1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/APFloat.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/StringRef.h" 28 #include "llvm/ADT/Triple.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/Analysis/AliasAnalysis.h" 31 #include "llvm/Analysis/BranchProbabilityInfo.h" 32 #include "llvm/Analysis/ConstantFolding.h" 33 #include "llvm/Analysis/EHPersonalities.h" 34 #include "llvm/Analysis/Loads.h" 35 #include "llvm/Analysis/MemoryLocation.h" 36 #include "llvm/Analysis/TargetLibraryInfo.h" 37 #include "llvm/Analysis/ValueTracking.h" 38 #include "llvm/Analysis/VectorUtils.h" 39 #include "llvm/CodeGen/Analysis.h" 40 #include "llvm/CodeGen/FunctionLoweringInfo.h" 41 #include "llvm/CodeGen/GCMetadata.h" 42 #include "llvm/CodeGen/ISDOpcodes.h" 43 #include "llvm/CodeGen/MachineBasicBlock.h" 44 #include "llvm/CodeGen/MachineFrameInfo.h" 45 #include "llvm/CodeGen/MachineFunction.h" 46 #include "llvm/CodeGen/MachineInstr.h" 47 #include "llvm/CodeGen/MachineInstrBuilder.h" 48 #include "llvm/CodeGen/MachineJumpTableInfo.h" 49 #include "llvm/CodeGen/MachineMemOperand.h" 50 #include "llvm/CodeGen/MachineModuleInfo.h" 51 #include "llvm/CodeGen/MachineOperand.h" 52 #include "llvm/CodeGen/MachineRegisterInfo.h" 53 #include "llvm/CodeGen/RuntimeLibcalls.h" 54 #include "llvm/CodeGen/SelectionDAG.h" 55 #include "llvm/CodeGen/SelectionDAGNodes.h" 56 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 57 #include "llvm/CodeGen/StackMaps.h" 58 #include "llvm/CodeGen/TargetFrameLowering.h" 59 #include "llvm/CodeGen/TargetInstrInfo.h" 60 #include "llvm/CodeGen/TargetLowering.h" 61 #include "llvm/CodeGen/TargetOpcodes.h" 62 #include "llvm/CodeGen/TargetRegisterInfo.h" 63 #include "llvm/CodeGen/TargetSubtargetInfo.h" 64 #include "llvm/CodeGen/ValueTypes.h" 65 #include "llvm/CodeGen/WinEHFuncInfo.h" 66 #include "llvm/IR/Argument.h" 67 #include "llvm/IR/Attributes.h" 68 #include "llvm/IR/BasicBlock.h" 69 #include "llvm/IR/CFG.h" 70 #include "llvm/IR/CallSite.h" 71 #include "llvm/IR/CallingConv.h" 72 #include "llvm/IR/Constant.h" 73 #include "llvm/IR/ConstantRange.h" 74 #include "llvm/IR/Constants.h" 75 #include "llvm/IR/DataLayout.h" 76 #include "llvm/IR/DebugInfoMetadata.h" 77 #include "llvm/IR/DebugLoc.h" 78 #include "llvm/IR/DerivedTypes.h" 79 #include "llvm/IR/Function.h" 80 #include "llvm/IR/GetElementPtrTypeIterator.h" 81 #include "llvm/IR/InlineAsm.h" 82 #include "llvm/IR/InstrTypes.h" 83 #include "llvm/IR/Instruction.h" 84 #include "llvm/IR/Instructions.h" 85 #include "llvm/IR/IntrinsicInst.h" 86 #include "llvm/IR/Intrinsics.h" 87 #include "llvm/IR/LLVMContext.h" 88 #include "llvm/IR/Metadata.h" 89 #include "llvm/IR/Module.h" 90 #include "llvm/IR/Operator.h" 91 #include "llvm/IR/Statepoint.h" 92 #include "llvm/IR/Type.h" 93 #include "llvm/IR/User.h" 94 #include "llvm/IR/Value.h" 95 #include "llvm/MC/MCContext.h" 96 #include "llvm/MC/MCSymbol.h" 97 #include "llvm/Support/AtomicOrdering.h" 98 #include "llvm/Support/BranchProbability.h" 99 #include "llvm/Support/Casting.h" 100 #include "llvm/Support/CodeGen.h" 101 #include "llvm/Support/CommandLine.h" 102 #include "llvm/Support/Compiler.h" 103 #include "llvm/Support/Debug.h" 104 #include "llvm/Support/ErrorHandling.h" 105 #include "llvm/Support/MachineValueType.h" 106 #include "llvm/Support/MathExtras.h" 107 #include "llvm/Support/raw_ostream.h" 108 #include "llvm/Target/TargetIntrinsicInfo.h" 109 #include "llvm/Target/TargetMachine.h" 110 #include "llvm/Target/TargetOptions.h" 111 #include <algorithm> 112 #include <cassert> 113 #include <cstddef> 114 #include <cstdint> 115 #include <cstring> 116 #include <iterator> 117 #include <limits> 118 #include <numeric> 119 #include <tuple> 120 #include <utility> 121 #include <vector> 122 123 using namespace llvm; 124 125 #define DEBUG_TYPE "isel" 126 127 /// LimitFloatPrecision - Generate low-precision inline sequences for 128 /// some float libcalls (6, 8 or 12 bits). 129 static unsigned LimitFloatPrecision; 130 131 static cl::opt<unsigned, true> 132 LimitFPPrecision("limit-float-precision", 133 cl::desc("Generate low-precision inline sequences " 134 "for some float libcalls"), 135 cl::location(LimitFloatPrecision), cl::Hidden, 136 cl::init(0)); 137 138 static cl::opt<unsigned> SwitchPeelThreshold( 139 "switch-peel-threshold", cl::Hidden, cl::init(66), 140 cl::desc("Set the case probability threshold for peeling the case from a " 141 "switch statement. A value greater than 100 will void this " 142 "optimization")); 143 144 // Limit the width of DAG chains. This is important in general to prevent 145 // DAG-based analysis from blowing up. For example, alias analysis and 146 // load clustering may not complete in reasonable time. It is difficult to 147 // recognize and avoid this situation within each individual analysis, and 148 // future analyses are likely to have the same behavior. Limiting DAG width is 149 // the safe approach and will be especially important with global DAGs. 150 // 151 // MaxParallelChains default is arbitrarily high to avoid affecting 152 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 153 // sequence over this should have been converted to llvm.memcpy by the 154 // frontend. It is easy to induce this behavior with .ll code such as: 155 // %buffer = alloca [4096 x i8] 156 // %data = load [4096 x i8]* %argPtr 157 // store [4096 x i8] %data, [4096 x i8]* %buffer 158 static const unsigned MaxParallelChains = 64; 159 160 // True if the Value passed requires ABI mangling as it is a parameter to a 161 // function or a return value from a function which is not an intrinsic. 162 static bool isABIRegCopy(const Value *V) { 163 const bool IsRetInst = V && isa<ReturnInst>(V); 164 const bool IsCallInst = V && isa<CallInst>(V); 165 const bool IsInLineAsm = 166 IsCallInst && static_cast<const CallInst *>(V)->isInlineAsm(); 167 const bool IsIndirectFunctionCall = 168 IsCallInst && !IsInLineAsm && 169 !static_cast<const CallInst *>(V)->getCalledFunction(); 170 // It is possible that the call instruction is an inline asm statement or an 171 // indirect function call in which case the return value of 172 // getCalledFunction() would be nullptr. 173 const bool IsInstrinsicCall = 174 IsCallInst && !IsInLineAsm && !IsIndirectFunctionCall && 175 static_cast<const CallInst *>(V)->getCalledFunction()->getIntrinsicID() != 176 Intrinsic::not_intrinsic; 177 178 return IsRetInst || (IsCallInst && (!IsInLineAsm && !IsInstrinsicCall)); 179 } 180 181 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 182 const SDValue *Parts, unsigned NumParts, 183 MVT PartVT, EVT ValueVT, const Value *V, 184 bool IsABIRegCopy); 185 186 /// getCopyFromParts - Create a value that contains the specified legal parts 187 /// combined into the value they represent. If the parts combine to a type 188 /// larger than ValueVT then AssertOp can be used to specify whether the extra 189 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 190 /// (ISD::AssertSext). 191 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 192 const SDValue *Parts, unsigned NumParts, 193 MVT PartVT, EVT ValueVT, const Value *V, 194 Optional<ISD::NodeType> AssertOp = None, 195 bool IsABIRegCopy = false) { 196 if (ValueVT.isVector()) 197 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 198 PartVT, ValueVT, V, IsABIRegCopy); 199 200 assert(NumParts > 0 && "No parts to assemble!"); 201 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 202 SDValue Val = Parts[0]; 203 204 if (NumParts > 1) { 205 // Assemble the value from multiple parts. 206 if (ValueVT.isInteger()) { 207 unsigned PartBits = PartVT.getSizeInBits(); 208 unsigned ValueBits = ValueVT.getSizeInBits(); 209 210 // Assemble the power of 2 part. 211 unsigned RoundParts = NumParts & (NumParts - 1) ? 212 1 << Log2_32(NumParts) : NumParts; 213 unsigned RoundBits = PartBits * RoundParts; 214 EVT RoundVT = RoundBits == ValueBits ? 215 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 216 SDValue Lo, Hi; 217 218 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 219 220 if (RoundParts > 2) { 221 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 222 PartVT, HalfVT, V); 223 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 224 RoundParts / 2, PartVT, HalfVT, V); 225 } else { 226 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 227 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 228 } 229 230 if (DAG.getDataLayout().isBigEndian()) 231 std::swap(Lo, Hi); 232 233 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 234 235 if (RoundParts < NumParts) { 236 // Assemble the trailing non-power-of-2 part. 237 unsigned OddParts = NumParts - RoundParts; 238 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 239 Hi = getCopyFromParts(DAG, DL, 240 Parts + RoundParts, OddParts, PartVT, OddVT, V); 241 242 // Combine the round and odd parts. 243 Lo = Val; 244 if (DAG.getDataLayout().isBigEndian()) 245 std::swap(Lo, Hi); 246 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 247 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 248 Hi = 249 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 250 DAG.getConstant(Lo.getValueSizeInBits(), DL, 251 TLI.getPointerTy(DAG.getDataLayout()))); 252 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 253 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 254 } 255 } else if (PartVT.isFloatingPoint()) { 256 // FP split into multiple FP parts (for ppcf128) 257 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 258 "Unexpected split"); 259 SDValue Lo, Hi; 260 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 261 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 262 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 263 std::swap(Lo, Hi); 264 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 265 } else { 266 // FP split into integer parts (soft fp) 267 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 268 !PartVT.isVector() && "Unexpected split"); 269 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 270 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 271 } 272 } 273 274 // There is now one part, held in Val. Correct it to match ValueVT. 275 // PartEVT is the type of the register class that holds the value. 276 // ValueVT is the type of the inline asm operation. 277 EVT PartEVT = Val.getValueType(); 278 279 if (PartEVT == ValueVT) 280 return Val; 281 282 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 283 ValueVT.bitsLT(PartEVT)) { 284 // For an FP value in an integer part, we need to truncate to the right 285 // width first. 286 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 287 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 288 } 289 290 // Handle types that have the same size. 291 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 292 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 293 294 // Handle types with different sizes. 295 if (PartEVT.isInteger() && ValueVT.isInteger()) { 296 if (ValueVT.bitsLT(PartEVT)) { 297 // For a truncate, see if we have any information to 298 // indicate whether the truncated bits will always be 299 // zero or sign-extension. 300 if (AssertOp.hasValue()) 301 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 302 DAG.getValueType(ValueVT)); 303 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 304 } 305 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 306 } 307 308 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 309 // FP_ROUND's are always exact here. 310 if (ValueVT.bitsLT(Val.getValueType())) 311 return DAG.getNode( 312 ISD::FP_ROUND, DL, ValueVT, Val, 313 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 314 315 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 316 } 317 318 llvm_unreachable("Unknown mismatch!"); 319 } 320 321 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 322 const Twine &ErrMsg) { 323 const Instruction *I = dyn_cast_or_null<Instruction>(V); 324 if (!V) 325 return Ctx.emitError(ErrMsg); 326 327 const char *AsmError = ", possible invalid constraint for vector type"; 328 if (const CallInst *CI = dyn_cast<CallInst>(I)) 329 if (isa<InlineAsm>(CI->getCalledValue())) 330 return Ctx.emitError(I, ErrMsg + AsmError); 331 332 return Ctx.emitError(I, ErrMsg); 333 } 334 335 /// getCopyFromPartsVector - Create a value that contains the specified legal 336 /// parts combined into the value they represent. If the parts combine to a 337 /// type larger than ValueVT then AssertOp can be used to specify whether the 338 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 339 /// ValueVT (ISD::AssertSext). 340 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 341 const SDValue *Parts, unsigned NumParts, 342 MVT PartVT, EVT ValueVT, const Value *V, 343 bool IsABIRegCopy) { 344 assert(ValueVT.isVector() && "Not a vector value"); 345 assert(NumParts > 0 && "No parts to assemble!"); 346 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 347 SDValue Val = Parts[0]; 348 349 // Handle a multi-element vector. 350 if (NumParts > 1) { 351 EVT IntermediateVT; 352 MVT RegisterVT; 353 unsigned NumIntermediates; 354 unsigned NumRegs; 355 356 if (IsABIRegCopy) { 357 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 358 *DAG.getContext(), ValueVT, IntermediateVT, NumIntermediates, 359 RegisterVT); 360 } else { 361 NumRegs = 362 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 363 NumIntermediates, RegisterVT); 364 } 365 366 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 367 NumParts = NumRegs; // Silence a compiler warning. 368 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 369 assert(RegisterVT.getSizeInBits() == 370 Parts[0].getSimpleValueType().getSizeInBits() && 371 "Part type sizes don't match!"); 372 373 // Assemble the parts into intermediate operands. 374 SmallVector<SDValue, 8> Ops(NumIntermediates); 375 if (NumIntermediates == NumParts) { 376 // If the register was not expanded, truncate or copy the value, 377 // as appropriate. 378 for (unsigned i = 0; i != NumParts; ++i) 379 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 380 PartVT, IntermediateVT, V); 381 } else if (NumParts > 0) { 382 // If the intermediate type was expanded, build the intermediate 383 // operands from the parts. 384 assert(NumParts % NumIntermediates == 0 && 385 "Must expand into a divisible number of parts!"); 386 unsigned Factor = NumParts / NumIntermediates; 387 for (unsigned i = 0; i != NumIntermediates; ++i) 388 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 389 PartVT, IntermediateVT, V); 390 } 391 392 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 393 // intermediate operands. 394 EVT BuiltVectorTy = 395 EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(), 396 (IntermediateVT.isVector() 397 ? IntermediateVT.getVectorNumElements() * NumParts 398 : NumIntermediates)); 399 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 400 : ISD::BUILD_VECTOR, 401 DL, BuiltVectorTy, Ops); 402 } 403 404 // There is now one part, held in Val. Correct it to match ValueVT. 405 EVT PartEVT = Val.getValueType(); 406 407 if (PartEVT == ValueVT) 408 return Val; 409 410 if (PartEVT.isVector()) { 411 // If the element type of the source/dest vectors are the same, but the 412 // parts vector has more elements than the value vector, then we have a 413 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 414 // elements we want. 415 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 416 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 417 "Cannot narrow, it would be a lossy transformation"); 418 return DAG.getNode( 419 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 420 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 421 } 422 423 // Vector/Vector bitcast. 424 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 425 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 426 427 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 428 "Cannot handle this kind of promotion"); 429 // Promoted vector extract 430 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 431 432 } 433 434 // Trivial bitcast if the types are the same size and the destination 435 // vector type is legal. 436 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 437 TLI.isTypeLegal(ValueVT)) 438 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 439 440 if (ValueVT.getVectorNumElements() != 1) { 441 // Certain ABIs require that vectors are passed as integers. For vectors 442 // are the same size, this is an obvious bitcast. 443 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 444 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 445 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 446 // Bitcast Val back the original type and extract the corresponding 447 // vector we want. 448 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 449 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 450 ValueVT.getVectorElementType(), Elts); 451 Val = DAG.getBitcast(WiderVecType, Val); 452 return DAG.getNode( 453 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 454 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 455 } 456 457 diagnosePossiblyInvalidConstraint( 458 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 459 return DAG.getUNDEF(ValueVT); 460 } 461 462 // Handle cases such as i8 -> <1 x i1> 463 EVT ValueSVT = ValueVT.getVectorElementType(); 464 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) 465 Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 466 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 467 468 return DAG.getBuildVector(ValueVT, DL, Val); 469 } 470 471 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 472 SDValue Val, SDValue *Parts, unsigned NumParts, 473 MVT PartVT, const Value *V, bool IsABIRegCopy); 474 475 /// getCopyToParts - Create a series of nodes that contain the specified value 476 /// split into legal parts. If the parts contain more bits than Val, then, for 477 /// integers, ExtendKind can be used to specify how to generate the extra bits. 478 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 479 SDValue *Parts, unsigned NumParts, MVT PartVT, 480 const Value *V, 481 ISD::NodeType ExtendKind = ISD::ANY_EXTEND, 482 bool IsABIRegCopy = false) { 483 EVT ValueVT = Val.getValueType(); 484 485 // Handle the vector case separately. 486 if (ValueVT.isVector()) 487 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 488 IsABIRegCopy); 489 490 unsigned PartBits = PartVT.getSizeInBits(); 491 unsigned OrigNumParts = NumParts; 492 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 493 "Copying to an illegal type!"); 494 495 if (NumParts == 0) 496 return; 497 498 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 499 EVT PartEVT = PartVT; 500 if (PartEVT == ValueVT) { 501 assert(NumParts == 1 && "No-op copy with multiple parts!"); 502 Parts[0] = Val; 503 return; 504 } 505 506 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 507 // If the parts cover more bits than the value has, promote the value. 508 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 509 assert(NumParts == 1 && "Do not know what to promote to!"); 510 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 511 } else { 512 if (ValueVT.isFloatingPoint()) { 513 // FP values need to be bitcast, then extended if they are being put 514 // into a larger container. 515 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 516 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 517 } 518 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 519 ValueVT.isInteger() && 520 "Unknown mismatch!"); 521 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 522 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 523 if (PartVT == MVT::x86mmx) 524 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 525 } 526 } else if (PartBits == ValueVT.getSizeInBits()) { 527 // Different types of the same size. 528 assert(NumParts == 1 && PartEVT != ValueVT); 529 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 530 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 531 // If the parts cover less bits than value has, truncate the value. 532 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 533 ValueVT.isInteger() && 534 "Unknown mismatch!"); 535 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 536 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 537 if (PartVT == MVT::x86mmx) 538 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 539 } 540 541 // The value may have changed - recompute ValueVT. 542 ValueVT = Val.getValueType(); 543 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 544 "Failed to tile the value with PartVT!"); 545 546 if (NumParts == 1) { 547 if (PartEVT != ValueVT) { 548 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 549 "scalar-to-vector conversion failed"); 550 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 551 } 552 553 Parts[0] = Val; 554 return; 555 } 556 557 // Expand the value into multiple parts. 558 if (NumParts & (NumParts - 1)) { 559 // The number of parts is not a power of 2. Split off and copy the tail. 560 assert(PartVT.isInteger() && ValueVT.isInteger() && 561 "Do not know what to expand to!"); 562 unsigned RoundParts = 1 << Log2_32(NumParts); 563 unsigned RoundBits = RoundParts * PartBits; 564 unsigned OddParts = NumParts - RoundParts; 565 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 566 DAG.getIntPtrConstant(RoundBits, DL)); 567 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 568 569 if (DAG.getDataLayout().isBigEndian()) 570 // The odd parts were reversed by getCopyToParts - unreverse them. 571 std::reverse(Parts + RoundParts, Parts + NumParts); 572 573 NumParts = RoundParts; 574 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 575 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 576 } 577 578 // The number of parts is a power of 2. Repeatedly bisect the value using 579 // EXTRACT_ELEMENT. 580 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 581 EVT::getIntegerVT(*DAG.getContext(), 582 ValueVT.getSizeInBits()), 583 Val); 584 585 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 586 for (unsigned i = 0; i < NumParts; i += StepSize) { 587 unsigned ThisBits = StepSize * PartBits / 2; 588 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 589 SDValue &Part0 = Parts[i]; 590 SDValue &Part1 = Parts[i+StepSize/2]; 591 592 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 593 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 594 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 595 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 596 597 if (ThisBits == PartBits && ThisVT != PartVT) { 598 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 599 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 600 } 601 } 602 } 603 604 if (DAG.getDataLayout().isBigEndian()) 605 std::reverse(Parts, Parts + OrigNumParts); 606 } 607 608 609 /// getCopyToPartsVector - Create a series of nodes that contain the specified 610 /// value split into legal parts. 611 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 612 SDValue Val, SDValue *Parts, unsigned NumParts, 613 MVT PartVT, const Value *V, 614 bool IsABIRegCopy) { 615 EVT ValueVT = Val.getValueType(); 616 assert(ValueVT.isVector() && "Not a vector"); 617 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 618 619 if (NumParts == 1) { 620 EVT PartEVT = PartVT; 621 if (PartEVT == ValueVT) { 622 // Nothing to do. 623 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 624 // Bitconvert vector->vector case. 625 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 626 } else if (PartVT.isVector() && 627 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 628 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 629 EVT ElementVT = PartVT.getVectorElementType(); 630 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 631 // undef elements. 632 SmallVector<SDValue, 16> Ops; 633 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 634 Ops.push_back(DAG.getNode( 635 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 636 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 637 638 for (unsigned i = ValueVT.getVectorNumElements(), 639 e = PartVT.getVectorNumElements(); i != e; ++i) 640 Ops.push_back(DAG.getUNDEF(ElementVT)); 641 642 Val = DAG.getBuildVector(PartVT, DL, Ops); 643 644 // FIXME: Use CONCAT for 2x -> 4x. 645 646 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 647 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 648 } else if (PartVT.isVector() && 649 PartEVT.getVectorElementType().bitsGE( 650 ValueVT.getVectorElementType()) && 651 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 652 653 // Promoted vector extract 654 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 655 } else { 656 if (ValueVT.getVectorNumElements() == 1) { 657 Val = DAG.getNode( 658 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 659 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 660 } else { 661 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 662 "lossy conversion of vector to scalar type"); 663 EVT IntermediateType = 664 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 665 Val = DAG.getBitcast(IntermediateType, Val); 666 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 667 } 668 } 669 670 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 671 Parts[0] = Val; 672 return; 673 } 674 675 // Handle a multi-element vector. 676 EVT IntermediateVT; 677 MVT RegisterVT; 678 unsigned NumIntermediates; 679 unsigned NumRegs; 680 if (IsABIRegCopy) { 681 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 682 *DAG.getContext(), ValueVT, IntermediateVT, NumIntermediates, 683 RegisterVT); 684 } else { 685 NumRegs = 686 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 687 NumIntermediates, RegisterVT); 688 } 689 unsigned NumElements = ValueVT.getVectorNumElements(); 690 691 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 692 NumParts = NumRegs; // Silence a compiler warning. 693 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 694 695 // Convert the vector to the appropiate type if necessary. 696 unsigned DestVectorNoElts = 697 NumIntermediates * 698 (IntermediateVT.isVector() ? IntermediateVT.getVectorNumElements() : 1); 699 EVT BuiltVectorTy = EVT::getVectorVT( 700 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts); 701 if (Val.getValueType() != BuiltVectorTy) 702 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 703 704 // Split the vector into intermediate operands. 705 SmallVector<SDValue, 8> Ops(NumIntermediates); 706 for (unsigned i = 0; i != NumIntermediates; ++i) { 707 if (IntermediateVT.isVector()) 708 Ops[i] = 709 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 710 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 711 TLI.getVectorIdxTy(DAG.getDataLayout()))); 712 else 713 Ops[i] = DAG.getNode( 714 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 715 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 716 } 717 718 // Split the intermediate operands into legal parts. 719 if (NumParts == NumIntermediates) { 720 // If the register was not expanded, promote or copy the value, 721 // as appropriate. 722 for (unsigned i = 0; i != NumParts; ++i) 723 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 724 } else if (NumParts > 0) { 725 // If the intermediate type was expanded, split each the value into 726 // legal parts. 727 assert(NumIntermediates != 0 && "division by zero"); 728 assert(NumParts % NumIntermediates == 0 && 729 "Must expand into a divisible number of parts!"); 730 unsigned Factor = NumParts / NumIntermediates; 731 for (unsigned i = 0; i != NumIntermediates; ++i) 732 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 733 } 734 } 735 736 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 737 EVT valuevt, bool IsABIMangledValue) 738 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 739 RegCount(1, regs.size()), IsABIMangled(IsABIMangledValue) {} 740 741 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 742 const DataLayout &DL, unsigned Reg, Type *Ty, 743 bool IsABIMangledValue) { 744 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 745 746 IsABIMangled = IsABIMangledValue; 747 748 for (EVT ValueVT : ValueVTs) { 749 unsigned NumRegs = IsABIMangledValue 750 ? TLI.getNumRegistersForCallingConv(Context, ValueVT) 751 : TLI.getNumRegisters(Context, ValueVT); 752 MVT RegisterVT = IsABIMangledValue 753 ? TLI.getRegisterTypeForCallingConv(Context, ValueVT) 754 : TLI.getRegisterType(Context, ValueVT); 755 for (unsigned i = 0; i != NumRegs; ++i) 756 Regs.push_back(Reg + i); 757 RegVTs.push_back(RegisterVT); 758 RegCount.push_back(NumRegs); 759 Reg += NumRegs; 760 } 761 } 762 763 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 764 FunctionLoweringInfo &FuncInfo, 765 const SDLoc &dl, SDValue &Chain, 766 SDValue *Flag, const Value *V) const { 767 // A Value with type {} or [0 x %t] needs no registers. 768 if (ValueVTs.empty()) 769 return SDValue(); 770 771 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 772 773 // Assemble the legal parts into the final values. 774 SmallVector<SDValue, 4> Values(ValueVTs.size()); 775 SmallVector<SDValue, 8> Parts; 776 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 777 // Copy the legal parts from the registers. 778 EVT ValueVT = ValueVTs[Value]; 779 unsigned NumRegs = RegCount[Value]; 780 MVT RegisterVT = IsABIMangled 781 ? TLI.getRegisterTypeForCallingConv(*DAG.getContext(), RegVTs[Value]) 782 : RegVTs[Value]; 783 784 Parts.resize(NumRegs); 785 for (unsigned i = 0; i != NumRegs; ++i) { 786 SDValue P; 787 if (!Flag) { 788 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 789 } else { 790 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 791 *Flag = P.getValue(2); 792 } 793 794 Chain = P.getValue(1); 795 Parts[i] = P; 796 797 // If the source register was virtual and if we know something about it, 798 // add an assert node. 799 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 800 !RegisterVT.isInteger() || RegisterVT.isVector()) 801 continue; 802 803 const FunctionLoweringInfo::LiveOutInfo *LOI = 804 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 805 if (!LOI) 806 continue; 807 808 unsigned RegSize = RegisterVT.getSizeInBits(); 809 unsigned NumSignBits = LOI->NumSignBits; 810 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 811 812 if (NumZeroBits == RegSize) { 813 // The current value is a zero. 814 // Explicitly express that as it would be easier for 815 // optimizations to kick in. 816 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 817 continue; 818 } 819 820 // FIXME: We capture more information than the dag can represent. For 821 // now, just use the tightest assertzext/assertsext possible. 822 bool isSExt; 823 EVT FromVT(MVT::Other); 824 if (NumZeroBits) { 825 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 826 isSExt = false; 827 } else if (NumSignBits > 1) { 828 FromVT = 829 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 830 isSExt = true; 831 } else { 832 continue; 833 } 834 // Add an assertion node. 835 assert(FromVT != MVT::Other); 836 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 837 RegisterVT, P, DAG.getValueType(FromVT)); 838 } 839 840 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 841 NumRegs, RegisterVT, ValueVT, V); 842 Part += NumRegs; 843 Parts.clear(); 844 } 845 846 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 847 } 848 849 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 850 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 851 const Value *V, 852 ISD::NodeType PreferredExtendType) const { 853 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 854 ISD::NodeType ExtendKind = PreferredExtendType; 855 856 // Get the list of the values's legal parts. 857 unsigned NumRegs = Regs.size(); 858 SmallVector<SDValue, 8> Parts(NumRegs); 859 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 860 unsigned NumParts = RegCount[Value]; 861 862 MVT RegisterVT = IsABIMangled 863 ? TLI.getRegisterTypeForCallingConv(*DAG.getContext(), RegVTs[Value]) 864 : RegVTs[Value]; 865 866 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 867 ExtendKind = ISD::ZERO_EXTEND; 868 869 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 870 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 871 Part += NumParts; 872 } 873 874 // Copy the parts into the registers. 875 SmallVector<SDValue, 8> Chains(NumRegs); 876 for (unsigned i = 0; i != NumRegs; ++i) { 877 SDValue Part; 878 if (!Flag) { 879 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 880 } else { 881 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 882 *Flag = Part.getValue(1); 883 } 884 885 Chains[i] = Part.getValue(0); 886 } 887 888 if (NumRegs == 1 || Flag) 889 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 890 // flagged to it. That is the CopyToReg nodes and the user are considered 891 // a single scheduling unit. If we create a TokenFactor and return it as 892 // chain, then the TokenFactor is both a predecessor (operand) of the 893 // user as well as a successor (the TF operands are flagged to the user). 894 // c1, f1 = CopyToReg 895 // c2, f2 = CopyToReg 896 // c3 = TokenFactor c1, c2 897 // ... 898 // = op c3, ..., f2 899 Chain = Chains[NumRegs-1]; 900 else 901 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 902 } 903 904 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 905 unsigned MatchingIdx, const SDLoc &dl, 906 SelectionDAG &DAG, 907 std::vector<SDValue> &Ops) const { 908 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 909 910 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 911 if (HasMatching) 912 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 913 else if (!Regs.empty() && 914 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 915 // Put the register class of the virtual registers in the flag word. That 916 // way, later passes can recompute register class constraints for inline 917 // assembly as well as normal instructions. 918 // Don't do this for tied operands that can use the regclass information 919 // from the def. 920 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 921 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 922 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 923 } 924 925 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 926 Ops.push_back(Res); 927 928 if (Code == InlineAsm::Kind_Clobber) { 929 // Clobbers should always have a 1:1 mapping with registers, and may 930 // reference registers that have illegal (e.g. vector) types. Hence, we 931 // shouldn't try to apply any sort of splitting logic to them. 932 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 933 "No 1:1 mapping from clobbers to regs?"); 934 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 935 (void)SP; 936 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 937 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 938 assert( 939 (Regs[I] != SP || 940 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 941 "If we clobbered the stack pointer, MFI should know about it."); 942 } 943 return; 944 } 945 946 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 947 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 948 MVT RegisterVT = RegVTs[Value]; 949 for (unsigned i = 0; i != NumRegs; ++i) { 950 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 951 unsigned TheReg = Regs[Reg++]; 952 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 953 } 954 } 955 } 956 957 SmallVector<std::pair<unsigned, unsigned>, 4> 958 RegsForValue::getRegsAndSizes() const { 959 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec; 960 unsigned I = 0; 961 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 962 unsigned RegCount = std::get<0>(CountAndVT); 963 MVT RegisterVT = std::get<1>(CountAndVT); 964 unsigned RegisterSize = RegisterVT.getSizeInBits(); 965 for (unsigned E = I + RegCount; I != E; ++I) 966 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 967 } 968 return OutVec; 969 } 970 971 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 972 const TargetLibraryInfo *li) { 973 AA = aa; 974 GFI = gfi; 975 LibInfo = li; 976 DL = &DAG.getDataLayout(); 977 Context = DAG.getContext(); 978 LPadToCallSiteMap.clear(); 979 } 980 981 void SelectionDAGBuilder::clear() { 982 NodeMap.clear(); 983 UnusedArgNodeMap.clear(); 984 PendingLoads.clear(); 985 PendingExports.clear(); 986 CurInst = nullptr; 987 HasTailCall = false; 988 SDNodeOrder = LowestSDNodeOrder; 989 StatepointLowering.clear(); 990 } 991 992 void SelectionDAGBuilder::clearDanglingDebugInfo() { 993 DanglingDebugInfoMap.clear(); 994 } 995 996 SDValue SelectionDAGBuilder::getRoot() { 997 if (PendingLoads.empty()) 998 return DAG.getRoot(); 999 1000 if (PendingLoads.size() == 1) { 1001 SDValue Root = PendingLoads[0]; 1002 DAG.setRoot(Root); 1003 PendingLoads.clear(); 1004 return Root; 1005 } 1006 1007 // Otherwise, we have to make a token factor node. 1008 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 1009 PendingLoads); 1010 PendingLoads.clear(); 1011 DAG.setRoot(Root); 1012 return Root; 1013 } 1014 1015 SDValue SelectionDAGBuilder::getControlRoot() { 1016 SDValue Root = DAG.getRoot(); 1017 1018 if (PendingExports.empty()) 1019 return Root; 1020 1021 // Turn all of the CopyToReg chains into one factored node. 1022 if (Root.getOpcode() != ISD::EntryToken) { 1023 unsigned i = 0, e = PendingExports.size(); 1024 for (; i != e; ++i) { 1025 assert(PendingExports[i].getNode()->getNumOperands() > 1); 1026 if (PendingExports[i].getNode()->getOperand(0) == Root) 1027 break; // Don't add the root if we already indirectly depend on it. 1028 } 1029 1030 if (i == e) 1031 PendingExports.push_back(Root); 1032 } 1033 1034 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 1035 PendingExports); 1036 PendingExports.clear(); 1037 DAG.setRoot(Root); 1038 return Root; 1039 } 1040 1041 void SelectionDAGBuilder::visit(const Instruction &I) { 1042 // Set up outgoing PHI node register values before emitting the terminator. 1043 if (isa<TerminatorInst>(&I)) { 1044 HandlePHINodesInSuccessorBlocks(I.getParent()); 1045 } 1046 1047 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1048 if (!isa<DbgInfoIntrinsic>(I)) 1049 ++SDNodeOrder; 1050 1051 CurInst = &I; 1052 1053 visit(I.getOpcode(), I); 1054 1055 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) { 1056 // Propagate the fast-math-flags of this IR instruction to the DAG node that 1057 // maps to this instruction. 1058 // TODO: We could handle all flags (nsw, etc) here. 1059 // TODO: If an IR instruction maps to >1 node, only the final node will have 1060 // flags set. 1061 if (SDNode *Node = getNodeForIRValue(&I)) { 1062 SDNodeFlags IncomingFlags; 1063 IncomingFlags.copyFMF(*FPMO); 1064 if (!Node->getFlags().isDefined()) 1065 Node->setFlags(IncomingFlags); 1066 else 1067 Node->intersectFlagsWith(IncomingFlags); 1068 } 1069 } 1070 1071 if (!isa<TerminatorInst>(&I) && !HasTailCall && 1072 !isStatepoint(&I)) // statepoints handle their exports internally 1073 CopyToExportRegsIfNeeded(&I); 1074 1075 CurInst = nullptr; 1076 } 1077 1078 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1079 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1080 } 1081 1082 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1083 // Note: this doesn't use InstVisitor, because it has to work with 1084 // ConstantExpr's in addition to instructions. 1085 switch (Opcode) { 1086 default: llvm_unreachable("Unknown instruction type encountered!"); 1087 // Build the switch statement using the Instruction.def file. 1088 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1089 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1090 #include "llvm/IR/Instruction.def" 1091 } 1092 } 1093 1094 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1095 const DIExpression *Expr) { 1096 for (auto &DDIMI : DanglingDebugInfoMap) 1097 for (auto &DDI : DDIMI.second) 1098 if (DDI.getDI()) { 1099 const DbgValueInst *DI = DDI.getDI(); 1100 DIVariable *DanglingVariable = DI->getVariable(); 1101 DIExpression *DanglingExpr = DI->getExpression(); 1102 if (DanglingVariable == Variable && 1103 Expr->fragmentsOverlap(DanglingExpr)) { 1104 LLVM_DEBUG(dbgs() 1105 << "Dropping dangling debug info for " << *DI << "\n"); 1106 DDI = DanglingDebugInfo(); 1107 } 1108 } 1109 } 1110 1111 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1112 // generate the debug data structures now that we've seen its definition. 1113 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1114 SDValue Val) { 1115 DanglingDebugInfoVector &DDIV = DanglingDebugInfoMap[V]; 1116 for (auto &DDI : DDIV) { 1117 if (!DDI.getDI()) 1118 continue; 1119 const DbgValueInst *DI = DDI.getDI(); 1120 DebugLoc dl = DDI.getdl(); 1121 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1122 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1123 DILocalVariable *Variable = DI->getVariable(); 1124 DIExpression *Expr = DI->getExpression(); 1125 assert(Variable->isValidLocationForIntrinsic(dl) && 1126 "Expected inlined-at fields to agree"); 1127 SDDbgValue *SDV; 1128 if (Val.getNode()) { 1129 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1130 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1131 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1132 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1133 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1134 // inserted after the definition of Val when emitting the instructions 1135 // after ISel. An alternative could be to teach 1136 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1137 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1138 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1139 << ValSDNodeOrder << "\n"); 1140 SDV = getDbgValue(Val, Variable, Expr, dl, 1141 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1142 DAG.AddDbgValue(SDV, Val.getNode(), false); 1143 } else 1144 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1145 << "in EmitFuncArgumentDbgValue\n"); 1146 } else 1147 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1148 } 1149 DanglingDebugInfoMap[V].clear(); 1150 } 1151 1152 /// getCopyFromRegs - If there was virtual register allocated for the value V 1153 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1154 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1155 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1156 SDValue Result; 1157 1158 if (It != FuncInfo.ValueMap.end()) { 1159 unsigned InReg = It->second; 1160 1161 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1162 DAG.getDataLayout(), InReg, Ty, isABIRegCopy(V)); 1163 SDValue Chain = DAG.getEntryNode(); 1164 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1165 V); 1166 resolveDanglingDebugInfo(V, Result); 1167 } 1168 1169 return Result; 1170 } 1171 1172 /// getValue - Return an SDValue for the given Value. 1173 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1174 // If we already have an SDValue for this value, use it. It's important 1175 // to do this first, so that we don't create a CopyFromReg if we already 1176 // have a regular SDValue. 1177 SDValue &N = NodeMap[V]; 1178 if (N.getNode()) return N; 1179 1180 // If there's a virtual register allocated and initialized for this 1181 // value, use it. 1182 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1183 return copyFromReg; 1184 1185 // Otherwise create a new SDValue and remember it. 1186 SDValue Val = getValueImpl(V); 1187 NodeMap[V] = Val; 1188 resolveDanglingDebugInfo(V, Val); 1189 return Val; 1190 } 1191 1192 // Return true if SDValue exists for the given Value 1193 bool SelectionDAGBuilder::findValue(const Value *V) const { 1194 return (NodeMap.find(V) != NodeMap.end()) || 1195 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1196 } 1197 1198 /// getNonRegisterValue - Return an SDValue for the given Value, but 1199 /// don't look in FuncInfo.ValueMap for a virtual register. 1200 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1201 // If we already have an SDValue for this value, use it. 1202 SDValue &N = NodeMap[V]; 1203 if (N.getNode()) { 1204 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1205 // Remove the debug location from the node as the node is about to be used 1206 // in a location which may differ from the original debug location. This 1207 // is relevant to Constant and ConstantFP nodes because they can appear 1208 // as constant expressions inside PHI nodes. 1209 N->setDebugLoc(DebugLoc()); 1210 } 1211 return N; 1212 } 1213 1214 // Otherwise create a new SDValue and remember it. 1215 SDValue Val = getValueImpl(V); 1216 NodeMap[V] = Val; 1217 resolveDanglingDebugInfo(V, Val); 1218 return Val; 1219 } 1220 1221 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1222 /// Create an SDValue for the given value. 1223 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1224 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1225 1226 if (const Constant *C = dyn_cast<Constant>(V)) { 1227 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1228 1229 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1230 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1231 1232 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1233 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1234 1235 if (isa<ConstantPointerNull>(C)) { 1236 unsigned AS = V->getType()->getPointerAddressSpace(); 1237 return DAG.getConstant(0, getCurSDLoc(), 1238 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1239 } 1240 1241 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1242 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1243 1244 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1245 return DAG.getUNDEF(VT); 1246 1247 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1248 visit(CE->getOpcode(), *CE); 1249 SDValue N1 = NodeMap[V]; 1250 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1251 return N1; 1252 } 1253 1254 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1255 SmallVector<SDValue, 4> Constants; 1256 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1257 OI != OE; ++OI) { 1258 SDNode *Val = getValue(*OI).getNode(); 1259 // If the operand is an empty aggregate, there are no values. 1260 if (!Val) continue; 1261 // Add each leaf value from the operand to the Constants list 1262 // to form a flattened list of all the values. 1263 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1264 Constants.push_back(SDValue(Val, i)); 1265 } 1266 1267 return DAG.getMergeValues(Constants, getCurSDLoc()); 1268 } 1269 1270 if (const ConstantDataSequential *CDS = 1271 dyn_cast<ConstantDataSequential>(C)) { 1272 SmallVector<SDValue, 4> Ops; 1273 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1274 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1275 // Add each leaf value from the operand to the Constants list 1276 // to form a flattened list of all the values. 1277 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1278 Ops.push_back(SDValue(Val, i)); 1279 } 1280 1281 if (isa<ArrayType>(CDS->getType())) 1282 return DAG.getMergeValues(Ops, getCurSDLoc()); 1283 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1284 } 1285 1286 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1287 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1288 "Unknown struct or array constant!"); 1289 1290 SmallVector<EVT, 4> ValueVTs; 1291 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1292 unsigned NumElts = ValueVTs.size(); 1293 if (NumElts == 0) 1294 return SDValue(); // empty struct 1295 SmallVector<SDValue, 4> Constants(NumElts); 1296 for (unsigned i = 0; i != NumElts; ++i) { 1297 EVT EltVT = ValueVTs[i]; 1298 if (isa<UndefValue>(C)) 1299 Constants[i] = DAG.getUNDEF(EltVT); 1300 else if (EltVT.isFloatingPoint()) 1301 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1302 else 1303 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1304 } 1305 1306 return DAG.getMergeValues(Constants, getCurSDLoc()); 1307 } 1308 1309 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1310 return DAG.getBlockAddress(BA, VT); 1311 1312 VectorType *VecTy = cast<VectorType>(V->getType()); 1313 unsigned NumElements = VecTy->getNumElements(); 1314 1315 // Now that we know the number and type of the elements, get that number of 1316 // elements into the Ops array based on what kind of constant it is. 1317 SmallVector<SDValue, 16> Ops; 1318 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1319 for (unsigned i = 0; i != NumElements; ++i) 1320 Ops.push_back(getValue(CV->getOperand(i))); 1321 } else { 1322 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1323 EVT EltVT = 1324 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1325 1326 SDValue Op; 1327 if (EltVT.isFloatingPoint()) 1328 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1329 else 1330 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1331 Ops.assign(NumElements, Op); 1332 } 1333 1334 // Create a BUILD_VECTOR node. 1335 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1336 } 1337 1338 // If this is a static alloca, generate it as the frameindex instead of 1339 // computation. 1340 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1341 DenseMap<const AllocaInst*, int>::iterator SI = 1342 FuncInfo.StaticAllocaMap.find(AI); 1343 if (SI != FuncInfo.StaticAllocaMap.end()) 1344 return DAG.getFrameIndex(SI->second, 1345 TLI.getFrameIndexTy(DAG.getDataLayout())); 1346 } 1347 1348 // If this is an instruction which fast-isel has deferred, select it now. 1349 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1350 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1351 1352 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1353 Inst->getType(), isABIRegCopy(V)); 1354 SDValue Chain = DAG.getEntryNode(); 1355 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1356 } 1357 1358 llvm_unreachable("Can't get register for value!"); 1359 } 1360 1361 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1362 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1363 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1364 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1365 bool IsSEH = isAsynchronousEHPersonality(Pers); 1366 bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX; 1367 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1368 if (!IsSEH) 1369 CatchPadMBB->setIsEHScopeEntry(); 1370 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1371 if (IsMSVCCXX || IsCoreCLR) 1372 CatchPadMBB->setIsEHFuncletEntry(); 1373 // Wasm does not need catchpads anymore 1374 if (!IsWasmCXX) 1375 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, 1376 getControlRoot())); 1377 } 1378 1379 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1380 // Update machine-CFG edge. 1381 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1382 FuncInfo.MBB->addSuccessor(TargetMBB); 1383 1384 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1385 bool IsSEH = isAsynchronousEHPersonality(Pers); 1386 if (IsSEH) { 1387 // If this is not a fall-through branch or optimizations are switched off, 1388 // emit the branch. 1389 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1390 TM.getOptLevel() == CodeGenOpt::None) 1391 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1392 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1393 return; 1394 } 1395 1396 // Figure out the funclet membership for the catchret's successor. 1397 // This will be used by the FuncletLayout pass to determine how to order the 1398 // BB's. 1399 // A 'catchret' returns to the outer scope's color. 1400 Value *ParentPad = I.getCatchSwitchParentPad(); 1401 const BasicBlock *SuccessorColor; 1402 if (isa<ConstantTokenNone>(ParentPad)) 1403 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1404 else 1405 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1406 assert(SuccessorColor && "No parent funclet for catchret!"); 1407 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1408 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1409 1410 // Create the terminator node. 1411 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1412 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1413 DAG.getBasicBlock(SuccessorColorMBB)); 1414 DAG.setRoot(Ret); 1415 } 1416 1417 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1418 // Don't emit any special code for the cleanuppad instruction. It just marks 1419 // the start of an EH scope/funclet. 1420 FuncInfo.MBB->setIsEHScopeEntry(); 1421 FuncInfo.MBB->setIsEHFuncletEntry(); 1422 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1423 } 1424 1425 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1426 /// many places it could ultimately go. In the IR, we have a single unwind 1427 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1428 /// This function skips over imaginary basic blocks that hold catchswitch 1429 /// instructions, and finds all the "real" machine 1430 /// basic block destinations. As those destinations may not be successors of 1431 /// EHPadBB, here we also calculate the edge probability to those destinations. 1432 /// The passed-in Prob is the edge probability to EHPadBB. 1433 static void findUnwindDestinations( 1434 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1435 BranchProbability Prob, 1436 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1437 &UnwindDests) { 1438 EHPersonality Personality = 1439 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1440 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1441 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1442 bool IsSEH = isAsynchronousEHPersonality(Personality); 1443 1444 while (EHPadBB) { 1445 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1446 BasicBlock *NewEHPadBB = nullptr; 1447 if (isa<LandingPadInst>(Pad)) { 1448 // Stop on landingpads. They are not funclets. 1449 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1450 break; 1451 } else if (isa<CleanupPadInst>(Pad)) { 1452 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1453 // personalities. 1454 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1455 UnwindDests.back().first->setIsEHScopeEntry(); 1456 UnwindDests.back().first->setIsEHFuncletEntry(); 1457 break; 1458 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1459 // Add the catchpad handlers to the possible destinations. 1460 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1461 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1462 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1463 if (IsMSVCCXX || IsCoreCLR) 1464 UnwindDests.back().first->setIsEHFuncletEntry(); 1465 if (!IsSEH) 1466 UnwindDests.back().first->setIsEHScopeEntry(); 1467 } 1468 NewEHPadBB = CatchSwitch->getUnwindDest(); 1469 } else { 1470 continue; 1471 } 1472 1473 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1474 if (BPI && NewEHPadBB) 1475 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1476 EHPadBB = NewEHPadBB; 1477 } 1478 } 1479 1480 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1481 // Update successor info. 1482 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1483 auto UnwindDest = I.getUnwindDest(); 1484 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1485 BranchProbability UnwindDestProb = 1486 (BPI && UnwindDest) 1487 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1488 : BranchProbability::getZero(); 1489 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1490 for (auto &UnwindDest : UnwindDests) { 1491 UnwindDest.first->setIsEHPad(); 1492 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1493 } 1494 FuncInfo.MBB->normalizeSuccProbs(); 1495 1496 // Create the terminator node. 1497 SDValue Ret = 1498 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1499 DAG.setRoot(Ret); 1500 } 1501 1502 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1503 report_fatal_error("visitCatchSwitch not yet implemented!"); 1504 } 1505 1506 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1507 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1508 auto &DL = DAG.getDataLayout(); 1509 SDValue Chain = getControlRoot(); 1510 SmallVector<ISD::OutputArg, 8> Outs; 1511 SmallVector<SDValue, 8> OutVals; 1512 1513 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1514 // lower 1515 // 1516 // %val = call <ty> @llvm.experimental.deoptimize() 1517 // ret <ty> %val 1518 // 1519 // differently. 1520 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1521 LowerDeoptimizingReturn(); 1522 return; 1523 } 1524 1525 if (!FuncInfo.CanLowerReturn) { 1526 unsigned DemoteReg = FuncInfo.DemoteRegister; 1527 const Function *F = I.getParent()->getParent(); 1528 1529 // Emit a store of the return value through the virtual register. 1530 // Leave Outs empty so that LowerReturn won't try to load return 1531 // registers the usual way. 1532 SmallVector<EVT, 1> PtrValueVTs; 1533 ComputeValueVTs(TLI, DL, 1534 F->getReturnType()->getPointerTo( 1535 DAG.getDataLayout().getAllocaAddrSpace()), 1536 PtrValueVTs); 1537 1538 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1539 DemoteReg, PtrValueVTs[0]); 1540 SDValue RetOp = getValue(I.getOperand(0)); 1541 1542 SmallVector<EVT, 4> ValueVTs; 1543 SmallVector<uint64_t, 4> Offsets; 1544 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1545 unsigned NumValues = ValueVTs.size(); 1546 1547 SmallVector<SDValue, 4> Chains(NumValues); 1548 for (unsigned i = 0; i != NumValues; ++i) { 1549 // An aggregate return value cannot wrap around the address space, so 1550 // offsets to its parts don't wrap either. 1551 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]); 1552 Chains[i] = DAG.getStore( 1553 Chain, getCurSDLoc(), SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1554 // FIXME: better loc info would be nice. 1555 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1556 } 1557 1558 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1559 MVT::Other, Chains); 1560 } else if (I.getNumOperands() != 0) { 1561 SmallVector<EVT, 4> ValueVTs; 1562 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1563 unsigned NumValues = ValueVTs.size(); 1564 if (NumValues) { 1565 SDValue RetOp = getValue(I.getOperand(0)); 1566 1567 const Function *F = I.getParent()->getParent(); 1568 1569 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1570 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1571 Attribute::SExt)) 1572 ExtendKind = ISD::SIGN_EXTEND; 1573 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1574 Attribute::ZExt)) 1575 ExtendKind = ISD::ZERO_EXTEND; 1576 1577 LLVMContext &Context = F->getContext(); 1578 bool RetInReg = F->getAttributes().hasAttribute( 1579 AttributeList::ReturnIndex, Attribute::InReg); 1580 1581 for (unsigned j = 0; j != NumValues; ++j) { 1582 EVT VT = ValueVTs[j]; 1583 1584 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1585 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1586 1587 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, VT); 1588 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, VT); 1589 SmallVector<SDValue, 4> Parts(NumParts); 1590 getCopyToParts(DAG, getCurSDLoc(), 1591 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1592 &Parts[0], NumParts, PartVT, &I, ExtendKind, true); 1593 1594 // 'inreg' on function refers to return value 1595 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1596 if (RetInReg) 1597 Flags.setInReg(); 1598 1599 // Propagate extension type if any 1600 if (ExtendKind == ISD::SIGN_EXTEND) 1601 Flags.setSExt(); 1602 else if (ExtendKind == ISD::ZERO_EXTEND) 1603 Flags.setZExt(); 1604 1605 for (unsigned i = 0; i < NumParts; ++i) { 1606 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1607 VT, /*isfixed=*/true, 0, 0)); 1608 OutVals.push_back(Parts[i]); 1609 } 1610 } 1611 } 1612 } 1613 1614 // Push in swifterror virtual register as the last element of Outs. This makes 1615 // sure swifterror virtual register will be returned in the swifterror 1616 // physical register. 1617 const Function *F = I.getParent()->getParent(); 1618 if (TLI.supportSwiftError() && 1619 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1620 assert(FuncInfo.SwiftErrorArg && "Need a swift error argument"); 1621 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1622 Flags.setSwiftError(); 1623 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1624 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1625 true /*isfixed*/, 1 /*origidx*/, 1626 0 /*partOffs*/)); 1627 // Create SDNode for the swifterror virtual register. 1628 OutVals.push_back( 1629 DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt( 1630 &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first, 1631 EVT(TLI.getPointerTy(DL)))); 1632 } 1633 1634 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1635 CallingConv::ID CallConv = 1636 DAG.getMachineFunction().getFunction().getCallingConv(); 1637 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1638 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1639 1640 // Verify that the target's LowerReturn behaved as expected. 1641 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1642 "LowerReturn didn't return a valid chain!"); 1643 1644 // Update the DAG with the new chain value resulting from return lowering. 1645 DAG.setRoot(Chain); 1646 } 1647 1648 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1649 /// created for it, emit nodes to copy the value into the virtual 1650 /// registers. 1651 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1652 // Skip empty types 1653 if (V->getType()->isEmptyTy()) 1654 return; 1655 1656 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1657 if (VMI != FuncInfo.ValueMap.end()) { 1658 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1659 CopyValueToVirtualRegister(V, VMI->second); 1660 } 1661 } 1662 1663 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1664 /// the current basic block, add it to ValueMap now so that we'll get a 1665 /// CopyTo/FromReg. 1666 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1667 // No need to export constants. 1668 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1669 1670 // Already exported? 1671 if (FuncInfo.isExportedInst(V)) return; 1672 1673 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1674 CopyValueToVirtualRegister(V, Reg); 1675 } 1676 1677 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1678 const BasicBlock *FromBB) { 1679 // The operands of the setcc have to be in this block. We don't know 1680 // how to export them from some other block. 1681 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1682 // Can export from current BB. 1683 if (VI->getParent() == FromBB) 1684 return true; 1685 1686 // Is already exported, noop. 1687 return FuncInfo.isExportedInst(V); 1688 } 1689 1690 // If this is an argument, we can export it if the BB is the entry block or 1691 // if it is already exported. 1692 if (isa<Argument>(V)) { 1693 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1694 return true; 1695 1696 // Otherwise, can only export this if it is already exported. 1697 return FuncInfo.isExportedInst(V); 1698 } 1699 1700 // Otherwise, constants can always be exported. 1701 return true; 1702 } 1703 1704 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1705 BranchProbability 1706 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1707 const MachineBasicBlock *Dst) const { 1708 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1709 const BasicBlock *SrcBB = Src->getBasicBlock(); 1710 const BasicBlock *DstBB = Dst->getBasicBlock(); 1711 if (!BPI) { 1712 // If BPI is not available, set the default probability as 1 / N, where N is 1713 // the number of successors. 1714 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 1715 return BranchProbability(1, SuccSize); 1716 } 1717 return BPI->getEdgeProbability(SrcBB, DstBB); 1718 } 1719 1720 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1721 MachineBasicBlock *Dst, 1722 BranchProbability Prob) { 1723 if (!FuncInfo.BPI) 1724 Src->addSuccessorWithoutProb(Dst); 1725 else { 1726 if (Prob.isUnknown()) 1727 Prob = getEdgeProbability(Src, Dst); 1728 Src->addSuccessor(Dst, Prob); 1729 } 1730 } 1731 1732 static bool InBlock(const Value *V, const BasicBlock *BB) { 1733 if (const Instruction *I = dyn_cast<Instruction>(V)) 1734 return I->getParent() == BB; 1735 return true; 1736 } 1737 1738 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1739 /// This function emits a branch and is used at the leaves of an OR or an 1740 /// AND operator tree. 1741 void 1742 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1743 MachineBasicBlock *TBB, 1744 MachineBasicBlock *FBB, 1745 MachineBasicBlock *CurBB, 1746 MachineBasicBlock *SwitchBB, 1747 BranchProbability TProb, 1748 BranchProbability FProb, 1749 bool InvertCond) { 1750 const BasicBlock *BB = CurBB->getBasicBlock(); 1751 1752 // If the leaf of the tree is a comparison, merge the condition into 1753 // the caseblock. 1754 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1755 // The operands of the cmp have to be in this block. We don't know 1756 // how to export them from some other block. If this is the first block 1757 // of the sequence, no exporting is needed. 1758 if (CurBB == SwitchBB || 1759 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1760 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1761 ISD::CondCode Condition; 1762 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1763 ICmpInst::Predicate Pred = 1764 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 1765 Condition = getICmpCondCode(Pred); 1766 } else { 1767 const FCmpInst *FC = cast<FCmpInst>(Cond); 1768 FCmpInst::Predicate Pred = 1769 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 1770 Condition = getFCmpCondCode(Pred); 1771 if (TM.Options.NoNaNsFPMath) 1772 Condition = getFCmpCodeWithoutNaN(Condition); 1773 } 1774 1775 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1776 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 1777 SwitchCases.push_back(CB); 1778 return; 1779 } 1780 } 1781 1782 // Create a CaseBlock record representing this branch. 1783 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 1784 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 1785 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 1786 SwitchCases.push_back(CB); 1787 } 1788 1789 /// FindMergedConditions - If Cond is an expression like 1790 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1791 MachineBasicBlock *TBB, 1792 MachineBasicBlock *FBB, 1793 MachineBasicBlock *CurBB, 1794 MachineBasicBlock *SwitchBB, 1795 Instruction::BinaryOps Opc, 1796 BranchProbability TProb, 1797 BranchProbability FProb, 1798 bool InvertCond) { 1799 // Skip over not part of the tree and remember to invert op and operands at 1800 // next level. 1801 if (BinaryOperator::isNot(Cond) && Cond->hasOneUse()) { 1802 const Value *CondOp = BinaryOperator::getNotArgument(Cond); 1803 if (InBlock(CondOp, CurBB->getBasicBlock())) { 1804 FindMergedConditions(CondOp, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 1805 !InvertCond); 1806 return; 1807 } 1808 } 1809 1810 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1811 // Compute the effective opcode for Cond, taking into account whether it needs 1812 // to be inverted, e.g. 1813 // and (not (or A, B)), C 1814 // gets lowered as 1815 // and (and (not A, not B), C) 1816 unsigned BOpc = 0; 1817 if (BOp) { 1818 BOpc = BOp->getOpcode(); 1819 if (InvertCond) { 1820 if (BOpc == Instruction::And) 1821 BOpc = Instruction::Or; 1822 else if (BOpc == Instruction::Or) 1823 BOpc = Instruction::And; 1824 } 1825 } 1826 1827 // If this node is not part of the or/and tree, emit it as a branch. 1828 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1829 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 1830 BOp->getParent() != CurBB->getBasicBlock() || 1831 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1832 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1833 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1834 TProb, FProb, InvertCond); 1835 return; 1836 } 1837 1838 // Create TmpBB after CurBB. 1839 MachineFunction::iterator BBI(CurBB); 1840 MachineFunction &MF = DAG.getMachineFunction(); 1841 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1842 CurBB->getParent()->insert(++BBI, TmpBB); 1843 1844 if (Opc == Instruction::Or) { 1845 // Codegen X | Y as: 1846 // BB1: 1847 // jmp_if_X TBB 1848 // jmp TmpBB 1849 // TmpBB: 1850 // jmp_if_Y TBB 1851 // jmp FBB 1852 // 1853 1854 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1855 // The requirement is that 1856 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1857 // = TrueProb for original BB. 1858 // Assuming the original probabilities are A and B, one choice is to set 1859 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 1860 // A/(1+B) and 2B/(1+B). This choice assumes that 1861 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1862 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1863 // TmpBB, but the math is more complicated. 1864 1865 auto NewTrueProb = TProb / 2; 1866 auto NewFalseProb = TProb / 2 + FProb; 1867 // Emit the LHS condition. 1868 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1869 NewTrueProb, NewFalseProb, InvertCond); 1870 1871 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 1872 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 1873 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1874 // Emit the RHS condition into TmpBB. 1875 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1876 Probs[0], Probs[1], InvertCond); 1877 } else { 1878 assert(Opc == Instruction::And && "Unknown merge op!"); 1879 // Codegen X & Y as: 1880 // BB1: 1881 // jmp_if_X TmpBB 1882 // jmp FBB 1883 // TmpBB: 1884 // jmp_if_Y TBB 1885 // jmp FBB 1886 // 1887 // This requires creation of TmpBB after CurBB. 1888 1889 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1890 // The requirement is that 1891 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1892 // = FalseProb for original BB. 1893 // Assuming the original probabilities are A and B, one choice is to set 1894 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 1895 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 1896 // TrueProb for BB1 * FalseProb for TmpBB. 1897 1898 auto NewTrueProb = TProb + FProb / 2; 1899 auto NewFalseProb = FProb / 2; 1900 // Emit the LHS condition. 1901 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1902 NewTrueProb, NewFalseProb, InvertCond); 1903 1904 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 1905 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 1906 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1907 // Emit the RHS condition into TmpBB. 1908 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1909 Probs[0], Probs[1], InvertCond); 1910 } 1911 } 1912 1913 /// If the set of cases should be emitted as a series of branches, return true. 1914 /// If we should emit this as a bunch of and/or'd together conditions, return 1915 /// false. 1916 bool 1917 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1918 if (Cases.size() != 2) return true; 1919 1920 // If this is two comparisons of the same values or'd or and'd together, they 1921 // will get folded into a single comparison, so don't emit two blocks. 1922 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1923 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1924 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1925 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1926 return false; 1927 } 1928 1929 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1930 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1931 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1932 Cases[0].CC == Cases[1].CC && 1933 isa<Constant>(Cases[0].CmpRHS) && 1934 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1935 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1936 return false; 1937 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1938 return false; 1939 } 1940 1941 return true; 1942 } 1943 1944 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1945 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1946 1947 // Update machine-CFG edges. 1948 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1949 1950 if (I.isUnconditional()) { 1951 // Update machine-CFG edges. 1952 BrMBB->addSuccessor(Succ0MBB); 1953 1954 // If this is not a fall-through branch or optimizations are switched off, 1955 // emit the branch. 1956 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1957 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1958 MVT::Other, getControlRoot(), 1959 DAG.getBasicBlock(Succ0MBB))); 1960 1961 return; 1962 } 1963 1964 // If this condition is one of the special cases we handle, do special stuff 1965 // now. 1966 const Value *CondVal = I.getCondition(); 1967 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1968 1969 // If this is a series of conditions that are or'd or and'd together, emit 1970 // this as a sequence of branches instead of setcc's with and/or operations. 1971 // As long as jumps are not expensive, this should improve performance. 1972 // For example, instead of something like: 1973 // cmp A, B 1974 // C = seteq 1975 // cmp D, E 1976 // F = setle 1977 // or C, F 1978 // jnz foo 1979 // Emit: 1980 // cmp A, B 1981 // je foo 1982 // cmp D, E 1983 // jle foo 1984 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1985 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1986 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1987 !I.getMetadata(LLVMContext::MD_unpredictable) && 1988 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1989 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1990 Opcode, 1991 getEdgeProbability(BrMBB, Succ0MBB), 1992 getEdgeProbability(BrMBB, Succ1MBB), 1993 /*InvertCond=*/false); 1994 // If the compares in later blocks need to use values not currently 1995 // exported from this block, export them now. This block should always 1996 // be the first entry. 1997 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1998 1999 // Allow some cases to be rejected. 2000 if (ShouldEmitAsBranches(SwitchCases)) { 2001 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 2002 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 2003 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 2004 } 2005 2006 // Emit the branch for this block. 2007 visitSwitchCase(SwitchCases[0], BrMBB); 2008 SwitchCases.erase(SwitchCases.begin()); 2009 return; 2010 } 2011 2012 // Okay, we decided not to do this, remove any inserted MBB's and clear 2013 // SwitchCases. 2014 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 2015 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 2016 2017 SwitchCases.clear(); 2018 } 2019 } 2020 2021 // Create a CaseBlock record representing this branch. 2022 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2023 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2024 2025 // Use visitSwitchCase to actually insert the fast branch sequence for this 2026 // cond branch. 2027 visitSwitchCase(CB, BrMBB); 2028 } 2029 2030 /// visitSwitchCase - Emits the necessary code to represent a single node in 2031 /// the binary search tree resulting from lowering a switch instruction. 2032 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2033 MachineBasicBlock *SwitchBB) { 2034 SDValue Cond; 2035 SDValue CondLHS = getValue(CB.CmpLHS); 2036 SDLoc dl = CB.DL; 2037 2038 // Build the setcc now. 2039 if (!CB.CmpMHS) { 2040 // Fold "(X == true)" to X and "(X == false)" to !X to 2041 // handle common cases produced by branch lowering. 2042 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2043 CB.CC == ISD::SETEQ) 2044 Cond = CondLHS; 2045 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2046 CB.CC == ISD::SETEQ) { 2047 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2048 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2049 } else 2050 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 2051 } else { 2052 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2053 2054 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2055 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2056 2057 SDValue CmpOp = getValue(CB.CmpMHS); 2058 EVT VT = CmpOp.getValueType(); 2059 2060 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2061 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2062 ISD::SETLE); 2063 } else { 2064 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2065 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2066 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2067 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2068 } 2069 } 2070 2071 // Update successor info 2072 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2073 // TrueBB and FalseBB are always different unless the incoming IR is 2074 // degenerate. This only happens when running llc on weird IR. 2075 if (CB.TrueBB != CB.FalseBB) 2076 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2077 SwitchBB->normalizeSuccProbs(); 2078 2079 // If the lhs block is the next block, invert the condition so that we can 2080 // fall through to the lhs instead of the rhs block. 2081 if (CB.TrueBB == NextBlock(SwitchBB)) { 2082 std::swap(CB.TrueBB, CB.FalseBB); 2083 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2084 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2085 } 2086 2087 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2088 MVT::Other, getControlRoot(), Cond, 2089 DAG.getBasicBlock(CB.TrueBB)); 2090 2091 // Insert the false branch. Do this even if it's a fall through branch, 2092 // this makes it easier to do DAG optimizations which require inverting 2093 // the branch condition. 2094 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2095 DAG.getBasicBlock(CB.FalseBB)); 2096 2097 DAG.setRoot(BrCond); 2098 } 2099 2100 /// visitJumpTable - Emit JumpTable node in the current MBB 2101 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 2102 // Emit the code for the jump table 2103 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2104 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2105 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2106 JT.Reg, PTy); 2107 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2108 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2109 MVT::Other, Index.getValue(1), 2110 Table, Index); 2111 DAG.setRoot(BrJumpTable); 2112 } 2113 2114 /// visitJumpTableHeader - This function emits necessary code to produce index 2115 /// in the JumpTable from switch case. 2116 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 2117 JumpTableHeader &JTH, 2118 MachineBasicBlock *SwitchBB) { 2119 SDLoc dl = getCurSDLoc(); 2120 2121 // Subtract the lowest switch case value from the value being switched on and 2122 // conditional branch to default mbb if the result is greater than the 2123 // difference between smallest and largest cases. 2124 SDValue SwitchOp = getValue(JTH.SValue); 2125 EVT VT = SwitchOp.getValueType(); 2126 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2127 DAG.getConstant(JTH.First, dl, VT)); 2128 2129 // The SDNode we just created, which holds the value being switched on minus 2130 // the smallest case value, needs to be copied to a virtual register so it 2131 // can be used as an index into the jump table in a subsequent basic block. 2132 // This value may be smaller or larger than the target's pointer type, and 2133 // therefore require extension or truncating. 2134 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2135 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2136 2137 unsigned JumpTableReg = 2138 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2139 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2140 JumpTableReg, SwitchOp); 2141 JT.Reg = JumpTableReg; 2142 2143 // Emit the range check for the jump table, and branch to the default block 2144 // for the switch statement if the value being switched on exceeds the largest 2145 // case in the switch. 2146 SDValue CMP = DAG.getSetCC( 2147 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2148 Sub.getValueType()), 2149 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2150 2151 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2152 MVT::Other, CopyTo, CMP, 2153 DAG.getBasicBlock(JT.Default)); 2154 2155 // Avoid emitting unnecessary branches to the next block. 2156 if (JT.MBB != NextBlock(SwitchBB)) 2157 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2158 DAG.getBasicBlock(JT.MBB)); 2159 2160 DAG.setRoot(BrCond); 2161 } 2162 2163 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2164 /// variable if there exists one. 2165 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2166 SDValue &Chain) { 2167 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2168 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2169 MachineFunction &MF = DAG.getMachineFunction(); 2170 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2171 MachineSDNode *Node = 2172 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2173 if (Global) { 2174 MachinePointerInfo MPInfo(Global); 2175 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 2176 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2177 MachineMemOperand::MODereferenceable; 2178 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, PtrTy.getSizeInBits() / 8, 2179 DAG.getEVTAlignment(PtrTy)); 2180 Node->setMemRefs(MemRefs, MemRefs + 1); 2181 } 2182 return SDValue(Node, 0); 2183 } 2184 2185 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2186 /// tail spliced into a stack protector check success bb. 2187 /// 2188 /// For a high level explanation of how this fits into the stack protector 2189 /// generation see the comment on the declaration of class 2190 /// StackProtectorDescriptor. 2191 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2192 MachineBasicBlock *ParentBB) { 2193 2194 // First create the loads to the guard/stack slot for the comparison. 2195 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2196 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2197 2198 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2199 int FI = MFI.getStackProtectorIndex(); 2200 2201 SDValue Guard; 2202 SDLoc dl = getCurSDLoc(); 2203 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2204 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2205 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2206 2207 // Generate code to load the content of the guard slot. 2208 SDValue GuardVal = DAG.getLoad( 2209 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 2210 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2211 MachineMemOperand::MOVolatile); 2212 2213 if (TLI.useStackGuardXorFP()) 2214 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2215 2216 // Retrieve guard check function, nullptr if instrumentation is inlined. 2217 if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) { 2218 // The target provides a guard check function to validate the guard value. 2219 // Generate a call to that function with the content of the guard slot as 2220 // argument. 2221 auto *Fn = cast<Function>(GuardCheck); 2222 FunctionType *FnTy = Fn->getFunctionType(); 2223 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2224 2225 TargetLowering::ArgListTy Args; 2226 TargetLowering::ArgListEntry Entry; 2227 Entry.Node = GuardVal; 2228 Entry.Ty = FnTy->getParamType(0); 2229 if (Fn->hasAttribute(1, Attribute::AttrKind::InReg)) 2230 Entry.IsInReg = true; 2231 Args.push_back(Entry); 2232 2233 TargetLowering::CallLoweringInfo CLI(DAG); 2234 CLI.setDebugLoc(getCurSDLoc()) 2235 .setChain(DAG.getEntryNode()) 2236 .setCallee(Fn->getCallingConv(), FnTy->getReturnType(), 2237 getValue(GuardCheck), std::move(Args)); 2238 2239 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2240 DAG.setRoot(Result.second); 2241 return; 2242 } 2243 2244 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2245 // Otherwise, emit a volatile load to retrieve the stack guard value. 2246 SDValue Chain = DAG.getEntryNode(); 2247 if (TLI.useLoadStackGuardNode()) { 2248 Guard = getLoadStackGuard(DAG, dl, Chain); 2249 } else { 2250 const Value *IRGuard = TLI.getSDagStackGuard(M); 2251 SDValue GuardPtr = getValue(IRGuard); 2252 2253 Guard = 2254 DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0), 2255 Align, MachineMemOperand::MOVolatile); 2256 } 2257 2258 // Perform the comparison via a subtract/getsetcc. 2259 EVT VT = Guard.getValueType(); 2260 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal); 2261 2262 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2263 *DAG.getContext(), 2264 Sub.getValueType()), 2265 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2266 2267 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2268 // branch to failure MBB. 2269 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2270 MVT::Other, GuardVal.getOperand(0), 2271 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2272 // Otherwise branch to success MBB. 2273 SDValue Br = DAG.getNode(ISD::BR, dl, 2274 MVT::Other, BrCond, 2275 DAG.getBasicBlock(SPD.getSuccessMBB())); 2276 2277 DAG.setRoot(Br); 2278 } 2279 2280 /// Codegen the failure basic block for a stack protector check. 2281 /// 2282 /// A failure stack protector machine basic block consists simply of a call to 2283 /// __stack_chk_fail(). 2284 /// 2285 /// For a high level explanation of how this fits into the stack protector 2286 /// generation see the comment on the declaration of class 2287 /// StackProtectorDescriptor. 2288 void 2289 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2290 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2291 SDValue Chain = 2292 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2293 None, false, getCurSDLoc(), false, false).second; 2294 DAG.setRoot(Chain); 2295 } 2296 2297 /// visitBitTestHeader - This function emits necessary code to produce value 2298 /// suitable for "bit tests" 2299 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2300 MachineBasicBlock *SwitchBB) { 2301 SDLoc dl = getCurSDLoc(); 2302 2303 // Subtract the minimum value 2304 SDValue SwitchOp = getValue(B.SValue); 2305 EVT VT = SwitchOp.getValueType(); 2306 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2307 DAG.getConstant(B.First, dl, VT)); 2308 2309 // Check range 2310 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2311 SDValue RangeCmp = DAG.getSetCC( 2312 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2313 Sub.getValueType()), 2314 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2315 2316 // Determine the type of the test operands. 2317 bool UsePtrType = false; 2318 if (!TLI.isTypeLegal(VT)) 2319 UsePtrType = true; 2320 else { 2321 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2322 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2323 // Switch table case range are encoded into series of masks. 2324 // Just use pointer type, it's guaranteed to fit. 2325 UsePtrType = true; 2326 break; 2327 } 2328 } 2329 if (UsePtrType) { 2330 VT = TLI.getPointerTy(DAG.getDataLayout()); 2331 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2332 } 2333 2334 B.RegVT = VT.getSimpleVT(); 2335 B.Reg = FuncInfo.CreateReg(B.RegVT); 2336 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2337 2338 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2339 2340 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2341 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2342 SwitchBB->normalizeSuccProbs(); 2343 2344 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2345 MVT::Other, CopyTo, RangeCmp, 2346 DAG.getBasicBlock(B.Default)); 2347 2348 // Avoid emitting unnecessary branches to the next block. 2349 if (MBB != NextBlock(SwitchBB)) 2350 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2351 DAG.getBasicBlock(MBB)); 2352 2353 DAG.setRoot(BrRange); 2354 } 2355 2356 /// visitBitTestCase - this function produces one "bit test" 2357 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2358 MachineBasicBlock* NextMBB, 2359 BranchProbability BranchProbToNext, 2360 unsigned Reg, 2361 BitTestCase &B, 2362 MachineBasicBlock *SwitchBB) { 2363 SDLoc dl = getCurSDLoc(); 2364 MVT VT = BB.RegVT; 2365 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2366 SDValue Cmp; 2367 unsigned PopCount = countPopulation(B.Mask); 2368 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2369 if (PopCount == 1) { 2370 // Testing for a single bit; just compare the shift count with what it 2371 // would need to be to shift a 1 bit in that position. 2372 Cmp = DAG.getSetCC( 2373 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2374 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2375 ISD::SETEQ); 2376 } else if (PopCount == BB.Range) { 2377 // There is only one zero bit in the range, test for it directly. 2378 Cmp = DAG.getSetCC( 2379 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2380 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2381 ISD::SETNE); 2382 } else { 2383 // Make desired shift 2384 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2385 DAG.getConstant(1, dl, VT), ShiftOp); 2386 2387 // Emit bit tests and jumps 2388 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2389 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2390 Cmp = DAG.getSetCC( 2391 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2392 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2393 } 2394 2395 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2396 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2397 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2398 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2399 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2400 // one as they are relative probabilities (and thus work more like weights), 2401 // and hence we need to normalize them to let the sum of them become one. 2402 SwitchBB->normalizeSuccProbs(); 2403 2404 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2405 MVT::Other, getControlRoot(), 2406 Cmp, DAG.getBasicBlock(B.TargetBB)); 2407 2408 // Avoid emitting unnecessary branches to the next block. 2409 if (NextMBB != NextBlock(SwitchBB)) 2410 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2411 DAG.getBasicBlock(NextMBB)); 2412 2413 DAG.setRoot(BrAnd); 2414 } 2415 2416 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2417 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2418 2419 // Retrieve successors. Look through artificial IR level blocks like 2420 // catchswitch for successors. 2421 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2422 const BasicBlock *EHPadBB = I.getSuccessor(1); 2423 2424 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2425 // have to do anything here to lower funclet bundles. 2426 assert(!I.hasOperandBundlesOtherThan( 2427 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2428 "Cannot lower invokes with arbitrary operand bundles yet!"); 2429 2430 const Value *Callee(I.getCalledValue()); 2431 const Function *Fn = dyn_cast<Function>(Callee); 2432 if (isa<InlineAsm>(Callee)) 2433 visitInlineAsm(&I); 2434 else if (Fn && Fn->isIntrinsic()) { 2435 switch (Fn->getIntrinsicID()) { 2436 default: 2437 llvm_unreachable("Cannot invoke this intrinsic"); 2438 case Intrinsic::donothing: 2439 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2440 break; 2441 case Intrinsic::experimental_patchpoint_void: 2442 case Intrinsic::experimental_patchpoint_i64: 2443 visitPatchpoint(&I, EHPadBB); 2444 break; 2445 case Intrinsic::experimental_gc_statepoint: 2446 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2447 break; 2448 } 2449 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2450 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2451 // Eventually we will support lowering the @llvm.experimental.deoptimize 2452 // intrinsic, and right now there are no plans to support other intrinsics 2453 // with deopt state. 2454 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2455 } else { 2456 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2457 } 2458 2459 // If the value of the invoke is used outside of its defining block, make it 2460 // available as a virtual register. 2461 // We already took care of the exported value for the statepoint instruction 2462 // during call to the LowerStatepoint. 2463 if (!isStatepoint(I)) { 2464 CopyToExportRegsIfNeeded(&I); 2465 } 2466 2467 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2468 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2469 BranchProbability EHPadBBProb = 2470 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2471 : BranchProbability::getZero(); 2472 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2473 2474 // Update successor info. 2475 addSuccessorWithProb(InvokeMBB, Return); 2476 for (auto &UnwindDest : UnwindDests) { 2477 UnwindDest.first->setIsEHPad(); 2478 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2479 } 2480 InvokeMBB->normalizeSuccProbs(); 2481 2482 // Drop into normal successor. 2483 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2484 MVT::Other, getControlRoot(), 2485 DAG.getBasicBlock(Return))); 2486 } 2487 2488 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2489 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2490 } 2491 2492 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2493 assert(FuncInfo.MBB->isEHPad() && 2494 "Call to landingpad not in landing pad!"); 2495 2496 MachineBasicBlock *MBB = FuncInfo.MBB; 2497 addLandingPadInfo(LP, *MBB); 2498 2499 // If there aren't registers to copy the values into (e.g., during SjLj 2500 // exceptions), then don't bother to create these DAG nodes. 2501 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2502 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2503 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2504 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2505 return; 2506 2507 // If landingpad's return type is token type, we don't create DAG nodes 2508 // for its exception pointer and selector value. The extraction of exception 2509 // pointer or selector value from token type landingpads is not currently 2510 // supported. 2511 if (LP.getType()->isTokenTy()) 2512 return; 2513 2514 SmallVector<EVT, 2> ValueVTs; 2515 SDLoc dl = getCurSDLoc(); 2516 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2517 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2518 2519 // Get the two live-in registers as SDValues. The physregs have already been 2520 // copied into virtual registers. 2521 SDValue Ops[2]; 2522 if (FuncInfo.ExceptionPointerVirtReg) { 2523 Ops[0] = DAG.getZExtOrTrunc( 2524 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2525 FuncInfo.ExceptionPointerVirtReg, 2526 TLI.getPointerTy(DAG.getDataLayout())), 2527 dl, ValueVTs[0]); 2528 } else { 2529 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2530 } 2531 Ops[1] = DAG.getZExtOrTrunc( 2532 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2533 FuncInfo.ExceptionSelectorVirtReg, 2534 TLI.getPointerTy(DAG.getDataLayout())), 2535 dl, ValueVTs[1]); 2536 2537 // Merge into one. 2538 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2539 DAG.getVTList(ValueVTs), Ops); 2540 setValue(&LP, Res); 2541 } 2542 2543 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2544 #ifndef NDEBUG 2545 for (const CaseCluster &CC : Clusters) 2546 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2547 #endif 2548 2549 llvm::sort(Clusters.begin(), Clusters.end(), 2550 [](const CaseCluster &a, const CaseCluster &b) { 2551 return a.Low->getValue().slt(b.Low->getValue()); 2552 }); 2553 2554 // Merge adjacent clusters with the same destination. 2555 const unsigned N = Clusters.size(); 2556 unsigned DstIndex = 0; 2557 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2558 CaseCluster &CC = Clusters[SrcIndex]; 2559 const ConstantInt *CaseVal = CC.Low; 2560 MachineBasicBlock *Succ = CC.MBB; 2561 2562 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2563 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2564 // If this case has the same successor and is a neighbour, merge it into 2565 // the previous cluster. 2566 Clusters[DstIndex - 1].High = CaseVal; 2567 Clusters[DstIndex - 1].Prob += CC.Prob; 2568 } else { 2569 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2570 sizeof(Clusters[SrcIndex])); 2571 } 2572 } 2573 Clusters.resize(DstIndex); 2574 } 2575 2576 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2577 MachineBasicBlock *Last) { 2578 // Update JTCases. 2579 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2580 if (JTCases[i].first.HeaderBB == First) 2581 JTCases[i].first.HeaderBB = Last; 2582 2583 // Update BitTestCases. 2584 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2585 if (BitTestCases[i].Parent == First) 2586 BitTestCases[i].Parent = Last; 2587 } 2588 2589 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2590 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2591 2592 // Update machine-CFG edges with unique successors. 2593 SmallSet<BasicBlock*, 32> Done; 2594 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2595 BasicBlock *BB = I.getSuccessor(i); 2596 bool Inserted = Done.insert(BB).second; 2597 if (!Inserted) 2598 continue; 2599 2600 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2601 addSuccessorWithProb(IndirectBrMBB, Succ); 2602 } 2603 IndirectBrMBB->normalizeSuccProbs(); 2604 2605 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2606 MVT::Other, getControlRoot(), 2607 getValue(I.getAddress()))); 2608 } 2609 2610 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2611 if (!DAG.getTarget().Options.TrapUnreachable) 2612 return; 2613 2614 // We may be able to ignore unreachable behind a noreturn call. 2615 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 2616 const BasicBlock &BB = *I.getParent(); 2617 if (&I != &BB.front()) { 2618 BasicBlock::const_iterator PredI = 2619 std::prev(BasicBlock::const_iterator(&I)); 2620 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 2621 if (Call->doesNotReturn()) 2622 return; 2623 } 2624 } 2625 } 2626 2627 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2628 } 2629 2630 void SelectionDAGBuilder::visitFSub(const User &I) { 2631 // -0.0 - X --> fneg 2632 Type *Ty = I.getType(); 2633 if (isa<Constant>(I.getOperand(0)) && 2634 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2635 SDValue Op2 = getValue(I.getOperand(1)); 2636 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2637 Op2.getValueType(), Op2)); 2638 return; 2639 } 2640 2641 visitBinary(I, ISD::FSUB); 2642 } 2643 2644 /// Checks if the given instruction performs a vector reduction, in which case 2645 /// we have the freedom to alter the elements in the result as long as the 2646 /// reduction of them stays unchanged. 2647 static bool isVectorReductionOp(const User *I) { 2648 const Instruction *Inst = dyn_cast<Instruction>(I); 2649 if (!Inst || !Inst->getType()->isVectorTy()) 2650 return false; 2651 2652 auto OpCode = Inst->getOpcode(); 2653 switch (OpCode) { 2654 case Instruction::Add: 2655 case Instruction::Mul: 2656 case Instruction::And: 2657 case Instruction::Or: 2658 case Instruction::Xor: 2659 break; 2660 case Instruction::FAdd: 2661 case Instruction::FMul: 2662 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2663 if (FPOp->getFastMathFlags().isFast()) 2664 break; 2665 LLVM_FALLTHROUGH; 2666 default: 2667 return false; 2668 } 2669 2670 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 2671 unsigned ElemNumToReduce = ElemNum; 2672 2673 // Do DFS search on the def-use chain from the given instruction. We only 2674 // allow four kinds of operations during the search until we reach the 2675 // instruction that extracts the first element from the vector: 2676 // 2677 // 1. The reduction operation of the same opcode as the given instruction. 2678 // 2679 // 2. PHI node. 2680 // 2681 // 3. ShuffleVector instruction together with a reduction operation that 2682 // does a partial reduction. 2683 // 2684 // 4. ExtractElement that extracts the first element from the vector, and we 2685 // stop searching the def-use chain here. 2686 // 2687 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 2688 // from 1-3 to the stack to continue the DFS. The given instruction is not 2689 // a reduction operation if we meet any other instructions other than those 2690 // listed above. 2691 2692 SmallVector<const User *, 16> UsersToVisit{Inst}; 2693 SmallPtrSet<const User *, 16> Visited; 2694 bool ReduxExtracted = false; 2695 2696 while (!UsersToVisit.empty()) { 2697 auto User = UsersToVisit.back(); 2698 UsersToVisit.pop_back(); 2699 if (!Visited.insert(User).second) 2700 continue; 2701 2702 for (const auto &U : User->users()) { 2703 auto Inst = dyn_cast<Instruction>(U); 2704 if (!Inst) 2705 return false; 2706 2707 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 2708 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2709 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast()) 2710 return false; 2711 UsersToVisit.push_back(U); 2712 } else if (const ShuffleVectorInst *ShufInst = 2713 dyn_cast<ShuffleVectorInst>(U)) { 2714 // Detect the following pattern: A ShuffleVector instruction together 2715 // with a reduction that do partial reduction on the first and second 2716 // ElemNumToReduce / 2 elements, and store the result in 2717 // ElemNumToReduce / 2 elements in another vector. 2718 2719 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 2720 if (ResultElements < ElemNum) 2721 return false; 2722 2723 if (ElemNumToReduce == 1) 2724 return false; 2725 if (!isa<UndefValue>(U->getOperand(1))) 2726 return false; 2727 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 2728 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 2729 return false; 2730 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 2731 if (ShufInst->getMaskValue(i) != -1) 2732 return false; 2733 2734 // There is only one user of this ShuffleVector instruction, which 2735 // must be a reduction operation. 2736 if (!U->hasOneUse()) 2737 return false; 2738 2739 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 2740 if (!U2 || U2->getOpcode() != OpCode) 2741 return false; 2742 2743 // Check operands of the reduction operation. 2744 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 2745 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 2746 UsersToVisit.push_back(U2); 2747 ElemNumToReduce /= 2; 2748 } else 2749 return false; 2750 } else if (isa<ExtractElementInst>(U)) { 2751 // At this moment we should have reduced all elements in the vector. 2752 if (ElemNumToReduce != 1) 2753 return false; 2754 2755 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 2756 if (!Val || Val->getZExtValue() != 0) 2757 return false; 2758 2759 ReduxExtracted = true; 2760 } else 2761 return false; 2762 } 2763 } 2764 return ReduxExtracted; 2765 } 2766 2767 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 2768 SDNodeFlags Flags; 2769 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 2770 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 2771 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 2772 } 2773 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) { 2774 Flags.setExact(ExactOp->isExact()); 2775 } 2776 if (isVectorReductionOp(&I)) { 2777 Flags.setVectorReduction(true); 2778 LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 2779 } 2780 2781 SDValue Op1 = getValue(I.getOperand(0)); 2782 SDValue Op2 = getValue(I.getOperand(1)); 2783 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 2784 Op1, Op2, Flags); 2785 setValue(&I, BinNodeValue); 2786 } 2787 2788 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2789 SDValue Op1 = getValue(I.getOperand(0)); 2790 SDValue Op2 = getValue(I.getOperand(1)); 2791 2792 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2793 Op2.getValueType(), DAG.getDataLayout()); 2794 2795 // Coerce the shift amount to the right type if we can. 2796 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2797 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2798 unsigned Op2Size = Op2.getValueSizeInBits(); 2799 SDLoc DL = getCurSDLoc(); 2800 2801 // If the operand is smaller than the shift count type, promote it. 2802 if (ShiftSize > Op2Size) 2803 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2804 2805 // If the operand is larger than the shift count type but the shift 2806 // count type has enough bits to represent any shift value, truncate 2807 // it now. This is a common case and it exposes the truncate to 2808 // optimization early. 2809 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 2810 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2811 // Otherwise we'll need to temporarily settle for some other convenient 2812 // type. Type legalization will make adjustments once the shiftee is split. 2813 else 2814 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2815 } 2816 2817 bool nuw = false; 2818 bool nsw = false; 2819 bool exact = false; 2820 2821 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2822 2823 if (const OverflowingBinaryOperator *OFBinOp = 2824 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2825 nuw = OFBinOp->hasNoUnsignedWrap(); 2826 nsw = OFBinOp->hasNoSignedWrap(); 2827 } 2828 if (const PossiblyExactOperator *ExactOp = 2829 dyn_cast<const PossiblyExactOperator>(&I)) 2830 exact = ExactOp->isExact(); 2831 } 2832 SDNodeFlags Flags; 2833 Flags.setExact(exact); 2834 Flags.setNoSignedWrap(nsw); 2835 Flags.setNoUnsignedWrap(nuw); 2836 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2837 Flags); 2838 setValue(&I, Res); 2839 } 2840 2841 void SelectionDAGBuilder::visitSDiv(const User &I) { 2842 SDValue Op1 = getValue(I.getOperand(0)); 2843 SDValue Op2 = getValue(I.getOperand(1)); 2844 2845 SDNodeFlags Flags; 2846 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2847 cast<PossiblyExactOperator>(&I)->isExact()); 2848 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2849 Op2, Flags)); 2850 } 2851 2852 void SelectionDAGBuilder::visitICmp(const User &I) { 2853 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2854 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2855 predicate = IC->getPredicate(); 2856 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2857 predicate = ICmpInst::Predicate(IC->getPredicate()); 2858 SDValue Op1 = getValue(I.getOperand(0)); 2859 SDValue Op2 = getValue(I.getOperand(1)); 2860 ISD::CondCode Opcode = getICmpCondCode(predicate); 2861 2862 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2863 I.getType()); 2864 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2865 } 2866 2867 void SelectionDAGBuilder::visitFCmp(const User &I) { 2868 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2869 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2870 predicate = FC->getPredicate(); 2871 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2872 predicate = FCmpInst::Predicate(FC->getPredicate()); 2873 SDValue Op1 = getValue(I.getOperand(0)); 2874 SDValue Op2 = getValue(I.getOperand(1)); 2875 2876 ISD::CondCode Condition = getFCmpCondCode(predicate); 2877 auto *FPMO = dyn_cast<FPMathOperator>(&I); 2878 if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath) 2879 Condition = getFCmpCodeWithoutNaN(Condition); 2880 2881 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2882 I.getType()); 2883 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2884 } 2885 2886 // Check if the condition of the select has one use or two users that are both 2887 // selects with the same condition. 2888 static bool hasOnlySelectUsers(const Value *Cond) { 2889 return llvm::all_of(Cond->users(), [](const Value *V) { 2890 return isa<SelectInst>(V); 2891 }); 2892 } 2893 2894 void SelectionDAGBuilder::visitSelect(const User &I) { 2895 SmallVector<EVT, 4> ValueVTs; 2896 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2897 ValueVTs); 2898 unsigned NumValues = ValueVTs.size(); 2899 if (NumValues == 0) return; 2900 2901 SmallVector<SDValue, 4> Values(NumValues); 2902 SDValue Cond = getValue(I.getOperand(0)); 2903 SDValue LHSVal = getValue(I.getOperand(1)); 2904 SDValue RHSVal = getValue(I.getOperand(2)); 2905 auto BaseOps = {Cond}; 2906 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2907 ISD::VSELECT : ISD::SELECT; 2908 2909 // Min/max matching is only viable if all output VTs are the same. 2910 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2911 EVT VT = ValueVTs[0]; 2912 LLVMContext &Ctx = *DAG.getContext(); 2913 auto &TLI = DAG.getTargetLoweringInfo(); 2914 2915 // We care about the legality of the operation after it has been type 2916 // legalized. 2917 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 2918 VT != TLI.getTypeToTransformTo(Ctx, VT)) 2919 VT = TLI.getTypeToTransformTo(Ctx, VT); 2920 2921 // If the vselect is legal, assume we want to leave this as a vector setcc + 2922 // vselect. Otherwise, if this is going to be scalarized, we want to see if 2923 // min/max is legal on the scalar type. 2924 bool UseScalarMinMax = VT.isVector() && 2925 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 2926 2927 Value *LHS, *RHS; 2928 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2929 ISD::NodeType Opc = ISD::DELETED_NODE; 2930 switch (SPR.Flavor) { 2931 case SPF_UMAX: Opc = ISD::UMAX; break; 2932 case SPF_UMIN: Opc = ISD::UMIN; break; 2933 case SPF_SMAX: Opc = ISD::SMAX; break; 2934 case SPF_SMIN: Opc = ISD::SMIN; break; 2935 case SPF_FMINNUM: 2936 switch (SPR.NaNBehavior) { 2937 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2938 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2939 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2940 case SPNB_RETURNS_ANY: { 2941 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 2942 Opc = ISD::FMINNUM; 2943 else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)) 2944 Opc = ISD::FMINNAN; 2945 else if (UseScalarMinMax) 2946 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 2947 ISD::FMINNUM : ISD::FMINNAN; 2948 break; 2949 } 2950 } 2951 break; 2952 case SPF_FMAXNUM: 2953 switch (SPR.NaNBehavior) { 2954 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2955 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2956 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2957 case SPNB_RETURNS_ANY: 2958 2959 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 2960 Opc = ISD::FMAXNUM; 2961 else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)) 2962 Opc = ISD::FMAXNAN; 2963 else if (UseScalarMinMax) 2964 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 2965 ISD::FMAXNUM : ISD::FMAXNAN; 2966 break; 2967 } 2968 break; 2969 default: break; 2970 } 2971 2972 if (Opc != ISD::DELETED_NODE && 2973 (TLI.isOperationLegalOrCustom(Opc, VT) || 2974 (UseScalarMinMax && 2975 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 2976 // If the underlying comparison instruction is used by any other 2977 // instruction, the consumed instructions won't be destroyed, so it is 2978 // not profitable to convert to a min/max. 2979 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 2980 OpCode = Opc; 2981 LHSVal = getValue(LHS); 2982 RHSVal = getValue(RHS); 2983 BaseOps = {}; 2984 } 2985 } 2986 2987 for (unsigned i = 0; i != NumValues; ++i) { 2988 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2989 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2990 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2991 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2992 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2993 Ops); 2994 } 2995 2996 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2997 DAG.getVTList(ValueVTs), Values)); 2998 } 2999 3000 void SelectionDAGBuilder::visitTrunc(const User &I) { 3001 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3002 SDValue N = getValue(I.getOperand(0)); 3003 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3004 I.getType()); 3005 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3006 } 3007 3008 void SelectionDAGBuilder::visitZExt(const User &I) { 3009 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3010 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3011 SDValue N = getValue(I.getOperand(0)); 3012 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3013 I.getType()); 3014 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3015 } 3016 3017 void SelectionDAGBuilder::visitSExt(const User &I) { 3018 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3019 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3020 SDValue N = getValue(I.getOperand(0)); 3021 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3022 I.getType()); 3023 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3024 } 3025 3026 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3027 // FPTrunc is never a no-op cast, no need to check 3028 SDValue N = getValue(I.getOperand(0)); 3029 SDLoc dl = getCurSDLoc(); 3030 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3031 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3032 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3033 DAG.getTargetConstant( 3034 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3035 } 3036 3037 void SelectionDAGBuilder::visitFPExt(const User &I) { 3038 // FPExt is never a no-op cast, no need to check 3039 SDValue N = getValue(I.getOperand(0)); 3040 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3041 I.getType()); 3042 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3043 } 3044 3045 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3046 // FPToUI is never a no-op cast, no need to check 3047 SDValue N = getValue(I.getOperand(0)); 3048 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3049 I.getType()); 3050 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3051 } 3052 3053 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3054 // FPToSI is never a no-op cast, no need to check 3055 SDValue N = getValue(I.getOperand(0)); 3056 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3057 I.getType()); 3058 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3059 } 3060 3061 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3062 // UIToFP is never a no-op cast, no need to check 3063 SDValue N = getValue(I.getOperand(0)); 3064 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3065 I.getType()); 3066 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3067 } 3068 3069 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3070 // SIToFP is never a no-op cast, no need to check 3071 SDValue N = getValue(I.getOperand(0)); 3072 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3073 I.getType()); 3074 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3075 } 3076 3077 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3078 // What to do depends on the size of the integer and the size of the pointer. 3079 // We can either truncate, zero extend, or no-op, accordingly. 3080 SDValue N = getValue(I.getOperand(0)); 3081 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3082 I.getType()); 3083 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3084 } 3085 3086 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3087 // What to do depends on the size of the integer and the size of the pointer. 3088 // We can either truncate, zero extend, or no-op, accordingly. 3089 SDValue N = getValue(I.getOperand(0)); 3090 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3091 I.getType()); 3092 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3093 } 3094 3095 void SelectionDAGBuilder::visitBitCast(const User &I) { 3096 SDValue N = getValue(I.getOperand(0)); 3097 SDLoc dl = getCurSDLoc(); 3098 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3099 I.getType()); 3100 3101 // BitCast assures us that source and destination are the same size so this is 3102 // either a BITCAST or a no-op. 3103 if (DestVT != N.getValueType()) 3104 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3105 DestVT, N)); // convert types. 3106 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3107 // might fold any kind of constant expression to an integer constant and that 3108 // is not what we are looking for. Only recognize a bitcast of a genuine 3109 // constant integer as an opaque constant. 3110 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3111 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3112 /*isOpaque*/true)); 3113 else 3114 setValue(&I, N); // noop cast. 3115 } 3116 3117 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3118 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3119 const Value *SV = I.getOperand(0); 3120 SDValue N = getValue(SV); 3121 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3122 3123 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3124 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3125 3126 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3127 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3128 3129 setValue(&I, N); 3130 } 3131 3132 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3133 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3134 SDValue InVec = getValue(I.getOperand(0)); 3135 SDValue InVal = getValue(I.getOperand(1)); 3136 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3137 TLI.getVectorIdxTy(DAG.getDataLayout())); 3138 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3139 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3140 InVec, InVal, InIdx)); 3141 } 3142 3143 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3144 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3145 SDValue InVec = getValue(I.getOperand(0)); 3146 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3147 TLI.getVectorIdxTy(DAG.getDataLayout())); 3148 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3149 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3150 InVec, InIdx)); 3151 } 3152 3153 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3154 SDValue Src1 = getValue(I.getOperand(0)); 3155 SDValue Src2 = getValue(I.getOperand(1)); 3156 SDLoc DL = getCurSDLoc(); 3157 3158 SmallVector<int, 8> Mask; 3159 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3160 unsigned MaskNumElts = Mask.size(); 3161 3162 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3163 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3164 EVT SrcVT = Src1.getValueType(); 3165 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3166 3167 if (SrcNumElts == MaskNumElts) { 3168 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3169 return; 3170 } 3171 3172 // Normalize the shuffle vector since mask and vector length don't match. 3173 if (SrcNumElts < MaskNumElts) { 3174 // Mask is longer than the source vectors. We can use concatenate vector to 3175 // make the mask and vectors lengths match. 3176 3177 if (MaskNumElts % SrcNumElts == 0) { 3178 // Mask length is a multiple of the source vector length. 3179 // Check if the shuffle is some kind of concatenation of the input 3180 // vectors. 3181 unsigned NumConcat = MaskNumElts / SrcNumElts; 3182 bool IsConcat = true; 3183 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3184 for (unsigned i = 0; i != MaskNumElts; ++i) { 3185 int Idx = Mask[i]; 3186 if (Idx < 0) 3187 continue; 3188 // Ensure the indices in each SrcVT sized piece are sequential and that 3189 // the same source is used for the whole piece. 3190 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3191 (ConcatSrcs[i / SrcNumElts] >= 0 && 3192 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3193 IsConcat = false; 3194 break; 3195 } 3196 // Remember which source this index came from. 3197 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3198 } 3199 3200 // The shuffle is concatenating multiple vectors together. Just emit 3201 // a CONCAT_VECTORS operation. 3202 if (IsConcat) { 3203 SmallVector<SDValue, 8> ConcatOps; 3204 for (auto Src : ConcatSrcs) { 3205 if (Src < 0) 3206 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3207 else if (Src == 0) 3208 ConcatOps.push_back(Src1); 3209 else 3210 ConcatOps.push_back(Src2); 3211 } 3212 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3213 return; 3214 } 3215 } 3216 3217 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3218 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3219 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3220 PaddedMaskNumElts); 3221 3222 // Pad both vectors with undefs to make them the same length as the mask. 3223 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3224 3225 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3226 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3227 MOps1[0] = Src1; 3228 MOps2[0] = Src2; 3229 3230 Src1 = Src1.isUndef() 3231 ? DAG.getUNDEF(PaddedVT) 3232 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3233 Src2 = Src2.isUndef() 3234 ? DAG.getUNDEF(PaddedVT) 3235 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3236 3237 // Readjust mask for new input vector length. 3238 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3239 for (unsigned i = 0; i != MaskNumElts; ++i) { 3240 int Idx = Mask[i]; 3241 if (Idx >= (int)SrcNumElts) 3242 Idx -= SrcNumElts - PaddedMaskNumElts; 3243 MappedOps[i] = Idx; 3244 } 3245 3246 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3247 3248 // If the concatenated vector was padded, extract a subvector with the 3249 // correct number of elements. 3250 if (MaskNumElts != PaddedMaskNumElts) 3251 Result = DAG.getNode( 3252 ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3253 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3254 3255 setValue(&I, Result); 3256 return; 3257 } 3258 3259 if (SrcNumElts > MaskNumElts) { 3260 // Analyze the access pattern of the vector to see if we can extract 3261 // two subvectors and do the shuffle. 3262 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3263 bool CanExtract = true; 3264 for (int Idx : Mask) { 3265 unsigned Input = 0; 3266 if (Idx < 0) 3267 continue; 3268 3269 if (Idx >= (int)SrcNumElts) { 3270 Input = 1; 3271 Idx -= SrcNumElts; 3272 } 3273 3274 // If all the indices come from the same MaskNumElts sized portion of 3275 // the sources we can use extract. Also make sure the extract wouldn't 3276 // extract past the end of the source. 3277 int NewStartIdx = alignDown(Idx, MaskNumElts); 3278 if (NewStartIdx + MaskNumElts > SrcNumElts || 3279 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3280 CanExtract = false; 3281 // Make sure we always update StartIdx as we use it to track if all 3282 // elements are undef. 3283 StartIdx[Input] = NewStartIdx; 3284 } 3285 3286 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3287 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3288 return; 3289 } 3290 if (CanExtract) { 3291 // Extract appropriate subvector and generate a vector shuffle 3292 for (unsigned Input = 0; Input < 2; ++Input) { 3293 SDValue &Src = Input == 0 ? Src1 : Src2; 3294 if (StartIdx[Input] < 0) 3295 Src = DAG.getUNDEF(VT); 3296 else { 3297 Src = DAG.getNode( 3298 ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3299 DAG.getConstant(StartIdx[Input], DL, 3300 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3301 } 3302 } 3303 3304 // Calculate new mask. 3305 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3306 for (int &Idx : MappedOps) { 3307 if (Idx >= (int)SrcNumElts) 3308 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3309 else if (Idx >= 0) 3310 Idx -= StartIdx[0]; 3311 } 3312 3313 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3314 return; 3315 } 3316 } 3317 3318 // We can't use either concat vectors or extract subvectors so fall back to 3319 // replacing the shuffle with extract and build vector. 3320 // to insert and build vector. 3321 EVT EltVT = VT.getVectorElementType(); 3322 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3323 SmallVector<SDValue,8> Ops; 3324 for (int Idx : Mask) { 3325 SDValue Res; 3326 3327 if (Idx < 0) { 3328 Res = DAG.getUNDEF(EltVT); 3329 } else { 3330 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3331 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3332 3333 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3334 EltVT, Src, DAG.getConstant(Idx, DL, IdxVT)); 3335 } 3336 3337 Ops.push_back(Res); 3338 } 3339 3340 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3341 } 3342 3343 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3344 ArrayRef<unsigned> Indices; 3345 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3346 Indices = IV->getIndices(); 3347 else 3348 Indices = cast<ConstantExpr>(&I)->getIndices(); 3349 3350 const Value *Op0 = I.getOperand(0); 3351 const Value *Op1 = I.getOperand(1); 3352 Type *AggTy = I.getType(); 3353 Type *ValTy = Op1->getType(); 3354 bool IntoUndef = isa<UndefValue>(Op0); 3355 bool FromUndef = isa<UndefValue>(Op1); 3356 3357 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3358 3359 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3360 SmallVector<EVT, 4> AggValueVTs; 3361 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3362 SmallVector<EVT, 4> ValValueVTs; 3363 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3364 3365 unsigned NumAggValues = AggValueVTs.size(); 3366 unsigned NumValValues = ValValueVTs.size(); 3367 SmallVector<SDValue, 4> Values(NumAggValues); 3368 3369 // Ignore an insertvalue that produces an empty object 3370 if (!NumAggValues) { 3371 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3372 return; 3373 } 3374 3375 SDValue Agg = getValue(Op0); 3376 unsigned i = 0; 3377 // Copy the beginning value(s) from the original aggregate. 3378 for (; i != LinearIndex; ++i) 3379 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3380 SDValue(Agg.getNode(), Agg.getResNo() + i); 3381 // Copy values from the inserted value(s). 3382 if (NumValValues) { 3383 SDValue Val = getValue(Op1); 3384 for (; i != LinearIndex + NumValValues; ++i) 3385 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3386 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3387 } 3388 // Copy remaining value(s) from the original aggregate. 3389 for (; i != NumAggValues; ++i) 3390 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3391 SDValue(Agg.getNode(), Agg.getResNo() + i); 3392 3393 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3394 DAG.getVTList(AggValueVTs), Values)); 3395 } 3396 3397 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3398 ArrayRef<unsigned> Indices; 3399 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3400 Indices = EV->getIndices(); 3401 else 3402 Indices = cast<ConstantExpr>(&I)->getIndices(); 3403 3404 const Value *Op0 = I.getOperand(0); 3405 Type *AggTy = Op0->getType(); 3406 Type *ValTy = I.getType(); 3407 bool OutOfUndef = isa<UndefValue>(Op0); 3408 3409 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3410 3411 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3412 SmallVector<EVT, 4> ValValueVTs; 3413 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3414 3415 unsigned NumValValues = ValValueVTs.size(); 3416 3417 // Ignore a extractvalue that produces an empty object 3418 if (!NumValValues) { 3419 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3420 return; 3421 } 3422 3423 SmallVector<SDValue, 4> Values(NumValValues); 3424 3425 SDValue Agg = getValue(Op0); 3426 // Copy out the selected value(s). 3427 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3428 Values[i - LinearIndex] = 3429 OutOfUndef ? 3430 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3431 SDValue(Agg.getNode(), Agg.getResNo() + i); 3432 3433 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3434 DAG.getVTList(ValValueVTs), Values)); 3435 } 3436 3437 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3438 Value *Op0 = I.getOperand(0); 3439 // Note that the pointer operand may be a vector of pointers. Take the scalar 3440 // element which holds a pointer. 3441 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3442 SDValue N = getValue(Op0); 3443 SDLoc dl = getCurSDLoc(); 3444 3445 // Normalize Vector GEP - all scalar operands should be converted to the 3446 // splat vector. 3447 unsigned VectorWidth = I.getType()->isVectorTy() ? 3448 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 3449 3450 if (VectorWidth && !N.getValueType().isVector()) { 3451 LLVMContext &Context = *DAG.getContext(); 3452 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); 3453 N = DAG.getSplatBuildVector(VT, dl, N); 3454 } 3455 3456 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3457 GTI != E; ++GTI) { 3458 const Value *Idx = GTI.getOperand(); 3459 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3460 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3461 if (Field) { 3462 // N = N + Offset 3463 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3464 3465 // In an inbounds GEP with an offset that is nonnegative even when 3466 // interpreted as signed, assume there is no unsigned overflow. 3467 SDNodeFlags Flags; 3468 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3469 Flags.setNoUnsignedWrap(true); 3470 3471 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3472 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3473 } 3474 } else { 3475 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3476 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3477 APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3478 3479 // If this is a scalar constant or a splat vector of constants, 3480 // handle it quickly. 3481 const auto *CI = dyn_cast<ConstantInt>(Idx); 3482 if (!CI && isa<ConstantDataVector>(Idx) && 3483 cast<ConstantDataVector>(Idx)->getSplatValue()) 3484 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3485 3486 if (CI) { 3487 if (CI->isZero()) 3488 continue; 3489 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize); 3490 LLVMContext &Context = *DAG.getContext(); 3491 SDValue OffsVal = VectorWidth ? 3492 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) : 3493 DAG.getConstant(Offs, dl, IdxTy); 3494 3495 // In an inbouds GEP with an offset that is nonnegative even when 3496 // interpreted as signed, assume there is no unsigned overflow. 3497 SDNodeFlags Flags; 3498 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3499 Flags.setNoUnsignedWrap(true); 3500 3501 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3502 continue; 3503 } 3504 3505 // N = N + Idx * ElementSize; 3506 SDValue IdxN = getValue(Idx); 3507 3508 if (!IdxN.getValueType().isVector() && VectorWidth) { 3509 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth); 3510 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3511 } 3512 3513 // If the index is smaller or larger than intptr_t, truncate or extend 3514 // it. 3515 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3516 3517 // If this is a multiply by a power of two, turn it into a shl 3518 // immediately. This is a very common case. 3519 if (ElementSize != 1) { 3520 if (ElementSize.isPowerOf2()) { 3521 unsigned Amt = ElementSize.logBase2(); 3522 IdxN = DAG.getNode(ISD::SHL, dl, 3523 N.getValueType(), IdxN, 3524 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3525 } else { 3526 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3527 IdxN = DAG.getNode(ISD::MUL, dl, 3528 N.getValueType(), IdxN, Scale); 3529 } 3530 } 3531 3532 N = DAG.getNode(ISD::ADD, dl, 3533 N.getValueType(), N, IdxN); 3534 } 3535 } 3536 3537 setValue(&I, N); 3538 } 3539 3540 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3541 // If this is a fixed sized alloca in the entry block of the function, 3542 // allocate it statically on the stack. 3543 if (FuncInfo.StaticAllocaMap.count(&I)) 3544 return; // getValue will auto-populate this. 3545 3546 SDLoc dl = getCurSDLoc(); 3547 Type *Ty = I.getAllocatedType(); 3548 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3549 auto &DL = DAG.getDataLayout(); 3550 uint64_t TySize = DL.getTypeAllocSize(Ty); 3551 unsigned Align = 3552 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3553 3554 SDValue AllocSize = getValue(I.getArraySize()); 3555 3556 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3557 if (AllocSize.getValueType() != IntPtr) 3558 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3559 3560 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3561 AllocSize, 3562 DAG.getConstant(TySize, dl, IntPtr)); 3563 3564 // Handle alignment. If the requested alignment is less than or equal to 3565 // the stack alignment, ignore it. If the size is greater than or equal to 3566 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3567 unsigned StackAlign = 3568 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3569 if (Align <= StackAlign) 3570 Align = 0; 3571 3572 // Round the size of the allocation up to the stack alignment size 3573 // by add SA-1 to the size. This doesn't overflow because we're computing 3574 // an address inside an alloca. 3575 SDNodeFlags Flags; 3576 Flags.setNoUnsignedWrap(true); 3577 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 3578 DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags); 3579 3580 // Mask out the low bits for alignment purposes. 3581 AllocSize = 3582 DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 3583 DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr)); 3584 3585 SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)}; 3586 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3587 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3588 setValue(&I, DSA); 3589 DAG.setRoot(DSA.getValue(1)); 3590 3591 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3592 } 3593 3594 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3595 if (I.isAtomic()) 3596 return visitAtomicLoad(I); 3597 3598 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3599 const Value *SV = I.getOperand(0); 3600 if (TLI.supportSwiftError()) { 3601 // Swifterror values can come from either a function parameter with 3602 // swifterror attribute or an alloca with swifterror attribute. 3603 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3604 if (Arg->hasSwiftErrorAttr()) 3605 return visitLoadFromSwiftError(I); 3606 } 3607 3608 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3609 if (Alloca->isSwiftError()) 3610 return visitLoadFromSwiftError(I); 3611 } 3612 } 3613 3614 SDValue Ptr = getValue(SV); 3615 3616 Type *Ty = I.getType(); 3617 3618 bool isVolatile = I.isVolatile(); 3619 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3620 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 3621 bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout()); 3622 unsigned Alignment = I.getAlignment(); 3623 3624 AAMDNodes AAInfo; 3625 I.getAAMetadata(AAInfo); 3626 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3627 3628 SmallVector<EVT, 4> ValueVTs; 3629 SmallVector<uint64_t, 4> Offsets; 3630 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3631 unsigned NumValues = ValueVTs.size(); 3632 if (NumValues == 0) 3633 return; 3634 3635 SDValue Root; 3636 bool ConstantMemory = false; 3637 if (isVolatile || NumValues > MaxParallelChains) 3638 // Serialize volatile loads with other side effects. 3639 Root = getRoot(); 3640 else if (AA && AA->pointsToConstantMemory(MemoryLocation( 3641 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3642 // Do not serialize (non-volatile) loads of constant memory with anything. 3643 Root = DAG.getEntryNode(); 3644 ConstantMemory = true; 3645 } else { 3646 // Do not serialize non-volatile loads against each other. 3647 Root = DAG.getRoot(); 3648 } 3649 3650 SDLoc dl = getCurSDLoc(); 3651 3652 if (isVolatile) 3653 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3654 3655 // An aggregate load cannot wrap around the address space, so offsets to its 3656 // parts don't wrap either. 3657 SDNodeFlags Flags; 3658 Flags.setNoUnsignedWrap(true); 3659 3660 SmallVector<SDValue, 4> Values(NumValues); 3661 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3662 EVT PtrVT = Ptr.getValueType(); 3663 unsigned ChainI = 0; 3664 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3665 // Serializing loads here may result in excessive register pressure, and 3666 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3667 // could recover a bit by hoisting nodes upward in the chain by recognizing 3668 // they are side-effect free or do not alias. The optimizer should really 3669 // avoid this case by converting large object/array copies to llvm.memcpy 3670 // (MaxParallelChains should always remain as failsafe). 3671 if (ChainI == MaxParallelChains) { 3672 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3673 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3674 makeArrayRef(Chains.data(), ChainI)); 3675 Root = Chain; 3676 ChainI = 0; 3677 } 3678 SDValue A = DAG.getNode(ISD::ADD, dl, 3679 PtrVT, Ptr, 3680 DAG.getConstant(Offsets[i], dl, PtrVT), 3681 Flags); 3682 auto MMOFlags = MachineMemOperand::MONone; 3683 if (isVolatile) 3684 MMOFlags |= MachineMemOperand::MOVolatile; 3685 if (isNonTemporal) 3686 MMOFlags |= MachineMemOperand::MONonTemporal; 3687 if (isInvariant) 3688 MMOFlags |= MachineMemOperand::MOInvariant; 3689 if (isDereferenceable) 3690 MMOFlags |= MachineMemOperand::MODereferenceable; 3691 MMOFlags |= TLI.getMMOFlags(I); 3692 3693 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A, 3694 MachinePointerInfo(SV, Offsets[i]), Alignment, 3695 MMOFlags, AAInfo, Ranges); 3696 3697 Values[i] = L; 3698 Chains[ChainI] = L.getValue(1); 3699 } 3700 3701 if (!ConstantMemory) { 3702 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3703 makeArrayRef(Chains.data(), ChainI)); 3704 if (isVolatile) 3705 DAG.setRoot(Chain); 3706 else 3707 PendingLoads.push_back(Chain); 3708 } 3709 3710 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3711 DAG.getVTList(ValueVTs), Values)); 3712 } 3713 3714 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 3715 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 3716 "call visitStoreToSwiftError when backend supports swifterror"); 3717 3718 SmallVector<EVT, 4> ValueVTs; 3719 SmallVector<uint64_t, 4> Offsets; 3720 const Value *SrcV = I.getOperand(0); 3721 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3722 SrcV->getType(), ValueVTs, &Offsets); 3723 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3724 "expect a single EVT for swifterror"); 3725 3726 SDValue Src = getValue(SrcV); 3727 // Create a virtual register, then update the virtual register. 3728 unsigned VReg; bool CreatedVReg; 3729 std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I); 3730 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 3731 // Chain can be getRoot or getControlRoot. 3732 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 3733 SDValue(Src.getNode(), Src.getResNo())); 3734 DAG.setRoot(CopyNode); 3735 if (CreatedVReg) 3736 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg); 3737 } 3738 3739 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 3740 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 3741 "call visitLoadFromSwiftError when backend supports swifterror"); 3742 3743 assert(!I.isVolatile() && 3744 I.getMetadata(LLVMContext::MD_nontemporal) == nullptr && 3745 I.getMetadata(LLVMContext::MD_invariant_load) == nullptr && 3746 "Support volatile, non temporal, invariant for load_from_swift_error"); 3747 3748 const Value *SV = I.getOperand(0); 3749 Type *Ty = I.getType(); 3750 AAMDNodes AAInfo; 3751 I.getAAMetadata(AAInfo); 3752 assert((!AA || !AA->pointsToConstantMemory(MemoryLocation( 3753 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) && 3754 "load_from_swift_error should not be constant memory"); 3755 3756 SmallVector<EVT, 4> ValueVTs; 3757 SmallVector<uint64_t, 4> Offsets; 3758 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 3759 ValueVTs, &Offsets); 3760 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3761 "expect a single EVT for swifterror"); 3762 3763 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 3764 SDValue L = DAG.getCopyFromReg( 3765 getRoot(), getCurSDLoc(), 3766 FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first, 3767 ValueVTs[0]); 3768 3769 setValue(&I, L); 3770 } 3771 3772 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3773 if (I.isAtomic()) 3774 return visitAtomicStore(I); 3775 3776 const Value *SrcV = I.getOperand(0); 3777 const Value *PtrV = I.getOperand(1); 3778 3779 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3780 if (TLI.supportSwiftError()) { 3781 // Swifterror values can come from either a function parameter with 3782 // swifterror attribute or an alloca with swifterror attribute. 3783 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 3784 if (Arg->hasSwiftErrorAttr()) 3785 return visitStoreToSwiftError(I); 3786 } 3787 3788 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 3789 if (Alloca->isSwiftError()) 3790 return visitStoreToSwiftError(I); 3791 } 3792 } 3793 3794 SmallVector<EVT, 4> ValueVTs; 3795 SmallVector<uint64_t, 4> Offsets; 3796 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3797 SrcV->getType(), ValueVTs, &Offsets); 3798 unsigned NumValues = ValueVTs.size(); 3799 if (NumValues == 0) 3800 return; 3801 3802 // Get the lowered operands. Note that we do this after 3803 // checking if NumResults is zero, because with zero results 3804 // the operands won't have values in the map. 3805 SDValue Src = getValue(SrcV); 3806 SDValue Ptr = getValue(PtrV); 3807 3808 SDValue Root = getRoot(); 3809 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3810 SDLoc dl = getCurSDLoc(); 3811 EVT PtrVT = Ptr.getValueType(); 3812 unsigned Alignment = I.getAlignment(); 3813 AAMDNodes AAInfo; 3814 I.getAAMetadata(AAInfo); 3815 3816 auto MMOFlags = MachineMemOperand::MONone; 3817 if (I.isVolatile()) 3818 MMOFlags |= MachineMemOperand::MOVolatile; 3819 if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr) 3820 MMOFlags |= MachineMemOperand::MONonTemporal; 3821 MMOFlags |= TLI.getMMOFlags(I); 3822 3823 // An aggregate load cannot wrap around the address space, so offsets to its 3824 // parts don't wrap either. 3825 SDNodeFlags Flags; 3826 Flags.setNoUnsignedWrap(true); 3827 3828 unsigned ChainI = 0; 3829 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3830 // See visitLoad comments. 3831 if (ChainI == MaxParallelChains) { 3832 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3833 makeArrayRef(Chains.data(), ChainI)); 3834 Root = Chain; 3835 ChainI = 0; 3836 } 3837 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3838 DAG.getConstant(Offsets[i], dl, PtrVT), Flags); 3839 SDValue St = DAG.getStore( 3840 Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add, 3841 MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo); 3842 Chains[ChainI] = St; 3843 } 3844 3845 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3846 makeArrayRef(Chains.data(), ChainI)); 3847 DAG.setRoot(StoreNode); 3848 } 3849 3850 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 3851 bool IsCompressing) { 3852 SDLoc sdl = getCurSDLoc(); 3853 3854 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3855 unsigned& Alignment) { 3856 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3857 Src0 = I.getArgOperand(0); 3858 Ptr = I.getArgOperand(1); 3859 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 3860 Mask = I.getArgOperand(3); 3861 }; 3862 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3863 unsigned& Alignment) { 3864 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 3865 Src0 = I.getArgOperand(0); 3866 Ptr = I.getArgOperand(1); 3867 Mask = I.getArgOperand(2); 3868 Alignment = 0; 3869 }; 3870 3871 Value *PtrOperand, *MaskOperand, *Src0Operand; 3872 unsigned Alignment; 3873 if (IsCompressing) 3874 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3875 else 3876 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3877 3878 SDValue Ptr = getValue(PtrOperand); 3879 SDValue Src0 = getValue(Src0Operand); 3880 SDValue Mask = getValue(MaskOperand); 3881 3882 EVT VT = Src0.getValueType(); 3883 if (!Alignment) 3884 Alignment = DAG.getEVTAlignment(VT); 3885 3886 AAMDNodes AAInfo; 3887 I.getAAMetadata(AAInfo); 3888 3889 MachineMemOperand *MMO = 3890 DAG.getMachineFunction(). 3891 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3892 MachineMemOperand::MOStore, VT.getStoreSize(), 3893 Alignment, AAInfo); 3894 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3895 MMO, false /* Truncating */, 3896 IsCompressing); 3897 DAG.setRoot(StoreNode); 3898 setValue(&I, StoreNode); 3899 } 3900 3901 // Get a uniform base for the Gather/Scatter intrinsic. 3902 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3903 // We try to represent it as a base pointer + vector of indices. 3904 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3905 // The first operand of the GEP may be a single pointer or a vector of pointers 3906 // Example: 3907 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3908 // or 3909 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3910 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3911 // 3912 // When the first GEP operand is a single pointer - it is the uniform base we 3913 // are looking for. If first operand of the GEP is a splat vector - we 3914 // extract the splat value and use it as a uniform base. 3915 // In all other cases the function returns 'false'. 3916 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index, 3917 SDValue &Scale, SelectionDAGBuilder* SDB) { 3918 SelectionDAG& DAG = SDB->DAG; 3919 LLVMContext &Context = *DAG.getContext(); 3920 3921 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3922 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3923 if (!GEP) 3924 return false; 3925 3926 const Value *GEPPtr = GEP->getPointerOperand(); 3927 if (!GEPPtr->getType()->isVectorTy()) 3928 Ptr = GEPPtr; 3929 else if (!(Ptr = getSplatValue(GEPPtr))) 3930 return false; 3931 3932 unsigned FinalIndex = GEP->getNumOperands() - 1; 3933 Value *IndexVal = GEP->getOperand(FinalIndex); 3934 3935 // Ensure all the other indices are 0. 3936 for (unsigned i = 1; i < FinalIndex; ++i) { 3937 auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i)); 3938 if (!C || !C->isZero()) 3939 return false; 3940 } 3941 3942 // The operands of the GEP may be defined in another basic block. 3943 // In this case we'll not find nodes for the operands. 3944 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3945 return false; 3946 3947 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3948 const DataLayout &DL = DAG.getDataLayout(); 3949 Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()), 3950 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 3951 Base = SDB->getValue(Ptr); 3952 Index = SDB->getValue(IndexVal); 3953 3954 if (!Index.getValueType().isVector()) { 3955 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3956 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3957 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 3958 } 3959 return true; 3960 } 3961 3962 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3963 SDLoc sdl = getCurSDLoc(); 3964 3965 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3966 const Value *Ptr = I.getArgOperand(1); 3967 SDValue Src0 = getValue(I.getArgOperand(0)); 3968 SDValue Mask = getValue(I.getArgOperand(3)); 3969 EVT VT = Src0.getValueType(); 3970 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3971 if (!Alignment) 3972 Alignment = DAG.getEVTAlignment(VT); 3973 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3974 3975 AAMDNodes AAInfo; 3976 I.getAAMetadata(AAInfo); 3977 3978 SDValue Base; 3979 SDValue Index; 3980 SDValue Scale; 3981 const Value *BasePtr = Ptr; 3982 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); 3983 3984 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3985 MachineMemOperand *MMO = DAG.getMachineFunction(). 3986 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3987 MachineMemOperand::MOStore, VT.getStoreSize(), 3988 Alignment, AAInfo); 3989 if (!UniformBase) { 3990 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3991 Index = getValue(Ptr); 3992 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3993 } 3994 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale }; 3995 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3996 Ops, MMO); 3997 DAG.setRoot(Scatter); 3998 setValue(&I, Scatter); 3999 } 4000 4001 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4002 SDLoc sdl = getCurSDLoc(); 4003 4004 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4005 unsigned& Alignment) { 4006 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4007 Ptr = I.getArgOperand(0); 4008 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4009 Mask = I.getArgOperand(2); 4010 Src0 = I.getArgOperand(3); 4011 }; 4012 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4013 unsigned& Alignment) { 4014 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4015 Ptr = I.getArgOperand(0); 4016 Alignment = 0; 4017 Mask = I.getArgOperand(1); 4018 Src0 = I.getArgOperand(2); 4019 }; 4020 4021 Value *PtrOperand, *MaskOperand, *Src0Operand; 4022 unsigned Alignment; 4023 if (IsExpanding) 4024 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4025 else 4026 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4027 4028 SDValue Ptr = getValue(PtrOperand); 4029 SDValue Src0 = getValue(Src0Operand); 4030 SDValue Mask = getValue(MaskOperand); 4031 4032 EVT VT = Src0.getValueType(); 4033 if (!Alignment) 4034 Alignment = DAG.getEVTAlignment(VT); 4035 4036 AAMDNodes AAInfo; 4037 I.getAAMetadata(AAInfo); 4038 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4039 4040 // Do not serialize masked loads of constant memory with anything. 4041 bool AddToChain = !AA || !AA->pointsToConstantMemory(MemoryLocation( 4042 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), AAInfo)); 4043 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4044 4045 MachineMemOperand *MMO = 4046 DAG.getMachineFunction(). 4047 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4048 MachineMemOperand::MOLoad, VT.getStoreSize(), 4049 Alignment, AAInfo, Ranges); 4050 4051 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 4052 ISD::NON_EXTLOAD, IsExpanding); 4053 if (AddToChain) { 4054 SDValue OutChain = Load.getValue(1); 4055 DAG.setRoot(OutChain); 4056 } 4057 setValue(&I, Load); 4058 } 4059 4060 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4061 SDLoc sdl = getCurSDLoc(); 4062 4063 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4064 const Value *Ptr = I.getArgOperand(0); 4065 SDValue Src0 = getValue(I.getArgOperand(3)); 4066 SDValue Mask = getValue(I.getArgOperand(2)); 4067 4068 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4069 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4070 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 4071 if (!Alignment) 4072 Alignment = DAG.getEVTAlignment(VT); 4073 4074 AAMDNodes AAInfo; 4075 I.getAAMetadata(AAInfo); 4076 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4077 4078 SDValue Root = DAG.getRoot(); 4079 SDValue Base; 4080 SDValue Index; 4081 SDValue Scale; 4082 const Value *BasePtr = Ptr; 4083 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); 4084 bool ConstantMemory = false; 4085 if (UniformBase && 4086 AA && AA->pointsToConstantMemory(MemoryLocation( 4087 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 4088 AAInfo))) { 4089 // Do not serialize (non-volatile) loads of constant memory with anything. 4090 Root = DAG.getEntryNode(); 4091 ConstantMemory = true; 4092 } 4093 4094 MachineMemOperand *MMO = 4095 DAG.getMachineFunction(). 4096 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 4097 MachineMemOperand::MOLoad, VT.getStoreSize(), 4098 Alignment, AAInfo, Ranges); 4099 4100 if (!UniformBase) { 4101 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4102 Index = getValue(Ptr); 4103 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4104 } 4105 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4106 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4107 Ops, MMO); 4108 4109 SDValue OutChain = Gather.getValue(1); 4110 if (!ConstantMemory) 4111 PendingLoads.push_back(OutChain); 4112 setValue(&I, Gather); 4113 } 4114 4115 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4116 SDLoc dl = getCurSDLoc(); 4117 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 4118 AtomicOrdering FailureOrder = I.getFailureOrdering(); 4119 SyncScope::ID SSID = I.getSyncScopeID(); 4120 4121 SDValue InChain = getRoot(); 4122 4123 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4124 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4125 SDValue L = DAG.getAtomicCmpSwap( 4126 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 4127 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 4128 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 4129 /*Alignment=*/ 0, SuccessOrder, FailureOrder, SSID); 4130 4131 SDValue OutChain = L.getValue(2); 4132 4133 setValue(&I, L); 4134 DAG.setRoot(OutChain); 4135 } 4136 4137 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4138 SDLoc dl = getCurSDLoc(); 4139 ISD::NodeType NT; 4140 switch (I.getOperation()) { 4141 default: llvm_unreachable("Unknown atomicrmw operation"); 4142 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4143 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4144 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4145 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4146 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4147 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4148 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4149 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4150 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4151 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4152 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4153 } 4154 AtomicOrdering Order = I.getOrdering(); 4155 SyncScope::ID SSID = I.getSyncScopeID(); 4156 4157 SDValue InChain = getRoot(); 4158 4159 SDValue L = 4160 DAG.getAtomic(NT, dl, 4161 getValue(I.getValOperand()).getSimpleValueType(), 4162 InChain, 4163 getValue(I.getPointerOperand()), 4164 getValue(I.getValOperand()), 4165 I.getPointerOperand(), 4166 /* Alignment=*/ 0, Order, SSID); 4167 4168 SDValue OutChain = L.getValue(1); 4169 4170 setValue(&I, L); 4171 DAG.setRoot(OutChain); 4172 } 4173 4174 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4175 SDLoc dl = getCurSDLoc(); 4176 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4177 SDValue Ops[3]; 4178 Ops[0] = getRoot(); 4179 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl, 4180 TLI.getFenceOperandTy(DAG.getDataLayout())); 4181 Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl, 4182 TLI.getFenceOperandTy(DAG.getDataLayout())); 4183 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4184 } 4185 4186 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4187 SDLoc dl = getCurSDLoc(); 4188 AtomicOrdering Order = I.getOrdering(); 4189 SyncScope::ID SSID = I.getSyncScopeID(); 4190 4191 SDValue InChain = getRoot(); 4192 4193 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4194 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4195 4196 if (!TLI.supportsUnalignedAtomics() && 4197 I.getAlignment() < VT.getStoreSize()) 4198 report_fatal_error("Cannot generate unaligned atomic load"); 4199 4200 MachineMemOperand *MMO = 4201 DAG.getMachineFunction(). 4202 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4203 MachineMemOperand::MOVolatile | 4204 MachineMemOperand::MOLoad, 4205 VT.getStoreSize(), 4206 I.getAlignment() ? I.getAlignment() : 4207 DAG.getEVTAlignment(VT), 4208 AAMDNodes(), nullptr, SSID, Order); 4209 4210 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4211 SDValue L = 4212 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 4213 getValue(I.getPointerOperand()), MMO); 4214 4215 SDValue OutChain = L.getValue(1); 4216 4217 setValue(&I, L); 4218 DAG.setRoot(OutChain); 4219 } 4220 4221 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4222 SDLoc dl = getCurSDLoc(); 4223 4224 AtomicOrdering Order = I.getOrdering(); 4225 SyncScope::ID SSID = I.getSyncScopeID(); 4226 4227 SDValue InChain = getRoot(); 4228 4229 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4230 EVT VT = 4231 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4232 4233 if (I.getAlignment() < VT.getStoreSize()) 4234 report_fatal_error("Cannot generate unaligned atomic store"); 4235 4236 SDValue OutChain = 4237 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 4238 InChain, 4239 getValue(I.getPointerOperand()), 4240 getValue(I.getValueOperand()), 4241 I.getPointerOperand(), I.getAlignment(), 4242 Order, SSID); 4243 4244 DAG.setRoot(OutChain); 4245 } 4246 4247 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4248 /// node. 4249 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4250 unsigned Intrinsic) { 4251 // Ignore the callsite's attributes. A specific call site may be marked with 4252 // readnone, but the lowering code will expect the chain based on the 4253 // definition. 4254 const Function *F = I.getCalledFunction(); 4255 bool HasChain = !F->doesNotAccessMemory(); 4256 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4257 4258 // Build the operand list. 4259 SmallVector<SDValue, 8> Ops; 4260 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4261 if (OnlyLoad) { 4262 // We don't need to serialize loads against other loads. 4263 Ops.push_back(DAG.getRoot()); 4264 } else { 4265 Ops.push_back(getRoot()); 4266 } 4267 } 4268 4269 // Info is set by getTgtMemInstrinsic 4270 TargetLowering::IntrinsicInfo Info; 4271 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4272 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4273 DAG.getMachineFunction(), 4274 Intrinsic); 4275 4276 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4277 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4278 Info.opc == ISD::INTRINSIC_W_CHAIN) 4279 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4280 TLI.getPointerTy(DAG.getDataLayout()))); 4281 4282 // Add all operands of the call to the operand list. 4283 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4284 SDValue Op = getValue(I.getArgOperand(i)); 4285 Ops.push_back(Op); 4286 } 4287 4288 SmallVector<EVT, 4> ValueVTs; 4289 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4290 4291 if (HasChain) 4292 ValueVTs.push_back(MVT::Other); 4293 4294 SDVTList VTs = DAG.getVTList(ValueVTs); 4295 4296 // Create the node. 4297 SDValue Result; 4298 if (IsTgtIntrinsic) { 4299 // This is target intrinsic that touches memory 4300 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, 4301 Ops, Info.memVT, 4302 MachinePointerInfo(Info.ptrVal, Info.offset), Info.align, 4303 Info.flags, Info.size); 4304 } else if (!HasChain) { 4305 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4306 } else if (!I.getType()->isVoidTy()) { 4307 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4308 } else { 4309 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4310 } 4311 4312 if (HasChain) { 4313 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4314 if (OnlyLoad) 4315 PendingLoads.push_back(Chain); 4316 else 4317 DAG.setRoot(Chain); 4318 } 4319 4320 if (!I.getType()->isVoidTy()) { 4321 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4322 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4323 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4324 } else 4325 Result = lowerRangeToAssertZExt(DAG, I, Result); 4326 4327 setValue(&I, Result); 4328 } 4329 } 4330 4331 /// GetSignificand - Get the significand and build it into a floating-point 4332 /// number with exponent of 1: 4333 /// 4334 /// Op = (Op & 0x007fffff) | 0x3f800000; 4335 /// 4336 /// where Op is the hexadecimal representation of floating point value. 4337 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4338 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4339 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4340 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4341 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4342 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4343 } 4344 4345 /// GetExponent - Get the exponent: 4346 /// 4347 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4348 /// 4349 /// where Op is the hexadecimal representation of floating point value. 4350 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4351 const TargetLowering &TLI, const SDLoc &dl) { 4352 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4353 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4354 SDValue t1 = DAG.getNode( 4355 ISD::SRL, dl, MVT::i32, t0, 4356 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4357 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4358 DAG.getConstant(127, dl, MVT::i32)); 4359 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4360 } 4361 4362 /// getF32Constant - Get 32-bit floating point constant. 4363 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4364 const SDLoc &dl) { 4365 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4366 MVT::f32); 4367 } 4368 4369 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4370 SelectionDAG &DAG) { 4371 // TODO: What fast-math-flags should be set on the floating-point nodes? 4372 4373 // IntegerPartOfX = ((int32_t)(t0); 4374 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4375 4376 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4377 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4378 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4379 4380 // IntegerPartOfX <<= 23; 4381 IntegerPartOfX = DAG.getNode( 4382 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4383 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4384 DAG.getDataLayout()))); 4385 4386 SDValue TwoToFractionalPartOfX; 4387 if (LimitFloatPrecision <= 6) { 4388 // For floating-point precision of 6: 4389 // 4390 // TwoToFractionalPartOfX = 4391 // 0.997535578f + 4392 // (0.735607626f + 0.252464424f * x) * x; 4393 // 4394 // error 0.0144103317, which is 6 bits 4395 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4396 getF32Constant(DAG, 0x3e814304, dl)); 4397 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4398 getF32Constant(DAG, 0x3f3c50c8, dl)); 4399 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4400 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4401 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4402 } else if (LimitFloatPrecision <= 12) { 4403 // For floating-point precision of 12: 4404 // 4405 // TwoToFractionalPartOfX = 4406 // 0.999892986f + 4407 // (0.696457318f + 4408 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4409 // 4410 // error 0.000107046256, which is 13 to 14 bits 4411 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4412 getF32Constant(DAG, 0x3da235e3, dl)); 4413 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4414 getF32Constant(DAG, 0x3e65b8f3, dl)); 4415 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4416 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4417 getF32Constant(DAG, 0x3f324b07, dl)); 4418 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4419 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4420 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4421 } else { // LimitFloatPrecision <= 18 4422 // For floating-point precision of 18: 4423 // 4424 // TwoToFractionalPartOfX = 4425 // 0.999999982f + 4426 // (0.693148872f + 4427 // (0.240227044f + 4428 // (0.554906021e-1f + 4429 // (0.961591928e-2f + 4430 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4431 // error 2.47208000*10^(-7), which is better than 18 bits 4432 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4433 getF32Constant(DAG, 0x3924b03e, dl)); 4434 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4435 getF32Constant(DAG, 0x3ab24b87, dl)); 4436 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4437 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4438 getF32Constant(DAG, 0x3c1d8c17, dl)); 4439 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4440 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4441 getF32Constant(DAG, 0x3d634a1d, dl)); 4442 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4443 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4444 getF32Constant(DAG, 0x3e75fe14, dl)); 4445 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4446 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4447 getF32Constant(DAG, 0x3f317234, dl)); 4448 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4449 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4450 getF32Constant(DAG, 0x3f800000, dl)); 4451 } 4452 4453 // Add the exponent into the result in integer domain. 4454 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4455 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4456 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4457 } 4458 4459 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4460 /// limited-precision mode. 4461 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4462 const TargetLowering &TLI) { 4463 if (Op.getValueType() == MVT::f32 && 4464 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4465 4466 // Put the exponent in the right bit position for later addition to the 4467 // final result: 4468 // 4469 // #define LOG2OFe 1.4426950f 4470 // t0 = Op * LOG2OFe 4471 4472 // TODO: What fast-math-flags should be set here? 4473 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4474 getF32Constant(DAG, 0x3fb8aa3b, dl)); 4475 return getLimitedPrecisionExp2(t0, dl, DAG); 4476 } 4477 4478 // No special expansion. 4479 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4480 } 4481 4482 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4483 /// limited-precision mode. 4484 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4485 const TargetLowering &TLI) { 4486 // TODO: What fast-math-flags should be set on the floating-point nodes? 4487 4488 if (Op.getValueType() == MVT::f32 && 4489 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4490 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4491 4492 // Scale the exponent by log(2) [0.69314718f]. 4493 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4494 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4495 getF32Constant(DAG, 0x3f317218, dl)); 4496 4497 // Get the significand and build it into a floating-point number with 4498 // exponent of 1. 4499 SDValue X = GetSignificand(DAG, Op1, dl); 4500 4501 SDValue LogOfMantissa; 4502 if (LimitFloatPrecision <= 6) { 4503 // For floating-point precision of 6: 4504 // 4505 // LogofMantissa = 4506 // -1.1609546f + 4507 // (1.4034025f - 0.23903021f * x) * x; 4508 // 4509 // error 0.0034276066, which is better than 8 bits 4510 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4511 getF32Constant(DAG, 0xbe74c456, dl)); 4512 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4513 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4514 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4515 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4516 getF32Constant(DAG, 0x3f949a29, dl)); 4517 } else if (LimitFloatPrecision <= 12) { 4518 // For floating-point precision of 12: 4519 // 4520 // LogOfMantissa = 4521 // -1.7417939f + 4522 // (2.8212026f + 4523 // (-1.4699568f + 4524 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4525 // 4526 // error 0.000061011436, which is 14 bits 4527 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4528 getF32Constant(DAG, 0xbd67b6d6, dl)); 4529 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4530 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4531 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4532 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4533 getF32Constant(DAG, 0x3fbc278b, dl)); 4534 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4535 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4536 getF32Constant(DAG, 0x40348e95, dl)); 4537 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4538 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4539 getF32Constant(DAG, 0x3fdef31a, dl)); 4540 } else { // LimitFloatPrecision <= 18 4541 // For floating-point precision of 18: 4542 // 4543 // LogOfMantissa = 4544 // -2.1072184f + 4545 // (4.2372794f + 4546 // (-3.7029485f + 4547 // (2.2781945f + 4548 // (-0.87823314f + 4549 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4550 // 4551 // error 0.0000023660568, which is better than 18 bits 4552 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4553 getF32Constant(DAG, 0xbc91e5ac, dl)); 4554 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4555 getF32Constant(DAG, 0x3e4350aa, dl)); 4556 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4557 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4558 getF32Constant(DAG, 0x3f60d3e3, dl)); 4559 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4560 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4561 getF32Constant(DAG, 0x4011cdf0, dl)); 4562 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4563 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4564 getF32Constant(DAG, 0x406cfd1c, dl)); 4565 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4566 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4567 getF32Constant(DAG, 0x408797cb, dl)); 4568 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4569 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4570 getF32Constant(DAG, 0x4006dcab, dl)); 4571 } 4572 4573 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4574 } 4575 4576 // No special expansion. 4577 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4578 } 4579 4580 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4581 /// limited-precision mode. 4582 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4583 const TargetLowering &TLI) { 4584 // TODO: What fast-math-flags should be set on the floating-point nodes? 4585 4586 if (Op.getValueType() == MVT::f32 && 4587 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4588 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4589 4590 // Get the exponent. 4591 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4592 4593 // Get the significand and build it into a floating-point number with 4594 // exponent of 1. 4595 SDValue X = GetSignificand(DAG, Op1, dl); 4596 4597 // Different possible minimax approximations of significand in 4598 // floating-point for various degrees of accuracy over [1,2]. 4599 SDValue Log2ofMantissa; 4600 if (LimitFloatPrecision <= 6) { 4601 // For floating-point precision of 6: 4602 // 4603 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4604 // 4605 // error 0.0049451742, which is more than 7 bits 4606 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4607 getF32Constant(DAG, 0xbeb08fe0, dl)); 4608 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4609 getF32Constant(DAG, 0x40019463, dl)); 4610 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4611 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4612 getF32Constant(DAG, 0x3fd6633d, dl)); 4613 } else if (LimitFloatPrecision <= 12) { 4614 // For floating-point precision of 12: 4615 // 4616 // Log2ofMantissa = 4617 // -2.51285454f + 4618 // (4.07009056f + 4619 // (-2.12067489f + 4620 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4621 // 4622 // error 0.0000876136000, which is better than 13 bits 4623 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4624 getF32Constant(DAG, 0xbda7262e, dl)); 4625 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4626 getF32Constant(DAG, 0x3f25280b, dl)); 4627 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4628 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4629 getF32Constant(DAG, 0x4007b923, dl)); 4630 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4631 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4632 getF32Constant(DAG, 0x40823e2f, dl)); 4633 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4634 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4635 getF32Constant(DAG, 0x4020d29c, dl)); 4636 } else { // LimitFloatPrecision <= 18 4637 // For floating-point precision of 18: 4638 // 4639 // Log2ofMantissa = 4640 // -3.0400495f + 4641 // (6.1129976f + 4642 // (-5.3420409f + 4643 // (3.2865683f + 4644 // (-1.2669343f + 4645 // (0.27515199f - 4646 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4647 // 4648 // error 0.0000018516, which is better than 18 bits 4649 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4650 getF32Constant(DAG, 0xbcd2769e, dl)); 4651 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4652 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4653 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4654 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4655 getF32Constant(DAG, 0x3fa22ae7, dl)); 4656 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4657 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4658 getF32Constant(DAG, 0x40525723, dl)); 4659 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4660 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4661 getF32Constant(DAG, 0x40aaf200, dl)); 4662 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4663 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4664 getF32Constant(DAG, 0x40c39dad, dl)); 4665 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4666 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4667 getF32Constant(DAG, 0x4042902c, dl)); 4668 } 4669 4670 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4671 } 4672 4673 // No special expansion. 4674 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4675 } 4676 4677 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4678 /// limited-precision mode. 4679 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4680 const TargetLowering &TLI) { 4681 // TODO: What fast-math-flags should be set on the floating-point nodes? 4682 4683 if (Op.getValueType() == MVT::f32 && 4684 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4685 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4686 4687 // Scale the exponent by log10(2) [0.30102999f]. 4688 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4689 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4690 getF32Constant(DAG, 0x3e9a209a, dl)); 4691 4692 // Get the significand and build it into a floating-point number with 4693 // exponent of 1. 4694 SDValue X = GetSignificand(DAG, Op1, dl); 4695 4696 SDValue Log10ofMantissa; 4697 if (LimitFloatPrecision <= 6) { 4698 // For floating-point precision of 6: 4699 // 4700 // Log10ofMantissa = 4701 // -0.50419619f + 4702 // (0.60948995f - 0.10380950f * x) * x; 4703 // 4704 // error 0.0014886165, which is 6 bits 4705 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4706 getF32Constant(DAG, 0xbdd49a13, dl)); 4707 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4708 getF32Constant(DAG, 0x3f1c0789, dl)); 4709 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4710 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4711 getF32Constant(DAG, 0x3f011300, dl)); 4712 } else if (LimitFloatPrecision <= 12) { 4713 // For floating-point precision of 12: 4714 // 4715 // Log10ofMantissa = 4716 // -0.64831180f + 4717 // (0.91751397f + 4718 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4719 // 4720 // error 0.00019228036, which is better than 12 bits 4721 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4722 getF32Constant(DAG, 0x3d431f31, dl)); 4723 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4724 getF32Constant(DAG, 0x3ea21fb2, dl)); 4725 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4726 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4727 getF32Constant(DAG, 0x3f6ae232, dl)); 4728 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4729 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4730 getF32Constant(DAG, 0x3f25f7c3, dl)); 4731 } else { // LimitFloatPrecision <= 18 4732 // For floating-point precision of 18: 4733 // 4734 // Log10ofMantissa = 4735 // -0.84299375f + 4736 // (1.5327582f + 4737 // (-1.0688956f + 4738 // (0.49102474f + 4739 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4740 // 4741 // error 0.0000037995730, which is better than 18 bits 4742 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4743 getF32Constant(DAG, 0x3c5d51ce, dl)); 4744 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4745 getF32Constant(DAG, 0x3e00685a, dl)); 4746 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4747 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4748 getF32Constant(DAG, 0x3efb6798, dl)); 4749 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4750 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4751 getF32Constant(DAG, 0x3f88d192, dl)); 4752 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4753 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4754 getF32Constant(DAG, 0x3fc4316c, dl)); 4755 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4756 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4757 getF32Constant(DAG, 0x3f57ce70, dl)); 4758 } 4759 4760 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4761 } 4762 4763 // No special expansion. 4764 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4765 } 4766 4767 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4768 /// limited-precision mode. 4769 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4770 const TargetLowering &TLI) { 4771 if (Op.getValueType() == MVT::f32 && 4772 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4773 return getLimitedPrecisionExp2(Op, dl, DAG); 4774 4775 // No special expansion. 4776 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4777 } 4778 4779 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4780 /// limited-precision mode with x == 10.0f. 4781 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 4782 SelectionDAG &DAG, const TargetLowering &TLI) { 4783 bool IsExp10 = false; 4784 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4785 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4786 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4787 APFloat Ten(10.0f); 4788 IsExp10 = LHSC->isExactlyValue(Ten); 4789 } 4790 } 4791 4792 // TODO: What fast-math-flags should be set on the FMUL node? 4793 if (IsExp10) { 4794 // Put the exponent in the right bit position for later addition to the 4795 // final result: 4796 // 4797 // #define LOG2OF10 3.3219281f 4798 // t0 = Op * LOG2OF10; 4799 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4800 getF32Constant(DAG, 0x40549a78, dl)); 4801 return getLimitedPrecisionExp2(t0, dl, DAG); 4802 } 4803 4804 // No special expansion. 4805 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4806 } 4807 4808 /// ExpandPowI - Expand a llvm.powi intrinsic. 4809 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 4810 SelectionDAG &DAG) { 4811 // If RHS is a constant, we can expand this out to a multiplication tree, 4812 // otherwise we end up lowering to a call to __powidf2 (for example). When 4813 // optimizing for size, we only want to do this if the expansion would produce 4814 // a small number of multiplies, otherwise we do the full expansion. 4815 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4816 // Get the exponent as a positive value. 4817 unsigned Val = RHSC->getSExtValue(); 4818 if ((int)Val < 0) Val = -Val; 4819 4820 // powi(x, 0) -> 1.0 4821 if (Val == 0) 4822 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4823 4824 const Function &F = DAG.getMachineFunction().getFunction(); 4825 if (!F.optForSize() || 4826 // If optimizing for size, don't insert too many multiplies. 4827 // This inserts up to 5 multiplies. 4828 countPopulation(Val) + Log2_32(Val) < 7) { 4829 // We use the simple binary decomposition method to generate the multiply 4830 // sequence. There are more optimal ways to do this (for example, 4831 // powi(x,15) generates one more multiply than it should), but this has 4832 // the benefit of being both really simple and much better than a libcall. 4833 SDValue Res; // Logically starts equal to 1.0 4834 SDValue CurSquare = LHS; 4835 // TODO: Intrinsics should have fast-math-flags that propagate to these 4836 // nodes. 4837 while (Val) { 4838 if (Val & 1) { 4839 if (Res.getNode()) 4840 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4841 else 4842 Res = CurSquare; // 1.0*CurSquare. 4843 } 4844 4845 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4846 CurSquare, CurSquare); 4847 Val >>= 1; 4848 } 4849 4850 // If the original was negative, invert the result, producing 1/(x*x*x). 4851 if (RHSC->getSExtValue() < 0) 4852 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4853 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4854 return Res; 4855 } 4856 } 4857 4858 // Otherwise, expand to a libcall. 4859 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4860 } 4861 4862 // getUnderlyingArgReg - Find underlying register used for a truncated or 4863 // bitcasted argument. 4864 static unsigned getUnderlyingArgReg(const SDValue &N) { 4865 switch (N.getOpcode()) { 4866 case ISD::CopyFromReg: 4867 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4868 case ISD::BITCAST: 4869 case ISD::AssertZext: 4870 case ISD::AssertSext: 4871 case ISD::TRUNCATE: 4872 return getUnderlyingArgReg(N.getOperand(0)); 4873 default: 4874 return 0; 4875 } 4876 } 4877 4878 /// If the DbgValueInst is a dbg_value of a function argument, create the 4879 /// corresponding DBG_VALUE machine instruction for it now. At the end of 4880 /// instruction selection, they will be inserted to the entry BB. 4881 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4882 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4883 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 4884 const Argument *Arg = dyn_cast<Argument>(V); 4885 if (!Arg) 4886 return false; 4887 4888 MachineFunction &MF = DAG.getMachineFunction(); 4889 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4890 4891 bool IsIndirect = false; 4892 Optional<MachineOperand> Op; 4893 // Some arguments' frame index is recorded during argument lowering. 4894 int FI = FuncInfo.getArgumentFrameIndex(Arg); 4895 if (FI != std::numeric_limits<int>::max()) 4896 Op = MachineOperand::CreateFI(FI); 4897 4898 if (!Op && N.getNode()) { 4899 unsigned Reg = getUnderlyingArgReg(N); 4900 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4901 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4902 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4903 if (PR) 4904 Reg = PR; 4905 } 4906 if (Reg) { 4907 Op = MachineOperand::CreateReg(Reg, false); 4908 IsIndirect = IsDbgDeclare; 4909 } 4910 } 4911 4912 if (!Op && N.getNode()) 4913 // Check if frame index is available. 4914 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4915 if (FrameIndexSDNode *FINode = 4916 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4917 Op = MachineOperand::CreateFI(FINode->getIndex()); 4918 4919 if (!Op) { 4920 // Check if ValueMap has reg number. 4921 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4922 if (VMI != FuncInfo.ValueMap.end()) { 4923 const auto &TLI = DAG.getTargetLoweringInfo(); 4924 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 4925 V->getType(), isABIRegCopy(V)); 4926 if (RFV.occupiesMultipleRegs()) { 4927 unsigned Offset = 0; 4928 for (auto RegAndSize : RFV.getRegsAndSizes()) { 4929 Op = MachineOperand::CreateReg(RegAndSize.first, false); 4930 auto FragmentExpr = DIExpression::createFragmentExpression( 4931 Expr, Offset, RegAndSize.second); 4932 if (!FragmentExpr) 4933 continue; 4934 FuncInfo.ArgDbgValues.push_back( 4935 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, 4936 Op->getReg(), Variable, *FragmentExpr)); 4937 Offset += RegAndSize.second; 4938 } 4939 return true; 4940 } 4941 Op = MachineOperand::CreateReg(VMI->second, false); 4942 IsIndirect = IsDbgDeclare; 4943 } 4944 } 4945 4946 if (!Op) 4947 return false; 4948 4949 assert(Variable->isValidLocationForIntrinsic(DL) && 4950 "Expected inlined-at fields to agree"); 4951 IsIndirect = (Op->isReg()) ? IsIndirect : true; 4952 FuncInfo.ArgDbgValues.push_back( 4953 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4954 *Op, Variable, Expr)); 4955 4956 return true; 4957 } 4958 4959 /// Return the appropriate SDDbgValue based on N. 4960 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 4961 DILocalVariable *Variable, 4962 DIExpression *Expr, 4963 const DebugLoc &dl, 4964 unsigned DbgSDNodeOrder) { 4965 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 4966 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 4967 // stack slot locations as such instead of as indirectly addressed 4968 // locations. 4969 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), dl, 4970 DbgSDNodeOrder); 4971 } 4972 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), false, dl, 4973 DbgSDNodeOrder); 4974 } 4975 4976 // VisualStudio defines setjmp as _setjmp 4977 #if defined(_MSC_VER) && defined(setjmp) && \ 4978 !defined(setjmp_undefined_for_msvc) 4979 # pragma push_macro("setjmp") 4980 # undef setjmp 4981 # define setjmp_undefined_for_msvc 4982 #endif 4983 4984 /// Lower the call to the specified intrinsic function. If we want to emit this 4985 /// as a call to a named external function, return the name. Otherwise, lower it 4986 /// and return null. 4987 const char * 4988 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4989 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4990 SDLoc sdl = getCurSDLoc(); 4991 DebugLoc dl = getCurDebugLoc(); 4992 SDValue Res; 4993 4994 switch (Intrinsic) { 4995 default: 4996 // By default, turn this into a target intrinsic node. 4997 visitTargetIntrinsic(I, Intrinsic); 4998 return nullptr; 4999 case Intrinsic::vastart: visitVAStart(I); return nullptr; 5000 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 5001 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 5002 case Intrinsic::returnaddress: 5003 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5004 TLI.getPointerTy(DAG.getDataLayout()), 5005 getValue(I.getArgOperand(0)))); 5006 return nullptr; 5007 case Intrinsic::addressofreturnaddress: 5008 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5009 TLI.getPointerTy(DAG.getDataLayout()))); 5010 return nullptr; 5011 case Intrinsic::frameaddress: 5012 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5013 TLI.getPointerTy(DAG.getDataLayout()), 5014 getValue(I.getArgOperand(0)))); 5015 return nullptr; 5016 case Intrinsic::read_register: { 5017 Value *Reg = I.getArgOperand(0); 5018 SDValue Chain = getRoot(); 5019 SDValue RegName = 5020 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5021 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5022 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5023 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5024 setValue(&I, Res); 5025 DAG.setRoot(Res.getValue(1)); 5026 return nullptr; 5027 } 5028 case Intrinsic::write_register: { 5029 Value *Reg = I.getArgOperand(0); 5030 Value *RegValue = I.getArgOperand(1); 5031 SDValue Chain = getRoot(); 5032 SDValue RegName = 5033 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5034 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5035 RegName, getValue(RegValue))); 5036 return nullptr; 5037 } 5038 case Intrinsic::setjmp: 5039 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 5040 case Intrinsic::longjmp: 5041 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 5042 case Intrinsic::memcpy: { 5043 const auto &MCI = cast<MemCpyInst>(I); 5044 SDValue Op1 = getValue(I.getArgOperand(0)); 5045 SDValue Op2 = getValue(I.getArgOperand(1)); 5046 SDValue Op3 = getValue(I.getArgOperand(2)); 5047 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5048 unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1); 5049 unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1); 5050 unsigned Align = MinAlign(DstAlign, SrcAlign); 5051 bool isVol = MCI.isVolatile(); 5052 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5053 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5054 // node. 5055 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5056 false, isTC, 5057 MachinePointerInfo(I.getArgOperand(0)), 5058 MachinePointerInfo(I.getArgOperand(1))); 5059 updateDAGForMaybeTailCall(MC); 5060 return nullptr; 5061 } 5062 case Intrinsic::memset: { 5063 const auto &MSI = cast<MemSetInst>(I); 5064 SDValue Op1 = getValue(I.getArgOperand(0)); 5065 SDValue Op2 = getValue(I.getArgOperand(1)); 5066 SDValue Op3 = getValue(I.getArgOperand(2)); 5067 // @llvm.memset defines 0 and 1 to both mean no alignment. 5068 unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1); 5069 bool isVol = MSI.isVolatile(); 5070 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5071 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5072 isTC, MachinePointerInfo(I.getArgOperand(0))); 5073 updateDAGForMaybeTailCall(MS); 5074 return nullptr; 5075 } 5076 case Intrinsic::memmove: { 5077 const auto &MMI = cast<MemMoveInst>(I); 5078 SDValue Op1 = getValue(I.getArgOperand(0)); 5079 SDValue Op2 = getValue(I.getArgOperand(1)); 5080 SDValue Op3 = getValue(I.getArgOperand(2)); 5081 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5082 unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1); 5083 unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1); 5084 unsigned Align = MinAlign(DstAlign, SrcAlign); 5085 bool isVol = MMI.isVolatile(); 5086 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5087 // FIXME: Support passing different dest/src alignments to the memmove DAG 5088 // node. 5089 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5090 isTC, MachinePointerInfo(I.getArgOperand(0)), 5091 MachinePointerInfo(I.getArgOperand(1))); 5092 updateDAGForMaybeTailCall(MM); 5093 return nullptr; 5094 } 5095 case Intrinsic::memcpy_element_unordered_atomic: { 5096 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5097 SDValue Dst = getValue(MI.getRawDest()); 5098 SDValue Src = getValue(MI.getRawSource()); 5099 SDValue Length = getValue(MI.getLength()); 5100 5101 unsigned DstAlign = MI.getDestAlignment(); 5102 unsigned SrcAlign = MI.getSourceAlignment(); 5103 Type *LengthTy = MI.getLength()->getType(); 5104 unsigned ElemSz = MI.getElementSizeInBytes(); 5105 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5106 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5107 SrcAlign, Length, LengthTy, ElemSz, isTC, 5108 MachinePointerInfo(MI.getRawDest()), 5109 MachinePointerInfo(MI.getRawSource())); 5110 updateDAGForMaybeTailCall(MC); 5111 return nullptr; 5112 } 5113 case Intrinsic::memmove_element_unordered_atomic: { 5114 auto &MI = cast<AtomicMemMoveInst>(I); 5115 SDValue Dst = getValue(MI.getRawDest()); 5116 SDValue Src = getValue(MI.getRawSource()); 5117 SDValue Length = getValue(MI.getLength()); 5118 5119 unsigned DstAlign = MI.getDestAlignment(); 5120 unsigned SrcAlign = MI.getSourceAlignment(); 5121 Type *LengthTy = MI.getLength()->getType(); 5122 unsigned ElemSz = MI.getElementSizeInBytes(); 5123 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5124 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5125 SrcAlign, Length, LengthTy, ElemSz, isTC, 5126 MachinePointerInfo(MI.getRawDest()), 5127 MachinePointerInfo(MI.getRawSource())); 5128 updateDAGForMaybeTailCall(MC); 5129 return nullptr; 5130 } 5131 case Intrinsic::memset_element_unordered_atomic: { 5132 auto &MI = cast<AtomicMemSetInst>(I); 5133 SDValue Dst = getValue(MI.getRawDest()); 5134 SDValue Val = getValue(MI.getValue()); 5135 SDValue Length = getValue(MI.getLength()); 5136 5137 unsigned DstAlign = MI.getDestAlignment(); 5138 Type *LengthTy = MI.getLength()->getType(); 5139 unsigned ElemSz = MI.getElementSizeInBytes(); 5140 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5141 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5142 LengthTy, ElemSz, isTC, 5143 MachinePointerInfo(MI.getRawDest())); 5144 updateDAGForMaybeTailCall(MC); 5145 return nullptr; 5146 } 5147 case Intrinsic::dbg_addr: 5148 case Intrinsic::dbg_declare: { 5149 const DbgInfoIntrinsic &DI = cast<DbgInfoIntrinsic>(I); 5150 DILocalVariable *Variable = DI.getVariable(); 5151 DIExpression *Expression = DI.getExpression(); 5152 dropDanglingDebugInfo(Variable, Expression); 5153 assert(Variable && "Missing variable"); 5154 5155 // Check if address has undef value. 5156 const Value *Address = DI.getVariableLocation(); 5157 if (!Address || isa<UndefValue>(Address) || 5158 (Address->use_empty() && !isa<Argument>(Address))) { 5159 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5160 return nullptr; 5161 } 5162 5163 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5164 5165 // Check if this variable can be described by a frame index, typically 5166 // either as a static alloca or a byval parameter. 5167 int FI = std::numeric_limits<int>::max(); 5168 if (const auto *AI = 5169 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5170 if (AI->isStaticAlloca()) { 5171 auto I = FuncInfo.StaticAllocaMap.find(AI); 5172 if (I != FuncInfo.StaticAllocaMap.end()) 5173 FI = I->second; 5174 } 5175 } else if (const auto *Arg = dyn_cast<Argument>( 5176 Address->stripInBoundsConstantOffsets())) { 5177 FI = FuncInfo.getArgumentFrameIndex(Arg); 5178 } 5179 5180 // llvm.dbg.addr is control dependent and always generates indirect 5181 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5182 // the MachineFunction variable table. 5183 if (FI != std::numeric_limits<int>::max()) { 5184 if (Intrinsic == Intrinsic::dbg_addr) { 5185 SDDbgValue *SDV = DAG.getFrameIndexDbgValue(Variable, Expression, 5186 FI, dl, SDNodeOrder); 5187 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 5188 } 5189 return nullptr; 5190 } 5191 5192 SDValue &N = NodeMap[Address]; 5193 if (!N.getNode() && isa<Argument>(Address)) 5194 // Check unused arguments map. 5195 N = UnusedArgNodeMap[Address]; 5196 SDDbgValue *SDV; 5197 if (N.getNode()) { 5198 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5199 Address = BCI->getOperand(0); 5200 // Parameters are handled specially. 5201 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5202 if (isParameter && FINode) { 5203 // Byval parameter. We have a frame index at this point. 5204 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, 5205 FINode->getIndex(), dl, SDNodeOrder); 5206 } else if (isa<Argument>(Address)) { 5207 // Address is an argument, so try to emit its dbg value using 5208 // virtual register info from the FuncInfo.ValueMap. 5209 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5210 return nullptr; 5211 } else { 5212 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5213 true, dl, SDNodeOrder); 5214 } 5215 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5216 } else { 5217 // If Address is an argument then try to emit its dbg value using 5218 // virtual register info from the FuncInfo.ValueMap. 5219 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5220 N)) { 5221 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5222 } 5223 } 5224 return nullptr; 5225 } 5226 case Intrinsic::dbg_label: { 5227 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 5228 DILabel *Label = DI.getLabel(); 5229 assert(Label && "Missing label"); 5230 5231 SDDbgLabel *SDV; 5232 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 5233 DAG.AddDbgLabel(SDV); 5234 return nullptr; 5235 } 5236 case Intrinsic::dbg_value: { 5237 const DbgValueInst &DI = cast<DbgValueInst>(I); 5238 assert(DI.getVariable() && "Missing variable"); 5239 5240 DILocalVariable *Variable = DI.getVariable(); 5241 DIExpression *Expression = DI.getExpression(); 5242 dropDanglingDebugInfo(Variable, Expression); 5243 const Value *V = DI.getValue(); 5244 if (!V) 5245 return nullptr; 5246 5247 SDDbgValue *SDV; 5248 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 5249 SDV = DAG.getConstantDbgValue(Variable, Expression, V, dl, SDNodeOrder); 5250 DAG.AddDbgValue(SDV, nullptr, false); 5251 return nullptr; 5252 } 5253 5254 // Do not use getValue() in here; we don't want to generate code at 5255 // this point if it hasn't been done yet. 5256 SDValue N = NodeMap[V]; 5257 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 5258 N = UnusedArgNodeMap[V]; 5259 if (N.getNode()) { 5260 if (EmitFuncArgumentDbgValue(V, Variable, Expression, dl, false, N)) 5261 return nullptr; 5262 SDV = getDbgValue(N, Variable, Expression, dl, SDNodeOrder); 5263 DAG.AddDbgValue(SDV, N.getNode(), false); 5264 return nullptr; 5265 } 5266 5267 // PHI nodes have already been selected, so we should know which VReg that 5268 // is assigns to already. 5269 if (isa<PHINode>(V)) { 5270 auto VMI = FuncInfo.ValueMap.find(V); 5271 if (VMI != FuncInfo.ValueMap.end()) { 5272 unsigned Reg = VMI->second; 5273 // The PHI node may be split up into several MI PHI nodes (in 5274 // FunctionLoweringInfo::set). 5275 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 5276 V->getType(), false); 5277 if (RFV.occupiesMultipleRegs()) { 5278 unsigned Offset = 0; 5279 unsigned BitsToDescribe = 0; 5280 if (auto VarSize = Variable->getSizeInBits()) 5281 BitsToDescribe = *VarSize; 5282 if (auto Fragment = Expression->getFragmentInfo()) 5283 BitsToDescribe = Fragment->SizeInBits; 5284 for (auto RegAndSize : RFV.getRegsAndSizes()) { 5285 unsigned RegisterSize = RegAndSize.second; 5286 // Bail out if all bits are described already. 5287 if (Offset >= BitsToDescribe) 5288 break; 5289 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 5290 ? BitsToDescribe - Offset 5291 : RegisterSize; 5292 auto FragmentExpr = DIExpression::createFragmentExpression( 5293 Expression, Offset, FragmentSize); 5294 if (!FragmentExpr) 5295 continue; 5296 SDV = DAG.getVRegDbgValue(Variable, *FragmentExpr, RegAndSize.first, 5297 false, dl, SDNodeOrder); 5298 DAG.AddDbgValue(SDV, nullptr, false); 5299 Offset += RegisterSize; 5300 } 5301 } else { 5302 SDV = DAG.getVRegDbgValue(Variable, Expression, Reg, false, dl, 5303 SDNodeOrder); 5304 DAG.AddDbgValue(SDV, nullptr, false); 5305 } 5306 return nullptr; 5307 } 5308 } 5309 5310 // TODO: When we get here we will either drop the dbg.value completely, or 5311 // we try to move it forward by letting it dangle for awhile. So we should 5312 // probably add an extra DbgValue to the DAG here, with a reference to 5313 // "noreg", to indicate that we have lost the debug location for the 5314 // variable. 5315 5316 if (!V->use_empty() ) { 5317 // Do not call getValue(V) yet, as we don't want to generate code. 5318 // Remember it for later. 5319 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 5320 DanglingDebugInfoMap[V].push_back(DDI); 5321 return nullptr; 5322 } 5323 5324 LLVM_DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 5325 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 5326 return nullptr; 5327 } 5328 5329 case Intrinsic::eh_typeid_for: { 5330 // Find the type id for the given typeinfo. 5331 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5332 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5333 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5334 setValue(&I, Res); 5335 return nullptr; 5336 } 5337 5338 case Intrinsic::eh_return_i32: 5339 case Intrinsic::eh_return_i64: 5340 DAG.getMachineFunction().setCallsEHReturn(true); 5341 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5342 MVT::Other, 5343 getControlRoot(), 5344 getValue(I.getArgOperand(0)), 5345 getValue(I.getArgOperand(1)))); 5346 return nullptr; 5347 case Intrinsic::eh_unwind_init: 5348 DAG.getMachineFunction().setCallsUnwindInit(true); 5349 return nullptr; 5350 case Intrinsic::eh_dwarf_cfa: 5351 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5352 TLI.getPointerTy(DAG.getDataLayout()), 5353 getValue(I.getArgOperand(0)))); 5354 return nullptr; 5355 case Intrinsic::eh_sjlj_callsite: { 5356 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5357 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5358 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5359 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5360 5361 MMI.setCurrentCallSite(CI->getZExtValue()); 5362 return nullptr; 5363 } 5364 case Intrinsic::eh_sjlj_functioncontext: { 5365 // Get and store the index of the function context. 5366 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5367 AllocaInst *FnCtx = 5368 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5369 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5370 MFI.setFunctionContextIndex(FI); 5371 return nullptr; 5372 } 5373 case Intrinsic::eh_sjlj_setjmp: { 5374 SDValue Ops[2]; 5375 Ops[0] = getRoot(); 5376 Ops[1] = getValue(I.getArgOperand(0)); 5377 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5378 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5379 setValue(&I, Op.getValue(0)); 5380 DAG.setRoot(Op.getValue(1)); 5381 return nullptr; 5382 } 5383 case Intrinsic::eh_sjlj_longjmp: 5384 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5385 getRoot(), getValue(I.getArgOperand(0)))); 5386 return nullptr; 5387 case Intrinsic::eh_sjlj_setup_dispatch: 5388 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 5389 getRoot())); 5390 return nullptr; 5391 case Intrinsic::masked_gather: 5392 visitMaskedGather(I); 5393 return nullptr; 5394 case Intrinsic::masked_load: 5395 visitMaskedLoad(I); 5396 return nullptr; 5397 case Intrinsic::masked_scatter: 5398 visitMaskedScatter(I); 5399 return nullptr; 5400 case Intrinsic::masked_store: 5401 visitMaskedStore(I); 5402 return nullptr; 5403 case Intrinsic::masked_expandload: 5404 visitMaskedLoad(I, true /* IsExpanding */); 5405 return nullptr; 5406 case Intrinsic::masked_compressstore: 5407 visitMaskedStore(I, true /* IsCompressing */); 5408 return nullptr; 5409 case Intrinsic::x86_mmx_pslli_w: 5410 case Intrinsic::x86_mmx_pslli_d: 5411 case Intrinsic::x86_mmx_pslli_q: 5412 case Intrinsic::x86_mmx_psrli_w: 5413 case Intrinsic::x86_mmx_psrli_d: 5414 case Intrinsic::x86_mmx_psrli_q: 5415 case Intrinsic::x86_mmx_psrai_w: 5416 case Intrinsic::x86_mmx_psrai_d: { 5417 SDValue ShAmt = getValue(I.getArgOperand(1)); 5418 if (isa<ConstantSDNode>(ShAmt)) { 5419 visitTargetIntrinsic(I, Intrinsic); 5420 return nullptr; 5421 } 5422 unsigned NewIntrinsic = 0; 5423 EVT ShAmtVT = MVT::v2i32; 5424 switch (Intrinsic) { 5425 case Intrinsic::x86_mmx_pslli_w: 5426 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5427 break; 5428 case Intrinsic::x86_mmx_pslli_d: 5429 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5430 break; 5431 case Intrinsic::x86_mmx_pslli_q: 5432 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5433 break; 5434 case Intrinsic::x86_mmx_psrli_w: 5435 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5436 break; 5437 case Intrinsic::x86_mmx_psrli_d: 5438 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5439 break; 5440 case Intrinsic::x86_mmx_psrli_q: 5441 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5442 break; 5443 case Intrinsic::x86_mmx_psrai_w: 5444 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5445 break; 5446 case Intrinsic::x86_mmx_psrai_d: 5447 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5448 break; 5449 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5450 } 5451 5452 // The vector shift intrinsics with scalars uses 32b shift amounts but 5453 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5454 // to be zero. 5455 // We must do this early because v2i32 is not a legal type. 5456 SDValue ShOps[2]; 5457 ShOps[0] = ShAmt; 5458 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 5459 ShAmt = DAG.getBuildVector(ShAmtVT, sdl, ShOps); 5460 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5461 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5462 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5463 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 5464 getValue(I.getArgOperand(0)), ShAmt); 5465 setValue(&I, Res); 5466 return nullptr; 5467 } 5468 case Intrinsic::powi: 5469 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5470 getValue(I.getArgOperand(1)), DAG)); 5471 return nullptr; 5472 case Intrinsic::log: 5473 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5474 return nullptr; 5475 case Intrinsic::log2: 5476 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5477 return nullptr; 5478 case Intrinsic::log10: 5479 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5480 return nullptr; 5481 case Intrinsic::exp: 5482 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5483 return nullptr; 5484 case Intrinsic::exp2: 5485 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5486 return nullptr; 5487 case Intrinsic::pow: 5488 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5489 getValue(I.getArgOperand(1)), DAG, TLI)); 5490 return nullptr; 5491 case Intrinsic::sqrt: 5492 case Intrinsic::fabs: 5493 case Intrinsic::sin: 5494 case Intrinsic::cos: 5495 case Intrinsic::floor: 5496 case Intrinsic::ceil: 5497 case Intrinsic::trunc: 5498 case Intrinsic::rint: 5499 case Intrinsic::nearbyint: 5500 case Intrinsic::round: 5501 case Intrinsic::canonicalize: { 5502 unsigned Opcode; 5503 switch (Intrinsic) { 5504 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5505 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5506 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5507 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5508 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5509 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5510 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5511 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5512 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5513 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5514 case Intrinsic::round: Opcode = ISD::FROUND; break; 5515 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 5516 } 5517 5518 setValue(&I, DAG.getNode(Opcode, sdl, 5519 getValue(I.getArgOperand(0)).getValueType(), 5520 getValue(I.getArgOperand(0)))); 5521 return nullptr; 5522 } 5523 case Intrinsic::minnum: { 5524 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5525 unsigned Opc = 5526 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT) 5527 ? ISD::FMINNAN 5528 : ISD::FMINNUM; 5529 setValue(&I, DAG.getNode(Opc, sdl, VT, 5530 getValue(I.getArgOperand(0)), 5531 getValue(I.getArgOperand(1)))); 5532 return nullptr; 5533 } 5534 case Intrinsic::maxnum: { 5535 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5536 unsigned Opc = 5537 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT) 5538 ? ISD::FMAXNAN 5539 : ISD::FMAXNUM; 5540 setValue(&I, DAG.getNode(Opc, sdl, VT, 5541 getValue(I.getArgOperand(0)), 5542 getValue(I.getArgOperand(1)))); 5543 return nullptr; 5544 } 5545 case Intrinsic::copysign: 5546 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5547 getValue(I.getArgOperand(0)).getValueType(), 5548 getValue(I.getArgOperand(0)), 5549 getValue(I.getArgOperand(1)))); 5550 return nullptr; 5551 case Intrinsic::fma: 5552 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5553 getValue(I.getArgOperand(0)).getValueType(), 5554 getValue(I.getArgOperand(0)), 5555 getValue(I.getArgOperand(1)), 5556 getValue(I.getArgOperand(2)))); 5557 return nullptr; 5558 case Intrinsic::experimental_constrained_fadd: 5559 case Intrinsic::experimental_constrained_fsub: 5560 case Intrinsic::experimental_constrained_fmul: 5561 case Intrinsic::experimental_constrained_fdiv: 5562 case Intrinsic::experimental_constrained_frem: 5563 case Intrinsic::experimental_constrained_fma: 5564 case Intrinsic::experimental_constrained_sqrt: 5565 case Intrinsic::experimental_constrained_pow: 5566 case Intrinsic::experimental_constrained_powi: 5567 case Intrinsic::experimental_constrained_sin: 5568 case Intrinsic::experimental_constrained_cos: 5569 case Intrinsic::experimental_constrained_exp: 5570 case Intrinsic::experimental_constrained_exp2: 5571 case Intrinsic::experimental_constrained_log: 5572 case Intrinsic::experimental_constrained_log10: 5573 case Intrinsic::experimental_constrained_log2: 5574 case Intrinsic::experimental_constrained_rint: 5575 case Intrinsic::experimental_constrained_nearbyint: 5576 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 5577 return nullptr; 5578 case Intrinsic::fmuladd: { 5579 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5580 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5581 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 5582 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5583 getValue(I.getArgOperand(0)).getValueType(), 5584 getValue(I.getArgOperand(0)), 5585 getValue(I.getArgOperand(1)), 5586 getValue(I.getArgOperand(2)))); 5587 } else { 5588 // TODO: Intrinsic calls should have fast-math-flags. 5589 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5590 getValue(I.getArgOperand(0)).getValueType(), 5591 getValue(I.getArgOperand(0)), 5592 getValue(I.getArgOperand(1))); 5593 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5594 getValue(I.getArgOperand(0)).getValueType(), 5595 Mul, 5596 getValue(I.getArgOperand(2))); 5597 setValue(&I, Add); 5598 } 5599 return nullptr; 5600 } 5601 case Intrinsic::convert_to_fp16: 5602 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5603 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5604 getValue(I.getArgOperand(0)), 5605 DAG.getTargetConstant(0, sdl, 5606 MVT::i32)))); 5607 return nullptr; 5608 case Intrinsic::convert_from_fp16: 5609 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 5610 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5611 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5612 getValue(I.getArgOperand(0))))); 5613 return nullptr; 5614 case Intrinsic::pcmarker: { 5615 SDValue Tmp = getValue(I.getArgOperand(0)); 5616 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5617 return nullptr; 5618 } 5619 case Intrinsic::readcyclecounter: { 5620 SDValue Op = getRoot(); 5621 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5622 DAG.getVTList(MVT::i64, MVT::Other), Op); 5623 setValue(&I, Res); 5624 DAG.setRoot(Res.getValue(1)); 5625 return nullptr; 5626 } 5627 case Intrinsic::bitreverse: 5628 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 5629 getValue(I.getArgOperand(0)).getValueType(), 5630 getValue(I.getArgOperand(0)))); 5631 return nullptr; 5632 case Intrinsic::bswap: 5633 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5634 getValue(I.getArgOperand(0)).getValueType(), 5635 getValue(I.getArgOperand(0)))); 5636 return nullptr; 5637 case Intrinsic::cttz: { 5638 SDValue Arg = getValue(I.getArgOperand(0)); 5639 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5640 EVT Ty = Arg.getValueType(); 5641 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5642 sdl, Ty, Arg)); 5643 return nullptr; 5644 } 5645 case Intrinsic::ctlz: { 5646 SDValue Arg = getValue(I.getArgOperand(0)); 5647 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5648 EVT Ty = Arg.getValueType(); 5649 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5650 sdl, Ty, Arg)); 5651 return nullptr; 5652 } 5653 case Intrinsic::ctpop: { 5654 SDValue Arg = getValue(I.getArgOperand(0)); 5655 EVT Ty = Arg.getValueType(); 5656 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5657 return nullptr; 5658 } 5659 case Intrinsic::stacksave: { 5660 SDValue Op = getRoot(); 5661 Res = DAG.getNode( 5662 ISD::STACKSAVE, sdl, 5663 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 5664 setValue(&I, Res); 5665 DAG.setRoot(Res.getValue(1)); 5666 return nullptr; 5667 } 5668 case Intrinsic::stackrestore: 5669 Res = getValue(I.getArgOperand(0)); 5670 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5671 return nullptr; 5672 case Intrinsic::get_dynamic_area_offset: { 5673 SDValue Op = getRoot(); 5674 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5675 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5676 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 5677 // target. 5678 if (PtrTy != ResTy) 5679 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 5680 " intrinsic!"); 5681 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 5682 Op); 5683 DAG.setRoot(Op); 5684 setValue(&I, Res); 5685 return nullptr; 5686 } 5687 case Intrinsic::stackguard: { 5688 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5689 MachineFunction &MF = DAG.getMachineFunction(); 5690 const Module &M = *MF.getFunction().getParent(); 5691 SDValue Chain = getRoot(); 5692 if (TLI.useLoadStackGuardNode()) { 5693 Res = getLoadStackGuard(DAG, sdl, Chain); 5694 } else { 5695 const Value *Global = TLI.getSDagStackGuard(M); 5696 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 5697 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 5698 MachinePointerInfo(Global, 0), Align, 5699 MachineMemOperand::MOVolatile); 5700 } 5701 if (TLI.useStackGuardXorFP()) 5702 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 5703 DAG.setRoot(Chain); 5704 setValue(&I, Res); 5705 return nullptr; 5706 } 5707 case Intrinsic::stackprotector: { 5708 // Emit code into the DAG to store the stack guard onto the stack. 5709 MachineFunction &MF = DAG.getMachineFunction(); 5710 MachineFrameInfo &MFI = MF.getFrameInfo(); 5711 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5712 SDValue Src, Chain = getRoot(); 5713 5714 if (TLI.useLoadStackGuardNode()) 5715 Src = getLoadStackGuard(DAG, sdl, Chain); 5716 else 5717 Src = getValue(I.getArgOperand(0)); // The guard's value. 5718 5719 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5720 5721 int FI = FuncInfo.StaticAllocaMap[Slot]; 5722 MFI.setStackProtectorIndex(FI); 5723 5724 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5725 5726 // Store the stack protector onto the stack. 5727 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 5728 DAG.getMachineFunction(), FI), 5729 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 5730 setValue(&I, Res); 5731 DAG.setRoot(Res); 5732 return nullptr; 5733 } 5734 case Intrinsic::objectsize: { 5735 // If we don't know by now, we're never going to know. 5736 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5737 5738 assert(CI && "Non-constant type in __builtin_object_size?"); 5739 5740 SDValue Arg = getValue(I.getCalledValue()); 5741 EVT Ty = Arg.getValueType(); 5742 5743 if (CI->isZero()) 5744 Res = DAG.getConstant(-1ULL, sdl, Ty); 5745 else 5746 Res = DAG.getConstant(0, sdl, Ty); 5747 5748 setValue(&I, Res); 5749 return nullptr; 5750 } 5751 case Intrinsic::annotation: 5752 case Intrinsic::ptr_annotation: 5753 case Intrinsic::launder_invariant_group: 5754 case Intrinsic::strip_invariant_group: 5755 // Drop the intrinsic, but forward the value 5756 setValue(&I, getValue(I.getOperand(0))); 5757 return nullptr; 5758 case Intrinsic::assume: 5759 case Intrinsic::var_annotation: 5760 case Intrinsic::sideeffect: 5761 // Discard annotate attributes, assumptions, and artificial side-effects. 5762 return nullptr; 5763 5764 case Intrinsic::codeview_annotation: { 5765 // Emit a label associated with this metadata. 5766 MachineFunction &MF = DAG.getMachineFunction(); 5767 MCSymbol *Label = 5768 MF.getMMI().getContext().createTempSymbol("annotation", true); 5769 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 5770 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 5771 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 5772 DAG.setRoot(Res); 5773 return nullptr; 5774 } 5775 5776 case Intrinsic::init_trampoline: { 5777 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5778 5779 SDValue Ops[6]; 5780 Ops[0] = getRoot(); 5781 Ops[1] = getValue(I.getArgOperand(0)); 5782 Ops[2] = getValue(I.getArgOperand(1)); 5783 Ops[3] = getValue(I.getArgOperand(2)); 5784 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5785 Ops[5] = DAG.getSrcValue(F); 5786 5787 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5788 5789 DAG.setRoot(Res); 5790 return nullptr; 5791 } 5792 case Intrinsic::adjust_trampoline: 5793 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5794 TLI.getPointerTy(DAG.getDataLayout()), 5795 getValue(I.getArgOperand(0)))); 5796 return nullptr; 5797 case Intrinsic::gcroot: { 5798 assert(DAG.getMachineFunction().getFunction().hasGC() && 5799 "only valid in functions with gc specified, enforced by Verifier"); 5800 assert(GFI && "implied by previous"); 5801 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5802 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5803 5804 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5805 GFI->addStackRoot(FI->getIndex(), TypeMap); 5806 return nullptr; 5807 } 5808 case Intrinsic::gcread: 5809 case Intrinsic::gcwrite: 5810 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5811 case Intrinsic::flt_rounds: 5812 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5813 return nullptr; 5814 5815 case Intrinsic::expect: 5816 // Just replace __builtin_expect(exp, c) with EXP. 5817 setValue(&I, getValue(I.getArgOperand(0))); 5818 return nullptr; 5819 5820 case Intrinsic::debugtrap: 5821 case Intrinsic::trap: { 5822 StringRef TrapFuncName = 5823 I.getAttributes() 5824 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 5825 .getValueAsString(); 5826 if (TrapFuncName.empty()) { 5827 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5828 ISD::TRAP : ISD::DEBUGTRAP; 5829 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5830 return nullptr; 5831 } 5832 TargetLowering::ArgListTy Args; 5833 5834 TargetLowering::CallLoweringInfo CLI(DAG); 5835 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 5836 CallingConv::C, I.getType(), 5837 DAG.getExternalSymbol(TrapFuncName.data(), 5838 TLI.getPointerTy(DAG.getDataLayout())), 5839 std::move(Args)); 5840 5841 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5842 DAG.setRoot(Result.second); 5843 return nullptr; 5844 } 5845 5846 case Intrinsic::uadd_with_overflow: 5847 case Intrinsic::sadd_with_overflow: 5848 case Intrinsic::usub_with_overflow: 5849 case Intrinsic::ssub_with_overflow: 5850 case Intrinsic::umul_with_overflow: 5851 case Intrinsic::smul_with_overflow: { 5852 ISD::NodeType Op; 5853 switch (Intrinsic) { 5854 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5855 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5856 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5857 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5858 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5859 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5860 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5861 } 5862 SDValue Op1 = getValue(I.getArgOperand(0)); 5863 SDValue Op2 = getValue(I.getArgOperand(1)); 5864 5865 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5866 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5867 return nullptr; 5868 } 5869 case Intrinsic::prefetch: { 5870 SDValue Ops[5]; 5871 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5872 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 5873 Ops[0] = DAG.getRoot(); 5874 Ops[1] = getValue(I.getArgOperand(0)); 5875 Ops[2] = getValue(I.getArgOperand(1)); 5876 Ops[3] = getValue(I.getArgOperand(2)); 5877 Ops[4] = getValue(I.getArgOperand(3)); 5878 SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5879 DAG.getVTList(MVT::Other), Ops, 5880 EVT::getIntegerVT(*Context, 8), 5881 MachinePointerInfo(I.getArgOperand(0)), 5882 0, /* align */ 5883 Flags); 5884 5885 // Chain the prefetch in parallell with any pending loads, to stay out of 5886 // the way of later optimizations. 5887 PendingLoads.push_back(Result); 5888 Result = getRoot(); 5889 DAG.setRoot(Result); 5890 return nullptr; 5891 } 5892 case Intrinsic::lifetime_start: 5893 case Intrinsic::lifetime_end: { 5894 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5895 // Stack coloring is not enabled in O0, discard region information. 5896 if (TM.getOptLevel() == CodeGenOpt::None) 5897 return nullptr; 5898 5899 SmallVector<Value *, 4> Allocas; 5900 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5901 5902 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5903 E = Allocas.end(); Object != E; ++Object) { 5904 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5905 5906 // Could not find an Alloca. 5907 if (!LifetimeObject) 5908 continue; 5909 5910 // First check that the Alloca is static, otherwise it won't have a 5911 // valid frame index. 5912 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5913 if (SI == FuncInfo.StaticAllocaMap.end()) 5914 return nullptr; 5915 5916 int FI = SI->second; 5917 5918 SDValue Ops[2]; 5919 Ops[0] = getRoot(); 5920 Ops[1] = 5921 DAG.getFrameIndex(FI, TLI.getFrameIndexTy(DAG.getDataLayout()), true); 5922 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5923 5924 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5925 DAG.setRoot(Res); 5926 } 5927 return nullptr; 5928 } 5929 case Intrinsic::invariant_start: 5930 // Discard region information. 5931 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5932 return nullptr; 5933 case Intrinsic::invariant_end: 5934 // Discard region information. 5935 return nullptr; 5936 case Intrinsic::clear_cache: 5937 return TLI.getClearCacheBuiltinName(); 5938 case Intrinsic::donothing: 5939 // ignore 5940 return nullptr; 5941 case Intrinsic::experimental_stackmap: 5942 visitStackmap(I); 5943 return nullptr; 5944 case Intrinsic::experimental_patchpoint_void: 5945 case Intrinsic::experimental_patchpoint_i64: 5946 visitPatchpoint(&I); 5947 return nullptr; 5948 case Intrinsic::experimental_gc_statepoint: 5949 LowerStatepoint(ImmutableStatepoint(&I)); 5950 return nullptr; 5951 case Intrinsic::experimental_gc_result: 5952 visitGCResult(cast<GCResultInst>(I)); 5953 return nullptr; 5954 case Intrinsic::experimental_gc_relocate: 5955 visitGCRelocate(cast<GCRelocateInst>(I)); 5956 return nullptr; 5957 case Intrinsic::instrprof_increment: 5958 llvm_unreachable("instrprof failed to lower an increment"); 5959 case Intrinsic::instrprof_value_profile: 5960 llvm_unreachable("instrprof failed to lower a value profiling call"); 5961 case Intrinsic::localescape: { 5962 MachineFunction &MF = DAG.getMachineFunction(); 5963 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5964 5965 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5966 // is the same on all targets. 5967 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5968 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5969 if (isa<ConstantPointerNull>(Arg)) 5970 continue; // Skip null pointers. They represent a hole in index space. 5971 AllocaInst *Slot = cast<AllocaInst>(Arg); 5972 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5973 "can only escape static allocas"); 5974 int FI = FuncInfo.StaticAllocaMap[Slot]; 5975 MCSymbol *FrameAllocSym = 5976 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5977 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 5978 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5979 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5980 .addSym(FrameAllocSym) 5981 .addFrameIndex(FI); 5982 } 5983 5984 return nullptr; 5985 } 5986 5987 case Intrinsic::localrecover: { 5988 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5989 MachineFunction &MF = DAG.getMachineFunction(); 5990 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5991 5992 // Get the symbol that defines the frame offset. 5993 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5994 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5995 unsigned IdxVal = 5996 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 5997 MCSymbol *FrameAllocSym = 5998 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5999 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6000 6001 // Create a MCSymbol for the label to avoid any target lowering 6002 // that would make this PC relative. 6003 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6004 SDValue OffsetVal = 6005 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6006 6007 // Add the offset to the FP. 6008 Value *FP = I.getArgOperand(1); 6009 SDValue FPVal = getValue(FP); 6010 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 6011 setValue(&I, Add); 6012 6013 return nullptr; 6014 } 6015 6016 case Intrinsic::eh_exceptionpointer: 6017 case Intrinsic::eh_exceptioncode: { 6018 // Get the exception pointer vreg, copy from it, and resize it to fit. 6019 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6020 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6021 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6022 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6023 SDValue N = 6024 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6025 if (Intrinsic == Intrinsic::eh_exceptioncode) 6026 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6027 setValue(&I, N); 6028 return nullptr; 6029 } 6030 case Intrinsic::xray_customevent: { 6031 // Here we want to make sure that the intrinsic behaves as if it has a 6032 // specific calling convention, and only for x86_64. 6033 // FIXME: Support other platforms later. 6034 const auto &Triple = DAG.getTarget().getTargetTriple(); 6035 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6036 return nullptr; 6037 6038 SDLoc DL = getCurSDLoc(); 6039 SmallVector<SDValue, 8> Ops; 6040 6041 // We want to say that we always want the arguments in registers. 6042 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6043 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6044 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6045 SDValue Chain = getRoot(); 6046 Ops.push_back(LogEntryVal); 6047 Ops.push_back(StrSizeVal); 6048 Ops.push_back(Chain); 6049 6050 // We need to enforce the calling convention for the callsite, so that 6051 // argument ordering is enforced correctly, and that register allocation can 6052 // see that some registers may be assumed clobbered and have to preserve 6053 // them across calls to the intrinsic. 6054 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6055 DL, NodeTys, Ops); 6056 SDValue patchableNode = SDValue(MN, 0); 6057 DAG.setRoot(patchableNode); 6058 setValue(&I, patchableNode); 6059 return nullptr; 6060 } 6061 case Intrinsic::xray_typedevent: { 6062 // Here we want to make sure that the intrinsic behaves as if it has a 6063 // specific calling convention, and only for x86_64. 6064 // FIXME: Support other platforms later. 6065 const auto &Triple = DAG.getTarget().getTargetTriple(); 6066 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6067 return nullptr; 6068 6069 SDLoc DL = getCurSDLoc(); 6070 SmallVector<SDValue, 8> Ops; 6071 6072 // We want to say that we always want the arguments in registers. 6073 // It's unclear to me how manipulating the selection DAG here forces callers 6074 // to provide arguments in registers instead of on the stack. 6075 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6076 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6077 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6078 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6079 SDValue Chain = getRoot(); 6080 Ops.push_back(LogTypeId); 6081 Ops.push_back(LogEntryVal); 6082 Ops.push_back(StrSizeVal); 6083 Ops.push_back(Chain); 6084 6085 // We need to enforce the calling convention for the callsite, so that 6086 // argument ordering is enforced correctly, and that register allocation can 6087 // see that some registers may be assumed clobbered and have to preserve 6088 // them across calls to the intrinsic. 6089 MachineSDNode *MN = DAG.getMachineNode( 6090 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6091 SDValue patchableNode = SDValue(MN, 0); 6092 DAG.setRoot(patchableNode); 6093 setValue(&I, patchableNode); 6094 return nullptr; 6095 } 6096 case Intrinsic::experimental_deoptimize: 6097 LowerDeoptimizeCall(&I); 6098 return nullptr; 6099 6100 case Intrinsic::experimental_vector_reduce_fadd: 6101 case Intrinsic::experimental_vector_reduce_fmul: 6102 case Intrinsic::experimental_vector_reduce_add: 6103 case Intrinsic::experimental_vector_reduce_mul: 6104 case Intrinsic::experimental_vector_reduce_and: 6105 case Intrinsic::experimental_vector_reduce_or: 6106 case Intrinsic::experimental_vector_reduce_xor: 6107 case Intrinsic::experimental_vector_reduce_smax: 6108 case Intrinsic::experimental_vector_reduce_smin: 6109 case Intrinsic::experimental_vector_reduce_umax: 6110 case Intrinsic::experimental_vector_reduce_umin: 6111 case Intrinsic::experimental_vector_reduce_fmax: 6112 case Intrinsic::experimental_vector_reduce_fmin: 6113 visitVectorReduce(I, Intrinsic); 6114 return nullptr; 6115 6116 case Intrinsic::icall_branch_funnel: { 6117 SmallVector<SDValue, 16> Ops; 6118 Ops.push_back(DAG.getRoot()); 6119 Ops.push_back(getValue(I.getArgOperand(0))); 6120 6121 int64_t Offset; 6122 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6123 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6124 if (!Base) 6125 report_fatal_error( 6126 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6127 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6128 6129 struct BranchFunnelTarget { 6130 int64_t Offset; 6131 SDValue Target; 6132 }; 6133 SmallVector<BranchFunnelTarget, 8> Targets; 6134 6135 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6136 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6137 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6138 if (ElemBase != Base) 6139 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6140 "to the same GlobalValue"); 6141 6142 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6143 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6144 if (!GA) 6145 report_fatal_error( 6146 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6147 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6148 GA->getGlobal(), getCurSDLoc(), 6149 Val.getValueType(), GA->getOffset())}); 6150 } 6151 llvm::sort(Targets.begin(), Targets.end(), 6152 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6153 return T1.Offset < T2.Offset; 6154 }); 6155 6156 for (auto &T : Targets) { 6157 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6158 Ops.push_back(T.Target); 6159 } 6160 6161 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6162 getCurSDLoc(), MVT::Other, Ops), 6163 0); 6164 DAG.setRoot(N); 6165 setValue(&I, N); 6166 HasTailCall = true; 6167 return nullptr; 6168 } 6169 6170 case Intrinsic::wasm_landingpad_index: { 6171 // TODO store landing pad index in a map, which will be used when generating 6172 // LSDA information 6173 return nullptr; 6174 } 6175 } 6176 } 6177 6178 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6179 const ConstrainedFPIntrinsic &FPI) { 6180 SDLoc sdl = getCurSDLoc(); 6181 unsigned Opcode; 6182 switch (FPI.getIntrinsicID()) { 6183 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6184 case Intrinsic::experimental_constrained_fadd: 6185 Opcode = ISD::STRICT_FADD; 6186 break; 6187 case Intrinsic::experimental_constrained_fsub: 6188 Opcode = ISD::STRICT_FSUB; 6189 break; 6190 case Intrinsic::experimental_constrained_fmul: 6191 Opcode = ISD::STRICT_FMUL; 6192 break; 6193 case Intrinsic::experimental_constrained_fdiv: 6194 Opcode = ISD::STRICT_FDIV; 6195 break; 6196 case Intrinsic::experimental_constrained_frem: 6197 Opcode = ISD::STRICT_FREM; 6198 break; 6199 case Intrinsic::experimental_constrained_fma: 6200 Opcode = ISD::STRICT_FMA; 6201 break; 6202 case Intrinsic::experimental_constrained_sqrt: 6203 Opcode = ISD::STRICT_FSQRT; 6204 break; 6205 case Intrinsic::experimental_constrained_pow: 6206 Opcode = ISD::STRICT_FPOW; 6207 break; 6208 case Intrinsic::experimental_constrained_powi: 6209 Opcode = ISD::STRICT_FPOWI; 6210 break; 6211 case Intrinsic::experimental_constrained_sin: 6212 Opcode = ISD::STRICT_FSIN; 6213 break; 6214 case Intrinsic::experimental_constrained_cos: 6215 Opcode = ISD::STRICT_FCOS; 6216 break; 6217 case Intrinsic::experimental_constrained_exp: 6218 Opcode = ISD::STRICT_FEXP; 6219 break; 6220 case Intrinsic::experimental_constrained_exp2: 6221 Opcode = ISD::STRICT_FEXP2; 6222 break; 6223 case Intrinsic::experimental_constrained_log: 6224 Opcode = ISD::STRICT_FLOG; 6225 break; 6226 case Intrinsic::experimental_constrained_log10: 6227 Opcode = ISD::STRICT_FLOG10; 6228 break; 6229 case Intrinsic::experimental_constrained_log2: 6230 Opcode = ISD::STRICT_FLOG2; 6231 break; 6232 case Intrinsic::experimental_constrained_rint: 6233 Opcode = ISD::STRICT_FRINT; 6234 break; 6235 case Intrinsic::experimental_constrained_nearbyint: 6236 Opcode = ISD::STRICT_FNEARBYINT; 6237 break; 6238 } 6239 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6240 SDValue Chain = getRoot(); 6241 SmallVector<EVT, 4> ValueVTs; 6242 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6243 ValueVTs.push_back(MVT::Other); // Out chain 6244 6245 SDVTList VTs = DAG.getVTList(ValueVTs); 6246 SDValue Result; 6247 if (FPI.isUnaryOp()) 6248 Result = DAG.getNode(Opcode, sdl, VTs, 6249 { Chain, getValue(FPI.getArgOperand(0)) }); 6250 else if (FPI.isTernaryOp()) 6251 Result = DAG.getNode(Opcode, sdl, VTs, 6252 { Chain, getValue(FPI.getArgOperand(0)), 6253 getValue(FPI.getArgOperand(1)), 6254 getValue(FPI.getArgOperand(2)) }); 6255 else 6256 Result = DAG.getNode(Opcode, sdl, VTs, 6257 { Chain, getValue(FPI.getArgOperand(0)), 6258 getValue(FPI.getArgOperand(1)) }); 6259 6260 assert(Result.getNode()->getNumValues() == 2); 6261 SDValue OutChain = Result.getValue(1); 6262 DAG.setRoot(OutChain); 6263 SDValue FPResult = Result.getValue(0); 6264 setValue(&FPI, FPResult); 6265 } 6266 6267 std::pair<SDValue, SDValue> 6268 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 6269 const BasicBlock *EHPadBB) { 6270 MachineFunction &MF = DAG.getMachineFunction(); 6271 MachineModuleInfo &MMI = MF.getMMI(); 6272 MCSymbol *BeginLabel = nullptr; 6273 6274 if (EHPadBB) { 6275 // Insert a label before the invoke call to mark the try range. This can be 6276 // used to detect deletion of the invoke via the MachineModuleInfo. 6277 BeginLabel = MMI.getContext().createTempSymbol(); 6278 6279 // For SjLj, keep track of which landing pads go with which invokes 6280 // so as to maintain the ordering of pads in the LSDA. 6281 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 6282 if (CallSiteIndex) { 6283 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 6284 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 6285 6286 // Now that the call site is handled, stop tracking it. 6287 MMI.setCurrentCallSite(0); 6288 } 6289 6290 // Both PendingLoads and PendingExports must be flushed here; 6291 // this call might not return. 6292 (void)getRoot(); 6293 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 6294 6295 CLI.setChain(getRoot()); 6296 } 6297 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6298 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6299 6300 assert((CLI.IsTailCall || Result.second.getNode()) && 6301 "Non-null chain expected with non-tail call!"); 6302 assert((Result.second.getNode() || !Result.first.getNode()) && 6303 "Null value expected with tail call!"); 6304 6305 if (!Result.second.getNode()) { 6306 // As a special case, a null chain means that a tail call has been emitted 6307 // and the DAG root is already updated. 6308 HasTailCall = true; 6309 6310 // Since there's no actual continuation from this block, nothing can be 6311 // relying on us setting vregs for them. 6312 PendingExports.clear(); 6313 } else { 6314 DAG.setRoot(Result.second); 6315 } 6316 6317 if (EHPadBB) { 6318 // Insert a label at the end of the invoke call to mark the try range. This 6319 // can be used to detect deletion of the invoke via the MachineModuleInfo. 6320 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 6321 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 6322 6323 // Inform MachineModuleInfo of range. 6324 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 6325 // There is a platform (e.g. wasm) that uses funclet style IR but does not 6326 // actually use outlined funclets and their LSDA info style. 6327 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 6328 assert(CLI.CS); 6329 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 6330 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()), 6331 BeginLabel, EndLabel); 6332 } else { 6333 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 6334 } 6335 } 6336 6337 return Result; 6338 } 6339 6340 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 6341 bool isTailCall, 6342 const BasicBlock *EHPadBB) { 6343 auto &DL = DAG.getDataLayout(); 6344 FunctionType *FTy = CS.getFunctionType(); 6345 Type *RetTy = CS.getType(); 6346 6347 TargetLowering::ArgListTy Args; 6348 Args.reserve(CS.arg_size()); 6349 6350 const Value *SwiftErrorVal = nullptr; 6351 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6352 6353 // We can't tail call inside a function with a swifterror argument. Lowering 6354 // does not support this yet. It would have to move into the swifterror 6355 // register before the call. 6356 auto *Caller = CS.getInstruction()->getParent()->getParent(); 6357 if (TLI.supportSwiftError() && 6358 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 6359 isTailCall = false; 6360 6361 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 6362 i != e; ++i) { 6363 TargetLowering::ArgListEntry Entry; 6364 const Value *V = *i; 6365 6366 // Skip empty types 6367 if (V->getType()->isEmptyTy()) 6368 continue; 6369 6370 SDValue ArgNode = getValue(V); 6371 Entry.Node = ArgNode; Entry.Ty = V->getType(); 6372 6373 Entry.setAttributes(&CS, i - CS.arg_begin()); 6374 6375 // Use swifterror virtual register as input to the call. 6376 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 6377 SwiftErrorVal = V; 6378 // We find the virtual register for the actual swifterror argument. 6379 // Instead of using the Value, we use the virtual register instead. 6380 Entry.Node = DAG.getRegister(FuncInfo 6381 .getOrCreateSwiftErrorVRegUseAt( 6382 CS.getInstruction(), FuncInfo.MBB, V) 6383 .first, 6384 EVT(TLI.getPointerTy(DL))); 6385 } 6386 6387 Args.push_back(Entry); 6388 6389 // If we have an explicit sret argument that is an Instruction, (i.e., it 6390 // might point to function-local memory), we can't meaningfully tail-call. 6391 if (Entry.IsSRet && isa<Instruction>(V)) 6392 isTailCall = false; 6393 } 6394 6395 // Check if target-independent constraints permit a tail call here. 6396 // Target-dependent constraints are checked within TLI->LowerCallTo. 6397 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 6398 isTailCall = false; 6399 6400 // Disable tail calls if there is an swifterror argument. Targets have not 6401 // been updated to support tail calls. 6402 if (TLI.supportSwiftError() && SwiftErrorVal) 6403 isTailCall = false; 6404 6405 TargetLowering::CallLoweringInfo CLI(DAG); 6406 CLI.setDebugLoc(getCurSDLoc()) 6407 .setChain(getRoot()) 6408 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 6409 .setTailCall(isTailCall) 6410 .setConvergent(CS.isConvergent()); 6411 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 6412 6413 if (Result.first.getNode()) { 6414 const Instruction *Inst = CS.getInstruction(); 6415 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 6416 setValue(Inst, Result.first); 6417 } 6418 6419 // The last element of CLI.InVals has the SDValue for swifterror return. 6420 // Here we copy it to a virtual register and update SwiftErrorMap for 6421 // book-keeping. 6422 if (SwiftErrorVal && TLI.supportSwiftError()) { 6423 // Get the last element of InVals. 6424 SDValue Src = CLI.InVals.back(); 6425 unsigned VReg; bool CreatedVReg; 6426 std::tie(VReg, CreatedVReg) = 6427 FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction()); 6428 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 6429 // We update the virtual register for the actual swifterror argument. 6430 if (CreatedVReg) 6431 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg); 6432 DAG.setRoot(CopyNode); 6433 } 6434 } 6435 6436 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 6437 SelectionDAGBuilder &Builder) { 6438 // Check to see if this load can be trivially constant folded, e.g. if the 6439 // input is from a string literal. 6440 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 6441 // Cast pointer to the type we really want to load. 6442 Type *LoadTy = 6443 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 6444 if (LoadVT.isVector()) 6445 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 6446 6447 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 6448 PointerType::getUnqual(LoadTy)); 6449 6450 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 6451 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 6452 return Builder.getValue(LoadCst); 6453 } 6454 6455 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 6456 // still constant memory, the input chain can be the entry node. 6457 SDValue Root; 6458 bool ConstantMemory = false; 6459 6460 // Do not serialize (non-volatile) loads of constant memory with anything. 6461 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 6462 Root = Builder.DAG.getEntryNode(); 6463 ConstantMemory = true; 6464 } else { 6465 // Do not serialize non-volatile loads against each other. 6466 Root = Builder.DAG.getRoot(); 6467 } 6468 6469 SDValue Ptr = Builder.getValue(PtrVal); 6470 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 6471 Ptr, MachinePointerInfo(PtrVal), 6472 /* Alignment = */ 1); 6473 6474 if (!ConstantMemory) 6475 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 6476 return LoadVal; 6477 } 6478 6479 /// Record the value for an instruction that produces an integer result, 6480 /// converting the type where necessary. 6481 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 6482 SDValue Value, 6483 bool IsSigned) { 6484 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6485 I.getType(), true); 6486 if (IsSigned) 6487 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 6488 else 6489 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 6490 setValue(&I, Value); 6491 } 6492 6493 /// See if we can lower a memcmp call into an optimized form. If so, return 6494 /// true and lower it. Otherwise return false, and it will be lowered like a 6495 /// normal call. 6496 /// The caller already checked that \p I calls the appropriate LibFunc with a 6497 /// correct prototype. 6498 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 6499 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 6500 const Value *Size = I.getArgOperand(2); 6501 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 6502 if (CSize && CSize->getZExtValue() == 0) { 6503 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6504 I.getType(), true); 6505 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 6506 return true; 6507 } 6508 6509 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6510 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 6511 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 6512 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 6513 if (Res.first.getNode()) { 6514 processIntegerCallValue(I, Res.first, true); 6515 PendingLoads.push_back(Res.second); 6516 return true; 6517 } 6518 6519 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 6520 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 6521 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 6522 return false; 6523 6524 // If the target has a fast compare for the given size, it will return a 6525 // preferred load type for that size. Require that the load VT is legal and 6526 // that the target supports unaligned loads of that type. Otherwise, return 6527 // INVALID. 6528 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 6529 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6530 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 6531 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 6532 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 6533 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 6534 // TODO: Check alignment of src and dest ptrs. 6535 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 6536 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 6537 if (!TLI.isTypeLegal(LVT) || 6538 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 6539 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 6540 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 6541 } 6542 6543 return LVT; 6544 }; 6545 6546 // This turns into unaligned loads. We only do this if the target natively 6547 // supports the MVT we'll be loading or if it is small enough (<= 4) that 6548 // we'll only produce a small number of byte loads. 6549 MVT LoadVT; 6550 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 6551 switch (NumBitsToCompare) { 6552 default: 6553 return false; 6554 case 16: 6555 LoadVT = MVT::i16; 6556 break; 6557 case 32: 6558 LoadVT = MVT::i32; 6559 break; 6560 case 64: 6561 case 128: 6562 case 256: 6563 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 6564 break; 6565 } 6566 6567 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 6568 return false; 6569 6570 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 6571 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 6572 6573 // Bitcast to a wide integer type if the loads are vectors. 6574 if (LoadVT.isVector()) { 6575 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 6576 LoadL = DAG.getBitcast(CmpVT, LoadL); 6577 LoadR = DAG.getBitcast(CmpVT, LoadR); 6578 } 6579 6580 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 6581 processIntegerCallValue(I, Cmp, false); 6582 return true; 6583 } 6584 6585 /// See if we can lower a memchr call into an optimized form. If so, return 6586 /// true and lower it. Otherwise return false, and it will be lowered like a 6587 /// normal call. 6588 /// The caller already checked that \p I calls the appropriate LibFunc with a 6589 /// correct prototype. 6590 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 6591 const Value *Src = I.getArgOperand(0); 6592 const Value *Char = I.getArgOperand(1); 6593 const Value *Length = I.getArgOperand(2); 6594 6595 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6596 std::pair<SDValue, SDValue> Res = 6597 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 6598 getValue(Src), getValue(Char), getValue(Length), 6599 MachinePointerInfo(Src)); 6600 if (Res.first.getNode()) { 6601 setValue(&I, Res.first); 6602 PendingLoads.push_back(Res.second); 6603 return true; 6604 } 6605 6606 return false; 6607 } 6608 6609 /// See if we can lower a mempcpy call into an optimized form. If so, return 6610 /// true and lower it. Otherwise return false, and it will be lowered like a 6611 /// normal call. 6612 /// The caller already checked that \p I calls the appropriate LibFunc with a 6613 /// correct prototype. 6614 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 6615 SDValue Dst = getValue(I.getArgOperand(0)); 6616 SDValue Src = getValue(I.getArgOperand(1)); 6617 SDValue Size = getValue(I.getArgOperand(2)); 6618 6619 unsigned DstAlign = DAG.InferPtrAlignment(Dst); 6620 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 6621 unsigned Align = std::min(DstAlign, SrcAlign); 6622 if (Align == 0) // Alignment of one or both could not be inferred. 6623 Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved. 6624 6625 bool isVol = false; 6626 SDLoc sdl = getCurSDLoc(); 6627 6628 // In the mempcpy context we need to pass in a false value for isTailCall 6629 // because the return pointer needs to be adjusted by the size of 6630 // the copied memory. 6631 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol, 6632 false, /*isTailCall=*/false, 6633 MachinePointerInfo(I.getArgOperand(0)), 6634 MachinePointerInfo(I.getArgOperand(1))); 6635 assert(MC.getNode() != nullptr && 6636 "** memcpy should not be lowered as TailCall in mempcpy context **"); 6637 DAG.setRoot(MC); 6638 6639 // Check if Size needs to be truncated or extended. 6640 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 6641 6642 // Adjust return pointer to point just past the last dst byte. 6643 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 6644 Dst, Size); 6645 setValue(&I, DstPlusSize); 6646 return true; 6647 } 6648 6649 /// See if we can lower a strcpy call into an optimized form. If so, return 6650 /// true and lower it, otherwise return false and it will be lowered like a 6651 /// normal call. 6652 /// The caller already checked that \p I calls the appropriate LibFunc with a 6653 /// correct prototype. 6654 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 6655 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6656 6657 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6658 std::pair<SDValue, SDValue> Res = 6659 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 6660 getValue(Arg0), getValue(Arg1), 6661 MachinePointerInfo(Arg0), 6662 MachinePointerInfo(Arg1), isStpcpy); 6663 if (Res.first.getNode()) { 6664 setValue(&I, Res.first); 6665 DAG.setRoot(Res.second); 6666 return true; 6667 } 6668 6669 return false; 6670 } 6671 6672 /// See if we can lower a strcmp call into an optimized form. If so, return 6673 /// true and lower it, otherwise return false and it will be lowered like a 6674 /// normal call. 6675 /// The caller already checked that \p I calls the appropriate LibFunc with a 6676 /// correct prototype. 6677 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 6678 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6679 6680 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6681 std::pair<SDValue, SDValue> Res = 6682 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 6683 getValue(Arg0), getValue(Arg1), 6684 MachinePointerInfo(Arg0), 6685 MachinePointerInfo(Arg1)); 6686 if (Res.first.getNode()) { 6687 processIntegerCallValue(I, Res.first, true); 6688 PendingLoads.push_back(Res.second); 6689 return true; 6690 } 6691 6692 return false; 6693 } 6694 6695 /// See if we can lower a strlen call into an optimized form. If so, return 6696 /// true and lower it, otherwise return false and it will be lowered like a 6697 /// normal call. 6698 /// The caller already checked that \p I calls the appropriate LibFunc with a 6699 /// correct prototype. 6700 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 6701 const Value *Arg0 = I.getArgOperand(0); 6702 6703 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6704 std::pair<SDValue, SDValue> Res = 6705 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 6706 getValue(Arg0), MachinePointerInfo(Arg0)); 6707 if (Res.first.getNode()) { 6708 processIntegerCallValue(I, Res.first, false); 6709 PendingLoads.push_back(Res.second); 6710 return true; 6711 } 6712 6713 return false; 6714 } 6715 6716 /// See if we can lower a strnlen call into an optimized form. If so, return 6717 /// true and lower it, otherwise return false and it will be lowered like a 6718 /// normal call. 6719 /// The caller already checked that \p I calls the appropriate LibFunc with a 6720 /// correct prototype. 6721 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 6722 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6723 6724 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6725 std::pair<SDValue, SDValue> Res = 6726 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 6727 getValue(Arg0), getValue(Arg1), 6728 MachinePointerInfo(Arg0)); 6729 if (Res.first.getNode()) { 6730 processIntegerCallValue(I, Res.first, false); 6731 PendingLoads.push_back(Res.second); 6732 return true; 6733 } 6734 6735 return false; 6736 } 6737 6738 /// See if we can lower a unary floating-point operation into an SDNode with 6739 /// the specified Opcode. If so, return true and lower it, otherwise return 6740 /// false and it will be lowered like a normal call. 6741 /// The caller already checked that \p I calls the appropriate LibFunc with a 6742 /// correct prototype. 6743 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 6744 unsigned Opcode) { 6745 // We already checked this call's prototype; verify it doesn't modify errno. 6746 if (!I.onlyReadsMemory()) 6747 return false; 6748 6749 SDValue Tmp = getValue(I.getArgOperand(0)); 6750 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 6751 return true; 6752 } 6753 6754 /// See if we can lower a binary floating-point operation into an SDNode with 6755 /// the specified Opcode. If so, return true and lower it. Otherwise return 6756 /// false, and it will be lowered like a normal call. 6757 /// The caller already checked that \p I calls the appropriate LibFunc with a 6758 /// correct prototype. 6759 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 6760 unsigned Opcode) { 6761 // We already checked this call's prototype; verify it doesn't modify errno. 6762 if (!I.onlyReadsMemory()) 6763 return false; 6764 6765 SDValue Tmp0 = getValue(I.getArgOperand(0)); 6766 SDValue Tmp1 = getValue(I.getArgOperand(1)); 6767 EVT VT = Tmp0.getValueType(); 6768 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 6769 return true; 6770 } 6771 6772 void SelectionDAGBuilder::visitCall(const CallInst &I) { 6773 // Handle inline assembly differently. 6774 if (isa<InlineAsm>(I.getCalledValue())) { 6775 visitInlineAsm(&I); 6776 return; 6777 } 6778 6779 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6780 computeUsesVAFloatArgument(I, MMI); 6781 6782 const char *RenameFn = nullptr; 6783 if (Function *F = I.getCalledFunction()) { 6784 if (F->isDeclaration()) { 6785 // Is this an LLVM intrinsic or a target-specific intrinsic? 6786 unsigned IID = F->getIntrinsicID(); 6787 if (!IID) 6788 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 6789 IID = II->getIntrinsicID(F); 6790 6791 if (IID) { 6792 RenameFn = visitIntrinsicCall(I, IID); 6793 if (!RenameFn) 6794 return; 6795 } 6796 } 6797 6798 // Check for well-known libc/libm calls. If the function is internal, it 6799 // can't be a library call. Don't do the check if marked as nobuiltin for 6800 // some reason or the call site requires strict floating point semantics. 6801 LibFunc Func; 6802 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 6803 F->hasName() && LibInfo->getLibFunc(*F, Func) && 6804 LibInfo->hasOptimizedCodeGen(Func)) { 6805 switch (Func) { 6806 default: break; 6807 case LibFunc_copysign: 6808 case LibFunc_copysignf: 6809 case LibFunc_copysignl: 6810 // We already checked this call's prototype; verify it doesn't modify 6811 // errno. 6812 if (I.onlyReadsMemory()) { 6813 SDValue LHS = getValue(I.getArgOperand(0)); 6814 SDValue RHS = getValue(I.getArgOperand(1)); 6815 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 6816 LHS.getValueType(), LHS, RHS)); 6817 return; 6818 } 6819 break; 6820 case LibFunc_fabs: 6821 case LibFunc_fabsf: 6822 case LibFunc_fabsl: 6823 if (visitUnaryFloatCall(I, ISD::FABS)) 6824 return; 6825 break; 6826 case LibFunc_fmin: 6827 case LibFunc_fminf: 6828 case LibFunc_fminl: 6829 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 6830 return; 6831 break; 6832 case LibFunc_fmax: 6833 case LibFunc_fmaxf: 6834 case LibFunc_fmaxl: 6835 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 6836 return; 6837 break; 6838 case LibFunc_sin: 6839 case LibFunc_sinf: 6840 case LibFunc_sinl: 6841 if (visitUnaryFloatCall(I, ISD::FSIN)) 6842 return; 6843 break; 6844 case LibFunc_cos: 6845 case LibFunc_cosf: 6846 case LibFunc_cosl: 6847 if (visitUnaryFloatCall(I, ISD::FCOS)) 6848 return; 6849 break; 6850 case LibFunc_sqrt: 6851 case LibFunc_sqrtf: 6852 case LibFunc_sqrtl: 6853 case LibFunc_sqrt_finite: 6854 case LibFunc_sqrtf_finite: 6855 case LibFunc_sqrtl_finite: 6856 if (visitUnaryFloatCall(I, ISD::FSQRT)) 6857 return; 6858 break; 6859 case LibFunc_floor: 6860 case LibFunc_floorf: 6861 case LibFunc_floorl: 6862 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 6863 return; 6864 break; 6865 case LibFunc_nearbyint: 6866 case LibFunc_nearbyintf: 6867 case LibFunc_nearbyintl: 6868 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 6869 return; 6870 break; 6871 case LibFunc_ceil: 6872 case LibFunc_ceilf: 6873 case LibFunc_ceill: 6874 if (visitUnaryFloatCall(I, ISD::FCEIL)) 6875 return; 6876 break; 6877 case LibFunc_rint: 6878 case LibFunc_rintf: 6879 case LibFunc_rintl: 6880 if (visitUnaryFloatCall(I, ISD::FRINT)) 6881 return; 6882 break; 6883 case LibFunc_round: 6884 case LibFunc_roundf: 6885 case LibFunc_roundl: 6886 if (visitUnaryFloatCall(I, ISD::FROUND)) 6887 return; 6888 break; 6889 case LibFunc_trunc: 6890 case LibFunc_truncf: 6891 case LibFunc_truncl: 6892 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6893 return; 6894 break; 6895 case LibFunc_log2: 6896 case LibFunc_log2f: 6897 case LibFunc_log2l: 6898 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6899 return; 6900 break; 6901 case LibFunc_exp2: 6902 case LibFunc_exp2f: 6903 case LibFunc_exp2l: 6904 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6905 return; 6906 break; 6907 case LibFunc_memcmp: 6908 if (visitMemCmpCall(I)) 6909 return; 6910 break; 6911 case LibFunc_mempcpy: 6912 if (visitMemPCpyCall(I)) 6913 return; 6914 break; 6915 case LibFunc_memchr: 6916 if (visitMemChrCall(I)) 6917 return; 6918 break; 6919 case LibFunc_strcpy: 6920 if (visitStrCpyCall(I, false)) 6921 return; 6922 break; 6923 case LibFunc_stpcpy: 6924 if (visitStrCpyCall(I, true)) 6925 return; 6926 break; 6927 case LibFunc_strcmp: 6928 if (visitStrCmpCall(I)) 6929 return; 6930 break; 6931 case LibFunc_strlen: 6932 if (visitStrLenCall(I)) 6933 return; 6934 break; 6935 case LibFunc_strnlen: 6936 if (visitStrNLenCall(I)) 6937 return; 6938 break; 6939 } 6940 } 6941 } 6942 6943 SDValue Callee; 6944 if (!RenameFn) 6945 Callee = getValue(I.getCalledValue()); 6946 else 6947 Callee = DAG.getExternalSymbol( 6948 RenameFn, 6949 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6950 6951 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 6952 // have to do anything here to lower funclet bundles. 6953 assert(!I.hasOperandBundlesOtherThan( 6954 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 6955 "Cannot lower calls with arbitrary operand bundles!"); 6956 6957 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 6958 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 6959 else 6960 // Check if we can potentially perform a tail call. More detailed checking 6961 // is be done within LowerCallTo, after more information about the call is 6962 // known. 6963 LowerCallTo(&I, Callee, I.isTailCall()); 6964 } 6965 6966 namespace { 6967 6968 /// AsmOperandInfo - This contains information for each constraint that we are 6969 /// lowering. 6970 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6971 public: 6972 /// CallOperand - If this is the result output operand or a clobber 6973 /// this is null, otherwise it is the incoming operand to the CallInst. 6974 /// This gets modified as the asm is processed. 6975 SDValue CallOperand; 6976 6977 /// AssignedRegs - If this is a register or register class operand, this 6978 /// contains the set of register corresponding to the operand. 6979 RegsForValue AssignedRegs; 6980 6981 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6982 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 6983 } 6984 6985 /// Whether or not this operand accesses memory 6986 bool hasMemory(const TargetLowering &TLI) const { 6987 // Indirect operand accesses access memory. 6988 if (isIndirect) 6989 return true; 6990 6991 for (const auto &Code : Codes) 6992 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 6993 return true; 6994 6995 return false; 6996 } 6997 6998 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6999 /// corresponds to. If there is no Value* for this operand, it returns 7000 /// MVT::Other. 7001 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 7002 const DataLayout &DL) const { 7003 if (!CallOperandVal) return MVT::Other; 7004 7005 if (isa<BasicBlock>(CallOperandVal)) 7006 return TLI.getPointerTy(DL); 7007 7008 llvm::Type *OpTy = CallOperandVal->getType(); 7009 7010 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 7011 // If this is an indirect operand, the operand is a pointer to the 7012 // accessed type. 7013 if (isIndirect) { 7014 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 7015 if (!PtrTy) 7016 report_fatal_error("Indirect operand for inline asm not a pointer!"); 7017 OpTy = PtrTy->getElementType(); 7018 } 7019 7020 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 7021 if (StructType *STy = dyn_cast<StructType>(OpTy)) 7022 if (STy->getNumElements() == 1) 7023 OpTy = STy->getElementType(0); 7024 7025 // If OpTy is not a single value, it may be a struct/union that we 7026 // can tile with integers. 7027 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7028 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7029 switch (BitSize) { 7030 default: break; 7031 case 1: 7032 case 8: 7033 case 16: 7034 case 32: 7035 case 64: 7036 case 128: 7037 OpTy = IntegerType::get(Context, BitSize); 7038 break; 7039 } 7040 } 7041 7042 return TLI.getValueType(DL, OpTy, true); 7043 } 7044 }; 7045 7046 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>; 7047 7048 } // end anonymous namespace 7049 7050 /// Make sure that the output operand \p OpInfo and its corresponding input 7051 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7052 /// out). 7053 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7054 SDISelAsmOperandInfo &MatchingOpInfo, 7055 SelectionDAG &DAG) { 7056 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7057 return; 7058 7059 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7060 const auto &TLI = DAG.getTargetLoweringInfo(); 7061 7062 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7063 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7064 OpInfo.ConstraintVT); 7065 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7066 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7067 MatchingOpInfo.ConstraintVT); 7068 if ((OpInfo.ConstraintVT.isInteger() != 7069 MatchingOpInfo.ConstraintVT.isInteger()) || 7070 (MatchRC.second != InputRC.second)) { 7071 // FIXME: error out in a more elegant fashion 7072 report_fatal_error("Unsupported asm: input constraint" 7073 " with a matching output constraint of" 7074 " incompatible type!"); 7075 } 7076 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 7077 } 7078 7079 /// Get a direct memory input to behave well as an indirect operand. 7080 /// This may introduce stores, hence the need for a \p Chain. 7081 /// \return The (possibly updated) chain. 7082 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 7083 SDISelAsmOperandInfo &OpInfo, 7084 SelectionDAG &DAG) { 7085 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7086 7087 // If we don't have an indirect input, put it in the constpool if we can, 7088 // otherwise spill it to a stack slot. 7089 // TODO: This isn't quite right. We need to handle these according to 7090 // the addressing mode that the constraint wants. Also, this may take 7091 // an additional register for the computation and we don't want that 7092 // either. 7093 7094 // If the operand is a float, integer, or vector constant, spill to a 7095 // constant pool entry to get its address. 7096 const Value *OpVal = OpInfo.CallOperandVal; 7097 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 7098 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 7099 OpInfo.CallOperand = DAG.getConstantPool( 7100 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 7101 return Chain; 7102 } 7103 7104 // Otherwise, create a stack slot and emit a store to it before the asm. 7105 Type *Ty = OpVal->getType(); 7106 auto &DL = DAG.getDataLayout(); 7107 uint64_t TySize = DL.getTypeAllocSize(Ty); 7108 unsigned Align = DL.getPrefTypeAlignment(Ty); 7109 MachineFunction &MF = DAG.getMachineFunction(); 7110 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7111 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 7112 Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot, 7113 MachinePointerInfo::getFixedStack(MF, SSFI)); 7114 OpInfo.CallOperand = StackSlot; 7115 7116 return Chain; 7117 } 7118 7119 /// GetRegistersForValue - Assign registers (virtual or physical) for the 7120 /// specified operand. We prefer to assign virtual registers, to allow the 7121 /// register allocator to handle the assignment process. However, if the asm 7122 /// uses features that we can't model on machineinstrs, we have SDISel do the 7123 /// allocation. This produces generally horrible, but correct, code. 7124 /// 7125 /// OpInfo describes the operand. 7126 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI, 7127 const SDLoc &DL, 7128 SDISelAsmOperandInfo &OpInfo) { 7129 LLVMContext &Context = *DAG.getContext(); 7130 7131 MachineFunction &MF = DAG.getMachineFunction(); 7132 SmallVector<unsigned, 4> Regs; 7133 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7134 7135 // If this is a constraint for a single physreg, or a constraint for a 7136 // register class, find it. 7137 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 7138 TLI.getRegForInlineAsmConstraint(&TRI, OpInfo.ConstraintCode, 7139 OpInfo.ConstraintVT); 7140 7141 unsigned NumRegs = 1; 7142 if (OpInfo.ConstraintVT != MVT::Other) { 7143 // If this is a FP input in an integer register (or visa versa) insert a bit 7144 // cast of the input value. More generally, handle any case where the input 7145 // value disagrees with the register class we plan to stick this in. 7146 if (OpInfo.Type == InlineAsm::isInput && PhysReg.second && 7147 !TRI.isTypeLegalForClass(*PhysReg.second, OpInfo.ConstraintVT)) { 7148 // Try to convert to the first EVT that the reg class contains. If the 7149 // types are identical size, use a bitcast to convert (e.g. two differing 7150 // vector types). 7151 MVT RegVT = *TRI.legalclasstypes_begin(*PhysReg.second); 7152 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 7153 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 7154 RegVT, OpInfo.CallOperand); 7155 OpInfo.ConstraintVT = RegVT; 7156 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7157 // If the input is a FP value and we want it in FP registers, do a 7158 // bitcast to the corresponding integer type. This turns an f64 value 7159 // into i64, which can be passed with two i32 values on a 32-bit 7160 // machine. 7161 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7162 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 7163 RegVT, OpInfo.CallOperand); 7164 OpInfo.ConstraintVT = RegVT; 7165 } 7166 } 7167 7168 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 7169 } 7170 7171 MVT RegVT; 7172 EVT ValueVT = OpInfo.ConstraintVT; 7173 7174 // If this is a constraint for a specific physical register, like {r17}, 7175 // assign it now. 7176 if (unsigned AssignedReg = PhysReg.first) { 7177 const TargetRegisterClass *RC = PhysReg.second; 7178 if (OpInfo.ConstraintVT == MVT::Other) 7179 ValueVT = *TRI.legalclasstypes_begin(*RC); 7180 7181 // Get the actual register value type. This is important, because the user 7182 // may have asked for (e.g.) the AX register in i32 type. We need to 7183 // remember that AX is actually i16 to get the right extension. 7184 RegVT = *TRI.legalclasstypes_begin(*RC); 7185 7186 // This is a explicit reference to a physical register. 7187 Regs.push_back(AssignedReg); 7188 7189 // If this is an expanded reference, add the rest of the regs to Regs. 7190 if (NumRegs != 1) { 7191 TargetRegisterClass::iterator I = RC->begin(); 7192 for (; *I != AssignedReg; ++I) 7193 assert(I != RC->end() && "Didn't find reg!"); 7194 7195 // Already added the first reg. 7196 --NumRegs; ++I; 7197 for (; NumRegs; --NumRegs, ++I) { 7198 assert(I != RC->end() && "Ran out of registers to allocate!"); 7199 Regs.push_back(*I); 7200 } 7201 } 7202 7203 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7204 return; 7205 } 7206 7207 // Otherwise, if this was a reference to an LLVM register class, create vregs 7208 // for this reference. 7209 if (const TargetRegisterClass *RC = PhysReg.second) { 7210 RegVT = *TRI.legalclasstypes_begin(*RC); 7211 if (OpInfo.ConstraintVT == MVT::Other) 7212 ValueVT = RegVT; 7213 7214 // Create the appropriate number of virtual registers. 7215 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7216 for (; NumRegs; --NumRegs) 7217 Regs.push_back(RegInfo.createVirtualRegister(RC)); 7218 7219 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7220 return; 7221 } 7222 7223 // Otherwise, we couldn't allocate enough registers for this. 7224 } 7225 7226 static unsigned 7227 findMatchingInlineAsmOperand(unsigned OperandNo, 7228 const std::vector<SDValue> &AsmNodeOperands) { 7229 // Scan until we find the definition we already emitted of this operand. 7230 unsigned CurOp = InlineAsm::Op_FirstOperand; 7231 for (; OperandNo; --OperandNo) { 7232 // Advance to the next operand. 7233 unsigned OpFlag = 7234 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7235 assert((InlineAsm::isRegDefKind(OpFlag) || 7236 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 7237 InlineAsm::isMemKind(OpFlag)) && 7238 "Skipped past definitions?"); 7239 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 7240 } 7241 return CurOp; 7242 } 7243 7244 /// Fill \p Regs with \p NumRegs new virtual registers of type \p RegVT 7245 /// \return true if it has succeeded, false otherwise 7246 static bool createVirtualRegs(SmallVector<unsigned, 4> &Regs, unsigned NumRegs, 7247 MVT RegVT, SelectionDAG &DAG) { 7248 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7249 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 7250 for (unsigned i = 0, e = NumRegs; i != e; ++i) { 7251 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 7252 Regs.push_back(RegInfo.createVirtualRegister(RC)); 7253 else 7254 return false; 7255 } 7256 return true; 7257 } 7258 7259 namespace { 7260 7261 class ExtraFlags { 7262 unsigned Flags = 0; 7263 7264 public: 7265 explicit ExtraFlags(ImmutableCallSite CS) { 7266 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7267 if (IA->hasSideEffects()) 7268 Flags |= InlineAsm::Extra_HasSideEffects; 7269 if (IA->isAlignStack()) 7270 Flags |= InlineAsm::Extra_IsAlignStack; 7271 if (CS.isConvergent()) 7272 Flags |= InlineAsm::Extra_IsConvergent; 7273 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 7274 } 7275 7276 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 7277 // Ideally, we would only check against memory constraints. However, the 7278 // meaning of an Other constraint can be target-specific and we can't easily 7279 // reason about it. Therefore, be conservative and set MayLoad/MayStore 7280 // for Other constraints as well. 7281 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 7282 OpInfo.ConstraintType == TargetLowering::C_Other) { 7283 if (OpInfo.Type == InlineAsm::isInput) 7284 Flags |= InlineAsm::Extra_MayLoad; 7285 else if (OpInfo.Type == InlineAsm::isOutput) 7286 Flags |= InlineAsm::Extra_MayStore; 7287 else if (OpInfo.Type == InlineAsm::isClobber) 7288 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 7289 } 7290 } 7291 7292 unsigned get() const { return Flags; } 7293 }; 7294 7295 } // end anonymous namespace 7296 7297 /// visitInlineAsm - Handle a call to an InlineAsm object. 7298 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 7299 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7300 7301 /// ConstraintOperands - Information about all of the constraints. 7302 SDISelAsmOperandInfoVector ConstraintOperands; 7303 7304 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7305 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 7306 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 7307 7308 bool hasMemory = false; 7309 7310 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 7311 ExtraFlags ExtraInfo(CS); 7312 7313 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 7314 unsigned ResNo = 0; // ResNo - The result number of the next output. 7315 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 7316 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 7317 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 7318 7319 MVT OpVT = MVT::Other; 7320 7321 // Compute the value type for each operand. 7322 if (OpInfo.Type == InlineAsm::isInput || 7323 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 7324 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 7325 7326 // Process the call argument. BasicBlocks are labels, currently appearing 7327 // only in asm's. 7328 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 7329 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 7330 } else { 7331 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 7332 } 7333 7334 OpVT = 7335 OpInfo 7336 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 7337 .getSimpleVT(); 7338 } 7339 7340 if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 7341 // The return value of the call is this value. As such, there is no 7342 // corresponding argument. 7343 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7344 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 7345 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 7346 STy->getElementType(ResNo)); 7347 } else { 7348 assert(ResNo == 0 && "Asm only has one result!"); 7349 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 7350 } 7351 ++ResNo; 7352 } 7353 7354 OpInfo.ConstraintVT = OpVT; 7355 7356 if (!hasMemory) 7357 hasMemory = OpInfo.hasMemory(TLI); 7358 7359 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 7360 // FIXME: Could we compute this on OpInfo rather than TargetConstraints[i]? 7361 auto TargetConstraint = TargetConstraints[i]; 7362 7363 // Compute the constraint code and ConstraintType to use. 7364 TLI.ComputeConstraintToUse(TargetConstraint, SDValue()); 7365 7366 ExtraInfo.update(TargetConstraint); 7367 } 7368 7369 SDValue Chain, Flag; 7370 7371 // We won't need to flush pending loads if this asm doesn't touch 7372 // memory and is nonvolatile. 7373 if (hasMemory || IA->hasSideEffects()) 7374 Chain = getRoot(); 7375 else 7376 Chain = DAG.getRoot(); 7377 7378 // Second pass over the constraints: compute which constraint option to use 7379 // and assign registers to constraints that want a specific physreg. 7380 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7381 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7382 7383 // If this is an output operand with a matching input operand, look up the 7384 // matching input. If their types mismatch, e.g. one is an integer, the 7385 // other is floating point, or their sizes are different, flag it as an 7386 // error. 7387 if (OpInfo.hasMatchingInput()) { 7388 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 7389 patchMatchingInput(OpInfo, Input, DAG); 7390 } 7391 7392 // Compute the constraint code and ConstraintType to use. 7393 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 7394 7395 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7396 OpInfo.Type == InlineAsm::isClobber) 7397 continue; 7398 7399 // If this is a memory input, and if the operand is not indirect, do what we 7400 // need to provide an address for the memory input. 7401 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7402 !OpInfo.isIndirect) { 7403 assert((OpInfo.isMultipleAlternative || 7404 (OpInfo.Type == InlineAsm::isInput)) && 7405 "Can only indirectify direct input operands!"); 7406 7407 // Memory operands really want the address of the value. 7408 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 7409 7410 // There is no longer a Value* corresponding to this operand. 7411 OpInfo.CallOperandVal = nullptr; 7412 7413 // It is now an indirect operand. 7414 OpInfo.isIndirect = true; 7415 } 7416 7417 // If this constraint is for a specific register, allocate it before 7418 // anything else. 7419 if (OpInfo.ConstraintType == TargetLowering::C_Register) 7420 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 7421 } 7422 7423 // Third pass - Loop over all of the operands, assigning virtual or physregs 7424 // to register class operands. 7425 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7426 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7427 7428 // C_Register operands have already been allocated, Other/Memory don't need 7429 // to be. 7430 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 7431 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 7432 } 7433 7434 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 7435 std::vector<SDValue> AsmNodeOperands; 7436 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 7437 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 7438 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 7439 7440 // If we have a !srcloc metadata node associated with it, we want to attach 7441 // this to the ultimately generated inline asm machineinstr. To do this, we 7442 // pass in the third operand as this (potentially null) inline asm MDNode. 7443 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 7444 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 7445 7446 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 7447 // bits as operand 3. 7448 AsmNodeOperands.push_back(DAG.getTargetConstant( 7449 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7450 7451 // Loop over all of the inputs, copying the operand values into the 7452 // appropriate registers and processing the output regs. 7453 RegsForValue RetValRegs; 7454 7455 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 7456 std::vector<std::pair<RegsForValue, Value *>> IndirectStoresToEmit; 7457 7458 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7459 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7460 7461 switch (OpInfo.Type) { 7462 case InlineAsm::isOutput: 7463 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 7464 OpInfo.ConstraintType != TargetLowering::C_Register) { 7465 // Memory output, or 'other' output (e.g. 'X' constraint). 7466 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 7467 7468 unsigned ConstraintID = 7469 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7470 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7471 "Failed to convert memory constraint code to constraint id."); 7472 7473 // Add information to the INLINEASM node to know about this output. 7474 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7475 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 7476 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 7477 MVT::i32)); 7478 AsmNodeOperands.push_back(OpInfo.CallOperand); 7479 break; 7480 } 7481 7482 // Otherwise, this is a register or register class output. 7483 7484 // Copy the output from the appropriate register. Find a register that 7485 // we can use. 7486 if (OpInfo.AssignedRegs.Regs.empty()) { 7487 emitInlineAsmError( 7488 CS, "couldn't allocate output register for constraint '" + 7489 Twine(OpInfo.ConstraintCode) + "'"); 7490 return; 7491 } 7492 7493 // If this is an indirect operand, store through the pointer after the 7494 // asm. 7495 if (OpInfo.isIndirect) { 7496 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 7497 OpInfo.CallOperandVal)); 7498 } else { 7499 // This is the result value of the call. 7500 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7501 // Concatenate this output onto the outputs list. 7502 RetValRegs.append(OpInfo.AssignedRegs); 7503 } 7504 7505 // Add information to the INLINEASM node to know that this register is 7506 // set. 7507 OpInfo.AssignedRegs 7508 .AddInlineAsmOperands(OpInfo.isEarlyClobber 7509 ? InlineAsm::Kind_RegDefEarlyClobber 7510 : InlineAsm::Kind_RegDef, 7511 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 7512 break; 7513 7514 case InlineAsm::isInput: { 7515 SDValue InOperandVal = OpInfo.CallOperand; 7516 7517 if (OpInfo.isMatchingInputConstraint()) { 7518 // If this is required to match an output register we have already set, 7519 // just use its register. 7520 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 7521 AsmNodeOperands); 7522 unsigned OpFlag = 7523 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7524 if (InlineAsm::isRegDefKind(OpFlag) || 7525 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 7526 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 7527 if (OpInfo.isIndirect) { 7528 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 7529 emitInlineAsmError(CS, "inline asm not supported yet:" 7530 " don't know how to handle tied " 7531 "indirect register inputs"); 7532 return; 7533 } 7534 7535 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 7536 SmallVector<unsigned, 4> Regs; 7537 7538 if (!createVirtualRegs(Regs, 7539 InlineAsm::getNumOperandRegisters(OpFlag), 7540 RegVT, DAG)) { 7541 emitInlineAsmError(CS, "inline asm error: This value type register " 7542 "class is not natively supported!"); 7543 return; 7544 } 7545 7546 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 7547 7548 SDLoc dl = getCurSDLoc(); 7549 // Use the produced MatchedRegs object to 7550 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 7551 CS.getInstruction()); 7552 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 7553 true, OpInfo.getMatchedOperand(), dl, 7554 DAG, AsmNodeOperands); 7555 break; 7556 } 7557 7558 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 7559 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 7560 "Unexpected number of operands"); 7561 // Add information to the INLINEASM node to know about this input. 7562 // See InlineAsm.h isUseOperandTiedToDef. 7563 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 7564 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 7565 OpInfo.getMatchedOperand()); 7566 AsmNodeOperands.push_back(DAG.getTargetConstant( 7567 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7568 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 7569 break; 7570 } 7571 7572 // Treat indirect 'X' constraint as memory. 7573 if (OpInfo.ConstraintType == TargetLowering::C_Other && 7574 OpInfo.isIndirect) 7575 OpInfo.ConstraintType = TargetLowering::C_Memory; 7576 7577 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 7578 std::vector<SDValue> Ops; 7579 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 7580 Ops, DAG); 7581 if (Ops.empty()) { 7582 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 7583 Twine(OpInfo.ConstraintCode) + "'"); 7584 return; 7585 } 7586 7587 // Add information to the INLINEASM node to know about this input. 7588 unsigned ResOpType = 7589 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 7590 AsmNodeOperands.push_back(DAG.getTargetConstant( 7591 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7592 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 7593 break; 7594 } 7595 7596 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 7597 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 7598 assert(InOperandVal.getValueType() == 7599 TLI.getPointerTy(DAG.getDataLayout()) && 7600 "Memory operands expect pointer values"); 7601 7602 unsigned ConstraintID = 7603 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7604 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7605 "Failed to convert memory constraint code to constraint id."); 7606 7607 // Add information to the INLINEASM node to know about this input. 7608 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7609 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 7610 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 7611 getCurSDLoc(), 7612 MVT::i32)); 7613 AsmNodeOperands.push_back(InOperandVal); 7614 break; 7615 } 7616 7617 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 7618 OpInfo.ConstraintType == TargetLowering::C_Register) && 7619 "Unknown constraint type!"); 7620 7621 // TODO: Support this. 7622 if (OpInfo.isIndirect) { 7623 emitInlineAsmError( 7624 CS, "Don't know how to handle indirect register inputs yet " 7625 "for constraint '" + 7626 Twine(OpInfo.ConstraintCode) + "'"); 7627 return; 7628 } 7629 7630 // Copy the input into the appropriate registers. 7631 if (OpInfo.AssignedRegs.Regs.empty()) { 7632 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 7633 Twine(OpInfo.ConstraintCode) + "'"); 7634 return; 7635 } 7636 7637 SDLoc dl = getCurSDLoc(); 7638 7639 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 7640 Chain, &Flag, CS.getInstruction()); 7641 7642 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 7643 dl, DAG, AsmNodeOperands); 7644 break; 7645 } 7646 case InlineAsm::isClobber: 7647 // Add the clobbered value to the operand list, so that the register 7648 // allocator is aware that the physreg got clobbered. 7649 if (!OpInfo.AssignedRegs.Regs.empty()) 7650 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 7651 false, 0, getCurSDLoc(), DAG, 7652 AsmNodeOperands); 7653 break; 7654 } 7655 } 7656 7657 // Finish up input operands. Set the input chain and add the flag last. 7658 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 7659 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 7660 7661 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 7662 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 7663 Flag = Chain.getValue(1); 7664 7665 // If this asm returns a register value, copy the result from that register 7666 // and set it as the value of the call. 7667 if (!RetValRegs.Regs.empty()) { 7668 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7669 Chain, &Flag, CS.getInstruction()); 7670 7671 // FIXME: Why don't we do this for inline asms with MRVs? 7672 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 7673 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 7674 7675 // If any of the results of the inline asm is a vector, it may have the 7676 // wrong width/num elts. This can happen for register classes that can 7677 // contain multiple different value types. The preg or vreg allocated may 7678 // not have the same VT as was expected. Convert it to the right type 7679 // with bit_convert. 7680 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 7681 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 7682 ResultType, Val); 7683 7684 } else if (ResultType != Val.getValueType() && 7685 ResultType.isInteger() && Val.getValueType().isInteger()) { 7686 // If a result value was tied to an input value, the computed result may 7687 // have a wider width than the expected result. Extract the relevant 7688 // portion. 7689 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 7690 } 7691 7692 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 7693 } 7694 7695 setValue(CS.getInstruction(), Val); 7696 // Don't need to use this as a chain in this case. 7697 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 7698 return; 7699 } 7700 7701 std::vector<std::pair<SDValue, const Value *>> StoresToEmit; 7702 7703 // Process indirect outputs, first output all of the flagged copies out of 7704 // physregs. 7705 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 7706 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 7707 const Value *Ptr = IndirectStoresToEmit[i].second; 7708 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7709 Chain, &Flag, IA); 7710 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 7711 } 7712 7713 // Emit the non-flagged stores from the physregs. 7714 SmallVector<SDValue, 8> OutChains; 7715 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 7716 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), StoresToEmit[i].first, 7717 getValue(StoresToEmit[i].second), 7718 MachinePointerInfo(StoresToEmit[i].second)); 7719 OutChains.push_back(Val); 7720 } 7721 7722 if (!OutChains.empty()) 7723 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 7724 7725 DAG.setRoot(Chain); 7726 } 7727 7728 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 7729 const Twine &Message) { 7730 LLVMContext &Ctx = *DAG.getContext(); 7731 Ctx.emitError(CS.getInstruction(), Message); 7732 7733 // Make sure we leave the DAG in a valid state 7734 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7735 SmallVector<EVT, 1> ValueVTs; 7736 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 7737 7738 if (ValueVTs.empty()) 7739 return; 7740 7741 SmallVector<SDValue, 1> Ops; 7742 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 7743 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 7744 7745 setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc())); 7746 } 7747 7748 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 7749 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 7750 MVT::Other, getRoot(), 7751 getValue(I.getArgOperand(0)), 7752 DAG.getSrcValue(I.getArgOperand(0)))); 7753 } 7754 7755 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 7756 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7757 const DataLayout &DL = DAG.getDataLayout(); 7758 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 7759 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 7760 DAG.getSrcValue(I.getOperand(0)), 7761 DL.getABITypeAlignment(I.getType())); 7762 setValue(&I, V); 7763 DAG.setRoot(V.getValue(1)); 7764 } 7765 7766 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 7767 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 7768 MVT::Other, getRoot(), 7769 getValue(I.getArgOperand(0)), 7770 DAG.getSrcValue(I.getArgOperand(0)))); 7771 } 7772 7773 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 7774 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 7775 MVT::Other, getRoot(), 7776 getValue(I.getArgOperand(0)), 7777 getValue(I.getArgOperand(1)), 7778 DAG.getSrcValue(I.getArgOperand(0)), 7779 DAG.getSrcValue(I.getArgOperand(1)))); 7780 } 7781 7782 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 7783 const Instruction &I, 7784 SDValue Op) { 7785 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 7786 if (!Range) 7787 return Op; 7788 7789 ConstantRange CR = getConstantRangeFromMetadata(*Range); 7790 if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet()) 7791 return Op; 7792 7793 APInt Lo = CR.getUnsignedMin(); 7794 if (!Lo.isMinValue()) 7795 return Op; 7796 7797 APInt Hi = CR.getUnsignedMax(); 7798 unsigned Bits = Hi.getActiveBits(); 7799 7800 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 7801 7802 SDLoc SL = getCurSDLoc(); 7803 7804 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 7805 DAG.getValueType(SmallVT)); 7806 unsigned NumVals = Op.getNode()->getNumValues(); 7807 if (NumVals == 1) 7808 return ZExt; 7809 7810 SmallVector<SDValue, 4> Ops; 7811 7812 Ops.push_back(ZExt); 7813 for (unsigned I = 1; I != NumVals; ++I) 7814 Ops.push_back(Op.getValue(I)); 7815 7816 return DAG.getMergeValues(Ops, SL); 7817 } 7818 7819 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 7820 /// the call being lowered. 7821 /// 7822 /// This is a helper for lowering intrinsics that follow a target calling 7823 /// convention or require stack pointer adjustment. Only a subset of the 7824 /// intrinsic's operands need to participate in the calling convention. 7825 void SelectionDAGBuilder::populateCallLoweringInfo( 7826 TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS, 7827 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 7828 bool IsPatchPoint) { 7829 TargetLowering::ArgListTy Args; 7830 Args.reserve(NumArgs); 7831 7832 // Populate the argument list. 7833 // Attributes for args start at offset 1, after the return attribute. 7834 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 7835 ArgI != ArgE; ++ArgI) { 7836 const Value *V = CS->getOperand(ArgI); 7837 7838 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 7839 7840 TargetLowering::ArgListEntry Entry; 7841 Entry.Node = getValue(V); 7842 Entry.Ty = V->getType(); 7843 Entry.setAttributes(&CS, ArgI); 7844 Args.push_back(Entry); 7845 } 7846 7847 CLI.setDebugLoc(getCurSDLoc()) 7848 .setChain(getRoot()) 7849 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args)) 7850 .setDiscardResult(CS->use_empty()) 7851 .setIsPatchPoint(IsPatchPoint); 7852 } 7853 7854 /// Add a stack map intrinsic call's live variable operands to a stackmap 7855 /// or patchpoint target node's operand list. 7856 /// 7857 /// Constants are converted to TargetConstants purely as an optimization to 7858 /// avoid constant materialization and register allocation. 7859 /// 7860 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 7861 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 7862 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 7863 /// address materialization and register allocation, but may also be required 7864 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 7865 /// alloca in the entry block, then the runtime may assume that the alloca's 7866 /// StackMap location can be read immediately after compilation and that the 7867 /// location is valid at any point during execution (this is similar to the 7868 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 7869 /// only available in a register, then the runtime would need to trap when 7870 /// execution reaches the StackMap in order to read the alloca's location. 7871 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 7872 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 7873 SelectionDAGBuilder &Builder) { 7874 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 7875 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 7876 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 7877 Ops.push_back( 7878 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 7879 Ops.push_back( 7880 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 7881 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 7882 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 7883 Ops.push_back(Builder.DAG.getTargetFrameIndex( 7884 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 7885 } else 7886 Ops.push_back(OpVal); 7887 } 7888 } 7889 7890 /// Lower llvm.experimental.stackmap directly to its target opcode. 7891 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 7892 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 7893 // [live variables...]) 7894 7895 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 7896 7897 SDValue Chain, InFlag, Callee, NullPtr; 7898 SmallVector<SDValue, 32> Ops; 7899 7900 SDLoc DL = getCurSDLoc(); 7901 Callee = getValue(CI.getCalledValue()); 7902 NullPtr = DAG.getIntPtrConstant(0, DL, true); 7903 7904 // The stackmap intrinsic only records the live variables (the arguemnts 7905 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 7906 // intrinsic, this won't be lowered to a function call. This means we don't 7907 // have to worry about calling conventions and target specific lowering code. 7908 // Instead we perform the call lowering right here. 7909 // 7910 // chain, flag = CALLSEQ_START(chain, 0, 0) 7911 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 7912 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 7913 // 7914 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 7915 InFlag = Chain.getValue(1); 7916 7917 // Add the <id> and <numBytes> constants. 7918 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 7919 Ops.push_back(DAG.getTargetConstant( 7920 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 7921 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 7922 Ops.push_back(DAG.getTargetConstant( 7923 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 7924 MVT::i32)); 7925 7926 // Push live variables for the stack map. 7927 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 7928 7929 // We are not pushing any register mask info here on the operands list, 7930 // because the stackmap doesn't clobber anything. 7931 7932 // Push the chain and the glue flag. 7933 Ops.push_back(Chain); 7934 Ops.push_back(InFlag); 7935 7936 // Create the STACKMAP node. 7937 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7938 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 7939 Chain = SDValue(SM, 0); 7940 InFlag = Chain.getValue(1); 7941 7942 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 7943 7944 // Stackmaps don't generate values, so nothing goes into the NodeMap. 7945 7946 // Set the root to the target-lowered call chain. 7947 DAG.setRoot(Chain); 7948 7949 // Inform the Frame Information that we have a stackmap in this function. 7950 FuncInfo.MF->getFrameInfo().setHasStackMap(); 7951 } 7952 7953 /// Lower llvm.experimental.patchpoint directly to its target opcode. 7954 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 7955 const BasicBlock *EHPadBB) { 7956 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 7957 // i32 <numBytes>, 7958 // i8* <target>, 7959 // i32 <numArgs>, 7960 // [Args...], 7961 // [live variables...]) 7962 7963 CallingConv::ID CC = CS.getCallingConv(); 7964 bool IsAnyRegCC = CC == CallingConv::AnyReg; 7965 bool HasDef = !CS->getType()->isVoidTy(); 7966 SDLoc dl = getCurSDLoc(); 7967 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 7968 7969 // Handle immediate and symbolic callees. 7970 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 7971 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 7972 /*isTarget=*/true); 7973 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 7974 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 7975 SDLoc(SymbolicCallee), 7976 SymbolicCallee->getValueType(0)); 7977 7978 // Get the real number of arguments participating in the call <numArgs> 7979 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 7980 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 7981 7982 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 7983 // Intrinsics include all meta-operands up to but not including CC. 7984 unsigned NumMetaOpers = PatchPointOpers::CCPos; 7985 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 7986 "Not enough arguments provided to the patchpoint intrinsic"); 7987 7988 // For AnyRegCC the arguments are lowered later on manually. 7989 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 7990 Type *ReturnTy = 7991 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 7992 7993 TargetLowering::CallLoweringInfo CLI(DAG); 7994 populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 7995 true); 7996 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7997 7998 SDNode *CallEnd = Result.second.getNode(); 7999 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 8000 CallEnd = CallEnd->getOperand(0).getNode(); 8001 8002 /// Get a call instruction from the call sequence chain. 8003 /// Tail calls are not allowed. 8004 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 8005 "Expected a callseq node."); 8006 SDNode *Call = CallEnd->getOperand(0).getNode(); 8007 bool HasGlue = Call->getGluedNode(); 8008 8009 // Replace the target specific call node with the patchable intrinsic. 8010 SmallVector<SDValue, 8> Ops; 8011 8012 // Add the <id> and <numBytes> constants. 8013 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 8014 Ops.push_back(DAG.getTargetConstant( 8015 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 8016 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 8017 Ops.push_back(DAG.getTargetConstant( 8018 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 8019 MVT::i32)); 8020 8021 // Add the callee. 8022 Ops.push_back(Callee); 8023 8024 // Adjust <numArgs> to account for any arguments that have been passed on the 8025 // stack instead. 8026 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 8027 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 8028 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 8029 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 8030 8031 // Add the calling convention 8032 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 8033 8034 // Add the arguments we omitted previously. The register allocator should 8035 // place these in any free register. 8036 if (IsAnyRegCC) 8037 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 8038 Ops.push_back(getValue(CS.getArgument(i))); 8039 8040 // Push the arguments from the call instruction up to the register mask. 8041 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 8042 Ops.append(Call->op_begin() + 2, e); 8043 8044 // Push live variables for the stack map. 8045 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 8046 8047 // Push the register mask info. 8048 if (HasGlue) 8049 Ops.push_back(*(Call->op_end()-2)); 8050 else 8051 Ops.push_back(*(Call->op_end()-1)); 8052 8053 // Push the chain (this is originally the first operand of the call, but 8054 // becomes now the last or second to last operand). 8055 Ops.push_back(*(Call->op_begin())); 8056 8057 // Push the glue flag (last operand). 8058 if (HasGlue) 8059 Ops.push_back(*(Call->op_end()-1)); 8060 8061 SDVTList NodeTys; 8062 if (IsAnyRegCC && HasDef) { 8063 // Create the return types based on the intrinsic definition 8064 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8065 SmallVector<EVT, 3> ValueVTs; 8066 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8067 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 8068 8069 // There is always a chain and a glue type at the end 8070 ValueVTs.push_back(MVT::Other); 8071 ValueVTs.push_back(MVT::Glue); 8072 NodeTys = DAG.getVTList(ValueVTs); 8073 } else 8074 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8075 8076 // Replace the target specific call node with a PATCHPOINT node. 8077 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 8078 dl, NodeTys, Ops); 8079 8080 // Update the NodeMap. 8081 if (HasDef) { 8082 if (IsAnyRegCC) 8083 setValue(CS.getInstruction(), SDValue(MN, 0)); 8084 else 8085 setValue(CS.getInstruction(), Result.first); 8086 } 8087 8088 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 8089 // call sequence. Furthermore the location of the chain and glue can change 8090 // when the AnyReg calling convention is used and the intrinsic returns a 8091 // value. 8092 if (IsAnyRegCC && HasDef) { 8093 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 8094 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 8095 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 8096 } else 8097 DAG.ReplaceAllUsesWith(Call, MN); 8098 DAG.DeleteNode(Call); 8099 8100 // Inform the Frame Information that we have a patchpoint in this function. 8101 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 8102 } 8103 8104 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 8105 unsigned Intrinsic) { 8106 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8107 SDValue Op1 = getValue(I.getArgOperand(0)); 8108 SDValue Op2; 8109 if (I.getNumArgOperands() > 1) 8110 Op2 = getValue(I.getArgOperand(1)); 8111 SDLoc dl = getCurSDLoc(); 8112 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8113 SDValue Res; 8114 FastMathFlags FMF; 8115 if (isa<FPMathOperator>(I)) 8116 FMF = I.getFastMathFlags(); 8117 8118 switch (Intrinsic) { 8119 case Intrinsic::experimental_vector_reduce_fadd: 8120 if (FMF.isFast()) 8121 Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2); 8122 else 8123 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 8124 break; 8125 case Intrinsic::experimental_vector_reduce_fmul: 8126 if (FMF.isFast()) 8127 Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2); 8128 else 8129 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 8130 break; 8131 case Intrinsic::experimental_vector_reduce_add: 8132 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 8133 break; 8134 case Intrinsic::experimental_vector_reduce_mul: 8135 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 8136 break; 8137 case Intrinsic::experimental_vector_reduce_and: 8138 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 8139 break; 8140 case Intrinsic::experimental_vector_reduce_or: 8141 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 8142 break; 8143 case Intrinsic::experimental_vector_reduce_xor: 8144 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 8145 break; 8146 case Intrinsic::experimental_vector_reduce_smax: 8147 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 8148 break; 8149 case Intrinsic::experimental_vector_reduce_smin: 8150 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 8151 break; 8152 case Intrinsic::experimental_vector_reduce_umax: 8153 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 8154 break; 8155 case Intrinsic::experimental_vector_reduce_umin: 8156 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 8157 break; 8158 case Intrinsic::experimental_vector_reduce_fmax: 8159 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1); 8160 break; 8161 case Intrinsic::experimental_vector_reduce_fmin: 8162 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1); 8163 break; 8164 default: 8165 llvm_unreachable("Unhandled vector reduce intrinsic"); 8166 } 8167 setValue(&I, Res); 8168 } 8169 8170 /// Returns an AttributeList representing the attributes applied to the return 8171 /// value of the given call. 8172 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 8173 SmallVector<Attribute::AttrKind, 2> Attrs; 8174 if (CLI.RetSExt) 8175 Attrs.push_back(Attribute::SExt); 8176 if (CLI.RetZExt) 8177 Attrs.push_back(Attribute::ZExt); 8178 if (CLI.IsInReg) 8179 Attrs.push_back(Attribute::InReg); 8180 8181 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 8182 Attrs); 8183 } 8184 8185 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 8186 /// implementation, which just calls LowerCall. 8187 /// FIXME: When all targets are 8188 /// migrated to using LowerCall, this hook should be integrated into SDISel. 8189 std::pair<SDValue, SDValue> 8190 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 8191 // Handle the incoming return values from the call. 8192 CLI.Ins.clear(); 8193 Type *OrigRetTy = CLI.RetTy; 8194 SmallVector<EVT, 4> RetTys; 8195 SmallVector<uint64_t, 4> Offsets; 8196 auto &DL = CLI.DAG.getDataLayout(); 8197 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 8198 8199 if (CLI.IsPostTypeLegalization) { 8200 // If we are lowering a libcall after legalization, split the return type. 8201 SmallVector<EVT, 4> OldRetTys = std::move(RetTys); 8202 SmallVector<uint64_t, 4> OldOffsets = std::move(Offsets); 8203 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 8204 EVT RetVT = OldRetTys[i]; 8205 uint64_t Offset = OldOffsets[i]; 8206 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 8207 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 8208 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 8209 RetTys.append(NumRegs, RegisterVT); 8210 for (unsigned j = 0; j != NumRegs; ++j) 8211 Offsets.push_back(Offset + j * RegisterVTByteSZ); 8212 } 8213 } 8214 8215 SmallVector<ISD::OutputArg, 4> Outs; 8216 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 8217 8218 bool CanLowerReturn = 8219 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 8220 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 8221 8222 SDValue DemoteStackSlot; 8223 int DemoteStackIdx = -100; 8224 if (!CanLowerReturn) { 8225 // FIXME: equivalent assert? 8226 // assert(!CS.hasInAllocaArgument() && 8227 // "sret demotion is incompatible with inalloca"); 8228 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 8229 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 8230 MachineFunction &MF = CLI.DAG.getMachineFunction(); 8231 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 8232 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 8233 8234 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 8235 ArgListEntry Entry; 8236 Entry.Node = DemoteStackSlot; 8237 Entry.Ty = StackSlotPtrType; 8238 Entry.IsSExt = false; 8239 Entry.IsZExt = false; 8240 Entry.IsInReg = false; 8241 Entry.IsSRet = true; 8242 Entry.IsNest = false; 8243 Entry.IsByVal = false; 8244 Entry.IsReturned = false; 8245 Entry.IsSwiftSelf = false; 8246 Entry.IsSwiftError = false; 8247 Entry.Alignment = Align; 8248 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 8249 CLI.NumFixedArgs += 1; 8250 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 8251 8252 // sret demotion isn't compatible with tail-calls, since the sret argument 8253 // points into the callers stack frame. 8254 CLI.IsTailCall = false; 8255 } else { 8256 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 8257 EVT VT = RetTys[I]; 8258 MVT RegisterVT = 8259 getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT); 8260 unsigned NumRegs = 8261 getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT); 8262 for (unsigned i = 0; i != NumRegs; ++i) { 8263 ISD::InputArg MyFlags; 8264 MyFlags.VT = RegisterVT; 8265 MyFlags.ArgVT = VT; 8266 MyFlags.Used = CLI.IsReturnValueUsed; 8267 if (CLI.RetSExt) 8268 MyFlags.Flags.setSExt(); 8269 if (CLI.RetZExt) 8270 MyFlags.Flags.setZExt(); 8271 if (CLI.IsInReg) 8272 MyFlags.Flags.setInReg(); 8273 CLI.Ins.push_back(MyFlags); 8274 } 8275 } 8276 } 8277 8278 // We push in swifterror return as the last element of CLI.Ins. 8279 ArgListTy &Args = CLI.getArgs(); 8280 if (supportSwiftError()) { 8281 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8282 if (Args[i].IsSwiftError) { 8283 ISD::InputArg MyFlags; 8284 MyFlags.VT = getPointerTy(DL); 8285 MyFlags.ArgVT = EVT(getPointerTy(DL)); 8286 MyFlags.Flags.setSwiftError(); 8287 CLI.Ins.push_back(MyFlags); 8288 } 8289 } 8290 } 8291 8292 // Handle all of the outgoing arguments. 8293 CLI.Outs.clear(); 8294 CLI.OutVals.clear(); 8295 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8296 SmallVector<EVT, 4> ValueVTs; 8297 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 8298 // FIXME: Split arguments if CLI.IsPostTypeLegalization 8299 Type *FinalType = Args[i].Ty; 8300 if (Args[i].IsByVal) 8301 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 8302 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 8303 FinalType, CLI.CallConv, CLI.IsVarArg); 8304 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 8305 ++Value) { 8306 EVT VT = ValueVTs[Value]; 8307 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 8308 SDValue Op = SDValue(Args[i].Node.getNode(), 8309 Args[i].Node.getResNo() + Value); 8310 ISD::ArgFlagsTy Flags; 8311 8312 // Certain targets (such as MIPS), may have a different ABI alignment 8313 // for a type depending on the context. Give the target a chance to 8314 // specify the alignment it wants. 8315 unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL); 8316 8317 if (Args[i].IsZExt) 8318 Flags.setZExt(); 8319 if (Args[i].IsSExt) 8320 Flags.setSExt(); 8321 if (Args[i].IsInReg) { 8322 // If we are using vectorcall calling convention, a structure that is 8323 // passed InReg - is surely an HVA 8324 if (CLI.CallConv == CallingConv::X86_VectorCall && 8325 isa<StructType>(FinalType)) { 8326 // The first value of a structure is marked 8327 if (0 == Value) 8328 Flags.setHvaStart(); 8329 Flags.setHva(); 8330 } 8331 // Set InReg Flag 8332 Flags.setInReg(); 8333 } 8334 if (Args[i].IsSRet) 8335 Flags.setSRet(); 8336 if (Args[i].IsSwiftSelf) 8337 Flags.setSwiftSelf(); 8338 if (Args[i].IsSwiftError) 8339 Flags.setSwiftError(); 8340 if (Args[i].IsByVal) 8341 Flags.setByVal(); 8342 if (Args[i].IsInAlloca) { 8343 Flags.setInAlloca(); 8344 // Set the byval flag for CCAssignFn callbacks that don't know about 8345 // inalloca. This way we can know how many bytes we should've allocated 8346 // and how many bytes a callee cleanup function will pop. If we port 8347 // inalloca to more targets, we'll have to add custom inalloca handling 8348 // in the various CC lowering callbacks. 8349 Flags.setByVal(); 8350 } 8351 if (Args[i].IsByVal || Args[i].IsInAlloca) { 8352 PointerType *Ty = cast<PointerType>(Args[i].Ty); 8353 Type *ElementTy = Ty->getElementType(); 8354 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 8355 // For ByVal, alignment should come from FE. BE will guess if this 8356 // info is not there but there are cases it cannot get right. 8357 unsigned FrameAlign; 8358 if (Args[i].Alignment) 8359 FrameAlign = Args[i].Alignment; 8360 else 8361 FrameAlign = getByValTypeAlignment(ElementTy, DL); 8362 Flags.setByValAlign(FrameAlign); 8363 } 8364 if (Args[i].IsNest) 8365 Flags.setNest(); 8366 if (NeedsRegBlock) 8367 Flags.setInConsecutiveRegs(); 8368 Flags.setOrigAlign(OriginalAlignment); 8369 8370 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT); 8371 unsigned NumParts = 8372 getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT); 8373 SmallVector<SDValue, 4> Parts(NumParts); 8374 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 8375 8376 if (Args[i].IsSExt) 8377 ExtendKind = ISD::SIGN_EXTEND; 8378 else if (Args[i].IsZExt) 8379 ExtendKind = ISD::ZERO_EXTEND; 8380 8381 // Conservatively only handle 'returned' on non-vectors that can be lowered, 8382 // for now. 8383 if (Args[i].IsReturned && !Op.getValueType().isVector() && 8384 CanLowerReturn) { 8385 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 8386 "unexpected use of 'returned'"); 8387 // Before passing 'returned' to the target lowering code, ensure that 8388 // either the register MVT and the actual EVT are the same size or that 8389 // the return value and argument are extended in the same way; in these 8390 // cases it's safe to pass the argument register value unchanged as the 8391 // return register value (although it's at the target's option whether 8392 // to do so) 8393 // TODO: allow code generation to take advantage of partially preserved 8394 // registers rather than clobbering the entire register when the 8395 // parameter extension method is not compatible with the return 8396 // extension method 8397 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 8398 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 8399 CLI.RetZExt == Args[i].IsZExt)) 8400 Flags.setReturned(); 8401 } 8402 8403 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 8404 CLI.CS.getInstruction(), ExtendKind, true); 8405 8406 for (unsigned j = 0; j != NumParts; ++j) { 8407 // if it isn't first piece, alignment must be 1 8408 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 8409 i < CLI.NumFixedArgs, 8410 i, j*Parts[j].getValueType().getStoreSize()); 8411 if (NumParts > 1 && j == 0) 8412 MyFlags.Flags.setSplit(); 8413 else if (j != 0) { 8414 MyFlags.Flags.setOrigAlign(1); 8415 if (j == NumParts - 1) 8416 MyFlags.Flags.setSplitEnd(); 8417 } 8418 8419 CLI.Outs.push_back(MyFlags); 8420 CLI.OutVals.push_back(Parts[j]); 8421 } 8422 8423 if (NeedsRegBlock && Value == NumValues - 1) 8424 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 8425 } 8426 } 8427 8428 SmallVector<SDValue, 4> InVals; 8429 CLI.Chain = LowerCall(CLI, InVals); 8430 8431 // Update CLI.InVals to use outside of this function. 8432 CLI.InVals = InVals; 8433 8434 // Verify that the target's LowerCall behaved as expected. 8435 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 8436 "LowerCall didn't return a valid chain!"); 8437 assert((!CLI.IsTailCall || InVals.empty()) && 8438 "LowerCall emitted a return value for a tail call!"); 8439 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 8440 "LowerCall didn't emit the correct number of values!"); 8441 8442 // For a tail call, the return value is merely live-out and there aren't 8443 // any nodes in the DAG representing it. Return a special value to 8444 // indicate that a tail call has been emitted and no more Instructions 8445 // should be processed in the current block. 8446 if (CLI.IsTailCall) { 8447 CLI.DAG.setRoot(CLI.Chain); 8448 return std::make_pair(SDValue(), SDValue()); 8449 } 8450 8451 #ifndef NDEBUG 8452 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 8453 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 8454 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 8455 "LowerCall emitted a value with the wrong type!"); 8456 } 8457 #endif 8458 8459 SmallVector<SDValue, 4> ReturnValues; 8460 if (!CanLowerReturn) { 8461 // The instruction result is the result of loading from the 8462 // hidden sret parameter. 8463 SmallVector<EVT, 1> PVTs; 8464 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 8465 8466 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 8467 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 8468 EVT PtrVT = PVTs[0]; 8469 8470 unsigned NumValues = RetTys.size(); 8471 ReturnValues.resize(NumValues); 8472 SmallVector<SDValue, 4> Chains(NumValues); 8473 8474 // An aggregate return value cannot wrap around the address space, so 8475 // offsets to its parts don't wrap either. 8476 SDNodeFlags Flags; 8477 Flags.setNoUnsignedWrap(true); 8478 8479 for (unsigned i = 0; i < NumValues; ++i) { 8480 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 8481 CLI.DAG.getConstant(Offsets[i], CLI.DL, 8482 PtrVT), Flags); 8483 SDValue L = CLI.DAG.getLoad( 8484 RetTys[i], CLI.DL, CLI.Chain, Add, 8485 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 8486 DemoteStackIdx, Offsets[i]), 8487 /* Alignment = */ 1); 8488 ReturnValues[i] = L; 8489 Chains[i] = L.getValue(1); 8490 } 8491 8492 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 8493 } else { 8494 // Collect the legal value parts into potentially illegal values 8495 // that correspond to the original function's return values. 8496 Optional<ISD::NodeType> AssertOp; 8497 if (CLI.RetSExt) 8498 AssertOp = ISD::AssertSext; 8499 else if (CLI.RetZExt) 8500 AssertOp = ISD::AssertZext; 8501 unsigned CurReg = 0; 8502 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 8503 EVT VT = RetTys[I]; 8504 MVT RegisterVT = 8505 getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT); 8506 unsigned NumRegs = 8507 getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT); 8508 8509 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 8510 NumRegs, RegisterVT, VT, nullptr, 8511 AssertOp, true)); 8512 CurReg += NumRegs; 8513 } 8514 8515 // For a function returning void, there is no return value. We can't create 8516 // such a node, so we just return a null return value in that case. In 8517 // that case, nothing will actually look at the value. 8518 if (ReturnValues.empty()) 8519 return std::make_pair(SDValue(), CLI.Chain); 8520 } 8521 8522 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 8523 CLI.DAG.getVTList(RetTys), ReturnValues); 8524 return std::make_pair(Res, CLI.Chain); 8525 } 8526 8527 void TargetLowering::LowerOperationWrapper(SDNode *N, 8528 SmallVectorImpl<SDValue> &Results, 8529 SelectionDAG &DAG) const { 8530 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 8531 Results.push_back(Res); 8532 } 8533 8534 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 8535 llvm_unreachable("LowerOperation not implemented for this target!"); 8536 } 8537 8538 void 8539 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 8540 SDValue Op = getNonRegisterValue(V); 8541 assert((Op.getOpcode() != ISD::CopyFromReg || 8542 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 8543 "Copy from a reg to the same reg!"); 8544 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 8545 8546 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8547 // If this is an InlineAsm we have to match the registers required, not the 8548 // notional registers required by the type. 8549 8550 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 8551 V->getType(), isABIRegCopy(V)); 8552 SDValue Chain = DAG.getEntryNode(); 8553 8554 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 8555 FuncInfo.PreferredExtendType.end()) 8556 ? ISD::ANY_EXTEND 8557 : FuncInfo.PreferredExtendType[V]; 8558 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 8559 PendingExports.push_back(Chain); 8560 } 8561 8562 #include "llvm/CodeGen/SelectionDAGISel.h" 8563 8564 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 8565 /// entry block, return true. This includes arguments used by switches, since 8566 /// the switch may expand into multiple basic blocks. 8567 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 8568 // With FastISel active, we may be splitting blocks, so force creation 8569 // of virtual registers for all non-dead arguments. 8570 if (FastISel) 8571 return A->use_empty(); 8572 8573 const BasicBlock &Entry = A->getParent()->front(); 8574 for (const User *U : A->users()) 8575 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 8576 return false; // Use not in entry block. 8577 8578 return true; 8579 } 8580 8581 using ArgCopyElisionMapTy = 8582 DenseMap<const Argument *, 8583 std::pair<const AllocaInst *, const StoreInst *>>; 8584 8585 /// Scan the entry block of the function in FuncInfo for arguments that look 8586 /// like copies into a local alloca. Record any copied arguments in 8587 /// ArgCopyElisionCandidates. 8588 static void 8589 findArgumentCopyElisionCandidates(const DataLayout &DL, 8590 FunctionLoweringInfo *FuncInfo, 8591 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 8592 // Record the state of every static alloca used in the entry block. Argument 8593 // allocas are all used in the entry block, so we need approximately as many 8594 // entries as we have arguments. 8595 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 8596 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 8597 unsigned NumArgs = FuncInfo->Fn->arg_size(); 8598 StaticAllocas.reserve(NumArgs * 2); 8599 8600 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 8601 if (!V) 8602 return nullptr; 8603 V = V->stripPointerCasts(); 8604 const auto *AI = dyn_cast<AllocaInst>(V); 8605 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 8606 return nullptr; 8607 auto Iter = StaticAllocas.insert({AI, Unknown}); 8608 return &Iter.first->second; 8609 }; 8610 8611 // Look for stores of arguments to static allocas. Look through bitcasts and 8612 // GEPs to handle type coercions, as long as the alloca is fully initialized 8613 // by the store. Any non-store use of an alloca escapes it and any subsequent 8614 // unanalyzed store might write it. 8615 // FIXME: Handle structs initialized with multiple stores. 8616 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 8617 // Look for stores, and handle non-store uses conservatively. 8618 const auto *SI = dyn_cast<StoreInst>(&I); 8619 if (!SI) { 8620 // We will look through cast uses, so ignore them completely. 8621 if (I.isCast()) 8622 continue; 8623 // Ignore debug info intrinsics, they don't escape or store to allocas. 8624 if (isa<DbgInfoIntrinsic>(I)) 8625 continue; 8626 // This is an unknown instruction. Assume it escapes or writes to all 8627 // static alloca operands. 8628 for (const Use &U : I.operands()) { 8629 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 8630 *Info = StaticAllocaInfo::Clobbered; 8631 } 8632 continue; 8633 } 8634 8635 // If the stored value is a static alloca, mark it as escaped. 8636 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 8637 *Info = StaticAllocaInfo::Clobbered; 8638 8639 // Check if the destination is a static alloca. 8640 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 8641 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 8642 if (!Info) 8643 continue; 8644 const AllocaInst *AI = cast<AllocaInst>(Dst); 8645 8646 // Skip allocas that have been initialized or clobbered. 8647 if (*Info != StaticAllocaInfo::Unknown) 8648 continue; 8649 8650 // Check if the stored value is an argument, and that this store fully 8651 // initializes the alloca. Don't elide copies from the same argument twice. 8652 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 8653 const auto *Arg = dyn_cast<Argument>(Val); 8654 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 8655 Arg->getType()->isEmptyTy() || 8656 DL.getTypeStoreSize(Arg->getType()) != 8657 DL.getTypeAllocSize(AI->getAllocatedType()) || 8658 ArgCopyElisionCandidates.count(Arg)) { 8659 *Info = StaticAllocaInfo::Clobbered; 8660 continue; 8661 } 8662 8663 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 8664 << '\n'); 8665 8666 // Mark this alloca and store for argument copy elision. 8667 *Info = StaticAllocaInfo::Elidable; 8668 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 8669 8670 // Stop scanning if we've seen all arguments. This will happen early in -O0 8671 // builds, which is useful, because -O0 builds have large entry blocks and 8672 // many allocas. 8673 if (ArgCopyElisionCandidates.size() == NumArgs) 8674 break; 8675 } 8676 } 8677 8678 /// Try to elide argument copies from memory into a local alloca. Succeeds if 8679 /// ArgVal is a load from a suitable fixed stack object. 8680 static void tryToElideArgumentCopy( 8681 FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains, 8682 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 8683 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 8684 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 8685 SDValue ArgVal, bool &ArgHasUses) { 8686 // Check if this is a load from a fixed stack object. 8687 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 8688 if (!LNode) 8689 return; 8690 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 8691 if (!FINode) 8692 return; 8693 8694 // Check that the fixed stack object is the right size and alignment. 8695 // Look at the alignment that the user wrote on the alloca instead of looking 8696 // at the stack object. 8697 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 8698 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 8699 const AllocaInst *AI = ArgCopyIter->second.first; 8700 int FixedIndex = FINode->getIndex(); 8701 int &AllocaIndex = FuncInfo->StaticAllocaMap[AI]; 8702 int OldIndex = AllocaIndex; 8703 MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo(); 8704 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 8705 LLVM_DEBUG( 8706 dbgs() << " argument copy elision failed due to bad fixed stack " 8707 "object size\n"); 8708 return; 8709 } 8710 unsigned RequiredAlignment = AI->getAlignment(); 8711 if (!RequiredAlignment) { 8712 RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment( 8713 AI->getAllocatedType()); 8714 } 8715 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) { 8716 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 8717 "greater than stack argument alignment (" 8718 << RequiredAlignment << " vs " 8719 << MFI.getObjectAlignment(FixedIndex) << ")\n"); 8720 return; 8721 } 8722 8723 // Perform the elision. Delete the old stack object and replace its only use 8724 // in the variable info map. Mark the stack object as mutable. 8725 LLVM_DEBUG({ 8726 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 8727 << " Replacing frame index " << OldIndex << " with " << FixedIndex 8728 << '\n'; 8729 }); 8730 MFI.RemoveStackObject(OldIndex); 8731 MFI.setIsImmutableObjectIndex(FixedIndex, false); 8732 AllocaIndex = FixedIndex; 8733 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 8734 Chains.push_back(ArgVal.getValue(1)); 8735 8736 // Avoid emitting code for the store implementing the copy. 8737 const StoreInst *SI = ArgCopyIter->second.second; 8738 ElidedArgCopyInstrs.insert(SI); 8739 8740 // Check for uses of the argument again so that we can avoid exporting ArgVal 8741 // if it is't used by anything other than the store. 8742 for (const Value *U : Arg.users()) { 8743 if (U != SI) { 8744 ArgHasUses = true; 8745 break; 8746 } 8747 } 8748 } 8749 8750 void SelectionDAGISel::LowerArguments(const Function &F) { 8751 SelectionDAG &DAG = SDB->DAG; 8752 SDLoc dl = SDB->getCurSDLoc(); 8753 const DataLayout &DL = DAG.getDataLayout(); 8754 SmallVector<ISD::InputArg, 16> Ins; 8755 8756 if (!FuncInfo->CanLowerReturn) { 8757 // Put in an sret pointer parameter before all the other parameters. 8758 SmallVector<EVT, 1> ValueVTs; 8759 ComputeValueVTs(*TLI, DAG.getDataLayout(), 8760 F.getReturnType()->getPointerTo( 8761 DAG.getDataLayout().getAllocaAddrSpace()), 8762 ValueVTs); 8763 8764 // NOTE: Assuming that a pointer will never break down to more than one VT 8765 // or one register. 8766 ISD::ArgFlagsTy Flags; 8767 Flags.setSRet(); 8768 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 8769 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 8770 ISD::InputArg::NoArgIndex, 0); 8771 Ins.push_back(RetArg); 8772 } 8773 8774 // Look for stores of arguments to static allocas. Mark such arguments with a 8775 // flag to ask the target to give us the memory location of that argument if 8776 // available. 8777 ArgCopyElisionMapTy ArgCopyElisionCandidates; 8778 findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates); 8779 8780 // Set up the incoming argument description vector. 8781 for (const Argument &Arg : F.args()) { 8782 unsigned ArgNo = Arg.getArgNo(); 8783 SmallVector<EVT, 4> ValueVTs; 8784 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 8785 bool isArgValueUsed = !Arg.use_empty(); 8786 unsigned PartBase = 0; 8787 Type *FinalType = Arg.getType(); 8788 if (Arg.hasAttribute(Attribute::ByVal)) 8789 FinalType = cast<PointerType>(FinalType)->getElementType(); 8790 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 8791 FinalType, F.getCallingConv(), F.isVarArg()); 8792 for (unsigned Value = 0, NumValues = ValueVTs.size(); 8793 Value != NumValues; ++Value) { 8794 EVT VT = ValueVTs[Value]; 8795 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 8796 ISD::ArgFlagsTy Flags; 8797 8798 // Certain targets (such as MIPS), may have a different ABI alignment 8799 // for a type depending on the context. Give the target a chance to 8800 // specify the alignment it wants. 8801 unsigned OriginalAlignment = 8802 TLI->getABIAlignmentForCallingConv(ArgTy, DL); 8803 8804 if (Arg.hasAttribute(Attribute::ZExt)) 8805 Flags.setZExt(); 8806 if (Arg.hasAttribute(Attribute::SExt)) 8807 Flags.setSExt(); 8808 if (Arg.hasAttribute(Attribute::InReg)) { 8809 // If we are using vectorcall calling convention, a structure that is 8810 // passed InReg - is surely an HVA 8811 if (F.getCallingConv() == CallingConv::X86_VectorCall && 8812 isa<StructType>(Arg.getType())) { 8813 // The first value of a structure is marked 8814 if (0 == Value) 8815 Flags.setHvaStart(); 8816 Flags.setHva(); 8817 } 8818 // Set InReg Flag 8819 Flags.setInReg(); 8820 } 8821 if (Arg.hasAttribute(Attribute::StructRet)) 8822 Flags.setSRet(); 8823 if (Arg.hasAttribute(Attribute::SwiftSelf)) 8824 Flags.setSwiftSelf(); 8825 if (Arg.hasAttribute(Attribute::SwiftError)) 8826 Flags.setSwiftError(); 8827 if (Arg.hasAttribute(Attribute::ByVal)) 8828 Flags.setByVal(); 8829 if (Arg.hasAttribute(Attribute::InAlloca)) { 8830 Flags.setInAlloca(); 8831 // Set the byval flag for CCAssignFn callbacks that don't know about 8832 // inalloca. This way we can know how many bytes we should've allocated 8833 // and how many bytes a callee cleanup function will pop. If we port 8834 // inalloca to more targets, we'll have to add custom inalloca handling 8835 // in the various CC lowering callbacks. 8836 Flags.setByVal(); 8837 } 8838 if (F.getCallingConv() == CallingConv::X86_INTR) { 8839 // IA Interrupt passes frame (1st parameter) by value in the stack. 8840 if (ArgNo == 0) 8841 Flags.setByVal(); 8842 } 8843 if (Flags.isByVal() || Flags.isInAlloca()) { 8844 PointerType *Ty = cast<PointerType>(Arg.getType()); 8845 Type *ElementTy = Ty->getElementType(); 8846 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 8847 // For ByVal, alignment should be passed from FE. BE will guess if 8848 // this info is not there but there are cases it cannot get right. 8849 unsigned FrameAlign; 8850 if (Arg.getParamAlignment()) 8851 FrameAlign = Arg.getParamAlignment(); 8852 else 8853 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 8854 Flags.setByValAlign(FrameAlign); 8855 } 8856 if (Arg.hasAttribute(Attribute::Nest)) 8857 Flags.setNest(); 8858 if (NeedsRegBlock) 8859 Flags.setInConsecutiveRegs(); 8860 Flags.setOrigAlign(OriginalAlignment); 8861 if (ArgCopyElisionCandidates.count(&Arg)) 8862 Flags.setCopyElisionCandidate(); 8863 8864 MVT RegisterVT = 8865 TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), VT); 8866 unsigned NumRegs = 8867 TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), VT); 8868 for (unsigned i = 0; i != NumRegs; ++i) { 8869 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 8870 ArgNo, PartBase+i*RegisterVT.getStoreSize()); 8871 if (NumRegs > 1 && i == 0) 8872 MyFlags.Flags.setSplit(); 8873 // if it isn't first piece, alignment must be 1 8874 else if (i > 0) { 8875 MyFlags.Flags.setOrigAlign(1); 8876 if (i == NumRegs - 1) 8877 MyFlags.Flags.setSplitEnd(); 8878 } 8879 Ins.push_back(MyFlags); 8880 } 8881 if (NeedsRegBlock && Value == NumValues - 1) 8882 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 8883 PartBase += VT.getStoreSize(); 8884 } 8885 } 8886 8887 // Call the target to set up the argument values. 8888 SmallVector<SDValue, 8> InVals; 8889 SDValue NewRoot = TLI->LowerFormalArguments( 8890 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 8891 8892 // Verify that the target's LowerFormalArguments behaved as expected. 8893 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 8894 "LowerFormalArguments didn't return a valid chain!"); 8895 assert(InVals.size() == Ins.size() && 8896 "LowerFormalArguments didn't emit the correct number of values!"); 8897 LLVM_DEBUG({ 8898 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 8899 assert(InVals[i].getNode() && 8900 "LowerFormalArguments emitted a null value!"); 8901 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 8902 "LowerFormalArguments emitted a value with the wrong type!"); 8903 } 8904 }); 8905 8906 // Update the DAG with the new chain value resulting from argument lowering. 8907 DAG.setRoot(NewRoot); 8908 8909 // Set up the argument values. 8910 unsigned i = 0; 8911 if (!FuncInfo->CanLowerReturn) { 8912 // Create a virtual register for the sret pointer, and put in a copy 8913 // from the sret argument into it. 8914 SmallVector<EVT, 1> ValueVTs; 8915 ComputeValueVTs(*TLI, DAG.getDataLayout(), 8916 F.getReturnType()->getPointerTo( 8917 DAG.getDataLayout().getAllocaAddrSpace()), 8918 ValueVTs); 8919 MVT VT = ValueVTs[0].getSimpleVT(); 8920 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 8921 Optional<ISD::NodeType> AssertOp = None; 8922 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 8923 RegVT, VT, nullptr, AssertOp); 8924 8925 MachineFunction& MF = SDB->DAG.getMachineFunction(); 8926 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 8927 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 8928 FuncInfo->DemoteRegister = SRetReg; 8929 NewRoot = 8930 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 8931 DAG.setRoot(NewRoot); 8932 8933 // i indexes lowered arguments. Bump it past the hidden sret argument. 8934 ++i; 8935 } 8936 8937 SmallVector<SDValue, 4> Chains; 8938 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 8939 for (const Argument &Arg : F.args()) { 8940 SmallVector<SDValue, 4> ArgValues; 8941 SmallVector<EVT, 4> ValueVTs; 8942 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 8943 unsigned NumValues = ValueVTs.size(); 8944 if (NumValues == 0) 8945 continue; 8946 8947 bool ArgHasUses = !Arg.use_empty(); 8948 8949 // Elide the copying store if the target loaded this argument from a 8950 // suitable fixed stack object. 8951 if (Ins[i].Flags.isCopyElisionCandidate()) { 8952 tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 8953 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 8954 InVals[i], ArgHasUses); 8955 } 8956 8957 // If this argument is unused then remember its value. It is used to generate 8958 // debugging information. 8959 bool isSwiftErrorArg = 8960 TLI->supportSwiftError() && 8961 Arg.hasAttribute(Attribute::SwiftError); 8962 if (!ArgHasUses && !isSwiftErrorArg) { 8963 SDB->setUnusedArgValue(&Arg, InVals[i]); 8964 8965 // Also remember any frame index for use in FastISel. 8966 if (FrameIndexSDNode *FI = 8967 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 8968 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 8969 } 8970 8971 for (unsigned Val = 0; Val != NumValues; ++Val) { 8972 EVT VT = ValueVTs[Val]; 8973 MVT PartVT = 8974 TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), VT); 8975 unsigned NumParts = 8976 TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), VT); 8977 8978 // Even an apparant 'unused' swifterror argument needs to be returned. So 8979 // we do generate a copy for it that can be used on return from the 8980 // function. 8981 if (ArgHasUses || isSwiftErrorArg) { 8982 Optional<ISD::NodeType> AssertOp; 8983 if (Arg.hasAttribute(Attribute::SExt)) 8984 AssertOp = ISD::AssertSext; 8985 else if (Arg.hasAttribute(Attribute::ZExt)) 8986 AssertOp = ISD::AssertZext; 8987 8988 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 8989 PartVT, VT, nullptr, AssertOp, 8990 true)); 8991 } 8992 8993 i += NumParts; 8994 } 8995 8996 // We don't need to do anything else for unused arguments. 8997 if (ArgValues.empty()) 8998 continue; 8999 9000 // Note down frame index. 9001 if (FrameIndexSDNode *FI = 9002 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 9003 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9004 9005 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 9006 SDB->getCurSDLoc()); 9007 9008 SDB->setValue(&Arg, Res); 9009 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 9010 // We want to associate the argument with the frame index, among 9011 // involved operands, that correspond to the lowest address. The 9012 // getCopyFromParts function, called earlier, is swapping the order of 9013 // the operands to BUILD_PAIR depending on endianness. The result of 9014 // that swapping is that the least significant bits of the argument will 9015 // be in the first operand of the BUILD_PAIR node, and the most 9016 // significant bits will be in the second operand. 9017 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 9018 if (LoadSDNode *LNode = 9019 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 9020 if (FrameIndexSDNode *FI = 9021 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 9022 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9023 } 9024 9025 // Update the SwiftErrorVRegDefMap. 9026 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 9027 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9028 if (TargetRegisterInfo::isVirtualRegister(Reg)) 9029 FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, 9030 FuncInfo->SwiftErrorArg, Reg); 9031 } 9032 9033 // If this argument is live outside of the entry block, insert a copy from 9034 // wherever we got it to the vreg that other BB's will reference it as. 9035 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 9036 // If we can, though, try to skip creating an unnecessary vreg. 9037 // FIXME: This isn't very clean... it would be nice to make this more 9038 // general. It's also subtly incompatible with the hacks FastISel 9039 // uses with vregs. 9040 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9041 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 9042 FuncInfo->ValueMap[&Arg] = Reg; 9043 continue; 9044 } 9045 } 9046 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 9047 FuncInfo->InitializeRegForValue(&Arg); 9048 SDB->CopyToExportRegsIfNeeded(&Arg); 9049 } 9050 } 9051 9052 if (!Chains.empty()) { 9053 Chains.push_back(NewRoot); 9054 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 9055 } 9056 9057 DAG.setRoot(NewRoot); 9058 9059 assert(i == InVals.size() && "Argument register count mismatch!"); 9060 9061 // If any argument copy elisions occurred and we have debug info, update the 9062 // stale frame indices used in the dbg.declare variable info table. 9063 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 9064 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 9065 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 9066 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 9067 if (I != ArgCopyElisionFrameIndexMap.end()) 9068 VI.Slot = I->second; 9069 } 9070 } 9071 9072 // Finally, if the target has anything special to do, allow it to do so. 9073 EmitFunctionEntryCode(); 9074 } 9075 9076 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 9077 /// ensure constants are generated when needed. Remember the virtual registers 9078 /// that need to be added to the Machine PHI nodes as input. We cannot just 9079 /// directly add them, because expansion might result in multiple MBB's for one 9080 /// BB. As such, the start of the BB might correspond to a different MBB than 9081 /// the end. 9082 void 9083 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 9084 const TerminatorInst *TI = LLVMBB->getTerminator(); 9085 9086 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 9087 9088 // Check PHI nodes in successors that expect a value to be available from this 9089 // block. 9090 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 9091 const BasicBlock *SuccBB = TI->getSuccessor(succ); 9092 if (!isa<PHINode>(SuccBB->begin())) continue; 9093 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 9094 9095 // If this terminator has multiple identical successors (common for 9096 // switches), only handle each succ once. 9097 if (!SuccsHandled.insert(SuccMBB).second) 9098 continue; 9099 9100 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 9101 9102 // At this point we know that there is a 1-1 correspondence between LLVM PHI 9103 // nodes and Machine PHI nodes, but the incoming operands have not been 9104 // emitted yet. 9105 for (const PHINode &PN : SuccBB->phis()) { 9106 // Ignore dead phi's. 9107 if (PN.use_empty()) 9108 continue; 9109 9110 // Skip empty types 9111 if (PN.getType()->isEmptyTy()) 9112 continue; 9113 9114 unsigned Reg; 9115 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 9116 9117 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 9118 unsigned &RegOut = ConstantsOut[C]; 9119 if (RegOut == 0) { 9120 RegOut = FuncInfo.CreateRegs(C->getType()); 9121 CopyValueToVirtualRegister(C, RegOut); 9122 } 9123 Reg = RegOut; 9124 } else { 9125 DenseMap<const Value *, unsigned>::iterator I = 9126 FuncInfo.ValueMap.find(PHIOp); 9127 if (I != FuncInfo.ValueMap.end()) 9128 Reg = I->second; 9129 else { 9130 assert(isa<AllocaInst>(PHIOp) && 9131 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 9132 "Didn't codegen value into a register!??"); 9133 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 9134 CopyValueToVirtualRegister(PHIOp, Reg); 9135 } 9136 } 9137 9138 // Remember that this register needs to added to the machine PHI node as 9139 // the input for this MBB. 9140 SmallVector<EVT, 4> ValueVTs; 9141 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9142 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 9143 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 9144 EVT VT = ValueVTs[vti]; 9145 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 9146 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 9147 FuncInfo.PHINodesToUpdate.push_back( 9148 std::make_pair(&*MBBI++, Reg + i)); 9149 Reg += NumRegisters; 9150 } 9151 } 9152 } 9153 9154 ConstantsOut.clear(); 9155 } 9156 9157 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 9158 /// is 0. 9159 MachineBasicBlock * 9160 SelectionDAGBuilder::StackProtectorDescriptor:: 9161 AddSuccessorMBB(const BasicBlock *BB, 9162 MachineBasicBlock *ParentMBB, 9163 bool IsLikely, 9164 MachineBasicBlock *SuccMBB) { 9165 // If SuccBB has not been created yet, create it. 9166 if (!SuccMBB) { 9167 MachineFunction *MF = ParentMBB->getParent(); 9168 MachineFunction::iterator BBI(ParentMBB); 9169 SuccMBB = MF->CreateMachineBasicBlock(BB); 9170 MF->insert(++BBI, SuccMBB); 9171 } 9172 // Add it as a successor of ParentMBB. 9173 ParentMBB->addSuccessor( 9174 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 9175 return SuccMBB; 9176 } 9177 9178 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 9179 MachineFunction::iterator I(MBB); 9180 if (++I == FuncInfo.MF->end()) 9181 return nullptr; 9182 return &*I; 9183 } 9184 9185 /// During lowering new call nodes can be created (such as memset, etc.). 9186 /// Those will become new roots of the current DAG, but complications arise 9187 /// when they are tail calls. In such cases, the call lowering will update 9188 /// the root, but the builder still needs to know that a tail call has been 9189 /// lowered in order to avoid generating an additional return. 9190 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 9191 // If the node is null, we do have a tail call. 9192 if (MaybeTC.getNode() != nullptr) 9193 DAG.setRoot(MaybeTC); 9194 else 9195 HasTailCall = true; 9196 } 9197 9198 uint64_t 9199 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters, 9200 unsigned First, unsigned Last) const { 9201 assert(Last >= First); 9202 const APInt &LowCase = Clusters[First].Low->getValue(); 9203 const APInt &HighCase = Clusters[Last].High->getValue(); 9204 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 9205 9206 // FIXME: A range of consecutive cases has 100% density, but only requires one 9207 // comparison to lower. We should discriminate against such consecutive ranges 9208 // in jump tables. 9209 9210 return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1; 9211 } 9212 9213 uint64_t SelectionDAGBuilder::getJumpTableNumCases( 9214 const SmallVectorImpl<unsigned> &TotalCases, unsigned First, 9215 unsigned Last) const { 9216 assert(Last >= First); 9217 assert(TotalCases[Last] >= TotalCases[First]); 9218 uint64_t NumCases = 9219 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 9220 return NumCases; 9221 } 9222 9223 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters, 9224 unsigned First, unsigned Last, 9225 const SwitchInst *SI, 9226 MachineBasicBlock *DefaultMBB, 9227 CaseCluster &JTCluster) { 9228 assert(First <= Last); 9229 9230 auto Prob = BranchProbability::getZero(); 9231 unsigned NumCmps = 0; 9232 std::vector<MachineBasicBlock*> Table; 9233 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 9234 9235 // Initialize probabilities in JTProbs. 9236 for (unsigned I = First; I <= Last; ++I) 9237 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 9238 9239 for (unsigned I = First; I <= Last; ++I) { 9240 assert(Clusters[I].Kind == CC_Range); 9241 Prob += Clusters[I].Prob; 9242 const APInt &Low = Clusters[I].Low->getValue(); 9243 const APInt &High = Clusters[I].High->getValue(); 9244 NumCmps += (Low == High) ? 1 : 2; 9245 if (I != First) { 9246 // Fill the gap between this and the previous cluster. 9247 const APInt &PreviousHigh = Clusters[I - 1].High->getValue(); 9248 assert(PreviousHigh.slt(Low)); 9249 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 9250 for (uint64_t J = 0; J < Gap; J++) 9251 Table.push_back(DefaultMBB); 9252 } 9253 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 9254 for (uint64_t J = 0; J < ClusterSize; ++J) 9255 Table.push_back(Clusters[I].MBB); 9256 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 9257 } 9258 9259 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9260 unsigned NumDests = JTProbs.size(); 9261 if (TLI.isSuitableForBitTests( 9262 NumDests, NumCmps, Clusters[First].Low->getValue(), 9263 Clusters[Last].High->getValue(), DAG.getDataLayout())) { 9264 // Clusters[First..Last] should be lowered as bit tests instead. 9265 return false; 9266 } 9267 9268 // Create the MBB that will load from and jump through the table. 9269 // Note: We create it here, but it's not inserted into the function yet. 9270 MachineFunction *CurMF = FuncInfo.MF; 9271 MachineBasicBlock *JumpTableMBB = 9272 CurMF->CreateMachineBasicBlock(SI->getParent()); 9273 9274 // Add successors. Note: use table order for determinism. 9275 SmallPtrSet<MachineBasicBlock *, 8> Done; 9276 for (MachineBasicBlock *Succ : Table) { 9277 if (Done.count(Succ)) 9278 continue; 9279 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 9280 Done.insert(Succ); 9281 } 9282 JumpTableMBB->normalizeSuccProbs(); 9283 9284 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 9285 ->createJumpTableIndex(Table); 9286 9287 // Set up the jump table info. 9288 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 9289 JumpTableHeader JTH(Clusters[First].Low->getValue(), 9290 Clusters[Last].High->getValue(), SI->getCondition(), 9291 nullptr, false); 9292 JTCases.emplace_back(std::move(JTH), std::move(JT)); 9293 9294 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 9295 JTCases.size() - 1, Prob); 9296 return true; 9297 } 9298 9299 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 9300 const SwitchInst *SI, 9301 MachineBasicBlock *DefaultMBB) { 9302 #ifndef NDEBUG 9303 // Clusters must be non-empty, sorted, and only contain Range clusters. 9304 assert(!Clusters.empty()); 9305 for (CaseCluster &C : Clusters) 9306 assert(C.Kind == CC_Range); 9307 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 9308 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 9309 #endif 9310 9311 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9312 if (!TLI.areJTsAllowed(SI->getParent()->getParent())) 9313 return; 9314 9315 const int64_t N = Clusters.size(); 9316 const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries(); 9317 const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2; 9318 9319 if (N < 2 || N < MinJumpTableEntries) 9320 return; 9321 9322 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 9323 SmallVector<unsigned, 8> TotalCases(N); 9324 for (unsigned i = 0; i < N; ++i) { 9325 const APInt &Hi = Clusters[i].High->getValue(); 9326 const APInt &Lo = Clusters[i].Low->getValue(); 9327 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 9328 if (i != 0) 9329 TotalCases[i] += TotalCases[i - 1]; 9330 } 9331 9332 // Cheap case: the whole range may be suitable for jump table. 9333 uint64_t Range = getJumpTableRange(Clusters,0, N - 1); 9334 uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1); 9335 assert(NumCases < UINT64_MAX / 100); 9336 assert(Range >= NumCases); 9337 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 9338 CaseCluster JTCluster; 9339 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 9340 Clusters[0] = JTCluster; 9341 Clusters.resize(1); 9342 return; 9343 } 9344 } 9345 9346 // The algorithm below is not suitable for -O0. 9347 if (TM.getOptLevel() == CodeGenOpt::None) 9348 return; 9349 9350 // Split Clusters into minimum number of dense partitions. The algorithm uses 9351 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 9352 // for the Case Statement'" (1994), but builds the MinPartitions array in 9353 // reverse order to make it easier to reconstruct the partitions in ascending 9354 // order. In the choice between two optimal partitionings, it picks the one 9355 // which yields more jump tables. 9356 9357 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 9358 SmallVector<unsigned, 8> MinPartitions(N); 9359 // LastElement[i] is the last element of the partition starting at i. 9360 SmallVector<unsigned, 8> LastElement(N); 9361 // PartitionsScore[i] is used to break ties when choosing between two 9362 // partitionings resulting in the same number of partitions. 9363 SmallVector<unsigned, 8> PartitionsScore(N); 9364 // For PartitionsScore, a small number of comparisons is considered as good as 9365 // a jump table and a single comparison is considered better than a jump 9366 // table. 9367 enum PartitionScores : unsigned { 9368 NoTable = 0, 9369 Table = 1, 9370 FewCases = 1, 9371 SingleCase = 2 9372 }; 9373 9374 // Base case: There is only one way to partition Clusters[N-1]. 9375 MinPartitions[N - 1] = 1; 9376 LastElement[N - 1] = N - 1; 9377 PartitionsScore[N - 1] = PartitionScores::SingleCase; 9378 9379 // Note: loop indexes are signed to avoid underflow. 9380 for (int64_t i = N - 2; i >= 0; i--) { 9381 // Find optimal partitioning of Clusters[i..N-1]. 9382 // Baseline: Put Clusters[i] into a partition on its own. 9383 MinPartitions[i] = MinPartitions[i + 1] + 1; 9384 LastElement[i] = i; 9385 PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase; 9386 9387 // Search for a solution that results in fewer partitions. 9388 for (int64_t j = N - 1; j > i; j--) { 9389 // Try building a partition from Clusters[i..j]. 9390 uint64_t Range = getJumpTableRange(Clusters, i, j); 9391 uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j); 9392 assert(NumCases < UINT64_MAX / 100); 9393 assert(Range >= NumCases); 9394 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 9395 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 9396 unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1]; 9397 int64_t NumEntries = j - i + 1; 9398 9399 if (NumEntries == 1) 9400 Score += PartitionScores::SingleCase; 9401 else if (NumEntries <= SmallNumberOfEntries) 9402 Score += PartitionScores::FewCases; 9403 else if (NumEntries >= MinJumpTableEntries) 9404 Score += PartitionScores::Table; 9405 9406 // If this leads to fewer partitions, or to the same number of 9407 // partitions with better score, it is a better partitioning. 9408 if (NumPartitions < MinPartitions[i] || 9409 (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) { 9410 MinPartitions[i] = NumPartitions; 9411 LastElement[i] = j; 9412 PartitionsScore[i] = Score; 9413 } 9414 } 9415 } 9416 } 9417 9418 // Iterate over the partitions, replacing some with jump tables in-place. 9419 unsigned DstIndex = 0; 9420 for (unsigned First = 0, Last; First < N; First = Last + 1) { 9421 Last = LastElement[First]; 9422 assert(Last >= First); 9423 assert(DstIndex <= First); 9424 unsigned NumClusters = Last - First + 1; 9425 9426 CaseCluster JTCluster; 9427 if (NumClusters >= MinJumpTableEntries && 9428 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 9429 Clusters[DstIndex++] = JTCluster; 9430 } else { 9431 for (unsigned I = First; I <= Last; ++I) 9432 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 9433 } 9434 } 9435 Clusters.resize(DstIndex); 9436 } 9437 9438 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 9439 unsigned First, unsigned Last, 9440 const SwitchInst *SI, 9441 CaseCluster &BTCluster) { 9442 assert(First <= Last); 9443 if (First == Last) 9444 return false; 9445 9446 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 9447 unsigned NumCmps = 0; 9448 for (int64_t I = First; I <= Last; ++I) { 9449 assert(Clusters[I].Kind == CC_Range); 9450 Dests.set(Clusters[I].MBB->getNumber()); 9451 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 9452 } 9453 unsigned NumDests = Dests.count(); 9454 9455 APInt Low = Clusters[First].Low->getValue(); 9456 APInt High = Clusters[Last].High->getValue(); 9457 assert(Low.slt(High)); 9458 9459 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9460 const DataLayout &DL = DAG.getDataLayout(); 9461 if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL)) 9462 return false; 9463 9464 APInt LowBound; 9465 APInt CmpRange; 9466 9467 const int BitWidth = TLI.getPointerTy(DL).getSizeInBits(); 9468 assert(TLI.rangeFitsInWord(Low, High, DL) && 9469 "Case range must fit in bit mask!"); 9470 9471 // Check if the clusters cover a contiguous range such that no value in the 9472 // range will jump to the default statement. 9473 bool ContiguousRange = true; 9474 for (int64_t I = First + 1; I <= Last; ++I) { 9475 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 9476 ContiguousRange = false; 9477 break; 9478 } 9479 } 9480 9481 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 9482 // Optimize the case where all the case values fit in a word without having 9483 // to subtract minValue. In this case, we can optimize away the subtraction. 9484 LowBound = APInt::getNullValue(Low.getBitWidth()); 9485 CmpRange = High; 9486 ContiguousRange = false; 9487 } else { 9488 LowBound = Low; 9489 CmpRange = High - Low; 9490 } 9491 9492 CaseBitsVector CBV; 9493 auto TotalProb = BranchProbability::getZero(); 9494 for (unsigned i = First; i <= Last; ++i) { 9495 // Find the CaseBits for this destination. 9496 unsigned j; 9497 for (j = 0; j < CBV.size(); ++j) 9498 if (CBV[j].BB == Clusters[i].MBB) 9499 break; 9500 if (j == CBV.size()) 9501 CBV.push_back( 9502 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 9503 CaseBits *CB = &CBV[j]; 9504 9505 // Update Mask, Bits and ExtraProb. 9506 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 9507 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 9508 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 9509 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 9510 CB->Bits += Hi - Lo + 1; 9511 CB->ExtraProb += Clusters[i].Prob; 9512 TotalProb += Clusters[i].Prob; 9513 } 9514 9515 BitTestInfo BTI; 9516 llvm::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 9517 // Sort by probability first, number of bits second, bit mask third. 9518 if (a.ExtraProb != b.ExtraProb) 9519 return a.ExtraProb > b.ExtraProb; 9520 if (a.Bits != b.Bits) 9521 return a.Bits > b.Bits; 9522 return a.Mask < b.Mask; 9523 }); 9524 9525 for (auto &CB : CBV) { 9526 MachineBasicBlock *BitTestBB = 9527 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 9528 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 9529 } 9530 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 9531 SI->getCondition(), -1U, MVT::Other, false, 9532 ContiguousRange, nullptr, nullptr, std::move(BTI), 9533 TotalProb); 9534 9535 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 9536 BitTestCases.size() - 1, TotalProb); 9537 return true; 9538 } 9539 9540 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 9541 const SwitchInst *SI) { 9542 // Partition Clusters into as few subsets as possible, where each subset has a 9543 // range that fits in a machine word and has <= 3 unique destinations. 9544 9545 #ifndef NDEBUG 9546 // Clusters must be sorted and contain Range or JumpTable clusters. 9547 assert(!Clusters.empty()); 9548 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 9549 for (const CaseCluster &C : Clusters) 9550 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 9551 for (unsigned i = 1; i < Clusters.size(); ++i) 9552 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 9553 #endif 9554 9555 // The algorithm below is not suitable for -O0. 9556 if (TM.getOptLevel() == CodeGenOpt::None) 9557 return; 9558 9559 // If target does not have legal shift left, do not emit bit tests at all. 9560 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9561 const DataLayout &DL = DAG.getDataLayout(); 9562 9563 EVT PTy = TLI.getPointerTy(DL); 9564 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 9565 return; 9566 9567 int BitWidth = PTy.getSizeInBits(); 9568 const int64_t N = Clusters.size(); 9569 9570 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 9571 SmallVector<unsigned, 8> MinPartitions(N); 9572 // LastElement[i] is the last element of the partition starting at i. 9573 SmallVector<unsigned, 8> LastElement(N); 9574 9575 // FIXME: This might not be the best algorithm for finding bit test clusters. 9576 9577 // Base case: There is only one way to partition Clusters[N-1]. 9578 MinPartitions[N - 1] = 1; 9579 LastElement[N - 1] = N - 1; 9580 9581 // Note: loop indexes are signed to avoid underflow. 9582 for (int64_t i = N - 2; i >= 0; --i) { 9583 // Find optimal partitioning of Clusters[i..N-1]. 9584 // Baseline: Put Clusters[i] into a partition on its own. 9585 MinPartitions[i] = MinPartitions[i + 1] + 1; 9586 LastElement[i] = i; 9587 9588 // Search for a solution that results in fewer partitions. 9589 // Note: the search is limited by BitWidth, reducing time complexity. 9590 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 9591 // Try building a partition from Clusters[i..j]. 9592 9593 // Check the range. 9594 if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(), 9595 Clusters[j].High->getValue(), DL)) 9596 continue; 9597 9598 // Check nbr of destinations and cluster types. 9599 // FIXME: This works, but doesn't seem very efficient. 9600 bool RangesOnly = true; 9601 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 9602 for (int64_t k = i; k <= j; k++) { 9603 if (Clusters[k].Kind != CC_Range) { 9604 RangesOnly = false; 9605 break; 9606 } 9607 Dests.set(Clusters[k].MBB->getNumber()); 9608 } 9609 if (!RangesOnly || Dests.count() > 3) 9610 break; 9611 9612 // Check if it's a better partition. 9613 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 9614 if (NumPartitions < MinPartitions[i]) { 9615 // Found a better partition. 9616 MinPartitions[i] = NumPartitions; 9617 LastElement[i] = j; 9618 } 9619 } 9620 } 9621 9622 // Iterate over the partitions, replacing with bit-test clusters in-place. 9623 unsigned DstIndex = 0; 9624 for (unsigned First = 0, Last; First < N; First = Last + 1) { 9625 Last = LastElement[First]; 9626 assert(First <= Last); 9627 assert(DstIndex <= First); 9628 9629 CaseCluster BitTestCluster; 9630 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 9631 Clusters[DstIndex++] = BitTestCluster; 9632 } else { 9633 size_t NumClusters = Last - First + 1; 9634 std::memmove(&Clusters[DstIndex], &Clusters[First], 9635 sizeof(Clusters[0]) * NumClusters); 9636 DstIndex += NumClusters; 9637 } 9638 } 9639 Clusters.resize(DstIndex); 9640 } 9641 9642 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 9643 MachineBasicBlock *SwitchMBB, 9644 MachineBasicBlock *DefaultMBB) { 9645 MachineFunction *CurMF = FuncInfo.MF; 9646 MachineBasicBlock *NextMBB = nullptr; 9647 MachineFunction::iterator BBI(W.MBB); 9648 if (++BBI != FuncInfo.MF->end()) 9649 NextMBB = &*BBI; 9650 9651 unsigned Size = W.LastCluster - W.FirstCluster + 1; 9652 9653 BranchProbabilityInfo *BPI = FuncInfo.BPI; 9654 9655 if (Size == 2 && W.MBB == SwitchMBB) { 9656 // If any two of the cases has the same destination, and if one value 9657 // is the same as the other, but has one bit unset that the other has set, 9658 // use bit manipulation to do two compares at once. For example: 9659 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 9660 // TODO: This could be extended to merge any 2 cases in switches with 3 9661 // cases. 9662 // TODO: Handle cases where W.CaseBB != SwitchBB. 9663 CaseCluster &Small = *W.FirstCluster; 9664 CaseCluster &Big = *W.LastCluster; 9665 9666 if (Small.Low == Small.High && Big.Low == Big.High && 9667 Small.MBB == Big.MBB) { 9668 const APInt &SmallValue = Small.Low->getValue(); 9669 const APInt &BigValue = Big.Low->getValue(); 9670 9671 // Check that there is only one bit different. 9672 APInt CommonBit = BigValue ^ SmallValue; 9673 if (CommonBit.isPowerOf2()) { 9674 SDValue CondLHS = getValue(Cond); 9675 EVT VT = CondLHS.getValueType(); 9676 SDLoc DL = getCurSDLoc(); 9677 9678 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 9679 DAG.getConstant(CommonBit, DL, VT)); 9680 SDValue Cond = DAG.getSetCC( 9681 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 9682 ISD::SETEQ); 9683 9684 // Update successor info. 9685 // Both Small and Big will jump to Small.BB, so we sum up the 9686 // probabilities. 9687 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 9688 if (BPI) 9689 addSuccessorWithProb( 9690 SwitchMBB, DefaultMBB, 9691 // The default destination is the first successor in IR. 9692 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 9693 else 9694 addSuccessorWithProb(SwitchMBB, DefaultMBB); 9695 9696 // Insert the true branch. 9697 SDValue BrCond = 9698 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 9699 DAG.getBasicBlock(Small.MBB)); 9700 // Insert the false branch. 9701 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 9702 DAG.getBasicBlock(DefaultMBB)); 9703 9704 DAG.setRoot(BrCond); 9705 return; 9706 } 9707 } 9708 } 9709 9710 if (TM.getOptLevel() != CodeGenOpt::None) { 9711 // Here, we order cases by probability so the most likely case will be 9712 // checked first. However, two clusters can have the same probability in 9713 // which case their relative ordering is non-deterministic. So we use Low 9714 // as a tie-breaker as clusters are guaranteed to never overlap. 9715 llvm::sort(W.FirstCluster, W.LastCluster + 1, 9716 [](const CaseCluster &a, const CaseCluster &b) { 9717 return a.Prob != b.Prob ? 9718 a.Prob > b.Prob : 9719 a.Low->getValue().slt(b.Low->getValue()); 9720 }); 9721 9722 // Rearrange the case blocks so that the last one falls through if possible 9723 // without changing the order of probabilities. 9724 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 9725 --I; 9726 if (I->Prob > W.LastCluster->Prob) 9727 break; 9728 if (I->Kind == CC_Range && I->MBB == NextMBB) { 9729 std::swap(*I, *W.LastCluster); 9730 break; 9731 } 9732 } 9733 } 9734 9735 // Compute total probability. 9736 BranchProbability DefaultProb = W.DefaultProb; 9737 BranchProbability UnhandledProbs = DefaultProb; 9738 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 9739 UnhandledProbs += I->Prob; 9740 9741 MachineBasicBlock *CurMBB = W.MBB; 9742 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 9743 MachineBasicBlock *Fallthrough; 9744 if (I == W.LastCluster) { 9745 // For the last cluster, fall through to the default destination. 9746 Fallthrough = DefaultMBB; 9747 } else { 9748 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 9749 CurMF->insert(BBI, Fallthrough); 9750 // Put Cond in a virtual register to make it available from the new blocks. 9751 ExportFromCurrentBlock(Cond); 9752 } 9753 UnhandledProbs -= I->Prob; 9754 9755 switch (I->Kind) { 9756 case CC_JumpTable: { 9757 // FIXME: Optimize away range check based on pivot comparisons. 9758 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 9759 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 9760 9761 // The jump block hasn't been inserted yet; insert it here. 9762 MachineBasicBlock *JumpMBB = JT->MBB; 9763 CurMF->insert(BBI, JumpMBB); 9764 9765 auto JumpProb = I->Prob; 9766 auto FallthroughProb = UnhandledProbs; 9767 9768 // If the default statement is a target of the jump table, we evenly 9769 // distribute the default probability to successors of CurMBB. Also 9770 // update the probability on the edge from JumpMBB to Fallthrough. 9771 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 9772 SE = JumpMBB->succ_end(); 9773 SI != SE; ++SI) { 9774 if (*SI == DefaultMBB) { 9775 JumpProb += DefaultProb / 2; 9776 FallthroughProb -= DefaultProb / 2; 9777 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 9778 JumpMBB->normalizeSuccProbs(); 9779 break; 9780 } 9781 } 9782 9783 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 9784 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 9785 CurMBB->normalizeSuccProbs(); 9786 9787 // The jump table header will be inserted in our current block, do the 9788 // range check, and fall through to our fallthrough block. 9789 JTH->HeaderBB = CurMBB; 9790 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 9791 9792 // If we're in the right place, emit the jump table header right now. 9793 if (CurMBB == SwitchMBB) { 9794 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 9795 JTH->Emitted = true; 9796 } 9797 break; 9798 } 9799 case CC_BitTests: { 9800 // FIXME: Optimize away range check based on pivot comparisons. 9801 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 9802 9803 // The bit test blocks haven't been inserted yet; insert them here. 9804 for (BitTestCase &BTC : BTB->Cases) 9805 CurMF->insert(BBI, BTC.ThisBB); 9806 9807 // Fill in fields of the BitTestBlock. 9808 BTB->Parent = CurMBB; 9809 BTB->Default = Fallthrough; 9810 9811 BTB->DefaultProb = UnhandledProbs; 9812 // If the cases in bit test don't form a contiguous range, we evenly 9813 // distribute the probability on the edge to Fallthrough to two 9814 // successors of CurMBB. 9815 if (!BTB->ContiguousRange) { 9816 BTB->Prob += DefaultProb / 2; 9817 BTB->DefaultProb -= DefaultProb / 2; 9818 } 9819 9820 // If we're in the right place, emit the bit test header right now. 9821 if (CurMBB == SwitchMBB) { 9822 visitBitTestHeader(*BTB, SwitchMBB); 9823 BTB->Emitted = true; 9824 } 9825 break; 9826 } 9827 case CC_Range: { 9828 const Value *RHS, *LHS, *MHS; 9829 ISD::CondCode CC; 9830 if (I->Low == I->High) { 9831 // Check Cond == I->Low. 9832 CC = ISD::SETEQ; 9833 LHS = Cond; 9834 RHS=I->Low; 9835 MHS = nullptr; 9836 } else { 9837 // Check I->Low <= Cond <= I->High. 9838 CC = ISD::SETLE; 9839 LHS = I->Low; 9840 MHS = Cond; 9841 RHS = I->High; 9842 } 9843 9844 // The false probability is the sum of all unhandled cases. 9845 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 9846 getCurSDLoc(), I->Prob, UnhandledProbs); 9847 9848 if (CurMBB == SwitchMBB) 9849 visitSwitchCase(CB, SwitchMBB); 9850 else 9851 SwitchCases.push_back(CB); 9852 9853 break; 9854 } 9855 } 9856 CurMBB = Fallthrough; 9857 } 9858 } 9859 9860 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 9861 CaseClusterIt First, 9862 CaseClusterIt Last) { 9863 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 9864 if (X.Prob != CC.Prob) 9865 return X.Prob > CC.Prob; 9866 9867 // Ties are broken by comparing the case value. 9868 return X.Low->getValue().slt(CC.Low->getValue()); 9869 }); 9870 } 9871 9872 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 9873 const SwitchWorkListItem &W, 9874 Value *Cond, 9875 MachineBasicBlock *SwitchMBB) { 9876 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 9877 "Clusters not sorted?"); 9878 9879 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 9880 9881 // Balance the tree based on branch probabilities to create a near-optimal (in 9882 // terms of search time given key frequency) binary search tree. See e.g. Kurt 9883 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 9884 CaseClusterIt LastLeft = W.FirstCluster; 9885 CaseClusterIt FirstRight = W.LastCluster; 9886 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 9887 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 9888 9889 // Move LastLeft and FirstRight towards each other from opposite directions to 9890 // find a partitioning of the clusters which balances the probability on both 9891 // sides. If LeftProb and RightProb are equal, alternate which side is 9892 // taken to ensure 0-probability nodes are distributed evenly. 9893 unsigned I = 0; 9894 while (LastLeft + 1 < FirstRight) { 9895 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 9896 LeftProb += (++LastLeft)->Prob; 9897 else 9898 RightProb += (--FirstRight)->Prob; 9899 I++; 9900 } 9901 9902 while (true) { 9903 // Our binary search tree differs from a typical BST in that ours can have up 9904 // to three values in each leaf. The pivot selection above doesn't take that 9905 // into account, which means the tree might require more nodes and be less 9906 // efficient. We compensate for this here. 9907 9908 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 9909 unsigned NumRight = W.LastCluster - FirstRight + 1; 9910 9911 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 9912 // If one side has less than 3 clusters, and the other has more than 3, 9913 // consider taking a cluster from the other side. 9914 9915 if (NumLeft < NumRight) { 9916 // Consider moving the first cluster on the right to the left side. 9917 CaseCluster &CC = *FirstRight; 9918 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 9919 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 9920 if (LeftSideRank <= RightSideRank) { 9921 // Moving the cluster to the left does not demote it. 9922 ++LastLeft; 9923 ++FirstRight; 9924 continue; 9925 } 9926 } else { 9927 assert(NumRight < NumLeft); 9928 // Consider moving the last element on the left to the right side. 9929 CaseCluster &CC = *LastLeft; 9930 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 9931 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 9932 if (RightSideRank <= LeftSideRank) { 9933 // Moving the cluster to the right does not demot it. 9934 --LastLeft; 9935 --FirstRight; 9936 continue; 9937 } 9938 } 9939 } 9940 break; 9941 } 9942 9943 assert(LastLeft + 1 == FirstRight); 9944 assert(LastLeft >= W.FirstCluster); 9945 assert(FirstRight <= W.LastCluster); 9946 9947 // Use the first element on the right as pivot since we will make less-than 9948 // comparisons against it. 9949 CaseClusterIt PivotCluster = FirstRight; 9950 assert(PivotCluster > W.FirstCluster); 9951 assert(PivotCluster <= W.LastCluster); 9952 9953 CaseClusterIt FirstLeft = W.FirstCluster; 9954 CaseClusterIt LastRight = W.LastCluster; 9955 9956 const ConstantInt *Pivot = PivotCluster->Low; 9957 9958 // New blocks will be inserted immediately after the current one. 9959 MachineFunction::iterator BBI(W.MBB); 9960 ++BBI; 9961 9962 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 9963 // we can branch to its destination directly if it's squeezed exactly in 9964 // between the known lower bound and Pivot - 1. 9965 MachineBasicBlock *LeftMBB; 9966 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 9967 FirstLeft->Low == W.GE && 9968 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 9969 LeftMBB = FirstLeft->MBB; 9970 } else { 9971 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 9972 FuncInfo.MF->insert(BBI, LeftMBB); 9973 WorkList.push_back( 9974 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 9975 // Put Cond in a virtual register to make it available from the new blocks. 9976 ExportFromCurrentBlock(Cond); 9977 } 9978 9979 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 9980 // single cluster, RHS.Low == Pivot, and we can branch to its destination 9981 // directly if RHS.High equals the current upper bound. 9982 MachineBasicBlock *RightMBB; 9983 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 9984 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 9985 RightMBB = FirstRight->MBB; 9986 } else { 9987 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 9988 FuncInfo.MF->insert(BBI, RightMBB); 9989 WorkList.push_back( 9990 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 9991 // Put Cond in a virtual register to make it available from the new blocks. 9992 ExportFromCurrentBlock(Cond); 9993 } 9994 9995 // Create the CaseBlock record that will be used to lower the branch. 9996 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 9997 getCurSDLoc(), LeftProb, RightProb); 9998 9999 if (W.MBB == SwitchMBB) 10000 visitSwitchCase(CB, SwitchMBB); 10001 else 10002 SwitchCases.push_back(CB); 10003 } 10004 10005 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10006 // from the swith statement. 10007 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10008 BranchProbability PeeledCaseProb) { 10009 if (PeeledCaseProb == BranchProbability::getOne()) 10010 return BranchProbability::getZero(); 10011 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10012 10013 uint32_t Numerator = CaseProb.getNumerator(); 10014 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10015 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10016 } 10017 10018 // Try to peel the top probability case if it exceeds the threshold. 10019 // Return current MachineBasicBlock for the switch statement if the peeling 10020 // does not occur. 10021 // If the peeling is performed, return the newly created MachineBasicBlock 10022 // for the peeled switch statement. Also update Clusters to remove the peeled 10023 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10024 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10025 const SwitchInst &SI, CaseClusterVector &Clusters, 10026 BranchProbability &PeeledCaseProb) { 10027 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10028 // Don't perform if there is only one cluster or optimizing for size. 10029 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10030 TM.getOptLevel() == CodeGenOpt::None || 10031 SwitchMBB->getParent()->getFunction().optForMinSize()) 10032 return SwitchMBB; 10033 10034 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10035 unsigned PeeledCaseIndex = 0; 10036 bool SwitchPeeled = false; 10037 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10038 CaseCluster &CC = Clusters[Index]; 10039 if (CC.Prob < TopCaseProb) 10040 continue; 10041 TopCaseProb = CC.Prob; 10042 PeeledCaseIndex = Index; 10043 SwitchPeeled = true; 10044 } 10045 if (!SwitchPeeled) 10046 return SwitchMBB; 10047 10048 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10049 << TopCaseProb << "\n"); 10050 10051 // Record the MBB for the peeled switch statement. 10052 MachineFunction::iterator BBI(SwitchMBB); 10053 ++BBI; 10054 MachineBasicBlock *PeeledSwitchMBB = 10055 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10056 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10057 10058 ExportFromCurrentBlock(SI.getCondition()); 10059 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10060 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10061 nullptr, nullptr, TopCaseProb.getCompl()}; 10062 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10063 10064 Clusters.erase(PeeledCaseIt); 10065 for (CaseCluster &CC : Clusters) { 10066 LLVM_DEBUG( 10067 dbgs() << "Scale the probablity for one cluster, before scaling: " 10068 << CC.Prob << "\n"); 10069 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10070 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10071 } 10072 PeeledCaseProb = TopCaseProb; 10073 return PeeledSwitchMBB; 10074 } 10075 10076 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10077 // Extract cases from the switch. 10078 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10079 CaseClusterVector Clusters; 10080 Clusters.reserve(SI.getNumCases()); 10081 for (auto I : SI.cases()) { 10082 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10083 const ConstantInt *CaseVal = I.getCaseValue(); 10084 BranchProbability Prob = 10085 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10086 : BranchProbability(1, SI.getNumCases() + 1); 10087 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10088 } 10089 10090 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10091 10092 // Cluster adjacent cases with the same destination. We do this at all 10093 // optimization levels because it's cheap to do and will make codegen faster 10094 // if there are many clusters. 10095 sortAndRangeify(Clusters); 10096 10097 if (TM.getOptLevel() != CodeGenOpt::None) { 10098 // Replace an unreachable default with the most popular destination. 10099 // FIXME: Exploit unreachable default more aggressively. 10100 bool UnreachableDefault = 10101 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 10102 if (UnreachableDefault && !Clusters.empty()) { 10103 DenseMap<const BasicBlock *, unsigned> Popularity; 10104 unsigned MaxPop = 0; 10105 const BasicBlock *MaxBB = nullptr; 10106 for (auto I : SI.cases()) { 10107 const BasicBlock *BB = I.getCaseSuccessor(); 10108 if (++Popularity[BB] > MaxPop) { 10109 MaxPop = Popularity[BB]; 10110 MaxBB = BB; 10111 } 10112 } 10113 // Set new default. 10114 assert(MaxPop > 0 && MaxBB); 10115 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 10116 10117 // Remove cases that were pointing to the destination that is now the 10118 // default. 10119 CaseClusterVector New; 10120 New.reserve(Clusters.size()); 10121 for (CaseCluster &CC : Clusters) { 10122 if (CC.MBB != DefaultMBB) 10123 New.push_back(CC); 10124 } 10125 Clusters = std::move(New); 10126 } 10127 } 10128 10129 // The branch probablity of the peeled case. 10130 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10131 MachineBasicBlock *PeeledSwitchMBB = 10132 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10133 10134 // If there is only the default destination, jump there directly. 10135 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10136 if (Clusters.empty()) { 10137 assert(PeeledSwitchMBB == SwitchMBB); 10138 SwitchMBB->addSuccessor(DefaultMBB); 10139 if (DefaultMBB != NextBlock(SwitchMBB)) { 10140 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10141 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10142 } 10143 return; 10144 } 10145 10146 findJumpTables(Clusters, &SI, DefaultMBB); 10147 findBitTestClusters(Clusters, &SI); 10148 10149 LLVM_DEBUG({ 10150 dbgs() << "Case clusters: "; 10151 for (const CaseCluster &C : Clusters) { 10152 if (C.Kind == CC_JumpTable) 10153 dbgs() << "JT:"; 10154 if (C.Kind == CC_BitTests) 10155 dbgs() << "BT:"; 10156 10157 C.Low->getValue().print(dbgs(), true); 10158 if (C.Low != C.High) { 10159 dbgs() << '-'; 10160 C.High->getValue().print(dbgs(), true); 10161 } 10162 dbgs() << ' '; 10163 } 10164 dbgs() << '\n'; 10165 }); 10166 10167 assert(!Clusters.empty()); 10168 SwitchWorkList WorkList; 10169 CaseClusterIt First = Clusters.begin(); 10170 CaseClusterIt Last = Clusters.end() - 1; 10171 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10172 // Scale the branchprobability for DefaultMBB if the peel occurs and 10173 // DefaultMBB is not replaced. 10174 if (PeeledCaseProb != BranchProbability::getZero() && 10175 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10176 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10177 WorkList.push_back( 10178 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10179 10180 while (!WorkList.empty()) { 10181 SwitchWorkListItem W = WorkList.back(); 10182 WorkList.pop_back(); 10183 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10184 10185 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10186 !DefaultMBB->getParent()->getFunction().optForMinSize()) { 10187 // For optimized builds, lower large range as a balanced binary tree. 10188 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10189 continue; 10190 } 10191 10192 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10193 } 10194 } 10195