xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 0395553e35d19995b3af7d2450b2b5c35da362f1)
1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #define DEBUG_TYPE "isel"
15 #include "SDNodeDbgValue.h"
16 #include "SelectionDAGBuilder.h"
17 #include "FunctionLoweringInfo.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/ConstantFolding.h"
22 #include "llvm/Constants.h"
23 #include "llvm/CallingConv.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/Function.h"
26 #include "llvm/GlobalVariable.h"
27 #include "llvm/InlineAsm.h"
28 #include "llvm/Instructions.h"
29 #include "llvm/Intrinsics.h"
30 #include "llvm/IntrinsicInst.h"
31 #include "llvm/LLVMContext.h"
32 #include "llvm/Module.h"
33 #include "llvm/CodeGen/Analysis.h"
34 #include "llvm/CodeGen/FastISel.h"
35 #include "llvm/CodeGen/GCStrategy.h"
36 #include "llvm/CodeGen/GCMetadata.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/MachineFrameInfo.h"
39 #include "llvm/CodeGen/MachineInstrBuilder.h"
40 #include "llvm/CodeGen/MachineJumpTableInfo.h"
41 #include "llvm/CodeGen/MachineModuleInfo.h"
42 #include "llvm/CodeGen/MachineRegisterInfo.h"
43 #include "llvm/CodeGen/PseudoSourceValue.h"
44 #include "llvm/CodeGen/SelectionDAG.h"
45 #include "llvm/Analysis/DebugInfo.h"
46 #include "llvm/Target/TargetRegisterInfo.h"
47 #include "llvm/Target/TargetData.h"
48 #include "llvm/Target/TargetFrameInfo.h"
49 #include "llvm/Target/TargetInstrInfo.h"
50 #include "llvm/Target/TargetIntrinsicInfo.h"
51 #include "llvm/Target/TargetLowering.h"
52 #include "llvm/Target/TargetOptions.h"
53 #include "llvm/Support/Compiler.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/MathExtras.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include <algorithm>
60 using namespace llvm;
61 
62 /// LimitFloatPrecision - Generate low-precision inline sequences for
63 /// some float libcalls (6, 8 or 12 bits).
64 static unsigned LimitFloatPrecision;
65 
66 static cl::opt<unsigned, true>
67 LimitFPPrecision("limit-float-precision",
68                  cl::desc("Generate low-precision inline sequences "
69                           "for some float libcalls"),
70                  cl::location(LimitFloatPrecision),
71                  cl::init(0));
72 
73 namespace {
74   /// RegsForValue - This struct represents the registers (physical or virtual)
75   /// that a particular set of values is assigned, and the type information
76   /// about the value. The most common situation is to represent one value at a
77   /// time, but struct or array values are handled element-wise as multiple
78   /// values.  The splitting of aggregates is performed recursively, so that we
79   /// never have aggregate-typed registers. The values at this point do not
80   /// necessarily have legal types, so each value may require one or more
81   /// registers of some legal type.
82   ///
83   struct RegsForValue {
84     /// TLI - The TargetLowering object.
85     ///
86     const TargetLowering *TLI;
87 
88     /// ValueVTs - The value types of the values, which may not be legal, and
89     /// may need be promoted or synthesized from one or more registers.
90     ///
91     SmallVector<EVT, 4> ValueVTs;
92 
93     /// RegVTs - The value types of the registers. This is the same size as
94     /// ValueVTs and it records, for each value, what the type of the assigned
95     /// register or registers are. (Individual values are never synthesized
96     /// from more than one type of register.)
97     ///
98     /// With virtual registers, the contents of RegVTs is redundant with TLI's
99     /// getRegisterType member function, however when with physical registers
100     /// it is necessary to have a separate record of the types.
101     ///
102     SmallVector<EVT, 4> RegVTs;
103 
104     /// Regs - This list holds the registers assigned to the values.
105     /// Each legal or promoted value requires one register, and each
106     /// expanded value requires multiple registers.
107     ///
108     SmallVector<unsigned, 4> Regs;
109 
110     RegsForValue() : TLI(0) {}
111 
112     RegsForValue(const TargetLowering &tli,
113                  const SmallVector<unsigned, 4> &regs,
114                  EVT regvt, EVT valuevt)
115       : TLI(&tli),  ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
116     RegsForValue(const TargetLowering &tli,
117                  const SmallVector<unsigned, 4> &regs,
118                  const SmallVector<EVT, 4> &regvts,
119                  const SmallVector<EVT, 4> &valuevts)
120       : TLI(&tli), ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {}
121     RegsForValue(LLVMContext &Context, const TargetLowering &tli,
122                  unsigned Reg, const Type *Ty) : TLI(&tli) {
123       ComputeValueVTs(tli, Ty, ValueVTs);
124 
125       for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
126         EVT ValueVT = ValueVTs[Value];
127         unsigned NumRegs = TLI->getNumRegisters(Context, ValueVT);
128         EVT RegisterVT = TLI->getRegisterType(Context, ValueVT);
129         for (unsigned i = 0; i != NumRegs; ++i)
130           Regs.push_back(Reg + i);
131         RegVTs.push_back(RegisterVT);
132         Reg += NumRegs;
133       }
134     }
135 
136     /// areValueTypesLegal - Return true if types of all the values are legal.
137     bool areValueTypesLegal() {
138       for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
139         EVT RegisterVT = RegVTs[Value];
140         if (!TLI->isTypeLegal(RegisterVT))
141           return false;
142       }
143       return true;
144     }
145 
146 
147     /// append - Add the specified values to this one.
148     void append(const RegsForValue &RHS) {
149       TLI = RHS.TLI;
150       ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
151       RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
152       Regs.append(RHS.Regs.begin(), RHS.Regs.end());
153     }
154 
155 
156     /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
157     /// this value and returns the result as a ValueVTs value.  This uses
158     /// Chain/Flag as the input and updates them for the output Chain/Flag.
159     /// If the Flag pointer is NULL, no flag is used.
160     SDValue getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl,
161                             SDValue &Chain, SDValue *Flag) const;
162 
163     /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
164     /// specified value into the registers specified by this object.  This uses
165     /// Chain/Flag as the input and updates them for the output Chain/Flag.
166     /// If the Flag pointer is NULL, no flag is used.
167     void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
168                        SDValue &Chain, SDValue *Flag) const;
169 
170     /// AddInlineAsmOperands - Add this value to the specified inlineasm node
171     /// operand list.  This adds the code marker, matching input operand index
172     /// (if applicable), and includes the number of values added into it.
173     void AddInlineAsmOperands(unsigned Kind,
174                               bool HasMatching, unsigned MatchingIdx,
175                               SelectionDAG &DAG,
176                               std::vector<SDValue> &Ops) const;
177   };
178 }
179 
180 /// getCopyFromParts - Create a value that contains the specified legal parts
181 /// combined into the value they represent.  If the parts combine to a type
182 /// larger then ValueVT then AssertOp can be used to specify whether the extra
183 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
184 /// (ISD::AssertSext).
185 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc dl,
186                                 const SDValue *Parts,
187                                 unsigned NumParts, EVT PartVT, EVT ValueVT,
188                                 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
189   assert(NumParts > 0 && "No parts to assemble!");
190   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
191   SDValue Val = Parts[0];
192 
193   if (NumParts > 1) {
194     // Assemble the value from multiple parts.
195     if (!ValueVT.isVector() && ValueVT.isInteger()) {
196       unsigned PartBits = PartVT.getSizeInBits();
197       unsigned ValueBits = ValueVT.getSizeInBits();
198 
199       // Assemble the power of 2 part.
200       unsigned RoundParts = NumParts & (NumParts - 1) ?
201         1 << Log2_32(NumParts) : NumParts;
202       unsigned RoundBits = PartBits * RoundParts;
203       EVT RoundVT = RoundBits == ValueBits ?
204         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
205       SDValue Lo, Hi;
206 
207       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
208 
209       if (RoundParts > 2) {
210         Lo = getCopyFromParts(DAG, dl, Parts, RoundParts / 2,
211                               PartVT, HalfVT);
212         Hi = getCopyFromParts(DAG, dl, Parts + RoundParts / 2,
213                               RoundParts / 2, PartVT, HalfVT);
214       } else {
215         Lo = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[0]);
216         Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[1]);
217       }
218 
219       if (TLI.isBigEndian())
220         std::swap(Lo, Hi);
221 
222       Val = DAG.getNode(ISD::BUILD_PAIR, dl, RoundVT, Lo, Hi);
223 
224       if (RoundParts < NumParts) {
225         // Assemble the trailing non-power-of-2 part.
226         unsigned OddParts = NumParts - RoundParts;
227         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
228         Hi = getCopyFromParts(DAG, dl,
229                               Parts + RoundParts, OddParts, PartVT, OddVT);
230 
231         // Combine the round and odd parts.
232         Lo = Val;
233         if (TLI.isBigEndian())
234           std::swap(Lo, Hi);
235         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
236         Hi = DAG.getNode(ISD::ANY_EXTEND, dl, TotalVT, Hi);
237         Hi = DAG.getNode(ISD::SHL, dl, TotalVT, Hi,
238                          DAG.getConstant(Lo.getValueType().getSizeInBits(),
239                                          TLI.getPointerTy()));
240         Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, TotalVT, Lo);
241         Val = DAG.getNode(ISD::OR, dl, TotalVT, Lo, Hi);
242       }
243     } else if (ValueVT.isVector()) {
244       // Handle a multi-element vector.
245       EVT IntermediateVT, RegisterVT;
246       unsigned NumIntermediates;
247       unsigned NumRegs =
248         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
249                                    NumIntermediates, RegisterVT);
250       assert(NumRegs == NumParts
251              && "Part count doesn't match vector breakdown!");
252       NumParts = NumRegs; // Silence a compiler warning.
253       assert(RegisterVT == PartVT
254              && "Part type doesn't match vector breakdown!");
255       assert(RegisterVT == Parts[0].getValueType() &&
256              "Part type doesn't match part!");
257 
258       // Assemble the parts into intermediate operands.
259       SmallVector<SDValue, 8> Ops(NumIntermediates);
260       if (NumIntermediates == NumParts) {
261         // If the register was not expanded, truncate or copy the value,
262         // as appropriate.
263         for (unsigned i = 0; i != NumParts; ++i)
264           Ops[i] = getCopyFromParts(DAG, dl, &Parts[i], 1,
265                                     PartVT, IntermediateVT);
266       } else if (NumParts > 0) {
267         // If the intermediate type was expanded, build the intermediate
268         // operands from the parts.
269         assert(NumParts % NumIntermediates == 0 &&
270                "Must expand into a divisible number of parts!");
271         unsigned Factor = NumParts / NumIntermediates;
272         for (unsigned i = 0; i != NumIntermediates; ++i)
273           Ops[i] = getCopyFromParts(DAG, dl, &Parts[i * Factor], Factor,
274                                     PartVT, IntermediateVT);
275       }
276 
277       // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
278       // intermediate operands.
279       Val = DAG.getNode(IntermediateVT.isVector() ?
280                         ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, dl,
281                         ValueVT, &Ops[0], NumIntermediates);
282     } else if (PartVT.isFloatingPoint()) {
283       // FP split into multiple FP parts (for ppcf128)
284       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
285              "Unexpected split");
286       SDValue Lo, Hi;
287       Lo = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[0]);
288       Hi = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[1]);
289       if (TLI.isBigEndian())
290         std::swap(Lo, Hi);
291       Val = DAG.getNode(ISD::BUILD_PAIR, dl, ValueVT, Lo, Hi);
292     } else {
293       // FP split into integer parts (soft fp)
294       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
295              !PartVT.isVector() && "Unexpected split");
296       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
297       Val = getCopyFromParts(DAG, dl, Parts, NumParts, PartVT, IntVT);
298     }
299   }
300 
301   // There is now one part, held in Val.  Correct it to match ValueVT.
302   PartVT = Val.getValueType();
303 
304   if (PartVT == ValueVT)
305     return Val;
306 
307   if (PartVT.isVector()) {
308     assert(ValueVT.isVector() && "Unknown vector conversion!");
309     return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val);
310   }
311 
312   if (ValueVT.isVector()) {
313     assert(ValueVT.getVectorElementType() == PartVT &&
314            ValueVT.getVectorNumElements() == 1 &&
315            "Only trivial scalar-to-vector conversions should get here!");
316     return DAG.getNode(ISD::BUILD_VECTOR, dl, ValueVT, Val);
317   }
318 
319   if (PartVT.isInteger() &&
320       ValueVT.isInteger()) {
321     if (ValueVT.bitsLT(PartVT)) {
322       // For a truncate, see if we have any information to
323       // indicate whether the truncated bits will always be
324       // zero or sign-extension.
325       if (AssertOp != ISD::DELETED_NODE)
326         Val = DAG.getNode(AssertOp, dl, PartVT, Val,
327                           DAG.getValueType(ValueVT));
328       return DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
329     } else {
330       return DAG.getNode(ISD::ANY_EXTEND, dl, ValueVT, Val);
331     }
332   }
333 
334   if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
335     if (ValueVT.bitsLT(Val.getValueType())) {
336       // FP_ROUND's are always exact here.
337       return DAG.getNode(ISD::FP_ROUND, dl, ValueVT, Val,
338                          DAG.getIntPtrConstant(1));
339     }
340 
341     return DAG.getNode(ISD::FP_EXTEND, dl, ValueVT, Val);
342   }
343 
344   if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
345     return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val);
346 
347   llvm_unreachable("Unknown mismatch!");
348   return SDValue();
349 }
350 
351 /// getCopyToParts - Create a series of nodes that contain the specified value
352 /// split into legal parts.  If the parts contain more bits than Val, then, for
353 /// integers, ExtendKind can be used to specify how to generate the extra bits.
354 static void getCopyToParts(SelectionDAG &DAG, DebugLoc dl,
355                            SDValue Val, SDValue *Parts, unsigned NumParts,
356                            EVT PartVT,
357                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
358   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
359   EVT PtrVT = TLI.getPointerTy();
360   EVT ValueVT = Val.getValueType();
361   unsigned PartBits = PartVT.getSizeInBits();
362   unsigned OrigNumParts = NumParts;
363   assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
364 
365   if (!NumParts)
366     return;
367 
368   if (!ValueVT.isVector()) {
369     if (PartVT == ValueVT) {
370       assert(NumParts == 1 && "No-op copy with multiple parts!");
371       Parts[0] = Val;
372       return;
373     }
374 
375     if (NumParts * PartBits > ValueVT.getSizeInBits()) {
376       // If the parts cover more bits than the value has, promote the value.
377       if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
378         assert(NumParts == 1 && "Do not know what to promote to!");
379         Val = DAG.getNode(ISD::FP_EXTEND, dl, PartVT, Val);
380       } else if (PartVT.isInteger() && ValueVT.isInteger()) {
381         ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
382         Val = DAG.getNode(ExtendKind, dl, ValueVT, Val);
383       } else {
384         llvm_unreachable("Unknown mismatch!");
385       }
386     } else if (PartBits == ValueVT.getSizeInBits()) {
387       // Different types of the same size.
388       assert(NumParts == 1 && PartVT != ValueVT);
389       Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val);
390     } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
391       // If the parts cover less bits than value has, truncate the value.
392       if (PartVT.isInteger() && ValueVT.isInteger()) {
393         ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
394         Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
395       } else {
396         llvm_unreachable("Unknown mismatch!");
397       }
398     }
399 
400     // The value may have changed - recompute ValueVT.
401     ValueVT = Val.getValueType();
402     assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
403            "Failed to tile the value with PartVT!");
404 
405     if (NumParts == 1) {
406       assert(PartVT == ValueVT && "Type conversion failed!");
407       Parts[0] = Val;
408       return;
409     }
410 
411     // Expand the value into multiple parts.
412     if (NumParts & (NumParts - 1)) {
413       // The number of parts is not a power of 2.  Split off and copy the tail.
414       assert(PartVT.isInteger() && ValueVT.isInteger() &&
415              "Do not know what to expand to!");
416       unsigned RoundParts = 1 << Log2_32(NumParts);
417       unsigned RoundBits = RoundParts * PartBits;
418       unsigned OddParts = NumParts - RoundParts;
419       SDValue OddVal = DAG.getNode(ISD::SRL, dl, ValueVT, Val,
420                                    DAG.getConstant(RoundBits,
421                                                    TLI.getPointerTy()));
422       getCopyToParts(DAG, dl, OddVal, Parts + RoundParts,
423                      OddParts, PartVT);
424 
425       if (TLI.isBigEndian())
426         // The odd parts were reversed by getCopyToParts - unreverse them.
427         std::reverse(Parts + RoundParts, Parts + NumParts);
428 
429       NumParts = RoundParts;
430       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
431       Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
432     }
433 
434     // The number of parts is a power of 2.  Repeatedly bisect the value using
435     // EXTRACT_ELEMENT.
436     Parts[0] = DAG.getNode(ISD::BIT_CONVERT, dl,
437                            EVT::getIntegerVT(*DAG.getContext(),
438                                              ValueVT.getSizeInBits()),
439                            Val);
440 
441     for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
442       for (unsigned i = 0; i < NumParts; i += StepSize) {
443         unsigned ThisBits = StepSize * PartBits / 2;
444         EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
445         SDValue &Part0 = Parts[i];
446         SDValue &Part1 = Parts[i+StepSize/2];
447 
448         Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
449                             ThisVT, Part0,
450                             DAG.getConstant(1, PtrVT));
451         Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
452                             ThisVT, Part0,
453                             DAG.getConstant(0, PtrVT));
454 
455         if (ThisBits == PartBits && ThisVT != PartVT) {
456           Part0 = DAG.getNode(ISD::BIT_CONVERT, dl,
457                                                 PartVT, Part0);
458           Part1 = DAG.getNode(ISD::BIT_CONVERT, dl,
459                                                 PartVT, Part1);
460         }
461       }
462     }
463 
464     if (TLI.isBigEndian())
465       std::reverse(Parts, Parts + OrigNumParts);
466 
467     return;
468   }
469 
470   // Vector ValueVT.
471   if (NumParts == 1) {
472     if (PartVT != ValueVT) {
473       if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
474         Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val);
475       } else {
476         assert(ValueVT.getVectorElementType() == PartVT &&
477                ValueVT.getVectorNumElements() == 1 &&
478                "Only trivial vector-to-scalar conversions should get here!");
479         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
480                           PartVT, Val,
481                           DAG.getConstant(0, PtrVT));
482       }
483     }
484 
485     Parts[0] = Val;
486     return;
487   }
488 
489   // Handle a multi-element vector.
490   EVT IntermediateVT, RegisterVT;
491   unsigned NumIntermediates;
492   unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
493                               IntermediateVT, NumIntermediates, RegisterVT);
494   unsigned NumElements = ValueVT.getVectorNumElements();
495 
496   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
497   NumParts = NumRegs; // Silence a compiler warning.
498   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
499 
500   // Split the vector into intermediate operands.
501   SmallVector<SDValue, 8> Ops(NumIntermediates);
502   for (unsigned i = 0; i != NumIntermediates; ++i) {
503     if (IntermediateVT.isVector())
504       Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl,
505                            IntermediateVT, Val,
506                            DAG.getConstant(i * (NumElements / NumIntermediates),
507                                            PtrVT));
508     else
509       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
510                            IntermediateVT, Val,
511                            DAG.getConstant(i, PtrVT));
512   }
513 
514   // Split the intermediate operands into legal parts.
515   if (NumParts == NumIntermediates) {
516     // If the register was not expanded, promote or copy the value,
517     // as appropriate.
518     for (unsigned i = 0; i != NumParts; ++i)
519       getCopyToParts(DAG, dl, Ops[i], &Parts[i], 1, PartVT);
520   } else if (NumParts > 0) {
521     // If the intermediate type was expanded, split each the value into
522     // legal parts.
523     assert(NumParts % NumIntermediates == 0 &&
524            "Must expand into a divisible number of parts!");
525     unsigned Factor = NumParts / NumIntermediates;
526     for (unsigned i = 0; i != NumIntermediates; ++i)
527       getCopyToParts(DAG, dl, Ops[i], &Parts[i*Factor], Factor, PartVT);
528   }
529 }
530 
531 
532 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
533   AA = &aa;
534   GFI = gfi;
535   TD = DAG.getTarget().getTargetData();
536 }
537 
538 /// clear - Clear out the current SelectionDAG and the associated
539 /// state and prepare this SelectionDAGBuilder object to be used
540 /// for a new block. This doesn't clear out information about
541 /// additional blocks that are needed to complete switch lowering
542 /// or PHI node updating; that information is cleared out as it is
543 /// consumed.
544 void SelectionDAGBuilder::clear() {
545   NodeMap.clear();
546   PendingLoads.clear();
547   PendingExports.clear();
548   EdgeMapping.clear();
549   DAG.clear();
550   CurDebugLoc = DebugLoc();
551   HasTailCall = false;
552 }
553 
554 /// getRoot - Return the current virtual root of the Selection DAG,
555 /// flushing any PendingLoad items. This must be done before emitting
556 /// a store or any other node that may need to be ordered after any
557 /// prior load instructions.
558 ///
559 SDValue SelectionDAGBuilder::getRoot() {
560   if (PendingLoads.empty())
561     return DAG.getRoot();
562 
563   if (PendingLoads.size() == 1) {
564     SDValue Root = PendingLoads[0];
565     DAG.setRoot(Root);
566     PendingLoads.clear();
567     return Root;
568   }
569 
570   // Otherwise, we have to make a token factor node.
571   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
572                                &PendingLoads[0], PendingLoads.size());
573   PendingLoads.clear();
574   DAG.setRoot(Root);
575   return Root;
576 }
577 
578 /// getControlRoot - Similar to getRoot, but instead of flushing all the
579 /// PendingLoad items, flush all the PendingExports items. It is necessary
580 /// to do this before emitting a terminator instruction.
581 ///
582 SDValue SelectionDAGBuilder::getControlRoot() {
583   SDValue Root = DAG.getRoot();
584 
585   if (PendingExports.empty())
586     return Root;
587 
588   // Turn all of the CopyToReg chains into one factored node.
589   if (Root.getOpcode() != ISD::EntryToken) {
590     unsigned i = 0, e = PendingExports.size();
591     for (; i != e; ++i) {
592       assert(PendingExports[i].getNode()->getNumOperands() > 1);
593       if (PendingExports[i].getNode()->getOperand(0) == Root)
594         break;  // Don't add the root if we already indirectly depend on it.
595     }
596 
597     if (i == e)
598       PendingExports.push_back(Root);
599   }
600 
601   Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
602                      &PendingExports[0],
603                      PendingExports.size());
604   PendingExports.clear();
605   DAG.setRoot(Root);
606   return Root;
607 }
608 
609 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
610   if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
611   DAG.AssignOrdering(Node, SDNodeOrder);
612 
613   for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
614     AssignOrderingToNode(Node->getOperand(I).getNode());
615 }
616 
617 void SelectionDAGBuilder::visit(const Instruction &I) {
618   // Set up outgoing PHI node register values before emitting the terminator.
619   if (isa<TerminatorInst>(&I))
620     HandlePHINodesInSuccessorBlocks(I.getParent());
621 
622   CurDebugLoc = I.getDebugLoc();
623 
624   visit(I.getOpcode(), I);
625 
626   if (!isa<TerminatorInst>(&I) && !HasTailCall)
627     CopyToExportRegsIfNeeded(&I);
628 
629   CurDebugLoc = DebugLoc();
630 }
631 
632 void SelectionDAGBuilder::visitPHI(const PHINode &) {
633   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
634 }
635 
636 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
637   // Note: this doesn't use InstVisitor, because it has to work with
638   // ConstantExpr's in addition to instructions.
639   switch (Opcode) {
640   default: llvm_unreachable("Unknown instruction type encountered!");
641     // Build the switch statement using the Instruction.def file.
642 #define HANDLE_INST(NUM, OPCODE, CLASS) \
643     case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
644 #include "llvm/Instruction.def"
645   }
646 
647   // Assign the ordering to the freshly created DAG nodes.
648   if (NodeMap.count(&I)) {
649     ++SDNodeOrder;
650     AssignOrderingToNode(getValue(&I).getNode());
651   }
652 }
653 
654 SDValue SelectionDAGBuilder::getValue(const Value *V) {
655   SDValue &N = NodeMap[V];
656   if (N.getNode()) return N;
657 
658   if (const Constant *C = dyn_cast<Constant>(V)) {
659     EVT VT = TLI.getValueType(V->getType(), true);
660 
661     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
662       return N = DAG.getConstant(*CI, VT);
663 
664     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
665       return N = DAG.getGlobalAddress(GV, VT);
666 
667     if (isa<ConstantPointerNull>(C))
668       return N = DAG.getConstant(0, TLI.getPointerTy());
669 
670     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
671       return N = DAG.getConstantFP(*CFP, VT);
672 
673     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
674       return N = DAG.getUNDEF(VT);
675 
676     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
677       visit(CE->getOpcode(), *CE);
678       SDValue N1 = NodeMap[V];
679       assert(N1.getNode() && "visit didn't populate the NodeMap!");
680       return N1;
681     }
682 
683     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
684       SmallVector<SDValue, 4> Constants;
685       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
686            OI != OE; ++OI) {
687         SDNode *Val = getValue(*OI).getNode();
688         // If the operand is an empty aggregate, there are no values.
689         if (!Val) continue;
690         // Add each leaf value from the operand to the Constants list
691         // to form a flattened list of all the values.
692         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
693           Constants.push_back(SDValue(Val, i));
694       }
695 
696       return DAG.getMergeValues(&Constants[0], Constants.size(),
697                                 getCurDebugLoc());
698     }
699 
700     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
701       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
702              "Unknown struct or array constant!");
703 
704       SmallVector<EVT, 4> ValueVTs;
705       ComputeValueVTs(TLI, C->getType(), ValueVTs);
706       unsigned NumElts = ValueVTs.size();
707       if (NumElts == 0)
708         return SDValue(); // empty struct
709       SmallVector<SDValue, 4> Constants(NumElts);
710       for (unsigned i = 0; i != NumElts; ++i) {
711         EVT EltVT = ValueVTs[i];
712         if (isa<UndefValue>(C))
713           Constants[i] = DAG.getUNDEF(EltVT);
714         else if (EltVT.isFloatingPoint())
715           Constants[i] = DAG.getConstantFP(0, EltVT);
716         else
717           Constants[i] = DAG.getConstant(0, EltVT);
718       }
719 
720       return DAG.getMergeValues(&Constants[0], NumElts,
721                                 getCurDebugLoc());
722     }
723 
724     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
725       return DAG.getBlockAddress(BA, VT);
726 
727     const VectorType *VecTy = cast<VectorType>(V->getType());
728     unsigned NumElements = VecTy->getNumElements();
729 
730     // Now that we know the number and type of the elements, get that number of
731     // elements into the Ops array based on what kind of constant it is.
732     SmallVector<SDValue, 16> Ops;
733     if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
734       for (unsigned i = 0; i != NumElements; ++i)
735         Ops.push_back(getValue(CP->getOperand(i)));
736     } else {
737       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
738       EVT EltVT = TLI.getValueType(VecTy->getElementType());
739 
740       SDValue Op;
741       if (EltVT.isFloatingPoint())
742         Op = DAG.getConstantFP(0, EltVT);
743       else
744         Op = DAG.getConstant(0, EltVT);
745       Ops.assign(NumElements, Op);
746     }
747 
748     // Create a BUILD_VECTOR node.
749     return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
750                                     VT, &Ops[0], Ops.size());
751   }
752 
753   // If this is a static alloca, generate it as the frameindex instead of
754   // computation.
755   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
756     DenseMap<const AllocaInst*, int>::iterator SI =
757       FuncInfo.StaticAllocaMap.find(AI);
758     if (SI != FuncInfo.StaticAllocaMap.end())
759       return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
760   }
761 
762   unsigned InReg = FuncInfo.ValueMap[V];
763   assert(InReg && "Value not in map!");
764 
765   RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
766   SDValue Chain = DAG.getEntryNode();
767   return RFV.getCopyFromRegs(DAG, getCurDebugLoc(), Chain, NULL);
768 }
769 
770 /// Get the EVTs and ArgFlags collections that represent the legalized return
771 /// type of the given function.  This does not require a DAG or a return value,
772 /// and is suitable for use before any DAGs for the function are constructed.
773 static void getReturnInfo(const Type* ReturnType,
774                    Attributes attr, SmallVectorImpl<EVT> &OutVTs,
775                    SmallVectorImpl<ISD::ArgFlagsTy> &OutFlags,
776                    const TargetLowering &TLI,
777                    SmallVectorImpl<uint64_t> *Offsets = 0) {
778   SmallVector<EVT, 4> ValueVTs;
779   ComputeValueVTs(TLI, ReturnType, ValueVTs);
780   unsigned NumValues = ValueVTs.size();
781   if (NumValues == 0) return;
782   unsigned Offset = 0;
783 
784   for (unsigned j = 0, f = NumValues; j != f; ++j) {
785     EVT VT = ValueVTs[j];
786     ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
787 
788     if (attr & Attribute::SExt)
789       ExtendKind = ISD::SIGN_EXTEND;
790     else if (attr & Attribute::ZExt)
791       ExtendKind = ISD::ZERO_EXTEND;
792 
793     // FIXME: C calling convention requires the return type to be promoted to
794     // at least 32-bit. But this is not necessary for non-C calling
795     // conventions. The frontend should mark functions whose return values
796     // require promoting with signext or zeroext attributes.
797     if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
798       EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
799       if (VT.bitsLT(MinVT))
800         VT = MinVT;
801     }
802 
803     unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
804     EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
805     unsigned PartSize = TLI.getTargetData()->getTypeAllocSize(
806                         PartVT.getTypeForEVT(ReturnType->getContext()));
807 
808     // 'inreg' on function refers to return value
809     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
810     if (attr & Attribute::InReg)
811       Flags.setInReg();
812 
813     // Propagate extension type if any
814     if (attr & Attribute::SExt)
815       Flags.setSExt();
816     else if (attr & Attribute::ZExt)
817       Flags.setZExt();
818 
819     for (unsigned i = 0; i < NumParts; ++i) {
820       OutVTs.push_back(PartVT);
821       OutFlags.push_back(Flags);
822       if (Offsets)
823       {
824         Offsets->push_back(Offset);
825         Offset += PartSize;
826       }
827     }
828   }
829 }
830 
831 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
832   SDValue Chain = getControlRoot();
833   SmallVector<ISD::OutputArg, 8> Outs;
834   FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
835 
836   if (!FLI.CanLowerReturn) {
837     unsigned DemoteReg = FLI.DemoteRegister;
838     const Function *F = I.getParent()->getParent();
839 
840     // Emit a store of the return value through the virtual register.
841     // Leave Outs empty so that LowerReturn won't try to load return
842     // registers the usual way.
843     SmallVector<EVT, 1> PtrValueVTs;
844     ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
845                     PtrValueVTs);
846 
847     SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
848     SDValue RetOp = getValue(I.getOperand(0));
849 
850     SmallVector<EVT, 4> ValueVTs;
851     SmallVector<uint64_t, 4> Offsets;
852     ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
853     unsigned NumValues = ValueVTs.size();
854 
855     SmallVector<SDValue, 4> Chains(NumValues);
856     EVT PtrVT = PtrValueVTs[0];
857     for (unsigned i = 0; i != NumValues; ++i) {
858       SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, RetPtr,
859                                 DAG.getConstant(Offsets[i], PtrVT));
860       Chains[i] =
861         DAG.getStore(Chain, getCurDebugLoc(),
862                      SDValue(RetOp.getNode(), RetOp.getResNo() + i),
863                      Add, NULL, Offsets[i], false, false, 0);
864     }
865 
866     Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
867                         MVT::Other, &Chains[0], NumValues);
868   } else if (I.getNumOperands() != 0) {
869     SmallVector<EVT, 4> ValueVTs;
870     ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
871     unsigned NumValues = ValueVTs.size();
872     if (NumValues) {
873       SDValue RetOp = getValue(I.getOperand(0));
874       for (unsigned j = 0, f = NumValues; j != f; ++j) {
875         EVT VT = ValueVTs[j];
876 
877         ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
878 
879         const Function *F = I.getParent()->getParent();
880         if (F->paramHasAttr(0, Attribute::SExt))
881           ExtendKind = ISD::SIGN_EXTEND;
882         else if (F->paramHasAttr(0, Attribute::ZExt))
883           ExtendKind = ISD::ZERO_EXTEND;
884 
885         // FIXME: C calling convention requires the return type to be promoted
886         // to at least 32-bit. But this is not necessary for non-C calling
887         // conventions. The frontend should mark functions whose return values
888         // require promoting with signext or zeroext attributes.
889         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
890           EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32);
891           if (VT.bitsLT(MinVT))
892             VT = MinVT;
893         }
894 
895         unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
896         EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
897         SmallVector<SDValue, 4> Parts(NumParts);
898         getCopyToParts(DAG, getCurDebugLoc(),
899                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
900                        &Parts[0], NumParts, PartVT, ExtendKind);
901 
902         // 'inreg' on function refers to return value
903         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
904         if (F->paramHasAttr(0, Attribute::InReg))
905           Flags.setInReg();
906 
907         // Propagate extension type if any
908         if (F->paramHasAttr(0, Attribute::SExt))
909           Flags.setSExt();
910         else if (F->paramHasAttr(0, Attribute::ZExt))
911           Flags.setZExt();
912 
913         for (unsigned i = 0; i < NumParts; ++i)
914           Outs.push_back(ISD::OutputArg(Flags, Parts[i], /*isfixed=*/true));
915       }
916     }
917   }
918 
919   bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
920   CallingConv::ID CallConv =
921     DAG.getMachineFunction().getFunction()->getCallingConv();
922   Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
923                           Outs, getCurDebugLoc(), DAG);
924 
925   // Verify that the target's LowerReturn behaved as expected.
926   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
927          "LowerReturn didn't return a valid chain!");
928 
929   // Update the DAG with the new chain value resulting from return lowering.
930   DAG.setRoot(Chain);
931 }
932 
933 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
934 /// created for it, emit nodes to copy the value into the virtual
935 /// registers.
936 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
937   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
938   if (VMI != FuncInfo.ValueMap.end()) {
939     assert(!V->use_empty() && "Unused value assigned virtual registers!");
940     CopyValueToVirtualRegister(V, VMI->second);
941   }
942 }
943 
944 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
945 /// the current basic block, add it to ValueMap now so that we'll get a
946 /// CopyTo/FromReg.
947 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
948   // No need to export constants.
949   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
950 
951   // Already exported?
952   if (FuncInfo.isExportedInst(V)) return;
953 
954   unsigned Reg = FuncInfo.InitializeRegForValue(V);
955   CopyValueToVirtualRegister(V, Reg);
956 }
957 
958 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
959                                                      const BasicBlock *FromBB) {
960   // The operands of the setcc have to be in this block.  We don't know
961   // how to export them from some other block.
962   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
963     // Can export from current BB.
964     if (VI->getParent() == FromBB)
965       return true;
966 
967     // Is already exported, noop.
968     return FuncInfo.isExportedInst(V);
969   }
970 
971   // If this is an argument, we can export it if the BB is the entry block or
972   // if it is already exported.
973   if (isa<Argument>(V)) {
974     if (FromBB == &FromBB->getParent()->getEntryBlock())
975       return true;
976 
977     // Otherwise, can only export this if it is already exported.
978     return FuncInfo.isExportedInst(V);
979   }
980 
981   // Otherwise, constants can always be exported.
982   return true;
983 }
984 
985 static bool InBlock(const Value *V, const BasicBlock *BB) {
986   if (const Instruction *I = dyn_cast<Instruction>(V))
987     return I->getParent() == BB;
988   return true;
989 }
990 
991 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
992 /// This function emits a branch and is used at the leaves of an OR or an
993 /// AND operator tree.
994 ///
995 void
996 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
997                                                   MachineBasicBlock *TBB,
998                                                   MachineBasicBlock *FBB,
999                                                   MachineBasicBlock *CurBB,
1000                                                   MachineBasicBlock *SwitchBB) {
1001   const BasicBlock *BB = CurBB->getBasicBlock();
1002 
1003   // If the leaf of the tree is a comparison, merge the condition into
1004   // the caseblock.
1005   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1006     // The operands of the cmp have to be in this block.  We don't know
1007     // how to export them from some other block.  If this is the first block
1008     // of the sequence, no exporting is needed.
1009     if (CurBB == SwitchBB ||
1010         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1011          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1012       ISD::CondCode Condition;
1013       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1014         Condition = getICmpCondCode(IC->getPredicate());
1015       } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1016         Condition = getFCmpCondCode(FC->getPredicate());
1017       } else {
1018         Condition = ISD::SETEQ; // silence warning.
1019         llvm_unreachable("Unknown compare instruction");
1020       }
1021 
1022       CaseBlock CB(Condition, BOp->getOperand(0),
1023                    BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1024       SwitchCases.push_back(CB);
1025       return;
1026     }
1027   }
1028 
1029   // Create a CaseBlock record representing this branch.
1030   CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1031                NULL, TBB, FBB, CurBB);
1032   SwitchCases.push_back(CB);
1033 }
1034 
1035 /// FindMergedConditions - If Cond is an expression like
1036 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1037                                                MachineBasicBlock *TBB,
1038                                                MachineBasicBlock *FBB,
1039                                                MachineBasicBlock *CurBB,
1040                                                MachineBasicBlock *SwitchBB,
1041                                                unsigned Opc) {
1042   // If this node is not part of the or/and tree, emit it as a branch.
1043   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1044   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1045       (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1046       BOp->getParent() != CurBB->getBasicBlock() ||
1047       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1048       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1049     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1050     return;
1051   }
1052 
1053   //  Create TmpBB after CurBB.
1054   MachineFunction::iterator BBI = CurBB;
1055   MachineFunction &MF = DAG.getMachineFunction();
1056   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1057   CurBB->getParent()->insert(++BBI, TmpBB);
1058 
1059   if (Opc == Instruction::Or) {
1060     // Codegen X | Y as:
1061     //   jmp_if_X TBB
1062     //   jmp TmpBB
1063     // TmpBB:
1064     //   jmp_if_Y TBB
1065     //   jmp FBB
1066     //
1067 
1068     // Emit the LHS condition.
1069     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1070 
1071     // Emit the RHS condition into TmpBB.
1072     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1073   } else {
1074     assert(Opc == Instruction::And && "Unknown merge op!");
1075     // Codegen X & Y as:
1076     //   jmp_if_X TmpBB
1077     //   jmp FBB
1078     // TmpBB:
1079     //   jmp_if_Y TBB
1080     //   jmp FBB
1081     //
1082     //  This requires creation of TmpBB after CurBB.
1083 
1084     // Emit the LHS condition.
1085     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1086 
1087     // Emit the RHS condition into TmpBB.
1088     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1089   }
1090 }
1091 
1092 /// If the set of cases should be emitted as a series of branches, return true.
1093 /// If we should emit this as a bunch of and/or'd together conditions, return
1094 /// false.
1095 bool
1096 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1097   if (Cases.size() != 2) return true;
1098 
1099   // If this is two comparisons of the same values or'd or and'd together, they
1100   // will get folded into a single comparison, so don't emit two blocks.
1101   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1102        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1103       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1104        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1105     return false;
1106   }
1107 
1108   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1109   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1110   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1111       Cases[0].CC == Cases[1].CC &&
1112       isa<Constant>(Cases[0].CmpRHS) &&
1113       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1114     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1115       return false;
1116     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1117       return false;
1118   }
1119 
1120   return true;
1121 }
1122 
1123 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1124   MachineBasicBlock *BrMBB = FuncInfo.MBBMap[I.getParent()];
1125 
1126   // Update machine-CFG edges.
1127   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1128 
1129   // Figure out which block is immediately after the current one.
1130   MachineBasicBlock *NextBlock = 0;
1131   MachineFunction::iterator BBI = BrMBB;
1132   if (++BBI != FuncInfo.MF->end())
1133     NextBlock = BBI;
1134 
1135   if (I.isUnconditional()) {
1136     // Update machine-CFG edges.
1137     BrMBB->addSuccessor(Succ0MBB);
1138 
1139     // If this is not a fall-through branch, emit the branch.
1140     if (Succ0MBB != NextBlock)
1141       DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1142                               MVT::Other, getControlRoot(),
1143                               DAG.getBasicBlock(Succ0MBB)));
1144 
1145     return;
1146   }
1147 
1148   // If this condition is one of the special cases we handle, do special stuff
1149   // now.
1150   const Value *CondVal = I.getCondition();
1151   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1152 
1153   // If this is a series of conditions that are or'd or and'd together, emit
1154   // this as a sequence of branches instead of setcc's with and/or operations.
1155   // For example, instead of something like:
1156   //     cmp A, B
1157   //     C = seteq
1158   //     cmp D, E
1159   //     F = setle
1160   //     or C, F
1161   //     jnz foo
1162   // Emit:
1163   //     cmp A, B
1164   //     je foo
1165   //     cmp D, E
1166   //     jle foo
1167   //
1168   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1169     if (BOp->hasOneUse() &&
1170         (BOp->getOpcode() == Instruction::And ||
1171          BOp->getOpcode() == Instruction::Or)) {
1172       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1173                            BOp->getOpcode());
1174       // If the compares in later blocks need to use values not currently
1175       // exported from this block, export them now.  This block should always
1176       // be the first entry.
1177       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1178 
1179       // Allow some cases to be rejected.
1180       if (ShouldEmitAsBranches(SwitchCases)) {
1181         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1182           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1183           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1184         }
1185 
1186         // Emit the branch for this block.
1187         visitSwitchCase(SwitchCases[0], BrMBB);
1188         SwitchCases.erase(SwitchCases.begin());
1189         return;
1190       }
1191 
1192       // Okay, we decided not to do this, remove any inserted MBB's and clear
1193       // SwitchCases.
1194       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1195         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1196 
1197       SwitchCases.clear();
1198     }
1199   }
1200 
1201   // Create a CaseBlock record representing this branch.
1202   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1203                NULL, Succ0MBB, Succ1MBB, BrMBB);
1204 
1205   // Use visitSwitchCase to actually insert the fast branch sequence for this
1206   // cond branch.
1207   visitSwitchCase(CB, BrMBB);
1208 }
1209 
1210 /// visitSwitchCase - Emits the necessary code to represent a single node in
1211 /// the binary search tree resulting from lowering a switch instruction.
1212 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1213                                           MachineBasicBlock *SwitchBB) {
1214   SDValue Cond;
1215   SDValue CondLHS = getValue(CB.CmpLHS);
1216   DebugLoc dl = getCurDebugLoc();
1217 
1218   // Build the setcc now.
1219   if (CB.CmpMHS == NULL) {
1220     // Fold "(X == true)" to X and "(X == false)" to !X to
1221     // handle common cases produced by branch lowering.
1222     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1223         CB.CC == ISD::SETEQ)
1224       Cond = CondLHS;
1225     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1226              CB.CC == ISD::SETEQ) {
1227       SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1228       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1229     } else
1230       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1231   } else {
1232     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1233 
1234     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1235     const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1236 
1237     SDValue CmpOp = getValue(CB.CmpMHS);
1238     EVT VT = CmpOp.getValueType();
1239 
1240     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1241       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1242                           ISD::SETLE);
1243     } else {
1244       SDValue SUB = DAG.getNode(ISD::SUB, dl,
1245                                 VT, CmpOp, DAG.getConstant(Low, VT));
1246       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1247                           DAG.getConstant(High-Low, VT), ISD::SETULE);
1248     }
1249   }
1250 
1251   // Update successor info
1252   SwitchBB->addSuccessor(CB.TrueBB);
1253   SwitchBB->addSuccessor(CB.FalseBB);
1254 
1255   // Set NextBlock to be the MBB immediately after the current one, if any.
1256   // This is used to avoid emitting unnecessary branches to the next block.
1257   MachineBasicBlock *NextBlock = 0;
1258   MachineFunction::iterator BBI = SwitchBB;
1259   if (++BBI != FuncInfo.MF->end())
1260     NextBlock = BBI;
1261 
1262   // If the lhs block is the next block, invert the condition so that we can
1263   // fall through to the lhs instead of the rhs block.
1264   if (CB.TrueBB == NextBlock) {
1265     std::swap(CB.TrueBB, CB.FalseBB);
1266     SDValue True = DAG.getConstant(1, Cond.getValueType());
1267     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1268   }
1269 
1270   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1271                                MVT::Other, getControlRoot(), Cond,
1272                                DAG.getBasicBlock(CB.TrueBB));
1273 
1274   // If the branch was constant folded, fix up the CFG.
1275   if (BrCond.getOpcode() == ISD::BR) {
1276     SwitchBB->removeSuccessor(CB.FalseBB);
1277   } else {
1278     // Otherwise, go ahead and insert the false branch.
1279     if (BrCond == getControlRoot())
1280       SwitchBB->removeSuccessor(CB.TrueBB);
1281 
1282     if (CB.FalseBB != NextBlock)
1283       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1284                            DAG.getBasicBlock(CB.FalseBB));
1285   }
1286 
1287   DAG.setRoot(BrCond);
1288 }
1289 
1290 /// visitJumpTable - Emit JumpTable node in the current MBB
1291 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1292   // Emit the code for the jump table
1293   assert(JT.Reg != -1U && "Should lower JT Header first!");
1294   EVT PTy = TLI.getPointerTy();
1295   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1296                                      JT.Reg, PTy);
1297   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1298   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1299                                     MVT::Other, Index.getValue(1),
1300                                     Table, Index);
1301   DAG.setRoot(BrJumpTable);
1302 }
1303 
1304 /// visitJumpTableHeader - This function emits necessary code to produce index
1305 /// in the JumpTable from switch case.
1306 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1307                                                JumpTableHeader &JTH,
1308                                                MachineBasicBlock *SwitchBB) {
1309   // Subtract the lowest switch case value from the value being switched on and
1310   // conditional branch to default mbb if the result is greater than the
1311   // difference between smallest and largest cases.
1312   SDValue SwitchOp = getValue(JTH.SValue);
1313   EVT VT = SwitchOp.getValueType();
1314   SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1315                             DAG.getConstant(JTH.First, VT));
1316 
1317   // The SDNode we just created, which holds the value being switched on minus
1318   // the smallest case value, needs to be copied to a virtual register so it
1319   // can be used as an index into the jump table in a subsequent basic block.
1320   // This value may be smaller or larger than the target's pointer type, and
1321   // therefore require extension or truncating.
1322   SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1323 
1324   unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1325   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1326                                     JumpTableReg, SwitchOp);
1327   JT.Reg = JumpTableReg;
1328 
1329   // Emit the range check for the jump table, and branch to the default block
1330   // for the switch statement if the value being switched on exceeds the largest
1331   // case in the switch.
1332   SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1333                              TLI.getSetCCResultType(Sub.getValueType()), Sub,
1334                              DAG.getConstant(JTH.Last-JTH.First,VT),
1335                              ISD::SETUGT);
1336 
1337   // Set NextBlock to be the MBB immediately after the current one, if any.
1338   // This is used to avoid emitting unnecessary branches to the next block.
1339   MachineBasicBlock *NextBlock = 0;
1340   MachineFunction::iterator BBI = SwitchBB;
1341 
1342   if (++BBI != FuncInfo.MF->end())
1343     NextBlock = BBI;
1344 
1345   SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1346                                MVT::Other, CopyTo, CMP,
1347                                DAG.getBasicBlock(JT.Default));
1348 
1349   if (JT.MBB != NextBlock)
1350     BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1351                          DAG.getBasicBlock(JT.MBB));
1352 
1353   DAG.setRoot(BrCond);
1354 }
1355 
1356 /// visitBitTestHeader - This function emits necessary code to produce value
1357 /// suitable for "bit tests"
1358 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1359                                              MachineBasicBlock *SwitchBB) {
1360   // Subtract the minimum value
1361   SDValue SwitchOp = getValue(B.SValue);
1362   EVT VT = SwitchOp.getValueType();
1363   SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1364                             DAG.getConstant(B.First, VT));
1365 
1366   // Check range
1367   SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1368                                   TLI.getSetCCResultType(Sub.getValueType()),
1369                                   Sub, DAG.getConstant(B.Range, VT),
1370                                   ISD::SETUGT);
1371 
1372   SDValue ShiftOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(),
1373                                        TLI.getPointerTy());
1374 
1375   B.Reg = FuncInfo.MakeReg(TLI.getPointerTy());
1376   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1377                                     B.Reg, ShiftOp);
1378 
1379   // Set NextBlock to be the MBB immediately after the current one, if any.
1380   // This is used to avoid emitting unnecessary branches to the next block.
1381   MachineBasicBlock *NextBlock = 0;
1382   MachineFunction::iterator BBI = SwitchBB;
1383   if (++BBI != FuncInfo.MF->end())
1384     NextBlock = BBI;
1385 
1386   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1387 
1388   SwitchBB->addSuccessor(B.Default);
1389   SwitchBB->addSuccessor(MBB);
1390 
1391   SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1392                                 MVT::Other, CopyTo, RangeCmp,
1393                                 DAG.getBasicBlock(B.Default));
1394 
1395   if (MBB != NextBlock)
1396     BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1397                           DAG.getBasicBlock(MBB));
1398 
1399   DAG.setRoot(BrRange);
1400 }
1401 
1402 /// visitBitTestCase - this function produces one "bit test"
1403 void SelectionDAGBuilder::visitBitTestCase(MachineBasicBlock* NextMBB,
1404                                            unsigned Reg,
1405                                            BitTestCase &B,
1406                                            MachineBasicBlock *SwitchBB) {
1407   // Make desired shift
1408   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg,
1409                                        TLI.getPointerTy());
1410   SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(),
1411                                   TLI.getPointerTy(),
1412                                   DAG.getConstant(1, TLI.getPointerTy()),
1413                                   ShiftOp);
1414 
1415   // Emit bit tests and jumps
1416   SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1417                               TLI.getPointerTy(), SwitchVal,
1418                               DAG.getConstant(B.Mask, TLI.getPointerTy()));
1419   SDValue AndCmp = DAG.getSetCC(getCurDebugLoc(),
1420                                 TLI.getSetCCResultType(AndOp.getValueType()),
1421                                 AndOp, DAG.getConstant(0, TLI.getPointerTy()),
1422                                 ISD::SETNE);
1423 
1424   SwitchBB->addSuccessor(B.TargetBB);
1425   SwitchBB->addSuccessor(NextMBB);
1426 
1427   SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1428                               MVT::Other, getControlRoot(),
1429                               AndCmp, DAG.getBasicBlock(B.TargetBB));
1430 
1431   // Set NextBlock to be the MBB immediately after the current one, if any.
1432   // This is used to avoid emitting unnecessary branches to the next block.
1433   MachineBasicBlock *NextBlock = 0;
1434   MachineFunction::iterator BBI = SwitchBB;
1435   if (++BBI != FuncInfo.MF->end())
1436     NextBlock = BBI;
1437 
1438   if (NextMBB != NextBlock)
1439     BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1440                         DAG.getBasicBlock(NextMBB));
1441 
1442   DAG.setRoot(BrAnd);
1443 }
1444 
1445 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1446   MachineBasicBlock *InvokeMBB = FuncInfo.MBBMap[I.getParent()];
1447 
1448   // Retrieve successors.
1449   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1450   MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1451 
1452   const Value *Callee(I.getCalledValue());
1453   if (isa<InlineAsm>(Callee))
1454     visitInlineAsm(&I);
1455   else
1456     LowerCallTo(&I, getValue(Callee), false, LandingPad);
1457 
1458   // If the value of the invoke is used outside of its defining block, make it
1459   // available as a virtual register.
1460   CopyToExportRegsIfNeeded(&I);
1461 
1462   // Update successor info
1463   InvokeMBB->addSuccessor(Return);
1464   InvokeMBB->addSuccessor(LandingPad);
1465 
1466   // Drop into normal successor.
1467   DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1468                           MVT::Other, getControlRoot(),
1469                           DAG.getBasicBlock(Return)));
1470 }
1471 
1472 void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) {
1473 }
1474 
1475 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1476 /// small case ranges).
1477 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1478                                                  CaseRecVector& WorkList,
1479                                                  const Value* SV,
1480                                                  MachineBasicBlock *Default,
1481                                                  MachineBasicBlock *SwitchBB) {
1482   Case& BackCase  = *(CR.Range.second-1);
1483 
1484   // Size is the number of Cases represented by this range.
1485   size_t Size = CR.Range.second - CR.Range.first;
1486   if (Size > 3)
1487     return false;
1488 
1489   // Get the MachineFunction which holds the current MBB.  This is used when
1490   // inserting any additional MBBs necessary to represent the switch.
1491   MachineFunction *CurMF = FuncInfo.MF;
1492 
1493   // Figure out which block is immediately after the current one.
1494   MachineBasicBlock *NextBlock = 0;
1495   MachineFunction::iterator BBI = CR.CaseBB;
1496 
1497   if (++BBI != FuncInfo.MF->end())
1498     NextBlock = BBI;
1499 
1500   // TODO: If any two of the cases has the same destination, and if one value
1501   // is the same as the other, but has one bit unset that the other has set,
1502   // use bit manipulation to do two compares at once.  For example:
1503   // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1504 
1505   // Rearrange the case blocks so that the last one falls through if possible.
1506   if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1507     // The last case block won't fall through into 'NextBlock' if we emit the
1508     // branches in this order.  See if rearranging a case value would help.
1509     for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1510       if (I->BB == NextBlock) {
1511         std::swap(*I, BackCase);
1512         break;
1513       }
1514     }
1515   }
1516 
1517   // Create a CaseBlock record representing a conditional branch to
1518   // the Case's target mbb if the value being switched on SV is equal
1519   // to C.
1520   MachineBasicBlock *CurBlock = CR.CaseBB;
1521   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1522     MachineBasicBlock *FallThrough;
1523     if (I != E-1) {
1524       FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1525       CurMF->insert(BBI, FallThrough);
1526 
1527       // Put SV in a virtual register to make it available from the new blocks.
1528       ExportFromCurrentBlock(SV);
1529     } else {
1530       // If the last case doesn't match, go to the default block.
1531       FallThrough = Default;
1532     }
1533 
1534     const Value *RHS, *LHS, *MHS;
1535     ISD::CondCode CC;
1536     if (I->High == I->Low) {
1537       // This is just small small case range :) containing exactly 1 case
1538       CC = ISD::SETEQ;
1539       LHS = SV; RHS = I->High; MHS = NULL;
1540     } else {
1541       CC = ISD::SETLE;
1542       LHS = I->Low; MHS = SV; RHS = I->High;
1543     }
1544     CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
1545 
1546     // If emitting the first comparison, just call visitSwitchCase to emit the
1547     // code into the current block.  Otherwise, push the CaseBlock onto the
1548     // vector to be later processed by SDISel, and insert the node's MBB
1549     // before the next MBB.
1550     if (CurBlock == SwitchBB)
1551       visitSwitchCase(CB, SwitchBB);
1552     else
1553       SwitchCases.push_back(CB);
1554 
1555     CurBlock = FallThrough;
1556   }
1557 
1558   return true;
1559 }
1560 
1561 static inline bool areJTsAllowed(const TargetLowering &TLI) {
1562   return !DisableJumpTables &&
1563           (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1564            TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
1565 }
1566 
1567 static APInt ComputeRange(const APInt &First, const APInt &Last) {
1568   APInt LastExt(Last), FirstExt(First);
1569   uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
1570   LastExt.sext(BitWidth); FirstExt.sext(BitWidth);
1571   return (LastExt - FirstExt + 1ULL);
1572 }
1573 
1574 /// handleJTSwitchCase - Emit jumptable for current switch case range
1575 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR,
1576                                              CaseRecVector& WorkList,
1577                                              const Value* SV,
1578                                              MachineBasicBlock* Default,
1579                                              MachineBasicBlock *SwitchBB) {
1580   Case& FrontCase = *CR.Range.first;
1581   Case& BackCase  = *(CR.Range.second-1);
1582 
1583   const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1584   const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1585 
1586   APInt TSize(First.getBitWidth(), 0);
1587   for (CaseItr I = CR.Range.first, E = CR.Range.second;
1588        I!=E; ++I)
1589     TSize += I->size();
1590 
1591   if (!areJTsAllowed(TLI) || TSize.ult(4))
1592     return false;
1593 
1594   APInt Range = ComputeRange(First, Last);
1595   double Density = TSize.roundToDouble() / Range.roundToDouble();
1596   if (Density < 0.4)
1597     return false;
1598 
1599   DEBUG(dbgs() << "Lowering jump table\n"
1600                << "First entry: " << First << ". Last entry: " << Last << '\n'
1601                << "Range: " << Range
1602                << "Size: " << TSize << ". Density: " << Density << "\n\n");
1603 
1604   // Get the MachineFunction which holds the current MBB.  This is used when
1605   // inserting any additional MBBs necessary to represent the switch.
1606   MachineFunction *CurMF = FuncInfo.MF;
1607 
1608   // Figure out which block is immediately after the current one.
1609   MachineFunction::iterator BBI = CR.CaseBB;
1610   ++BBI;
1611 
1612   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1613 
1614   // Create a new basic block to hold the code for loading the address
1615   // of the jump table, and jumping to it.  Update successor information;
1616   // we will either branch to the default case for the switch, or the jump
1617   // table.
1618   MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1619   CurMF->insert(BBI, JumpTableBB);
1620   CR.CaseBB->addSuccessor(Default);
1621   CR.CaseBB->addSuccessor(JumpTableBB);
1622 
1623   // Build a vector of destination BBs, corresponding to each target
1624   // of the jump table. If the value of the jump table slot corresponds to
1625   // a case statement, push the case's BB onto the vector, otherwise, push
1626   // the default BB.
1627   std::vector<MachineBasicBlock*> DestBBs;
1628   APInt TEI = First;
1629   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1630     const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
1631     const APInt &High = cast<ConstantInt>(I->High)->getValue();
1632 
1633     if (Low.sle(TEI) && TEI.sle(High)) {
1634       DestBBs.push_back(I->BB);
1635       if (TEI==High)
1636         ++I;
1637     } else {
1638       DestBBs.push_back(Default);
1639     }
1640   }
1641 
1642   // Update successor info. Add one edge to each unique successor.
1643   BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1644   for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1645          E = DestBBs.end(); I != E; ++I) {
1646     if (!SuccsHandled[(*I)->getNumber()]) {
1647       SuccsHandled[(*I)->getNumber()] = true;
1648       JumpTableBB->addSuccessor(*I);
1649     }
1650   }
1651 
1652   // Create a jump table index for this jump table.
1653   unsigned JTEncoding = TLI.getJumpTableEncoding();
1654   unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
1655                        ->createJumpTableIndex(DestBBs);
1656 
1657   // Set the jump table information so that we can codegen it as a second
1658   // MachineBasicBlock
1659   JumpTable JT(-1U, JTI, JumpTableBB, Default);
1660   JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
1661   if (CR.CaseBB == SwitchBB)
1662     visitJumpTableHeader(JT, JTH, SwitchBB);
1663 
1664   JTCases.push_back(JumpTableBlock(JTH, JT));
1665 
1666   return true;
1667 }
1668 
1669 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1670 /// 2 subtrees.
1671 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
1672                                                   CaseRecVector& WorkList,
1673                                                   const Value* SV,
1674                                                   MachineBasicBlock *Default,
1675                                                   MachineBasicBlock *SwitchBB) {
1676   // Get the MachineFunction which holds the current MBB.  This is used when
1677   // inserting any additional MBBs necessary to represent the switch.
1678   MachineFunction *CurMF = FuncInfo.MF;
1679 
1680   // Figure out which block is immediately after the current one.
1681   MachineFunction::iterator BBI = CR.CaseBB;
1682   ++BBI;
1683 
1684   Case& FrontCase = *CR.Range.first;
1685   Case& BackCase  = *(CR.Range.second-1);
1686   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1687 
1688   // Size is the number of Cases represented by this range.
1689   unsigned Size = CR.Range.second - CR.Range.first;
1690 
1691   const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1692   const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1693   double FMetric = 0;
1694   CaseItr Pivot = CR.Range.first + Size/2;
1695 
1696   // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1697   // (heuristically) allow us to emit JumpTable's later.
1698   APInt TSize(First.getBitWidth(), 0);
1699   for (CaseItr I = CR.Range.first, E = CR.Range.second;
1700        I!=E; ++I)
1701     TSize += I->size();
1702 
1703   APInt LSize = FrontCase.size();
1704   APInt RSize = TSize-LSize;
1705   DEBUG(dbgs() << "Selecting best pivot: \n"
1706                << "First: " << First << ", Last: " << Last <<'\n'
1707                << "LSize: " << LSize << ", RSize: " << RSize << '\n');
1708   for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1709        J!=E; ++I, ++J) {
1710     const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
1711     const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
1712     APInt Range = ComputeRange(LEnd, RBegin);
1713     assert((Range - 2ULL).isNonNegative() &&
1714            "Invalid case distance");
1715     double LDensity = (double)LSize.roundToDouble() /
1716                            (LEnd - First + 1ULL).roundToDouble();
1717     double RDensity = (double)RSize.roundToDouble() /
1718                            (Last - RBegin + 1ULL).roundToDouble();
1719     double Metric = Range.logBase2()*(LDensity+RDensity);
1720     // Should always split in some non-trivial place
1721     DEBUG(dbgs() <<"=>Step\n"
1722                  << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
1723                  << "LDensity: " << LDensity
1724                  << ", RDensity: " << RDensity << '\n'
1725                  << "Metric: " << Metric << '\n');
1726     if (FMetric < Metric) {
1727       Pivot = J;
1728       FMetric = Metric;
1729       DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
1730     }
1731 
1732     LSize += J->size();
1733     RSize -= J->size();
1734   }
1735   if (areJTsAllowed(TLI)) {
1736     // If our case is dense we *really* should handle it earlier!
1737     assert((FMetric > 0) && "Should handle dense range earlier!");
1738   } else {
1739     Pivot = CR.Range.first + Size/2;
1740   }
1741 
1742   CaseRange LHSR(CR.Range.first, Pivot);
1743   CaseRange RHSR(Pivot, CR.Range.second);
1744   Constant *C = Pivot->Low;
1745   MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1746 
1747   // We know that we branch to the LHS if the Value being switched on is
1748   // less than the Pivot value, C.  We use this to optimize our binary
1749   // tree a bit, by recognizing that if SV is greater than or equal to the
1750   // LHS's Case Value, and that Case Value is exactly one less than the
1751   // Pivot's Value, then we can branch directly to the LHS's Target,
1752   // rather than creating a leaf node for it.
1753   if ((LHSR.second - LHSR.first) == 1 &&
1754       LHSR.first->High == CR.GE &&
1755       cast<ConstantInt>(C)->getValue() ==
1756       (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
1757     TrueBB = LHSR.first->BB;
1758   } else {
1759     TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1760     CurMF->insert(BBI, TrueBB);
1761     WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1762 
1763     // Put SV in a virtual register to make it available from the new blocks.
1764     ExportFromCurrentBlock(SV);
1765   }
1766 
1767   // Similar to the optimization above, if the Value being switched on is
1768   // known to be less than the Constant CR.LT, and the current Case Value
1769   // is CR.LT - 1, then we can branch directly to the target block for
1770   // the current Case Value, rather than emitting a RHS leaf node for it.
1771   if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1772       cast<ConstantInt>(RHSR.first->Low)->getValue() ==
1773       (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
1774     FalseBB = RHSR.first->BB;
1775   } else {
1776     FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1777     CurMF->insert(BBI, FalseBB);
1778     WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1779 
1780     // Put SV in a virtual register to make it available from the new blocks.
1781     ExportFromCurrentBlock(SV);
1782   }
1783 
1784   // Create a CaseBlock record representing a conditional branch to
1785   // the LHS node if the value being switched on SV is less than C.
1786   // Otherwise, branch to LHS.
1787   CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
1788 
1789   if (CR.CaseBB == SwitchBB)
1790     visitSwitchCase(CB, SwitchBB);
1791   else
1792     SwitchCases.push_back(CB);
1793 
1794   return true;
1795 }
1796 
1797 /// handleBitTestsSwitchCase - if current case range has few destination and
1798 /// range span less, than machine word bitwidth, encode case range into series
1799 /// of masks and emit bit tests with these masks.
1800 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
1801                                                    CaseRecVector& WorkList,
1802                                                    const Value* SV,
1803                                                    MachineBasicBlock* Default,
1804                                                    MachineBasicBlock *SwitchBB){
1805   EVT PTy = TLI.getPointerTy();
1806   unsigned IntPtrBits = PTy.getSizeInBits();
1807 
1808   Case& FrontCase = *CR.Range.first;
1809   Case& BackCase  = *(CR.Range.second-1);
1810 
1811   // Get the MachineFunction which holds the current MBB.  This is used when
1812   // inserting any additional MBBs necessary to represent the switch.
1813   MachineFunction *CurMF = FuncInfo.MF;
1814 
1815   // If target does not have legal shift left, do not emit bit tests at all.
1816   if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
1817     return false;
1818 
1819   size_t numCmps = 0;
1820   for (CaseItr I = CR.Range.first, E = CR.Range.second;
1821        I!=E; ++I) {
1822     // Single case counts one, case range - two.
1823     numCmps += (I->Low == I->High ? 1 : 2);
1824   }
1825 
1826   // Count unique destinations
1827   SmallSet<MachineBasicBlock*, 4> Dests;
1828   for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1829     Dests.insert(I->BB);
1830     if (Dests.size() > 3)
1831       // Don't bother the code below, if there are too much unique destinations
1832       return false;
1833   }
1834   DEBUG(dbgs() << "Total number of unique destinations: "
1835         << Dests.size() << '\n'
1836         << "Total number of comparisons: " << numCmps << '\n');
1837 
1838   // Compute span of values.
1839   const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
1840   const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
1841   APInt cmpRange = maxValue - minValue;
1842 
1843   DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
1844                << "Low bound: " << minValue << '\n'
1845                << "High bound: " << maxValue << '\n');
1846 
1847   if (cmpRange.uge(IntPtrBits) ||
1848       (!(Dests.size() == 1 && numCmps >= 3) &&
1849        !(Dests.size() == 2 && numCmps >= 5) &&
1850        !(Dests.size() >= 3 && numCmps >= 6)))
1851     return false;
1852 
1853   DEBUG(dbgs() << "Emitting bit tests\n");
1854   APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
1855 
1856   // Optimize the case where all the case values fit in a
1857   // word without having to subtract minValue. In this case,
1858   // we can optimize away the subtraction.
1859   if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
1860     cmpRange = maxValue;
1861   } else {
1862     lowBound = minValue;
1863   }
1864 
1865   CaseBitsVector CasesBits;
1866   unsigned i, count = 0;
1867 
1868   for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1869     MachineBasicBlock* Dest = I->BB;
1870     for (i = 0; i < count; ++i)
1871       if (Dest == CasesBits[i].BB)
1872         break;
1873 
1874     if (i == count) {
1875       assert((count < 3) && "Too much destinations to test!");
1876       CasesBits.push_back(CaseBits(0, Dest, 0));
1877       count++;
1878     }
1879 
1880     const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
1881     const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
1882 
1883     uint64_t lo = (lowValue - lowBound).getZExtValue();
1884     uint64_t hi = (highValue - lowBound).getZExtValue();
1885 
1886     for (uint64_t j = lo; j <= hi; j++) {
1887       CasesBits[i].Mask |=  1ULL << j;
1888       CasesBits[i].Bits++;
1889     }
1890 
1891   }
1892   std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
1893 
1894   BitTestInfo BTC;
1895 
1896   // Figure out which block is immediately after the current one.
1897   MachineFunction::iterator BBI = CR.CaseBB;
1898   ++BBI;
1899 
1900   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1901 
1902   DEBUG(dbgs() << "Cases:\n");
1903   for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
1904     DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
1905                  << ", Bits: " << CasesBits[i].Bits
1906                  << ", BB: " << CasesBits[i].BB << '\n');
1907 
1908     MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1909     CurMF->insert(BBI, CaseBB);
1910     BTC.push_back(BitTestCase(CasesBits[i].Mask,
1911                               CaseBB,
1912                               CasesBits[i].BB));
1913 
1914     // Put SV in a virtual register to make it available from the new blocks.
1915     ExportFromCurrentBlock(SV);
1916   }
1917 
1918   BitTestBlock BTB(lowBound, cmpRange, SV,
1919                    -1U, (CR.CaseBB == SwitchBB),
1920                    CR.CaseBB, Default, BTC);
1921 
1922   if (CR.CaseBB == SwitchBB)
1923     visitBitTestHeader(BTB, SwitchBB);
1924 
1925   BitTestCases.push_back(BTB);
1926 
1927   return true;
1928 }
1929 
1930 /// Clusterify - Transform simple list of Cases into list of CaseRange's
1931 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
1932                                        const SwitchInst& SI) {
1933   size_t numCmps = 0;
1934 
1935   // Start with "simple" cases
1936   for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
1937     MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
1938     Cases.push_back(Case(SI.getSuccessorValue(i),
1939                          SI.getSuccessorValue(i),
1940                          SMBB));
1941   }
1942   std::sort(Cases.begin(), Cases.end(), CaseCmp());
1943 
1944   // Merge case into clusters
1945   if (Cases.size() >= 2)
1946     // Must recompute end() each iteration because it may be
1947     // invalidated by erase if we hold on to it
1948     for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) {
1949       const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
1950       const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
1951       MachineBasicBlock* nextBB = J->BB;
1952       MachineBasicBlock* currentBB = I->BB;
1953 
1954       // If the two neighboring cases go to the same destination, merge them
1955       // into a single case.
1956       if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
1957         I->High = J->High;
1958         J = Cases.erase(J);
1959       } else {
1960         I = J++;
1961       }
1962     }
1963 
1964   for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
1965     if (I->Low != I->High)
1966       // A range counts double, since it requires two compares.
1967       ++numCmps;
1968   }
1969 
1970   return numCmps;
1971 }
1972 
1973 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
1974   MachineBasicBlock *SwitchMBB = FuncInfo.MBBMap[SI.getParent()];
1975 
1976   // Figure out which block is immediately after the current one.
1977   MachineBasicBlock *NextBlock = 0;
1978   MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
1979 
1980   // If there is only the default destination, branch to it if it is not the
1981   // next basic block.  Otherwise, just fall through.
1982   if (SI.getNumOperands() == 2) {
1983     // Update machine-CFG edges.
1984 
1985     // If this is not a fall-through branch, emit the branch.
1986     SwitchMBB->addSuccessor(Default);
1987     if (Default != NextBlock)
1988       DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1989                               MVT::Other, getControlRoot(),
1990                               DAG.getBasicBlock(Default)));
1991 
1992     return;
1993   }
1994 
1995   // If there are any non-default case statements, create a vector of Cases
1996   // representing each one, and sort the vector so that we can efficiently
1997   // create a binary search tree from them.
1998   CaseVector Cases;
1999   size_t numCmps = Clusterify(Cases, SI);
2000   DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2001                << ". Total compares: " << numCmps << '\n');
2002   numCmps = 0;
2003 
2004   // Get the Value to be switched on and default basic blocks, which will be
2005   // inserted into CaseBlock records, representing basic blocks in the binary
2006   // search tree.
2007   const Value *SV = SI.getOperand(0);
2008 
2009   // Push the initial CaseRec onto the worklist
2010   CaseRecVector WorkList;
2011   WorkList.push_back(CaseRec(SwitchMBB,0,0,
2012                              CaseRange(Cases.begin(),Cases.end())));
2013 
2014   while (!WorkList.empty()) {
2015     // Grab a record representing a case range to process off the worklist
2016     CaseRec CR = WorkList.back();
2017     WorkList.pop_back();
2018 
2019     if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2020       continue;
2021 
2022     // If the range has few cases (two or less) emit a series of specific
2023     // tests.
2024     if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2025       continue;
2026 
2027     // If the switch has more than 5 blocks, and at least 40% dense, and the
2028     // target supports indirect branches, then emit a jump table rather than
2029     // lowering the switch to a binary tree of conditional branches.
2030     if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2031       continue;
2032 
2033     // Emit binary tree. We need to pick a pivot, and push left and right ranges
2034     // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2035     handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2036   }
2037 }
2038 
2039 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2040   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBBMap[I.getParent()];
2041 
2042   // Update machine-CFG edges with unique successors.
2043   SmallVector<BasicBlock*, 32> succs;
2044   succs.reserve(I.getNumSuccessors());
2045   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2046     succs.push_back(I.getSuccessor(i));
2047   array_pod_sort(succs.begin(), succs.end());
2048   succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2049   for (unsigned i = 0, e = succs.size(); i != e; ++i)
2050     IndirectBrMBB->addSuccessor(FuncInfo.MBBMap[succs[i]]);
2051 
2052   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2053                           MVT::Other, getControlRoot(),
2054                           getValue(I.getAddress())));
2055 }
2056 
2057 void SelectionDAGBuilder::visitFSub(const User &I) {
2058   // -0.0 - X --> fneg
2059   const Type *Ty = I.getType();
2060   if (Ty->isVectorTy()) {
2061     if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2062       const VectorType *DestTy = cast<VectorType>(I.getType());
2063       const Type *ElTy = DestTy->getElementType();
2064       unsigned VL = DestTy->getNumElements();
2065       std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2066       Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2067       if (CV == CNZ) {
2068         SDValue Op2 = getValue(I.getOperand(1));
2069         setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2070                                  Op2.getValueType(), Op2));
2071         return;
2072       }
2073     }
2074   }
2075 
2076   if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2077     if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2078       SDValue Op2 = getValue(I.getOperand(1));
2079       setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2080                                Op2.getValueType(), Op2));
2081       return;
2082     }
2083 
2084   visitBinary(I, ISD::FSUB);
2085 }
2086 
2087 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2088   SDValue Op1 = getValue(I.getOperand(0));
2089   SDValue Op2 = getValue(I.getOperand(1));
2090   setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2091                            Op1.getValueType(), Op1, Op2));
2092 }
2093 
2094 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2095   SDValue Op1 = getValue(I.getOperand(0));
2096   SDValue Op2 = getValue(I.getOperand(1));
2097   if (!I.getType()->isVectorTy() &&
2098       Op2.getValueType() != TLI.getShiftAmountTy()) {
2099     // If the operand is smaller than the shift count type, promote it.
2100     EVT PTy = TLI.getPointerTy();
2101     EVT STy = TLI.getShiftAmountTy();
2102     if (STy.bitsGT(Op2.getValueType()))
2103       Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2104                         TLI.getShiftAmountTy(), Op2);
2105     // If the operand is larger than the shift count type but the shift
2106     // count type has enough bits to represent any shift value, truncate
2107     // it now. This is a common case and it exposes the truncate to
2108     // optimization early.
2109     else if (STy.getSizeInBits() >=
2110              Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2111       Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2112                         TLI.getShiftAmountTy(), Op2);
2113     // Otherwise we'll need to temporarily settle for some other
2114     // convenient type; type legalization will make adjustments as
2115     // needed.
2116     else if (PTy.bitsLT(Op2.getValueType()))
2117       Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2118                         TLI.getPointerTy(), Op2);
2119     else if (PTy.bitsGT(Op2.getValueType()))
2120       Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2121                         TLI.getPointerTy(), Op2);
2122   }
2123 
2124   setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2125                            Op1.getValueType(), Op1, Op2));
2126 }
2127 
2128 void SelectionDAGBuilder::visitICmp(const User &I) {
2129   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2130   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2131     predicate = IC->getPredicate();
2132   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2133     predicate = ICmpInst::Predicate(IC->getPredicate());
2134   SDValue Op1 = getValue(I.getOperand(0));
2135   SDValue Op2 = getValue(I.getOperand(1));
2136   ISD::CondCode Opcode = getICmpCondCode(predicate);
2137 
2138   EVT DestVT = TLI.getValueType(I.getType());
2139   setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2140 }
2141 
2142 void SelectionDAGBuilder::visitFCmp(const User &I) {
2143   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2144   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2145     predicate = FC->getPredicate();
2146   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2147     predicate = FCmpInst::Predicate(FC->getPredicate());
2148   SDValue Op1 = getValue(I.getOperand(0));
2149   SDValue Op2 = getValue(I.getOperand(1));
2150   ISD::CondCode Condition = getFCmpCondCode(predicate);
2151   EVT DestVT = TLI.getValueType(I.getType());
2152   setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2153 }
2154 
2155 void SelectionDAGBuilder::visitSelect(const User &I) {
2156   SmallVector<EVT, 4> ValueVTs;
2157   ComputeValueVTs(TLI, I.getType(), ValueVTs);
2158   unsigned NumValues = ValueVTs.size();
2159   if (NumValues == 0) return;
2160 
2161   SmallVector<SDValue, 4> Values(NumValues);
2162   SDValue Cond     = getValue(I.getOperand(0));
2163   SDValue TrueVal  = getValue(I.getOperand(1));
2164   SDValue FalseVal = getValue(I.getOperand(2));
2165 
2166   for (unsigned i = 0; i != NumValues; ++i)
2167     Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
2168                           TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2169                             Cond,
2170                             SDValue(TrueVal.getNode(),
2171                                     TrueVal.getResNo() + i),
2172                             SDValue(FalseVal.getNode(),
2173                                     FalseVal.getResNo() + i));
2174 
2175   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2176                            DAG.getVTList(&ValueVTs[0], NumValues),
2177                            &Values[0], NumValues));
2178 }
2179 
2180 void SelectionDAGBuilder::visitTrunc(const User &I) {
2181   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2182   SDValue N = getValue(I.getOperand(0));
2183   EVT DestVT = TLI.getValueType(I.getType());
2184   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2185 }
2186 
2187 void SelectionDAGBuilder::visitZExt(const User &I) {
2188   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2189   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2190   SDValue N = getValue(I.getOperand(0));
2191   EVT DestVT = TLI.getValueType(I.getType());
2192   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2193 }
2194 
2195 void SelectionDAGBuilder::visitSExt(const User &I) {
2196   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2197   // SExt also can't be a cast to bool for same reason. So, nothing much to do
2198   SDValue N = getValue(I.getOperand(0));
2199   EVT DestVT = TLI.getValueType(I.getType());
2200   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2201 }
2202 
2203 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2204   // FPTrunc is never a no-op cast, no need to check
2205   SDValue N = getValue(I.getOperand(0));
2206   EVT DestVT = TLI.getValueType(I.getType());
2207   setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2208                            DestVT, N, DAG.getIntPtrConstant(0)));
2209 }
2210 
2211 void SelectionDAGBuilder::visitFPExt(const User &I){
2212   // FPTrunc is never a no-op cast, no need to check
2213   SDValue N = getValue(I.getOperand(0));
2214   EVT DestVT = TLI.getValueType(I.getType());
2215   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2216 }
2217 
2218 void SelectionDAGBuilder::visitFPToUI(const User &I) {
2219   // FPToUI is never a no-op cast, no need to check
2220   SDValue N = getValue(I.getOperand(0));
2221   EVT DestVT = TLI.getValueType(I.getType());
2222   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2223 }
2224 
2225 void SelectionDAGBuilder::visitFPToSI(const User &I) {
2226   // FPToSI is never a no-op cast, no need to check
2227   SDValue N = getValue(I.getOperand(0));
2228   EVT DestVT = TLI.getValueType(I.getType());
2229   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2230 }
2231 
2232 void SelectionDAGBuilder::visitUIToFP(const User &I) {
2233   // UIToFP is never a no-op cast, no need to check
2234   SDValue N = getValue(I.getOperand(0));
2235   EVT DestVT = TLI.getValueType(I.getType());
2236   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2237 }
2238 
2239 void SelectionDAGBuilder::visitSIToFP(const User &I){
2240   // SIToFP is never a no-op cast, no need to check
2241   SDValue N = getValue(I.getOperand(0));
2242   EVT DestVT = TLI.getValueType(I.getType());
2243   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2244 }
2245 
2246 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2247   // What to do depends on the size of the integer and the size of the pointer.
2248   // We can either truncate, zero extend, or no-op, accordingly.
2249   SDValue N = getValue(I.getOperand(0));
2250   EVT SrcVT = N.getValueType();
2251   EVT DestVT = TLI.getValueType(I.getType());
2252   setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2253 }
2254 
2255 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2256   // What to do depends on the size of the integer and the size of the pointer.
2257   // We can either truncate, zero extend, or no-op, accordingly.
2258   SDValue N = getValue(I.getOperand(0));
2259   EVT SrcVT = N.getValueType();
2260   EVT DestVT = TLI.getValueType(I.getType());
2261   setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2262 }
2263 
2264 void SelectionDAGBuilder::visitBitCast(const User &I) {
2265   SDValue N = getValue(I.getOperand(0));
2266   EVT DestVT = TLI.getValueType(I.getType());
2267 
2268   // BitCast assures us that source and destination are the same size so this is
2269   // either a BIT_CONVERT or a no-op.
2270   if (DestVT != N.getValueType())
2271     setValue(&I, DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
2272                              DestVT, N)); // convert types.
2273   else
2274     setValue(&I, N);            // noop cast.
2275 }
2276 
2277 void SelectionDAGBuilder::visitInsertElement(const User &I) {
2278   SDValue InVec = getValue(I.getOperand(0));
2279   SDValue InVal = getValue(I.getOperand(1));
2280   SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2281                               TLI.getPointerTy(),
2282                               getValue(I.getOperand(2)));
2283   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2284                            TLI.getValueType(I.getType()),
2285                            InVec, InVal, InIdx));
2286 }
2287 
2288 void SelectionDAGBuilder::visitExtractElement(const User &I) {
2289   SDValue InVec = getValue(I.getOperand(0));
2290   SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2291                               TLI.getPointerTy(),
2292                               getValue(I.getOperand(1)));
2293   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2294                            TLI.getValueType(I.getType()), InVec, InIdx));
2295 }
2296 
2297 // Utility for visitShuffleVector - Returns true if the mask is mask starting
2298 // from SIndx and increasing to the element length (undefs are allowed).
2299 static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
2300   unsigned MaskNumElts = Mask.size();
2301   for (unsigned i = 0; i != MaskNumElts; ++i)
2302     if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
2303       return false;
2304   return true;
2305 }
2306 
2307 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2308   SmallVector<int, 8> Mask;
2309   SDValue Src1 = getValue(I.getOperand(0));
2310   SDValue Src2 = getValue(I.getOperand(1));
2311 
2312   // Convert the ConstantVector mask operand into an array of ints, with -1
2313   // representing undef values.
2314   SmallVector<Constant*, 8> MaskElts;
2315   cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
2316   unsigned MaskNumElts = MaskElts.size();
2317   for (unsigned i = 0; i != MaskNumElts; ++i) {
2318     if (isa<UndefValue>(MaskElts[i]))
2319       Mask.push_back(-1);
2320     else
2321       Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2322   }
2323 
2324   EVT VT = TLI.getValueType(I.getType());
2325   EVT SrcVT = Src1.getValueType();
2326   unsigned SrcNumElts = SrcVT.getVectorNumElements();
2327 
2328   if (SrcNumElts == MaskNumElts) {
2329     setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2330                                       &Mask[0]));
2331     return;
2332   }
2333 
2334   // Normalize the shuffle vector since mask and vector length don't match.
2335   if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2336     // Mask is longer than the source vectors and is a multiple of the source
2337     // vectors.  We can use concatenate vector to make the mask and vectors
2338     // lengths match.
2339     if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2340       // The shuffle is concatenating two vectors together.
2341       setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2342                                VT, Src1, Src2));
2343       return;
2344     }
2345 
2346     // Pad both vectors with undefs to make them the same length as the mask.
2347     unsigned NumConcat = MaskNumElts / SrcNumElts;
2348     bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2349     bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2350     SDValue UndefVal = DAG.getUNDEF(SrcVT);
2351 
2352     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2353     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2354     MOps1[0] = Src1;
2355     MOps2[0] = Src2;
2356 
2357     Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2358                                                   getCurDebugLoc(), VT,
2359                                                   &MOps1[0], NumConcat);
2360     Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2361                                                   getCurDebugLoc(), VT,
2362                                                   &MOps2[0], NumConcat);
2363 
2364     // Readjust mask for new input vector length.
2365     SmallVector<int, 8> MappedOps;
2366     for (unsigned i = 0; i != MaskNumElts; ++i) {
2367       int Idx = Mask[i];
2368       if (Idx < (int)SrcNumElts)
2369         MappedOps.push_back(Idx);
2370       else
2371         MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2372     }
2373 
2374     setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2375                                       &MappedOps[0]));
2376     return;
2377   }
2378 
2379   if (SrcNumElts > MaskNumElts) {
2380     // Analyze the access pattern of the vector to see if we can extract
2381     // two subvectors and do the shuffle. The analysis is done by calculating
2382     // the range of elements the mask access on both vectors.
2383     int MinRange[2] = { SrcNumElts+1, SrcNumElts+1};
2384     int MaxRange[2] = {-1, -1};
2385 
2386     for (unsigned i = 0; i != MaskNumElts; ++i) {
2387       int Idx = Mask[i];
2388       int Input = 0;
2389       if (Idx < 0)
2390         continue;
2391 
2392       if (Idx >= (int)SrcNumElts) {
2393         Input = 1;
2394         Idx -= SrcNumElts;
2395       }
2396       if (Idx > MaxRange[Input])
2397         MaxRange[Input] = Idx;
2398       if (Idx < MinRange[Input])
2399         MinRange[Input] = Idx;
2400     }
2401 
2402     // Check if the access is smaller than the vector size and can we find
2403     // a reasonable extract index.
2404     int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2405                                  // Extract.
2406     int StartIdx[2];  // StartIdx to extract from
2407     for (int Input=0; Input < 2; ++Input) {
2408       if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2409         RangeUse[Input] = 0; // Unused
2410         StartIdx[Input] = 0;
2411       } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2412         // Fits within range but we should see if we can find a good
2413         // start index that is a multiple of the mask length.
2414         if (MaxRange[Input] < (int)MaskNumElts) {
2415           RangeUse[Input] = 1; // Extract from beginning of the vector
2416           StartIdx[Input] = 0;
2417         } else {
2418           StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2419           if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2420               StartIdx[Input] + MaskNumElts < SrcNumElts)
2421             RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2422         }
2423       }
2424     }
2425 
2426     if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2427       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2428       return;
2429     }
2430     else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2431       // Extract appropriate subvector and generate a vector shuffle
2432       for (int Input=0; Input < 2; ++Input) {
2433         SDValue &Src = Input == 0 ? Src1 : Src2;
2434         if (RangeUse[Input] == 0)
2435           Src = DAG.getUNDEF(VT);
2436         else
2437           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2438                             Src, DAG.getIntPtrConstant(StartIdx[Input]));
2439       }
2440 
2441       // Calculate new mask.
2442       SmallVector<int, 8> MappedOps;
2443       for (unsigned i = 0; i != MaskNumElts; ++i) {
2444         int Idx = Mask[i];
2445         if (Idx < 0)
2446           MappedOps.push_back(Idx);
2447         else if (Idx < (int)SrcNumElts)
2448           MappedOps.push_back(Idx - StartIdx[0]);
2449         else
2450           MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2451       }
2452 
2453       setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2454                                         &MappedOps[0]));
2455       return;
2456     }
2457   }
2458 
2459   // We can't use either concat vectors or extract subvectors so fall back to
2460   // replacing the shuffle with extract and build vector.
2461   // to insert and build vector.
2462   EVT EltVT = VT.getVectorElementType();
2463   EVT PtrVT = TLI.getPointerTy();
2464   SmallVector<SDValue,8> Ops;
2465   for (unsigned i = 0; i != MaskNumElts; ++i) {
2466     if (Mask[i] < 0) {
2467       Ops.push_back(DAG.getUNDEF(EltVT));
2468     } else {
2469       int Idx = Mask[i];
2470       SDValue Res;
2471 
2472       if (Idx < (int)SrcNumElts)
2473         Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2474                           EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2475       else
2476         Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2477                           EltVT, Src2,
2478                           DAG.getConstant(Idx - SrcNumElts, PtrVT));
2479 
2480       Ops.push_back(Res);
2481     }
2482   }
2483 
2484   setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2485                            VT, &Ops[0], Ops.size()));
2486 }
2487 
2488 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2489   const Value *Op0 = I.getOperand(0);
2490   const Value *Op1 = I.getOperand(1);
2491   const Type *AggTy = I.getType();
2492   const Type *ValTy = Op1->getType();
2493   bool IntoUndef = isa<UndefValue>(Op0);
2494   bool FromUndef = isa<UndefValue>(Op1);
2495 
2496   unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2497                                             I.idx_begin(), I.idx_end());
2498 
2499   SmallVector<EVT, 4> AggValueVTs;
2500   ComputeValueVTs(TLI, AggTy, AggValueVTs);
2501   SmallVector<EVT, 4> ValValueVTs;
2502   ComputeValueVTs(TLI, ValTy, ValValueVTs);
2503 
2504   unsigned NumAggValues = AggValueVTs.size();
2505   unsigned NumValValues = ValValueVTs.size();
2506   SmallVector<SDValue, 4> Values(NumAggValues);
2507 
2508   SDValue Agg = getValue(Op0);
2509   SDValue Val = getValue(Op1);
2510   unsigned i = 0;
2511   // Copy the beginning value(s) from the original aggregate.
2512   for (; i != LinearIndex; ++i)
2513     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2514                 SDValue(Agg.getNode(), Agg.getResNo() + i);
2515   // Copy values from the inserted value(s).
2516   for (; i != LinearIndex + NumValValues; ++i)
2517     Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2518                 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2519   // Copy remaining value(s) from the original aggregate.
2520   for (; i != NumAggValues; ++i)
2521     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2522                 SDValue(Agg.getNode(), Agg.getResNo() + i);
2523 
2524   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2525                            DAG.getVTList(&AggValueVTs[0], NumAggValues),
2526                            &Values[0], NumAggValues));
2527 }
2528 
2529 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
2530   const Value *Op0 = I.getOperand(0);
2531   const Type *AggTy = Op0->getType();
2532   const Type *ValTy = I.getType();
2533   bool OutOfUndef = isa<UndefValue>(Op0);
2534 
2535   unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2536                                             I.idx_begin(), I.idx_end());
2537 
2538   SmallVector<EVT, 4> ValValueVTs;
2539   ComputeValueVTs(TLI, ValTy, ValValueVTs);
2540 
2541   unsigned NumValValues = ValValueVTs.size();
2542   SmallVector<SDValue, 4> Values(NumValValues);
2543 
2544   SDValue Agg = getValue(Op0);
2545   // Copy out the selected value(s).
2546   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2547     Values[i - LinearIndex] =
2548       OutOfUndef ?
2549         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2550         SDValue(Agg.getNode(), Agg.getResNo() + i);
2551 
2552   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2553                            DAG.getVTList(&ValValueVTs[0], NumValValues),
2554                            &Values[0], NumValValues));
2555 }
2556 
2557 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
2558   SDValue N = getValue(I.getOperand(0));
2559   const Type *Ty = I.getOperand(0)->getType();
2560 
2561   for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
2562        OI != E; ++OI) {
2563     const Value *Idx = *OI;
2564     if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2565       unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2566       if (Field) {
2567         // N = N + Offset
2568         uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2569         N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2570                         DAG.getIntPtrConstant(Offset));
2571       }
2572 
2573       Ty = StTy->getElementType(Field);
2574     } else if (const UnionType *UnTy = dyn_cast<UnionType>(Ty)) {
2575       unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2576 
2577       // Offset canonically 0 for unions, but type changes
2578       Ty = UnTy->getElementType(Field);
2579     } else {
2580       Ty = cast<SequentialType>(Ty)->getElementType();
2581 
2582       // If this is a constant subscript, handle it quickly.
2583       if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2584         if (CI->getZExtValue() == 0) continue;
2585         uint64_t Offs =
2586             TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2587         SDValue OffsVal;
2588         EVT PTy = TLI.getPointerTy();
2589         unsigned PtrBits = PTy.getSizeInBits();
2590         if (PtrBits < 64)
2591           OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2592                                 TLI.getPointerTy(),
2593                                 DAG.getConstant(Offs, MVT::i64));
2594         else
2595           OffsVal = DAG.getIntPtrConstant(Offs);
2596 
2597         N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2598                         OffsVal);
2599         continue;
2600       }
2601 
2602       // N = N + Idx * ElementSize;
2603       APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
2604                                 TD->getTypeAllocSize(Ty));
2605       SDValue IdxN = getValue(Idx);
2606 
2607       // If the index is smaller or larger than intptr_t, truncate or extend
2608       // it.
2609       IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
2610 
2611       // If this is a multiply by a power of two, turn it into a shl
2612       // immediately.  This is a very common case.
2613       if (ElementSize != 1) {
2614         if (ElementSize.isPowerOf2()) {
2615           unsigned Amt = ElementSize.logBase2();
2616           IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
2617                              N.getValueType(), IdxN,
2618                              DAG.getConstant(Amt, TLI.getPointerTy()));
2619         } else {
2620           SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
2621           IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
2622                              N.getValueType(), IdxN, Scale);
2623         }
2624       }
2625 
2626       N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2627                       N.getValueType(), N, IdxN);
2628     }
2629   }
2630 
2631   setValue(&I, N);
2632 }
2633 
2634 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
2635   // If this is a fixed sized alloca in the entry block of the function,
2636   // allocate it statically on the stack.
2637   if (FuncInfo.StaticAllocaMap.count(&I))
2638     return;   // getValue will auto-populate this.
2639 
2640   const Type *Ty = I.getAllocatedType();
2641   uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
2642   unsigned Align =
2643     std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2644              I.getAlignment());
2645 
2646   SDValue AllocSize = getValue(I.getArraySize());
2647 
2648   AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), AllocSize.getValueType(),
2649                           AllocSize,
2650                           DAG.getConstant(TySize, AllocSize.getValueType()));
2651 
2652   EVT IntPtr = TLI.getPointerTy();
2653   AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
2654 
2655   // Handle alignment.  If the requested alignment is less than or equal to
2656   // the stack alignment, ignore it.  If the size is greater than or equal to
2657   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2658   unsigned StackAlign = TM.getFrameInfo()->getStackAlignment();
2659   if (Align <= StackAlign)
2660     Align = 0;
2661 
2662   // Round the size of the allocation up to the stack alignment size
2663   // by add SA-1 to the size.
2664   AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2665                           AllocSize.getValueType(), AllocSize,
2666                           DAG.getIntPtrConstant(StackAlign-1));
2667 
2668   // Mask out the low bits for alignment purposes.
2669   AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
2670                           AllocSize.getValueType(), AllocSize,
2671                           DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2672 
2673   SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
2674   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
2675   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
2676                             VTs, Ops, 3);
2677   setValue(&I, DSA);
2678   DAG.setRoot(DSA.getValue(1));
2679 
2680   // Inform the Frame Information that we have just allocated a variable-sized
2681   // object.
2682   FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject();
2683 }
2684 
2685 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
2686   const Value *SV = I.getOperand(0);
2687   SDValue Ptr = getValue(SV);
2688 
2689   const Type *Ty = I.getType();
2690 
2691   bool isVolatile = I.isVolatile();
2692   bool isNonTemporal = I.getMetadata("nontemporal") != 0;
2693   unsigned Alignment = I.getAlignment();
2694 
2695   SmallVector<EVT, 4> ValueVTs;
2696   SmallVector<uint64_t, 4> Offsets;
2697   ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
2698   unsigned NumValues = ValueVTs.size();
2699   if (NumValues == 0)
2700     return;
2701 
2702   SDValue Root;
2703   bool ConstantMemory = false;
2704   if (I.isVolatile())
2705     // Serialize volatile loads with other side effects.
2706     Root = getRoot();
2707   else if (AA->pointsToConstantMemory(SV)) {
2708     // Do not serialize (non-volatile) loads of constant memory with anything.
2709     Root = DAG.getEntryNode();
2710     ConstantMemory = true;
2711   } else {
2712     // Do not serialize non-volatile loads against each other.
2713     Root = DAG.getRoot();
2714   }
2715 
2716   SmallVector<SDValue, 4> Values(NumValues);
2717   SmallVector<SDValue, 4> Chains(NumValues);
2718   EVT PtrVT = Ptr.getValueType();
2719   for (unsigned i = 0; i != NumValues; ++i) {
2720     SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2721                             PtrVT, Ptr,
2722                             DAG.getConstant(Offsets[i], PtrVT));
2723     SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
2724                             A, SV, Offsets[i], isVolatile,
2725                             isNonTemporal, Alignment);
2726 
2727     Values[i] = L;
2728     Chains[i] = L.getValue(1);
2729   }
2730 
2731   if (!ConstantMemory) {
2732     SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
2733                                 MVT::Other, &Chains[0], NumValues);
2734     if (isVolatile)
2735       DAG.setRoot(Chain);
2736     else
2737       PendingLoads.push_back(Chain);
2738   }
2739 
2740   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2741                            DAG.getVTList(&ValueVTs[0], NumValues),
2742                            &Values[0], NumValues));
2743 }
2744 
2745 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
2746   const Value *SrcV = I.getOperand(0);
2747   const Value *PtrV = I.getOperand(1);
2748 
2749   SmallVector<EVT, 4> ValueVTs;
2750   SmallVector<uint64_t, 4> Offsets;
2751   ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
2752   unsigned NumValues = ValueVTs.size();
2753   if (NumValues == 0)
2754     return;
2755 
2756   // Get the lowered operands. Note that we do this after
2757   // checking if NumResults is zero, because with zero results
2758   // the operands won't have values in the map.
2759   SDValue Src = getValue(SrcV);
2760   SDValue Ptr = getValue(PtrV);
2761 
2762   SDValue Root = getRoot();
2763   SmallVector<SDValue, 4> Chains(NumValues);
2764   EVT PtrVT = Ptr.getValueType();
2765   bool isVolatile = I.isVolatile();
2766   bool isNonTemporal = I.getMetadata("nontemporal") != 0;
2767   unsigned Alignment = I.getAlignment();
2768 
2769   for (unsigned i = 0; i != NumValues; ++i) {
2770     SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
2771                               DAG.getConstant(Offsets[i], PtrVT));
2772     Chains[i] = DAG.getStore(Root, getCurDebugLoc(),
2773                              SDValue(Src.getNode(), Src.getResNo() + i),
2774                              Add, PtrV, Offsets[i], isVolatile,
2775                              isNonTemporal, Alignment);
2776   }
2777 
2778   DAG.setRoot(DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
2779                           MVT::Other, &Chains[0], NumValues));
2780 }
2781 
2782 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2783 /// node.
2784 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
2785                                                unsigned Intrinsic) {
2786   bool HasChain = !I.doesNotAccessMemory();
2787   bool OnlyLoad = HasChain && I.onlyReadsMemory();
2788 
2789   // Build the operand list.
2790   SmallVector<SDValue, 8> Ops;
2791   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
2792     if (OnlyLoad) {
2793       // We don't need to serialize loads against other loads.
2794       Ops.push_back(DAG.getRoot());
2795     } else {
2796       Ops.push_back(getRoot());
2797     }
2798   }
2799 
2800   // Info is set by getTgtMemInstrinsic
2801   TargetLowering::IntrinsicInfo Info;
2802   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
2803 
2804   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
2805   if (!IsTgtIntrinsic)
2806     Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
2807 
2808   // Add all operands of the call to the operand list.
2809   for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2810     SDValue Op = getValue(I.getOperand(i));
2811     assert(TLI.isTypeLegal(Op.getValueType()) &&
2812            "Intrinsic uses a non-legal type?");
2813     Ops.push_back(Op);
2814   }
2815 
2816   SmallVector<EVT, 4> ValueVTs;
2817   ComputeValueVTs(TLI, I.getType(), ValueVTs);
2818 #ifndef NDEBUG
2819   for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
2820     assert(TLI.isTypeLegal(ValueVTs[Val]) &&
2821            "Intrinsic uses a non-legal type?");
2822   }
2823 #endif // NDEBUG
2824 
2825   if (HasChain)
2826     ValueVTs.push_back(MVT::Other);
2827 
2828   SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
2829 
2830   // Create the node.
2831   SDValue Result;
2832   if (IsTgtIntrinsic) {
2833     // This is target intrinsic that touches memory
2834     Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
2835                                      VTs, &Ops[0], Ops.size(),
2836                                      Info.memVT, Info.ptrVal, Info.offset,
2837                                      Info.align, Info.vol,
2838                                      Info.readMem, Info.writeMem);
2839   } else if (!HasChain) {
2840     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
2841                          VTs, &Ops[0], Ops.size());
2842   } else if (!I.getType()->isVoidTy()) {
2843     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
2844                          VTs, &Ops[0], Ops.size());
2845   } else {
2846     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
2847                          VTs, &Ops[0], Ops.size());
2848   }
2849 
2850   if (HasChain) {
2851     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
2852     if (OnlyLoad)
2853       PendingLoads.push_back(Chain);
2854     else
2855       DAG.setRoot(Chain);
2856   }
2857 
2858   if (!I.getType()->isVoidTy()) {
2859     if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
2860       EVT VT = TLI.getValueType(PTy);
2861       Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result);
2862     }
2863 
2864     setValue(&I, Result);
2865   }
2866 }
2867 
2868 /// GetSignificand - Get the significand and build it into a floating-point
2869 /// number with exponent of 1:
2870 ///
2871 ///   Op = (Op & 0x007fffff) | 0x3f800000;
2872 ///
2873 /// where Op is the hexidecimal representation of floating point value.
2874 static SDValue
2875 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
2876   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
2877                            DAG.getConstant(0x007fffff, MVT::i32));
2878   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
2879                            DAG.getConstant(0x3f800000, MVT::i32));
2880   return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t2);
2881 }
2882 
2883 /// GetExponent - Get the exponent:
2884 ///
2885 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
2886 ///
2887 /// where Op is the hexidecimal representation of floating point value.
2888 static SDValue
2889 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
2890             DebugLoc dl) {
2891   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
2892                            DAG.getConstant(0x7f800000, MVT::i32));
2893   SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
2894                            DAG.getConstant(23, TLI.getPointerTy()));
2895   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
2896                            DAG.getConstant(127, MVT::i32));
2897   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
2898 }
2899 
2900 /// getF32Constant - Get 32-bit floating point constant.
2901 static SDValue
2902 getF32Constant(SelectionDAG &DAG, unsigned Flt) {
2903   return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
2904 }
2905 
2906 /// Inlined utility function to implement binary input atomic intrinsics for
2907 /// visitIntrinsicCall: I is a call instruction
2908 ///                     Op is the associated NodeType for I
2909 const char *
2910 SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I,
2911                                            ISD::NodeType Op) {
2912   SDValue Root = getRoot();
2913   SDValue L =
2914     DAG.getAtomic(Op, getCurDebugLoc(),
2915                   getValue(I.getOperand(2)).getValueType().getSimpleVT(),
2916                   Root,
2917                   getValue(I.getOperand(1)),
2918                   getValue(I.getOperand(2)),
2919                   I.getOperand(1));
2920   setValue(&I, L);
2921   DAG.setRoot(L.getValue(1));
2922   return 0;
2923 }
2924 
2925 // implVisitAluOverflow - Lower arithmetic overflow instrinsics.
2926 const char *
2927 SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) {
2928   SDValue Op1 = getValue(I.getOperand(1));
2929   SDValue Op2 = getValue(I.getOperand(2));
2930 
2931   SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
2932   setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
2933   return 0;
2934 }
2935 
2936 /// visitExp - Lower an exp intrinsic. Handles the special sequences for
2937 /// limited-precision mode.
2938 void
2939 SelectionDAGBuilder::visitExp(const CallInst &I) {
2940   SDValue result;
2941   DebugLoc dl = getCurDebugLoc();
2942 
2943   if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
2944       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
2945     SDValue Op = getValue(I.getOperand(1));
2946 
2947     // Put the exponent in the right bit position for later addition to the
2948     // final result:
2949     //
2950     //   #define LOG2OFe 1.4426950f
2951     //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
2952     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
2953                              getF32Constant(DAG, 0x3fb8aa3b));
2954     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
2955 
2956     //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
2957     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
2958     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
2959 
2960     //   IntegerPartOfX <<= 23;
2961     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
2962                                  DAG.getConstant(23, TLI.getPointerTy()));
2963 
2964     if (LimitFloatPrecision <= 6) {
2965       // For floating-point precision of 6:
2966       //
2967       //   TwoToFractionalPartOfX =
2968       //     0.997535578f +
2969       //       (0.735607626f + 0.252464424f * x) * x;
2970       //
2971       // error 0.0144103317, which is 6 bits
2972       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
2973                                getF32Constant(DAG, 0x3e814304));
2974       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
2975                                getF32Constant(DAG, 0x3f3c50c8));
2976       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
2977       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
2978                                getF32Constant(DAG, 0x3f7f5e7e));
2979       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t5);
2980 
2981       // Add the exponent into the result in integer domain.
2982       SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
2983                                TwoToFracPartOfX, IntegerPartOfX);
2984 
2985       result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t6);
2986     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
2987       // For floating-point precision of 12:
2988       //
2989       //   TwoToFractionalPartOfX =
2990       //     0.999892986f +
2991       //       (0.696457318f +
2992       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
2993       //
2994       // 0.000107046256 error, which is 13 to 14 bits
2995       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
2996                                getF32Constant(DAG, 0x3da235e3));
2997       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
2998                                getF32Constant(DAG, 0x3e65b8f3));
2999       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3000       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3001                                getF32Constant(DAG, 0x3f324b07));
3002       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3003       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3004                                getF32Constant(DAG, 0x3f7ff8fd));
3005       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t7);
3006 
3007       // Add the exponent into the result in integer domain.
3008       SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3009                                TwoToFracPartOfX, IntegerPartOfX);
3010 
3011       result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t8);
3012     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3013       // For floating-point precision of 18:
3014       //
3015       //   TwoToFractionalPartOfX =
3016       //     0.999999982f +
3017       //       (0.693148872f +
3018       //         (0.240227044f +
3019       //           (0.554906021e-1f +
3020       //             (0.961591928e-2f +
3021       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3022       //
3023       // error 2.47208000*10^(-7), which is better than 18 bits
3024       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3025                                getF32Constant(DAG, 0x3924b03e));
3026       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3027                                getF32Constant(DAG, 0x3ab24b87));
3028       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3029       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3030                                getF32Constant(DAG, 0x3c1d8c17));
3031       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3032       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3033                                getF32Constant(DAG, 0x3d634a1d));
3034       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3035       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3036                                getF32Constant(DAG, 0x3e75fe14));
3037       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3038       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3039                                 getF32Constant(DAG, 0x3f317234));
3040       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3041       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3042                                 getF32Constant(DAG, 0x3f800000));
3043       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,
3044                                              MVT::i32, t13);
3045 
3046       // Add the exponent into the result in integer domain.
3047       SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3048                                 TwoToFracPartOfX, IntegerPartOfX);
3049 
3050       result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t14);
3051     }
3052   } else {
3053     // No special expansion.
3054     result = DAG.getNode(ISD::FEXP, dl,
3055                          getValue(I.getOperand(1)).getValueType(),
3056                          getValue(I.getOperand(1)));
3057   }
3058 
3059   setValue(&I, result);
3060 }
3061 
3062 /// visitLog - Lower a log intrinsic. Handles the special sequences for
3063 /// limited-precision mode.
3064 void
3065 SelectionDAGBuilder::visitLog(const CallInst &I) {
3066   SDValue result;
3067   DebugLoc dl = getCurDebugLoc();
3068 
3069   if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3070       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3071     SDValue Op = getValue(I.getOperand(1));
3072     SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3073 
3074     // Scale the exponent by log(2) [0.69314718f].
3075     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3076     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3077                                         getF32Constant(DAG, 0x3f317218));
3078 
3079     // Get the significand and build it into a floating-point number with
3080     // exponent of 1.
3081     SDValue X = GetSignificand(DAG, Op1, dl);
3082 
3083     if (LimitFloatPrecision <= 6) {
3084       // For floating-point precision of 6:
3085       //
3086       //   LogofMantissa =
3087       //     -1.1609546f +
3088       //       (1.4034025f - 0.23903021f * x) * x;
3089       //
3090       // error 0.0034276066, which is better than 8 bits
3091       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3092                                getF32Constant(DAG, 0xbe74c456));
3093       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3094                                getF32Constant(DAG, 0x3fb3a2b1));
3095       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3096       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3097                                           getF32Constant(DAG, 0x3f949a29));
3098 
3099       result = DAG.getNode(ISD::FADD, dl,
3100                            MVT::f32, LogOfExponent, LogOfMantissa);
3101     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3102       // For floating-point precision of 12:
3103       //
3104       //   LogOfMantissa =
3105       //     -1.7417939f +
3106       //       (2.8212026f +
3107       //         (-1.4699568f +
3108       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3109       //
3110       // error 0.000061011436, which is 14 bits
3111       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3112                                getF32Constant(DAG, 0xbd67b6d6));
3113       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3114                                getF32Constant(DAG, 0x3ee4f4b8));
3115       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3116       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3117                                getF32Constant(DAG, 0x3fbc278b));
3118       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3119       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3120                                getF32Constant(DAG, 0x40348e95));
3121       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3122       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3123                                           getF32Constant(DAG, 0x3fdef31a));
3124 
3125       result = DAG.getNode(ISD::FADD, dl,
3126                            MVT::f32, LogOfExponent, LogOfMantissa);
3127     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3128       // For floating-point precision of 18:
3129       //
3130       //   LogOfMantissa =
3131       //     -2.1072184f +
3132       //       (4.2372794f +
3133       //         (-3.7029485f +
3134       //           (2.2781945f +
3135       //             (-0.87823314f +
3136       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3137       //
3138       // error 0.0000023660568, which is better than 18 bits
3139       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3140                                getF32Constant(DAG, 0xbc91e5ac));
3141       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3142                                getF32Constant(DAG, 0x3e4350aa));
3143       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3144       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3145                                getF32Constant(DAG, 0x3f60d3e3));
3146       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3147       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3148                                getF32Constant(DAG, 0x4011cdf0));
3149       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3150       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3151                                getF32Constant(DAG, 0x406cfd1c));
3152       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3153       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3154                                getF32Constant(DAG, 0x408797cb));
3155       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3156       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3157                                           getF32Constant(DAG, 0x4006dcab));
3158 
3159       result = DAG.getNode(ISD::FADD, dl,
3160                            MVT::f32, LogOfExponent, LogOfMantissa);
3161     }
3162   } else {
3163     // No special expansion.
3164     result = DAG.getNode(ISD::FLOG, dl,
3165                          getValue(I.getOperand(1)).getValueType(),
3166                          getValue(I.getOperand(1)));
3167   }
3168 
3169   setValue(&I, result);
3170 }
3171 
3172 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3173 /// limited-precision mode.
3174 void
3175 SelectionDAGBuilder::visitLog2(const CallInst &I) {
3176   SDValue result;
3177   DebugLoc dl = getCurDebugLoc();
3178 
3179   if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3180       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3181     SDValue Op = getValue(I.getOperand(1));
3182     SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3183 
3184     // Get the exponent.
3185     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3186 
3187     // Get the significand and build it into a floating-point number with
3188     // exponent of 1.
3189     SDValue X = GetSignificand(DAG, Op1, dl);
3190 
3191     // Different possible minimax approximations of significand in
3192     // floating-point for various degrees of accuracy over [1,2].
3193     if (LimitFloatPrecision <= 6) {
3194       // For floating-point precision of 6:
3195       //
3196       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3197       //
3198       // error 0.0049451742, which is more than 7 bits
3199       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3200                                getF32Constant(DAG, 0xbeb08fe0));
3201       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3202                                getF32Constant(DAG, 0x40019463));
3203       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3204       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3205                                            getF32Constant(DAG, 0x3fd6633d));
3206 
3207       result = DAG.getNode(ISD::FADD, dl,
3208                            MVT::f32, LogOfExponent, Log2ofMantissa);
3209     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3210       // For floating-point precision of 12:
3211       //
3212       //   Log2ofMantissa =
3213       //     -2.51285454f +
3214       //       (4.07009056f +
3215       //         (-2.12067489f +
3216       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3217       //
3218       // error 0.0000876136000, which is better than 13 bits
3219       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3220                                getF32Constant(DAG, 0xbda7262e));
3221       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3222                                getF32Constant(DAG, 0x3f25280b));
3223       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3224       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3225                                getF32Constant(DAG, 0x4007b923));
3226       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3227       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3228                                getF32Constant(DAG, 0x40823e2f));
3229       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3230       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3231                                            getF32Constant(DAG, 0x4020d29c));
3232 
3233       result = DAG.getNode(ISD::FADD, dl,
3234                            MVT::f32, LogOfExponent, Log2ofMantissa);
3235     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3236       // For floating-point precision of 18:
3237       //
3238       //   Log2ofMantissa =
3239       //     -3.0400495f +
3240       //       (6.1129976f +
3241       //         (-5.3420409f +
3242       //           (3.2865683f +
3243       //             (-1.2669343f +
3244       //               (0.27515199f -
3245       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3246       //
3247       // error 0.0000018516, which is better than 18 bits
3248       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3249                                getF32Constant(DAG, 0xbcd2769e));
3250       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3251                                getF32Constant(DAG, 0x3e8ce0b9));
3252       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3253       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3254                                getF32Constant(DAG, 0x3fa22ae7));
3255       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3256       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3257                                getF32Constant(DAG, 0x40525723));
3258       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3259       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3260                                getF32Constant(DAG, 0x40aaf200));
3261       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3262       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3263                                getF32Constant(DAG, 0x40c39dad));
3264       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3265       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3266                                            getF32Constant(DAG, 0x4042902c));
3267 
3268       result = DAG.getNode(ISD::FADD, dl,
3269                            MVT::f32, LogOfExponent, Log2ofMantissa);
3270     }
3271   } else {
3272     // No special expansion.
3273     result = DAG.getNode(ISD::FLOG2, dl,
3274                          getValue(I.getOperand(1)).getValueType(),
3275                          getValue(I.getOperand(1)));
3276   }
3277 
3278   setValue(&I, result);
3279 }
3280 
3281 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3282 /// limited-precision mode.
3283 void
3284 SelectionDAGBuilder::visitLog10(const CallInst &I) {
3285   SDValue result;
3286   DebugLoc dl = getCurDebugLoc();
3287 
3288   if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3289       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3290     SDValue Op = getValue(I.getOperand(1));
3291     SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3292 
3293     // Scale the exponent by log10(2) [0.30102999f].
3294     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3295     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3296                                         getF32Constant(DAG, 0x3e9a209a));
3297 
3298     // Get the significand and build it into a floating-point number with
3299     // exponent of 1.
3300     SDValue X = GetSignificand(DAG, Op1, dl);
3301 
3302     if (LimitFloatPrecision <= 6) {
3303       // For floating-point precision of 6:
3304       //
3305       //   Log10ofMantissa =
3306       //     -0.50419619f +
3307       //       (0.60948995f - 0.10380950f * x) * x;
3308       //
3309       // error 0.0014886165, which is 6 bits
3310       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3311                                getF32Constant(DAG, 0xbdd49a13));
3312       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3313                                getF32Constant(DAG, 0x3f1c0789));
3314       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3315       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3316                                             getF32Constant(DAG, 0x3f011300));
3317 
3318       result = DAG.getNode(ISD::FADD, dl,
3319                            MVT::f32, LogOfExponent, Log10ofMantissa);
3320     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3321       // For floating-point precision of 12:
3322       //
3323       //   Log10ofMantissa =
3324       //     -0.64831180f +
3325       //       (0.91751397f +
3326       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3327       //
3328       // error 0.00019228036, which is better than 12 bits
3329       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3330                                getF32Constant(DAG, 0x3d431f31));
3331       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3332                                getF32Constant(DAG, 0x3ea21fb2));
3333       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3334       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3335                                getF32Constant(DAG, 0x3f6ae232));
3336       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3337       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3338                                             getF32Constant(DAG, 0x3f25f7c3));
3339 
3340       result = DAG.getNode(ISD::FADD, dl,
3341                            MVT::f32, LogOfExponent, Log10ofMantissa);
3342     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3343       // For floating-point precision of 18:
3344       //
3345       //   Log10ofMantissa =
3346       //     -0.84299375f +
3347       //       (1.5327582f +
3348       //         (-1.0688956f +
3349       //           (0.49102474f +
3350       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3351       //
3352       // error 0.0000037995730, which is better than 18 bits
3353       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3354                                getF32Constant(DAG, 0x3c5d51ce));
3355       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3356                                getF32Constant(DAG, 0x3e00685a));
3357       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3358       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3359                                getF32Constant(DAG, 0x3efb6798));
3360       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3361       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3362                                getF32Constant(DAG, 0x3f88d192));
3363       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3364       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3365                                getF32Constant(DAG, 0x3fc4316c));
3366       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3367       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
3368                                             getF32Constant(DAG, 0x3f57ce70));
3369 
3370       result = DAG.getNode(ISD::FADD, dl,
3371                            MVT::f32, LogOfExponent, Log10ofMantissa);
3372     }
3373   } else {
3374     // No special expansion.
3375     result = DAG.getNode(ISD::FLOG10, dl,
3376                          getValue(I.getOperand(1)).getValueType(),
3377                          getValue(I.getOperand(1)));
3378   }
3379 
3380   setValue(&I, result);
3381 }
3382 
3383 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3384 /// limited-precision mode.
3385 void
3386 SelectionDAGBuilder::visitExp2(const CallInst &I) {
3387   SDValue result;
3388   DebugLoc dl = getCurDebugLoc();
3389 
3390   if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3391       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3392     SDValue Op = getValue(I.getOperand(1));
3393 
3394     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
3395 
3396     //   FractionalPartOfX = x - (float)IntegerPartOfX;
3397     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3398     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
3399 
3400     //   IntegerPartOfX <<= 23;
3401     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3402                                  DAG.getConstant(23, TLI.getPointerTy()));
3403 
3404     if (LimitFloatPrecision <= 6) {
3405       // For floating-point precision of 6:
3406       //
3407       //   TwoToFractionalPartOfX =
3408       //     0.997535578f +
3409       //       (0.735607626f + 0.252464424f * x) * x;
3410       //
3411       // error 0.0144103317, which is 6 bits
3412       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3413                                getF32Constant(DAG, 0x3e814304));
3414       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3415                                getF32Constant(DAG, 0x3f3c50c8));
3416       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3417       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3418                                getF32Constant(DAG, 0x3f7f5e7e));
3419       SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
3420       SDValue TwoToFractionalPartOfX =
3421         DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3422 
3423       result = DAG.getNode(ISD::BIT_CONVERT, dl,
3424                            MVT::f32, TwoToFractionalPartOfX);
3425     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3426       // For floating-point precision of 12:
3427       //
3428       //   TwoToFractionalPartOfX =
3429       //     0.999892986f +
3430       //       (0.696457318f +
3431       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3432       //
3433       // error 0.000107046256, which is 13 to 14 bits
3434       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3435                                getF32Constant(DAG, 0x3da235e3));
3436       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3437                                getF32Constant(DAG, 0x3e65b8f3));
3438       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3439       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3440                                getF32Constant(DAG, 0x3f324b07));
3441       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3442       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3443                                getF32Constant(DAG, 0x3f7ff8fd));
3444       SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
3445       SDValue TwoToFractionalPartOfX =
3446         DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3447 
3448       result = DAG.getNode(ISD::BIT_CONVERT, dl,
3449                            MVT::f32, TwoToFractionalPartOfX);
3450     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3451       // For floating-point precision of 18:
3452       //
3453       //   TwoToFractionalPartOfX =
3454       //     0.999999982f +
3455       //       (0.693148872f +
3456       //         (0.240227044f +
3457       //           (0.554906021e-1f +
3458       //             (0.961591928e-2f +
3459       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3460       // error 2.47208000*10^(-7), which is better than 18 bits
3461       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3462                                getF32Constant(DAG, 0x3924b03e));
3463       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3464                                getF32Constant(DAG, 0x3ab24b87));
3465       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3466       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3467                                getF32Constant(DAG, 0x3c1d8c17));
3468       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3469       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3470                                getF32Constant(DAG, 0x3d634a1d));
3471       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3472       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3473                                getF32Constant(DAG, 0x3e75fe14));
3474       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3475       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3476                                 getF32Constant(DAG, 0x3f317234));
3477       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3478       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3479                                 getF32Constant(DAG, 0x3f800000));
3480       SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
3481       SDValue TwoToFractionalPartOfX =
3482         DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3483 
3484       result = DAG.getNode(ISD::BIT_CONVERT, dl,
3485                            MVT::f32, TwoToFractionalPartOfX);
3486     }
3487   } else {
3488     // No special expansion.
3489     result = DAG.getNode(ISD::FEXP2, dl,
3490                          getValue(I.getOperand(1)).getValueType(),
3491                          getValue(I.getOperand(1)));
3492   }
3493 
3494   setValue(&I, result);
3495 }
3496 
3497 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
3498 /// limited-precision mode with x == 10.0f.
3499 void
3500 SelectionDAGBuilder::visitPow(const CallInst &I) {
3501   SDValue result;
3502   const Value *Val = I.getOperand(1);
3503   DebugLoc dl = getCurDebugLoc();
3504   bool IsExp10 = false;
3505 
3506   if (getValue(Val).getValueType() == MVT::f32 &&
3507       getValue(I.getOperand(2)).getValueType() == MVT::f32 &&
3508       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3509     if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
3510       if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3511         APFloat Ten(10.0f);
3512         IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
3513       }
3514     }
3515   }
3516 
3517   if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3518     SDValue Op = getValue(I.getOperand(2));
3519 
3520     // Put the exponent in the right bit position for later addition to the
3521     // final result:
3522     //
3523     //   #define LOG2OF10 3.3219281f
3524     //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
3525     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3526                              getF32Constant(DAG, 0x40549a78));
3527     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3528 
3529     //   FractionalPartOfX = x - (float)IntegerPartOfX;
3530     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3531     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3532 
3533     //   IntegerPartOfX <<= 23;
3534     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3535                                  DAG.getConstant(23, TLI.getPointerTy()));
3536 
3537     if (LimitFloatPrecision <= 6) {
3538       // For floating-point precision of 6:
3539       //
3540       //   twoToFractionalPartOfX =
3541       //     0.997535578f +
3542       //       (0.735607626f + 0.252464424f * x) * x;
3543       //
3544       // error 0.0144103317, which is 6 bits
3545       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3546                                getF32Constant(DAG, 0x3e814304));
3547       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3548                                getF32Constant(DAG, 0x3f3c50c8));
3549       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3550       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3551                                getF32Constant(DAG, 0x3f7f5e7e));
3552       SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
3553       SDValue TwoToFractionalPartOfX =
3554         DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3555 
3556       result = DAG.getNode(ISD::BIT_CONVERT, dl,
3557                            MVT::f32, TwoToFractionalPartOfX);
3558     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3559       // For floating-point precision of 12:
3560       //
3561       //   TwoToFractionalPartOfX =
3562       //     0.999892986f +
3563       //       (0.696457318f +
3564       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3565       //
3566       // error 0.000107046256, which is 13 to 14 bits
3567       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3568                                getF32Constant(DAG, 0x3da235e3));
3569       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3570                                getF32Constant(DAG, 0x3e65b8f3));
3571       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3572       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3573                                getF32Constant(DAG, 0x3f324b07));
3574       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3575       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3576                                getF32Constant(DAG, 0x3f7ff8fd));
3577       SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
3578       SDValue TwoToFractionalPartOfX =
3579         DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3580 
3581       result = DAG.getNode(ISD::BIT_CONVERT, dl,
3582                            MVT::f32, TwoToFractionalPartOfX);
3583     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3584       // For floating-point precision of 18:
3585       //
3586       //   TwoToFractionalPartOfX =
3587       //     0.999999982f +
3588       //       (0.693148872f +
3589       //         (0.240227044f +
3590       //           (0.554906021e-1f +
3591       //             (0.961591928e-2f +
3592       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3593       // error 2.47208000*10^(-7), which is better than 18 bits
3594       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3595                                getF32Constant(DAG, 0x3924b03e));
3596       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3597                                getF32Constant(DAG, 0x3ab24b87));
3598       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3599       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3600                                getF32Constant(DAG, 0x3c1d8c17));
3601       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3602       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3603                                getF32Constant(DAG, 0x3d634a1d));
3604       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3605       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3606                                getF32Constant(DAG, 0x3e75fe14));
3607       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3608       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3609                                 getF32Constant(DAG, 0x3f317234));
3610       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3611       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3612                                 getF32Constant(DAG, 0x3f800000));
3613       SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
3614       SDValue TwoToFractionalPartOfX =
3615         DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3616 
3617       result = DAG.getNode(ISD::BIT_CONVERT, dl,
3618                            MVT::f32, TwoToFractionalPartOfX);
3619     }
3620   } else {
3621     // No special expansion.
3622     result = DAG.getNode(ISD::FPOW, dl,
3623                          getValue(I.getOperand(1)).getValueType(),
3624                          getValue(I.getOperand(1)),
3625                          getValue(I.getOperand(2)));
3626   }
3627 
3628   setValue(&I, result);
3629 }
3630 
3631 
3632 /// ExpandPowI - Expand a llvm.powi intrinsic.
3633 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
3634                           SelectionDAG &DAG) {
3635   // If RHS is a constant, we can expand this out to a multiplication tree,
3636   // otherwise we end up lowering to a call to __powidf2 (for example).  When
3637   // optimizing for size, we only want to do this if the expansion would produce
3638   // a small number of multiplies, otherwise we do the full expansion.
3639   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3640     // Get the exponent as a positive value.
3641     unsigned Val = RHSC->getSExtValue();
3642     if ((int)Val < 0) Val = -Val;
3643 
3644     // powi(x, 0) -> 1.0
3645     if (Val == 0)
3646       return DAG.getConstantFP(1.0, LHS.getValueType());
3647 
3648     const Function *F = DAG.getMachineFunction().getFunction();
3649     if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
3650         // If optimizing for size, don't insert too many multiplies.  This
3651         // inserts up to 5 multiplies.
3652         CountPopulation_32(Val)+Log2_32(Val) < 7) {
3653       // We use the simple binary decomposition method to generate the multiply
3654       // sequence.  There are more optimal ways to do this (for example,
3655       // powi(x,15) generates one more multiply than it should), but this has
3656       // the benefit of being both really simple and much better than a libcall.
3657       SDValue Res;  // Logically starts equal to 1.0
3658       SDValue CurSquare = LHS;
3659       while (Val) {
3660         if (Val & 1) {
3661           if (Res.getNode())
3662             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
3663           else
3664             Res = CurSquare;  // 1.0*CurSquare.
3665         }
3666 
3667         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
3668                                 CurSquare, CurSquare);
3669         Val >>= 1;
3670       }
3671 
3672       // If the original was negative, invert the result, producing 1/(x*x*x).
3673       if (RHSC->getSExtValue() < 0)
3674         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
3675                           DAG.getConstantFP(1.0, LHS.getValueType()), Res);
3676       return Res;
3677     }
3678   }
3679 
3680   // Otherwise, expand to a libcall.
3681   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
3682 }
3683 
3684 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
3685 /// argument, create the corresponding DBG_VALUE machine instruction for it now.
3686 /// At the end of instruction selection, they will be inserted to the entry BB.
3687 bool
3688 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const DbgValueInst &DI,
3689                                               const Value *V, MDNode *Variable,
3690                                               uint64_t Offset, SDValue &N) {
3691   if (!isa<Argument>(V))
3692     return false;
3693 
3694   MachineFunction &MF = DAG.getMachineFunction();
3695   // Ignore inlined function arguments here.
3696   DIVariable DV(Variable);
3697   if (DV.isInlinedFnArgument(MF.getFunction()))
3698     return false;
3699 
3700   MachineBasicBlock *MBB = FuncInfo.MBBMap[DI.getParent()];
3701   if (MBB != &MF.front())
3702     return false;
3703 
3704   unsigned Reg = 0;
3705   if (N.getOpcode() == ISD::CopyFromReg) {
3706     Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
3707     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
3708       MachineRegisterInfo &RegInfo = MF.getRegInfo();
3709       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
3710       if (PR)
3711         Reg = PR;
3712     }
3713   }
3714 
3715   if (!Reg) {
3716     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
3717     if (VMI == FuncInfo.ValueMap.end())
3718       return false;
3719     Reg = VMI->second;
3720   }
3721 
3722   const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
3723   MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
3724                                     TII->get(TargetOpcode::DBG_VALUE))
3725     .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
3726   FuncInfo.ArgDbgValues.push_back(&*MIB);
3727   return true;
3728 }
3729 
3730 /// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
3731 /// we want to emit this as a call to a named external function, return the name
3732 /// otherwise lower it and return null.
3733 const char *
3734 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
3735   DebugLoc dl = getCurDebugLoc();
3736   SDValue Res;
3737 
3738   switch (Intrinsic) {
3739   default:
3740     // By default, turn this into a target intrinsic node.
3741     visitTargetIntrinsic(I, Intrinsic);
3742     return 0;
3743   case Intrinsic::vastart:  visitVAStart(I); return 0;
3744   case Intrinsic::vaend:    visitVAEnd(I); return 0;
3745   case Intrinsic::vacopy:   visitVACopy(I); return 0;
3746   case Intrinsic::returnaddress:
3747     setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
3748                              getValue(I.getOperand(1))));
3749     return 0;
3750   case Intrinsic::frameaddress:
3751     setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
3752                              getValue(I.getOperand(1))));
3753     return 0;
3754   case Intrinsic::setjmp:
3755     return "_setjmp"+!TLI.usesUnderscoreSetJmp();
3756   case Intrinsic::longjmp:
3757     return "_longjmp"+!TLI.usesUnderscoreLongJmp();
3758   case Intrinsic::memcpy: {
3759     // Assert for address < 256 since we support only user defined address
3760     // spaces.
3761     assert(cast<PointerType>(I.getOperand(1)->getType())->getAddressSpace()
3762            < 256 &&
3763            cast<PointerType>(I.getOperand(2)->getType())->getAddressSpace()
3764            < 256 &&
3765            "Unknown address space");
3766     SDValue Op1 = getValue(I.getOperand(1));
3767     SDValue Op2 = getValue(I.getOperand(2));
3768     SDValue Op3 = getValue(I.getOperand(3));
3769     unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3770     bool isVol = cast<ConstantInt>(I.getOperand(5))->getZExtValue();
3771     DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
3772                               I.getOperand(1), 0, I.getOperand(2), 0));
3773     return 0;
3774   }
3775   case Intrinsic::memset: {
3776     // Assert for address < 256 since we support only user defined address
3777     // spaces.
3778     assert(cast<PointerType>(I.getOperand(1)->getType())->getAddressSpace()
3779            < 256 &&
3780            "Unknown address space");
3781     SDValue Op1 = getValue(I.getOperand(1));
3782     SDValue Op2 = getValue(I.getOperand(2));
3783     SDValue Op3 = getValue(I.getOperand(3));
3784     unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3785     bool isVol = cast<ConstantInt>(I.getOperand(5))->getZExtValue();
3786     DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
3787                               I.getOperand(1), 0));
3788     return 0;
3789   }
3790   case Intrinsic::memmove: {
3791     // Assert for address < 256 since we support only user defined address
3792     // spaces.
3793     assert(cast<PointerType>(I.getOperand(1)->getType())->getAddressSpace()
3794            < 256 &&
3795            cast<PointerType>(I.getOperand(2)->getType())->getAddressSpace()
3796            < 256 &&
3797            "Unknown address space");
3798     SDValue Op1 = getValue(I.getOperand(1));
3799     SDValue Op2 = getValue(I.getOperand(2));
3800     SDValue Op3 = getValue(I.getOperand(3));
3801     unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3802     bool isVol = cast<ConstantInt>(I.getOperand(5))->getZExtValue();
3803 
3804     // If the source and destination are known to not be aliases, we can
3805     // lower memmove as memcpy.
3806     uint64_t Size = -1ULL;
3807     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
3808       Size = C->getZExtValue();
3809     if (AA->alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
3810         AliasAnalysis::NoAlias) {
3811       DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
3812                                 false, I.getOperand(1), 0, I.getOperand(2), 0));
3813       return 0;
3814     }
3815 
3816     DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
3817                                I.getOperand(1), 0, I.getOperand(2), 0));
3818     return 0;
3819   }
3820   case Intrinsic::dbg_declare: {
3821     const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
3822     if (!DIDescriptor::ValidDebugInfo(DI.getVariable(), CodeGenOpt::None))
3823       return 0;
3824 
3825     MDNode *Variable = DI.getVariable();
3826     // Parameters are handled specially.
3827     bool isParameter =
3828       DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable;
3829     const Value *Address = DI.getAddress();
3830     if (!Address)
3831       return 0;
3832     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
3833       Address = BCI->getOperand(0);
3834     const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
3835     if (AI) {
3836       // Don't handle byval arguments or VLAs, for example.
3837       // Non-byval arguments are handled here (they refer to the stack temporary
3838       // alloca at this point).
3839       DenseMap<const AllocaInst*, int>::iterator SI =
3840         FuncInfo.StaticAllocaMap.find(AI);
3841       if (SI == FuncInfo.StaticAllocaMap.end())
3842         return 0; // VLAs.
3843       int FI = SI->second;
3844 
3845       MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
3846       if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
3847         MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
3848     }
3849 
3850     // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
3851     // but do not always have a corresponding SDNode built.  The SDNodeOrder
3852     // absolute, but not relative, values are different depending on whether
3853     // debug info exists.
3854     ++SDNodeOrder;
3855     SDValue &N = NodeMap[Address];
3856     SDDbgValue *SDV;
3857     if (N.getNode()) {
3858       if (isParameter && !AI) {
3859         FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
3860         if (FINode)
3861           // Byval parameter.  We have a frame index at this point.
3862           SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
3863                                 0, dl, SDNodeOrder);
3864         else
3865           // Can't do anything with other non-AI cases yet.  This might be a
3866           // parameter of a callee function that got inlined, for example.
3867           return 0;
3868       } else if (AI)
3869         SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
3870                               0, dl, SDNodeOrder);
3871       else
3872         // Can't do anything with other non-AI cases yet.
3873         return 0;
3874       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
3875     } else {
3876       // This isn't useful, but it shows what we're missing.
3877       SDV = DAG.getDbgValue(Variable, UndefValue::get(Address->getType()),
3878                             0, dl, SDNodeOrder);
3879       DAG.AddDbgValue(SDV, 0, isParameter);
3880     }
3881     return 0;
3882   }
3883   case Intrinsic::dbg_value: {
3884     const DbgValueInst &DI = cast<DbgValueInst>(I);
3885     if (!DIDescriptor::ValidDebugInfo(DI.getVariable(), CodeGenOpt::None))
3886       return 0;
3887 
3888     MDNode *Variable = DI.getVariable();
3889     uint64_t Offset = DI.getOffset();
3890     const Value *V = DI.getValue();
3891     if (!V)
3892       return 0;
3893 
3894     // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
3895     // but do not always have a corresponding SDNode built.  The SDNodeOrder
3896     // absolute, but not relative, values are different depending on whether
3897     // debug info exists.
3898     ++SDNodeOrder;
3899     SDDbgValue *SDV;
3900     if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) {
3901       SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
3902       DAG.AddDbgValue(SDV, 0, false);
3903     } else {
3904       SDValue &N = NodeMap[V];
3905       if (N.getNode()) {
3906         if (!EmitFuncArgumentDbgValue(DI, V, Variable, Offset, N)) {
3907           SDV = DAG.getDbgValue(Variable, N.getNode(),
3908                                 N.getResNo(), Offset, dl, SDNodeOrder);
3909           DAG.AddDbgValue(SDV, N.getNode(), false);
3910         }
3911       } else {
3912         // We may expand this to cover more cases.  One case where we have no
3913         // data available is an unreferenced parameter; we need this fallback.
3914         SDV = DAG.getDbgValue(Variable, UndefValue::get(V->getType()),
3915                               Offset, dl, SDNodeOrder);
3916         DAG.AddDbgValue(SDV, 0, false);
3917       }
3918     }
3919 
3920     // Build a debug info table entry.
3921     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
3922       V = BCI->getOperand(0);
3923     const AllocaInst *AI = dyn_cast<AllocaInst>(V);
3924     // Don't handle byval struct arguments or VLAs, for example.
3925     if (!AI)
3926       return 0;
3927     DenseMap<const AllocaInst*, int>::iterator SI =
3928       FuncInfo.StaticAllocaMap.find(AI);
3929     if (SI == FuncInfo.StaticAllocaMap.end())
3930       return 0; // VLAs.
3931     int FI = SI->second;
3932 
3933     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
3934     if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
3935       MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
3936     return 0;
3937   }
3938   case Intrinsic::eh_exception: {
3939     // Insert the EXCEPTIONADDR instruction.
3940     assert(FuncInfo.MBBMap[I.getParent()]->isLandingPad() &&
3941            "Call to eh.exception not in landing pad!");
3942     SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
3943     SDValue Ops[1];
3944     Ops[0] = DAG.getRoot();
3945     SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
3946     setValue(&I, Op);
3947     DAG.setRoot(Op.getValue(1));
3948     return 0;
3949   }
3950 
3951   case Intrinsic::eh_selector: {
3952     MachineBasicBlock *CallMBB = FuncInfo.MBBMap[I.getParent()];
3953     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
3954     if (CallMBB->isLandingPad())
3955       AddCatchInfo(I, &MMI, CallMBB);
3956     else {
3957 #ifndef NDEBUG
3958       FuncInfo.CatchInfoLost.insert(&I);
3959 #endif
3960       // FIXME: Mark exception selector register as live in.  Hack for PR1508.
3961       unsigned Reg = TLI.getExceptionSelectorRegister();
3962       if (Reg) FuncInfo.MBBMap[I.getParent()]->addLiveIn(Reg);
3963     }
3964 
3965     // Insert the EHSELECTION instruction.
3966     SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
3967     SDValue Ops[2];
3968     Ops[0] = getValue(I.getOperand(1));
3969     Ops[1] = getRoot();
3970     SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
3971     DAG.setRoot(Op.getValue(1));
3972     setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
3973     return 0;
3974   }
3975 
3976   case Intrinsic::eh_typeid_for: {
3977     // Find the type id for the given typeinfo.
3978     GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
3979     unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
3980     Res = DAG.getConstant(TypeID, MVT::i32);
3981     setValue(&I, Res);
3982     return 0;
3983   }
3984 
3985   case Intrinsic::eh_return_i32:
3986   case Intrinsic::eh_return_i64:
3987     DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
3988     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
3989                             MVT::Other,
3990                             getControlRoot(),
3991                             getValue(I.getOperand(1)),
3992                             getValue(I.getOperand(2))));
3993     return 0;
3994   case Intrinsic::eh_unwind_init:
3995     DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
3996     return 0;
3997   case Intrinsic::eh_dwarf_cfa: {
3998     EVT VT = getValue(I.getOperand(1)).getValueType();
3999     SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), dl,
4000                                         TLI.getPointerTy());
4001     SDValue Offset = DAG.getNode(ISD::ADD, dl,
4002                                  TLI.getPointerTy(),
4003                                  DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4004                                              TLI.getPointerTy()),
4005                                  CfaArg);
4006     SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4007                              TLI.getPointerTy(),
4008                              DAG.getConstant(0, TLI.getPointerTy()));
4009     setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4010                              FA, Offset));
4011     return 0;
4012   }
4013   case Intrinsic::eh_sjlj_callsite: {
4014     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4015     ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
4016     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4017     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4018 
4019     MMI.setCurrentCallSite(CI->getZExtValue());
4020     return 0;
4021   }
4022 
4023   case Intrinsic::convertff:
4024   case Intrinsic::convertfsi:
4025   case Intrinsic::convertfui:
4026   case Intrinsic::convertsif:
4027   case Intrinsic::convertuif:
4028   case Intrinsic::convertss:
4029   case Intrinsic::convertsu:
4030   case Intrinsic::convertus:
4031   case Intrinsic::convertuu: {
4032     ISD::CvtCode Code = ISD::CVT_INVALID;
4033     switch (Intrinsic) {
4034     case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4035     case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4036     case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4037     case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4038     case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4039     case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4040     case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4041     case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4042     case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4043     }
4044     EVT DestVT = TLI.getValueType(I.getType());
4045     const Value *Op1 = I.getOperand(1);
4046     Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4047                                DAG.getValueType(DestVT),
4048                                DAG.getValueType(getValue(Op1).getValueType()),
4049                                getValue(I.getOperand(2)),
4050                                getValue(I.getOperand(3)),
4051                                Code);
4052     setValue(&I, Res);
4053     return 0;
4054   }
4055   case Intrinsic::sqrt:
4056     setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4057                              getValue(I.getOperand(1)).getValueType(),
4058                              getValue(I.getOperand(1))));
4059     return 0;
4060   case Intrinsic::powi:
4061     setValue(&I, ExpandPowI(dl, getValue(I.getOperand(1)),
4062                             getValue(I.getOperand(2)), DAG));
4063     return 0;
4064   case Intrinsic::sin:
4065     setValue(&I, DAG.getNode(ISD::FSIN, dl,
4066                              getValue(I.getOperand(1)).getValueType(),
4067                              getValue(I.getOperand(1))));
4068     return 0;
4069   case Intrinsic::cos:
4070     setValue(&I, DAG.getNode(ISD::FCOS, dl,
4071                              getValue(I.getOperand(1)).getValueType(),
4072                              getValue(I.getOperand(1))));
4073     return 0;
4074   case Intrinsic::log:
4075     visitLog(I);
4076     return 0;
4077   case Intrinsic::log2:
4078     visitLog2(I);
4079     return 0;
4080   case Intrinsic::log10:
4081     visitLog10(I);
4082     return 0;
4083   case Intrinsic::exp:
4084     visitExp(I);
4085     return 0;
4086   case Intrinsic::exp2:
4087     visitExp2(I);
4088     return 0;
4089   case Intrinsic::pow:
4090     visitPow(I);
4091     return 0;
4092   case Intrinsic::convert_to_fp16:
4093     setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4094                              MVT::i16, getValue(I.getOperand(1))));
4095     return 0;
4096   case Intrinsic::convert_from_fp16:
4097     setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4098                              MVT::f32, getValue(I.getOperand(1))));
4099     return 0;
4100   case Intrinsic::pcmarker: {
4101     SDValue Tmp = getValue(I.getOperand(1));
4102     DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4103     return 0;
4104   }
4105   case Intrinsic::readcyclecounter: {
4106     SDValue Op = getRoot();
4107     Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4108                       DAG.getVTList(MVT::i64, MVT::Other),
4109                       &Op, 1);
4110     setValue(&I, Res);
4111     DAG.setRoot(Res.getValue(1));
4112     return 0;
4113   }
4114   case Intrinsic::bswap:
4115     setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4116                              getValue(I.getOperand(1)).getValueType(),
4117                              getValue(I.getOperand(1))));
4118     return 0;
4119   case Intrinsic::cttz: {
4120     SDValue Arg = getValue(I.getOperand(1));
4121     EVT Ty = Arg.getValueType();
4122     setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg));
4123     return 0;
4124   }
4125   case Intrinsic::ctlz: {
4126     SDValue Arg = getValue(I.getOperand(1));
4127     EVT Ty = Arg.getValueType();
4128     setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg));
4129     return 0;
4130   }
4131   case Intrinsic::ctpop: {
4132     SDValue Arg = getValue(I.getOperand(1));
4133     EVT Ty = Arg.getValueType();
4134     setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4135     return 0;
4136   }
4137   case Intrinsic::stacksave: {
4138     SDValue Op = getRoot();
4139     Res = DAG.getNode(ISD::STACKSAVE, dl,
4140                       DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4141     setValue(&I, Res);
4142     DAG.setRoot(Res.getValue(1));
4143     return 0;
4144   }
4145   case Intrinsic::stackrestore: {
4146     Res = getValue(I.getOperand(1));
4147     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4148     return 0;
4149   }
4150   case Intrinsic::stackprotector: {
4151     // Emit code into the DAG to store the stack guard onto the stack.
4152     MachineFunction &MF = DAG.getMachineFunction();
4153     MachineFrameInfo *MFI = MF.getFrameInfo();
4154     EVT PtrTy = TLI.getPointerTy();
4155 
4156     SDValue Src = getValue(I.getOperand(1));   // The guard's value.
4157     AllocaInst *Slot = cast<AllocaInst>(I.getOperand(2));
4158 
4159     int FI = FuncInfo.StaticAllocaMap[Slot];
4160     MFI->setStackProtectorIndex(FI);
4161 
4162     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4163 
4164     // Store the stack protector onto the stack.
4165     Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4166                        PseudoSourceValue::getFixedStack(FI),
4167                        0, true, false, 0);
4168     setValue(&I, Res);
4169     DAG.setRoot(Res);
4170     return 0;
4171   }
4172   case Intrinsic::objectsize: {
4173     // If we don't know by now, we're never going to know.
4174     ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(2));
4175 
4176     assert(CI && "Non-constant type in __builtin_object_size?");
4177 
4178     SDValue Arg = getValue(I.getOperand(0));
4179     EVT Ty = Arg.getValueType();
4180 
4181     if (CI->getZExtValue() == 0)
4182       Res = DAG.getConstant(-1ULL, Ty);
4183     else
4184       Res = DAG.getConstant(0, Ty);
4185 
4186     setValue(&I, Res);
4187     return 0;
4188   }
4189   case Intrinsic::var_annotation:
4190     // Discard annotate attributes
4191     return 0;
4192 
4193   case Intrinsic::init_trampoline: {
4194     const Function *F = cast<Function>(I.getOperand(2)->stripPointerCasts());
4195 
4196     SDValue Ops[6];
4197     Ops[0] = getRoot();
4198     Ops[1] = getValue(I.getOperand(1));
4199     Ops[2] = getValue(I.getOperand(2));
4200     Ops[3] = getValue(I.getOperand(3));
4201     Ops[4] = DAG.getSrcValue(I.getOperand(1));
4202     Ops[5] = DAG.getSrcValue(F);
4203 
4204     Res = DAG.getNode(ISD::TRAMPOLINE, dl,
4205                       DAG.getVTList(TLI.getPointerTy(), MVT::Other),
4206                       Ops, 6);
4207 
4208     setValue(&I, Res);
4209     DAG.setRoot(Res.getValue(1));
4210     return 0;
4211   }
4212   case Intrinsic::gcroot:
4213     if (GFI) {
4214       const Value *Alloca = I.getOperand(1);
4215       const Constant *TypeMap = cast<Constant>(I.getOperand(2));
4216 
4217       FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
4218       GFI->addStackRoot(FI->getIndex(), TypeMap);
4219     }
4220     return 0;
4221   case Intrinsic::gcread:
4222   case Intrinsic::gcwrite:
4223     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
4224     return 0;
4225   case Intrinsic::flt_rounds:
4226     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
4227     return 0;
4228   case Intrinsic::trap:
4229     DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
4230     return 0;
4231   case Intrinsic::uadd_with_overflow:
4232     return implVisitAluOverflow(I, ISD::UADDO);
4233   case Intrinsic::sadd_with_overflow:
4234     return implVisitAluOverflow(I, ISD::SADDO);
4235   case Intrinsic::usub_with_overflow:
4236     return implVisitAluOverflow(I, ISD::USUBO);
4237   case Intrinsic::ssub_with_overflow:
4238     return implVisitAluOverflow(I, ISD::SSUBO);
4239   case Intrinsic::umul_with_overflow:
4240     return implVisitAluOverflow(I, ISD::UMULO);
4241   case Intrinsic::smul_with_overflow:
4242     return implVisitAluOverflow(I, ISD::SMULO);
4243 
4244   case Intrinsic::prefetch: {
4245     SDValue Ops[4];
4246     Ops[0] = getRoot();
4247     Ops[1] = getValue(I.getOperand(1));
4248     Ops[2] = getValue(I.getOperand(2));
4249     Ops[3] = getValue(I.getOperand(3));
4250     DAG.setRoot(DAG.getNode(ISD::PREFETCH, dl, MVT::Other, &Ops[0], 4));
4251     return 0;
4252   }
4253 
4254   case Intrinsic::memory_barrier: {
4255     SDValue Ops[6];
4256     Ops[0] = getRoot();
4257     for (int x = 1; x < 6; ++x)
4258       Ops[x] = getValue(I.getOperand(x));
4259 
4260     DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6));
4261     return 0;
4262   }
4263   case Intrinsic::atomic_cmp_swap: {
4264     SDValue Root = getRoot();
4265     SDValue L =
4266       DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
4267                     getValue(I.getOperand(2)).getValueType().getSimpleVT(),
4268                     Root,
4269                     getValue(I.getOperand(1)),
4270                     getValue(I.getOperand(2)),
4271                     getValue(I.getOperand(3)),
4272                     I.getOperand(1));
4273     setValue(&I, L);
4274     DAG.setRoot(L.getValue(1));
4275     return 0;
4276   }
4277   case Intrinsic::atomic_load_add:
4278     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
4279   case Intrinsic::atomic_load_sub:
4280     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
4281   case Intrinsic::atomic_load_or:
4282     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
4283   case Intrinsic::atomic_load_xor:
4284     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
4285   case Intrinsic::atomic_load_and:
4286     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
4287   case Intrinsic::atomic_load_nand:
4288     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
4289   case Intrinsic::atomic_load_max:
4290     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
4291   case Intrinsic::atomic_load_min:
4292     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
4293   case Intrinsic::atomic_load_umin:
4294     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
4295   case Intrinsic::atomic_load_umax:
4296     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
4297   case Intrinsic::atomic_swap:
4298     return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
4299 
4300   case Intrinsic::invariant_start:
4301   case Intrinsic::lifetime_start:
4302     // Discard region information.
4303     setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
4304     return 0;
4305   case Intrinsic::invariant_end:
4306   case Intrinsic::lifetime_end:
4307     // Discard region information.
4308     return 0;
4309   }
4310 }
4311 
4312 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
4313                                       bool isTailCall,
4314                                       MachineBasicBlock *LandingPad) {
4315   const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
4316   const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
4317   const Type *RetTy = FTy->getReturnType();
4318   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4319   MCSymbol *BeginLabel = 0;
4320 
4321   TargetLowering::ArgListTy Args;
4322   TargetLowering::ArgListEntry Entry;
4323   Args.reserve(CS.arg_size());
4324 
4325   // Check whether the function can return without sret-demotion.
4326   SmallVector<EVT, 4> OutVTs;
4327   SmallVector<ISD::ArgFlagsTy, 4> OutsFlags;
4328   SmallVector<uint64_t, 4> Offsets;
4329   getReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
4330                 OutVTs, OutsFlags, TLI, &Offsets);
4331 
4332   bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
4333                         FTy->isVarArg(), OutVTs, OutsFlags, DAG);
4334 
4335   SDValue DemoteStackSlot;
4336 
4337   if (!CanLowerReturn) {
4338     uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
4339                       FTy->getReturnType());
4340     unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
4341                       FTy->getReturnType());
4342     MachineFunction &MF = DAG.getMachineFunction();
4343     int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
4344     const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
4345 
4346     DemoteStackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
4347     Entry.Node = DemoteStackSlot;
4348     Entry.Ty = StackSlotPtrType;
4349     Entry.isSExt = false;
4350     Entry.isZExt = false;
4351     Entry.isInReg = false;
4352     Entry.isSRet = true;
4353     Entry.isNest = false;
4354     Entry.isByVal = false;
4355     Entry.Alignment = Align;
4356     Args.push_back(Entry);
4357     RetTy = Type::getVoidTy(FTy->getContext());
4358   }
4359 
4360   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
4361        i != e; ++i) {
4362     SDValue ArgNode = getValue(*i);
4363     Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
4364 
4365     unsigned attrInd = i - CS.arg_begin() + 1;
4366     Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
4367     Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
4368     Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
4369     Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
4370     Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
4371     Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
4372     Entry.Alignment = CS.getParamAlignment(attrInd);
4373     Args.push_back(Entry);
4374   }
4375 
4376   if (LandingPad) {
4377     // Insert a label before the invoke call to mark the try range.  This can be
4378     // used to detect deletion of the invoke via the MachineModuleInfo.
4379     BeginLabel = MMI.getContext().CreateTempSymbol();
4380 
4381     // For SjLj, keep track of which landing pads go with which invokes
4382     // so as to maintain the ordering of pads in the LSDA.
4383     unsigned CallSiteIndex = MMI.getCurrentCallSite();
4384     if (CallSiteIndex) {
4385       MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
4386       // Now that the call site is handled, stop tracking it.
4387       MMI.setCurrentCallSite(0);
4388     }
4389 
4390     // Both PendingLoads and PendingExports must be flushed here;
4391     // this call might not return.
4392     (void)getRoot();
4393     DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
4394   }
4395 
4396   // Check if target-independent constraints permit a tail call here.
4397   // Target-dependent constraints are checked within TLI.LowerCallTo.
4398   if (isTailCall &&
4399       !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
4400     isTailCall = false;
4401 
4402   std::pair<SDValue,SDValue> Result =
4403     TLI.LowerCallTo(getRoot(), RetTy,
4404                     CS.paramHasAttr(0, Attribute::SExt),
4405                     CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
4406                     CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
4407                     CS.getCallingConv(),
4408                     isTailCall,
4409                     !CS.getInstruction()->use_empty(),
4410                     Callee, Args, DAG, getCurDebugLoc());
4411   assert((isTailCall || Result.second.getNode()) &&
4412          "Non-null chain expected with non-tail call!");
4413   assert((Result.second.getNode() || !Result.first.getNode()) &&
4414          "Null value expected with tail call!");
4415   if (Result.first.getNode()) {
4416     setValue(CS.getInstruction(), Result.first);
4417   } else if (!CanLowerReturn && Result.second.getNode()) {
4418     // The instruction result is the result of loading from the
4419     // hidden sret parameter.
4420     SmallVector<EVT, 1> PVTs;
4421     const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
4422 
4423     ComputeValueVTs(TLI, PtrRetTy, PVTs);
4424     assert(PVTs.size() == 1 && "Pointers should fit in one register");
4425     EVT PtrVT = PVTs[0];
4426     unsigned NumValues = OutVTs.size();
4427     SmallVector<SDValue, 4> Values(NumValues);
4428     SmallVector<SDValue, 4> Chains(NumValues);
4429 
4430     for (unsigned i = 0; i < NumValues; ++i) {
4431       SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
4432                                 DemoteStackSlot,
4433                                 DAG.getConstant(Offsets[i], PtrVT));
4434       SDValue L = DAG.getLoad(OutVTs[i], getCurDebugLoc(), Result.second,
4435                               Add, NULL, Offsets[i], false, false, 1);
4436       Values[i] = L;
4437       Chains[i] = L.getValue(1);
4438     }
4439 
4440     SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
4441                                 MVT::Other, &Chains[0], NumValues);
4442     PendingLoads.push_back(Chain);
4443 
4444     // Collect the legal value parts into potentially illegal values
4445     // that correspond to the original function's return values.
4446     SmallVector<EVT, 4> RetTys;
4447     RetTy = FTy->getReturnType();
4448     ComputeValueVTs(TLI, RetTy, RetTys);
4449     ISD::NodeType AssertOp = ISD::DELETED_NODE;
4450     SmallVector<SDValue, 4> ReturnValues;
4451     unsigned CurReg = 0;
4452     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4453       EVT VT = RetTys[I];
4454       EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
4455       unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
4456 
4457       SDValue ReturnValue =
4458         getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
4459                          RegisterVT, VT, AssertOp);
4460       ReturnValues.push_back(ReturnValue);
4461       CurReg += NumRegs;
4462     }
4463 
4464     setValue(CS.getInstruction(),
4465              DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
4466                          DAG.getVTList(&RetTys[0], RetTys.size()),
4467                          &ReturnValues[0], ReturnValues.size()));
4468 
4469   }
4470 
4471   // As a special case, a null chain means that a tail call has been emitted and
4472   // the DAG root is already updated.
4473   if (Result.second.getNode())
4474     DAG.setRoot(Result.second);
4475   else
4476     HasTailCall = true;
4477 
4478   if (LandingPad) {
4479     // Insert a label at the end of the invoke call to mark the try range.  This
4480     // can be used to detect deletion of the invoke via the MachineModuleInfo.
4481     MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
4482     DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
4483 
4484     // Inform MachineModuleInfo of range.
4485     MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
4486   }
4487 }
4488 
4489 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
4490 /// value is equal or not-equal to zero.
4491 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
4492   for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
4493        UI != E; ++UI) {
4494     if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
4495       if (IC->isEquality())
4496         if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
4497           if (C->isNullValue())
4498             continue;
4499     // Unknown instruction.
4500     return false;
4501   }
4502   return true;
4503 }
4504 
4505 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
4506                              const Type *LoadTy,
4507                              SelectionDAGBuilder &Builder) {
4508 
4509   // Check to see if this load can be trivially constant folded, e.g. if the
4510   // input is from a string literal.
4511   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
4512     // Cast pointer to the type we really want to load.
4513     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
4514                                          PointerType::getUnqual(LoadTy));
4515 
4516     if (const Constant *LoadCst =
4517           ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
4518                                        Builder.TD))
4519       return Builder.getValue(LoadCst);
4520   }
4521 
4522   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
4523   // still constant memory, the input chain can be the entry node.
4524   SDValue Root;
4525   bool ConstantMemory = false;
4526 
4527   // Do not serialize (non-volatile) loads of constant memory with anything.
4528   if (Builder.AA->pointsToConstantMemory(PtrVal)) {
4529     Root = Builder.DAG.getEntryNode();
4530     ConstantMemory = true;
4531   } else {
4532     // Do not serialize non-volatile loads against each other.
4533     Root = Builder.DAG.getRoot();
4534   }
4535 
4536   SDValue Ptr = Builder.getValue(PtrVal);
4537   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
4538                                         Ptr, PtrVal /*SrcValue*/, 0/*SVOffset*/,
4539                                         false /*volatile*/,
4540                                         false /*nontemporal*/, 1 /* align=1 */);
4541 
4542   if (!ConstantMemory)
4543     Builder.PendingLoads.push_back(LoadVal.getValue(1));
4544   return LoadVal;
4545 }
4546 
4547 
4548 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
4549 /// If so, return true and lower it, otherwise return false and it will be
4550 /// lowered like a normal call.
4551 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
4552   // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
4553   if (I.getNumOperands() != 4)
4554     return false;
4555 
4556   const Value *LHS = I.getOperand(1), *RHS = I.getOperand(2);
4557   if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
4558       !I.getOperand(3)->getType()->isIntegerTy() ||
4559       !I.getType()->isIntegerTy())
4560     return false;
4561 
4562   const ConstantInt *Size = dyn_cast<ConstantInt>(I.getOperand(3));
4563 
4564   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
4565   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
4566   if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
4567     bool ActuallyDoIt = true;
4568     MVT LoadVT;
4569     const Type *LoadTy;
4570     switch (Size->getZExtValue()) {
4571     default:
4572       LoadVT = MVT::Other;
4573       LoadTy = 0;
4574       ActuallyDoIt = false;
4575       break;
4576     case 2:
4577       LoadVT = MVT::i16;
4578       LoadTy = Type::getInt16Ty(Size->getContext());
4579       break;
4580     case 4:
4581       LoadVT = MVT::i32;
4582       LoadTy = Type::getInt32Ty(Size->getContext());
4583       break;
4584     case 8:
4585       LoadVT = MVT::i64;
4586       LoadTy = Type::getInt64Ty(Size->getContext());
4587       break;
4588         /*
4589     case 16:
4590       LoadVT = MVT::v4i32;
4591       LoadTy = Type::getInt32Ty(Size->getContext());
4592       LoadTy = VectorType::get(LoadTy, 4);
4593       break;
4594          */
4595     }
4596 
4597     // This turns into unaligned loads.  We only do this if the target natively
4598     // supports the MVT we'll be loading or if it is small enough (<= 4) that
4599     // we'll only produce a small number of byte loads.
4600 
4601     // Require that we can find a legal MVT, and only do this if the target
4602     // supports unaligned loads of that type.  Expanding into byte loads would
4603     // bloat the code.
4604     if (ActuallyDoIt && Size->getZExtValue() > 4) {
4605       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
4606       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
4607       if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
4608         ActuallyDoIt = false;
4609     }
4610 
4611     if (ActuallyDoIt) {
4612       SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
4613       SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
4614 
4615       SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
4616                                  ISD::SETNE);
4617       EVT CallVT = TLI.getValueType(I.getType(), true);
4618       setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
4619       return true;
4620     }
4621   }
4622 
4623 
4624   return false;
4625 }
4626 
4627 
4628 void SelectionDAGBuilder::visitCall(const CallInst &I) {
4629   const char *RenameFn = 0;
4630   if (Function *F = I.getCalledFunction()) {
4631     if (F->isDeclaration()) {
4632       const TargetIntrinsicInfo *II = TM.getIntrinsicInfo();
4633       if (II) {
4634         if (unsigned IID = II->getIntrinsicID(F)) {
4635           RenameFn = visitIntrinsicCall(I, IID);
4636           if (!RenameFn)
4637             return;
4638         }
4639       }
4640       if (unsigned IID = F->getIntrinsicID()) {
4641         RenameFn = visitIntrinsicCall(I, IID);
4642         if (!RenameFn)
4643           return;
4644       }
4645     }
4646 
4647     // Check for well-known libc/libm calls.  If the function is internal, it
4648     // can't be a library call.
4649     if (!F->hasLocalLinkage() && F->hasName()) {
4650       StringRef Name = F->getName();
4651       if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") {
4652         if (I.getNumOperands() == 3 &&   // Basic sanity checks.
4653             I.getOperand(1)->getType()->isFloatingPointTy() &&
4654             I.getType() == I.getOperand(1)->getType() &&
4655             I.getType() == I.getOperand(2)->getType()) {
4656           SDValue LHS = getValue(I.getOperand(1));
4657           SDValue RHS = getValue(I.getOperand(2));
4658           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
4659                                    LHS.getValueType(), LHS, RHS));
4660           return;
4661         }
4662       } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
4663         if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4664             I.getOperand(1)->getType()->isFloatingPointTy() &&
4665             I.getType() == I.getOperand(1)->getType()) {
4666           SDValue Tmp = getValue(I.getOperand(1));
4667           setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
4668                                    Tmp.getValueType(), Tmp));
4669           return;
4670         }
4671       } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
4672         if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4673             I.getOperand(1)->getType()->isFloatingPointTy() &&
4674             I.getType() == I.getOperand(1)->getType() &&
4675             I.onlyReadsMemory()) {
4676           SDValue Tmp = getValue(I.getOperand(1));
4677           setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
4678                                    Tmp.getValueType(), Tmp));
4679           return;
4680         }
4681       } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
4682         if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4683             I.getOperand(1)->getType()->isFloatingPointTy() &&
4684             I.getType() == I.getOperand(1)->getType() &&
4685             I.onlyReadsMemory()) {
4686           SDValue Tmp = getValue(I.getOperand(1));
4687           setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
4688                                    Tmp.getValueType(), Tmp));
4689           return;
4690         }
4691       } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
4692         if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4693             I.getOperand(1)->getType()->isFloatingPointTy() &&
4694             I.getType() == I.getOperand(1)->getType() &&
4695             I.onlyReadsMemory()) {
4696           SDValue Tmp = getValue(I.getOperand(1));
4697           setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
4698                                    Tmp.getValueType(), Tmp));
4699           return;
4700         }
4701       } else if (Name == "memcmp") {
4702         if (visitMemCmpCall(I))
4703           return;
4704       }
4705     }
4706   } else if (isa<InlineAsm>(I.getOperand(0))) {
4707     visitInlineAsm(&I);
4708     return;
4709   }
4710 
4711   SDValue Callee;
4712   if (!RenameFn)
4713     Callee = getValue(I.getOperand(0));
4714   else
4715     Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
4716 
4717   // Check if we can potentially perform a tail call. More detailed checking is
4718   // be done within LowerCallTo, after more information about the call is known.
4719   LowerCallTo(&I, Callee, I.isTailCall());
4720 }
4721 
4722 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
4723 /// this value and returns the result as a ValueVT value.  This uses
4724 /// Chain/Flag as the input and updates them for the output Chain/Flag.
4725 /// If the Flag pointer is NULL, no flag is used.
4726 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl,
4727                                       SDValue &Chain, SDValue *Flag) const {
4728   // Assemble the legal parts into the final values.
4729   SmallVector<SDValue, 4> Values(ValueVTs.size());
4730   SmallVector<SDValue, 8> Parts;
4731   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
4732     // Copy the legal parts from the registers.
4733     EVT ValueVT = ValueVTs[Value];
4734     unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVT);
4735     EVT RegisterVT = RegVTs[Value];
4736 
4737     Parts.resize(NumRegs);
4738     for (unsigned i = 0; i != NumRegs; ++i) {
4739       SDValue P;
4740       if (Flag == 0) {
4741         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
4742       } else {
4743         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
4744         *Flag = P.getValue(2);
4745       }
4746 
4747       Chain = P.getValue(1);
4748 
4749       // If the source register was virtual and if we know something about it,
4750       // add an assert node.
4751       if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) &&
4752           RegisterVT.isInteger() && !RegisterVT.isVector()) {
4753         unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister;
4754         FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
4755         if (FLI.LiveOutRegInfo.size() > SlotNo) {
4756           FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[SlotNo];
4757 
4758           unsigned RegSize = RegisterVT.getSizeInBits();
4759           unsigned NumSignBits = LOI.NumSignBits;
4760           unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes();
4761 
4762           // FIXME: We capture more information than the dag can represent.  For
4763           // now, just use the tightest assertzext/assertsext possible.
4764           bool isSExt = true;
4765           EVT FromVT(MVT::Other);
4766           if (NumSignBits == RegSize)
4767             isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
4768           else if (NumZeroBits >= RegSize-1)
4769             isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
4770           else if (NumSignBits > RegSize-8)
4771             isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
4772           else if (NumZeroBits >= RegSize-8)
4773             isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
4774           else if (NumSignBits > RegSize-16)
4775             isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
4776           else if (NumZeroBits >= RegSize-16)
4777             isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
4778           else if (NumSignBits > RegSize-32)
4779             isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
4780           else if (NumZeroBits >= RegSize-32)
4781             isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
4782 
4783           if (FromVT != MVT::Other)
4784             P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
4785                             RegisterVT, P, DAG.getValueType(FromVT));
4786         }
4787       }
4788 
4789       Parts[i] = P;
4790     }
4791 
4792     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
4793                                      NumRegs, RegisterVT, ValueVT);
4794     Part += NumRegs;
4795     Parts.clear();
4796   }
4797 
4798   return DAG.getNode(ISD::MERGE_VALUES, dl,
4799                      DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
4800                      &Values[0], ValueVTs.size());
4801 }
4802 
4803 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
4804 /// specified value into the registers specified by this object.  This uses
4805 /// Chain/Flag as the input and updates them for the output Chain/Flag.
4806 /// If the Flag pointer is NULL, no flag is used.
4807 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
4808                                  SDValue &Chain, SDValue *Flag) const {
4809   // Get the list of the values's legal parts.
4810   unsigned NumRegs = Regs.size();
4811   SmallVector<SDValue, 8> Parts(NumRegs);
4812   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
4813     EVT ValueVT = ValueVTs[Value];
4814     unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), ValueVT);
4815     EVT RegisterVT = RegVTs[Value];
4816 
4817     getCopyToParts(DAG, dl,
4818                    Val.getValue(Val.getResNo() + Value),
4819                    &Parts[Part], NumParts, RegisterVT);
4820     Part += NumParts;
4821   }
4822 
4823   // Copy the parts into the registers.
4824   SmallVector<SDValue, 8> Chains(NumRegs);
4825   for (unsigned i = 0; i != NumRegs; ++i) {
4826     SDValue Part;
4827     if (Flag == 0) {
4828       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
4829     } else {
4830       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
4831       *Flag = Part.getValue(1);
4832     }
4833 
4834     Chains[i] = Part.getValue(0);
4835   }
4836 
4837   if (NumRegs == 1 || Flag)
4838     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
4839     // flagged to it. That is the CopyToReg nodes and the user are considered
4840     // a single scheduling unit. If we create a TokenFactor and return it as
4841     // chain, then the TokenFactor is both a predecessor (operand) of the
4842     // user as well as a successor (the TF operands are flagged to the user).
4843     // c1, f1 = CopyToReg
4844     // c2, f2 = CopyToReg
4845     // c3     = TokenFactor c1, c2
4846     // ...
4847     //        = op c3, ..., f2
4848     Chain = Chains[NumRegs-1];
4849   else
4850     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
4851 }
4852 
4853 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
4854 /// operand list.  This adds the code marker and includes the number of
4855 /// values added into it.
4856 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
4857                                         unsigned MatchingIdx,
4858                                         SelectionDAG &DAG,
4859                                         std::vector<SDValue> &Ops) const {
4860   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
4861   if (HasMatching)
4862     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
4863   SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
4864   Ops.push_back(Res);
4865 
4866   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
4867     unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
4868     EVT RegisterVT = RegVTs[Value];
4869     for (unsigned i = 0; i != NumRegs; ++i) {
4870       assert(Reg < Regs.size() && "Mismatch in # registers expected");
4871       Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
4872     }
4873   }
4874 }
4875 
4876 /// isAllocatableRegister - If the specified register is safe to allocate,
4877 /// i.e. it isn't a stack pointer or some other special register, return the
4878 /// register class for the register.  Otherwise, return null.
4879 static const TargetRegisterClass *
4880 isAllocatableRegister(unsigned Reg, MachineFunction &MF,
4881                       const TargetLowering &TLI,
4882                       const TargetRegisterInfo *TRI) {
4883   EVT FoundVT = MVT::Other;
4884   const TargetRegisterClass *FoundRC = 0;
4885   for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
4886        E = TRI->regclass_end(); RCI != E; ++RCI) {
4887     EVT ThisVT = MVT::Other;
4888 
4889     const TargetRegisterClass *RC = *RCI;
4890     // If none of the value types for this register class are valid, we
4891     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4892     for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
4893          I != E; ++I) {
4894       if (TLI.isTypeLegal(*I)) {
4895         // If we have already found this register in a different register class,
4896         // choose the one with the largest VT specified.  For example, on
4897         // PowerPC, we favor f64 register classes over f32.
4898         if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
4899           ThisVT = *I;
4900           break;
4901         }
4902       }
4903     }
4904 
4905     if (ThisVT == MVT::Other) continue;
4906 
4907     // NOTE: This isn't ideal.  In particular, this might allocate the
4908     // frame pointer in functions that need it (due to them not being taken
4909     // out of allocation, because a variable sized allocation hasn't been seen
4910     // yet).  This is a slight code pessimization, but should still work.
4911     for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
4912          E = RC->allocation_order_end(MF); I != E; ++I)
4913       if (*I == Reg) {
4914         // We found a matching register class.  Keep looking at others in case
4915         // we find one with larger registers that this physreg is also in.
4916         FoundRC = RC;
4917         FoundVT = ThisVT;
4918         break;
4919       }
4920   }
4921   return FoundRC;
4922 }
4923 
4924 
4925 namespace llvm {
4926 /// AsmOperandInfo - This contains information for each constraint that we are
4927 /// lowering.
4928 class VISIBILITY_HIDDEN SDISelAsmOperandInfo :
4929     public TargetLowering::AsmOperandInfo {
4930 public:
4931   /// CallOperand - If this is the result output operand or a clobber
4932   /// this is null, otherwise it is the incoming operand to the CallInst.
4933   /// This gets modified as the asm is processed.
4934   SDValue CallOperand;
4935 
4936   /// AssignedRegs - If this is a register or register class operand, this
4937   /// contains the set of register corresponding to the operand.
4938   RegsForValue AssignedRegs;
4939 
4940   explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info)
4941     : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
4942   }
4943 
4944   /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
4945   /// busy in OutputRegs/InputRegs.
4946   void MarkAllocatedRegs(bool isOutReg, bool isInReg,
4947                          std::set<unsigned> &OutputRegs,
4948                          std::set<unsigned> &InputRegs,
4949                          const TargetRegisterInfo &TRI) const {
4950     if (isOutReg) {
4951       for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
4952         MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
4953     }
4954     if (isInReg) {
4955       for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
4956         MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
4957     }
4958   }
4959 
4960   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
4961   /// corresponds to.  If there is no Value* for this operand, it returns
4962   /// MVT::Other.
4963   EVT getCallOperandValEVT(LLVMContext &Context,
4964                            const TargetLowering &TLI,
4965                            const TargetData *TD) const {
4966     if (CallOperandVal == 0) return MVT::Other;
4967 
4968     if (isa<BasicBlock>(CallOperandVal))
4969       return TLI.getPointerTy();
4970 
4971     const llvm::Type *OpTy = CallOperandVal->getType();
4972 
4973     // If this is an indirect operand, the operand is a pointer to the
4974     // accessed type.
4975     if (isIndirect) {
4976       const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4977       if (!PtrTy)
4978         report_fatal_error("Indirect operand for inline asm not a pointer!");
4979       OpTy = PtrTy->getElementType();
4980     }
4981 
4982     // If OpTy is not a single value, it may be a struct/union that we
4983     // can tile with integers.
4984     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4985       unsigned BitSize = TD->getTypeSizeInBits(OpTy);
4986       switch (BitSize) {
4987       default: break;
4988       case 1:
4989       case 8:
4990       case 16:
4991       case 32:
4992       case 64:
4993       case 128:
4994         OpTy = IntegerType::get(Context, BitSize);
4995         break;
4996       }
4997     }
4998 
4999     return TLI.getValueType(OpTy, true);
5000   }
5001 
5002 private:
5003   /// MarkRegAndAliases - Mark the specified register and all aliases in the
5004   /// specified set.
5005   static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
5006                                 const TargetRegisterInfo &TRI) {
5007     assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
5008     Regs.insert(Reg);
5009     if (const unsigned *Aliases = TRI.getAliasSet(Reg))
5010       for (; *Aliases; ++Aliases)
5011         Regs.insert(*Aliases);
5012   }
5013 };
5014 } // end llvm namespace.
5015 
5016 
5017 /// GetRegistersForValue - Assign registers (virtual or physical) for the
5018 /// specified operand.  We prefer to assign virtual registers, to allow the
5019 /// register allocator to handle the assignment process.  However, if the asm
5020 /// uses features that we can't model on machineinstrs, we have SDISel do the
5021 /// allocation.  This produces generally horrible, but correct, code.
5022 ///
5023 ///   OpInfo describes the operand.
5024 ///   Input and OutputRegs are the set of already allocated physical registers.
5025 ///
5026 void SelectionDAGBuilder::
5027 GetRegistersForValue(SDISelAsmOperandInfo &OpInfo,
5028                      std::set<unsigned> &OutputRegs,
5029                      std::set<unsigned> &InputRegs) {
5030   LLVMContext &Context = FuncInfo.Fn->getContext();
5031 
5032   // Compute whether this value requires an input register, an output register,
5033   // or both.
5034   bool isOutReg = false;
5035   bool isInReg = false;
5036   switch (OpInfo.Type) {
5037   case InlineAsm::isOutput:
5038     isOutReg = true;
5039 
5040     // If there is an input constraint that matches this, we need to reserve
5041     // the input register so no other inputs allocate to it.
5042     isInReg = OpInfo.hasMatchingInput();
5043     break;
5044   case InlineAsm::isInput:
5045     isInReg = true;
5046     isOutReg = false;
5047     break;
5048   case InlineAsm::isClobber:
5049     isOutReg = true;
5050     isInReg = true;
5051     break;
5052   }
5053 
5054 
5055   MachineFunction &MF = DAG.getMachineFunction();
5056   SmallVector<unsigned, 4> Regs;
5057 
5058   // If this is a constraint for a single physreg, or a constraint for a
5059   // register class, find it.
5060   std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5061     TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5062                                      OpInfo.ConstraintVT);
5063 
5064   unsigned NumRegs = 1;
5065   if (OpInfo.ConstraintVT != MVT::Other) {
5066     // If this is a FP input in an integer register (or visa versa) insert a bit
5067     // cast of the input value.  More generally, handle any case where the input
5068     // value disagrees with the register class we plan to stick this in.
5069     if (OpInfo.Type == InlineAsm::isInput &&
5070         PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5071       // Try to convert to the first EVT that the reg class contains.  If the
5072       // types are identical size, use a bitcast to convert (e.g. two differing
5073       // vector types).
5074       EVT RegVT = *PhysReg.second->vt_begin();
5075       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5076         OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5077                                          RegVT, OpInfo.CallOperand);
5078         OpInfo.ConstraintVT = RegVT;
5079       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5080         // If the input is a FP value and we want it in FP registers, do a
5081         // bitcast to the corresponding integer type.  This turns an f64 value
5082         // into i64, which can be passed with two i32 values on a 32-bit
5083         // machine.
5084         RegVT = EVT::getIntegerVT(Context,
5085                                   OpInfo.ConstraintVT.getSizeInBits());
5086         OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5087                                          RegVT, OpInfo.CallOperand);
5088         OpInfo.ConstraintVT = RegVT;
5089       }
5090     }
5091 
5092     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5093   }
5094 
5095   EVT RegVT;
5096   EVT ValueVT = OpInfo.ConstraintVT;
5097 
5098   // If this is a constraint for a specific physical register, like {r17},
5099   // assign it now.
5100   if (unsigned AssignedReg = PhysReg.first) {
5101     const TargetRegisterClass *RC = PhysReg.second;
5102     if (OpInfo.ConstraintVT == MVT::Other)
5103       ValueVT = *RC->vt_begin();
5104 
5105     // Get the actual register value type.  This is important, because the user
5106     // may have asked for (e.g.) the AX register in i32 type.  We need to
5107     // remember that AX is actually i16 to get the right extension.
5108     RegVT = *RC->vt_begin();
5109 
5110     // This is a explicit reference to a physical register.
5111     Regs.push_back(AssignedReg);
5112 
5113     // If this is an expanded reference, add the rest of the regs to Regs.
5114     if (NumRegs != 1) {
5115       TargetRegisterClass::iterator I = RC->begin();
5116       for (; *I != AssignedReg; ++I)
5117         assert(I != RC->end() && "Didn't find reg!");
5118 
5119       // Already added the first reg.
5120       --NumRegs; ++I;
5121       for (; NumRegs; --NumRegs, ++I) {
5122         assert(I != RC->end() && "Ran out of registers to allocate!");
5123         Regs.push_back(*I);
5124       }
5125     }
5126 
5127     OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
5128     const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5129     OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5130     return;
5131   }
5132 
5133   // Otherwise, if this was a reference to an LLVM register class, create vregs
5134   // for this reference.
5135   if (const TargetRegisterClass *RC = PhysReg.second) {
5136     RegVT = *RC->vt_begin();
5137     if (OpInfo.ConstraintVT == MVT::Other)
5138       ValueVT = RegVT;
5139 
5140     // Create the appropriate number of virtual registers.
5141     MachineRegisterInfo &RegInfo = MF.getRegInfo();
5142     for (; NumRegs; --NumRegs)
5143       Regs.push_back(RegInfo.createVirtualRegister(RC));
5144 
5145     OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
5146     return;
5147   }
5148 
5149   // This is a reference to a register class that doesn't directly correspond
5150   // to an LLVM register class.  Allocate NumRegs consecutive, available,
5151   // registers from the class.
5152   std::vector<unsigned> RegClassRegs
5153     = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
5154                                             OpInfo.ConstraintVT);
5155 
5156   const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5157   unsigned NumAllocated = 0;
5158   for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
5159     unsigned Reg = RegClassRegs[i];
5160     // See if this register is available.
5161     if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
5162         (isInReg  && InputRegs.count(Reg))) {    // Already used.
5163       // Make sure we find consecutive registers.
5164       NumAllocated = 0;
5165       continue;
5166     }
5167 
5168     // Check to see if this register is allocatable (i.e. don't give out the
5169     // stack pointer).
5170     const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI);
5171     if (!RC) {        // Couldn't allocate this register.
5172       // Reset NumAllocated to make sure we return consecutive registers.
5173       NumAllocated = 0;
5174       continue;
5175     }
5176 
5177     // Okay, this register is good, we can use it.
5178     ++NumAllocated;
5179 
5180     // If we allocated enough consecutive registers, succeed.
5181     if (NumAllocated == NumRegs) {
5182       unsigned RegStart = (i-NumAllocated)+1;
5183       unsigned RegEnd   = i+1;
5184       // Mark all of the allocated registers used.
5185       for (unsigned i = RegStart; i != RegEnd; ++i)
5186         Regs.push_back(RegClassRegs[i]);
5187 
5188       OpInfo.AssignedRegs = RegsForValue(TLI, Regs, *RC->vt_begin(),
5189                                          OpInfo.ConstraintVT);
5190       OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5191       return;
5192     }
5193   }
5194 
5195   // Otherwise, we couldn't allocate enough registers for this.
5196 }
5197 
5198 /// visitInlineAsm - Handle a call to an InlineAsm object.
5199 ///
5200 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5201   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5202 
5203   /// ConstraintOperands - Information about all of the constraints.
5204   std::vector<SDISelAsmOperandInfo> ConstraintOperands;
5205 
5206   std::set<unsigned> OutputRegs, InputRegs;
5207 
5208   // Do a prepass over the constraints, canonicalizing them, and building up the
5209   // ConstraintOperands list.
5210   std::vector<InlineAsm::ConstraintInfo>
5211     ConstraintInfos = IA->ParseConstraints();
5212 
5213   bool hasMemory = hasInlineAsmMemConstraint(ConstraintInfos, TLI);
5214 
5215   SDValue Chain, Flag;
5216 
5217   // We won't need to flush pending loads if this asm doesn't touch
5218   // memory and is nonvolatile.
5219   if (hasMemory || IA->hasSideEffects())
5220     Chain = getRoot();
5221   else
5222     Chain = DAG.getRoot();
5223 
5224   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5225   unsigned ResNo = 0;   // ResNo - The result number of the next output.
5226   for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
5227     ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i]));
5228     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5229 
5230     EVT OpVT = MVT::Other;
5231 
5232     // Compute the value type for each operand.
5233     switch (OpInfo.Type) {
5234     case InlineAsm::isOutput:
5235       // Indirect outputs just consume an argument.
5236       if (OpInfo.isIndirect) {
5237         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5238         break;
5239       }
5240 
5241       // The return value of the call is this value.  As such, there is no
5242       // corresponding argument.
5243       assert(!CS.getType()->isVoidTy() &&
5244              "Bad inline asm!");
5245       if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
5246         OpVT = TLI.getValueType(STy->getElementType(ResNo));
5247       } else {
5248         assert(ResNo == 0 && "Asm only has one result!");
5249         OpVT = TLI.getValueType(CS.getType());
5250       }
5251       ++ResNo;
5252       break;
5253     case InlineAsm::isInput:
5254       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5255       break;
5256     case InlineAsm::isClobber:
5257       // Nothing to do.
5258       break;
5259     }
5260 
5261     // If this is an input or an indirect output, process the call argument.
5262     // BasicBlocks are labels, currently appearing only in asm's.
5263     if (OpInfo.CallOperandVal) {
5264       // Strip bitcasts, if any.  This mostly comes up for functions.
5265       OpInfo.CallOperandVal = OpInfo.CallOperandVal->stripPointerCasts();
5266 
5267       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5268         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5269       } else {
5270         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5271       }
5272 
5273       OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5274     }
5275 
5276     OpInfo.ConstraintVT = OpVT;
5277   }
5278 
5279   // Second pass over the constraints: compute which constraint option to use
5280   // and assign registers to constraints that want a specific physreg.
5281   for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
5282     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5283 
5284     // If this is an output operand with a matching input operand, look up the
5285     // matching input. If their types mismatch, e.g. one is an integer, the
5286     // other is floating point, or their sizes are different, flag it as an
5287     // error.
5288     if (OpInfo.hasMatchingInput()) {
5289       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5290 
5291       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5292         if ((OpInfo.ConstraintVT.isInteger() !=
5293              Input.ConstraintVT.isInteger()) ||
5294             (OpInfo.ConstraintVT.getSizeInBits() !=
5295              Input.ConstraintVT.getSizeInBits())) {
5296           report_fatal_error("Unsupported asm: input constraint"
5297                              " with a matching output constraint of"
5298                              " incompatible type!");
5299         }
5300         Input.ConstraintVT = OpInfo.ConstraintVT;
5301       }
5302     }
5303 
5304     // Compute the constraint code and ConstraintType to use.
5305     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, hasMemory, &DAG);
5306 
5307     // If this is a memory input, and if the operand is not indirect, do what we
5308     // need to to provide an address for the memory input.
5309     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5310         !OpInfo.isIndirect) {
5311       assert(OpInfo.Type == InlineAsm::isInput &&
5312              "Can only indirectify direct input operands!");
5313 
5314       // Memory operands really want the address of the value.  If we don't have
5315       // an indirect input, put it in the constpool if we can, otherwise spill
5316       // it to a stack slot.
5317 
5318       // If the operand is a float, integer, or vector constant, spill to a
5319       // constant pool entry to get its address.
5320       const Value *OpVal = OpInfo.CallOperandVal;
5321       if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5322           isa<ConstantVector>(OpVal)) {
5323         OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5324                                                  TLI.getPointerTy());
5325       } else {
5326         // Otherwise, create a stack slot and emit a store to it before the
5327         // asm.
5328         const Type *Ty = OpVal->getType();
5329         uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5330         unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5331         MachineFunction &MF = DAG.getMachineFunction();
5332         int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5333         SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5334         Chain = DAG.getStore(Chain, getCurDebugLoc(),
5335                              OpInfo.CallOperand, StackSlot, NULL, 0,
5336                              false, false, 0);
5337         OpInfo.CallOperand = StackSlot;
5338       }
5339 
5340       // There is no longer a Value* corresponding to this operand.
5341       OpInfo.CallOperandVal = 0;
5342 
5343       // It is now an indirect operand.
5344       OpInfo.isIndirect = true;
5345     }
5346 
5347     // If this constraint is for a specific register, allocate it before
5348     // anything else.
5349     if (OpInfo.ConstraintType == TargetLowering::C_Register)
5350       GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5351   }
5352 
5353   ConstraintInfos.clear();
5354 
5355   // Second pass - Loop over all of the operands, assigning virtual or physregs
5356   // to register class operands.
5357   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5358     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5359 
5360     // C_Register operands have already been allocated, Other/Memory don't need
5361     // to be.
5362     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
5363       GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5364   }
5365 
5366   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
5367   std::vector<SDValue> AsmNodeOperands;
5368   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
5369   AsmNodeOperands.push_back(
5370           DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
5371                                       TLI.getPointerTy()));
5372 
5373   // If we have a !srcloc metadata node associated with it, we want to attach
5374   // this to the ultimately generated inline asm machineinstr.  To do this, we
5375   // pass in the third operand as this (potentially null) inline asm MDNode.
5376   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
5377   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
5378 
5379   // Loop over all of the inputs, copying the operand values into the
5380   // appropriate registers and processing the output regs.
5381   RegsForValue RetValRegs;
5382 
5383   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
5384   std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
5385 
5386   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5387     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5388 
5389     switch (OpInfo.Type) {
5390     case InlineAsm::isOutput: {
5391       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
5392           OpInfo.ConstraintType != TargetLowering::C_Register) {
5393         // Memory output, or 'other' output (e.g. 'X' constraint).
5394         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
5395 
5396         // Add information to the INLINEASM node to know about this output.
5397         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5398         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
5399                                                         TLI.getPointerTy()));
5400         AsmNodeOperands.push_back(OpInfo.CallOperand);
5401         break;
5402       }
5403 
5404       // Otherwise, this is a register or register class output.
5405 
5406       // Copy the output from the appropriate register.  Find a register that
5407       // we can use.
5408       if (OpInfo.AssignedRegs.Regs.empty())
5409         report_fatal_error("Couldn't allocate output reg for constraint '" +
5410                            Twine(OpInfo.ConstraintCode) + "'!");
5411 
5412       // If this is an indirect operand, store through the pointer after the
5413       // asm.
5414       if (OpInfo.isIndirect) {
5415         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
5416                                                       OpInfo.CallOperandVal));
5417       } else {
5418         // This is the result value of the call.
5419         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5420         // Concatenate this output onto the outputs list.
5421         RetValRegs.append(OpInfo.AssignedRegs);
5422       }
5423 
5424       // Add information to the INLINEASM node to know that this register is
5425       // set.
5426       OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
5427                                            InlineAsm::Kind_RegDefEarlyClobber :
5428                                                InlineAsm::Kind_RegDef,
5429                                                false,
5430                                                0,
5431                                                DAG,
5432                                                AsmNodeOperands);
5433       break;
5434     }
5435     case InlineAsm::isInput: {
5436       SDValue InOperandVal = OpInfo.CallOperand;
5437 
5438       if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
5439         // If this is required to match an output register we have already set,
5440         // just use its register.
5441         unsigned OperandNo = OpInfo.getMatchedOperand();
5442 
5443         // Scan until we find the definition we already emitted of this operand.
5444         // When we find it, create a RegsForValue operand.
5445         unsigned CurOp = InlineAsm::Op_FirstOperand;
5446         for (; OperandNo; --OperandNo) {
5447           // Advance to the next operand.
5448           unsigned OpFlag =
5449             cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5450           assert((InlineAsm::isRegDefKind(OpFlag) ||
5451                   InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
5452                   InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
5453           CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
5454         }
5455 
5456         unsigned OpFlag =
5457           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5458         if (InlineAsm::isRegDefKind(OpFlag) ||
5459             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
5460           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
5461           if (OpInfo.isIndirect) {
5462             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
5463             LLVMContext &Ctx = *DAG.getContext();
5464             Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
5465                           " don't know how to handle tied "
5466                           "indirect register inputs");
5467           }
5468 
5469           RegsForValue MatchedRegs;
5470           MatchedRegs.TLI = &TLI;
5471           MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
5472           EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
5473           MatchedRegs.RegVTs.push_back(RegVT);
5474           MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
5475           for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
5476                i != e; ++i)
5477             MatchedRegs.Regs.push_back
5478               (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
5479 
5480           // Use the produced MatchedRegs object to
5481           MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5482                                     Chain, &Flag);
5483           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
5484                                            true, OpInfo.getMatchedOperand(),
5485                                            DAG, AsmNodeOperands);
5486           break;
5487         }
5488 
5489         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
5490         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
5491                "Unexpected number of operands");
5492         // Add information to the INLINEASM node to know about this input.
5493         // See InlineAsm.h isUseOperandTiedToDef.
5494         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
5495                                                     OpInfo.getMatchedOperand());
5496         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
5497                                                         TLI.getPointerTy()));
5498         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
5499         break;
5500       }
5501 
5502       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
5503         assert(!OpInfo.isIndirect &&
5504                "Don't know how to handle indirect other inputs yet!");
5505 
5506         std::vector<SDValue> Ops;
5507         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
5508                                          hasMemory, Ops, DAG);
5509         if (Ops.empty())
5510           report_fatal_error("Invalid operand for inline asm constraint '" +
5511                              Twine(OpInfo.ConstraintCode) + "'!");
5512 
5513         // Add information to the INLINEASM node to know about this input.
5514         unsigned ResOpType =
5515           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
5516         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5517                                                         TLI.getPointerTy()));
5518         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
5519         break;
5520       }
5521 
5522       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
5523         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
5524         assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
5525                "Memory operands expect pointer values");
5526 
5527         // Add information to the INLINEASM node to know about this input.
5528         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5529         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5530                                                         TLI.getPointerTy()));
5531         AsmNodeOperands.push_back(InOperandVal);
5532         break;
5533       }
5534 
5535       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
5536               OpInfo.ConstraintType == TargetLowering::C_Register) &&
5537              "Unknown constraint type!");
5538       assert(!OpInfo.isIndirect &&
5539              "Don't know how to handle indirect register inputs yet!");
5540 
5541       // Copy the input into the appropriate registers.
5542       if (OpInfo.AssignedRegs.Regs.empty() ||
5543           !OpInfo.AssignedRegs.areValueTypesLegal())
5544         report_fatal_error("Couldn't allocate input reg for constraint '" +
5545                            Twine(OpInfo.ConstraintCode) + "'!");
5546 
5547       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5548                                         Chain, &Flag);
5549 
5550       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
5551                                                DAG, AsmNodeOperands);
5552       break;
5553     }
5554     case InlineAsm::isClobber: {
5555       // Add the clobbered value to the operand list, so that the register
5556       // allocator is aware that the physreg got clobbered.
5557       if (!OpInfo.AssignedRegs.Regs.empty())
5558         OpInfo.AssignedRegs.AddInlineAsmOperands(
5559                                             InlineAsm::Kind_RegDefEarlyClobber,
5560                                                  false, 0, DAG,
5561                                                  AsmNodeOperands);
5562       break;
5563     }
5564     }
5565   }
5566 
5567   // Finish up input operands.  Set the input chain and add the flag last.
5568   AsmNodeOperands[0] = Chain;
5569   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
5570 
5571   Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
5572                       DAG.getVTList(MVT::Other, MVT::Flag),
5573                       &AsmNodeOperands[0], AsmNodeOperands.size());
5574   Flag = Chain.getValue(1);
5575 
5576   // If this asm returns a register value, copy the result from that register
5577   // and set it as the value of the call.
5578   if (!RetValRegs.Regs.empty()) {
5579     SDValue Val = RetValRegs.getCopyFromRegs(DAG, getCurDebugLoc(),
5580                                              Chain, &Flag);
5581 
5582     // FIXME: Why don't we do this for inline asms with MRVs?
5583     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
5584       EVT ResultType = TLI.getValueType(CS.getType());
5585 
5586       // If any of the results of the inline asm is a vector, it may have the
5587       // wrong width/num elts.  This can happen for register classes that can
5588       // contain multiple different value types.  The preg or vreg allocated may
5589       // not have the same VT as was expected.  Convert it to the right type
5590       // with bit_convert.
5591       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
5592         Val = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5593                           ResultType, Val);
5594 
5595       } else if (ResultType != Val.getValueType() &&
5596                  ResultType.isInteger() && Val.getValueType().isInteger()) {
5597         // If a result value was tied to an input value, the computed result may
5598         // have a wider width than the expected result.  Extract the relevant
5599         // portion.
5600         Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
5601       }
5602 
5603       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
5604     }
5605 
5606     setValue(CS.getInstruction(), Val);
5607     // Don't need to use this as a chain in this case.
5608     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
5609       return;
5610   }
5611 
5612   std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
5613 
5614   // Process indirect outputs, first output all of the flagged copies out of
5615   // physregs.
5616   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
5617     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
5618     const Value *Ptr = IndirectStoresToEmit[i].second;
5619     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, getCurDebugLoc(),
5620                                              Chain, &Flag);
5621     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
5622   }
5623 
5624   // Emit the non-flagged stores from the physregs.
5625   SmallVector<SDValue, 8> OutChains;
5626   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
5627     SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
5628                                StoresToEmit[i].first,
5629                                getValue(StoresToEmit[i].second),
5630                                StoresToEmit[i].second, 0,
5631                                false, false, 0);
5632     OutChains.push_back(Val);
5633   }
5634 
5635   if (!OutChains.empty())
5636     Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
5637                         &OutChains[0], OutChains.size());
5638 
5639   DAG.setRoot(Chain);
5640 }
5641 
5642 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
5643   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
5644                           MVT::Other, getRoot(),
5645                           getValue(I.getOperand(1)),
5646                           DAG.getSrcValue(I.getOperand(1))));
5647 }
5648 
5649 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
5650   SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
5651                            getRoot(), getValue(I.getOperand(0)),
5652                            DAG.getSrcValue(I.getOperand(0)));
5653   setValue(&I, V);
5654   DAG.setRoot(V.getValue(1));
5655 }
5656 
5657 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
5658   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
5659                           MVT::Other, getRoot(),
5660                           getValue(I.getOperand(1)),
5661                           DAG.getSrcValue(I.getOperand(1))));
5662 }
5663 
5664 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
5665   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
5666                           MVT::Other, getRoot(),
5667                           getValue(I.getOperand(1)),
5668                           getValue(I.getOperand(2)),
5669                           DAG.getSrcValue(I.getOperand(1)),
5670                           DAG.getSrcValue(I.getOperand(2))));
5671 }
5672 
5673 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
5674 /// implementation, which just calls LowerCall.
5675 /// FIXME: When all targets are
5676 /// migrated to using LowerCall, this hook should be integrated into SDISel.
5677 std::pair<SDValue, SDValue>
5678 TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
5679                             bool RetSExt, bool RetZExt, bool isVarArg,
5680                             bool isInreg, unsigned NumFixedArgs,
5681                             CallingConv::ID CallConv, bool isTailCall,
5682                             bool isReturnValueUsed,
5683                             SDValue Callee,
5684                             ArgListTy &Args, SelectionDAG &DAG,
5685                             DebugLoc dl) const {
5686   // Handle all of the outgoing arguments.
5687   SmallVector<ISD::OutputArg, 32> Outs;
5688   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
5689     SmallVector<EVT, 4> ValueVTs;
5690     ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
5691     for (unsigned Value = 0, NumValues = ValueVTs.size();
5692          Value != NumValues; ++Value) {
5693       EVT VT = ValueVTs[Value];
5694       const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
5695       SDValue Op = SDValue(Args[i].Node.getNode(),
5696                            Args[i].Node.getResNo() + Value);
5697       ISD::ArgFlagsTy Flags;
5698       unsigned OriginalAlignment =
5699         getTargetData()->getABITypeAlignment(ArgTy);
5700 
5701       if (Args[i].isZExt)
5702         Flags.setZExt();
5703       if (Args[i].isSExt)
5704         Flags.setSExt();
5705       if (Args[i].isInReg)
5706         Flags.setInReg();
5707       if (Args[i].isSRet)
5708         Flags.setSRet();
5709       if (Args[i].isByVal) {
5710         Flags.setByVal();
5711         const PointerType *Ty = cast<PointerType>(Args[i].Ty);
5712         const Type *ElementTy = Ty->getElementType();
5713         unsigned FrameAlign = getByValTypeAlignment(ElementTy);
5714         unsigned FrameSize  = getTargetData()->getTypeAllocSize(ElementTy);
5715         // For ByVal, alignment should come from FE.  BE will guess if this
5716         // info is not there but there are cases it cannot get right.
5717         if (Args[i].Alignment)
5718           FrameAlign = Args[i].Alignment;
5719         Flags.setByValAlign(FrameAlign);
5720         Flags.setByValSize(FrameSize);
5721       }
5722       if (Args[i].isNest)
5723         Flags.setNest();
5724       Flags.setOrigAlign(OriginalAlignment);
5725 
5726       EVT PartVT = getRegisterType(RetTy->getContext(), VT);
5727       unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
5728       SmallVector<SDValue, 4> Parts(NumParts);
5729       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
5730 
5731       if (Args[i].isSExt)
5732         ExtendKind = ISD::SIGN_EXTEND;
5733       else if (Args[i].isZExt)
5734         ExtendKind = ISD::ZERO_EXTEND;
5735 
5736       getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
5737                      PartVT, ExtendKind);
5738 
5739       for (unsigned j = 0; j != NumParts; ++j) {
5740         // if it isn't first piece, alignment must be 1
5741         ISD::OutputArg MyFlags(Flags, Parts[j], i < NumFixedArgs);
5742         if (NumParts > 1 && j == 0)
5743           MyFlags.Flags.setSplit();
5744         else if (j != 0)
5745           MyFlags.Flags.setOrigAlign(1);
5746 
5747         Outs.push_back(MyFlags);
5748       }
5749     }
5750   }
5751 
5752   // Handle the incoming return values from the call.
5753   SmallVector<ISD::InputArg, 32> Ins;
5754   SmallVector<EVT, 4> RetTys;
5755   ComputeValueVTs(*this, RetTy, RetTys);
5756   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5757     EVT VT = RetTys[I];
5758     EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
5759     unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
5760     for (unsigned i = 0; i != NumRegs; ++i) {
5761       ISD::InputArg MyFlags;
5762       MyFlags.VT = RegisterVT;
5763       MyFlags.Used = isReturnValueUsed;
5764       if (RetSExt)
5765         MyFlags.Flags.setSExt();
5766       if (RetZExt)
5767         MyFlags.Flags.setZExt();
5768       if (isInreg)
5769         MyFlags.Flags.setInReg();
5770       Ins.push_back(MyFlags);
5771     }
5772   }
5773 
5774   SmallVector<SDValue, 4> InVals;
5775   Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
5776                     Outs, Ins, dl, DAG, InVals);
5777 
5778   // Verify that the target's LowerCall behaved as expected.
5779   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
5780          "LowerCall didn't return a valid chain!");
5781   assert((!isTailCall || InVals.empty()) &&
5782          "LowerCall emitted a return value for a tail call!");
5783   assert((isTailCall || InVals.size() == Ins.size()) &&
5784          "LowerCall didn't emit the correct number of values!");
5785 
5786   // For a tail call, the return value is merely live-out and there aren't
5787   // any nodes in the DAG representing it. Return a special value to
5788   // indicate that a tail call has been emitted and no more Instructions
5789   // should be processed in the current block.
5790   if (isTailCall) {
5791     DAG.setRoot(Chain);
5792     return std::make_pair(SDValue(), SDValue());
5793   }
5794 
5795   DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
5796           assert(InVals[i].getNode() &&
5797                  "LowerCall emitted a null value!");
5798           assert(Ins[i].VT == InVals[i].getValueType() &&
5799                  "LowerCall emitted a value with the wrong type!");
5800         });
5801 
5802   // Collect the legal value parts into potentially illegal values
5803   // that correspond to the original function's return values.
5804   ISD::NodeType AssertOp = ISD::DELETED_NODE;
5805   if (RetSExt)
5806     AssertOp = ISD::AssertSext;
5807   else if (RetZExt)
5808     AssertOp = ISD::AssertZext;
5809   SmallVector<SDValue, 4> ReturnValues;
5810   unsigned CurReg = 0;
5811   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5812     EVT VT = RetTys[I];
5813     EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
5814     unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
5815 
5816     ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
5817                                             NumRegs, RegisterVT, VT,
5818                                             AssertOp));
5819     CurReg += NumRegs;
5820   }
5821 
5822   // For a function returning void, there is no return value. We can't create
5823   // such a node, so we just return a null return value in that case. In
5824   // that case, nothing will actualy look at the value.
5825   if (ReturnValues.empty())
5826     return std::make_pair(SDValue(), Chain);
5827 
5828   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
5829                             DAG.getVTList(&RetTys[0], RetTys.size()),
5830                             &ReturnValues[0], ReturnValues.size());
5831   return std::make_pair(Res, Chain);
5832 }
5833 
5834 void TargetLowering::LowerOperationWrapper(SDNode *N,
5835                                            SmallVectorImpl<SDValue> &Results,
5836                                            SelectionDAG &DAG) const {
5837   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
5838   if (Res.getNode())
5839     Results.push_back(Res);
5840 }
5841 
5842 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
5843   llvm_unreachable("LowerOperation not implemented for this target!");
5844   return SDValue();
5845 }
5846 
5847 void
5848 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
5849   SDValue Op = getValue(V);
5850   assert((Op.getOpcode() != ISD::CopyFromReg ||
5851           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
5852          "Copy from a reg to the same reg!");
5853   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
5854 
5855   RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
5856   SDValue Chain = DAG.getEntryNode();
5857   RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
5858   PendingExports.push_back(Chain);
5859 }
5860 
5861 #include "llvm/CodeGen/SelectionDAGISel.h"
5862 
5863 void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
5864   // If this is the entry block, emit arguments.
5865   const Function &F = *LLVMBB->getParent();
5866   SelectionDAG &DAG = SDB->DAG;
5867   SDValue OldRoot = DAG.getRoot();
5868   DebugLoc dl = SDB->getCurDebugLoc();
5869   const TargetData *TD = TLI.getTargetData();
5870   SmallVector<ISD::InputArg, 16> Ins;
5871 
5872   // Check whether the function can return without sret-demotion.
5873   SmallVector<EVT, 4> OutVTs;
5874   SmallVector<ISD::ArgFlagsTy, 4> OutsFlags;
5875   getReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
5876                 OutVTs, OutsFlags, TLI);
5877   FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
5878 
5879   FLI.CanLowerReturn = TLI.CanLowerReturn(F.getCallingConv(), F.isVarArg(),
5880                                           OutVTs, OutsFlags, DAG);
5881   if (!FLI.CanLowerReturn) {
5882     // Put in an sret pointer parameter before all the other parameters.
5883     SmallVector<EVT, 1> ValueVTs;
5884     ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
5885 
5886     // NOTE: Assuming that a pointer will never break down to more than one VT
5887     // or one register.
5888     ISD::ArgFlagsTy Flags;
5889     Flags.setSRet();
5890     EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
5891     ISD::InputArg RetArg(Flags, RegisterVT, true);
5892     Ins.push_back(RetArg);
5893   }
5894 
5895   // Set up the incoming argument description vector.
5896   unsigned Idx = 1;
5897   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
5898        I != E; ++I, ++Idx) {
5899     SmallVector<EVT, 4> ValueVTs;
5900     ComputeValueVTs(TLI, I->getType(), ValueVTs);
5901     bool isArgValueUsed = !I->use_empty();
5902     for (unsigned Value = 0, NumValues = ValueVTs.size();
5903          Value != NumValues; ++Value) {
5904       EVT VT = ValueVTs[Value];
5905       const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
5906       ISD::ArgFlagsTy Flags;
5907       unsigned OriginalAlignment =
5908         TD->getABITypeAlignment(ArgTy);
5909 
5910       if (F.paramHasAttr(Idx, Attribute::ZExt))
5911         Flags.setZExt();
5912       if (F.paramHasAttr(Idx, Attribute::SExt))
5913         Flags.setSExt();
5914       if (F.paramHasAttr(Idx, Attribute::InReg))
5915         Flags.setInReg();
5916       if (F.paramHasAttr(Idx, Attribute::StructRet))
5917         Flags.setSRet();
5918       if (F.paramHasAttr(Idx, Attribute::ByVal)) {
5919         Flags.setByVal();
5920         const PointerType *Ty = cast<PointerType>(I->getType());
5921         const Type *ElementTy = Ty->getElementType();
5922         unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy);
5923         unsigned FrameSize  = TD->getTypeAllocSize(ElementTy);
5924         // For ByVal, alignment should be passed from FE.  BE will guess if
5925         // this info is not there but there are cases it cannot get right.
5926         if (F.getParamAlignment(Idx))
5927           FrameAlign = F.getParamAlignment(Idx);
5928         Flags.setByValAlign(FrameAlign);
5929         Flags.setByValSize(FrameSize);
5930       }
5931       if (F.paramHasAttr(Idx, Attribute::Nest))
5932         Flags.setNest();
5933       Flags.setOrigAlign(OriginalAlignment);
5934 
5935       EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
5936       unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
5937       for (unsigned i = 0; i != NumRegs; ++i) {
5938         ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
5939         if (NumRegs > 1 && i == 0)
5940           MyFlags.Flags.setSplit();
5941         // if it isn't first piece, alignment must be 1
5942         else if (i > 0)
5943           MyFlags.Flags.setOrigAlign(1);
5944         Ins.push_back(MyFlags);
5945       }
5946     }
5947   }
5948 
5949   // Call the target to set up the argument values.
5950   SmallVector<SDValue, 8> InVals;
5951   SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
5952                                              F.isVarArg(), Ins,
5953                                              dl, DAG, InVals);
5954 
5955   // Verify that the target's LowerFormalArguments behaved as expected.
5956   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
5957          "LowerFormalArguments didn't return a valid chain!");
5958   assert(InVals.size() == Ins.size() &&
5959          "LowerFormalArguments didn't emit the correct number of values!");
5960   DEBUG({
5961       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
5962         assert(InVals[i].getNode() &&
5963                "LowerFormalArguments emitted a null value!");
5964         assert(Ins[i].VT == InVals[i].getValueType() &&
5965                "LowerFormalArguments emitted a value with the wrong type!");
5966       }
5967     });
5968 
5969   // Update the DAG with the new chain value resulting from argument lowering.
5970   DAG.setRoot(NewRoot);
5971 
5972   // Set up the argument values.
5973   unsigned i = 0;
5974   Idx = 1;
5975   if (!FLI.CanLowerReturn) {
5976     // Create a virtual register for the sret pointer, and put in a copy
5977     // from the sret argument into it.
5978     SmallVector<EVT, 1> ValueVTs;
5979     ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
5980     EVT VT = ValueVTs[0];
5981     EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
5982     ISD::NodeType AssertOp = ISD::DELETED_NODE;
5983     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
5984                                         RegVT, VT, AssertOp);
5985 
5986     MachineFunction& MF = SDB->DAG.getMachineFunction();
5987     MachineRegisterInfo& RegInfo = MF.getRegInfo();
5988     unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
5989     FLI.DemoteRegister = SRetReg;
5990     NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
5991                                     SRetReg, ArgValue);
5992     DAG.setRoot(NewRoot);
5993 
5994     // i indexes lowered arguments.  Bump it past the hidden sret argument.
5995     // Idx indexes LLVM arguments.  Don't touch it.
5996     ++i;
5997   }
5998 
5999   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6000       ++I, ++Idx) {
6001     SmallVector<SDValue, 4> ArgValues;
6002     SmallVector<EVT, 4> ValueVTs;
6003     ComputeValueVTs(TLI, I->getType(), ValueVTs);
6004     unsigned NumValues = ValueVTs.size();
6005     for (unsigned Value = 0; Value != NumValues; ++Value) {
6006       EVT VT = ValueVTs[Value];
6007       EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6008       unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6009 
6010       if (!I->use_empty()) {
6011         ISD::NodeType AssertOp = ISD::DELETED_NODE;
6012         if (F.paramHasAttr(Idx, Attribute::SExt))
6013           AssertOp = ISD::AssertSext;
6014         else if (F.paramHasAttr(Idx, Attribute::ZExt))
6015           AssertOp = ISD::AssertZext;
6016 
6017         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6018                                              NumParts, PartVT, VT,
6019                                              AssertOp));
6020       }
6021 
6022       i += NumParts;
6023     }
6024 
6025     if (!I->use_empty()) {
6026       SDValue Res;
6027       if (!ArgValues.empty())
6028         Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6029                                  SDB->getCurDebugLoc());
6030       SDB->setValue(I, Res);
6031 
6032       // If this argument is live outside of the entry block, insert a copy from
6033       // whereever we got it to the vreg that other BB's will reference it as.
6034       SDB->CopyToExportRegsIfNeeded(I);
6035     }
6036   }
6037 
6038   assert(i == InVals.size() && "Argument register count mismatch!");
6039 
6040   // Finally, if the target has anything special to do, allow it to do so.
6041   // FIXME: this should insert code into the DAG!
6042   EmitFunctionEntryCode();
6043 }
6044 
6045 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6046 /// ensure constants are generated when needed.  Remember the virtual registers
6047 /// that need to be added to the Machine PHI nodes as input.  We cannot just
6048 /// directly add them, because expansion might result in multiple MBB's for one
6049 /// BB.  As such, the start of the BB might correspond to a different MBB than
6050 /// the end.
6051 ///
6052 void
6053 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6054   const TerminatorInst *TI = LLVMBB->getTerminator();
6055 
6056   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6057 
6058   // Check successor nodes' PHI nodes that expect a constant to be available
6059   // from this block.
6060   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6061     const BasicBlock *SuccBB = TI->getSuccessor(succ);
6062     if (!isa<PHINode>(SuccBB->begin())) continue;
6063     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6064 
6065     // If this terminator has multiple identical successors (common for
6066     // switches), only handle each succ once.
6067     if (!SuccsHandled.insert(SuccMBB)) continue;
6068 
6069     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6070 
6071     // At this point we know that there is a 1-1 correspondence between LLVM PHI
6072     // nodes and Machine PHI nodes, but the incoming operands have not been
6073     // emitted yet.
6074     for (BasicBlock::const_iterator I = SuccBB->begin();
6075          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6076       // Ignore dead phi's.
6077       if (PN->use_empty()) continue;
6078 
6079       unsigned Reg;
6080       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6081 
6082       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6083         unsigned &RegOut = ConstantsOut[C];
6084         if (RegOut == 0) {
6085           RegOut = FuncInfo.CreateRegForValue(C);
6086           CopyValueToVirtualRegister(C, RegOut);
6087         }
6088         Reg = RegOut;
6089       } else {
6090         Reg = FuncInfo.ValueMap[PHIOp];
6091         if (Reg == 0) {
6092           assert(isa<AllocaInst>(PHIOp) &&
6093                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6094                  "Didn't codegen value into a register!??");
6095           Reg = FuncInfo.CreateRegForValue(PHIOp);
6096           CopyValueToVirtualRegister(PHIOp, Reg);
6097         }
6098       }
6099 
6100       // Remember that this register needs to added to the machine PHI node as
6101       // the input for this MBB.
6102       SmallVector<EVT, 4> ValueVTs;
6103       ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6104       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6105         EVT VT = ValueVTs[vti];
6106         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6107         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6108           FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6109         Reg += NumRegisters;
6110       }
6111     }
6112   }
6113   ConstantsOut.clear();
6114 }
6115