1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/BranchProbabilityInfo.h" 29 #include "llvm/Analysis/ConstantFolding.h" 30 #include "llvm/Analysis/EHPersonalities.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/MemoryLocation.h" 33 #include "llvm/Analysis/ProfileSummaryInfo.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/Analysis/VectorUtils.h" 37 #include "llvm/CodeGen/Analysis.h" 38 #include "llvm/CodeGen/FunctionLoweringInfo.h" 39 #include "llvm/CodeGen/GCMetadata.h" 40 #include "llvm/CodeGen/MachineBasicBlock.h" 41 #include "llvm/CodeGen/MachineFrameInfo.h" 42 #include "llvm/CodeGen/MachineFunction.h" 43 #include "llvm/CodeGen/MachineInstr.h" 44 #include "llvm/CodeGen/MachineInstrBuilder.h" 45 #include "llvm/CodeGen/MachineJumpTableInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 53 #include "llvm/CodeGen/StackMaps.h" 54 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 55 #include "llvm/CodeGen/TargetFrameLowering.h" 56 #include "llvm/CodeGen/TargetInstrInfo.h" 57 #include "llvm/CodeGen/TargetOpcodes.h" 58 #include "llvm/CodeGen/TargetRegisterInfo.h" 59 #include "llvm/CodeGen/TargetSubtargetInfo.h" 60 #include "llvm/CodeGen/WinEHFuncInfo.h" 61 #include "llvm/IR/Argument.h" 62 #include "llvm/IR/Attributes.h" 63 #include "llvm/IR/BasicBlock.h" 64 #include "llvm/IR/CFG.h" 65 #include "llvm/IR/CallingConv.h" 66 #include "llvm/IR/Constant.h" 67 #include "llvm/IR/ConstantRange.h" 68 #include "llvm/IR/Constants.h" 69 #include "llvm/IR/DataLayout.h" 70 #include "llvm/IR/DebugInfoMetadata.h" 71 #include "llvm/IR/DerivedTypes.h" 72 #include "llvm/IR/DiagnosticInfo.h" 73 #include "llvm/IR/Function.h" 74 #include "llvm/IR/GetElementPtrTypeIterator.h" 75 #include "llvm/IR/InlineAsm.h" 76 #include "llvm/IR/InstrTypes.h" 77 #include "llvm/IR/Instructions.h" 78 #include "llvm/IR/IntrinsicInst.h" 79 #include "llvm/IR/Intrinsics.h" 80 #include "llvm/IR/IntrinsicsAArch64.h" 81 #include "llvm/IR/IntrinsicsWebAssembly.h" 82 #include "llvm/IR/LLVMContext.h" 83 #include "llvm/IR/Metadata.h" 84 #include "llvm/IR/Module.h" 85 #include "llvm/IR/Operator.h" 86 #include "llvm/IR/PatternMatch.h" 87 #include "llvm/IR/Statepoint.h" 88 #include "llvm/IR/Type.h" 89 #include "llvm/IR/User.h" 90 #include "llvm/IR/Value.h" 91 #include "llvm/MC/MCContext.h" 92 #include "llvm/MC/MCSymbol.h" 93 #include "llvm/Support/AtomicOrdering.h" 94 #include "llvm/Support/Casting.h" 95 #include "llvm/Support/CommandLine.h" 96 #include "llvm/Support/Compiler.h" 97 #include "llvm/Support/Debug.h" 98 #include "llvm/Support/MathExtras.h" 99 #include "llvm/Support/raw_ostream.h" 100 #include "llvm/Target/TargetIntrinsicInfo.h" 101 #include "llvm/Target/TargetMachine.h" 102 #include "llvm/Target/TargetOptions.h" 103 #include "llvm/Transforms/Utils/Local.h" 104 #include <cstddef> 105 #include <cstring> 106 #include <iterator> 107 #include <limits> 108 #include <numeric> 109 #include <tuple> 110 111 using namespace llvm; 112 using namespace PatternMatch; 113 using namespace SwitchCG; 114 115 #define DEBUG_TYPE "isel" 116 117 /// LimitFloatPrecision - Generate low-precision inline sequences for 118 /// some float libcalls (6, 8 or 12 bits). 119 static unsigned LimitFloatPrecision; 120 121 static cl::opt<bool> 122 InsertAssertAlign("insert-assert-align", cl::init(true), 123 cl::desc("Insert the experimental `assertalign` node."), 124 cl::ReallyHidden); 125 126 static cl::opt<unsigned, true> 127 LimitFPPrecision("limit-float-precision", 128 cl::desc("Generate low-precision inline sequences " 129 "for some float libcalls"), 130 cl::location(LimitFloatPrecision), cl::Hidden, 131 cl::init(0)); 132 133 static cl::opt<unsigned> SwitchPeelThreshold( 134 "switch-peel-threshold", cl::Hidden, cl::init(66), 135 cl::desc("Set the case probability threshold for peeling the case from a " 136 "switch statement. A value greater than 100 will void this " 137 "optimization")); 138 139 // Limit the width of DAG chains. This is important in general to prevent 140 // DAG-based analysis from blowing up. For example, alias analysis and 141 // load clustering may not complete in reasonable time. It is difficult to 142 // recognize and avoid this situation within each individual analysis, and 143 // future analyses are likely to have the same behavior. Limiting DAG width is 144 // the safe approach and will be especially important with global DAGs. 145 // 146 // MaxParallelChains default is arbitrarily high to avoid affecting 147 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 148 // sequence over this should have been converted to llvm.memcpy by the 149 // frontend. It is easy to induce this behavior with .ll code such as: 150 // %buffer = alloca [4096 x i8] 151 // %data = load [4096 x i8]* %argPtr 152 // store [4096 x i8] %data, [4096 x i8]* %buffer 153 static const unsigned MaxParallelChains = 64; 154 155 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 156 const SDValue *Parts, unsigned NumParts, 157 MVT PartVT, EVT ValueVT, const Value *V, 158 Optional<CallingConv::ID> CC); 159 160 /// getCopyFromParts - Create a value that contains the specified legal parts 161 /// combined into the value they represent. If the parts combine to a type 162 /// larger than ValueVT then AssertOp can be used to specify whether the extra 163 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 164 /// (ISD::AssertSext). 165 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 166 const SDValue *Parts, unsigned NumParts, 167 MVT PartVT, EVT ValueVT, const Value *V, 168 Optional<CallingConv::ID> CC = None, 169 Optional<ISD::NodeType> AssertOp = None) { 170 // Let the target assemble the parts if it wants to 171 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 172 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 173 PartVT, ValueVT, CC)) 174 return Val; 175 176 if (ValueVT.isVector()) 177 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 178 CC); 179 180 assert(NumParts > 0 && "No parts to assemble!"); 181 SDValue Val = Parts[0]; 182 183 if (NumParts > 1) { 184 // Assemble the value from multiple parts. 185 if (ValueVT.isInteger()) { 186 unsigned PartBits = PartVT.getSizeInBits(); 187 unsigned ValueBits = ValueVT.getSizeInBits(); 188 189 // Assemble the power of 2 part. 190 unsigned RoundParts = 191 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 192 unsigned RoundBits = PartBits * RoundParts; 193 EVT RoundVT = RoundBits == ValueBits ? 194 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 195 SDValue Lo, Hi; 196 197 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 198 199 if (RoundParts > 2) { 200 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 201 PartVT, HalfVT, V); 202 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 203 RoundParts / 2, PartVT, HalfVT, V); 204 } else { 205 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 206 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 207 } 208 209 if (DAG.getDataLayout().isBigEndian()) 210 std::swap(Lo, Hi); 211 212 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 213 214 if (RoundParts < NumParts) { 215 // Assemble the trailing non-power-of-2 part. 216 unsigned OddParts = NumParts - RoundParts; 217 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 218 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 219 OddVT, V, CC); 220 221 // Combine the round and odd parts. 222 Lo = Val; 223 if (DAG.getDataLayout().isBigEndian()) 224 std::swap(Lo, Hi); 225 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 226 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 227 Hi = 228 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 229 DAG.getConstant(Lo.getValueSizeInBits(), DL, 230 TLI.getPointerTy(DAG.getDataLayout()))); 231 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 232 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 233 } 234 } else if (PartVT.isFloatingPoint()) { 235 // FP split into multiple FP parts (for ppcf128) 236 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 237 "Unexpected split"); 238 SDValue Lo, Hi; 239 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 240 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 241 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 242 std::swap(Lo, Hi); 243 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 244 } else { 245 // FP split into integer parts (soft fp) 246 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 247 !PartVT.isVector() && "Unexpected split"); 248 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 249 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 250 } 251 } 252 253 // There is now one part, held in Val. Correct it to match ValueVT. 254 // PartEVT is the type of the register class that holds the value. 255 // ValueVT is the type of the inline asm operation. 256 EVT PartEVT = Val.getValueType(); 257 258 if (PartEVT == ValueVT) 259 return Val; 260 261 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 262 ValueVT.bitsLT(PartEVT)) { 263 // For an FP value in an integer part, we need to truncate to the right 264 // width first. 265 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 266 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 267 } 268 269 // Handle types that have the same size. 270 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 271 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 272 273 // Handle types with different sizes. 274 if (PartEVT.isInteger() && ValueVT.isInteger()) { 275 if (ValueVT.bitsLT(PartEVT)) { 276 // For a truncate, see if we have any information to 277 // indicate whether the truncated bits will always be 278 // zero or sign-extension. 279 if (AssertOp.hasValue()) 280 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 281 DAG.getValueType(ValueVT)); 282 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 283 } 284 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 285 } 286 287 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 288 // FP_ROUND's are always exact here. 289 if (ValueVT.bitsLT(Val.getValueType())) 290 return DAG.getNode( 291 ISD::FP_ROUND, DL, ValueVT, Val, 292 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 293 294 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 295 } 296 297 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 298 // then truncating. 299 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 300 ValueVT.bitsLT(PartEVT)) { 301 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 302 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 303 } 304 305 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 306 } 307 308 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 309 const Twine &ErrMsg) { 310 const Instruction *I = dyn_cast_or_null<Instruction>(V); 311 if (!V) 312 return Ctx.emitError(ErrMsg); 313 314 const char *AsmError = ", possible invalid constraint for vector type"; 315 if (const CallInst *CI = dyn_cast<CallInst>(I)) 316 if (CI->isInlineAsm()) 317 return Ctx.emitError(I, ErrMsg + AsmError); 318 319 return Ctx.emitError(I, ErrMsg); 320 } 321 322 /// getCopyFromPartsVector - Create a value that contains the specified legal 323 /// parts combined into the value they represent. If the parts combine to a 324 /// type larger than ValueVT then AssertOp can be used to specify whether the 325 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 326 /// ValueVT (ISD::AssertSext). 327 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 328 const SDValue *Parts, unsigned NumParts, 329 MVT PartVT, EVT ValueVT, const Value *V, 330 Optional<CallingConv::ID> CallConv) { 331 assert(ValueVT.isVector() && "Not a vector value"); 332 assert(NumParts > 0 && "No parts to assemble!"); 333 const bool IsABIRegCopy = CallConv.hasValue(); 334 335 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 336 SDValue Val = Parts[0]; 337 338 // Handle a multi-element vector. 339 if (NumParts > 1) { 340 EVT IntermediateVT; 341 MVT RegisterVT; 342 unsigned NumIntermediates; 343 unsigned NumRegs; 344 345 if (IsABIRegCopy) { 346 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 347 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 348 NumIntermediates, RegisterVT); 349 } else { 350 NumRegs = 351 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 352 NumIntermediates, RegisterVT); 353 } 354 355 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 356 NumParts = NumRegs; // Silence a compiler warning. 357 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 358 assert(RegisterVT.getSizeInBits() == 359 Parts[0].getSimpleValueType().getSizeInBits() && 360 "Part type sizes don't match!"); 361 362 // Assemble the parts into intermediate operands. 363 SmallVector<SDValue, 8> Ops(NumIntermediates); 364 if (NumIntermediates == NumParts) { 365 // If the register was not expanded, truncate or copy the value, 366 // as appropriate. 367 for (unsigned i = 0; i != NumParts; ++i) 368 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 369 PartVT, IntermediateVT, V, CallConv); 370 } else if (NumParts > 0) { 371 // If the intermediate type was expanded, build the intermediate 372 // operands from the parts. 373 assert(NumParts % NumIntermediates == 0 && 374 "Must expand into a divisible number of parts!"); 375 unsigned Factor = NumParts / NumIntermediates; 376 for (unsigned i = 0; i != NumIntermediates; ++i) 377 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 378 PartVT, IntermediateVT, V, CallConv); 379 } 380 381 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 382 // intermediate operands. 383 EVT BuiltVectorTy = 384 IntermediateVT.isVector() 385 ? EVT::getVectorVT( 386 *DAG.getContext(), IntermediateVT.getScalarType(), 387 IntermediateVT.getVectorElementCount() * NumParts) 388 : EVT::getVectorVT(*DAG.getContext(), 389 IntermediateVT.getScalarType(), 390 NumIntermediates); 391 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 392 : ISD::BUILD_VECTOR, 393 DL, BuiltVectorTy, Ops); 394 } 395 396 // There is now one part, held in Val. Correct it to match ValueVT. 397 EVT PartEVT = Val.getValueType(); 398 399 if (PartEVT == ValueVT) 400 return Val; 401 402 if (PartEVT.isVector()) { 403 // Vector/Vector bitcast. 404 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 405 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 406 407 // If the element type of the source/dest vectors are the same, but the 408 // parts vector has more elements than the value vector, then we have a 409 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 410 // elements we want. 411 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) { 412 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 413 ValueVT.getVectorElementCount().getKnownMinValue()) && 414 (PartEVT.getVectorElementCount().isScalable() == 415 ValueVT.getVectorElementCount().isScalable()) && 416 "Cannot narrow, it would be a lossy transformation"); 417 PartEVT = 418 EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(), 419 ValueVT.getVectorElementCount()); 420 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val, 421 DAG.getVectorIdxConstant(0, DL)); 422 if (PartEVT == ValueVT) 423 return Val; 424 } 425 426 // Promoted vector extract 427 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 428 } 429 430 // Trivial bitcast if the types are the same size and the destination 431 // vector type is legal. 432 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 433 TLI.isTypeLegal(ValueVT)) 434 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 435 436 if (ValueVT.getVectorNumElements() != 1) { 437 // Certain ABIs require that vectors are passed as integers. For vectors 438 // are the same size, this is an obvious bitcast. 439 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 440 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 441 } else if (ValueVT.bitsLT(PartEVT)) { 442 const uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 443 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 444 // Drop the extra bits. 445 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 446 return DAG.getBitcast(ValueVT, Val); 447 } 448 449 diagnosePossiblyInvalidConstraint( 450 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 451 return DAG.getUNDEF(ValueVT); 452 } 453 454 // Handle cases such as i8 -> <1 x i1> 455 EVT ValueSVT = ValueVT.getVectorElementType(); 456 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 457 if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits()) 458 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 459 else 460 Val = ValueVT.isFloatingPoint() 461 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 462 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 463 } 464 465 return DAG.getBuildVector(ValueVT, DL, Val); 466 } 467 468 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 469 SDValue Val, SDValue *Parts, unsigned NumParts, 470 MVT PartVT, const Value *V, 471 Optional<CallingConv::ID> CallConv); 472 473 /// getCopyToParts - Create a series of nodes that contain the specified value 474 /// split into legal parts. If the parts contain more bits than Val, then, for 475 /// integers, ExtendKind can be used to specify how to generate the extra bits. 476 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 477 SDValue *Parts, unsigned NumParts, MVT PartVT, 478 const Value *V, 479 Optional<CallingConv::ID> CallConv = None, 480 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 481 // Let the target split the parts if it wants to 482 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 483 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 484 CallConv)) 485 return; 486 EVT ValueVT = Val.getValueType(); 487 488 // Handle the vector case separately. 489 if (ValueVT.isVector()) 490 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 491 CallConv); 492 493 unsigned PartBits = PartVT.getSizeInBits(); 494 unsigned OrigNumParts = NumParts; 495 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 496 "Copying to an illegal type!"); 497 498 if (NumParts == 0) 499 return; 500 501 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 502 EVT PartEVT = PartVT; 503 if (PartEVT == ValueVT) { 504 assert(NumParts == 1 && "No-op copy with multiple parts!"); 505 Parts[0] = Val; 506 return; 507 } 508 509 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 510 // If the parts cover more bits than the value has, promote the value. 511 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 512 assert(NumParts == 1 && "Do not know what to promote to!"); 513 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 514 } else { 515 if (ValueVT.isFloatingPoint()) { 516 // FP values need to be bitcast, then extended if they are being put 517 // into a larger container. 518 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 519 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 520 } 521 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 522 ValueVT.isInteger() && 523 "Unknown mismatch!"); 524 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 525 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 526 if (PartVT == MVT::x86mmx) 527 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 528 } 529 } else if (PartBits == ValueVT.getSizeInBits()) { 530 // Different types of the same size. 531 assert(NumParts == 1 && PartEVT != ValueVT); 532 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 533 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 534 // If the parts cover less bits than value has, truncate the value. 535 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 536 ValueVT.isInteger() && 537 "Unknown mismatch!"); 538 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 539 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 540 if (PartVT == MVT::x86mmx) 541 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 542 } 543 544 // The value may have changed - recompute ValueVT. 545 ValueVT = Val.getValueType(); 546 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 547 "Failed to tile the value with PartVT!"); 548 549 if (NumParts == 1) { 550 if (PartEVT != ValueVT) { 551 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 552 "scalar-to-vector conversion failed"); 553 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 554 } 555 556 Parts[0] = Val; 557 return; 558 } 559 560 // Expand the value into multiple parts. 561 if (NumParts & (NumParts - 1)) { 562 // The number of parts is not a power of 2. Split off and copy the tail. 563 assert(PartVT.isInteger() && ValueVT.isInteger() && 564 "Do not know what to expand to!"); 565 unsigned RoundParts = 1 << Log2_32(NumParts); 566 unsigned RoundBits = RoundParts * PartBits; 567 unsigned OddParts = NumParts - RoundParts; 568 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 569 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false)); 570 571 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 572 CallConv); 573 574 if (DAG.getDataLayout().isBigEndian()) 575 // The odd parts were reversed by getCopyToParts - unreverse them. 576 std::reverse(Parts + RoundParts, Parts + NumParts); 577 578 NumParts = RoundParts; 579 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 580 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 581 } 582 583 // The number of parts is a power of 2. Repeatedly bisect the value using 584 // EXTRACT_ELEMENT. 585 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 586 EVT::getIntegerVT(*DAG.getContext(), 587 ValueVT.getSizeInBits()), 588 Val); 589 590 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 591 for (unsigned i = 0; i < NumParts; i += StepSize) { 592 unsigned ThisBits = StepSize * PartBits / 2; 593 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 594 SDValue &Part0 = Parts[i]; 595 SDValue &Part1 = Parts[i+StepSize/2]; 596 597 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 598 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 599 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 600 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 601 602 if (ThisBits == PartBits && ThisVT != PartVT) { 603 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 604 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 605 } 606 } 607 } 608 609 if (DAG.getDataLayout().isBigEndian()) 610 std::reverse(Parts, Parts + OrigNumParts); 611 } 612 613 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, 614 const SDLoc &DL, EVT PartVT) { 615 if (!PartVT.isVector()) 616 return SDValue(); 617 618 EVT ValueVT = Val.getValueType(); 619 ElementCount PartNumElts = PartVT.getVectorElementCount(); 620 ElementCount ValueNumElts = ValueVT.getVectorElementCount(); 621 622 // We only support widening vectors with equivalent element types and 623 // fixed/scalable properties. If a target needs to widen a fixed-length type 624 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below. 625 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) || 626 PartNumElts.isScalable() != ValueNumElts.isScalable() || 627 PartVT.getVectorElementType() != ValueVT.getVectorElementType()) 628 return SDValue(); 629 630 // Widening a scalable vector to another scalable vector is done by inserting 631 // the vector into a larger undef one. 632 if (PartNumElts.isScalable()) 633 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 634 Val, DAG.getVectorIdxConstant(0, DL)); 635 636 EVT ElementVT = PartVT.getVectorElementType(); 637 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 638 // undef elements. 639 SmallVector<SDValue, 16> Ops; 640 DAG.ExtractVectorElements(Val, Ops); 641 SDValue EltUndef = DAG.getUNDEF(ElementVT); 642 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef); 643 644 // FIXME: Use CONCAT for 2x -> 4x. 645 return DAG.getBuildVector(PartVT, DL, Ops); 646 } 647 648 /// getCopyToPartsVector - Create a series of nodes that contain the specified 649 /// value split into legal parts. 650 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 651 SDValue Val, SDValue *Parts, unsigned NumParts, 652 MVT PartVT, const Value *V, 653 Optional<CallingConv::ID> CallConv) { 654 EVT ValueVT = Val.getValueType(); 655 assert(ValueVT.isVector() && "Not a vector"); 656 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 657 const bool IsABIRegCopy = CallConv.hasValue(); 658 659 if (NumParts == 1) { 660 EVT PartEVT = PartVT; 661 if (PartEVT == ValueVT) { 662 // Nothing to do. 663 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 664 // Bitconvert vector->vector case. 665 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 666 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 667 Val = Widened; 668 } else if (PartVT.isVector() && 669 PartEVT.getVectorElementType().bitsGE( 670 ValueVT.getVectorElementType()) && 671 PartEVT.getVectorElementCount() == 672 ValueVT.getVectorElementCount()) { 673 674 // Promoted vector extract 675 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 676 } else if (PartEVT.isVector() && 677 PartEVT.getVectorElementType() != 678 ValueVT.getVectorElementType() && 679 TLI.getTypeAction(*DAG.getContext(), ValueVT) == 680 TargetLowering::TypeWidenVector) { 681 // Combination of widening and promotion. 682 EVT WidenVT = 683 EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(), 684 PartVT.getVectorElementCount()); 685 SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT); 686 Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT); 687 } else { 688 if (ValueVT.getVectorElementCount().isScalar()) { 689 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 690 DAG.getVectorIdxConstant(0, DL)); 691 } else { 692 uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 693 assert(PartVT.getFixedSizeInBits() > ValueSize && 694 "lossy conversion of vector to scalar type"); 695 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 696 Val = DAG.getBitcast(IntermediateType, Val); 697 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 698 } 699 } 700 701 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 702 Parts[0] = Val; 703 return; 704 } 705 706 // Handle a multi-element vector. 707 EVT IntermediateVT; 708 MVT RegisterVT; 709 unsigned NumIntermediates; 710 unsigned NumRegs; 711 if (IsABIRegCopy) { 712 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 713 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 714 NumIntermediates, RegisterVT); 715 } else { 716 NumRegs = 717 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 718 NumIntermediates, RegisterVT); 719 } 720 721 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 722 NumParts = NumRegs; // Silence a compiler warning. 723 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 724 725 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 726 "Mixing scalable and fixed vectors when copying in parts"); 727 728 Optional<ElementCount> DestEltCnt; 729 730 if (IntermediateVT.isVector()) 731 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 732 else 733 DestEltCnt = ElementCount::getFixed(NumIntermediates); 734 735 EVT BuiltVectorTy = EVT::getVectorVT( 736 *DAG.getContext(), IntermediateVT.getScalarType(), DestEltCnt.getValue()); 737 738 if (ValueVT == BuiltVectorTy) { 739 // Nothing to do. 740 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) { 741 // Bitconvert vector->vector case. 742 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 743 } else { 744 if (BuiltVectorTy.getVectorElementType().bitsGT( 745 ValueVT.getVectorElementType())) { 746 // Integer promotion. 747 ValueVT = EVT::getVectorVT(*DAG.getContext(), 748 BuiltVectorTy.getVectorElementType(), 749 ValueVT.getVectorElementCount()); 750 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 751 } 752 753 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) { 754 Val = Widened; 755 } 756 } 757 758 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type"); 759 760 // Split the vector into intermediate operands. 761 SmallVector<SDValue, 8> Ops(NumIntermediates); 762 for (unsigned i = 0; i != NumIntermediates; ++i) { 763 if (IntermediateVT.isVector()) { 764 // This does something sensible for scalable vectors - see the 765 // definition of EXTRACT_SUBVECTOR for further details. 766 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 767 Ops[i] = 768 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 769 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 770 } else { 771 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 772 DAG.getVectorIdxConstant(i, DL)); 773 } 774 } 775 776 // Split the intermediate operands into legal parts. 777 if (NumParts == NumIntermediates) { 778 // If the register was not expanded, promote or copy the value, 779 // as appropriate. 780 for (unsigned i = 0; i != NumParts; ++i) 781 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 782 } else if (NumParts > 0) { 783 // If the intermediate type was expanded, split each the value into 784 // legal parts. 785 assert(NumIntermediates != 0 && "division by zero"); 786 assert(NumParts % NumIntermediates == 0 && 787 "Must expand into a divisible number of parts!"); 788 unsigned Factor = NumParts / NumIntermediates; 789 for (unsigned i = 0; i != NumIntermediates; ++i) 790 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 791 CallConv); 792 } 793 } 794 795 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 796 EVT valuevt, Optional<CallingConv::ID> CC) 797 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 798 RegCount(1, regs.size()), CallConv(CC) {} 799 800 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 801 const DataLayout &DL, unsigned Reg, Type *Ty, 802 Optional<CallingConv::ID> CC) { 803 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 804 805 CallConv = CC; 806 807 for (EVT ValueVT : ValueVTs) { 808 unsigned NumRegs = 809 isABIMangled() 810 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 811 : TLI.getNumRegisters(Context, ValueVT); 812 MVT RegisterVT = 813 isABIMangled() 814 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 815 : TLI.getRegisterType(Context, ValueVT); 816 for (unsigned i = 0; i != NumRegs; ++i) 817 Regs.push_back(Reg + i); 818 RegVTs.push_back(RegisterVT); 819 RegCount.push_back(NumRegs); 820 Reg += NumRegs; 821 } 822 } 823 824 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 825 FunctionLoweringInfo &FuncInfo, 826 const SDLoc &dl, SDValue &Chain, 827 SDValue *Flag, const Value *V) const { 828 // A Value with type {} or [0 x %t] needs no registers. 829 if (ValueVTs.empty()) 830 return SDValue(); 831 832 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 833 834 // Assemble the legal parts into the final values. 835 SmallVector<SDValue, 4> Values(ValueVTs.size()); 836 SmallVector<SDValue, 8> Parts; 837 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 838 // Copy the legal parts from the registers. 839 EVT ValueVT = ValueVTs[Value]; 840 unsigned NumRegs = RegCount[Value]; 841 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 842 *DAG.getContext(), 843 CallConv.getValue(), RegVTs[Value]) 844 : RegVTs[Value]; 845 846 Parts.resize(NumRegs); 847 for (unsigned i = 0; i != NumRegs; ++i) { 848 SDValue P; 849 if (!Flag) { 850 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 851 } else { 852 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 853 *Flag = P.getValue(2); 854 } 855 856 Chain = P.getValue(1); 857 Parts[i] = P; 858 859 // If the source register was virtual and if we know something about it, 860 // add an assert node. 861 if (!Register::isVirtualRegister(Regs[Part + i]) || 862 !RegisterVT.isInteger()) 863 continue; 864 865 const FunctionLoweringInfo::LiveOutInfo *LOI = 866 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 867 if (!LOI) 868 continue; 869 870 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 871 unsigned NumSignBits = LOI->NumSignBits; 872 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 873 874 if (NumZeroBits == RegSize) { 875 // The current value is a zero. 876 // Explicitly express that as it would be easier for 877 // optimizations to kick in. 878 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 879 continue; 880 } 881 882 // FIXME: We capture more information than the dag can represent. For 883 // now, just use the tightest assertzext/assertsext possible. 884 bool isSExt; 885 EVT FromVT(MVT::Other); 886 if (NumZeroBits) { 887 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 888 isSExt = false; 889 } else if (NumSignBits > 1) { 890 FromVT = 891 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 892 isSExt = true; 893 } else { 894 continue; 895 } 896 // Add an assertion node. 897 assert(FromVT != MVT::Other); 898 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 899 RegisterVT, P, DAG.getValueType(FromVT)); 900 } 901 902 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 903 RegisterVT, ValueVT, V, CallConv); 904 Part += NumRegs; 905 Parts.clear(); 906 } 907 908 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 909 } 910 911 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 912 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 913 const Value *V, 914 ISD::NodeType PreferredExtendType) const { 915 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 916 ISD::NodeType ExtendKind = PreferredExtendType; 917 918 // Get the list of the values's legal parts. 919 unsigned NumRegs = Regs.size(); 920 SmallVector<SDValue, 8> Parts(NumRegs); 921 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 922 unsigned NumParts = RegCount[Value]; 923 924 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 925 *DAG.getContext(), 926 CallConv.getValue(), RegVTs[Value]) 927 : RegVTs[Value]; 928 929 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 930 ExtendKind = ISD::ZERO_EXTEND; 931 932 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 933 NumParts, RegisterVT, V, CallConv, ExtendKind); 934 Part += NumParts; 935 } 936 937 // Copy the parts into the registers. 938 SmallVector<SDValue, 8> Chains(NumRegs); 939 for (unsigned i = 0; i != NumRegs; ++i) { 940 SDValue Part; 941 if (!Flag) { 942 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 943 } else { 944 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 945 *Flag = Part.getValue(1); 946 } 947 948 Chains[i] = Part.getValue(0); 949 } 950 951 if (NumRegs == 1 || Flag) 952 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 953 // flagged to it. That is the CopyToReg nodes and the user are considered 954 // a single scheduling unit. If we create a TokenFactor and return it as 955 // chain, then the TokenFactor is both a predecessor (operand) of the 956 // user as well as a successor (the TF operands are flagged to the user). 957 // c1, f1 = CopyToReg 958 // c2, f2 = CopyToReg 959 // c3 = TokenFactor c1, c2 960 // ... 961 // = op c3, ..., f2 962 Chain = Chains[NumRegs-1]; 963 else 964 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 965 } 966 967 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 968 unsigned MatchingIdx, const SDLoc &dl, 969 SelectionDAG &DAG, 970 std::vector<SDValue> &Ops) const { 971 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 972 973 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 974 if (HasMatching) 975 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 976 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 977 // Put the register class of the virtual registers in the flag word. That 978 // way, later passes can recompute register class constraints for inline 979 // assembly as well as normal instructions. 980 // Don't do this for tied operands that can use the regclass information 981 // from the def. 982 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 983 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 984 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 985 } 986 987 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 988 Ops.push_back(Res); 989 990 if (Code == InlineAsm::Kind_Clobber) { 991 // Clobbers should always have a 1:1 mapping with registers, and may 992 // reference registers that have illegal (e.g. vector) types. Hence, we 993 // shouldn't try to apply any sort of splitting logic to them. 994 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 995 "No 1:1 mapping from clobbers to regs?"); 996 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 997 (void)SP; 998 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 999 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 1000 assert( 1001 (Regs[I] != SP || 1002 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 1003 "If we clobbered the stack pointer, MFI should know about it."); 1004 } 1005 return; 1006 } 1007 1008 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 1009 MVT RegisterVT = RegVTs[Value]; 1010 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value], 1011 RegisterVT); 1012 for (unsigned i = 0; i != NumRegs; ++i) { 1013 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 1014 unsigned TheReg = Regs[Reg++]; 1015 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 1016 } 1017 } 1018 } 1019 1020 SmallVector<std::pair<unsigned, TypeSize>, 4> 1021 RegsForValue::getRegsAndSizes() const { 1022 SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec; 1023 unsigned I = 0; 1024 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1025 unsigned RegCount = std::get<0>(CountAndVT); 1026 MVT RegisterVT = std::get<1>(CountAndVT); 1027 TypeSize RegisterSize = RegisterVT.getSizeInBits(); 1028 for (unsigned E = I + RegCount; I != E; ++I) 1029 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1030 } 1031 return OutVec; 1032 } 1033 1034 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1035 const TargetLibraryInfo *li) { 1036 AA = aa; 1037 GFI = gfi; 1038 LibInfo = li; 1039 Context = DAG.getContext(); 1040 LPadToCallSiteMap.clear(); 1041 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1042 } 1043 1044 void SelectionDAGBuilder::clear() { 1045 NodeMap.clear(); 1046 UnusedArgNodeMap.clear(); 1047 PendingLoads.clear(); 1048 PendingExports.clear(); 1049 PendingConstrainedFP.clear(); 1050 PendingConstrainedFPStrict.clear(); 1051 CurInst = nullptr; 1052 HasTailCall = false; 1053 SDNodeOrder = LowestSDNodeOrder; 1054 StatepointLowering.clear(); 1055 } 1056 1057 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1058 DanglingDebugInfoMap.clear(); 1059 } 1060 1061 // Update DAG root to include dependencies on Pending chains. 1062 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1063 SDValue Root = DAG.getRoot(); 1064 1065 if (Pending.empty()) 1066 return Root; 1067 1068 // Add current root to PendingChains, unless we already indirectly 1069 // depend on it. 1070 if (Root.getOpcode() != ISD::EntryToken) { 1071 unsigned i = 0, e = Pending.size(); 1072 for (; i != e; ++i) { 1073 assert(Pending[i].getNode()->getNumOperands() > 1); 1074 if (Pending[i].getNode()->getOperand(0) == Root) 1075 break; // Don't add the root if we already indirectly depend on it. 1076 } 1077 1078 if (i == e) 1079 Pending.push_back(Root); 1080 } 1081 1082 if (Pending.size() == 1) 1083 Root = Pending[0]; 1084 else 1085 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1086 1087 DAG.setRoot(Root); 1088 Pending.clear(); 1089 return Root; 1090 } 1091 1092 SDValue SelectionDAGBuilder::getMemoryRoot() { 1093 return updateRoot(PendingLoads); 1094 } 1095 1096 SDValue SelectionDAGBuilder::getRoot() { 1097 // Chain up all pending constrained intrinsics together with all 1098 // pending loads, by simply appending them to PendingLoads and 1099 // then calling getMemoryRoot(). 1100 PendingLoads.reserve(PendingLoads.size() + 1101 PendingConstrainedFP.size() + 1102 PendingConstrainedFPStrict.size()); 1103 PendingLoads.append(PendingConstrainedFP.begin(), 1104 PendingConstrainedFP.end()); 1105 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1106 PendingConstrainedFPStrict.end()); 1107 PendingConstrainedFP.clear(); 1108 PendingConstrainedFPStrict.clear(); 1109 return getMemoryRoot(); 1110 } 1111 1112 SDValue SelectionDAGBuilder::getControlRoot() { 1113 // We need to emit pending fpexcept.strict constrained intrinsics, 1114 // so append them to the PendingExports list. 1115 PendingExports.append(PendingConstrainedFPStrict.begin(), 1116 PendingConstrainedFPStrict.end()); 1117 PendingConstrainedFPStrict.clear(); 1118 return updateRoot(PendingExports); 1119 } 1120 1121 void SelectionDAGBuilder::visit(const Instruction &I) { 1122 // Set up outgoing PHI node register values before emitting the terminator. 1123 if (I.isTerminator()) { 1124 HandlePHINodesInSuccessorBlocks(I.getParent()); 1125 } 1126 1127 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1128 if (!isa<DbgInfoIntrinsic>(I)) 1129 ++SDNodeOrder; 1130 1131 CurInst = &I; 1132 1133 visit(I.getOpcode(), I); 1134 1135 if (!I.isTerminator() && !HasTailCall && 1136 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1137 CopyToExportRegsIfNeeded(&I); 1138 1139 CurInst = nullptr; 1140 } 1141 1142 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1143 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1144 } 1145 1146 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1147 // Note: this doesn't use InstVisitor, because it has to work with 1148 // ConstantExpr's in addition to instructions. 1149 switch (Opcode) { 1150 default: llvm_unreachable("Unknown instruction type encountered!"); 1151 // Build the switch statement using the Instruction.def file. 1152 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1153 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1154 #include "llvm/IR/Instruction.def" 1155 } 1156 } 1157 1158 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI, 1159 DebugLoc DL, unsigned Order) { 1160 // We treat variadic dbg_values differently at this stage. 1161 if (DI->hasArgList()) { 1162 // For variadic dbg_values we will now insert an undef. 1163 // FIXME: We can potentially recover these! 1164 SmallVector<SDDbgOperand, 2> Locs; 1165 for (const Value *V : DI->getValues()) { 1166 auto Undef = UndefValue::get(V->getType()); 1167 Locs.push_back(SDDbgOperand::fromConst(Undef)); 1168 } 1169 SDDbgValue *SDV = DAG.getDbgValueList( 1170 DI->getVariable(), DI->getExpression(), Locs, {}, 1171 /*IsIndirect=*/false, DL, Order, /*IsVariadic=*/true); 1172 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1173 } else { 1174 // TODO: Dangling debug info will eventually either be resolved or produce 1175 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 1176 // between the original dbg.value location and its resolved DBG_VALUE, 1177 // which we should ideally fill with an extra Undef DBG_VALUE. 1178 assert(DI->getNumVariableLocationOps() == 1 && 1179 "DbgValueInst without an ArgList should have a single location " 1180 "operand."); 1181 DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, DL, Order); 1182 } 1183 } 1184 1185 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1186 const DIExpression *Expr) { 1187 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1188 const DbgValueInst *DI = DDI.getDI(); 1189 DIVariable *DanglingVariable = DI->getVariable(); 1190 DIExpression *DanglingExpr = DI->getExpression(); 1191 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1192 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1193 return true; 1194 } 1195 return false; 1196 }; 1197 1198 for (auto &DDIMI : DanglingDebugInfoMap) { 1199 DanglingDebugInfoVector &DDIV = DDIMI.second; 1200 1201 // If debug info is to be dropped, run it through final checks to see 1202 // whether it can be salvaged. 1203 for (auto &DDI : DDIV) 1204 if (isMatchingDbgValue(DDI)) 1205 salvageUnresolvedDbgValue(DDI); 1206 1207 erase_if(DDIV, isMatchingDbgValue); 1208 } 1209 } 1210 1211 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1212 // generate the debug data structures now that we've seen its definition. 1213 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1214 SDValue Val) { 1215 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1216 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1217 return; 1218 1219 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1220 for (auto &DDI : DDIV) { 1221 const DbgValueInst *DI = DDI.getDI(); 1222 assert(!DI->hasArgList() && "Not implemented for variadic dbg_values"); 1223 assert(DI && "Ill-formed DanglingDebugInfo"); 1224 DebugLoc dl = DDI.getdl(); 1225 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1226 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1227 DILocalVariable *Variable = DI->getVariable(); 1228 DIExpression *Expr = DI->getExpression(); 1229 assert(Variable->isValidLocationForIntrinsic(dl) && 1230 "Expected inlined-at fields to agree"); 1231 SDDbgValue *SDV; 1232 if (Val.getNode()) { 1233 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1234 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1235 // we couldn't resolve it directly when examining the DbgValue intrinsic 1236 // in the first place we should not be more successful here). Unless we 1237 // have some test case that prove this to be correct we should avoid 1238 // calling EmitFuncArgumentDbgValue here. 1239 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1240 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1241 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1242 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1243 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1244 // inserted after the definition of Val when emitting the instructions 1245 // after ISel. An alternative could be to teach 1246 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1247 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1248 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1249 << ValSDNodeOrder << "\n"); 1250 SDV = getDbgValue(Val, Variable, Expr, dl, 1251 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1252 DAG.AddDbgValue(SDV, false); 1253 } else 1254 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1255 << "in EmitFuncArgumentDbgValue\n"); 1256 } else { 1257 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1258 auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType()); 1259 auto SDV = 1260 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1261 DAG.AddDbgValue(SDV, false); 1262 } 1263 } 1264 DDIV.clear(); 1265 } 1266 1267 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1268 // TODO: For the variadic implementation, instead of only checking the fail 1269 // state of `handleDebugValue`, we need know specifically which values were 1270 // invalid, so that we attempt to salvage only those values when processing 1271 // a DIArgList. 1272 assert(!DDI.getDI()->hasArgList() && 1273 "Not implemented for variadic dbg_values"); 1274 Value *V = DDI.getDI()->getValue(0); 1275 DILocalVariable *Var = DDI.getDI()->getVariable(); 1276 DIExpression *Expr = DDI.getDI()->getExpression(); 1277 DebugLoc DL = DDI.getdl(); 1278 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1279 unsigned SDOrder = DDI.getSDNodeOrder(); 1280 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1281 // that DW_OP_stack_value is desired. 1282 assert(isa<DbgValueInst>(DDI.getDI())); 1283 bool StackValue = true; 1284 1285 // Can this Value can be encoded without any further work? 1286 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, /*IsVariadic=*/false)) 1287 return; 1288 1289 // Attempt to salvage back through as many instructions as possible. Bail if 1290 // a non-instruction is seen, such as a constant expression or global 1291 // variable. FIXME: Further work could recover those too. 1292 while (isa<Instruction>(V)) { 1293 Instruction &VAsInst = *cast<Instruction>(V); 1294 // Temporary "0", awaiting real implementation. 1295 SmallVector<uint64_t, 16> Ops; 1296 SmallVector<Value *, 4> AdditionalValues; 1297 V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops, 1298 AdditionalValues); 1299 // If we cannot salvage any further, and haven't yet found a suitable debug 1300 // expression, bail out. 1301 if (!V) 1302 break; 1303 1304 // TODO: If AdditionalValues isn't empty, then the salvage can only be 1305 // represented with a DBG_VALUE_LIST, so we give up. When we have support 1306 // here for variadic dbg_values, remove that condition. 1307 if (!AdditionalValues.empty()) 1308 break; 1309 1310 // New value and expr now represent this debuginfo. 1311 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue); 1312 1313 // Some kind of simplification occurred: check whether the operand of the 1314 // salvaged debug expression can be encoded in this DAG. 1315 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, 1316 /*IsVariadic=*/false)) { 1317 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1318 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1319 return; 1320 } 1321 } 1322 1323 // This was the final opportunity to salvage this debug information, and it 1324 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1325 // any earlier variable location. 1326 auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType()); 1327 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1328 DAG.AddDbgValue(SDV, false); 1329 1330 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1331 << "\n"); 1332 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1333 << "\n"); 1334 } 1335 1336 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values, 1337 DILocalVariable *Var, 1338 DIExpression *Expr, DebugLoc dl, 1339 DebugLoc InstDL, unsigned Order, 1340 bool IsVariadic) { 1341 if (Values.empty()) 1342 return true; 1343 SmallVector<SDDbgOperand> LocationOps; 1344 SmallVector<SDNode *> Dependencies; 1345 for (const Value *V : Values) { 1346 // Constant value. 1347 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1348 isa<ConstantPointerNull>(V)) { 1349 LocationOps.emplace_back(SDDbgOperand::fromConst(V)); 1350 continue; 1351 } 1352 1353 // If the Value is a frame index, we can create a FrameIndex debug value 1354 // without relying on the DAG at all. 1355 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1356 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1357 if (SI != FuncInfo.StaticAllocaMap.end()) { 1358 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second)); 1359 continue; 1360 } 1361 } 1362 1363 // Do not use getValue() in here; we don't want to generate code at 1364 // this point if it hasn't been done yet. 1365 SDValue N = NodeMap[V]; 1366 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1367 N = UnusedArgNodeMap[V]; 1368 if (N.getNode()) { 1369 // Only emit func arg dbg value for non-variadic dbg.values for now. 1370 if (!IsVariadic && EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) 1371 return true; 1372 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 1373 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can 1374 // describe stack slot locations. 1375 // 1376 // Consider "int x = 0; int *px = &x;". There are two kinds of 1377 // interesting debug values here after optimization: 1378 // 1379 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 1380 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 1381 // 1382 // Both describe the direct values of their associated variables. 1383 Dependencies.push_back(N.getNode()); 1384 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex())); 1385 continue; 1386 } 1387 LocationOps.emplace_back( 1388 SDDbgOperand::fromNode(N.getNode(), N.getResNo())); 1389 continue; 1390 } 1391 1392 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1393 // Special rules apply for the first dbg.values of parameter variables in a 1394 // function. Identify them by the fact they reference Argument Values, that 1395 // they're parameters, and they are parameters of the current function. We 1396 // need to let them dangle until they get an SDNode. 1397 bool IsParamOfFunc = 1398 isa<Argument>(V) && Var->isParameter() && !InstDL.getInlinedAt(); 1399 if (IsParamOfFunc) 1400 return false; 1401 1402 // The value is not used in this block yet (or it would have an SDNode). 1403 // We still want the value to appear for the user if possible -- if it has 1404 // an associated VReg, we can refer to that instead. 1405 auto VMI = FuncInfo.ValueMap.find(V); 1406 if (VMI != FuncInfo.ValueMap.end()) { 1407 unsigned Reg = VMI->second; 1408 // If this is a PHI node, it may be split up into several MI PHI nodes 1409 // (in FunctionLoweringInfo::set). 1410 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1411 V->getType(), None); 1412 if (RFV.occupiesMultipleRegs()) { 1413 // FIXME: We could potentially support variadic dbg_values here. 1414 if (IsVariadic) 1415 return false; 1416 unsigned Offset = 0; 1417 unsigned BitsToDescribe = 0; 1418 if (auto VarSize = Var->getSizeInBits()) 1419 BitsToDescribe = *VarSize; 1420 if (auto Fragment = Expr->getFragmentInfo()) 1421 BitsToDescribe = Fragment->SizeInBits; 1422 for (const auto &RegAndSize : RFV.getRegsAndSizes()) { 1423 // Bail out if all bits are described already. 1424 if (Offset >= BitsToDescribe) 1425 break; 1426 // TODO: handle scalable vectors. 1427 unsigned RegisterSize = RegAndSize.second; 1428 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1429 ? BitsToDescribe - Offset 1430 : RegisterSize; 1431 auto FragmentExpr = DIExpression::createFragmentExpression( 1432 Expr, Offset, FragmentSize); 1433 if (!FragmentExpr) 1434 continue; 1435 SDDbgValue *SDV = DAG.getVRegDbgValue( 1436 Var, *FragmentExpr, RegAndSize.first, false, dl, SDNodeOrder); 1437 DAG.AddDbgValue(SDV, false); 1438 Offset += RegisterSize; 1439 } 1440 return true; 1441 } 1442 // We can use simple vreg locations for variadic dbg_values as well. 1443 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg)); 1444 continue; 1445 } 1446 // We failed to create a SDDbgOperand for V. 1447 return false; 1448 } 1449 1450 // We have created a SDDbgOperand for each Value in Values. 1451 // Should use Order instead of SDNodeOrder? 1452 assert(!LocationOps.empty()); 1453 SDDbgValue *SDV = 1454 DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies, 1455 /*IsIndirect=*/false, dl, SDNodeOrder, IsVariadic); 1456 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1457 return true; 1458 } 1459 1460 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1461 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1462 for (auto &Pair : DanglingDebugInfoMap) 1463 for (auto &DDI : Pair.second) 1464 salvageUnresolvedDbgValue(DDI); 1465 clearDanglingDebugInfo(); 1466 } 1467 1468 /// getCopyFromRegs - If there was virtual register allocated for the value V 1469 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1470 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1471 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1472 SDValue Result; 1473 1474 if (It != FuncInfo.ValueMap.end()) { 1475 Register InReg = It->second; 1476 1477 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1478 DAG.getDataLayout(), InReg, Ty, 1479 None); // This is not an ABI copy. 1480 SDValue Chain = DAG.getEntryNode(); 1481 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1482 V); 1483 resolveDanglingDebugInfo(V, Result); 1484 } 1485 1486 return Result; 1487 } 1488 1489 /// getValue - Return an SDValue for the given Value. 1490 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1491 // If we already have an SDValue for this value, use it. It's important 1492 // to do this first, so that we don't create a CopyFromReg if we already 1493 // have a regular SDValue. 1494 SDValue &N = NodeMap[V]; 1495 if (N.getNode()) return N; 1496 1497 // If there's a virtual register allocated and initialized for this 1498 // value, use it. 1499 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1500 return copyFromReg; 1501 1502 // Otherwise create a new SDValue and remember it. 1503 SDValue Val = getValueImpl(V); 1504 NodeMap[V] = Val; 1505 resolveDanglingDebugInfo(V, Val); 1506 return Val; 1507 } 1508 1509 /// getNonRegisterValue - Return an SDValue for the given Value, but 1510 /// don't look in FuncInfo.ValueMap for a virtual register. 1511 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1512 // If we already have an SDValue for this value, use it. 1513 SDValue &N = NodeMap[V]; 1514 if (N.getNode()) { 1515 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1516 // Remove the debug location from the node as the node is about to be used 1517 // in a location which may differ from the original debug location. This 1518 // is relevant to Constant and ConstantFP nodes because they can appear 1519 // as constant expressions inside PHI nodes. 1520 N->setDebugLoc(DebugLoc()); 1521 } 1522 return N; 1523 } 1524 1525 // Otherwise create a new SDValue and remember it. 1526 SDValue Val = getValueImpl(V); 1527 NodeMap[V] = Val; 1528 resolveDanglingDebugInfo(V, Val); 1529 return Val; 1530 } 1531 1532 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1533 /// Create an SDValue for the given value. 1534 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1535 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1536 1537 if (const Constant *C = dyn_cast<Constant>(V)) { 1538 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1539 1540 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1541 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1542 1543 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1544 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1545 1546 if (isa<ConstantPointerNull>(C)) { 1547 unsigned AS = V->getType()->getPointerAddressSpace(); 1548 return DAG.getConstant(0, getCurSDLoc(), 1549 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1550 } 1551 1552 if (match(C, m_VScale(DAG.getDataLayout()))) 1553 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1554 1555 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1556 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1557 1558 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1559 return DAG.getUNDEF(VT); 1560 1561 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1562 visit(CE->getOpcode(), *CE); 1563 SDValue N1 = NodeMap[V]; 1564 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1565 return N1; 1566 } 1567 1568 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1569 SmallVector<SDValue, 4> Constants; 1570 for (const Use &U : C->operands()) { 1571 SDNode *Val = getValue(U).getNode(); 1572 // If the operand is an empty aggregate, there are no values. 1573 if (!Val) continue; 1574 // Add each leaf value from the operand to the Constants list 1575 // to form a flattened list of all the values. 1576 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1577 Constants.push_back(SDValue(Val, i)); 1578 } 1579 1580 return DAG.getMergeValues(Constants, getCurSDLoc()); 1581 } 1582 1583 if (const ConstantDataSequential *CDS = 1584 dyn_cast<ConstantDataSequential>(C)) { 1585 SmallVector<SDValue, 4> Ops; 1586 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1587 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1588 // Add each leaf value from the operand to the Constants list 1589 // to form a flattened list of all the values. 1590 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1591 Ops.push_back(SDValue(Val, i)); 1592 } 1593 1594 if (isa<ArrayType>(CDS->getType())) 1595 return DAG.getMergeValues(Ops, getCurSDLoc()); 1596 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1597 } 1598 1599 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1600 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1601 "Unknown struct or array constant!"); 1602 1603 SmallVector<EVT, 4> ValueVTs; 1604 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1605 unsigned NumElts = ValueVTs.size(); 1606 if (NumElts == 0) 1607 return SDValue(); // empty struct 1608 SmallVector<SDValue, 4> Constants(NumElts); 1609 for (unsigned i = 0; i != NumElts; ++i) { 1610 EVT EltVT = ValueVTs[i]; 1611 if (isa<UndefValue>(C)) 1612 Constants[i] = DAG.getUNDEF(EltVT); 1613 else if (EltVT.isFloatingPoint()) 1614 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1615 else 1616 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1617 } 1618 1619 return DAG.getMergeValues(Constants, getCurSDLoc()); 1620 } 1621 1622 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1623 return DAG.getBlockAddress(BA, VT); 1624 1625 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) 1626 return getValue(Equiv->getGlobalValue()); 1627 1628 if (const auto *NC = dyn_cast<NoCFIValue>(C)) 1629 return getValue(NC->getGlobalValue()); 1630 1631 VectorType *VecTy = cast<VectorType>(V->getType()); 1632 1633 // Now that we know the number and type of the elements, get that number of 1634 // elements into the Ops array based on what kind of constant it is. 1635 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1636 SmallVector<SDValue, 16> Ops; 1637 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1638 for (unsigned i = 0; i != NumElements; ++i) 1639 Ops.push_back(getValue(CV->getOperand(i))); 1640 1641 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1642 } else if (isa<ConstantAggregateZero>(C)) { 1643 EVT EltVT = 1644 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1645 1646 SDValue Op; 1647 if (EltVT.isFloatingPoint()) 1648 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1649 else 1650 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1651 1652 if (isa<ScalableVectorType>(VecTy)) 1653 return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op); 1654 else { 1655 SmallVector<SDValue, 16> Ops; 1656 Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op); 1657 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1658 } 1659 } 1660 llvm_unreachable("Unknown vector constant"); 1661 } 1662 1663 // If this is a static alloca, generate it as the frameindex instead of 1664 // computation. 1665 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1666 DenseMap<const AllocaInst*, int>::iterator SI = 1667 FuncInfo.StaticAllocaMap.find(AI); 1668 if (SI != FuncInfo.StaticAllocaMap.end()) 1669 return DAG.getFrameIndex(SI->second, 1670 TLI.getFrameIndexTy(DAG.getDataLayout())); 1671 } 1672 1673 // If this is an instruction which fast-isel has deferred, select it now. 1674 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1675 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1676 1677 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1678 Inst->getType(), None); 1679 SDValue Chain = DAG.getEntryNode(); 1680 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1681 } 1682 1683 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) { 1684 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1685 } 1686 llvm_unreachable("Can't get register for value!"); 1687 } 1688 1689 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1690 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1691 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1692 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1693 bool IsSEH = isAsynchronousEHPersonality(Pers); 1694 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1695 if (!IsSEH) 1696 CatchPadMBB->setIsEHScopeEntry(); 1697 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1698 if (IsMSVCCXX || IsCoreCLR) 1699 CatchPadMBB->setIsEHFuncletEntry(); 1700 } 1701 1702 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1703 // Update machine-CFG edge. 1704 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1705 FuncInfo.MBB->addSuccessor(TargetMBB); 1706 TargetMBB->setIsEHCatchretTarget(true); 1707 DAG.getMachineFunction().setHasEHCatchret(true); 1708 1709 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1710 bool IsSEH = isAsynchronousEHPersonality(Pers); 1711 if (IsSEH) { 1712 // If this is not a fall-through branch or optimizations are switched off, 1713 // emit the branch. 1714 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1715 TM.getOptLevel() == CodeGenOpt::None) 1716 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1717 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1718 return; 1719 } 1720 1721 // Figure out the funclet membership for the catchret's successor. 1722 // This will be used by the FuncletLayout pass to determine how to order the 1723 // BB's. 1724 // A 'catchret' returns to the outer scope's color. 1725 Value *ParentPad = I.getCatchSwitchParentPad(); 1726 const BasicBlock *SuccessorColor; 1727 if (isa<ConstantTokenNone>(ParentPad)) 1728 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1729 else 1730 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1731 assert(SuccessorColor && "No parent funclet for catchret!"); 1732 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1733 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1734 1735 // Create the terminator node. 1736 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1737 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1738 DAG.getBasicBlock(SuccessorColorMBB)); 1739 DAG.setRoot(Ret); 1740 } 1741 1742 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1743 // Don't emit any special code for the cleanuppad instruction. It just marks 1744 // the start of an EH scope/funclet. 1745 FuncInfo.MBB->setIsEHScopeEntry(); 1746 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1747 if (Pers != EHPersonality::Wasm_CXX) { 1748 FuncInfo.MBB->setIsEHFuncletEntry(); 1749 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1750 } 1751 } 1752 1753 // In wasm EH, even though a catchpad may not catch an exception if a tag does 1754 // not match, it is OK to add only the first unwind destination catchpad to the 1755 // successors, because there will be at least one invoke instruction within the 1756 // catch scope that points to the next unwind destination, if one exists, so 1757 // CFGSort cannot mess up with BB sorting order. 1758 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic 1759 // call within them, and catchpads only consisting of 'catch (...)' have a 1760 // '__cxa_end_catch' call within them, both of which generate invokes in case 1761 // the next unwind destination exists, i.e., the next unwind destination is not 1762 // the caller.) 1763 // 1764 // Having at most one EH pad successor is also simpler and helps later 1765 // transformations. 1766 // 1767 // For example, 1768 // current: 1769 // invoke void @foo to ... unwind label %catch.dispatch 1770 // catch.dispatch: 1771 // %0 = catchswitch within ... [label %catch.start] unwind label %next 1772 // catch.start: 1773 // ... 1774 // ... in this BB or some other child BB dominated by this BB there will be an 1775 // invoke that points to 'next' BB as an unwind destination 1776 // 1777 // next: ; We don't need to add this to 'current' BB's successor 1778 // ... 1779 static void findWasmUnwindDestinations( 1780 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1781 BranchProbability Prob, 1782 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1783 &UnwindDests) { 1784 while (EHPadBB) { 1785 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1786 if (isa<CleanupPadInst>(Pad)) { 1787 // Stop on cleanup pads. 1788 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1789 UnwindDests.back().first->setIsEHScopeEntry(); 1790 break; 1791 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1792 // Add the catchpad handlers to the possible destinations. We don't 1793 // continue to the unwind destination of the catchswitch for wasm. 1794 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1795 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1796 UnwindDests.back().first->setIsEHScopeEntry(); 1797 } 1798 break; 1799 } else { 1800 continue; 1801 } 1802 } 1803 } 1804 1805 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1806 /// many places it could ultimately go. In the IR, we have a single unwind 1807 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1808 /// This function skips over imaginary basic blocks that hold catchswitch 1809 /// instructions, and finds all the "real" machine 1810 /// basic block destinations. As those destinations may not be successors of 1811 /// EHPadBB, here we also calculate the edge probability to those destinations. 1812 /// The passed-in Prob is the edge probability to EHPadBB. 1813 static void findUnwindDestinations( 1814 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1815 BranchProbability Prob, 1816 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1817 &UnwindDests) { 1818 EHPersonality Personality = 1819 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1820 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1821 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1822 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1823 bool IsSEH = isAsynchronousEHPersonality(Personality); 1824 1825 if (IsWasmCXX) { 1826 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1827 assert(UnwindDests.size() <= 1 && 1828 "There should be at most one unwind destination for wasm"); 1829 return; 1830 } 1831 1832 while (EHPadBB) { 1833 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1834 BasicBlock *NewEHPadBB = nullptr; 1835 if (isa<LandingPadInst>(Pad)) { 1836 // Stop on landingpads. They are not funclets. 1837 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1838 break; 1839 } else if (isa<CleanupPadInst>(Pad)) { 1840 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1841 // personalities. 1842 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1843 UnwindDests.back().first->setIsEHScopeEntry(); 1844 UnwindDests.back().first->setIsEHFuncletEntry(); 1845 break; 1846 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1847 // Add the catchpad handlers to the possible destinations. 1848 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1849 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1850 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1851 if (IsMSVCCXX || IsCoreCLR) 1852 UnwindDests.back().first->setIsEHFuncletEntry(); 1853 if (!IsSEH) 1854 UnwindDests.back().first->setIsEHScopeEntry(); 1855 } 1856 NewEHPadBB = CatchSwitch->getUnwindDest(); 1857 } else { 1858 continue; 1859 } 1860 1861 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1862 if (BPI && NewEHPadBB) 1863 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1864 EHPadBB = NewEHPadBB; 1865 } 1866 } 1867 1868 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1869 // Update successor info. 1870 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1871 auto UnwindDest = I.getUnwindDest(); 1872 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1873 BranchProbability UnwindDestProb = 1874 (BPI && UnwindDest) 1875 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1876 : BranchProbability::getZero(); 1877 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1878 for (auto &UnwindDest : UnwindDests) { 1879 UnwindDest.first->setIsEHPad(); 1880 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1881 } 1882 FuncInfo.MBB->normalizeSuccProbs(); 1883 1884 // Create the terminator node. 1885 SDValue Ret = 1886 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1887 DAG.setRoot(Ret); 1888 } 1889 1890 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1891 report_fatal_error("visitCatchSwitch not yet implemented!"); 1892 } 1893 1894 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1895 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1896 auto &DL = DAG.getDataLayout(); 1897 SDValue Chain = getControlRoot(); 1898 SmallVector<ISD::OutputArg, 8> Outs; 1899 SmallVector<SDValue, 8> OutVals; 1900 1901 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1902 // lower 1903 // 1904 // %val = call <ty> @llvm.experimental.deoptimize() 1905 // ret <ty> %val 1906 // 1907 // differently. 1908 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1909 LowerDeoptimizingReturn(); 1910 return; 1911 } 1912 1913 if (!FuncInfo.CanLowerReturn) { 1914 unsigned DemoteReg = FuncInfo.DemoteRegister; 1915 const Function *F = I.getParent()->getParent(); 1916 1917 // Emit a store of the return value through the virtual register. 1918 // Leave Outs empty so that LowerReturn won't try to load return 1919 // registers the usual way. 1920 SmallVector<EVT, 1> PtrValueVTs; 1921 ComputeValueVTs(TLI, DL, 1922 F->getReturnType()->getPointerTo( 1923 DAG.getDataLayout().getAllocaAddrSpace()), 1924 PtrValueVTs); 1925 1926 SDValue RetPtr = 1927 DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]); 1928 SDValue RetOp = getValue(I.getOperand(0)); 1929 1930 SmallVector<EVT, 4> ValueVTs, MemVTs; 1931 SmallVector<uint64_t, 4> Offsets; 1932 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1933 &Offsets); 1934 unsigned NumValues = ValueVTs.size(); 1935 1936 SmallVector<SDValue, 4> Chains(NumValues); 1937 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 1938 for (unsigned i = 0; i != NumValues; ++i) { 1939 // An aggregate return value cannot wrap around the address space, so 1940 // offsets to its parts don't wrap either. 1941 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 1942 TypeSize::Fixed(Offsets[i])); 1943 1944 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 1945 if (MemVTs[i] != ValueVTs[i]) 1946 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1947 Chains[i] = DAG.getStore( 1948 Chain, getCurSDLoc(), Val, 1949 // FIXME: better loc info would be nice. 1950 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 1951 commonAlignment(BaseAlign, Offsets[i])); 1952 } 1953 1954 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1955 MVT::Other, Chains); 1956 } else if (I.getNumOperands() != 0) { 1957 SmallVector<EVT, 4> ValueVTs; 1958 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1959 unsigned NumValues = ValueVTs.size(); 1960 if (NumValues) { 1961 SDValue RetOp = getValue(I.getOperand(0)); 1962 1963 const Function *F = I.getParent()->getParent(); 1964 1965 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1966 I.getOperand(0)->getType(), F->getCallingConv(), 1967 /*IsVarArg*/ false, DL); 1968 1969 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1970 if (F->getAttributes().hasRetAttr(Attribute::SExt)) 1971 ExtendKind = ISD::SIGN_EXTEND; 1972 else if (F->getAttributes().hasRetAttr(Attribute::ZExt)) 1973 ExtendKind = ISD::ZERO_EXTEND; 1974 1975 LLVMContext &Context = F->getContext(); 1976 bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg); 1977 1978 for (unsigned j = 0; j != NumValues; ++j) { 1979 EVT VT = ValueVTs[j]; 1980 1981 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1982 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1983 1984 CallingConv::ID CC = F->getCallingConv(); 1985 1986 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1987 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1988 SmallVector<SDValue, 4> Parts(NumParts); 1989 getCopyToParts(DAG, getCurSDLoc(), 1990 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1991 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1992 1993 // 'inreg' on function refers to return value 1994 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1995 if (RetInReg) 1996 Flags.setInReg(); 1997 1998 if (I.getOperand(0)->getType()->isPointerTy()) { 1999 Flags.setPointer(); 2000 Flags.setPointerAddrSpace( 2001 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 2002 } 2003 2004 if (NeedsRegBlock) { 2005 Flags.setInConsecutiveRegs(); 2006 if (j == NumValues - 1) 2007 Flags.setInConsecutiveRegsLast(); 2008 } 2009 2010 // Propagate extension type if any 2011 if (ExtendKind == ISD::SIGN_EXTEND) 2012 Flags.setSExt(); 2013 else if (ExtendKind == ISD::ZERO_EXTEND) 2014 Flags.setZExt(); 2015 2016 for (unsigned i = 0; i < NumParts; ++i) { 2017 Outs.push_back(ISD::OutputArg(Flags, 2018 Parts[i].getValueType().getSimpleVT(), 2019 VT, /*isfixed=*/true, 0, 0)); 2020 OutVals.push_back(Parts[i]); 2021 } 2022 } 2023 } 2024 } 2025 2026 // Push in swifterror virtual register as the last element of Outs. This makes 2027 // sure swifterror virtual register will be returned in the swifterror 2028 // physical register. 2029 const Function *F = I.getParent()->getParent(); 2030 if (TLI.supportSwiftError() && 2031 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 2032 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 2033 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2034 Flags.setSwiftError(); 2035 Outs.push_back(ISD::OutputArg( 2036 Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)), 2037 /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0)); 2038 // Create SDNode for the swifterror virtual register. 2039 OutVals.push_back( 2040 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 2041 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 2042 EVT(TLI.getPointerTy(DL)))); 2043 } 2044 2045 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 2046 CallingConv::ID CallConv = 2047 DAG.getMachineFunction().getFunction().getCallingConv(); 2048 Chain = DAG.getTargetLoweringInfo().LowerReturn( 2049 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 2050 2051 // Verify that the target's LowerReturn behaved as expected. 2052 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 2053 "LowerReturn didn't return a valid chain!"); 2054 2055 // Update the DAG with the new chain value resulting from return lowering. 2056 DAG.setRoot(Chain); 2057 } 2058 2059 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 2060 /// created for it, emit nodes to copy the value into the virtual 2061 /// registers. 2062 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 2063 // Skip empty types 2064 if (V->getType()->isEmptyTy()) 2065 return; 2066 2067 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 2068 if (VMI != FuncInfo.ValueMap.end()) { 2069 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 2070 CopyValueToVirtualRegister(V, VMI->second); 2071 } 2072 } 2073 2074 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 2075 /// the current basic block, add it to ValueMap now so that we'll get a 2076 /// CopyTo/FromReg. 2077 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 2078 // No need to export constants. 2079 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 2080 2081 // Already exported? 2082 if (FuncInfo.isExportedInst(V)) return; 2083 2084 unsigned Reg = FuncInfo.InitializeRegForValue(V); 2085 CopyValueToVirtualRegister(V, Reg); 2086 } 2087 2088 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 2089 const BasicBlock *FromBB) { 2090 // The operands of the setcc have to be in this block. We don't know 2091 // how to export them from some other block. 2092 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 2093 // Can export from current BB. 2094 if (VI->getParent() == FromBB) 2095 return true; 2096 2097 // Is already exported, noop. 2098 return FuncInfo.isExportedInst(V); 2099 } 2100 2101 // If this is an argument, we can export it if the BB is the entry block or 2102 // if it is already exported. 2103 if (isa<Argument>(V)) { 2104 if (FromBB->isEntryBlock()) 2105 return true; 2106 2107 // Otherwise, can only export this if it is already exported. 2108 return FuncInfo.isExportedInst(V); 2109 } 2110 2111 // Otherwise, constants can always be exported. 2112 return true; 2113 } 2114 2115 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2116 BranchProbability 2117 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2118 const MachineBasicBlock *Dst) const { 2119 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2120 const BasicBlock *SrcBB = Src->getBasicBlock(); 2121 const BasicBlock *DstBB = Dst->getBasicBlock(); 2122 if (!BPI) { 2123 // If BPI is not available, set the default probability as 1 / N, where N is 2124 // the number of successors. 2125 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2126 return BranchProbability(1, SuccSize); 2127 } 2128 return BPI->getEdgeProbability(SrcBB, DstBB); 2129 } 2130 2131 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2132 MachineBasicBlock *Dst, 2133 BranchProbability Prob) { 2134 if (!FuncInfo.BPI) 2135 Src->addSuccessorWithoutProb(Dst); 2136 else { 2137 if (Prob.isUnknown()) 2138 Prob = getEdgeProbability(Src, Dst); 2139 Src->addSuccessor(Dst, Prob); 2140 } 2141 } 2142 2143 static bool InBlock(const Value *V, const BasicBlock *BB) { 2144 if (const Instruction *I = dyn_cast<Instruction>(V)) 2145 return I->getParent() == BB; 2146 return true; 2147 } 2148 2149 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2150 /// This function emits a branch and is used at the leaves of an OR or an 2151 /// AND operator tree. 2152 void 2153 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2154 MachineBasicBlock *TBB, 2155 MachineBasicBlock *FBB, 2156 MachineBasicBlock *CurBB, 2157 MachineBasicBlock *SwitchBB, 2158 BranchProbability TProb, 2159 BranchProbability FProb, 2160 bool InvertCond) { 2161 const BasicBlock *BB = CurBB->getBasicBlock(); 2162 2163 // If the leaf of the tree is a comparison, merge the condition into 2164 // the caseblock. 2165 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2166 // The operands of the cmp have to be in this block. We don't know 2167 // how to export them from some other block. If this is the first block 2168 // of the sequence, no exporting is needed. 2169 if (CurBB == SwitchBB || 2170 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2171 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2172 ISD::CondCode Condition; 2173 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2174 ICmpInst::Predicate Pred = 2175 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2176 Condition = getICmpCondCode(Pred); 2177 } else { 2178 const FCmpInst *FC = cast<FCmpInst>(Cond); 2179 FCmpInst::Predicate Pred = 2180 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2181 Condition = getFCmpCondCode(Pred); 2182 if (TM.Options.NoNaNsFPMath) 2183 Condition = getFCmpCodeWithoutNaN(Condition); 2184 } 2185 2186 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2187 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2188 SL->SwitchCases.push_back(CB); 2189 return; 2190 } 2191 } 2192 2193 // Create a CaseBlock record representing this branch. 2194 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2195 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2196 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2197 SL->SwitchCases.push_back(CB); 2198 } 2199 2200 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2201 MachineBasicBlock *TBB, 2202 MachineBasicBlock *FBB, 2203 MachineBasicBlock *CurBB, 2204 MachineBasicBlock *SwitchBB, 2205 Instruction::BinaryOps Opc, 2206 BranchProbability TProb, 2207 BranchProbability FProb, 2208 bool InvertCond) { 2209 // Skip over not part of the tree and remember to invert op and operands at 2210 // next level. 2211 Value *NotCond; 2212 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2213 InBlock(NotCond, CurBB->getBasicBlock())) { 2214 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2215 !InvertCond); 2216 return; 2217 } 2218 2219 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2220 const Value *BOpOp0, *BOpOp1; 2221 // Compute the effective opcode for Cond, taking into account whether it needs 2222 // to be inverted, e.g. 2223 // and (not (or A, B)), C 2224 // gets lowered as 2225 // and (and (not A, not B), C) 2226 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 2227 if (BOp) { 2228 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 2229 ? Instruction::And 2230 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 2231 ? Instruction::Or 2232 : (Instruction::BinaryOps)0); 2233 if (InvertCond) { 2234 if (BOpc == Instruction::And) 2235 BOpc = Instruction::Or; 2236 else if (BOpc == Instruction::Or) 2237 BOpc = Instruction::And; 2238 } 2239 } 2240 2241 // If this node is not part of the or/and tree, emit it as a branch. 2242 // Note that all nodes in the tree should have same opcode. 2243 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 2244 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 2245 !InBlock(BOpOp0, CurBB->getBasicBlock()) || 2246 !InBlock(BOpOp1, CurBB->getBasicBlock())) { 2247 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2248 TProb, FProb, InvertCond); 2249 return; 2250 } 2251 2252 // Create TmpBB after CurBB. 2253 MachineFunction::iterator BBI(CurBB); 2254 MachineFunction &MF = DAG.getMachineFunction(); 2255 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2256 CurBB->getParent()->insert(++BBI, TmpBB); 2257 2258 if (Opc == Instruction::Or) { 2259 // Codegen X | Y as: 2260 // BB1: 2261 // jmp_if_X TBB 2262 // jmp TmpBB 2263 // TmpBB: 2264 // jmp_if_Y TBB 2265 // jmp FBB 2266 // 2267 2268 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2269 // The requirement is that 2270 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2271 // = TrueProb for original BB. 2272 // Assuming the original probabilities are A and B, one choice is to set 2273 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2274 // A/(1+B) and 2B/(1+B). This choice assumes that 2275 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2276 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2277 // TmpBB, but the math is more complicated. 2278 2279 auto NewTrueProb = TProb / 2; 2280 auto NewFalseProb = TProb / 2 + FProb; 2281 // Emit the LHS condition. 2282 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 2283 NewFalseProb, InvertCond); 2284 2285 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2286 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2287 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2288 // Emit the RHS condition into TmpBB. 2289 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2290 Probs[1], InvertCond); 2291 } else { 2292 assert(Opc == Instruction::And && "Unknown merge op!"); 2293 // Codegen X & Y as: 2294 // BB1: 2295 // jmp_if_X TmpBB 2296 // jmp FBB 2297 // TmpBB: 2298 // jmp_if_Y TBB 2299 // jmp FBB 2300 // 2301 // This requires creation of TmpBB after CurBB. 2302 2303 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2304 // The requirement is that 2305 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2306 // = FalseProb for original BB. 2307 // Assuming the original probabilities are A and B, one choice is to set 2308 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2309 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2310 // TrueProb for BB1 * FalseProb for TmpBB. 2311 2312 auto NewTrueProb = TProb + FProb / 2; 2313 auto NewFalseProb = FProb / 2; 2314 // Emit the LHS condition. 2315 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 2316 NewFalseProb, InvertCond); 2317 2318 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2319 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2320 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2321 // Emit the RHS condition into TmpBB. 2322 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2323 Probs[1], InvertCond); 2324 } 2325 } 2326 2327 /// If the set of cases should be emitted as a series of branches, return true. 2328 /// If we should emit this as a bunch of and/or'd together conditions, return 2329 /// false. 2330 bool 2331 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2332 if (Cases.size() != 2) return true; 2333 2334 // If this is two comparisons of the same values or'd or and'd together, they 2335 // will get folded into a single comparison, so don't emit two blocks. 2336 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2337 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2338 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2339 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2340 return false; 2341 } 2342 2343 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2344 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2345 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2346 Cases[0].CC == Cases[1].CC && 2347 isa<Constant>(Cases[0].CmpRHS) && 2348 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2349 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2350 return false; 2351 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2352 return false; 2353 } 2354 2355 return true; 2356 } 2357 2358 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2359 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2360 2361 // Update machine-CFG edges. 2362 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2363 2364 if (I.isUnconditional()) { 2365 // Update machine-CFG edges. 2366 BrMBB->addSuccessor(Succ0MBB); 2367 2368 // If this is not a fall-through branch or optimizations are switched off, 2369 // emit the branch. 2370 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2371 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2372 MVT::Other, getControlRoot(), 2373 DAG.getBasicBlock(Succ0MBB))); 2374 2375 return; 2376 } 2377 2378 // If this condition is one of the special cases we handle, do special stuff 2379 // now. 2380 const Value *CondVal = I.getCondition(); 2381 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2382 2383 // If this is a series of conditions that are or'd or and'd together, emit 2384 // this as a sequence of branches instead of setcc's with and/or operations. 2385 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2386 // unpredictable branches, and vector extracts because those jumps are likely 2387 // expensive for any target), this should improve performance. 2388 // For example, instead of something like: 2389 // cmp A, B 2390 // C = seteq 2391 // cmp D, E 2392 // F = setle 2393 // or C, F 2394 // jnz foo 2395 // Emit: 2396 // cmp A, B 2397 // je foo 2398 // cmp D, E 2399 // jle foo 2400 const Instruction *BOp = dyn_cast<Instruction>(CondVal); 2401 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp && 2402 BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) { 2403 Value *Vec; 2404 const Value *BOp0, *BOp1; 2405 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 2406 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 2407 Opcode = Instruction::And; 2408 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 2409 Opcode = Instruction::Or; 2410 2411 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2412 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { 2413 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode, 2414 getEdgeProbability(BrMBB, Succ0MBB), 2415 getEdgeProbability(BrMBB, Succ1MBB), 2416 /*InvertCond=*/false); 2417 // If the compares in later blocks need to use values not currently 2418 // exported from this block, export them now. This block should always 2419 // be the first entry. 2420 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2421 2422 // Allow some cases to be rejected. 2423 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2424 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2425 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2426 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2427 } 2428 2429 // Emit the branch for this block. 2430 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2431 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2432 return; 2433 } 2434 2435 // Okay, we decided not to do this, remove any inserted MBB's and clear 2436 // SwitchCases. 2437 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2438 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2439 2440 SL->SwitchCases.clear(); 2441 } 2442 } 2443 2444 // Create a CaseBlock record representing this branch. 2445 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2446 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2447 2448 // Use visitSwitchCase to actually insert the fast branch sequence for this 2449 // cond branch. 2450 visitSwitchCase(CB, BrMBB); 2451 } 2452 2453 /// visitSwitchCase - Emits the necessary code to represent a single node in 2454 /// the binary search tree resulting from lowering a switch instruction. 2455 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2456 MachineBasicBlock *SwitchBB) { 2457 SDValue Cond; 2458 SDValue CondLHS = getValue(CB.CmpLHS); 2459 SDLoc dl = CB.DL; 2460 2461 if (CB.CC == ISD::SETTRUE) { 2462 // Branch or fall through to TrueBB. 2463 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2464 SwitchBB->normalizeSuccProbs(); 2465 if (CB.TrueBB != NextBlock(SwitchBB)) { 2466 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2467 DAG.getBasicBlock(CB.TrueBB))); 2468 } 2469 return; 2470 } 2471 2472 auto &TLI = DAG.getTargetLoweringInfo(); 2473 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2474 2475 // Build the setcc now. 2476 if (!CB.CmpMHS) { 2477 // Fold "(X == true)" to X and "(X == false)" to !X to 2478 // handle common cases produced by branch lowering. 2479 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2480 CB.CC == ISD::SETEQ) 2481 Cond = CondLHS; 2482 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2483 CB.CC == ISD::SETEQ) { 2484 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2485 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2486 } else { 2487 SDValue CondRHS = getValue(CB.CmpRHS); 2488 2489 // If a pointer's DAG type is larger than its memory type then the DAG 2490 // values are zero-extended. This breaks signed comparisons so truncate 2491 // back to the underlying type before doing the compare. 2492 if (CondLHS.getValueType() != MemVT) { 2493 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2494 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2495 } 2496 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2497 } 2498 } else { 2499 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2500 2501 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2502 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2503 2504 SDValue CmpOp = getValue(CB.CmpMHS); 2505 EVT VT = CmpOp.getValueType(); 2506 2507 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2508 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2509 ISD::SETLE); 2510 } else { 2511 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2512 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2513 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2514 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2515 } 2516 } 2517 2518 // Update successor info 2519 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2520 // TrueBB and FalseBB are always different unless the incoming IR is 2521 // degenerate. This only happens when running llc on weird IR. 2522 if (CB.TrueBB != CB.FalseBB) 2523 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2524 SwitchBB->normalizeSuccProbs(); 2525 2526 // If the lhs block is the next block, invert the condition so that we can 2527 // fall through to the lhs instead of the rhs block. 2528 if (CB.TrueBB == NextBlock(SwitchBB)) { 2529 std::swap(CB.TrueBB, CB.FalseBB); 2530 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2531 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2532 } 2533 2534 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2535 MVT::Other, getControlRoot(), Cond, 2536 DAG.getBasicBlock(CB.TrueBB)); 2537 2538 // Insert the false branch. Do this even if it's a fall through branch, 2539 // this makes it easier to do DAG optimizations which require inverting 2540 // the branch condition. 2541 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2542 DAG.getBasicBlock(CB.FalseBB)); 2543 2544 DAG.setRoot(BrCond); 2545 } 2546 2547 /// visitJumpTable - Emit JumpTable node in the current MBB 2548 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2549 // Emit the code for the jump table 2550 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2551 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2552 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2553 JT.Reg, PTy); 2554 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2555 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2556 MVT::Other, Index.getValue(1), 2557 Table, Index); 2558 DAG.setRoot(BrJumpTable); 2559 } 2560 2561 /// visitJumpTableHeader - This function emits necessary code to produce index 2562 /// in the JumpTable from switch case. 2563 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2564 JumpTableHeader &JTH, 2565 MachineBasicBlock *SwitchBB) { 2566 SDLoc dl = getCurSDLoc(); 2567 2568 // Subtract the lowest switch case value from the value being switched on. 2569 SDValue SwitchOp = getValue(JTH.SValue); 2570 EVT VT = SwitchOp.getValueType(); 2571 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2572 DAG.getConstant(JTH.First, dl, VT)); 2573 2574 // The SDNode we just created, which holds the value being switched on minus 2575 // the smallest case value, needs to be copied to a virtual register so it 2576 // can be used as an index into the jump table in a subsequent basic block. 2577 // This value may be smaller or larger than the target's pointer type, and 2578 // therefore require extension or truncating. 2579 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2580 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2581 2582 unsigned JumpTableReg = 2583 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2584 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2585 JumpTableReg, SwitchOp); 2586 JT.Reg = JumpTableReg; 2587 2588 if (!JTH.FallthroughUnreachable) { 2589 // Emit the range check for the jump table, and branch to the default block 2590 // for the switch statement if the value being switched on exceeds the 2591 // largest case in the switch. 2592 SDValue CMP = DAG.getSetCC( 2593 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2594 Sub.getValueType()), 2595 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2596 2597 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2598 MVT::Other, CopyTo, CMP, 2599 DAG.getBasicBlock(JT.Default)); 2600 2601 // Avoid emitting unnecessary branches to the next block. 2602 if (JT.MBB != NextBlock(SwitchBB)) 2603 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2604 DAG.getBasicBlock(JT.MBB)); 2605 2606 DAG.setRoot(BrCond); 2607 } else { 2608 // Avoid emitting unnecessary branches to the next block. 2609 if (JT.MBB != NextBlock(SwitchBB)) 2610 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2611 DAG.getBasicBlock(JT.MBB))); 2612 else 2613 DAG.setRoot(CopyTo); 2614 } 2615 } 2616 2617 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2618 /// variable if there exists one. 2619 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2620 SDValue &Chain) { 2621 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2622 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2623 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2624 MachineFunction &MF = DAG.getMachineFunction(); 2625 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2626 MachineSDNode *Node = 2627 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2628 if (Global) { 2629 MachinePointerInfo MPInfo(Global); 2630 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2631 MachineMemOperand::MODereferenceable; 2632 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2633 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); 2634 DAG.setNodeMemRefs(Node, {MemRef}); 2635 } 2636 if (PtrTy != PtrMemTy) 2637 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2638 return SDValue(Node, 0); 2639 } 2640 2641 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2642 /// tail spliced into a stack protector check success bb. 2643 /// 2644 /// For a high level explanation of how this fits into the stack protector 2645 /// generation see the comment on the declaration of class 2646 /// StackProtectorDescriptor. 2647 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2648 MachineBasicBlock *ParentBB) { 2649 2650 // First create the loads to the guard/stack slot for the comparison. 2651 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2652 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2653 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2654 2655 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2656 int FI = MFI.getStackProtectorIndex(); 2657 2658 SDValue Guard; 2659 SDLoc dl = getCurSDLoc(); 2660 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2661 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2662 Align Align = 2663 DAG.getDataLayout().getPrefTypeAlign(Type::getInt8PtrTy(M.getContext())); 2664 2665 // Generate code to load the content of the guard slot. 2666 SDValue GuardVal = DAG.getLoad( 2667 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2668 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2669 MachineMemOperand::MOVolatile); 2670 2671 if (TLI.useStackGuardXorFP()) 2672 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2673 2674 // Retrieve guard check function, nullptr if instrumentation is inlined. 2675 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2676 // The target provides a guard check function to validate the guard value. 2677 // Generate a call to that function with the content of the guard slot as 2678 // argument. 2679 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2680 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2681 2682 TargetLowering::ArgListTy Args; 2683 TargetLowering::ArgListEntry Entry; 2684 Entry.Node = GuardVal; 2685 Entry.Ty = FnTy->getParamType(0); 2686 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg)) 2687 Entry.IsInReg = true; 2688 Args.push_back(Entry); 2689 2690 TargetLowering::CallLoweringInfo CLI(DAG); 2691 CLI.setDebugLoc(getCurSDLoc()) 2692 .setChain(DAG.getEntryNode()) 2693 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2694 getValue(GuardCheckFn), std::move(Args)); 2695 2696 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2697 DAG.setRoot(Result.second); 2698 return; 2699 } 2700 2701 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2702 // Otherwise, emit a volatile load to retrieve the stack guard value. 2703 SDValue Chain = DAG.getEntryNode(); 2704 if (TLI.useLoadStackGuardNode()) { 2705 Guard = getLoadStackGuard(DAG, dl, Chain); 2706 } else { 2707 const Value *IRGuard = TLI.getSDagStackGuard(M); 2708 SDValue GuardPtr = getValue(IRGuard); 2709 2710 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2711 MachinePointerInfo(IRGuard, 0), Align, 2712 MachineMemOperand::MOVolatile); 2713 } 2714 2715 // Perform the comparison via a getsetcc. 2716 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2717 *DAG.getContext(), 2718 Guard.getValueType()), 2719 Guard, GuardVal, ISD::SETNE); 2720 2721 // If the guard/stackslot do not equal, branch to failure MBB. 2722 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2723 MVT::Other, GuardVal.getOperand(0), 2724 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2725 // Otherwise branch to success MBB. 2726 SDValue Br = DAG.getNode(ISD::BR, dl, 2727 MVT::Other, BrCond, 2728 DAG.getBasicBlock(SPD.getSuccessMBB())); 2729 2730 DAG.setRoot(Br); 2731 } 2732 2733 /// Codegen the failure basic block for a stack protector check. 2734 /// 2735 /// A failure stack protector machine basic block consists simply of a call to 2736 /// __stack_chk_fail(). 2737 /// 2738 /// For a high level explanation of how this fits into the stack protector 2739 /// generation see the comment on the declaration of class 2740 /// StackProtectorDescriptor. 2741 void 2742 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2743 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2744 TargetLowering::MakeLibCallOptions CallOptions; 2745 CallOptions.setDiscardResult(true); 2746 SDValue Chain = 2747 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2748 None, CallOptions, getCurSDLoc()).second; 2749 // On PS4, the "return address" must still be within the calling function, 2750 // even if it's at the very end, so emit an explicit TRAP here. 2751 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2752 if (TM.getTargetTriple().isPS4CPU()) 2753 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2754 // WebAssembly needs an unreachable instruction after a non-returning call, 2755 // because the function return type can be different from __stack_chk_fail's 2756 // return type (void). 2757 if (TM.getTargetTriple().isWasm()) 2758 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2759 2760 DAG.setRoot(Chain); 2761 } 2762 2763 /// visitBitTestHeader - This function emits necessary code to produce value 2764 /// suitable for "bit tests" 2765 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2766 MachineBasicBlock *SwitchBB) { 2767 SDLoc dl = getCurSDLoc(); 2768 2769 // Subtract the minimum value. 2770 SDValue SwitchOp = getValue(B.SValue); 2771 EVT VT = SwitchOp.getValueType(); 2772 SDValue RangeSub = 2773 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2774 2775 // Determine the type of the test operands. 2776 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2777 bool UsePtrType = false; 2778 if (!TLI.isTypeLegal(VT)) { 2779 UsePtrType = true; 2780 } else { 2781 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2782 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2783 // Switch table case range are encoded into series of masks. 2784 // Just use pointer type, it's guaranteed to fit. 2785 UsePtrType = true; 2786 break; 2787 } 2788 } 2789 SDValue Sub = RangeSub; 2790 if (UsePtrType) { 2791 VT = TLI.getPointerTy(DAG.getDataLayout()); 2792 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2793 } 2794 2795 B.RegVT = VT.getSimpleVT(); 2796 B.Reg = FuncInfo.CreateReg(B.RegVT); 2797 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2798 2799 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2800 2801 if (!B.FallthroughUnreachable) 2802 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2803 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2804 SwitchBB->normalizeSuccProbs(); 2805 2806 SDValue Root = CopyTo; 2807 if (!B.FallthroughUnreachable) { 2808 // Conditional branch to the default block. 2809 SDValue RangeCmp = DAG.getSetCC(dl, 2810 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2811 RangeSub.getValueType()), 2812 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2813 ISD::SETUGT); 2814 2815 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2816 DAG.getBasicBlock(B.Default)); 2817 } 2818 2819 // Avoid emitting unnecessary branches to the next block. 2820 if (MBB != NextBlock(SwitchBB)) 2821 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2822 2823 DAG.setRoot(Root); 2824 } 2825 2826 /// visitBitTestCase - this function produces one "bit test" 2827 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2828 MachineBasicBlock* NextMBB, 2829 BranchProbability BranchProbToNext, 2830 unsigned Reg, 2831 BitTestCase &B, 2832 MachineBasicBlock *SwitchBB) { 2833 SDLoc dl = getCurSDLoc(); 2834 MVT VT = BB.RegVT; 2835 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2836 SDValue Cmp; 2837 unsigned PopCount = countPopulation(B.Mask); 2838 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2839 if (PopCount == 1) { 2840 // Testing for a single bit; just compare the shift count with what it 2841 // would need to be to shift a 1 bit in that position. 2842 Cmp = DAG.getSetCC( 2843 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2844 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2845 ISD::SETEQ); 2846 } else if (PopCount == BB.Range) { 2847 // There is only one zero bit in the range, test for it directly. 2848 Cmp = DAG.getSetCC( 2849 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2850 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2851 ISD::SETNE); 2852 } else { 2853 // Make desired shift 2854 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2855 DAG.getConstant(1, dl, VT), ShiftOp); 2856 2857 // Emit bit tests and jumps 2858 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2859 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2860 Cmp = DAG.getSetCC( 2861 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2862 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2863 } 2864 2865 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2866 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2867 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2868 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2869 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2870 // one as they are relative probabilities (and thus work more like weights), 2871 // and hence we need to normalize them to let the sum of them become one. 2872 SwitchBB->normalizeSuccProbs(); 2873 2874 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2875 MVT::Other, getControlRoot(), 2876 Cmp, DAG.getBasicBlock(B.TargetBB)); 2877 2878 // Avoid emitting unnecessary branches to the next block. 2879 if (NextMBB != NextBlock(SwitchBB)) 2880 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2881 DAG.getBasicBlock(NextMBB)); 2882 2883 DAG.setRoot(BrAnd); 2884 } 2885 2886 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2887 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2888 2889 // Retrieve successors. Look through artificial IR level blocks like 2890 // catchswitch for successors. 2891 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2892 const BasicBlock *EHPadBB = I.getSuccessor(1); 2893 2894 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2895 // have to do anything here to lower funclet bundles. 2896 assert(!I.hasOperandBundlesOtherThan( 2897 {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, 2898 LLVMContext::OB_gc_live, LLVMContext::OB_funclet, 2899 LLVMContext::OB_cfguardtarget, 2900 LLVMContext::OB_clang_arc_attachedcall}) && 2901 "Cannot lower invokes with arbitrary operand bundles yet!"); 2902 2903 const Value *Callee(I.getCalledOperand()); 2904 const Function *Fn = dyn_cast<Function>(Callee); 2905 if (isa<InlineAsm>(Callee)) 2906 visitInlineAsm(I, EHPadBB); 2907 else if (Fn && Fn->isIntrinsic()) { 2908 switch (Fn->getIntrinsicID()) { 2909 default: 2910 llvm_unreachable("Cannot invoke this intrinsic"); 2911 case Intrinsic::donothing: 2912 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2913 case Intrinsic::seh_try_begin: 2914 case Intrinsic::seh_scope_begin: 2915 case Intrinsic::seh_try_end: 2916 case Intrinsic::seh_scope_end: 2917 break; 2918 case Intrinsic::experimental_patchpoint_void: 2919 case Intrinsic::experimental_patchpoint_i64: 2920 visitPatchpoint(I, EHPadBB); 2921 break; 2922 case Intrinsic::experimental_gc_statepoint: 2923 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 2924 break; 2925 case Intrinsic::wasm_rethrow: { 2926 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2927 // special because it can be invoked, so we manually lower it to a DAG 2928 // node here. 2929 SmallVector<SDValue, 8> Ops; 2930 Ops.push_back(getRoot()); // inchain 2931 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2932 Ops.push_back( 2933 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(), 2934 TLI.getPointerTy(DAG.getDataLayout()))); 2935 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2936 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2937 break; 2938 } 2939 } 2940 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2941 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2942 // Eventually we will support lowering the @llvm.experimental.deoptimize 2943 // intrinsic, and right now there are no plans to support other intrinsics 2944 // with deopt state. 2945 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2946 } else { 2947 LowerCallTo(I, getValue(Callee), false, false, EHPadBB); 2948 } 2949 2950 // If the value of the invoke is used outside of its defining block, make it 2951 // available as a virtual register. 2952 // We already took care of the exported value for the statepoint instruction 2953 // during call to the LowerStatepoint. 2954 if (!isa<GCStatepointInst>(I)) { 2955 CopyToExportRegsIfNeeded(&I); 2956 } 2957 2958 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2959 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2960 BranchProbability EHPadBBProb = 2961 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2962 : BranchProbability::getZero(); 2963 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2964 2965 // Update successor info. 2966 addSuccessorWithProb(InvokeMBB, Return); 2967 for (auto &UnwindDest : UnwindDests) { 2968 UnwindDest.first->setIsEHPad(); 2969 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2970 } 2971 InvokeMBB->normalizeSuccProbs(); 2972 2973 // Drop into normal successor. 2974 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2975 DAG.getBasicBlock(Return))); 2976 } 2977 2978 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2979 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2980 2981 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2982 // have to do anything here to lower funclet bundles. 2983 assert(!I.hasOperandBundlesOtherThan( 2984 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2985 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2986 2987 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 2988 visitInlineAsm(I); 2989 CopyToExportRegsIfNeeded(&I); 2990 2991 // Retrieve successors. 2992 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2993 2994 // Update successor info. 2995 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 2996 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2997 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 2998 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 2999 Target->setIsInlineAsmBrIndirectTarget(); 3000 } 3001 CallBrMBB->normalizeSuccProbs(); 3002 3003 // Drop into default successor. 3004 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 3005 MVT::Other, getControlRoot(), 3006 DAG.getBasicBlock(Return))); 3007 } 3008 3009 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 3010 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 3011 } 3012 3013 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 3014 assert(FuncInfo.MBB->isEHPad() && 3015 "Call to landingpad not in landing pad!"); 3016 3017 // If there aren't registers to copy the values into (e.g., during SjLj 3018 // exceptions), then don't bother to create these DAG nodes. 3019 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3020 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 3021 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 3022 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 3023 return; 3024 3025 // If landingpad's return type is token type, we don't create DAG nodes 3026 // for its exception pointer and selector value. The extraction of exception 3027 // pointer or selector value from token type landingpads is not currently 3028 // supported. 3029 if (LP.getType()->isTokenTy()) 3030 return; 3031 3032 SmallVector<EVT, 2> ValueVTs; 3033 SDLoc dl = getCurSDLoc(); 3034 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 3035 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 3036 3037 // Get the two live-in registers as SDValues. The physregs have already been 3038 // copied into virtual registers. 3039 SDValue Ops[2]; 3040 if (FuncInfo.ExceptionPointerVirtReg) { 3041 Ops[0] = DAG.getZExtOrTrunc( 3042 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3043 FuncInfo.ExceptionPointerVirtReg, 3044 TLI.getPointerTy(DAG.getDataLayout())), 3045 dl, ValueVTs[0]); 3046 } else { 3047 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 3048 } 3049 Ops[1] = DAG.getZExtOrTrunc( 3050 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3051 FuncInfo.ExceptionSelectorVirtReg, 3052 TLI.getPointerTy(DAG.getDataLayout())), 3053 dl, ValueVTs[1]); 3054 3055 // Merge into one. 3056 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 3057 DAG.getVTList(ValueVTs), Ops); 3058 setValue(&LP, Res); 3059 } 3060 3061 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 3062 MachineBasicBlock *Last) { 3063 // Update JTCases. 3064 for (JumpTableBlock &JTB : SL->JTCases) 3065 if (JTB.first.HeaderBB == First) 3066 JTB.first.HeaderBB = Last; 3067 3068 // Update BitTestCases. 3069 for (BitTestBlock &BTB : SL->BitTestCases) 3070 if (BTB.Parent == First) 3071 BTB.Parent = Last; 3072 } 3073 3074 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 3075 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 3076 3077 // Update machine-CFG edges with unique successors. 3078 SmallSet<BasicBlock*, 32> Done; 3079 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 3080 BasicBlock *BB = I.getSuccessor(i); 3081 bool Inserted = Done.insert(BB).second; 3082 if (!Inserted) 3083 continue; 3084 3085 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 3086 addSuccessorWithProb(IndirectBrMBB, Succ); 3087 } 3088 IndirectBrMBB->normalizeSuccProbs(); 3089 3090 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 3091 MVT::Other, getControlRoot(), 3092 getValue(I.getAddress()))); 3093 } 3094 3095 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 3096 if (!DAG.getTarget().Options.TrapUnreachable) 3097 return; 3098 3099 // We may be able to ignore unreachable behind a noreturn call. 3100 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 3101 const BasicBlock &BB = *I.getParent(); 3102 if (&I != &BB.front()) { 3103 BasicBlock::const_iterator PredI = 3104 std::prev(BasicBlock::const_iterator(&I)); 3105 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 3106 if (Call->doesNotReturn()) 3107 return; 3108 } 3109 } 3110 } 3111 3112 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3113 } 3114 3115 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3116 SDNodeFlags Flags; 3117 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3118 Flags.copyFMF(*FPOp); 3119 3120 SDValue Op = getValue(I.getOperand(0)); 3121 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3122 Op, Flags); 3123 setValue(&I, UnNodeValue); 3124 } 3125 3126 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3127 SDNodeFlags Flags; 3128 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3129 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3130 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3131 } 3132 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 3133 Flags.setExact(ExactOp->isExact()); 3134 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3135 Flags.copyFMF(*FPOp); 3136 3137 SDValue Op1 = getValue(I.getOperand(0)); 3138 SDValue Op2 = getValue(I.getOperand(1)); 3139 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3140 Op1, Op2, Flags); 3141 setValue(&I, BinNodeValue); 3142 } 3143 3144 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3145 SDValue Op1 = getValue(I.getOperand(0)); 3146 SDValue Op2 = getValue(I.getOperand(1)); 3147 3148 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3149 Op1.getValueType(), DAG.getDataLayout()); 3150 3151 // Coerce the shift amount to the right type if we can. 3152 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3153 unsigned ShiftSize = ShiftTy.getSizeInBits(); 3154 unsigned Op2Size = Op2.getValueSizeInBits(); 3155 SDLoc DL = getCurSDLoc(); 3156 3157 // If the operand is smaller than the shift count type, promote it. 3158 if (ShiftSize > Op2Size) 3159 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 3160 3161 // If the operand is larger than the shift count type but the shift 3162 // count type has enough bits to represent any shift value, truncate 3163 // it now. This is a common case and it exposes the truncate to 3164 // optimization early. 3165 else if (ShiftSize >= Log2_32_Ceil(Op1.getValueSizeInBits())) 3166 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 3167 // Otherwise we'll need to temporarily settle for some other convenient 3168 // type. Type legalization will make adjustments once the shiftee is split. 3169 else 3170 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 3171 } 3172 3173 bool nuw = false; 3174 bool nsw = false; 3175 bool exact = false; 3176 3177 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3178 3179 if (const OverflowingBinaryOperator *OFBinOp = 3180 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3181 nuw = OFBinOp->hasNoUnsignedWrap(); 3182 nsw = OFBinOp->hasNoSignedWrap(); 3183 } 3184 if (const PossiblyExactOperator *ExactOp = 3185 dyn_cast<const PossiblyExactOperator>(&I)) 3186 exact = ExactOp->isExact(); 3187 } 3188 SDNodeFlags Flags; 3189 Flags.setExact(exact); 3190 Flags.setNoSignedWrap(nsw); 3191 Flags.setNoUnsignedWrap(nuw); 3192 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3193 Flags); 3194 setValue(&I, Res); 3195 } 3196 3197 void SelectionDAGBuilder::visitSDiv(const User &I) { 3198 SDValue Op1 = getValue(I.getOperand(0)); 3199 SDValue Op2 = getValue(I.getOperand(1)); 3200 3201 SDNodeFlags Flags; 3202 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3203 cast<PossiblyExactOperator>(&I)->isExact()); 3204 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3205 Op2, Flags)); 3206 } 3207 3208 void SelectionDAGBuilder::visitICmp(const User &I) { 3209 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3210 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3211 predicate = IC->getPredicate(); 3212 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3213 predicate = ICmpInst::Predicate(IC->getPredicate()); 3214 SDValue Op1 = getValue(I.getOperand(0)); 3215 SDValue Op2 = getValue(I.getOperand(1)); 3216 ISD::CondCode Opcode = getICmpCondCode(predicate); 3217 3218 auto &TLI = DAG.getTargetLoweringInfo(); 3219 EVT MemVT = 3220 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3221 3222 // If a pointer's DAG type is larger than its memory type then the DAG values 3223 // are zero-extended. This breaks signed comparisons so truncate back to the 3224 // underlying type before doing the compare. 3225 if (Op1.getValueType() != MemVT) { 3226 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3227 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3228 } 3229 3230 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3231 I.getType()); 3232 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3233 } 3234 3235 void SelectionDAGBuilder::visitFCmp(const User &I) { 3236 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3237 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3238 predicate = FC->getPredicate(); 3239 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3240 predicate = FCmpInst::Predicate(FC->getPredicate()); 3241 SDValue Op1 = getValue(I.getOperand(0)); 3242 SDValue Op2 = getValue(I.getOperand(1)); 3243 3244 ISD::CondCode Condition = getFCmpCondCode(predicate); 3245 auto *FPMO = cast<FPMathOperator>(&I); 3246 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3247 Condition = getFCmpCodeWithoutNaN(Condition); 3248 3249 SDNodeFlags Flags; 3250 Flags.copyFMF(*FPMO); 3251 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3252 3253 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3254 I.getType()); 3255 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3256 } 3257 3258 // Check if the condition of the select has one use or two users that are both 3259 // selects with the same condition. 3260 static bool hasOnlySelectUsers(const Value *Cond) { 3261 return llvm::all_of(Cond->users(), [](const Value *V) { 3262 return isa<SelectInst>(V); 3263 }); 3264 } 3265 3266 void SelectionDAGBuilder::visitSelect(const User &I) { 3267 SmallVector<EVT, 4> ValueVTs; 3268 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3269 ValueVTs); 3270 unsigned NumValues = ValueVTs.size(); 3271 if (NumValues == 0) return; 3272 3273 SmallVector<SDValue, 4> Values(NumValues); 3274 SDValue Cond = getValue(I.getOperand(0)); 3275 SDValue LHSVal = getValue(I.getOperand(1)); 3276 SDValue RHSVal = getValue(I.getOperand(2)); 3277 SmallVector<SDValue, 1> BaseOps(1, Cond); 3278 ISD::NodeType OpCode = 3279 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3280 3281 bool IsUnaryAbs = false; 3282 bool Negate = false; 3283 3284 SDNodeFlags Flags; 3285 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3286 Flags.copyFMF(*FPOp); 3287 3288 // Min/max matching is only viable if all output VTs are the same. 3289 if (is_splat(ValueVTs)) { 3290 EVT VT = ValueVTs[0]; 3291 LLVMContext &Ctx = *DAG.getContext(); 3292 auto &TLI = DAG.getTargetLoweringInfo(); 3293 3294 // We care about the legality of the operation after it has been type 3295 // legalized. 3296 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3297 VT = TLI.getTypeToTransformTo(Ctx, VT); 3298 3299 // If the vselect is legal, assume we want to leave this as a vector setcc + 3300 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3301 // min/max is legal on the scalar type. 3302 bool UseScalarMinMax = VT.isVector() && 3303 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3304 3305 Value *LHS, *RHS; 3306 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3307 ISD::NodeType Opc = ISD::DELETED_NODE; 3308 switch (SPR.Flavor) { 3309 case SPF_UMAX: Opc = ISD::UMAX; break; 3310 case SPF_UMIN: Opc = ISD::UMIN; break; 3311 case SPF_SMAX: Opc = ISD::SMAX; break; 3312 case SPF_SMIN: Opc = ISD::SMIN; break; 3313 case SPF_FMINNUM: 3314 switch (SPR.NaNBehavior) { 3315 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3316 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3317 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3318 case SPNB_RETURNS_ANY: { 3319 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3320 Opc = ISD::FMINNUM; 3321 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3322 Opc = ISD::FMINIMUM; 3323 else if (UseScalarMinMax) 3324 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3325 ISD::FMINNUM : ISD::FMINIMUM; 3326 break; 3327 } 3328 } 3329 break; 3330 case SPF_FMAXNUM: 3331 switch (SPR.NaNBehavior) { 3332 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3333 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3334 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3335 case SPNB_RETURNS_ANY: 3336 3337 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3338 Opc = ISD::FMAXNUM; 3339 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3340 Opc = ISD::FMAXIMUM; 3341 else if (UseScalarMinMax) 3342 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3343 ISD::FMAXNUM : ISD::FMAXIMUM; 3344 break; 3345 } 3346 break; 3347 case SPF_NABS: 3348 Negate = true; 3349 LLVM_FALLTHROUGH; 3350 case SPF_ABS: 3351 IsUnaryAbs = true; 3352 Opc = ISD::ABS; 3353 break; 3354 default: break; 3355 } 3356 3357 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3358 (TLI.isOperationLegalOrCustom(Opc, VT) || 3359 (UseScalarMinMax && 3360 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3361 // If the underlying comparison instruction is used by any other 3362 // instruction, the consumed instructions won't be destroyed, so it is 3363 // not profitable to convert to a min/max. 3364 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3365 OpCode = Opc; 3366 LHSVal = getValue(LHS); 3367 RHSVal = getValue(RHS); 3368 BaseOps.clear(); 3369 } 3370 3371 if (IsUnaryAbs) { 3372 OpCode = Opc; 3373 LHSVal = getValue(LHS); 3374 BaseOps.clear(); 3375 } 3376 } 3377 3378 if (IsUnaryAbs) { 3379 for (unsigned i = 0; i != NumValues; ++i) { 3380 SDLoc dl = getCurSDLoc(); 3381 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); 3382 Values[i] = 3383 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); 3384 if (Negate) 3385 Values[i] = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT), 3386 Values[i]); 3387 } 3388 } else { 3389 for (unsigned i = 0; i != NumValues; ++i) { 3390 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3391 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3392 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3393 Values[i] = DAG.getNode( 3394 OpCode, getCurSDLoc(), 3395 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3396 } 3397 } 3398 3399 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3400 DAG.getVTList(ValueVTs), Values)); 3401 } 3402 3403 void SelectionDAGBuilder::visitTrunc(const User &I) { 3404 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3405 SDValue N = getValue(I.getOperand(0)); 3406 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3407 I.getType()); 3408 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3409 } 3410 3411 void SelectionDAGBuilder::visitZExt(const User &I) { 3412 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3413 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3414 SDValue N = getValue(I.getOperand(0)); 3415 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3416 I.getType()); 3417 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3418 } 3419 3420 void SelectionDAGBuilder::visitSExt(const User &I) { 3421 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3422 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3423 SDValue N = getValue(I.getOperand(0)); 3424 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3425 I.getType()); 3426 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3427 } 3428 3429 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3430 // FPTrunc is never a no-op cast, no need to check 3431 SDValue N = getValue(I.getOperand(0)); 3432 SDLoc dl = getCurSDLoc(); 3433 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3434 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3435 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3436 DAG.getTargetConstant( 3437 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3438 } 3439 3440 void SelectionDAGBuilder::visitFPExt(const User &I) { 3441 // FPExt is never a no-op cast, no need to check 3442 SDValue N = getValue(I.getOperand(0)); 3443 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3444 I.getType()); 3445 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3446 } 3447 3448 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3449 // FPToUI is never a no-op cast, no need to check 3450 SDValue N = getValue(I.getOperand(0)); 3451 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3452 I.getType()); 3453 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3454 } 3455 3456 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3457 // FPToSI is never a no-op cast, no need to check 3458 SDValue N = getValue(I.getOperand(0)); 3459 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3460 I.getType()); 3461 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3462 } 3463 3464 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3465 // UIToFP is never a no-op cast, no need to check 3466 SDValue N = getValue(I.getOperand(0)); 3467 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3468 I.getType()); 3469 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3470 } 3471 3472 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3473 // SIToFP is never a no-op cast, no need to check 3474 SDValue N = getValue(I.getOperand(0)); 3475 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3476 I.getType()); 3477 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3478 } 3479 3480 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3481 // What to do depends on the size of the integer and the size of the pointer. 3482 // We can either truncate, zero extend, or no-op, accordingly. 3483 SDValue N = getValue(I.getOperand(0)); 3484 auto &TLI = DAG.getTargetLoweringInfo(); 3485 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3486 I.getType()); 3487 EVT PtrMemVT = 3488 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3489 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3490 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3491 setValue(&I, N); 3492 } 3493 3494 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3495 // What to do depends on the size of the integer and the size of the pointer. 3496 // We can either truncate, zero extend, or no-op, accordingly. 3497 SDValue N = getValue(I.getOperand(0)); 3498 auto &TLI = DAG.getTargetLoweringInfo(); 3499 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3500 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3501 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3502 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3503 setValue(&I, N); 3504 } 3505 3506 void SelectionDAGBuilder::visitBitCast(const User &I) { 3507 SDValue N = getValue(I.getOperand(0)); 3508 SDLoc dl = getCurSDLoc(); 3509 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3510 I.getType()); 3511 3512 // BitCast assures us that source and destination are the same size so this is 3513 // either a BITCAST or a no-op. 3514 if (DestVT != N.getValueType()) 3515 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3516 DestVT, N)); // convert types. 3517 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3518 // might fold any kind of constant expression to an integer constant and that 3519 // is not what we are looking for. Only recognize a bitcast of a genuine 3520 // constant integer as an opaque constant. 3521 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3522 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3523 /*isOpaque*/true)); 3524 else 3525 setValue(&I, N); // noop cast. 3526 } 3527 3528 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3529 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3530 const Value *SV = I.getOperand(0); 3531 SDValue N = getValue(SV); 3532 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3533 3534 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3535 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3536 3537 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3538 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3539 3540 setValue(&I, N); 3541 } 3542 3543 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3544 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3545 SDValue InVec = getValue(I.getOperand(0)); 3546 SDValue InVal = getValue(I.getOperand(1)); 3547 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3548 TLI.getVectorIdxTy(DAG.getDataLayout())); 3549 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3550 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3551 InVec, InVal, InIdx)); 3552 } 3553 3554 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3555 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3556 SDValue InVec = getValue(I.getOperand(0)); 3557 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3558 TLI.getVectorIdxTy(DAG.getDataLayout())); 3559 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3560 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3561 InVec, InIdx)); 3562 } 3563 3564 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3565 SDValue Src1 = getValue(I.getOperand(0)); 3566 SDValue Src2 = getValue(I.getOperand(1)); 3567 ArrayRef<int> Mask; 3568 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3569 Mask = SVI->getShuffleMask(); 3570 else 3571 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3572 SDLoc DL = getCurSDLoc(); 3573 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3574 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3575 EVT SrcVT = Src1.getValueType(); 3576 3577 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3578 VT.isScalableVector()) { 3579 // Canonical splat form of first element of first input vector. 3580 SDValue FirstElt = 3581 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3582 DAG.getVectorIdxConstant(0, DL)); 3583 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3584 return; 3585 } 3586 3587 // For now, we only handle splats for scalable vectors. 3588 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3589 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3590 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3591 3592 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3593 unsigned MaskNumElts = Mask.size(); 3594 3595 if (SrcNumElts == MaskNumElts) { 3596 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3597 return; 3598 } 3599 3600 // Normalize the shuffle vector since mask and vector length don't match. 3601 if (SrcNumElts < MaskNumElts) { 3602 // Mask is longer than the source vectors. We can use concatenate vector to 3603 // make the mask and vectors lengths match. 3604 3605 if (MaskNumElts % SrcNumElts == 0) { 3606 // Mask length is a multiple of the source vector length. 3607 // Check if the shuffle is some kind of concatenation of the input 3608 // vectors. 3609 unsigned NumConcat = MaskNumElts / SrcNumElts; 3610 bool IsConcat = true; 3611 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3612 for (unsigned i = 0; i != MaskNumElts; ++i) { 3613 int Idx = Mask[i]; 3614 if (Idx < 0) 3615 continue; 3616 // Ensure the indices in each SrcVT sized piece are sequential and that 3617 // the same source is used for the whole piece. 3618 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3619 (ConcatSrcs[i / SrcNumElts] >= 0 && 3620 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3621 IsConcat = false; 3622 break; 3623 } 3624 // Remember which source this index came from. 3625 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3626 } 3627 3628 // The shuffle is concatenating multiple vectors together. Just emit 3629 // a CONCAT_VECTORS operation. 3630 if (IsConcat) { 3631 SmallVector<SDValue, 8> ConcatOps; 3632 for (auto Src : ConcatSrcs) { 3633 if (Src < 0) 3634 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3635 else if (Src == 0) 3636 ConcatOps.push_back(Src1); 3637 else 3638 ConcatOps.push_back(Src2); 3639 } 3640 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3641 return; 3642 } 3643 } 3644 3645 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3646 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3647 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3648 PaddedMaskNumElts); 3649 3650 // Pad both vectors with undefs to make them the same length as the mask. 3651 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3652 3653 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3654 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3655 MOps1[0] = Src1; 3656 MOps2[0] = Src2; 3657 3658 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3659 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3660 3661 // Readjust mask for new input vector length. 3662 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3663 for (unsigned i = 0; i != MaskNumElts; ++i) { 3664 int Idx = Mask[i]; 3665 if (Idx >= (int)SrcNumElts) 3666 Idx -= SrcNumElts - PaddedMaskNumElts; 3667 MappedOps[i] = Idx; 3668 } 3669 3670 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3671 3672 // If the concatenated vector was padded, extract a subvector with the 3673 // correct number of elements. 3674 if (MaskNumElts != PaddedMaskNumElts) 3675 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3676 DAG.getVectorIdxConstant(0, DL)); 3677 3678 setValue(&I, Result); 3679 return; 3680 } 3681 3682 if (SrcNumElts > MaskNumElts) { 3683 // Analyze the access pattern of the vector to see if we can extract 3684 // two subvectors and do the shuffle. 3685 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3686 bool CanExtract = true; 3687 for (int Idx : Mask) { 3688 unsigned Input = 0; 3689 if (Idx < 0) 3690 continue; 3691 3692 if (Idx >= (int)SrcNumElts) { 3693 Input = 1; 3694 Idx -= SrcNumElts; 3695 } 3696 3697 // If all the indices come from the same MaskNumElts sized portion of 3698 // the sources we can use extract. Also make sure the extract wouldn't 3699 // extract past the end of the source. 3700 int NewStartIdx = alignDown(Idx, MaskNumElts); 3701 if (NewStartIdx + MaskNumElts > SrcNumElts || 3702 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3703 CanExtract = false; 3704 // Make sure we always update StartIdx as we use it to track if all 3705 // elements are undef. 3706 StartIdx[Input] = NewStartIdx; 3707 } 3708 3709 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3710 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3711 return; 3712 } 3713 if (CanExtract) { 3714 // Extract appropriate subvector and generate a vector shuffle 3715 for (unsigned Input = 0; Input < 2; ++Input) { 3716 SDValue &Src = Input == 0 ? Src1 : Src2; 3717 if (StartIdx[Input] < 0) 3718 Src = DAG.getUNDEF(VT); 3719 else { 3720 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3721 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3722 } 3723 } 3724 3725 // Calculate new mask. 3726 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3727 for (int &Idx : MappedOps) { 3728 if (Idx >= (int)SrcNumElts) 3729 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3730 else if (Idx >= 0) 3731 Idx -= StartIdx[0]; 3732 } 3733 3734 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3735 return; 3736 } 3737 } 3738 3739 // We can't use either concat vectors or extract subvectors so fall back to 3740 // replacing the shuffle with extract and build vector. 3741 // to insert and build vector. 3742 EVT EltVT = VT.getVectorElementType(); 3743 SmallVector<SDValue,8> Ops; 3744 for (int Idx : Mask) { 3745 SDValue Res; 3746 3747 if (Idx < 0) { 3748 Res = DAG.getUNDEF(EltVT); 3749 } else { 3750 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3751 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3752 3753 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3754 DAG.getVectorIdxConstant(Idx, DL)); 3755 } 3756 3757 Ops.push_back(Res); 3758 } 3759 3760 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3761 } 3762 3763 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3764 ArrayRef<unsigned> Indices; 3765 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3766 Indices = IV->getIndices(); 3767 else 3768 Indices = cast<ConstantExpr>(&I)->getIndices(); 3769 3770 const Value *Op0 = I.getOperand(0); 3771 const Value *Op1 = I.getOperand(1); 3772 Type *AggTy = I.getType(); 3773 Type *ValTy = Op1->getType(); 3774 bool IntoUndef = isa<UndefValue>(Op0); 3775 bool FromUndef = isa<UndefValue>(Op1); 3776 3777 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3778 3779 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3780 SmallVector<EVT, 4> AggValueVTs; 3781 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3782 SmallVector<EVT, 4> ValValueVTs; 3783 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3784 3785 unsigned NumAggValues = AggValueVTs.size(); 3786 unsigned NumValValues = ValValueVTs.size(); 3787 SmallVector<SDValue, 4> Values(NumAggValues); 3788 3789 // Ignore an insertvalue that produces an empty object 3790 if (!NumAggValues) { 3791 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3792 return; 3793 } 3794 3795 SDValue Agg = getValue(Op0); 3796 unsigned i = 0; 3797 // Copy the beginning value(s) from the original aggregate. 3798 for (; i != LinearIndex; ++i) 3799 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3800 SDValue(Agg.getNode(), Agg.getResNo() + i); 3801 // Copy values from the inserted value(s). 3802 if (NumValValues) { 3803 SDValue Val = getValue(Op1); 3804 for (; i != LinearIndex + NumValValues; ++i) 3805 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3806 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3807 } 3808 // Copy remaining value(s) from the original aggregate. 3809 for (; i != NumAggValues; ++i) 3810 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3811 SDValue(Agg.getNode(), Agg.getResNo() + i); 3812 3813 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3814 DAG.getVTList(AggValueVTs), Values)); 3815 } 3816 3817 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3818 ArrayRef<unsigned> Indices; 3819 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3820 Indices = EV->getIndices(); 3821 else 3822 Indices = cast<ConstantExpr>(&I)->getIndices(); 3823 3824 const Value *Op0 = I.getOperand(0); 3825 Type *AggTy = Op0->getType(); 3826 Type *ValTy = I.getType(); 3827 bool OutOfUndef = isa<UndefValue>(Op0); 3828 3829 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3830 3831 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3832 SmallVector<EVT, 4> ValValueVTs; 3833 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3834 3835 unsigned NumValValues = ValValueVTs.size(); 3836 3837 // Ignore a extractvalue that produces an empty object 3838 if (!NumValValues) { 3839 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3840 return; 3841 } 3842 3843 SmallVector<SDValue, 4> Values(NumValValues); 3844 3845 SDValue Agg = getValue(Op0); 3846 // Copy out the selected value(s). 3847 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3848 Values[i - LinearIndex] = 3849 OutOfUndef ? 3850 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3851 SDValue(Agg.getNode(), Agg.getResNo() + i); 3852 3853 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3854 DAG.getVTList(ValValueVTs), Values)); 3855 } 3856 3857 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3858 Value *Op0 = I.getOperand(0); 3859 // Note that the pointer operand may be a vector of pointers. Take the scalar 3860 // element which holds a pointer. 3861 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3862 SDValue N = getValue(Op0); 3863 SDLoc dl = getCurSDLoc(); 3864 auto &TLI = DAG.getTargetLoweringInfo(); 3865 3866 // Normalize Vector GEP - all scalar operands should be converted to the 3867 // splat vector. 3868 bool IsVectorGEP = I.getType()->isVectorTy(); 3869 ElementCount VectorElementCount = 3870 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 3871 : ElementCount::getFixed(0); 3872 3873 if (IsVectorGEP && !N.getValueType().isVector()) { 3874 LLVMContext &Context = *DAG.getContext(); 3875 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 3876 if (VectorElementCount.isScalable()) 3877 N = DAG.getSplatVector(VT, dl, N); 3878 else 3879 N = DAG.getSplatBuildVector(VT, dl, N); 3880 } 3881 3882 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3883 GTI != E; ++GTI) { 3884 const Value *Idx = GTI.getOperand(); 3885 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3886 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3887 if (Field) { 3888 // N = N + Offset 3889 uint64_t Offset = 3890 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field); 3891 3892 // In an inbounds GEP with an offset that is nonnegative even when 3893 // interpreted as signed, assume there is no unsigned overflow. 3894 SDNodeFlags Flags; 3895 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3896 Flags.setNoUnsignedWrap(true); 3897 3898 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3899 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3900 } 3901 } else { 3902 // IdxSize is the width of the arithmetic according to IR semantics. 3903 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 3904 // (and fix up the result later). 3905 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3906 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3907 TypeSize ElementSize = 3908 DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType()); 3909 // We intentionally mask away the high bits here; ElementSize may not 3910 // fit in IdxTy. 3911 APInt ElementMul(IdxSize, ElementSize.getKnownMinSize()); 3912 bool ElementScalable = ElementSize.isScalable(); 3913 3914 // If this is a scalar constant or a splat vector of constants, 3915 // handle it quickly. 3916 const auto *C = dyn_cast<Constant>(Idx); 3917 if (C && isa<VectorType>(C->getType())) 3918 C = C->getSplatValue(); 3919 3920 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 3921 if (CI && CI->isZero()) 3922 continue; 3923 if (CI && !ElementScalable) { 3924 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 3925 LLVMContext &Context = *DAG.getContext(); 3926 SDValue OffsVal; 3927 if (IsVectorGEP) 3928 OffsVal = DAG.getConstant( 3929 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 3930 else 3931 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 3932 3933 // In an inbounds GEP with an offset that is nonnegative even when 3934 // interpreted as signed, assume there is no unsigned overflow. 3935 SDNodeFlags Flags; 3936 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3937 Flags.setNoUnsignedWrap(true); 3938 3939 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3940 3941 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3942 continue; 3943 } 3944 3945 // N = N + Idx * ElementMul; 3946 SDValue IdxN = getValue(Idx); 3947 3948 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 3949 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 3950 VectorElementCount); 3951 if (VectorElementCount.isScalable()) 3952 IdxN = DAG.getSplatVector(VT, dl, IdxN); 3953 else 3954 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3955 } 3956 3957 // If the index is smaller or larger than intptr_t, truncate or extend 3958 // it. 3959 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3960 3961 if (ElementScalable) { 3962 EVT VScaleTy = N.getValueType().getScalarType(); 3963 SDValue VScale = DAG.getNode( 3964 ISD::VSCALE, dl, VScaleTy, 3965 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 3966 if (IsVectorGEP) 3967 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 3968 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 3969 } else { 3970 // If this is a multiply by a power of two, turn it into a shl 3971 // immediately. This is a very common case. 3972 if (ElementMul != 1) { 3973 if (ElementMul.isPowerOf2()) { 3974 unsigned Amt = ElementMul.logBase2(); 3975 IdxN = DAG.getNode(ISD::SHL, dl, 3976 N.getValueType(), IdxN, 3977 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3978 } else { 3979 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 3980 IdxN.getValueType()); 3981 IdxN = DAG.getNode(ISD::MUL, dl, 3982 N.getValueType(), IdxN, Scale); 3983 } 3984 } 3985 } 3986 3987 N = DAG.getNode(ISD::ADD, dl, 3988 N.getValueType(), N, IdxN); 3989 } 3990 } 3991 3992 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 3993 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 3994 if (IsVectorGEP) { 3995 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 3996 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 3997 } 3998 3999 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 4000 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 4001 4002 setValue(&I, N); 4003 } 4004 4005 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 4006 // If this is a fixed sized alloca in the entry block of the function, 4007 // allocate it statically on the stack. 4008 if (FuncInfo.StaticAllocaMap.count(&I)) 4009 return; // getValue will auto-populate this. 4010 4011 SDLoc dl = getCurSDLoc(); 4012 Type *Ty = I.getAllocatedType(); 4013 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4014 auto &DL = DAG.getDataLayout(); 4015 uint64_t TySize = DL.getTypeAllocSize(Ty); 4016 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 4017 4018 SDValue AllocSize = getValue(I.getArraySize()); 4019 4020 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 4021 if (AllocSize.getValueType() != IntPtr) 4022 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 4023 4024 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 4025 AllocSize, 4026 DAG.getConstant(TySize, dl, IntPtr)); 4027 4028 // Handle alignment. If the requested alignment is less than or equal to 4029 // the stack alignment, ignore it. If the size is greater than or equal to 4030 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 4031 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 4032 if (*Alignment <= StackAlign) 4033 Alignment = None; 4034 4035 const uint64_t StackAlignMask = StackAlign.value() - 1U; 4036 // Round the size of the allocation up to the stack alignment size 4037 // by add SA-1 to the size. This doesn't overflow because we're computing 4038 // an address inside an alloca. 4039 SDNodeFlags Flags; 4040 Flags.setNoUnsignedWrap(true); 4041 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4042 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 4043 4044 // Mask out the low bits for alignment purposes. 4045 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4046 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 4047 4048 SDValue Ops[] = { 4049 getRoot(), AllocSize, 4050 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 4051 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4052 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4053 setValue(&I, DSA); 4054 DAG.setRoot(DSA.getValue(1)); 4055 4056 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4057 } 4058 4059 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4060 if (I.isAtomic()) 4061 return visitAtomicLoad(I); 4062 4063 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4064 const Value *SV = I.getOperand(0); 4065 if (TLI.supportSwiftError()) { 4066 // Swifterror values can come from either a function parameter with 4067 // swifterror attribute or an alloca with swifterror attribute. 4068 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4069 if (Arg->hasSwiftErrorAttr()) 4070 return visitLoadFromSwiftError(I); 4071 } 4072 4073 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4074 if (Alloca->isSwiftError()) 4075 return visitLoadFromSwiftError(I); 4076 } 4077 } 4078 4079 SDValue Ptr = getValue(SV); 4080 4081 Type *Ty = I.getType(); 4082 Align Alignment = I.getAlign(); 4083 4084 AAMDNodes AAInfo = I.getAAMetadata(); 4085 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4086 4087 SmallVector<EVT, 4> ValueVTs, MemVTs; 4088 SmallVector<uint64_t, 4> Offsets; 4089 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4090 unsigned NumValues = ValueVTs.size(); 4091 if (NumValues == 0) 4092 return; 4093 4094 bool isVolatile = I.isVolatile(); 4095 4096 SDValue Root; 4097 bool ConstantMemory = false; 4098 if (isVolatile) 4099 // Serialize volatile loads with other side effects. 4100 Root = getRoot(); 4101 else if (NumValues > MaxParallelChains) 4102 Root = getMemoryRoot(); 4103 else if (AA && 4104 AA->pointsToConstantMemory(MemoryLocation( 4105 SV, 4106 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4107 AAInfo))) { 4108 // Do not serialize (non-volatile) loads of constant memory with anything. 4109 Root = DAG.getEntryNode(); 4110 ConstantMemory = true; 4111 } else { 4112 // Do not serialize non-volatile loads against each other. 4113 Root = DAG.getRoot(); 4114 } 4115 4116 SDLoc dl = getCurSDLoc(); 4117 4118 if (isVolatile) 4119 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4120 4121 // An aggregate load cannot wrap around the address space, so offsets to its 4122 // parts don't wrap either. 4123 SDNodeFlags Flags; 4124 Flags.setNoUnsignedWrap(true); 4125 4126 SmallVector<SDValue, 4> Values(NumValues); 4127 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4128 EVT PtrVT = Ptr.getValueType(); 4129 4130 MachineMemOperand::Flags MMOFlags 4131 = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4132 4133 unsigned ChainI = 0; 4134 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4135 // Serializing loads here may result in excessive register pressure, and 4136 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4137 // could recover a bit by hoisting nodes upward in the chain by recognizing 4138 // they are side-effect free or do not alias. The optimizer should really 4139 // avoid this case by converting large object/array copies to llvm.memcpy 4140 // (MaxParallelChains should always remain as failsafe). 4141 if (ChainI == MaxParallelChains) { 4142 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4143 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4144 makeArrayRef(Chains.data(), ChainI)); 4145 Root = Chain; 4146 ChainI = 0; 4147 } 4148 SDValue A = DAG.getNode(ISD::ADD, dl, 4149 PtrVT, Ptr, 4150 DAG.getConstant(Offsets[i], dl, PtrVT), 4151 Flags); 4152 4153 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4154 MachinePointerInfo(SV, Offsets[i]), Alignment, 4155 MMOFlags, AAInfo, Ranges); 4156 Chains[ChainI] = L.getValue(1); 4157 4158 if (MemVTs[i] != ValueVTs[i]) 4159 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4160 4161 Values[i] = L; 4162 } 4163 4164 if (!ConstantMemory) { 4165 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4166 makeArrayRef(Chains.data(), ChainI)); 4167 if (isVolatile) 4168 DAG.setRoot(Chain); 4169 else 4170 PendingLoads.push_back(Chain); 4171 } 4172 4173 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4174 DAG.getVTList(ValueVTs), Values)); 4175 } 4176 4177 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4178 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4179 "call visitStoreToSwiftError when backend supports swifterror"); 4180 4181 SmallVector<EVT, 4> ValueVTs; 4182 SmallVector<uint64_t, 4> Offsets; 4183 const Value *SrcV = I.getOperand(0); 4184 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4185 SrcV->getType(), ValueVTs, &Offsets); 4186 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4187 "expect a single EVT for swifterror"); 4188 4189 SDValue Src = getValue(SrcV); 4190 // Create a virtual register, then update the virtual register. 4191 Register VReg = 4192 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4193 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4194 // Chain can be getRoot or getControlRoot. 4195 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4196 SDValue(Src.getNode(), Src.getResNo())); 4197 DAG.setRoot(CopyNode); 4198 } 4199 4200 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4201 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4202 "call visitLoadFromSwiftError when backend supports swifterror"); 4203 4204 assert(!I.isVolatile() && 4205 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4206 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4207 "Support volatile, non temporal, invariant for load_from_swift_error"); 4208 4209 const Value *SV = I.getOperand(0); 4210 Type *Ty = I.getType(); 4211 assert( 4212 (!AA || 4213 !AA->pointsToConstantMemory(MemoryLocation( 4214 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4215 I.getAAMetadata()))) && 4216 "load_from_swift_error should not be constant memory"); 4217 4218 SmallVector<EVT, 4> ValueVTs; 4219 SmallVector<uint64_t, 4> Offsets; 4220 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4221 ValueVTs, &Offsets); 4222 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4223 "expect a single EVT for swifterror"); 4224 4225 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4226 SDValue L = DAG.getCopyFromReg( 4227 getRoot(), getCurSDLoc(), 4228 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4229 4230 setValue(&I, L); 4231 } 4232 4233 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4234 if (I.isAtomic()) 4235 return visitAtomicStore(I); 4236 4237 const Value *SrcV = I.getOperand(0); 4238 const Value *PtrV = I.getOperand(1); 4239 4240 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4241 if (TLI.supportSwiftError()) { 4242 // Swifterror values can come from either a function parameter with 4243 // swifterror attribute or an alloca with swifterror attribute. 4244 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4245 if (Arg->hasSwiftErrorAttr()) 4246 return visitStoreToSwiftError(I); 4247 } 4248 4249 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4250 if (Alloca->isSwiftError()) 4251 return visitStoreToSwiftError(I); 4252 } 4253 } 4254 4255 SmallVector<EVT, 4> ValueVTs, MemVTs; 4256 SmallVector<uint64_t, 4> Offsets; 4257 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4258 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4259 unsigned NumValues = ValueVTs.size(); 4260 if (NumValues == 0) 4261 return; 4262 4263 // Get the lowered operands. Note that we do this after 4264 // checking if NumResults is zero, because with zero results 4265 // the operands won't have values in the map. 4266 SDValue Src = getValue(SrcV); 4267 SDValue Ptr = getValue(PtrV); 4268 4269 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4270 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4271 SDLoc dl = getCurSDLoc(); 4272 Align Alignment = I.getAlign(); 4273 AAMDNodes AAInfo = I.getAAMetadata(); 4274 4275 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4276 4277 // An aggregate load cannot wrap around the address space, so offsets to its 4278 // parts don't wrap either. 4279 SDNodeFlags Flags; 4280 Flags.setNoUnsignedWrap(true); 4281 4282 unsigned ChainI = 0; 4283 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4284 // See visitLoad comments. 4285 if (ChainI == MaxParallelChains) { 4286 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4287 makeArrayRef(Chains.data(), ChainI)); 4288 Root = Chain; 4289 ChainI = 0; 4290 } 4291 SDValue Add = 4292 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags); 4293 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4294 if (MemVTs[i] != ValueVTs[i]) 4295 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4296 SDValue St = 4297 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4298 Alignment, MMOFlags, AAInfo); 4299 Chains[ChainI] = St; 4300 } 4301 4302 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4303 makeArrayRef(Chains.data(), ChainI)); 4304 DAG.setRoot(StoreNode); 4305 } 4306 4307 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4308 bool IsCompressing) { 4309 SDLoc sdl = getCurSDLoc(); 4310 4311 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4312 MaybeAlign &Alignment) { 4313 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4314 Src0 = I.getArgOperand(0); 4315 Ptr = I.getArgOperand(1); 4316 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue(); 4317 Mask = I.getArgOperand(3); 4318 }; 4319 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4320 MaybeAlign &Alignment) { 4321 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4322 Src0 = I.getArgOperand(0); 4323 Ptr = I.getArgOperand(1); 4324 Mask = I.getArgOperand(2); 4325 Alignment = None; 4326 }; 4327 4328 Value *PtrOperand, *MaskOperand, *Src0Operand; 4329 MaybeAlign Alignment; 4330 if (IsCompressing) 4331 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4332 else 4333 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4334 4335 SDValue Ptr = getValue(PtrOperand); 4336 SDValue Src0 = getValue(Src0Operand); 4337 SDValue Mask = getValue(MaskOperand); 4338 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4339 4340 EVT VT = Src0.getValueType(); 4341 if (!Alignment) 4342 Alignment = DAG.getEVTAlign(VT); 4343 4344 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4345 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4346 MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata()); 4347 SDValue StoreNode = 4348 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4349 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4350 DAG.setRoot(StoreNode); 4351 setValue(&I, StoreNode); 4352 } 4353 4354 // Get a uniform base for the Gather/Scatter intrinsic. 4355 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4356 // We try to represent it as a base pointer + vector of indices. 4357 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4358 // The first operand of the GEP may be a single pointer or a vector of pointers 4359 // Example: 4360 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4361 // or 4362 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4363 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4364 // 4365 // When the first GEP operand is a single pointer - it is the uniform base we 4366 // are looking for. If first operand of the GEP is a splat vector - we 4367 // extract the splat value and use it as a uniform base. 4368 // In all other cases the function returns 'false'. 4369 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4370 ISD::MemIndexType &IndexType, SDValue &Scale, 4371 SelectionDAGBuilder *SDB, const BasicBlock *CurBB) { 4372 SelectionDAG& DAG = SDB->DAG; 4373 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4374 const DataLayout &DL = DAG.getDataLayout(); 4375 4376 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type"); 4377 4378 // Handle splat constant pointer. 4379 if (auto *C = dyn_cast<Constant>(Ptr)) { 4380 C = C->getSplatValue(); 4381 if (!C) 4382 return false; 4383 4384 Base = SDB->getValue(C); 4385 4386 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 4387 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4388 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4389 IndexType = ISD::SIGNED_SCALED; 4390 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4391 return true; 4392 } 4393 4394 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4395 if (!GEP || GEP->getParent() != CurBB) 4396 return false; 4397 4398 if (GEP->getNumOperands() != 2) 4399 return false; 4400 4401 const Value *BasePtr = GEP->getPointerOperand(); 4402 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4403 4404 // Make sure the base is scalar and the index is a vector. 4405 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4406 return false; 4407 4408 Base = SDB->getValue(BasePtr); 4409 Index = SDB->getValue(IndexVal); 4410 IndexType = ISD::SIGNED_SCALED; 4411 Scale = DAG.getTargetConstant( 4412 DL.getTypeAllocSize(GEP->getResultElementType()), 4413 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4414 return true; 4415 } 4416 4417 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4418 SDLoc sdl = getCurSDLoc(); 4419 4420 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4421 const Value *Ptr = I.getArgOperand(1); 4422 SDValue Src0 = getValue(I.getArgOperand(0)); 4423 SDValue Mask = getValue(I.getArgOperand(3)); 4424 EVT VT = Src0.getValueType(); 4425 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4426 ->getMaybeAlignValue() 4427 .getValueOr(DAG.getEVTAlign(VT.getScalarType())); 4428 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4429 4430 SDValue Base; 4431 SDValue Index; 4432 ISD::MemIndexType IndexType; 4433 SDValue Scale; 4434 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4435 I.getParent()); 4436 4437 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4438 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4439 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4440 // TODO: Make MachineMemOperands aware of scalable 4441 // vectors. 4442 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata()); 4443 if (!UniformBase) { 4444 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4445 Index = getValue(Ptr); 4446 IndexType = ISD::SIGNED_UNSCALED; 4447 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4448 } 4449 4450 EVT IdxVT = Index.getValueType(); 4451 EVT EltTy = IdxVT.getVectorElementType(); 4452 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4453 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4454 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4455 } 4456 4457 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4458 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4459 Ops, MMO, IndexType, false); 4460 DAG.setRoot(Scatter); 4461 setValue(&I, Scatter); 4462 } 4463 4464 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4465 SDLoc sdl = getCurSDLoc(); 4466 4467 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4468 MaybeAlign &Alignment) { 4469 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4470 Ptr = I.getArgOperand(0); 4471 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue(); 4472 Mask = I.getArgOperand(2); 4473 Src0 = I.getArgOperand(3); 4474 }; 4475 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4476 MaybeAlign &Alignment) { 4477 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4478 Ptr = I.getArgOperand(0); 4479 Alignment = None; 4480 Mask = I.getArgOperand(1); 4481 Src0 = I.getArgOperand(2); 4482 }; 4483 4484 Value *PtrOperand, *MaskOperand, *Src0Operand; 4485 MaybeAlign Alignment; 4486 if (IsExpanding) 4487 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4488 else 4489 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4490 4491 SDValue Ptr = getValue(PtrOperand); 4492 SDValue Src0 = getValue(Src0Operand); 4493 SDValue Mask = getValue(MaskOperand); 4494 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4495 4496 EVT VT = Src0.getValueType(); 4497 if (!Alignment) 4498 Alignment = DAG.getEVTAlign(VT); 4499 4500 AAMDNodes AAInfo = I.getAAMetadata(); 4501 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4502 4503 // Do not serialize masked loads of constant memory with anything. 4504 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 4505 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4506 4507 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4508 4509 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4510 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4511 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 4512 4513 SDValue Load = 4514 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4515 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4516 if (AddToChain) 4517 PendingLoads.push_back(Load.getValue(1)); 4518 setValue(&I, Load); 4519 } 4520 4521 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4522 SDLoc sdl = getCurSDLoc(); 4523 4524 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4525 const Value *Ptr = I.getArgOperand(0); 4526 SDValue Src0 = getValue(I.getArgOperand(3)); 4527 SDValue Mask = getValue(I.getArgOperand(2)); 4528 4529 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4530 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4531 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 4532 ->getMaybeAlignValue() 4533 .getValueOr(DAG.getEVTAlign(VT.getScalarType())); 4534 4535 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4536 4537 SDValue Root = DAG.getRoot(); 4538 SDValue Base; 4539 SDValue Index; 4540 ISD::MemIndexType IndexType; 4541 SDValue Scale; 4542 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4543 I.getParent()); 4544 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4545 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4546 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4547 // TODO: Make MachineMemOperands aware of scalable 4548 // vectors. 4549 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges); 4550 4551 if (!UniformBase) { 4552 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4553 Index = getValue(Ptr); 4554 IndexType = ISD::SIGNED_UNSCALED; 4555 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4556 } 4557 4558 EVT IdxVT = Index.getValueType(); 4559 EVT EltTy = IdxVT.getVectorElementType(); 4560 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4561 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4562 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4563 } 4564 4565 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4566 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4567 Ops, MMO, IndexType, ISD::NON_EXTLOAD); 4568 4569 PendingLoads.push_back(Gather.getValue(1)); 4570 setValue(&I, Gather); 4571 } 4572 4573 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4574 SDLoc dl = getCurSDLoc(); 4575 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4576 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4577 SyncScope::ID SSID = I.getSyncScopeID(); 4578 4579 SDValue InChain = getRoot(); 4580 4581 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4582 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4583 4584 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4585 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4586 4587 MachineFunction &MF = DAG.getMachineFunction(); 4588 MachineMemOperand *MMO = MF.getMachineMemOperand( 4589 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4590 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, 4591 FailureOrdering); 4592 4593 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4594 dl, MemVT, VTs, InChain, 4595 getValue(I.getPointerOperand()), 4596 getValue(I.getCompareOperand()), 4597 getValue(I.getNewValOperand()), MMO); 4598 4599 SDValue OutChain = L.getValue(2); 4600 4601 setValue(&I, L); 4602 DAG.setRoot(OutChain); 4603 } 4604 4605 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4606 SDLoc dl = getCurSDLoc(); 4607 ISD::NodeType NT; 4608 switch (I.getOperation()) { 4609 default: llvm_unreachable("Unknown atomicrmw operation"); 4610 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4611 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4612 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4613 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4614 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4615 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4616 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4617 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4618 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4619 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4620 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4621 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4622 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4623 } 4624 AtomicOrdering Ordering = I.getOrdering(); 4625 SyncScope::ID SSID = I.getSyncScopeID(); 4626 4627 SDValue InChain = getRoot(); 4628 4629 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4630 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4631 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4632 4633 MachineFunction &MF = DAG.getMachineFunction(); 4634 MachineMemOperand *MMO = MF.getMachineMemOperand( 4635 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4636 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); 4637 4638 SDValue L = 4639 DAG.getAtomic(NT, dl, MemVT, InChain, 4640 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4641 MMO); 4642 4643 SDValue OutChain = L.getValue(1); 4644 4645 setValue(&I, L); 4646 DAG.setRoot(OutChain); 4647 } 4648 4649 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4650 SDLoc dl = getCurSDLoc(); 4651 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4652 SDValue Ops[3]; 4653 Ops[0] = getRoot(); 4654 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4655 TLI.getFenceOperandTy(DAG.getDataLayout())); 4656 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4657 TLI.getFenceOperandTy(DAG.getDataLayout())); 4658 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4659 } 4660 4661 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4662 SDLoc dl = getCurSDLoc(); 4663 AtomicOrdering Order = I.getOrdering(); 4664 SyncScope::ID SSID = I.getSyncScopeID(); 4665 4666 SDValue InChain = getRoot(); 4667 4668 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4669 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4670 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4671 4672 if (!TLI.supportsUnalignedAtomics() && 4673 I.getAlignment() < MemVT.getSizeInBits() / 8) 4674 report_fatal_error("Cannot generate unaligned atomic load"); 4675 4676 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4677 4678 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4679 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4680 I.getAlign(), AAMDNodes(), nullptr, SSID, Order); 4681 4682 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4683 4684 SDValue Ptr = getValue(I.getPointerOperand()); 4685 4686 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4687 // TODO: Once this is better exercised by tests, it should be merged with 4688 // the normal path for loads to prevent future divergence. 4689 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4690 if (MemVT != VT) 4691 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4692 4693 setValue(&I, L); 4694 SDValue OutChain = L.getValue(1); 4695 if (!I.isUnordered()) 4696 DAG.setRoot(OutChain); 4697 else 4698 PendingLoads.push_back(OutChain); 4699 return; 4700 } 4701 4702 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4703 Ptr, MMO); 4704 4705 SDValue OutChain = L.getValue(1); 4706 if (MemVT != VT) 4707 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4708 4709 setValue(&I, L); 4710 DAG.setRoot(OutChain); 4711 } 4712 4713 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4714 SDLoc dl = getCurSDLoc(); 4715 4716 AtomicOrdering Ordering = I.getOrdering(); 4717 SyncScope::ID SSID = I.getSyncScopeID(); 4718 4719 SDValue InChain = getRoot(); 4720 4721 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4722 EVT MemVT = 4723 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4724 4725 if (I.getAlignment() < MemVT.getSizeInBits() / 8) 4726 report_fatal_error("Cannot generate unaligned atomic store"); 4727 4728 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4729 4730 MachineFunction &MF = DAG.getMachineFunction(); 4731 MachineMemOperand *MMO = MF.getMachineMemOperand( 4732 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4733 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); 4734 4735 SDValue Val = getValue(I.getValueOperand()); 4736 if (Val.getValueType() != MemVT) 4737 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4738 SDValue Ptr = getValue(I.getPointerOperand()); 4739 4740 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4741 // TODO: Once this is better exercised by tests, it should be merged with 4742 // the normal path for stores to prevent future divergence. 4743 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4744 DAG.setRoot(S); 4745 return; 4746 } 4747 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4748 Ptr, Val, MMO); 4749 4750 4751 DAG.setRoot(OutChain); 4752 } 4753 4754 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4755 /// node. 4756 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4757 unsigned Intrinsic) { 4758 // Ignore the callsite's attributes. A specific call site may be marked with 4759 // readnone, but the lowering code will expect the chain based on the 4760 // definition. 4761 const Function *F = I.getCalledFunction(); 4762 bool HasChain = !F->doesNotAccessMemory(); 4763 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4764 4765 // Build the operand list. 4766 SmallVector<SDValue, 8> Ops; 4767 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4768 if (OnlyLoad) { 4769 // We don't need to serialize loads against other loads. 4770 Ops.push_back(DAG.getRoot()); 4771 } else { 4772 Ops.push_back(getRoot()); 4773 } 4774 } 4775 4776 // Info is set by getTgtMemInstrinsic 4777 TargetLowering::IntrinsicInfo Info; 4778 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4779 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4780 DAG.getMachineFunction(), 4781 Intrinsic); 4782 4783 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4784 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4785 Info.opc == ISD::INTRINSIC_W_CHAIN) 4786 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4787 TLI.getPointerTy(DAG.getDataLayout()))); 4788 4789 // Add all operands of the call to the operand list. 4790 for (unsigned i = 0, e = I.arg_size(); i != e; ++i) { 4791 const Value *Arg = I.getArgOperand(i); 4792 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4793 Ops.push_back(getValue(Arg)); 4794 continue; 4795 } 4796 4797 // Use TargetConstant instead of a regular constant for immarg. 4798 EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true); 4799 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4800 assert(CI->getBitWidth() <= 64 && 4801 "large intrinsic immediates not handled"); 4802 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4803 } else { 4804 Ops.push_back( 4805 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4806 } 4807 } 4808 4809 SmallVector<EVT, 4> ValueVTs; 4810 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4811 4812 if (HasChain) 4813 ValueVTs.push_back(MVT::Other); 4814 4815 SDVTList VTs = DAG.getVTList(ValueVTs); 4816 4817 // Propagate fast-math-flags from IR to node(s). 4818 SDNodeFlags Flags; 4819 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 4820 Flags.copyFMF(*FPMO); 4821 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 4822 4823 // Create the node. 4824 SDValue Result; 4825 if (IsTgtIntrinsic) { 4826 // This is target intrinsic that touches memory 4827 Result = 4828 DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, 4829 MachinePointerInfo(Info.ptrVal, Info.offset), 4830 Info.align, Info.flags, Info.size, 4831 I.getAAMetadata()); 4832 } else if (!HasChain) { 4833 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4834 } else if (!I.getType()->isVoidTy()) { 4835 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4836 } else { 4837 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4838 } 4839 4840 if (HasChain) { 4841 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4842 if (OnlyLoad) 4843 PendingLoads.push_back(Chain); 4844 else 4845 DAG.setRoot(Chain); 4846 } 4847 4848 if (!I.getType()->isVoidTy()) { 4849 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4850 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4851 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4852 } else 4853 Result = lowerRangeToAssertZExt(DAG, I, Result); 4854 4855 MaybeAlign Alignment = I.getRetAlign(); 4856 if (!Alignment) 4857 Alignment = F->getAttributes().getRetAlignment(); 4858 // Insert `assertalign` node if there's an alignment. 4859 if (InsertAssertAlign && Alignment) { 4860 Result = 4861 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 4862 } 4863 4864 setValue(&I, Result); 4865 } 4866 } 4867 4868 /// GetSignificand - Get the significand and build it into a floating-point 4869 /// number with exponent of 1: 4870 /// 4871 /// Op = (Op & 0x007fffff) | 0x3f800000; 4872 /// 4873 /// where Op is the hexadecimal representation of floating point value. 4874 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4875 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4876 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4877 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4878 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4879 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4880 } 4881 4882 /// GetExponent - Get the exponent: 4883 /// 4884 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4885 /// 4886 /// where Op is the hexadecimal representation of floating point value. 4887 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4888 const TargetLowering &TLI, const SDLoc &dl) { 4889 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4890 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4891 SDValue t1 = DAG.getNode( 4892 ISD::SRL, dl, MVT::i32, t0, 4893 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4894 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4895 DAG.getConstant(127, dl, MVT::i32)); 4896 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4897 } 4898 4899 /// getF32Constant - Get 32-bit floating point constant. 4900 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4901 const SDLoc &dl) { 4902 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4903 MVT::f32); 4904 } 4905 4906 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4907 SelectionDAG &DAG) { 4908 // TODO: What fast-math-flags should be set on the floating-point nodes? 4909 4910 // IntegerPartOfX = ((int32_t)(t0); 4911 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4912 4913 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4914 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4915 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4916 4917 // IntegerPartOfX <<= 23; 4918 IntegerPartOfX = DAG.getNode( 4919 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4920 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4921 DAG.getDataLayout()))); 4922 4923 SDValue TwoToFractionalPartOfX; 4924 if (LimitFloatPrecision <= 6) { 4925 // For floating-point precision of 6: 4926 // 4927 // TwoToFractionalPartOfX = 4928 // 0.997535578f + 4929 // (0.735607626f + 0.252464424f * x) * x; 4930 // 4931 // error 0.0144103317, which is 6 bits 4932 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4933 getF32Constant(DAG, 0x3e814304, dl)); 4934 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4935 getF32Constant(DAG, 0x3f3c50c8, dl)); 4936 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4937 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4938 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4939 } else if (LimitFloatPrecision <= 12) { 4940 // For floating-point precision of 12: 4941 // 4942 // TwoToFractionalPartOfX = 4943 // 0.999892986f + 4944 // (0.696457318f + 4945 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4946 // 4947 // error 0.000107046256, which is 13 to 14 bits 4948 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4949 getF32Constant(DAG, 0x3da235e3, dl)); 4950 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4951 getF32Constant(DAG, 0x3e65b8f3, dl)); 4952 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4953 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4954 getF32Constant(DAG, 0x3f324b07, dl)); 4955 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4956 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4957 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4958 } else { // LimitFloatPrecision <= 18 4959 // For floating-point precision of 18: 4960 // 4961 // TwoToFractionalPartOfX = 4962 // 0.999999982f + 4963 // (0.693148872f + 4964 // (0.240227044f + 4965 // (0.554906021e-1f + 4966 // (0.961591928e-2f + 4967 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4968 // error 2.47208000*10^(-7), which is better than 18 bits 4969 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4970 getF32Constant(DAG, 0x3924b03e, dl)); 4971 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4972 getF32Constant(DAG, 0x3ab24b87, dl)); 4973 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4974 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4975 getF32Constant(DAG, 0x3c1d8c17, dl)); 4976 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4977 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4978 getF32Constant(DAG, 0x3d634a1d, dl)); 4979 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4980 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4981 getF32Constant(DAG, 0x3e75fe14, dl)); 4982 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4983 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4984 getF32Constant(DAG, 0x3f317234, dl)); 4985 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4986 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4987 getF32Constant(DAG, 0x3f800000, dl)); 4988 } 4989 4990 // Add the exponent into the result in integer domain. 4991 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4992 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4993 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4994 } 4995 4996 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4997 /// limited-precision mode. 4998 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4999 const TargetLowering &TLI, SDNodeFlags Flags) { 5000 if (Op.getValueType() == MVT::f32 && 5001 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5002 5003 // Put the exponent in the right bit position for later addition to the 5004 // final result: 5005 // 5006 // t0 = Op * log2(e) 5007 5008 // TODO: What fast-math-flags should be set here? 5009 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5010 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5011 return getLimitedPrecisionExp2(t0, dl, DAG); 5012 } 5013 5014 // No special expansion. 5015 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 5016 } 5017 5018 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5019 /// limited-precision mode. 5020 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5021 const TargetLowering &TLI, SDNodeFlags Flags) { 5022 // TODO: What fast-math-flags should be set on the floating-point nodes? 5023 5024 if (Op.getValueType() == MVT::f32 && 5025 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5026 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5027 5028 // Scale the exponent by log(2). 5029 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5030 SDValue LogOfExponent = 5031 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5032 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5033 5034 // Get the significand and build it into a floating-point number with 5035 // exponent of 1. 5036 SDValue X = GetSignificand(DAG, Op1, dl); 5037 5038 SDValue LogOfMantissa; 5039 if (LimitFloatPrecision <= 6) { 5040 // For floating-point precision of 6: 5041 // 5042 // LogofMantissa = 5043 // -1.1609546f + 5044 // (1.4034025f - 0.23903021f * x) * x; 5045 // 5046 // error 0.0034276066, which is better than 8 bits 5047 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5048 getF32Constant(DAG, 0xbe74c456, dl)); 5049 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5050 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5051 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5052 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5053 getF32Constant(DAG, 0x3f949a29, dl)); 5054 } else if (LimitFloatPrecision <= 12) { 5055 // For floating-point precision of 12: 5056 // 5057 // LogOfMantissa = 5058 // -1.7417939f + 5059 // (2.8212026f + 5060 // (-1.4699568f + 5061 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5062 // 5063 // error 0.000061011436, which is 14 bits 5064 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5065 getF32Constant(DAG, 0xbd67b6d6, dl)); 5066 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5067 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5068 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5069 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5070 getF32Constant(DAG, 0x3fbc278b, dl)); 5071 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5072 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5073 getF32Constant(DAG, 0x40348e95, dl)); 5074 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5075 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5076 getF32Constant(DAG, 0x3fdef31a, dl)); 5077 } else { // LimitFloatPrecision <= 18 5078 // For floating-point precision of 18: 5079 // 5080 // LogOfMantissa = 5081 // -2.1072184f + 5082 // (4.2372794f + 5083 // (-3.7029485f + 5084 // (2.2781945f + 5085 // (-0.87823314f + 5086 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5087 // 5088 // error 0.0000023660568, which is better than 18 bits 5089 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5090 getF32Constant(DAG, 0xbc91e5ac, dl)); 5091 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5092 getF32Constant(DAG, 0x3e4350aa, dl)); 5093 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5094 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5095 getF32Constant(DAG, 0x3f60d3e3, dl)); 5096 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5097 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5098 getF32Constant(DAG, 0x4011cdf0, dl)); 5099 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5100 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5101 getF32Constant(DAG, 0x406cfd1c, dl)); 5102 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5103 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5104 getF32Constant(DAG, 0x408797cb, dl)); 5105 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5106 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5107 getF32Constant(DAG, 0x4006dcab, dl)); 5108 } 5109 5110 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5111 } 5112 5113 // No special expansion. 5114 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 5115 } 5116 5117 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5118 /// limited-precision mode. 5119 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5120 const TargetLowering &TLI, SDNodeFlags Flags) { 5121 // TODO: What fast-math-flags should be set on the floating-point nodes? 5122 5123 if (Op.getValueType() == MVT::f32 && 5124 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5125 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5126 5127 // Get the exponent. 5128 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5129 5130 // Get the significand and build it into a floating-point number with 5131 // exponent of 1. 5132 SDValue X = GetSignificand(DAG, Op1, dl); 5133 5134 // Different possible minimax approximations of significand in 5135 // floating-point for various degrees of accuracy over [1,2]. 5136 SDValue Log2ofMantissa; 5137 if (LimitFloatPrecision <= 6) { 5138 // For floating-point precision of 6: 5139 // 5140 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5141 // 5142 // error 0.0049451742, which is more than 7 bits 5143 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5144 getF32Constant(DAG, 0xbeb08fe0, dl)); 5145 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5146 getF32Constant(DAG, 0x40019463, dl)); 5147 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5148 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5149 getF32Constant(DAG, 0x3fd6633d, dl)); 5150 } else if (LimitFloatPrecision <= 12) { 5151 // For floating-point precision of 12: 5152 // 5153 // Log2ofMantissa = 5154 // -2.51285454f + 5155 // (4.07009056f + 5156 // (-2.12067489f + 5157 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5158 // 5159 // error 0.0000876136000, which is better than 13 bits 5160 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5161 getF32Constant(DAG, 0xbda7262e, dl)); 5162 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5163 getF32Constant(DAG, 0x3f25280b, dl)); 5164 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5165 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5166 getF32Constant(DAG, 0x4007b923, dl)); 5167 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5168 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5169 getF32Constant(DAG, 0x40823e2f, dl)); 5170 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5171 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5172 getF32Constant(DAG, 0x4020d29c, dl)); 5173 } else { // LimitFloatPrecision <= 18 5174 // For floating-point precision of 18: 5175 // 5176 // Log2ofMantissa = 5177 // -3.0400495f + 5178 // (6.1129976f + 5179 // (-5.3420409f + 5180 // (3.2865683f + 5181 // (-1.2669343f + 5182 // (0.27515199f - 5183 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5184 // 5185 // error 0.0000018516, which is better than 18 bits 5186 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5187 getF32Constant(DAG, 0xbcd2769e, dl)); 5188 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5189 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5190 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5191 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5192 getF32Constant(DAG, 0x3fa22ae7, dl)); 5193 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5194 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5195 getF32Constant(DAG, 0x40525723, dl)); 5196 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5197 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5198 getF32Constant(DAG, 0x40aaf200, dl)); 5199 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5200 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5201 getF32Constant(DAG, 0x40c39dad, dl)); 5202 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5203 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5204 getF32Constant(DAG, 0x4042902c, dl)); 5205 } 5206 5207 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5208 } 5209 5210 // No special expansion. 5211 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5212 } 5213 5214 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5215 /// limited-precision mode. 5216 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5217 const TargetLowering &TLI, SDNodeFlags Flags) { 5218 // TODO: What fast-math-flags should be set on the floating-point nodes? 5219 5220 if (Op.getValueType() == MVT::f32 && 5221 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5222 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5223 5224 // Scale the exponent by log10(2) [0.30102999f]. 5225 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5226 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5227 getF32Constant(DAG, 0x3e9a209a, dl)); 5228 5229 // Get the significand and build it into a floating-point number with 5230 // exponent of 1. 5231 SDValue X = GetSignificand(DAG, Op1, dl); 5232 5233 SDValue Log10ofMantissa; 5234 if (LimitFloatPrecision <= 6) { 5235 // For floating-point precision of 6: 5236 // 5237 // Log10ofMantissa = 5238 // -0.50419619f + 5239 // (0.60948995f - 0.10380950f * x) * x; 5240 // 5241 // error 0.0014886165, which is 6 bits 5242 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5243 getF32Constant(DAG, 0xbdd49a13, dl)); 5244 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5245 getF32Constant(DAG, 0x3f1c0789, dl)); 5246 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5247 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5248 getF32Constant(DAG, 0x3f011300, dl)); 5249 } else if (LimitFloatPrecision <= 12) { 5250 // For floating-point precision of 12: 5251 // 5252 // Log10ofMantissa = 5253 // -0.64831180f + 5254 // (0.91751397f + 5255 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5256 // 5257 // error 0.00019228036, which is better than 12 bits 5258 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5259 getF32Constant(DAG, 0x3d431f31, dl)); 5260 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5261 getF32Constant(DAG, 0x3ea21fb2, dl)); 5262 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5263 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5264 getF32Constant(DAG, 0x3f6ae232, dl)); 5265 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5266 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5267 getF32Constant(DAG, 0x3f25f7c3, dl)); 5268 } else { // LimitFloatPrecision <= 18 5269 // For floating-point precision of 18: 5270 // 5271 // Log10ofMantissa = 5272 // -0.84299375f + 5273 // (1.5327582f + 5274 // (-1.0688956f + 5275 // (0.49102474f + 5276 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5277 // 5278 // error 0.0000037995730, which is better than 18 bits 5279 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5280 getF32Constant(DAG, 0x3c5d51ce, dl)); 5281 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5282 getF32Constant(DAG, 0x3e00685a, dl)); 5283 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5284 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5285 getF32Constant(DAG, 0x3efb6798, dl)); 5286 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5287 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5288 getF32Constant(DAG, 0x3f88d192, dl)); 5289 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5290 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5291 getF32Constant(DAG, 0x3fc4316c, dl)); 5292 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5293 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5294 getF32Constant(DAG, 0x3f57ce70, dl)); 5295 } 5296 5297 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5298 } 5299 5300 // No special expansion. 5301 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5302 } 5303 5304 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5305 /// limited-precision mode. 5306 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5307 const TargetLowering &TLI, SDNodeFlags Flags) { 5308 if (Op.getValueType() == MVT::f32 && 5309 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5310 return getLimitedPrecisionExp2(Op, dl, DAG); 5311 5312 // No special expansion. 5313 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5314 } 5315 5316 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5317 /// limited-precision mode with x == 10.0f. 5318 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5319 SelectionDAG &DAG, const TargetLowering &TLI, 5320 SDNodeFlags Flags) { 5321 bool IsExp10 = false; 5322 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5323 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5324 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5325 APFloat Ten(10.0f); 5326 IsExp10 = LHSC->isExactlyValue(Ten); 5327 } 5328 } 5329 5330 // TODO: What fast-math-flags should be set on the FMUL node? 5331 if (IsExp10) { 5332 // Put the exponent in the right bit position for later addition to the 5333 // final result: 5334 // 5335 // #define LOG2OF10 3.3219281f 5336 // t0 = Op * LOG2OF10; 5337 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5338 getF32Constant(DAG, 0x40549a78, dl)); 5339 return getLimitedPrecisionExp2(t0, dl, DAG); 5340 } 5341 5342 // No special expansion. 5343 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5344 } 5345 5346 /// ExpandPowI - Expand a llvm.powi intrinsic. 5347 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5348 SelectionDAG &DAG) { 5349 // If RHS is a constant, we can expand this out to a multiplication tree, 5350 // otherwise we end up lowering to a call to __powidf2 (for example). When 5351 // optimizing for size, we only want to do this if the expansion would produce 5352 // a small number of multiplies, otherwise we do the full expansion. 5353 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5354 // Get the exponent as a positive value. 5355 unsigned Val = RHSC->getSExtValue(); 5356 if ((int)Val < 0) Val = -Val; 5357 5358 // powi(x, 0) -> 1.0 5359 if (Val == 0) 5360 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5361 5362 bool OptForSize = DAG.shouldOptForSize(); 5363 if (!OptForSize || 5364 // If optimizing for size, don't insert too many multiplies. 5365 // This inserts up to 5 multiplies. 5366 countPopulation(Val) + Log2_32(Val) < 7) { 5367 // We use the simple binary decomposition method to generate the multiply 5368 // sequence. There are more optimal ways to do this (for example, 5369 // powi(x,15) generates one more multiply than it should), but this has 5370 // the benefit of being both really simple and much better than a libcall. 5371 SDValue Res; // Logically starts equal to 1.0 5372 SDValue CurSquare = LHS; 5373 // TODO: Intrinsics should have fast-math-flags that propagate to these 5374 // nodes. 5375 while (Val) { 5376 if (Val & 1) { 5377 if (Res.getNode()) 5378 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 5379 else 5380 Res = CurSquare; // 1.0*CurSquare. 5381 } 5382 5383 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5384 CurSquare, CurSquare); 5385 Val >>= 1; 5386 } 5387 5388 // If the original was negative, invert the result, producing 1/(x*x*x). 5389 if (RHSC->getSExtValue() < 0) 5390 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5391 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5392 return Res; 5393 } 5394 } 5395 5396 // Otherwise, expand to a libcall. 5397 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5398 } 5399 5400 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5401 SDValue LHS, SDValue RHS, SDValue Scale, 5402 SelectionDAG &DAG, const TargetLowering &TLI) { 5403 EVT VT = LHS.getValueType(); 5404 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5405 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5406 LLVMContext &Ctx = *DAG.getContext(); 5407 5408 // If the type is legal but the operation isn't, this node might survive all 5409 // the way to operation legalization. If we end up there and we do not have 5410 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5411 // node. 5412 5413 // Coax the legalizer into expanding the node during type legalization instead 5414 // by bumping the size by one bit. This will force it to Promote, enabling the 5415 // early expansion and avoiding the need to expand later. 5416 5417 // We don't have to do this if Scale is 0; that can always be expanded, unless 5418 // it's a saturating signed operation. Those can experience true integer 5419 // division overflow, a case which we must avoid. 5420 5421 // FIXME: We wouldn't have to do this (or any of the early 5422 // expansion/promotion) if it was possible to expand a libcall of an 5423 // illegal type during operation legalization. But it's not, so things 5424 // get a bit hacky. 5425 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5426 if ((ScaleInt > 0 || (Saturating && Signed)) && 5427 (TLI.isTypeLegal(VT) || 5428 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5429 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5430 Opcode, VT, ScaleInt); 5431 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5432 EVT PromVT; 5433 if (VT.isScalarInteger()) 5434 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5435 else if (VT.isVector()) { 5436 PromVT = VT.getVectorElementType(); 5437 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5438 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5439 } else 5440 llvm_unreachable("Wrong VT for DIVFIX?"); 5441 if (Signed) { 5442 LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT); 5443 RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT); 5444 } else { 5445 LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT); 5446 RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT); 5447 } 5448 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5449 // For saturating operations, we need to shift up the LHS to get the 5450 // proper saturation width, and then shift down again afterwards. 5451 if (Saturating) 5452 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5453 DAG.getConstant(1, DL, ShiftTy)); 5454 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5455 if (Saturating) 5456 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5457 DAG.getConstant(1, DL, ShiftTy)); 5458 return DAG.getZExtOrTrunc(Res, DL, VT); 5459 } 5460 } 5461 5462 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5463 } 5464 5465 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5466 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5467 static void 5468 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs, 5469 const SDValue &N) { 5470 switch (N.getOpcode()) { 5471 case ISD::CopyFromReg: { 5472 SDValue Op = N.getOperand(1); 5473 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5474 Op.getValueType().getSizeInBits()); 5475 return; 5476 } 5477 case ISD::BITCAST: 5478 case ISD::AssertZext: 5479 case ISD::AssertSext: 5480 case ISD::TRUNCATE: 5481 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5482 return; 5483 case ISD::BUILD_PAIR: 5484 case ISD::BUILD_VECTOR: 5485 case ISD::CONCAT_VECTORS: 5486 for (SDValue Op : N->op_values()) 5487 getUnderlyingArgRegs(Regs, Op); 5488 return; 5489 default: 5490 return; 5491 } 5492 } 5493 5494 /// If the DbgValueInst is a dbg_value of a function argument, create the 5495 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5496 /// instruction selection, they will be inserted to the entry BB. 5497 /// We don't currently support this for variadic dbg_values, as they shouldn't 5498 /// appear for function arguments or in the prologue. 5499 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5500 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5501 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 5502 const Argument *Arg = dyn_cast<Argument>(V); 5503 if (!Arg) 5504 return false; 5505 5506 MachineFunction &MF = DAG.getMachineFunction(); 5507 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5508 5509 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind 5510 // we've been asked to pursue. 5511 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr, 5512 bool Indirect) { 5513 if (Reg.isVirtual() && MF.useDebugInstrRef()) { 5514 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF 5515 // pointing at the VReg, which will be patched up later. 5516 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF); 5517 auto MIB = BuildMI(MF, DL, Inst); 5518 MIB.addReg(Reg); 5519 MIB.addImm(0); 5520 MIB.addMetadata(Variable); 5521 auto *NewDIExpr = FragExpr; 5522 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into 5523 // the DIExpression. 5524 if (Indirect) 5525 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore); 5526 MIB.addMetadata(NewDIExpr); 5527 return MIB; 5528 } else { 5529 // Create a completely standard DBG_VALUE. 5530 auto &Inst = TII->get(TargetOpcode::DBG_VALUE); 5531 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr); 5532 } 5533 }; 5534 5535 if (!IsDbgDeclare) { 5536 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5537 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5538 // the entry block. 5539 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5540 if (!IsInEntryBlock) 5541 return false; 5542 5543 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5544 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5545 // variable that also is a param. 5546 // 5547 // Although, if we are at the top of the entry block already, we can still 5548 // emit using ArgDbgValue. This might catch some situations when the 5549 // dbg.value refers to an argument that isn't used in the entry block, so 5550 // any CopyToReg node would be optimized out and the only way to express 5551 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5552 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5553 // we should only emit as ArgDbgValue if the Variable is an argument to the 5554 // current function, and the dbg.value intrinsic is found in the entry 5555 // block. 5556 bool VariableIsFunctionInputArg = Variable->isParameter() && 5557 !DL->getInlinedAt(); 5558 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5559 if (!IsInPrologue && !VariableIsFunctionInputArg) 5560 return false; 5561 5562 // Here we assume that a function argument on IR level only can be used to 5563 // describe one input parameter on source level. If we for example have 5564 // source code like this 5565 // 5566 // struct A { long x, y; }; 5567 // void foo(struct A a, long b) { 5568 // ... 5569 // b = a.x; 5570 // ... 5571 // } 5572 // 5573 // and IR like this 5574 // 5575 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5576 // entry: 5577 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5578 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5579 // call void @llvm.dbg.value(metadata i32 %b, "b", 5580 // ... 5581 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5582 // ... 5583 // 5584 // then the last dbg.value is describing a parameter "b" using a value that 5585 // is an argument. But since we already has used %a1 to describe a parameter 5586 // we should not handle that last dbg.value here (that would result in an 5587 // incorrect hoisting of the DBG_VALUE to the function entry). 5588 // Notice that we allow one dbg.value per IR level argument, to accommodate 5589 // for the situation with fragments above. 5590 if (VariableIsFunctionInputArg) { 5591 unsigned ArgNo = Arg->getArgNo(); 5592 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5593 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5594 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5595 return false; 5596 FuncInfo.DescribedArgs.set(ArgNo); 5597 } 5598 } 5599 5600 bool IsIndirect = false; 5601 Optional<MachineOperand> Op; 5602 // Some arguments' frame index is recorded during argument lowering. 5603 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5604 if (FI != std::numeric_limits<int>::max()) 5605 Op = MachineOperand::CreateFI(FI); 5606 5607 SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes; 5608 if (!Op && N.getNode()) { 5609 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5610 Register Reg; 5611 if (ArgRegsAndSizes.size() == 1) 5612 Reg = ArgRegsAndSizes.front().first; 5613 5614 if (Reg && Reg.isVirtual()) { 5615 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5616 Register PR = RegInfo.getLiveInPhysReg(Reg); 5617 if (PR) 5618 Reg = PR; 5619 } 5620 if (Reg) { 5621 Op = MachineOperand::CreateReg(Reg, false); 5622 IsIndirect = IsDbgDeclare; 5623 } 5624 } 5625 5626 if (!Op && N.getNode()) { 5627 // Check if frame index is available. 5628 SDValue LCandidate = peekThroughBitcasts(N); 5629 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5630 if (FrameIndexSDNode *FINode = 5631 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5632 Op = MachineOperand::CreateFI(FINode->getIndex()); 5633 } 5634 5635 if (!Op) { 5636 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5637 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>> 5638 SplitRegs) { 5639 unsigned Offset = 0; 5640 for (const auto &RegAndSize : SplitRegs) { 5641 // If the expression is already a fragment, the current register 5642 // offset+size might extend beyond the fragment. In this case, only 5643 // the register bits that are inside the fragment are relevant. 5644 int RegFragmentSizeInBits = RegAndSize.second; 5645 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5646 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5647 // The register is entirely outside the expression fragment, 5648 // so is irrelevant for debug info. 5649 if (Offset >= ExprFragmentSizeInBits) 5650 break; 5651 // The register is partially outside the expression fragment, only 5652 // the low bits within the fragment are relevant for debug info. 5653 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5654 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5655 } 5656 } 5657 5658 auto FragmentExpr = DIExpression::createFragmentExpression( 5659 Expr, Offset, RegFragmentSizeInBits); 5660 Offset += RegAndSize.second; 5661 // If a valid fragment expression cannot be created, the variable's 5662 // correct value cannot be determined and so it is set as Undef. 5663 if (!FragmentExpr) { 5664 SDDbgValue *SDV = DAG.getConstantDbgValue( 5665 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5666 DAG.AddDbgValue(SDV, false); 5667 continue; 5668 } 5669 MachineInstr *NewMI = 5670 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, IsDbgDeclare); 5671 FuncInfo.ArgDbgValues.push_back(NewMI); 5672 } 5673 }; 5674 5675 // Check if ValueMap has reg number. 5676 DenseMap<const Value *, Register>::const_iterator 5677 VMI = FuncInfo.ValueMap.find(V); 5678 if (VMI != FuncInfo.ValueMap.end()) { 5679 const auto &TLI = DAG.getTargetLoweringInfo(); 5680 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5681 V->getType(), None); 5682 if (RFV.occupiesMultipleRegs()) { 5683 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5684 return true; 5685 } 5686 5687 Op = MachineOperand::CreateReg(VMI->second, false); 5688 IsIndirect = IsDbgDeclare; 5689 } else if (ArgRegsAndSizes.size() > 1) { 5690 // This was split due to the calling convention, and no virtual register 5691 // mapping exists for the value. 5692 splitMultiRegDbgValue(ArgRegsAndSizes); 5693 return true; 5694 } 5695 } 5696 5697 if (!Op) 5698 return false; 5699 5700 assert(Variable->isValidLocationForIntrinsic(DL) && 5701 "Expected inlined-at fields to agree"); 5702 MachineInstr *NewMI = nullptr; 5703 5704 if (Op->isReg()) 5705 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect); 5706 else 5707 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op, 5708 Variable, Expr); 5709 5710 FuncInfo.ArgDbgValues.push_back(NewMI); 5711 return true; 5712 } 5713 5714 /// Return the appropriate SDDbgValue based on N. 5715 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5716 DILocalVariable *Variable, 5717 DIExpression *Expr, 5718 const DebugLoc &dl, 5719 unsigned DbgSDNodeOrder) { 5720 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5721 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5722 // stack slot locations. 5723 // 5724 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5725 // debug values here after optimization: 5726 // 5727 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5728 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5729 // 5730 // Both describe the direct values of their associated variables. 5731 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5732 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5733 } 5734 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5735 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5736 } 5737 5738 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5739 switch (Intrinsic) { 5740 case Intrinsic::smul_fix: 5741 return ISD::SMULFIX; 5742 case Intrinsic::umul_fix: 5743 return ISD::UMULFIX; 5744 case Intrinsic::smul_fix_sat: 5745 return ISD::SMULFIXSAT; 5746 case Intrinsic::umul_fix_sat: 5747 return ISD::UMULFIXSAT; 5748 case Intrinsic::sdiv_fix: 5749 return ISD::SDIVFIX; 5750 case Intrinsic::udiv_fix: 5751 return ISD::UDIVFIX; 5752 case Intrinsic::sdiv_fix_sat: 5753 return ISD::SDIVFIXSAT; 5754 case Intrinsic::udiv_fix_sat: 5755 return ISD::UDIVFIXSAT; 5756 default: 5757 llvm_unreachable("Unhandled fixed point intrinsic"); 5758 } 5759 } 5760 5761 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5762 const char *FunctionName) { 5763 assert(FunctionName && "FunctionName must not be nullptr"); 5764 SDValue Callee = DAG.getExternalSymbol( 5765 FunctionName, 5766 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5767 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 5768 } 5769 5770 /// Given a @llvm.call.preallocated.setup, return the corresponding 5771 /// preallocated call. 5772 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 5773 assert(cast<CallBase>(PreallocatedSetup) 5774 ->getCalledFunction() 5775 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 5776 "expected call_preallocated_setup Value"); 5777 for (auto *U : PreallocatedSetup->users()) { 5778 auto *UseCall = cast<CallBase>(U); 5779 const Function *Fn = UseCall->getCalledFunction(); 5780 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 5781 return UseCall; 5782 } 5783 } 5784 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 5785 } 5786 5787 /// Lower the call to the specified intrinsic function. 5788 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5789 unsigned Intrinsic) { 5790 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5791 SDLoc sdl = getCurSDLoc(); 5792 DebugLoc dl = getCurDebugLoc(); 5793 SDValue Res; 5794 5795 SDNodeFlags Flags; 5796 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 5797 Flags.copyFMF(*FPOp); 5798 5799 switch (Intrinsic) { 5800 default: 5801 // By default, turn this into a target intrinsic node. 5802 visitTargetIntrinsic(I, Intrinsic); 5803 return; 5804 case Intrinsic::vscale: { 5805 match(&I, m_VScale(DAG.getDataLayout())); 5806 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5807 setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1))); 5808 return; 5809 } 5810 case Intrinsic::vastart: visitVAStart(I); return; 5811 case Intrinsic::vaend: visitVAEnd(I); return; 5812 case Intrinsic::vacopy: visitVACopy(I); return; 5813 case Intrinsic::returnaddress: 5814 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5815 TLI.getPointerTy(DAG.getDataLayout()), 5816 getValue(I.getArgOperand(0)))); 5817 return; 5818 case Intrinsic::addressofreturnaddress: 5819 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5820 TLI.getPointerTy(DAG.getDataLayout()))); 5821 return; 5822 case Intrinsic::sponentry: 5823 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5824 TLI.getFrameIndexTy(DAG.getDataLayout()))); 5825 return; 5826 case Intrinsic::frameaddress: 5827 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5828 TLI.getFrameIndexTy(DAG.getDataLayout()), 5829 getValue(I.getArgOperand(0)))); 5830 return; 5831 case Intrinsic::read_volatile_register: 5832 case Intrinsic::read_register: { 5833 Value *Reg = I.getArgOperand(0); 5834 SDValue Chain = getRoot(); 5835 SDValue RegName = 5836 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5837 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5838 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5839 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5840 setValue(&I, Res); 5841 DAG.setRoot(Res.getValue(1)); 5842 return; 5843 } 5844 case Intrinsic::write_register: { 5845 Value *Reg = I.getArgOperand(0); 5846 Value *RegValue = I.getArgOperand(1); 5847 SDValue Chain = getRoot(); 5848 SDValue RegName = 5849 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5850 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5851 RegName, getValue(RegValue))); 5852 return; 5853 } 5854 case Intrinsic::memcpy: { 5855 const auto &MCI = cast<MemCpyInst>(I); 5856 SDValue Op1 = getValue(I.getArgOperand(0)); 5857 SDValue Op2 = getValue(I.getArgOperand(1)); 5858 SDValue Op3 = getValue(I.getArgOperand(2)); 5859 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5860 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5861 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5862 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5863 bool isVol = MCI.isVolatile(); 5864 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5865 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5866 // node. 5867 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5868 SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5869 /* AlwaysInline */ false, isTC, 5870 MachinePointerInfo(I.getArgOperand(0)), 5871 MachinePointerInfo(I.getArgOperand(1)), 5872 I.getAAMetadata()); 5873 updateDAGForMaybeTailCall(MC); 5874 return; 5875 } 5876 case Intrinsic::memcpy_inline: { 5877 const auto &MCI = cast<MemCpyInlineInst>(I); 5878 SDValue Dst = getValue(I.getArgOperand(0)); 5879 SDValue Src = getValue(I.getArgOperand(1)); 5880 SDValue Size = getValue(I.getArgOperand(2)); 5881 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 5882 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 5883 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5884 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5885 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5886 bool isVol = MCI.isVolatile(); 5887 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5888 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5889 // node. 5890 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 5891 /* AlwaysInline */ true, isTC, 5892 MachinePointerInfo(I.getArgOperand(0)), 5893 MachinePointerInfo(I.getArgOperand(1)), 5894 I.getAAMetadata()); 5895 updateDAGForMaybeTailCall(MC); 5896 return; 5897 } 5898 case Intrinsic::memset: { 5899 const auto &MSI = cast<MemSetInst>(I); 5900 SDValue Op1 = getValue(I.getArgOperand(0)); 5901 SDValue Op2 = getValue(I.getArgOperand(1)); 5902 SDValue Op3 = getValue(I.getArgOperand(2)); 5903 // @llvm.memset defines 0 and 1 to both mean no alignment. 5904 Align Alignment = MSI.getDestAlign().valueOrOne(); 5905 bool isVol = MSI.isVolatile(); 5906 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5907 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5908 SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC, 5909 MachinePointerInfo(I.getArgOperand(0)), 5910 I.getAAMetadata()); 5911 updateDAGForMaybeTailCall(MS); 5912 return; 5913 } 5914 case Intrinsic::memmove: { 5915 const auto &MMI = cast<MemMoveInst>(I); 5916 SDValue Op1 = getValue(I.getArgOperand(0)); 5917 SDValue Op2 = getValue(I.getArgOperand(1)); 5918 SDValue Op3 = getValue(I.getArgOperand(2)); 5919 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5920 Align DstAlign = MMI.getDestAlign().valueOrOne(); 5921 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 5922 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5923 bool isVol = MMI.isVolatile(); 5924 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5925 // FIXME: Support passing different dest/src alignments to the memmove DAG 5926 // node. 5927 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5928 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5929 isTC, MachinePointerInfo(I.getArgOperand(0)), 5930 MachinePointerInfo(I.getArgOperand(1)), 5931 I.getAAMetadata()); 5932 updateDAGForMaybeTailCall(MM); 5933 return; 5934 } 5935 case Intrinsic::memcpy_element_unordered_atomic: { 5936 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5937 SDValue Dst = getValue(MI.getRawDest()); 5938 SDValue Src = getValue(MI.getRawSource()); 5939 SDValue Length = getValue(MI.getLength()); 5940 5941 unsigned DstAlign = MI.getDestAlignment(); 5942 unsigned SrcAlign = MI.getSourceAlignment(); 5943 Type *LengthTy = MI.getLength()->getType(); 5944 unsigned ElemSz = MI.getElementSizeInBytes(); 5945 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5946 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5947 SrcAlign, Length, LengthTy, ElemSz, isTC, 5948 MachinePointerInfo(MI.getRawDest()), 5949 MachinePointerInfo(MI.getRawSource())); 5950 updateDAGForMaybeTailCall(MC); 5951 return; 5952 } 5953 case Intrinsic::memmove_element_unordered_atomic: { 5954 auto &MI = cast<AtomicMemMoveInst>(I); 5955 SDValue Dst = getValue(MI.getRawDest()); 5956 SDValue Src = getValue(MI.getRawSource()); 5957 SDValue Length = getValue(MI.getLength()); 5958 5959 unsigned DstAlign = MI.getDestAlignment(); 5960 unsigned SrcAlign = MI.getSourceAlignment(); 5961 Type *LengthTy = MI.getLength()->getType(); 5962 unsigned ElemSz = MI.getElementSizeInBytes(); 5963 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5964 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5965 SrcAlign, Length, LengthTy, ElemSz, isTC, 5966 MachinePointerInfo(MI.getRawDest()), 5967 MachinePointerInfo(MI.getRawSource())); 5968 updateDAGForMaybeTailCall(MC); 5969 return; 5970 } 5971 case Intrinsic::memset_element_unordered_atomic: { 5972 auto &MI = cast<AtomicMemSetInst>(I); 5973 SDValue Dst = getValue(MI.getRawDest()); 5974 SDValue Val = getValue(MI.getValue()); 5975 SDValue Length = getValue(MI.getLength()); 5976 5977 unsigned DstAlign = MI.getDestAlignment(); 5978 Type *LengthTy = MI.getLength()->getType(); 5979 unsigned ElemSz = MI.getElementSizeInBytes(); 5980 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5981 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5982 LengthTy, ElemSz, isTC, 5983 MachinePointerInfo(MI.getRawDest())); 5984 updateDAGForMaybeTailCall(MC); 5985 return; 5986 } 5987 case Intrinsic::call_preallocated_setup: { 5988 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 5989 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 5990 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 5991 getRoot(), SrcValue); 5992 setValue(&I, Res); 5993 DAG.setRoot(Res); 5994 return; 5995 } 5996 case Intrinsic::call_preallocated_arg: { 5997 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 5998 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 5999 SDValue Ops[3]; 6000 Ops[0] = getRoot(); 6001 Ops[1] = SrcValue; 6002 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 6003 MVT::i32); // arg index 6004 SDValue Res = DAG.getNode( 6005 ISD::PREALLOCATED_ARG, sdl, 6006 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 6007 setValue(&I, Res); 6008 DAG.setRoot(Res.getValue(1)); 6009 return; 6010 } 6011 case Intrinsic::dbg_addr: 6012 case Intrinsic::dbg_declare: { 6013 // Assume dbg.addr and dbg.declare can not currently use DIArgList, i.e. 6014 // they are non-variadic. 6015 const auto &DI = cast<DbgVariableIntrinsic>(I); 6016 assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList"); 6017 DILocalVariable *Variable = DI.getVariable(); 6018 DIExpression *Expression = DI.getExpression(); 6019 dropDanglingDebugInfo(Variable, Expression); 6020 assert(Variable && "Missing variable"); 6021 LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI 6022 << "\n"); 6023 // Check if address has undef value. 6024 const Value *Address = DI.getVariableLocationOp(0); 6025 if (!Address || isa<UndefValue>(Address) || 6026 (Address->use_empty() && !isa<Argument>(Address))) { 6027 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6028 << " (bad/undef/unused-arg address)\n"); 6029 return; 6030 } 6031 6032 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 6033 6034 // Check if this variable can be described by a frame index, typically 6035 // either as a static alloca or a byval parameter. 6036 int FI = std::numeric_limits<int>::max(); 6037 if (const auto *AI = 6038 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 6039 if (AI->isStaticAlloca()) { 6040 auto I = FuncInfo.StaticAllocaMap.find(AI); 6041 if (I != FuncInfo.StaticAllocaMap.end()) 6042 FI = I->second; 6043 } 6044 } else if (const auto *Arg = dyn_cast<Argument>( 6045 Address->stripInBoundsConstantOffsets())) { 6046 FI = FuncInfo.getArgumentFrameIndex(Arg); 6047 } 6048 6049 // llvm.dbg.addr is control dependent and always generates indirect 6050 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 6051 // the MachineFunction variable table. 6052 if (FI != std::numeric_limits<int>::max()) { 6053 if (Intrinsic == Intrinsic::dbg_addr) { 6054 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 6055 Variable, Expression, FI, getRoot().getNode(), /*IsIndirect*/ true, 6056 dl, SDNodeOrder); 6057 DAG.AddDbgValue(SDV, isParameter); 6058 } else { 6059 LLVM_DEBUG(dbgs() << "Skipping " << DI 6060 << " (variable info stashed in MF side table)\n"); 6061 } 6062 return; 6063 } 6064 6065 SDValue &N = NodeMap[Address]; 6066 if (!N.getNode() && isa<Argument>(Address)) 6067 // Check unused arguments map. 6068 N = UnusedArgNodeMap[Address]; 6069 SDDbgValue *SDV; 6070 if (N.getNode()) { 6071 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 6072 Address = BCI->getOperand(0); 6073 // Parameters are handled specially. 6074 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 6075 if (isParameter && FINode) { 6076 // Byval parameter. We have a frame index at this point. 6077 SDV = 6078 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 6079 /*IsIndirect*/ true, dl, SDNodeOrder); 6080 } else if (isa<Argument>(Address)) { 6081 // Address is an argument, so try to emit its dbg value using 6082 // virtual register info from the FuncInfo.ValueMap. 6083 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 6084 return; 6085 } else { 6086 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 6087 true, dl, SDNodeOrder); 6088 } 6089 DAG.AddDbgValue(SDV, isParameter); 6090 } else { 6091 // If Address is an argument then try to emit its dbg value using 6092 // virtual register info from the FuncInfo.ValueMap. 6093 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 6094 N)) { 6095 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6096 << " (could not emit func-arg dbg_value)\n"); 6097 } 6098 } 6099 return; 6100 } 6101 case Intrinsic::dbg_label: { 6102 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6103 DILabel *Label = DI.getLabel(); 6104 assert(Label && "Missing label"); 6105 6106 SDDbgLabel *SDV; 6107 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6108 DAG.AddDbgLabel(SDV); 6109 return; 6110 } 6111 case Intrinsic::dbg_value: { 6112 const DbgValueInst &DI = cast<DbgValueInst>(I); 6113 assert(DI.getVariable() && "Missing variable"); 6114 6115 DILocalVariable *Variable = DI.getVariable(); 6116 DIExpression *Expression = DI.getExpression(); 6117 dropDanglingDebugInfo(Variable, Expression); 6118 SmallVector<Value *, 4> Values(DI.getValues()); 6119 if (Values.empty()) 6120 return; 6121 6122 if (llvm::is_contained(Values, nullptr)) 6123 return; 6124 6125 bool IsVariadic = DI.hasArgList(); 6126 if (!handleDebugValue(Values, Variable, Expression, dl, DI.getDebugLoc(), 6127 SDNodeOrder, IsVariadic)) 6128 addDanglingDebugInfo(&DI, dl, SDNodeOrder); 6129 return; 6130 } 6131 6132 case Intrinsic::eh_typeid_for: { 6133 // Find the type id for the given typeinfo. 6134 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6135 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6136 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6137 setValue(&I, Res); 6138 return; 6139 } 6140 6141 case Intrinsic::eh_return_i32: 6142 case Intrinsic::eh_return_i64: 6143 DAG.getMachineFunction().setCallsEHReturn(true); 6144 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6145 MVT::Other, 6146 getControlRoot(), 6147 getValue(I.getArgOperand(0)), 6148 getValue(I.getArgOperand(1)))); 6149 return; 6150 case Intrinsic::eh_unwind_init: 6151 DAG.getMachineFunction().setCallsUnwindInit(true); 6152 return; 6153 case Intrinsic::eh_dwarf_cfa: 6154 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6155 TLI.getPointerTy(DAG.getDataLayout()), 6156 getValue(I.getArgOperand(0)))); 6157 return; 6158 case Intrinsic::eh_sjlj_callsite: { 6159 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6160 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 6161 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 6162 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6163 6164 MMI.setCurrentCallSite(CI->getZExtValue()); 6165 return; 6166 } 6167 case Intrinsic::eh_sjlj_functioncontext: { 6168 // Get and store the index of the function context. 6169 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6170 AllocaInst *FnCtx = 6171 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6172 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6173 MFI.setFunctionContextIndex(FI); 6174 return; 6175 } 6176 case Intrinsic::eh_sjlj_setjmp: { 6177 SDValue Ops[2]; 6178 Ops[0] = getRoot(); 6179 Ops[1] = getValue(I.getArgOperand(0)); 6180 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6181 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6182 setValue(&I, Op.getValue(0)); 6183 DAG.setRoot(Op.getValue(1)); 6184 return; 6185 } 6186 case Intrinsic::eh_sjlj_longjmp: 6187 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6188 getRoot(), getValue(I.getArgOperand(0)))); 6189 return; 6190 case Intrinsic::eh_sjlj_setup_dispatch: 6191 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6192 getRoot())); 6193 return; 6194 case Intrinsic::masked_gather: 6195 visitMaskedGather(I); 6196 return; 6197 case Intrinsic::masked_load: 6198 visitMaskedLoad(I); 6199 return; 6200 case Intrinsic::masked_scatter: 6201 visitMaskedScatter(I); 6202 return; 6203 case Intrinsic::masked_store: 6204 visitMaskedStore(I); 6205 return; 6206 case Intrinsic::masked_expandload: 6207 visitMaskedLoad(I, true /* IsExpanding */); 6208 return; 6209 case Intrinsic::masked_compressstore: 6210 visitMaskedStore(I, true /* IsCompressing */); 6211 return; 6212 case Intrinsic::powi: 6213 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6214 getValue(I.getArgOperand(1)), DAG)); 6215 return; 6216 case Intrinsic::log: 6217 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6218 return; 6219 case Intrinsic::log2: 6220 setValue(&I, 6221 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6222 return; 6223 case Intrinsic::log10: 6224 setValue(&I, 6225 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6226 return; 6227 case Intrinsic::exp: 6228 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6229 return; 6230 case Intrinsic::exp2: 6231 setValue(&I, 6232 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6233 return; 6234 case Intrinsic::pow: 6235 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6236 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6237 return; 6238 case Intrinsic::sqrt: 6239 case Intrinsic::fabs: 6240 case Intrinsic::sin: 6241 case Intrinsic::cos: 6242 case Intrinsic::floor: 6243 case Intrinsic::ceil: 6244 case Intrinsic::trunc: 6245 case Intrinsic::rint: 6246 case Intrinsic::nearbyint: 6247 case Intrinsic::round: 6248 case Intrinsic::roundeven: 6249 case Intrinsic::canonicalize: { 6250 unsigned Opcode; 6251 switch (Intrinsic) { 6252 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6253 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6254 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6255 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6256 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6257 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6258 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6259 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6260 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6261 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6262 case Intrinsic::round: Opcode = ISD::FROUND; break; 6263 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6264 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6265 } 6266 6267 setValue(&I, DAG.getNode(Opcode, sdl, 6268 getValue(I.getArgOperand(0)).getValueType(), 6269 getValue(I.getArgOperand(0)), Flags)); 6270 return; 6271 } 6272 case Intrinsic::lround: 6273 case Intrinsic::llround: 6274 case Intrinsic::lrint: 6275 case Intrinsic::llrint: { 6276 unsigned Opcode; 6277 switch (Intrinsic) { 6278 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6279 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6280 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6281 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6282 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6283 } 6284 6285 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6286 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6287 getValue(I.getArgOperand(0)))); 6288 return; 6289 } 6290 case Intrinsic::minnum: 6291 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6292 getValue(I.getArgOperand(0)).getValueType(), 6293 getValue(I.getArgOperand(0)), 6294 getValue(I.getArgOperand(1)), Flags)); 6295 return; 6296 case Intrinsic::maxnum: 6297 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6298 getValue(I.getArgOperand(0)).getValueType(), 6299 getValue(I.getArgOperand(0)), 6300 getValue(I.getArgOperand(1)), Flags)); 6301 return; 6302 case Intrinsic::minimum: 6303 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6304 getValue(I.getArgOperand(0)).getValueType(), 6305 getValue(I.getArgOperand(0)), 6306 getValue(I.getArgOperand(1)), Flags)); 6307 return; 6308 case Intrinsic::maximum: 6309 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6310 getValue(I.getArgOperand(0)).getValueType(), 6311 getValue(I.getArgOperand(0)), 6312 getValue(I.getArgOperand(1)), Flags)); 6313 return; 6314 case Intrinsic::copysign: 6315 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6316 getValue(I.getArgOperand(0)).getValueType(), 6317 getValue(I.getArgOperand(0)), 6318 getValue(I.getArgOperand(1)), Flags)); 6319 return; 6320 case Intrinsic::arithmetic_fence: { 6321 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl, 6322 getValue(I.getArgOperand(0)).getValueType(), 6323 getValue(I.getArgOperand(0)), Flags)); 6324 return; 6325 } 6326 case Intrinsic::fma: 6327 setValue(&I, DAG.getNode( 6328 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 6329 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 6330 getValue(I.getArgOperand(2)), Flags)); 6331 return; 6332 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6333 case Intrinsic::INTRINSIC: 6334 #include "llvm/IR/ConstrainedOps.def" 6335 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6336 return; 6337 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 6338 #include "llvm/IR/VPIntrinsics.def" 6339 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I)); 6340 return; 6341 case Intrinsic::fmuladd: { 6342 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6343 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6344 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6345 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6346 getValue(I.getArgOperand(0)).getValueType(), 6347 getValue(I.getArgOperand(0)), 6348 getValue(I.getArgOperand(1)), 6349 getValue(I.getArgOperand(2)), Flags)); 6350 } else { 6351 // TODO: Intrinsic calls should have fast-math-flags. 6352 SDValue Mul = DAG.getNode( 6353 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 6354 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 6355 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6356 getValue(I.getArgOperand(0)).getValueType(), 6357 Mul, getValue(I.getArgOperand(2)), Flags); 6358 setValue(&I, Add); 6359 } 6360 return; 6361 } 6362 case Intrinsic::convert_to_fp16: 6363 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6364 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6365 getValue(I.getArgOperand(0)), 6366 DAG.getTargetConstant(0, sdl, 6367 MVT::i32)))); 6368 return; 6369 case Intrinsic::convert_from_fp16: 6370 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6371 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6372 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6373 getValue(I.getArgOperand(0))))); 6374 return; 6375 case Intrinsic::fptosi_sat: { 6376 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6377 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT, 6378 getValue(I.getArgOperand(0)), 6379 DAG.getValueType(VT.getScalarType()))); 6380 return; 6381 } 6382 case Intrinsic::fptoui_sat: { 6383 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6384 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT, 6385 getValue(I.getArgOperand(0)), 6386 DAG.getValueType(VT.getScalarType()))); 6387 return; 6388 } 6389 case Intrinsic::set_rounding: 6390 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other, 6391 {getRoot(), getValue(I.getArgOperand(0))}); 6392 setValue(&I, Res); 6393 DAG.setRoot(Res.getValue(0)); 6394 return; 6395 case Intrinsic::pcmarker: { 6396 SDValue Tmp = getValue(I.getArgOperand(0)); 6397 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6398 return; 6399 } 6400 case Intrinsic::readcyclecounter: { 6401 SDValue Op = getRoot(); 6402 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6403 DAG.getVTList(MVT::i64, MVT::Other), Op); 6404 setValue(&I, Res); 6405 DAG.setRoot(Res.getValue(1)); 6406 return; 6407 } 6408 case Intrinsic::bitreverse: 6409 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6410 getValue(I.getArgOperand(0)).getValueType(), 6411 getValue(I.getArgOperand(0)))); 6412 return; 6413 case Intrinsic::bswap: 6414 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6415 getValue(I.getArgOperand(0)).getValueType(), 6416 getValue(I.getArgOperand(0)))); 6417 return; 6418 case Intrinsic::cttz: { 6419 SDValue Arg = getValue(I.getArgOperand(0)); 6420 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6421 EVT Ty = Arg.getValueType(); 6422 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6423 sdl, Ty, Arg)); 6424 return; 6425 } 6426 case Intrinsic::ctlz: { 6427 SDValue Arg = getValue(I.getArgOperand(0)); 6428 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6429 EVT Ty = Arg.getValueType(); 6430 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6431 sdl, Ty, Arg)); 6432 return; 6433 } 6434 case Intrinsic::ctpop: { 6435 SDValue Arg = getValue(I.getArgOperand(0)); 6436 EVT Ty = Arg.getValueType(); 6437 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6438 return; 6439 } 6440 case Intrinsic::fshl: 6441 case Intrinsic::fshr: { 6442 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6443 SDValue X = getValue(I.getArgOperand(0)); 6444 SDValue Y = getValue(I.getArgOperand(1)); 6445 SDValue Z = getValue(I.getArgOperand(2)); 6446 EVT VT = X.getValueType(); 6447 6448 if (X == Y) { 6449 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6450 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6451 } else { 6452 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6453 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6454 } 6455 return; 6456 } 6457 case Intrinsic::sadd_sat: { 6458 SDValue Op1 = getValue(I.getArgOperand(0)); 6459 SDValue Op2 = getValue(I.getArgOperand(1)); 6460 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6461 return; 6462 } 6463 case Intrinsic::uadd_sat: { 6464 SDValue Op1 = getValue(I.getArgOperand(0)); 6465 SDValue Op2 = getValue(I.getArgOperand(1)); 6466 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6467 return; 6468 } 6469 case Intrinsic::ssub_sat: { 6470 SDValue Op1 = getValue(I.getArgOperand(0)); 6471 SDValue Op2 = getValue(I.getArgOperand(1)); 6472 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6473 return; 6474 } 6475 case Intrinsic::usub_sat: { 6476 SDValue Op1 = getValue(I.getArgOperand(0)); 6477 SDValue Op2 = getValue(I.getArgOperand(1)); 6478 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6479 return; 6480 } 6481 case Intrinsic::sshl_sat: { 6482 SDValue Op1 = getValue(I.getArgOperand(0)); 6483 SDValue Op2 = getValue(I.getArgOperand(1)); 6484 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6485 return; 6486 } 6487 case Intrinsic::ushl_sat: { 6488 SDValue Op1 = getValue(I.getArgOperand(0)); 6489 SDValue Op2 = getValue(I.getArgOperand(1)); 6490 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6491 return; 6492 } 6493 case Intrinsic::smul_fix: 6494 case Intrinsic::umul_fix: 6495 case Intrinsic::smul_fix_sat: 6496 case Intrinsic::umul_fix_sat: { 6497 SDValue Op1 = getValue(I.getArgOperand(0)); 6498 SDValue Op2 = getValue(I.getArgOperand(1)); 6499 SDValue Op3 = getValue(I.getArgOperand(2)); 6500 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6501 Op1.getValueType(), Op1, Op2, Op3)); 6502 return; 6503 } 6504 case Intrinsic::sdiv_fix: 6505 case Intrinsic::udiv_fix: 6506 case Intrinsic::sdiv_fix_sat: 6507 case Intrinsic::udiv_fix_sat: { 6508 SDValue Op1 = getValue(I.getArgOperand(0)); 6509 SDValue Op2 = getValue(I.getArgOperand(1)); 6510 SDValue Op3 = getValue(I.getArgOperand(2)); 6511 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6512 Op1, Op2, Op3, DAG, TLI)); 6513 return; 6514 } 6515 case Intrinsic::smax: { 6516 SDValue Op1 = getValue(I.getArgOperand(0)); 6517 SDValue Op2 = getValue(I.getArgOperand(1)); 6518 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 6519 return; 6520 } 6521 case Intrinsic::smin: { 6522 SDValue Op1 = getValue(I.getArgOperand(0)); 6523 SDValue Op2 = getValue(I.getArgOperand(1)); 6524 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 6525 return; 6526 } 6527 case Intrinsic::umax: { 6528 SDValue Op1 = getValue(I.getArgOperand(0)); 6529 SDValue Op2 = getValue(I.getArgOperand(1)); 6530 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 6531 return; 6532 } 6533 case Intrinsic::umin: { 6534 SDValue Op1 = getValue(I.getArgOperand(0)); 6535 SDValue Op2 = getValue(I.getArgOperand(1)); 6536 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 6537 return; 6538 } 6539 case Intrinsic::abs: { 6540 // TODO: Preserve "int min is poison" arg in SDAG? 6541 SDValue Op1 = getValue(I.getArgOperand(0)); 6542 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 6543 return; 6544 } 6545 case Intrinsic::stacksave: { 6546 SDValue Op = getRoot(); 6547 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6548 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 6549 setValue(&I, Res); 6550 DAG.setRoot(Res.getValue(1)); 6551 return; 6552 } 6553 case Intrinsic::stackrestore: 6554 Res = getValue(I.getArgOperand(0)); 6555 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6556 return; 6557 case Intrinsic::get_dynamic_area_offset: { 6558 SDValue Op = getRoot(); 6559 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6560 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6561 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6562 // target. 6563 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) 6564 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6565 " intrinsic!"); 6566 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6567 Op); 6568 DAG.setRoot(Op); 6569 setValue(&I, Res); 6570 return; 6571 } 6572 case Intrinsic::stackguard: { 6573 MachineFunction &MF = DAG.getMachineFunction(); 6574 const Module &M = *MF.getFunction().getParent(); 6575 SDValue Chain = getRoot(); 6576 if (TLI.useLoadStackGuardNode()) { 6577 Res = getLoadStackGuard(DAG, sdl, Chain); 6578 } else { 6579 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6580 const Value *Global = TLI.getSDagStackGuard(M); 6581 Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType()); 6582 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6583 MachinePointerInfo(Global, 0), Align, 6584 MachineMemOperand::MOVolatile); 6585 } 6586 if (TLI.useStackGuardXorFP()) 6587 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6588 DAG.setRoot(Chain); 6589 setValue(&I, Res); 6590 return; 6591 } 6592 case Intrinsic::stackprotector: { 6593 // Emit code into the DAG to store the stack guard onto the stack. 6594 MachineFunction &MF = DAG.getMachineFunction(); 6595 MachineFrameInfo &MFI = MF.getFrameInfo(); 6596 SDValue Src, Chain = getRoot(); 6597 6598 if (TLI.useLoadStackGuardNode()) 6599 Src = getLoadStackGuard(DAG, sdl, Chain); 6600 else 6601 Src = getValue(I.getArgOperand(0)); // The guard's value. 6602 6603 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6604 6605 int FI = FuncInfo.StaticAllocaMap[Slot]; 6606 MFI.setStackProtectorIndex(FI); 6607 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6608 6609 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6610 6611 // Store the stack protector onto the stack. 6612 Res = DAG.getStore( 6613 Chain, sdl, Src, FIN, 6614 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 6615 MaybeAlign(), MachineMemOperand::MOVolatile); 6616 setValue(&I, Res); 6617 DAG.setRoot(Res); 6618 return; 6619 } 6620 case Intrinsic::objectsize: 6621 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6622 6623 case Intrinsic::is_constant: 6624 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6625 6626 case Intrinsic::annotation: 6627 case Intrinsic::ptr_annotation: 6628 case Intrinsic::launder_invariant_group: 6629 case Intrinsic::strip_invariant_group: 6630 // Drop the intrinsic, but forward the value 6631 setValue(&I, getValue(I.getOperand(0))); 6632 return; 6633 6634 case Intrinsic::assume: 6635 case Intrinsic::experimental_noalias_scope_decl: 6636 case Intrinsic::var_annotation: 6637 case Intrinsic::sideeffect: 6638 // Discard annotate attributes, noalias scope declarations, assumptions, and 6639 // artificial side-effects. 6640 return; 6641 6642 case Intrinsic::codeview_annotation: { 6643 // Emit a label associated with this metadata. 6644 MachineFunction &MF = DAG.getMachineFunction(); 6645 MCSymbol *Label = 6646 MF.getMMI().getContext().createTempSymbol("annotation", true); 6647 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6648 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6649 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6650 DAG.setRoot(Res); 6651 return; 6652 } 6653 6654 case Intrinsic::init_trampoline: { 6655 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6656 6657 SDValue Ops[6]; 6658 Ops[0] = getRoot(); 6659 Ops[1] = getValue(I.getArgOperand(0)); 6660 Ops[2] = getValue(I.getArgOperand(1)); 6661 Ops[3] = getValue(I.getArgOperand(2)); 6662 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6663 Ops[5] = DAG.getSrcValue(F); 6664 6665 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6666 6667 DAG.setRoot(Res); 6668 return; 6669 } 6670 case Intrinsic::adjust_trampoline: 6671 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6672 TLI.getPointerTy(DAG.getDataLayout()), 6673 getValue(I.getArgOperand(0)))); 6674 return; 6675 case Intrinsic::gcroot: { 6676 assert(DAG.getMachineFunction().getFunction().hasGC() && 6677 "only valid in functions with gc specified, enforced by Verifier"); 6678 assert(GFI && "implied by previous"); 6679 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6680 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6681 6682 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6683 GFI->addStackRoot(FI->getIndex(), TypeMap); 6684 return; 6685 } 6686 case Intrinsic::gcread: 6687 case Intrinsic::gcwrite: 6688 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6689 case Intrinsic::flt_rounds: 6690 Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot()); 6691 setValue(&I, Res); 6692 DAG.setRoot(Res.getValue(1)); 6693 return; 6694 6695 case Intrinsic::expect: 6696 // Just replace __builtin_expect(exp, c) with EXP. 6697 setValue(&I, getValue(I.getArgOperand(0))); 6698 return; 6699 6700 case Intrinsic::ubsantrap: 6701 case Intrinsic::debugtrap: 6702 case Intrinsic::trap: { 6703 StringRef TrapFuncName = 6704 I.getAttributes().getFnAttr("trap-func-name").getValueAsString(); 6705 if (TrapFuncName.empty()) { 6706 switch (Intrinsic) { 6707 case Intrinsic::trap: 6708 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot())); 6709 break; 6710 case Intrinsic::debugtrap: 6711 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot())); 6712 break; 6713 case Intrinsic::ubsantrap: 6714 DAG.setRoot(DAG.getNode( 6715 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(), 6716 DAG.getTargetConstant( 6717 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl, 6718 MVT::i32))); 6719 break; 6720 default: llvm_unreachable("unknown trap intrinsic"); 6721 } 6722 return; 6723 } 6724 TargetLowering::ArgListTy Args; 6725 if (Intrinsic == Intrinsic::ubsantrap) { 6726 Args.push_back(TargetLoweringBase::ArgListEntry()); 6727 Args[0].Val = I.getArgOperand(0); 6728 Args[0].Node = getValue(Args[0].Val); 6729 Args[0].Ty = Args[0].Val->getType(); 6730 } 6731 6732 TargetLowering::CallLoweringInfo CLI(DAG); 6733 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6734 CallingConv::C, I.getType(), 6735 DAG.getExternalSymbol(TrapFuncName.data(), 6736 TLI.getPointerTy(DAG.getDataLayout())), 6737 std::move(Args)); 6738 6739 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6740 DAG.setRoot(Result.second); 6741 return; 6742 } 6743 6744 case Intrinsic::uadd_with_overflow: 6745 case Intrinsic::sadd_with_overflow: 6746 case Intrinsic::usub_with_overflow: 6747 case Intrinsic::ssub_with_overflow: 6748 case Intrinsic::umul_with_overflow: 6749 case Intrinsic::smul_with_overflow: { 6750 ISD::NodeType Op; 6751 switch (Intrinsic) { 6752 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6753 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6754 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6755 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6756 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6757 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6758 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6759 } 6760 SDValue Op1 = getValue(I.getArgOperand(0)); 6761 SDValue Op2 = getValue(I.getArgOperand(1)); 6762 6763 EVT ResultVT = Op1.getValueType(); 6764 EVT OverflowVT = MVT::i1; 6765 if (ResultVT.isVector()) 6766 OverflowVT = EVT::getVectorVT( 6767 *Context, OverflowVT, ResultVT.getVectorElementCount()); 6768 6769 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6770 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6771 return; 6772 } 6773 case Intrinsic::prefetch: { 6774 SDValue Ops[5]; 6775 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6776 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6777 Ops[0] = DAG.getRoot(); 6778 Ops[1] = getValue(I.getArgOperand(0)); 6779 Ops[2] = getValue(I.getArgOperand(1)); 6780 Ops[3] = getValue(I.getArgOperand(2)); 6781 Ops[4] = getValue(I.getArgOperand(3)); 6782 SDValue Result = DAG.getMemIntrinsicNode( 6783 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 6784 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 6785 /* align */ None, Flags); 6786 6787 // Chain the prefetch in parallell with any pending loads, to stay out of 6788 // the way of later optimizations. 6789 PendingLoads.push_back(Result); 6790 Result = getRoot(); 6791 DAG.setRoot(Result); 6792 return; 6793 } 6794 case Intrinsic::lifetime_start: 6795 case Intrinsic::lifetime_end: { 6796 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6797 // Stack coloring is not enabled in O0, discard region information. 6798 if (TM.getOptLevel() == CodeGenOpt::None) 6799 return; 6800 6801 const int64_t ObjectSize = 6802 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6803 Value *const ObjectPtr = I.getArgOperand(1); 6804 SmallVector<const Value *, 4> Allocas; 6805 getUnderlyingObjects(ObjectPtr, Allocas); 6806 6807 for (const Value *Alloca : Allocas) { 6808 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca); 6809 6810 // Could not find an Alloca. 6811 if (!LifetimeObject) 6812 continue; 6813 6814 // First check that the Alloca is static, otherwise it won't have a 6815 // valid frame index. 6816 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6817 if (SI == FuncInfo.StaticAllocaMap.end()) 6818 return; 6819 6820 const int FrameIndex = SI->second; 6821 int64_t Offset; 6822 if (GetPointerBaseWithConstantOffset( 6823 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6824 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6825 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6826 Offset); 6827 DAG.setRoot(Res); 6828 } 6829 return; 6830 } 6831 case Intrinsic::pseudoprobe: { 6832 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 6833 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6834 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 6835 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr); 6836 DAG.setRoot(Res); 6837 return; 6838 } 6839 case Intrinsic::invariant_start: 6840 // Discard region information. 6841 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6842 return; 6843 case Intrinsic::invariant_end: 6844 // Discard region information. 6845 return; 6846 case Intrinsic::clear_cache: 6847 /// FunctionName may be null. 6848 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6849 lowerCallToExternalSymbol(I, FunctionName); 6850 return; 6851 case Intrinsic::donothing: 6852 case Intrinsic::seh_try_begin: 6853 case Intrinsic::seh_scope_begin: 6854 case Intrinsic::seh_try_end: 6855 case Intrinsic::seh_scope_end: 6856 // ignore 6857 return; 6858 case Intrinsic::experimental_stackmap: 6859 visitStackmap(I); 6860 return; 6861 case Intrinsic::experimental_patchpoint_void: 6862 case Intrinsic::experimental_patchpoint_i64: 6863 visitPatchpoint(I); 6864 return; 6865 case Intrinsic::experimental_gc_statepoint: 6866 LowerStatepoint(cast<GCStatepointInst>(I)); 6867 return; 6868 case Intrinsic::experimental_gc_result: 6869 visitGCResult(cast<GCResultInst>(I)); 6870 return; 6871 case Intrinsic::experimental_gc_relocate: 6872 visitGCRelocate(cast<GCRelocateInst>(I)); 6873 return; 6874 case Intrinsic::instrprof_increment: 6875 llvm_unreachable("instrprof failed to lower an increment"); 6876 case Intrinsic::instrprof_value_profile: 6877 llvm_unreachable("instrprof failed to lower a value profiling call"); 6878 case Intrinsic::localescape: { 6879 MachineFunction &MF = DAG.getMachineFunction(); 6880 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6881 6882 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6883 // is the same on all targets. 6884 for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) { 6885 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6886 if (isa<ConstantPointerNull>(Arg)) 6887 continue; // Skip null pointers. They represent a hole in index space. 6888 AllocaInst *Slot = cast<AllocaInst>(Arg); 6889 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6890 "can only escape static allocas"); 6891 int FI = FuncInfo.StaticAllocaMap[Slot]; 6892 MCSymbol *FrameAllocSym = 6893 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6894 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6895 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6896 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6897 .addSym(FrameAllocSym) 6898 .addFrameIndex(FI); 6899 } 6900 6901 return; 6902 } 6903 6904 case Intrinsic::localrecover: { 6905 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6906 MachineFunction &MF = DAG.getMachineFunction(); 6907 6908 // Get the symbol that defines the frame offset. 6909 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6910 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6911 unsigned IdxVal = 6912 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6913 MCSymbol *FrameAllocSym = 6914 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6915 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6916 6917 Value *FP = I.getArgOperand(1); 6918 SDValue FPVal = getValue(FP); 6919 EVT PtrVT = FPVal.getValueType(); 6920 6921 // Create a MCSymbol for the label to avoid any target lowering 6922 // that would make this PC relative. 6923 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6924 SDValue OffsetVal = 6925 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6926 6927 // Add the offset to the FP. 6928 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 6929 setValue(&I, Add); 6930 6931 return; 6932 } 6933 6934 case Intrinsic::eh_exceptionpointer: 6935 case Intrinsic::eh_exceptioncode: { 6936 // Get the exception pointer vreg, copy from it, and resize it to fit. 6937 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6938 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6939 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6940 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6941 SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT); 6942 if (Intrinsic == Intrinsic::eh_exceptioncode) 6943 N = DAG.getZExtOrTrunc(N, sdl, MVT::i32); 6944 setValue(&I, N); 6945 return; 6946 } 6947 case Intrinsic::xray_customevent: { 6948 // Here we want to make sure that the intrinsic behaves as if it has a 6949 // specific calling convention, and only for x86_64. 6950 // FIXME: Support other platforms later. 6951 const auto &Triple = DAG.getTarget().getTargetTriple(); 6952 if (Triple.getArch() != Triple::x86_64) 6953 return; 6954 6955 SmallVector<SDValue, 8> Ops; 6956 6957 // We want to say that we always want the arguments in registers. 6958 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6959 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6960 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6961 SDValue Chain = getRoot(); 6962 Ops.push_back(LogEntryVal); 6963 Ops.push_back(StrSizeVal); 6964 Ops.push_back(Chain); 6965 6966 // We need to enforce the calling convention for the callsite, so that 6967 // argument ordering is enforced correctly, and that register allocation can 6968 // see that some registers may be assumed clobbered and have to preserve 6969 // them across calls to the intrinsic. 6970 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6971 sdl, NodeTys, Ops); 6972 SDValue patchableNode = SDValue(MN, 0); 6973 DAG.setRoot(patchableNode); 6974 setValue(&I, patchableNode); 6975 return; 6976 } 6977 case Intrinsic::xray_typedevent: { 6978 // Here we want to make sure that the intrinsic behaves as if it has a 6979 // specific calling convention, and only for x86_64. 6980 // FIXME: Support other platforms later. 6981 const auto &Triple = DAG.getTarget().getTargetTriple(); 6982 if (Triple.getArch() != Triple::x86_64) 6983 return; 6984 6985 SmallVector<SDValue, 8> Ops; 6986 6987 // We want to say that we always want the arguments in registers. 6988 // It's unclear to me how manipulating the selection DAG here forces callers 6989 // to provide arguments in registers instead of on the stack. 6990 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6991 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6992 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6993 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6994 SDValue Chain = getRoot(); 6995 Ops.push_back(LogTypeId); 6996 Ops.push_back(LogEntryVal); 6997 Ops.push_back(StrSizeVal); 6998 Ops.push_back(Chain); 6999 7000 // We need to enforce the calling convention for the callsite, so that 7001 // argument ordering is enforced correctly, and that register allocation can 7002 // see that some registers may be assumed clobbered and have to preserve 7003 // them across calls to the intrinsic. 7004 MachineSDNode *MN = DAG.getMachineNode( 7005 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops); 7006 SDValue patchableNode = SDValue(MN, 0); 7007 DAG.setRoot(patchableNode); 7008 setValue(&I, patchableNode); 7009 return; 7010 } 7011 case Intrinsic::experimental_deoptimize: 7012 LowerDeoptimizeCall(&I); 7013 return; 7014 case Intrinsic::experimental_stepvector: 7015 visitStepVector(I); 7016 return; 7017 case Intrinsic::vector_reduce_fadd: 7018 case Intrinsic::vector_reduce_fmul: 7019 case Intrinsic::vector_reduce_add: 7020 case Intrinsic::vector_reduce_mul: 7021 case Intrinsic::vector_reduce_and: 7022 case Intrinsic::vector_reduce_or: 7023 case Intrinsic::vector_reduce_xor: 7024 case Intrinsic::vector_reduce_smax: 7025 case Intrinsic::vector_reduce_smin: 7026 case Intrinsic::vector_reduce_umax: 7027 case Intrinsic::vector_reduce_umin: 7028 case Intrinsic::vector_reduce_fmax: 7029 case Intrinsic::vector_reduce_fmin: 7030 visitVectorReduce(I, Intrinsic); 7031 return; 7032 7033 case Intrinsic::icall_branch_funnel: { 7034 SmallVector<SDValue, 16> Ops; 7035 Ops.push_back(getValue(I.getArgOperand(0))); 7036 7037 int64_t Offset; 7038 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7039 I.getArgOperand(1), Offset, DAG.getDataLayout())); 7040 if (!Base) 7041 report_fatal_error( 7042 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7043 Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0)); 7044 7045 struct BranchFunnelTarget { 7046 int64_t Offset; 7047 SDValue Target; 7048 }; 7049 SmallVector<BranchFunnelTarget, 8> Targets; 7050 7051 for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) { 7052 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7053 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 7054 if (ElemBase != Base) 7055 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 7056 "to the same GlobalValue"); 7057 7058 SDValue Val = getValue(I.getArgOperand(Op + 1)); 7059 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 7060 if (!GA) 7061 report_fatal_error( 7062 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7063 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 7064 GA->getGlobal(), sdl, Val.getValueType(), 7065 GA->getOffset())}); 7066 } 7067 llvm::sort(Targets, 7068 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 7069 return T1.Offset < T2.Offset; 7070 }); 7071 7072 for (auto &T : Targets) { 7073 Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32)); 7074 Ops.push_back(T.Target); 7075 } 7076 7077 Ops.push_back(DAG.getRoot()); // Chain 7078 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl, 7079 MVT::Other, Ops), 7080 0); 7081 DAG.setRoot(N); 7082 setValue(&I, N); 7083 HasTailCall = true; 7084 return; 7085 } 7086 7087 case Intrinsic::wasm_landingpad_index: 7088 // Information this intrinsic contained has been transferred to 7089 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 7090 // delete it now. 7091 return; 7092 7093 case Intrinsic::aarch64_settag: 7094 case Intrinsic::aarch64_settag_zero: { 7095 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7096 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 7097 SDValue Val = TSI.EmitTargetCodeForSetTag( 7098 DAG, sdl, getRoot(), getValue(I.getArgOperand(0)), 7099 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 7100 ZeroMemory); 7101 DAG.setRoot(Val); 7102 setValue(&I, Val); 7103 return; 7104 } 7105 case Intrinsic::ptrmask: { 7106 SDValue Ptr = getValue(I.getOperand(0)); 7107 SDValue Const = getValue(I.getOperand(1)); 7108 7109 EVT PtrVT = Ptr.getValueType(); 7110 setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, 7111 DAG.getZExtOrTrunc(Const, sdl, PtrVT))); 7112 return; 7113 } 7114 case Intrinsic::get_active_lane_mask: { 7115 EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7116 SDValue Index = getValue(I.getOperand(0)); 7117 EVT ElementVT = Index.getValueType(); 7118 7119 if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) { 7120 visitTargetIntrinsic(I, Intrinsic); 7121 return; 7122 } 7123 7124 SDValue TripCount = getValue(I.getOperand(1)); 7125 auto VecTy = CCVT.changeVectorElementType(ElementVT); 7126 7127 SDValue VectorIndex, VectorTripCount; 7128 if (VecTy.isScalableVector()) { 7129 VectorIndex = DAG.getSplatVector(VecTy, sdl, Index); 7130 VectorTripCount = DAG.getSplatVector(VecTy, sdl, TripCount); 7131 } else { 7132 VectorIndex = DAG.getSplatBuildVector(VecTy, sdl, Index); 7133 VectorTripCount = DAG.getSplatBuildVector(VecTy, sdl, TripCount); 7134 } 7135 SDValue VectorStep = DAG.getStepVector(sdl, VecTy); 7136 SDValue VectorInduction = DAG.getNode( 7137 ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep); 7138 SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction, 7139 VectorTripCount, ISD::CondCode::SETULT); 7140 setValue(&I, SetCC); 7141 return; 7142 } 7143 case Intrinsic::experimental_vector_insert: { 7144 SDValue Vec = getValue(I.getOperand(0)); 7145 SDValue SubVec = getValue(I.getOperand(1)); 7146 SDValue Index = getValue(I.getOperand(2)); 7147 7148 // The intrinsic's index type is i64, but the SDNode requires an index type 7149 // suitable for the target. Convert the index as required. 7150 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7151 if (Index.getValueType() != VectorIdxTy) 7152 Index = DAG.getVectorIdxConstant( 7153 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7154 7155 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7156 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec, 7157 Index)); 7158 return; 7159 } 7160 case Intrinsic::experimental_vector_extract: { 7161 SDValue Vec = getValue(I.getOperand(0)); 7162 SDValue Index = getValue(I.getOperand(1)); 7163 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7164 7165 // The intrinsic's index type is i64, but the SDNode requires an index type 7166 // suitable for the target. Convert the index as required. 7167 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7168 if (Index.getValueType() != VectorIdxTy) 7169 Index = DAG.getVectorIdxConstant( 7170 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7171 7172 setValue(&I, 7173 DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index)); 7174 return; 7175 } 7176 case Intrinsic::experimental_vector_reverse: 7177 visitVectorReverse(I); 7178 return; 7179 case Intrinsic::experimental_vector_splice: 7180 visitVectorSplice(I); 7181 return; 7182 } 7183 } 7184 7185 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 7186 const ConstrainedFPIntrinsic &FPI) { 7187 SDLoc sdl = getCurSDLoc(); 7188 7189 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7190 SmallVector<EVT, 4> ValueVTs; 7191 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 7192 ValueVTs.push_back(MVT::Other); // Out chain 7193 7194 // We do not need to serialize constrained FP intrinsics against 7195 // each other or against (nonvolatile) loads, so they can be 7196 // chained like loads. 7197 SDValue Chain = DAG.getRoot(); 7198 SmallVector<SDValue, 4> Opers; 7199 Opers.push_back(Chain); 7200 if (FPI.isUnaryOp()) { 7201 Opers.push_back(getValue(FPI.getArgOperand(0))); 7202 } else if (FPI.isTernaryOp()) { 7203 Opers.push_back(getValue(FPI.getArgOperand(0))); 7204 Opers.push_back(getValue(FPI.getArgOperand(1))); 7205 Opers.push_back(getValue(FPI.getArgOperand(2))); 7206 } else { 7207 Opers.push_back(getValue(FPI.getArgOperand(0))); 7208 Opers.push_back(getValue(FPI.getArgOperand(1))); 7209 } 7210 7211 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 7212 assert(Result.getNode()->getNumValues() == 2); 7213 7214 // Push node to the appropriate list so that future instructions can be 7215 // chained up correctly. 7216 SDValue OutChain = Result.getValue(1); 7217 switch (EB) { 7218 case fp::ExceptionBehavior::ebIgnore: 7219 // The only reason why ebIgnore nodes still need to be chained is that 7220 // they might depend on the current rounding mode, and therefore must 7221 // not be moved across instruction that may change that mode. 7222 LLVM_FALLTHROUGH; 7223 case fp::ExceptionBehavior::ebMayTrap: 7224 // These must not be moved across calls or instructions that may change 7225 // floating-point exception masks. 7226 PendingConstrainedFP.push_back(OutChain); 7227 break; 7228 case fp::ExceptionBehavior::ebStrict: 7229 // These must not be moved across calls or instructions that may change 7230 // floating-point exception masks or read floating-point exception flags. 7231 // In addition, they cannot be optimized out even if unused. 7232 PendingConstrainedFPStrict.push_back(OutChain); 7233 break; 7234 } 7235 }; 7236 7237 SDVTList VTs = DAG.getVTList(ValueVTs); 7238 fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue(); 7239 7240 SDNodeFlags Flags; 7241 if (EB == fp::ExceptionBehavior::ebIgnore) 7242 Flags.setNoFPExcept(true); 7243 7244 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 7245 Flags.copyFMF(*FPOp); 7246 7247 unsigned Opcode; 7248 switch (FPI.getIntrinsicID()) { 7249 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7250 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7251 case Intrinsic::INTRINSIC: \ 7252 Opcode = ISD::STRICT_##DAGN; \ 7253 break; 7254 #include "llvm/IR/ConstrainedOps.def" 7255 case Intrinsic::experimental_constrained_fmuladd: { 7256 Opcode = ISD::STRICT_FMA; 7257 // Break fmuladd into fmul and fadd. 7258 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 7259 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), 7260 ValueVTs[0])) { 7261 Opers.pop_back(); 7262 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 7263 pushOutChain(Mul, EB); 7264 Opcode = ISD::STRICT_FADD; 7265 Opers.clear(); 7266 Opers.push_back(Mul.getValue(1)); 7267 Opers.push_back(Mul.getValue(0)); 7268 Opers.push_back(getValue(FPI.getArgOperand(2))); 7269 } 7270 break; 7271 } 7272 } 7273 7274 // A few strict DAG nodes carry additional operands that are not 7275 // set up by the default code above. 7276 switch (Opcode) { 7277 default: break; 7278 case ISD::STRICT_FP_ROUND: 7279 Opers.push_back( 7280 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 7281 break; 7282 case ISD::STRICT_FSETCC: 7283 case ISD::STRICT_FSETCCS: { 7284 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 7285 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate()); 7286 if (TM.Options.NoNaNsFPMath) 7287 Condition = getFCmpCodeWithoutNaN(Condition); 7288 Opers.push_back(DAG.getCondCode(Condition)); 7289 break; 7290 } 7291 } 7292 7293 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 7294 pushOutChain(Result, EB); 7295 7296 SDValue FPResult = Result.getValue(0); 7297 setValue(&FPI, FPResult); 7298 } 7299 7300 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) { 7301 Optional<unsigned> ResOPC; 7302 switch (VPIntrin.getIntrinsicID()) { 7303 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 7304 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) ResOPC = ISD::VPSD; 7305 #define END_REGISTER_VP_INTRINSIC(VPID) break; 7306 #include "llvm/IR/VPIntrinsics.def" 7307 } 7308 7309 if (!ResOPC.hasValue()) 7310 llvm_unreachable( 7311 "Inconsistency: no SDNode available for this VPIntrinsic!"); 7312 7313 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD || 7314 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) { 7315 if (VPIntrin.getFastMathFlags().allowReassoc()) 7316 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD 7317 : ISD::VP_REDUCE_FMUL; 7318 } 7319 7320 return ResOPC.getValue(); 7321 } 7322 7323 void SelectionDAGBuilder::visitVPLoadGather(const VPIntrinsic &VPIntrin, EVT VT, 7324 SmallVector<SDValue, 7> &OpValues, 7325 bool IsGather) { 7326 SDLoc DL = getCurSDLoc(); 7327 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7328 Value *PtrOperand = VPIntrin.getArgOperand(0); 7329 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7330 if (!Alignment) 7331 Alignment = DAG.getEVTAlign(VT); 7332 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7333 const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range); 7334 SDValue LD; 7335 bool AddToChain = true; 7336 if (!IsGather) { 7337 // Do not serialize variable-length loads of constant memory with 7338 // anything. 7339 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 7340 AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7341 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7342 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7343 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7344 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7345 LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2], 7346 MMO, false /*IsExpanding */); 7347 } else { 7348 unsigned AS = 7349 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7350 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7351 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 7352 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7353 SDValue Base, Index, Scale; 7354 ISD::MemIndexType IndexType; 7355 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7356 this, VPIntrin.getParent()); 7357 if (!UniformBase) { 7358 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7359 Index = getValue(PtrOperand); 7360 IndexType = ISD::SIGNED_UNSCALED; 7361 Scale = 7362 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7363 } 7364 EVT IdxVT = Index.getValueType(); 7365 EVT EltTy = IdxVT.getVectorElementType(); 7366 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7367 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7368 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7369 } 7370 LD = DAG.getGatherVP( 7371 DAG.getVTList(VT, MVT::Other), VT, DL, 7372 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO, 7373 IndexType); 7374 } 7375 if (AddToChain) 7376 PendingLoads.push_back(LD.getValue(1)); 7377 setValue(&VPIntrin, LD); 7378 } 7379 7380 void SelectionDAGBuilder::visitVPStoreScatter(const VPIntrinsic &VPIntrin, 7381 SmallVector<SDValue, 7> &OpValues, 7382 bool IsScatter) { 7383 SDLoc DL = getCurSDLoc(); 7384 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7385 Value *PtrOperand = VPIntrin.getArgOperand(1); 7386 EVT VT = OpValues[0].getValueType(); 7387 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7388 if (!Alignment) 7389 Alignment = DAG.getEVTAlign(VT); 7390 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7391 SDValue ST; 7392 if (!IsScatter) { 7393 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7394 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7395 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7396 ST = 7397 DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], OpValues[1], 7398 OpValues[2], OpValues[3], MMO, false /* IsTruncating */); 7399 } else { 7400 unsigned AS = 7401 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7402 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7403 MachinePointerInfo(AS), MachineMemOperand::MOStore, 7404 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7405 SDValue Base, Index, Scale; 7406 ISD::MemIndexType IndexType; 7407 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7408 this, VPIntrin.getParent()); 7409 if (!UniformBase) { 7410 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7411 Index = getValue(PtrOperand); 7412 IndexType = ISD::SIGNED_UNSCALED; 7413 Scale = 7414 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7415 } 7416 EVT IdxVT = Index.getValueType(); 7417 EVT EltTy = IdxVT.getVectorElementType(); 7418 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7419 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7420 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7421 } 7422 ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL, 7423 {getMemoryRoot(), OpValues[0], Base, Index, Scale, 7424 OpValues[2], OpValues[3]}, 7425 MMO, IndexType); 7426 } 7427 DAG.setRoot(ST); 7428 setValue(&VPIntrin, ST); 7429 } 7430 7431 void SelectionDAGBuilder::visitVectorPredicationIntrinsic( 7432 const VPIntrinsic &VPIntrin) { 7433 SDLoc DL = getCurSDLoc(); 7434 unsigned Opcode = getISDForVPIntrinsic(VPIntrin); 7435 7436 SmallVector<EVT, 4> ValueVTs; 7437 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7438 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs); 7439 SDVTList VTs = DAG.getVTList(ValueVTs); 7440 7441 auto EVLParamPos = 7442 VPIntrinsic::getVectorLengthParamPos(VPIntrin.getIntrinsicID()); 7443 7444 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 7445 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 7446 "Unexpected target EVL type"); 7447 7448 // Request operands. 7449 SmallVector<SDValue, 7> OpValues; 7450 for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) { 7451 auto Op = getValue(VPIntrin.getArgOperand(I)); 7452 if (I == EVLParamPos) 7453 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op); 7454 OpValues.push_back(Op); 7455 } 7456 7457 switch (Opcode) { 7458 default: { 7459 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues); 7460 setValue(&VPIntrin, Result); 7461 break; 7462 } 7463 case ISD::VP_LOAD: 7464 case ISD::VP_GATHER: 7465 visitVPLoadGather(VPIntrin, ValueVTs[0], OpValues, 7466 Opcode == ISD::VP_GATHER); 7467 break; 7468 case ISD::VP_STORE: 7469 case ISD::VP_SCATTER: 7470 visitVPStoreScatter(VPIntrin, OpValues, Opcode == ISD::VP_SCATTER); 7471 break; 7472 } 7473 } 7474 7475 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain, 7476 const BasicBlock *EHPadBB, 7477 MCSymbol *&BeginLabel) { 7478 MachineFunction &MF = DAG.getMachineFunction(); 7479 MachineModuleInfo &MMI = MF.getMMI(); 7480 7481 // Insert a label before the invoke call to mark the try range. This can be 7482 // used to detect deletion of the invoke via the MachineModuleInfo. 7483 BeginLabel = MMI.getContext().createTempSymbol(); 7484 7485 // For SjLj, keep track of which landing pads go with which invokes 7486 // so as to maintain the ordering of pads in the LSDA. 7487 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 7488 if (CallSiteIndex) { 7489 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 7490 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 7491 7492 // Now that the call site is handled, stop tracking it. 7493 MMI.setCurrentCallSite(0); 7494 } 7495 7496 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel); 7497 } 7498 7499 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II, 7500 const BasicBlock *EHPadBB, 7501 MCSymbol *BeginLabel) { 7502 assert(BeginLabel && "BeginLabel should've been set"); 7503 7504 MachineFunction &MF = DAG.getMachineFunction(); 7505 MachineModuleInfo &MMI = MF.getMMI(); 7506 7507 // Insert a label at the end of the invoke call to mark the try range. This 7508 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7509 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7510 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel); 7511 7512 // Inform MachineModuleInfo of range. 7513 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7514 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7515 // actually use outlined funclets and their LSDA info style. 7516 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7517 assert(II && "II should've been set"); 7518 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); 7519 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel); 7520 } else if (!isScopedEHPersonality(Pers)) { 7521 assert(EHPadBB); 7522 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7523 } 7524 7525 return Chain; 7526 } 7527 7528 std::pair<SDValue, SDValue> 7529 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 7530 const BasicBlock *EHPadBB) { 7531 MCSymbol *BeginLabel = nullptr; 7532 7533 if (EHPadBB) { 7534 // Both PendingLoads and PendingExports must be flushed here; 7535 // this call might not return. 7536 (void)getRoot(); 7537 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel)); 7538 CLI.setChain(getRoot()); 7539 } 7540 7541 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7542 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7543 7544 assert((CLI.IsTailCall || Result.second.getNode()) && 7545 "Non-null chain expected with non-tail call!"); 7546 assert((Result.second.getNode() || !Result.first.getNode()) && 7547 "Null value expected with tail call!"); 7548 7549 if (!Result.second.getNode()) { 7550 // As a special case, a null chain means that a tail call has been emitted 7551 // and the DAG root is already updated. 7552 HasTailCall = true; 7553 7554 // Since there's no actual continuation from this block, nothing can be 7555 // relying on us setting vregs for them. 7556 PendingExports.clear(); 7557 } else { 7558 DAG.setRoot(Result.second); 7559 } 7560 7561 if (EHPadBB) { 7562 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB, 7563 BeginLabel)); 7564 } 7565 7566 return Result; 7567 } 7568 7569 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 7570 bool isTailCall, 7571 bool isMustTailCall, 7572 const BasicBlock *EHPadBB) { 7573 auto &DL = DAG.getDataLayout(); 7574 FunctionType *FTy = CB.getFunctionType(); 7575 Type *RetTy = CB.getType(); 7576 7577 TargetLowering::ArgListTy Args; 7578 Args.reserve(CB.arg_size()); 7579 7580 const Value *SwiftErrorVal = nullptr; 7581 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7582 7583 if (isTailCall) { 7584 // Avoid emitting tail calls in functions with the disable-tail-calls 7585 // attribute. 7586 auto *Caller = CB.getParent()->getParent(); 7587 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 7588 "true" && !isMustTailCall) 7589 isTailCall = false; 7590 7591 // We can't tail call inside a function with a swifterror argument. Lowering 7592 // does not support this yet. It would have to move into the swifterror 7593 // register before the call. 7594 if (TLI.supportSwiftError() && 7595 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7596 isTailCall = false; 7597 } 7598 7599 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 7600 TargetLowering::ArgListEntry Entry; 7601 const Value *V = *I; 7602 7603 // Skip empty types 7604 if (V->getType()->isEmptyTy()) 7605 continue; 7606 7607 SDValue ArgNode = getValue(V); 7608 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7609 7610 Entry.setAttributes(&CB, I - CB.arg_begin()); 7611 7612 // Use swifterror virtual register as input to the call. 7613 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7614 SwiftErrorVal = V; 7615 // We find the virtual register for the actual swifterror argument. 7616 // Instead of using the Value, we use the virtual register instead. 7617 Entry.Node = 7618 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 7619 EVT(TLI.getPointerTy(DL))); 7620 } 7621 7622 Args.push_back(Entry); 7623 7624 // If we have an explicit sret argument that is an Instruction, (i.e., it 7625 // might point to function-local memory), we can't meaningfully tail-call. 7626 if (Entry.IsSRet && isa<Instruction>(V)) 7627 isTailCall = false; 7628 } 7629 7630 // If call site has a cfguardtarget operand bundle, create and add an 7631 // additional ArgListEntry. 7632 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 7633 TargetLowering::ArgListEntry Entry; 7634 Value *V = Bundle->Inputs[0]; 7635 SDValue ArgNode = getValue(V); 7636 Entry.Node = ArgNode; 7637 Entry.Ty = V->getType(); 7638 Entry.IsCFGuardTarget = true; 7639 Args.push_back(Entry); 7640 } 7641 7642 // Check if target-independent constraints permit a tail call here. 7643 // Target-dependent constraints are checked within TLI->LowerCallTo. 7644 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 7645 isTailCall = false; 7646 7647 // Disable tail calls if there is an swifterror argument. Targets have not 7648 // been updated to support tail calls. 7649 if (TLI.supportSwiftError() && SwiftErrorVal) 7650 isTailCall = false; 7651 7652 TargetLowering::CallLoweringInfo CLI(DAG); 7653 CLI.setDebugLoc(getCurSDLoc()) 7654 .setChain(getRoot()) 7655 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 7656 .setTailCall(isTailCall) 7657 .setConvergent(CB.isConvergent()) 7658 .setIsPreallocated( 7659 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 7660 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7661 7662 if (Result.first.getNode()) { 7663 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 7664 setValue(&CB, Result.first); 7665 } 7666 7667 // The last element of CLI.InVals has the SDValue for swifterror return. 7668 // Here we copy it to a virtual register and update SwiftErrorMap for 7669 // book-keeping. 7670 if (SwiftErrorVal && TLI.supportSwiftError()) { 7671 // Get the last element of InVals. 7672 SDValue Src = CLI.InVals.back(); 7673 Register VReg = 7674 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 7675 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7676 DAG.setRoot(CopyNode); 7677 } 7678 } 7679 7680 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7681 SelectionDAGBuilder &Builder) { 7682 // Check to see if this load can be trivially constant folded, e.g. if the 7683 // input is from a string literal. 7684 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7685 // Cast pointer to the type we really want to load. 7686 Type *LoadTy = 7687 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7688 if (LoadVT.isVector()) 7689 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7690 7691 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7692 PointerType::getUnqual(LoadTy)); 7693 7694 if (const Constant *LoadCst = 7695 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 7696 LoadTy, Builder.DAG.getDataLayout())) 7697 return Builder.getValue(LoadCst); 7698 } 7699 7700 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7701 // still constant memory, the input chain can be the entry node. 7702 SDValue Root; 7703 bool ConstantMemory = false; 7704 7705 // Do not serialize (non-volatile) loads of constant memory with anything. 7706 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7707 Root = Builder.DAG.getEntryNode(); 7708 ConstantMemory = true; 7709 } else { 7710 // Do not serialize non-volatile loads against each other. 7711 Root = Builder.DAG.getRoot(); 7712 } 7713 7714 SDValue Ptr = Builder.getValue(PtrVal); 7715 SDValue LoadVal = 7716 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 7717 MachinePointerInfo(PtrVal), Align(1)); 7718 7719 if (!ConstantMemory) 7720 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7721 return LoadVal; 7722 } 7723 7724 /// Record the value for an instruction that produces an integer result, 7725 /// converting the type where necessary. 7726 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7727 SDValue Value, 7728 bool IsSigned) { 7729 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7730 I.getType(), true); 7731 if (IsSigned) 7732 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7733 else 7734 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7735 setValue(&I, Value); 7736 } 7737 7738 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 7739 /// true and lower it. Otherwise return false, and it will be lowered like a 7740 /// normal call. 7741 /// The caller already checked that \p I calls the appropriate LibFunc with a 7742 /// correct prototype. 7743 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 7744 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7745 const Value *Size = I.getArgOperand(2); 7746 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 7747 if (CSize && CSize->getZExtValue() == 0) { 7748 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7749 I.getType(), true); 7750 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7751 return true; 7752 } 7753 7754 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7755 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7756 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7757 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7758 if (Res.first.getNode()) { 7759 processIntegerCallValue(I, Res.first, true); 7760 PendingLoads.push_back(Res.second); 7761 return true; 7762 } 7763 7764 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7765 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7766 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7767 return false; 7768 7769 // If the target has a fast compare for the given size, it will return a 7770 // preferred load type for that size. Require that the load VT is legal and 7771 // that the target supports unaligned loads of that type. Otherwise, return 7772 // INVALID. 7773 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7774 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7775 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7776 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7777 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7778 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7779 // TODO: Check alignment of src and dest ptrs. 7780 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7781 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7782 if (!TLI.isTypeLegal(LVT) || 7783 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7784 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7785 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7786 } 7787 7788 return LVT; 7789 }; 7790 7791 // This turns into unaligned loads. We only do this if the target natively 7792 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7793 // we'll only produce a small number of byte loads. 7794 MVT LoadVT; 7795 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7796 switch (NumBitsToCompare) { 7797 default: 7798 return false; 7799 case 16: 7800 LoadVT = MVT::i16; 7801 break; 7802 case 32: 7803 LoadVT = MVT::i32; 7804 break; 7805 case 64: 7806 case 128: 7807 case 256: 7808 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7809 break; 7810 } 7811 7812 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7813 return false; 7814 7815 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7816 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7817 7818 // Bitcast to a wide integer type if the loads are vectors. 7819 if (LoadVT.isVector()) { 7820 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7821 LoadL = DAG.getBitcast(CmpVT, LoadL); 7822 LoadR = DAG.getBitcast(CmpVT, LoadR); 7823 } 7824 7825 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7826 processIntegerCallValue(I, Cmp, false); 7827 return true; 7828 } 7829 7830 /// See if we can lower a memchr call into an optimized form. If so, return 7831 /// true and lower it. Otherwise return false, and it will be lowered like a 7832 /// normal call. 7833 /// The caller already checked that \p I calls the appropriate LibFunc with a 7834 /// correct prototype. 7835 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 7836 const Value *Src = I.getArgOperand(0); 7837 const Value *Char = I.getArgOperand(1); 7838 const Value *Length = I.getArgOperand(2); 7839 7840 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7841 std::pair<SDValue, SDValue> Res = 7842 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 7843 getValue(Src), getValue(Char), getValue(Length), 7844 MachinePointerInfo(Src)); 7845 if (Res.first.getNode()) { 7846 setValue(&I, Res.first); 7847 PendingLoads.push_back(Res.second); 7848 return true; 7849 } 7850 7851 return false; 7852 } 7853 7854 /// See if we can lower a mempcpy call into an optimized form. If so, return 7855 /// true and lower it. Otherwise return false, and it will be lowered like a 7856 /// normal call. 7857 /// The caller already checked that \p I calls the appropriate LibFunc with a 7858 /// correct prototype. 7859 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 7860 SDValue Dst = getValue(I.getArgOperand(0)); 7861 SDValue Src = getValue(I.getArgOperand(1)); 7862 SDValue Size = getValue(I.getArgOperand(2)); 7863 7864 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 7865 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 7866 // DAG::getMemcpy needs Alignment to be defined. 7867 Align Alignment = std::min(DstAlign, SrcAlign); 7868 7869 bool isVol = false; 7870 SDLoc sdl = getCurSDLoc(); 7871 7872 // In the mempcpy context we need to pass in a false value for isTailCall 7873 // because the return pointer needs to be adjusted by the size of 7874 // the copied memory. 7875 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 7876 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false, 7877 /*isTailCall=*/false, 7878 MachinePointerInfo(I.getArgOperand(0)), 7879 MachinePointerInfo(I.getArgOperand(1)), 7880 I.getAAMetadata()); 7881 assert(MC.getNode() != nullptr && 7882 "** memcpy should not be lowered as TailCall in mempcpy context **"); 7883 DAG.setRoot(MC); 7884 7885 // Check if Size needs to be truncated or extended. 7886 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 7887 7888 // Adjust return pointer to point just past the last dst byte. 7889 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 7890 Dst, Size); 7891 setValue(&I, DstPlusSize); 7892 return true; 7893 } 7894 7895 /// See if we can lower a strcpy call into an optimized form. If so, return 7896 /// true and lower it, otherwise return false and it will be lowered like a 7897 /// normal call. 7898 /// The caller already checked that \p I calls the appropriate LibFunc with a 7899 /// correct prototype. 7900 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 7901 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7902 7903 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7904 std::pair<SDValue, SDValue> Res = 7905 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 7906 getValue(Arg0), getValue(Arg1), 7907 MachinePointerInfo(Arg0), 7908 MachinePointerInfo(Arg1), isStpcpy); 7909 if (Res.first.getNode()) { 7910 setValue(&I, Res.first); 7911 DAG.setRoot(Res.second); 7912 return true; 7913 } 7914 7915 return false; 7916 } 7917 7918 /// See if we can lower a strcmp call into an optimized form. If so, return 7919 /// true and lower it, otherwise return false and it will be lowered like a 7920 /// normal call. 7921 /// The caller already checked that \p I calls the appropriate LibFunc with a 7922 /// correct prototype. 7923 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 7924 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7925 7926 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7927 std::pair<SDValue, SDValue> Res = 7928 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 7929 getValue(Arg0), getValue(Arg1), 7930 MachinePointerInfo(Arg0), 7931 MachinePointerInfo(Arg1)); 7932 if (Res.first.getNode()) { 7933 processIntegerCallValue(I, Res.first, true); 7934 PendingLoads.push_back(Res.second); 7935 return true; 7936 } 7937 7938 return false; 7939 } 7940 7941 /// See if we can lower a strlen call into an optimized form. If so, return 7942 /// true and lower it, otherwise return false and it will be lowered like a 7943 /// normal call. 7944 /// The caller already checked that \p I calls the appropriate LibFunc with a 7945 /// correct prototype. 7946 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 7947 const Value *Arg0 = I.getArgOperand(0); 7948 7949 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7950 std::pair<SDValue, SDValue> Res = 7951 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 7952 getValue(Arg0), MachinePointerInfo(Arg0)); 7953 if (Res.first.getNode()) { 7954 processIntegerCallValue(I, Res.first, false); 7955 PendingLoads.push_back(Res.second); 7956 return true; 7957 } 7958 7959 return false; 7960 } 7961 7962 /// See if we can lower a strnlen call into an optimized form. If so, return 7963 /// true and lower it, otherwise return false and it will be lowered like a 7964 /// normal call. 7965 /// The caller already checked that \p I calls the appropriate LibFunc with a 7966 /// correct prototype. 7967 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 7968 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7969 7970 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7971 std::pair<SDValue, SDValue> Res = 7972 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 7973 getValue(Arg0), getValue(Arg1), 7974 MachinePointerInfo(Arg0)); 7975 if (Res.first.getNode()) { 7976 processIntegerCallValue(I, Res.first, false); 7977 PendingLoads.push_back(Res.second); 7978 return true; 7979 } 7980 7981 return false; 7982 } 7983 7984 /// See if we can lower a unary floating-point operation into an SDNode with 7985 /// the specified Opcode. If so, return true and lower it, otherwise return 7986 /// false and it will be lowered like a normal call. 7987 /// The caller already checked that \p I calls the appropriate LibFunc with a 7988 /// correct prototype. 7989 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 7990 unsigned Opcode) { 7991 // We already checked this call's prototype; verify it doesn't modify errno. 7992 if (!I.onlyReadsMemory()) 7993 return false; 7994 7995 SDNodeFlags Flags; 7996 Flags.copyFMF(cast<FPMathOperator>(I)); 7997 7998 SDValue Tmp = getValue(I.getArgOperand(0)); 7999 setValue(&I, 8000 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 8001 return true; 8002 } 8003 8004 /// See if we can lower a binary floating-point operation into an SDNode with 8005 /// the specified Opcode. If so, return true and lower it. Otherwise return 8006 /// false, and it will be lowered like a normal call. 8007 /// The caller already checked that \p I calls the appropriate LibFunc with a 8008 /// correct prototype. 8009 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 8010 unsigned Opcode) { 8011 // We already checked this call's prototype; verify it doesn't modify errno. 8012 if (!I.onlyReadsMemory()) 8013 return false; 8014 8015 SDNodeFlags Flags; 8016 Flags.copyFMF(cast<FPMathOperator>(I)); 8017 8018 SDValue Tmp0 = getValue(I.getArgOperand(0)); 8019 SDValue Tmp1 = getValue(I.getArgOperand(1)); 8020 EVT VT = Tmp0.getValueType(); 8021 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 8022 return true; 8023 } 8024 8025 void SelectionDAGBuilder::visitCall(const CallInst &I) { 8026 // Handle inline assembly differently. 8027 if (I.isInlineAsm()) { 8028 visitInlineAsm(I); 8029 return; 8030 } 8031 8032 if (Function *F = I.getCalledFunction()) { 8033 diagnoseDontCall(I); 8034 8035 if (F->isDeclaration()) { 8036 // Is this an LLVM intrinsic or a target-specific intrinsic? 8037 unsigned IID = F->getIntrinsicID(); 8038 if (!IID) 8039 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 8040 IID = II->getIntrinsicID(F); 8041 8042 if (IID) { 8043 visitIntrinsicCall(I, IID); 8044 return; 8045 } 8046 } 8047 8048 // Check for well-known libc/libm calls. If the function is internal, it 8049 // can't be a library call. Don't do the check if marked as nobuiltin for 8050 // some reason or the call site requires strict floating point semantics. 8051 LibFunc Func; 8052 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 8053 F->hasName() && LibInfo->getLibFunc(*F, Func) && 8054 LibInfo->hasOptimizedCodeGen(Func)) { 8055 switch (Func) { 8056 default: break; 8057 case LibFunc_bcmp: 8058 if (visitMemCmpBCmpCall(I)) 8059 return; 8060 break; 8061 case LibFunc_copysign: 8062 case LibFunc_copysignf: 8063 case LibFunc_copysignl: 8064 // We already checked this call's prototype; verify it doesn't modify 8065 // errno. 8066 if (I.onlyReadsMemory()) { 8067 SDValue LHS = getValue(I.getArgOperand(0)); 8068 SDValue RHS = getValue(I.getArgOperand(1)); 8069 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 8070 LHS.getValueType(), LHS, RHS)); 8071 return; 8072 } 8073 break; 8074 case LibFunc_fabs: 8075 case LibFunc_fabsf: 8076 case LibFunc_fabsl: 8077 if (visitUnaryFloatCall(I, ISD::FABS)) 8078 return; 8079 break; 8080 case LibFunc_fmin: 8081 case LibFunc_fminf: 8082 case LibFunc_fminl: 8083 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 8084 return; 8085 break; 8086 case LibFunc_fmax: 8087 case LibFunc_fmaxf: 8088 case LibFunc_fmaxl: 8089 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 8090 return; 8091 break; 8092 case LibFunc_sin: 8093 case LibFunc_sinf: 8094 case LibFunc_sinl: 8095 if (visitUnaryFloatCall(I, ISD::FSIN)) 8096 return; 8097 break; 8098 case LibFunc_cos: 8099 case LibFunc_cosf: 8100 case LibFunc_cosl: 8101 if (visitUnaryFloatCall(I, ISD::FCOS)) 8102 return; 8103 break; 8104 case LibFunc_sqrt: 8105 case LibFunc_sqrtf: 8106 case LibFunc_sqrtl: 8107 case LibFunc_sqrt_finite: 8108 case LibFunc_sqrtf_finite: 8109 case LibFunc_sqrtl_finite: 8110 if (visitUnaryFloatCall(I, ISD::FSQRT)) 8111 return; 8112 break; 8113 case LibFunc_floor: 8114 case LibFunc_floorf: 8115 case LibFunc_floorl: 8116 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 8117 return; 8118 break; 8119 case LibFunc_nearbyint: 8120 case LibFunc_nearbyintf: 8121 case LibFunc_nearbyintl: 8122 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 8123 return; 8124 break; 8125 case LibFunc_ceil: 8126 case LibFunc_ceilf: 8127 case LibFunc_ceill: 8128 if (visitUnaryFloatCall(I, ISD::FCEIL)) 8129 return; 8130 break; 8131 case LibFunc_rint: 8132 case LibFunc_rintf: 8133 case LibFunc_rintl: 8134 if (visitUnaryFloatCall(I, ISD::FRINT)) 8135 return; 8136 break; 8137 case LibFunc_round: 8138 case LibFunc_roundf: 8139 case LibFunc_roundl: 8140 if (visitUnaryFloatCall(I, ISD::FROUND)) 8141 return; 8142 break; 8143 case LibFunc_trunc: 8144 case LibFunc_truncf: 8145 case LibFunc_truncl: 8146 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 8147 return; 8148 break; 8149 case LibFunc_log2: 8150 case LibFunc_log2f: 8151 case LibFunc_log2l: 8152 if (visitUnaryFloatCall(I, ISD::FLOG2)) 8153 return; 8154 break; 8155 case LibFunc_exp2: 8156 case LibFunc_exp2f: 8157 case LibFunc_exp2l: 8158 if (visitUnaryFloatCall(I, ISD::FEXP2)) 8159 return; 8160 break; 8161 case LibFunc_memcmp: 8162 if (visitMemCmpBCmpCall(I)) 8163 return; 8164 break; 8165 case LibFunc_mempcpy: 8166 if (visitMemPCpyCall(I)) 8167 return; 8168 break; 8169 case LibFunc_memchr: 8170 if (visitMemChrCall(I)) 8171 return; 8172 break; 8173 case LibFunc_strcpy: 8174 if (visitStrCpyCall(I, false)) 8175 return; 8176 break; 8177 case LibFunc_stpcpy: 8178 if (visitStrCpyCall(I, true)) 8179 return; 8180 break; 8181 case LibFunc_strcmp: 8182 if (visitStrCmpCall(I)) 8183 return; 8184 break; 8185 case LibFunc_strlen: 8186 if (visitStrLenCall(I)) 8187 return; 8188 break; 8189 case LibFunc_strnlen: 8190 if (visitStrNLenCall(I)) 8191 return; 8192 break; 8193 } 8194 } 8195 } 8196 8197 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 8198 // have to do anything here to lower funclet bundles. 8199 // CFGuardTarget bundles are lowered in LowerCallTo. 8200 assert(!I.hasOperandBundlesOtherThan( 8201 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 8202 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated, 8203 LLVMContext::OB_clang_arc_attachedcall}) && 8204 "Cannot lower calls with arbitrary operand bundles!"); 8205 8206 SDValue Callee = getValue(I.getCalledOperand()); 8207 8208 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 8209 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 8210 else 8211 // Check if we can potentially perform a tail call. More detailed checking 8212 // is be done within LowerCallTo, after more information about the call is 8213 // known. 8214 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 8215 } 8216 8217 namespace { 8218 8219 /// AsmOperandInfo - This contains information for each constraint that we are 8220 /// lowering. 8221 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 8222 public: 8223 /// CallOperand - If this is the result output operand or a clobber 8224 /// this is null, otherwise it is the incoming operand to the CallInst. 8225 /// This gets modified as the asm is processed. 8226 SDValue CallOperand; 8227 8228 /// AssignedRegs - If this is a register or register class operand, this 8229 /// contains the set of register corresponding to the operand. 8230 RegsForValue AssignedRegs; 8231 8232 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 8233 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 8234 } 8235 8236 /// Whether or not this operand accesses memory 8237 bool hasMemory(const TargetLowering &TLI) const { 8238 // Indirect operand accesses access memory. 8239 if (isIndirect) 8240 return true; 8241 8242 for (const auto &Code : Codes) 8243 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 8244 return true; 8245 8246 return false; 8247 } 8248 8249 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 8250 /// corresponds to. If there is no Value* for this operand, it returns 8251 /// MVT::Other. 8252 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 8253 const DataLayout &DL, 8254 llvm::Type *ParamElemType) const { 8255 if (!CallOperandVal) return MVT::Other; 8256 8257 if (isa<BasicBlock>(CallOperandVal)) 8258 return TLI.getProgramPointerTy(DL); 8259 8260 llvm::Type *OpTy = CallOperandVal->getType(); 8261 8262 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 8263 // If this is an indirect operand, the operand is a pointer to the 8264 // accessed type. 8265 if (isIndirect) { 8266 OpTy = ParamElemType; 8267 assert(OpTy && "Indirect opernad must have elementtype attribute"); 8268 } 8269 8270 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 8271 if (StructType *STy = dyn_cast<StructType>(OpTy)) 8272 if (STy->getNumElements() == 1) 8273 OpTy = STy->getElementType(0); 8274 8275 // If OpTy is not a single value, it may be a struct/union that we 8276 // can tile with integers. 8277 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 8278 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 8279 switch (BitSize) { 8280 default: break; 8281 case 1: 8282 case 8: 8283 case 16: 8284 case 32: 8285 case 64: 8286 case 128: 8287 OpTy = IntegerType::get(Context, BitSize); 8288 break; 8289 } 8290 } 8291 8292 return TLI.getAsmOperandValueType(DL, OpTy, true); 8293 } 8294 }; 8295 8296 8297 } // end anonymous namespace 8298 8299 /// Make sure that the output operand \p OpInfo and its corresponding input 8300 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 8301 /// out). 8302 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 8303 SDISelAsmOperandInfo &MatchingOpInfo, 8304 SelectionDAG &DAG) { 8305 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 8306 return; 8307 8308 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 8309 const auto &TLI = DAG.getTargetLoweringInfo(); 8310 8311 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 8312 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 8313 OpInfo.ConstraintVT); 8314 std::pair<unsigned, const TargetRegisterClass *> InputRC = 8315 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 8316 MatchingOpInfo.ConstraintVT); 8317 if ((OpInfo.ConstraintVT.isInteger() != 8318 MatchingOpInfo.ConstraintVT.isInteger()) || 8319 (MatchRC.second != InputRC.second)) { 8320 // FIXME: error out in a more elegant fashion 8321 report_fatal_error("Unsupported asm: input constraint" 8322 " with a matching output constraint of" 8323 " incompatible type!"); 8324 } 8325 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 8326 } 8327 8328 /// Get a direct memory input to behave well as an indirect operand. 8329 /// This may introduce stores, hence the need for a \p Chain. 8330 /// \return The (possibly updated) chain. 8331 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 8332 SDISelAsmOperandInfo &OpInfo, 8333 SelectionDAG &DAG) { 8334 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8335 8336 // If we don't have an indirect input, put it in the constpool if we can, 8337 // otherwise spill it to a stack slot. 8338 // TODO: This isn't quite right. We need to handle these according to 8339 // the addressing mode that the constraint wants. Also, this may take 8340 // an additional register for the computation and we don't want that 8341 // either. 8342 8343 // If the operand is a float, integer, or vector constant, spill to a 8344 // constant pool entry to get its address. 8345 const Value *OpVal = OpInfo.CallOperandVal; 8346 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 8347 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 8348 OpInfo.CallOperand = DAG.getConstantPool( 8349 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 8350 return Chain; 8351 } 8352 8353 // Otherwise, create a stack slot and emit a store to it before the asm. 8354 Type *Ty = OpVal->getType(); 8355 auto &DL = DAG.getDataLayout(); 8356 uint64_t TySize = DL.getTypeAllocSize(Ty); 8357 MachineFunction &MF = DAG.getMachineFunction(); 8358 int SSFI = MF.getFrameInfo().CreateStackObject( 8359 TySize, DL.getPrefTypeAlign(Ty), false); 8360 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 8361 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 8362 MachinePointerInfo::getFixedStack(MF, SSFI), 8363 TLI.getMemValueType(DL, Ty)); 8364 OpInfo.CallOperand = StackSlot; 8365 8366 return Chain; 8367 } 8368 8369 /// GetRegistersForValue - Assign registers (virtual or physical) for the 8370 /// specified operand. We prefer to assign virtual registers, to allow the 8371 /// register allocator to handle the assignment process. However, if the asm 8372 /// uses features that we can't model on machineinstrs, we have SDISel do the 8373 /// allocation. This produces generally horrible, but correct, code. 8374 /// 8375 /// OpInfo describes the operand 8376 /// RefOpInfo describes the matching operand if any, the operand otherwise 8377 static llvm::Optional<unsigned> 8378 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 8379 SDISelAsmOperandInfo &OpInfo, 8380 SDISelAsmOperandInfo &RefOpInfo) { 8381 LLVMContext &Context = *DAG.getContext(); 8382 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8383 8384 MachineFunction &MF = DAG.getMachineFunction(); 8385 SmallVector<unsigned, 4> Regs; 8386 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8387 8388 // No work to do for memory operations. 8389 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 8390 return None; 8391 8392 // If this is a constraint for a single physreg, or a constraint for a 8393 // register class, find it. 8394 unsigned AssignedReg; 8395 const TargetRegisterClass *RC; 8396 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 8397 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 8398 // RC is unset only on failure. Return immediately. 8399 if (!RC) 8400 return None; 8401 8402 // Get the actual register value type. This is important, because the user 8403 // may have asked for (e.g.) the AX register in i32 type. We need to 8404 // remember that AX is actually i16 to get the right extension. 8405 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 8406 8407 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) { 8408 // If this is an FP operand in an integer register (or visa versa), or more 8409 // generally if the operand value disagrees with the register class we plan 8410 // to stick it in, fix the operand type. 8411 // 8412 // If this is an input value, the bitcast to the new type is done now. 8413 // Bitcast for output value is done at the end of visitInlineAsm(). 8414 if ((OpInfo.Type == InlineAsm::isOutput || 8415 OpInfo.Type == InlineAsm::isInput) && 8416 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 8417 // Try to convert to the first EVT that the reg class contains. If the 8418 // types are identical size, use a bitcast to convert (e.g. two differing 8419 // vector types). Note: output bitcast is done at the end of 8420 // visitInlineAsm(). 8421 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 8422 // Exclude indirect inputs while they are unsupported because the code 8423 // to perform the load is missing and thus OpInfo.CallOperand still 8424 // refers to the input address rather than the pointed-to value. 8425 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 8426 OpInfo.CallOperand = 8427 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 8428 OpInfo.ConstraintVT = RegVT; 8429 // If the operand is an FP value and we want it in integer registers, 8430 // use the corresponding integer type. This turns an f64 value into 8431 // i64, which can be passed with two i32 values on a 32-bit machine. 8432 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 8433 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 8434 if (OpInfo.Type == InlineAsm::isInput) 8435 OpInfo.CallOperand = 8436 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 8437 OpInfo.ConstraintVT = VT; 8438 } 8439 } 8440 } 8441 8442 // No need to allocate a matching input constraint since the constraint it's 8443 // matching to has already been allocated. 8444 if (OpInfo.isMatchingInputConstraint()) 8445 return None; 8446 8447 EVT ValueVT = OpInfo.ConstraintVT; 8448 if (OpInfo.ConstraintVT == MVT::Other) 8449 ValueVT = RegVT; 8450 8451 // Initialize NumRegs. 8452 unsigned NumRegs = 1; 8453 if (OpInfo.ConstraintVT != MVT::Other) 8454 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT); 8455 8456 // If this is a constraint for a specific physical register, like {r17}, 8457 // assign it now. 8458 8459 // If this associated to a specific register, initialize iterator to correct 8460 // place. If virtual, make sure we have enough registers 8461 8462 // Initialize iterator if necessary 8463 TargetRegisterClass::iterator I = RC->begin(); 8464 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8465 8466 // Do not check for single registers. 8467 if (AssignedReg) { 8468 I = std::find(I, RC->end(), AssignedReg); 8469 if (I == RC->end()) { 8470 // RC does not contain the selected register, which indicates a 8471 // mismatch between the register and the required type/bitwidth. 8472 return {AssignedReg}; 8473 } 8474 } 8475 8476 for (; NumRegs; --NumRegs, ++I) { 8477 assert(I != RC->end() && "Ran out of registers to allocate!"); 8478 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 8479 Regs.push_back(R); 8480 } 8481 8482 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 8483 return None; 8484 } 8485 8486 static unsigned 8487 findMatchingInlineAsmOperand(unsigned OperandNo, 8488 const std::vector<SDValue> &AsmNodeOperands) { 8489 // Scan until we find the definition we already emitted of this operand. 8490 unsigned CurOp = InlineAsm::Op_FirstOperand; 8491 for (; OperandNo; --OperandNo) { 8492 // Advance to the next operand. 8493 unsigned OpFlag = 8494 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8495 assert((InlineAsm::isRegDefKind(OpFlag) || 8496 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 8497 InlineAsm::isMemKind(OpFlag)) && 8498 "Skipped past definitions?"); 8499 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 8500 } 8501 return CurOp; 8502 } 8503 8504 namespace { 8505 8506 class ExtraFlags { 8507 unsigned Flags = 0; 8508 8509 public: 8510 explicit ExtraFlags(const CallBase &Call) { 8511 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8512 if (IA->hasSideEffects()) 8513 Flags |= InlineAsm::Extra_HasSideEffects; 8514 if (IA->isAlignStack()) 8515 Flags |= InlineAsm::Extra_IsAlignStack; 8516 if (Call.isConvergent()) 8517 Flags |= InlineAsm::Extra_IsConvergent; 8518 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 8519 } 8520 8521 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 8522 // Ideally, we would only check against memory constraints. However, the 8523 // meaning of an Other constraint can be target-specific and we can't easily 8524 // reason about it. Therefore, be conservative and set MayLoad/MayStore 8525 // for Other constraints as well. 8526 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8527 OpInfo.ConstraintType == TargetLowering::C_Other) { 8528 if (OpInfo.Type == InlineAsm::isInput) 8529 Flags |= InlineAsm::Extra_MayLoad; 8530 else if (OpInfo.Type == InlineAsm::isOutput) 8531 Flags |= InlineAsm::Extra_MayStore; 8532 else if (OpInfo.Type == InlineAsm::isClobber) 8533 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 8534 } 8535 } 8536 8537 unsigned get() const { return Flags; } 8538 }; 8539 8540 } // end anonymous namespace 8541 8542 /// visitInlineAsm - Handle a call to an InlineAsm object. 8543 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call, 8544 const BasicBlock *EHPadBB) { 8545 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8546 8547 /// ConstraintOperands - Information about all of the constraints. 8548 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 8549 8550 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8551 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 8552 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 8553 8554 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 8555 // AsmDialect, MayLoad, MayStore). 8556 bool HasSideEffect = IA->hasSideEffects(); 8557 ExtraFlags ExtraInfo(Call); 8558 8559 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 8560 unsigned ResNo = 0; // ResNo - The result number of the next output. 8561 unsigned NumMatchingOps = 0; 8562 for (auto &T : TargetConstraints) { 8563 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 8564 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8565 8566 // Compute the value type for each operand. 8567 if (OpInfo.hasArg()) { 8568 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 8569 8570 // Process the call argument. BasicBlocks are labels, currently appearing 8571 // only in asm's. 8572 if (isa<CallBrInst>(Call) && 8573 ArgNo >= (cast<CallBrInst>(&Call)->arg_size() - 8574 cast<CallBrInst>(&Call)->getNumIndirectDests() - 8575 NumMatchingOps) && 8576 (NumMatchingOps == 0 || 8577 ArgNo < (cast<CallBrInst>(&Call)->arg_size() - NumMatchingOps))) { 8578 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal); 8579 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true); 8580 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT); 8581 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 8582 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 8583 } else { 8584 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8585 } 8586 8587 Type *ParamElemTy = Call.getAttributes().getParamElementType(ArgNo); 8588 EVT VT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 8589 DAG.getDataLayout(), ParamElemTy); 8590 OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other; 8591 ArgNo++; 8592 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 8593 // The return value of the call is this value. As such, there is no 8594 // corresponding argument. 8595 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 8596 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 8597 OpInfo.ConstraintVT = TLI.getSimpleValueType( 8598 DAG.getDataLayout(), STy->getElementType(ResNo)); 8599 } else { 8600 assert(ResNo == 0 && "Asm only has one result!"); 8601 OpInfo.ConstraintVT = TLI.getAsmOperandValueType( 8602 DAG.getDataLayout(), Call.getType()).getSimpleVT(); 8603 } 8604 ++ResNo; 8605 } else { 8606 OpInfo.ConstraintVT = MVT::Other; 8607 } 8608 8609 if (OpInfo.hasMatchingInput()) 8610 ++NumMatchingOps; 8611 8612 if (!HasSideEffect) 8613 HasSideEffect = OpInfo.hasMemory(TLI); 8614 8615 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8616 // FIXME: Could we compute this on OpInfo rather than T? 8617 8618 // Compute the constraint code and ConstraintType to use. 8619 TLI.ComputeConstraintToUse(T, SDValue()); 8620 8621 if (T.ConstraintType == TargetLowering::C_Immediate && 8622 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8623 // We've delayed emitting a diagnostic like the "n" constraint because 8624 // inlining could cause an integer showing up. 8625 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 8626 "' expects an integer constant " 8627 "expression"); 8628 8629 ExtraInfo.update(T); 8630 } 8631 8632 // We won't need to flush pending loads if this asm doesn't touch 8633 // memory and is nonvolatile. 8634 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8635 8636 bool EmitEHLabels = isa<InvokeInst>(Call) && IA->canThrow(); 8637 if (EmitEHLabels) { 8638 assert(EHPadBB && "InvokeInst must have an EHPadBB"); 8639 } 8640 bool IsCallBr = isa<CallBrInst>(Call); 8641 8642 if (IsCallBr || EmitEHLabels) { 8643 // If this is a callbr or invoke we need to flush pending exports since 8644 // inlineasm_br and invoke are terminators. 8645 // We need to do this before nodes are glued to the inlineasm_br node. 8646 Chain = getControlRoot(); 8647 } 8648 8649 MCSymbol *BeginLabel = nullptr; 8650 if (EmitEHLabels) { 8651 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel); 8652 } 8653 8654 // Second pass over the constraints: compute which constraint option to use. 8655 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8656 // If this is an output operand with a matching input operand, look up the 8657 // matching input. If their types mismatch, e.g. one is an integer, the 8658 // other is floating point, or their sizes are different, flag it as an 8659 // error. 8660 if (OpInfo.hasMatchingInput()) { 8661 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8662 patchMatchingInput(OpInfo, Input, DAG); 8663 } 8664 8665 // Compute the constraint code and ConstraintType to use. 8666 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8667 8668 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8669 OpInfo.Type == InlineAsm::isClobber) 8670 continue; 8671 8672 // If this is a memory input, and if the operand is not indirect, do what we 8673 // need to provide an address for the memory input. 8674 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8675 !OpInfo.isIndirect) { 8676 assert((OpInfo.isMultipleAlternative || 8677 (OpInfo.Type == InlineAsm::isInput)) && 8678 "Can only indirectify direct input operands!"); 8679 8680 // Memory operands really want the address of the value. 8681 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8682 8683 // There is no longer a Value* corresponding to this operand. 8684 OpInfo.CallOperandVal = nullptr; 8685 8686 // It is now an indirect operand. 8687 OpInfo.isIndirect = true; 8688 } 8689 8690 } 8691 8692 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8693 std::vector<SDValue> AsmNodeOperands; 8694 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8695 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8696 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 8697 8698 // If we have a !srcloc metadata node associated with it, we want to attach 8699 // this to the ultimately generated inline asm machineinstr. To do this, we 8700 // pass in the third operand as this (potentially null) inline asm MDNode. 8701 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 8702 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8703 8704 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8705 // bits as operand 3. 8706 AsmNodeOperands.push_back(DAG.getTargetConstant( 8707 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8708 8709 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8710 // this, assign virtual and physical registers for inputs and otput. 8711 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8712 // Assign Registers. 8713 SDISelAsmOperandInfo &RefOpInfo = 8714 OpInfo.isMatchingInputConstraint() 8715 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8716 : OpInfo; 8717 const auto RegError = 8718 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8719 if (RegError.hasValue()) { 8720 const MachineFunction &MF = DAG.getMachineFunction(); 8721 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8722 const char *RegName = TRI.getName(RegError.getValue()); 8723 emitInlineAsmError(Call, "register '" + Twine(RegName) + 8724 "' allocated for constraint '" + 8725 Twine(OpInfo.ConstraintCode) + 8726 "' does not match required type"); 8727 return; 8728 } 8729 8730 auto DetectWriteToReservedRegister = [&]() { 8731 const MachineFunction &MF = DAG.getMachineFunction(); 8732 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8733 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 8734 if (Register::isPhysicalRegister(Reg) && 8735 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 8736 const char *RegName = TRI.getName(Reg); 8737 emitInlineAsmError(Call, "write to reserved register '" + 8738 Twine(RegName) + "'"); 8739 return true; 8740 } 8741 } 8742 return false; 8743 }; 8744 8745 switch (OpInfo.Type) { 8746 case InlineAsm::isOutput: 8747 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8748 unsigned ConstraintID = 8749 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8750 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8751 "Failed to convert memory constraint code to constraint id."); 8752 8753 // Add information to the INLINEASM node to know about this output. 8754 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8755 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8756 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8757 MVT::i32)); 8758 AsmNodeOperands.push_back(OpInfo.CallOperand); 8759 } else { 8760 // Otherwise, this outputs to a register (directly for C_Register / 8761 // C_RegisterClass, and a target-defined fashion for 8762 // C_Immediate/C_Other). Find a register that we can use. 8763 if (OpInfo.AssignedRegs.Regs.empty()) { 8764 emitInlineAsmError( 8765 Call, "couldn't allocate output register for constraint '" + 8766 Twine(OpInfo.ConstraintCode) + "'"); 8767 return; 8768 } 8769 8770 if (DetectWriteToReservedRegister()) 8771 return; 8772 8773 // Add information to the INLINEASM node to know that this register is 8774 // set. 8775 OpInfo.AssignedRegs.AddInlineAsmOperands( 8776 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8777 : InlineAsm::Kind_RegDef, 8778 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8779 } 8780 break; 8781 8782 case InlineAsm::isInput: { 8783 SDValue InOperandVal = OpInfo.CallOperand; 8784 8785 if (OpInfo.isMatchingInputConstraint()) { 8786 // If this is required to match an output register we have already set, 8787 // just use its register. 8788 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8789 AsmNodeOperands); 8790 unsigned OpFlag = 8791 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8792 if (InlineAsm::isRegDefKind(OpFlag) || 8793 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8794 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8795 if (OpInfo.isIndirect) { 8796 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8797 emitInlineAsmError(Call, "inline asm not supported yet: " 8798 "don't know how to handle tied " 8799 "indirect register inputs"); 8800 return; 8801 } 8802 8803 SmallVector<unsigned, 4> Regs; 8804 MachineFunction &MF = DAG.getMachineFunction(); 8805 MachineRegisterInfo &MRI = MF.getRegInfo(); 8806 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8807 auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]); 8808 Register TiedReg = R->getReg(); 8809 MVT RegVT = R->getSimpleValueType(0); 8810 const TargetRegisterClass *RC = 8811 TiedReg.isVirtual() ? MRI.getRegClass(TiedReg) 8812 : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT) 8813 : TRI.getMinimalPhysRegClass(TiedReg); 8814 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8815 for (unsigned i = 0; i != NumRegs; ++i) 8816 Regs.push_back(MRI.createVirtualRegister(RC)); 8817 8818 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8819 8820 SDLoc dl = getCurSDLoc(); 8821 // Use the produced MatchedRegs object to 8822 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call); 8823 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8824 true, OpInfo.getMatchedOperand(), dl, 8825 DAG, AsmNodeOperands); 8826 break; 8827 } 8828 8829 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8830 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8831 "Unexpected number of operands"); 8832 // Add information to the INLINEASM node to know about this input. 8833 // See InlineAsm.h isUseOperandTiedToDef. 8834 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8835 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8836 OpInfo.getMatchedOperand()); 8837 AsmNodeOperands.push_back(DAG.getTargetConstant( 8838 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8839 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8840 break; 8841 } 8842 8843 // Treat indirect 'X' constraint as memory. 8844 if (OpInfo.ConstraintType == TargetLowering::C_Other && 8845 OpInfo.isIndirect) 8846 OpInfo.ConstraintType = TargetLowering::C_Memory; 8847 8848 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 8849 OpInfo.ConstraintType == TargetLowering::C_Other) { 8850 std::vector<SDValue> Ops; 8851 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8852 Ops, DAG); 8853 if (Ops.empty()) { 8854 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 8855 if (isa<ConstantSDNode>(InOperandVal)) { 8856 emitInlineAsmError(Call, "value out of range for constraint '" + 8857 Twine(OpInfo.ConstraintCode) + "'"); 8858 return; 8859 } 8860 8861 emitInlineAsmError(Call, 8862 "invalid operand for inline asm constraint '" + 8863 Twine(OpInfo.ConstraintCode) + "'"); 8864 return; 8865 } 8866 8867 // Add information to the INLINEASM node to know about this input. 8868 unsigned ResOpType = 8869 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8870 AsmNodeOperands.push_back(DAG.getTargetConstant( 8871 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8872 llvm::append_range(AsmNodeOperands, Ops); 8873 break; 8874 } 8875 8876 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8877 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 8878 assert(InOperandVal.getValueType() == 8879 TLI.getPointerTy(DAG.getDataLayout()) && 8880 "Memory operands expect pointer values"); 8881 8882 unsigned ConstraintID = 8883 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8884 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8885 "Failed to convert memory constraint code to constraint id."); 8886 8887 // Add information to the INLINEASM node to know about this input. 8888 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8889 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8890 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8891 getCurSDLoc(), 8892 MVT::i32)); 8893 AsmNodeOperands.push_back(InOperandVal); 8894 break; 8895 } 8896 8897 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 8898 OpInfo.ConstraintType == TargetLowering::C_Register) && 8899 "Unknown constraint type!"); 8900 8901 // TODO: Support this. 8902 if (OpInfo.isIndirect) { 8903 emitInlineAsmError( 8904 Call, "Don't know how to handle indirect register inputs yet " 8905 "for constraint '" + 8906 Twine(OpInfo.ConstraintCode) + "'"); 8907 return; 8908 } 8909 8910 // Copy the input into the appropriate registers. 8911 if (OpInfo.AssignedRegs.Regs.empty()) { 8912 emitInlineAsmError(Call, 8913 "couldn't allocate input reg for constraint '" + 8914 Twine(OpInfo.ConstraintCode) + "'"); 8915 return; 8916 } 8917 8918 if (DetectWriteToReservedRegister()) 8919 return; 8920 8921 SDLoc dl = getCurSDLoc(); 8922 8923 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 8924 &Call); 8925 8926 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 8927 dl, DAG, AsmNodeOperands); 8928 break; 8929 } 8930 case InlineAsm::isClobber: 8931 // Add the clobbered value to the operand list, so that the register 8932 // allocator is aware that the physreg got clobbered. 8933 if (!OpInfo.AssignedRegs.Regs.empty()) 8934 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 8935 false, 0, getCurSDLoc(), DAG, 8936 AsmNodeOperands); 8937 break; 8938 } 8939 } 8940 8941 // Finish up input operands. Set the input chain and add the flag last. 8942 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 8943 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 8944 8945 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 8946 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 8947 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 8948 Flag = Chain.getValue(1); 8949 8950 // Do additional work to generate outputs. 8951 8952 SmallVector<EVT, 1> ResultVTs; 8953 SmallVector<SDValue, 1> ResultValues; 8954 SmallVector<SDValue, 8> OutChains; 8955 8956 llvm::Type *CallResultType = Call.getType(); 8957 ArrayRef<Type *> ResultTypes; 8958 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 8959 ResultTypes = StructResult->elements(); 8960 else if (!CallResultType->isVoidTy()) 8961 ResultTypes = makeArrayRef(CallResultType); 8962 8963 auto CurResultType = ResultTypes.begin(); 8964 auto handleRegAssign = [&](SDValue V) { 8965 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 8966 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 8967 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 8968 ++CurResultType; 8969 // If the type of the inline asm call site return value is different but has 8970 // same size as the type of the asm output bitcast it. One example of this 8971 // is for vectors with different width / number of elements. This can 8972 // happen for register classes that can contain multiple different value 8973 // types. The preg or vreg allocated may not have the same VT as was 8974 // expected. 8975 // 8976 // This can also happen for a return value that disagrees with the register 8977 // class it is put in, eg. a double in a general-purpose register on a 8978 // 32-bit machine. 8979 if (ResultVT != V.getValueType() && 8980 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 8981 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 8982 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 8983 V.getValueType().isInteger()) { 8984 // If a result value was tied to an input value, the computed result 8985 // may have a wider width than the expected result. Extract the 8986 // relevant portion. 8987 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 8988 } 8989 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 8990 ResultVTs.push_back(ResultVT); 8991 ResultValues.push_back(V); 8992 }; 8993 8994 // Deal with output operands. 8995 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8996 if (OpInfo.Type == InlineAsm::isOutput) { 8997 SDValue Val; 8998 // Skip trivial output operands. 8999 if (OpInfo.AssignedRegs.Regs.empty()) 9000 continue; 9001 9002 switch (OpInfo.ConstraintType) { 9003 case TargetLowering::C_Register: 9004 case TargetLowering::C_RegisterClass: 9005 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 9006 Chain, &Flag, &Call); 9007 break; 9008 case TargetLowering::C_Immediate: 9009 case TargetLowering::C_Other: 9010 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 9011 OpInfo, DAG); 9012 break; 9013 case TargetLowering::C_Memory: 9014 break; // Already handled. 9015 case TargetLowering::C_Unknown: 9016 assert(false && "Unexpected unknown constraint"); 9017 } 9018 9019 // Indirect output manifest as stores. Record output chains. 9020 if (OpInfo.isIndirect) { 9021 const Value *Ptr = OpInfo.CallOperandVal; 9022 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 9023 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 9024 MachinePointerInfo(Ptr)); 9025 OutChains.push_back(Store); 9026 } else { 9027 // generate CopyFromRegs to associated registers. 9028 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 9029 if (Val.getOpcode() == ISD::MERGE_VALUES) { 9030 for (const SDValue &V : Val->op_values()) 9031 handleRegAssign(V); 9032 } else 9033 handleRegAssign(Val); 9034 } 9035 } 9036 } 9037 9038 // Set results. 9039 if (!ResultValues.empty()) { 9040 assert(CurResultType == ResultTypes.end() && 9041 "Mismatch in number of ResultTypes"); 9042 assert(ResultValues.size() == ResultTypes.size() && 9043 "Mismatch in number of output operands in asm result"); 9044 9045 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 9046 DAG.getVTList(ResultVTs), ResultValues); 9047 setValue(&Call, V); 9048 } 9049 9050 // Collect store chains. 9051 if (!OutChains.empty()) 9052 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 9053 9054 if (EmitEHLabels) { 9055 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel); 9056 } 9057 9058 // Only Update Root if inline assembly has a memory effect. 9059 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr || 9060 EmitEHLabels) 9061 DAG.setRoot(Chain); 9062 } 9063 9064 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 9065 const Twine &Message) { 9066 LLVMContext &Ctx = *DAG.getContext(); 9067 Ctx.emitError(&Call, Message); 9068 9069 // Make sure we leave the DAG in a valid state 9070 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9071 SmallVector<EVT, 1> ValueVTs; 9072 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 9073 9074 if (ValueVTs.empty()) 9075 return; 9076 9077 SmallVector<SDValue, 1> Ops; 9078 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 9079 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 9080 9081 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 9082 } 9083 9084 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 9085 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 9086 MVT::Other, getRoot(), 9087 getValue(I.getArgOperand(0)), 9088 DAG.getSrcValue(I.getArgOperand(0)))); 9089 } 9090 9091 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 9092 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9093 const DataLayout &DL = DAG.getDataLayout(); 9094 SDValue V = DAG.getVAArg( 9095 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 9096 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 9097 DL.getABITypeAlign(I.getType()).value()); 9098 DAG.setRoot(V.getValue(1)); 9099 9100 if (I.getType()->isPointerTy()) 9101 V = DAG.getPtrExtOrTrunc( 9102 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 9103 setValue(&I, V); 9104 } 9105 9106 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 9107 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 9108 MVT::Other, getRoot(), 9109 getValue(I.getArgOperand(0)), 9110 DAG.getSrcValue(I.getArgOperand(0)))); 9111 } 9112 9113 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 9114 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 9115 MVT::Other, getRoot(), 9116 getValue(I.getArgOperand(0)), 9117 getValue(I.getArgOperand(1)), 9118 DAG.getSrcValue(I.getArgOperand(0)), 9119 DAG.getSrcValue(I.getArgOperand(1)))); 9120 } 9121 9122 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 9123 const Instruction &I, 9124 SDValue Op) { 9125 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 9126 if (!Range) 9127 return Op; 9128 9129 ConstantRange CR = getConstantRangeFromMetadata(*Range); 9130 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 9131 return Op; 9132 9133 APInt Lo = CR.getUnsignedMin(); 9134 if (!Lo.isMinValue()) 9135 return Op; 9136 9137 APInt Hi = CR.getUnsignedMax(); 9138 unsigned Bits = std::max(Hi.getActiveBits(), 9139 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 9140 9141 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 9142 9143 SDLoc SL = getCurSDLoc(); 9144 9145 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 9146 DAG.getValueType(SmallVT)); 9147 unsigned NumVals = Op.getNode()->getNumValues(); 9148 if (NumVals == 1) 9149 return ZExt; 9150 9151 SmallVector<SDValue, 4> Ops; 9152 9153 Ops.push_back(ZExt); 9154 for (unsigned I = 1; I != NumVals; ++I) 9155 Ops.push_back(Op.getValue(I)); 9156 9157 return DAG.getMergeValues(Ops, SL); 9158 } 9159 9160 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 9161 /// the call being lowered. 9162 /// 9163 /// This is a helper for lowering intrinsics that follow a target calling 9164 /// convention or require stack pointer adjustment. Only a subset of the 9165 /// intrinsic's operands need to participate in the calling convention. 9166 void SelectionDAGBuilder::populateCallLoweringInfo( 9167 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 9168 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 9169 bool IsPatchPoint) { 9170 TargetLowering::ArgListTy Args; 9171 Args.reserve(NumArgs); 9172 9173 // Populate the argument list. 9174 // Attributes for args start at offset 1, after the return attribute. 9175 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 9176 ArgI != ArgE; ++ArgI) { 9177 const Value *V = Call->getOperand(ArgI); 9178 9179 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 9180 9181 TargetLowering::ArgListEntry Entry; 9182 Entry.Node = getValue(V); 9183 Entry.Ty = V->getType(); 9184 Entry.setAttributes(Call, ArgI); 9185 Args.push_back(Entry); 9186 } 9187 9188 CLI.setDebugLoc(getCurSDLoc()) 9189 .setChain(getRoot()) 9190 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 9191 .setDiscardResult(Call->use_empty()) 9192 .setIsPatchPoint(IsPatchPoint) 9193 .setIsPreallocated( 9194 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 9195 } 9196 9197 /// Add a stack map intrinsic call's live variable operands to a stackmap 9198 /// or patchpoint target node's operand list. 9199 /// 9200 /// Constants are converted to TargetConstants purely as an optimization to 9201 /// avoid constant materialization and register allocation. 9202 /// 9203 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 9204 /// generate addess computation nodes, and so FinalizeISel can convert the 9205 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 9206 /// address materialization and register allocation, but may also be required 9207 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 9208 /// alloca in the entry block, then the runtime may assume that the alloca's 9209 /// StackMap location can be read immediately after compilation and that the 9210 /// location is valid at any point during execution (this is similar to the 9211 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 9212 /// only available in a register, then the runtime would need to trap when 9213 /// execution reaches the StackMap in order to read the alloca's location. 9214 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 9215 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 9216 SelectionDAGBuilder &Builder) { 9217 for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) { 9218 SDValue OpVal = Builder.getValue(Call.getArgOperand(i)); 9219 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 9220 Ops.push_back( 9221 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 9222 Ops.push_back( 9223 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 9224 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 9225 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 9226 Ops.push_back(Builder.DAG.getTargetFrameIndex( 9227 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 9228 } else 9229 Ops.push_back(OpVal); 9230 } 9231 } 9232 9233 /// Lower llvm.experimental.stackmap directly to its target opcode. 9234 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 9235 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 9236 // [live variables...]) 9237 9238 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 9239 9240 SDValue Chain, InFlag, Callee, NullPtr; 9241 SmallVector<SDValue, 32> Ops; 9242 9243 SDLoc DL = getCurSDLoc(); 9244 Callee = getValue(CI.getCalledOperand()); 9245 NullPtr = DAG.getIntPtrConstant(0, DL, true); 9246 9247 // The stackmap intrinsic only records the live variables (the arguments 9248 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 9249 // intrinsic, this won't be lowered to a function call. This means we don't 9250 // have to worry about calling conventions and target specific lowering code. 9251 // Instead we perform the call lowering right here. 9252 // 9253 // chain, flag = CALLSEQ_START(chain, 0, 0) 9254 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 9255 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 9256 // 9257 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 9258 InFlag = Chain.getValue(1); 9259 9260 // Add the <id> and <numBytes> constants. 9261 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 9262 Ops.push_back(DAG.getTargetConstant( 9263 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 9264 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 9265 Ops.push_back(DAG.getTargetConstant( 9266 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 9267 MVT::i32)); 9268 9269 // Push live variables for the stack map. 9270 addStackMapLiveVars(CI, 2, DL, Ops, *this); 9271 9272 // We are not pushing any register mask info here on the operands list, 9273 // because the stackmap doesn't clobber anything. 9274 9275 // Push the chain and the glue flag. 9276 Ops.push_back(Chain); 9277 Ops.push_back(InFlag); 9278 9279 // Create the STACKMAP node. 9280 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9281 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 9282 Chain = SDValue(SM, 0); 9283 InFlag = Chain.getValue(1); 9284 9285 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 9286 9287 // Stackmaps don't generate values, so nothing goes into the NodeMap. 9288 9289 // Set the root to the target-lowered call chain. 9290 DAG.setRoot(Chain); 9291 9292 // Inform the Frame Information that we have a stackmap in this function. 9293 FuncInfo.MF->getFrameInfo().setHasStackMap(); 9294 } 9295 9296 /// Lower llvm.experimental.patchpoint directly to its target opcode. 9297 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 9298 const BasicBlock *EHPadBB) { 9299 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 9300 // i32 <numBytes>, 9301 // i8* <target>, 9302 // i32 <numArgs>, 9303 // [Args...], 9304 // [live variables...]) 9305 9306 CallingConv::ID CC = CB.getCallingConv(); 9307 bool IsAnyRegCC = CC == CallingConv::AnyReg; 9308 bool HasDef = !CB.getType()->isVoidTy(); 9309 SDLoc dl = getCurSDLoc(); 9310 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 9311 9312 // Handle immediate and symbolic callees. 9313 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 9314 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 9315 /*isTarget=*/true); 9316 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 9317 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 9318 SDLoc(SymbolicCallee), 9319 SymbolicCallee->getValueType(0)); 9320 9321 // Get the real number of arguments participating in the call <numArgs> 9322 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 9323 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 9324 9325 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 9326 // Intrinsics include all meta-operands up to but not including CC. 9327 unsigned NumMetaOpers = PatchPointOpers::CCPos; 9328 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 9329 "Not enough arguments provided to the patchpoint intrinsic"); 9330 9331 // For AnyRegCC the arguments are lowered later on manually. 9332 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 9333 Type *ReturnTy = 9334 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 9335 9336 TargetLowering::CallLoweringInfo CLI(DAG); 9337 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 9338 ReturnTy, true); 9339 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 9340 9341 SDNode *CallEnd = Result.second.getNode(); 9342 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 9343 CallEnd = CallEnd->getOperand(0).getNode(); 9344 9345 /// Get a call instruction from the call sequence chain. 9346 /// Tail calls are not allowed. 9347 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 9348 "Expected a callseq node."); 9349 SDNode *Call = CallEnd->getOperand(0).getNode(); 9350 bool HasGlue = Call->getGluedNode(); 9351 9352 // Replace the target specific call node with the patchable intrinsic. 9353 SmallVector<SDValue, 8> Ops; 9354 9355 // Add the <id> and <numBytes> constants. 9356 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 9357 Ops.push_back(DAG.getTargetConstant( 9358 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 9359 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 9360 Ops.push_back(DAG.getTargetConstant( 9361 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 9362 MVT::i32)); 9363 9364 // Add the callee. 9365 Ops.push_back(Callee); 9366 9367 // Adjust <numArgs> to account for any arguments that have been passed on the 9368 // stack instead. 9369 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 9370 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 9371 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 9372 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 9373 9374 // Add the calling convention 9375 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 9376 9377 // Add the arguments we omitted previously. The register allocator should 9378 // place these in any free register. 9379 if (IsAnyRegCC) 9380 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 9381 Ops.push_back(getValue(CB.getArgOperand(i))); 9382 9383 // Push the arguments from the call instruction up to the register mask. 9384 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 9385 Ops.append(Call->op_begin() + 2, e); 9386 9387 // Push live variables for the stack map. 9388 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 9389 9390 // Push the register mask info. 9391 if (HasGlue) 9392 Ops.push_back(*(Call->op_end()-2)); 9393 else 9394 Ops.push_back(*(Call->op_end()-1)); 9395 9396 // Push the chain (this is originally the first operand of the call, but 9397 // becomes now the last or second to last operand). 9398 Ops.push_back(*(Call->op_begin())); 9399 9400 // Push the glue flag (last operand). 9401 if (HasGlue) 9402 Ops.push_back(*(Call->op_end()-1)); 9403 9404 SDVTList NodeTys; 9405 if (IsAnyRegCC && HasDef) { 9406 // Create the return types based on the intrinsic definition 9407 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9408 SmallVector<EVT, 3> ValueVTs; 9409 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 9410 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 9411 9412 // There is always a chain and a glue type at the end 9413 ValueVTs.push_back(MVT::Other); 9414 ValueVTs.push_back(MVT::Glue); 9415 NodeTys = DAG.getVTList(ValueVTs); 9416 } else 9417 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9418 9419 // Replace the target specific call node with a PATCHPOINT node. 9420 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 9421 dl, NodeTys, Ops); 9422 9423 // Update the NodeMap. 9424 if (HasDef) { 9425 if (IsAnyRegCC) 9426 setValue(&CB, SDValue(MN, 0)); 9427 else 9428 setValue(&CB, Result.first); 9429 } 9430 9431 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 9432 // call sequence. Furthermore the location of the chain and glue can change 9433 // when the AnyReg calling convention is used and the intrinsic returns a 9434 // value. 9435 if (IsAnyRegCC && HasDef) { 9436 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 9437 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 9438 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 9439 } else 9440 DAG.ReplaceAllUsesWith(Call, MN); 9441 DAG.DeleteNode(Call); 9442 9443 // Inform the Frame Information that we have a patchpoint in this function. 9444 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 9445 } 9446 9447 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 9448 unsigned Intrinsic) { 9449 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9450 SDValue Op1 = getValue(I.getArgOperand(0)); 9451 SDValue Op2; 9452 if (I.arg_size() > 1) 9453 Op2 = getValue(I.getArgOperand(1)); 9454 SDLoc dl = getCurSDLoc(); 9455 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 9456 SDValue Res; 9457 SDNodeFlags SDFlags; 9458 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 9459 SDFlags.copyFMF(*FPMO); 9460 9461 switch (Intrinsic) { 9462 case Intrinsic::vector_reduce_fadd: 9463 if (SDFlags.hasAllowReassociation()) 9464 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 9465 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 9466 SDFlags); 9467 else 9468 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); 9469 break; 9470 case Intrinsic::vector_reduce_fmul: 9471 if (SDFlags.hasAllowReassociation()) 9472 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 9473 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 9474 SDFlags); 9475 else 9476 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); 9477 break; 9478 case Intrinsic::vector_reduce_add: 9479 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 9480 break; 9481 case Intrinsic::vector_reduce_mul: 9482 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 9483 break; 9484 case Intrinsic::vector_reduce_and: 9485 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 9486 break; 9487 case Intrinsic::vector_reduce_or: 9488 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 9489 break; 9490 case Intrinsic::vector_reduce_xor: 9491 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 9492 break; 9493 case Intrinsic::vector_reduce_smax: 9494 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 9495 break; 9496 case Intrinsic::vector_reduce_smin: 9497 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 9498 break; 9499 case Intrinsic::vector_reduce_umax: 9500 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 9501 break; 9502 case Intrinsic::vector_reduce_umin: 9503 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 9504 break; 9505 case Intrinsic::vector_reduce_fmax: 9506 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 9507 break; 9508 case Intrinsic::vector_reduce_fmin: 9509 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 9510 break; 9511 default: 9512 llvm_unreachable("Unhandled vector reduce intrinsic"); 9513 } 9514 setValue(&I, Res); 9515 } 9516 9517 /// Returns an AttributeList representing the attributes applied to the return 9518 /// value of the given call. 9519 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 9520 SmallVector<Attribute::AttrKind, 2> Attrs; 9521 if (CLI.RetSExt) 9522 Attrs.push_back(Attribute::SExt); 9523 if (CLI.RetZExt) 9524 Attrs.push_back(Attribute::ZExt); 9525 if (CLI.IsInReg) 9526 Attrs.push_back(Attribute::InReg); 9527 9528 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 9529 Attrs); 9530 } 9531 9532 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 9533 /// implementation, which just calls LowerCall. 9534 /// FIXME: When all targets are 9535 /// migrated to using LowerCall, this hook should be integrated into SDISel. 9536 std::pair<SDValue, SDValue> 9537 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 9538 // Handle the incoming return values from the call. 9539 CLI.Ins.clear(); 9540 Type *OrigRetTy = CLI.RetTy; 9541 SmallVector<EVT, 4> RetTys; 9542 SmallVector<uint64_t, 4> Offsets; 9543 auto &DL = CLI.DAG.getDataLayout(); 9544 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 9545 9546 if (CLI.IsPostTypeLegalization) { 9547 // If we are lowering a libcall after legalization, split the return type. 9548 SmallVector<EVT, 4> OldRetTys; 9549 SmallVector<uint64_t, 4> OldOffsets; 9550 RetTys.swap(OldRetTys); 9551 Offsets.swap(OldOffsets); 9552 9553 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 9554 EVT RetVT = OldRetTys[i]; 9555 uint64_t Offset = OldOffsets[i]; 9556 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 9557 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 9558 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 9559 RetTys.append(NumRegs, RegisterVT); 9560 for (unsigned j = 0; j != NumRegs; ++j) 9561 Offsets.push_back(Offset + j * RegisterVTByteSZ); 9562 } 9563 } 9564 9565 SmallVector<ISD::OutputArg, 4> Outs; 9566 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 9567 9568 bool CanLowerReturn = 9569 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 9570 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 9571 9572 SDValue DemoteStackSlot; 9573 int DemoteStackIdx = -100; 9574 if (!CanLowerReturn) { 9575 // FIXME: equivalent assert? 9576 // assert(!CS.hasInAllocaArgument() && 9577 // "sret demotion is incompatible with inalloca"); 9578 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 9579 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 9580 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9581 DemoteStackIdx = 9582 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 9583 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 9584 DL.getAllocaAddrSpace()); 9585 9586 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 9587 ArgListEntry Entry; 9588 Entry.Node = DemoteStackSlot; 9589 Entry.Ty = StackSlotPtrType; 9590 Entry.IsSExt = false; 9591 Entry.IsZExt = false; 9592 Entry.IsInReg = false; 9593 Entry.IsSRet = true; 9594 Entry.IsNest = false; 9595 Entry.IsByVal = false; 9596 Entry.IsByRef = false; 9597 Entry.IsReturned = false; 9598 Entry.IsSwiftSelf = false; 9599 Entry.IsSwiftAsync = false; 9600 Entry.IsSwiftError = false; 9601 Entry.IsCFGuardTarget = false; 9602 Entry.Alignment = Alignment; 9603 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 9604 CLI.NumFixedArgs += 1; 9605 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 9606 9607 // sret demotion isn't compatible with tail-calls, since the sret argument 9608 // points into the callers stack frame. 9609 CLI.IsTailCall = false; 9610 } else { 9611 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9612 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL); 9613 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9614 ISD::ArgFlagsTy Flags; 9615 if (NeedsRegBlock) { 9616 Flags.setInConsecutiveRegs(); 9617 if (I == RetTys.size() - 1) 9618 Flags.setInConsecutiveRegsLast(); 9619 } 9620 EVT VT = RetTys[I]; 9621 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9622 CLI.CallConv, VT); 9623 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9624 CLI.CallConv, VT); 9625 for (unsigned i = 0; i != NumRegs; ++i) { 9626 ISD::InputArg MyFlags; 9627 MyFlags.Flags = Flags; 9628 MyFlags.VT = RegisterVT; 9629 MyFlags.ArgVT = VT; 9630 MyFlags.Used = CLI.IsReturnValueUsed; 9631 if (CLI.RetTy->isPointerTy()) { 9632 MyFlags.Flags.setPointer(); 9633 MyFlags.Flags.setPointerAddrSpace( 9634 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9635 } 9636 if (CLI.RetSExt) 9637 MyFlags.Flags.setSExt(); 9638 if (CLI.RetZExt) 9639 MyFlags.Flags.setZExt(); 9640 if (CLI.IsInReg) 9641 MyFlags.Flags.setInReg(); 9642 CLI.Ins.push_back(MyFlags); 9643 } 9644 } 9645 } 9646 9647 // We push in swifterror return as the last element of CLI.Ins. 9648 ArgListTy &Args = CLI.getArgs(); 9649 if (supportSwiftError()) { 9650 for (const ArgListEntry &Arg : Args) { 9651 if (Arg.IsSwiftError) { 9652 ISD::InputArg MyFlags; 9653 MyFlags.VT = getPointerTy(DL); 9654 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9655 MyFlags.Flags.setSwiftError(); 9656 CLI.Ins.push_back(MyFlags); 9657 } 9658 } 9659 } 9660 9661 // Handle all of the outgoing arguments. 9662 CLI.Outs.clear(); 9663 CLI.OutVals.clear(); 9664 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9665 SmallVector<EVT, 4> ValueVTs; 9666 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9667 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9668 Type *FinalType = Args[i].Ty; 9669 if (Args[i].IsByVal) 9670 FinalType = Args[i].IndirectType; 9671 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9672 FinalType, CLI.CallConv, CLI.IsVarArg, DL); 9673 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9674 ++Value) { 9675 EVT VT = ValueVTs[Value]; 9676 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9677 SDValue Op = SDValue(Args[i].Node.getNode(), 9678 Args[i].Node.getResNo() + Value); 9679 ISD::ArgFlagsTy Flags; 9680 9681 // Certain targets (such as MIPS), may have a different ABI alignment 9682 // for a type depending on the context. Give the target a chance to 9683 // specify the alignment it wants. 9684 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 9685 Flags.setOrigAlign(OriginalAlignment); 9686 9687 if (Args[i].Ty->isPointerTy()) { 9688 Flags.setPointer(); 9689 Flags.setPointerAddrSpace( 9690 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9691 } 9692 if (Args[i].IsZExt) 9693 Flags.setZExt(); 9694 if (Args[i].IsSExt) 9695 Flags.setSExt(); 9696 if (Args[i].IsInReg) { 9697 // If we are using vectorcall calling convention, a structure that is 9698 // passed InReg - is surely an HVA 9699 if (CLI.CallConv == CallingConv::X86_VectorCall && 9700 isa<StructType>(FinalType)) { 9701 // The first value of a structure is marked 9702 if (0 == Value) 9703 Flags.setHvaStart(); 9704 Flags.setHva(); 9705 } 9706 // Set InReg Flag 9707 Flags.setInReg(); 9708 } 9709 if (Args[i].IsSRet) 9710 Flags.setSRet(); 9711 if (Args[i].IsSwiftSelf) 9712 Flags.setSwiftSelf(); 9713 if (Args[i].IsSwiftAsync) 9714 Flags.setSwiftAsync(); 9715 if (Args[i].IsSwiftError) 9716 Flags.setSwiftError(); 9717 if (Args[i].IsCFGuardTarget) 9718 Flags.setCFGuardTarget(); 9719 if (Args[i].IsByVal) 9720 Flags.setByVal(); 9721 if (Args[i].IsByRef) 9722 Flags.setByRef(); 9723 if (Args[i].IsPreallocated) { 9724 Flags.setPreallocated(); 9725 // Set the byval flag for CCAssignFn callbacks that don't know about 9726 // preallocated. This way we can know how many bytes we should've 9727 // allocated and how many bytes a callee cleanup function will pop. If 9728 // we port preallocated to more targets, we'll have to add custom 9729 // preallocated handling in the various CC lowering callbacks. 9730 Flags.setByVal(); 9731 } 9732 if (Args[i].IsInAlloca) { 9733 Flags.setInAlloca(); 9734 // Set the byval flag for CCAssignFn callbacks that don't know about 9735 // inalloca. This way we can know how many bytes we should've allocated 9736 // and how many bytes a callee cleanup function will pop. If we port 9737 // inalloca to more targets, we'll have to add custom inalloca handling 9738 // in the various CC lowering callbacks. 9739 Flags.setByVal(); 9740 } 9741 Align MemAlign; 9742 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 9743 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType); 9744 Flags.setByValSize(FrameSize); 9745 9746 // info is not there but there are cases it cannot get right. 9747 if (auto MA = Args[i].Alignment) 9748 MemAlign = *MA; 9749 else 9750 MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL)); 9751 } else if (auto MA = Args[i].Alignment) { 9752 MemAlign = *MA; 9753 } else { 9754 MemAlign = OriginalAlignment; 9755 } 9756 Flags.setMemAlign(MemAlign); 9757 if (Args[i].IsNest) 9758 Flags.setNest(); 9759 if (NeedsRegBlock) 9760 Flags.setInConsecutiveRegs(); 9761 9762 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9763 CLI.CallConv, VT); 9764 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9765 CLI.CallConv, VT); 9766 SmallVector<SDValue, 4> Parts(NumParts); 9767 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 9768 9769 if (Args[i].IsSExt) 9770 ExtendKind = ISD::SIGN_EXTEND; 9771 else if (Args[i].IsZExt) 9772 ExtendKind = ISD::ZERO_EXTEND; 9773 9774 // Conservatively only handle 'returned' on non-vectors that can be lowered, 9775 // for now. 9776 if (Args[i].IsReturned && !Op.getValueType().isVector() && 9777 CanLowerReturn) { 9778 assert((CLI.RetTy == Args[i].Ty || 9779 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 9780 CLI.RetTy->getPointerAddressSpace() == 9781 Args[i].Ty->getPointerAddressSpace())) && 9782 RetTys.size() == NumValues && "unexpected use of 'returned'"); 9783 // Before passing 'returned' to the target lowering code, ensure that 9784 // either the register MVT and the actual EVT are the same size or that 9785 // the return value and argument are extended in the same way; in these 9786 // cases it's safe to pass the argument register value unchanged as the 9787 // return register value (although it's at the target's option whether 9788 // to do so) 9789 // TODO: allow code generation to take advantage of partially preserved 9790 // registers rather than clobbering the entire register when the 9791 // parameter extension method is not compatible with the return 9792 // extension method 9793 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 9794 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 9795 CLI.RetZExt == Args[i].IsZExt)) 9796 Flags.setReturned(); 9797 } 9798 9799 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 9800 CLI.CallConv, ExtendKind); 9801 9802 for (unsigned j = 0; j != NumParts; ++j) { 9803 // if it isn't first piece, alignment must be 1 9804 // For scalable vectors the scalable part is currently handled 9805 // by individual targets, so we just use the known minimum size here. 9806 ISD::OutputArg MyFlags( 9807 Flags, Parts[j].getValueType().getSimpleVT(), VT, 9808 i < CLI.NumFixedArgs, i, 9809 j * Parts[j].getValueType().getStoreSize().getKnownMinSize()); 9810 if (NumParts > 1 && j == 0) 9811 MyFlags.Flags.setSplit(); 9812 else if (j != 0) { 9813 MyFlags.Flags.setOrigAlign(Align(1)); 9814 if (j == NumParts - 1) 9815 MyFlags.Flags.setSplitEnd(); 9816 } 9817 9818 CLI.Outs.push_back(MyFlags); 9819 CLI.OutVals.push_back(Parts[j]); 9820 } 9821 9822 if (NeedsRegBlock && Value == NumValues - 1) 9823 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 9824 } 9825 } 9826 9827 SmallVector<SDValue, 4> InVals; 9828 CLI.Chain = LowerCall(CLI, InVals); 9829 9830 // Update CLI.InVals to use outside of this function. 9831 CLI.InVals = InVals; 9832 9833 // Verify that the target's LowerCall behaved as expected. 9834 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 9835 "LowerCall didn't return a valid chain!"); 9836 assert((!CLI.IsTailCall || InVals.empty()) && 9837 "LowerCall emitted a return value for a tail call!"); 9838 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 9839 "LowerCall didn't emit the correct number of values!"); 9840 9841 // For a tail call, the return value is merely live-out and there aren't 9842 // any nodes in the DAG representing it. Return a special value to 9843 // indicate that a tail call has been emitted and no more Instructions 9844 // should be processed in the current block. 9845 if (CLI.IsTailCall) { 9846 CLI.DAG.setRoot(CLI.Chain); 9847 return std::make_pair(SDValue(), SDValue()); 9848 } 9849 9850 #ifndef NDEBUG 9851 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 9852 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 9853 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 9854 "LowerCall emitted a value with the wrong type!"); 9855 } 9856 #endif 9857 9858 SmallVector<SDValue, 4> ReturnValues; 9859 if (!CanLowerReturn) { 9860 // The instruction result is the result of loading from the 9861 // hidden sret parameter. 9862 SmallVector<EVT, 1> PVTs; 9863 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 9864 9865 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 9866 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 9867 EVT PtrVT = PVTs[0]; 9868 9869 unsigned NumValues = RetTys.size(); 9870 ReturnValues.resize(NumValues); 9871 SmallVector<SDValue, 4> Chains(NumValues); 9872 9873 // An aggregate return value cannot wrap around the address space, so 9874 // offsets to its parts don't wrap either. 9875 SDNodeFlags Flags; 9876 Flags.setNoUnsignedWrap(true); 9877 9878 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9879 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 9880 for (unsigned i = 0; i < NumValues; ++i) { 9881 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 9882 CLI.DAG.getConstant(Offsets[i], CLI.DL, 9883 PtrVT), Flags); 9884 SDValue L = CLI.DAG.getLoad( 9885 RetTys[i], CLI.DL, CLI.Chain, Add, 9886 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 9887 DemoteStackIdx, Offsets[i]), 9888 HiddenSRetAlign); 9889 ReturnValues[i] = L; 9890 Chains[i] = L.getValue(1); 9891 } 9892 9893 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 9894 } else { 9895 // Collect the legal value parts into potentially illegal values 9896 // that correspond to the original function's return values. 9897 Optional<ISD::NodeType> AssertOp; 9898 if (CLI.RetSExt) 9899 AssertOp = ISD::AssertSext; 9900 else if (CLI.RetZExt) 9901 AssertOp = ISD::AssertZext; 9902 unsigned CurReg = 0; 9903 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9904 EVT VT = RetTys[I]; 9905 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9906 CLI.CallConv, VT); 9907 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9908 CLI.CallConv, VT); 9909 9910 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 9911 NumRegs, RegisterVT, VT, nullptr, 9912 CLI.CallConv, AssertOp)); 9913 CurReg += NumRegs; 9914 } 9915 9916 // For a function returning void, there is no return value. We can't create 9917 // such a node, so we just return a null return value in that case. In 9918 // that case, nothing will actually look at the value. 9919 if (ReturnValues.empty()) 9920 return std::make_pair(SDValue(), CLI.Chain); 9921 } 9922 9923 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 9924 CLI.DAG.getVTList(RetTys), ReturnValues); 9925 return std::make_pair(Res, CLI.Chain); 9926 } 9927 9928 /// Places new result values for the node in Results (their number 9929 /// and types must exactly match those of the original return values of 9930 /// the node), or leaves Results empty, which indicates that the node is not 9931 /// to be custom lowered after all. 9932 void TargetLowering::LowerOperationWrapper(SDNode *N, 9933 SmallVectorImpl<SDValue> &Results, 9934 SelectionDAG &DAG) const { 9935 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 9936 9937 if (!Res.getNode()) 9938 return; 9939 9940 // If the original node has one result, take the return value from 9941 // LowerOperation as is. It might not be result number 0. 9942 if (N->getNumValues() == 1) { 9943 Results.push_back(Res); 9944 return; 9945 } 9946 9947 // If the original node has multiple results, then the return node should 9948 // have the same number of results. 9949 assert((N->getNumValues() == Res->getNumValues()) && 9950 "Lowering returned the wrong number of results!"); 9951 9952 // Places new result values base on N result number. 9953 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 9954 Results.push_back(Res.getValue(I)); 9955 } 9956 9957 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9958 llvm_unreachable("LowerOperation not implemented for this target!"); 9959 } 9960 9961 void 9962 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 9963 SDValue Op = getNonRegisterValue(V); 9964 assert((Op.getOpcode() != ISD::CopyFromReg || 9965 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 9966 "Copy from a reg to the same reg!"); 9967 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 9968 9969 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9970 // If this is an InlineAsm we have to match the registers required, not the 9971 // notional registers required by the type. 9972 9973 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 9974 None); // This is not an ABI copy. 9975 SDValue Chain = DAG.getEntryNode(); 9976 9977 ISD::NodeType ExtendType = ISD::ANY_EXTEND; 9978 auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V); 9979 if (PreferredExtendIt != FuncInfo.PreferredExtendType.end()) 9980 ExtendType = PreferredExtendIt->second; 9981 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 9982 PendingExports.push_back(Chain); 9983 } 9984 9985 #include "llvm/CodeGen/SelectionDAGISel.h" 9986 9987 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 9988 /// entry block, return true. This includes arguments used by switches, since 9989 /// the switch may expand into multiple basic blocks. 9990 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 9991 // With FastISel active, we may be splitting blocks, so force creation 9992 // of virtual registers for all non-dead arguments. 9993 if (FastISel) 9994 return A->use_empty(); 9995 9996 const BasicBlock &Entry = A->getParent()->front(); 9997 for (const User *U : A->users()) 9998 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 9999 return false; // Use not in entry block. 10000 10001 return true; 10002 } 10003 10004 using ArgCopyElisionMapTy = 10005 DenseMap<const Argument *, 10006 std::pair<const AllocaInst *, const StoreInst *>>; 10007 10008 /// Scan the entry block of the function in FuncInfo for arguments that look 10009 /// like copies into a local alloca. Record any copied arguments in 10010 /// ArgCopyElisionCandidates. 10011 static void 10012 findArgumentCopyElisionCandidates(const DataLayout &DL, 10013 FunctionLoweringInfo *FuncInfo, 10014 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 10015 // Record the state of every static alloca used in the entry block. Argument 10016 // allocas are all used in the entry block, so we need approximately as many 10017 // entries as we have arguments. 10018 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 10019 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 10020 unsigned NumArgs = FuncInfo->Fn->arg_size(); 10021 StaticAllocas.reserve(NumArgs * 2); 10022 10023 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 10024 if (!V) 10025 return nullptr; 10026 V = V->stripPointerCasts(); 10027 const auto *AI = dyn_cast<AllocaInst>(V); 10028 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 10029 return nullptr; 10030 auto Iter = StaticAllocas.insert({AI, Unknown}); 10031 return &Iter.first->second; 10032 }; 10033 10034 // Look for stores of arguments to static allocas. Look through bitcasts and 10035 // GEPs to handle type coercions, as long as the alloca is fully initialized 10036 // by the store. Any non-store use of an alloca escapes it and any subsequent 10037 // unanalyzed store might write it. 10038 // FIXME: Handle structs initialized with multiple stores. 10039 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 10040 // Look for stores, and handle non-store uses conservatively. 10041 const auto *SI = dyn_cast<StoreInst>(&I); 10042 if (!SI) { 10043 // We will look through cast uses, so ignore them completely. 10044 if (I.isCast()) 10045 continue; 10046 // Ignore debug info and pseudo op intrinsics, they don't escape or store 10047 // to allocas. 10048 if (I.isDebugOrPseudoInst()) 10049 continue; 10050 // This is an unknown instruction. Assume it escapes or writes to all 10051 // static alloca operands. 10052 for (const Use &U : I.operands()) { 10053 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 10054 *Info = StaticAllocaInfo::Clobbered; 10055 } 10056 continue; 10057 } 10058 10059 // If the stored value is a static alloca, mark it as escaped. 10060 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 10061 *Info = StaticAllocaInfo::Clobbered; 10062 10063 // Check if the destination is a static alloca. 10064 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 10065 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 10066 if (!Info) 10067 continue; 10068 const AllocaInst *AI = cast<AllocaInst>(Dst); 10069 10070 // Skip allocas that have been initialized or clobbered. 10071 if (*Info != StaticAllocaInfo::Unknown) 10072 continue; 10073 10074 // Check if the stored value is an argument, and that this store fully 10075 // initializes the alloca. 10076 // If the argument type has padding bits we can't directly forward a pointer 10077 // as the upper bits may contain garbage. 10078 // Don't elide copies from the same argument twice. 10079 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 10080 const auto *Arg = dyn_cast<Argument>(Val); 10081 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 10082 Arg->getType()->isEmptyTy() || 10083 DL.getTypeStoreSize(Arg->getType()) != 10084 DL.getTypeAllocSize(AI->getAllocatedType()) || 10085 !DL.typeSizeEqualsStoreSize(Arg->getType()) || 10086 ArgCopyElisionCandidates.count(Arg)) { 10087 *Info = StaticAllocaInfo::Clobbered; 10088 continue; 10089 } 10090 10091 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 10092 << '\n'); 10093 10094 // Mark this alloca and store for argument copy elision. 10095 *Info = StaticAllocaInfo::Elidable; 10096 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 10097 10098 // Stop scanning if we've seen all arguments. This will happen early in -O0 10099 // builds, which is useful, because -O0 builds have large entry blocks and 10100 // many allocas. 10101 if (ArgCopyElisionCandidates.size() == NumArgs) 10102 break; 10103 } 10104 } 10105 10106 /// Try to elide argument copies from memory into a local alloca. Succeeds if 10107 /// ArgVal is a load from a suitable fixed stack object. 10108 static void tryToElideArgumentCopy( 10109 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 10110 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 10111 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 10112 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 10113 SDValue ArgVal, bool &ArgHasUses) { 10114 // Check if this is a load from a fixed stack object. 10115 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 10116 if (!LNode) 10117 return; 10118 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 10119 if (!FINode) 10120 return; 10121 10122 // Check that the fixed stack object is the right size and alignment. 10123 // Look at the alignment that the user wrote on the alloca instead of looking 10124 // at the stack object. 10125 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 10126 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 10127 const AllocaInst *AI = ArgCopyIter->second.first; 10128 int FixedIndex = FINode->getIndex(); 10129 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 10130 int OldIndex = AllocaIndex; 10131 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 10132 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 10133 LLVM_DEBUG( 10134 dbgs() << " argument copy elision failed due to bad fixed stack " 10135 "object size\n"); 10136 return; 10137 } 10138 Align RequiredAlignment = AI->getAlign(); 10139 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 10140 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 10141 "greater than stack argument alignment (" 10142 << DebugStr(RequiredAlignment) << " vs " 10143 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 10144 return; 10145 } 10146 10147 // Perform the elision. Delete the old stack object and replace its only use 10148 // in the variable info map. Mark the stack object as mutable. 10149 LLVM_DEBUG({ 10150 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 10151 << " Replacing frame index " << OldIndex << " with " << FixedIndex 10152 << '\n'; 10153 }); 10154 MFI.RemoveStackObject(OldIndex); 10155 MFI.setIsImmutableObjectIndex(FixedIndex, false); 10156 AllocaIndex = FixedIndex; 10157 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 10158 Chains.push_back(ArgVal.getValue(1)); 10159 10160 // Avoid emitting code for the store implementing the copy. 10161 const StoreInst *SI = ArgCopyIter->second.second; 10162 ElidedArgCopyInstrs.insert(SI); 10163 10164 // Check for uses of the argument again so that we can avoid exporting ArgVal 10165 // if it is't used by anything other than the store. 10166 for (const Value *U : Arg.users()) { 10167 if (U != SI) { 10168 ArgHasUses = true; 10169 break; 10170 } 10171 } 10172 } 10173 10174 void SelectionDAGISel::LowerArguments(const Function &F) { 10175 SelectionDAG &DAG = SDB->DAG; 10176 SDLoc dl = SDB->getCurSDLoc(); 10177 const DataLayout &DL = DAG.getDataLayout(); 10178 SmallVector<ISD::InputArg, 16> Ins; 10179 10180 // In Naked functions we aren't going to save any registers. 10181 if (F.hasFnAttribute(Attribute::Naked)) 10182 return; 10183 10184 if (!FuncInfo->CanLowerReturn) { 10185 // Put in an sret pointer parameter before all the other parameters. 10186 SmallVector<EVT, 1> ValueVTs; 10187 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10188 F.getReturnType()->getPointerTo( 10189 DAG.getDataLayout().getAllocaAddrSpace()), 10190 ValueVTs); 10191 10192 // NOTE: Assuming that a pointer will never break down to more than one VT 10193 // or one register. 10194 ISD::ArgFlagsTy Flags; 10195 Flags.setSRet(); 10196 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 10197 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 10198 ISD::InputArg::NoArgIndex, 0); 10199 Ins.push_back(RetArg); 10200 } 10201 10202 // Look for stores of arguments to static allocas. Mark such arguments with a 10203 // flag to ask the target to give us the memory location of that argument if 10204 // available. 10205 ArgCopyElisionMapTy ArgCopyElisionCandidates; 10206 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 10207 ArgCopyElisionCandidates); 10208 10209 // Set up the incoming argument description vector. 10210 for (const Argument &Arg : F.args()) { 10211 unsigned ArgNo = Arg.getArgNo(); 10212 SmallVector<EVT, 4> ValueVTs; 10213 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10214 bool isArgValueUsed = !Arg.use_empty(); 10215 unsigned PartBase = 0; 10216 Type *FinalType = Arg.getType(); 10217 if (Arg.hasAttribute(Attribute::ByVal)) 10218 FinalType = Arg.getParamByValType(); 10219 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 10220 FinalType, F.getCallingConv(), F.isVarArg(), DL); 10221 for (unsigned Value = 0, NumValues = ValueVTs.size(); 10222 Value != NumValues; ++Value) { 10223 EVT VT = ValueVTs[Value]; 10224 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 10225 ISD::ArgFlagsTy Flags; 10226 10227 10228 if (Arg.getType()->isPointerTy()) { 10229 Flags.setPointer(); 10230 Flags.setPointerAddrSpace( 10231 cast<PointerType>(Arg.getType())->getAddressSpace()); 10232 } 10233 if (Arg.hasAttribute(Attribute::ZExt)) 10234 Flags.setZExt(); 10235 if (Arg.hasAttribute(Attribute::SExt)) 10236 Flags.setSExt(); 10237 if (Arg.hasAttribute(Attribute::InReg)) { 10238 // If we are using vectorcall calling convention, a structure that is 10239 // passed InReg - is surely an HVA 10240 if (F.getCallingConv() == CallingConv::X86_VectorCall && 10241 isa<StructType>(Arg.getType())) { 10242 // The first value of a structure is marked 10243 if (0 == Value) 10244 Flags.setHvaStart(); 10245 Flags.setHva(); 10246 } 10247 // Set InReg Flag 10248 Flags.setInReg(); 10249 } 10250 if (Arg.hasAttribute(Attribute::StructRet)) 10251 Flags.setSRet(); 10252 if (Arg.hasAttribute(Attribute::SwiftSelf)) 10253 Flags.setSwiftSelf(); 10254 if (Arg.hasAttribute(Attribute::SwiftAsync)) 10255 Flags.setSwiftAsync(); 10256 if (Arg.hasAttribute(Attribute::SwiftError)) 10257 Flags.setSwiftError(); 10258 if (Arg.hasAttribute(Attribute::ByVal)) 10259 Flags.setByVal(); 10260 if (Arg.hasAttribute(Attribute::ByRef)) 10261 Flags.setByRef(); 10262 if (Arg.hasAttribute(Attribute::InAlloca)) { 10263 Flags.setInAlloca(); 10264 // Set the byval flag for CCAssignFn callbacks that don't know about 10265 // inalloca. This way we can know how many bytes we should've allocated 10266 // and how many bytes a callee cleanup function will pop. If we port 10267 // inalloca to more targets, we'll have to add custom inalloca handling 10268 // in the various CC lowering callbacks. 10269 Flags.setByVal(); 10270 } 10271 if (Arg.hasAttribute(Attribute::Preallocated)) { 10272 Flags.setPreallocated(); 10273 // Set the byval flag for CCAssignFn callbacks that don't know about 10274 // preallocated. This way we can know how many bytes we should've 10275 // allocated and how many bytes a callee cleanup function will pop. If 10276 // we port preallocated to more targets, we'll have to add custom 10277 // preallocated handling in the various CC lowering callbacks. 10278 Flags.setByVal(); 10279 } 10280 10281 // Certain targets (such as MIPS), may have a different ABI alignment 10282 // for a type depending on the context. Give the target a chance to 10283 // specify the alignment it wants. 10284 const Align OriginalAlignment( 10285 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 10286 Flags.setOrigAlign(OriginalAlignment); 10287 10288 Align MemAlign; 10289 Type *ArgMemTy = nullptr; 10290 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 10291 Flags.isByRef()) { 10292 if (!ArgMemTy) 10293 ArgMemTy = Arg.getPointeeInMemoryValueType(); 10294 10295 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 10296 10297 // For in-memory arguments, size and alignment should be passed from FE. 10298 // BE will guess if this info is not there but there are cases it cannot 10299 // get right. 10300 if (auto ParamAlign = Arg.getParamStackAlign()) 10301 MemAlign = *ParamAlign; 10302 else if ((ParamAlign = Arg.getParamAlign())) 10303 MemAlign = *ParamAlign; 10304 else 10305 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 10306 if (Flags.isByRef()) 10307 Flags.setByRefSize(MemSize); 10308 else 10309 Flags.setByValSize(MemSize); 10310 } else if (auto ParamAlign = Arg.getParamStackAlign()) { 10311 MemAlign = *ParamAlign; 10312 } else { 10313 MemAlign = OriginalAlignment; 10314 } 10315 Flags.setMemAlign(MemAlign); 10316 10317 if (Arg.hasAttribute(Attribute::Nest)) 10318 Flags.setNest(); 10319 if (NeedsRegBlock) 10320 Flags.setInConsecutiveRegs(); 10321 if (ArgCopyElisionCandidates.count(&Arg)) 10322 Flags.setCopyElisionCandidate(); 10323 if (Arg.hasAttribute(Attribute::Returned)) 10324 Flags.setReturned(); 10325 10326 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 10327 *CurDAG->getContext(), F.getCallingConv(), VT); 10328 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 10329 *CurDAG->getContext(), F.getCallingConv(), VT); 10330 for (unsigned i = 0; i != NumRegs; ++i) { 10331 // For scalable vectors, use the minimum size; individual targets 10332 // are responsible for handling scalable vector arguments and 10333 // return values. 10334 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 10335 ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize()); 10336 if (NumRegs > 1 && i == 0) 10337 MyFlags.Flags.setSplit(); 10338 // if it isn't first piece, alignment must be 1 10339 else if (i > 0) { 10340 MyFlags.Flags.setOrigAlign(Align(1)); 10341 if (i == NumRegs - 1) 10342 MyFlags.Flags.setSplitEnd(); 10343 } 10344 Ins.push_back(MyFlags); 10345 } 10346 if (NeedsRegBlock && Value == NumValues - 1) 10347 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 10348 PartBase += VT.getStoreSize().getKnownMinSize(); 10349 } 10350 } 10351 10352 // Call the target to set up the argument values. 10353 SmallVector<SDValue, 8> InVals; 10354 SDValue NewRoot = TLI->LowerFormalArguments( 10355 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 10356 10357 // Verify that the target's LowerFormalArguments behaved as expected. 10358 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 10359 "LowerFormalArguments didn't return a valid chain!"); 10360 assert(InVals.size() == Ins.size() && 10361 "LowerFormalArguments didn't emit the correct number of values!"); 10362 LLVM_DEBUG({ 10363 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 10364 assert(InVals[i].getNode() && 10365 "LowerFormalArguments emitted a null value!"); 10366 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 10367 "LowerFormalArguments emitted a value with the wrong type!"); 10368 } 10369 }); 10370 10371 // Update the DAG with the new chain value resulting from argument lowering. 10372 DAG.setRoot(NewRoot); 10373 10374 // Set up the argument values. 10375 unsigned i = 0; 10376 if (!FuncInfo->CanLowerReturn) { 10377 // Create a virtual register for the sret pointer, and put in a copy 10378 // from the sret argument into it. 10379 SmallVector<EVT, 1> ValueVTs; 10380 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10381 F.getReturnType()->getPointerTo( 10382 DAG.getDataLayout().getAllocaAddrSpace()), 10383 ValueVTs); 10384 MVT VT = ValueVTs[0].getSimpleVT(); 10385 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 10386 Optional<ISD::NodeType> AssertOp = None; 10387 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 10388 nullptr, F.getCallingConv(), AssertOp); 10389 10390 MachineFunction& MF = SDB->DAG.getMachineFunction(); 10391 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 10392 Register SRetReg = 10393 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 10394 FuncInfo->DemoteRegister = SRetReg; 10395 NewRoot = 10396 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 10397 DAG.setRoot(NewRoot); 10398 10399 // i indexes lowered arguments. Bump it past the hidden sret argument. 10400 ++i; 10401 } 10402 10403 SmallVector<SDValue, 4> Chains; 10404 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 10405 for (const Argument &Arg : F.args()) { 10406 SmallVector<SDValue, 4> ArgValues; 10407 SmallVector<EVT, 4> ValueVTs; 10408 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10409 unsigned NumValues = ValueVTs.size(); 10410 if (NumValues == 0) 10411 continue; 10412 10413 bool ArgHasUses = !Arg.use_empty(); 10414 10415 // Elide the copying store if the target loaded this argument from a 10416 // suitable fixed stack object. 10417 if (Ins[i].Flags.isCopyElisionCandidate()) { 10418 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 10419 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 10420 InVals[i], ArgHasUses); 10421 } 10422 10423 // If this argument is unused then remember its value. It is used to generate 10424 // debugging information. 10425 bool isSwiftErrorArg = 10426 TLI->supportSwiftError() && 10427 Arg.hasAttribute(Attribute::SwiftError); 10428 if (!ArgHasUses && !isSwiftErrorArg) { 10429 SDB->setUnusedArgValue(&Arg, InVals[i]); 10430 10431 // Also remember any frame index for use in FastISel. 10432 if (FrameIndexSDNode *FI = 10433 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 10434 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10435 } 10436 10437 for (unsigned Val = 0; Val != NumValues; ++Val) { 10438 EVT VT = ValueVTs[Val]; 10439 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 10440 F.getCallingConv(), VT); 10441 unsigned NumParts = TLI->getNumRegistersForCallingConv( 10442 *CurDAG->getContext(), F.getCallingConv(), VT); 10443 10444 // Even an apparent 'unused' swifterror argument needs to be returned. So 10445 // we do generate a copy for it that can be used on return from the 10446 // function. 10447 if (ArgHasUses || isSwiftErrorArg) { 10448 Optional<ISD::NodeType> AssertOp; 10449 if (Arg.hasAttribute(Attribute::SExt)) 10450 AssertOp = ISD::AssertSext; 10451 else if (Arg.hasAttribute(Attribute::ZExt)) 10452 AssertOp = ISD::AssertZext; 10453 10454 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 10455 PartVT, VT, nullptr, 10456 F.getCallingConv(), AssertOp)); 10457 } 10458 10459 i += NumParts; 10460 } 10461 10462 // We don't need to do anything else for unused arguments. 10463 if (ArgValues.empty()) 10464 continue; 10465 10466 // Note down frame index. 10467 if (FrameIndexSDNode *FI = 10468 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 10469 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10470 10471 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 10472 SDB->getCurSDLoc()); 10473 10474 SDB->setValue(&Arg, Res); 10475 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 10476 // We want to associate the argument with the frame index, among 10477 // involved operands, that correspond to the lowest address. The 10478 // getCopyFromParts function, called earlier, is swapping the order of 10479 // the operands to BUILD_PAIR depending on endianness. The result of 10480 // that swapping is that the least significant bits of the argument will 10481 // be in the first operand of the BUILD_PAIR node, and the most 10482 // significant bits will be in the second operand. 10483 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 10484 if (LoadSDNode *LNode = 10485 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 10486 if (FrameIndexSDNode *FI = 10487 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 10488 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10489 } 10490 10491 // Analyses past this point are naive and don't expect an assertion. 10492 if (Res.getOpcode() == ISD::AssertZext) 10493 Res = Res.getOperand(0); 10494 10495 // Update the SwiftErrorVRegDefMap. 10496 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 10497 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10498 if (Register::isVirtualRegister(Reg)) 10499 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 10500 Reg); 10501 } 10502 10503 // If this argument is live outside of the entry block, insert a copy from 10504 // wherever we got it to the vreg that other BB's will reference it as. 10505 if (Res.getOpcode() == ISD::CopyFromReg) { 10506 // If we can, though, try to skip creating an unnecessary vreg. 10507 // FIXME: This isn't very clean... it would be nice to make this more 10508 // general. 10509 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10510 if (Register::isVirtualRegister(Reg)) { 10511 FuncInfo->ValueMap[&Arg] = Reg; 10512 continue; 10513 } 10514 } 10515 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 10516 FuncInfo->InitializeRegForValue(&Arg); 10517 SDB->CopyToExportRegsIfNeeded(&Arg); 10518 } 10519 } 10520 10521 if (!Chains.empty()) { 10522 Chains.push_back(NewRoot); 10523 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 10524 } 10525 10526 DAG.setRoot(NewRoot); 10527 10528 assert(i == InVals.size() && "Argument register count mismatch!"); 10529 10530 // If any argument copy elisions occurred and we have debug info, update the 10531 // stale frame indices used in the dbg.declare variable info table. 10532 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 10533 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 10534 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 10535 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 10536 if (I != ArgCopyElisionFrameIndexMap.end()) 10537 VI.Slot = I->second; 10538 } 10539 } 10540 10541 // Finally, if the target has anything special to do, allow it to do so. 10542 emitFunctionEntryCode(); 10543 } 10544 10545 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 10546 /// ensure constants are generated when needed. Remember the virtual registers 10547 /// that need to be added to the Machine PHI nodes as input. We cannot just 10548 /// directly add them, because expansion might result in multiple MBB's for one 10549 /// BB. As such, the start of the BB might correspond to a different MBB than 10550 /// the end. 10551 void 10552 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 10553 const Instruction *TI = LLVMBB->getTerminator(); 10554 10555 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 10556 10557 // Check PHI nodes in successors that expect a value to be available from this 10558 // block. 10559 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 10560 const BasicBlock *SuccBB = TI->getSuccessor(succ); 10561 if (!isa<PHINode>(SuccBB->begin())) continue; 10562 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 10563 10564 // If this terminator has multiple identical successors (common for 10565 // switches), only handle each succ once. 10566 if (!SuccsHandled.insert(SuccMBB).second) 10567 continue; 10568 10569 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 10570 10571 // At this point we know that there is a 1-1 correspondence between LLVM PHI 10572 // nodes and Machine PHI nodes, but the incoming operands have not been 10573 // emitted yet. 10574 for (const PHINode &PN : SuccBB->phis()) { 10575 // Ignore dead phi's. 10576 if (PN.use_empty()) 10577 continue; 10578 10579 // Skip empty types 10580 if (PN.getType()->isEmptyTy()) 10581 continue; 10582 10583 unsigned Reg; 10584 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 10585 10586 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 10587 unsigned &RegOut = ConstantsOut[C]; 10588 if (RegOut == 0) { 10589 RegOut = FuncInfo.CreateRegs(C); 10590 CopyValueToVirtualRegister(C, RegOut); 10591 } 10592 Reg = RegOut; 10593 } else { 10594 DenseMap<const Value *, Register>::iterator I = 10595 FuncInfo.ValueMap.find(PHIOp); 10596 if (I != FuncInfo.ValueMap.end()) 10597 Reg = I->second; 10598 else { 10599 assert(isa<AllocaInst>(PHIOp) && 10600 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 10601 "Didn't codegen value into a register!??"); 10602 Reg = FuncInfo.CreateRegs(PHIOp); 10603 CopyValueToVirtualRegister(PHIOp, Reg); 10604 } 10605 } 10606 10607 // Remember that this register needs to added to the machine PHI node as 10608 // the input for this MBB. 10609 SmallVector<EVT, 4> ValueVTs; 10610 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10611 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 10612 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 10613 EVT VT = ValueVTs[vti]; 10614 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 10615 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 10616 FuncInfo.PHINodesToUpdate.push_back( 10617 std::make_pair(&*MBBI++, Reg + i)); 10618 Reg += NumRegisters; 10619 } 10620 } 10621 } 10622 10623 ConstantsOut.clear(); 10624 } 10625 10626 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 10627 MachineFunction::iterator I(MBB); 10628 if (++I == FuncInfo.MF->end()) 10629 return nullptr; 10630 return &*I; 10631 } 10632 10633 /// During lowering new call nodes can be created (such as memset, etc.). 10634 /// Those will become new roots of the current DAG, but complications arise 10635 /// when they are tail calls. In such cases, the call lowering will update 10636 /// the root, but the builder still needs to know that a tail call has been 10637 /// lowered in order to avoid generating an additional return. 10638 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 10639 // If the node is null, we do have a tail call. 10640 if (MaybeTC.getNode() != nullptr) 10641 DAG.setRoot(MaybeTC); 10642 else 10643 HasTailCall = true; 10644 } 10645 10646 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10647 MachineBasicBlock *SwitchMBB, 10648 MachineBasicBlock *DefaultMBB) { 10649 MachineFunction *CurMF = FuncInfo.MF; 10650 MachineBasicBlock *NextMBB = nullptr; 10651 MachineFunction::iterator BBI(W.MBB); 10652 if (++BBI != FuncInfo.MF->end()) 10653 NextMBB = &*BBI; 10654 10655 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10656 10657 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10658 10659 if (Size == 2 && W.MBB == SwitchMBB) { 10660 // If any two of the cases has the same destination, and if one value 10661 // is the same as the other, but has one bit unset that the other has set, 10662 // use bit manipulation to do two compares at once. For example: 10663 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10664 // TODO: This could be extended to merge any 2 cases in switches with 3 10665 // cases. 10666 // TODO: Handle cases where W.CaseBB != SwitchBB. 10667 CaseCluster &Small = *W.FirstCluster; 10668 CaseCluster &Big = *W.LastCluster; 10669 10670 if (Small.Low == Small.High && Big.Low == Big.High && 10671 Small.MBB == Big.MBB) { 10672 const APInt &SmallValue = Small.Low->getValue(); 10673 const APInt &BigValue = Big.Low->getValue(); 10674 10675 // Check that there is only one bit different. 10676 APInt CommonBit = BigValue ^ SmallValue; 10677 if (CommonBit.isPowerOf2()) { 10678 SDValue CondLHS = getValue(Cond); 10679 EVT VT = CondLHS.getValueType(); 10680 SDLoc DL = getCurSDLoc(); 10681 10682 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10683 DAG.getConstant(CommonBit, DL, VT)); 10684 SDValue Cond = DAG.getSetCC( 10685 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10686 ISD::SETEQ); 10687 10688 // Update successor info. 10689 // Both Small and Big will jump to Small.BB, so we sum up the 10690 // probabilities. 10691 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10692 if (BPI) 10693 addSuccessorWithProb( 10694 SwitchMBB, DefaultMBB, 10695 // The default destination is the first successor in IR. 10696 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10697 else 10698 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10699 10700 // Insert the true branch. 10701 SDValue BrCond = 10702 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10703 DAG.getBasicBlock(Small.MBB)); 10704 // Insert the false branch. 10705 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10706 DAG.getBasicBlock(DefaultMBB)); 10707 10708 DAG.setRoot(BrCond); 10709 return; 10710 } 10711 } 10712 } 10713 10714 if (TM.getOptLevel() != CodeGenOpt::None) { 10715 // Here, we order cases by probability so the most likely case will be 10716 // checked first. However, two clusters can have the same probability in 10717 // which case their relative ordering is non-deterministic. So we use Low 10718 // as a tie-breaker as clusters are guaranteed to never overlap. 10719 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10720 [](const CaseCluster &a, const CaseCluster &b) { 10721 return a.Prob != b.Prob ? 10722 a.Prob > b.Prob : 10723 a.Low->getValue().slt(b.Low->getValue()); 10724 }); 10725 10726 // Rearrange the case blocks so that the last one falls through if possible 10727 // without changing the order of probabilities. 10728 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10729 --I; 10730 if (I->Prob > W.LastCluster->Prob) 10731 break; 10732 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10733 std::swap(*I, *W.LastCluster); 10734 break; 10735 } 10736 } 10737 } 10738 10739 // Compute total probability. 10740 BranchProbability DefaultProb = W.DefaultProb; 10741 BranchProbability UnhandledProbs = DefaultProb; 10742 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10743 UnhandledProbs += I->Prob; 10744 10745 MachineBasicBlock *CurMBB = W.MBB; 10746 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10747 bool FallthroughUnreachable = false; 10748 MachineBasicBlock *Fallthrough; 10749 if (I == W.LastCluster) { 10750 // For the last cluster, fall through to the default destination. 10751 Fallthrough = DefaultMBB; 10752 FallthroughUnreachable = isa<UnreachableInst>( 10753 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 10754 } else { 10755 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10756 CurMF->insert(BBI, Fallthrough); 10757 // Put Cond in a virtual register to make it available from the new blocks. 10758 ExportFromCurrentBlock(Cond); 10759 } 10760 UnhandledProbs -= I->Prob; 10761 10762 switch (I->Kind) { 10763 case CC_JumpTable: { 10764 // FIXME: Optimize away range check based on pivot comparisons. 10765 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 10766 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 10767 10768 // The jump block hasn't been inserted yet; insert it here. 10769 MachineBasicBlock *JumpMBB = JT->MBB; 10770 CurMF->insert(BBI, JumpMBB); 10771 10772 auto JumpProb = I->Prob; 10773 auto FallthroughProb = UnhandledProbs; 10774 10775 // If the default statement is a target of the jump table, we evenly 10776 // distribute the default probability to successors of CurMBB. Also 10777 // update the probability on the edge from JumpMBB to Fallthrough. 10778 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10779 SE = JumpMBB->succ_end(); 10780 SI != SE; ++SI) { 10781 if (*SI == DefaultMBB) { 10782 JumpProb += DefaultProb / 2; 10783 FallthroughProb -= DefaultProb / 2; 10784 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10785 JumpMBB->normalizeSuccProbs(); 10786 break; 10787 } 10788 } 10789 10790 if (FallthroughUnreachable) 10791 JTH->FallthroughUnreachable = true; 10792 10793 if (!JTH->FallthroughUnreachable) 10794 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10795 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10796 CurMBB->normalizeSuccProbs(); 10797 10798 // The jump table header will be inserted in our current block, do the 10799 // range check, and fall through to our fallthrough block. 10800 JTH->HeaderBB = CurMBB; 10801 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10802 10803 // If we're in the right place, emit the jump table header right now. 10804 if (CurMBB == SwitchMBB) { 10805 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10806 JTH->Emitted = true; 10807 } 10808 break; 10809 } 10810 case CC_BitTests: { 10811 // FIXME: Optimize away range check based on pivot comparisons. 10812 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 10813 10814 // The bit test blocks haven't been inserted yet; insert them here. 10815 for (BitTestCase &BTC : BTB->Cases) 10816 CurMF->insert(BBI, BTC.ThisBB); 10817 10818 // Fill in fields of the BitTestBlock. 10819 BTB->Parent = CurMBB; 10820 BTB->Default = Fallthrough; 10821 10822 BTB->DefaultProb = UnhandledProbs; 10823 // If the cases in bit test don't form a contiguous range, we evenly 10824 // distribute the probability on the edge to Fallthrough to two 10825 // successors of CurMBB. 10826 if (!BTB->ContiguousRange) { 10827 BTB->Prob += DefaultProb / 2; 10828 BTB->DefaultProb -= DefaultProb / 2; 10829 } 10830 10831 if (FallthroughUnreachable) 10832 BTB->FallthroughUnreachable = true; 10833 10834 // If we're in the right place, emit the bit test header right now. 10835 if (CurMBB == SwitchMBB) { 10836 visitBitTestHeader(*BTB, SwitchMBB); 10837 BTB->Emitted = true; 10838 } 10839 break; 10840 } 10841 case CC_Range: { 10842 const Value *RHS, *LHS, *MHS; 10843 ISD::CondCode CC; 10844 if (I->Low == I->High) { 10845 // Check Cond == I->Low. 10846 CC = ISD::SETEQ; 10847 LHS = Cond; 10848 RHS=I->Low; 10849 MHS = nullptr; 10850 } else { 10851 // Check I->Low <= Cond <= I->High. 10852 CC = ISD::SETLE; 10853 LHS = I->Low; 10854 MHS = Cond; 10855 RHS = I->High; 10856 } 10857 10858 // If Fallthrough is unreachable, fold away the comparison. 10859 if (FallthroughUnreachable) 10860 CC = ISD::SETTRUE; 10861 10862 // The false probability is the sum of all unhandled cases. 10863 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10864 getCurSDLoc(), I->Prob, UnhandledProbs); 10865 10866 if (CurMBB == SwitchMBB) 10867 visitSwitchCase(CB, SwitchMBB); 10868 else 10869 SL->SwitchCases.push_back(CB); 10870 10871 break; 10872 } 10873 } 10874 CurMBB = Fallthrough; 10875 } 10876 } 10877 10878 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10879 CaseClusterIt First, 10880 CaseClusterIt Last) { 10881 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10882 if (X.Prob != CC.Prob) 10883 return X.Prob > CC.Prob; 10884 10885 // Ties are broken by comparing the case value. 10886 return X.Low->getValue().slt(CC.Low->getValue()); 10887 }); 10888 } 10889 10890 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10891 const SwitchWorkListItem &W, 10892 Value *Cond, 10893 MachineBasicBlock *SwitchMBB) { 10894 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10895 "Clusters not sorted?"); 10896 10897 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10898 10899 // Balance the tree based on branch probabilities to create a near-optimal (in 10900 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10901 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10902 CaseClusterIt LastLeft = W.FirstCluster; 10903 CaseClusterIt FirstRight = W.LastCluster; 10904 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10905 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10906 10907 // Move LastLeft and FirstRight towards each other from opposite directions to 10908 // find a partitioning of the clusters which balances the probability on both 10909 // sides. If LeftProb and RightProb are equal, alternate which side is 10910 // taken to ensure 0-probability nodes are distributed evenly. 10911 unsigned I = 0; 10912 while (LastLeft + 1 < FirstRight) { 10913 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10914 LeftProb += (++LastLeft)->Prob; 10915 else 10916 RightProb += (--FirstRight)->Prob; 10917 I++; 10918 } 10919 10920 while (true) { 10921 // Our binary search tree differs from a typical BST in that ours can have up 10922 // to three values in each leaf. The pivot selection above doesn't take that 10923 // into account, which means the tree might require more nodes and be less 10924 // efficient. We compensate for this here. 10925 10926 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10927 unsigned NumRight = W.LastCluster - FirstRight + 1; 10928 10929 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10930 // If one side has less than 3 clusters, and the other has more than 3, 10931 // consider taking a cluster from the other side. 10932 10933 if (NumLeft < NumRight) { 10934 // Consider moving the first cluster on the right to the left side. 10935 CaseCluster &CC = *FirstRight; 10936 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10937 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10938 if (LeftSideRank <= RightSideRank) { 10939 // Moving the cluster to the left does not demote it. 10940 ++LastLeft; 10941 ++FirstRight; 10942 continue; 10943 } 10944 } else { 10945 assert(NumRight < NumLeft); 10946 // Consider moving the last element on the left to the right side. 10947 CaseCluster &CC = *LastLeft; 10948 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10949 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10950 if (RightSideRank <= LeftSideRank) { 10951 // Moving the cluster to the right does not demot it. 10952 --LastLeft; 10953 --FirstRight; 10954 continue; 10955 } 10956 } 10957 } 10958 break; 10959 } 10960 10961 assert(LastLeft + 1 == FirstRight); 10962 assert(LastLeft >= W.FirstCluster); 10963 assert(FirstRight <= W.LastCluster); 10964 10965 // Use the first element on the right as pivot since we will make less-than 10966 // comparisons against it. 10967 CaseClusterIt PivotCluster = FirstRight; 10968 assert(PivotCluster > W.FirstCluster); 10969 assert(PivotCluster <= W.LastCluster); 10970 10971 CaseClusterIt FirstLeft = W.FirstCluster; 10972 CaseClusterIt LastRight = W.LastCluster; 10973 10974 const ConstantInt *Pivot = PivotCluster->Low; 10975 10976 // New blocks will be inserted immediately after the current one. 10977 MachineFunction::iterator BBI(W.MBB); 10978 ++BBI; 10979 10980 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10981 // we can branch to its destination directly if it's squeezed exactly in 10982 // between the known lower bound and Pivot - 1. 10983 MachineBasicBlock *LeftMBB; 10984 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10985 FirstLeft->Low == W.GE && 10986 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10987 LeftMBB = FirstLeft->MBB; 10988 } else { 10989 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10990 FuncInfo.MF->insert(BBI, LeftMBB); 10991 WorkList.push_back( 10992 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10993 // Put Cond in a virtual register to make it available from the new blocks. 10994 ExportFromCurrentBlock(Cond); 10995 } 10996 10997 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10998 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10999 // directly if RHS.High equals the current upper bound. 11000 MachineBasicBlock *RightMBB; 11001 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 11002 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 11003 RightMBB = FirstRight->MBB; 11004 } else { 11005 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11006 FuncInfo.MF->insert(BBI, RightMBB); 11007 WorkList.push_back( 11008 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 11009 // Put Cond in a virtual register to make it available from the new blocks. 11010 ExportFromCurrentBlock(Cond); 11011 } 11012 11013 // Create the CaseBlock record that will be used to lower the branch. 11014 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 11015 getCurSDLoc(), LeftProb, RightProb); 11016 11017 if (W.MBB == SwitchMBB) 11018 visitSwitchCase(CB, SwitchMBB); 11019 else 11020 SL->SwitchCases.push_back(CB); 11021 } 11022 11023 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 11024 // from the swith statement. 11025 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 11026 BranchProbability PeeledCaseProb) { 11027 if (PeeledCaseProb == BranchProbability::getOne()) 11028 return BranchProbability::getZero(); 11029 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 11030 11031 uint32_t Numerator = CaseProb.getNumerator(); 11032 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 11033 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 11034 } 11035 11036 // Try to peel the top probability case if it exceeds the threshold. 11037 // Return current MachineBasicBlock for the switch statement if the peeling 11038 // does not occur. 11039 // If the peeling is performed, return the newly created MachineBasicBlock 11040 // for the peeled switch statement. Also update Clusters to remove the peeled 11041 // case. PeeledCaseProb is the BranchProbability for the peeled case. 11042 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 11043 const SwitchInst &SI, CaseClusterVector &Clusters, 11044 BranchProbability &PeeledCaseProb) { 11045 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11046 // Don't perform if there is only one cluster or optimizing for size. 11047 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 11048 TM.getOptLevel() == CodeGenOpt::None || 11049 SwitchMBB->getParent()->getFunction().hasMinSize()) 11050 return SwitchMBB; 11051 11052 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 11053 unsigned PeeledCaseIndex = 0; 11054 bool SwitchPeeled = false; 11055 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 11056 CaseCluster &CC = Clusters[Index]; 11057 if (CC.Prob < TopCaseProb) 11058 continue; 11059 TopCaseProb = CC.Prob; 11060 PeeledCaseIndex = Index; 11061 SwitchPeeled = true; 11062 } 11063 if (!SwitchPeeled) 11064 return SwitchMBB; 11065 11066 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 11067 << TopCaseProb << "\n"); 11068 11069 // Record the MBB for the peeled switch statement. 11070 MachineFunction::iterator BBI(SwitchMBB); 11071 ++BBI; 11072 MachineBasicBlock *PeeledSwitchMBB = 11073 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 11074 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 11075 11076 ExportFromCurrentBlock(SI.getCondition()); 11077 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 11078 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 11079 nullptr, nullptr, TopCaseProb.getCompl()}; 11080 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 11081 11082 Clusters.erase(PeeledCaseIt); 11083 for (CaseCluster &CC : Clusters) { 11084 LLVM_DEBUG( 11085 dbgs() << "Scale the probablity for one cluster, before scaling: " 11086 << CC.Prob << "\n"); 11087 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 11088 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 11089 } 11090 PeeledCaseProb = TopCaseProb; 11091 return PeeledSwitchMBB; 11092 } 11093 11094 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 11095 // Extract cases from the switch. 11096 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11097 CaseClusterVector Clusters; 11098 Clusters.reserve(SI.getNumCases()); 11099 for (auto I : SI.cases()) { 11100 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 11101 const ConstantInt *CaseVal = I.getCaseValue(); 11102 BranchProbability Prob = 11103 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 11104 : BranchProbability(1, SI.getNumCases() + 1); 11105 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 11106 } 11107 11108 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 11109 11110 // Cluster adjacent cases with the same destination. We do this at all 11111 // optimization levels because it's cheap to do and will make codegen faster 11112 // if there are many clusters. 11113 sortAndRangeify(Clusters); 11114 11115 // The branch probablity of the peeled case. 11116 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 11117 MachineBasicBlock *PeeledSwitchMBB = 11118 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 11119 11120 // If there is only the default destination, jump there directly. 11121 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11122 if (Clusters.empty()) { 11123 assert(PeeledSwitchMBB == SwitchMBB); 11124 SwitchMBB->addSuccessor(DefaultMBB); 11125 if (DefaultMBB != NextBlock(SwitchMBB)) { 11126 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 11127 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 11128 } 11129 return; 11130 } 11131 11132 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 11133 SL->findBitTestClusters(Clusters, &SI); 11134 11135 LLVM_DEBUG({ 11136 dbgs() << "Case clusters: "; 11137 for (const CaseCluster &C : Clusters) { 11138 if (C.Kind == CC_JumpTable) 11139 dbgs() << "JT:"; 11140 if (C.Kind == CC_BitTests) 11141 dbgs() << "BT:"; 11142 11143 C.Low->getValue().print(dbgs(), true); 11144 if (C.Low != C.High) { 11145 dbgs() << '-'; 11146 C.High->getValue().print(dbgs(), true); 11147 } 11148 dbgs() << ' '; 11149 } 11150 dbgs() << '\n'; 11151 }); 11152 11153 assert(!Clusters.empty()); 11154 SwitchWorkList WorkList; 11155 CaseClusterIt First = Clusters.begin(); 11156 CaseClusterIt Last = Clusters.end() - 1; 11157 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 11158 // Scale the branchprobability for DefaultMBB if the peel occurs and 11159 // DefaultMBB is not replaced. 11160 if (PeeledCaseProb != BranchProbability::getZero() && 11161 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 11162 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 11163 WorkList.push_back( 11164 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 11165 11166 while (!WorkList.empty()) { 11167 SwitchWorkListItem W = WorkList.pop_back_val(); 11168 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 11169 11170 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 11171 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 11172 // For optimized builds, lower large range as a balanced binary tree. 11173 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 11174 continue; 11175 } 11176 11177 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 11178 } 11179 } 11180 11181 void SelectionDAGBuilder::visitStepVector(const CallInst &I) { 11182 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11183 auto DL = getCurSDLoc(); 11184 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11185 setValue(&I, DAG.getStepVector(DL, ResultVT)); 11186 } 11187 11188 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) { 11189 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11190 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11191 11192 SDLoc DL = getCurSDLoc(); 11193 SDValue V = getValue(I.getOperand(0)); 11194 assert(VT == V.getValueType() && "Malformed vector.reverse!"); 11195 11196 if (VT.isScalableVector()) { 11197 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V)); 11198 return; 11199 } 11200 11201 // Use VECTOR_SHUFFLE for the fixed-length vector 11202 // to maintain existing behavior. 11203 SmallVector<int, 8> Mask; 11204 unsigned NumElts = VT.getVectorMinNumElements(); 11205 for (unsigned i = 0; i != NumElts; ++i) 11206 Mask.push_back(NumElts - 1 - i); 11207 11208 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask)); 11209 } 11210 11211 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 11212 SmallVector<EVT, 4> ValueVTs; 11213 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 11214 ValueVTs); 11215 unsigned NumValues = ValueVTs.size(); 11216 if (NumValues == 0) return; 11217 11218 SmallVector<SDValue, 4> Values(NumValues); 11219 SDValue Op = getValue(I.getOperand(0)); 11220 11221 for (unsigned i = 0; i != NumValues; ++i) 11222 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 11223 SDValue(Op.getNode(), Op.getResNo() + i)); 11224 11225 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 11226 DAG.getVTList(ValueVTs), Values)); 11227 } 11228 11229 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) { 11230 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11231 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11232 11233 SDLoc DL = getCurSDLoc(); 11234 SDValue V1 = getValue(I.getOperand(0)); 11235 SDValue V2 = getValue(I.getOperand(1)); 11236 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue(); 11237 11238 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node. 11239 if (VT.isScalableVector()) { 11240 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 11241 setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2, 11242 DAG.getConstant(Imm, DL, IdxVT))); 11243 return; 11244 } 11245 11246 unsigned NumElts = VT.getVectorNumElements(); 11247 11248 if ((-Imm > NumElts) || (Imm >= NumElts)) { 11249 // Result is undefined if immediate is out-of-bounds. 11250 setValue(&I, DAG.getUNDEF(VT)); 11251 return; 11252 } 11253 11254 uint64_t Idx = (NumElts + Imm) % NumElts; 11255 11256 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors. 11257 SmallVector<int, 8> Mask; 11258 for (unsigned i = 0; i < NumElts; ++i) 11259 Mask.push_back(Idx + i); 11260 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask)); 11261 } 11262