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6211 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6212 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6213 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6214 case Intrinsic::round: Opcode = ISD::FROUND; break; 6215 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6216 } 6217 6218 setValue(&I, DAG.getNode(Opcode, sdl, 6219 getValue(I.getArgOperand(0)).getValueType(), 6220 getValue(I.getArgOperand(0)))); 6221 return; 6222 } 6223 case Intrinsic::lround: 6224 case Intrinsic::llround: 6225 case Intrinsic::lrint: 6226 case Intrinsic::llrint: { 6227 unsigned Opcode; 6228 switch (Intrinsic) { 6229 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6230 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6231 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6232 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6233 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6234 } 6235 6236 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6237 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6238 getValue(I.getArgOperand(0)))); 6239 return; 6240 } 6241 case Intrinsic::minnum: 6242 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6243 getValue(I.getArgOperand(0)).getValueType(), 6244 getValue(I.getArgOperand(0)), 6245 getValue(I.getArgOperand(1)))); 6246 return; 6247 case Intrinsic::maxnum: 6248 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6249 getValue(I.getArgOperand(0)).getValueType(), 6250 getValue(I.getArgOperand(0)), 6251 getValue(I.getArgOperand(1)))); 6252 return; 6253 case Intrinsic::minimum: 6254 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6255 getValue(I.getArgOperand(0)).getValueType(), 6256 getValue(I.getArgOperand(0)), 6257 getValue(I.getArgOperand(1)))); 6258 return; 6259 case Intrinsic::maximum: 6260 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6261 getValue(I.getArgOperand(0)).getValueType(), 6262 getValue(I.getArgOperand(0)), 6263 getValue(I.getArgOperand(1)))); 6264 return; 6265 case Intrinsic::copysign: 6266 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6267 getValue(I.getArgOperand(0)).getValueType(), 6268 getValue(I.getArgOperand(0)), 6269 getValue(I.getArgOperand(1)))); 6270 return; 6271 case Intrinsic::fma: 6272 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6273 getValue(I.getArgOperand(0)).getValueType(), 6274 getValue(I.getArgOperand(0)), 6275 getValue(I.getArgOperand(1)), 6276 getValue(I.getArgOperand(2)))); 6277 return; 6278 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 6279 case Intrinsic::INTRINSIC: 6280 #include "llvm/IR/ConstrainedOps.def" 6281 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6282 return; 6283 case Intrinsic::fmuladd: { 6284 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6285 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6286 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6287 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6288 getValue(I.getArgOperand(0)).getValueType(), 6289 getValue(I.getArgOperand(0)), 6290 getValue(I.getArgOperand(1)), 6291 getValue(I.getArgOperand(2)))); 6292 } else { 6293 // TODO: Intrinsic calls should have fast-math-flags. 6294 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 6295 getValue(I.getArgOperand(0)).getValueType(), 6296 getValue(I.getArgOperand(0)), 6297 getValue(I.getArgOperand(1))); 6298 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6299 getValue(I.getArgOperand(0)).getValueType(), 6300 Mul, 6301 getValue(I.getArgOperand(2))); 6302 setValue(&I, Add); 6303 } 6304 return; 6305 } 6306 case Intrinsic::convert_to_fp16: 6307 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6308 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6309 getValue(I.getArgOperand(0)), 6310 DAG.getTargetConstant(0, sdl, 6311 MVT::i32)))); 6312 return; 6313 case Intrinsic::convert_from_fp16: 6314 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6315 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6316 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6317 getValue(I.getArgOperand(0))))); 6318 return; 6319 case Intrinsic::pcmarker: { 6320 SDValue Tmp = getValue(I.getArgOperand(0)); 6321 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6322 return; 6323 } 6324 case Intrinsic::readcyclecounter: { 6325 SDValue Op = getRoot(); 6326 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6327 DAG.getVTList(MVT::i64, MVT::Other), Op); 6328 setValue(&I, Res); 6329 DAG.setRoot(Res.getValue(1)); 6330 return; 6331 } 6332 case Intrinsic::bitreverse: 6333 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6334 getValue(I.getArgOperand(0)).getValueType(), 6335 getValue(I.getArgOperand(0)))); 6336 return; 6337 case Intrinsic::bswap: 6338 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6339 getValue(I.getArgOperand(0)).getValueType(), 6340 getValue(I.getArgOperand(0)))); 6341 return; 6342 case Intrinsic::cttz: { 6343 SDValue Arg = getValue(I.getArgOperand(0)); 6344 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6345 EVT Ty = Arg.getValueType(); 6346 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6347 sdl, Ty, Arg)); 6348 return; 6349 } 6350 case Intrinsic::ctlz: { 6351 SDValue Arg = getValue(I.getArgOperand(0)); 6352 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6353 EVT Ty = Arg.getValueType(); 6354 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6355 sdl, Ty, Arg)); 6356 return; 6357 } 6358 case Intrinsic::ctpop: { 6359 SDValue Arg = getValue(I.getArgOperand(0)); 6360 EVT Ty = Arg.getValueType(); 6361 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6362 return; 6363 } 6364 case Intrinsic::fshl: 6365 case Intrinsic::fshr: { 6366 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6367 SDValue X = getValue(I.getArgOperand(0)); 6368 SDValue Y = getValue(I.getArgOperand(1)); 6369 SDValue Z = getValue(I.getArgOperand(2)); 6370 EVT VT = X.getValueType(); 6371 SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT); 6372 SDValue Zero = DAG.getConstant(0, sdl, VT); 6373 SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC); 6374 6375 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6376 if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) { 6377 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6378 return; 6379 } 6380 6381 // When X == Y, this is rotate. If the data type has a power-of-2 size, we 6382 // avoid the select that is necessary in the general case to filter out 6383 // the 0-shift possibility that leads to UB. 6384 if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) { 6385 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6386 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6387 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6388 return; 6389 } 6390 6391 // Some targets only rotate one way. Try the opposite direction. 6392 RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL; 6393 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6394 // Negate the shift amount because it is safe to ignore the high bits. 6395 SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6396 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt)); 6397 return; 6398 } 6399 6400 // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW)) 6401 // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW)) 6402 SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6403 SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC); 6404 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt); 6405 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt); 6406 setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY)); 6407 return; 6408 } 6409 6410 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 6411 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 6412 SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt); 6413 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt); 6414 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6415 SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY); 6416 6417 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 6418 // and that is undefined. We must compare and select to avoid UB. 6419 EVT CCVT = MVT::i1; 6420 if (VT.isVector()) 6421 CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements()); 6422 6423 // For fshl, 0-shift returns the 1st arg (X). 6424 // For fshr, 0-shift returns the 2nd arg (Y). 6425 SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ); 6426 setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or)); 6427 return; 6428 } 6429 case Intrinsic::sadd_sat: { 6430 SDValue Op1 = getValue(I.getArgOperand(0)); 6431 SDValue Op2 = getValue(I.getArgOperand(1)); 6432 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6433 return; 6434 } 6435 case Intrinsic::uadd_sat: { 6436 SDValue Op1 = getValue(I.getArgOperand(0)); 6437 SDValue Op2 = getValue(I.getArgOperand(1)); 6438 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6439 return; 6440 } 6441 case Intrinsic::ssub_sat: { 6442 SDValue Op1 = getValue(I.getArgOperand(0)); 6443 SDValue Op2 = getValue(I.getArgOperand(1)); 6444 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6445 return; 6446 } 6447 case Intrinsic::usub_sat: { 6448 SDValue Op1 = getValue(I.getArgOperand(0)); 6449 SDValue Op2 = getValue(I.getArgOperand(1)); 6450 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6451 return; 6452 } 6453 case Intrinsic::smul_fix: 6454 case Intrinsic::umul_fix: 6455 case Intrinsic::smul_fix_sat: 6456 case Intrinsic::umul_fix_sat: { 6457 SDValue Op1 = getValue(I.getArgOperand(0)); 6458 SDValue Op2 = getValue(I.getArgOperand(1)); 6459 SDValue Op3 = getValue(I.getArgOperand(2)); 6460 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6461 Op1.getValueType(), Op1, Op2, Op3)); 6462 return; 6463 } 6464 case Intrinsic::sdiv_fix: 6465 case Intrinsic::udiv_fix: { 6466 SDValue Op1 = getValue(I.getArgOperand(0)); 6467 SDValue Op2 = getValue(I.getArgOperand(1)); 6468 SDValue Op3 = getValue(I.getArgOperand(2)); 6469 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6470 Op1, Op2, Op3, DAG, TLI)); 6471 return; 6472 } 6473 case Intrinsic::stacksave: { 6474 SDValue Op = getRoot(); 6475 Res = DAG.getNode( 6476 ISD::STACKSAVE, sdl, 6477 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 6478 setValue(&I, Res); 6479 DAG.setRoot(Res.getValue(1)); 6480 return; 6481 } 6482 case Intrinsic::stackrestore: 6483 Res = getValue(I.getArgOperand(0)); 6484 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6485 return; 6486 case Intrinsic::get_dynamic_area_offset: { 6487 SDValue Op = getRoot(); 6488 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6489 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6490 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6491 // target. 6492 if (PtrTy.getSizeInBits() < ResTy.getSizeInBits()) 6493 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6494 " intrinsic!"); 6495 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6496 Op); 6497 DAG.setRoot(Op); 6498 setValue(&I, Res); 6499 return; 6500 } 6501 case Intrinsic::stackguard: { 6502 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6503 MachineFunction &MF = DAG.getMachineFunction(); 6504 const Module &M = *MF.getFunction().getParent(); 6505 SDValue Chain = getRoot(); 6506 if (TLI.useLoadStackGuardNode()) { 6507 Res = getLoadStackGuard(DAG, sdl, Chain); 6508 } else { 6509 const Value *Global = TLI.getSDagStackGuard(M); 6510 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 6511 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6512 MachinePointerInfo(Global, 0), Align, 6513 MachineMemOperand::MOVolatile); 6514 } 6515 if (TLI.useStackGuardXorFP()) 6516 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6517 DAG.setRoot(Chain); 6518 setValue(&I, Res); 6519 return; 6520 } 6521 case Intrinsic::stackprotector: { 6522 // Emit code into the DAG to store the stack guard onto the stack. 6523 MachineFunction &MF = DAG.getMachineFunction(); 6524 MachineFrameInfo &MFI = MF.getFrameInfo(); 6525 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6526 SDValue Src, Chain = getRoot(); 6527 6528 if (TLI.useLoadStackGuardNode()) 6529 Src = getLoadStackGuard(DAG, sdl, Chain); 6530 else 6531 Src = getValue(I.getArgOperand(0)); // The guard's value. 6532 6533 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6534 6535 int FI = FuncInfo.StaticAllocaMap[Slot]; 6536 MFI.setStackProtectorIndex(FI); 6537 6538 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6539 6540 // Store the stack protector onto the stack. 6541 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 6542 DAG.getMachineFunction(), FI), 6543 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 6544 setValue(&I, Res); 6545 DAG.setRoot(Res); 6546 return; 6547 } 6548 case Intrinsic::objectsize: 6549 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6550 6551 case Intrinsic::is_constant: 6552 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6553 6554 case Intrinsic::annotation: 6555 case Intrinsic::ptr_annotation: 6556 case Intrinsic::launder_invariant_group: 6557 case Intrinsic::strip_invariant_group: 6558 // Drop the intrinsic, but forward the value 6559 setValue(&I, getValue(I.getOperand(0))); 6560 return; 6561 case Intrinsic::assume: 6562 case Intrinsic::var_annotation: 6563 case Intrinsic::sideeffect: 6564 // Discard annotate attributes, assumptions, and artificial side-effects. 6565 return; 6566 6567 case Intrinsic::codeview_annotation: { 6568 // Emit a label associated with this metadata. 6569 MachineFunction &MF = DAG.getMachineFunction(); 6570 MCSymbol *Label = 6571 MF.getMMI().getContext().createTempSymbol("annotation", true); 6572 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6573 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6574 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6575 DAG.setRoot(Res); 6576 return; 6577 } 6578 6579 case Intrinsic::init_trampoline: { 6580 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6581 6582 SDValue Ops[6]; 6583 Ops[0] = getRoot(); 6584 Ops[1] = getValue(I.getArgOperand(0)); 6585 Ops[2] = getValue(I.getArgOperand(1)); 6586 Ops[3] = getValue(I.getArgOperand(2)); 6587 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6588 Ops[5] = DAG.getSrcValue(F); 6589 6590 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6591 6592 DAG.setRoot(Res); 6593 return; 6594 } 6595 case Intrinsic::adjust_trampoline: 6596 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6597 TLI.getPointerTy(DAG.getDataLayout()), 6598 getValue(I.getArgOperand(0)))); 6599 return; 6600 case Intrinsic::gcroot: { 6601 assert(DAG.getMachineFunction().getFunction().hasGC() && 6602 "only valid in functions with gc specified, enforced by Verifier"); 6603 assert(GFI && "implied by previous"); 6604 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6605 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6606 6607 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6608 GFI->addStackRoot(FI->getIndex(), TypeMap); 6609 return; 6610 } 6611 case Intrinsic::gcread: 6612 case Intrinsic::gcwrite: 6613 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6614 case Intrinsic::flt_rounds: 6615 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 6616 return; 6617 6618 case Intrinsic::expect: 6619 // Just replace __builtin_expect(exp, c) with EXP. 6620 setValue(&I, getValue(I.getArgOperand(0))); 6621 return; 6622 6623 case Intrinsic::debugtrap: 6624 case Intrinsic::trap: { 6625 StringRef TrapFuncName = 6626 I.getAttributes() 6627 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 6628 .getValueAsString(); 6629 if (TrapFuncName.empty()) { 6630 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 6631 ISD::TRAP : ISD::DEBUGTRAP; 6632 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 6633 return; 6634 } 6635 TargetLowering::ArgListTy Args; 6636 6637 TargetLowering::CallLoweringInfo CLI(DAG); 6638 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6639 CallingConv::C, I.getType(), 6640 DAG.getExternalSymbol(TrapFuncName.data(), 6641 TLI.getPointerTy(DAG.getDataLayout())), 6642 std::move(Args)); 6643 6644 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6645 DAG.setRoot(Result.second); 6646 return; 6647 } 6648 6649 case Intrinsic::uadd_with_overflow: 6650 case Intrinsic::sadd_with_overflow: 6651 case Intrinsic::usub_with_overflow: 6652 case Intrinsic::ssub_with_overflow: 6653 case Intrinsic::umul_with_overflow: 6654 case Intrinsic::smul_with_overflow: { 6655 ISD::NodeType Op; 6656 switch (Intrinsic) { 6657 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6658 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6659 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6660 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6661 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6662 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6663 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6664 } 6665 SDValue Op1 = getValue(I.getArgOperand(0)); 6666 SDValue Op2 = getValue(I.getArgOperand(1)); 6667 6668 EVT ResultVT = Op1.getValueType(); 6669 EVT OverflowVT = MVT::i1; 6670 if (ResultVT.isVector()) 6671 OverflowVT = EVT::getVectorVT( 6672 *Context, OverflowVT, ResultVT.getVectorNumElements()); 6673 6674 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6675 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6676 return; 6677 } 6678 case Intrinsic::prefetch: { 6679 SDValue Ops[5]; 6680 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6681 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6682 Ops[0] = DAG.getRoot(); 6683 Ops[1] = getValue(I.getArgOperand(0)); 6684 Ops[2] = getValue(I.getArgOperand(1)); 6685 Ops[3] = getValue(I.getArgOperand(2)); 6686 Ops[4] = getValue(I.getArgOperand(3)); 6687 SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 6688 DAG.getVTList(MVT::Other), Ops, 6689 EVT::getIntegerVT(*Context, 8), 6690 MachinePointerInfo(I.getArgOperand(0)), 6691 0, /* align */ 6692 Flags); 6693 6694 // Chain the prefetch in parallell with any pending loads, to stay out of 6695 // the way of later optimizations. 6696 PendingLoads.push_back(Result); 6697 Result = getRoot(); 6698 DAG.setRoot(Result); 6699 return; 6700 } 6701 case Intrinsic::lifetime_start: 6702 case Intrinsic::lifetime_end: { 6703 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6704 // Stack coloring is not enabled in O0, discard region information. 6705 if (TM.getOptLevel() == CodeGenOpt::None) 6706 return; 6707 6708 const int64_t ObjectSize = 6709 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6710 Value *const ObjectPtr = I.getArgOperand(1); 6711 SmallVector<const Value *, 4> Allocas; 6712 GetUnderlyingObjects(ObjectPtr, Allocas, *DL); 6713 6714 for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(), 6715 E = Allocas.end(); Object != E; ++Object) { 6716 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 6717 6718 // Could not find an Alloca. 6719 if (!LifetimeObject) 6720 continue; 6721 6722 // First check that the Alloca is static, otherwise it won't have a 6723 // valid frame index. 6724 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6725 if (SI == FuncInfo.StaticAllocaMap.end()) 6726 return; 6727 6728 const int FrameIndex = SI->second; 6729 int64_t Offset; 6730 if (GetPointerBaseWithConstantOffset( 6731 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6732 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6733 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6734 Offset); 6735 DAG.setRoot(Res); 6736 } 6737 return; 6738 } 6739 case Intrinsic::invariant_start: 6740 // Discard region information. 6741 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6742 return; 6743 case Intrinsic::invariant_end: 6744 // Discard region information. 6745 return; 6746 case Intrinsic::clear_cache: 6747 /// FunctionName may be null. 6748 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6749 lowerCallToExternalSymbol(I, FunctionName); 6750 return; 6751 case Intrinsic::donothing: 6752 // ignore 6753 return; 6754 case Intrinsic::experimental_stackmap: 6755 visitStackmap(I); 6756 return; 6757 case Intrinsic::experimental_patchpoint_void: 6758 case Intrinsic::experimental_patchpoint_i64: 6759 visitPatchpoint(&I); 6760 return; 6761 case Intrinsic::experimental_gc_statepoint: 6762 LowerStatepoint(ImmutableStatepoint(&I)); 6763 return; 6764 case Intrinsic::experimental_gc_result: 6765 visitGCResult(cast<GCResultInst>(I)); 6766 return; 6767 case Intrinsic::experimental_gc_relocate: 6768 visitGCRelocate(cast<GCRelocateInst>(I)); 6769 return; 6770 case Intrinsic::instrprof_increment: 6771 llvm_unreachable("instrprof failed to lower an increment"); 6772 case Intrinsic::instrprof_value_profile: 6773 llvm_unreachable("instrprof failed to lower a value profiling call"); 6774 case Intrinsic::localescape: { 6775 MachineFunction &MF = DAG.getMachineFunction(); 6776 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6777 6778 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6779 // is the same on all targets. 6780 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 6781 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6782 if (isa<ConstantPointerNull>(Arg)) 6783 continue; // Skip null pointers. They represent a hole in index space. 6784 AllocaInst *Slot = cast<AllocaInst>(Arg); 6785 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6786 "can only escape static allocas"); 6787 int FI = FuncInfo.StaticAllocaMap[Slot]; 6788 MCSymbol *FrameAllocSym = 6789 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6790 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6791 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6792 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6793 .addSym(FrameAllocSym) 6794 .addFrameIndex(FI); 6795 } 6796 6797 return; 6798 } 6799 6800 case Intrinsic::localrecover: { 6801 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6802 MachineFunction &MF = DAG.getMachineFunction(); 6803 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 6804 6805 // Get the symbol that defines the frame offset. 6806 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6807 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6808 unsigned IdxVal = 6809 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6810 MCSymbol *FrameAllocSym = 6811 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6812 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6813 6814 // Create a MCSymbol for the label to avoid any target lowering 6815 // that would make this PC relative. 6816 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6817 SDValue OffsetVal = 6818 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6819 6820 // Add the offset to the FP. 6821 Value *FP = I.getArgOperand(1); 6822 SDValue FPVal = getValue(FP); 6823 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 6824 setValue(&I, Add); 6825 6826 return; 6827 } 6828 6829 case Intrinsic::eh_exceptionpointer: 6830 case Intrinsic::eh_exceptioncode: { 6831 // Get the exception pointer vreg, copy from it, and resize it to fit. 6832 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6833 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6834 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6835 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6836 SDValue N = 6837 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6838 if (Intrinsic == Intrinsic::eh_exceptioncode) 6839 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6840 setValue(&I, N); 6841 return; 6842 } 6843 case Intrinsic::xray_customevent: { 6844 // Here we want to make sure that the intrinsic behaves as if it has a 6845 // specific calling convention, and only for x86_64. 6846 // FIXME: Support other platforms later. 6847 const auto &Triple = DAG.getTarget().getTargetTriple(); 6848 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6849 return; 6850 6851 SDLoc DL = getCurSDLoc(); 6852 SmallVector<SDValue, 8> Ops; 6853 6854 // We want to say that we always want the arguments in registers. 6855 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6856 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6857 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6858 SDValue Chain = getRoot(); 6859 Ops.push_back(LogEntryVal); 6860 Ops.push_back(StrSizeVal); 6861 Ops.push_back(Chain); 6862 6863 // We need to enforce the calling convention for the callsite, so that 6864 // argument ordering is enforced correctly, and that register allocation can 6865 // see that some registers may be assumed clobbered and have to preserve 6866 // them across calls to the intrinsic. 6867 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6868 DL, NodeTys, Ops); 6869 SDValue patchableNode = SDValue(MN, 0); 6870 DAG.setRoot(patchableNode); 6871 setValue(&I, patchableNode); 6872 return; 6873 } 6874 case Intrinsic::xray_typedevent: { 6875 // Here we want to make sure that the intrinsic behaves as if it has a 6876 // specific calling convention, and only for x86_64. 6877 // FIXME: Support other platforms later. 6878 const auto &Triple = DAG.getTarget().getTargetTriple(); 6879 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6880 return; 6881 6882 SDLoc DL = getCurSDLoc(); 6883 SmallVector<SDValue, 8> Ops; 6884 6885 // We want to say that we always want the arguments in registers. 6886 // It's unclear to me how manipulating the selection DAG here forces callers 6887 // to provide arguments in registers instead of on the stack. 6888 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6889 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6890 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6891 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6892 SDValue Chain = getRoot(); 6893 Ops.push_back(LogTypeId); 6894 Ops.push_back(LogEntryVal); 6895 Ops.push_back(StrSizeVal); 6896 Ops.push_back(Chain); 6897 6898 // We need to enforce the calling convention for the callsite, so that 6899 // argument ordering is enforced correctly, and that register allocation can 6900 // see that some registers may be assumed clobbered and have to preserve 6901 // them across calls to the intrinsic. 6902 MachineSDNode *MN = DAG.getMachineNode( 6903 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6904 SDValue patchableNode = SDValue(MN, 0); 6905 DAG.setRoot(patchableNode); 6906 setValue(&I, patchableNode); 6907 return; 6908 } 6909 case Intrinsic::experimental_deoptimize: 6910 LowerDeoptimizeCall(&I); 6911 return; 6912 6913 case Intrinsic::experimental_vector_reduce_v2_fadd: 6914 case Intrinsic::experimental_vector_reduce_v2_fmul: 6915 case Intrinsic::experimental_vector_reduce_add: 6916 case Intrinsic::experimental_vector_reduce_mul: 6917 case Intrinsic::experimental_vector_reduce_and: 6918 case Intrinsic::experimental_vector_reduce_or: 6919 case Intrinsic::experimental_vector_reduce_xor: 6920 case Intrinsic::experimental_vector_reduce_smax: 6921 case Intrinsic::experimental_vector_reduce_smin: 6922 case Intrinsic::experimental_vector_reduce_umax: 6923 case Intrinsic::experimental_vector_reduce_umin: 6924 case Intrinsic::experimental_vector_reduce_fmax: 6925 case Intrinsic::experimental_vector_reduce_fmin: 6926 visitVectorReduce(I, Intrinsic); 6927 return; 6928 6929 case Intrinsic::icall_branch_funnel: { 6930 SmallVector<SDValue, 16> Ops; 6931 Ops.push_back(getValue(I.getArgOperand(0))); 6932 6933 int64_t Offset; 6934 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6935 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6936 if (!Base) 6937 report_fatal_error( 6938 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6939 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6940 6941 struct BranchFunnelTarget { 6942 int64_t Offset; 6943 SDValue Target; 6944 }; 6945 SmallVector<BranchFunnelTarget, 8> Targets; 6946 6947 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6948 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6949 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6950 if (ElemBase != Base) 6951 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6952 "to the same GlobalValue"); 6953 6954 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6955 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6956 if (!GA) 6957 report_fatal_error( 6958 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6959 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6960 GA->getGlobal(), getCurSDLoc(), 6961 Val.getValueType(), GA->getOffset())}); 6962 } 6963 llvm::sort(Targets, 6964 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6965 return T1.Offset < T2.Offset; 6966 }); 6967 6968 for (auto &T : Targets) { 6969 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6970 Ops.push_back(T.Target); 6971 } 6972 6973 Ops.push_back(DAG.getRoot()); // Chain 6974 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6975 getCurSDLoc(), MVT::Other, Ops), 6976 0); 6977 DAG.setRoot(N); 6978 setValue(&I, N); 6979 HasTailCall = true; 6980 return; 6981 } 6982 6983 case Intrinsic::wasm_landingpad_index: 6984 // Information this intrinsic contained has been transferred to 6985 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 6986 // delete it now. 6987 return; 6988 6989 case Intrinsic::aarch64_settag: 6990 case Intrinsic::aarch64_settag_zero: { 6991 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6992 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 6993 SDValue Val = TSI.EmitTargetCodeForSetTag( 6994 DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)), 6995 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 6996 ZeroMemory); 6997 DAG.setRoot(Val); 6998 setValue(&I, Val); 6999 return; 7000 } 7001 case Intrinsic::ptrmask: { 7002 SDValue Ptr = getValue(I.getOperand(0)); 7003 SDValue Const = getValue(I.getOperand(1)); 7004 7005 EVT DestVT = 7006 EVT(DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 7007 7008 setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), DestVT, Ptr, 7009 DAG.getZExtOrTrunc(Const, getCurSDLoc(), DestVT))); 7010 return; 7011 } 7012 } 7013 } 7014 7015 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 7016 const ConstrainedFPIntrinsic &FPI) { 7017 SDLoc sdl = getCurSDLoc(); 7018 7019 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7020 SmallVector<EVT, 4> ValueVTs; 7021 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 7022 ValueVTs.push_back(MVT::Other); // Out chain 7023 7024 // We do not need to serialize constrained FP intrinsics against 7025 // each other or against (nonvolatile) loads, so they can be 7026 // chained like loads. 7027 SDValue Chain = DAG.getRoot(); 7028 SmallVector<SDValue, 4> Opers; 7029 Opers.push_back(Chain); 7030 if (FPI.isUnaryOp()) { 7031 Opers.push_back(getValue(FPI.getArgOperand(0))); 7032 } else if (FPI.isTernaryOp()) { 7033 Opers.push_back(getValue(FPI.getArgOperand(0))); 7034 Opers.push_back(getValue(FPI.getArgOperand(1))); 7035 Opers.push_back(getValue(FPI.getArgOperand(2))); 7036 } else { 7037 Opers.push_back(getValue(FPI.getArgOperand(0))); 7038 Opers.push_back(getValue(FPI.getArgOperand(1))); 7039 } 7040 7041 unsigned Opcode; 7042 switch (FPI.getIntrinsicID()) { 7043 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7044 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7045 case Intrinsic::INTRINSIC: \ 7046 Opcode = ISD::STRICT_##DAGN; \ 7047 break; 7048 #include "llvm/IR/ConstrainedOps.def" 7049 } 7050 7051 // A few strict DAG nodes carry additional operands that are not 7052 // set up by the default code above. 7053 switch (Opcode) { 7054 default: break; 7055 case ISD::STRICT_FP_ROUND: 7056 Opers.push_back( 7057 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 7058 break; 7059 case ISD::STRICT_FSETCC: 7060 case ISD::STRICT_FSETCCS: { 7061 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 7062 Opers.push_back(DAG.getCondCode(getFCmpCondCode(FPCmp->getPredicate()))); 7063 break; 7064 } 7065 } 7066 7067 SDVTList VTs = DAG.getVTList(ValueVTs); 7068 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers); 7069 7070 assert(Result.getNode()->getNumValues() == 2); 7071 7072 // Push node to the appropriate list so that future instructions can be 7073 // chained up correctly. 7074 SDValue OutChain = Result.getValue(1); 7075 switch (FPI.getExceptionBehavior().getValue()) { 7076 case fp::ExceptionBehavior::ebIgnore: 7077 // The only reason why ebIgnore nodes still need to be chained is that 7078 // they might depend on the current rounding mode, and therefore must 7079 // not be moved across instruction that may change that mode. 7080 LLVM_FALLTHROUGH; 7081 case fp::ExceptionBehavior::ebMayTrap: 7082 // These must not be moved across calls or instructions that may change 7083 // floating-point exception masks. 7084 PendingConstrainedFP.push_back(OutChain); 7085 break; 7086 case fp::ExceptionBehavior::ebStrict: 7087 // These must not be moved across calls or instructions that may change 7088 // floating-point exception masks or read floating-point exception flags. 7089 // In addition, they cannot be optimized out even if unused. 7090 PendingConstrainedFPStrict.push_back(OutChain); 7091 break; 7092 } 7093 7094 SDValue FPResult = Result.getValue(0); 7095 setValue(&FPI, FPResult); 7096 } 7097 7098 std::pair<SDValue, SDValue> 7099 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 7100 const BasicBlock *EHPadBB) { 7101 MachineFunction &MF = DAG.getMachineFunction(); 7102 MachineModuleInfo &MMI = MF.getMMI(); 7103 MCSymbol *BeginLabel = nullptr; 7104 7105 if (EHPadBB) { 7106 // Insert a label before the invoke call to mark the try range. This can be 7107 // used to detect deletion of the invoke via the MachineModuleInfo. 7108 BeginLabel = MMI.getContext().createTempSymbol(); 7109 7110 // For SjLj, keep track of which landing pads go with which invokes 7111 // so as to maintain the ordering of pads in the LSDA. 7112 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 7113 if (CallSiteIndex) { 7114 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 7115 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 7116 7117 // Now that the call site is handled, stop tracking it. 7118 MMI.setCurrentCallSite(0); 7119 } 7120 7121 // Both PendingLoads and PendingExports must be flushed here; 7122 // this call might not return. 7123 (void)getRoot(); 7124 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 7125 7126 CLI.setChain(getRoot()); 7127 } 7128 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7129 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7130 7131 assert((CLI.IsTailCall || Result.second.getNode()) && 7132 "Non-null chain expected with non-tail call!"); 7133 assert((Result.second.getNode() || !Result.first.getNode()) && 7134 "Null value expected with tail call!"); 7135 7136 if (!Result.second.getNode()) { 7137 // As a special case, a null chain means that a tail call has been emitted 7138 // and the DAG root is already updated. 7139 HasTailCall = true; 7140 7141 // Since there's no actual continuation from this block, nothing can be 7142 // relying on us setting vregs for them. 7143 PendingExports.clear(); 7144 } else { 7145 DAG.setRoot(Result.second); 7146 } 7147 7148 if (EHPadBB) { 7149 // Insert a label at the end of the invoke call to mark the try range. This 7150 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7151 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7152 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 7153 7154 // Inform MachineModuleInfo of range. 7155 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7156 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7157 // actually use outlined funclets and their LSDA info style. 7158 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7159 assert(CLI.CS); 7160 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 7161 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()), 7162 BeginLabel, EndLabel); 7163 } else if (!isScopedEHPersonality(Pers)) { 7164 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7165 } 7166 } 7167 7168 return Result; 7169 } 7170 7171 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 7172 bool isTailCall, 7173 const BasicBlock *EHPadBB) { 7174 auto &DL = DAG.getDataLayout(); 7175 FunctionType *FTy = CS.getFunctionType(); 7176 Type *RetTy = CS.getType(); 7177 7178 TargetLowering::ArgListTy Args; 7179 Args.reserve(CS.arg_size()); 7180 7181 const Value *SwiftErrorVal = nullptr; 7182 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7183 7184 if (isTailCall) { 7185 // Avoid emitting tail calls in functions with the disable-tail-calls 7186 // attribute. 7187 auto *Caller = CS.getInstruction()->getParent()->getParent(); 7188 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 7189 "true") 7190 isTailCall = false; 7191 7192 // We can't tail call inside a function with a swifterror argument. Lowering 7193 // does not support this yet. It would have to move into the swifterror 7194 // register before the call. 7195 if (TLI.supportSwiftError() && 7196 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7197 isTailCall = false; 7198 } 7199 7200 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 7201 i != e; ++i) { 7202 TargetLowering::ArgListEntry Entry; 7203 const Value *V = *i; 7204 7205 // Skip empty types 7206 if (V->getType()->isEmptyTy()) 7207 continue; 7208 7209 SDValue ArgNode = getValue(V); 7210 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7211 7212 Entry.setAttributes(&CS, i - CS.arg_begin()); 7213 7214 // Use swifterror virtual register as input to the call. 7215 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7216 SwiftErrorVal = V; 7217 // We find the virtual register for the actual swifterror argument. 7218 // Instead of using the Value, we use the virtual register instead. 7219 Entry.Node = DAG.getRegister( 7220 SwiftError.getOrCreateVRegUseAt(CS.getInstruction(), FuncInfo.MBB, V), 7221 EVT(TLI.getPointerTy(DL))); 7222 } 7223 7224 Args.push_back(Entry); 7225 7226 // If we have an explicit sret argument that is an Instruction, (i.e., it 7227 // might point to function-local memory), we can't meaningfully tail-call. 7228 if (Entry.IsSRet && isa<Instruction>(V)) 7229 isTailCall = false; 7230 } 7231 7232 // If call site has a cfguardtarget operand bundle, create and add an 7233 // additional ArgListEntry. 7234 if (auto Bundle = CS.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 7235 TargetLowering::ArgListEntry Entry; 7236 Value *V = Bundle->Inputs[0]; 7237 SDValue ArgNode = getValue(V); 7238 Entry.Node = ArgNode; 7239 Entry.Ty = V->getType(); 7240 Entry.IsCFGuardTarget = true; 7241 Args.push_back(Entry); 7242 } 7243 7244 // Check if target-independent constraints permit a tail call here. 7245 // Target-dependent constraints are checked within TLI->LowerCallTo. 7246 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 7247 isTailCall = false; 7248 7249 // Disable tail calls if there is an swifterror argument. Targets have not 7250 // been updated to support tail calls. 7251 if (TLI.supportSwiftError() && SwiftErrorVal) 7252 isTailCall = false; 7253 7254 TargetLowering::CallLoweringInfo CLI(DAG); 7255 CLI.setDebugLoc(getCurSDLoc()) 7256 .setChain(getRoot()) 7257 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 7258 .setTailCall(isTailCall) 7259 .setConvergent(CS.isConvergent()); 7260 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7261 7262 if (Result.first.getNode()) { 7263 const Instruction *Inst = CS.getInstruction(); 7264 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 7265 setValue(Inst, Result.first); 7266 } 7267 7268 // The last element of CLI.InVals has the SDValue for swifterror return. 7269 // Here we copy it to a virtual register and update SwiftErrorMap for 7270 // book-keeping. 7271 if (SwiftErrorVal && TLI.supportSwiftError()) { 7272 // Get the last element of InVals. 7273 SDValue Src = CLI.InVals.back(); 7274 Register VReg = SwiftError.getOrCreateVRegDefAt( 7275 CS.getInstruction(), FuncInfo.MBB, SwiftErrorVal); 7276 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7277 DAG.setRoot(CopyNode); 7278 } 7279 } 7280 7281 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7282 SelectionDAGBuilder &Builder) { 7283 // Check to see if this load can be trivially constant folded, e.g. if the 7284 // input is from a string literal. 7285 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7286 // Cast pointer to the type we really want to load. 7287 Type *LoadTy = 7288 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7289 if (LoadVT.isVector()) 7290 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7291 7292 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7293 PointerType::getUnqual(LoadTy)); 7294 7295 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 7296 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 7297 return Builder.getValue(LoadCst); 7298 } 7299 7300 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7301 // still constant memory, the input chain can be the entry node. 7302 SDValue Root; 7303 bool ConstantMemory = false; 7304 7305 // Do not serialize (non-volatile) loads of constant memory with anything. 7306 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7307 Root = Builder.DAG.getEntryNode(); 7308 ConstantMemory = true; 7309 } else { 7310 // Do not serialize non-volatile loads against each other. 7311 Root = Builder.DAG.getRoot(); 7312 } 7313 7314 SDValue Ptr = Builder.getValue(PtrVal); 7315 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 7316 Ptr, MachinePointerInfo(PtrVal), 7317 /* Alignment = */ 1); 7318 7319 if (!ConstantMemory) 7320 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7321 return LoadVal; 7322 } 7323 7324 /// Record the value for an instruction that produces an integer result, 7325 /// converting the type where necessary. 7326 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7327 SDValue Value, 7328 bool IsSigned) { 7329 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7330 I.getType(), true); 7331 if (IsSigned) 7332 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7333 else 7334 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7335 setValue(&I, Value); 7336 } 7337 7338 /// See if we can lower a memcmp call into an optimized form. If so, return 7339 /// true and lower it. Otherwise return false, and it will be lowered like a 7340 /// normal call. 7341 /// The caller already checked that \p I calls the appropriate LibFunc with a 7342 /// correct prototype. 7343 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 7344 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7345 const Value *Size = I.getArgOperand(2); 7346 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 7347 if (CSize && CSize->getZExtValue() == 0) { 7348 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7349 I.getType(), true); 7350 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7351 return true; 7352 } 7353 7354 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7355 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7356 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7357 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7358 if (Res.first.getNode()) { 7359 processIntegerCallValue(I, Res.first, true); 7360 PendingLoads.push_back(Res.second); 7361 return true; 7362 } 7363 7364 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7365 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7366 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7367 return false; 7368 7369 // If the target has a fast compare for the given size, it will return a 7370 // preferred load type for that size. Require that the load VT is legal and 7371 // that the target supports unaligned loads of that type. Otherwise, return 7372 // INVALID. 7373 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7374 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7375 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7376 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7377 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7378 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7379 // TODO: Check alignment of src and dest ptrs. 7380 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7381 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7382 if (!TLI.isTypeLegal(LVT) || 7383 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7384 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7385 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7386 } 7387 7388 return LVT; 7389 }; 7390 7391 // This turns into unaligned loads. We only do this if the target natively 7392 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7393 // we'll only produce a small number of byte loads. 7394 MVT LoadVT; 7395 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7396 switch (NumBitsToCompare) { 7397 default: 7398 return false; 7399 case 16: 7400 LoadVT = MVT::i16; 7401 break; 7402 case 32: 7403 LoadVT = MVT::i32; 7404 break; 7405 case 64: 7406 case 128: 7407 case 256: 7408 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7409 break; 7410 } 7411 7412 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7413 return false; 7414 7415 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7416 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7417 7418 // Bitcast to a wide integer type if the loads are vectors. 7419 if (LoadVT.isVector()) { 7420 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7421 LoadL = DAG.getBitcast(CmpVT, LoadL); 7422 LoadR = DAG.getBitcast(CmpVT, LoadR); 7423 } 7424 7425 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7426 processIntegerCallValue(I, Cmp, false); 7427 return true; 7428 } 7429 7430 /// See if we can lower a memchr call into an optimized form. If so, return 7431 /// true and lower it. Otherwise return false, and it will be lowered like a 7432 /// normal call. 7433 /// The caller already checked that \p I calls the appropriate LibFunc with a 7434 /// correct prototype. 7435 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 7436 const Value *Src = I.getArgOperand(0); 7437 const Value *Char = I.getArgOperand(1); 7438 const Value *Length = I.getArgOperand(2); 7439 7440 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7441 std::pair<SDValue, SDValue> Res = 7442 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 7443 getValue(Src), getValue(Char), getValue(Length), 7444 MachinePointerInfo(Src)); 7445 if (Res.first.getNode()) { 7446 setValue(&I, Res.first); 7447 PendingLoads.push_back(Res.second); 7448 return true; 7449 } 7450 7451 return false; 7452 } 7453 7454 /// See if we can lower a mempcpy call into an optimized form. If so, return 7455 /// true and lower it. Otherwise return false, and it will be lowered like a 7456 /// normal call. 7457 /// The caller already checked that \p I calls the appropriate LibFunc with a 7458 /// correct prototype. 7459 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 7460 SDValue Dst = getValue(I.getArgOperand(0)); 7461 SDValue Src = getValue(I.getArgOperand(1)); 7462 SDValue Size = getValue(I.getArgOperand(2)); 7463 7464 unsigned DstAlign = DAG.InferPtrAlignment(Dst); 7465 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 7466 unsigned Align = std::min(DstAlign, SrcAlign); 7467 if (Align == 0) // Alignment of one or both could not be inferred. 7468 Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved. 7469 7470 bool isVol = false; 7471 SDLoc sdl = getCurSDLoc(); 7472 7473 // In the mempcpy context we need to pass in a false value for isTailCall 7474 // because the return pointer needs to be adjusted by the size of 7475 // the copied memory. 7476 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 7477 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Align, isVol, 7478 false, /*isTailCall=*/false, 7479 MachinePointerInfo(I.getArgOperand(0)), 7480 MachinePointerInfo(I.getArgOperand(1))); 7481 assert(MC.getNode() != nullptr && 7482 "** memcpy should not be lowered as TailCall in mempcpy context **"); 7483 DAG.setRoot(MC); 7484 7485 // Check if Size needs to be truncated or extended. 7486 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 7487 7488 // Adjust return pointer to point just past the last dst byte. 7489 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 7490 Dst, Size); 7491 setValue(&I, DstPlusSize); 7492 return true; 7493 } 7494 7495 /// See if we can lower a strcpy call into an optimized form. If so, return 7496 /// true and lower it, otherwise return false and it will be lowered like a 7497 /// normal call. 7498 /// The caller already checked that \p I calls the appropriate LibFunc with a 7499 /// correct prototype. 7500 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 7501 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7502 7503 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7504 std::pair<SDValue, SDValue> Res = 7505 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 7506 getValue(Arg0), getValue(Arg1), 7507 MachinePointerInfo(Arg0), 7508 MachinePointerInfo(Arg1), isStpcpy); 7509 if (Res.first.getNode()) { 7510 setValue(&I, Res.first); 7511 DAG.setRoot(Res.second); 7512 return true; 7513 } 7514 7515 return false; 7516 } 7517 7518 /// See if we can lower a strcmp call into an optimized form. If so, return 7519 /// true and lower it, otherwise return false and it will be lowered like a 7520 /// normal call. 7521 /// The caller already checked that \p I calls the appropriate LibFunc with a 7522 /// correct prototype. 7523 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 7524 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7525 7526 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7527 std::pair<SDValue, SDValue> Res = 7528 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 7529 getValue(Arg0), getValue(Arg1), 7530 MachinePointerInfo(Arg0), 7531 MachinePointerInfo(Arg1)); 7532 if (Res.first.getNode()) { 7533 processIntegerCallValue(I, Res.first, true); 7534 PendingLoads.push_back(Res.second); 7535 return true; 7536 } 7537 7538 return false; 7539 } 7540 7541 /// See if we can lower a strlen call into an optimized form. If so, return 7542 /// true and lower it, otherwise return false and it will be lowered like a 7543 /// normal call. 7544 /// The caller already checked that \p I calls the appropriate LibFunc with a 7545 /// correct prototype. 7546 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 7547 const Value *Arg0 = I.getArgOperand(0); 7548 7549 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7550 std::pair<SDValue, SDValue> Res = 7551 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 7552 getValue(Arg0), MachinePointerInfo(Arg0)); 7553 if (Res.first.getNode()) { 7554 processIntegerCallValue(I, Res.first, false); 7555 PendingLoads.push_back(Res.second); 7556 return true; 7557 } 7558 7559 return false; 7560 } 7561 7562 /// See if we can lower a strnlen call into an optimized form. If so, return 7563 /// true and lower it, otherwise return false and it will be lowered like a 7564 /// normal call. 7565 /// The caller already checked that \p I calls the appropriate LibFunc with a 7566 /// correct prototype. 7567 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 7568 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7569 7570 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7571 std::pair<SDValue, SDValue> Res = 7572 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 7573 getValue(Arg0), getValue(Arg1), 7574 MachinePointerInfo(Arg0)); 7575 if (Res.first.getNode()) { 7576 processIntegerCallValue(I, Res.first, false); 7577 PendingLoads.push_back(Res.second); 7578 return true; 7579 } 7580 7581 return false; 7582 } 7583 7584 /// See if we can lower a unary floating-point operation into an SDNode with 7585 /// the specified Opcode. If so, return true and lower it, otherwise return 7586 /// false and it will be lowered like a normal call. 7587 /// The caller already checked that \p I calls the appropriate LibFunc with a 7588 /// correct prototype. 7589 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 7590 unsigned Opcode) { 7591 // We already checked this call's prototype; verify it doesn't modify errno. 7592 if (!I.onlyReadsMemory()) 7593 return false; 7594 7595 SDValue Tmp = getValue(I.getArgOperand(0)); 7596 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 7597 return true; 7598 } 7599 7600 /// See if we can lower a binary floating-point operation into an SDNode with 7601 /// the specified Opcode. If so, return true and lower it. Otherwise return 7602 /// false, and it will be lowered like a normal call. 7603 /// The caller already checked that \p I calls the appropriate LibFunc with a 7604 /// correct prototype. 7605 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 7606 unsigned Opcode) { 7607 // We already checked this call's prototype; verify it doesn't modify errno. 7608 if (!I.onlyReadsMemory()) 7609 return false; 7610 7611 SDValue Tmp0 = getValue(I.getArgOperand(0)); 7612 SDValue Tmp1 = getValue(I.getArgOperand(1)); 7613 EVT VT = Tmp0.getValueType(); 7614 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 7615 return true; 7616 } 7617 7618 void SelectionDAGBuilder::visitCall(const CallInst &I) { 7619 // Handle inline assembly differently. 7620 if (isa<InlineAsm>(I.getCalledValue())) { 7621 visitInlineAsm(&I); 7622 return; 7623 } 7624 7625 if (Function *F = I.getCalledFunction()) { 7626 if (F->isDeclaration()) { 7627 // Is this an LLVM intrinsic or a target-specific intrinsic? 7628 unsigned IID = F->getIntrinsicID(); 7629 if (!IID) 7630 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 7631 IID = II->getIntrinsicID(F); 7632 7633 if (IID) { 7634 visitIntrinsicCall(I, IID); 7635 return; 7636 } 7637 } 7638 7639 // Check for well-known libc/libm calls. If the function is internal, it 7640 // can't be a library call. Don't do the check if marked as nobuiltin for 7641 // some reason or the call site requires strict floating point semantics. 7642 LibFunc Func; 7643 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 7644 F->hasName() && LibInfo->getLibFunc(*F, Func) && 7645 LibInfo->hasOptimizedCodeGen(Func)) { 7646 switch (Func) { 7647 default: break; 7648 case LibFunc_copysign: 7649 case LibFunc_copysignf: 7650 case LibFunc_copysignl: 7651 // We already checked this call's prototype; verify it doesn't modify 7652 // errno. 7653 if (I.onlyReadsMemory()) { 7654 SDValue LHS = getValue(I.getArgOperand(0)); 7655 SDValue RHS = getValue(I.getArgOperand(1)); 7656 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 7657 LHS.getValueType(), LHS, RHS)); 7658 return; 7659 } 7660 break; 7661 case LibFunc_fabs: 7662 case LibFunc_fabsf: 7663 case LibFunc_fabsl: 7664 if (visitUnaryFloatCall(I, ISD::FABS)) 7665 return; 7666 break; 7667 case LibFunc_fmin: 7668 case LibFunc_fminf: 7669 case LibFunc_fminl: 7670 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 7671 return; 7672 break; 7673 case LibFunc_fmax: 7674 case LibFunc_fmaxf: 7675 case LibFunc_fmaxl: 7676 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 7677 return; 7678 break; 7679 case LibFunc_sin: 7680 case LibFunc_sinf: 7681 case LibFunc_sinl: 7682 if (visitUnaryFloatCall(I, ISD::FSIN)) 7683 return; 7684 break; 7685 case LibFunc_cos: 7686 case LibFunc_cosf: 7687 case LibFunc_cosl: 7688 if (visitUnaryFloatCall(I, ISD::FCOS)) 7689 return; 7690 break; 7691 case LibFunc_sqrt: 7692 case LibFunc_sqrtf: 7693 case LibFunc_sqrtl: 7694 case LibFunc_sqrt_finite: 7695 case LibFunc_sqrtf_finite: 7696 case LibFunc_sqrtl_finite: 7697 if (visitUnaryFloatCall(I, ISD::FSQRT)) 7698 return; 7699 break; 7700 case LibFunc_floor: 7701 case LibFunc_floorf: 7702 case LibFunc_floorl: 7703 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 7704 return; 7705 break; 7706 case LibFunc_nearbyint: 7707 case LibFunc_nearbyintf: 7708 case LibFunc_nearbyintl: 7709 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 7710 return; 7711 break; 7712 case LibFunc_ceil: 7713 case LibFunc_ceilf: 7714 case LibFunc_ceill: 7715 if (visitUnaryFloatCall(I, ISD::FCEIL)) 7716 return; 7717 break; 7718 case LibFunc_rint: 7719 case LibFunc_rintf: 7720 case LibFunc_rintl: 7721 if (visitUnaryFloatCall(I, ISD::FRINT)) 7722 return; 7723 break; 7724 case LibFunc_round: 7725 case LibFunc_roundf: 7726 case LibFunc_roundl: 7727 if (visitUnaryFloatCall(I, ISD::FROUND)) 7728 return; 7729 break; 7730 case LibFunc_trunc: 7731 case LibFunc_truncf: 7732 case LibFunc_truncl: 7733 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 7734 return; 7735 break; 7736 case LibFunc_log2: 7737 case LibFunc_log2f: 7738 case LibFunc_log2l: 7739 if (visitUnaryFloatCall(I, ISD::FLOG2)) 7740 return; 7741 break; 7742 case LibFunc_exp2: 7743 case LibFunc_exp2f: 7744 case LibFunc_exp2l: 7745 if (visitUnaryFloatCall(I, ISD::FEXP2)) 7746 return; 7747 break; 7748 case LibFunc_memcmp: 7749 if (visitMemCmpCall(I)) 7750 return; 7751 break; 7752 case LibFunc_mempcpy: 7753 if (visitMemPCpyCall(I)) 7754 return; 7755 break; 7756 case LibFunc_memchr: 7757 if (visitMemChrCall(I)) 7758 return; 7759 break; 7760 case LibFunc_strcpy: 7761 if (visitStrCpyCall(I, false)) 7762 return; 7763 break; 7764 case LibFunc_stpcpy: 7765 if (visitStrCpyCall(I, true)) 7766 return; 7767 break; 7768 case LibFunc_strcmp: 7769 if (visitStrCmpCall(I)) 7770 return; 7771 break; 7772 case LibFunc_strlen: 7773 if (visitStrLenCall(I)) 7774 return; 7775 break; 7776 case LibFunc_strnlen: 7777 if (visitStrNLenCall(I)) 7778 return; 7779 break; 7780 } 7781 } 7782 } 7783 7784 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 7785 // have to do anything here to lower funclet bundles. 7786 // CFGuardTarget bundles are lowered in LowerCallTo. 7787 assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt, 7788 LLVMContext::OB_funclet, 7789 LLVMContext::OB_cfguardtarget}) && 7790 "Cannot lower calls with arbitrary operand bundles!"); 7791 7792 SDValue Callee = getValue(I.getCalledValue()); 7793 7794 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 7795 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 7796 else 7797 // Check if we can potentially perform a tail call. More detailed checking 7798 // is be done within LowerCallTo, after more information about the call is 7799 // known. 7800 LowerCallTo(&I, Callee, I.isTailCall()); 7801 } 7802 7803 namespace { 7804 7805 /// AsmOperandInfo - This contains information for each constraint that we are 7806 /// lowering. 7807 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 7808 public: 7809 /// CallOperand - If this is the result output operand or a clobber 7810 /// this is null, otherwise it is the incoming operand to the CallInst. 7811 /// This gets modified as the asm is processed. 7812 SDValue CallOperand; 7813 7814 /// AssignedRegs - If this is a register or register class operand, this 7815 /// contains the set of register corresponding to the operand. 7816 RegsForValue AssignedRegs; 7817 7818 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 7819 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 7820 } 7821 7822 /// Whether or not this operand accesses memory 7823 bool hasMemory(const TargetLowering &TLI) const { 7824 // Indirect operand accesses access memory. 7825 if (isIndirect) 7826 return true; 7827 7828 for (const auto &Code : Codes) 7829 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 7830 return true; 7831 7832 return false; 7833 } 7834 7835 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 7836 /// corresponds to. If there is no Value* for this operand, it returns 7837 /// MVT::Other. 7838 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 7839 const DataLayout &DL) const { 7840 if (!CallOperandVal) return MVT::Other; 7841 7842 if (isa<BasicBlock>(CallOperandVal)) 7843 return TLI.getPointerTy(DL); 7844 7845 llvm::Type *OpTy = CallOperandVal->getType(); 7846 7847 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 7848 // If this is an indirect operand, the operand is a pointer to the 7849 // accessed type. 7850 if (isIndirect) { 7851 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 7852 if (!PtrTy) 7853 report_fatal_error("Indirect operand for inline asm not a pointer!"); 7854 OpTy = PtrTy->getElementType(); 7855 } 7856 7857 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 7858 if (StructType *STy = dyn_cast<StructType>(OpTy)) 7859 if (STy->getNumElements() == 1) 7860 OpTy = STy->getElementType(0); 7861 7862 // If OpTy is not a single value, it may be a struct/union that we 7863 // can tile with integers. 7864 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7865 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7866 switch (BitSize) { 7867 default: break; 7868 case 1: 7869 case 8: 7870 case 16: 7871 case 32: 7872 case 64: 7873 case 128: 7874 OpTy = IntegerType::get(Context, BitSize); 7875 break; 7876 } 7877 } 7878 7879 return TLI.getValueType(DL, OpTy, true); 7880 } 7881 }; 7882 7883 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>; 7884 7885 } // end anonymous namespace 7886 7887 /// Make sure that the output operand \p OpInfo and its corresponding input 7888 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7889 /// out). 7890 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7891 SDISelAsmOperandInfo &MatchingOpInfo, 7892 SelectionDAG &DAG) { 7893 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7894 return; 7895 7896 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7897 const auto &TLI = DAG.getTargetLoweringInfo(); 7898 7899 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7900 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7901 OpInfo.ConstraintVT); 7902 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7903 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7904 MatchingOpInfo.ConstraintVT); 7905 if ((OpInfo.ConstraintVT.isInteger() != 7906 MatchingOpInfo.ConstraintVT.isInteger()) || 7907 (MatchRC.second != InputRC.second)) { 7908 // FIXME: error out in a more elegant fashion 7909 report_fatal_error("Unsupported asm: input constraint" 7910 " with a matching output constraint of" 7911 " incompatible type!"); 7912 } 7913 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 7914 } 7915 7916 /// Get a direct memory input to behave well as an indirect operand. 7917 /// This may introduce stores, hence the need for a \p Chain. 7918 /// \return The (possibly updated) chain. 7919 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 7920 SDISelAsmOperandInfo &OpInfo, 7921 SelectionDAG &DAG) { 7922 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7923 7924 // If we don't have an indirect input, put it in the constpool if we can, 7925 // otherwise spill it to a stack slot. 7926 // TODO: This isn't quite right. We need to handle these according to 7927 // the addressing mode that the constraint wants. Also, this may take 7928 // an additional register for the computation and we don't want that 7929 // either. 7930 7931 // If the operand is a float, integer, or vector constant, spill to a 7932 // constant pool entry to get its address. 7933 const Value *OpVal = OpInfo.CallOperandVal; 7934 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 7935 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 7936 OpInfo.CallOperand = DAG.getConstantPool( 7937 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 7938 return Chain; 7939 } 7940 7941 // Otherwise, create a stack slot and emit a store to it before the asm. 7942 Type *Ty = OpVal->getType(); 7943 auto &DL = DAG.getDataLayout(); 7944 uint64_t TySize = DL.getTypeAllocSize(Ty); 7945 unsigned Align = DL.getPrefTypeAlignment(Ty); 7946 MachineFunction &MF = DAG.getMachineFunction(); 7947 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7948 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 7949 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 7950 MachinePointerInfo::getFixedStack(MF, SSFI), 7951 TLI.getMemValueType(DL, Ty)); 7952 OpInfo.CallOperand = StackSlot; 7953 7954 return Chain; 7955 } 7956 7957 /// GetRegistersForValue - Assign registers (virtual or physical) for the 7958 /// specified operand. We prefer to assign virtual registers, to allow the 7959 /// register allocator to handle the assignment process. However, if the asm 7960 /// uses features that we can't model on machineinstrs, we have SDISel do the 7961 /// allocation. This produces generally horrible, but correct, code. 7962 /// 7963 /// OpInfo describes the operand 7964 /// RefOpInfo describes the matching operand if any, the operand otherwise 7965 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 7966 SDISelAsmOperandInfo &OpInfo, 7967 SDISelAsmOperandInfo &RefOpInfo) { 7968 LLVMContext &Context = *DAG.getContext(); 7969 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7970 7971 MachineFunction &MF = DAG.getMachineFunction(); 7972 SmallVector<unsigned, 4> Regs; 7973 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7974 7975 // No work to do for memory operations. 7976 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 7977 return; 7978 7979 // If this is a constraint for a single physreg, or a constraint for a 7980 // register class, find it. 7981 unsigned AssignedReg; 7982 const TargetRegisterClass *RC; 7983 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 7984 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 7985 // RC is unset only on failure. Return immediately. 7986 if (!RC) 7987 return; 7988 7989 // Get the actual register value type. This is important, because the user 7990 // may have asked for (e.g.) the AX register in i32 type. We need to 7991 // remember that AX is actually i16 to get the right extension. 7992 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 7993 7994 if (OpInfo.ConstraintVT != MVT::Other) { 7995 // If this is an FP operand in an integer register (or visa versa), or more 7996 // generally if the operand value disagrees with the register class we plan 7997 // to stick it in, fix the operand type. 7998 // 7999 // If this is an input value, the bitcast to the new type is done now. 8000 // Bitcast for output value is done at the end of visitInlineAsm(). 8001 if ((OpInfo.Type == InlineAsm::isOutput || 8002 OpInfo.Type == InlineAsm::isInput) && 8003 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 8004 // Try to convert to the first EVT that the reg class contains. If the 8005 // types are identical size, use a bitcast to convert (e.g. two differing 8006 // vector types). Note: output bitcast is done at the end of 8007 // visitInlineAsm(). 8008 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 8009 // Exclude indirect inputs while they are unsupported because the code 8010 // to perform the load is missing and thus OpInfo.CallOperand still 8011 // refers to the input address rather than the pointed-to value. 8012 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 8013 OpInfo.CallOperand = 8014 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 8015 OpInfo.ConstraintVT = RegVT; 8016 // If the operand is an FP value and we want it in integer registers, 8017 // use the corresponding integer type. This turns an f64 value into 8018 // i64, which can be passed with two i32 values on a 32-bit machine. 8019 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 8020 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 8021 if (OpInfo.Type == InlineAsm::isInput) 8022 OpInfo.CallOperand = 8023 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 8024 OpInfo.ConstraintVT = VT; 8025 } 8026 } 8027 } 8028 8029 // No need to allocate a matching input constraint since the constraint it's 8030 // matching to has already been allocated. 8031 if (OpInfo.isMatchingInputConstraint()) 8032 return; 8033 8034 EVT ValueVT = OpInfo.ConstraintVT; 8035 if (OpInfo.ConstraintVT == MVT::Other) 8036 ValueVT = RegVT; 8037 8038 // Initialize NumRegs. 8039 unsigned NumRegs = 1; 8040 if (OpInfo.ConstraintVT != MVT::Other) 8041 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 8042 8043 // If this is a constraint for a specific physical register, like {r17}, 8044 // assign it now. 8045 8046 // If this associated to a specific register, initialize iterator to correct 8047 // place. If virtual, make sure we have enough registers 8048 8049 // Initialize iterator if necessary 8050 TargetRegisterClass::iterator I = RC->begin(); 8051 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8052 8053 // Do not check for single registers. 8054 if (AssignedReg) { 8055 for (; *I != AssignedReg; ++I) 8056 assert(I != RC->end() && "AssignedReg should be member of RC"); 8057 } 8058 8059 for (; NumRegs; --NumRegs, ++I) { 8060 assert(I != RC->end() && "Ran out of registers to allocate!"); 8061 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 8062 Regs.push_back(R); 8063 } 8064 8065 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 8066 } 8067 8068 static unsigned 8069 findMatchingInlineAsmOperand(unsigned OperandNo, 8070 const std::vector<SDValue> &AsmNodeOperands) { 8071 // Scan until we find the definition we already emitted of this operand. 8072 unsigned CurOp = InlineAsm::Op_FirstOperand; 8073 for (; OperandNo; --OperandNo) { 8074 // Advance to the next operand. 8075 unsigned OpFlag = 8076 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8077 assert((InlineAsm::isRegDefKind(OpFlag) || 8078 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 8079 InlineAsm::isMemKind(OpFlag)) && 8080 "Skipped past definitions?"); 8081 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 8082 } 8083 return CurOp; 8084 } 8085 8086 namespace { 8087 8088 class ExtraFlags { 8089 unsigned Flags = 0; 8090 8091 public: 8092 explicit ExtraFlags(ImmutableCallSite CS) { 8093 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 8094 if (IA->hasSideEffects()) 8095 Flags |= InlineAsm::Extra_HasSideEffects; 8096 if (IA->isAlignStack()) 8097 Flags |= InlineAsm::Extra_IsAlignStack; 8098 if (CS.isConvergent()) 8099 Flags |= InlineAsm::Extra_IsConvergent; 8100 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 8101 } 8102 8103 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 8104 // Ideally, we would only check against memory constraints. However, the 8105 // meaning of an Other constraint can be target-specific and we can't easily 8106 // reason about it. Therefore, be conservative and set MayLoad/MayStore 8107 // for Other constraints as well. 8108 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8109 OpInfo.ConstraintType == TargetLowering::C_Other) { 8110 if (OpInfo.Type == InlineAsm::isInput) 8111 Flags |= InlineAsm::Extra_MayLoad; 8112 else if (OpInfo.Type == InlineAsm::isOutput) 8113 Flags |= InlineAsm::Extra_MayStore; 8114 else if (OpInfo.Type == InlineAsm::isClobber) 8115 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 8116 } 8117 } 8118 8119 unsigned get() const { return Flags; } 8120 }; 8121 8122 } // end anonymous namespace 8123 8124 /// visitInlineAsm - Handle a call to an InlineAsm object. 8125 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 8126 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 8127 8128 /// ConstraintOperands - Information about all of the constraints. 8129 SDISelAsmOperandInfoVector ConstraintOperands; 8130 8131 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8132 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 8133 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 8134 8135 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 8136 // AsmDialect, MayLoad, MayStore). 8137 bool HasSideEffect = IA->hasSideEffects(); 8138 ExtraFlags ExtraInfo(CS); 8139 8140 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 8141 unsigned ResNo = 0; // ResNo - The result number of the next output. 8142 for (auto &T : TargetConstraints) { 8143 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 8144 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8145 8146 // Compute the value type for each operand. 8147 if (OpInfo.Type == InlineAsm::isInput || 8148 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 8149 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 8150 8151 // Process the call argument. BasicBlocks are labels, currently appearing 8152 // only in asm's. 8153 const Instruction *I = CS.getInstruction(); 8154 if (isa<CallBrInst>(I) && 8155 (ArgNo - 1) >= (cast<CallBrInst>(I)->getNumArgOperands() - 8156 cast<CallBrInst>(I)->getNumIndirectDests())) { 8157 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal); 8158 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true); 8159 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT); 8160 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 8161 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 8162 } else { 8163 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8164 } 8165 8166 OpInfo.ConstraintVT = 8167 OpInfo 8168 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 8169 .getSimpleVT(); 8170 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 8171 // The return value of the call is this value. As such, there is no 8172 // corresponding argument. 8173 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 8174 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 8175 OpInfo.ConstraintVT = TLI.getSimpleValueType( 8176 DAG.getDataLayout(), STy->getElementType(ResNo)); 8177 } else { 8178 assert(ResNo == 0 && "Asm only has one result!"); 8179 OpInfo.ConstraintVT = 8180 TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 8181 } 8182 ++ResNo; 8183 } else { 8184 OpInfo.ConstraintVT = MVT::Other; 8185 } 8186 8187 if (!HasSideEffect) 8188 HasSideEffect = OpInfo.hasMemory(TLI); 8189 8190 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8191 // FIXME: Could we compute this on OpInfo rather than T? 8192 8193 // Compute the constraint code and ConstraintType to use. 8194 TLI.ComputeConstraintToUse(T, SDValue()); 8195 8196 if (T.ConstraintType == TargetLowering::C_Immediate && 8197 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8198 // We've delayed emitting a diagnostic like the "n" constraint because 8199 // inlining could cause an integer showing up. 8200 return emitInlineAsmError( 8201 CS, "constraint '" + Twine(T.ConstraintCode) + "' expects an " 8202 "integer constant expression"); 8203 8204 ExtraInfo.update(T); 8205 } 8206 8207 8208 // We won't need to flush pending loads if this asm doesn't touch 8209 // memory and is nonvolatile. 8210 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8211 8212 bool IsCallBr = isa<CallBrInst>(CS.getInstruction()); 8213 if (IsCallBr) { 8214 // If this is a callbr we need to flush pending exports since inlineasm_br 8215 // is a terminator. We need to do this before nodes are glued to 8216 // the inlineasm_br node. 8217 Chain = getControlRoot(); 8218 } 8219 8220 // Second pass over the constraints: compute which constraint option to use. 8221 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8222 // If this is an output operand with a matching input operand, look up the 8223 // matching input. If their types mismatch, e.g. one is an integer, the 8224 // other is floating point, or their sizes are different, flag it as an 8225 // error. 8226 if (OpInfo.hasMatchingInput()) { 8227 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8228 patchMatchingInput(OpInfo, Input, DAG); 8229 } 8230 8231 // Compute the constraint code and ConstraintType to use. 8232 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8233 8234 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8235 OpInfo.Type == InlineAsm::isClobber) 8236 continue; 8237 8238 // If this is a memory input, and if the operand is not indirect, do what we 8239 // need to provide an address for the memory input. 8240 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8241 !OpInfo.isIndirect) { 8242 assert((OpInfo.isMultipleAlternative || 8243 (OpInfo.Type == InlineAsm::isInput)) && 8244 "Can only indirectify direct input operands!"); 8245 8246 // Memory operands really want the address of the value. 8247 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8248 8249 // There is no longer a Value* corresponding to this operand. 8250 OpInfo.CallOperandVal = nullptr; 8251 8252 // It is now an indirect operand. 8253 OpInfo.isIndirect = true; 8254 } 8255 8256 } 8257 8258 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8259 std::vector<SDValue> AsmNodeOperands; 8260 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8261 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8262 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 8263 8264 // If we have a !srcloc metadata node associated with it, we want to attach 8265 // this to the ultimately generated inline asm machineinstr. To do this, we 8266 // pass in the third operand as this (potentially null) inline asm MDNode. 8267 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 8268 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8269 8270 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8271 // bits as operand 3. 8272 AsmNodeOperands.push_back(DAG.getTargetConstant( 8273 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8274 8275 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8276 // this, assign virtual and physical registers for inputs and otput. 8277 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8278 // Assign Registers. 8279 SDISelAsmOperandInfo &RefOpInfo = 8280 OpInfo.isMatchingInputConstraint() 8281 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8282 : OpInfo; 8283 GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8284 8285 switch (OpInfo.Type) { 8286 case InlineAsm::isOutput: 8287 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8288 unsigned ConstraintID = 8289 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8290 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8291 "Failed to convert memory constraint code to constraint id."); 8292 8293 // Add information to the INLINEASM node to know about this output. 8294 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8295 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8296 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8297 MVT::i32)); 8298 AsmNodeOperands.push_back(OpInfo.CallOperand); 8299 } else { 8300 // Otherwise, this outputs to a register (directly for C_Register / 8301 // C_RegisterClass, and a target-defined fashion for 8302 // C_Immediate/C_Other). Find a register that we can use. 8303 if (OpInfo.AssignedRegs.Regs.empty()) { 8304 emitInlineAsmError( 8305 CS, "couldn't allocate output register for constraint '" + 8306 Twine(OpInfo.ConstraintCode) + "'"); 8307 return; 8308 } 8309 8310 // Add information to the INLINEASM node to know that this register is 8311 // set. 8312 OpInfo.AssignedRegs.AddInlineAsmOperands( 8313 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8314 : InlineAsm::Kind_RegDef, 8315 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8316 } 8317 break; 8318 8319 case InlineAsm::isInput: { 8320 SDValue InOperandVal = OpInfo.CallOperand; 8321 8322 if (OpInfo.isMatchingInputConstraint()) { 8323 // If this is required to match an output register we have already set, 8324 // just use its register. 8325 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8326 AsmNodeOperands); 8327 unsigned OpFlag = 8328 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8329 if (InlineAsm::isRegDefKind(OpFlag) || 8330 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8331 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8332 if (OpInfo.isIndirect) { 8333 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8334 emitInlineAsmError(CS, "inline asm not supported yet:" 8335 " don't know how to handle tied " 8336 "indirect register inputs"); 8337 return; 8338 } 8339 8340 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 8341 SmallVector<unsigned, 4> Regs; 8342 8343 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) { 8344 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8345 MachineRegisterInfo &RegInfo = 8346 DAG.getMachineFunction().getRegInfo(); 8347 for (unsigned i = 0; i != NumRegs; ++i) 8348 Regs.push_back(RegInfo.createVirtualRegister(RC)); 8349 } else { 8350 emitInlineAsmError(CS, "inline asm error: This value type register " 8351 "class is not natively supported!"); 8352 return; 8353 } 8354 8355 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8356 8357 SDLoc dl = getCurSDLoc(); 8358 // Use the produced MatchedRegs object to 8359 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 8360 CS.getInstruction()); 8361 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8362 true, OpInfo.getMatchedOperand(), dl, 8363 DAG, AsmNodeOperands); 8364 break; 8365 } 8366 8367 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8368 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8369 "Unexpected number of operands"); 8370 // Add information to the INLINEASM node to know about this input. 8371 // See InlineAsm.h isUseOperandTiedToDef. 8372 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8373 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8374 OpInfo.getMatchedOperand()); 8375 AsmNodeOperands.push_back(DAG.getTargetConstant( 8376 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8377 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8378 break; 8379 } 8380 8381 // Treat indirect 'X' constraint as memory. 8382 if (OpInfo.ConstraintType == TargetLowering::C_Other && 8383 OpInfo.isIndirect) 8384 OpInfo.ConstraintType = TargetLowering::C_Memory; 8385 8386 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 8387 OpInfo.ConstraintType == TargetLowering::C_Other) { 8388 std::vector<SDValue> Ops; 8389 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8390 Ops, DAG); 8391 if (Ops.empty()) { 8392 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 8393 if (isa<ConstantSDNode>(InOperandVal)) { 8394 emitInlineAsmError(CS, "value out of range for constraint '" + 8395 Twine(OpInfo.ConstraintCode) + "'"); 8396 return; 8397 } 8398 8399 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 8400 Twine(OpInfo.ConstraintCode) + "'"); 8401 return; 8402 } 8403 8404 // Add information to the INLINEASM node to know about this input. 8405 unsigned ResOpType = 8406 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8407 AsmNodeOperands.push_back(DAG.getTargetConstant( 8408 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8409 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 8410 break; 8411 } 8412 8413 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8414 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 8415 assert(InOperandVal.getValueType() == 8416 TLI.getPointerTy(DAG.getDataLayout()) && 8417 "Memory operands expect pointer values"); 8418 8419 unsigned ConstraintID = 8420 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8421 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8422 "Failed to convert memory constraint code to constraint id."); 8423 8424 // Add information to the INLINEASM node to know about this input. 8425 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8426 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8427 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8428 getCurSDLoc(), 8429 MVT::i32)); 8430 AsmNodeOperands.push_back(InOperandVal); 8431 break; 8432 } 8433 8434 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 8435 OpInfo.ConstraintType == TargetLowering::C_Register) && 8436 "Unknown constraint type!"); 8437 8438 // TODO: Support this. 8439 if (OpInfo.isIndirect) { 8440 emitInlineAsmError( 8441 CS, "Don't know how to handle indirect register inputs yet " 8442 "for constraint '" + 8443 Twine(OpInfo.ConstraintCode) + "'"); 8444 return; 8445 } 8446 8447 // Copy the input into the appropriate registers. 8448 if (OpInfo.AssignedRegs.Regs.empty()) { 8449 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 8450 Twine(OpInfo.ConstraintCode) + "'"); 8451 return; 8452 } 8453 8454 SDLoc dl = getCurSDLoc(); 8455 8456 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 8457 Chain, &Flag, CS.getInstruction()); 8458 8459 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 8460 dl, DAG, AsmNodeOperands); 8461 break; 8462 } 8463 case InlineAsm::isClobber: 8464 // Add the clobbered value to the operand list, so that the register 8465 // allocator is aware that the physreg got clobbered. 8466 if (!OpInfo.AssignedRegs.Regs.empty()) 8467 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 8468 false, 0, getCurSDLoc(), DAG, 8469 AsmNodeOperands); 8470 break; 8471 } 8472 } 8473 8474 // Finish up input operands. Set the input chain and add the flag last. 8475 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 8476 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 8477 8478 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 8479 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 8480 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 8481 Flag = Chain.getValue(1); 8482 8483 // Do additional work to generate outputs. 8484 8485 SmallVector<EVT, 1> ResultVTs; 8486 SmallVector<SDValue, 1> ResultValues; 8487 SmallVector<SDValue, 8> OutChains; 8488 8489 llvm::Type *CSResultType = CS.getType(); 8490 ArrayRef<Type *> ResultTypes; 8491 if (StructType *StructResult = dyn_cast<StructType>(CSResultType)) 8492 ResultTypes = StructResult->elements(); 8493 else if (!CSResultType->isVoidTy()) 8494 ResultTypes = makeArrayRef(CSResultType); 8495 8496 auto CurResultType = ResultTypes.begin(); 8497 auto handleRegAssign = [&](SDValue V) { 8498 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 8499 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 8500 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 8501 ++CurResultType; 8502 // If the type of the inline asm call site return value is different but has 8503 // same size as the type of the asm output bitcast it. One example of this 8504 // is for vectors with different width / number of elements. This can 8505 // happen for register classes that can contain multiple different value 8506 // types. The preg or vreg allocated may not have the same VT as was 8507 // expected. 8508 // 8509 // This can also happen for a return value that disagrees with the register 8510 // class it is put in, eg. a double in a general-purpose register on a 8511 // 32-bit machine. 8512 if (ResultVT != V.getValueType() && 8513 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 8514 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 8515 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 8516 V.getValueType().isInteger()) { 8517 // If a result value was tied to an input value, the computed result 8518 // may have a wider width than the expected result. Extract the 8519 // relevant portion. 8520 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 8521 } 8522 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 8523 ResultVTs.push_back(ResultVT); 8524 ResultValues.push_back(V); 8525 }; 8526 8527 // Deal with output operands. 8528 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8529 if (OpInfo.Type == InlineAsm::isOutput) { 8530 SDValue Val; 8531 // Skip trivial output operands. 8532 if (OpInfo.AssignedRegs.Regs.empty()) 8533 continue; 8534 8535 switch (OpInfo.ConstraintType) { 8536 case TargetLowering::C_Register: 8537 case TargetLowering::C_RegisterClass: 8538 Val = OpInfo.AssignedRegs.getCopyFromRegs( 8539 DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction()); 8540 break; 8541 case TargetLowering::C_Immediate: 8542 case TargetLowering::C_Other: 8543 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 8544 OpInfo, DAG); 8545 break; 8546 case TargetLowering::C_Memory: 8547 break; // Already handled. 8548 case TargetLowering::C_Unknown: 8549 assert(false && "Unexpected unknown constraint"); 8550 } 8551 8552 // Indirect output manifest as stores. Record output chains. 8553 if (OpInfo.isIndirect) { 8554 const Value *Ptr = OpInfo.CallOperandVal; 8555 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 8556 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 8557 MachinePointerInfo(Ptr)); 8558 OutChains.push_back(Store); 8559 } else { 8560 // generate CopyFromRegs to associated registers. 8561 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 8562 if (Val.getOpcode() == ISD::MERGE_VALUES) { 8563 for (const SDValue &V : Val->op_values()) 8564 handleRegAssign(V); 8565 } else 8566 handleRegAssign(Val); 8567 } 8568 } 8569 } 8570 8571 // Set results. 8572 if (!ResultValues.empty()) { 8573 assert(CurResultType == ResultTypes.end() && 8574 "Mismatch in number of ResultTypes"); 8575 assert(ResultValues.size() == ResultTypes.size() && 8576 "Mismatch in number of output operands in asm result"); 8577 8578 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 8579 DAG.getVTList(ResultVTs), ResultValues); 8580 setValue(CS.getInstruction(), V); 8581 } 8582 8583 // Collect store chains. 8584 if (!OutChains.empty()) 8585 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 8586 8587 // Only Update Root if inline assembly has a memory effect. 8588 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr) 8589 DAG.setRoot(Chain); 8590 } 8591 8592 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 8593 const Twine &Message) { 8594 LLVMContext &Ctx = *DAG.getContext(); 8595 Ctx.emitError(CS.getInstruction(), Message); 8596 8597 // Make sure we leave the DAG in a valid state 8598 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8599 SmallVector<EVT, 1> ValueVTs; 8600 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8601 8602 if (ValueVTs.empty()) 8603 return; 8604 8605 SmallVector<SDValue, 1> Ops; 8606 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 8607 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 8608 8609 setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc())); 8610 } 8611 8612 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 8613 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 8614 MVT::Other, getRoot(), 8615 getValue(I.getArgOperand(0)), 8616 DAG.getSrcValue(I.getArgOperand(0)))); 8617 } 8618 8619 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 8620 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8621 const DataLayout &DL = DAG.getDataLayout(); 8622 SDValue V = DAG.getVAArg( 8623 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 8624 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 8625 DL.getABITypeAlignment(I.getType())); 8626 DAG.setRoot(V.getValue(1)); 8627 8628 if (I.getType()->isPointerTy()) 8629 V = DAG.getPtrExtOrTrunc( 8630 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 8631 setValue(&I, V); 8632 } 8633 8634 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 8635 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 8636 MVT::Other, getRoot(), 8637 getValue(I.getArgOperand(0)), 8638 DAG.getSrcValue(I.getArgOperand(0)))); 8639 } 8640 8641 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 8642 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 8643 MVT::Other, getRoot(), 8644 getValue(I.getArgOperand(0)), 8645 getValue(I.getArgOperand(1)), 8646 DAG.getSrcValue(I.getArgOperand(0)), 8647 DAG.getSrcValue(I.getArgOperand(1)))); 8648 } 8649 8650 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 8651 const Instruction &I, 8652 SDValue Op) { 8653 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 8654 if (!Range) 8655 return Op; 8656 8657 ConstantRange CR = getConstantRangeFromMetadata(*Range); 8658 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 8659 return Op; 8660 8661 APInt Lo = CR.getUnsignedMin(); 8662 if (!Lo.isMinValue()) 8663 return Op; 8664 8665 APInt Hi = CR.getUnsignedMax(); 8666 unsigned Bits = std::max(Hi.getActiveBits(), 8667 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 8668 8669 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 8670 8671 SDLoc SL = getCurSDLoc(); 8672 8673 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 8674 DAG.getValueType(SmallVT)); 8675 unsigned NumVals = Op.getNode()->getNumValues(); 8676 if (NumVals == 1) 8677 return ZExt; 8678 8679 SmallVector<SDValue, 4> Ops; 8680 8681 Ops.push_back(ZExt); 8682 for (unsigned I = 1; I != NumVals; ++I) 8683 Ops.push_back(Op.getValue(I)); 8684 8685 return DAG.getMergeValues(Ops, SL); 8686 } 8687 8688 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 8689 /// the call being lowered. 8690 /// 8691 /// This is a helper for lowering intrinsics that follow a target calling 8692 /// convention or require stack pointer adjustment. Only a subset of the 8693 /// intrinsic's operands need to participate in the calling convention. 8694 void SelectionDAGBuilder::populateCallLoweringInfo( 8695 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 8696 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 8697 bool IsPatchPoint) { 8698 TargetLowering::ArgListTy Args; 8699 Args.reserve(NumArgs); 8700 8701 // Populate the argument list. 8702 // Attributes for args start at offset 1, after the return attribute. 8703 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 8704 ArgI != ArgE; ++ArgI) { 8705 const Value *V = Call->getOperand(ArgI); 8706 8707 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 8708 8709 TargetLowering::ArgListEntry Entry; 8710 Entry.Node = getValue(V); 8711 Entry.Ty = V->getType(); 8712 Entry.setAttributes(Call, ArgI); 8713 Args.push_back(Entry); 8714 } 8715 8716 CLI.setDebugLoc(getCurSDLoc()) 8717 .setChain(getRoot()) 8718 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 8719 .setDiscardResult(Call->use_empty()) 8720 .setIsPatchPoint(IsPatchPoint); 8721 } 8722 8723 /// Add a stack map intrinsic call's live variable operands to a stackmap 8724 /// or patchpoint target node's operand list. 8725 /// 8726 /// Constants are converted to TargetConstants purely as an optimization to 8727 /// avoid constant materialization and register allocation. 8728 /// 8729 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 8730 /// generate addess computation nodes, and so FinalizeISel can convert the 8731 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 8732 /// address materialization and register allocation, but may also be required 8733 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 8734 /// alloca in the entry block, then the runtime may assume that the alloca's 8735 /// StackMap location can be read immediately after compilation and that the 8736 /// location is valid at any point during execution (this is similar to the 8737 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 8738 /// only available in a register, then the runtime would need to trap when 8739 /// execution reaches the StackMap in order to read the alloca's location. 8740 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 8741 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 8742 SelectionDAGBuilder &Builder) { 8743 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 8744 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 8745 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 8746 Ops.push_back( 8747 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 8748 Ops.push_back( 8749 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 8750 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 8751 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 8752 Ops.push_back(Builder.DAG.getTargetFrameIndex( 8753 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 8754 } else 8755 Ops.push_back(OpVal); 8756 } 8757 } 8758 8759 /// Lower llvm.experimental.stackmap directly to its target opcode. 8760 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 8761 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 8762 // [live variables...]) 8763 8764 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 8765 8766 SDValue Chain, InFlag, Callee, NullPtr; 8767 SmallVector<SDValue, 32> Ops; 8768 8769 SDLoc DL = getCurSDLoc(); 8770 Callee = getValue(CI.getCalledValue()); 8771 NullPtr = DAG.getIntPtrConstant(0, DL, true); 8772 8773 // The stackmap intrinsic only records the live variables (the arguments 8774 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 8775 // intrinsic, this won't be lowered to a function call. This means we don't 8776 // have to worry about calling conventions and target specific lowering code. 8777 // Instead we perform the call lowering right here. 8778 // 8779 // chain, flag = CALLSEQ_START(chain, 0, 0) 8780 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 8781 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 8782 // 8783 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 8784 InFlag = Chain.getValue(1); 8785 8786 // Add the <id> and <numBytes> constants. 8787 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 8788 Ops.push_back(DAG.getTargetConstant( 8789 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 8790 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 8791 Ops.push_back(DAG.getTargetConstant( 8792 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 8793 MVT::i32)); 8794 8795 // Push live variables for the stack map. 8796 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 8797 8798 // We are not pushing any register mask info here on the operands list, 8799 // because the stackmap doesn't clobber anything. 8800 8801 // Push the chain and the glue flag. 8802 Ops.push_back(Chain); 8803 Ops.push_back(InFlag); 8804 8805 // Create the STACKMAP node. 8806 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8807 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 8808 Chain = SDValue(SM, 0); 8809 InFlag = Chain.getValue(1); 8810 8811 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 8812 8813 // Stackmaps don't generate values, so nothing goes into the NodeMap. 8814 8815 // Set the root to the target-lowered call chain. 8816 DAG.setRoot(Chain); 8817 8818 // Inform the Frame Information that we have a stackmap in this function. 8819 FuncInfo.MF->getFrameInfo().setHasStackMap(); 8820 } 8821 8822 /// Lower llvm.experimental.patchpoint directly to its target opcode. 8823 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 8824 const BasicBlock *EHPadBB) { 8825 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 8826 // i32 <numBytes>, 8827 // i8* <target>, 8828 // i32 <numArgs>, 8829 // [Args...], 8830 // [live variables...]) 8831 8832 CallingConv::ID CC = CS.getCallingConv(); 8833 bool IsAnyRegCC = CC == CallingConv::AnyReg; 8834 bool HasDef = !CS->getType()->isVoidTy(); 8835 SDLoc dl = getCurSDLoc(); 8836 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 8837 8838 // Handle immediate and symbolic callees. 8839 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 8840 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 8841 /*isTarget=*/true); 8842 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 8843 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 8844 SDLoc(SymbolicCallee), 8845 SymbolicCallee->getValueType(0)); 8846 8847 // Get the real number of arguments participating in the call <numArgs> 8848 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 8849 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 8850 8851 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 8852 // Intrinsics include all meta-operands up to but not including CC. 8853 unsigned NumMetaOpers = PatchPointOpers::CCPos; 8854 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 8855 "Not enough arguments provided to the patchpoint intrinsic"); 8856 8857 // For AnyRegCC the arguments are lowered later on manually. 8858 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 8859 Type *ReturnTy = 8860 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 8861 8862 TargetLowering::CallLoweringInfo CLI(DAG); 8863 populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()), 8864 NumMetaOpers, NumCallArgs, Callee, ReturnTy, true); 8865 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8866 8867 SDNode *CallEnd = Result.second.getNode(); 8868 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 8869 CallEnd = CallEnd->getOperand(0).getNode(); 8870 8871 /// Get a call instruction from the call sequence chain. 8872 /// Tail calls are not allowed. 8873 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 8874 "Expected a callseq node."); 8875 SDNode *Call = CallEnd->getOperand(0).getNode(); 8876 bool HasGlue = Call->getGluedNode(); 8877 8878 // Replace the target specific call node with the patchable intrinsic. 8879 SmallVector<SDValue, 8> Ops; 8880 8881 // Add the <id> and <numBytes> constants. 8882 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 8883 Ops.push_back(DAG.getTargetConstant( 8884 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 8885 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 8886 Ops.push_back(DAG.getTargetConstant( 8887 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 8888 MVT::i32)); 8889 8890 // Add the callee. 8891 Ops.push_back(Callee); 8892 8893 // Adjust <numArgs> to account for any arguments that have been passed on the 8894 // stack instead. 8895 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 8896 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 8897 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 8898 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 8899 8900 // Add the calling convention 8901 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 8902 8903 // Add the arguments we omitted previously. The register allocator should 8904 // place these in any free register. 8905 if (IsAnyRegCC) 8906 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 8907 Ops.push_back(getValue(CS.getArgument(i))); 8908 8909 // Push the arguments from the call instruction up to the register mask. 8910 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 8911 Ops.append(Call->op_begin() + 2, e); 8912 8913 // Push live variables for the stack map. 8914 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 8915 8916 // Push the register mask info. 8917 if (HasGlue) 8918 Ops.push_back(*(Call->op_end()-2)); 8919 else 8920 Ops.push_back(*(Call->op_end()-1)); 8921 8922 // Push the chain (this is originally the first operand of the call, but 8923 // becomes now the last or second to last operand). 8924 Ops.push_back(*(Call->op_begin())); 8925 8926 // Push the glue flag (last operand). 8927 if (HasGlue) 8928 Ops.push_back(*(Call->op_end()-1)); 8929 8930 SDVTList NodeTys; 8931 if (IsAnyRegCC && HasDef) { 8932 // Create the return types based on the intrinsic definition 8933 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8934 SmallVector<EVT, 3> ValueVTs; 8935 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8936 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 8937 8938 // There is always a chain and a glue type at the end 8939 ValueVTs.push_back(MVT::Other); 8940 ValueVTs.push_back(MVT::Glue); 8941 NodeTys = DAG.getVTList(ValueVTs); 8942 } else 8943 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8944 8945 // Replace the target specific call node with a PATCHPOINT node. 8946 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 8947 dl, NodeTys, Ops); 8948 8949 // Update the NodeMap. 8950 if (HasDef) { 8951 if (IsAnyRegCC) 8952 setValue(CS.getInstruction(), SDValue(MN, 0)); 8953 else 8954 setValue(CS.getInstruction(), Result.first); 8955 } 8956 8957 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 8958 // call sequence. Furthermore the location of the chain and glue can change 8959 // when the AnyReg calling convention is used and the intrinsic returns a 8960 // value. 8961 if (IsAnyRegCC && HasDef) { 8962 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 8963 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 8964 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 8965 } else 8966 DAG.ReplaceAllUsesWith(Call, MN); 8967 DAG.DeleteNode(Call); 8968 8969 // Inform the Frame Information that we have a patchpoint in this function. 8970 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 8971 } 8972 8973 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 8974 unsigned Intrinsic) { 8975 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8976 SDValue Op1 = getValue(I.getArgOperand(0)); 8977 SDValue Op2; 8978 if (I.getNumArgOperands() > 1) 8979 Op2 = getValue(I.getArgOperand(1)); 8980 SDLoc dl = getCurSDLoc(); 8981 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8982 SDValue Res; 8983 FastMathFlags FMF; 8984 if (isa<FPMathOperator>(I)) 8985 FMF = I.getFastMathFlags(); 8986 8987 switch (Intrinsic) { 8988 case Intrinsic::experimental_vector_reduce_v2_fadd: 8989 if (FMF.allowReassoc()) 8990 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 8991 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2)); 8992 else 8993 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 8994 break; 8995 case Intrinsic::experimental_vector_reduce_v2_fmul: 8996 if (FMF.allowReassoc()) 8997 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 8998 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2)); 8999 else 9000 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 9001 break; 9002 case Intrinsic::experimental_vector_reduce_add: 9003 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 9004 break; 9005 case Intrinsic::experimental_vector_reduce_mul: 9006 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 9007 break; 9008 case Intrinsic::experimental_vector_reduce_and: 9009 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 9010 break; 9011 case Intrinsic::experimental_vector_reduce_or: 9012 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 9013 break; 9014 case Intrinsic::experimental_vector_reduce_xor: 9015 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 9016 break; 9017 case Intrinsic::experimental_vector_reduce_smax: 9018 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 9019 break; 9020 case Intrinsic::experimental_vector_reduce_smin: 9021 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 9022 break; 9023 case Intrinsic::experimental_vector_reduce_umax: 9024 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 9025 break; 9026 case Intrinsic::experimental_vector_reduce_umin: 9027 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 9028 break; 9029 case Intrinsic::experimental_vector_reduce_fmax: 9030 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1); 9031 break; 9032 case Intrinsic::experimental_vector_reduce_fmin: 9033 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1); 9034 break; 9035 default: 9036 llvm_unreachable("Unhandled vector reduce intrinsic"); 9037 } 9038 setValue(&I, Res); 9039 } 9040 9041 /// Returns an AttributeList representing the attributes applied to the return 9042 /// value of the given call. 9043 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 9044 SmallVector<Attribute::AttrKind, 2> Attrs; 9045 if (CLI.RetSExt) 9046 Attrs.push_back(Attribute::SExt); 9047 if (CLI.RetZExt) 9048 Attrs.push_back(Attribute::ZExt); 9049 if (CLI.IsInReg) 9050 Attrs.push_back(Attribute::InReg); 9051 9052 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 9053 Attrs); 9054 } 9055 9056 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 9057 /// implementation, which just calls LowerCall. 9058 /// FIXME: When all targets are 9059 /// migrated to using LowerCall, this hook should be integrated into SDISel. 9060 std::pair<SDValue, SDValue> 9061 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 9062 // Handle the incoming return values from the call. 9063 CLI.Ins.clear(); 9064 Type *OrigRetTy = CLI.RetTy; 9065 SmallVector<EVT, 4> RetTys; 9066 SmallVector<uint64_t, 4> Offsets; 9067 auto &DL = CLI.DAG.getDataLayout(); 9068 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 9069 9070 if (CLI.IsPostTypeLegalization) { 9071 // If we are lowering a libcall after legalization, split the return type. 9072 SmallVector<EVT, 4> OldRetTys; 9073 SmallVector<uint64_t, 4> OldOffsets; 9074 RetTys.swap(OldRetTys); 9075 Offsets.swap(OldOffsets); 9076 9077 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 9078 EVT RetVT = OldRetTys[i]; 9079 uint64_t Offset = OldOffsets[i]; 9080 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 9081 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 9082 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 9083 RetTys.append(NumRegs, RegisterVT); 9084 for (unsigned j = 0; j != NumRegs; ++j) 9085 Offsets.push_back(Offset + j * RegisterVTByteSZ); 9086 } 9087 } 9088 9089 SmallVector<ISD::OutputArg, 4> Outs; 9090 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 9091 9092 bool CanLowerReturn = 9093 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 9094 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 9095 9096 SDValue DemoteStackSlot; 9097 int DemoteStackIdx = -100; 9098 if (!CanLowerReturn) { 9099 // FIXME: equivalent assert? 9100 // assert(!CS.hasInAllocaArgument() && 9101 // "sret demotion is incompatible with inalloca"); 9102 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 9103 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 9104 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9105 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 9106 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 9107 DL.getAllocaAddrSpace()); 9108 9109 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 9110 ArgListEntry Entry; 9111 Entry.Node = DemoteStackSlot; 9112 Entry.Ty = StackSlotPtrType; 9113 Entry.IsSExt = false; 9114 Entry.IsZExt = false; 9115 Entry.IsInReg = false; 9116 Entry.IsSRet = true; 9117 Entry.IsNest = false; 9118 Entry.IsByVal = false; 9119 Entry.IsReturned = false; 9120 Entry.IsSwiftSelf = false; 9121 Entry.IsSwiftError = false; 9122 Entry.IsCFGuardTarget = false; 9123 Entry.Alignment = Align; 9124 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 9125 CLI.NumFixedArgs += 1; 9126 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 9127 9128 // sret demotion isn't compatible with tail-calls, since the sret argument 9129 // points into the callers stack frame. 9130 CLI.IsTailCall = false; 9131 } else { 9132 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9133 CLI.RetTy, CLI.CallConv, CLI.IsVarArg); 9134 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9135 ISD::ArgFlagsTy Flags; 9136 if (NeedsRegBlock) { 9137 Flags.setInConsecutiveRegs(); 9138 if (I == RetTys.size() - 1) 9139 Flags.setInConsecutiveRegsLast(); 9140 } 9141 EVT VT = RetTys[I]; 9142 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9143 CLI.CallConv, VT); 9144 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9145 CLI.CallConv, VT); 9146 for (unsigned i = 0; i != NumRegs; ++i) { 9147 ISD::InputArg MyFlags; 9148 MyFlags.Flags = Flags; 9149 MyFlags.VT = RegisterVT; 9150 MyFlags.ArgVT = VT; 9151 MyFlags.Used = CLI.IsReturnValueUsed; 9152 if (CLI.RetTy->isPointerTy()) { 9153 MyFlags.Flags.setPointer(); 9154 MyFlags.Flags.setPointerAddrSpace( 9155 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9156 } 9157 if (CLI.RetSExt) 9158 MyFlags.Flags.setSExt(); 9159 if (CLI.RetZExt) 9160 MyFlags.Flags.setZExt(); 9161 if (CLI.IsInReg) 9162 MyFlags.Flags.setInReg(); 9163 CLI.Ins.push_back(MyFlags); 9164 } 9165 } 9166 } 9167 9168 // We push in swifterror return as the last element of CLI.Ins. 9169 ArgListTy &Args = CLI.getArgs(); 9170 if (supportSwiftError()) { 9171 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9172 if (Args[i].IsSwiftError) { 9173 ISD::InputArg MyFlags; 9174 MyFlags.VT = getPointerTy(DL); 9175 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9176 MyFlags.Flags.setSwiftError(); 9177 CLI.Ins.push_back(MyFlags); 9178 } 9179 } 9180 } 9181 9182 // Handle all of the outgoing arguments. 9183 CLI.Outs.clear(); 9184 CLI.OutVals.clear(); 9185 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9186 SmallVector<EVT, 4> ValueVTs; 9187 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9188 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9189 Type *FinalType = Args[i].Ty; 9190 if (Args[i].IsByVal) 9191 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 9192 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9193 FinalType, CLI.CallConv, CLI.IsVarArg); 9194 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9195 ++Value) { 9196 EVT VT = ValueVTs[Value]; 9197 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9198 SDValue Op = SDValue(Args[i].Node.getNode(), 9199 Args[i].Node.getResNo() + Value); 9200 ISD::ArgFlagsTy Flags; 9201 9202 // Certain targets (such as MIPS), may have a different ABI alignment 9203 // for a type depending on the context. Give the target a chance to 9204 // specify the alignment it wants. 9205 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 9206 9207 if (Args[i].Ty->isPointerTy()) { 9208 Flags.setPointer(); 9209 Flags.setPointerAddrSpace( 9210 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9211 } 9212 if (Args[i].IsZExt) 9213 Flags.setZExt(); 9214 if (Args[i].IsSExt) 9215 Flags.setSExt(); 9216 if (Args[i].IsInReg) { 9217 // If we are using vectorcall calling convention, a structure that is 9218 // passed InReg - is surely an HVA 9219 if (CLI.CallConv == CallingConv::X86_VectorCall && 9220 isa<StructType>(FinalType)) { 9221 // The first value of a structure is marked 9222 if (0 == Value) 9223 Flags.setHvaStart(); 9224 Flags.setHva(); 9225 } 9226 // Set InReg Flag 9227 Flags.setInReg(); 9228 } 9229 if (Args[i].IsSRet) 9230 Flags.setSRet(); 9231 if (Args[i].IsSwiftSelf) 9232 Flags.setSwiftSelf(); 9233 if (Args[i].IsSwiftError) 9234 Flags.setSwiftError(); 9235 if (Args[i].IsCFGuardTarget) 9236 Flags.setCFGuardTarget(); 9237 if (Args[i].IsByVal) 9238 Flags.setByVal(); 9239 if (Args[i].IsInAlloca) { 9240 Flags.setInAlloca(); 9241 // Set the byval flag for CCAssignFn callbacks that don't know about 9242 // inalloca. This way we can know how many bytes we should've allocated 9243 // and how many bytes a callee cleanup function will pop. If we port 9244 // inalloca to more targets, we'll have to add custom inalloca handling 9245 // in the various CC lowering callbacks. 9246 Flags.setByVal(); 9247 } 9248 if (Args[i].IsByVal || Args[i].IsInAlloca) { 9249 PointerType *Ty = cast<PointerType>(Args[i].Ty); 9250 Type *ElementTy = Ty->getElementType(); 9251 9252 unsigned FrameSize = DL.getTypeAllocSize( 9253 Args[i].ByValType ? Args[i].ByValType : ElementTy); 9254 Flags.setByValSize(FrameSize); 9255 9256 // info is not there but there are cases it cannot get right. 9257 unsigned FrameAlign; 9258 if (Args[i].Alignment) 9259 FrameAlign = Args[i].Alignment; 9260 else 9261 FrameAlign = getByValTypeAlignment(ElementTy, DL); 9262 Flags.setByValAlign(Align(FrameAlign)); 9263 } 9264 if (Args[i].IsNest) 9265 Flags.setNest(); 9266 if (NeedsRegBlock) 9267 Flags.setInConsecutiveRegs(); 9268 Flags.setOrigAlign(OriginalAlignment); 9269 9270 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9271 CLI.CallConv, VT); 9272 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9273 CLI.CallConv, VT); 9274 SmallVector<SDValue, 4> Parts(NumParts); 9275 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 9276 9277 if (Args[i].IsSExt) 9278 ExtendKind = ISD::SIGN_EXTEND; 9279 else if (Args[i].IsZExt) 9280 ExtendKind = ISD::ZERO_EXTEND; 9281 9282 // Conservatively only handle 'returned' on non-vectors that can be lowered, 9283 // for now. 9284 if (Args[i].IsReturned && !Op.getValueType().isVector() && 9285 CanLowerReturn) { 9286 assert((CLI.RetTy == Args[i].Ty || 9287 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 9288 CLI.RetTy->getPointerAddressSpace() == 9289 Args[i].Ty->getPointerAddressSpace())) && 9290 RetTys.size() == NumValues && "unexpected use of 'returned'"); 9291 // Before passing 'returned' to the target lowering code, ensure that 9292 // either the register MVT and the actual EVT are the same size or that 9293 // the return value and argument are extended in the same way; in these 9294 // cases it's safe to pass the argument register value unchanged as the 9295 // return register value (although it's at the target's option whether 9296 // to do so) 9297 // TODO: allow code generation to take advantage of partially preserved 9298 // registers rather than clobbering the entire register when the 9299 // parameter extension method is not compatible with the return 9300 // extension method 9301 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 9302 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 9303 CLI.RetZExt == Args[i].IsZExt)) 9304 Flags.setReturned(); 9305 } 9306 9307 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 9308 CLI.CS.getInstruction(), CLI.CallConv, ExtendKind); 9309 9310 for (unsigned j = 0; j != NumParts; ++j) { 9311 // if it isn't first piece, alignment must be 1 9312 // For scalable vectors the scalable part is currently handled 9313 // by individual targets, so we just use the known minimum size here. 9314 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 9315 i < CLI.NumFixedArgs, i, 9316 j*Parts[j].getValueType().getStoreSize().getKnownMinSize()); 9317 if (NumParts > 1 && j == 0) 9318 MyFlags.Flags.setSplit(); 9319 else if (j != 0) { 9320 MyFlags.Flags.setOrigAlign(Align::None()); 9321 if (j == NumParts - 1) 9322 MyFlags.Flags.setSplitEnd(); 9323 } 9324 9325 CLI.Outs.push_back(MyFlags); 9326 CLI.OutVals.push_back(Parts[j]); 9327 } 9328 9329 if (NeedsRegBlock && Value == NumValues - 1) 9330 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 9331 } 9332 } 9333 9334 SmallVector<SDValue, 4> InVals; 9335 CLI.Chain = LowerCall(CLI, InVals); 9336 9337 // Update CLI.InVals to use outside of this function. 9338 CLI.InVals = InVals; 9339 9340 // Verify that the target's LowerCall behaved as expected. 9341 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 9342 "LowerCall didn't return a valid chain!"); 9343 assert((!CLI.IsTailCall || InVals.empty()) && 9344 "LowerCall emitted a return value for a tail call!"); 9345 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 9346 "LowerCall didn't emit the correct number of values!"); 9347 9348 // For a tail call, the return value is merely live-out and there aren't 9349 // any nodes in the DAG representing it. Return a special value to 9350 // indicate that a tail call has been emitted and no more Instructions 9351 // should be processed in the current block. 9352 if (CLI.IsTailCall) { 9353 CLI.DAG.setRoot(CLI.Chain); 9354 return std::make_pair(SDValue(), SDValue()); 9355 } 9356 9357 #ifndef NDEBUG 9358 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 9359 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 9360 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 9361 "LowerCall emitted a value with the wrong type!"); 9362 } 9363 #endif 9364 9365 SmallVector<SDValue, 4> ReturnValues; 9366 if (!CanLowerReturn) { 9367 // The instruction result is the result of loading from the 9368 // hidden sret parameter. 9369 SmallVector<EVT, 1> PVTs; 9370 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 9371 9372 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 9373 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 9374 EVT PtrVT = PVTs[0]; 9375 9376 unsigned NumValues = RetTys.size(); 9377 ReturnValues.resize(NumValues); 9378 SmallVector<SDValue, 4> Chains(NumValues); 9379 9380 // An aggregate return value cannot wrap around the address space, so 9381 // offsets to its parts don't wrap either. 9382 SDNodeFlags Flags; 9383 Flags.setNoUnsignedWrap(true); 9384 9385 for (unsigned i = 0; i < NumValues; ++i) { 9386 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 9387 CLI.DAG.getConstant(Offsets[i], CLI.DL, 9388 PtrVT), Flags); 9389 SDValue L = CLI.DAG.getLoad( 9390 RetTys[i], CLI.DL, CLI.Chain, Add, 9391 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 9392 DemoteStackIdx, Offsets[i]), 9393 /* Alignment = */ 1); 9394 ReturnValues[i] = L; 9395 Chains[i] = L.getValue(1); 9396 } 9397 9398 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 9399 } else { 9400 // Collect the legal value parts into potentially illegal values 9401 // that correspond to the original function's return values. 9402 Optional<ISD::NodeType> AssertOp; 9403 if (CLI.RetSExt) 9404 AssertOp = ISD::AssertSext; 9405 else if (CLI.RetZExt) 9406 AssertOp = ISD::AssertZext; 9407 unsigned CurReg = 0; 9408 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9409 EVT VT = RetTys[I]; 9410 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9411 CLI.CallConv, VT); 9412 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9413 CLI.CallConv, VT); 9414 9415 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 9416 NumRegs, RegisterVT, VT, nullptr, 9417 CLI.CallConv, AssertOp)); 9418 CurReg += NumRegs; 9419 } 9420 9421 // For a function returning void, there is no return value. We can't create 9422 // such a node, so we just return a null return value in that case. In 9423 // that case, nothing will actually look at the value. 9424 if (ReturnValues.empty()) 9425 return std::make_pair(SDValue(), CLI.Chain); 9426 } 9427 9428 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 9429 CLI.DAG.getVTList(RetTys), ReturnValues); 9430 return std::make_pair(Res, CLI.Chain); 9431 } 9432 9433 void TargetLowering::LowerOperationWrapper(SDNode *N, 9434 SmallVectorImpl<SDValue> &Results, 9435 SelectionDAG &DAG) const { 9436 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 9437 Results.push_back(Res); 9438 } 9439 9440 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9441 llvm_unreachable("LowerOperation not implemented for this target!"); 9442 } 9443 9444 void 9445 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 9446 SDValue Op = getNonRegisterValue(V); 9447 assert((Op.getOpcode() != ISD::CopyFromReg || 9448 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 9449 "Copy from a reg to the same reg!"); 9450 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 9451 9452 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9453 // If this is an InlineAsm we have to match the registers required, not the 9454 // notional registers required by the type. 9455 9456 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 9457 None); // This is not an ABI copy. 9458 SDValue Chain = DAG.getEntryNode(); 9459 9460 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 9461 FuncInfo.PreferredExtendType.end()) 9462 ? ISD::ANY_EXTEND 9463 : FuncInfo.PreferredExtendType[V]; 9464 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 9465 PendingExports.push_back(Chain); 9466 } 9467 9468 #include "llvm/CodeGen/SelectionDAGISel.h" 9469 9470 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 9471 /// entry block, return true. This includes arguments used by switches, since 9472 /// the switch may expand into multiple basic blocks. 9473 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 9474 // With FastISel active, we may be splitting blocks, so force creation 9475 // of virtual registers for all non-dead arguments. 9476 if (FastISel) 9477 return A->use_empty(); 9478 9479 const BasicBlock &Entry = A->getParent()->front(); 9480 for (const User *U : A->users()) 9481 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 9482 return false; // Use not in entry block. 9483 9484 return true; 9485 } 9486 9487 using ArgCopyElisionMapTy = 9488 DenseMap<const Argument *, 9489 std::pair<const AllocaInst *, const StoreInst *>>; 9490 9491 /// Scan the entry block of the function in FuncInfo for arguments that look 9492 /// like copies into a local alloca. Record any copied arguments in 9493 /// ArgCopyElisionCandidates. 9494 static void 9495 findArgumentCopyElisionCandidates(const DataLayout &DL, 9496 FunctionLoweringInfo *FuncInfo, 9497 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 9498 // Record the state of every static alloca used in the entry block. Argument 9499 // allocas are all used in the entry block, so we need approximately as many 9500 // entries as we have arguments. 9501 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 9502 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 9503 unsigned NumArgs = FuncInfo->Fn->arg_size(); 9504 StaticAllocas.reserve(NumArgs * 2); 9505 9506 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 9507 if (!V) 9508 return nullptr; 9509 V = V->stripPointerCasts(); 9510 const auto *AI = dyn_cast<AllocaInst>(V); 9511 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 9512 return nullptr; 9513 auto Iter = StaticAllocas.insert({AI, Unknown}); 9514 return &Iter.first->second; 9515 }; 9516 9517 // Look for stores of arguments to static allocas. Look through bitcasts and 9518 // GEPs to handle type coercions, as long as the alloca is fully initialized 9519 // by the store. Any non-store use of an alloca escapes it and any subsequent 9520 // unanalyzed store might write it. 9521 // FIXME: Handle structs initialized with multiple stores. 9522 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 9523 // Look for stores, and handle non-store uses conservatively. 9524 const auto *SI = dyn_cast<StoreInst>(&I); 9525 if (!SI) { 9526 // We will look through cast uses, so ignore them completely. 9527 if (I.isCast()) 9528 continue; 9529 // Ignore debug info intrinsics, they don't escape or store to allocas. 9530 if (isa<DbgInfoIntrinsic>(I)) 9531 continue; 9532 // This is an unknown instruction. Assume it escapes or writes to all 9533 // static alloca operands. 9534 for (const Use &U : I.operands()) { 9535 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 9536 *Info = StaticAllocaInfo::Clobbered; 9537 } 9538 continue; 9539 } 9540 9541 // If the stored value is a static alloca, mark it as escaped. 9542 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 9543 *Info = StaticAllocaInfo::Clobbered; 9544 9545 // Check if the destination is a static alloca. 9546 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 9547 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 9548 if (!Info) 9549 continue; 9550 const AllocaInst *AI = cast<AllocaInst>(Dst); 9551 9552 // Skip allocas that have been initialized or clobbered. 9553 if (*Info != StaticAllocaInfo::Unknown) 9554 continue; 9555 9556 // Check if the stored value is an argument, and that this store fully 9557 // initializes the alloca. Don't elide copies from the same argument twice. 9558 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 9559 const auto *Arg = dyn_cast<Argument>(Val); 9560 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 9561 Arg->getType()->isEmptyTy() || 9562 DL.getTypeStoreSize(Arg->getType()) != 9563 DL.getTypeAllocSize(AI->getAllocatedType()) || 9564 ArgCopyElisionCandidates.count(Arg)) { 9565 *Info = StaticAllocaInfo::Clobbered; 9566 continue; 9567 } 9568 9569 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 9570 << '\n'); 9571 9572 // Mark this alloca and store for argument copy elision. 9573 *Info = StaticAllocaInfo::Elidable; 9574 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 9575 9576 // Stop scanning if we've seen all arguments. This will happen early in -O0 9577 // builds, which is useful, because -O0 builds have large entry blocks and 9578 // many allocas. 9579 if (ArgCopyElisionCandidates.size() == NumArgs) 9580 break; 9581 } 9582 } 9583 9584 /// Try to elide argument copies from memory into a local alloca. Succeeds if 9585 /// ArgVal is a load from a suitable fixed stack object. 9586 static void tryToElideArgumentCopy( 9587 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 9588 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 9589 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 9590 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 9591 SDValue ArgVal, bool &ArgHasUses) { 9592 // Check if this is a load from a fixed stack object. 9593 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 9594 if (!LNode) 9595 return; 9596 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 9597 if (!FINode) 9598 return; 9599 9600 // Check that the fixed stack object is the right size and alignment. 9601 // Look at the alignment that the user wrote on the alloca instead of looking 9602 // at the stack object. 9603 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 9604 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 9605 const AllocaInst *AI = ArgCopyIter->second.first; 9606 int FixedIndex = FINode->getIndex(); 9607 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 9608 int OldIndex = AllocaIndex; 9609 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 9610 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 9611 LLVM_DEBUG( 9612 dbgs() << " argument copy elision failed due to bad fixed stack " 9613 "object size\n"); 9614 return; 9615 } 9616 unsigned RequiredAlignment = AI->getAlignment(); 9617 if (!RequiredAlignment) { 9618 RequiredAlignment = FuncInfo.MF->getDataLayout().getABITypeAlignment( 9619 AI->getAllocatedType()); 9620 } 9621 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) { 9622 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 9623 "greater than stack argument alignment (" 9624 << RequiredAlignment << " vs " 9625 << MFI.getObjectAlignment(FixedIndex) << ")\n"); 9626 return; 9627 } 9628 9629 // Perform the elision. Delete the old stack object and replace its only use 9630 // in the variable info map. Mark the stack object as mutable. 9631 LLVM_DEBUG({ 9632 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 9633 << " Replacing frame index " << OldIndex << " with " << FixedIndex 9634 << '\n'; 9635 }); 9636 MFI.RemoveStackObject(OldIndex); 9637 MFI.setIsImmutableObjectIndex(FixedIndex, false); 9638 AllocaIndex = FixedIndex; 9639 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 9640 Chains.push_back(ArgVal.getValue(1)); 9641 9642 // Avoid emitting code for the store implementing the copy. 9643 const StoreInst *SI = ArgCopyIter->second.second; 9644 ElidedArgCopyInstrs.insert(SI); 9645 9646 // Check for uses of the argument again so that we can avoid exporting ArgVal 9647 // if it is't used by anything other than the store. 9648 for (const Value *U : Arg.users()) { 9649 if (U != SI) { 9650 ArgHasUses = true; 9651 break; 9652 } 9653 } 9654 } 9655 9656 void SelectionDAGISel::LowerArguments(const Function &F) { 9657 SelectionDAG &DAG = SDB->DAG; 9658 SDLoc dl = SDB->getCurSDLoc(); 9659 const DataLayout &DL = DAG.getDataLayout(); 9660 SmallVector<ISD::InputArg, 16> Ins; 9661 9662 if (!FuncInfo->CanLowerReturn) { 9663 // Put in an sret pointer parameter before all the other parameters. 9664 SmallVector<EVT, 1> ValueVTs; 9665 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9666 F.getReturnType()->getPointerTo( 9667 DAG.getDataLayout().getAllocaAddrSpace()), 9668 ValueVTs); 9669 9670 // NOTE: Assuming that a pointer will never break down to more than one VT 9671 // or one register. 9672 ISD::ArgFlagsTy Flags; 9673 Flags.setSRet(); 9674 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 9675 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 9676 ISD::InputArg::NoArgIndex, 0); 9677 Ins.push_back(RetArg); 9678 } 9679 9680 // Look for stores of arguments to static allocas. Mark such arguments with a 9681 // flag to ask the target to give us the memory location of that argument if 9682 // available. 9683 ArgCopyElisionMapTy ArgCopyElisionCandidates; 9684 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 9685 ArgCopyElisionCandidates); 9686 9687 // Set up the incoming argument description vector. 9688 for (const Argument &Arg : F.args()) { 9689 unsigned ArgNo = Arg.getArgNo(); 9690 SmallVector<EVT, 4> ValueVTs; 9691 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9692 bool isArgValueUsed = !Arg.use_empty(); 9693 unsigned PartBase = 0; 9694 Type *FinalType = Arg.getType(); 9695 if (Arg.hasAttribute(Attribute::ByVal)) 9696 FinalType = Arg.getParamByValType(); 9697 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 9698 FinalType, F.getCallingConv(), F.isVarArg()); 9699 for (unsigned Value = 0, NumValues = ValueVTs.size(); 9700 Value != NumValues; ++Value) { 9701 EVT VT = ValueVTs[Value]; 9702 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 9703 ISD::ArgFlagsTy Flags; 9704 9705 // Certain targets (such as MIPS), may have a different ABI alignment 9706 // for a type depending on the context. Give the target a chance to 9707 // specify the alignment it wants. 9708 const Align OriginalAlignment( 9709 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 9710 9711 if (Arg.getType()->isPointerTy()) { 9712 Flags.setPointer(); 9713 Flags.setPointerAddrSpace( 9714 cast<PointerType>(Arg.getType())->getAddressSpace()); 9715 } 9716 if (Arg.hasAttribute(Attribute::ZExt)) 9717 Flags.setZExt(); 9718 if (Arg.hasAttribute(Attribute::SExt)) 9719 Flags.setSExt(); 9720 if (Arg.hasAttribute(Attribute::InReg)) { 9721 // If we are using vectorcall calling convention, a structure that is 9722 // passed InReg - is surely an HVA 9723 if (F.getCallingConv() == CallingConv::X86_VectorCall && 9724 isa<StructType>(Arg.getType())) { 9725 // The first value of a structure is marked 9726 if (0 == Value) 9727 Flags.setHvaStart(); 9728 Flags.setHva(); 9729 } 9730 // Set InReg Flag 9731 Flags.setInReg(); 9732 } 9733 if (Arg.hasAttribute(Attribute::StructRet)) 9734 Flags.setSRet(); 9735 if (Arg.hasAttribute(Attribute::SwiftSelf)) 9736 Flags.setSwiftSelf(); 9737 if (Arg.hasAttribute(Attribute::SwiftError)) 9738 Flags.setSwiftError(); 9739 if (Arg.hasAttribute(Attribute::ByVal)) 9740 Flags.setByVal(); 9741 if (Arg.hasAttribute(Attribute::InAlloca)) { 9742 Flags.setInAlloca(); 9743 // Set the byval flag for CCAssignFn callbacks that don't know about 9744 // inalloca. This way we can know how many bytes we should've allocated 9745 // and how many bytes a callee cleanup function will pop. If we port 9746 // inalloca to more targets, we'll have to add custom inalloca handling 9747 // in the various CC lowering callbacks. 9748 Flags.setByVal(); 9749 } 9750 if (F.getCallingConv() == CallingConv::X86_INTR) { 9751 // IA Interrupt passes frame (1st parameter) by value in the stack. 9752 if (ArgNo == 0) 9753 Flags.setByVal(); 9754 } 9755 if (Flags.isByVal() || Flags.isInAlloca()) { 9756 Type *ElementTy = Arg.getParamByValType(); 9757 9758 // For ByVal, size and alignment should be passed from FE. BE will 9759 // guess if this info is not there but there are cases it cannot get 9760 // right. 9761 unsigned FrameSize = DL.getTypeAllocSize(Arg.getParamByValType()); 9762 Flags.setByValSize(FrameSize); 9763 9764 unsigned FrameAlign; 9765 if (Arg.getParamAlignment()) 9766 FrameAlign = Arg.getParamAlignment(); 9767 else 9768 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 9769 Flags.setByValAlign(Align(FrameAlign)); 9770 } 9771 if (Arg.hasAttribute(Attribute::Nest)) 9772 Flags.setNest(); 9773 if (NeedsRegBlock) 9774 Flags.setInConsecutiveRegs(); 9775 Flags.setOrigAlign(OriginalAlignment); 9776 if (ArgCopyElisionCandidates.count(&Arg)) 9777 Flags.setCopyElisionCandidate(); 9778 if (Arg.hasAttribute(Attribute::Returned)) 9779 Flags.setReturned(); 9780 9781 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 9782 *CurDAG->getContext(), F.getCallingConv(), VT); 9783 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 9784 *CurDAG->getContext(), F.getCallingConv(), VT); 9785 for (unsigned i = 0; i != NumRegs; ++i) { 9786 // For scalable vectors, use the minimum size; individual targets 9787 // are responsible for handling scalable vector arguments and 9788 // return values. 9789 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 9790 ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize()); 9791 if (NumRegs > 1 && i == 0) 9792 MyFlags.Flags.setSplit(); 9793 // if it isn't first piece, alignment must be 1 9794 else if (i > 0) { 9795 MyFlags.Flags.setOrigAlign(Align::None()); 9796 if (i == NumRegs - 1) 9797 MyFlags.Flags.setSplitEnd(); 9798 } 9799 Ins.push_back(MyFlags); 9800 } 9801 if (NeedsRegBlock && Value == NumValues - 1) 9802 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 9803 PartBase += VT.getStoreSize().getKnownMinSize(); 9804 } 9805 } 9806 9807 // Call the target to set up the argument values. 9808 SmallVector<SDValue, 8> InVals; 9809 SDValue NewRoot = TLI->LowerFormalArguments( 9810 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 9811 9812 // Verify that the target's LowerFormalArguments behaved as expected. 9813 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 9814 "LowerFormalArguments didn't return a valid chain!"); 9815 assert(InVals.size() == Ins.size() && 9816 "LowerFormalArguments didn't emit the correct number of values!"); 9817 LLVM_DEBUG({ 9818 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 9819 assert(InVals[i].getNode() && 9820 "LowerFormalArguments emitted a null value!"); 9821 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 9822 "LowerFormalArguments emitted a value with the wrong type!"); 9823 } 9824 }); 9825 9826 // Update the DAG with the new chain value resulting from argument lowering. 9827 DAG.setRoot(NewRoot); 9828 9829 // Set up the argument values. 9830 unsigned i = 0; 9831 if (!FuncInfo->CanLowerReturn) { 9832 // Create a virtual register for the sret pointer, and put in a copy 9833 // from the sret argument into it. 9834 SmallVector<EVT, 1> ValueVTs; 9835 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9836 F.getReturnType()->getPointerTo( 9837 DAG.getDataLayout().getAllocaAddrSpace()), 9838 ValueVTs); 9839 MVT VT = ValueVTs[0].getSimpleVT(); 9840 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 9841 Optional<ISD::NodeType> AssertOp = None; 9842 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 9843 nullptr, F.getCallingConv(), AssertOp); 9844 9845 MachineFunction& MF = SDB->DAG.getMachineFunction(); 9846 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 9847 Register SRetReg = 9848 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 9849 FuncInfo->DemoteRegister = SRetReg; 9850 NewRoot = 9851 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 9852 DAG.setRoot(NewRoot); 9853 9854 // i indexes lowered arguments. Bump it past the hidden sret argument. 9855 ++i; 9856 } 9857 9858 SmallVector<SDValue, 4> Chains; 9859 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 9860 for (const Argument &Arg : F.args()) { 9861 SmallVector<SDValue, 4> ArgValues; 9862 SmallVector<EVT, 4> ValueVTs; 9863 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9864 unsigned NumValues = ValueVTs.size(); 9865 if (NumValues == 0) 9866 continue; 9867 9868 bool ArgHasUses = !Arg.use_empty(); 9869 9870 // Elide the copying store if the target loaded this argument from a 9871 // suitable fixed stack object. 9872 if (Ins[i].Flags.isCopyElisionCandidate()) { 9873 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 9874 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 9875 InVals[i], ArgHasUses); 9876 } 9877 9878 // If this argument is unused then remember its value. It is used to generate 9879 // debugging information. 9880 bool isSwiftErrorArg = 9881 TLI->supportSwiftError() && 9882 Arg.hasAttribute(Attribute::SwiftError); 9883 if (!ArgHasUses && !isSwiftErrorArg) { 9884 SDB->setUnusedArgValue(&Arg, InVals[i]); 9885 9886 // Also remember any frame index for use in FastISel. 9887 if (FrameIndexSDNode *FI = 9888 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 9889 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9890 } 9891 9892 for (unsigned Val = 0; Val != NumValues; ++Val) { 9893 EVT VT = ValueVTs[Val]; 9894 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 9895 F.getCallingConv(), VT); 9896 unsigned NumParts = TLI->getNumRegistersForCallingConv( 9897 *CurDAG->getContext(), F.getCallingConv(), VT); 9898 9899 // Even an apparent 'unused' swifterror argument needs to be returned. So 9900 // we do generate a copy for it that can be used on return from the 9901 // function. 9902 if (ArgHasUses || isSwiftErrorArg) { 9903 Optional<ISD::NodeType> AssertOp; 9904 if (Arg.hasAttribute(Attribute::SExt)) 9905 AssertOp = ISD::AssertSext; 9906 else if (Arg.hasAttribute(Attribute::ZExt)) 9907 AssertOp = ISD::AssertZext; 9908 9909 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 9910 PartVT, VT, nullptr, 9911 F.getCallingConv(), AssertOp)); 9912 } 9913 9914 i += NumParts; 9915 } 9916 9917 // We don't need to do anything else for unused arguments. 9918 if (ArgValues.empty()) 9919 continue; 9920 9921 // Note down frame index. 9922 if (FrameIndexSDNode *FI = 9923 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 9924 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9925 9926 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 9927 SDB->getCurSDLoc()); 9928 9929 SDB->setValue(&Arg, Res); 9930 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 9931 // We want to associate the argument with the frame index, among 9932 // involved operands, that correspond to the lowest address. The 9933 // getCopyFromParts function, called earlier, is swapping the order of 9934 // the operands to BUILD_PAIR depending on endianness. The result of 9935 // that swapping is that the least significant bits of the argument will 9936 // be in the first operand of the BUILD_PAIR node, and the most 9937 // significant bits will be in the second operand. 9938 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 9939 if (LoadSDNode *LNode = 9940 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 9941 if (FrameIndexSDNode *FI = 9942 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 9943 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9944 } 9945 9946 // Analyses past this point are naive and don't expect an assertion. 9947 if (Res.getOpcode() == ISD::AssertZext) 9948 Res = Res.getOperand(0); 9949 9950 // Update the SwiftErrorVRegDefMap. 9951 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 9952 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9953 if (Register::isVirtualRegister(Reg)) 9954 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 9955 Reg); 9956 } 9957 9958 // If this argument is live outside of the entry block, insert a copy from 9959 // wherever we got it to the vreg that other BB's will reference it as. 9960 if (Res.getOpcode() == ISD::CopyFromReg) { 9961 // If we can, though, try to skip creating an unnecessary vreg. 9962 // FIXME: This isn't very clean... it would be nice to make this more 9963 // general. 9964 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9965 if (Register::isVirtualRegister(Reg)) { 9966 FuncInfo->ValueMap[&Arg] = Reg; 9967 continue; 9968 } 9969 } 9970 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 9971 FuncInfo->InitializeRegForValue(&Arg); 9972 SDB->CopyToExportRegsIfNeeded(&Arg); 9973 } 9974 } 9975 9976 if (!Chains.empty()) { 9977 Chains.push_back(NewRoot); 9978 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 9979 } 9980 9981 DAG.setRoot(NewRoot); 9982 9983 assert(i == InVals.size() && "Argument register count mismatch!"); 9984 9985 // If any argument copy elisions occurred and we have debug info, update the 9986 // stale frame indices used in the dbg.declare variable info table. 9987 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 9988 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 9989 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 9990 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 9991 if (I != ArgCopyElisionFrameIndexMap.end()) 9992 VI.Slot = I->second; 9993 } 9994 } 9995 9996 // Finally, if the target has anything special to do, allow it to do so. 9997 EmitFunctionEntryCode(); 9998 } 9999 10000 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 10001 /// ensure constants are generated when needed. Remember the virtual registers 10002 /// that need to be added to the Machine PHI nodes as input. We cannot just 10003 /// directly add them, because expansion might result in multiple MBB's for one 10004 /// BB. As such, the start of the BB might correspond to a different MBB than 10005 /// the end. 10006 void 10007 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 10008 const Instruction *TI = LLVMBB->getTerminator(); 10009 10010 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 10011 10012 // Check PHI nodes in successors that expect a value to be available from this 10013 // block. 10014 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 10015 const BasicBlock *SuccBB = TI->getSuccessor(succ); 10016 if (!isa<PHINode>(SuccBB->begin())) continue; 10017 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 10018 10019 // If this terminator has multiple identical successors (common for 10020 // switches), only handle each succ once. 10021 if (!SuccsHandled.insert(SuccMBB).second) 10022 continue; 10023 10024 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 10025 10026 // At this point we know that there is a 1-1 correspondence between LLVM PHI 10027 // nodes and Machine PHI nodes, but the incoming operands have not been 10028 // emitted yet. 10029 for (const PHINode &PN : SuccBB->phis()) { 10030 // Ignore dead phi's. 10031 if (PN.use_empty()) 10032 continue; 10033 10034 // Skip empty types 10035 if (PN.getType()->isEmptyTy()) 10036 continue; 10037 10038 unsigned Reg; 10039 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 10040 10041 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 10042 unsigned &RegOut = ConstantsOut[C]; 10043 if (RegOut == 0) { 10044 RegOut = FuncInfo.CreateRegs(C); 10045 CopyValueToVirtualRegister(C, RegOut); 10046 } 10047 Reg = RegOut; 10048 } else { 10049 DenseMap<const Value *, unsigned>::iterator I = 10050 FuncInfo.ValueMap.find(PHIOp); 10051 if (I != FuncInfo.ValueMap.end()) 10052 Reg = I->second; 10053 else { 10054 assert(isa<AllocaInst>(PHIOp) && 10055 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 10056 "Didn't codegen value into a register!??"); 10057 Reg = FuncInfo.CreateRegs(PHIOp); 10058 CopyValueToVirtualRegister(PHIOp, Reg); 10059 } 10060 } 10061 10062 // Remember that this register needs to added to the machine PHI node as 10063 // the input for this MBB. 10064 SmallVector<EVT, 4> ValueVTs; 10065 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10066 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 10067 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 10068 EVT VT = ValueVTs[vti]; 10069 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 10070 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 10071 FuncInfo.PHINodesToUpdate.push_back( 10072 std::make_pair(&*MBBI++, Reg + i)); 10073 Reg += NumRegisters; 10074 } 10075 } 10076 } 10077 10078 ConstantsOut.clear(); 10079 } 10080 10081 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 10082 /// is 0. 10083 MachineBasicBlock * 10084 SelectionDAGBuilder::StackProtectorDescriptor:: 10085 AddSuccessorMBB(const BasicBlock *BB, 10086 MachineBasicBlock *ParentMBB, 10087 bool IsLikely, 10088 MachineBasicBlock *SuccMBB) { 10089 // If SuccBB has not been created yet, create it. 10090 if (!SuccMBB) { 10091 MachineFunction *MF = ParentMBB->getParent(); 10092 MachineFunction::iterator BBI(ParentMBB); 10093 SuccMBB = MF->CreateMachineBasicBlock(BB); 10094 MF->insert(++BBI, SuccMBB); 10095 } 10096 // Add it as a successor of ParentMBB. 10097 ParentMBB->addSuccessor( 10098 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 10099 return SuccMBB; 10100 } 10101 10102 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 10103 MachineFunction::iterator I(MBB); 10104 if (++I == FuncInfo.MF->end()) 10105 return nullptr; 10106 return &*I; 10107 } 10108 10109 /// During lowering new call nodes can be created (such as memset, etc.). 10110 /// Those will become new roots of the current DAG, but complications arise 10111 /// when they are tail calls. In such cases, the call lowering will update 10112 /// the root, but the builder still needs to know that a tail call has been 10113 /// lowered in order to avoid generating an additional return. 10114 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 10115 // If the node is null, we do have a tail call. 10116 if (MaybeTC.getNode() != nullptr) 10117 DAG.setRoot(MaybeTC); 10118 else 10119 HasTailCall = true; 10120 } 10121 10122 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10123 MachineBasicBlock *SwitchMBB, 10124 MachineBasicBlock *DefaultMBB) { 10125 MachineFunction *CurMF = FuncInfo.MF; 10126 MachineBasicBlock *NextMBB = nullptr; 10127 MachineFunction::iterator BBI(W.MBB); 10128 if (++BBI != FuncInfo.MF->end()) 10129 NextMBB = &*BBI; 10130 10131 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10132 10133 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10134 10135 if (Size == 2 && W.MBB == SwitchMBB) { 10136 // If any two of the cases has the same destination, and if one value 10137 // is the same as the other, but has one bit unset that the other has set, 10138 // use bit manipulation to do two compares at once. For example: 10139 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10140 // TODO: This could be extended to merge any 2 cases in switches with 3 10141 // cases. 10142 // TODO: Handle cases where W.CaseBB != SwitchBB. 10143 CaseCluster &Small = *W.FirstCluster; 10144 CaseCluster &Big = *W.LastCluster; 10145 10146 if (Small.Low == Small.High && Big.Low == Big.High && 10147 Small.MBB == Big.MBB) { 10148 const APInt &SmallValue = Small.Low->getValue(); 10149 const APInt &BigValue = Big.Low->getValue(); 10150 10151 // Check that there is only one bit different. 10152 APInt CommonBit = BigValue ^ SmallValue; 10153 if (CommonBit.isPowerOf2()) { 10154 SDValue CondLHS = getValue(Cond); 10155 EVT VT = CondLHS.getValueType(); 10156 SDLoc DL = getCurSDLoc(); 10157 10158 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10159 DAG.getConstant(CommonBit, DL, VT)); 10160 SDValue Cond = DAG.getSetCC( 10161 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10162 ISD::SETEQ); 10163 10164 // Update successor info. 10165 // Both Small and Big will jump to Small.BB, so we sum up the 10166 // probabilities. 10167 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10168 if (BPI) 10169 addSuccessorWithProb( 10170 SwitchMBB, DefaultMBB, 10171 // The default destination is the first successor in IR. 10172 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10173 else 10174 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10175 10176 // Insert the true branch. 10177 SDValue BrCond = 10178 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10179 DAG.getBasicBlock(Small.MBB)); 10180 // Insert the false branch. 10181 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10182 DAG.getBasicBlock(DefaultMBB)); 10183 10184 DAG.setRoot(BrCond); 10185 return; 10186 } 10187 } 10188 } 10189 10190 if (TM.getOptLevel() != CodeGenOpt::None) { 10191 // Here, we order cases by probability so the most likely case will be 10192 // checked first. However, two clusters can have the same probability in 10193 // which case their relative ordering is non-deterministic. So we use Low 10194 // as a tie-breaker as clusters are guaranteed to never overlap. 10195 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10196 [](const CaseCluster &a, const CaseCluster &b) { 10197 return a.Prob != b.Prob ? 10198 a.Prob > b.Prob : 10199 a.Low->getValue().slt(b.Low->getValue()); 10200 }); 10201 10202 // Rearrange the case blocks so that the last one falls through if possible 10203 // without changing the order of probabilities. 10204 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10205 --I; 10206 if (I->Prob > W.LastCluster->Prob) 10207 break; 10208 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10209 std::swap(*I, *W.LastCluster); 10210 break; 10211 } 10212 } 10213 } 10214 10215 // Compute total probability. 10216 BranchProbability DefaultProb = W.DefaultProb; 10217 BranchProbability UnhandledProbs = DefaultProb; 10218 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10219 UnhandledProbs += I->Prob; 10220 10221 MachineBasicBlock *CurMBB = W.MBB; 10222 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10223 bool FallthroughUnreachable = false; 10224 MachineBasicBlock *Fallthrough; 10225 if (I == W.LastCluster) { 10226 // For the last cluster, fall through to the default destination. 10227 Fallthrough = DefaultMBB; 10228 FallthroughUnreachable = isa<UnreachableInst>( 10229 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 10230 } else { 10231 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10232 CurMF->insert(BBI, Fallthrough); 10233 // Put Cond in a virtual register to make it available from the new blocks. 10234 ExportFromCurrentBlock(Cond); 10235 } 10236 UnhandledProbs -= I->Prob; 10237 10238 switch (I->Kind) { 10239 case CC_JumpTable: { 10240 // FIXME: Optimize away range check based on pivot comparisons. 10241 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 10242 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 10243 10244 // The jump block hasn't been inserted yet; insert it here. 10245 MachineBasicBlock *JumpMBB = JT->MBB; 10246 CurMF->insert(BBI, JumpMBB); 10247 10248 auto JumpProb = I->Prob; 10249 auto FallthroughProb = UnhandledProbs; 10250 10251 // If the default statement is a target of the jump table, we evenly 10252 // distribute the default probability to successors of CurMBB. Also 10253 // update the probability on the edge from JumpMBB to Fallthrough. 10254 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10255 SE = JumpMBB->succ_end(); 10256 SI != SE; ++SI) { 10257 if (*SI == DefaultMBB) { 10258 JumpProb += DefaultProb / 2; 10259 FallthroughProb -= DefaultProb / 2; 10260 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10261 JumpMBB->normalizeSuccProbs(); 10262 break; 10263 } 10264 } 10265 10266 if (FallthroughUnreachable) { 10267 // Skip the range check if the fallthrough block is unreachable. 10268 JTH->OmitRangeCheck = true; 10269 } 10270 10271 if (!JTH->OmitRangeCheck) 10272 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10273 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10274 CurMBB->normalizeSuccProbs(); 10275 10276 // The jump table header will be inserted in our current block, do the 10277 // range check, and fall through to our fallthrough block. 10278 JTH->HeaderBB = CurMBB; 10279 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10280 10281 // If we're in the right place, emit the jump table header right now. 10282 if (CurMBB == SwitchMBB) { 10283 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10284 JTH->Emitted = true; 10285 } 10286 break; 10287 } 10288 case CC_BitTests: { 10289 // FIXME: Optimize away range check based on pivot comparisons. 10290 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 10291 10292 // The bit test blocks haven't been inserted yet; insert them here. 10293 for (BitTestCase &BTC : BTB->Cases) 10294 CurMF->insert(BBI, BTC.ThisBB); 10295 10296 // Fill in fields of the BitTestBlock. 10297 BTB->Parent = CurMBB; 10298 BTB->Default = Fallthrough; 10299 10300 BTB->DefaultProb = UnhandledProbs; 10301 // If the cases in bit test don't form a contiguous range, we evenly 10302 // distribute the probability on the edge to Fallthrough to two 10303 // successors of CurMBB. 10304 if (!BTB->ContiguousRange) { 10305 BTB->Prob += DefaultProb / 2; 10306 BTB->DefaultProb -= DefaultProb / 2; 10307 } 10308 10309 if (FallthroughUnreachable) { 10310 // Skip the range check if the fallthrough block is unreachable. 10311 BTB->OmitRangeCheck = true; 10312 } 10313 10314 // If we're in the right place, emit the bit test header right now. 10315 if (CurMBB == SwitchMBB) { 10316 visitBitTestHeader(*BTB, SwitchMBB); 10317 BTB->Emitted = true; 10318 } 10319 break; 10320 } 10321 case CC_Range: { 10322 const Value *RHS, *LHS, *MHS; 10323 ISD::CondCode CC; 10324 if (I->Low == I->High) { 10325 // Check Cond == I->Low. 10326 CC = ISD::SETEQ; 10327 LHS = Cond; 10328 RHS=I->Low; 10329 MHS = nullptr; 10330 } else { 10331 // Check I->Low <= Cond <= I->High. 10332 CC = ISD::SETLE; 10333 LHS = I->Low; 10334 MHS = Cond; 10335 RHS = I->High; 10336 } 10337 10338 // If Fallthrough is unreachable, fold away the comparison. 10339 if (FallthroughUnreachable) 10340 CC = ISD::SETTRUE; 10341 10342 // The false probability is the sum of all unhandled cases. 10343 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10344 getCurSDLoc(), I->Prob, UnhandledProbs); 10345 10346 if (CurMBB == SwitchMBB) 10347 visitSwitchCase(CB, SwitchMBB); 10348 else 10349 SL->SwitchCases.push_back(CB); 10350 10351 break; 10352 } 10353 } 10354 CurMBB = Fallthrough; 10355 } 10356 } 10357 10358 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10359 CaseClusterIt First, 10360 CaseClusterIt Last) { 10361 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10362 if (X.Prob != CC.Prob) 10363 return X.Prob > CC.Prob; 10364 10365 // Ties are broken by comparing the case value. 10366 return X.Low->getValue().slt(CC.Low->getValue()); 10367 }); 10368 } 10369 10370 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10371 const SwitchWorkListItem &W, 10372 Value *Cond, 10373 MachineBasicBlock *SwitchMBB) { 10374 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10375 "Clusters not sorted?"); 10376 10377 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10378 10379 // Balance the tree based on branch probabilities to create a near-optimal (in 10380 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10381 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10382 CaseClusterIt LastLeft = W.FirstCluster; 10383 CaseClusterIt FirstRight = W.LastCluster; 10384 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10385 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10386 10387 // Move LastLeft and FirstRight towards each other from opposite directions to 10388 // find a partitioning of the clusters which balances the probability on both 10389 // sides. If LeftProb and RightProb are equal, alternate which side is 10390 // taken to ensure 0-probability nodes are distributed evenly. 10391 unsigned I = 0; 10392 while (LastLeft + 1 < FirstRight) { 10393 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10394 LeftProb += (++LastLeft)->Prob; 10395 else 10396 RightProb += (--FirstRight)->Prob; 10397 I++; 10398 } 10399 10400 while (true) { 10401 // Our binary search tree differs from a typical BST in that ours can have up 10402 // to three values in each leaf. The pivot selection above doesn't take that 10403 // into account, which means the tree might require more nodes and be less 10404 // efficient. We compensate for this here. 10405 10406 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10407 unsigned NumRight = W.LastCluster - FirstRight + 1; 10408 10409 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10410 // If one side has less than 3 clusters, and the other has more than 3, 10411 // consider taking a cluster from the other side. 10412 10413 if (NumLeft < NumRight) { 10414 // Consider moving the first cluster on the right to the left side. 10415 CaseCluster &CC = *FirstRight; 10416 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10417 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10418 if (LeftSideRank <= RightSideRank) { 10419 // Moving the cluster to the left does not demote it. 10420 ++LastLeft; 10421 ++FirstRight; 10422 continue; 10423 } 10424 } else { 10425 assert(NumRight < NumLeft); 10426 // Consider moving the last element on the left to the right side. 10427 CaseCluster &CC = *LastLeft; 10428 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10429 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10430 if (RightSideRank <= LeftSideRank) { 10431 // Moving the cluster to the right does not demot it. 10432 --LastLeft; 10433 --FirstRight; 10434 continue; 10435 } 10436 } 10437 } 10438 break; 10439 } 10440 10441 assert(LastLeft + 1 == FirstRight); 10442 assert(LastLeft >= W.FirstCluster); 10443 assert(FirstRight <= W.LastCluster); 10444 10445 // Use the first element on the right as pivot since we will make less-than 10446 // comparisons against it. 10447 CaseClusterIt PivotCluster = FirstRight; 10448 assert(PivotCluster > W.FirstCluster); 10449 assert(PivotCluster <= W.LastCluster); 10450 10451 CaseClusterIt FirstLeft = W.FirstCluster; 10452 CaseClusterIt LastRight = W.LastCluster; 10453 10454 const ConstantInt *Pivot = PivotCluster->Low; 10455 10456 // New blocks will be inserted immediately after the current one. 10457 MachineFunction::iterator BBI(W.MBB); 10458 ++BBI; 10459 10460 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10461 // we can branch to its destination directly if it's squeezed exactly in 10462 // between the known lower bound and Pivot - 1. 10463 MachineBasicBlock *LeftMBB; 10464 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10465 FirstLeft->Low == W.GE && 10466 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10467 LeftMBB = FirstLeft->MBB; 10468 } else { 10469 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10470 FuncInfo.MF->insert(BBI, LeftMBB); 10471 WorkList.push_back( 10472 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10473 // Put Cond in a virtual register to make it available from the new blocks. 10474 ExportFromCurrentBlock(Cond); 10475 } 10476 10477 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10478 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10479 // directly if RHS.High equals the current upper bound. 10480 MachineBasicBlock *RightMBB; 10481 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10482 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10483 RightMBB = FirstRight->MBB; 10484 } else { 10485 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10486 FuncInfo.MF->insert(BBI, RightMBB); 10487 WorkList.push_back( 10488 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10489 // Put Cond in a virtual register to make it available from the new blocks. 10490 ExportFromCurrentBlock(Cond); 10491 } 10492 10493 // Create the CaseBlock record that will be used to lower the branch. 10494 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10495 getCurSDLoc(), LeftProb, RightProb); 10496 10497 if (W.MBB == SwitchMBB) 10498 visitSwitchCase(CB, SwitchMBB); 10499 else 10500 SL->SwitchCases.push_back(CB); 10501 } 10502 10503 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10504 // from the swith statement. 10505 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10506 BranchProbability PeeledCaseProb) { 10507 if (PeeledCaseProb == BranchProbability::getOne()) 10508 return BranchProbability::getZero(); 10509 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10510 10511 uint32_t Numerator = CaseProb.getNumerator(); 10512 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10513 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10514 } 10515 10516 // Try to peel the top probability case if it exceeds the threshold. 10517 // Return current MachineBasicBlock for the switch statement if the peeling 10518 // does not occur. 10519 // If the peeling is performed, return the newly created MachineBasicBlock 10520 // for the peeled switch statement. Also update Clusters to remove the peeled 10521 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10522 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10523 const SwitchInst &SI, CaseClusterVector &Clusters, 10524 BranchProbability &PeeledCaseProb) { 10525 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10526 // Don't perform if there is only one cluster or optimizing for size. 10527 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10528 TM.getOptLevel() == CodeGenOpt::None || 10529 SwitchMBB->getParent()->getFunction().hasMinSize()) 10530 return SwitchMBB; 10531 10532 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10533 unsigned PeeledCaseIndex = 0; 10534 bool SwitchPeeled = false; 10535 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10536 CaseCluster &CC = Clusters[Index]; 10537 if (CC.Prob < TopCaseProb) 10538 continue; 10539 TopCaseProb = CC.Prob; 10540 PeeledCaseIndex = Index; 10541 SwitchPeeled = true; 10542 } 10543 if (!SwitchPeeled) 10544 return SwitchMBB; 10545 10546 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10547 << TopCaseProb << "\n"); 10548 10549 // Record the MBB for the peeled switch statement. 10550 MachineFunction::iterator BBI(SwitchMBB); 10551 ++BBI; 10552 MachineBasicBlock *PeeledSwitchMBB = 10553 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10554 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10555 10556 ExportFromCurrentBlock(SI.getCondition()); 10557 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10558 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10559 nullptr, nullptr, TopCaseProb.getCompl()}; 10560 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10561 10562 Clusters.erase(PeeledCaseIt); 10563 for (CaseCluster &CC : Clusters) { 10564 LLVM_DEBUG( 10565 dbgs() << "Scale the probablity for one cluster, before scaling: " 10566 << CC.Prob << "\n"); 10567 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10568 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10569 } 10570 PeeledCaseProb = TopCaseProb; 10571 return PeeledSwitchMBB; 10572 } 10573 10574 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10575 // Extract cases from the switch. 10576 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10577 CaseClusterVector Clusters; 10578 Clusters.reserve(SI.getNumCases()); 10579 for (auto I : SI.cases()) { 10580 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10581 const ConstantInt *CaseVal = I.getCaseValue(); 10582 BranchProbability Prob = 10583 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10584 : BranchProbability(1, SI.getNumCases() + 1); 10585 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10586 } 10587 10588 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10589 10590 // Cluster adjacent cases with the same destination. We do this at all 10591 // optimization levels because it's cheap to do and will make codegen faster 10592 // if there are many clusters. 10593 sortAndRangeify(Clusters); 10594 10595 // The branch probablity of the peeled case. 10596 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10597 MachineBasicBlock *PeeledSwitchMBB = 10598 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10599 10600 // If there is only the default destination, jump there directly. 10601 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10602 if (Clusters.empty()) { 10603 assert(PeeledSwitchMBB == SwitchMBB); 10604 SwitchMBB->addSuccessor(DefaultMBB); 10605 if (DefaultMBB != NextBlock(SwitchMBB)) { 10606 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10607 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10608 } 10609 return; 10610 } 10611 10612 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 10613 SL->findBitTestClusters(Clusters, &SI); 10614 10615 LLVM_DEBUG({ 10616 dbgs() << "Case clusters: "; 10617 for (const CaseCluster &C : Clusters) { 10618 if (C.Kind == CC_JumpTable) 10619 dbgs() << "JT:"; 10620 if (C.Kind == CC_BitTests) 10621 dbgs() << "BT:"; 10622 10623 C.Low->getValue().print(dbgs(), true); 10624 if (C.Low != C.High) { 10625 dbgs() << '-'; 10626 C.High->getValue().print(dbgs(), true); 10627 } 10628 dbgs() << ' '; 10629 } 10630 dbgs() << '\n'; 10631 }); 10632 10633 assert(!Clusters.empty()); 10634 SwitchWorkList WorkList; 10635 CaseClusterIt First = Clusters.begin(); 10636 CaseClusterIt Last = Clusters.end() - 1; 10637 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10638 // Scale the branchprobability for DefaultMBB if the peel occurs and 10639 // DefaultMBB is not replaced. 10640 if (PeeledCaseProb != BranchProbability::getZero() && 10641 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10642 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10643 WorkList.push_back( 10644 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10645 10646 while (!WorkList.empty()) { 10647 SwitchWorkListItem W = WorkList.back(); 10648 WorkList.pop_back(); 10649 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10650 10651 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10652 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 10653 // For optimized builds, lower large range as a balanced binary tree. 10654 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10655 continue; 10656 } 10657 10658 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10659 } 10660 } 10661 10662 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 10663 SDValue N = getValue(I.getOperand(0)); 10664 setValue(&I, N); 10665 } 10666