1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/CodeGen/FastISel.h" 26 #include "llvm/CodeGen/FunctionLoweringInfo.h" 27 #include "llvm/CodeGen/GCMetadata.h" 28 #include "llvm/CodeGen/GCStrategy.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineJumpTableInfo.h" 33 #include "llvm/CodeGen/MachineModuleInfo.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/SelectionDAG.h" 36 #include "llvm/CodeGen/StackMaps.h" 37 #include "llvm/CodeGen/WinEHFuncInfo.h" 38 #include "llvm/IR/CallingConv.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DebugInfo.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/GlobalVariable.h" 45 #include "llvm/IR/InlineAsm.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/IntrinsicInst.h" 48 #include "llvm/IR/Intrinsics.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/IR/Statepoint.h" 52 #include "llvm/MC/MCSymbol.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/MathExtras.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include "llvm/Target/TargetFrameLowering.h" 59 #include "llvm/Target/TargetInstrInfo.h" 60 #include "llvm/Target/TargetIntrinsicInfo.h" 61 #include "llvm/Target/TargetLowering.h" 62 #include "llvm/Target/TargetOptions.h" 63 #include "llvm/Target/TargetSelectionDAGInfo.h" 64 #include "llvm/Target/TargetSubtargetInfo.h" 65 #include <algorithm> 66 using namespace llvm; 67 68 #define DEBUG_TYPE "isel" 69 70 /// LimitFloatPrecision - Generate low-precision inline sequences for 71 /// some float libcalls (6, 8 or 12 bits). 72 static unsigned LimitFloatPrecision; 73 74 static cl::opt<unsigned, true> 75 LimitFPPrecision("limit-float-precision", 76 cl::desc("Generate low-precision inline sequences " 77 "for some float libcalls"), 78 cl::location(LimitFloatPrecision), 79 cl::init(0)); 80 81 static cl::opt<bool> 82 EnableFMFInDAG("enable-fmf-dag", cl::init(false), cl::Hidden, 83 cl::desc("Enable fast-math-flags for DAG nodes")); 84 85 // Limit the width of DAG chains. This is important in general to prevent 86 // DAG-based analysis from blowing up. For example, alias analysis and 87 // load clustering may not complete in reasonable time. It is difficult to 88 // recognize and avoid this situation within each individual analysis, and 89 // future analyses are likely to have the same behavior. Limiting DAG width is 90 // the safe approach and will be especially important with global DAGs. 91 // 92 // MaxParallelChains default is arbitrarily high to avoid affecting 93 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 94 // sequence over this should have been converted to llvm.memcpy by the 95 // frontend. It easy to induce this behavior with .ll code such as: 96 // %buffer = alloca [4096 x i8] 97 // %data = load [4096 x i8]* %argPtr 98 // store [4096 x i8] %data, [4096 x i8]* %buffer 99 static const unsigned MaxParallelChains = 64; 100 101 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 102 const SDValue *Parts, unsigned NumParts, 103 MVT PartVT, EVT ValueVT, const Value *V); 104 105 /// getCopyFromParts - Create a value that contains the specified legal parts 106 /// combined into the value they represent. If the parts combine to a type 107 /// larger then ValueVT then AssertOp can be used to specify whether the extra 108 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 109 /// (ISD::AssertSext). 110 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 111 const SDValue *Parts, 112 unsigned NumParts, MVT PartVT, EVT ValueVT, 113 const Value *V, 114 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 115 if (ValueVT.isVector()) 116 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 117 PartVT, ValueVT, V); 118 119 assert(NumParts > 0 && "No parts to assemble!"); 120 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 121 SDValue Val = Parts[0]; 122 123 if (NumParts > 1) { 124 // Assemble the value from multiple parts. 125 if (ValueVT.isInteger()) { 126 unsigned PartBits = PartVT.getSizeInBits(); 127 unsigned ValueBits = ValueVT.getSizeInBits(); 128 129 // Assemble the power of 2 part. 130 unsigned RoundParts = NumParts & (NumParts - 1) ? 131 1 << Log2_32(NumParts) : NumParts; 132 unsigned RoundBits = PartBits * RoundParts; 133 EVT RoundVT = RoundBits == ValueBits ? 134 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 135 SDValue Lo, Hi; 136 137 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 138 139 if (RoundParts > 2) { 140 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 141 PartVT, HalfVT, V); 142 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 143 RoundParts / 2, PartVT, HalfVT, V); 144 } else { 145 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 146 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 147 } 148 149 if (DAG.getDataLayout().isBigEndian()) 150 std::swap(Lo, Hi); 151 152 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 153 154 if (RoundParts < NumParts) { 155 // Assemble the trailing non-power-of-2 part. 156 unsigned OddParts = NumParts - RoundParts; 157 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 158 Hi = getCopyFromParts(DAG, DL, 159 Parts + RoundParts, OddParts, PartVT, OddVT, V); 160 161 // Combine the round and odd parts. 162 Lo = Val; 163 if (DAG.getDataLayout().isBigEndian()) 164 std::swap(Lo, Hi); 165 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 166 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 167 Hi = 168 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 169 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 170 TLI.getPointerTy(DAG.getDataLayout()))); 171 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 172 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 173 } 174 } else if (PartVT.isFloatingPoint()) { 175 // FP split into multiple FP parts (for ppcf128) 176 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 177 "Unexpected split"); 178 SDValue Lo, Hi; 179 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 180 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 181 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 182 std::swap(Lo, Hi); 183 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 184 } else { 185 // FP split into integer parts (soft fp) 186 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 187 !PartVT.isVector() && "Unexpected split"); 188 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 189 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 190 } 191 } 192 193 // There is now one part, held in Val. Correct it to match ValueVT. 194 EVT PartEVT = Val.getValueType(); 195 196 if (PartEVT == ValueVT) 197 return Val; 198 199 if (PartEVT.isInteger() && ValueVT.isInteger()) { 200 if (ValueVT.bitsLT(PartEVT)) { 201 // For a truncate, see if we have any information to 202 // indicate whether the truncated bits will always be 203 // zero or sign-extension. 204 if (AssertOp != ISD::DELETED_NODE) 205 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 206 DAG.getValueType(ValueVT)); 207 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 208 } 209 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 210 } 211 212 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 213 // FP_ROUND's are always exact here. 214 if (ValueVT.bitsLT(Val.getValueType())) 215 return DAG.getNode( 216 ISD::FP_ROUND, DL, ValueVT, Val, 217 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 218 219 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 220 } 221 222 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 223 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 224 225 llvm_unreachable("Unknown mismatch!"); 226 } 227 228 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 229 const Twine &ErrMsg) { 230 const Instruction *I = dyn_cast_or_null<Instruction>(V); 231 if (!V) 232 return Ctx.emitError(ErrMsg); 233 234 const char *AsmError = ", possible invalid constraint for vector type"; 235 if (const CallInst *CI = dyn_cast<CallInst>(I)) 236 if (isa<InlineAsm>(CI->getCalledValue())) 237 return Ctx.emitError(I, ErrMsg + AsmError); 238 239 return Ctx.emitError(I, ErrMsg); 240 } 241 242 /// getCopyFromPartsVector - Create a value that contains the specified legal 243 /// parts combined into the value they represent. If the parts combine to a 244 /// type larger then ValueVT then AssertOp can be used to specify whether the 245 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 246 /// ValueVT (ISD::AssertSext). 247 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 248 const SDValue *Parts, unsigned NumParts, 249 MVT PartVT, EVT ValueVT, const Value *V) { 250 assert(ValueVT.isVector() && "Not a vector value"); 251 assert(NumParts > 0 && "No parts to assemble!"); 252 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 253 SDValue Val = Parts[0]; 254 255 // Handle a multi-element vector. 256 if (NumParts > 1) { 257 EVT IntermediateVT; 258 MVT RegisterVT; 259 unsigned NumIntermediates; 260 unsigned NumRegs = 261 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 262 NumIntermediates, RegisterVT); 263 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 264 NumParts = NumRegs; // Silence a compiler warning. 265 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 266 assert(RegisterVT.getSizeInBits() == 267 Parts[0].getSimpleValueType().getSizeInBits() && 268 "Part type sizes don't match!"); 269 270 // Assemble the parts into intermediate operands. 271 SmallVector<SDValue, 8> Ops(NumIntermediates); 272 if (NumIntermediates == NumParts) { 273 // If the register was not expanded, truncate or copy the value, 274 // as appropriate. 275 for (unsigned i = 0; i != NumParts; ++i) 276 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 277 PartVT, IntermediateVT, V); 278 } else if (NumParts > 0) { 279 // If the intermediate type was expanded, build the intermediate 280 // operands from the parts. 281 assert(NumParts % NumIntermediates == 0 && 282 "Must expand into a divisible number of parts!"); 283 unsigned Factor = NumParts / NumIntermediates; 284 for (unsigned i = 0; i != NumIntermediates; ++i) 285 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 286 PartVT, IntermediateVT, V); 287 } 288 289 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 290 // intermediate operands. 291 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 292 : ISD::BUILD_VECTOR, 293 DL, ValueVT, Ops); 294 } 295 296 // There is now one part, held in Val. Correct it to match ValueVT. 297 EVT PartEVT = Val.getValueType(); 298 299 if (PartEVT == ValueVT) 300 return Val; 301 302 if (PartEVT.isVector()) { 303 // If the element type of the source/dest vectors are the same, but the 304 // parts vector has more elements than the value vector, then we have a 305 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 306 // elements we want. 307 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 308 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 309 "Cannot narrow, it would be a lossy transformation"); 310 return DAG.getNode( 311 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 312 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 313 } 314 315 // Vector/Vector bitcast. 316 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 317 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 318 319 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 320 "Cannot handle this kind of promotion"); 321 // Promoted vector extract 322 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 323 324 } 325 326 // Trivial bitcast if the types are the same size and the destination 327 // vector type is legal. 328 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 329 TLI.isTypeLegal(ValueVT)) 330 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 331 332 // Handle cases such as i8 -> <1 x i1> 333 if (ValueVT.getVectorNumElements() != 1) { 334 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 335 "non-trivial scalar-to-vector conversion"); 336 return DAG.getUNDEF(ValueVT); 337 } 338 339 if (ValueVT.getVectorNumElements() == 1 && 340 ValueVT.getVectorElementType() != PartEVT) 341 Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType()); 342 343 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 344 } 345 346 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 347 SDValue Val, SDValue *Parts, unsigned NumParts, 348 MVT PartVT, const Value *V); 349 350 /// getCopyToParts - Create a series of nodes that contain the specified value 351 /// split into legal parts. If the parts contain more bits than Val, then, for 352 /// integers, ExtendKind can be used to specify how to generate the extra bits. 353 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 354 SDValue Val, SDValue *Parts, unsigned NumParts, 355 MVT PartVT, const Value *V, 356 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 357 EVT ValueVT = Val.getValueType(); 358 359 // Handle the vector case separately. 360 if (ValueVT.isVector()) 361 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 362 363 unsigned PartBits = PartVT.getSizeInBits(); 364 unsigned OrigNumParts = NumParts; 365 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 366 "Copying to an illegal type!"); 367 368 if (NumParts == 0) 369 return; 370 371 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 372 EVT PartEVT = PartVT; 373 if (PartEVT == ValueVT) { 374 assert(NumParts == 1 && "No-op copy with multiple parts!"); 375 Parts[0] = Val; 376 return; 377 } 378 379 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 380 // If the parts cover more bits than the value has, promote the value. 381 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 382 assert(NumParts == 1 && "Do not know what to promote to!"); 383 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 384 } else { 385 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 386 ValueVT.isInteger() && 387 "Unknown mismatch!"); 388 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 389 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 390 if (PartVT == MVT::x86mmx) 391 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 392 } 393 } else if (PartBits == ValueVT.getSizeInBits()) { 394 // Different types of the same size. 395 assert(NumParts == 1 && PartEVT != ValueVT); 396 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 397 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 398 // If the parts cover less bits than value has, truncate the value. 399 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 400 ValueVT.isInteger() && 401 "Unknown mismatch!"); 402 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 403 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 404 if (PartVT == MVT::x86mmx) 405 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 406 } 407 408 // The value may have changed - recompute ValueVT. 409 ValueVT = Val.getValueType(); 410 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 411 "Failed to tile the value with PartVT!"); 412 413 if (NumParts == 1) { 414 if (PartEVT != ValueVT) 415 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 416 "scalar-to-vector conversion failed"); 417 418 Parts[0] = Val; 419 return; 420 } 421 422 // Expand the value into multiple parts. 423 if (NumParts & (NumParts - 1)) { 424 // The number of parts is not a power of 2. Split off and copy the tail. 425 assert(PartVT.isInteger() && ValueVT.isInteger() && 426 "Do not know what to expand to!"); 427 unsigned RoundParts = 1 << Log2_32(NumParts); 428 unsigned RoundBits = RoundParts * PartBits; 429 unsigned OddParts = NumParts - RoundParts; 430 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 431 DAG.getIntPtrConstant(RoundBits, DL)); 432 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 433 434 if (DAG.getDataLayout().isBigEndian()) 435 // The odd parts were reversed by getCopyToParts - unreverse them. 436 std::reverse(Parts + RoundParts, Parts + NumParts); 437 438 NumParts = RoundParts; 439 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 440 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 441 } 442 443 // The number of parts is a power of 2. Repeatedly bisect the value using 444 // EXTRACT_ELEMENT. 445 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 446 EVT::getIntegerVT(*DAG.getContext(), 447 ValueVT.getSizeInBits()), 448 Val); 449 450 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 451 for (unsigned i = 0; i < NumParts; i += StepSize) { 452 unsigned ThisBits = StepSize * PartBits / 2; 453 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 454 SDValue &Part0 = Parts[i]; 455 SDValue &Part1 = Parts[i+StepSize/2]; 456 457 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 458 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 459 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 460 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 461 462 if (ThisBits == PartBits && ThisVT != PartVT) { 463 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 464 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 465 } 466 } 467 } 468 469 if (DAG.getDataLayout().isBigEndian()) 470 std::reverse(Parts, Parts + OrigNumParts); 471 } 472 473 474 /// getCopyToPartsVector - Create a series of nodes that contain the specified 475 /// value split into legal parts. 476 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 477 SDValue Val, SDValue *Parts, unsigned NumParts, 478 MVT PartVT, const Value *V) { 479 EVT ValueVT = Val.getValueType(); 480 assert(ValueVT.isVector() && "Not a vector"); 481 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 482 483 if (NumParts == 1) { 484 EVT PartEVT = PartVT; 485 if (PartEVT == ValueVT) { 486 // Nothing to do. 487 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 488 // Bitconvert vector->vector case. 489 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 490 } else if (PartVT.isVector() && 491 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 492 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 493 EVT ElementVT = PartVT.getVectorElementType(); 494 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 495 // undef elements. 496 SmallVector<SDValue, 16> Ops; 497 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 498 Ops.push_back(DAG.getNode( 499 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 500 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 501 502 for (unsigned i = ValueVT.getVectorNumElements(), 503 e = PartVT.getVectorNumElements(); i != e; ++i) 504 Ops.push_back(DAG.getUNDEF(ElementVT)); 505 506 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 507 508 // FIXME: Use CONCAT for 2x -> 4x. 509 510 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 511 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 512 } else if (PartVT.isVector() && 513 PartEVT.getVectorElementType().bitsGE( 514 ValueVT.getVectorElementType()) && 515 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 516 517 // Promoted vector extract 518 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 519 } else{ 520 // Vector -> scalar conversion. 521 assert(ValueVT.getVectorNumElements() == 1 && 522 "Only trivial vector-to-scalar conversions should get here!"); 523 Val = DAG.getNode( 524 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 525 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 526 527 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 528 } 529 530 Parts[0] = Val; 531 return; 532 } 533 534 // Handle a multi-element vector. 535 EVT IntermediateVT; 536 MVT RegisterVT; 537 unsigned NumIntermediates; 538 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 539 IntermediateVT, 540 NumIntermediates, RegisterVT); 541 unsigned NumElements = ValueVT.getVectorNumElements(); 542 543 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 544 NumParts = NumRegs; // Silence a compiler warning. 545 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 546 547 // Split the vector into intermediate operands. 548 SmallVector<SDValue, 8> Ops(NumIntermediates); 549 for (unsigned i = 0; i != NumIntermediates; ++i) { 550 if (IntermediateVT.isVector()) 551 Ops[i] = 552 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 553 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 554 TLI.getVectorIdxTy(DAG.getDataLayout()))); 555 else 556 Ops[i] = DAG.getNode( 557 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 558 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 559 } 560 561 // Split the intermediate operands into legal parts. 562 if (NumParts == NumIntermediates) { 563 // If the register was not expanded, promote or copy the value, 564 // as appropriate. 565 for (unsigned i = 0; i != NumParts; ++i) 566 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 567 } else if (NumParts > 0) { 568 // If the intermediate type was expanded, split each the value into 569 // legal parts. 570 assert(NumIntermediates != 0 && "division by zero"); 571 assert(NumParts % NumIntermediates == 0 && 572 "Must expand into a divisible number of parts!"); 573 unsigned Factor = NumParts / NumIntermediates; 574 for (unsigned i = 0; i != NumIntermediates; ++i) 575 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 576 } 577 } 578 579 RegsForValue::RegsForValue() {} 580 581 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 582 EVT valuevt) 583 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 584 585 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 586 const DataLayout &DL, unsigned Reg, Type *Ty) { 587 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 588 589 for (EVT ValueVT : ValueVTs) { 590 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); 591 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); 592 for (unsigned i = 0; i != NumRegs; ++i) 593 Regs.push_back(Reg + i); 594 RegVTs.push_back(RegisterVT); 595 Reg += NumRegs; 596 } 597 } 598 599 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 600 /// this value and returns the result as a ValueVT value. This uses 601 /// Chain/Flag as the input and updates them for the output Chain/Flag. 602 /// If the Flag pointer is NULL, no flag is used. 603 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 604 FunctionLoweringInfo &FuncInfo, 605 SDLoc dl, 606 SDValue &Chain, SDValue *Flag, 607 const Value *V) const { 608 // A Value with type {} or [0 x %t] needs no registers. 609 if (ValueVTs.empty()) 610 return SDValue(); 611 612 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 613 614 // Assemble the legal parts into the final values. 615 SmallVector<SDValue, 4> Values(ValueVTs.size()); 616 SmallVector<SDValue, 8> Parts; 617 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 618 // Copy the legal parts from the registers. 619 EVT ValueVT = ValueVTs[Value]; 620 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 621 MVT RegisterVT = RegVTs[Value]; 622 623 Parts.resize(NumRegs); 624 for (unsigned i = 0; i != NumRegs; ++i) { 625 SDValue P; 626 if (!Flag) { 627 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 628 } else { 629 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 630 *Flag = P.getValue(2); 631 } 632 633 Chain = P.getValue(1); 634 Parts[i] = P; 635 636 // If the source register was virtual and if we know something about it, 637 // add an assert node. 638 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 639 !RegisterVT.isInteger() || RegisterVT.isVector()) 640 continue; 641 642 const FunctionLoweringInfo::LiveOutInfo *LOI = 643 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 644 if (!LOI) 645 continue; 646 647 unsigned RegSize = RegisterVT.getSizeInBits(); 648 unsigned NumSignBits = LOI->NumSignBits; 649 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 650 651 if (NumZeroBits == RegSize) { 652 // The current value is a zero. 653 // Explicitly express that as it would be easier for 654 // optimizations to kick in. 655 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 656 continue; 657 } 658 659 // FIXME: We capture more information than the dag can represent. For 660 // now, just use the tightest assertzext/assertsext possible. 661 bool isSExt = true; 662 EVT FromVT(MVT::Other); 663 if (NumSignBits == RegSize) 664 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 665 else if (NumZeroBits >= RegSize-1) 666 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 667 else if (NumSignBits > RegSize-8) 668 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 669 else if (NumZeroBits >= RegSize-8) 670 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 671 else if (NumSignBits > RegSize-16) 672 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 673 else if (NumZeroBits >= RegSize-16) 674 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 675 else if (NumSignBits > RegSize-32) 676 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 677 else if (NumZeroBits >= RegSize-32) 678 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 679 else 680 continue; 681 682 // Add an assertion node. 683 assert(FromVT != MVT::Other); 684 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 685 RegisterVT, P, DAG.getValueType(FromVT)); 686 } 687 688 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 689 NumRegs, RegisterVT, ValueVT, V); 690 Part += NumRegs; 691 Parts.clear(); 692 } 693 694 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 695 } 696 697 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 698 /// specified value into the registers specified by this object. This uses 699 /// Chain/Flag as the input and updates them for the output Chain/Flag. 700 /// If the Flag pointer is NULL, no flag is used. 701 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 702 SDValue &Chain, SDValue *Flag, const Value *V, 703 ISD::NodeType PreferredExtendType) const { 704 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 705 ISD::NodeType ExtendKind = PreferredExtendType; 706 707 // Get the list of the values's legal parts. 708 unsigned NumRegs = Regs.size(); 709 SmallVector<SDValue, 8> Parts(NumRegs); 710 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 711 EVT ValueVT = ValueVTs[Value]; 712 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 713 MVT RegisterVT = RegVTs[Value]; 714 715 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 716 ExtendKind = ISD::ZERO_EXTEND; 717 718 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 719 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 720 Part += NumParts; 721 } 722 723 // Copy the parts into the registers. 724 SmallVector<SDValue, 8> Chains(NumRegs); 725 for (unsigned i = 0; i != NumRegs; ++i) { 726 SDValue Part; 727 if (!Flag) { 728 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 729 } else { 730 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 731 *Flag = Part.getValue(1); 732 } 733 734 Chains[i] = Part.getValue(0); 735 } 736 737 if (NumRegs == 1 || Flag) 738 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 739 // flagged to it. That is the CopyToReg nodes and the user are considered 740 // a single scheduling unit. If we create a TokenFactor and return it as 741 // chain, then the TokenFactor is both a predecessor (operand) of the 742 // user as well as a successor (the TF operands are flagged to the user). 743 // c1, f1 = CopyToReg 744 // c2, f2 = CopyToReg 745 // c3 = TokenFactor c1, c2 746 // ... 747 // = op c3, ..., f2 748 Chain = Chains[NumRegs-1]; 749 else 750 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 751 } 752 753 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 754 /// operand list. This adds the code marker and includes the number of 755 /// values added into it. 756 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 757 unsigned MatchingIdx, SDLoc dl, 758 SelectionDAG &DAG, 759 std::vector<SDValue> &Ops) const { 760 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 761 762 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 763 if (HasMatching) 764 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 765 else if (!Regs.empty() && 766 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 767 // Put the register class of the virtual registers in the flag word. That 768 // way, later passes can recompute register class constraints for inline 769 // assembly as well as normal instructions. 770 // Don't do this for tied operands that can use the regclass information 771 // from the def. 772 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 773 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 774 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 775 } 776 777 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 778 Ops.push_back(Res); 779 780 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 781 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 782 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 783 MVT RegisterVT = RegVTs[Value]; 784 for (unsigned i = 0; i != NumRegs; ++i) { 785 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 786 unsigned TheReg = Regs[Reg++]; 787 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 788 789 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 790 // If we clobbered the stack pointer, MFI should know about it. 791 assert(DAG.getMachineFunction().getFrameInfo()-> 792 hasOpaqueSPAdjustment()); 793 } 794 } 795 } 796 } 797 798 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 799 const TargetLibraryInfo *li) { 800 AA = &aa; 801 GFI = gfi; 802 LibInfo = li; 803 DL = &DAG.getDataLayout(); 804 Context = DAG.getContext(); 805 LPadToCallSiteMap.clear(); 806 } 807 808 /// clear - Clear out the current SelectionDAG and the associated 809 /// state and prepare this SelectionDAGBuilder object to be used 810 /// for a new block. This doesn't clear out information about 811 /// additional blocks that are needed to complete switch lowering 812 /// or PHI node updating; that information is cleared out as it is 813 /// consumed. 814 void SelectionDAGBuilder::clear() { 815 NodeMap.clear(); 816 UnusedArgNodeMap.clear(); 817 PendingLoads.clear(); 818 PendingExports.clear(); 819 CurInst = nullptr; 820 HasTailCall = false; 821 SDNodeOrder = LowestSDNodeOrder; 822 StatepointLowering.clear(); 823 } 824 825 /// clearDanglingDebugInfo - Clear the dangling debug information 826 /// map. This function is separated from the clear so that debug 827 /// information that is dangling in a basic block can be properly 828 /// resolved in a different basic block. This allows the 829 /// SelectionDAG to resolve dangling debug information attached 830 /// to PHI nodes. 831 void SelectionDAGBuilder::clearDanglingDebugInfo() { 832 DanglingDebugInfoMap.clear(); 833 } 834 835 /// getRoot - Return the current virtual root of the Selection DAG, 836 /// flushing any PendingLoad items. This must be done before emitting 837 /// a store or any other node that may need to be ordered after any 838 /// prior load instructions. 839 /// 840 SDValue SelectionDAGBuilder::getRoot() { 841 if (PendingLoads.empty()) 842 return DAG.getRoot(); 843 844 if (PendingLoads.size() == 1) { 845 SDValue Root = PendingLoads[0]; 846 DAG.setRoot(Root); 847 PendingLoads.clear(); 848 return Root; 849 } 850 851 // Otherwise, we have to make a token factor node. 852 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 853 PendingLoads); 854 PendingLoads.clear(); 855 DAG.setRoot(Root); 856 return Root; 857 } 858 859 /// getControlRoot - Similar to getRoot, but instead of flushing all the 860 /// PendingLoad items, flush all the PendingExports items. It is necessary 861 /// to do this before emitting a terminator instruction. 862 /// 863 SDValue SelectionDAGBuilder::getControlRoot() { 864 SDValue Root = DAG.getRoot(); 865 866 if (PendingExports.empty()) 867 return Root; 868 869 // Turn all of the CopyToReg chains into one factored node. 870 if (Root.getOpcode() != ISD::EntryToken) { 871 unsigned i = 0, e = PendingExports.size(); 872 for (; i != e; ++i) { 873 assert(PendingExports[i].getNode()->getNumOperands() > 1); 874 if (PendingExports[i].getNode()->getOperand(0) == Root) 875 break; // Don't add the root if we already indirectly depend on it. 876 } 877 878 if (i == e) 879 PendingExports.push_back(Root); 880 } 881 882 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 883 PendingExports); 884 PendingExports.clear(); 885 DAG.setRoot(Root); 886 return Root; 887 } 888 889 void SelectionDAGBuilder::visit(const Instruction &I) { 890 // Set up outgoing PHI node register values before emitting the terminator. 891 if (isa<TerminatorInst>(&I)) 892 HandlePHINodesInSuccessorBlocks(I.getParent()); 893 894 ++SDNodeOrder; 895 896 CurInst = &I; 897 898 visit(I.getOpcode(), I); 899 900 if (!isa<TerminatorInst>(&I) && !HasTailCall) 901 CopyToExportRegsIfNeeded(&I); 902 903 CurInst = nullptr; 904 } 905 906 void SelectionDAGBuilder::visitPHI(const PHINode &) { 907 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 908 } 909 910 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 911 // Note: this doesn't use InstVisitor, because it has to work with 912 // ConstantExpr's in addition to instructions. 913 switch (Opcode) { 914 default: llvm_unreachable("Unknown instruction type encountered!"); 915 // Build the switch statement using the Instruction.def file. 916 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 917 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 918 #include "llvm/IR/Instruction.def" 919 } 920 } 921 922 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 923 // generate the debug data structures now that we've seen its definition. 924 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 925 SDValue Val) { 926 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 927 if (DDI.getDI()) { 928 const DbgValueInst *DI = DDI.getDI(); 929 DebugLoc dl = DDI.getdl(); 930 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 931 DILocalVariable *Variable = DI->getVariable(); 932 DIExpression *Expr = DI->getExpression(); 933 assert(Variable->isValidLocationForIntrinsic(dl) && 934 "Expected inlined-at fields to agree"); 935 uint64_t Offset = DI->getOffset(); 936 // A dbg.value for an alloca is always indirect. 937 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 938 SDDbgValue *SDV; 939 if (Val.getNode()) { 940 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect, 941 Val)) { 942 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 943 IsIndirect, Offset, dl, DbgSDNodeOrder); 944 DAG.AddDbgValue(SDV, Val.getNode(), false); 945 } 946 } else 947 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 948 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 949 } 950 } 951 952 /// getCopyFromRegs - If there was virtual register allocated for the value V 953 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 954 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 955 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 956 SDValue Result; 957 958 if (It != FuncInfo.ValueMap.end()) { 959 unsigned InReg = It->second; 960 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 961 DAG.getDataLayout(), InReg, Ty); 962 SDValue Chain = DAG.getEntryNode(); 963 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 964 resolveDanglingDebugInfo(V, Result); 965 } 966 967 return Result; 968 } 969 970 /// getValue - Return an SDValue for the given Value. 971 SDValue SelectionDAGBuilder::getValue(const Value *V) { 972 // If we already have an SDValue for this value, use it. It's important 973 // to do this first, so that we don't create a CopyFromReg if we already 974 // have a regular SDValue. 975 SDValue &N = NodeMap[V]; 976 if (N.getNode()) return N; 977 978 // If there's a virtual register allocated and initialized for this 979 // value, use it. 980 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 981 if (copyFromReg.getNode()) { 982 return copyFromReg; 983 } 984 985 // Otherwise create a new SDValue and remember it. 986 SDValue Val = getValueImpl(V); 987 NodeMap[V] = Val; 988 resolveDanglingDebugInfo(V, Val); 989 return Val; 990 } 991 992 // Return true if SDValue exists for the given Value 993 bool SelectionDAGBuilder::findValue(const Value *V) const { 994 return (NodeMap.find(V) != NodeMap.end()) || 995 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 996 } 997 998 /// getNonRegisterValue - Return an SDValue for the given Value, but 999 /// don't look in FuncInfo.ValueMap for a virtual register. 1000 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1001 // If we already have an SDValue for this value, use it. 1002 SDValue &N = NodeMap[V]; 1003 if (N.getNode()) { 1004 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1005 // Remove the debug location from the node as the node is about to be used 1006 // in a location which may differ from the original debug location. This 1007 // is relevant to Constant and ConstantFP nodes because they can appear 1008 // as constant expressions inside PHI nodes. 1009 N->setDebugLoc(DebugLoc()); 1010 } 1011 return N; 1012 } 1013 1014 // Otherwise create a new SDValue and remember it. 1015 SDValue Val = getValueImpl(V); 1016 NodeMap[V] = Val; 1017 resolveDanglingDebugInfo(V, Val); 1018 return Val; 1019 } 1020 1021 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1022 /// Create an SDValue for the given value. 1023 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1024 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1025 1026 if (const Constant *C = dyn_cast<Constant>(V)) { 1027 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1028 1029 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1030 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1031 1032 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1033 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1034 1035 if (isa<ConstantPointerNull>(C)) { 1036 unsigned AS = V->getType()->getPointerAddressSpace(); 1037 return DAG.getConstant(0, getCurSDLoc(), 1038 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1039 } 1040 1041 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1042 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1043 1044 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1045 return DAG.getUNDEF(VT); 1046 1047 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1048 visit(CE->getOpcode(), *CE); 1049 SDValue N1 = NodeMap[V]; 1050 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1051 return N1; 1052 } 1053 1054 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1055 SmallVector<SDValue, 4> Constants; 1056 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1057 OI != OE; ++OI) { 1058 SDNode *Val = getValue(*OI).getNode(); 1059 // If the operand is an empty aggregate, there are no values. 1060 if (!Val) continue; 1061 // Add each leaf value from the operand to the Constants list 1062 // to form a flattened list of all the values. 1063 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1064 Constants.push_back(SDValue(Val, i)); 1065 } 1066 1067 return DAG.getMergeValues(Constants, getCurSDLoc()); 1068 } 1069 1070 if (const ConstantDataSequential *CDS = 1071 dyn_cast<ConstantDataSequential>(C)) { 1072 SmallVector<SDValue, 4> Ops; 1073 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1074 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1075 // Add each leaf value from the operand to the Constants list 1076 // to form a flattened list of all the values. 1077 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1078 Ops.push_back(SDValue(Val, i)); 1079 } 1080 1081 if (isa<ArrayType>(CDS->getType())) 1082 return DAG.getMergeValues(Ops, getCurSDLoc()); 1083 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1084 VT, Ops); 1085 } 1086 1087 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1088 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1089 "Unknown struct or array constant!"); 1090 1091 SmallVector<EVT, 4> ValueVTs; 1092 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1093 unsigned NumElts = ValueVTs.size(); 1094 if (NumElts == 0) 1095 return SDValue(); // empty struct 1096 SmallVector<SDValue, 4> Constants(NumElts); 1097 for (unsigned i = 0; i != NumElts; ++i) { 1098 EVT EltVT = ValueVTs[i]; 1099 if (isa<UndefValue>(C)) 1100 Constants[i] = DAG.getUNDEF(EltVT); 1101 else if (EltVT.isFloatingPoint()) 1102 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1103 else 1104 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1105 } 1106 1107 return DAG.getMergeValues(Constants, getCurSDLoc()); 1108 } 1109 1110 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1111 return DAG.getBlockAddress(BA, VT); 1112 1113 VectorType *VecTy = cast<VectorType>(V->getType()); 1114 unsigned NumElements = VecTy->getNumElements(); 1115 1116 // Now that we know the number and type of the elements, get that number of 1117 // elements into the Ops array based on what kind of constant it is. 1118 SmallVector<SDValue, 16> Ops; 1119 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1120 for (unsigned i = 0; i != NumElements; ++i) 1121 Ops.push_back(getValue(CV->getOperand(i))); 1122 } else { 1123 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1124 EVT EltVT = 1125 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1126 1127 SDValue Op; 1128 if (EltVT.isFloatingPoint()) 1129 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1130 else 1131 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1132 Ops.assign(NumElements, Op); 1133 } 1134 1135 // Create a BUILD_VECTOR node. 1136 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1137 } 1138 1139 // If this is a static alloca, generate it as the frameindex instead of 1140 // computation. 1141 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1142 DenseMap<const AllocaInst*, int>::iterator SI = 1143 FuncInfo.StaticAllocaMap.find(AI); 1144 if (SI != FuncInfo.StaticAllocaMap.end()) 1145 return DAG.getFrameIndex(SI->second, 1146 TLI.getPointerTy(DAG.getDataLayout())); 1147 } 1148 1149 // If this is an instruction which fast-isel has deferred, select it now. 1150 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1151 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1152 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1153 Inst->getType()); 1154 SDValue Chain = DAG.getEntryNode(); 1155 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1156 } 1157 1158 llvm_unreachable("Can't get register for value!"); 1159 } 1160 1161 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1162 report_fatal_error("visitCleanupRet not yet implemented!"); 1163 } 1164 1165 void SelectionDAGBuilder::visitCatchEndPad(const CatchEndPadInst &I) { 1166 report_fatal_error("visitCatchEndPad not yet implemented!"); 1167 } 1168 1169 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1170 report_fatal_error("visitCatchRet not yet implemented!"); 1171 } 1172 1173 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1174 report_fatal_error("visitCatchPad not yet implemented!"); 1175 } 1176 1177 void SelectionDAGBuilder::visitTerminatePad(const TerminatePadInst &TPI) { 1178 report_fatal_error("visitTerminatePad not yet implemented!"); 1179 } 1180 1181 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1182 report_fatal_error("visitCleanupPad not yet implemented!"); 1183 } 1184 1185 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1186 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1187 auto &DL = DAG.getDataLayout(); 1188 SDValue Chain = getControlRoot(); 1189 SmallVector<ISD::OutputArg, 8> Outs; 1190 SmallVector<SDValue, 8> OutVals; 1191 1192 if (!FuncInfo.CanLowerReturn) { 1193 unsigned DemoteReg = FuncInfo.DemoteRegister; 1194 const Function *F = I.getParent()->getParent(); 1195 1196 // Emit a store of the return value through the virtual register. 1197 // Leave Outs empty so that LowerReturn won't try to load return 1198 // registers the usual way. 1199 SmallVector<EVT, 1> PtrValueVTs; 1200 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1201 PtrValueVTs); 1202 1203 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1204 SDValue RetOp = getValue(I.getOperand(0)); 1205 1206 SmallVector<EVT, 4> ValueVTs; 1207 SmallVector<uint64_t, 4> Offsets; 1208 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1209 unsigned NumValues = ValueVTs.size(); 1210 1211 SmallVector<SDValue, 4> Chains(NumValues); 1212 for (unsigned i = 0; i != NumValues; ++i) { 1213 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1214 RetPtr.getValueType(), RetPtr, 1215 DAG.getIntPtrConstant(Offsets[i], 1216 getCurSDLoc())); 1217 Chains[i] = 1218 DAG.getStore(Chain, getCurSDLoc(), 1219 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1220 // FIXME: better loc info would be nice. 1221 Add, MachinePointerInfo(), false, false, 0); 1222 } 1223 1224 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1225 MVT::Other, Chains); 1226 } else if (I.getNumOperands() != 0) { 1227 SmallVector<EVT, 4> ValueVTs; 1228 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1229 unsigned NumValues = ValueVTs.size(); 1230 if (NumValues) { 1231 SDValue RetOp = getValue(I.getOperand(0)); 1232 1233 const Function *F = I.getParent()->getParent(); 1234 1235 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1236 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1237 Attribute::SExt)) 1238 ExtendKind = ISD::SIGN_EXTEND; 1239 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1240 Attribute::ZExt)) 1241 ExtendKind = ISD::ZERO_EXTEND; 1242 1243 LLVMContext &Context = F->getContext(); 1244 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1245 Attribute::InReg); 1246 1247 for (unsigned j = 0; j != NumValues; ++j) { 1248 EVT VT = ValueVTs[j]; 1249 1250 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1251 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1252 1253 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1254 MVT PartVT = TLI.getRegisterType(Context, VT); 1255 SmallVector<SDValue, 4> Parts(NumParts); 1256 getCopyToParts(DAG, getCurSDLoc(), 1257 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1258 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1259 1260 // 'inreg' on function refers to return value 1261 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1262 if (RetInReg) 1263 Flags.setInReg(); 1264 1265 // Propagate extension type if any 1266 if (ExtendKind == ISD::SIGN_EXTEND) 1267 Flags.setSExt(); 1268 else if (ExtendKind == ISD::ZERO_EXTEND) 1269 Flags.setZExt(); 1270 1271 for (unsigned i = 0; i < NumParts; ++i) { 1272 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1273 VT, /*isfixed=*/true, 0, 0)); 1274 OutVals.push_back(Parts[i]); 1275 } 1276 } 1277 } 1278 } 1279 1280 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1281 CallingConv::ID CallConv = 1282 DAG.getMachineFunction().getFunction()->getCallingConv(); 1283 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1284 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1285 1286 // Verify that the target's LowerReturn behaved as expected. 1287 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1288 "LowerReturn didn't return a valid chain!"); 1289 1290 // Update the DAG with the new chain value resulting from return lowering. 1291 DAG.setRoot(Chain); 1292 } 1293 1294 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1295 /// created for it, emit nodes to copy the value into the virtual 1296 /// registers. 1297 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1298 // Skip empty types 1299 if (V->getType()->isEmptyTy()) 1300 return; 1301 1302 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1303 if (VMI != FuncInfo.ValueMap.end()) { 1304 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1305 CopyValueToVirtualRegister(V, VMI->second); 1306 } 1307 } 1308 1309 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1310 /// the current basic block, add it to ValueMap now so that we'll get a 1311 /// CopyTo/FromReg. 1312 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1313 // No need to export constants. 1314 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1315 1316 // Already exported? 1317 if (FuncInfo.isExportedInst(V)) return; 1318 1319 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1320 CopyValueToVirtualRegister(V, Reg); 1321 } 1322 1323 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1324 const BasicBlock *FromBB) { 1325 // The operands of the setcc have to be in this block. We don't know 1326 // how to export them from some other block. 1327 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1328 // Can export from current BB. 1329 if (VI->getParent() == FromBB) 1330 return true; 1331 1332 // Is already exported, noop. 1333 return FuncInfo.isExportedInst(V); 1334 } 1335 1336 // If this is an argument, we can export it if the BB is the entry block or 1337 // if it is already exported. 1338 if (isa<Argument>(V)) { 1339 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1340 return true; 1341 1342 // Otherwise, can only export this if it is already exported. 1343 return FuncInfo.isExportedInst(V); 1344 } 1345 1346 // Otherwise, constants can always be exported. 1347 return true; 1348 } 1349 1350 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1351 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1352 const MachineBasicBlock *Dst) const { 1353 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1354 if (!BPI) 1355 return 0; 1356 const BasicBlock *SrcBB = Src->getBasicBlock(); 1357 const BasicBlock *DstBB = Dst->getBasicBlock(); 1358 return BPI->getEdgeWeight(SrcBB, DstBB); 1359 } 1360 1361 void SelectionDAGBuilder:: 1362 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1363 uint32_t Weight /* = 0 */) { 1364 if (!Weight) 1365 Weight = getEdgeWeight(Src, Dst); 1366 Src->addSuccessor(Dst, Weight); 1367 } 1368 1369 1370 static bool InBlock(const Value *V, const BasicBlock *BB) { 1371 if (const Instruction *I = dyn_cast<Instruction>(V)) 1372 return I->getParent() == BB; 1373 return true; 1374 } 1375 1376 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1377 /// This function emits a branch and is used at the leaves of an OR or an 1378 /// AND operator tree. 1379 /// 1380 void 1381 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1382 MachineBasicBlock *TBB, 1383 MachineBasicBlock *FBB, 1384 MachineBasicBlock *CurBB, 1385 MachineBasicBlock *SwitchBB, 1386 uint32_t TWeight, 1387 uint32_t FWeight) { 1388 const BasicBlock *BB = CurBB->getBasicBlock(); 1389 1390 // If the leaf of the tree is a comparison, merge the condition into 1391 // the caseblock. 1392 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1393 // The operands of the cmp have to be in this block. We don't know 1394 // how to export them from some other block. If this is the first block 1395 // of the sequence, no exporting is needed. 1396 if (CurBB == SwitchBB || 1397 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1398 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1399 ISD::CondCode Condition; 1400 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1401 Condition = getICmpCondCode(IC->getPredicate()); 1402 } else { 1403 const FCmpInst *FC = cast<FCmpInst>(Cond); 1404 Condition = getFCmpCondCode(FC->getPredicate()); 1405 if (TM.Options.NoNaNsFPMath) 1406 Condition = getFCmpCodeWithoutNaN(Condition); 1407 } 1408 1409 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1410 TBB, FBB, CurBB, TWeight, FWeight); 1411 SwitchCases.push_back(CB); 1412 return; 1413 } 1414 } 1415 1416 // Create a CaseBlock record representing this branch. 1417 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1418 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1419 SwitchCases.push_back(CB); 1420 } 1421 1422 /// Scale down both weights to fit into uint32_t. 1423 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1424 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1425 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1426 NewTrue = NewTrue / Scale; 1427 NewFalse = NewFalse / Scale; 1428 } 1429 1430 /// FindMergedConditions - If Cond is an expression like 1431 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1432 MachineBasicBlock *TBB, 1433 MachineBasicBlock *FBB, 1434 MachineBasicBlock *CurBB, 1435 MachineBasicBlock *SwitchBB, 1436 Instruction::BinaryOps Opc, 1437 uint32_t TWeight, 1438 uint32_t FWeight) { 1439 // If this node is not part of the or/and tree, emit it as a branch. 1440 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1441 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1442 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1443 BOp->getParent() != CurBB->getBasicBlock() || 1444 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1445 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1446 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1447 TWeight, FWeight); 1448 return; 1449 } 1450 1451 // Create TmpBB after CurBB. 1452 MachineFunction::iterator BBI = CurBB; 1453 MachineFunction &MF = DAG.getMachineFunction(); 1454 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1455 CurBB->getParent()->insert(++BBI, TmpBB); 1456 1457 if (Opc == Instruction::Or) { 1458 // Codegen X | Y as: 1459 // BB1: 1460 // jmp_if_X TBB 1461 // jmp TmpBB 1462 // TmpBB: 1463 // jmp_if_Y TBB 1464 // jmp FBB 1465 // 1466 1467 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1468 // The requirement is that 1469 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1470 // = TrueProb for original BB. 1471 // Assuming the original weights are A and B, one choice is to set BB1's 1472 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1473 // assumes that 1474 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1475 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1476 // TmpBB, but the math is more complicated. 1477 1478 uint64_t NewTrueWeight = TWeight; 1479 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1480 ScaleWeights(NewTrueWeight, NewFalseWeight); 1481 // Emit the LHS condition. 1482 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1483 NewTrueWeight, NewFalseWeight); 1484 1485 NewTrueWeight = TWeight; 1486 NewFalseWeight = 2 * (uint64_t)FWeight; 1487 ScaleWeights(NewTrueWeight, NewFalseWeight); 1488 // Emit the RHS condition into TmpBB. 1489 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1490 NewTrueWeight, NewFalseWeight); 1491 } else { 1492 assert(Opc == Instruction::And && "Unknown merge op!"); 1493 // Codegen X & Y as: 1494 // BB1: 1495 // jmp_if_X TmpBB 1496 // jmp FBB 1497 // TmpBB: 1498 // jmp_if_Y TBB 1499 // jmp FBB 1500 // 1501 // This requires creation of TmpBB after CurBB. 1502 1503 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1504 // The requirement is that 1505 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1506 // = FalseProb for original BB. 1507 // Assuming the original weights are A and B, one choice is to set BB1's 1508 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1509 // assumes that 1510 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1511 1512 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1513 uint64_t NewFalseWeight = FWeight; 1514 ScaleWeights(NewTrueWeight, NewFalseWeight); 1515 // Emit the LHS condition. 1516 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1517 NewTrueWeight, NewFalseWeight); 1518 1519 NewTrueWeight = 2 * (uint64_t)TWeight; 1520 NewFalseWeight = FWeight; 1521 ScaleWeights(NewTrueWeight, NewFalseWeight); 1522 // Emit the RHS condition into TmpBB. 1523 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1524 NewTrueWeight, NewFalseWeight); 1525 } 1526 } 1527 1528 /// If the set of cases should be emitted as a series of branches, return true. 1529 /// If we should emit this as a bunch of and/or'd together conditions, return 1530 /// false. 1531 bool 1532 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1533 if (Cases.size() != 2) return true; 1534 1535 // If this is two comparisons of the same values or'd or and'd together, they 1536 // will get folded into a single comparison, so don't emit two blocks. 1537 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1538 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1539 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1540 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1541 return false; 1542 } 1543 1544 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1545 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1546 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1547 Cases[0].CC == Cases[1].CC && 1548 isa<Constant>(Cases[0].CmpRHS) && 1549 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1550 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1551 return false; 1552 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1553 return false; 1554 } 1555 1556 return true; 1557 } 1558 1559 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1560 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1561 1562 // Update machine-CFG edges. 1563 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1564 1565 if (I.isUnconditional()) { 1566 // Update machine-CFG edges. 1567 BrMBB->addSuccessor(Succ0MBB); 1568 1569 // If this is not a fall-through branch or optimizations are switched off, 1570 // emit the branch. 1571 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1572 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1573 MVT::Other, getControlRoot(), 1574 DAG.getBasicBlock(Succ0MBB))); 1575 1576 return; 1577 } 1578 1579 // If this condition is one of the special cases we handle, do special stuff 1580 // now. 1581 const Value *CondVal = I.getCondition(); 1582 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1583 1584 // If this is a series of conditions that are or'd or and'd together, emit 1585 // this as a sequence of branches instead of setcc's with and/or operations. 1586 // As long as jumps are not expensive, this should improve performance. 1587 // For example, instead of something like: 1588 // cmp A, B 1589 // C = seteq 1590 // cmp D, E 1591 // F = setle 1592 // or C, F 1593 // jnz foo 1594 // Emit: 1595 // cmp A, B 1596 // je foo 1597 // cmp D, E 1598 // jle foo 1599 // 1600 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1601 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && 1602 BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And || 1603 BOp->getOpcode() == Instruction::Or)) { 1604 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1605 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB), 1606 getEdgeWeight(BrMBB, Succ1MBB)); 1607 // If the compares in later blocks need to use values not currently 1608 // exported from this block, export them now. This block should always 1609 // be the first entry. 1610 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1611 1612 // Allow some cases to be rejected. 1613 if (ShouldEmitAsBranches(SwitchCases)) { 1614 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1615 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1616 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1617 } 1618 1619 // Emit the branch for this block. 1620 visitSwitchCase(SwitchCases[0], BrMBB); 1621 SwitchCases.erase(SwitchCases.begin()); 1622 return; 1623 } 1624 1625 // Okay, we decided not to do this, remove any inserted MBB's and clear 1626 // SwitchCases. 1627 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1628 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1629 1630 SwitchCases.clear(); 1631 } 1632 } 1633 1634 // Create a CaseBlock record representing this branch. 1635 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1636 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1637 1638 // Use visitSwitchCase to actually insert the fast branch sequence for this 1639 // cond branch. 1640 visitSwitchCase(CB, BrMBB); 1641 } 1642 1643 /// visitSwitchCase - Emits the necessary code to represent a single node in 1644 /// the binary search tree resulting from lowering a switch instruction. 1645 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1646 MachineBasicBlock *SwitchBB) { 1647 SDValue Cond; 1648 SDValue CondLHS = getValue(CB.CmpLHS); 1649 SDLoc dl = getCurSDLoc(); 1650 1651 // Build the setcc now. 1652 if (!CB.CmpMHS) { 1653 // Fold "(X == true)" to X and "(X == false)" to !X to 1654 // handle common cases produced by branch lowering. 1655 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1656 CB.CC == ISD::SETEQ) 1657 Cond = CondLHS; 1658 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1659 CB.CC == ISD::SETEQ) { 1660 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1661 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1662 } else 1663 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1664 } else { 1665 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1666 1667 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1668 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1669 1670 SDValue CmpOp = getValue(CB.CmpMHS); 1671 EVT VT = CmpOp.getValueType(); 1672 1673 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1674 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1675 ISD::SETLE); 1676 } else { 1677 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1678 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1679 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1680 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1681 } 1682 } 1683 1684 // Update successor info 1685 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1686 // TrueBB and FalseBB are always different unless the incoming IR is 1687 // degenerate. This only happens when running llc on weird IR. 1688 if (CB.TrueBB != CB.FalseBB) 1689 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1690 1691 // If the lhs block is the next block, invert the condition so that we can 1692 // fall through to the lhs instead of the rhs block. 1693 if (CB.TrueBB == NextBlock(SwitchBB)) { 1694 std::swap(CB.TrueBB, CB.FalseBB); 1695 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1696 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1697 } 1698 1699 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1700 MVT::Other, getControlRoot(), Cond, 1701 DAG.getBasicBlock(CB.TrueBB)); 1702 1703 // Insert the false branch. Do this even if it's a fall through branch, 1704 // this makes it easier to do DAG optimizations which require inverting 1705 // the branch condition. 1706 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1707 DAG.getBasicBlock(CB.FalseBB)); 1708 1709 DAG.setRoot(BrCond); 1710 } 1711 1712 /// visitJumpTable - Emit JumpTable node in the current MBB 1713 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1714 // Emit the code for the jump table 1715 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1716 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1717 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1718 JT.Reg, PTy); 1719 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1720 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1721 MVT::Other, Index.getValue(1), 1722 Table, Index); 1723 DAG.setRoot(BrJumpTable); 1724 } 1725 1726 /// visitJumpTableHeader - This function emits necessary code to produce index 1727 /// in the JumpTable from switch case. 1728 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1729 JumpTableHeader &JTH, 1730 MachineBasicBlock *SwitchBB) { 1731 SDLoc dl = getCurSDLoc(); 1732 1733 // Subtract the lowest switch case value from the value being switched on and 1734 // conditional branch to default mbb if the result is greater than the 1735 // difference between smallest and largest cases. 1736 SDValue SwitchOp = getValue(JTH.SValue); 1737 EVT VT = SwitchOp.getValueType(); 1738 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1739 DAG.getConstant(JTH.First, dl, VT)); 1740 1741 // The SDNode we just created, which holds the value being switched on minus 1742 // the smallest case value, needs to be copied to a virtual register so it 1743 // can be used as an index into the jump table in a subsequent basic block. 1744 // This value may be smaller or larger than the target's pointer type, and 1745 // therefore require extension or truncating. 1746 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1747 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 1748 1749 unsigned JumpTableReg = 1750 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 1751 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1752 JumpTableReg, SwitchOp); 1753 JT.Reg = JumpTableReg; 1754 1755 // Emit the range check for the jump table, and branch to the default block 1756 // for the switch statement if the value being switched on exceeds the largest 1757 // case in the switch. 1758 SDValue CMP = DAG.getSetCC( 1759 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1760 Sub.getValueType()), 1761 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 1762 1763 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1764 MVT::Other, CopyTo, CMP, 1765 DAG.getBasicBlock(JT.Default)); 1766 1767 // Avoid emitting unnecessary branches to the next block. 1768 if (JT.MBB != NextBlock(SwitchBB)) 1769 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1770 DAG.getBasicBlock(JT.MBB)); 1771 1772 DAG.setRoot(BrCond); 1773 } 1774 1775 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1776 /// tail spliced into a stack protector check success bb. 1777 /// 1778 /// For a high level explanation of how this fits into the stack protector 1779 /// generation see the comment on the declaration of class 1780 /// StackProtectorDescriptor. 1781 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1782 MachineBasicBlock *ParentBB) { 1783 1784 // First create the loads to the guard/stack slot for the comparison. 1785 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1786 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 1787 1788 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1789 int FI = MFI->getStackProtectorIndex(); 1790 1791 const Value *IRGuard = SPD.getGuard(); 1792 SDValue GuardPtr = getValue(IRGuard); 1793 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1794 1795 unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType()); 1796 1797 SDValue Guard; 1798 SDLoc dl = getCurSDLoc(); 1799 1800 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1801 // guard value from the virtual register holding the value. Otherwise, emit a 1802 // volatile load to retrieve the stack guard value. 1803 unsigned GuardReg = SPD.getGuardReg(); 1804 1805 if (GuardReg && TLI.useLoadStackGuardNode()) 1806 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 1807 PtrTy); 1808 else 1809 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1810 GuardPtr, MachinePointerInfo(IRGuard, 0), 1811 true, false, false, Align); 1812 1813 SDValue StackSlot = DAG.getLoad( 1814 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 1815 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true, 1816 false, false, Align); 1817 1818 // Perform the comparison via a subtract/getsetcc. 1819 EVT VT = Guard.getValueType(); 1820 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 1821 1822 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 1823 *DAG.getContext(), 1824 Sub.getValueType()), 1825 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 1826 1827 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1828 // branch to failure MBB. 1829 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1830 MVT::Other, StackSlot.getOperand(0), 1831 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1832 // Otherwise branch to success MBB. 1833 SDValue Br = DAG.getNode(ISD::BR, dl, 1834 MVT::Other, BrCond, 1835 DAG.getBasicBlock(SPD.getSuccessMBB())); 1836 1837 DAG.setRoot(Br); 1838 } 1839 1840 /// Codegen the failure basic block for a stack protector check. 1841 /// 1842 /// A failure stack protector machine basic block consists simply of a call to 1843 /// __stack_chk_fail(). 1844 /// 1845 /// For a high level explanation of how this fits into the stack protector 1846 /// generation see the comment on the declaration of class 1847 /// StackProtectorDescriptor. 1848 void 1849 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1850 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1851 SDValue Chain = 1852 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1853 nullptr, 0, false, getCurSDLoc(), false, false).second; 1854 DAG.setRoot(Chain); 1855 } 1856 1857 /// visitBitTestHeader - This function emits necessary code to produce value 1858 /// suitable for "bit tests" 1859 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1860 MachineBasicBlock *SwitchBB) { 1861 SDLoc dl = getCurSDLoc(); 1862 1863 // Subtract the minimum value 1864 SDValue SwitchOp = getValue(B.SValue); 1865 EVT VT = SwitchOp.getValueType(); 1866 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1867 DAG.getConstant(B.First, dl, VT)); 1868 1869 // Check range 1870 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1871 SDValue RangeCmp = DAG.getSetCC( 1872 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1873 Sub.getValueType()), 1874 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 1875 1876 // Determine the type of the test operands. 1877 bool UsePtrType = false; 1878 if (!TLI.isTypeLegal(VT)) 1879 UsePtrType = true; 1880 else { 1881 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1882 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1883 // Switch table case range are encoded into series of masks. 1884 // Just use pointer type, it's guaranteed to fit. 1885 UsePtrType = true; 1886 break; 1887 } 1888 } 1889 if (UsePtrType) { 1890 VT = TLI.getPointerTy(DAG.getDataLayout()); 1891 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 1892 } 1893 1894 B.RegVT = VT.getSimpleVT(); 1895 B.Reg = FuncInfo.CreateReg(B.RegVT); 1896 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 1897 1898 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1899 1900 uint32_t DefaultWeight = getEdgeWeight(SwitchBB, B.Default); 1901 addSuccessorWithWeight(SwitchBB, B.Default, DefaultWeight); 1902 addSuccessorWithWeight(SwitchBB, MBB, B.Weight); 1903 1904 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 1905 MVT::Other, CopyTo, RangeCmp, 1906 DAG.getBasicBlock(B.Default)); 1907 1908 // Avoid emitting unnecessary branches to the next block. 1909 if (MBB != NextBlock(SwitchBB)) 1910 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 1911 DAG.getBasicBlock(MBB)); 1912 1913 DAG.setRoot(BrRange); 1914 } 1915 1916 /// visitBitTestCase - this function produces one "bit test" 1917 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1918 MachineBasicBlock* NextMBB, 1919 uint32_t BranchWeightToNext, 1920 unsigned Reg, 1921 BitTestCase &B, 1922 MachineBasicBlock *SwitchBB) { 1923 SDLoc dl = getCurSDLoc(); 1924 MVT VT = BB.RegVT; 1925 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 1926 SDValue Cmp; 1927 unsigned PopCount = countPopulation(B.Mask); 1928 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1929 if (PopCount == 1) { 1930 // Testing for a single bit; just compare the shift count with what it 1931 // would need to be to shift a 1 bit in that position. 1932 Cmp = DAG.getSetCC( 1933 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 1934 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 1935 ISD::SETEQ); 1936 } else if (PopCount == BB.Range) { 1937 // There is only one zero bit in the range, test for it directly. 1938 Cmp = DAG.getSetCC( 1939 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 1940 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 1941 ISD::SETNE); 1942 } else { 1943 // Make desired shift 1944 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 1945 DAG.getConstant(1, dl, VT), ShiftOp); 1946 1947 // Emit bit tests and jumps 1948 SDValue AndOp = DAG.getNode(ISD::AND, dl, 1949 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 1950 Cmp = DAG.getSetCC( 1951 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 1952 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 1953 } 1954 1955 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1956 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1957 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1958 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1959 1960 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 1961 MVT::Other, getControlRoot(), 1962 Cmp, DAG.getBasicBlock(B.TargetBB)); 1963 1964 // Avoid emitting unnecessary branches to the next block. 1965 if (NextMBB != NextBlock(SwitchBB)) 1966 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 1967 DAG.getBasicBlock(NextMBB)); 1968 1969 DAG.setRoot(BrAnd); 1970 } 1971 1972 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1973 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1974 1975 // Retrieve successors. 1976 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1977 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1978 1979 const Value *Callee(I.getCalledValue()); 1980 const Function *Fn = dyn_cast<Function>(Callee); 1981 if (isa<InlineAsm>(Callee)) 1982 visitInlineAsm(&I); 1983 else if (Fn && Fn->isIntrinsic()) { 1984 switch (Fn->getIntrinsicID()) { 1985 default: 1986 llvm_unreachable("Cannot invoke this intrinsic"); 1987 case Intrinsic::donothing: 1988 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 1989 break; 1990 case Intrinsic::experimental_patchpoint_void: 1991 case Intrinsic::experimental_patchpoint_i64: 1992 visitPatchpoint(&I, LandingPad); 1993 break; 1994 case Intrinsic::experimental_gc_statepoint: 1995 LowerStatepoint(ImmutableStatepoint(&I), LandingPad); 1996 break; 1997 } 1998 } else 1999 LowerCallTo(&I, getValue(Callee), false, LandingPad); 2000 2001 // If the value of the invoke is used outside of its defining block, make it 2002 // available as a virtual register. 2003 // We already took care of the exported value for the statepoint instruction 2004 // during call to the LowerStatepoint. 2005 if (!isStatepoint(I)) { 2006 CopyToExportRegsIfNeeded(&I); 2007 } 2008 2009 // Update successor info 2010 addSuccessorWithWeight(InvokeMBB, Return); 2011 addSuccessorWithWeight(InvokeMBB, LandingPad); 2012 2013 // Drop into normal successor. 2014 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2015 MVT::Other, getControlRoot(), 2016 DAG.getBasicBlock(Return))); 2017 } 2018 2019 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2020 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2021 } 2022 2023 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2024 assert(FuncInfo.MBB->isLandingPad() && 2025 "Call to landingpad not in landing pad!"); 2026 2027 MachineBasicBlock *MBB = FuncInfo.MBB; 2028 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2029 AddLandingPadInfo(LP, MMI, MBB); 2030 2031 // If there aren't registers to copy the values into (e.g., during SjLj 2032 // exceptions), then don't bother to create these DAG nodes. 2033 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2034 if (TLI.getExceptionPointerRegister() == 0 && 2035 TLI.getExceptionSelectorRegister() == 0) 2036 return; 2037 2038 SmallVector<EVT, 2> ValueVTs; 2039 SDLoc dl = getCurSDLoc(); 2040 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2041 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2042 2043 // Get the two live-in registers as SDValues. The physregs have already been 2044 // copied into virtual registers. 2045 SDValue Ops[2]; 2046 if (FuncInfo.ExceptionPointerVirtReg) { 2047 Ops[0] = DAG.getZExtOrTrunc( 2048 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2049 FuncInfo.ExceptionPointerVirtReg, 2050 TLI.getPointerTy(DAG.getDataLayout())), 2051 dl, ValueVTs[0]); 2052 } else { 2053 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2054 } 2055 Ops[1] = DAG.getZExtOrTrunc( 2056 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2057 FuncInfo.ExceptionSelectorVirtReg, 2058 TLI.getPointerTy(DAG.getDataLayout())), 2059 dl, ValueVTs[1]); 2060 2061 // Merge into one. 2062 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2063 DAG.getVTList(ValueVTs), Ops); 2064 setValue(&LP, Res); 2065 } 2066 2067 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2068 #ifndef NDEBUG 2069 for (const CaseCluster &CC : Clusters) 2070 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2071 #endif 2072 2073 std::sort(Clusters.begin(), Clusters.end(), 2074 [](const CaseCluster &a, const CaseCluster &b) { 2075 return a.Low->getValue().slt(b.Low->getValue()); 2076 }); 2077 2078 // Merge adjacent clusters with the same destination. 2079 const unsigned N = Clusters.size(); 2080 unsigned DstIndex = 0; 2081 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2082 CaseCluster &CC = Clusters[SrcIndex]; 2083 const ConstantInt *CaseVal = CC.Low; 2084 MachineBasicBlock *Succ = CC.MBB; 2085 2086 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2087 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2088 // If this case has the same successor and is a neighbour, merge it into 2089 // the previous cluster. 2090 Clusters[DstIndex - 1].High = CaseVal; 2091 Clusters[DstIndex - 1].Weight += CC.Weight; 2092 assert(Clusters[DstIndex - 1].Weight >= CC.Weight && "Weight overflow!"); 2093 } else { 2094 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2095 sizeof(Clusters[SrcIndex])); 2096 } 2097 } 2098 Clusters.resize(DstIndex); 2099 } 2100 2101 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2102 MachineBasicBlock *Last) { 2103 // Update JTCases. 2104 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2105 if (JTCases[i].first.HeaderBB == First) 2106 JTCases[i].first.HeaderBB = Last; 2107 2108 // Update BitTestCases. 2109 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2110 if (BitTestCases[i].Parent == First) 2111 BitTestCases[i].Parent = Last; 2112 } 2113 2114 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2115 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2116 2117 // Update machine-CFG edges with unique successors. 2118 SmallSet<BasicBlock*, 32> Done; 2119 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2120 BasicBlock *BB = I.getSuccessor(i); 2121 bool Inserted = Done.insert(BB).second; 2122 if (!Inserted) 2123 continue; 2124 2125 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2126 addSuccessorWithWeight(IndirectBrMBB, Succ); 2127 } 2128 2129 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2130 MVT::Other, getControlRoot(), 2131 getValue(I.getAddress()))); 2132 } 2133 2134 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2135 if (DAG.getTarget().Options.TrapUnreachable) 2136 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2137 } 2138 2139 void SelectionDAGBuilder::visitFSub(const User &I) { 2140 // -0.0 - X --> fneg 2141 Type *Ty = I.getType(); 2142 if (isa<Constant>(I.getOperand(0)) && 2143 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2144 SDValue Op2 = getValue(I.getOperand(1)); 2145 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2146 Op2.getValueType(), Op2)); 2147 return; 2148 } 2149 2150 visitBinary(I, ISD::FSUB); 2151 } 2152 2153 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2154 SDValue Op1 = getValue(I.getOperand(0)); 2155 SDValue Op2 = getValue(I.getOperand(1)); 2156 2157 bool nuw = false; 2158 bool nsw = false; 2159 bool exact = false; 2160 FastMathFlags FMF; 2161 2162 if (const OverflowingBinaryOperator *OFBinOp = 2163 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2164 nuw = OFBinOp->hasNoUnsignedWrap(); 2165 nsw = OFBinOp->hasNoSignedWrap(); 2166 } 2167 if (const PossiblyExactOperator *ExactOp = 2168 dyn_cast<const PossiblyExactOperator>(&I)) 2169 exact = ExactOp->isExact(); 2170 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2171 FMF = FPOp->getFastMathFlags(); 2172 2173 SDNodeFlags Flags; 2174 Flags.setExact(exact); 2175 Flags.setNoSignedWrap(nsw); 2176 Flags.setNoUnsignedWrap(nuw); 2177 if (EnableFMFInDAG) { 2178 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2179 Flags.setNoInfs(FMF.noInfs()); 2180 Flags.setNoNaNs(FMF.noNaNs()); 2181 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2182 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2183 } 2184 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2185 Op1, Op2, &Flags); 2186 setValue(&I, BinNodeValue); 2187 } 2188 2189 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2190 SDValue Op1 = getValue(I.getOperand(0)); 2191 SDValue Op2 = getValue(I.getOperand(1)); 2192 2193 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2194 Op2.getValueType(), DAG.getDataLayout()); 2195 2196 // Coerce the shift amount to the right type if we can. 2197 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2198 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2199 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2200 SDLoc DL = getCurSDLoc(); 2201 2202 // If the operand is smaller than the shift count type, promote it. 2203 if (ShiftSize > Op2Size) 2204 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2205 2206 // If the operand is larger than the shift count type but the shift 2207 // count type has enough bits to represent any shift value, truncate 2208 // it now. This is a common case and it exposes the truncate to 2209 // optimization early. 2210 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2211 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2212 // Otherwise we'll need to temporarily settle for some other convenient 2213 // type. Type legalization will make adjustments once the shiftee is split. 2214 else 2215 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2216 } 2217 2218 bool nuw = false; 2219 bool nsw = false; 2220 bool exact = false; 2221 2222 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2223 2224 if (const OverflowingBinaryOperator *OFBinOp = 2225 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2226 nuw = OFBinOp->hasNoUnsignedWrap(); 2227 nsw = OFBinOp->hasNoSignedWrap(); 2228 } 2229 if (const PossiblyExactOperator *ExactOp = 2230 dyn_cast<const PossiblyExactOperator>(&I)) 2231 exact = ExactOp->isExact(); 2232 } 2233 SDNodeFlags Flags; 2234 Flags.setExact(exact); 2235 Flags.setNoSignedWrap(nsw); 2236 Flags.setNoUnsignedWrap(nuw); 2237 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2238 &Flags); 2239 setValue(&I, Res); 2240 } 2241 2242 void SelectionDAGBuilder::visitSDiv(const User &I) { 2243 SDValue Op1 = getValue(I.getOperand(0)); 2244 SDValue Op2 = getValue(I.getOperand(1)); 2245 2246 SDNodeFlags Flags; 2247 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2248 cast<PossiblyExactOperator>(&I)->isExact()); 2249 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2250 Op2, &Flags)); 2251 } 2252 2253 void SelectionDAGBuilder::visitICmp(const User &I) { 2254 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2255 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2256 predicate = IC->getPredicate(); 2257 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2258 predicate = ICmpInst::Predicate(IC->getPredicate()); 2259 SDValue Op1 = getValue(I.getOperand(0)); 2260 SDValue Op2 = getValue(I.getOperand(1)); 2261 ISD::CondCode Opcode = getICmpCondCode(predicate); 2262 2263 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2264 I.getType()); 2265 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2266 } 2267 2268 void SelectionDAGBuilder::visitFCmp(const User &I) { 2269 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2270 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2271 predicate = FC->getPredicate(); 2272 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2273 predicate = FCmpInst::Predicate(FC->getPredicate()); 2274 SDValue Op1 = getValue(I.getOperand(0)); 2275 SDValue Op2 = getValue(I.getOperand(1)); 2276 ISD::CondCode Condition = getFCmpCondCode(predicate); 2277 if (TM.Options.NoNaNsFPMath) 2278 Condition = getFCmpCodeWithoutNaN(Condition); 2279 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2280 I.getType()); 2281 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2282 } 2283 2284 void SelectionDAGBuilder::visitSelect(const User &I) { 2285 SmallVector<EVT, 4> ValueVTs; 2286 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2287 ValueVTs); 2288 unsigned NumValues = ValueVTs.size(); 2289 if (NumValues == 0) return; 2290 2291 SmallVector<SDValue, 4> Values(NumValues); 2292 SDValue Cond = getValue(I.getOperand(0)); 2293 SDValue LHSVal = getValue(I.getOperand(1)); 2294 SDValue RHSVal = getValue(I.getOperand(2)); 2295 auto BaseOps = {Cond}; 2296 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2297 ISD::VSELECT : ISD::SELECT; 2298 2299 // Min/max matching is only viable if all output VTs are the same. 2300 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2301 EVT VT = ValueVTs[0]; 2302 LLVMContext &Ctx = *DAG.getContext(); 2303 auto &TLI = DAG.getTargetLoweringInfo(); 2304 while (TLI.getTypeAction(Ctx, VT) == TargetLoweringBase::TypeSplitVector) 2305 VT = TLI.getTypeToTransformTo(Ctx, VT); 2306 2307 Value *LHS, *RHS; 2308 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2309 ISD::NodeType Opc = ISD::DELETED_NODE; 2310 switch (SPR.Flavor) { 2311 case SPF_UMAX: Opc = ISD::UMAX; break; 2312 case SPF_UMIN: Opc = ISD::UMIN; break; 2313 case SPF_SMAX: Opc = ISD::SMAX; break; 2314 case SPF_SMIN: Opc = ISD::SMIN; break; 2315 case SPF_FMINNUM: 2316 switch (SPR.NaNBehavior) { 2317 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2318 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2319 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2320 case SPNB_RETURNS_ANY: 2321 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) ? ISD::FMINNUM 2322 : ISD::FMINNAN; 2323 break; 2324 } 2325 break; 2326 case SPF_FMAXNUM: 2327 switch (SPR.NaNBehavior) { 2328 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2329 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2330 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2331 case SPNB_RETURNS_ANY: 2332 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) ? ISD::FMAXNUM 2333 : ISD::FMAXNAN; 2334 break; 2335 } 2336 break; 2337 default: break; 2338 } 2339 2340 if (Opc != ISD::DELETED_NODE && TLI.isOperationLegalOrCustom(Opc, VT) && 2341 // If the underlying comparison instruction is used by any other instruction, 2342 // the consumed instructions won't be destroyed, so it is not profitable 2343 // to convert to a min/max. 2344 cast<SelectInst>(&I)->getCondition()->hasOneUse()) { 2345 OpCode = Opc; 2346 LHSVal = getValue(LHS); 2347 RHSVal = getValue(RHS); 2348 BaseOps = {}; 2349 } 2350 } 2351 2352 for (unsigned i = 0; i != NumValues; ++i) { 2353 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2354 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2355 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2356 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2357 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2358 Ops); 2359 } 2360 2361 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2362 DAG.getVTList(ValueVTs), Values)); 2363 } 2364 2365 void SelectionDAGBuilder::visitTrunc(const User &I) { 2366 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2367 SDValue N = getValue(I.getOperand(0)); 2368 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2369 I.getType()); 2370 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2371 } 2372 2373 void SelectionDAGBuilder::visitZExt(const User &I) { 2374 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2375 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2376 SDValue N = getValue(I.getOperand(0)); 2377 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2378 I.getType()); 2379 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2380 } 2381 2382 void SelectionDAGBuilder::visitSExt(const User &I) { 2383 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2384 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2385 SDValue N = getValue(I.getOperand(0)); 2386 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2387 I.getType()); 2388 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2389 } 2390 2391 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2392 // FPTrunc is never a no-op cast, no need to check 2393 SDValue N = getValue(I.getOperand(0)); 2394 SDLoc dl = getCurSDLoc(); 2395 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2396 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2397 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2398 DAG.getTargetConstant( 2399 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2400 } 2401 2402 void SelectionDAGBuilder::visitFPExt(const User &I) { 2403 // FPExt is never a no-op cast, no need to check 2404 SDValue N = getValue(I.getOperand(0)); 2405 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2406 I.getType()); 2407 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2408 } 2409 2410 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2411 // FPToUI is never a no-op cast, no need to check 2412 SDValue N = getValue(I.getOperand(0)); 2413 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2414 I.getType()); 2415 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2416 } 2417 2418 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2419 // FPToSI is never a no-op cast, no need to check 2420 SDValue N = getValue(I.getOperand(0)); 2421 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2422 I.getType()); 2423 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2424 } 2425 2426 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2427 // UIToFP is never a no-op cast, no need to check 2428 SDValue N = getValue(I.getOperand(0)); 2429 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2430 I.getType()); 2431 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2432 } 2433 2434 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2435 // SIToFP is never a no-op cast, no need to check 2436 SDValue N = getValue(I.getOperand(0)); 2437 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2438 I.getType()); 2439 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2440 } 2441 2442 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2443 // What to do depends on the size of the integer and the size of the pointer. 2444 // We can either truncate, zero extend, or no-op, accordingly. 2445 SDValue N = getValue(I.getOperand(0)); 2446 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2447 I.getType()); 2448 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2449 } 2450 2451 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2452 // What to do depends on the size of the integer and the size of the pointer. 2453 // We can either truncate, zero extend, or no-op, accordingly. 2454 SDValue N = getValue(I.getOperand(0)); 2455 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2456 I.getType()); 2457 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2458 } 2459 2460 void SelectionDAGBuilder::visitBitCast(const User &I) { 2461 SDValue N = getValue(I.getOperand(0)); 2462 SDLoc dl = getCurSDLoc(); 2463 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2464 I.getType()); 2465 2466 // BitCast assures us that source and destination are the same size so this is 2467 // either a BITCAST or a no-op. 2468 if (DestVT != N.getValueType()) 2469 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2470 DestVT, N)); // convert types. 2471 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2472 // might fold any kind of constant expression to an integer constant and that 2473 // is not what we are looking for. Only regcognize a bitcast of a genuine 2474 // constant integer as an opaque constant. 2475 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2476 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2477 /*isOpaque*/true)); 2478 else 2479 setValue(&I, N); // noop cast. 2480 } 2481 2482 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2483 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2484 const Value *SV = I.getOperand(0); 2485 SDValue N = getValue(SV); 2486 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2487 2488 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2489 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2490 2491 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2492 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2493 2494 setValue(&I, N); 2495 } 2496 2497 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2498 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2499 SDValue InVec = getValue(I.getOperand(0)); 2500 SDValue InVal = getValue(I.getOperand(1)); 2501 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 2502 TLI.getVectorIdxTy(DAG.getDataLayout())); 2503 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2504 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2505 InVec, InVal, InIdx)); 2506 } 2507 2508 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2509 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2510 SDValue InVec = getValue(I.getOperand(0)); 2511 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 2512 TLI.getVectorIdxTy(DAG.getDataLayout())); 2513 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2514 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2515 InVec, InIdx)); 2516 } 2517 2518 // Utility for visitShuffleVector - Return true if every element in Mask, 2519 // beginning from position Pos and ending in Pos+Size, falls within the 2520 // specified sequential range [L, L+Pos). or is undef. 2521 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2522 unsigned Pos, unsigned Size, int Low) { 2523 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2524 if (Mask[i] >= 0 && Mask[i] != Low) 2525 return false; 2526 return true; 2527 } 2528 2529 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2530 SDValue Src1 = getValue(I.getOperand(0)); 2531 SDValue Src2 = getValue(I.getOperand(1)); 2532 2533 SmallVector<int, 8> Mask; 2534 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2535 unsigned MaskNumElts = Mask.size(); 2536 2537 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2538 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2539 EVT SrcVT = Src1.getValueType(); 2540 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2541 2542 if (SrcNumElts == MaskNumElts) { 2543 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2544 &Mask[0])); 2545 return; 2546 } 2547 2548 // Normalize the shuffle vector since mask and vector length don't match. 2549 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2550 // Mask is longer than the source vectors and is a multiple of the source 2551 // vectors. We can use concatenate vector to make the mask and vectors 2552 // lengths match. 2553 if (SrcNumElts*2 == MaskNumElts) { 2554 // First check for Src1 in low and Src2 in high 2555 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2556 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2557 // The shuffle is concatenating two vectors together. 2558 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2559 VT, Src1, Src2)); 2560 return; 2561 } 2562 // Then check for Src2 in low and Src1 in high 2563 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2564 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2565 // The shuffle is concatenating two vectors together. 2566 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2567 VT, Src2, Src1)); 2568 return; 2569 } 2570 } 2571 2572 // Pad both vectors with undefs to make them the same length as the mask. 2573 unsigned NumConcat = MaskNumElts / SrcNumElts; 2574 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2575 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2576 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2577 2578 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2579 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2580 MOps1[0] = Src1; 2581 MOps2[0] = Src2; 2582 2583 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2584 getCurSDLoc(), VT, MOps1); 2585 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2586 getCurSDLoc(), VT, MOps2); 2587 2588 // Readjust mask for new input vector length. 2589 SmallVector<int, 8> MappedOps; 2590 for (unsigned i = 0; i != MaskNumElts; ++i) { 2591 int Idx = Mask[i]; 2592 if (Idx >= (int)SrcNumElts) 2593 Idx -= SrcNumElts - MaskNumElts; 2594 MappedOps.push_back(Idx); 2595 } 2596 2597 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2598 &MappedOps[0])); 2599 return; 2600 } 2601 2602 if (SrcNumElts > MaskNumElts) { 2603 // Analyze the access pattern of the vector to see if we can extract 2604 // two subvectors and do the shuffle. The analysis is done by calculating 2605 // the range of elements the mask access on both vectors. 2606 int MinRange[2] = { static_cast<int>(SrcNumElts), 2607 static_cast<int>(SrcNumElts)}; 2608 int MaxRange[2] = {-1, -1}; 2609 2610 for (unsigned i = 0; i != MaskNumElts; ++i) { 2611 int Idx = Mask[i]; 2612 unsigned Input = 0; 2613 if (Idx < 0) 2614 continue; 2615 2616 if (Idx >= (int)SrcNumElts) { 2617 Input = 1; 2618 Idx -= SrcNumElts; 2619 } 2620 if (Idx > MaxRange[Input]) 2621 MaxRange[Input] = Idx; 2622 if (Idx < MinRange[Input]) 2623 MinRange[Input] = Idx; 2624 } 2625 2626 // Check if the access is smaller than the vector size and can we find 2627 // a reasonable extract index. 2628 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2629 // Extract. 2630 int StartIdx[2]; // StartIdx to extract from 2631 for (unsigned Input = 0; Input < 2; ++Input) { 2632 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2633 RangeUse[Input] = 0; // Unused 2634 StartIdx[Input] = 0; 2635 continue; 2636 } 2637 2638 // Find a good start index that is a multiple of the mask length. Then 2639 // see if the rest of the elements are in range. 2640 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2641 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2642 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2643 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2644 } 2645 2646 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2647 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2648 return; 2649 } 2650 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2651 // Extract appropriate subvector and generate a vector shuffle 2652 for (unsigned Input = 0; Input < 2; ++Input) { 2653 SDValue &Src = Input == 0 ? Src1 : Src2; 2654 if (RangeUse[Input] == 0) 2655 Src = DAG.getUNDEF(VT); 2656 else { 2657 SDLoc dl = getCurSDLoc(); 2658 Src = DAG.getNode( 2659 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 2660 DAG.getConstant(StartIdx[Input], dl, 2661 TLI.getVectorIdxTy(DAG.getDataLayout()))); 2662 } 2663 } 2664 2665 // Calculate new mask. 2666 SmallVector<int, 8> MappedOps; 2667 for (unsigned i = 0; i != MaskNumElts; ++i) { 2668 int Idx = Mask[i]; 2669 if (Idx >= 0) { 2670 if (Idx < (int)SrcNumElts) 2671 Idx -= StartIdx[0]; 2672 else 2673 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2674 } 2675 MappedOps.push_back(Idx); 2676 } 2677 2678 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2679 &MappedOps[0])); 2680 return; 2681 } 2682 } 2683 2684 // We can't use either concat vectors or extract subvectors so fall back to 2685 // replacing the shuffle with extract and build vector. 2686 // to insert and build vector. 2687 EVT EltVT = VT.getVectorElementType(); 2688 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 2689 SDLoc dl = getCurSDLoc(); 2690 SmallVector<SDValue,8> Ops; 2691 for (unsigned i = 0; i != MaskNumElts; ++i) { 2692 int Idx = Mask[i]; 2693 SDValue Res; 2694 2695 if (Idx < 0) { 2696 Res = DAG.getUNDEF(EltVT); 2697 } else { 2698 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2699 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2700 2701 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 2702 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 2703 } 2704 2705 Ops.push_back(Res); 2706 } 2707 2708 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 2709 } 2710 2711 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2712 const Value *Op0 = I.getOperand(0); 2713 const Value *Op1 = I.getOperand(1); 2714 Type *AggTy = I.getType(); 2715 Type *ValTy = Op1->getType(); 2716 bool IntoUndef = isa<UndefValue>(Op0); 2717 bool FromUndef = isa<UndefValue>(Op1); 2718 2719 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2720 2721 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2722 SmallVector<EVT, 4> AggValueVTs; 2723 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 2724 SmallVector<EVT, 4> ValValueVTs; 2725 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2726 2727 unsigned NumAggValues = AggValueVTs.size(); 2728 unsigned NumValValues = ValValueVTs.size(); 2729 SmallVector<SDValue, 4> Values(NumAggValues); 2730 2731 // Ignore an insertvalue that produces an empty object 2732 if (!NumAggValues) { 2733 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2734 return; 2735 } 2736 2737 SDValue Agg = getValue(Op0); 2738 unsigned i = 0; 2739 // Copy the beginning value(s) from the original aggregate. 2740 for (; i != LinearIndex; ++i) 2741 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2742 SDValue(Agg.getNode(), Agg.getResNo() + i); 2743 // Copy values from the inserted value(s). 2744 if (NumValValues) { 2745 SDValue Val = getValue(Op1); 2746 for (; i != LinearIndex + NumValValues; ++i) 2747 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2748 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2749 } 2750 // Copy remaining value(s) from the original aggregate. 2751 for (; i != NumAggValues; ++i) 2752 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2753 SDValue(Agg.getNode(), Agg.getResNo() + i); 2754 2755 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2756 DAG.getVTList(AggValueVTs), Values)); 2757 } 2758 2759 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2760 const Value *Op0 = I.getOperand(0); 2761 Type *AggTy = Op0->getType(); 2762 Type *ValTy = I.getType(); 2763 bool OutOfUndef = isa<UndefValue>(Op0); 2764 2765 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2766 2767 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2768 SmallVector<EVT, 4> ValValueVTs; 2769 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2770 2771 unsigned NumValValues = ValValueVTs.size(); 2772 2773 // Ignore a extractvalue that produces an empty object 2774 if (!NumValValues) { 2775 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2776 return; 2777 } 2778 2779 SmallVector<SDValue, 4> Values(NumValValues); 2780 2781 SDValue Agg = getValue(Op0); 2782 // Copy out the selected value(s). 2783 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2784 Values[i - LinearIndex] = 2785 OutOfUndef ? 2786 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2787 SDValue(Agg.getNode(), Agg.getResNo() + i); 2788 2789 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2790 DAG.getVTList(ValValueVTs), Values)); 2791 } 2792 2793 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2794 Value *Op0 = I.getOperand(0); 2795 // Note that the pointer operand may be a vector of pointers. Take the scalar 2796 // element which holds a pointer. 2797 Type *Ty = Op0->getType()->getScalarType(); 2798 unsigned AS = Ty->getPointerAddressSpace(); 2799 SDValue N = getValue(Op0); 2800 SDLoc dl = getCurSDLoc(); 2801 2802 // Normalize Vector GEP - all scalar operands should be converted to the 2803 // splat vector. 2804 unsigned VectorWidth = I.getType()->isVectorTy() ? 2805 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 2806 2807 if (VectorWidth && !N.getValueType().isVector()) { 2808 MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth); 2809 SmallVector<SDValue, 16> Ops(VectorWidth, N); 2810 N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 2811 } 2812 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2813 OI != E; ++OI) { 2814 const Value *Idx = *OI; 2815 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 2816 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 2817 if (Field) { 2818 // N = N + Offset 2819 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 2820 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 2821 DAG.getConstant(Offset, dl, N.getValueType())); 2822 } 2823 2824 Ty = StTy->getElementType(Field); 2825 } else { 2826 Ty = cast<SequentialType>(Ty)->getElementType(); 2827 MVT PtrTy = 2828 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 2829 unsigned PtrSize = PtrTy.getSizeInBits(); 2830 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 2831 2832 // If this is a scalar constant or a splat vector of constants, 2833 // handle it quickly. 2834 const auto *CI = dyn_cast<ConstantInt>(Idx); 2835 if (!CI && isa<ConstantDataVector>(Idx) && 2836 cast<ConstantDataVector>(Idx)->getSplatValue()) 2837 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 2838 2839 if (CI) { 2840 if (CI->isZero()) 2841 continue; 2842 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 2843 SDValue OffsVal = VectorWidth ? 2844 DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) : 2845 DAG.getConstant(Offs, dl, PtrTy); 2846 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal); 2847 continue; 2848 } 2849 2850 // N = N + Idx * ElementSize; 2851 SDValue IdxN = getValue(Idx); 2852 2853 if (!IdxN.getValueType().isVector() && VectorWidth) { 2854 MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth); 2855 SmallVector<SDValue, 16> Ops(VectorWidth, IdxN); 2856 IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 2857 } 2858 // If the index is smaller or larger than intptr_t, truncate or extend 2859 // it. 2860 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 2861 2862 // If this is a multiply by a power of two, turn it into a shl 2863 // immediately. This is a very common case. 2864 if (ElementSize != 1) { 2865 if (ElementSize.isPowerOf2()) { 2866 unsigned Amt = ElementSize.logBase2(); 2867 IdxN = DAG.getNode(ISD::SHL, dl, 2868 N.getValueType(), IdxN, 2869 DAG.getConstant(Amt, dl, IdxN.getValueType())); 2870 } else { 2871 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 2872 IdxN = DAG.getNode(ISD::MUL, dl, 2873 N.getValueType(), IdxN, Scale); 2874 } 2875 } 2876 2877 N = DAG.getNode(ISD::ADD, dl, 2878 N.getValueType(), N, IdxN); 2879 } 2880 } 2881 2882 setValue(&I, N); 2883 } 2884 2885 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 2886 // If this is a fixed sized alloca in the entry block of the function, 2887 // allocate it statically on the stack. 2888 if (FuncInfo.StaticAllocaMap.count(&I)) 2889 return; // getValue will auto-populate this. 2890 2891 SDLoc dl = getCurSDLoc(); 2892 Type *Ty = I.getAllocatedType(); 2893 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2894 auto &DL = DAG.getDataLayout(); 2895 uint64_t TySize = DL.getTypeAllocSize(Ty); 2896 unsigned Align = 2897 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 2898 2899 SDValue AllocSize = getValue(I.getArraySize()); 2900 2901 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 2902 if (AllocSize.getValueType() != IntPtr) 2903 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 2904 2905 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 2906 AllocSize, 2907 DAG.getConstant(TySize, dl, IntPtr)); 2908 2909 // Handle alignment. If the requested alignment is less than or equal to 2910 // the stack alignment, ignore it. If the size is greater than or equal to 2911 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 2912 unsigned StackAlign = 2913 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 2914 if (Align <= StackAlign) 2915 Align = 0; 2916 2917 // Round the size of the allocation up to the stack alignment size 2918 // by add SA-1 to the size. 2919 AllocSize = DAG.getNode(ISD::ADD, dl, 2920 AllocSize.getValueType(), AllocSize, 2921 DAG.getIntPtrConstant(StackAlign - 1, dl)); 2922 2923 // Mask out the low bits for alignment purposes. 2924 AllocSize = DAG.getNode(ISD::AND, dl, 2925 AllocSize.getValueType(), AllocSize, 2926 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 2927 dl)); 2928 2929 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 2930 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 2931 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 2932 setValue(&I, DSA); 2933 DAG.setRoot(DSA.getValue(1)); 2934 2935 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 2936 } 2937 2938 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 2939 if (I.isAtomic()) 2940 return visitAtomicLoad(I); 2941 2942 const Value *SV = I.getOperand(0); 2943 SDValue Ptr = getValue(SV); 2944 2945 Type *Ty = I.getType(); 2946 2947 bool isVolatile = I.isVolatile(); 2948 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 2949 2950 // The IR notion of invariant_load only guarantees that all *non-faulting* 2951 // invariant loads result in the same value. The MI notion of invariant load 2952 // guarantees that the load can be legally moved to any location within its 2953 // containing function. The MI notion of invariant_load is stronger than the 2954 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load 2955 // with a guarantee that the location being loaded from is dereferenceable 2956 // throughout the function's lifetime. 2957 2958 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr && 2959 isDereferenceablePointer(SV, DAG.getDataLayout()); 2960 unsigned Alignment = I.getAlignment(); 2961 2962 AAMDNodes AAInfo; 2963 I.getAAMetadata(AAInfo); 2964 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 2965 2966 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2967 SmallVector<EVT, 4> ValueVTs; 2968 SmallVector<uint64_t, 4> Offsets; 2969 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 2970 unsigned NumValues = ValueVTs.size(); 2971 if (NumValues == 0) 2972 return; 2973 2974 SDValue Root; 2975 bool ConstantMemory = false; 2976 if (isVolatile || NumValues > MaxParallelChains) 2977 // Serialize volatile loads with other side effects. 2978 Root = getRoot(); 2979 else if (AA->pointsToConstantMemory(MemoryLocation( 2980 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 2981 // Do not serialize (non-volatile) loads of constant memory with anything. 2982 Root = DAG.getEntryNode(); 2983 ConstantMemory = true; 2984 } else { 2985 // Do not serialize non-volatile loads against each other. 2986 Root = DAG.getRoot(); 2987 } 2988 2989 SDLoc dl = getCurSDLoc(); 2990 2991 if (isVolatile) 2992 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 2993 2994 SmallVector<SDValue, 4> Values(NumValues); 2995 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 2996 EVT PtrVT = Ptr.getValueType(); 2997 unsigned ChainI = 0; 2998 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 2999 // Serializing loads here may result in excessive register pressure, and 3000 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3001 // could recover a bit by hoisting nodes upward in the chain by recognizing 3002 // they are side-effect free or do not alias. The optimizer should really 3003 // avoid this case by converting large object/array copies to llvm.memcpy 3004 // (MaxParallelChains should always remain as failsafe). 3005 if (ChainI == MaxParallelChains) { 3006 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3007 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3008 makeArrayRef(Chains.data(), ChainI)); 3009 Root = Chain; 3010 ChainI = 0; 3011 } 3012 SDValue A = DAG.getNode(ISD::ADD, dl, 3013 PtrVT, Ptr, 3014 DAG.getConstant(Offsets[i], dl, PtrVT)); 3015 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 3016 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3017 isNonTemporal, isInvariant, Alignment, AAInfo, 3018 Ranges); 3019 3020 Values[i] = L; 3021 Chains[ChainI] = L.getValue(1); 3022 } 3023 3024 if (!ConstantMemory) { 3025 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3026 makeArrayRef(Chains.data(), ChainI)); 3027 if (isVolatile) 3028 DAG.setRoot(Chain); 3029 else 3030 PendingLoads.push_back(Chain); 3031 } 3032 3033 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3034 DAG.getVTList(ValueVTs), Values)); 3035 } 3036 3037 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3038 if (I.isAtomic()) 3039 return visitAtomicStore(I); 3040 3041 const Value *SrcV = I.getOperand(0); 3042 const Value *PtrV = I.getOperand(1); 3043 3044 SmallVector<EVT, 4> ValueVTs; 3045 SmallVector<uint64_t, 4> Offsets; 3046 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3047 SrcV->getType(), ValueVTs, &Offsets); 3048 unsigned NumValues = ValueVTs.size(); 3049 if (NumValues == 0) 3050 return; 3051 3052 // Get the lowered operands. Note that we do this after 3053 // checking if NumResults is zero, because with zero results 3054 // the operands won't have values in the map. 3055 SDValue Src = getValue(SrcV); 3056 SDValue Ptr = getValue(PtrV); 3057 3058 SDValue Root = getRoot(); 3059 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3060 EVT PtrVT = Ptr.getValueType(); 3061 bool isVolatile = I.isVolatile(); 3062 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3063 unsigned Alignment = I.getAlignment(); 3064 SDLoc dl = getCurSDLoc(); 3065 3066 AAMDNodes AAInfo; 3067 I.getAAMetadata(AAInfo); 3068 3069 unsigned ChainI = 0; 3070 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3071 // See visitLoad comments. 3072 if (ChainI == MaxParallelChains) { 3073 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3074 makeArrayRef(Chains.data(), ChainI)); 3075 Root = Chain; 3076 ChainI = 0; 3077 } 3078 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3079 DAG.getConstant(Offsets[i], dl, PtrVT)); 3080 SDValue St = DAG.getStore(Root, dl, 3081 SDValue(Src.getNode(), Src.getResNo() + i), 3082 Add, MachinePointerInfo(PtrV, Offsets[i]), 3083 isVolatile, isNonTemporal, Alignment, AAInfo); 3084 Chains[ChainI] = St; 3085 } 3086 3087 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3088 makeArrayRef(Chains.data(), ChainI)); 3089 DAG.setRoot(StoreNode); 3090 } 3091 3092 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3093 SDLoc sdl = getCurSDLoc(); 3094 3095 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3096 Value *PtrOperand = I.getArgOperand(1); 3097 SDValue Ptr = getValue(PtrOperand); 3098 SDValue Src0 = getValue(I.getArgOperand(0)); 3099 SDValue Mask = getValue(I.getArgOperand(3)); 3100 EVT VT = Src0.getValueType(); 3101 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3102 if (!Alignment) 3103 Alignment = DAG.getEVTAlignment(VT); 3104 3105 AAMDNodes AAInfo; 3106 I.getAAMetadata(AAInfo); 3107 3108 MachineMemOperand *MMO = 3109 DAG.getMachineFunction(). 3110 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3111 MachineMemOperand::MOStore, VT.getStoreSize(), 3112 Alignment, AAInfo); 3113 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3114 MMO, false); 3115 DAG.setRoot(StoreNode); 3116 setValue(&I, StoreNode); 3117 } 3118 3119 // Gather/scatter receive a vector of pointers. 3120 // This vector of pointers may be represented as a base pointer + vector of 3121 // indices, it depends on GEP and instruction preceding GEP 3122 // that calculates indices 3123 static bool getUniformBase(Value *& Ptr, SDValue& Base, SDValue& Index, 3124 SelectionDAGBuilder* SDB) { 3125 3126 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type"); 3127 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 3128 if (!Gep || Gep->getNumOperands() > 2) 3129 return false; 3130 ShuffleVectorInst *ShuffleInst = 3131 dyn_cast<ShuffleVectorInst>(Gep->getPointerOperand()); 3132 if (!ShuffleInst || !ShuffleInst->getMask()->isNullValue() || 3133 cast<Instruction>(ShuffleInst->getOperand(0))->getOpcode() != 3134 Instruction::InsertElement) 3135 return false; 3136 3137 Ptr = cast<InsertElementInst>(ShuffleInst->getOperand(0))->getOperand(1); 3138 3139 SelectionDAG& DAG = SDB->DAG; 3140 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3141 // Check is the Ptr is inside current basic block 3142 // If not, look for the shuffle instruction 3143 if (SDB->findValue(Ptr)) 3144 Base = SDB->getValue(Ptr); 3145 else if (SDB->findValue(ShuffleInst)) { 3146 SDValue ShuffleNode = SDB->getValue(ShuffleInst); 3147 SDLoc sdl = ShuffleNode; 3148 Base = DAG.getNode( 3149 ISD::EXTRACT_VECTOR_ELT, sdl, 3150 ShuffleNode.getValueType().getScalarType(), ShuffleNode, 3151 DAG.getConstant(0, sdl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3152 SDB->setValue(Ptr, Base); 3153 } 3154 else 3155 return false; 3156 3157 Value *IndexVal = Gep->getOperand(1); 3158 if (SDB->findValue(IndexVal)) { 3159 Index = SDB->getValue(IndexVal); 3160 3161 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3162 IndexVal = Sext->getOperand(0); 3163 if (SDB->findValue(IndexVal)) 3164 Index = SDB->getValue(IndexVal); 3165 } 3166 return true; 3167 } 3168 return false; 3169 } 3170 3171 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3172 SDLoc sdl = getCurSDLoc(); 3173 3174 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3175 Value *Ptr = I.getArgOperand(1); 3176 SDValue Src0 = getValue(I.getArgOperand(0)); 3177 SDValue Mask = getValue(I.getArgOperand(3)); 3178 EVT VT = Src0.getValueType(); 3179 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3180 if (!Alignment) 3181 Alignment = DAG.getEVTAlignment(VT); 3182 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3183 3184 AAMDNodes AAInfo; 3185 I.getAAMetadata(AAInfo); 3186 3187 SDValue Base; 3188 SDValue Index; 3189 Value *BasePtr = Ptr; 3190 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3191 3192 Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3193 MachineMemOperand *MMO = DAG.getMachineFunction(). 3194 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3195 MachineMemOperand::MOStore, VT.getStoreSize(), 3196 Alignment, AAInfo); 3197 if (!UniformBase) { 3198 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3199 Index = getValue(Ptr); 3200 } 3201 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3202 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3203 Ops, MMO); 3204 DAG.setRoot(Scatter); 3205 setValue(&I, Scatter); 3206 } 3207 3208 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3209 SDLoc sdl = getCurSDLoc(); 3210 3211 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3212 Value *PtrOperand = I.getArgOperand(0); 3213 SDValue Ptr = getValue(PtrOperand); 3214 SDValue Src0 = getValue(I.getArgOperand(3)); 3215 SDValue Mask = getValue(I.getArgOperand(2)); 3216 3217 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3218 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3219 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3220 if (!Alignment) 3221 Alignment = DAG.getEVTAlignment(VT); 3222 3223 AAMDNodes AAInfo; 3224 I.getAAMetadata(AAInfo); 3225 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3226 3227 SDValue InChain = DAG.getRoot(); 3228 if (AA->pointsToConstantMemory(MemoryLocation( 3229 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3230 AAInfo))) { 3231 // Do not serialize (non-volatile) loads of constant memory with anything. 3232 InChain = DAG.getEntryNode(); 3233 } 3234 3235 MachineMemOperand *MMO = 3236 DAG.getMachineFunction(). 3237 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3238 MachineMemOperand::MOLoad, VT.getStoreSize(), 3239 Alignment, AAInfo, Ranges); 3240 3241 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3242 ISD::NON_EXTLOAD); 3243 SDValue OutChain = Load.getValue(1); 3244 DAG.setRoot(OutChain); 3245 setValue(&I, Load); 3246 } 3247 3248 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3249 SDLoc sdl = getCurSDLoc(); 3250 3251 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3252 Value *Ptr = I.getArgOperand(0); 3253 SDValue Src0 = getValue(I.getArgOperand(3)); 3254 SDValue Mask = getValue(I.getArgOperand(2)); 3255 3256 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3257 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3258 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3259 if (!Alignment) 3260 Alignment = DAG.getEVTAlignment(VT); 3261 3262 AAMDNodes AAInfo; 3263 I.getAAMetadata(AAInfo); 3264 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3265 3266 SDValue Root = DAG.getRoot(); 3267 SDValue Base; 3268 SDValue Index; 3269 Value *BasePtr = Ptr; 3270 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3271 bool ConstantMemory = false; 3272 if (UniformBase && 3273 AA->pointsToConstantMemory(MemoryLocation( 3274 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3275 AAInfo))) { 3276 // Do not serialize (non-volatile) loads of constant memory with anything. 3277 Root = DAG.getEntryNode(); 3278 ConstantMemory = true; 3279 } 3280 3281 MachineMemOperand *MMO = 3282 DAG.getMachineFunction(). 3283 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3284 MachineMemOperand::MOLoad, VT.getStoreSize(), 3285 Alignment, AAInfo, Ranges); 3286 3287 if (!UniformBase) { 3288 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3289 Index = getValue(Ptr); 3290 } 3291 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3292 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3293 Ops, MMO); 3294 3295 SDValue OutChain = Gather.getValue(1); 3296 if (!ConstantMemory) 3297 PendingLoads.push_back(OutChain); 3298 setValue(&I, Gather); 3299 } 3300 3301 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3302 SDLoc dl = getCurSDLoc(); 3303 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3304 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3305 SynchronizationScope Scope = I.getSynchScope(); 3306 3307 SDValue InChain = getRoot(); 3308 3309 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3310 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3311 SDValue L = DAG.getAtomicCmpSwap( 3312 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3313 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3314 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3315 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3316 3317 SDValue OutChain = L.getValue(2); 3318 3319 setValue(&I, L); 3320 DAG.setRoot(OutChain); 3321 } 3322 3323 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3324 SDLoc dl = getCurSDLoc(); 3325 ISD::NodeType NT; 3326 switch (I.getOperation()) { 3327 default: llvm_unreachable("Unknown atomicrmw operation"); 3328 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3329 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3330 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3331 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3332 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3333 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3334 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3335 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3336 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3337 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3338 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3339 } 3340 AtomicOrdering Order = I.getOrdering(); 3341 SynchronizationScope Scope = I.getSynchScope(); 3342 3343 SDValue InChain = getRoot(); 3344 3345 SDValue L = 3346 DAG.getAtomic(NT, dl, 3347 getValue(I.getValOperand()).getSimpleValueType(), 3348 InChain, 3349 getValue(I.getPointerOperand()), 3350 getValue(I.getValOperand()), 3351 I.getPointerOperand(), 3352 /* Alignment=*/ 0, Order, Scope); 3353 3354 SDValue OutChain = L.getValue(1); 3355 3356 setValue(&I, L); 3357 DAG.setRoot(OutChain); 3358 } 3359 3360 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3361 SDLoc dl = getCurSDLoc(); 3362 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3363 SDValue Ops[3]; 3364 Ops[0] = getRoot(); 3365 Ops[1] = DAG.getConstant(I.getOrdering(), dl, 3366 TLI.getPointerTy(DAG.getDataLayout())); 3367 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, 3368 TLI.getPointerTy(DAG.getDataLayout())); 3369 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3370 } 3371 3372 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3373 SDLoc dl = getCurSDLoc(); 3374 AtomicOrdering Order = I.getOrdering(); 3375 SynchronizationScope Scope = I.getSynchScope(); 3376 3377 SDValue InChain = getRoot(); 3378 3379 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3380 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3381 3382 if (I.getAlignment() < VT.getSizeInBits() / 8) 3383 report_fatal_error("Cannot generate unaligned atomic load"); 3384 3385 MachineMemOperand *MMO = 3386 DAG.getMachineFunction(). 3387 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3388 MachineMemOperand::MOVolatile | 3389 MachineMemOperand::MOLoad, 3390 VT.getStoreSize(), 3391 I.getAlignment() ? I.getAlignment() : 3392 DAG.getEVTAlignment(VT)); 3393 3394 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3395 SDValue L = 3396 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3397 getValue(I.getPointerOperand()), MMO, 3398 Order, Scope); 3399 3400 SDValue OutChain = L.getValue(1); 3401 3402 setValue(&I, L); 3403 DAG.setRoot(OutChain); 3404 } 3405 3406 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3407 SDLoc dl = getCurSDLoc(); 3408 3409 AtomicOrdering Order = I.getOrdering(); 3410 SynchronizationScope Scope = I.getSynchScope(); 3411 3412 SDValue InChain = getRoot(); 3413 3414 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3415 EVT VT = 3416 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 3417 3418 if (I.getAlignment() < VT.getSizeInBits() / 8) 3419 report_fatal_error("Cannot generate unaligned atomic store"); 3420 3421 SDValue OutChain = 3422 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3423 InChain, 3424 getValue(I.getPointerOperand()), 3425 getValue(I.getValueOperand()), 3426 I.getPointerOperand(), I.getAlignment(), 3427 Order, Scope); 3428 3429 DAG.setRoot(OutChain); 3430 } 3431 3432 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3433 /// node. 3434 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3435 unsigned Intrinsic) { 3436 bool HasChain = !I.doesNotAccessMemory(); 3437 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3438 3439 // Build the operand list. 3440 SmallVector<SDValue, 8> Ops; 3441 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3442 if (OnlyLoad) { 3443 // We don't need to serialize loads against other loads. 3444 Ops.push_back(DAG.getRoot()); 3445 } else { 3446 Ops.push_back(getRoot()); 3447 } 3448 } 3449 3450 // Info is set by getTgtMemInstrinsic 3451 TargetLowering::IntrinsicInfo Info; 3452 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3453 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3454 3455 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3456 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3457 Info.opc == ISD::INTRINSIC_W_CHAIN) 3458 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 3459 TLI.getPointerTy(DAG.getDataLayout()))); 3460 3461 // Add all operands of the call to the operand list. 3462 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3463 SDValue Op = getValue(I.getArgOperand(i)); 3464 Ops.push_back(Op); 3465 } 3466 3467 SmallVector<EVT, 4> ValueVTs; 3468 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 3469 3470 if (HasChain) 3471 ValueVTs.push_back(MVT::Other); 3472 3473 SDVTList VTs = DAG.getVTList(ValueVTs); 3474 3475 // Create the node. 3476 SDValue Result; 3477 if (IsTgtIntrinsic) { 3478 // This is target intrinsic that touches memory 3479 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3480 VTs, Ops, Info.memVT, 3481 MachinePointerInfo(Info.ptrVal, Info.offset), 3482 Info.align, Info.vol, 3483 Info.readMem, Info.writeMem, Info.size); 3484 } else if (!HasChain) { 3485 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3486 } else if (!I.getType()->isVoidTy()) { 3487 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3488 } else { 3489 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3490 } 3491 3492 if (HasChain) { 3493 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3494 if (OnlyLoad) 3495 PendingLoads.push_back(Chain); 3496 else 3497 DAG.setRoot(Chain); 3498 } 3499 3500 if (!I.getType()->isVoidTy()) { 3501 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3502 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 3503 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3504 } 3505 3506 setValue(&I, Result); 3507 } 3508 } 3509 3510 /// GetSignificand - Get the significand and build it into a floating-point 3511 /// number with exponent of 1: 3512 /// 3513 /// Op = (Op & 0x007fffff) | 0x3f800000; 3514 /// 3515 /// where Op is the hexadecimal representation of floating point value. 3516 static SDValue 3517 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3518 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3519 DAG.getConstant(0x007fffff, dl, MVT::i32)); 3520 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3521 DAG.getConstant(0x3f800000, dl, MVT::i32)); 3522 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3523 } 3524 3525 /// GetExponent - Get the exponent: 3526 /// 3527 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3528 /// 3529 /// where Op is the hexadecimal representation of floating point value. 3530 static SDValue 3531 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3532 SDLoc dl) { 3533 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3534 DAG.getConstant(0x7f800000, dl, MVT::i32)); 3535 SDValue t1 = DAG.getNode( 3536 ISD::SRL, dl, MVT::i32, t0, 3537 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 3538 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3539 DAG.getConstant(127, dl, MVT::i32)); 3540 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3541 } 3542 3543 /// getF32Constant - Get 32-bit floating point constant. 3544 static SDValue 3545 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 3546 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 3547 MVT::f32); 3548 } 3549 3550 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3551 SelectionDAG &DAG) { 3552 // IntegerPartOfX = ((int32_t)(t0); 3553 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3554 3555 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3556 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3557 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3558 3559 // IntegerPartOfX <<= 23; 3560 IntegerPartOfX = DAG.getNode( 3561 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3562 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 3563 DAG.getDataLayout()))); 3564 3565 SDValue TwoToFractionalPartOfX; 3566 if (LimitFloatPrecision <= 6) { 3567 // For floating-point precision of 6: 3568 // 3569 // TwoToFractionalPartOfX = 3570 // 0.997535578f + 3571 // (0.735607626f + 0.252464424f * x) * x; 3572 // 3573 // error 0.0144103317, which is 6 bits 3574 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3575 getF32Constant(DAG, 0x3e814304, dl)); 3576 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3577 getF32Constant(DAG, 0x3f3c50c8, dl)); 3578 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3579 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3580 getF32Constant(DAG, 0x3f7f5e7e, dl)); 3581 } else if (LimitFloatPrecision <= 12) { 3582 // For floating-point precision of 12: 3583 // 3584 // TwoToFractionalPartOfX = 3585 // 0.999892986f + 3586 // (0.696457318f + 3587 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3588 // 3589 // error 0.000107046256, which is 13 to 14 bits 3590 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3591 getF32Constant(DAG, 0x3da235e3, dl)); 3592 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3593 getF32Constant(DAG, 0x3e65b8f3, dl)); 3594 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3595 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3596 getF32Constant(DAG, 0x3f324b07, dl)); 3597 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3598 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3599 getF32Constant(DAG, 0x3f7ff8fd, dl)); 3600 } else { // LimitFloatPrecision <= 18 3601 // For floating-point precision of 18: 3602 // 3603 // TwoToFractionalPartOfX = 3604 // 0.999999982f + 3605 // (0.693148872f + 3606 // (0.240227044f + 3607 // (0.554906021e-1f + 3608 // (0.961591928e-2f + 3609 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3610 // error 2.47208000*10^(-7), which is better than 18 bits 3611 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3612 getF32Constant(DAG, 0x3924b03e, dl)); 3613 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3614 getF32Constant(DAG, 0x3ab24b87, dl)); 3615 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3616 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3617 getF32Constant(DAG, 0x3c1d8c17, dl)); 3618 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3619 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3620 getF32Constant(DAG, 0x3d634a1d, dl)); 3621 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3622 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3623 getF32Constant(DAG, 0x3e75fe14, dl)); 3624 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3625 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3626 getF32Constant(DAG, 0x3f317234, dl)); 3627 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3628 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3629 getF32Constant(DAG, 0x3f800000, dl)); 3630 } 3631 3632 // Add the exponent into the result in integer domain. 3633 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 3634 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3635 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 3636 } 3637 3638 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3639 /// limited-precision mode. 3640 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3641 const TargetLowering &TLI) { 3642 if (Op.getValueType() == MVT::f32 && 3643 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3644 3645 // Put the exponent in the right bit position for later addition to the 3646 // final result: 3647 // 3648 // #define LOG2OFe 1.4426950f 3649 // t0 = Op * LOG2OFe 3650 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3651 getF32Constant(DAG, 0x3fb8aa3b, dl)); 3652 return getLimitedPrecisionExp2(t0, dl, DAG); 3653 } 3654 3655 // No special expansion. 3656 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3657 } 3658 3659 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3660 /// limited-precision mode. 3661 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3662 const TargetLowering &TLI) { 3663 if (Op.getValueType() == MVT::f32 && 3664 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3665 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3666 3667 // Scale the exponent by log(2) [0.69314718f]. 3668 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3669 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3670 getF32Constant(DAG, 0x3f317218, dl)); 3671 3672 // Get the significand and build it into a floating-point number with 3673 // exponent of 1. 3674 SDValue X = GetSignificand(DAG, Op1, dl); 3675 3676 SDValue LogOfMantissa; 3677 if (LimitFloatPrecision <= 6) { 3678 // For floating-point precision of 6: 3679 // 3680 // LogofMantissa = 3681 // -1.1609546f + 3682 // (1.4034025f - 0.23903021f * x) * x; 3683 // 3684 // error 0.0034276066, which is better than 8 bits 3685 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3686 getF32Constant(DAG, 0xbe74c456, dl)); 3687 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3688 getF32Constant(DAG, 0x3fb3a2b1, dl)); 3689 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3690 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3691 getF32Constant(DAG, 0x3f949a29, dl)); 3692 } else if (LimitFloatPrecision <= 12) { 3693 // For floating-point precision of 12: 3694 // 3695 // LogOfMantissa = 3696 // -1.7417939f + 3697 // (2.8212026f + 3698 // (-1.4699568f + 3699 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3700 // 3701 // error 0.000061011436, which is 14 bits 3702 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3703 getF32Constant(DAG, 0xbd67b6d6, dl)); 3704 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3705 getF32Constant(DAG, 0x3ee4f4b8, dl)); 3706 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3707 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3708 getF32Constant(DAG, 0x3fbc278b, dl)); 3709 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3710 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3711 getF32Constant(DAG, 0x40348e95, dl)); 3712 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3713 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3714 getF32Constant(DAG, 0x3fdef31a, dl)); 3715 } else { // LimitFloatPrecision <= 18 3716 // For floating-point precision of 18: 3717 // 3718 // LogOfMantissa = 3719 // -2.1072184f + 3720 // (4.2372794f + 3721 // (-3.7029485f + 3722 // (2.2781945f + 3723 // (-0.87823314f + 3724 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3725 // 3726 // error 0.0000023660568, which is better than 18 bits 3727 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3728 getF32Constant(DAG, 0xbc91e5ac, dl)); 3729 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3730 getF32Constant(DAG, 0x3e4350aa, dl)); 3731 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3732 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3733 getF32Constant(DAG, 0x3f60d3e3, dl)); 3734 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3735 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3736 getF32Constant(DAG, 0x4011cdf0, dl)); 3737 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3738 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3739 getF32Constant(DAG, 0x406cfd1c, dl)); 3740 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3741 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3742 getF32Constant(DAG, 0x408797cb, dl)); 3743 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3744 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3745 getF32Constant(DAG, 0x4006dcab, dl)); 3746 } 3747 3748 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3749 } 3750 3751 // No special expansion. 3752 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3753 } 3754 3755 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3756 /// limited-precision mode. 3757 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3758 const TargetLowering &TLI) { 3759 if (Op.getValueType() == MVT::f32 && 3760 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3761 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3762 3763 // Get the exponent. 3764 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3765 3766 // Get the significand and build it into a floating-point number with 3767 // exponent of 1. 3768 SDValue X = GetSignificand(DAG, Op1, dl); 3769 3770 // Different possible minimax approximations of significand in 3771 // floating-point for various degrees of accuracy over [1,2]. 3772 SDValue Log2ofMantissa; 3773 if (LimitFloatPrecision <= 6) { 3774 // For floating-point precision of 6: 3775 // 3776 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3777 // 3778 // error 0.0049451742, which is more than 7 bits 3779 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3780 getF32Constant(DAG, 0xbeb08fe0, dl)); 3781 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3782 getF32Constant(DAG, 0x40019463, dl)); 3783 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3784 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3785 getF32Constant(DAG, 0x3fd6633d, dl)); 3786 } else if (LimitFloatPrecision <= 12) { 3787 // For floating-point precision of 12: 3788 // 3789 // Log2ofMantissa = 3790 // -2.51285454f + 3791 // (4.07009056f + 3792 // (-2.12067489f + 3793 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3794 // 3795 // error 0.0000876136000, which is better than 13 bits 3796 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3797 getF32Constant(DAG, 0xbda7262e, dl)); 3798 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3799 getF32Constant(DAG, 0x3f25280b, dl)); 3800 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3801 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3802 getF32Constant(DAG, 0x4007b923, dl)); 3803 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3804 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3805 getF32Constant(DAG, 0x40823e2f, dl)); 3806 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3807 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3808 getF32Constant(DAG, 0x4020d29c, dl)); 3809 } else { // LimitFloatPrecision <= 18 3810 // For floating-point precision of 18: 3811 // 3812 // Log2ofMantissa = 3813 // -3.0400495f + 3814 // (6.1129976f + 3815 // (-5.3420409f + 3816 // (3.2865683f + 3817 // (-1.2669343f + 3818 // (0.27515199f - 3819 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3820 // 3821 // error 0.0000018516, which is better than 18 bits 3822 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3823 getF32Constant(DAG, 0xbcd2769e, dl)); 3824 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3825 getF32Constant(DAG, 0x3e8ce0b9, dl)); 3826 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3827 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3828 getF32Constant(DAG, 0x3fa22ae7, dl)); 3829 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3830 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3831 getF32Constant(DAG, 0x40525723, dl)); 3832 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3833 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3834 getF32Constant(DAG, 0x40aaf200, dl)); 3835 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3836 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3837 getF32Constant(DAG, 0x40c39dad, dl)); 3838 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3839 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3840 getF32Constant(DAG, 0x4042902c, dl)); 3841 } 3842 3843 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 3844 } 3845 3846 // No special expansion. 3847 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 3848 } 3849 3850 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 3851 /// limited-precision mode. 3852 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3853 const TargetLowering &TLI) { 3854 if (Op.getValueType() == MVT::f32 && 3855 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3856 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3857 3858 // Scale the exponent by log10(2) [0.30102999f]. 3859 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3860 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3861 getF32Constant(DAG, 0x3e9a209a, dl)); 3862 3863 // Get the significand and build it into a floating-point number with 3864 // exponent of 1. 3865 SDValue X = GetSignificand(DAG, Op1, dl); 3866 3867 SDValue Log10ofMantissa; 3868 if (LimitFloatPrecision <= 6) { 3869 // For floating-point precision of 6: 3870 // 3871 // Log10ofMantissa = 3872 // -0.50419619f + 3873 // (0.60948995f - 0.10380950f * x) * x; 3874 // 3875 // error 0.0014886165, which is 6 bits 3876 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3877 getF32Constant(DAG, 0xbdd49a13, dl)); 3878 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3879 getF32Constant(DAG, 0x3f1c0789, dl)); 3880 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3881 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3882 getF32Constant(DAG, 0x3f011300, dl)); 3883 } else if (LimitFloatPrecision <= 12) { 3884 // For floating-point precision of 12: 3885 // 3886 // Log10ofMantissa = 3887 // -0.64831180f + 3888 // (0.91751397f + 3889 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3890 // 3891 // error 0.00019228036, which is better than 12 bits 3892 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3893 getF32Constant(DAG, 0x3d431f31, dl)); 3894 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3895 getF32Constant(DAG, 0x3ea21fb2, dl)); 3896 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3897 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3898 getF32Constant(DAG, 0x3f6ae232, dl)); 3899 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3900 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3901 getF32Constant(DAG, 0x3f25f7c3, dl)); 3902 } else { // LimitFloatPrecision <= 18 3903 // For floating-point precision of 18: 3904 // 3905 // Log10ofMantissa = 3906 // -0.84299375f + 3907 // (1.5327582f + 3908 // (-1.0688956f + 3909 // (0.49102474f + 3910 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 3911 // 3912 // error 0.0000037995730, which is better than 18 bits 3913 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3914 getF32Constant(DAG, 0x3c5d51ce, dl)); 3915 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3916 getF32Constant(DAG, 0x3e00685a, dl)); 3917 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3918 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3919 getF32Constant(DAG, 0x3efb6798, dl)); 3920 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3921 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3922 getF32Constant(DAG, 0x3f88d192, dl)); 3923 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3924 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3925 getF32Constant(DAG, 0x3fc4316c, dl)); 3926 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3927 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 3928 getF32Constant(DAG, 0x3f57ce70, dl)); 3929 } 3930 3931 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 3932 } 3933 3934 // No special expansion. 3935 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 3936 } 3937 3938 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 3939 /// limited-precision mode. 3940 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3941 const TargetLowering &TLI) { 3942 if (Op.getValueType() == MVT::f32 && 3943 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 3944 return getLimitedPrecisionExp2(Op, dl, DAG); 3945 3946 // No special expansion. 3947 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 3948 } 3949 3950 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 3951 /// limited-precision mode with x == 10.0f. 3952 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 3953 SelectionDAG &DAG, const TargetLowering &TLI) { 3954 bool IsExp10 = false; 3955 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 3956 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3957 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 3958 APFloat Ten(10.0f); 3959 IsExp10 = LHSC->isExactlyValue(Ten); 3960 } 3961 } 3962 3963 if (IsExp10) { 3964 // Put the exponent in the right bit position for later addition to the 3965 // final result: 3966 // 3967 // #define LOG2OF10 3.3219281f 3968 // t0 = Op * LOG2OF10; 3969 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 3970 getF32Constant(DAG, 0x40549a78, dl)); 3971 return getLimitedPrecisionExp2(t0, dl, DAG); 3972 } 3973 3974 // No special expansion. 3975 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 3976 } 3977 3978 3979 /// ExpandPowI - Expand a llvm.powi intrinsic. 3980 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 3981 SelectionDAG &DAG) { 3982 // If RHS is a constant, we can expand this out to a multiplication tree, 3983 // otherwise we end up lowering to a call to __powidf2 (for example). When 3984 // optimizing for size, we only want to do this if the expansion would produce 3985 // a small number of multiplies, otherwise we do the full expansion. 3986 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 3987 // Get the exponent as a positive value. 3988 unsigned Val = RHSC->getSExtValue(); 3989 if ((int)Val < 0) Val = -Val; 3990 3991 // powi(x, 0) -> 1.0 3992 if (Val == 0) 3993 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 3994 3995 const Function *F = DAG.getMachineFunction().getFunction(); 3996 if (!F->optForSize() || 3997 // If optimizing for size, don't insert too many multiplies. 3998 // This inserts up to 5 multiplies. 3999 countPopulation(Val) + Log2_32(Val) < 7) { 4000 // We use the simple binary decomposition method to generate the multiply 4001 // sequence. There are more optimal ways to do this (for example, 4002 // powi(x,15) generates one more multiply than it should), but this has 4003 // the benefit of being both really simple and much better than a libcall. 4004 SDValue Res; // Logically starts equal to 1.0 4005 SDValue CurSquare = LHS; 4006 while (Val) { 4007 if (Val & 1) { 4008 if (Res.getNode()) 4009 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4010 else 4011 Res = CurSquare; // 1.0*CurSquare. 4012 } 4013 4014 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4015 CurSquare, CurSquare); 4016 Val >>= 1; 4017 } 4018 4019 // If the original was negative, invert the result, producing 1/(x*x*x). 4020 if (RHSC->getSExtValue() < 0) 4021 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4022 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4023 return Res; 4024 } 4025 } 4026 4027 // Otherwise, expand to a libcall. 4028 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4029 } 4030 4031 // getTruncatedArgReg - Find underlying register used for an truncated 4032 // argument. 4033 static unsigned getTruncatedArgReg(const SDValue &N) { 4034 if (N.getOpcode() != ISD::TRUNCATE) 4035 return 0; 4036 4037 const SDValue &Ext = N.getOperand(0); 4038 if (Ext.getOpcode() == ISD::AssertZext || 4039 Ext.getOpcode() == ISD::AssertSext) { 4040 const SDValue &CFR = Ext.getOperand(0); 4041 if (CFR.getOpcode() == ISD::CopyFromReg) 4042 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4043 if (CFR.getOpcode() == ISD::TRUNCATE) 4044 return getTruncatedArgReg(CFR); 4045 } 4046 return 0; 4047 } 4048 4049 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4050 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4051 /// At the end of instruction selection, they will be inserted to the entry BB. 4052 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4053 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4054 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4055 const Argument *Arg = dyn_cast<Argument>(V); 4056 if (!Arg) 4057 return false; 4058 4059 MachineFunction &MF = DAG.getMachineFunction(); 4060 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4061 4062 // Ignore inlined function arguments here. 4063 // 4064 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4065 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4066 return false; 4067 4068 Optional<MachineOperand> Op; 4069 // Some arguments' frame index is recorded during argument lowering. 4070 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4071 Op = MachineOperand::CreateFI(FI); 4072 4073 if (!Op && N.getNode()) { 4074 unsigned Reg; 4075 if (N.getOpcode() == ISD::CopyFromReg) 4076 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4077 else 4078 Reg = getTruncatedArgReg(N); 4079 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4080 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4081 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4082 if (PR) 4083 Reg = PR; 4084 } 4085 if (Reg) 4086 Op = MachineOperand::CreateReg(Reg, false); 4087 } 4088 4089 if (!Op) { 4090 // Check if ValueMap has reg number. 4091 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4092 if (VMI != FuncInfo.ValueMap.end()) 4093 Op = MachineOperand::CreateReg(VMI->second, false); 4094 } 4095 4096 if (!Op && N.getNode()) 4097 // Check if frame index is available. 4098 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4099 if (FrameIndexSDNode *FINode = 4100 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4101 Op = MachineOperand::CreateFI(FINode->getIndex()); 4102 4103 if (!Op) 4104 return false; 4105 4106 assert(Variable->isValidLocationForIntrinsic(DL) && 4107 "Expected inlined-at fields to agree"); 4108 if (Op->isReg()) 4109 FuncInfo.ArgDbgValues.push_back( 4110 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4111 Op->getReg(), Offset, Variable, Expr)); 4112 else 4113 FuncInfo.ArgDbgValues.push_back( 4114 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4115 .addOperand(*Op) 4116 .addImm(Offset) 4117 .addMetadata(Variable) 4118 .addMetadata(Expr)); 4119 4120 return true; 4121 } 4122 4123 // VisualStudio defines setjmp as _setjmp 4124 #if defined(_MSC_VER) && defined(setjmp) && \ 4125 !defined(setjmp_undefined_for_msvc) 4126 # pragma push_macro("setjmp") 4127 # undef setjmp 4128 # define setjmp_undefined_for_msvc 4129 #endif 4130 4131 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4132 /// we want to emit this as a call to a named external function, return the name 4133 /// otherwise lower it and return null. 4134 const char * 4135 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4136 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4137 SDLoc sdl = getCurSDLoc(); 4138 DebugLoc dl = getCurDebugLoc(); 4139 SDValue Res; 4140 4141 switch (Intrinsic) { 4142 default: 4143 // By default, turn this into a target intrinsic node. 4144 visitTargetIntrinsic(I, Intrinsic); 4145 return nullptr; 4146 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4147 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4148 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4149 case Intrinsic::returnaddress: 4150 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4151 TLI.getPointerTy(DAG.getDataLayout()), 4152 getValue(I.getArgOperand(0)))); 4153 return nullptr; 4154 case Intrinsic::frameaddress: 4155 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4156 TLI.getPointerTy(DAG.getDataLayout()), 4157 getValue(I.getArgOperand(0)))); 4158 return nullptr; 4159 case Intrinsic::read_register: { 4160 Value *Reg = I.getArgOperand(0); 4161 SDValue Chain = getRoot(); 4162 SDValue RegName = 4163 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4164 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4165 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4166 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4167 setValue(&I, Res); 4168 DAG.setRoot(Res.getValue(1)); 4169 return nullptr; 4170 } 4171 case Intrinsic::write_register: { 4172 Value *Reg = I.getArgOperand(0); 4173 Value *RegValue = I.getArgOperand(1); 4174 SDValue Chain = getRoot(); 4175 SDValue RegName = 4176 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4177 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4178 RegName, getValue(RegValue))); 4179 return nullptr; 4180 } 4181 case Intrinsic::setjmp: 4182 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4183 case Intrinsic::longjmp: 4184 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4185 case Intrinsic::memcpy: { 4186 // FIXME: this definition of "user defined address space" is x86-specific 4187 // Assert for address < 256 since we support only user defined address 4188 // spaces. 4189 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4190 < 256 && 4191 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4192 < 256 && 4193 "Unknown address space"); 4194 SDValue Op1 = getValue(I.getArgOperand(0)); 4195 SDValue Op2 = getValue(I.getArgOperand(1)); 4196 SDValue Op3 = getValue(I.getArgOperand(2)); 4197 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4198 if (!Align) 4199 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4200 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4201 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4202 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4203 false, isTC, 4204 MachinePointerInfo(I.getArgOperand(0)), 4205 MachinePointerInfo(I.getArgOperand(1))); 4206 updateDAGForMaybeTailCall(MC); 4207 return nullptr; 4208 } 4209 case Intrinsic::memset: { 4210 // FIXME: this definition of "user defined address space" is x86-specific 4211 // Assert for address < 256 since we support only user defined address 4212 // spaces. 4213 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4214 < 256 && 4215 "Unknown address space"); 4216 SDValue Op1 = getValue(I.getArgOperand(0)); 4217 SDValue Op2 = getValue(I.getArgOperand(1)); 4218 SDValue Op3 = getValue(I.getArgOperand(2)); 4219 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4220 if (!Align) 4221 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4222 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4223 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4224 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4225 isTC, MachinePointerInfo(I.getArgOperand(0))); 4226 updateDAGForMaybeTailCall(MS); 4227 return nullptr; 4228 } 4229 case Intrinsic::memmove: { 4230 // FIXME: this definition of "user defined address space" is x86-specific 4231 // Assert for address < 256 since we support only user defined address 4232 // spaces. 4233 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4234 < 256 && 4235 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4236 < 256 && 4237 "Unknown address space"); 4238 SDValue Op1 = getValue(I.getArgOperand(0)); 4239 SDValue Op2 = getValue(I.getArgOperand(1)); 4240 SDValue Op3 = getValue(I.getArgOperand(2)); 4241 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4242 if (!Align) 4243 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4244 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4245 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4246 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4247 isTC, MachinePointerInfo(I.getArgOperand(0)), 4248 MachinePointerInfo(I.getArgOperand(1))); 4249 updateDAGForMaybeTailCall(MM); 4250 return nullptr; 4251 } 4252 case Intrinsic::dbg_declare: { 4253 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4254 DILocalVariable *Variable = DI.getVariable(); 4255 DIExpression *Expression = DI.getExpression(); 4256 const Value *Address = DI.getAddress(); 4257 assert(Variable && "Missing variable"); 4258 if (!Address) { 4259 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4260 return nullptr; 4261 } 4262 4263 // Check if address has undef value. 4264 if (isa<UndefValue>(Address) || 4265 (Address->use_empty() && !isa<Argument>(Address))) { 4266 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4267 return nullptr; 4268 } 4269 4270 SDValue &N = NodeMap[Address]; 4271 if (!N.getNode() && isa<Argument>(Address)) 4272 // Check unused arguments map. 4273 N = UnusedArgNodeMap[Address]; 4274 SDDbgValue *SDV; 4275 if (N.getNode()) { 4276 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4277 Address = BCI->getOperand(0); 4278 // Parameters are handled specially. 4279 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 4280 4281 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4282 4283 if (isParameter && !AI) { 4284 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4285 if (FINode) 4286 // Byval parameter. We have a frame index at this point. 4287 SDV = DAG.getFrameIndexDbgValue( 4288 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4289 else { 4290 // Address is an argument, so try to emit its dbg value using 4291 // virtual register info from the FuncInfo.ValueMap. 4292 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4293 N); 4294 return nullptr; 4295 } 4296 } else if (AI) 4297 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4298 true, 0, dl, SDNodeOrder); 4299 else { 4300 // Can't do anything with other non-AI cases yet. 4301 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4302 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4303 DEBUG(Address->dump()); 4304 return nullptr; 4305 } 4306 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4307 } else { 4308 // If Address is an argument then try to emit its dbg value using 4309 // virtual register info from the FuncInfo.ValueMap. 4310 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4311 N)) { 4312 // If variable is pinned by a alloca in dominating bb then 4313 // use StaticAllocaMap. 4314 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4315 if (AI->getParent() != DI.getParent()) { 4316 DenseMap<const AllocaInst*, int>::iterator SI = 4317 FuncInfo.StaticAllocaMap.find(AI); 4318 if (SI != FuncInfo.StaticAllocaMap.end()) { 4319 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4320 0, dl, SDNodeOrder); 4321 DAG.AddDbgValue(SDV, nullptr, false); 4322 return nullptr; 4323 } 4324 } 4325 } 4326 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4327 } 4328 } 4329 return nullptr; 4330 } 4331 case Intrinsic::dbg_value: { 4332 const DbgValueInst &DI = cast<DbgValueInst>(I); 4333 assert(DI.getVariable() && "Missing variable"); 4334 4335 DILocalVariable *Variable = DI.getVariable(); 4336 DIExpression *Expression = DI.getExpression(); 4337 uint64_t Offset = DI.getOffset(); 4338 const Value *V = DI.getValue(); 4339 if (!V) 4340 return nullptr; 4341 4342 SDDbgValue *SDV; 4343 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4344 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4345 SDNodeOrder); 4346 DAG.AddDbgValue(SDV, nullptr, false); 4347 } else { 4348 // Do not use getValue() in here; we don't want to generate code at 4349 // this point if it hasn't been done yet. 4350 SDValue N = NodeMap[V]; 4351 if (!N.getNode() && isa<Argument>(V)) 4352 // Check unused arguments map. 4353 N = UnusedArgNodeMap[V]; 4354 if (N.getNode()) { 4355 // A dbg.value for an alloca is always indirect. 4356 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4357 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4358 IsIndirect, N)) { 4359 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4360 IsIndirect, Offset, dl, SDNodeOrder); 4361 DAG.AddDbgValue(SDV, N.getNode(), false); 4362 } 4363 } else if (!V->use_empty() ) { 4364 // Do not call getValue(V) yet, as we don't want to generate code. 4365 // Remember it for later. 4366 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4367 DanglingDebugInfoMap[V] = DDI; 4368 } else { 4369 // We may expand this to cover more cases. One case where we have no 4370 // data available is an unreferenced parameter. 4371 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4372 } 4373 } 4374 4375 // Build a debug info table entry. 4376 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4377 V = BCI->getOperand(0); 4378 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4379 // Don't handle byval struct arguments or VLAs, for example. 4380 if (!AI) { 4381 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4382 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4383 return nullptr; 4384 } 4385 DenseMap<const AllocaInst*, int>::iterator SI = 4386 FuncInfo.StaticAllocaMap.find(AI); 4387 if (SI == FuncInfo.StaticAllocaMap.end()) 4388 return nullptr; // VLAs. 4389 return nullptr; 4390 } 4391 4392 case Intrinsic::eh_typeid_for: { 4393 // Find the type id for the given typeinfo. 4394 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4395 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4396 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4397 setValue(&I, Res); 4398 return nullptr; 4399 } 4400 4401 case Intrinsic::eh_return_i32: 4402 case Intrinsic::eh_return_i64: 4403 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4404 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4405 MVT::Other, 4406 getControlRoot(), 4407 getValue(I.getArgOperand(0)), 4408 getValue(I.getArgOperand(1)))); 4409 return nullptr; 4410 case Intrinsic::eh_unwind_init: 4411 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4412 return nullptr; 4413 case Intrinsic::eh_dwarf_cfa: { 4414 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4415 TLI.getPointerTy(DAG.getDataLayout())); 4416 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4417 CfaArg.getValueType(), 4418 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4419 CfaArg.getValueType()), 4420 CfaArg); 4421 SDValue FA = DAG.getNode( 4422 ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()), 4423 DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 4424 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4425 FA, Offset)); 4426 return nullptr; 4427 } 4428 case Intrinsic::eh_sjlj_callsite: { 4429 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4430 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4431 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4432 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4433 4434 MMI.setCurrentCallSite(CI->getZExtValue()); 4435 return nullptr; 4436 } 4437 case Intrinsic::eh_sjlj_functioncontext: { 4438 // Get and store the index of the function context. 4439 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4440 AllocaInst *FnCtx = 4441 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4442 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4443 MFI->setFunctionContextIndex(FI); 4444 return nullptr; 4445 } 4446 case Intrinsic::eh_sjlj_setjmp: { 4447 SDValue Ops[2]; 4448 Ops[0] = getRoot(); 4449 Ops[1] = getValue(I.getArgOperand(0)); 4450 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4451 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4452 setValue(&I, Op.getValue(0)); 4453 DAG.setRoot(Op.getValue(1)); 4454 return nullptr; 4455 } 4456 case Intrinsic::eh_sjlj_longjmp: { 4457 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4458 getRoot(), getValue(I.getArgOperand(0)))); 4459 return nullptr; 4460 } 4461 case Intrinsic::eh_sjlj_setup_dispatch: { 4462 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 4463 getRoot())); 4464 return nullptr; 4465 } 4466 4467 case Intrinsic::masked_gather: 4468 visitMaskedGather(I); 4469 return nullptr; 4470 case Intrinsic::masked_load: 4471 visitMaskedLoad(I); 4472 return nullptr; 4473 case Intrinsic::masked_scatter: 4474 visitMaskedScatter(I); 4475 return nullptr; 4476 case Intrinsic::masked_store: 4477 visitMaskedStore(I); 4478 return nullptr; 4479 case Intrinsic::x86_mmx_pslli_w: 4480 case Intrinsic::x86_mmx_pslli_d: 4481 case Intrinsic::x86_mmx_pslli_q: 4482 case Intrinsic::x86_mmx_psrli_w: 4483 case Intrinsic::x86_mmx_psrli_d: 4484 case Intrinsic::x86_mmx_psrli_q: 4485 case Intrinsic::x86_mmx_psrai_w: 4486 case Intrinsic::x86_mmx_psrai_d: { 4487 SDValue ShAmt = getValue(I.getArgOperand(1)); 4488 if (isa<ConstantSDNode>(ShAmt)) { 4489 visitTargetIntrinsic(I, Intrinsic); 4490 return nullptr; 4491 } 4492 unsigned NewIntrinsic = 0; 4493 EVT ShAmtVT = MVT::v2i32; 4494 switch (Intrinsic) { 4495 case Intrinsic::x86_mmx_pslli_w: 4496 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4497 break; 4498 case Intrinsic::x86_mmx_pslli_d: 4499 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4500 break; 4501 case Intrinsic::x86_mmx_pslli_q: 4502 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4503 break; 4504 case Intrinsic::x86_mmx_psrli_w: 4505 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4506 break; 4507 case Intrinsic::x86_mmx_psrli_d: 4508 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4509 break; 4510 case Intrinsic::x86_mmx_psrli_q: 4511 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4512 break; 4513 case Intrinsic::x86_mmx_psrai_w: 4514 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4515 break; 4516 case Intrinsic::x86_mmx_psrai_d: 4517 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4518 break; 4519 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4520 } 4521 4522 // The vector shift intrinsics with scalars uses 32b shift amounts but 4523 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4524 // to be zero. 4525 // We must do this early because v2i32 is not a legal type. 4526 SDValue ShOps[2]; 4527 ShOps[0] = ShAmt; 4528 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 4529 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4530 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4531 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4532 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4533 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 4534 getValue(I.getArgOperand(0)), ShAmt); 4535 setValue(&I, Res); 4536 return nullptr; 4537 } 4538 case Intrinsic::convertff: 4539 case Intrinsic::convertfsi: 4540 case Intrinsic::convertfui: 4541 case Intrinsic::convertsif: 4542 case Intrinsic::convertuif: 4543 case Intrinsic::convertss: 4544 case Intrinsic::convertsu: 4545 case Intrinsic::convertus: 4546 case Intrinsic::convertuu: { 4547 ISD::CvtCode Code = ISD::CVT_INVALID; 4548 switch (Intrinsic) { 4549 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4550 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4551 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4552 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4553 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4554 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4555 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4556 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4557 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4558 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4559 } 4560 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4561 const Value *Op1 = I.getArgOperand(0); 4562 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4563 DAG.getValueType(DestVT), 4564 DAG.getValueType(getValue(Op1).getValueType()), 4565 getValue(I.getArgOperand(1)), 4566 getValue(I.getArgOperand(2)), 4567 Code); 4568 setValue(&I, Res); 4569 return nullptr; 4570 } 4571 case Intrinsic::powi: 4572 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4573 getValue(I.getArgOperand(1)), DAG)); 4574 return nullptr; 4575 case Intrinsic::log: 4576 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4577 return nullptr; 4578 case Intrinsic::log2: 4579 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4580 return nullptr; 4581 case Intrinsic::log10: 4582 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4583 return nullptr; 4584 case Intrinsic::exp: 4585 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4586 return nullptr; 4587 case Intrinsic::exp2: 4588 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4589 return nullptr; 4590 case Intrinsic::pow: 4591 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4592 getValue(I.getArgOperand(1)), DAG, TLI)); 4593 return nullptr; 4594 case Intrinsic::sqrt: 4595 case Intrinsic::fabs: 4596 case Intrinsic::sin: 4597 case Intrinsic::cos: 4598 case Intrinsic::floor: 4599 case Intrinsic::ceil: 4600 case Intrinsic::trunc: 4601 case Intrinsic::rint: 4602 case Intrinsic::nearbyint: 4603 case Intrinsic::round: { 4604 unsigned Opcode; 4605 switch (Intrinsic) { 4606 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4607 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4608 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4609 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4610 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4611 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4612 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4613 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4614 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4615 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4616 case Intrinsic::round: Opcode = ISD::FROUND; break; 4617 } 4618 4619 setValue(&I, DAG.getNode(Opcode, sdl, 4620 getValue(I.getArgOperand(0)).getValueType(), 4621 getValue(I.getArgOperand(0)))); 4622 return nullptr; 4623 } 4624 case Intrinsic::minnum: 4625 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4626 getValue(I.getArgOperand(0)).getValueType(), 4627 getValue(I.getArgOperand(0)), 4628 getValue(I.getArgOperand(1)))); 4629 return nullptr; 4630 case Intrinsic::maxnum: 4631 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4632 getValue(I.getArgOperand(0)).getValueType(), 4633 getValue(I.getArgOperand(0)), 4634 getValue(I.getArgOperand(1)))); 4635 return nullptr; 4636 case Intrinsic::copysign: 4637 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4638 getValue(I.getArgOperand(0)).getValueType(), 4639 getValue(I.getArgOperand(0)), 4640 getValue(I.getArgOperand(1)))); 4641 return nullptr; 4642 case Intrinsic::fma: 4643 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4644 getValue(I.getArgOperand(0)).getValueType(), 4645 getValue(I.getArgOperand(0)), 4646 getValue(I.getArgOperand(1)), 4647 getValue(I.getArgOperand(2)))); 4648 return nullptr; 4649 case Intrinsic::fmuladd: { 4650 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4651 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4652 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 4653 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4654 getValue(I.getArgOperand(0)).getValueType(), 4655 getValue(I.getArgOperand(0)), 4656 getValue(I.getArgOperand(1)), 4657 getValue(I.getArgOperand(2)))); 4658 } else { 4659 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4660 getValue(I.getArgOperand(0)).getValueType(), 4661 getValue(I.getArgOperand(0)), 4662 getValue(I.getArgOperand(1))); 4663 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4664 getValue(I.getArgOperand(0)).getValueType(), 4665 Mul, 4666 getValue(I.getArgOperand(2))); 4667 setValue(&I, Add); 4668 } 4669 return nullptr; 4670 } 4671 case Intrinsic::convert_to_fp16: 4672 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 4673 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 4674 getValue(I.getArgOperand(0)), 4675 DAG.getTargetConstant(0, sdl, 4676 MVT::i32)))); 4677 return nullptr; 4678 case Intrinsic::convert_from_fp16: 4679 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 4680 TLI.getValueType(DAG.getDataLayout(), I.getType()), 4681 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 4682 getValue(I.getArgOperand(0))))); 4683 return nullptr; 4684 case Intrinsic::pcmarker: { 4685 SDValue Tmp = getValue(I.getArgOperand(0)); 4686 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4687 return nullptr; 4688 } 4689 case Intrinsic::readcyclecounter: { 4690 SDValue Op = getRoot(); 4691 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4692 DAG.getVTList(MVT::i64, MVT::Other), Op); 4693 setValue(&I, Res); 4694 DAG.setRoot(Res.getValue(1)); 4695 return nullptr; 4696 } 4697 case Intrinsic::bswap: 4698 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4699 getValue(I.getArgOperand(0)).getValueType(), 4700 getValue(I.getArgOperand(0)))); 4701 return nullptr; 4702 case Intrinsic::uabsdiff: 4703 setValue(&I, DAG.getNode(ISD::UABSDIFF, sdl, 4704 getValue(I.getArgOperand(0)).getValueType(), 4705 getValue(I.getArgOperand(0)), 4706 getValue(I.getArgOperand(1)))); 4707 return nullptr; 4708 case Intrinsic::sabsdiff: 4709 setValue(&I, DAG.getNode(ISD::SABSDIFF, sdl, 4710 getValue(I.getArgOperand(0)).getValueType(), 4711 getValue(I.getArgOperand(0)), 4712 getValue(I.getArgOperand(1)))); 4713 return nullptr; 4714 case Intrinsic::cttz: { 4715 SDValue Arg = getValue(I.getArgOperand(0)); 4716 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4717 EVT Ty = Arg.getValueType(); 4718 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4719 sdl, Ty, Arg)); 4720 return nullptr; 4721 } 4722 case Intrinsic::ctlz: { 4723 SDValue Arg = getValue(I.getArgOperand(0)); 4724 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4725 EVT Ty = Arg.getValueType(); 4726 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4727 sdl, Ty, Arg)); 4728 return nullptr; 4729 } 4730 case Intrinsic::ctpop: { 4731 SDValue Arg = getValue(I.getArgOperand(0)); 4732 EVT Ty = Arg.getValueType(); 4733 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4734 return nullptr; 4735 } 4736 case Intrinsic::stacksave: { 4737 SDValue Op = getRoot(); 4738 Res = DAG.getNode( 4739 ISD::STACKSAVE, sdl, 4740 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 4741 setValue(&I, Res); 4742 DAG.setRoot(Res.getValue(1)); 4743 return nullptr; 4744 } 4745 case Intrinsic::stackrestore: { 4746 Res = getValue(I.getArgOperand(0)); 4747 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 4748 return nullptr; 4749 } 4750 case Intrinsic::stackprotector: { 4751 // Emit code into the DAG to store the stack guard onto the stack. 4752 MachineFunction &MF = DAG.getMachineFunction(); 4753 MachineFrameInfo *MFI = MF.getFrameInfo(); 4754 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 4755 SDValue Src, Chain = getRoot(); 4756 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 4757 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 4758 4759 // See if Ptr is a bitcast. If it is, look through it and see if we can get 4760 // global variable __stack_chk_guard. 4761 if (!GV) 4762 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 4763 if (BC->getOpcode() == Instruction::BitCast) 4764 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 4765 4766 if (GV && TLI.useLoadStackGuardNode()) { 4767 // Emit a LOAD_STACK_GUARD node. 4768 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 4769 sdl, PtrTy, Chain); 4770 MachinePointerInfo MPInfo(GV); 4771 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 4772 unsigned Flags = MachineMemOperand::MOLoad | 4773 MachineMemOperand::MOInvariant; 4774 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 4775 PtrTy.getSizeInBits() / 8, 4776 DAG.getEVTAlignment(PtrTy)); 4777 Node->setMemRefs(MemRefs, MemRefs + 1); 4778 4779 // Copy the guard value to a virtual register so that it can be 4780 // retrieved in the epilogue. 4781 Src = SDValue(Node, 0); 4782 const TargetRegisterClass *RC = 4783 TLI.getRegClassFor(Src.getSimpleValueType()); 4784 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 4785 4786 SPDescriptor.setGuardReg(Reg); 4787 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 4788 } else { 4789 Src = getValue(I.getArgOperand(0)); // The guard's value. 4790 } 4791 4792 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4793 4794 int FI = FuncInfo.StaticAllocaMap[Slot]; 4795 MFI->setStackProtectorIndex(FI); 4796 4797 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4798 4799 // Store the stack protector onto the stack. 4800 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 4801 DAG.getMachineFunction(), FI), 4802 true, false, 0); 4803 setValue(&I, Res); 4804 DAG.setRoot(Res); 4805 return nullptr; 4806 } 4807 case Intrinsic::objectsize: { 4808 // If we don't know by now, we're never going to know. 4809 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4810 4811 assert(CI && "Non-constant type in __builtin_object_size?"); 4812 4813 SDValue Arg = getValue(I.getCalledValue()); 4814 EVT Ty = Arg.getValueType(); 4815 4816 if (CI->isZero()) 4817 Res = DAG.getConstant(-1ULL, sdl, Ty); 4818 else 4819 Res = DAG.getConstant(0, sdl, Ty); 4820 4821 setValue(&I, Res); 4822 return nullptr; 4823 } 4824 case Intrinsic::annotation: 4825 case Intrinsic::ptr_annotation: 4826 // Drop the intrinsic, but forward the value 4827 setValue(&I, getValue(I.getOperand(0))); 4828 return nullptr; 4829 case Intrinsic::assume: 4830 case Intrinsic::var_annotation: 4831 // Discard annotate attributes and assumptions 4832 return nullptr; 4833 4834 case Intrinsic::init_trampoline: { 4835 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 4836 4837 SDValue Ops[6]; 4838 Ops[0] = getRoot(); 4839 Ops[1] = getValue(I.getArgOperand(0)); 4840 Ops[2] = getValue(I.getArgOperand(1)); 4841 Ops[3] = getValue(I.getArgOperand(2)); 4842 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 4843 Ops[5] = DAG.getSrcValue(F); 4844 4845 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 4846 4847 DAG.setRoot(Res); 4848 return nullptr; 4849 } 4850 case Intrinsic::adjust_trampoline: { 4851 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 4852 TLI.getPointerTy(DAG.getDataLayout()), 4853 getValue(I.getArgOperand(0)))); 4854 return nullptr; 4855 } 4856 case Intrinsic::gcroot: 4857 if (GFI) { 4858 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 4859 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 4860 4861 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4862 GFI->addStackRoot(FI->getIndex(), TypeMap); 4863 } 4864 return nullptr; 4865 case Intrinsic::gcread: 4866 case Intrinsic::gcwrite: 4867 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4868 case Intrinsic::flt_rounds: 4869 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 4870 return nullptr; 4871 4872 case Intrinsic::expect: { 4873 // Just replace __builtin_expect(exp, c) with EXP. 4874 setValue(&I, getValue(I.getArgOperand(0))); 4875 return nullptr; 4876 } 4877 4878 case Intrinsic::debugtrap: 4879 case Intrinsic::trap: { 4880 StringRef TrapFuncName = 4881 I.getAttributes() 4882 .getAttribute(AttributeSet::FunctionIndex, "trap-func-name") 4883 .getValueAsString(); 4884 if (TrapFuncName.empty()) { 4885 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 4886 ISD::TRAP : ISD::DEBUGTRAP; 4887 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 4888 return nullptr; 4889 } 4890 TargetLowering::ArgListTy Args; 4891 4892 TargetLowering::CallLoweringInfo CLI(DAG); 4893 CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee( 4894 CallingConv::C, I.getType(), 4895 DAG.getExternalSymbol(TrapFuncName.data(), 4896 TLI.getPointerTy(DAG.getDataLayout())), 4897 std::move(Args), 0); 4898 4899 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 4900 DAG.setRoot(Result.second); 4901 return nullptr; 4902 } 4903 4904 case Intrinsic::uadd_with_overflow: 4905 case Intrinsic::sadd_with_overflow: 4906 case Intrinsic::usub_with_overflow: 4907 case Intrinsic::ssub_with_overflow: 4908 case Intrinsic::umul_with_overflow: 4909 case Intrinsic::smul_with_overflow: { 4910 ISD::NodeType Op; 4911 switch (Intrinsic) { 4912 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4913 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 4914 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 4915 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 4916 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 4917 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 4918 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 4919 } 4920 SDValue Op1 = getValue(I.getArgOperand(0)); 4921 SDValue Op2 = getValue(I.getArgOperand(1)); 4922 4923 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 4924 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 4925 return nullptr; 4926 } 4927 case Intrinsic::prefetch: { 4928 SDValue Ops[5]; 4929 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4930 Ops[0] = getRoot(); 4931 Ops[1] = getValue(I.getArgOperand(0)); 4932 Ops[2] = getValue(I.getArgOperand(1)); 4933 Ops[3] = getValue(I.getArgOperand(2)); 4934 Ops[4] = getValue(I.getArgOperand(3)); 4935 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 4936 DAG.getVTList(MVT::Other), Ops, 4937 EVT::getIntegerVT(*Context, 8), 4938 MachinePointerInfo(I.getArgOperand(0)), 4939 0, /* align */ 4940 false, /* volatile */ 4941 rw==0, /* read */ 4942 rw==1)); /* write */ 4943 return nullptr; 4944 } 4945 case Intrinsic::lifetime_start: 4946 case Intrinsic::lifetime_end: { 4947 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 4948 // Stack coloring is not enabled in O0, discard region information. 4949 if (TM.getOptLevel() == CodeGenOpt::None) 4950 return nullptr; 4951 4952 SmallVector<Value *, 4> Allocas; 4953 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 4954 4955 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 4956 E = Allocas.end(); Object != E; ++Object) { 4957 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 4958 4959 // Could not find an Alloca. 4960 if (!LifetimeObject) 4961 continue; 4962 4963 // First check that the Alloca is static, otherwise it won't have a 4964 // valid frame index. 4965 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 4966 if (SI == FuncInfo.StaticAllocaMap.end()) 4967 return nullptr; 4968 4969 int FI = SI->second; 4970 4971 SDValue Ops[2]; 4972 Ops[0] = getRoot(); 4973 Ops[1] = 4974 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true); 4975 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 4976 4977 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 4978 DAG.setRoot(Res); 4979 } 4980 return nullptr; 4981 } 4982 case Intrinsic::invariant_start: 4983 // Discard region information. 4984 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 4985 return nullptr; 4986 case Intrinsic::invariant_end: 4987 // Discard region information. 4988 return nullptr; 4989 case Intrinsic::stackprotectorcheck: { 4990 // Do not actually emit anything for this basic block. Instead we initialize 4991 // the stack protector descriptor and export the guard variable so we can 4992 // access it in FinishBasicBlock. 4993 const BasicBlock *BB = I.getParent(); 4994 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 4995 ExportFromCurrentBlock(SPDescriptor.getGuard()); 4996 4997 // Flush our exports since we are going to process a terminator. 4998 (void)getControlRoot(); 4999 return nullptr; 5000 } 5001 case Intrinsic::clear_cache: 5002 return TLI.getClearCacheBuiltinName(); 5003 case Intrinsic::eh_actions: 5004 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5005 return nullptr; 5006 case Intrinsic::donothing: 5007 // ignore 5008 return nullptr; 5009 case Intrinsic::experimental_stackmap: { 5010 visitStackmap(I); 5011 return nullptr; 5012 } 5013 case Intrinsic::experimental_patchpoint_void: 5014 case Intrinsic::experimental_patchpoint_i64: { 5015 visitPatchpoint(&I); 5016 return nullptr; 5017 } 5018 case Intrinsic::experimental_gc_statepoint: { 5019 visitStatepoint(I); 5020 return nullptr; 5021 } 5022 case Intrinsic::experimental_gc_result_int: 5023 case Intrinsic::experimental_gc_result_float: 5024 case Intrinsic::experimental_gc_result_ptr: 5025 case Intrinsic::experimental_gc_result: { 5026 visitGCResult(I); 5027 return nullptr; 5028 } 5029 case Intrinsic::experimental_gc_relocate: { 5030 visitGCRelocate(I); 5031 return nullptr; 5032 } 5033 case Intrinsic::instrprof_increment: 5034 llvm_unreachable("instrprof failed to lower an increment"); 5035 5036 case Intrinsic::localescape: { 5037 MachineFunction &MF = DAG.getMachineFunction(); 5038 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5039 5040 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5041 // is the same on all targets. 5042 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5043 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5044 if (isa<ConstantPointerNull>(Arg)) 5045 continue; // Skip null pointers. They represent a hole in index space. 5046 AllocaInst *Slot = cast<AllocaInst>(Arg); 5047 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5048 "can only escape static allocas"); 5049 int FI = FuncInfo.StaticAllocaMap[Slot]; 5050 MCSymbol *FrameAllocSym = 5051 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5052 GlobalValue::getRealLinkageName(MF.getName()), Idx); 5053 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5054 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5055 .addSym(FrameAllocSym) 5056 .addFrameIndex(FI); 5057 } 5058 5059 return nullptr; 5060 } 5061 5062 case Intrinsic::localrecover: { 5063 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5064 MachineFunction &MF = DAG.getMachineFunction(); 5065 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5066 5067 // Get the symbol that defines the frame offset. 5068 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5069 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5070 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5071 MCSymbol *FrameAllocSym = 5072 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5073 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5074 5075 // Create a MCSymbol for the label to avoid any target lowering 5076 // that would make this PC relative. 5077 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5078 SDValue OffsetVal = 5079 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5080 5081 // Add the offset to the FP. 5082 Value *FP = I.getArgOperand(1); 5083 SDValue FPVal = getValue(FP); 5084 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5085 setValue(&I, Add); 5086 5087 return nullptr; 5088 } 5089 case Intrinsic::eh_begincatch: 5090 case Intrinsic::eh_endcatch: 5091 llvm_unreachable("begin/end catch intrinsics not lowered in codegen"); 5092 case Intrinsic::eh_exceptioncode: { 5093 unsigned Reg = TLI.getExceptionPointerRegister(); 5094 assert(Reg && "cannot get exception code on this platform"); 5095 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5096 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5097 assert(FuncInfo.MBB->isLandingPad() && "eh.exceptioncode in non-lpad"); 5098 unsigned VReg = FuncInfo.MBB->addLiveIn(Reg, PtrRC); 5099 SDValue N = 5100 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5101 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5102 setValue(&I, N); 5103 return nullptr; 5104 } 5105 } 5106 } 5107 5108 std::pair<SDValue, SDValue> 5109 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5110 MachineBasicBlock *LandingPad) { 5111 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5112 MCSymbol *BeginLabel = nullptr; 5113 5114 if (LandingPad) { 5115 // Insert a label before the invoke call to mark the try range. This can be 5116 // used to detect deletion of the invoke via the MachineModuleInfo. 5117 BeginLabel = MMI.getContext().createTempSymbol(); 5118 5119 // For SjLj, keep track of which landing pads go with which invokes 5120 // so as to maintain the ordering of pads in the LSDA. 5121 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5122 if (CallSiteIndex) { 5123 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5124 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5125 5126 // Now that the call site is handled, stop tracking it. 5127 MMI.setCurrentCallSite(0); 5128 } 5129 5130 // Both PendingLoads and PendingExports must be flushed here; 5131 // this call might not return. 5132 (void)getRoot(); 5133 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5134 5135 CLI.setChain(getRoot()); 5136 } 5137 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5138 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5139 5140 assert((CLI.IsTailCall || Result.second.getNode()) && 5141 "Non-null chain expected with non-tail call!"); 5142 assert((Result.second.getNode() || !Result.first.getNode()) && 5143 "Null value expected with tail call!"); 5144 5145 if (!Result.second.getNode()) { 5146 // As a special case, a null chain means that a tail call has been emitted 5147 // and the DAG root is already updated. 5148 HasTailCall = true; 5149 5150 // Since there's no actual continuation from this block, nothing can be 5151 // relying on us setting vregs for them. 5152 PendingExports.clear(); 5153 } else { 5154 DAG.setRoot(Result.second); 5155 } 5156 5157 if (LandingPad) { 5158 // Insert a label at the end of the invoke call to mark the try range. This 5159 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5160 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5161 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5162 5163 // Inform MachineModuleInfo of range. 5164 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5165 } 5166 5167 return Result; 5168 } 5169 5170 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5171 bool isTailCall, 5172 MachineBasicBlock *LandingPad) { 5173 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5174 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5175 Type *RetTy = FTy->getReturnType(); 5176 5177 TargetLowering::ArgListTy Args; 5178 TargetLowering::ArgListEntry Entry; 5179 Args.reserve(CS.arg_size()); 5180 5181 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5182 i != e; ++i) { 5183 const Value *V = *i; 5184 5185 // Skip empty types 5186 if (V->getType()->isEmptyTy()) 5187 continue; 5188 5189 SDValue ArgNode = getValue(V); 5190 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5191 5192 // Skip the first return-type Attribute to get to params. 5193 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5194 Args.push_back(Entry); 5195 5196 // If we have an explicit sret argument that is an Instruction, (i.e., it 5197 // might point to function-local memory), we can't meaningfully tail-call. 5198 if (Entry.isSRet && isa<Instruction>(V)) 5199 isTailCall = false; 5200 } 5201 5202 // Check if target-independent constraints permit a tail call here. 5203 // Target-dependent constraints are checked within TLI->LowerCallTo. 5204 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5205 isTailCall = false; 5206 5207 TargetLowering::CallLoweringInfo CLI(DAG); 5208 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5209 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5210 .setTailCall(isTailCall); 5211 std::pair<SDValue,SDValue> Result = lowerInvokable(CLI, LandingPad); 5212 5213 if (Result.first.getNode()) 5214 setValue(CS.getInstruction(), Result.first); 5215 } 5216 5217 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5218 /// value is equal or not-equal to zero. 5219 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5220 for (const User *U : V->users()) { 5221 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5222 if (IC->isEquality()) 5223 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5224 if (C->isNullValue()) 5225 continue; 5226 // Unknown instruction. 5227 return false; 5228 } 5229 return true; 5230 } 5231 5232 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5233 Type *LoadTy, 5234 SelectionDAGBuilder &Builder) { 5235 5236 // Check to see if this load can be trivially constant folded, e.g. if the 5237 // input is from a string literal. 5238 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5239 // Cast pointer to the type we really want to load. 5240 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5241 PointerType::getUnqual(LoadTy)); 5242 5243 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5244 const_cast<Constant *>(LoadInput), *Builder.DL)) 5245 return Builder.getValue(LoadCst); 5246 } 5247 5248 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5249 // still constant memory, the input chain can be the entry node. 5250 SDValue Root; 5251 bool ConstantMemory = false; 5252 5253 // Do not serialize (non-volatile) loads of constant memory with anything. 5254 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5255 Root = Builder.DAG.getEntryNode(); 5256 ConstantMemory = true; 5257 } else { 5258 // Do not serialize non-volatile loads against each other. 5259 Root = Builder.DAG.getRoot(); 5260 } 5261 5262 SDValue Ptr = Builder.getValue(PtrVal); 5263 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5264 Ptr, MachinePointerInfo(PtrVal), 5265 false /*volatile*/, 5266 false /*nontemporal*/, 5267 false /*isinvariant*/, 1 /* align=1 */); 5268 5269 if (!ConstantMemory) 5270 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5271 return LoadVal; 5272 } 5273 5274 /// processIntegerCallValue - Record the value for an instruction that 5275 /// produces an integer result, converting the type where necessary. 5276 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5277 SDValue Value, 5278 bool IsSigned) { 5279 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5280 I.getType(), true); 5281 if (IsSigned) 5282 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5283 else 5284 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5285 setValue(&I, Value); 5286 } 5287 5288 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5289 /// If so, return true and lower it, otherwise return false and it will be 5290 /// lowered like a normal call. 5291 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5292 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5293 if (I.getNumArgOperands() != 3) 5294 return false; 5295 5296 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5297 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5298 !I.getArgOperand(2)->getType()->isIntegerTy() || 5299 !I.getType()->isIntegerTy()) 5300 return false; 5301 5302 const Value *Size = I.getArgOperand(2); 5303 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5304 if (CSize && CSize->getZExtValue() == 0) { 5305 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5306 I.getType(), true); 5307 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5308 return true; 5309 } 5310 5311 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5312 std::pair<SDValue, SDValue> Res = 5313 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5314 getValue(LHS), getValue(RHS), getValue(Size), 5315 MachinePointerInfo(LHS), 5316 MachinePointerInfo(RHS)); 5317 if (Res.first.getNode()) { 5318 processIntegerCallValue(I, Res.first, true); 5319 PendingLoads.push_back(Res.second); 5320 return true; 5321 } 5322 5323 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5324 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5325 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5326 bool ActuallyDoIt = true; 5327 MVT LoadVT; 5328 Type *LoadTy; 5329 switch (CSize->getZExtValue()) { 5330 default: 5331 LoadVT = MVT::Other; 5332 LoadTy = nullptr; 5333 ActuallyDoIt = false; 5334 break; 5335 case 2: 5336 LoadVT = MVT::i16; 5337 LoadTy = Type::getInt16Ty(CSize->getContext()); 5338 break; 5339 case 4: 5340 LoadVT = MVT::i32; 5341 LoadTy = Type::getInt32Ty(CSize->getContext()); 5342 break; 5343 case 8: 5344 LoadVT = MVT::i64; 5345 LoadTy = Type::getInt64Ty(CSize->getContext()); 5346 break; 5347 /* 5348 case 16: 5349 LoadVT = MVT::v4i32; 5350 LoadTy = Type::getInt32Ty(CSize->getContext()); 5351 LoadTy = VectorType::get(LoadTy, 4); 5352 break; 5353 */ 5354 } 5355 5356 // This turns into unaligned loads. We only do this if the target natively 5357 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5358 // we'll only produce a small number of byte loads. 5359 5360 // Require that we can find a legal MVT, and only do this if the target 5361 // supports unaligned loads of that type. Expanding into byte loads would 5362 // bloat the code. 5363 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5364 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5365 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5366 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5367 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5368 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5369 // TODO: Check alignment of src and dest ptrs. 5370 if (!TLI.isTypeLegal(LoadVT) || 5371 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5372 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5373 ActuallyDoIt = false; 5374 } 5375 5376 if (ActuallyDoIt) { 5377 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5378 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5379 5380 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5381 ISD::SETNE); 5382 processIntegerCallValue(I, Res, false); 5383 return true; 5384 } 5385 } 5386 5387 5388 return false; 5389 } 5390 5391 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5392 /// form. If so, return true and lower it, otherwise return false and it 5393 /// will be lowered like a normal call. 5394 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5395 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5396 if (I.getNumArgOperands() != 3) 5397 return false; 5398 5399 const Value *Src = I.getArgOperand(0); 5400 const Value *Char = I.getArgOperand(1); 5401 const Value *Length = I.getArgOperand(2); 5402 if (!Src->getType()->isPointerTy() || 5403 !Char->getType()->isIntegerTy() || 5404 !Length->getType()->isIntegerTy() || 5405 !I.getType()->isPointerTy()) 5406 return false; 5407 5408 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5409 std::pair<SDValue, SDValue> Res = 5410 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5411 getValue(Src), getValue(Char), getValue(Length), 5412 MachinePointerInfo(Src)); 5413 if (Res.first.getNode()) { 5414 setValue(&I, Res.first); 5415 PendingLoads.push_back(Res.second); 5416 return true; 5417 } 5418 5419 return false; 5420 } 5421 5422 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5423 /// optimized form. If so, return true and lower it, otherwise return false 5424 /// and it will be lowered like a normal call. 5425 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5426 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5427 if (I.getNumArgOperands() != 2) 5428 return false; 5429 5430 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5431 if (!Arg0->getType()->isPointerTy() || 5432 !Arg1->getType()->isPointerTy() || 5433 !I.getType()->isPointerTy()) 5434 return false; 5435 5436 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5437 std::pair<SDValue, SDValue> Res = 5438 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5439 getValue(Arg0), getValue(Arg1), 5440 MachinePointerInfo(Arg0), 5441 MachinePointerInfo(Arg1), isStpcpy); 5442 if (Res.first.getNode()) { 5443 setValue(&I, Res.first); 5444 DAG.setRoot(Res.second); 5445 return true; 5446 } 5447 5448 return false; 5449 } 5450 5451 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5452 /// If so, return true and lower it, otherwise return false and it will be 5453 /// lowered like a normal call. 5454 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5455 // Verify that the prototype makes sense. int strcmp(void*,void*) 5456 if (I.getNumArgOperands() != 2) 5457 return false; 5458 5459 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5460 if (!Arg0->getType()->isPointerTy() || 5461 !Arg1->getType()->isPointerTy() || 5462 !I.getType()->isIntegerTy()) 5463 return false; 5464 5465 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5466 std::pair<SDValue, SDValue> Res = 5467 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5468 getValue(Arg0), getValue(Arg1), 5469 MachinePointerInfo(Arg0), 5470 MachinePointerInfo(Arg1)); 5471 if (Res.first.getNode()) { 5472 processIntegerCallValue(I, Res.first, true); 5473 PendingLoads.push_back(Res.second); 5474 return true; 5475 } 5476 5477 return false; 5478 } 5479 5480 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5481 /// form. If so, return true and lower it, otherwise return false and it 5482 /// will be lowered like a normal call. 5483 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5484 // Verify that the prototype makes sense. size_t strlen(char *) 5485 if (I.getNumArgOperands() != 1) 5486 return false; 5487 5488 const Value *Arg0 = I.getArgOperand(0); 5489 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5490 return false; 5491 5492 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5493 std::pair<SDValue, SDValue> Res = 5494 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5495 getValue(Arg0), MachinePointerInfo(Arg0)); 5496 if (Res.first.getNode()) { 5497 processIntegerCallValue(I, Res.first, false); 5498 PendingLoads.push_back(Res.second); 5499 return true; 5500 } 5501 5502 return false; 5503 } 5504 5505 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5506 /// form. If so, return true and lower it, otherwise return false and it 5507 /// will be lowered like a normal call. 5508 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5509 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5510 if (I.getNumArgOperands() != 2) 5511 return false; 5512 5513 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5514 if (!Arg0->getType()->isPointerTy() || 5515 !Arg1->getType()->isIntegerTy() || 5516 !I.getType()->isIntegerTy()) 5517 return false; 5518 5519 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5520 std::pair<SDValue, SDValue> Res = 5521 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5522 getValue(Arg0), getValue(Arg1), 5523 MachinePointerInfo(Arg0)); 5524 if (Res.first.getNode()) { 5525 processIntegerCallValue(I, Res.first, false); 5526 PendingLoads.push_back(Res.second); 5527 return true; 5528 } 5529 5530 return false; 5531 } 5532 5533 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5534 /// operation (as expected), translate it to an SDNode with the specified opcode 5535 /// and return true. 5536 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5537 unsigned Opcode) { 5538 // Sanity check that it really is a unary floating-point call. 5539 if (I.getNumArgOperands() != 1 || 5540 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5541 I.getType() != I.getArgOperand(0)->getType() || 5542 !I.onlyReadsMemory()) 5543 return false; 5544 5545 SDValue Tmp = getValue(I.getArgOperand(0)); 5546 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5547 return true; 5548 } 5549 5550 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5551 /// operation (as expected), translate it to an SDNode with the specified opcode 5552 /// and return true. 5553 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5554 unsigned Opcode) { 5555 // Sanity check that it really is a binary floating-point call. 5556 if (I.getNumArgOperands() != 2 || 5557 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5558 I.getType() != I.getArgOperand(0)->getType() || 5559 I.getType() != I.getArgOperand(1)->getType() || 5560 !I.onlyReadsMemory()) 5561 return false; 5562 5563 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5564 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5565 EVT VT = Tmp0.getValueType(); 5566 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5567 return true; 5568 } 5569 5570 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5571 // Handle inline assembly differently. 5572 if (isa<InlineAsm>(I.getCalledValue())) { 5573 visitInlineAsm(&I); 5574 return; 5575 } 5576 5577 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5578 ComputeUsesVAFloatArgument(I, &MMI); 5579 5580 const char *RenameFn = nullptr; 5581 if (Function *F = I.getCalledFunction()) { 5582 if (F->isDeclaration()) { 5583 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5584 if (unsigned IID = II->getIntrinsicID(F)) { 5585 RenameFn = visitIntrinsicCall(I, IID); 5586 if (!RenameFn) 5587 return; 5588 } 5589 } 5590 if (Intrinsic::ID IID = F->getIntrinsicID()) { 5591 RenameFn = visitIntrinsicCall(I, IID); 5592 if (!RenameFn) 5593 return; 5594 } 5595 } 5596 5597 // Check for well-known libc/libm calls. If the function is internal, it 5598 // can't be a library call. 5599 LibFunc::Func Func; 5600 if (!F->hasLocalLinkage() && F->hasName() && 5601 LibInfo->getLibFunc(F->getName(), Func) && 5602 LibInfo->hasOptimizedCodeGen(Func)) { 5603 switch (Func) { 5604 default: break; 5605 case LibFunc::copysign: 5606 case LibFunc::copysignf: 5607 case LibFunc::copysignl: 5608 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5609 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5610 I.getType() == I.getArgOperand(0)->getType() && 5611 I.getType() == I.getArgOperand(1)->getType() && 5612 I.onlyReadsMemory()) { 5613 SDValue LHS = getValue(I.getArgOperand(0)); 5614 SDValue RHS = getValue(I.getArgOperand(1)); 5615 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5616 LHS.getValueType(), LHS, RHS)); 5617 return; 5618 } 5619 break; 5620 case LibFunc::fabs: 5621 case LibFunc::fabsf: 5622 case LibFunc::fabsl: 5623 if (visitUnaryFloatCall(I, ISD::FABS)) 5624 return; 5625 break; 5626 case LibFunc::fmin: 5627 case LibFunc::fminf: 5628 case LibFunc::fminl: 5629 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5630 return; 5631 break; 5632 case LibFunc::fmax: 5633 case LibFunc::fmaxf: 5634 case LibFunc::fmaxl: 5635 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5636 return; 5637 break; 5638 case LibFunc::sin: 5639 case LibFunc::sinf: 5640 case LibFunc::sinl: 5641 if (visitUnaryFloatCall(I, ISD::FSIN)) 5642 return; 5643 break; 5644 case LibFunc::cos: 5645 case LibFunc::cosf: 5646 case LibFunc::cosl: 5647 if (visitUnaryFloatCall(I, ISD::FCOS)) 5648 return; 5649 break; 5650 case LibFunc::sqrt: 5651 case LibFunc::sqrtf: 5652 case LibFunc::sqrtl: 5653 case LibFunc::sqrt_finite: 5654 case LibFunc::sqrtf_finite: 5655 case LibFunc::sqrtl_finite: 5656 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5657 return; 5658 break; 5659 case LibFunc::floor: 5660 case LibFunc::floorf: 5661 case LibFunc::floorl: 5662 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5663 return; 5664 break; 5665 case LibFunc::nearbyint: 5666 case LibFunc::nearbyintf: 5667 case LibFunc::nearbyintl: 5668 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5669 return; 5670 break; 5671 case LibFunc::ceil: 5672 case LibFunc::ceilf: 5673 case LibFunc::ceill: 5674 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5675 return; 5676 break; 5677 case LibFunc::rint: 5678 case LibFunc::rintf: 5679 case LibFunc::rintl: 5680 if (visitUnaryFloatCall(I, ISD::FRINT)) 5681 return; 5682 break; 5683 case LibFunc::round: 5684 case LibFunc::roundf: 5685 case LibFunc::roundl: 5686 if (visitUnaryFloatCall(I, ISD::FROUND)) 5687 return; 5688 break; 5689 case LibFunc::trunc: 5690 case LibFunc::truncf: 5691 case LibFunc::truncl: 5692 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5693 return; 5694 break; 5695 case LibFunc::log2: 5696 case LibFunc::log2f: 5697 case LibFunc::log2l: 5698 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5699 return; 5700 break; 5701 case LibFunc::exp2: 5702 case LibFunc::exp2f: 5703 case LibFunc::exp2l: 5704 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5705 return; 5706 break; 5707 case LibFunc::memcmp: 5708 if (visitMemCmpCall(I)) 5709 return; 5710 break; 5711 case LibFunc::memchr: 5712 if (visitMemChrCall(I)) 5713 return; 5714 break; 5715 case LibFunc::strcpy: 5716 if (visitStrCpyCall(I, false)) 5717 return; 5718 break; 5719 case LibFunc::stpcpy: 5720 if (visitStrCpyCall(I, true)) 5721 return; 5722 break; 5723 case LibFunc::strcmp: 5724 if (visitStrCmpCall(I)) 5725 return; 5726 break; 5727 case LibFunc::strlen: 5728 if (visitStrLenCall(I)) 5729 return; 5730 break; 5731 case LibFunc::strnlen: 5732 if (visitStrNLenCall(I)) 5733 return; 5734 break; 5735 } 5736 } 5737 } 5738 5739 SDValue Callee; 5740 if (!RenameFn) 5741 Callee = getValue(I.getCalledValue()); 5742 else 5743 Callee = DAG.getExternalSymbol( 5744 RenameFn, 5745 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5746 5747 // Check if we can potentially perform a tail call. More detailed checking is 5748 // be done within LowerCallTo, after more information about the call is known. 5749 LowerCallTo(&I, Callee, I.isTailCall()); 5750 } 5751 5752 namespace { 5753 5754 /// AsmOperandInfo - This contains information for each constraint that we are 5755 /// lowering. 5756 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5757 public: 5758 /// CallOperand - If this is the result output operand or a clobber 5759 /// this is null, otherwise it is the incoming operand to the CallInst. 5760 /// This gets modified as the asm is processed. 5761 SDValue CallOperand; 5762 5763 /// AssignedRegs - If this is a register or register class operand, this 5764 /// contains the set of register corresponding to the operand. 5765 RegsForValue AssignedRegs; 5766 5767 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5768 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 5769 } 5770 5771 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5772 /// corresponds to. If there is no Value* for this operand, it returns 5773 /// MVT::Other. 5774 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 5775 const DataLayout &DL) const { 5776 if (!CallOperandVal) return MVT::Other; 5777 5778 if (isa<BasicBlock>(CallOperandVal)) 5779 return TLI.getPointerTy(DL); 5780 5781 llvm::Type *OpTy = CallOperandVal->getType(); 5782 5783 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5784 // If this is an indirect operand, the operand is a pointer to the 5785 // accessed type. 5786 if (isIndirect) { 5787 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5788 if (!PtrTy) 5789 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5790 OpTy = PtrTy->getElementType(); 5791 } 5792 5793 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5794 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5795 if (STy->getNumElements() == 1) 5796 OpTy = STy->getElementType(0); 5797 5798 // If OpTy is not a single value, it may be a struct/union that we 5799 // can tile with integers. 5800 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5801 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 5802 switch (BitSize) { 5803 default: break; 5804 case 1: 5805 case 8: 5806 case 16: 5807 case 32: 5808 case 64: 5809 case 128: 5810 OpTy = IntegerType::get(Context, BitSize); 5811 break; 5812 } 5813 } 5814 5815 return TLI.getValueType(DL, OpTy, true); 5816 } 5817 }; 5818 5819 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5820 5821 } // end anonymous namespace 5822 5823 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5824 /// specified operand. We prefer to assign virtual registers, to allow the 5825 /// register allocator to handle the assignment process. However, if the asm 5826 /// uses features that we can't model on machineinstrs, we have SDISel do the 5827 /// allocation. This produces generally horrible, but correct, code. 5828 /// 5829 /// OpInfo describes the operand. 5830 /// 5831 static void GetRegistersForValue(SelectionDAG &DAG, 5832 const TargetLowering &TLI, 5833 SDLoc DL, 5834 SDISelAsmOperandInfo &OpInfo) { 5835 LLVMContext &Context = *DAG.getContext(); 5836 5837 MachineFunction &MF = DAG.getMachineFunction(); 5838 SmallVector<unsigned, 4> Regs; 5839 5840 // If this is a constraint for a single physreg, or a constraint for a 5841 // register class, find it. 5842 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 5843 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 5844 OpInfo.ConstraintCode, 5845 OpInfo.ConstraintVT); 5846 5847 unsigned NumRegs = 1; 5848 if (OpInfo.ConstraintVT != MVT::Other) { 5849 // If this is a FP input in an integer register (or visa versa) insert a bit 5850 // cast of the input value. More generally, handle any case where the input 5851 // value disagrees with the register class we plan to stick this in. 5852 if (OpInfo.Type == InlineAsm::isInput && 5853 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5854 // Try to convert to the first EVT that the reg class contains. If the 5855 // types are identical size, use a bitcast to convert (e.g. two differing 5856 // vector types). 5857 MVT RegVT = *PhysReg.second->vt_begin(); 5858 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 5859 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5860 RegVT, OpInfo.CallOperand); 5861 OpInfo.ConstraintVT = RegVT; 5862 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5863 // If the input is a FP value and we want it in FP registers, do a 5864 // bitcast to the corresponding integer type. This turns an f64 value 5865 // into i64, which can be passed with two i32 values on a 32-bit 5866 // machine. 5867 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 5868 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5869 RegVT, OpInfo.CallOperand); 5870 OpInfo.ConstraintVT = RegVT; 5871 } 5872 } 5873 5874 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5875 } 5876 5877 MVT RegVT; 5878 EVT ValueVT = OpInfo.ConstraintVT; 5879 5880 // If this is a constraint for a specific physical register, like {r17}, 5881 // assign it now. 5882 if (unsigned AssignedReg = PhysReg.first) { 5883 const TargetRegisterClass *RC = PhysReg.second; 5884 if (OpInfo.ConstraintVT == MVT::Other) 5885 ValueVT = *RC->vt_begin(); 5886 5887 // Get the actual register value type. This is important, because the user 5888 // may have asked for (e.g.) the AX register in i32 type. We need to 5889 // remember that AX is actually i16 to get the right extension. 5890 RegVT = *RC->vt_begin(); 5891 5892 // This is a explicit reference to a physical register. 5893 Regs.push_back(AssignedReg); 5894 5895 // If this is an expanded reference, add the rest of the regs to Regs. 5896 if (NumRegs != 1) { 5897 TargetRegisterClass::iterator I = RC->begin(); 5898 for (; *I != AssignedReg; ++I) 5899 assert(I != RC->end() && "Didn't find reg!"); 5900 5901 // Already added the first reg. 5902 --NumRegs; ++I; 5903 for (; NumRegs; --NumRegs, ++I) { 5904 assert(I != RC->end() && "Ran out of registers to allocate!"); 5905 Regs.push_back(*I); 5906 } 5907 } 5908 5909 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5910 return; 5911 } 5912 5913 // Otherwise, if this was a reference to an LLVM register class, create vregs 5914 // for this reference. 5915 if (const TargetRegisterClass *RC = PhysReg.second) { 5916 RegVT = *RC->vt_begin(); 5917 if (OpInfo.ConstraintVT == MVT::Other) 5918 ValueVT = RegVT; 5919 5920 // Create the appropriate number of virtual registers. 5921 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5922 for (; NumRegs; --NumRegs) 5923 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5924 5925 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5926 return; 5927 } 5928 5929 // Otherwise, we couldn't allocate enough registers for this. 5930 } 5931 5932 /// visitInlineAsm - Handle a call to an InlineAsm object. 5933 /// 5934 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5935 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5936 5937 /// ConstraintOperands - Information about all of the constraints. 5938 SDISelAsmOperandInfoVector ConstraintOperands; 5939 5940 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5941 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 5942 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 5943 5944 bool hasMemory = false; 5945 5946 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5947 unsigned ResNo = 0; // ResNo - The result number of the next output. 5948 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5949 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 5950 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5951 5952 MVT OpVT = MVT::Other; 5953 5954 // Compute the value type for each operand. 5955 switch (OpInfo.Type) { 5956 case InlineAsm::isOutput: 5957 // Indirect outputs just consume an argument. 5958 if (OpInfo.isIndirect) { 5959 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5960 break; 5961 } 5962 5963 // The return value of the call is this value. As such, there is no 5964 // corresponding argument. 5965 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5966 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 5967 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 5968 STy->getElementType(ResNo)); 5969 } else { 5970 assert(ResNo == 0 && "Asm only has one result!"); 5971 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 5972 } 5973 ++ResNo; 5974 break; 5975 case InlineAsm::isInput: 5976 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5977 break; 5978 case InlineAsm::isClobber: 5979 // Nothing to do. 5980 break; 5981 } 5982 5983 // If this is an input or an indirect output, process the call argument. 5984 // BasicBlocks are labels, currently appearing only in asm's. 5985 if (OpInfo.CallOperandVal) { 5986 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5987 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5988 } else { 5989 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5990 } 5991 5992 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 5993 DAG.getDataLayout()).getSimpleVT(); 5994 } 5995 5996 OpInfo.ConstraintVT = OpVT; 5997 5998 // Indirect operand accesses access memory. 5999 if (OpInfo.isIndirect) 6000 hasMemory = true; 6001 else { 6002 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6003 TargetLowering::ConstraintType 6004 CType = TLI.getConstraintType(OpInfo.Codes[j]); 6005 if (CType == TargetLowering::C_Memory) { 6006 hasMemory = true; 6007 break; 6008 } 6009 } 6010 } 6011 } 6012 6013 SDValue Chain, Flag; 6014 6015 // We won't need to flush pending loads if this asm doesn't touch 6016 // memory and is nonvolatile. 6017 if (hasMemory || IA->hasSideEffects()) 6018 Chain = getRoot(); 6019 else 6020 Chain = DAG.getRoot(); 6021 6022 // Second pass over the constraints: compute which constraint option to use 6023 // and assign registers to constraints that want a specific physreg. 6024 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6025 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6026 6027 // If this is an output operand with a matching input operand, look up the 6028 // matching input. If their types mismatch, e.g. one is an integer, the 6029 // other is floating point, or their sizes are different, flag it as an 6030 // error. 6031 if (OpInfo.hasMatchingInput()) { 6032 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6033 6034 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6035 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6036 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6037 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6038 OpInfo.ConstraintVT); 6039 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6040 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 6041 Input.ConstraintVT); 6042 if ((OpInfo.ConstraintVT.isInteger() != 6043 Input.ConstraintVT.isInteger()) || 6044 (MatchRC.second != InputRC.second)) { 6045 report_fatal_error("Unsupported asm: input constraint" 6046 " with a matching output constraint of" 6047 " incompatible type!"); 6048 } 6049 Input.ConstraintVT = OpInfo.ConstraintVT; 6050 } 6051 } 6052 6053 // Compute the constraint code and ConstraintType to use. 6054 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6055 6056 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6057 OpInfo.Type == InlineAsm::isClobber) 6058 continue; 6059 6060 // If this is a memory input, and if the operand is not indirect, do what we 6061 // need to to provide an address for the memory input. 6062 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6063 !OpInfo.isIndirect) { 6064 assert((OpInfo.isMultipleAlternative || 6065 (OpInfo.Type == InlineAsm::isInput)) && 6066 "Can only indirectify direct input operands!"); 6067 6068 // Memory operands really want the address of the value. If we don't have 6069 // an indirect input, put it in the constpool if we can, otherwise spill 6070 // it to a stack slot. 6071 // TODO: This isn't quite right. We need to handle these according to 6072 // the addressing mode that the constraint wants. Also, this may take 6073 // an additional register for the computation and we don't want that 6074 // either. 6075 6076 // If the operand is a float, integer, or vector constant, spill to a 6077 // constant pool entry to get its address. 6078 const Value *OpVal = OpInfo.CallOperandVal; 6079 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6080 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6081 OpInfo.CallOperand = DAG.getConstantPool( 6082 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6083 } else { 6084 // Otherwise, create a stack slot and emit a store to it before the 6085 // asm. 6086 Type *Ty = OpVal->getType(); 6087 auto &DL = DAG.getDataLayout(); 6088 uint64_t TySize = DL.getTypeAllocSize(Ty); 6089 unsigned Align = DL.getPrefTypeAlignment(Ty); 6090 MachineFunction &MF = DAG.getMachineFunction(); 6091 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6092 SDValue StackSlot = 6093 DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout())); 6094 Chain = DAG.getStore( 6095 Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot, 6096 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), 6097 false, false, 0); 6098 OpInfo.CallOperand = StackSlot; 6099 } 6100 6101 // There is no longer a Value* corresponding to this operand. 6102 OpInfo.CallOperandVal = nullptr; 6103 6104 // It is now an indirect operand. 6105 OpInfo.isIndirect = true; 6106 } 6107 6108 // If this constraint is for a specific register, allocate it before 6109 // anything else. 6110 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6111 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6112 } 6113 6114 // Second pass - Loop over all of the operands, assigning virtual or physregs 6115 // to register class operands. 6116 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6117 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6118 6119 // C_Register operands have already been allocated, Other/Memory don't need 6120 // to be. 6121 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6122 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6123 } 6124 6125 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6126 std::vector<SDValue> AsmNodeOperands; 6127 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6128 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 6129 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 6130 6131 // If we have a !srcloc metadata node associated with it, we want to attach 6132 // this to the ultimately generated inline asm machineinstr. To do this, we 6133 // pass in the third operand as this (potentially null) inline asm MDNode. 6134 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6135 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6136 6137 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6138 // bits as operand 3. 6139 unsigned ExtraInfo = 0; 6140 if (IA->hasSideEffects()) 6141 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6142 if (IA->isAlignStack()) 6143 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6144 // Set the asm dialect. 6145 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6146 6147 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6148 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6149 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6150 6151 // Compute the constraint code and ConstraintType to use. 6152 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6153 6154 // Ideally, we would only check against memory constraints. However, the 6155 // meaning of an other constraint can be target-specific and we can't easily 6156 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6157 // for other constriants as well. 6158 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6159 OpInfo.ConstraintType == TargetLowering::C_Other) { 6160 if (OpInfo.Type == InlineAsm::isInput) 6161 ExtraInfo |= InlineAsm::Extra_MayLoad; 6162 else if (OpInfo.Type == InlineAsm::isOutput) 6163 ExtraInfo |= InlineAsm::Extra_MayStore; 6164 else if (OpInfo.Type == InlineAsm::isClobber) 6165 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6166 } 6167 } 6168 6169 AsmNodeOperands.push_back(DAG.getTargetConstant( 6170 ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6171 6172 // Loop over all of the inputs, copying the operand values into the 6173 // appropriate registers and processing the output regs. 6174 RegsForValue RetValRegs; 6175 6176 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6177 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6178 6179 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6180 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6181 6182 switch (OpInfo.Type) { 6183 case InlineAsm::isOutput: { 6184 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6185 OpInfo.ConstraintType != TargetLowering::C_Register) { 6186 // Memory output, or 'other' output (e.g. 'X' constraint). 6187 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6188 6189 unsigned ConstraintID = 6190 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6191 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6192 "Failed to convert memory constraint code to constraint id."); 6193 6194 // Add information to the INLINEASM node to know about this output. 6195 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6196 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6197 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6198 MVT::i32)); 6199 AsmNodeOperands.push_back(OpInfo.CallOperand); 6200 break; 6201 } 6202 6203 // Otherwise, this is a register or register class output. 6204 6205 // Copy the output from the appropriate register. Find a register that 6206 // we can use. 6207 if (OpInfo.AssignedRegs.Regs.empty()) { 6208 LLVMContext &Ctx = *DAG.getContext(); 6209 Ctx.emitError(CS.getInstruction(), 6210 "couldn't allocate output register for constraint '" + 6211 Twine(OpInfo.ConstraintCode) + "'"); 6212 return; 6213 } 6214 6215 // If this is an indirect operand, store through the pointer after the 6216 // asm. 6217 if (OpInfo.isIndirect) { 6218 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6219 OpInfo.CallOperandVal)); 6220 } else { 6221 // This is the result value of the call. 6222 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6223 // Concatenate this output onto the outputs list. 6224 RetValRegs.append(OpInfo.AssignedRegs); 6225 } 6226 6227 // Add information to the INLINEASM node to know that this register is 6228 // set. 6229 OpInfo.AssignedRegs 6230 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6231 ? InlineAsm::Kind_RegDefEarlyClobber 6232 : InlineAsm::Kind_RegDef, 6233 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6234 break; 6235 } 6236 case InlineAsm::isInput: { 6237 SDValue InOperandVal = OpInfo.CallOperand; 6238 6239 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6240 // If this is required to match an output register we have already set, 6241 // just use its register. 6242 unsigned OperandNo = OpInfo.getMatchedOperand(); 6243 6244 // Scan until we find the definition we already emitted of this operand. 6245 // When we find it, create a RegsForValue operand. 6246 unsigned CurOp = InlineAsm::Op_FirstOperand; 6247 for (; OperandNo; --OperandNo) { 6248 // Advance to the next operand. 6249 unsigned OpFlag = 6250 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6251 assert((InlineAsm::isRegDefKind(OpFlag) || 6252 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6253 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6254 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6255 } 6256 6257 unsigned OpFlag = 6258 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6259 if (InlineAsm::isRegDefKind(OpFlag) || 6260 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6261 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6262 if (OpInfo.isIndirect) { 6263 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6264 LLVMContext &Ctx = *DAG.getContext(); 6265 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6266 " don't know how to handle tied " 6267 "indirect register inputs"); 6268 return; 6269 } 6270 6271 RegsForValue MatchedRegs; 6272 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6273 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6274 MatchedRegs.RegVTs.push_back(RegVT); 6275 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6276 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6277 i != e; ++i) { 6278 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6279 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6280 else { 6281 LLVMContext &Ctx = *DAG.getContext(); 6282 Ctx.emitError(CS.getInstruction(), 6283 "inline asm error: This value" 6284 " type register class is not natively supported!"); 6285 return; 6286 } 6287 } 6288 SDLoc dl = getCurSDLoc(); 6289 // Use the produced MatchedRegs object to 6290 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6291 Chain, &Flag, CS.getInstruction()); 6292 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6293 true, OpInfo.getMatchedOperand(), dl, 6294 DAG, AsmNodeOperands); 6295 break; 6296 } 6297 6298 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6299 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6300 "Unexpected number of operands"); 6301 // Add information to the INLINEASM node to know about this input. 6302 // See InlineAsm.h isUseOperandTiedToDef. 6303 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6304 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6305 OpInfo.getMatchedOperand()); 6306 AsmNodeOperands.push_back(DAG.getTargetConstant( 6307 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6308 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6309 break; 6310 } 6311 6312 // Treat indirect 'X' constraint as memory. 6313 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6314 OpInfo.isIndirect) 6315 OpInfo.ConstraintType = TargetLowering::C_Memory; 6316 6317 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6318 std::vector<SDValue> Ops; 6319 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6320 Ops, DAG); 6321 if (Ops.empty()) { 6322 LLVMContext &Ctx = *DAG.getContext(); 6323 Ctx.emitError(CS.getInstruction(), 6324 "invalid operand for inline asm constraint '" + 6325 Twine(OpInfo.ConstraintCode) + "'"); 6326 return; 6327 } 6328 6329 // Add information to the INLINEASM node to know about this input. 6330 unsigned ResOpType = 6331 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6332 AsmNodeOperands.push_back(DAG.getTargetConstant( 6333 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6334 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6335 break; 6336 } 6337 6338 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6339 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6340 assert(InOperandVal.getValueType() == 6341 TLI.getPointerTy(DAG.getDataLayout()) && 6342 "Memory operands expect pointer values"); 6343 6344 unsigned ConstraintID = 6345 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6346 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6347 "Failed to convert memory constraint code to constraint id."); 6348 6349 // Add information to the INLINEASM node to know about this input. 6350 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6351 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6352 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6353 getCurSDLoc(), 6354 MVT::i32)); 6355 AsmNodeOperands.push_back(InOperandVal); 6356 break; 6357 } 6358 6359 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6360 OpInfo.ConstraintType == TargetLowering::C_Register) && 6361 "Unknown constraint type!"); 6362 6363 // TODO: Support this. 6364 if (OpInfo.isIndirect) { 6365 LLVMContext &Ctx = *DAG.getContext(); 6366 Ctx.emitError(CS.getInstruction(), 6367 "Don't know how to handle indirect register inputs yet " 6368 "for constraint '" + 6369 Twine(OpInfo.ConstraintCode) + "'"); 6370 return; 6371 } 6372 6373 // Copy the input into the appropriate registers. 6374 if (OpInfo.AssignedRegs.Regs.empty()) { 6375 LLVMContext &Ctx = *DAG.getContext(); 6376 Ctx.emitError(CS.getInstruction(), 6377 "couldn't allocate input reg for constraint '" + 6378 Twine(OpInfo.ConstraintCode) + "'"); 6379 return; 6380 } 6381 6382 SDLoc dl = getCurSDLoc(); 6383 6384 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6385 Chain, &Flag, CS.getInstruction()); 6386 6387 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6388 dl, DAG, AsmNodeOperands); 6389 break; 6390 } 6391 case InlineAsm::isClobber: { 6392 // Add the clobbered value to the operand list, so that the register 6393 // allocator is aware that the physreg got clobbered. 6394 if (!OpInfo.AssignedRegs.Regs.empty()) 6395 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6396 false, 0, getCurSDLoc(), DAG, 6397 AsmNodeOperands); 6398 break; 6399 } 6400 } 6401 } 6402 6403 // Finish up input operands. Set the input chain and add the flag last. 6404 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6405 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6406 6407 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6408 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6409 Flag = Chain.getValue(1); 6410 6411 // If this asm returns a register value, copy the result from that register 6412 // and set it as the value of the call. 6413 if (!RetValRegs.Regs.empty()) { 6414 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6415 Chain, &Flag, CS.getInstruction()); 6416 6417 // FIXME: Why don't we do this for inline asms with MRVs? 6418 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6419 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 6420 6421 // If any of the results of the inline asm is a vector, it may have the 6422 // wrong width/num elts. This can happen for register classes that can 6423 // contain multiple different value types. The preg or vreg allocated may 6424 // not have the same VT as was expected. Convert it to the right type 6425 // with bit_convert. 6426 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6427 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6428 ResultType, Val); 6429 6430 } else if (ResultType != Val.getValueType() && 6431 ResultType.isInteger() && Val.getValueType().isInteger()) { 6432 // If a result value was tied to an input value, the computed result may 6433 // have a wider width than the expected result. Extract the relevant 6434 // portion. 6435 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6436 } 6437 6438 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6439 } 6440 6441 setValue(CS.getInstruction(), Val); 6442 // Don't need to use this as a chain in this case. 6443 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6444 return; 6445 } 6446 6447 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6448 6449 // Process indirect outputs, first output all of the flagged copies out of 6450 // physregs. 6451 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6452 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6453 const Value *Ptr = IndirectStoresToEmit[i].second; 6454 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6455 Chain, &Flag, IA); 6456 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6457 } 6458 6459 // Emit the non-flagged stores from the physregs. 6460 SmallVector<SDValue, 8> OutChains; 6461 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6462 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6463 StoresToEmit[i].first, 6464 getValue(StoresToEmit[i].second), 6465 MachinePointerInfo(StoresToEmit[i].second), 6466 false, false, 0); 6467 OutChains.push_back(Val); 6468 } 6469 6470 if (!OutChains.empty()) 6471 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6472 6473 DAG.setRoot(Chain); 6474 } 6475 6476 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6477 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6478 MVT::Other, getRoot(), 6479 getValue(I.getArgOperand(0)), 6480 DAG.getSrcValue(I.getArgOperand(0)))); 6481 } 6482 6483 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6484 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6485 const DataLayout &DL = DAG.getDataLayout(); 6486 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6487 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 6488 DAG.getSrcValue(I.getOperand(0)), 6489 DL.getABITypeAlignment(I.getType())); 6490 setValue(&I, V); 6491 DAG.setRoot(V.getValue(1)); 6492 } 6493 6494 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6495 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6496 MVT::Other, getRoot(), 6497 getValue(I.getArgOperand(0)), 6498 DAG.getSrcValue(I.getArgOperand(0)))); 6499 } 6500 6501 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6502 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6503 MVT::Other, getRoot(), 6504 getValue(I.getArgOperand(0)), 6505 getValue(I.getArgOperand(1)), 6506 DAG.getSrcValue(I.getArgOperand(0)), 6507 DAG.getSrcValue(I.getArgOperand(1)))); 6508 } 6509 6510 /// \brief Lower an argument list according to the target calling convention. 6511 /// 6512 /// \return A tuple of <return-value, token-chain> 6513 /// 6514 /// This is a helper for lowering intrinsics that follow a target calling 6515 /// convention or require stack pointer adjustment. Only a subset of the 6516 /// intrinsic's operands need to participate in the calling convention. 6517 std::pair<SDValue, SDValue> 6518 SelectionDAGBuilder::lowerCallOperands(ImmutableCallSite CS, unsigned ArgIdx, 6519 unsigned NumArgs, SDValue Callee, 6520 Type *ReturnTy, 6521 MachineBasicBlock *LandingPad, 6522 bool IsPatchPoint) { 6523 TargetLowering::ArgListTy Args; 6524 Args.reserve(NumArgs); 6525 6526 // Populate the argument list. 6527 // Attributes for args start at offset 1, after the return attribute. 6528 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6529 ArgI != ArgE; ++ArgI) { 6530 const Value *V = CS->getOperand(ArgI); 6531 6532 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6533 6534 TargetLowering::ArgListEntry Entry; 6535 Entry.Node = getValue(V); 6536 Entry.Ty = V->getType(); 6537 Entry.setAttributes(&CS, AttrI); 6538 Args.push_back(Entry); 6539 } 6540 6541 TargetLowering::CallLoweringInfo CLI(DAG); 6542 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6543 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs) 6544 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6545 6546 return lowerInvokable(CLI, LandingPad); 6547 } 6548 6549 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6550 /// or patchpoint target node's operand list. 6551 /// 6552 /// Constants are converted to TargetConstants purely as an optimization to 6553 /// avoid constant materialization and register allocation. 6554 /// 6555 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6556 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6557 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6558 /// address materialization and register allocation, but may also be required 6559 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6560 /// alloca in the entry block, then the runtime may assume that the alloca's 6561 /// StackMap location can be read immediately after compilation and that the 6562 /// location is valid at any point during execution (this is similar to the 6563 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6564 /// only available in a register, then the runtime would need to trap when 6565 /// execution reaches the StackMap in order to read the alloca's location. 6566 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6567 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 6568 SelectionDAGBuilder &Builder) { 6569 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6570 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6571 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6572 Ops.push_back( 6573 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 6574 Ops.push_back( 6575 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 6576 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6577 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6578 Ops.push_back(Builder.DAG.getTargetFrameIndex( 6579 FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout()))); 6580 } else 6581 Ops.push_back(OpVal); 6582 } 6583 } 6584 6585 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6586 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6587 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6588 // [live variables...]) 6589 6590 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6591 6592 SDValue Chain, InFlag, Callee, NullPtr; 6593 SmallVector<SDValue, 32> Ops; 6594 6595 SDLoc DL = getCurSDLoc(); 6596 Callee = getValue(CI.getCalledValue()); 6597 NullPtr = DAG.getIntPtrConstant(0, DL, true); 6598 6599 // The stackmap intrinsic only records the live variables (the arguemnts 6600 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6601 // intrinsic, this won't be lowered to a function call. This means we don't 6602 // have to worry about calling conventions and target specific lowering code. 6603 // Instead we perform the call lowering right here. 6604 // 6605 // chain, flag = CALLSEQ_START(chain, 0) 6606 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6607 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6608 // 6609 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6610 InFlag = Chain.getValue(1); 6611 6612 // Add the <id> and <numBytes> constants. 6613 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6614 Ops.push_back(DAG.getTargetConstant( 6615 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 6616 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6617 Ops.push_back(DAG.getTargetConstant( 6618 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 6619 MVT::i32)); 6620 6621 // Push live variables for the stack map. 6622 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 6623 6624 // We are not pushing any register mask info here on the operands list, 6625 // because the stackmap doesn't clobber anything. 6626 6627 // Push the chain and the glue flag. 6628 Ops.push_back(Chain); 6629 Ops.push_back(InFlag); 6630 6631 // Create the STACKMAP node. 6632 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6633 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6634 Chain = SDValue(SM, 0); 6635 InFlag = Chain.getValue(1); 6636 6637 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6638 6639 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6640 6641 // Set the root to the target-lowered call chain. 6642 DAG.setRoot(Chain); 6643 6644 // Inform the Frame Information that we have a stackmap in this function. 6645 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6646 } 6647 6648 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6649 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6650 MachineBasicBlock *LandingPad) { 6651 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6652 // i32 <numBytes>, 6653 // i8* <target>, 6654 // i32 <numArgs>, 6655 // [Args...], 6656 // [live variables...]) 6657 6658 CallingConv::ID CC = CS.getCallingConv(); 6659 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6660 bool HasDef = !CS->getType()->isVoidTy(); 6661 SDLoc dl = getCurSDLoc(); 6662 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 6663 6664 // Handle immediate and symbolic callees. 6665 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 6666 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 6667 /*isTarget=*/true); 6668 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 6669 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 6670 SDLoc(SymbolicCallee), 6671 SymbolicCallee->getValueType(0)); 6672 6673 // Get the real number of arguments participating in the call <numArgs> 6674 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6675 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6676 6677 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6678 // Intrinsics include all meta-operands up to but not including CC. 6679 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6680 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 6681 "Not enough arguments provided to the patchpoint intrinsic"); 6682 6683 // For AnyRegCC the arguments are lowered later on manually. 6684 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 6685 Type *ReturnTy = 6686 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6687 std::pair<SDValue, SDValue> Result = 6688 lowerCallOperands(CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 6689 LandingPad, true); 6690 6691 SDNode *CallEnd = Result.second.getNode(); 6692 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6693 CallEnd = CallEnd->getOperand(0).getNode(); 6694 6695 /// Get a call instruction from the call sequence chain. 6696 /// Tail calls are not allowed. 6697 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6698 "Expected a callseq node."); 6699 SDNode *Call = CallEnd->getOperand(0).getNode(); 6700 bool HasGlue = Call->getGluedNode(); 6701 6702 // Replace the target specific call node with the patchable intrinsic. 6703 SmallVector<SDValue, 8> Ops; 6704 6705 // Add the <id> and <numBytes> constants. 6706 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 6707 Ops.push_back(DAG.getTargetConstant( 6708 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 6709 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 6710 Ops.push_back(DAG.getTargetConstant( 6711 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 6712 MVT::i32)); 6713 6714 // Add the callee. 6715 Ops.push_back(Callee); 6716 6717 // Adjust <numArgs> to account for any arguments that have been passed on the 6718 // stack instead. 6719 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6720 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 6721 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 6722 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 6723 6724 // Add the calling convention 6725 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 6726 6727 // Add the arguments we omitted previously. The register allocator should 6728 // place these in any free register. 6729 if (IsAnyRegCC) 6730 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6731 Ops.push_back(getValue(CS.getArgument(i))); 6732 6733 // Push the arguments from the call instruction up to the register mask. 6734 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 6735 Ops.append(Call->op_begin() + 2, e); 6736 6737 // Push live variables for the stack map. 6738 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 6739 6740 // Push the register mask info. 6741 if (HasGlue) 6742 Ops.push_back(*(Call->op_end()-2)); 6743 else 6744 Ops.push_back(*(Call->op_end()-1)); 6745 6746 // Push the chain (this is originally the first operand of the call, but 6747 // becomes now the last or second to last operand). 6748 Ops.push_back(*(Call->op_begin())); 6749 6750 // Push the glue flag (last operand). 6751 if (HasGlue) 6752 Ops.push_back(*(Call->op_end()-1)); 6753 6754 SDVTList NodeTys; 6755 if (IsAnyRegCC && HasDef) { 6756 // Create the return types based on the intrinsic definition 6757 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6758 SmallVector<EVT, 3> ValueVTs; 6759 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 6760 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 6761 6762 // There is always a chain and a glue type at the end 6763 ValueVTs.push_back(MVT::Other); 6764 ValueVTs.push_back(MVT::Glue); 6765 NodeTys = DAG.getVTList(ValueVTs); 6766 } else 6767 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6768 6769 // Replace the target specific call node with a PATCHPOINT node. 6770 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 6771 dl, NodeTys, Ops); 6772 6773 // Update the NodeMap. 6774 if (HasDef) { 6775 if (IsAnyRegCC) 6776 setValue(CS.getInstruction(), SDValue(MN, 0)); 6777 else 6778 setValue(CS.getInstruction(), Result.first); 6779 } 6780 6781 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 6782 // call sequence. Furthermore the location of the chain and glue can change 6783 // when the AnyReg calling convention is used and the intrinsic returns a 6784 // value. 6785 if (IsAnyRegCC && HasDef) { 6786 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 6787 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 6788 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 6789 } else 6790 DAG.ReplaceAllUsesWith(Call, MN); 6791 DAG.DeleteNode(Call); 6792 6793 // Inform the Frame Information that we have a patchpoint in this function. 6794 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 6795 } 6796 6797 /// Returns an AttributeSet representing the attributes applied to the return 6798 /// value of the given call. 6799 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 6800 SmallVector<Attribute::AttrKind, 2> Attrs; 6801 if (CLI.RetSExt) 6802 Attrs.push_back(Attribute::SExt); 6803 if (CLI.RetZExt) 6804 Attrs.push_back(Attribute::ZExt); 6805 if (CLI.IsInReg) 6806 Attrs.push_back(Attribute::InReg); 6807 6808 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 6809 Attrs); 6810 } 6811 6812 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6813 /// implementation, which just calls LowerCall. 6814 /// FIXME: When all targets are 6815 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6816 std::pair<SDValue, SDValue> 6817 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6818 // Handle the incoming return values from the call. 6819 CLI.Ins.clear(); 6820 Type *OrigRetTy = CLI.RetTy; 6821 SmallVector<EVT, 4> RetTys; 6822 SmallVector<uint64_t, 4> Offsets; 6823 auto &DL = CLI.DAG.getDataLayout(); 6824 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 6825 6826 SmallVector<ISD::OutputArg, 4> Outs; 6827 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 6828 6829 bool CanLowerReturn = 6830 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 6831 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 6832 6833 SDValue DemoteStackSlot; 6834 int DemoteStackIdx = -100; 6835 if (!CanLowerReturn) { 6836 // FIXME: equivalent assert? 6837 // assert(!CS.hasInAllocaArgument() && 6838 // "sret demotion is incompatible with inalloca"); 6839 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 6840 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 6841 MachineFunction &MF = CLI.DAG.getMachineFunction(); 6842 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6843 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 6844 6845 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL)); 6846 ArgListEntry Entry; 6847 Entry.Node = DemoteStackSlot; 6848 Entry.Ty = StackSlotPtrType; 6849 Entry.isSExt = false; 6850 Entry.isZExt = false; 6851 Entry.isInReg = false; 6852 Entry.isSRet = true; 6853 Entry.isNest = false; 6854 Entry.isByVal = false; 6855 Entry.isReturned = false; 6856 Entry.Alignment = Align; 6857 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 6858 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 6859 6860 // sret demotion isn't compatible with tail-calls, since the sret argument 6861 // points into the callers stack frame. 6862 CLI.IsTailCall = false; 6863 } else { 6864 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6865 EVT VT = RetTys[I]; 6866 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6867 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6868 for (unsigned i = 0; i != NumRegs; ++i) { 6869 ISD::InputArg MyFlags; 6870 MyFlags.VT = RegisterVT; 6871 MyFlags.ArgVT = VT; 6872 MyFlags.Used = CLI.IsReturnValueUsed; 6873 if (CLI.RetSExt) 6874 MyFlags.Flags.setSExt(); 6875 if (CLI.RetZExt) 6876 MyFlags.Flags.setZExt(); 6877 if (CLI.IsInReg) 6878 MyFlags.Flags.setInReg(); 6879 CLI.Ins.push_back(MyFlags); 6880 } 6881 } 6882 } 6883 6884 // Handle all of the outgoing arguments. 6885 CLI.Outs.clear(); 6886 CLI.OutVals.clear(); 6887 ArgListTy &Args = CLI.getArgs(); 6888 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6889 SmallVector<EVT, 4> ValueVTs; 6890 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 6891 Type *FinalType = Args[i].Ty; 6892 if (Args[i].isByVal) 6893 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 6894 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 6895 FinalType, CLI.CallConv, CLI.IsVarArg); 6896 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 6897 ++Value) { 6898 EVT VT = ValueVTs[Value]; 6899 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 6900 SDValue Op = SDValue(Args[i].Node.getNode(), 6901 Args[i].Node.getResNo() + Value); 6902 ISD::ArgFlagsTy Flags; 6903 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 6904 6905 if (Args[i].isZExt) 6906 Flags.setZExt(); 6907 if (Args[i].isSExt) 6908 Flags.setSExt(); 6909 if (Args[i].isInReg) 6910 Flags.setInReg(); 6911 if (Args[i].isSRet) 6912 Flags.setSRet(); 6913 if (Args[i].isByVal) 6914 Flags.setByVal(); 6915 if (Args[i].isInAlloca) { 6916 Flags.setInAlloca(); 6917 // Set the byval flag for CCAssignFn callbacks that don't know about 6918 // inalloca. This way we can know how many bytes we should've allocated 6919 // and how many bytes a callee cleanup function will pop. If we port 6920 // inalloca to more targets, we'll have to add custom inalloca handling 6921 // in the various CC lowering callbacks. 6922 Flags.setByVal(); 6923 } 6924 if (Args[i].isByVal || Args[i].isInAlloca) { 6925 PointerType *Ty = cast<PointerType>(Args[i].Ty); 6926 Type *ElementTy = Ty->getElementType(); 6927 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 6928 // For ByVal, alignment should come from FE. BE will guess if this 6929 // info is not there but there are cases it cannot get right. 6930 unsigned FrameAlign; 6931 if (Args[i].Alignment) 6932 FrameAlign = Args[i].Alignment; 6933 else 6934 FrameAlign = getByValTypeAlignment(ElementTy, DL); 6935 Flags.setByValAlign(FrameAlign); 6936 } 6937 if (Args[i].isNest) 6938 Flags.setNest(); 6939 if (NeedsRegBlock) 6940 Flags.setInConsecutiveRegs(); 6941 Flags.setOrigAlign(OriginalAlignment); 6942 6943 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 6944 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 6945 SmallVector<SDValue, 4> Parts(NumParts); 6946 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 6947 6948 if (Args[i].isSExt) 6949 ExtendKind = ISD::SIGN_EXTEND; 6950 else if (Args[i].isZExt) 6951 ExtendKind = ISD::ZERO_EXTEND; 6952 6953 // Conservatively only handle 'returned' on non-vectors for now 6954 if (Args[i].isReturned && !Op.getValueType().isVector()) { 6955 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 6956 "unexpected use of 'returned'"); 6957 // Before passing 'returned' to the target lowering code, ensure that 6958 // either the register MVT and the actual EVT are the same size or that 6959 // the return value and argument are extended in the same way; in these 6960 // cases it's safe to pass the argument register value unchanged as the 6961 // return register value (although it's at the target's option whether 6962 // to do so) 6963 // TODO: allow code generation to take advantage of partially preserved 6964 // registers rather than clobbering the entire register when the 6965 // parameter extension method is not compatible with the return 6966 // extension method 6967 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 6968 (ExtendKind != ISD::ANY_EXTEND && 6969 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 6970 Flags.setReturned(); 6971 } 6972 6973 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 6974 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 6975 6976 for (unsigned j = 0; j != NumParts; ++j) { 6977 // if it isn't first piece, alignment must be 1 6978 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 6979 i < CLI.NumFixedArgs, 6980 i, j*Parts[j].getValueType().getStoreSize()); 6981 if (NumParts > 1 && j == 0) 6982 MyFlags.Flags.setSplit(); 6983 else if (j != 0) 6984 MyFlags.Flags.setOrigAlign(1); 6985 6986 CLI.Outs.push_back(MyFlags); 6987 CLI.OutVals.push_back(Parts[j]); 6988 } 6989 6990 if (NeedsRegBlock && Value == NumValues - 1) 6991 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 6992 } 6993 } 6994 6995 SmallVector<SDValue, 4> InVals; 6996 CLI.Chain = LowerCall(CLI, InVals); 6997 6998 // Verify that the target's LowerCall behaved as expected. 6999 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7000 "LowerCall didn't return a valid chain!"); 7001 assert((!CLI.IsTailCall || InVals.empty()) && 7002 "LowerCall emitted a return value for a tail call!"); 7003 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7004 "LowerCall didn't emit the correct number of values!"); 7005 7006 // For a tail call, the return value is merely live-out and there aren't 7007 // any nodes in the DAG representing it. Return a special value to 7008 // indicate that a tail call has been emitted and no more Instructions 7009 // should be processed in the current block. 7010 if (CLI.IsTailCall) { 7011 CLI.DAG.setRoot(CLI.Chain); 7012 return std::make_pair(SDValue(), SDValue()); 7013 } 7014 7015 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7016 assert(InVals[i].getNode() && 7017 "LowerCall emitted a null value!"); 7018 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7019 "LowerCall emitted a value with the wrong type!"); 7020 }); 7021 7022 SmallVector<SDValue, 4> ReturnValues; 7023 if (!CanLowerReturn) { 7024 // The instruction result is the result of loading from the 7025 // hidden sret parameter. 7026 SmallVector<EVT, 1> PVTs; 7027 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7028 7029 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 7030 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7031 EVT PtrVT = PVTs[0]; 7032 7033 unsigned NumValues = RetTys.size(); 7034 ReturnValues.resize(NumValues); 7035 SmallVector<SDValue, 4> Chains(NumValues); 7036 7037 for (unsigned i = 0; i < NumValues; ++i) { 7038 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7039 CLI.DAG.getConstant(Offsets[i], CLI.DL, 7040 PtrVT)); 7041 SDValue L = CLI.DAG.getLoad( 7042 RetTys[i], CLI.DL, CLI.Chain, Add, 7043 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 7044 DemoteStackIdx, Offsets[i]), 7045 false, false, false, 1); 7046 ReturnValues[i] = L; 7047 Chains[i] = L.getValue(1); 7048 } 7049 7050 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7051 } else { 7052 // Collect the legal value parts into potentially illegal values 7053 // that correspond to the original function's return values. 7054 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7055 if (CLI.RetSExt) 7056 AssertOp = ISD::AssertSext; 7057 else if (CLI.RetZExt) 7058 AssertOp = ISD::AssertZext; 7059 unsigned CurReg = 0; 7060 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7061 EVT VT = RetTys[I]; 7062 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7063 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7064 7065 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7066 NumRegs, RegisterVT, VT, nullptr, 7067 AssertOp)); 7068 CurReg += NumRegs; 7069 } 7070 7071 // For a function returning void, there is no return value. We can't create 7072 // such a node, so we just return a null return value in that case. In 7073 // that case, nothing will actually look at the value. 7074 if (ReturnValues.empty()) 7075 return std::make_pair(SDValue(), CLI.Chain); 7076 } 7077 7078 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7079 CLI.DAG.getVTList(RetTys), ReturnValues); 7080 return std::make_pair(Res, CLI.Chain); 7081 } 7082 7083 void TargetLowering::LowerOperationWrapper(SDNode *N, 7084 SmallVectorImpl<SDValue> &Results, 7085 SelectionDAG &DAG) const { 7086 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7087 if (Res.getNode()) 7088 Results.push_back(Res); 7089 } 7090 7091 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7092 llvm_unreachable("LowerOperation not implemented for this target!"); 7093 } 7094 7095 void 7096 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7097 SDValue Op = getNonRegisterValue(V); 7098 assert((Op.getOpcode() != ISD::CopyFromReg || 7099 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7100 "Copy from a reg to the same reg!"); 7101 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7102 7103 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7104 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 7105 V->getType()); 7106 SDValue Chain = DAG.getEntryNode(); 7107 7108 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7109 FuncInfo.PreferredExtendType.end()) 7110 ? ISD::ANY_EXTEND 7111 : FuncInfo.PreferredExtendType[V]; 7112 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7113 PendingExports.push_back(Chain); 7114 } 7115 7116 #include "llvm/CodeGen/SelectionDAGISel.h" 7117 7118 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7119 /// entry block, return true. This includes arguments used by switches, since 7120 /// the switch may expand into multiple basic blocks. 7121 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7122 // With FastISel active, we may be splitting blocks, so force creation 7123 // of virtual registers for all non-dead arguments. 7124 if (FastISel) 7125 return A->use_empty(); 7126 7127 const BasicBlock *Entry = A->getParent()->begin(); 7128 for (const User *U : A->users()) 7129 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7130 return false; // Use not in entry block. 7131 7132 return true; 7133 } 7134 7135 void SelectionDAGISel::LowerArguments(const Function &F) { 7136 SelectionDAG &DAG = SDB->DAG; 7137 SDLoc dl = SDB->getCurSDLoc(); 7138 const DataLayout &DL = DAG.getDataLayout(); 7139 SmallVector<ISD::InputArg, 16> Ins; 7140 7141 if (!FuncInfo->CanLowerReturn) { 7142 // Put in an sret pointer parameter before all the other parameters. 7143 SmallVector<EVT, 1> ValueVTs; 7144 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7145 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7146 7147 // NOTE: Assuming that a pointer will never break down to more than one VT 7148 // or one register. 7149 ISD::ArgFlagsTy Flags; 7150 Flags.setSRet(); 7151 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7152 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7153 ISD::InputArg::NoArgIndex, 0); 7154 Ins.push_back(RetArg); 7155 } 7156 7157 // Set up the incoming argument description vector. 7158 unsigned Idx = 1; 7159 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7160 I != E; ++I, ++Idx) { 7161 SmallVector<EVT, 4> ValueVTs; 7162 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7163 bool isArgValueUsed = !I->use_empty(); 7164 unsigned PartBase = 0; 7165 Type *FinalType = I->getType(); 7166 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7167 FinalType = cast<PointerType>(FinalType)->getElementType(); 7168 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7169 FinalType, F.getCallingConv(), F.isVarArg()); 7170 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7171 Value != NumValues; ++Value) { 7172 EVT VT = ValueVTs[Value]; 7173 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7174 ISD::ArgFlagsTy Flags; 7175 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7176 7177 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7178 Flags.setZExt(); 7179 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7180 Flags.setSExt(); 7181 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7182 Flags.setInReg(); 7183 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7184 Flags.setSRet(); 7185 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7186 Flags.setByVal(); 7187 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7188 Flags.setInAlloca(); 7189 // Set the byval flag for CCAssignFn callbacks that don't know about 7190 // inalloca. This way we can know how many bytes we should've allocated 7191 // and how many bytes a callee cleanup function will pop. If we port 7192 // inalloca to more targets, we'll have to add custom inalloca handling 7193 // in the various CC lowering callbacks. 7194 Flags.setByVal(); 7195 } 7196 if (Flags.isByVal() || Flags.isInAlloca()) { 7197 PointerType *Ty = cast<PointerType>(I->getType()); 7198 Type *ElementTy = Ty->getElementType(); 7199 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7200 // For ByVal, alignment should be passed from FE. BE will guess if 7201 // this info is not there but there are cases it cannot get right. 7202 unsigned FrameAlign; 7203 if (F.getParamAlignment(Idx)) 7204 FrameAlign = F.getParamAlignment(Idx); 7205 else 7206 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 7207 Flags.setByValAlign(FrameAlign); 7208 } 7209 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7210 Flags.setNest(); 7211 if (NeedsRegBlock) 7212 Flags.setInConsecutiveRegs(); 7213 Flags.setOrigAlign(OriginalAlignment); 7214 7215 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7216 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7217 for (unsigned i = 0; i != NumRegs; ++i) { 7218 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7219 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7220 if (NumRegs > 1 && i == 0) 7221 MyFlags.Flags.setSplit(); 7222 // if it isn't first piece, alignment must be 1 7223 else if (i > 0) 7224 MyFlags.Flags.setOrigAlign(1); 7225 Ins.push_back(MyFlags); 7226 } 7227 if (NeedsRegBlock && Value == NumValues - 1) 7228 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7229 PartBase += VT.getStoreSize(); 7230 } 7231 } 7232 7233 // Call the target to set up the argument values. 7234 SmallVector<SDValue, 8> InVals; 7235 SDValue NewRoot = TLI->LowerFormalArguments( 7236 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7237 7238 // Verify that the target's LowerFormalArguments behaved as expected. 7239 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7240 "LowerFormalArguments didn't return a valid chain!"); 7241 assert(InVals.size() == Ins.size() && 7242 "LowerFormalArguments didn't emit the correct number of values!"); 7243 DEBUG({ 7244 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7245 assert(InVals[i].getNode() && 7246 "LowerFormalArguments emitted a null value!"); 7247 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7248 "LowerFormalArguments emitted a value with the wrong type!"); 7249 } 7250 }); 7251 7252 // Update the DAG with the new chain value resulting from argument lowering. 7253 DAG.setRoot(NewRoot); 7254 7255 // Set up the argument values. 7256 unsigned i = 0; 7257 Idx = 1; 7258 if (!FuncInfo->CanLowerReturn) { 7259 // Create a virtual register for the sret pointer, and put in a copy 7260 // from the sret argument into it. 7261 SmallVector<EVT, 1> ValueVTs; 7262 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7263 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7264 MVT VT = ValueVTs[0].getSimpleVT(); 7265 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7266 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7267 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7268 RegVT, VT, nullptr, AssertOp); 7269 7270 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7271 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7272 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7273 FuncInfo->DemoteRegister = SRetReg; 7274 NewRoot = 7275 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7276 DAG.setRoot(NewRoot); 7277 7278 // i indexes lowered arguments. Bump it past the hidden sret argument. 7279 // Idx indexes LLVM arguments. Don't touch it. 7280 ++i; 7281 } 7282 7283 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7284 ++I, ++Idx) { 7285 SmallVector<SDValue, 4> ArgValues; 7286 SmallVector<EVT, 4> ValueVTs; 7287 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7288 unsigned NumValues = ValueVTs.size(); 7289 7290 // If this argument is unused then remember its value. It is used to generate 7291 // debugging information. 7292 if (I->use_empty() && NumValues) { 7293 SDB->setUnusedArgValue(I, InVals[i]); 7294 7295 // Also remember any frame index for use in FastISel. 7296 if (FrameIndexSDNode *FI = 7297 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7298 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7299 } 7300 7301 for (unsigned Val = 0; Val != NumValues; ++Val) { 7302 EVT VT = ValueVTs[Val]; 7303 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7304 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7305 7306 if (!I->use_empty()) { 7307 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7308 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7309 AssertOp = ISD::AssertSext; 7310 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7311 AssertOp = ISD::AssertZext; 7312 7313 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7314 NumParts, PartVT, VT, 7315 nullptr, AssertOp)); 7316 } 7317 7318 i += NumParts; 7319 } 7320 7321 // We don't need to do anything else for unused arguments. 7322 if (ArgValues.empty()) 7323 continue; 7324 7325 // Note down frame index. 7326 if (FrameIndexSDNode *FI = 7327 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7328 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7329 7330 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7331 SDB->getCurSDLoc()); 7332 7333 SDB->setValue(I, Res); 7334 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7335 if (LoadSDNode *LNode = 7336 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7337 if (FrameIndexSDNode *FI = 7338 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7339 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7340 } 7341 7342 // If this argument is live outside of the entry block, insert a copy from 7343 // wherever we got it to the vreg that other BB's will reference it as. 7344 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7345 // If we can, though, try to skip creating an unnecessary vreg. 7346 // FIXME: This isn't very clean... it would be nice to make this more 7347 // general. It's also subtly incompatible with the hacks FastISel 7348 // uses with vregs. 7349 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7350 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7351 FuncInfo->ValueMap[I] = Reg; 7352 continue; 7353 } 7354 } 7355 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7356 FuncInfo->InitializeRegForValue(I); 7357 SDB->CopyToExportRegsIfNeeded(I); 7358 } 7359 } 7360 7361 assert(i == InVals.size() && "Argument register count mismatch!"); 7362 7363 // Finally, if the target has anything special to do, allow it to do so. 7364 EmitFunctionEntryCode(); 7365 } 7366 7367 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7368 /// ensure constants are generated when needed. Remember the virtual registers 7369 /// that need to be added to the Machine PHI nodes as input. We cannot just 7370 /// directly add them, because expansion might result in multiple MBB's for one 7371 /// BB. As such, the start of the BB might correspond to a different MBB than 7372 /// the end. 7373 /// 7374 void 7375 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7376 const TerminatorInst *TI = LLVMBB->getTerminator(); 7377 7378 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7379 7380 // Check PHI nodes in successors that expect a value to be available from this 7381 // block. 7382 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7383 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7384 if (!isa<PHINode>(SuccBB->begin())) continue; 7385 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7386 7387 // If this terminator has multiple identical successors (common for 7388 // switches), only handle each succ once. 7389 if (!SuccsHandled.insert(SuccMBB).second) 7390 continue; 7391 7392 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7393 7394 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7395 // nodes and Machine PHI nodes, but the incoming operands have not been 7396 // emitted yet. 7397 for (BasicBlock::const_iterator I = SuccBB->begin(); 7398 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7399 // Ignore dead phi's. 7400 if (PN->use_empty()) continue; 7401 7402 // Skip empty types 7403 if (PN->getType()->isEmptyTy()) 7404 continue; 7405 7406 unsigned Reg; 7407 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7408 7409 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7410 unsigned &RegOut = ConstantsOut[C]; 7411 if (RegOut == 0) { 7412 RegOut = FuncInfo.CreateRegs(C->getType()); 7413 CopyValueToVirtualRegister(C, RegOut); 7414 } 7415 Reg = RegOut; 7416 } else { 7417 DenseMap<const Value *, unsigned>::iterator I = 7418 FuncInfo.ValueMap.find(PHIOp); 7419 if (I != FuncInfo.ValueMap.end()) 7420 Reg = I->second; 7421 else { 7422 assert(isa<AllocaInst>(PHIOp) && 7423 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7424 "Didn't codegen value into a register!??"); 7425 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7426 CopyValueToVirtualRegister(PHIOp, Reg); 7427 } 7428 } 7429 7430 // Remember that this register needs to added to the machine PHI node as 7431 // the input for this MBB. 7432 SmallVector<EVT, 4> ValueVTs; 7433 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7434 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 7435 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7436 EVT VT = ValueVTs[vti]; 7437 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7438 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7439 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7440 Reg += NumRegisters; 7441 } 7442 } 7443 } 7444 7445 ConstantsOut.clear(); 7446 } 7447 7448 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7449 /// is 0. 7450 MachineBasicBlock * 7451 SelectionDAGBuilder::StackProtectorDescriptor:: 7452 AddSuccessorMBB(const BasicBlock *BB, 7453 MachineBasicBlock *ParentMBB, 7454 bool IsLikely, 7455 MachineBasicBlock *SuccMBB) { 7456 // If SuccBB has not been created yet, create it. 7457 if (!SuccMBB) { 7458 MachineFunction *MF = ParentMBB->getParent(); 7459 MachineFunction::iterator BBI = ParentMBB; 7460 SuccMBB = MF->CreateMachineBasicBlock(BB); 7461 MF->insert(++BBI, SuccMBB); 7462 } 7463 // Add it as a successor of ParentMBB. 7464 ParentMBB->addSuccessor( 7465 SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely)); 7466 return SuccMBB; 7467 } 7468 7469 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7470 MachineFunction::iterator I = MBB; 7471 if (++I == FuncInfo.MF->end()) 7472 return nullptr; 7473 return I; 7474 } 7475 7476 /// During lowering new call nodes can be created (such as memset, etc.). 7477 /// Those will become new roots of the current DAG, but complications arise 7478 /// when they are tail calls. In such cases, the call lowering will update 7479 /// the root, but the builder still needs to know that a tail call has been 7480 /// lowered in order to avoid generating an additional return. 7481 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7482 // If the node is null, we do have a tail call. 7483 if (MaybeTC.getNode() != nullptr) 7484 DAG.setRoot(MaybeTC); 7485 else 7486 HasTailCall = true; 7487 } 7488 7489 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7490 unsigned *TotalCases, unsigned First, 7491 unsigned Last) { 7492 assert(Last >= First); 7493 assert(TotalCases[Last] >= TotalCases[First]); 7494 7495 APInt LowCase = Clusters[First].Low->getValue(); 7496 APInt HighCase = Clusters[Last].High->getValue(); 7497 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7498 7499 // FIXME: A range of consecutive cases has 100% density, but only requires one 7500 // comparison to lower. We should discriminate against such consecutive ranges 7501 // in jump tables. 7502 7503 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7504 uint64_t Range = Diff + 1; 7505 7506 uint64_t NumCases = 7507 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7508 7509 assert(NumCases < UINT64_MAX / 100); 7510 assert(Range >= NumCases); 7511 7512 return NumCases * 100 >= Range * MinJumpTableDensity; 7513 } 7514 7515 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7516 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7517 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7518 } 7519 7520 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7521 unsigned First, unsigned Last, 7522 const SwitchInst *SI, 7523 MachineBasicBlock *DefaultMBB, 7524 CaseCluster &JTCluster) { 7525 assert(First <= Last); 7526 7527 uint32_t Weight = 0; 7528 unsigned NumCmps = 0; 7529 std::vector<MachineBasicBlock*> Table; 7530 DenseMap<MachineBasicBlock*, uint32_t> JTWeights; 7531 for (unsigned I = First; I <= Last; ++I) { 7532 assert(Clusters[I].Kind == CC_Range); 7533 Weight += Clusters[I].Weight; 7534 assert(Weight >= Clusters[I].Weight && "Weight overflow!"); 7535 APInt Low = Clusters[I].Low->getValue(); 7536 APInt High = Clusters[I].High->getValue(); 7537 NumCmps += (Low == High) ? 1 : 2; 7538 if (I != First) { 7539 // Fill the gap between this and the previous cluster. 7540 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7541 assert(PreviousHigh.slt(Low)); 7542 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7543 for (uint64_t J = 0; J < Gap; J++) 7544 Table.push_back(DefaultMBB); 7545 } 7546 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7547 for (uint64_t J = 0; J < ClusterSize; ++J) 7548 Table.push_back(Clusters[I].MBB); 7549 JTWeights[Clusters[I].MBB] += Clusters[I].Weight; 7550 } 7551 7552 unsigned NumDests = JTWeights.size(); 7553 if (isSuitableForBitTests(NumDests, NumCmps, 7554 Clusters[First].Low->getValue(), 7555 Clusters[Last].High->getValue())) { 7556 // Clusters[First..Last] should be lowered as bit tests instead. 7557 return false; 7558 } 7559 7560 // Create the MBB that will load from and jump through the table. 7561 // Note: We create it here, but it's not inserted into the function yet. 7562 MachineFunction *CurMF = FuncInfo.MF; 7563 MachineBasicBlock *JumpTableMBB = 7564 CurMF->CreateMachineBasicBlock(SI->getParent()); 7565 7566 // Add successors. Note: use table order for determinism. 7567 SmallPtrSet<MachineBasicBlock *, 8> Done; 7568 for (MachineBasicBlock *Succ : Table) { 7569 if (Done.count(Succ)) 7570 continue; 7571 addSuccessorWithWeight(JumpTableMBB, Succ, JTWeights[Succ]); 7572 Done.insert(Succ); 7573 } 7574 7575 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7576 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 7577 ->createJumpTableIndex(Table); 7578 7579 // Set up the jump table info. 7580 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 7581 JumpTableHeader JTH(Clusters[First].Low->getValue(), 7582 Clusters[Last].High->getValue(), SI->getCondition(), 7583 nullptr, false); 7584 JTCases.emplace_back(std::move(JTH), std::move(JT)); 7585 7586 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 7587 JTCases.size() - 1, Weight); 7588 return true; 7589 } 7590 7591 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 7592 const SwitchInst *SI, 7593 MachineBasicBlock *DefaultMBB) { 7594 #ifndef NDEBUG 7595 // Clusters must be non-empty, sorted, and only contain Range clusters. 7596 assert(!Clusters.empty()); 7597 for (CaseCluster &C : Clusters) 7598 assert(C.Kind == CC_Range); 7599 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 7600 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 7601 #endif 7602 7603 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7604 if (!areJTsAllowed(TLI)) 7605 return; 7606 7607 const int64_t N = Clusters.size(); 7608 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 7609 7610 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 7611 SmallVector<unsigned, 8> TotalCases(N); 7612 7613 for (unsigned i = 0; i < N; ++i) { 7614 APInt Hi = Clusters[i].High->getValue(); 7615 APInt Lo = Clusters[i].Low->getValue(); 7616 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 7617 if (i != 0) 7618 TotalCases[i] += TotalCases[i - 1]; 7619 } 7620 7621 if (N >= MinJumpTableSize && isDense(Clusters, &TotalCases[0], 0, N - 1)) { 7622 // Cheap case: the whole range might be suitable for jump table. 7623 CaseCluster JTCluster; 7624 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 7625 Clusters[0] = JTCluster; 7626 Clusters.resize(1); 7627 return; 7628 } 7629 } 7630 7631 // The algorithm below is not suitable for -O0. 7632 if (TM.getOptLevel() == CodeGenOpt::None) 7633 return; 7634 7635 // Split Clusters into minimum number of dense partitions. The algorithm uses 7636 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 7637 // for the Case Statement'" (1994), but builds the MinPartitions array in 7638 // reverse order to make it easier to reconstruct the partitions in ascending 7639 // order. In the choice between two optimal partitionings, it picks the one 7640 // which yields more jump tables. 7641 7642 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7643 SmallVector<unsigned, 8> MinPartitions(N); 7644 // LastElement[i] is the last element of the partition starting at i. 7645 SmallVector<unsigned, 8> LastElement(N); 7646 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 7647 SmallVector<unsigned, 8> NumTables(N); 7648 7649 // Base case: There is only one way to partition Clusters[N-1]. 7650 MinPartitions[N - 1] = 1; 7651 LastElement[N - 1] = N - 1; 7652 assert(MinJumpTableSize > 1); 7653 NumTables[N - 1] = 0; 7654 7655 // Note: loop indexes are signed to avoid underflow. 7656 for (int64_t i = N - 2; i >= 0; i--) { 7657 // Find optimal partitioning of Clusters[i..N-1]. 7658 // Baseline: Put Clusters[i] into a partition on its own. 7659 MinPartitions[i] = MinPartitions[i + 1] + 1; 7660 LastElement[i] = i; 7661 NumTables[i] = NumTables[i + 1]; 7662 7663 // Search for a solution that results in fewer partitions. 7664 for (int64_t j = N - 1; j > i; j--) { 7665 // Try building a partition from Clusters[i..j]. 7666 if (isDense(Clusters, &TotalCases[0], i, j)) { 7667 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7668 bool IsTable = j - i + 1 >= MinJumpTableSize; 7669 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 7670 7671 // If this j leads to fewer partitions, or same number of partitions 7672 // with more lookup tables, it is a better partitioning. 7673 if (NumPartitions < MinPartitions[i] || 7674 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 7675 MinPartitions[i] = NumPartitions; 7676 LastElement[i] = j; 7677 NumTables[i] = Tables; 7678 } 7679 } 7680 } 7681 } 7682 7683 // Iterate over the partitions, replacing some with jump tables in-place. 7684 unsigned DstIndex = 0; 7685 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7686 Last = LastElement[First]; 7687 assert(Last >= First); 7688 assert(DstIndex <= First); 7689 unsigned NumClusters = Last - First + 1; 7690 7691 CaseCluster JTCluster; 7692 if (NumClusters >= MinJumpTableSize && 7693 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 7694 Clusters[DstIndex++] = JTCluster; 7695 } else { 7696 for (unsigned I = First; I <= Last; ++I) 7697 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7698 } 7699 } 7700 Clusters.resize(DstIndex); 7701 } 7702 7703 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 7704 // FIXME: Using the pointer type doesn't seem ideal. 7705 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); 7706 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 7707 return Range <= BW; 7708 } 7709 7710 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 7711 unsigned NumCmps, 7712 const APInt &Low, 7713 const APInt &High) { 7714 // FIXME: I don't think NumCmps is the correct metric: a single case and a 7715 // range of cases both require only one branch to lower. Just looking at the 7716 // number of clusters and destinations should be enough to decide whether to 7717 // build bit tests. 7718 7719 // To lower a range with bit tests, the range must fit the bitwidth of a 7720 // machine word. 7721 if (!rangeFitsInWord(Low, High)) 7722 return false; 7723 7724 // Decide whether it's profitable to lower this range with bit tests. Each 7725 // destination requires a bit test and branch, and there is an overall range 7726 // check branch. For a small number of clusters, separate comparisons might be 7727 // cheaper, and for many destinations, splitting the range might be better. 7728 return (NumDests == 1 && NumCmps >= 3) || 7729 (NumDests == 2 && NumCmps >= 5) || 7730 (NumDests == 3 && NumCmps >= 6); 7731 } 7732 7733 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 7734 unsigned First, unsigned Last, 7735 const SwitchInst *SI, 7736 CaseCluster &BTCluster) { 7737 assert(First <= Last); 7738 if (First == Last) 7739 return false; 7740 7741 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7742 unsigned NumCmps = 0; 7743 for (int64_t I = First; I <= Last; ++I) { 7744 assert(Clusters[I].Kind == CC_Range); 7745 Dests.set(Clusters[I].MBB->getNumber()); 7746 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 7747 } 7748 unsigned NumDests = Dests.count(); 7749 7750 APInt Low = Clusters[First].Low->getValue(); 7751 APInt High = Clusters[Last].High->getValue(); 7752 assert(Low.slt(High)); 7753 7754 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 7755 return false; 7756 7757 APInt LowBound; 7758 APInt CmpRange; 7759 7760 const int BitWidth = DAG.getTargetLoweringInfo() 7761 .getPointerTy(DAG.getDataLayout()) 7762 .getSizeInBits(); 7763 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 7764 7765 // Check if the clusters cover a contiguous range such that no value in the 7766 // range will jump to the default statement. 7767 bool ContiguousRange = true; 7768 for (int64_t I = First + 1; I <= Last; ++I) { 7769 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 7770 ContiguousRange = false; 7771 break; 7772 } 7773 } 7774 7775 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 7776 // Optimize the case where all the case values fit in a word without having 7777 // to subtract minValue. In this case, we can optimize away the subtraction. 7778 LowBound = APInt::getNullValue(Low.getBitWidth()); 7779 CmpRange = High; 7780 ContiguousRange = false; 7781 } else { 7782 LowBound = Low; 7783 CmpRange = High - Low; 7784 } 7785 7786 CaseBitsVector CBV; 7787 uint32_t TotalWeight = 0; 7788 for (unsigned i = First; i <= Last; ++i) { 7789 // Find the CaseBits for this destination. 7790 unsigned j; 7791 for (j = 0; j < CBV.size(); ++j) 7792 if (CBV[j].BB == Clusters[i].MBB) 7793 break; 7794 if (j == CBV.size()) 7795 CBV.push_back(CaseBits(0, Clusters[i].MBB, 0, 0)); 7796 CaseBits *CB = &CBV[j]; 7797 7798 // Update Mask, Bits and ExtraWeight. 7799 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 7800 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 7801 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 7802 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 7803 CB->Bits += Hi - Lo + 1; 7804 CB->ExtraWeight += Clusters[i].Weight; 7805 TotalWeight += Clusters[i].Weight; 7806 assert(TotalWeight >= Clusters[i].Weight && "Weight overflow!"); 7807 } 7808 7809 BitTestInfo BTI; 7810 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 7811 // Sort by weight first, number of bits second. 7812 if (a.ExtraWeight != b.ExtraWeight) 7813 return a.ExtraWeight > b.ExtraWeight; 7814 return a.Bits > b.Bits; 7815 }); 7816 7817 for (auto &CB : CBV) { 7818 MachineBasicBlock *BitTestBB = 7819 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 7820 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraWeight)); 7821 } 7822 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 7823 SI->getCondition(), -1U, MVT::Other, false, 7824 ContiguousRange, nullptr, nullptr, std::move(BTI), 7825 TotalWeight); 7826 7827 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 7828 BitTestCases.size() - 1, TotalWeight); 7829 return true; 7830 } 7831 7832 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 7833 const SwitchInst *SI) { 7834 // Partition Clusters into as few subsets as possible, where each subset has a 7835 // range that fits in a machine word and has <= 3 unique destinations. 7836 7837 #ifndef NDEBUG 7838 // Clusters must be sorted and contain Range or JumpTable clusters. 7839 assert(!Clusters.empty()); 7840 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 7841 for (const CaseCluster &C : Clusters) 7842 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 7843 for (unsigned i = 1; i < Clusters.size(); ++i) 7844 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 7845 #endif 7846 7847 // The algorithm below is not suitable for -O0. 7848 if (TM.getOptLevel() == CodeGenOpt::None) 7849 return; 7850 7851 // If target does not have legal shift left, do not emit bit tests at all. 7852 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7853 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 7854 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 7855 return; 7856 7857 int BitWidth = PTy.getSizeInBits(); 7858 const int64_t N = Clusters.size(); 7859 7860 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7861 SmallVector<unsigned, 8> MinPartitions(N); 7862 // LastElement[i] is the last element of the partition starting at i. 7863 SmallVector<unsigned, 8> LastElement(N); 7864 7865 // FIXME: This might not be the best algorithm for finding bit test clusters. 7866 7867 // Base case: There is only one way to partition Clusters[N-1]. 7868 MinPartitions[N - 1] = 1; 7869 LastElement[N - 1] = N - 1; 7870 7871 // Note: loop indexes are signed to avoid underflow. 7872 for (int64_t i = N - 2; i >= 0; --i) { 7873 // Find optimal partitioning of Clusters[i..N-1]. 7874 // Baseline: Put Clusters[i] into a partition on its own. 7875 MinPartitions[i] = MinPartitions[i + 1] + 1; 7876 LastElement[i] = i; 7877 7878 // Search for a solution that results in fewer partitions. 7879 // Note: the search is limited by BitWidth, reducing time complexity. 7880 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 7881 // Try building a partition from Clusters[i..j]. 7882 7883 // Check the range. 7884 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 7885 Clusters[j].High->getValue())) 7886 continue; 7887 7888 // Check nbr of destinations and cluster types. 7889 // FIXME: This works, but doesn't seem very efficient. 7890 bool RangesOnly = true; 7891 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7892 for (int64_t k = i; k <= j; k++) { 7893 if (Clusters[k].Kind != CC_Range) { 7894 RangesOnly = false; 7895 break; 7896 } 7897 Dests.set(Clusters[k].MBB->getNumber()); 7898 } 7899 if (!RangesOnly || Dests.count() > 3) 7900 break; 7901 7902 // Check if it's a better partition. 7903 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7904 if (NumPartitions < MinPartitions[i]) { 7905 // Found a better partition. 7906 MinPartitions[i] = NumPartitions; 7907 LastElement[i] = j; 7908 } 7909 } 7910 } 7911 7912 // Iterate over the partitions, replacing with bit-test clusters in-place. 7913 unsigned DstIndex = 0; 7914 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7915 Last = LastElement[First]; 7916 assert(First <= Last); 7917 assert(DstIndex <= First); 7918 7919 CaseCluster BitTestCluster; 7920 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 7921 Clusters[DstIndex++] = BitTestCluster; 7922 } else { 7923 size_t NumClusters = Last - First + 1; 7924 std::memmove(&Clusters[DstIndex], &Clusters[First], 7925 sizeof(Clusters[0]) * NumClusters); 7926 DstIndex += NumClusters; 7927 } 7928 } 7929 Clusters.resize(DstIndex); 7930 } 7931 7932 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 7933 MachineBasicBlock *SwitchMBB, 7934 MachineBasicBlock *DefaultMBB) { 7935 MachineFunction *CurMF = FuncInfo.MF; 7936 MachineBasicBlock *NextMBB = nullptr; 7937 MachineFunction::iterator BBI = W.MBB; 7938 if (++BBI != FuncInfo.MF->end()) 7939 NextMBB = BBI; 7940 7941 unsigned Size = W.LastCluster - W.FirstCluster + 1; 7942 7943 BranchProbabilityInfo *BPI = FuncInfo.BPI; 7944 7945 if (Size == 2 && W.MBB == SwitchMBB) { 7946 // If any two of the cases has the same destination, and if one value 7947 // is the same as the other, but has one bit unset that the other has set, 7948 // use bit manipulation to do two compares at once. For example: 7949 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 7950 // TODO: This could be extended to merge any 2 cases in switches with 3 7951 // cases. 7952 // TODO: Handle cases where W.CaseBB != SwitchBB. 7953 CaseCluster &Small = *W.FirstCluster; 7954 CaseCluster &Big = *W.LastCluster; 7955 7956 if (Small.Low == Small.High && Big.Low == Big.High && 7957 Small.MBB == Big.MBB) { 7958 const APInt &SmallValue = Small.Low->getValue(); 7959 const APInt &BigValue = Big.Low->getValue(); 7960 7961 // Check that there is only one bit different. 7962 APInt CommonBit = BigValue ^ SmallValue; 7963 if (CommonBit.isPowerOf2()) { 7964 SDValue CondLHS = getValue(Cond); 7965 EVT VT = CondLHS.getValueType(); 7966 SDLoc DL = getCurSDLoc(); 7967 7968 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 7969 DAG.getConstant(CommonBit, DL, VT)); 7970 SDValue Cond = DAG.getSetCC( 7971 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 7972 ISD::SETEQ); 7973 7974 // Update successor info. 7975 // Both Small and Big will jump to Small.BB, so we sum up the weights. 7976 addSuccessorWithWeight(SwitchMBB, Small.MBB, Small.Weight + Big.Weight); 7977 addSuccessorWithWeight( 7978 SwitchMBB, DefaultMBB, 7979 // The default destination is the first successor in IR. 7980 BPI ? BPI->getEdgeWeight(SwitchMBB->getBasicBlock(), (unsigned)0) 7981 : 0); 7982 7983 // Insert the true branch. 7984 SDValue BrCond = 7985 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 7986 DAG.getBasicBlock(Small.MBB)); 7987 // Insert the false branch. 7988 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 7989 DAG.getBasicBlock(DefaultMBB)); 7990 7991 DAG.setRoot(BrCond); 7992 return; 7993 } 7994 } 7995 } 7996 7997 if (TM.getOptLevel() != CodeGenOpt::None) { 7998 // Order cases by weight so the most likely case will be checked first. 7999 std::sort(W.FirstCluster, W.LastCluster + 1, 8000 [](const CaseCluster &a, const CaseCluster &b) { 8001 return a.Weight > b.Weight; 8002 }); 8003 8004 // Rearrange the case blocks so that the last one falls through if possible 8005 // without without changing the order of weights. 8006 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 8007 --I; 8008 if (I->Weight > W.LastCluster->Weight) 8009 break; 8010 if (I->Kind == CC_Range && I->MBB == NextMBB) { 8011 std::swap(*I, *W.LastCluster); 8012 break; 8013 } 8014 } 8015 } 8016 8017 // Compute total weight. 8018 uint32_t UnhandledWeights = 0; 8019 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) { 8020 UnhandledWeights += I->Weight; 8021 assert(UnhandledWeights >= I->Weight && "Weight overflow!"); 8022 } 8023 8024 MachineBasicBlock *CurMBB = W.MBB; 8025 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 8026 MachineBasicBlock *Fallthrough; 8027 if (I == W.LastCluster) { 8028 // For the last cluster, fall through to the default destination. 8029 Fallthrough = DefaultMBB; 8030 } else { 8031 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 8032 CurMF->insert(BBI, Fallthrough); 8033 // Put Cond in a virtual register to make it available from the new blocks. 8034 ExportFromCurrentBlock(Cond); 8035 } 8036 8037 switch (I->Kind) { 8038 case CC_JumpTable: { 8039 // FIXME: Optimize away range check based on pivot comparisons. 8040 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 8041 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 8042 8043 // The jump block hasn't been inserted yet; insert it here. 8044 MachineBasicBlock *JumpMBB = JT->MBB; 8045 CurMF->insert(BBI, JumpMBB); 8046 8047 // Collect the sum of weights of outgoing edges from JumpMBB, which will 8048 // be the edge weight on CurMBB->JumpMBB. 8049 uint32_t JumpWeight = 0; 8050 for (auto Succ : JumpMBB->successors()) 8051 JumpWeight += getEdgeWeight(JumpMBB, Succ); 8052 uint32_t FallthruWeight = getEdgeWeight(CurMBB, Fallthrough); 8053 8054 addSuccessorWithWeight(CurMBB, Fallthrough, FallthruWeight); 8055 addSuccessorWithWeight(CurMBB, JumpMBB, JumpWeight); 8056 8057 // The jump table header will be inserted in our current block, do the 8058 // range check, and fall through to our fallthrough block. 8059 JTH->HeaderBB = CurMBB; 8060 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 8061 8062 // If we're in the right place, emit the jump table header right now. 8063 if (CurMBB == SwitchMBB) { 8064 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 8065 JTH->Emitted = true; 8066 } 8067 break; 8068 } 8069 case CC_BitTests: { 8070 // FIXME: Optimize away range check based on pivot comparisons. 8071 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 8072 8073 // The bit test blocks haven't been inserted yet; insert them here. 8074 for (BitTestCase &BTC : BTB->Cases) 8075 CurMF->insert(BBI, BTC.ThisBB); 8076 8077 // Fill in fields of the BitTestBlock. 8078 BTB->Parent = CurMBB; 8079 BTB->Default = Fallthrough; 8080 8081 // If we're in the right place, emit the bit test header header right now. 8082 if (CurMBB ==SwitchMBB) { 8083 visitBitTestHeader(*BTB, SwitchMBB); 8084 BTB->Emitted = true; 8085 } 8086 break; 8087 } 8088 case CC_Range: { 8089 const Value *RHS, *LHS, *MHS; 8090 ISD::CondCode CC; 8091 if (I->Low == I->High) { 8092 // Check Cond == I->Low. 8093 CC = ISD::SETEQ; 8094 LHS = Cond; 8095 RHS=I->Low; 8096 MHS = nullptr; 8097 } else { 8098 // Check I->Low <= Cond <= I->High. 8099 CC = ISD::SETLE; 8100 LHS = I->Low; 8101 MHS = Cond; 8102 RHS = I->High; 8103 } 8104 8105 // The false weight is the sum of all unhandled cases. 8106 UnhandledWeights -= I->Weight; 8107 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Weight, 8108 UnhandledWeights); 8109 8110 if (CurMBB == SwitchMBB) 8111 visitSwitchCase(CB, SwitchMBB); 8112 else 8113 SwitchCases.push_back(CB); 8114 8115 break; 8116 } 8117 } 8118 CurMBB = Fallthrough; 8119 } 8120 } 8121 8122 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 8123 CaseClusterIt First, 8124 CaseClusterIt Last) { 8125 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 8126 if (X.Weight != CC.Weight) 8127 return X.Weight > CC.Weight; 8128 8129 // Ties are broken by comparing the case value. 8130 return X.Low->getValue().slt(CC.Low->getValue()); 8131 }); 8132 } 8133 8134 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 8135 const SwitchWorkListItem &W, 8136 Value *Cond, 8137 MachineBasicBlock *SwitchMBB) { 8138 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 8139 "Clusters not sorted?"); 8140 8141 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 8142 8143 // Balance the tree based on branch weights to create a near-optimal (in terms 8144 // of search time given key frequency) binary search tree. See e.g. Kurt 8145 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 8146 CaseClusterIt LastLeft = W.FirstCluster; 8147 CaseClusterIt FirstRight = W.LastCluster; 8148 uint32_t LeftWeight = LastLeft->Weight; 8149 uint32_t RightWeight = FirstRight->Weight; 8150 8151 // Move LastLeft and FirstRight towards each other from opposite directions to 8152 // find a partitioning of the clusters which balances the weight on both 8153 // sides. If LeftWeight and RightWeight are equal, alternate which side is 8154 // taken to ensure 0-weight nodes are distributed evenly. 8155 unsigned I = 0; 8156 while (LastLeft + 1 < FirstRight) { 8157 if (LeftWeight < RightWeight || (LeftWeight == RightWeight && (I & 1))) 8158 LeftWeight += (++LastLeft)->Weight; 8159 else 8160 RightWeight += (--FirstRight)->Weight; 8161 I++; 8162 } 8163 8164 for (;;) { 8165 // Our binary search tree differs from a typical BST in that ours can have up 8166 // to three values in each leaf. The pivot selection above doesn't take that 8167 // into account, which means the tree might require more nodes and be less 8168 // efficient. We compensate for this here. 8169 8170 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 8171 unsigned NumRight = W.LastCluster - FirstRight + 1; 8172 8173 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 8174 // If one side has less than 3 clusters, and the other has more than 3, 8175 // consider taking a cluster from the other side. 8176 8177 if (NumLeft < NumRight) { 8178 // Consider moving the first cluster on the right to the left side. 8179 CaseCluster &CC = *FirstRight; 8180 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8181 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8182 if (LeftSideRank <= RightSideRank) { 8183 // Moving the cluster to the left does not demote it. 8184 ++LastLeft; 8185 ++FirstRight; 8186 continue; 8187 } 8188 } else { 8189 assert(NumRight < NumLeft); 8190 // Consider moving the last element on the left to the right side. 8191 CaseCluster &CC = *LastLeft; 8192 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8193 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8194 if (RightSideRank <= LeftSideRank) { 8195 // Moving the cluster to the right does not demot it. 8196 --LastLeft; 8197 --FirstRight; 8198 continue; 8199 } 8200 } 8201 } 8202 break; 8203 } 8204 8205 assert(LastLeft + 1 == FirstRight); 8206 assert(LastLeft >= W.FirstCluster); 8207 assert(FirstRight <= W.LastCluster); 8208 8209 // Use the first element on the right as pivot since we will make less-than 8210 // comparisons against it. 8211 CaseClusterIt PivotCluster = FirstRight; 8212 assert(PivotCluster > W.FirstCluster); 8213 assert(PivotCluster <= W.LastCluster); 8214 8215 CaseClusterIt FirstLeft = W.FirstCluster; 8216 CaseClusterIt LastRight = W.LastCluster; 8217 8218 const ConstantInt *Pivot = PivotCluster->Low; 8219 8220 // New blocks will be inserted immediately after the current one. 8221 MachineFunction::iterator BBI = W.MBB; 8222 ++BBI; 8223 8224 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8225 // we can branch to its destination directly if it's squeezed exactly in 8226 // between the known lower bound and Pivot - 1. 8227 MachineBasicBlock *LeftMBB; 8228 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8229 FirstLeft->Low == W.GE && 8230 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8231 LeftMBB = FirstLeft->MBB; 8232 } else { 8233 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8234 FuncInfo.MF->insert(BBI, LeftMBB); 8235 WorkList.push_back({LeftMBB, FirstLeft, LastLeft, W.GE, Pivot}); 8236 // Put Cond in a virtual register to make it available from the new blocks. 8237 ExportFromCurrentBlock(Cond); 8238 } 8239 8240 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8241 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8242 // directly if RHS.High equals the current upper bound. 8243 MachineBasicBlock *RightMBB; 8244 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8245 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8246 RightMBB = FirstRight->MBB; 8247 } else { 8248 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8249 FuncInfo.MF->insert(BBI, RightMBB); 8250 WorkList.push_back({RightMBB, FirstRight, LastRight, Pivot, W.LT}); 8251 // Put Cond in a virtual register to make it available from the new blocks. 8252 ExportFromCurrentBlock(Cond); 8253 } 8254 8255 // Create the CaseBlock record that will be used to lower the branch. 8256 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8257 LeftWeight, RightWeight); 8258 8259 if (W.MBB == SwitchMBB) 8260 visitSwitchCase(CB, SwitchMBB); 8261 else 8262 SwitchCases.push_back(CB); 8263 } 8264 8265 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8266 // Extract cases from the switch. 8267 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8268 CaseClusterVector Clusters; 8269 Clusters.reserve(SI.getNumCases()); 8270 for (auto I : SI.cases()) { 8271 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8272 const ConstantInt *CaseVal = I.getCaseValue(); 8273 uint32_t Weight = 8274 BPI ? BPI->getEdgeWeight(SI.getParent(), I.getSuccessorIndex()) : 0; 8275 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Weight)); 8276 } 8277 8278 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8279 8280 // Cluster adjacent cases with the same destination. We do this at all 8281 // optimization levels because it's cheap to do and will make codegen faster 8282 // if there are many clusters. 8283 sortAndRangeify(Clusters); 8284 8285 if (TM.getOptLevel() != CodeGenOpt::None) { 8286 // Replace an unreachable default with the most popular destination. 8287 // FIXME: Exploit unreachable default more aggressively. 8288 bool UnreachableDefault = 8289 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8290 if (UnreachableDefault && !Clusters.empty()) { 8291 DenseMap<const BasicBlock *, unsigned> Popularity; 8292 unsigned MaxPop = 0; 8293 const BasicBlock *MaxBB = nullptr; 8294 for (auto I : SI.cases()) { 8295 const BasicBlock *BB = I.getCaseSuccessor(); 8296 if (++Popularity[BB] > MaxPop) { 8297 MaxPop = Popularity[BB]; 8298 MaxBB = BB; 8299 } 8300 } 8301 // Set new default. 8302 assert(MaxPop > 0 && MaxBB); 8303 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8304 8305 // Remove cases that were pointing to the destination that is now the 8306 // default. 8307 CaseClusterVector New; 8308 New.reserve(Clusters.size()); 8309 for (CaseCluster &CC : Clusters) { 8310 if (CC.MBB != DefaultMBB) 8311 New.push_back(CC); 8312 } 8313 Clusters = std::move(New); 8314 } 8315 } 8316 8317 // If there is only the default destination, jump there directly. 8318 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 8319 if (Clusters.empty()) { 8320 SwitchMBB->addSuccessor(DefaultMBB); 8321 if (DefaultMBB != NextBlock(SwitchMBB)) { 8322 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 8323 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 8324 } 8325 return; 8326 } 8327 8328 findJumpTables(Clusters, &SI, DefaultMBB); 8329 findBitTestClusters(Clusters, &SI); 8330 8331 DEBUG({ 8332 dbgs() << "Case clusters: "; 8333 for (const CaseCluster &C : Clusters) { 8334 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 8335 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 8336 8337 C.Low->getValue().print(dbgs(), true); 8338 if (C.Low != C.High) { 8339 dbgs() << '-'; 8340 C.High->getValue().print(dbgs(), true); 8341 } 8342 dbgs() << ' '; 8343 } 8344 dbgs() << '\n'; 8345 }); 8346 8347 assert(!Clusters.empty()); 8348 SwitchWorkList WorkList; 8349 CaseClusterIt First = Clusters.begin(); 8350 CaseClusterIt Last = Clusters.end() - 1; 8351 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr}); 8352 8353 while (!WorkList.empty()) { 8354 SwitchWorkListItem W = WorkList.back(); 8355 WorkList.pop_back(); 8356 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 8357 8358 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 8359 // For optimized builds, lower large range as a balanced binary tree. 8360 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 8361 continue; 8362 } 8363 8364 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 8365 } 8366 } 8367