xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 02c28970b26b3888543d0a4c343a569fbf8fe16b)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/BranchProbabilityInfo.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/Analysis/EHPersonalities.h"
30 #include "llvm/Analysis/MemoryLocation.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/CodeGen/Analysis.h"
34 #include "llvm/CodeGen/FunctionLoweringInfo.h"
35 #include "llvm/CodeGen/GCMetadata.h"
36 #include "llvm/CodeGen/MachineBasicBlock.h"
37 #include "llvm/CodeGen/MachineFrameInfo.h"
38 #include "llvm/CodeGen/MachineFunction.h"
39 #include "llvm/CodeGen/MachineInstrBuilder.h"
40 #include "llvm/CodeGen/MachineInstrBundleIterator.h"
41 #include "llvm/CodeGen/MachineMemOperand.h"
42 #include "llvm/CodeGen/MachineModuleInfo.h"
43 #include "llvm/CodeGen/MachineOperand.h"
44 #include "llvm/CodeGen/MachineRegisterInfo.h"
45 #include "llvm/CodeGen/RuntimeLibcalls.h"
46 #include "llvm/CodeGen/SelectionDAG.h"
47 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
48 #include "llvm/CodeGen/StackMaps.h"
49 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
50 #include "llvm/CodeGen/TargetFrameLowering.h"
51 #include "llvm/CodeGen/TargetInstrInfo.h"
52 #include "llvm/CodeGen/TargetOpcodes.h"
53 #include "llvm/CodeGen/TargetRegisterInfo.h"
54 #include "llvm/CodeGen/TargetSubtargetInfo.h"
55 #include "llvm/CodeGen/WinEHFuncInfo.h"
56 #include "llvm/IR/Argument.h"
57 #include "llvm/IR/Attributes.h"
58 #include "llvm/IR/BasicBlock.h"
59 #include "llvm/IR/CFG.h"
60 #include "llvm/IR/CallingConv.h"
61 #include "llvm/IR/Constant.h"
62 #include "llvm/IR/ConstantRange.h"
63 #include "llvm/IR/Constants.h"
64 #include "llvm/IR/DataLayout.h"
65 #include "llvm/IR/DebugInfoMetadata.h"
66 #include "llvm/IR/DerivedTypes.h"
67 #include "llvm/IR/DiagnosticInfo.h"
68 #include "llvm/IR/Function.h"
69 #include "llvm/IR/GetElementPtrTypeIterator.h"
70 #include "llvm/IR/InlineAsm.h"
71 #include "llvm/IR/InstrTypes.h"
72 #include "llvm/IR/Instructions.h"
73 #include "llvm/IR/IntrinsicInst.h"
74 #include "llvm/IR/Intrinsics.h"
75 #include "llvm/IR/IntrinsicsAArch64.h"
76 #include "llvm/IR/IntrinsicsWebAssembly.h"
77 #include "llvm/IR/LLVMContext.h"
78 #include "llvm/IR/Metadata.h"
79 #include "llvm/IR/Module.h"
80 #include "llvm/IR/Operator.h"
81 #include "llvm/IR/PatternMatch.h"
82 #include "llvm/IR/Statepoint.h"
83 #include "llvm/IR/Type.h"
84 #include "llvm/IR/User.h"
85 #include "llvm/IR/Value.h"
86 #include "llvm/MC/MCContext.h"
87 #include "llvm/Support/AtomicOrdering.h"
88 #include "llvm/Support/Casting.h"
89 #include "llvm/Support/CommandLine.h"
90 #include "llvm/Support/Compiler.h"
91 #include "llvm/Support/Debug.h"
92 #include "llvm/Support/MathExtras.h"
93 #include "llvm/Support/raw_ostream.h"
94 #include "llvm/Target/TargetIntrinsicInfo.h"
95 #include "llvm/Target/TargetMachine.h"
96 #include "llvm/Target/TargetOptions.h"
97 #include "llvm/Transforms/Utils/Local.h"
98 #include <cstddef>
99 #include <iterator>
100 #include <limits>
101 #include <tuple>
102 
103 using namespace llvm;
104 using namespace PatternMatch;
105 using namespace SwitchCG;
106 
107 #define DEBUG_TYPE "isel"
108 
109 /// LimitFloatPrecision - Generate low-precision inline sequences for
110 /// some float libcalls (6, 8 or 12 bits).
111 static unsigned LimitFloatPrecision;
112 
113 static cl::opt<bool>
114     InsertAssertAlign("insert-assert-align", cl::init(true),
115                       cl::desc("Insert the experimental `assertalign` node."),
116                       cl::ReallyHidden);
117 
118 static cl::opt<unsigned, true>
119     LimitFPPrecision("limit-float-precision",
120                      cl::desc("Generate low-precision inline sequences "
121                               "for some float libcalls"),
122                      cl::location(LimitFloatPrecision), cl::Hidden,
123                      cl::init(0));
124 
125 static cl::opt<unsigned> SwitchPeelThreshold(
126     "switch-peel-threshold", cl::Hidden, cl::init(66),
127     cl::desc("Set the case probability threshold for peeling the case from a "
128              "switch statement. A value greater than 100 will void this "
129              "optimization"));
130 
131 // Limit the width of DAG chains. This is important in general to prevent
132 // DAG-based analysis from blowing up. For example, alias analysis and
133 // load clustering may not complete in reasonable time. It is difficult to
134 // recognize and avoid this situation within each individual analysis, and
135 // future analyses are likely to have the same behavior. Limiting DAG width is
136 // the safe approach and will be especially important with global DAGs.
137 //
138 // MaxParallelChains default is arbitrarily high to avoid affecting
139 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
140 // sequence over this should have been converted to llvm.memcpy by the
141 // frontend. It is easy to induce this behavior with .ll code such as:
142 // %buffer = alloca [4096 x i8]
143 // %data = load [4096 x i8]* %argPtr
144 // store [4096 x i8] %data, [4096 x i8]* %buffer
145 static const unsigned MaxParallelChains = 64;
146 
147 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
148                                       const SDValue *Parts, unsigned NumParts,
149                                       MVT PartVT, EVT ValueVT, const Value *V,
150                                       Optional<CallingConv::ID> CC);
151 
152 /// getCopyFromParts - Create a value that contains the specified legal parts
153 /// combined into the value they represent.  If the parts combine to a type
154 /// larger than ValueVT then AssertOp can be used to specify whether the extra
155 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
156 /// (ISD::AssertSext).
157 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
158                                 const SDValue *Parts, unsigned NumParts,
159                                 MVT PartVT, EVT ValueVT, const Value *V,
160                                 Optional<CallingConv::ID> CC = None,
161                                 Optional<ISD::NodeType> AssertOp = None) {
162   // Let the target assemble the parts if it wants to
163   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
164   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
165                                                    PartVT, ValueVT, CC))
166     return Val;
167 
168   if (ValueVT.isVector())
169     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
170                                   CC);
171 
172   assert(NumParts > 0 && "No parts to assemble!");
173   SDValue Val = Parts[0];
174 
175   if (NumParts > 1) {
176     // Assemble the value from multiple parts.
177     if (ValueVT.isInteger()) {
178       unsigned PartBits = PartVT.getSizeInBits();
179       unsigned ValueBits = ValueVT.getSizeInBits();
180 
181       // Assemble the power of 2 part.
182       unsigned RoundParts =
183           (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts;
184       unsigned RoundBits = PartBits * RoundParts;
185       EVT RoundVT = RoundBits == ValueBits ?
186         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
187       SDValue Lo, Hi;
188 
189       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
190 
191       if (RoundParts > 2) {
192         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
193                               PartVT, HalfVT, V);
194         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
195                               RoundParts / 2, PartVT, HalfVT, V);
196       } else {
197         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
198         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
199       }
200 
201       if (DAG.getDataLayout().isBigEndian())
202         std::swap(Lo, Hi);
203 
204       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
205 
206       if (RoundParts < NumParts) {
207         // Assemble the trailing non-power-of-2 part.
208         unsigned OddParts = NumParts - RoundParts;
209         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
210         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
211                               OddVT, V, CC);
212 
213         // Combine the round and odd parts.
214         Lo = Val;
215         if (DAG.getDataLayout().isBigEndian())
216           std::swap(Lo, Hi);
217         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
218         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
219         Hi =
220             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
221                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
222                                         TLI.getPointerTy(DAG.getDataLayout())));
223         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
224         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
225       }
226     } else if (PartVT.isFloatingPoint()) {
227       // FP split into multiple FP parts (for ppcf128)
228       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
229              "Unexpected split");
230       SDValue Lo, Hi;
231       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
232       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
233       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
234         std::swap(Lo, Hi);
235       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
236     } else {
237       // FP split into integer parts (soft fp)
238       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
239              !PartVT.isVector() && "Unexpected split");
240       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
241       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
242     }
243   }
244 
245   // There is now one part, held in Val.  Correct it to match ValueVT.
246   // PartEVT is the type of the register class that holds the value.
247   // ValueVT is the type of the inline asm operation.
248   EVT PartEVT = Val.getValueType();
249 
250   if (PartEVT == ValueVT)
251     return Val;
252 
253   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
254       ValueVT.bitsLT(PartEVT)) {
255     // For an FP value in an integer part, we need to truncate to the right
256     // width first.
257     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
258     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
259   }
260 
261   // Handle types that have the same size.
262   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
263     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
264 
265   // Handle types with different sizes.
266   if (PartEVT.isInteger() && ValueVT.isInteger()) {
267     if (ValueVT.bitsLT(PartEVT)) {
268       // For a truncate, see if we have any information to
269       // indicate whether the truncated bits will always be
270       // zero or sign-extension.
271       if (AssertOp.hasValue())
272         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
273                           DAG.getValueType(ValueVT));
274       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
275     }
276     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
277   }
278 
279   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
280     // FP_ROUND's are always exact here.
281     if (ValueVT.bitsLT(Val.getValueType()))
282       return DAG.getNode(
283           ISD::FP_ROUND, DL, ValueVT, Val,
284           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
285 
286     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
287   }
288 
289   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
290   // then truncating.
291   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
292       ValueVT.bitsLT(PartEVT)) {
293     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
294     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
295   }
296 
297   report_fatal_error("Unknown mismatch in getCopyFromParts!");
298 }
299 
300 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
301                                               const Twine &ErrMsg) {
302   const Instruction *I = dyn_cast_or_null<Instruction>(V);
303   if (!V)
304     return Ctx.emitError(ErrMsg);
305 
306   const char *AsmError = ", possible invalid constraint for vector type";
307   if (const CallInst *CI = dyn_cast<CallInst>(I))
308     if (CI->isInlineAsm())
309       return Ctx.emitError(I, ErrMsg + AsmError);
310 
311   return Ctx.emitError(I, ErrMsg);
312 }
313 
314 /// getCopyFromPartsVector - Create a value that contains the specified legal
315 /// parts combined into the value they represent.  If the parts combine to a
316 /// type larger than ValueVT then AssertOp can be used to specify whether the
317 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
318 /// ValueVT (ISD::AssertSext).
319 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
320                                       const SDValue *Parts, unsigned NumParts,
321                                       MVT PartVT, EVT ValueVT, const Value *V,
322                                       Optional<CallingConv::ID> CallConv) {
323   assert(ValueVT.isVector() && "Not a vector value");
324   assert(NumParts > 0 && "No parts to assemble!");
325   const bool IsABIRegCopy = CallConv.hasValue();
326 
327   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
328   SDValue Val = Parts[0];
329 
330   // Handle a multi-element vector.
331   if (NumParts > 1) {
332     EVT IntermediateVT;
333     MVT RegisterVT;
334     unsigned NumIntermediates;
335     unsigned NumRegs;
336 
337     if (IsABIRegCopy) {
338       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
339           *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
340           NumIntermediates, RegisterVT);
341     } else {
342       NumRegs =
343           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
344                                      NumIntermediates, RegisterVT);
345     }
346 
347     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
348     NumParts = NumRegs; // Silence a compiler warning.
349     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
350     assert(RegisterVT.getSizeInBits() ==
351            Parts[0].getSimpleValueType().getSizeInBits() &&
352            "Part type sizes don't match!");
353 
354     // Assemble the parts into intermediate operands.
355     SmallVector<SDValue, 8> Ops(NumIntermediates);
356     if (NumIntermediates == NumParts) {
357       // If the register was not expanded, truncate or copy the value,
358       // as appropriate.
359       for (unsigned i = 0; i != NumParts; ++i)
360         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
361                                   PartVT, IntermediateVT, V, CallConv);
362     } else if (NumParts > 0) {
363       // If the intermediate type was expanded, build the intermediate
364       // operands from the parts.
365       assert(NumParts % NumIntermediates == 0 &&
366              "Must expand into a divisible number of parts!");
367       unsigned Factor = NumParts / NumIntermediates;
368       for (unsigned i = 0; i != NumIntermediates; ++i)
369         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
370                                   PartVT, IntermediateVT, V, CallConv);
371     }
372 
373     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
374     // intermediate operands.
375     EVT BuiltVectorTy =
376         IntermediateVT.isVector()
377             ? EVT::getVectorVT(
378                   *DAG.getContext(), IntermediateVT.getScalarType(),
379                   IntermediateVT.getVectorElementCount() * NumParts)
380             : EVT::getVectorVT(*DAG.getContext(),
381                                IntermediateVT.getScalarType(),
382                                NumIntermediates);
383     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
384                                                 : ISD::BUILD_VECTOR,
385                       DL, BuiltVectorTy, Ops);
386   }
387 
388   // There is now one part, held in Val.  Correct it to match ValueVT.
389   EVT PartEVT = Val.getValueType();
390 
391   if (PartEVT == ValueVT)
392     return Val;
393 
394   if (PartEVT.isVector()) {
395     // Vector/Vector bitcast.
396     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
397       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
398 
399     // If the element type of the source/dest vectors are the same, but the
400     // parts vector has more elements than the value vector, then we have a
401     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
402     // elements we want.
403     if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) {
404       assert((PartEVT.getVectorElementCount().getKnownMinValue() >
405               ValueVT.getVectorElementCount().getKnownMinValue()) &&
406              (PartEVT.getVectorElementCount().isScalable() ==
407               ValueVT.getVectorElementCount().isScalable()) &&
408              "Cannot narrow, it would be a lossy transformation");
409       PartEVT =
410           EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(),
411                            ValueVT.getVectorElementCount());
412       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val,
413                         DAG.getVectorIdxConstant(0, DL));
414       if (PartEVT == ValueVT)
415         return Val;
416     }
417 
418     // Promoted vector extract
419     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
420   }
421 
422   // Trivial bitcast if the types are the same size and the destination
423   // vector type is legal.
424   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
425       TLI.isTypeLegal(ValueVT))
426     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
427 
428   if (ValueVT.getVectorNumElements() != 1) {
429      // Certain ABIs require that vectors are passed as integers. For vectors
430      // are the same size, this is an obvious bitcast.
431      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
432        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
433      } else if (ValueVT.bitsLT(PartEVT)) {
434        const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
435        EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
436        // Drop the extra bits.
437        Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
438        return DAG.getBitcast(ValueVT, Val);
439      }
440 
441      diagnosePossiblyInvalidConstraint(
442          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
443      return DAG.getUNDEF(ValueVT);
444   }
445 
446   // Handle cases such as i8 -> <1 x i1>
447   EVT ValueSVT = ValueVT.getVectorElementType();
448   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
449     if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits())
450       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
451     else
452       Val = ValueVT.isFloatingPoint()
453                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
454                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
455   }
456 
457   return DAG.getBuildVector(ValueVT, DL, Val);
458 }
459 
460 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
461                                  SDValue Val, SDValue *Parts, unsigned NumParts,
462                                  MVT PartVT, const Value *V,
463                                  Optional<CallingConv::ID> CallConv);
464 
465 /// getCopyToParts - Create a series of nodes that contain the specified value
466 /// split into legal parts.  If the parts contain more bits than Val, then, for
467 /// integers, ExtendKind can be used to specify how to generate the extra bits.
468 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
469                            SDValue *Parts, unsigned NumParts, MVT PartVT,
470                            const Value *V,
471                            Optional<CallingConv::ID> CallConv = None,
472                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
473   // Let the target split the parts if it wants to
474   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
475   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
476                                       CallConv))
477     return;
478   EVT ValueVT = Val.getValueType();
479 
480   // Handle the vector case separately.
481   if (ValueVT.isVector())
482     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
483                                 CallConv);
484 
485   unsigned PartBits = PartVT.getSizeInBits();
486   unsigned OrigNumParts = NumParts;
487   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
488          "Copying to an illegal type!");
489 
490   if (NumParts == 0)
491     return;
492 
493   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
494   EVT PartEVT = PartVT;
495   if (PartEVT == ValueVT) {
496     assert(NumParts == 1 && "No-op copy with multiple parts!");
497     Parts[0] = Val;
498     return;
499   }
500 
501   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
502     // If the parts cover more bits than the value has, promote the value.
503     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
504       assert(NumParts == 1 && "Do not know what to promote to!");
505       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
506     } else {
507       if (ValueVT.isFloatingPoint()) {
508         // FP values need to be bitcast, then extended if they are being put
509         // into a larger container.
510         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
511         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
512       }
513       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
514              ValueVT.isInteger() &&
515              "Unknown mismatch!");
516       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
517       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
518       if (PartVT == MVT::x86mmx)
519         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
520     }
521   } else if (PartBits == ValueVT.getSizeInBits()) {
522     // Different types of the same size.
523     assert(NumParts == 1 && PartEVT != ValueVT);
524     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
525   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
526     // If the parts cover less bits than value has, truncate the value.
527     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
528            ValueVT.isInteger() &&
529            "Unknown mismatch!");
530     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
531     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
532     if (PartVT == MVT::x86mmx)
533       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
534   }
535 
536   // The value may have changed - recompute ValueVT.
537   ValueVT = Val.getValueType();
538   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
539          "Failed to tile the value with PartVT!");
540 
541   if (NumParts == 1) {
542     if (PartEVT != ValueVT) {
543       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
544                                         "scalar-to-vector conversion failed");
545       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
546     }
547 
548     Parts[0] = Val;
549     return;
550   }
551 
552   // Expand the value into multiple parts.
553   if (NumParts & (NumParts - 1)) {
554     // The number of parts is not a power of 2.  Split off and copy the tail.
555     assert(PartVT.isInteger() && ValueVT.isInteger() &&
556            "Do not know what to expand to!");
557     unsigned RoundParts = 1 << Log2_32(NumParts);
558     unsigned RoundBits = RoundParts * PartBits;
559     unsigned OddParts = NumParts - RoundParts;
560     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
561       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL));
562 
563     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
564                    CallConv);
565 
566     if (DAG.getDataLayout().isBigEndian())
567       // The odd parts were reversed by getCopyToParts - unreverse them.
568       std::reverse(Parts + RoundParts, Parts + NumParts);
569 
570     NumParts = RoundParts;
571     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
572     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
573   }
574 
575   // The number of parts is a power of 2.  Repeatedly bisect the value using
576   // EXTRACT_ELEMENT.
577   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
578                          EVT::getIntegerVT(*DAG.getContext(),
579                                            ValueVT.getSizeInBits()),
580                          Val);
581 
582   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
583     for (unsigned i = 0; i < NumParts; i += StepSize) {
584       unsigned ThisBits = StepSize * PartBits / 2;
585       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
586       SDValue &Part0 = Parts[i];
587       SDValue &Part1 = Parts[i+StepSize/2];
588 
589       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
590                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
591       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
592                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
593 
594       if (ThisBits == PartBits && ThisVT != PartVT) {
595         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
596         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
597       }
598     }
599   }
600 
601   if (DAG.getDataLayout().isBigEndian())
602     std::reverse(Parts, Parts + OrigNumParts);
603 }
604 
605 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val,
606                                      const SDLoc &DL, EVT PartVT) {
607   if (!PartVT.isVector())
608     return SDValue();
609 
610   EVT ValueVT = Val.getValueType();
611   ElementCount PartNumElts = PartVT.getVectorElementCount();
612   ElementCount ValueNumElts = ValueVT.getVectorElementCount();
613 
614   // We only support widening vectors with equivalent element types and
615   // fixed/scalable properties. If a target needs to widen a fixed-length type
616   // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
617   if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
618       PartNumElts.isScalable() != ValueNumElts.isScalable() ||
619       PartVT.getVectorElementType() != ValueVT.getVectorElementType())
620     return SDValue();
621 
622   // Widening a scalable vector to another scalable vector is done by inserting
623   // the vector into a larger undef one.
624   if (PartNumElts.isScalable())
625     return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
626                        Val, DAG.getVectorIdxConstant(0, DL));
627 
628   EVT ElementVT = PartVT.getVectorElementType();
629   // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
630   // undef elements.
631   SmallVector<SDValue, 16> Ops;
632   DAG.ExtractVectorElements(Val, Ops);
633   SDValue EltUndef = DAG.getUNDEF(ElementVT);
634   Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
635 
636   // FIXME: Use CONCAT for 2x -> 4x.
637   return DAG.getBuildVector(PartVT, DL, Ops);
638 }
639 
640 /// getCopyToPartsVector - Create a series of nodes that contain the specified
641 /// value split into legal parts.
642 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
643                                  SDValue Val, SDValue *Parts, unsigned NumParts,
644                                  MVT PartVT, const Value *V,
645                                  Optional<CallingConv::ID> CallConv) {
646   EVT ValueVT = Val.getValueType();
647   assert(ValueVT.isVector() && "Not a vector");
648   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
649   const bool IsABIRegCopy = CallConv.hasValue();
650 
651   if (NumParts == 1) {
652     EVT PartEVT = PartVT;
653     if (PartEVT == ValueVT) {
654       // Nothing to do.
655     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
656       // Bitconvert vector->vector case.
657       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
658     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
659       Val = Widened;
660     } else if (PartVT.isVector() &&
661                PartEVT.getVectorElementType().bitsGE(
662                    ValueVT.getVectorElementType()) &&
663                PartEVT.getVectorElementCount() ==
664                    ValueVT.getVectorElementCount()) {
665 
666       // Promoted vector extract
667       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
668     } else if (PartEVT.isVector() &&
669                PartEVT.getVectorElementType() !=
670                    ValueVT.getVectorElementType() &&
671                TLI.getTypeAction(*DAG.getContext(), ValueVT) ==
672                    TargetLowering::TypeWidenVector) {
673       // Combination of widening and promotion.
674       EVT WidenVT =
675           EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(),
676                            PartVT.getVectorElementCount());
677       SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT);
678       Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT);
679     } else {
680       if (ValueVT.getVectorElementCount().isScalar()) {
681         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
682                           DAG.getVectorIdxConstant(0, DL));
683       } else {
684         uint64_t ValueSize = ValueVT.getFixedSizeInBits();
685         assert(PartVT.getFixedSizeInBits() > ValueSize &&
686                "lossy conversion of vector to scalar type");
687         EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
688         Val = DAG.getBitcast(IntermediateType, Val);
689         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
690       }
691     }
692 
693     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
694     Parts[0] = Val;
695     return;
696   }
697 
698   // Handle a multi-element vector.
699   EVT IntermediateVT;
700   MVT RegisterVT;
701   unsigned NumIntermediates;
702   unsigned NumRegs;
703   if (IsABIRegCopy) {
704     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
705         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
706         NumIntermediates, RegisterVT);
707   } else {
708     NumRegs =
709         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
710                                    NumIntermediates, RegisterVT);
711   }
712 
713   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
714   NumParts = NumRegs; // Silence a compiler warning.
715   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
716 
717   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
718          "Mixing scalable and fixed vectors when copying in parts");
719 
720   Optional<ElementCount> DestEltCnt;
721 
722   if (IntermediateVT.isVector())
723     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
724   else
725     DestEltCnt = ElementCount::getFixed(NumIntermediates);
726 
727   EVT BuiltVectorTy = EVT::getVectorVT(
728       *DAG.getContext(), IntermediateVT.getScalarType(), DestEltCnt.getValue());
729 
730   if (ValueVT == BuiltVectorTy) {
731     // Nothing to do.
732   } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
733     // Bitconvert vector->vector case.
734     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
735   } else {
736     if (BuiltVectorTy.getVectorElementType().bitsGT(
737             ValueVT.getVectorElementType())) {
738       // Integer promotion.
739       ValueVT = EVT::getVectorVT(*DAG.getContext(),
740                                  BuiltVectorTy.getVectorElementType(),
741                                  ValueVT.getVectorElementCount());
742       Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
743     }
744 
745     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
746       Val = Widened;
747     }
748   }
749 
750   assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
751 
752   // Split the vector into intermediate operands.
753   SmallVector<SDValue, 8> Ops(NumIntermediates);
754   for (unsigned i = 0; i != NumIntermediates; ++i) {
755     if (IntermediateVT.isVector()) {
756       // This does something sensible for scalable vectors - see the
757       // definition of EXTRACT_SUBVECTOR for further details.
758       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
759       Ops[i] =
760           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
761                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
762     } else {
763       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
764                            DAG.getVectorIdxConstant(i, DL));
765     }
766   }
767 
768   // Split the intermediate operands into legal parts.
769   if (NumParts == NumIntermediates) {
770     // If the register was not expanded, promote or copy the value,
771     // as appropriate.
772     for (unsigned i = 0; i != NumParts; ++i)
773       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
774   } else if (NumParts > 0) {
775     // If the intermediate type was expanded, split each the value into
776     // legal parts.
777     assert(NumIntermediates != 0 && "division by zero");
778     assert(NumParts % NumIntermediates == 0 &&
779            "Must expand into a divisible number of parts!");
780     unsigned Factor = NumParts / NumIntermediates;
781     for (unsigned i = 0; i != NumIntermediates; ++i)
782       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
783                      CallConv);
784   }
785 }
786 
787 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
788                            EVT valuevt, Optional<CallingConv::ID> CC)
789     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
790       RegCount(1, regs.size()), CallConv(CC) {}
791 
792 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
793                            const DataLayout &DL, unsigned Reg, Type *Ty,
794                            Optional<CallingConv::ID> CC) {
795   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
796 
797   CallConv = CC;
798 
799   for (EVT ValueVT : ValueVTs) {
800     unsigned NumRegs =
801         isABIMangled()
802             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
803             : TLI.getNumRegisters(Context, ValueVT);
804     MVT RegisterVT =
805         isABIMangled()
806             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
807             : TLI.getRegisterType(Context, ValueVT);
808     for (unsigned i = 0; i != NumRegs; ++i)
809       Regs.push_back(Reg + i);
810     RegVTs.push_back(RegisterVT);
811     RegCount.push_back(NumRegs);
812     Reg += NumRegs;
813   }
814 }
815 
816 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
817                                       FunctionLoweringInfo &FuncInfo,
818                                       const SDLoc &dl, SDValue &Chain,
819                                       SDValue *Flag, const Value *V) const {
820   // A Value with type {} or [0 x %t] needs no registers.
821   if (ValueVTs.empty())
822     return SDValue();
823 
824   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
825 
826   // Assemble the legal parts into the final values.
827   SmallVector<SDValue, 4> Values(ValueVTs.size());
828   SmallVector<SDValue, 8> Parts;
829   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
830     // Copy the legal parts from the registers.
831     EVT ValueVT = ValueVTs[Value];
832     unsigned NumRegs = RegCount[Value];
833     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
834                                           *DAG.getContext(),
835                                           CallConv.getValue(), RegVTs[Value])
836                                     : RegVTs[Value];
837 
838     Parts.resize(NumRegs);
839     for (unsigned i = 0; i != NumRegs; ++i) {
840       SDValue P;
841       if (!Flag) {
842         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
843       } else {
844         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
845         *Flag = P.getValue(2);
846       }
847 
848       Chain = P.getValue(1);
849       Parts[i] = P;
850 
851       // If the source register was virtual and if we know something about it,
852       // add an assert node.
853       if (!Register::isVirtualRegister(Regs[Part + i]) ||
854           !RegisterVT.isInteger())
855         continue;
856 
857       const FunctionLoweringInfo::LiveOutInfo *LOI =
858         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
859       if (!LOI)
860         continue;
861 
862       unsigned RegSize = RegisterVT.getScalarSizeInBits();
863       unsigned NumSignBits = LOI->NumSignBits;
864       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
865 
866       if (NumZeroBits == RegSize) {
867         // The current value is a zero.
868         // Explicitly express that as it would be easier for
869         // optimizations to kick in.
870         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
871         continue;
872       }
873 
874       // FIXME: We capture more information than the dag can represent.  For
875       // now, just use the tightest assertzext/assertsext possible.
876       bool isSExt;
877       EVT FromVT(MVT::Other);
878       if (NumZeroBits) {
879         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
880         isSExt = false;
881       } else if (NumSignBits > 1) {
882         FromVT =
883             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
884         isSExt = true;
885       } else {
886         continue;
887       }
888       // Add an assertion node.
889       assert(FromVT != MVT::Other);
890       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
891                              RegisterVT, P, DAG.getValueType(FromVT));
892     }
893 
894     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
895                                      RegisterVT, ValueVT, V, CallConv);
896     Part += NumRegs;
897     Parts.clear();
898   }
899 
900   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
901 }
902 
903 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
904                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
905                                  const Value *V,
906                                  ISD::NodeType PreferredExtendType) const {
907   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
908   ISD::NodeType ExtendKind = PreferredExtendType;
909 
910   // Get the list of the values's legal parts.
911   unsigned NumRegs = Regs.size();
912   SmallVector<SDValue, 8> Parts(NumRegs);
913   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
914     unsigned NumParts = RegCount[Value];
915 
916     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
917                                           *DAG.getContext(),
918                                           CallConv.getValue(), RegVTs[Value])
919                                     : RegVTs[Value];
920 
921     // We need to zero extend constants that are liveout to match assumptions
922     // in FunctionLoweringInfo::ComputePHILiveOutRegInfo.
923     if (ExtendKind == ISD::ANY_EXTEND &&
924         (TLI.isZExtFree(Val, RegisterVT) || isa<ConstantSDNode>(Val)))
925       ExtendKind = ISD::ZERO_EXTEND;
926 
927     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
928                    NumParts, RegisterVT, V, CallConv, ExtendKind);
929     Part += NumParts;
930   }
931 
932   // Copy the parts into the registers.
933   SmallVector<SDValue, 8> Chains(NumRegs);
934   for (unsigned i = 0; i != NumRegs; ++i) {
935     SDValue Part;
936     if (!Flag) {
937       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
938     } else {
939       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
940       *Flag = Part.getValue(1);
941     }
942 
943     Chains[i] = Part.getValue(0);
944   }
945 
946   if (NumRegs == 1 || Flag)
947     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
948     // flagged to it. That is the CopyToReg nodes and the user are considered
949     // a single scheduling unit. If we create a TokenFactor and return it as
950     // chain, then the TokenFactor is both a predecessor (operand) of the
951     // user as well as a successor (the TF operands are flagged to the user).
952     // c1, f1 = CopyToReg
953     // c2, f2 = CopyToReg
954     // c3     = TokenFactor c1, c2
955     // ...
956     //        = op c3, ..., f2
957     Chain = Chains[NumRegs-1];
958   else
959     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
960 }
961 
962 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
963                                         unsigned MatchingIdx, const SDLoc &dl,
964                                         SelectionDAG &DAG,
965                                         std::vector<SDValue> &Ops) const {
966   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
967 
968   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
969   if (HasMatching)
970     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
971   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
972     // Put the register class of the virtual registers in the flag word.  That
973     // way, later passes can recompute register class constraints for inline
974     // assembly as well as normal instructions.
975     // Don't do this for tied operands that can use the regclass information
976     // from the def.
977     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
978     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
979     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
980   }
981 
982   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
983   Ops.push_back(Res);
984 
985   if (Code == InlineAsm::Kind_Clobber) {
986     // Clobbers should always have a 1:1 mapping with registers, and may
987     // reference registers that have illegal (e.g. vector) types. Hence, we
988     // shouldn't try to apply any sort of splitting logic to them.
989     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
990            "No 1:1 mapping from clobbers to regs?");
991     Register SP = TLI.getStackPointerRegisterToSaveRestore();
992     (void)SP;
993     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
994       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
995       assert(
996           (Regs[I] != SP ||
997            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
998           "If we clobbered the stack pointer, MFI should know about it.");
999     }
1000     return;
1001   }
1002 
1003   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
1004     MVT RegisterVT = RegVTs[Value];
1005     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value],
1006                                            RegisterVT);
1007     for (unsigned i = 0; i != NumRegs; ++i) {
1008       assert(Reg < Regs.size() && "Mismatch in # registers expected");
1009       unsigned TheReg = Regs[Reg++];
1010       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1011     }
1012   }
1013 }
1014 
1015 SmallVector<std::pair<unsigned, TypeSize>, 4>
1016 RegsForValue::getRegsAndSizes() const {
1017   SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec;
1018   unsigned I = 0;
1019   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1020     unsigned RegCount = std::get<0>(CountAndVT);
1021     MVT RegisterVT = std::get<1>(CountAndVT);
1022     TypeSize RegisterSize = RegisterVT.getSizeInBits();
1023     for (unsigned E = I + RegCount; I != E; ++I)
1024       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1025   }
1026   return OutVec;
1027 }
1028 
1029 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1030                                const TargetLibraryInfo *li) {
1031   AA = aa;
1032   GFI = gfi;
1033   LibInfo = li;
1034   Context = DAG.getContext();
1035   LPadToCallSiteMap.clear();
1036   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1037 }
1038 
1039 void SelectionDAGBuilder::clear() {
1040   NodeMap.clear();
1041   UnusedArgNodeMap.clear();
1042   PendingLoads.clear();
1043   PendingExports.clear();
1044   PendingConstrainedFP.clear();
1045   PendingConstrainedFPStrict.clear();
1046   CurInst = nullptr;
1047   HasTailCall = false;
1048   SDNodeOrder = LowestSDNodeOrder;
1049   StatepointLowering.clear();
1050 }
1051 
1052 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1053   DanglingDebugInfoMap.clear();
1054 }
1055 
1056 // Update DAG root to include dependencies on Pending chains.
1057 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1058   SDValue Root = DAG.getRoot();
1059 
1060   if (Pending.empty())
1061     return Root;
1062 
1063   // Add current root to PendingChains, unless we already indirectly
1064   // depend on it.
1065   if (Root.getOpcode() != ISD::EntryToken) {
1066     unsigned i = 0, e = Pending.size();
1067     for (; i != e; ++i) {
1068       assert(Pending[i].getNode()->getNumOperands() > 1);
1069       if (Pending[i].getNode()->getOperand(0) == Root)
1070         break;  // Don't add the root if we already indirectly depend on it.
1071     }
1072 
1073     if (i == e)
1074       Pending.push_back(Root);
1075   }
1076 
1077   if (Pending.size() == 1)
1078     Root = Pending[0];
1079   else
1080     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1081 
1082   DAG.setRoot(Root);
1083   Pending.clear();
1084   return Root;
1085 }
1086 
1087 SDValue SelectionDAGBuilder::getMemoryRoot() {
1088   return updateRoot(PendingLoads);
1089 }
1090 
1091 SDValue SelectionDAGBuilder::getRoot() {
1092   // Chain up all pending constrained intrinsics together with all
1093   // pending loads, by simply appending them to PendingLoads and
1094   // then calling getMemoryRoot().
1095   PendingLoads.reserve(PendingLoads.size() +
1096                        PendingConstrainedFP.size() +
1097                        PendingConstrainedFPStrict.size());
1098   PendingLoads.append(PendingConstrainedFP.begin(),
1099                       PendingConstrainedFP.end());
1100   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1101                       PendingConstrainedFPStrict.end());
1102   PendingConstrainedFP.clear();
1103   PendingConstrainedFPStrict.clear();
1104   return getMemoryRoot();
1105 }
1106 
1107 SDValue SelectionDAGBuilder::getControlRoot() {
1108   // We need to emit pending fpexcept.strict constrained intrinsics,
1109   // so append them to the PendingExports list.
1110   PendingExports.append(PendingConstrainedFPStrict.begin(),
1111                         PendingConstrainedFPStrict.end());
1112   PendingConstrainedFPStrict.clear();
1113   return updateRoot(PendingExports);
1114 }
1115 
1116 void SelectionDAGBuilder::visit(const Instruction &I) {
1117   // Set up outgoing PHI node register values before emitting the terminator.
1118   if (I.isTerminator()) {
1119     HandlePHINodesInSuccessorBlocks(I.getParent());
1120   }
1121 
1122   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1123   if (!isa<DbgInfoIntrinsic>(I))
1124     ++SDNodeOrder;
1125 
1126   CurInst = &I;
1127 
1128   visit(I.getOpcode(), I);
1129 
1130   if (!I.isTerminator() && !HasTailCall &&
1131       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1132     CopyToExportRegsIfNeeded(&I);
1133 
1134   CurInst = nullptr;
1135 }
1136 
1137 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1138   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1139 }
1140 
1141 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1142   // Note: this doesn't use InstVisitor, because it has to work with
1143   // ConstantExpr's in addition to instructions.
1144   switch (Opcode) {
1145   default: llvm_unreachable("Unknown instruction type encountered!");
1146     // Build the switch statement using the Instruction.def file.
1147 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1148     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1149 #include "llvm/IR/Instruction.def"
1150   }
1151 }
1152 
1153 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI,
1154                                                DebugLoc DL, unsigned Order) {
1155   // We treat variadic dbg_values differently at this stage.
1156   if (DI->hasArgList()) {
1157     // For variadic dbg_values we will now insert an undef.
1158     // FIXME: We can potentially recover these!
1159     SmallVector<SDDbgOperand, 2> Locs;
1160     for (const Value *V : DI->getValues()) {
1161       auto Undef = UndefValue::get(V->getType());
1162       Locs.push_back(SDDbgOperand::fromConst(Undef));
1163     }
1164     SDDbgValue *SDV = DAG.getDbgValueList(
1165         DI->getVariable(), DI->getExpression(), Locs, {},
1166         /*IsIndirect=*/false, DL, Order, /*IsVariadic=*/true);
1167     DAG.AddDbgValue(SDV, /*isParameter=*/false);
1168   } else {
1169     // TODO: Dangling debug info will eventually either be resolved or produce
1170     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
1171     // between the original dbg.value location and its resolved DBG_VALUE,
1172     // which we should ideally fill with an extra Undef DBG_VALUE.
1173     assert(DI->getNumVariableLocationOps() == 1 &&
1174            "DbgValueInst without an ArgList should have a single location "
1175            "operand.");
1176     DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, DL, Order);
1177   }
1178 }
1179 
1180 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1181                                                 const DIExpression *Expr) {
1182   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1183     const DbgValueInst *DI = DDI.getDI();
1184     DIVariable *DanglingVariable = DI->getVariable();
1185     DIExpression *DanglingExpr = DI->getExpression();
1186     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1187       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1188       return true;
1189     }
1190     return false;
1191   };
1192 
1193   for (auto &DDIMI : DanglingDebugInfoMap) {
1194     DanglingDebugInfoVector &DDIV = DDIMI.second;
1195 
1196     // If debug info is to be dropped, run it through final checks to see
1197     // whether it can be salvaged.
1198     for (auto &DDI : DDIV)
1199       if (isMatchingDbgValue(DDI))
1200         salvageUnresolvedDbgValue(DDI);
1201 
1202     erase_if(DDIV, isMatchingDbgValue);
1203   }
1204 }
1205 
1206 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1207 // generate the debug data structures now that we've seen its definition.
1208 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1209                                                    SDValue Val) {
1210   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1211   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1212     return;
1213 
1214   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1215   for (auto &DDI : DDIV) {
1216     const DbgValueInst *DI = DDI.getDI();
1217     assert(!DI->hasArgList() && "Not implemented for variadic dbg_values");
1218     assert(DI && "Ill-formed DanglingDebugInfo");
1219     DebugLoc dl = DDI.getdl();
1220     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1221     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1222     DILocalVariable *Variable = DI->getVariable();
1223     DIExpression *Expr = DI->getExpression();
1224     assert(Variable->isValidLocationForIntrinsic(dl) &&
1225            "Expected inlined-at fields to agree");
1226     SDDbgValue *SDV;
1227     if (Val.getNode()) {
1228       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1229       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1230       // we couldn't resolve it directly when examining the DbgValue intrinsic
1231       // in the first place we should not be more successful here). Unless we
1232       // have some test case that prove this to be correct we should avoid
1233       // calling EmitFuncArgumentDbgValue here.
1234       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1235         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1236                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1237         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1238         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1239         // inserted after the definition of Val when emitting the instructions
1240         // after ISel. An alternative could be to teach
1241         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1242         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1243                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1244                    << ValSDNodeOrder << "\n");
1245         SDV = getDbgValue(Val, Variable, Expr, dl,
1246                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1247         DAG.AddDbgValue(SDV, false);
1248       } else
1249         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1250                           << "in EmitFuncArgumentDbgValue\n");
1251     } else {
1252       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1253       auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType());
1254       auto SDV =
1255           DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1256       DAG.AddDbgValue(SDV, false);
1257     }
1258   }
1259   DDIV.clear();
1260 }
1261 
1262 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1263   // TODO: For the variadic implementation, instead of only checking the fail
1264   // state of `handleDebugValue`, we need know specifically which values were
1265   // invalid, so that we attempt to salvage only those values when processing
1266   // a DIArgList.
1267   assert(!DDI.getDI()->hasArgList() &&
1268          "Not implemented for variadic dbg_values");
1269   Value *V = DDI.getDI()->getValue(0);
1270   DILocalVariable *Var = DDI.getDI()->getVariable();
1271   DIExpression *Expr = DDI.getDI()->getExpression();
1272   DebugLoc DL = DDI.getdl();
1273   DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1274   unsigned SDOrder = DDI.getSDNodeOrder();
1275   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1276   // that DW_OP_stack_value is desired.
1277   assert(isa<DbgValueInst>(DDI.getDI()));
1278   bool StackValue = true;
1279 
1280   // Can this Value can be encoded without any further work?
1281   if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, /*IsVariadic=*/false))
1282     return;
1283 
1284   // Attempt to salvage back through as many instructions as possible. Bail if
1285   // a non-instruction is seen, such as a constant expression or global
1286   // variable. FIXME: Further work could recover those too.
1287   while (isa<Instruction>(V)) {
1288     Instruction &VAsInst = *cast<Instruction>(V);
1289     // Temporary "0", awaiting real implementation.
1290     SmallVector<uint64_t, 16> Ops;
1291     SmallVector<Value *, 4> AdditionalValues;
1292     V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops,
1293                              AdditionalValues);
1294     // If we cannot salvage any further, and haven't yet found a suitable debug
1295     // expression, bail out.
1296     if (!V)
1297       break;
1298 
1299     // TODO: If AdditionalValues isn't empty, then the salvage can only be
1300     // represented with a DBG_VALUE_LIST, so we give up. When we have support
1301     // here for variadic dbg_values, remove that condition.
1302     if (!AdditionalValues.empty())
1303       break;
1304 
1305     // New value and expr now represent this debuginfo.
1306     Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue);
1307 
1308     // Some kind of simplification occurred: check whether the operand of the
1309     // salvaged debug expression can be encoded in this DAG.
1310     if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder,
1311                          /*IsVariadic=*/false)) {
1312       LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n  "
1313                         << DDI.getDI() << "\nBy stripping back to:\n  " << V);
1314       return;
1315     }
1316   }
1317 
1318   // This was the final opportunity to salvage this debug information, and it
1319   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1320   // any earlier variable location.
1321   auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType());
1322   auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1323   DAG.AddDbgValue(SDV, false);
1324 
1325   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << DDI.getDI()
1326                     << "\n");
1327   LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *DDI.getDI()->getOperand(0)
1328                     << "\n");
1329 }
1330 
1331 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values,
1332                                            DILocalVariable *Var,
1333                                            DIExpression *Expr, DebugLoc dl,
1334                                            DebugLoc InstDL, unsigned Order,
1335                                            bool IsVariadic) {
1336   if (Values.empty())
1337     return true;
1338   SmallVector<SDDbgOperand> LocationOps;
1339   SmallVector<SDNode *> Dependencies;
1340   for (const Value *V : Values) {
1341     // Constant value.
1342     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1343         isa<ConstantPointerNull>(V)) {
1344       LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1345       continue;
1346     }
1347 
1348     // If the Value is a frame index, we can create a FrameIndex debug value
1349     // without relying on the DAG at all.
1350     if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1351       auto SI = FuncInfo.StaticAllocaMap.find(AI);
1352       if (SI != FuncInfo.StaticAllocaMap.end()) {
1353         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1354         continue;
1355       }
1356     }
1357 
1358     // Do not use getValue() in here; we don't want to generate code at
1359     // this point if it hasn't been done yet.
1360     SDValue N = NodeMap[V];
1361     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1362       N = UnusedArgNodeMap[V];
1363     if (N.getNode()) {
1364       // Only emit func arg dbg value for non-variadic dbg.values for now.
1365       if (!IsVariadic && EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N))
1366         return true;
1367       if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1368         // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1369         // describe stack slot locations.
1370         //
1371         // Consider "int x = 0; int *px = &x;". There are two kinds of
1372         // interesting debug values here after optimization:
1373         //
1374         //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
1375         //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1376         //
1377         // Both describe the direct values of their associated variables.
1378         Dependencies.push_back(N.getNode());
1379         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1380         continue;
1381       }
1382       LocationOps.emplace_back(
1383           SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1384       continue;
1385     }
1386 
1387     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1388     // Special rules apply for the first dbg.values of parameter variables in a
1389     // function. Identify them by the fact they reference Argument Values, that
1390     // they're parameters, and they are parameters of the current function. We
1391     // need to let them dangle until they get an SDNode.
1392     bool IsParamOfFunc =
1393         isa<Argument>(V) && Var->isParameter() && !InstDL.getInlinedAt();
1394     if (IsParamOfFunc)
1395       return false;
1396 
1397     // The value is not used in this block yet (or it would have an SDNode).
1398     // We still want the value to appear for the user if possible -- if it has
1399     // an associated VReg, we can refer to that instead.
1400     auto VMI = FuncInfo.ValueMap.find(V);
1401     if (VMI != FuncInfo.ValueMap.end()) {
1402       unsigned Reg = VMI->second;
1403       // If this is a PHI node, it may be split up into several MI PHI nodes
1404       // (in FunctionLoweringInfo::set).
1405       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1406                        V->getType(), None);
1407       if (RFV.occupiesMultipleRegs()) {
1408         // FIXME: We could potentially support variadic dbg_values here.
1409         if (IsVariadic)
1410           return false;
1411         unsigned Offset = 0;
1412         unsigned BitsToDescribe = 0;
1413         if (auto VarSize = Var->getSizeInBits())
1414           BitsToDescribe = *VarSize;
1415         if (auto Fragment = Expr->getFragmentInfo())
1416           BitsToDescribe = Fragment->SizeInBits;
1417         for (const auto &RegAndSize : RFV.getRegsAndSizes()) {
1418           // Bail out if all bits are described already.
1419           if (Offset >= BitsToDescribe)
1420             break;
1421           // TODO: handle scalable vectors.
1422           unsigned RegisterSize = RegAndSize.second;
1423           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1424                                       ? BitsToDescribe - Offset
1425                                       : RegisterSize;
1426           auto FragmentExpr = DIExpression::createFragmentExpression(
1427               Expr, Offset, FragmentSize);
1428           if (!FragmentExpr)
1429             continue;
1430           SDDbgValue *SDV = DAG.getVRegDbgValue(
1431               Var, *FragmentExpr, RegAndSize.first, false, dl, SDNodeOrder);
1432           DAG.AddDbgValue(SDV, false);
1433           Offset += RegisterSize;
1434         }
1435         return true;
1436       }
1437       // We can use simple vreg locations for variadic dbg_values as well.
1438       LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1439       continue;
1440     }
1441     // We failed to create a SDDbgOperand for V.
1442     return false;
1443   }
1444 
1445   // We have created a SDDbgOperand for each Value in Values.
1446   // Should use Order instead of SDNodeOrder?
1447   assert(!LocationOps.empty());
1448   SDDbgValue *SDV =
1449       DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1450                           /*IsIndirect=*/false, dl, SDNodeOrder, IsVariadic);
1451   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1452   return true;
1453 }
1454 
1455 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1456   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1457   for (auto &Pair : DanglingDebugInfoMap)
1458     for (auto &DDI : Pair.second)
1459       salvageUnresolvedDbgValue(DDI);
1460   clearDanglingDebugInfo();
1461 }
1462 
1463 /// getCopyFromRegs - If there was virtual register allocated for the value V
1464 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1465 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1466   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1467   SDValue Result;
1468 
1469   if (It != FuncInfo.ValueMap.end()) {
1470     Register InReg = It->second;
1471 
1472     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1473                      DAG.getDataLayout(), InReg, Ty,
1474                      None); // This is not an ABI copy.
1475     SDValue Chain = DAG.getEntryNode();
1476     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1477                                  V);
1478     resolveDanglingDebugInfo(V, Result);
1479   }
1480 
1481   return Result;
1482 }
1483 
1484 /// getValue - Return an SDValue for the given Value.
1485 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1486   // If we already have an SDValue for this value, use it. It's important
1487   // to do this first, so that we don't create a CopyFromReg if we already
1488   // have a regular SDValue.
1489   SDValue &N = NodeMap[V];
1490   if (N.getNode()) return N;
1491 
1492   // If there's a virtual register allocated and initialized for this
1493   // value, use it.
1494   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1495     return copyFromReg;
1496 
1497   // Otherwise create a new SDValue and remember it.
1498   SDValue Val = getValueImpl(V);
1499   NodeMap[V] = Val;
1500   resolveDanglingDebugInfo(V, Val);
1501   return Val;
1502 }
1503 
1504 /// getNonRegisterValue - Return an SDValue for the given Value, but
1505 /// don't look in FuncInfo.ValueMap for a virtual register.
1506 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1507   // If we already have an SDValue for this value, use it.
1508   SDValue &N = NodeMap[V];
1509   if (N.getNode()) {
1510     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1511       // Remove the debug location from the node as the node is about to be used
1512       // in a location which may differ from the original debug location.  This
1513       // is relevant to Constant and ConstantFP nodes because they can appear
1514       // as constant expressions inside PHI nodes.
1515       N->setDebugLoc(DebugLoc());
1516     }
1517     return N;
1518   }
1519 
1520   // Otherwise create a new SDValue and remember it.
1521   SDValue Val = getValueImpl(V);
1522   NodeMap[V] = Val;
1523   resolveDanglingDebugInfo(V, Val);
1524   return Val;
1525 }
1526 
1527 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1528 /// Create an SDValue for the given value.
1529 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1530   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1531 
1532   if (const Constant *C = dyn_cast<Constant>(V)) {
1533     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1534 
1535     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1536       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1537 
1538     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1539       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1540 
1541     if (isa<ConstantPointerNull>(C)) {
1542       unsigned AS = V->getType()->getPointerAddressSpace();
1543       return DAG.getConstant(0, getCurSDLoc(),
1544                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1545     }
1546 
1547     if (match(C, m_VScale(DAG.getDataLayout())))
1548       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1549 
1550     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1551       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1552 
1553     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1554       return DAG.getUNDEF(VT);
1555 
1556     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1557       visit(CE->getOpcode(), *CE);
1558       SDValue N1 = NodeMap[V];
1559       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1560       return N1;
1561     }
1562 
1563     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1564       SmallVector<SDValue, 4> Constants;
1565       for (const Use &U : C->operands()) {
1566         SDNode *Val = getValue(U).getNode();
1567         // If the operand is an empty aggregate, there are no values.
1568         if (!Val) continue;
1569         // Add each leaf value from the operand to the Constants list
1570         // to form a flattened list of all the values.
1571         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1572           Constants.push_back(SDValue(Val, i));
1573       }
1574 
1575       return DAG.getMergeValues(Constants, getCurSDLoc());
1576     }
1577 
1578     if (const ConstantDataSequential *CDS =
1579           dyn_cast<ConstantDataSequential>(C)) {
1580       SmallVector<SDValue, 4> Ops;
1581       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1582         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1583         // Add each leaf value from the operand to the Constants list
1584         // to form a flattened list of all the values.
1585         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1586           Ops.push_back(SDValue(Val, i));
1587       }
1588 
1589       if (isa<ArrayType>(CDS->getType()))
1590         return DAG.getMergeValues(Ops, getCurSDLoc());
1591       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1592     }
1593 
1594     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1595       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1596              "Unknown struct or array constant!");
1597 
1598       SmallVector<EVT, 4> ValueVTs;
1599       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1600       unsigned NumElts = ValueVTs.size();
1601       if (NumElts == 0)
1602         return SDValue(); // empty struct
1603       SmallVector<SDValue, 4> Constants(NumElts);
1604       for (unsigned i = 0; i != NumElts; ++i) {
1605         EVT EltVT = ValueVTs[i];
1606         if (isa<UndefValue>(C))
1607           Constants[i] = DAG.getUNDEF(EltVT);
1608         else if (EltVT.isFloatingPoint())
1609           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1610         else
1611           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1612       }
1613 
1614       return DAG.getMergeValues(Constants, getCurSDLoc());
1615     }
1616 
1617     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1618       return DAG.getBlockAddress(BA, VT);
1619 
1620     if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1621       return getValue(Equiv->getGlobalValue());
1622 
1623     if (const auto *NC = dyn_cast<NoCFIValue>(C))
1624       return getValue(NC->getGlobalValue());
1625 
1626     VectorType *VecTy = cast<VectorType>(V->getType());
1627 
1628     // Now that we know the number and type of the elements, get that number of
1629     // elements into the Ops array based on what kind of constant it is.
1630     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1631       SmallVector<SDValue, 16> Ops;
1632       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1633       for (unsigned i = 0; i != NumElements; ++i)
1634         Ops.push_back(getValue(CV->getOperand(i)));
1635 
1636       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1637     }
1638 
1639     if (isa<ConstantAggregateZero>(C)) {
1640       EVT EltVT =
1641           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1642 
1643       SDValue Op;
1644       if (EltVT.isFloatingPoint())
1645         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1646       else
1647         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1648 
1649       if (isa<ScalableVectorType>(VecTy))
1650         return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op);
1651 
1652       SmallVector<SDValue, 16> Ops;
1653       Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op);
1654       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1655     }
1656 
1657     llvm_unreachable("Unknown vector constant");
1658   }
1659 
1660   // If this is a static alloca, generate it as the frameindex instead of
1661   // computation.
1662   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1663     DenseMap<const AllocaInst*, int>::iterator SI =
1664       FuncInfo.StaticAllocaMap.find(AI);
1665     if (SI != FuncInfo.StaticAllocaMap.end())
1666       return DAG.getFrameIndex(SI->second,
1667                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1668   }
1669 
1670   // If this is an instruction which fast-isel has deferred, select it now.
1671   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1672     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1673 
1674     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1675                      Inst->getType(), None);
1676     SDValue Chain = DAG.getEntryNode();
1677     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1678   }
1679 
1680   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V))
1681     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1682 
1683   if (const auto *BB = dyn_cast<BasicBlock>(V))
1684     return DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
1685 
1686   llvm_unreachable("Can't get register for value!");
1687 }
1688 
1689 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1690   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1691   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1692   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1693   bool IsSEH = isAsynchronousEHPersonality(Pers);
1694   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1695   if (!IsSEH)
1696     CatchPadMBB->setIsEHScopeEntry();
1697   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1698   if (IsMSVCCXX || IsCoreCLR)
1699     CatchPadMBB->setIsEHFuncletEntry();
1700 }
1701 
1702 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1703   // Update machine-CFG edge.
1704   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1705   FuncInfo.MBB->addSuccessor(TargetMBB);
1706   TargetMBB->setIsEHCatchretTarget(true);
1707   DAG.getMachineFunction().setHasEHCatchret(true);
1708 
1709   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1710   bool IsSEH = isAsynchronousEHPersonality(Pers);
1711   if (IsSEH) {
1712     // If this is not a fall-through branch or optimizations are switched off,
1713     // emit the branch.
1714     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1715         TM.getOptLevel() == CodeGenOpt::None)
1716       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1717                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1718     return;
1719   }
1720 
1721   // Figure out the funclet membership for the catchret's successor.
1722   // This will be used by the FuncletLayout pass to determine how to order the
1723   // BB's.
1724   // A 'catchret' returns to the outer scope's color.
1725   Value *ParentPad = I.getCatchSwitchParentPad();
1726   const BasicBlock *SuccessorColor;
1727   if (isa<ConstantTokenNone>(ParentPad))
1728     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1729   else
1730     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1731   assert(SuccessorColor && "No parent funclet for catchret!");
1732   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1733   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1734 
1735   // Create the terminator node.
1736   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1737                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1738                             DAG.getBasicBlock(SuccessorColorMBB));
1739   DAG.setRoot(Ret);
1740 }
1741 
1742 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1743   // Don't emit any special code for the cleanuppad instruction. It just marks
1744   // the start of an EH scope/funclet.
1745   FuncInfo.MBB->setIsEHScopeEntry();
1746   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1747   if (Pers != EHPersonality::Wasm_CXX) {
1748     FuncInfo.MBB->setIsEHFuncletEntry();
1749     FuncInfo.MBB->setIsCleanupFuncletEntry();
1750   }
1751 }
1752 
1753 // In wasm EH, even though a catchpad may not catch an exception if a tag does
1754 // not match, it is OK to add only the first unwind destination catchpad to the
1755 // successors, because there will be at least one invoke instruction within the
1756 // catch scope that points to the next unwind destination, if one exists, so
1757 // CFGSort cannot mess up with BB sorting order.
1758 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
1759 // call within them, and catchpads only consisting of 'catch (...)' have a
1760 // '__cxa_end_catch' call within them, both of which generate invokes in case
1761 // the next unwind destination exists, i.e., the next unwind destination is not
1762 // the caller.)
1763 //
1764 // Having at most one EH pad successor is also simpler and helps later
1765 // transformations.
1766 //
1767 // For example,
1768 // current:
1769 //   invoke void @foo to ... unwind label %catch.dispatch
1770 // catch.dispatch:
1771 //   %0 = catchswitch within ... [label %catch.start] unwind label %next
1772 // catch.start:
1773 //   ...
1774 //   ... in this BB or some other child BB dominated by this BB there will be an
1775 //   invoke that points to 'next' BB as an unwind destination
1776 //
1777 // next: ; We don't need to add this to 'current' BB's successor
1778 //   ...
1779 static void findWasmUnwindDestinations(
1780     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1781     BranchProbability Prob,
1782     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1783         &UnwindDests) {
1784   while (EHPadBB) {
1785     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1786     if (isa<CleanupPadInst>(Pad)) {
1787       // Stop on cleanup pads.
1788       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1789       UnwindDests.back().first->setIsEHScopeEntry();
1790       break;
1791     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1792       // Add the catchpad handlers to the possible destinations. We don't
1793       // continue to the unwind destination of the catchswitch for wasm.
1794       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1795         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1796         UnwindDests.back().first->setIsEHScopeEntry();
1797       }
1798       break;
1799     } else {
1800       continue;
1801     }
1802   }
1803 }
1804 
1805 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1806 /// many places it could ultimately go. In the IR, we have a single unwind
1807 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1808 /// This function skips over imaginary basic blocks that hold catchswitch
1809 /// instructions, and finds all the "real" machine
1810 /// basic block destinations. As those destinations may not be successors of
1811 /// EHPadBB, here we also calculate the edge probability to those destinations.
1812 /// The passed-in Prob is the edge probability to EHPadBB.
1813 static void findUnwindDestinations(
1814     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1815     BranchProbability Prob,
1816     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1817         &UnwindDests) {
1818   EHPersonality Personality =
1819     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1820   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1821   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1822   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1823   bool IsSEH = isAsynchronousEHPersonality(Personality);
1824 
1825   if (IsWasmCXX) {
1826     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1827     assert(UnwindDests.size() <= 1 &&
1828            "There should be at most one unwind destination for wasm");
1829     return;
1830   }
1831 
1832   while (EHPadBB) {
1833     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1834     BasicBlock *NewEHPadBB = nullptr;
1835     if (isa<LandingPadInst>(Pad)) {
1836       // Stop on landingpads. They are not funclets.
1837       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1838       break;
1839     } else if (isa<CleanupPadInst>(Pad)) {
1840       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1841       // personalities.
1842       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1843       UnwindDests.back().first->setIsEHScopeEntry();
1844       UnwindDests.back().first->setIsEHFuncletEntry();
1845       break;
1846     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1847       // Add the catchpad handlers to the possible destinations.
1848       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1849         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1850         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1851         if (IsMSVCCXX || IsCoreCLR)
1852           UnwindDests.back().first->setIsEHFuncletEntry();
1853         if (!IsSEH)
1854           UnwindDests.back().first->setIsEHScopeEntry();
1855       }
1856       NewEHPadBB = CatchSwitch->getUnwindDest();
1857     } else {
1858       continue;
1859     }
1860 
1861     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1862     if (BPI && NewEHPadBB)
1863       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1864     EHPadBB = NewEHPadBB;
1865   }
1866 }
1867 
1868 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1869   // Update successor info.
1870   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1871   auto UnwindDest = I.getUnwindDest();
1872   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1873   BranchProbability UnwindDestProb =
1874       (BPI && UnwindDest)
1875           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1876           : BranchProbability::getZero();
1877   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1878   for (auto &UnwindDest : UnwindDests) {
1879     UnwindDest.first->setIsEHPad();
1880     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1881   }
1882   FuncInfo.MBB->normalizeSuccProbs();
1883 
1884   // Create the terminator node.
1885   SDValue Ret =
1886       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1887   DAG.setRoot(Ret);
1888 }
1889 
1890 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1891   report_fatal_error("visitCatchSwitch not yet implemented!");
1892 }
1893 
1894 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1895   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1896   auto &DL = DAG.getDataLayout();
1897   SDValue Chain = getControlRoot();
1898   SmallVector<ISD::OutputArg, 8> Outs;
1899   SmallVector<SDValue, 8> OutVals;
1900 
1901   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1902   // lower
1903   //
1904   //   %val = call <ty> @llvm.experimental.deoptimize()
1905   //   ret <ty> %val
1906   //
1907   // differently.
1908   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1909     LowerDeoptimizingReturn();
1910     return;
1911   }
1912 
1913   if (!FuncInfo.CanLowerReturn) {
1914     unsigned DemoteReg = FuncInfo.DemoteRegister;
1915     const Function *F = I.getParent()->getParent();
1916 
1917     // Emit a store of the return value through the virtual register.
1918     // Leave Outs empty so that LowerReturn won't try to load return
1919     // registers the usual way.
1920     SmallVector<EVT, 1> PtrValueVTs;
1921     ComputeValueVTs(TLI, DL,
1922                     F->getReturnType()->getPointerTo(
1923                         DAG.getDataLayout().getAllocaAddrSpace()),
1924                     PtrValueVTs);
1925 
1926     SDValue RetPtr =
1927         DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]);
1928     SDValue RetOp = getValue(I.getOperand(0));
1929 
1930     SmallVector<EVT, 4> ValueVTs, MemVTs;
1931     SmallVector<uint64_t, 4> Offsets;
1932     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1933                     &Offsets);
1934     unsigned NumValues = ValueVTs.size();
1935 
1936     SmallVector<SDValue, 4> Chains(NumValues);
1937     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
1938     for (unsigned i = 0; i != NumValues; ++i) {
1939       // An aggregate return value cannot wrap around the address space, so
1940       // offsets to its parts don't wrap either.
1941       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
1942                                            TypeSize::Fixed(Offsets[i]));
1943 
1944       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
1945       if (MemVTs[i] != ValueVTs[i])
1946         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
1947       Chains[i] = DAG.getStore(
1948           Chain, getCurSDLoc(), Val,
1949           // FIXME: better loc info would be nice.
1950           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
1951           commonAlignment(BaseAlign, Offsets[i]));
1952     }
1953 
1954     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1955                         MVT::Other, Chains);
1956   } else if (I.getNumOperands() != 0) {
1957     SmallVector<EVT, 4> ValueVTs;
1958     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1959     unsigned NumValues = ValueVTs.size();
1960     if (NumValues) {
1961       SDValue RetOp = getValue(I.getOperand(0));
1962 
1963       const Function *F = I.getParent()->getParent();
1964 
1965       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1966           I.getOperand(0)->getType(), F->getCallingConv(),
1967           /*IsVarArg*/ false, DL);
1968 
1969       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1970       if (F->getAttributes().hasRetAttr(Attribute::SExt))
1971         ExtendKind = ISD::SIGN_EXTEND;
1972       else if (F->getAttributes().hasRetAttr(Attribute::ZExt))
1973         ExtendKind = ISD::ZERO_EXTEND;
1974 
1975       LLVMContext &Context = F->getContext();
1976       bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg);
1977 
1978       for (unsigned j = 0; j != NumValues; ++j) {
1979         EVT VT = ValueVTs[j];
1980 
1981         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1982           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1983 
1984         CallingConv::ID CC = F->getCallingConv();
1985 
1986         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1987         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1988         SmallVector<SDValue, 4> Parts(NumParts);
1989         getCopyToParts(DAG, getCurSDLoc(),
1990                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1991                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1992 
1993         // 'inreg' on function refers to return value
1994         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1995         if (RetInReg)
1996           Flags.setInReg();
1997 
1998         if (I.getOperand(0)->getType()->isPointerTy()) {
1999           Flags.setPointer();
2000           Flags.setPointerAddrSpace(
2001               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
2002         }
2003 
2004         if (NeedsRegBlock) {
2005           Flags.setInConsecutiveRegs();
2006           if (j == NumValues - 1)
2007             Flags.setInConsecutiveRegsLast();
2008         }
2009 
2010         // Propagate extension type if any
2011         if (ExtendKind == ISD::SIGN_EXTEND)
2012           Flags.setSExt();
2013         else if (ExtendKind == ISD::ZERO_EXTEND)
2014           Flags.setZExt();
2015 
2016         for (unsigned i = 0; i < NumParts; ++i) {
2017           Outs.push_back(ISD::OutputArg(Flags,
2018                                         Parts[i].getValueType().getSimpleVT(),
2019                                         VT, /*isfixed=*/true, 0, 0));
2020           OutVals.push_back(Parts[i]);
2021         }
2022       }
2023     }
2024   }
2025 
2026   // Push in swifterror virtual register as the last element of Outs. This makes
2027   // sure swifterror virtual register will be returned in the swifterror
2028   // physical register.
2029   const Function *F = I.getParent()->getParent();
2030   if (TLI.supportSwiftError() &&
2031       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2032     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
2033     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2034     Flags.setSwiftError();
2035     Outs.push_back(ISD::OutputArg(
2036         Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)),
2037         /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0));
2038     // Create SDNode for the swifterror virtual register.
2039     OutVals.push_back(
2040         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
2041                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
2042                         EVT(TLI.getPointerTy(DL))));
2043   }
2044 
2045   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
2046   CallingConv::ID CallConv =
2047     DAG.getMachineFunction().getFunction().getCallingConv();
2048   Chain = DAG.getTargetLoweringInfo().LowerReturn(
2049       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2050 
2051   // Verify that the target's LowerReturn behaved as expected.
2052   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2053          "LowerReturn didn't return a valid chain!");
2054 
2055   // Update the DAG with the new chain value resulting from return lowering.
2056   DAG.setRoot(Chain);
2057 }
2058 
2059 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
2060 /// created for it, emit nodes to copy the value into the virtual
2061 /// registers.
2062 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
2063   // Skip empty types
2064   if (V->getType()->isEmptyTy())
2065     return;
2066 
2067   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
2068   if (VMI != FuncInfo.ValueMap.end()) {
2069     assert(!V->use_empty() && "Unused value assigned virtual registers!");
2070     CopyValueToVirtualRegister(V, VMI->second);
2071   }
2072 }
2073 
2074 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
2075 /// the current basic block, add it to ValueMap now so that we'll get a
2076 /// CopyTo/FromReg.
2077 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
2078   // No need to export constants.
2079   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2080 
2081   // Already exported?
2082   if (FuncInfo.isExportedInst(V)) return;
2083 
2084   unsigned Reg = FuncInfo.InitializeRegForValue(V);
2085   CopyValueToVirtualRegister(V, Reg);
2086 }
2087 
2088 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
2089                                                      const BasicBlock *FromBB) {
2090   // The operands of the setcc have to be in this block.  We don't know
2091   // how to export them from some other block.
2092   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2093     // Can export from current BB.
2094     if (VI->getParent() == FromBB)
2095       return true;
2096 
2097     // Is already exported, noop.
2098     return FuncInfo.isExportedInst(V);
2099   }
2100 
2101   // If this is an argument, we can export it if the BB is the entry block or
2102   // if it is already exported.
2103   if (isa<Argument>(V)) {
2104     if (FromBB->isEntryBlock())
2105       return true;
2106 
2107     // Otherwise, can only export this if it is already exported.
2108     return FuncInfo.isExportedInst(V);
2109   }
2110 
2111   // Otherwise, constants can always be exported.
2112   return true;
2113 }
2114 
2115 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2116 BranchProbability
2117 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2118                                         const MachineBasicBlock *Dst) const {
2119   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2120   const BasicBlock *SrcBB = Src->getBasicBlock();
2121   const BasicBlock *DstBB = Dst->getBasicBlock();
2122   if (!BPI) {
2123     // If BPI is not available, set the default probability as 1 / N, where N is
2124     // the number of successors.
2125     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2126     return BranchProbability(1, SuccSize);
2127   }
2128   return BPI->getEdgeProbability(SrcBB, DstBB);
2129 }
2130 
2131 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2132                                                MachineBasicBlock *Dst,
2133                                                BranchProbability Prob) {
2134   if (!FuncInfo.BPI)
2135     Src->addSuccessorWithoutProb(Dst);
2136   else {
2137     if (Prob.isUnknown())
2138       Prob = getEdgeProbability(Src, Dst);
2139     Src->addSuccessor(Dst, Prob);
2140   }
2141 }
2142 
2143 static bool InBlock(const Value *V, const BasicBlock *BB) {
2144   if (const Instruction *I = dyn_cast<Instruction>(V))
2145     return I->getParent() == BB;
2146   return true;
2147 }
2148 
2149 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2150 /// This function emits a branch and is used at the leaves of an OR or an
2151 /// AND operator tree.
2152 void
2153 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2154                                                   MachineBasicBlock *TBB,
2155                                                   MachineBasicBlock *FBB,
2156                                                   MachineBasicBlock *CurBB,
2157                                                   MachineBasicBlock *SwitchBB,
2158                                                   BranchProbability TProb,
2159                                                   BranchProbability FProb,
2160                                                   bool InvertCond) {
2161   const BasicBlock *BB = CurBB->getBasicBlock();
2162 
2163   // If the leaf of the tree is a comparison, merge the condition into
2164   // the caseblock.
2165   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2166     // The operands of the cmp have to be in this block.  We don't know
2167     // how to export them from some other block.  If this is the first block
2168     // of the sequence, no exporting is needed.
2169     if (CurBB == SwitchBB ||
2170         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2171          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2172       ISD::CondCode Condition;
2173       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2174         ICmpInst::Predicate Pred =
2175             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2176         Condition = getICmpCondCode(Pred);
2177       } else {
2178         const FCmpInst *FC = cast<FCmpInst>(Cond);
2179         FCmpInst::Predicate Pred =
2180             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2181         Condition = getFCmpCondCode(Pred);
2182         if (TM.Options.NoNaNsFPMath)
2183           Condition = getFCmpCodeWithoutNaN(Condition);
2184       }
2185 
2186       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2187                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2188       SL->SwitchCases.push_back(CB);
2189       return;
2190     }
2191   }
2192 
2193   // Create a CaseBlock record representing this branch.
2194   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2195   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2196                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2197   SL->SwitchCases.push_back(CB);
2198 }
2199 
2200 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2201                                                MachineBasicBlock *TBB,
2202                                                MachineBasicBlock *FBB,
2203                                                MachineBasicBlock *CurBB,
2204                                                MachineBasicBlock *SwitchBB,
2205                                                Instruction::BinaryOps Opc,
2206                                                BranchProbability TProb,
2207                                                BranchProbability FProb,
2208                                                bool InvertCond) {
2209   // Skip over not part of the tree and remember to invert op and operands at
2210   // next level.
2211   Value *NotCond;
2212   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2213       InBlock(NotCond, CurBB->getBasicBlock())) {
2214     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2215                          !InvertCond);
2216     return;
2217   }
2218 
2219   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2220   const Value *BOpOp0, *BOpOp1;
2221   // Compute the effective opcode for Cond, taking into account whether it needs
2222   // to be inverted, e.g.
2223   //   and (not (or A, B)), C
2224   // gets lowered as
2225   //   and (and (not A, not B), C)
2226   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
2227   if (BOp) {
2228     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2229                ? Instruction::And
2230                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2231                       ? Instruction::Or
2232                       : (Instruction::BinaryOps)0);
2233     if (InvertCond) {
2234       if (BOpc == Instruction::And)
2235         BOpc = Instruction::Or;
2236       else if (BOpc == Instruction::Or)
2237         BOpc = Instruction::And;
2238     }
2239   }
2240 
2241   // If this node is not part of the or/and tree, emit it as a branch.
2242   // Note that all nodes in the tree should have same opcode.
2243   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2244   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2245       !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2246       !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2247     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2248                                  TProb, FProb, InvertCond);
2249     return;
2250   }
2251 
2252   //  Create TmpBB after CurBB.
2253   MachineFunction::iterator BBI(CurBB);
2254   MachineFunction &MF = DAG.getMachineFunction();
2255   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2256   CurBB->getParent()->insert(++BBI, TmpBB);
2257 
2258   if (Opc == Instruction::Or) {
2259     // Codegen X | Y as:
2260     // BB1:
2261     //   jmp_if_X TBB
2262     //   jmp TmpBB
2263     // TmpBB:
2264     //   jmp_if_Y TBB
2265     //   jmp FBB
2266     //
2267 
2268     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2269     // The requirement is that
2270     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2271     //     = TrueProb for original BB.
2272     // Assuming the original probabilities are A and B, one choice is to set
2273     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2274     // A/(1+B) and 2B/(1+B). This choice assumes that
2275     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2276     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2277     // TmpBB, but the math is more complicated.
2278 
2279     auto NewTrueProb = TProb / 2;
2280     auto NewFalseProb = TProb / 2 + FProb;
2281     // Emit the LHS condition.
2282     FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2283                          NewFalseProb, InvertCond);
2284 
2285     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2286     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2287     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2288     // Emit the RHS condition into TmpBB.
2289     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2290                          Probs[1], InvertCond);
2291   } else {
2292     assert(Opc == Instruction::And && "Unknown merge op!");
2293     // Codegen X & Y as:
2294     // BB1:
2295     //   jmp_if_X TmpBB
2296     //   jmp FBB
2297     // TmpBB:
2298     //   jmp_if_Y TBB
2299     //   jmp FBB
2300     //
2301     //  This requires creation of TmpBB after CurBB.
2302 
2303     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2304     // The requirement is that
2305     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2306     //     = FalseProb for original BB.
2307     // Assuming the original probabilities are A and B, one choice is to set
2308     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2309     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2310     // TrueProb for BB1 * FalseProb for TmpBB.
2311 
2312     auto NewTrueProb = TProb + FProb / 2;
2313     auto NewFalseProb = FProb / 2;
2314     // Emit the LHS condition.
2315     FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2316                          NewFalseProb, InvertCond);
2317 
2318     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2319     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2320     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2321     // Emit the RHS condition into TmpBB.
2322     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2323                          Probs[1], InvertCond);
2324   }
2325 }
2326 
2327 /// If the set of cases should be emitted as a series of branches, return true.
2328 /// If we should emit this as a bunch of and/or'd together conditions, return
2329 /// false.
2330 bool
2331 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2332   if (Cases.size() != 2) return true;
2333 
2334   // If this is two comparisons of the same values or'd or and'd together, they
2335   // will get folded into a single comparison, so don't emit two blocks.
2336   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2337        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2338       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2339        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2340     return false;
2341   }
2342 
2343   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2344   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2345   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2346       Cases[0].CC == Cases[1].CC &&
2347       isa<Constant>(Cases[0].CmpRHS) &&
2348       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2349     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2350       return false;
2351     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2352       return false;
2353   }
2354 
2355   return true;
2356 }
2357 
2358 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2359   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2360 
2361   // Update machine-CFG edges.
2362   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2363 
2364   if (I.isUnconditional()) {
2365     // Update machine-CFG edges.
2366     BrMBB->addSuccessor(Succ0MBB);
2367 
2368     // If this is not a fall-through branch or optimizations are switched off,
2369     // emit the branch.
2370     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2371       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2372                               MVT::Other, getControlRoot(),
2373                               DAG.getBasicBlock(Succ0MBB)));
2374 
2375     return;
2376   }
2377 
2378   // If this condition is one of the special cases we handle, do special stuff
2379   // now.
2380   const Value *CondVal = I.getCondition();
2381   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2382 
2383   // If this is a series of conditions that are or'd or and'd together, emit
2384   // this as a sequence of branches instead of setcc's with and/or operations.
2385   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2386   // unpredictable branches, and vector extracts because those jumps are likely
2387   // expensive for any target), this should improve performance.
2388   // For example, instead of something like:
2389   //     cmp A, B
2390   //     C = seteq
2391   //     cmp D, E
2392   //     F = setle
2393   //     or C, F
2394   //     jnz foo
2395   // Emit:
2396   //     cmp A, B
2397   //     je foo
2398   //     cmp D, E
2399   //     jle foo
2400   const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2401   if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2402       BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) {
2403     Value *Vec;
2404     const Value *BOp0, *BOp1;
2405     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
2406     if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2407       Opcode = Instruction::And;
2408     else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2409       Opcode = Instruction::Or;
2410 
2411     if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2412                     match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
2413       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2414                            getEdgeProbability(BrMBB, Succ0MBB),
2415                            getEdgeProbability(BrMBB, Succ1MBB),
2416                            /*InvertCond=*/false);
2417       // If the compares in later blocks need to use values not currently
2418       // exported from this block, export them now.  This block should always
2419       // be the first entry.
2420       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2421 
2422       // Allow some cases to be rejected.
2423       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2424         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2425           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2426           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2427         }
2428 
2429         // Emit the branch for this block.
2430         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2431         SL->SwitchCases.erase(SL->SwitchCases.begin());
2432         return;
2433       }
2434 
2435       // Okay, we decided not to do this, remove any inserted MBB's and clear
2436       // SwitchCases.
2437       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2438         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2439 
2440       SL->SwitchCases.clear();
2441     }
2442   }
2443 
2444   // Create a CaseBlock record representing this branch.
2445   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2446                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2447 
2448   // Use visitSwitchCase to actually insert the fast branch sequence for this
2449   // cond branch.
2450   visitSwitchCase(CB, BrMBB);
2451 }
2452 
2453 /// visitSwitchCase - Emits the necessary code to represent a single node in
2454 /// the binary search tree resulting from lowering a switch instruction.
2455 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2456                                           MachineBasicBlock *SwitchBB) {
2457   SDValue Cond;
2458   SDValue CondLHS = getValue(CB.CmpLHS);
2459   SDLoc dl = CB.DL;
2460 
2461   if (CB.CC == ISD::SETTRUE) {
2462     // Branch or fall through to TrueBB.
2463     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2464     SwitchBB->normalizeSuccProbs();
2465     if (CB.TrueBB != NextBlock(SwitchBB)) {
2466       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2467                               DAG.getBasicBlock(CB.TrueBB)));
2468     }
2469     return;
2470   }
2471 
2472   auto &TLI = DAG.getTargetLoweringInfo();
2473   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2474 
2475   // Build the setcc now.
2476   if (!CB.CmpMHS) {
2477     // Fold "(X == true)" to X and "(X == false)" to !X to
2478     // handle common cases produced by branch lowering.
2479     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2480         CB.CC == ISD::SETEQ)
2481       Cond = CondLHS;
2482     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2483              CB.CC == ISD::SETEQ) {
2484       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2485       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2486     } else {
2487       SDValue CondRHS = getValue(CB.CmpRHS);
2488 
2489       // If a pointer's DAG type is larger than its memory type then the DAG
2490       // values are zero-extended. This breaks signed comparisons so truncate
2491       // back to the underlying type before doing the compare.
2492       if (CondLHS.getValueType() != MemVT) {
2493         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2494         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2495       }
2496       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2497     }
2498   } else {
2499     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2500 
2501     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2502     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2503 
2504     SDValue CmpOp = getValue(CB.CmpMHS);
2505     EVT VT = CmpOp.getValueType();
2506 
2507     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2508       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2509                           ISD::SETLE);
2510     } else {
2511       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2512                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2513       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2514                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2515     }
2516   }
2517 
2518   // Update successor info
2519   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2520   // TrueBB and FalseBB are always different unless the incoming IR is
2521   // degenerate. This only happens when running llc on weird IR.
2522   if (CB.TrueBB != CB.FalseBB)
2523     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2524   SwitchBB->normalizeSuccProbs();
2525 
2526   // If the lhs block is the next block, invert the condition so that we can
2527   // fall through to the lhs instead of the rhs block.
2528   if (CB.TrueBB == NextBlock(SwitchBB)) {
2529     std::swap(CB.TrueBB, CB.FalseBB);
2530     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2531     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2532   }
2533 
2534   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2535                                MVT::Other, getControlRoot(), Cond,
2536                                DAG.getBasicBlock(CB.TrueBB));
2537 
2538   // Insert the false branch. Do this even if it's a fall through branch,
2539   // this makes it easier to do DAG optimizations which require inverting
2540   // the branch condition.
2541   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2542                        DAG.getBasicBlock(CB.FalseBB));
2543 
2544   DAG.setRoot(BrCond);
2545 }
2546 
2547 /// visitJumpTable - Emit JumpTable node in the current MBB
2548 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2549   // Emit the code for the jump table
2550   assert(JT.Reg != -1U && "Should lower JT Header first!");
2551   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2552   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2553                                      JT.Reg, PTy);
2554   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2555   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2556                                     MVT::Other, Index.getValue(1),
2557                                     Table, Index);
2558   DAG.setRoot(BrJumpTable);
2559 }
2560 
2561 /// visitJumpTableHeader - This function emits necessary code to produce index
2562 /// in the JumpTable from switch case.
2563 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2564                                                JumpTableHeader &JTH,
2565                                                MachineBasicBlock *SwitchBB) {
2566   SDLoc dl = getCurSDLoc();
2567 
2568   // Subtract the lowest switch case value from the value being switched on.
2569   SDValue SwitchOp = getValue(JTH.SValue);
2570   EVT VT = SwitchOp.getValueType();
2571   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2572                             DAG.getConstant(JTH.First, dl, VT));
2573 
2574   // The SDNode we just created, which holds the value being switched on minus
2575   // the smallest case value, needs to be copied to a virtual register so it
2576   // can be used as an index into the jump table in a subsequent basic block.
2577   // This value may be smaller or larger than the target's pointer type, and
2578   // therefore require extension or truncating.
2579   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2580   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2581 
2582   unsigned JumpTableReg =
2583       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2584   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2585                                     JumpTableReg, SwitchOp);
2586   JT.Reg = JumpTableReg;
2587 
2588   if (!JTH.FallthroughUnreachable) {
2589     // Emit the range check for the jump table, and branch to the default block
2590     // for the switch statement if the value being switched on exceeds the
2591     // largest case in the switch.
2592     SDValue CMP = DAG.getSetCC(
2593         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2594                                    Sub.getValueType()),
2595         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2596 
2597     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2598                                  MVT::Other, CopyTo, CMP,
2599                                  DAG.getBasicBlock(JT.Default));
2600 
2601     // Avoid emitting unnecessary branches to the next block.
2602     if (JT.MBB != NextBlock(SwitchBB))
2603       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2604                            DAG.getBasicBlock(JT.MBB));
2605 
2606     DAG.setRoot(BrCond);
2607   } else {
2608     // Avoid emitting unnecessary branches to the next block.
2609     if (JT.MBB != NextBlock(SwitchBB))
2610       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2611                               DAG.getBasicBlock(JT.MBB)));
2612     else
2613       DAG.setRoot(CopyTo);
2614   }
2615 }
2616 
2617 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2618 /// variable if there exists one.
2619 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2620                                  SDValue &Chain) {
2621   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2622   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2623   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2624   MachineFunction &MF = DAG.getMachineFunction();
2625   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2626   MachineSDNode *Node =
2627       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2628   if (Global) {
2629     MachinePointerInfo MPInfo(Global);
2630     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2631                  MachineMemOperand::MODereferenceable;
2632     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2633         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
2634     DAG.setNodeMemRefs(Node, {MemRef});
2635   }
2636   if (PtrTy != PtrMemTy)
2637     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2638   return SDValue(Node, 0);
2639 }
2640 
2641 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2642 /// tail spliced into a stack protector check success bb.
2643 ///
2644 /// For a high level explanation of how this fits into the stack protector
2645 /// generation see the comment on the declaration of class
2646 /// StackProtectorDescriptor.
2647 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2648                                                   MachineBasicBlock *ParentBB) {
2649 
2650   // First create the loads to the guard/stack slot for the comparison.
2651   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2652   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2653   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2654 
2655   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2656   int FI = MFI.getStackProtectorIndex();
2657 
2658   SDValue Guard;
2659   SDLoc dl = getCurSDLoc();
2660   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2661   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2662   Align Align =
2663       DAG.getDataLayout().getPrefTypeAlign(Type::getInt8PtrTy(M.getContext()));
2664 
2665   // Generate code to load the content of the guard slot.
2666   SDValue GuardVal = DAG.getLoad(
2667       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2668       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2669       MachineMemOperand::MOVolatile);
2670 
2671   if (TLI.useStackGuardXorFP())
2672     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2673 
2674   // Retrieve guard check function, nullptr if instrumentation is inlined.
2675   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2676     // The target provides a guard check function to validate the guard value.
2677     // Generate a call to that function with the content of the guard slot as
2678     // argument.
2679     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2680     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2681 
2682     TargetLowering::ArgListTy Args;
2683     TargetLowering::ArgListEntry Entry;
2684     Entry.Node = GuardVal;
2685     Entry.Ty = FnTy->getParamType(0);
2686     if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
2687       Entry.IsInReg = true;
2688     Args.push_back(Entry);
2689 
2690     TargetLowering::CallLoweringInfo CLI(DAG);
2691     CLI.setDebugLoc(getCurSDLoc())
2692         .setChain(DAG.getEntryNode())
2693         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2694                    getValue(GuardCheckFn), std::move(Args));
2695 
2696     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2697     DAG.setRoot(Result.second);
2698     return;
2699   }
2700 
2701   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2702   // Otherwise, emit a volatile load to retrieve the stack guard value.
2703   SDValue Chain = DAG.getEntryNode();
2704   if (TLI.useLoadStackGuardNode()) {
2705     Guard = getLoadStackGuard(DAG, dl, Chain);
2706   } else {
2707     const Value *IRGuard = TLI.getSDagStackGuard(M);
2708     SDValue GuardPtr = getValue(IRGuard);
2709 
2710     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2711                         MachinePointerInfo(IRGuard, 0), Align,
2712                         MachineMemOperand::MOVolatile);
2713   }
2714 
2715   // Perform the comparison via a getsetcc.
2716   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2717                                                         *DAG.getContext(),
2718                                                         Guard.getValueType()),
2719                              Guard, GuardVal, ISD::SETNE);
2720 
2721   // If the guard/stackslot do not equal, branch to failure MBB.
2722   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2723                                MVT::Other, GuardVal.getOperand(0),
2724                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2725   // Otherwise branch to success MBB.
2726   SDValue Br = DAG.getNode(ISD::BR, dl,
2727                            MVT::Other, BrCond,
2728                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2729 
2730   DAG.setRoot(Br);
2731 }
2732 
2733 /// Codegen the failure basic block for a stack protector check.
2734 ///
2735 /// A failure stack protector machine basic block consists simply of a call to
2736 /// __stack_chk_fail().
2737 ///
2738 /// For a high level explanation of how this fits into the stack protector
2739 /// generation see the comment on the declaration of class
2740 /// StackProtectorDescriptor.
2741 void
2742 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2743   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2744   TargetLowering::MakeLibCallOptions CallOptions;
2745   CallOptions.setDiscardResult(true);
2746   SDValue Chain =
2747       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2748                       None, CallOptions, getCurSDLoc()).second;
2749   // On PS4, the "return address" must still be within the calling function,
2750   // even if it's at the very end, so emit an explicit TRAP here.
2751   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2752   if (TM.getTargetTriple().isPS4())
2753     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2754   // WebAssembly needs an unreachable instruction after a non-returning call,
2755   // because the function return type can be different from __stack_chk_fail's
2756   // return type (void).
2757   if (TM.getTargetTriple().isWasm())
2758     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2759 
2760   DAG.setRoot(Chain);
2761 }
2762 
2763 /// visitBitTestHeader - This function emits necessary code to produce value
2764 /// suitable for "bit tests"
2765 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2766                                              MachineBasicBlock *SwitchBB) {
2767   SDLoc dl = getCurSDLoc();
2768 
2769   // Subtract the minimum value.
2770   SDValue SwitchOp = getValue(B.SValue);
2771   EVT VT = SwitchOp.getValueType();
2772   SDValue RangeSub =
2773       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2774 
2775   // Determine the type of the test operands.
2776   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2777   bool UsePtrType = false;
2778   if (!TLI.isTypeLegal(VT)) {
2779     UsePtrType = true;
2780   } else {
2781     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2782       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2783         // Switch table case range are encoded into series of masks.
2784         // Just use pointer type, it's guaranteed to fit.
2785         UsePtrType = true;
2786         break;
2787       }
2788   }
2789   SDValue Sub = RangeSub;
2790   if (UsePtrType) {
2791     VT = TLI.getPointerTy(DAG.getDataLayout());
2792     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2793   }
2794 
2795   B.RegVT = VT.getSimpleVT();
2796   B.Reg = FuncInfo.CreateReg(B.RegVT);
2797   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2798 
2799   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2800 
2801   if (!B.FallthroughUnreachable)
2802     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2803   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2804   SwitchBB->normalizeSuccProbs();
2805 
2806   SDValue Root = CopyTo;
2807   if (!B.FallthroughUnreachable) {
2808     // Conditional branch to the default block.
2809     SDValue RangeCmp = DAG.getSetCC(dl,
2810         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2811                                RangeSub.getValueType()),
2812         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2813         ISD::SETUGT);
2814 
2815     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2816                        DAG.getBasicBlock(B.Default));
2817   }
2818 
2819   // Avoid emitting unnecessary branches to the next block.
2820   if (MBB != NextBlock(SwitchBB))
2821     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2822 
2823   DAG.setRoot(Root);
2824 }
2825 
2826 /// visitBitTestCase - this function produces one "bit test"
2827 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2828                                            MachineBasicBlock* NextMBB,
2829                                            BranchProbability BranchProbToNext,
2830                                            unsigned Reg,
2831                                            BitTestCase &B,
2832                                            MachineBasicBlock *SwitchBB) {
2833   SDLoc dl = getCurSDLoc();
2834   MVT VT = BB.RegVT;
2835   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2836   SDValue Cmp;
2837   unsigned PopCount = countPopulation(B.Mask);
2838   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2839   if (PopCount == 1) {
2840     // Testing for a single bit; just compare the shift count with what it
2841     // would need to be to shift a 1 bit in that position.
2842     Cmp = DAG.getSetCC(
2843         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2844         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2845         ISD::SETEQ);
2846   } else if (PopCount == BB.Range) {
2847     // There is only one zero bit in the range, test for it directly.
2848     Cmp = DAG.getSetCC(
2849         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2850         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2851         ISD::SETNE);
2852   } else {
2853     // Make desired shift
2854     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2855                                     DAG.getConstant(1, dl, VT), ShiftOp);
2856 
2857     // Emit bit tests and jumps
2858     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2859                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2860     Cmp = DAG.getSetCC(
2861         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2862         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2863   }
2864 
2865   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2866   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2867   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2868   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2869   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2870   // one as they are relative probabilities (and thus work more like weights),
2871   // and hence we need to normalize them to let the sum of them become one.
2872   SwitchBB->normalizeSuccProbs();
2873 
2874   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2875                               MVT::Other, getControlRoot(),
2876                               Cmp, DAG.getBasicBlock(B.TargetBB));
2877 
2878   // Avoid emitting unnecessary branches to the next block.
2879   if (NextMBB != NextBlock(SwitchBB))
2880     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2881                         DAG.getBasicBlock(NextMBB));
2882 
2883   DAG.setRoot(BrAnd);
2884 }
2885 
2886 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2887   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2888 
2889   // Retrieve successors. Look through artificial IR level blocks like
2890   // catchswitch for successors.
2891   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2892   const BasicBlock *EHPadBB = I.getSuccessor(1);
2893 
2894   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2895   // have to do anything here to lower funclet bundles.
2896   assert(!I.hasOperandBundlesOtherThan(
2897              {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition,
2898               LLVMContext::OB_gc_live, LLVMContext::OB_funclet,
2899               LLVMContext::OB_cfguardtarget,
2900               LLVMContext::OB_clang_arc_attachedcall}) &&
2901          "Cannot lower invokes with arbitrary operand bundles yet!");
2902 
2903   const Value *Callee(I.getCalledOperand());
2904   const Function *Fn = dyn_cast<Function>(Callee);
2905   if (isa<InlineAsm>(Callee))
2906     visitInlineAsm(I, EHPadBB);
2907   else if (Fn && Fn->isIntrinsic()) {
2908     switch (Fn->getIntrinsicID()) {
2909     default:
2910       llvm_unreachable("Cannot invoke this intrinsic");
2911     case Intrinsic::donothing:
2912       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2913     case Intrinsic::seh_try_begin:
2914     case Intrinsic::seh_scope_begin:
2915     case Intrinsic::seh_try_end:
2916     case Intrinsic::seh_scope_end:
2917       break;
2918     case Intrinsic::experimental_patchpoint_void:
2919     case Intrinsic::experimental_patchpoint_i64:
2920       visitPatchpoint(I, EHPadBB);
2921       break;
2922     case Intrinsic::experimental_gc_statepoint:
2923       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
2924       break;
2925     case Intrinsic::wasm_rethrow: {
2926       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2927       // special because it can be invoked, so we manually lower it to a DAG
2928       // node here.
2929       SmallVector<SDValue, 8> Ops;
2930       Ops.push_back(getRoot()); // inchain
2931       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2932       Ops.push_back(
2933           DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
2934                                 TLI.getPointerTy(DAG.getDataLayout())));
2935       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2936       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2937       break;
2938     }
2939     }
2940   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2941     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2942     // Eventually we will support lowering the @llvm.experimental.deoptimize
2943     // intrinsic, and right now there are no plans to support other intrinsics
2944     // with deopt state.
2945     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2946   } else {
2947     LowerCallTo(I, getValue(Callee), false, false, EHPadBB);
2948   }
2949 
2950   // If the value of the invoke is used outside of its defining block, make it
2951   // available as a virtual register.
2952   // We already took care of the exported value for the statepoint instruction
2953   // during call to the LowerStatepoint.
2954   if (!isa<GCStatepointInst>(I)) {
2955     CopyToExportRegsIfNeeded(&I);
2956   }
2957 
2958   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2959   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2960   BranchProbability EHPadBBProb =
2961       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2962           : BranchProbability::getZero();
2963   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2964 
2965   // Update successor info.
2966   addSuccessorWithProb(InvokeMBB, Return);
2967   for (auto &UnwindDest : UnwindDests) {
2968     UnwindDest.first->setIsEHPad();
2969     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2970   }
2971   InvokeMBB->normalizeSuccProbs();
2972 
2973   // Drop into normal successor.
2974   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2975                           DAG.getBasicBlock(Return)));
2976 }
2977 
2978 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2979   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2980 
2981   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2982   // have to do anything here to lower funclet bundles.
2983   assert(!I.hasOperandBundlesOtherThan(
2984              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2985          "Cannot lower callbrs with arbitrary operand bundles yet!");
2986 
2987   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
2988   visitInlineAsm(I);
2989   CopyToExportRegsIfNeeded(&I);
2990 
2991   // Retrieve successors.
2992   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
2993 
2994   // Update successor info.
2995   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
2996   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
2997     MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)];
2998     addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
2999     Target->setIsInlineAsmBrIndirectTarget();
3000   }
3001   CallBrMBB->normalizeSuccProbs();
3002 
3003   // Drop into default successor.
3004   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
3005                           MVT::Other, getControlRoot(),
3006                           DAG.getBasicBlock(Return)));
3007 }
3008 
3009 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
3010   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
3011 }
3012 
3013 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
3014   assert(FuncInfo.MBB->isEHPad() &&
3015          "Call to landingpad not in landing pad!");
3016 
3017   // If there aren't registers to copy the values into (e.g., during SjLj
3018   // exceptions), then don't bother to create these DAG nodes.
3019   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3020   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
3021   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
3022       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
3023     return;
3024 
3025   // If landingpad's return type is token type, we don't create DAG nodes
3026   // for its exception pointer and selector value. The extraction of exception
3027   // pointer or selector value from token type landingpads is not currently
3028   // supported.
3029   if (LP.getType()->isTokenTy())
3030     return;
3031 
3032   SmallVector<EVT, 2> ValueVTs;
3033   SDLoc dl = getCurSDLoc();
3034   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
3035   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
3036 
3037   // Get the two live-in registers as SDValues. The physregs have already been
3038   // copied into virtual registers.
3039   SDValue Ops[2];
3040   if (FuncInfo.ExceptionPointerVirtReg) {
3041     Ops[0] = DAG.getZExtOrTrunc(
3042         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3043                            FuncInfo.ExceptionPointerVirtReg,
3044                            TLI.getPointerTy(DAG.getDataLayout())),
3045         dl, ValueVTs[0]);
3046   } else {
3047     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
3048   }
3049   Ops[1] = DAG.getZExtOrTrunc(
3050       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3051                          FuncInfo.ExceptionSelectorVirtReg,
3052                          TLI.getPointerTy(DAG.getDataLayout())),
3053       dl, ValueVTs[1]);
3054 
3055   // Merge into one.
3056   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3057                             DAG.getVTList(ValueVTs), Ops);
3058   setValue(&LP, Res);
3059 }
3060 
3061 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
3062                                            MachineBasicBlock *Last) {
3063   // Update JTCases.
3064   for (JumpTableBlock &JTB : SL->JTCases)
3065     if (JTB.first.HeaderBB == First)
3066       JTB.first.HeaderBB = Last;
3067 
3068   // Update BitTestCases.
3069   for (BitTestBlock &BTB : SL->BitTestCases)
3070     if (BTB.Parent == First)
3071       BTB.Parent = Last;
3072 }
3073 
3074 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3075   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3076 
3077   // Update machine-CFG edges with unique successors.
3078   SmallSet<BasicBlock*, 32> Done;
3079   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3080     BasicBlock *BB = I.getSuccessor(i);
3081     bool Inserted = Done.insert(BB).second;
3082     if (!Inserted)
3083         continue;
3084 
3085     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
3086     addSuccessorWithProb(IndirectBrMBB, Succ);
3087   }
3088   IndirectBrMBB->normalizeSuccProbs();
3089 
3090   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
3091                           MVT::Other, getControlRoot(),
3092                           getValue(I.getAddress())));
3093 }
3094 
3095 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3096   if (!DAG.getTarget().Options.TrapUnreachable)
3097     return;
3098 
3099   // We may be able to ignore unreachable behind a noreturn call.
3100   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
3101     const BasicBlock &BB = *I.getParent();
3102     if (&I != &BB.front()) {
3103       BasicBlock::const_iterator PredI =
3104         std::prev(BasicBlock::const_iterator(&I));
3105       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
3106         if (Call->doesNotReturn())
3107           return;
3108       }
3109     }
3110   }
3111 
3112   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3113 }
3114 
3115 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3116   SDNodeFlags Flags;
3117   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3118     Flags.copyFMF(*FPOp);
3119 
3120   SDValue Op = getValue(I.getOperand(0));
3121   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3122                                     Op, Flags);
3123   setValue(&I, UnNodeValue);
3124 }
3125 
3126 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3127   SDNodeFlags Flags;
3128   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3129     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3130     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3131   }
3132   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3133     Flags.setExact(ExactOp->isExact());
3134   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3135     Flags.copyFMF(*FPOp);
3136 
3137   SDValue Op1 = getValue(I.getOperand(0));
3138   SDValue Op2 = getValue(I.getOperand(1));
3139   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3140                                      Op1, Op2, Flags);
3141   setValue(&I, BinNodeValue);
3142 }
3143 
3144 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3145   SDValue Op1 = getValue(I.getOperand(0));
3146   SDValue Op2 = getValue(I.getOperand(1));
3147 
3148   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3149       Op1.getValueType(), DAG.getDataLayout());
3150 
3151   // Coerce the shift amount to the right type if we can. This exposes the
3152   // truncate or zext to optimization early.
3153   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3154     assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) &&
3155            "Unexpected shift type");
3156     Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy);
3157   }
3158 
3159   bool nuw = false;
3160   bool nsw = false;
3161   bool exact = false;
3162 
3163   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3164 
3165     if (const OverflowingBinaryOperator *OFBinOp =
3166             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3167       nuw = OFBinOp->hasNoUnsignedWrap();
3168       nsw = OFBinOp->hasNoSignedWrap();
3169     }
3170     if (const PossiblyExactOperator *ExactOp =
3171             dyn_cast<const PossiblyExactOperator>(&I))
3172       exact = ExactOp->isExact();
3173   }
3174   SDNodeFlags Flags;
3175   Flags.setExact(exact);
3176   Flags.setNoSignedWrap(nsw);
3177   Flags.setNoUnsignedWrap(nuw);
3178   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3179                             Flags);
3180   setValue(&I, Res);
3181 }
3182 
3183 void SelectionDAGBuilder::visitSDiv(const User &I) {
3184   SDValue Op1 = getValue(I.getOperand(0));
3185   SDValue Op2 = getValue(I.getOperand(1));
3186 
3187   SDNodeFlags Flags;
3188   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3189                  cast<PossiblyExactOperator>(&I)->isExact());
3190   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3191                            Op2, Flags));
3192 }
3193 
3194 void SelectionDAGBuilder::visitICmp(const User &I) {
3195   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3196   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3197     predicate = IC->getPredicate();
3198   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3199     predicate = ICmpInst::Predicate(IC->getPredicate());
3200   SDValue Op1 = getValue(I.getOperand(0));
3201   SDValue Op2 = getValue(I.getOperand(1));
3202   ISD::CondCode Opcode = getICmpCondCode(predicate);
3203 
3204   auto &TLI = DAG.getTargetLoweringInfo();
3205   EVT MemVT =
3206       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3207 
3208   // If a pointer's DAG type is larger than its memory type then the DAG values
3209   // are zero-extended. This breaks signed comparisons so truncate back to the
3210   // underlying type before doing the compare.
3211   if (Op1.getValueType() != MemVT) {
3212     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3213     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3214   }
3215 
3216   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3217                                                         I.getType());
3218   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3219 }
3220 
3221 void SelectionDAGBuilder::visitFCmp(const User &I) {
3222   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3223   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3224     predicate = FC->getPredicate();
3225   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3226     predicate = FCmpInst::Predicate(FC->getPredicate());
3227   SDValue Op1 = getValue(I.getOperand(0));
3228   SDValue Op2 = getValue(I.getOperand(1));
3229 
3230   ISD::CondCode Condition = getFCmpCondCode(predicate);
3231   auto *FPMO = cast<FPMathOperator>(&I);
3232   if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3233     Condition = getFCmpCodeWithoutNaN(Condition);
3234 
3235   SDNodeFlags Flags;
3236   Flags.copyFMF(*FPMO);
3237   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3238 
3239   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3240                                                         I.getType());
3241   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3242 }
3243 
3244 // Check if the condition of the select has one use or two users that are both
3245 // selects with the same condition.
3246 static bool hasOnlySelectUsers(const Value *Cond) {
3247   return llvm::all_of(Cond->users(), [](const Value *V) {
3248     return isa<SelectInst>(V);
3249   });
3250 }
3251 
3252 void SelectionDAGBuilder::visitSelect(const User &I) {
3253   SmallVector<EVT, 4> ValueVTs;
3254   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3255                   ValueVTs);
3256   unsigned NumValues = ValueVTs.size();
3257   if (NumValues == 0) return;
3258 
3259   SmallVector<SDValue, 4> Values(NumValues);
3260   SDValue Cond     = getValue(I.getOperand(0));
3261   SDValue LHSVal   = getValue(I.getOperand(1));
3262   SDValue RHSVal   = getValue(I.getOperand(2));
3263   SmallVector<SDValue, 1> BaseOps(1, Cond);
3264   ISD::NodeType OpCode =
3265       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3266 
3267   bool IsUnaryAbs = false;
3268   bool Negate = false;
3269 
3270   SDNodeFlags Flags;
3271   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3272     Flags.copyFMF(*FPOp);
3273 
3274   // Min/max matching is only viable if all output VTs are the same.
3275   if (is_splat(ValueVTs)) {
3276     EVT VT = ValueVTs[0];
3277     LLVMContext &Ctx = *DAG.getContext();
3278     auto &TLI = DAG.getTargetLoweringInfo();
3279 
3280     // We care about the legality of the operation after it has been type
3281     // legalized.
3282     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3283       VT = TLI.getTypeToTransformTo(Ctx, VT);
3284 
3285     // If the vselect is legal, assume we want to leave this as a vector setcc +
3286     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3287     // min/max is legal on the scalar type.
3288     bool UseScalarMinMax = VT.isVector() &&
3289       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3290 
3291     Value *LHS, *RHS;
3292     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3293     ISD::NodeType Opc = ISD::DELETED_NODE;
3294     switch (SPR.Flavor) {
3295     case SPF_UMAX:    Opc = ISD::UMAX; break;
3296     case SPF_UMIN:    Opc = ISD::UMIN; break;
3297     case SPF_SMAX:    Opc = ISD::SMAX; break;
3298     case SPF_SMIN:    Opc = ISD::SMIN; break;
3299     case SPF_FMINNUM:
3300       switch (SPR.NaNBehavior) {
3301       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3302       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3303       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3304       case SPNB_RETURNS_ANY: {
3305         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3306           Opc = ISD::FMINNUM;
3307         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3308           Opc = ISD::FMINIMUM;
3309         else if (UseScalarMinMax)
3310           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3311             ISD::FMINNUM : ISD::FMINIMUM;
3312         break;
3313       }
3314       }
3315       break;
3316     case SPF_FMAXNUM:
3317       switch (SPR.NaNBehavior) {
3318       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3319       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3320       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3321       case SPNB_RETURNS_ANY:
3322 
3323         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3324           Opc = ISD::FMAXNUM;
3325         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3326           Opc = ISD::FMAXIMUM;
3327         else if (UseScalarMinMax)
3328           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3329             ISD::FMAXNUM : ISD::FMAXIMUM;
3330         break;
3331       }
3332       break;
3333     case SPF_NABS:
3334       Negate = true;
3335       LLVM_FALLTHROUGH;
3336     case SPF_ABS:
3337       IsUnaryAbs = true;
3338       Opc = ISD::ABS;
3339       break;
3340     default: break;
3341     }
3342 
3343     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3344         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3345          (UseScalarMinMax &&
3346           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3347         // If the underlying comparison instruction is used by any other
3348         // instruction, the consumed instructions won't be destroyed, so it is
3349         // not profitable to convert to a min/max.
3350         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3351       OpCode = Opc;
3352       LHSVal = getValue(LHS);
3353       RHSVal = getValue(RHS);
3354       BaseOps.clear();
3355     }
3356 
3357     if (IsUnaryAbs) {
3358       OpCode = Opc;
3359       LHSVal = getValue(LHS);
3360       BaseOps.clear();
3361     }
3362   }
3363 
3364   if (IsUnaryAbs) {
3365     for (unsigned i = 0; i != NumValues; ++i) {
3366       SDLoc dl = getCurSDLoc();
3367       EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3368       Values[i] =
3369           DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3370       if (Negate)
3371         Values[i] = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT),
3372                                 Values[i]);
3373     }
3374   } else {
3375     for (unsigned i = 0; i != NumValues; ++i) {
3376       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3377       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3378       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3379       Values[i] = DAG.getNode(
3380           OpCode, getCurSDLoc(),
3381           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3382     }
3383   }
3384 
3385   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3386                            DAG.getVTList(ValueVTs), Values));
3387 }
3388 
3389 void SelectionDAGBuilder::visitTrunc(const User &I) {
3390   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3391   SDValue N = getValue(I.getOperand(0));
3392   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3393                                                         I.getType());
3394   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3395 }
3396 
3397 void SelectionDAGBuilder::visitZExt(const User &I) {
3398   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3399   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3400   SDValue N = getValue(I.getOperand(0));
3401   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3402                                                         I.getType());
3403   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3404 }
3405 
3406 void SelectionDAGBuilder::visitSExt(const User &I) {
3407   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3408   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3409   SDValue N = getValue(I.getOperand(0));
3410   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3411                                                         I.getType());
3412   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3413 }
3414 
3415 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3416   // FPTrunc is never a no-op cast, no need to check
3417   SDValue N = getValue(I.getOperand(0));
3418   SDLoc dl = getCurSDLoc();
3419   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3420   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3421   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3422                            DAG.getTargetConstant(
3423                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3424 }
3425 
3426 void SelectionDAGBuilder::visitFPExt(const User &I) {
3427   // FPExt is never a no-op cast, no need to check
3428   SDValue N = getValue(I.getOperand(0));
3429   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3430                                                         I.getType());
3431   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3432 }
3433 
3434 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3435   // FPToUI is never a no-op cast, no need to check
3436   SDValue N = getValue(I.getOperand(0));
3437   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3438                                                         I.getType());
3439   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3440 }
3441 
3442 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3443   // FPToSI is never a no-op cast, no need to check
3444   SDValue N = getValue(I.getOperand(0));
3445   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3446                                                         I.getType());
3447   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3448 }
3449 
3450 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3451   // UIToFP is never a no-op cast, no need to check
3452   SDValue N = getValue(I.getOperand(0));
3453   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3454                                                         I.getType());
3455   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3456 }
3457 
3458 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3459   // SIToFP is never a no-op cast, no need to check
3460   SDValue N = getValue(I.getOperand(0));
3461   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3462                                                         I.getType());
3463   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3464 }
3465 
3466 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3467   // What to do depends on the size of the integer and the size of the pointer.
3468   // We can either truncate, zero extend, or no-op, accordingly.
3469   SDValue N = getValue(I.getOperand(0));
3470   auto &TLI = DAG.getTargetLoweringInfo();
3471   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3472                                                         I.getType());
3473   EVT PtrMemVT =
3474       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3475   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3476   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3477   setValue(&I, N);
3478 }
3479 
3480 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3481   // What to do depends on the size of the integer and the size of the pointer.
3482   // We can either truncate, zero extend, or no-op, accordingly.
3483   SDValue N = getValue(I.getOperand(0));
3484   auto &TLI = DAG.getTargetLoweringInfo();
3485   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3486   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3487   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3488   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3489   setValue(&I, N);
3490 }
3491 
3492 void SelectionDAGBuilder::visitBitCast(const User &I) {
3493   SDValue N = getValue(I.getOperand(0));
3494   SDLoc dl = getCurSDLoc();
3495   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3496                                                         I.getType());
3497 
3498   // BitCast assures us that source and destination are the same size so this is
3499   // either a BITCAST or a no-op.
3500   if (DestVT != N.getValueType())
3501     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3502                              DestVT, N)); // convert types.
3503   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3504   // might fold any kind of constant expression to an integer constant and that
3505   // is not what we are looking for. Only recognize a bitcast of a genuine
3506   // constant integer as an opaque constant.
3507   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3508     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3509                                  /*isOpaque*/true));
3510   else
3511     setValue(&I, N);            // noop cast.
3512 }
3513 
3514 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3515   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3516   const Value *SV = I.getOperand(0);
3517   SDValue N = getValue(SV);
3518   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3519 
3520   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3521   unsigned DestAS = I.getType()->getPointerAddressSpace();
3522 
3523   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3524     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3525 
3526   setValue(&I, N);
3527 }
3528 
3529 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3530   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3531   SDValue InVec = getValue(I.getOperand(0));
3532   SDValue InVal = getValue(I.getOperand(1));
3533   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3534                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3535   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3536                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3537                            InVec, InVal, InIdx));
3538 }
3539 
3540 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3541   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3542   SDValue InVec = getValue(I.getOperand(0));
3543   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3544                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3545   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3546                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3547                            InVec, InIdx));
3548 }
3549 
3550 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3551   SDValue Src1 = getValue(I.getOperand(0));
3552   SDValue Src2 = getValue(I.getOperand(1));
3553   ArrayRef<int> Mask;
3554   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3555     Mask = SVI->getShuffleMask();
3556   else
3557     Mask = cast<ConstantExpr>(I).getShuffleMask();
3558   SDLoc DL = getCurSDLoc();
3559   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3560   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3561   EVT SrcVT = Src1.getValueType();
3562 
3563   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
3564       VT.isScalableVector()) {
3565     // Canonical splat form of first element of first input vector.
3566     SDValue FirstElt =
3567         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3568                     DAG.getVectorIdxConstant(0, DL));
3569     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3570     return;
3571   }
3572 
3573   // For now, we only handle splats for scalable vectors.
3574   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3575   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3576   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3577 
3578   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3579   unsigned MaskNumElts = Mask.size();
3580 
3581   if (SrcNumElts == MaskNumElts) {
3582     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3583     return;
3584   }
3585 
3586   // Normalize the shuffle vector since mask and vector length don't match.
3587   if (SrcNumElts < MaskNumElts) {
3588     // Mask is longer than the source vectors. We can use concatenate vector to
3589     // make the mask and vectors lengths match.
3590 
3591     if (MaskNumElts % SrcNumElts == 0) {
3592       // Mask length is a multiple of the source vector length.
3593       // Check if the shuffle is some kind of concatenation of the input
3594       // vectors.
3595       unsigned NumConcat = MaskNumElts / SrcNumElts;
3596       bool IsConcat = true;
3597       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3598       for (unsigned i = 0; i != MaskNumElts; ++i) {
3599         int Idx = Mask[i];
3600         if (Idx < 0)
3601           continue;
3602         // Ensure the indices in each SrcVT sized piece are sequential and that
3603         // the same source is used for the whole piece.
3604         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3605             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3606              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3607           IsConcat = false;
3608           break;
3609         }
3610         // Remember which source this index came from.
3611         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3612       }
3613 
3614       // The shuffle is concatenating multiple vectors together. Just emit
3615       // a CONCAT_VECTORS operation.
3616       if (IsConcat) {
3617         SmallVector<SDValue, 8> ConcatOps;
3618         for (auto Src : ConcatSrcs) {
3619           if (Src < 0)
3620             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3621           else if (Src == 0)
3622             ConcatOps.push_back(Src1);
3623           else
3624             ConcatOps.push_back(Src2);
3625         }
3626         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3627         return;
3628       }
3629     }
3630 
3631     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3632     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3633     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3634                                     PaddedMaskNumElts);
3635 
3636     // Pad both vectors with undefs to make them the same length as the mask.
3637     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3638 
3639     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3640     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3641     MOps1[0] = Src1;
3642     MOps2[0] = Src2;
3643 
3644     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3645     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3646 
3647     // Readjust mask for new input vector length.
3648     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3649     for (unsigned i = 0; i != MaskNumElts; ++i) {
3650       int Idx = Mask[i];
3651       if (Idx >= (int)SrcNumElts)
3652         Idx -= SrcNumElts - PaddedMaskNumElts;
3653       MappedOps[i] = Idx;
3654     }
3655 
3656     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3657 
3658     // If the concatenated vector was padded, extract a subvector with the
3659     // correct number of elements.
3660     if (MaskNumElts != PaddedMaskNumElts)
3661       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3662                            DAG.getVectorIdxConstant(0, DL));
3663 
3664     setValue(&I, Result);
3665     return;
3666   }
3667 
3668   if (SrcNumElts > MaskNumElts) {
3669     // Analyze the access pattern of the vector to see if we can extract
3670     // two subvectors and do the shuffle.
3671     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3672     bool CanExtract = true;
3673     for (int Idx : Mask) {
3674       unsigned Input = 0;
3675       if (Idx < 0)
3676         continue;
3677 
3678       if (Idx >= (int)SrcNumElts) {
3679         Input = 1;
3680         Idx -= SrcNumElts;
3681       }
3682 
3683       // If all the indices come from the same MaskNumElts sized portion of
3684       // the sources we can use extract. Also make sure the extract wouldn't
3685       // extract past the end of the source.
3686       int NewStartIdx = alignDown(Idx, MaskNumElts);
3687       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3688           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3689         CanExtract = false;
3690       // Make sure we always update StartIdx as we use it to track if all
3691       // elements are undef.
3692       StartIdx[Input] = NewStartIdx;
3693     }
3694 
3695     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3696       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3697       return;
3698     }
3699     if (CanExtract) {
3700       // Extract appropriate subvector and generate a vector shuffle
3701       for (unsigned Input = 0; Input < 2; ++Input) {
3702         SDValue &Src = Input == 0 ? Src1 : Src2;
3703         if (StartIdx[Input] < 0)
3704           Src = DAG.getUNDEF(VT);
3705         else {
3706           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3707                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
3708         }
3709       }
3710 
3711       // Calculate new mask.
3712       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3713       for (int &Idx : MappedOps) {
3714         if (Idx >= (int)SrcNumElts)
3715           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3716         else if (Idx >= 0)
3717           Idx -= StartIdx[0];
3718       }
3719 
3720       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3721       return;
3722     }
3723   }
3724 
3725   // We can't use either concat vectors or extract subvectors so fall back to
3726   // replacing the shuffle with extract and build vector.
3727   // to insert and build vector.
3728   EVT EltVT = VT.getVectorElementType();
3729   SmallVector<SDValue,8> Ops;
3730   for (int Idx : Mask) {
3731     SDValue Res;
3732 
3733     if (Idx < 0) {
3734       Res = DAG.getUNDEF(EltVT);
3735     } else {
3736       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3737       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3738 
3739       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
3740                         DAG.getVectorIdxConstant(Idx, DL));
3741     }
3742 
3743     Ops.push_back(Res);
3744   }
3745 
3746   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3747 }
3748 
3749 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3750   ArrayRef<unsigned> Indices;
3751   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3752     Indices = IV->getIndices();
3753   else
3754     Indices = cast<ConstantExpr>(&I)->getIndices();
3755 
3756   const Value *Op0 = I.getOperand(0);
3757   const Value *Op1 = I.getOperand(1);
3758   Type *AggTy = I.getType();
3759   Type *ValTy = Op1->getType();
3760   bool IntoUndef = isa<UndefValue>(Op0);
3761   bool FromUndef = isa<UndefValue>(Op1);
3762 
3763   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3764 
3765   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3766   SmallVector<EVT, 4> AggValueVTs;
3767   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3768   SmallVector<EVT, 4> ValValueVTs;
3769   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3770 
3771   unsigned NumAggValues = AggValueVTs.size();
3772   unsigned NumValValues = ValValueVTs.size();
3773   SmallVector<SDValue, 4> Values(NumAggValues);
3774 
3775   // Ignore an insertvalue that produces an empty object
3776   if (!NumAggValues) {
3777     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3778     return;
3779   }
3780 
3781   SDValue Agg = getValue(Op0);
3782   unsigned i = 0;
3783   // Copy the beginning value(s) from the original aggregate.
3784   for (; i != LinearIndex; ++i)
3785     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3786                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3787   // Copy values from the inserted value(s).
3788   if (NumValValues) {
3789     SDValue Val = getValue(Op1);
3790     for (; i != LinearIndex + NumValValues; ++i)
3791       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3792                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3793   }
3794   // Copy remaining value(s) from the original aggregate.
3795   for (; i != NumAggValues; ++i)
3796     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3797                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3798 
3799   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3800                            DAG.getVTList(AggValueVTs), Values));
3801 }
3802 
3803 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3804   ArrayRef<unsigned> Indices;
3805   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3806     Indices = EV->getIndices();
3807   else
3808     Indices = cast<ConstantExpr>(&I)->getIndices();
3809 
3810   const Value *Op0 = I.getOperand(0);
3811   Type *AggTy = Op0->getType();
3812   Type *ValTy = I.getType();
3813   bool OutOfUndef = isa<UndefValue>(Op0);
3814 
3815   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3816 
3817   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3818   SmallVector<EVT, 4> ValValueVTs;
3819   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3820 
3821   unsigned NumValValues = ValValueVTs.size();
3822 
3823   // Ignore a extractvalue that produces an empty object
3824   if (!NumValValues) {
3825     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3826     return;
3827   }
3828 
3829   SmallVector<SDValue, 4> Values(NumValValues);
3830 
3831   SDValue Agg = getValue(Op0);
3832   // Copy out the selected value(s).
3833   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3834     Values[i - LinearIndex] =
3835       OutOfUndef ?
3836         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3837         SDValue(Agg.getNode(), Agg.getResNo() + i);
3838 
3839   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3840                            DAG.getVTList(ValValueVTs), Values));
3841 }
3842 
3843 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3844   Value *Op0 = I.getOperand(0);
3845   // Note that the pointer operand may be a vector of pointers. Take the scalar
3846   // element which holds a pointer.
3847   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3848   SDValue N = getValue(Op0);
3849   SDLoc dl = getCurSDLoc();
3850   auto &TLI = DAG.getTargetLoweringInfo();
3851 
3852   // Normalize Vector GEP - all scalar operands should be converted to the
3853   // splat vector.
3854   bool IsVectorGEP = I.getType()->isVectorTy();
3855   ElementCount VectorElementCount =
3856       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
3857                   : ElementCount::getFixed(0);
3858 
3859   if (IsVectorGEP && !N.getValueType().isVector()) {
3860     LLVMContext &Context = *DAG.getContext();
3861     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
3862     if (VectorElementCount.isScalable())
3863       N = DAG.getSplatVector(VT, dl, N);
3864     else
3865       N = DAG.getSplatBuildVector(VT, dl, N);
3866   }
3867 
3868   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3869        GTI != E; ++GTI) {
3870     const Value *Idx = GTI.getOperand();
3871     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3872       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3873       if (Field) {
3874         // N = N + Offset
3875         uint64_t Offset =
3876             DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field);
3877 
3878         // In an inbounds GEP with an offset that is nonnegative even when
3879         // interpreted as signed, assume there is no unsigned overflow.
3880         SDNodeFlags Flags;
3881         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3882           Flags.setNoUnsignedWrap(true);
3883 
3884         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3885                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3886       }
3887     } else {
3888       // IdxSize is the width of the arithmetic according to IR semantics.
3889       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
3890       // (and fix up the result later).
3891       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3892       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3893       TypeSize ElementSize =
3894           DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType());
3895       // We intentionally mask away the high bits here; ElementSize may not
3896       // fit in IdxTy.
3897       APInt ElementMul(IdxSize, ElementSize.getKnownMinSize());
3898       bool ElementScalable = ElementSize.isScalable();
3899 
3900       // If this is a scalar constant or a splat vector of constants,
3901       // handle it quickly.
3902       const auto *C = dyn_cast<Constant>(Idx);
3903       if (C && isa<VectorType>(C->getType()))
3904         C = C->getSplatValue();
3905 
3906       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
3907       if (CI && CI->isZero())
3908         continue;
3909       if (CI && !ElementScalable) {
3910         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
3911         LLVMContext &Context = *DAG.getContext();
3912         SDValue OffsVal;
3913         if (IsVectorGEP)
3914           OffsVal = DAG.getConstant(
3915               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
3916         else
3917           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
3918 
3919         // In an inbounds GEP with an offset that is nonnegative even when
3920         // interpreted as signed, assume there is no unsigned overflow.
3921         SDNodeFlags Flags;
3922         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3923           Flags.setNoUnsignedWrap(true);
3924 
3925         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3926 
3927         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3928         continue;
3929       }
3930 
3931       // N = N + Idx * ElementMul;
3932       SDValue IdxN = getValue(Idx);
3933 
3934       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
3935         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
3936                                   VectorElementCount);
3937         if (VectorElementCount.isScalable())
3938           IdxN = DAG.getSplatVector(VT, dl, IdxN);
3939         else
3940           IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3941       }
3942 
3943       // If the index is smaller or larger than intptr_t, truncate or extend
3944       // it.
3945       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3946 
3947       if (ElementScalable) {
3948         EVT VScaleTy = N.getValueType().getScalarType();
3949         SDValue VScale = DAG.getNode(
3950             ISD::VSCALE, dl, VScaleTy,
3951             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
3952         if (IsVectorGEP)
3953           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
3954         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
3955       } else {
3956         // If this is a multiply by a power of two, turn it into a shl
3957         // immediately.  This is a very common case.
3958         if (ElementMul != 1) {
3959           if (ElementMul.isPowerOf2()) {
3960             unsigned Amt = ElementMul.logBase2();
3961             IdxN = DAG.getNode(ISD::SHL, dl,
3962                                N.getValueType(), IdxN,
3963                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
3964           } else {
3965             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
3966                                             IdxN.getValueType());
3967             IdxN = DAG.getNode(ISD::MUL, dl,
3968                                N.getValueType(), IdxN, Scale);
3969           }
3970         }
3971       }
3972 
3973       N = DAG.getNode(ISD::ADD, dl,
3974                       N.getValueType(), N, IdxN);
3975     }
3976   }
3977 
3978   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
3979   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
3980   if (IsVectorGEP) {
3981     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
3982     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
3983   }
3984 
3985   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
3986     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
3987 
3988   setValue(&I, N);
3989 }
3990 
3991 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3992   // If this is a fixed sized alloca in the entry block of the function,
3993   // allocate it statically on the stack.
3994   if (FuncInfo.StaticAllocaMap.count(&I))
3995     return;   // getValue will auto-populate this.
3996 
3997   SDLoc dl = getCurSDLoc();
3998   Type *Ty = I.getAllocatedType();
3999   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4000   auto &DL = DAG.getDataLayout();
4001   TypeSize TySize = DL.getTypeAllocSize(Ty);
4002   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
4003 
4004   SDValue AllocSize = getValue(I.getArraySize());
4005 
4006   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
4007   if (AllocSize.getValueType() != IntPtr)
4008     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4009 
4010   if (TySize.isScalable())
4011     AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4012                             DAG.getVScale(dl, IntPtr,
4013                                           APInt(IntPtr.getScalarSizeInBits(),
4014                                                 TySize.getKnownMinValue())));
4015   else
4016     AllocSize =
4017         DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4018                     DAG.getConstant(TySize.getFixedValue(), dl, IntPtr));
4019 
4020   // Handle alignment.  If the requested alignment is less than or equal to
4021   // the stack alignment, ignore it.  If the size is greater than or equal to
4022   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4023   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
4024   if (*Alignment <= StackAlign)
4025     Alignment = None;
4026 
4027   const uint64_t StackAlignMask = StackAlign.value() - 1U;
4028   // Round the size of the allocation up to the stack alignment size
4029   // by add SA-1 to the size. This doesn't overflow because we're computing
4030   // an address inside an alloca.
4031   SDNodeFlags Flags;
4032   Flags.setNoUnsignedWrap(true);
4033   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4034                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
4035 
4036   // Mask out the low bits for alignment purposes.
4037   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4038                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
4039 
4040   SDValue Ops[] = {
4041       getRoot(), AllocSize,
4042       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4043   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4044   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4045   setValue(&I, DSA);
4046   DAG.setRoot(DSA.getValue(1));
4047 
4048   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4049 }
4050 
4051 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4052   if (I.isAtomic())
4053     return visitAtomicLoad(I);
4054 
4055   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4056   const Value *SV = I.getOperand(0);
4057   if (TLI.supportSwiftError()) {
4058     // Swifterror values can come from either a function parameter with
4059     // swifterror attribute or an alloca with swifterror attribute.
4060     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4061       if (Arg->hasSwiftErrorAttr())
4062         return visitLoadFromSwiftError(I);
4063     }
4064 
4065     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4066       if (Alloca->isSwiftError())
4067         return visitLoadFromSwiftError(I);
4068     }
4069   }
4070 
4071   SDValue Ptr = getValue(SV);
4072 
4073   Type *Ty = I.getType();
4074   Align Alignment = I.getAlign();
4075 
4076   AAMDNodes AAInfo = I.getAAMetadata();
4077   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4078 
4079   SmallVector<EVT, 4> ValueVTs, MemVTs;
4080   SmallVector<uint64_t, 4> Offsets;
4081   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4082   unsigned NumValues = ValueVTs.size();
4083   if (NumValues == 0)
4084     return;
4085 
4086   bool isVolatile = I.isVolatile();
4087 
4088   SDValue Root;
4089   bool ConstantMemory = false;
4090   if (isVolatile)
4091     // Serialize volatile loads with other side effects.
4092     Root = getRoot();
4093   else if (NumValues > MaxParallelChains)
4094     Root = getMemoryRoot();
4095   else if (AA &&
4096            AA->pointsToConstantMemory(MemoryLocation(
4097                SV,
4098                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4099                AAInfo))) {
4100     // Do not serialize (non-volatile) loads of constant memory with anything.
4101     Root = DAG.getEntryNode();
4102     ConstantMemory = true;
4103   } else {
4104     // Do not serialize non-volatile loads against each other.
4105     Root = DAG.getRoot();
4106   }
4107 
4108   SDLoc dl = getCurSDLoc();
4109 
4110   if (isVolatile)
4111     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4112 
4113   // An aggregate load cannot wrap around the address space, so offsets to its
4114   // parts don't wrap either.
4115   SDNodeFlags Flags;
4116   Flags.setNoUnsignedWrap(true);
4117 
4118   SmallVector<SDValue, 4> Values(NumValues);
4119   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4120   EVT PtrVT = Ptr.getValueType();
4121 
4122   MachineMemOperand::Flags MMOFlags
4123     = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4124 
4125   unsigned ChainI = 0;
4126   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4127     // Serializing loads here may result in excessive register pressure, and
4128     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4129     // could recover a bit by hoisting nodes upward in the chain by recognizing
4130     // they are side-effect free or do not alias. The optimizer should really
4131     // avoid this case by converting large object/array copies to llvm.memcpy
4132     // (MaxParallelChains should always remain as failsafe).
4133     if (ChainI == MaxParallelChains) {
4134       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4135       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4136                                   makeArrayRef(Chains.data(), ChainI));
4137       Root = Chain;
4138       ChainI = 0;
4139     }
4140     SDValue A = DAG.getNode(ISD::ADD, dl,
4141                             PtrVT, Ptr,
4142                             DAG.getConstant(Offsets[i], dl, PtrVT),
4143                             Flags);
4144 
4145     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4146                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4147                             MMOFlags, AAInfo, Ranges);
4148     Chains[ChainI] = L.getValue(1);
4149 
4150     if (MemVTs[i] != ValueVTs[i])
4151       L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4152 
4153     Values[i] = L;
4154   }
4155 
4156   if (!ConstantMemory) {
4157     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4158                                 makeArrayRef(Chains.data(), ChainI));
4159     if (isVolatile)
4160       DAG.setRoot(Chain);
4161     else
4162       PendingLoads.push_back(Chain);
4163   }
4164 
4165   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4166                            DAG.getVTList(ValueVTs), Values));
4167 }
4168 
4169 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4170   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4171          "call visitStoreToSwiftError when backend supports swifterror");
4172 
4173   SmallVector<EVT, 4> ValueVTs;
4174   SmallVector<uint64_t, 4> Offsets;
4175   const Value *SrcV = I.getOperand(0);
4176   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4177                   SrcV->getType(), ValueVTs, &Offsets);
4178   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4179          "expect a single EVT for swifterror");
4180 
4181   SDValue Src = getValue(SrcV);
4182   // Create a virtual register, then update the virtual register.
4183   Register VReg =
4184       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4185   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4186   // Chain can be getRoot or getControlRoot.
4187   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4188                                       SDValue(Src.getNode(), Src.getResNo()));
4189   DAG.setRoot(CopyNode);
4190 }
4191 
4192 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4193   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4194          "call visitLoadFromSwiftError when backend supports swifterror");
4195 
4196   assert(!I.isVolatile() &&
4197          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4198          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4199          "Support volatile, non temporal, invariant for load_from_swift_error");
4200 
4201   const Value *SV = I.getOperand(0);
4202   Type *Ty = I.getType();
4203   assert(
4204       (!AA ||
4205        !AA->pointsToConstantMemory(MemoryLocation(
4206            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4207            I.getAAMetadata()))) &&
4208       "load_from_swift_error should not be constant memory");
4209 
4210   SmallVector<EVT, 4> ValueVTs;
4211   SmallVector<uint64_t, 4> Offsets;
4212   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4213                   ValueVTs, &Offsets);
4214   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4215          "expect a single EVT for swifterror");
4216 
4217   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4218   SDValue L = DAG.getCopyFromReg(
4219       getRoot(), getCurSDLoc(),
4220       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4221 
4222   setValue(&I, L);
4223 }
4224 
4225 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4226   if (I.isAtomic())
4227     return visitAtomicStore(I);
4228 
4229   const Value *SrcV = I.getOperand(0);
4230   const Value *PtrV = I.getOperand(1);
4231 
4232   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4233   if (TLI.supportSwiftError()) {
4234     // Swifterror values can come from either a function parameter with
4235     // swifterror attribute or an alloca with swifterror attribute.
4236     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4237       if (Arg->hasSwiftErrorAttr())
4238         return visitStoreToSwiftError(I);
4239     }
4240 
4241     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4242       if (Alloca->isSwiftError())
4243         return visitStoreToSwiftError(I);
4244     }
4245   }
4246 
4247   SmallVector<EVT, 4> ValueVTs, MemVTs;
4248   SmallVector<uint64_t, 4> Offsets;
4249   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4250                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4251   unsigned NumValues = ValueVTs.size();
4252   if (NumValues == 0)
4253     return;
4254 
4255   // Get the lowered operands. Note that we do this after
4256   // checking if NumResults is zero, because with zero results
4257   // the operands won't have values in the map.
4258   SDValue Src = getValue(SrcV);
4259   SDValue Ptr = getValue(PtrV);
4260 
4261   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4262   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4263   SDLoc dl = getCurSDLoc();
4264   Align Alignment = I.getAlign();
4265   AAMDNodes AAInfo = I.getAAMetadata();
4266 
4267   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4268 
4269   // An aggregate load cannot wrap around the address space, so offsets to its
4270   // parts don't wrap either.
4271   SDNodeFlags Flags;
4272   Flags.setNoUnsignedWrap(true);
4273 
4274   unsigned ChainI = 0;
4275   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4276     // See visitLoad comments.
4277     if (ChainI == MaxParallelChains) {
4278       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4279                                   makeArrayRef(Chains.data(), ChainI));
4280       Root = Chain;
4281       ChainI = 0;
4282     }
4283     SDValue Add =
4284         DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags);
4285     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4286     if (MemVTs[i] != ValueVTs[i])
4287       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4288     SDValue St =
4289         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4290                      Alignment, MMOFlags, AAInfo);
4291     Chains[ChainI] = St;
4292   }
4293 
4294   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4295                                   makeArrayRef(Chains.data(), ChainI));
4296   DAG.setRoot(StoreNode);
4297 }
4298 
4299 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4300                                            bool IsCompressing) {
4301   SDLoc sdl = getCurSDLoc();
4302 
4303   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4304                                MaybeAlign &Alignment) {
4305     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4306     Src0 = I.getArgOperand(0);
4307     Ptr = I.getArgOperand(1);
4308     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue();
4309     Mask = I.getArgOperand(3);
4310   };
4311   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4312                                     MaybeAlign &Alignment) {
4313     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4314     Src0 = I.getArgOperand(0);
4315     Ptr = I.getArgOperand(1);
4316     Mask = I.getArgOperand(2);
4317     Alignment = None;
4318   };
4319 
4320   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4321   MaybeAlign Alignment;
4322   if (IsCompressing)
4323     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4324   else
4325     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4326 
4327   SDValue Ptr = getValue(PtrOperand);
4328   SDValue Src0 = getValue(Src0Operand);
4329   SDValue Mask = getValue(MaskOperand);
4330   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4331 
4332   EVT VT = Src0.getValueType();
4333   if (!Alignment)
4334     Alignment = DAG.getEVTAlign(VT);
4335 
4336   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4337       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
4338       MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata());
4339   SDValue StoreNode =
4340       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4341                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4342   DAG.setRoot(StoreNode);
4343   setValue(&I, StoreNode);
4344 }
4345 
4346 // Get a uniform base for the Gather/Scatter intrinsic.
4347 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4348 // We try to represent it as a base pointer + vector of indices.
4349 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4350 // The first operand of the GEP may be a single pointer or a vector of pointers
4351 // Example:
4352 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4353 //  or
4354 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4355 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4356 //
4357 // When the first GEP operand is a single pointer - it is the uniform base we
4358 // are looking for. If first operand of the GEP is a splat vector - we
4359 // extract the splat value and use it as a uniform base.
4360 // In all other cases the function returns 'false'.
4361 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4362                            ISD::MemIndexType &IndexType, SDValue &Scale,
4363                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB) {
4364   SelectionDAG& DAG = SDB->DAG;
4365   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4366   const DataLayout &DL = DAG.getDataLayout();
4367 
4368   assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type");
4369 
4370   // Handle splat constant pointer.
4371   if (auto *C = dyn_cast<Constant>(Ptr)) {
4372     C = C->getSplatValue();
4373     if (!C)
4374       return false;
4375 
4376     Base = SDB->getValue(C);
4377 
4378     ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
4379     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4380     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4381     IndexType = ISD::SIGNED_SCALED;
4382     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4383     return true;
4384   }
4385 
4386   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4387   if (!GEP || GEP->getParent() != CurBB)
4388     return false;
4389 
4390   if (GEP->getNumOperands() != 2)
4391     return false;
4392 
4393   const Value *BasePtr = GEP->getPointerOperand();
4394   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4395 
4396   // Make sure the base is scalar and the index is a vector.
4397   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4398     return false;
4399 
4400   Base = SDB->getValue(BasePtr);
4401   Index = SDB->getValue(IndexVal);
4402   IndexType = ISD::SIGNED_SCALED;
4403   Scale = DAG.getTargetConstant(
4404               DL.getTypeAllocSize(GEP->getResultElementType()),
4405               SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4406   return true;
4407 }
4408 
4409 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4410   SDLoc sdl = getCurSDLoc();
4411 
4412   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4413   const Value *Ptr = I.getArgOperand(1);
4414   SDValue Src0 = getValue(I.getArgOperand(0));
4415   SDValue Mask = getValue(I.getArgOperand(3));
4416   EVT VT = Src0.getValueType();
4417   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4418                         ->getMaybeAlignValue()
4419                         .getValueOr(DAG.getEVTAlign(VT.getScalarType()));
4420   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4421 
4422   SDValue Base;
4423   SDValue Index;
4424   ISD::MemIndexType IndexType;
4425   SDValue Scale;
4426   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4427                                     I.getParent());
4428 
4429   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4430   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4431       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4432       // TODO: Make MachineMemOperands aware of scalable
4433       // vectors.
4434       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata());
4435   if (!UniformBase) {
4436     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4437     Index = getValue(Ptr);
4438     IndexType = ISD::SIGNED_UNSCALED;
4439     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4440   }
4441 
4442   EVT IdxVT = Index.getValueType();
4443   EVT EltTy = IdxVT.getVectorElementType();
4444   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4445     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4446     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4447   }
4448 
4449   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4450   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4451                                          Ops, MMO, IndexType, false);
4452   DAG.setRoot(Scatter);
4453   setValue(&I, Scatter);
4454 }
4455 
4456 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4457   SDLoc sdl = getCurSDLoc();
4458 
4459   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4460                               MaybeAlign &Alignment) {
4461     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4462     Ptr = I.getArgOperand(0);
4463     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
4464     Mask = I.getArgOperand(2);
4465     Src0 = I.getArgOperand(3);
4466   };
4467   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4468                                  MaybeAlign &Alignment) {
4469     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4470     Ptr = I.getArgOperand(0);
4471     Alignment = None;
4472     Mask = I.getArgOperand(1);
4473     Src0 = I.getArgOperand(2);
4474   };
4475 
4476   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4477   MaybeAlign Alignment;
4478   if (IsExpanding)
4479     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4480   else
4481     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4482 
4483   SDValue Ptr = getValue(PtrOperand);
4484   SDValue Src0 = getValue(Src0Operand);
4485   SDValue Mask = getValue(MaskOperand);
4486   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4487 
4488   EVT VT = Src0.getValueType();
4489   if (!Alignment)
4490     Alignment = DAG.getEVTAlign(VT);
4491 
4492   AAMDNodes AAInfo = I.getAAMetadata();
4493   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4494 
4495   // Do not serialize masked loads of constant memory with anything.
4496   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
4497   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4498 
4499   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4500 
4501   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4502       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
4503       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
4504 
4505   SDValue Load =
4506       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4507                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4508   if (AddToChain)
4509     PendingLoads.push_back(Load.getValue(1));
4510   setValue(&I, Load);
4511 }
4512 
4513 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4514   SDLoc sdl = getCurSDLoc();
4515 
4516   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4517   const Value *Ptr = I.getArgOperand(0);
4518   SDValue Src0 = getValue(I.getArgOperand(3));
4519   SDValue Mask = getValue(I.getArgOperand(2));
4520 
4521   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4522   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4523   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
4524                         ->getMaybeAlignValue()
4525                         .getValueOr(DAG.getEVTAlign(VT.getScalarType()));
4526 
4527   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4528 
4529   SDValue Root = DAG.getRoot();
4530   SDValue Base;
4531   SDValue Index;
4532   ISD::MemIndexType IndexType;
4533   SDValue Scale;
4534   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4535                                     I.getParent());
4536   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4537   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4538       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4539       // TODO: Make MachineMemOperands aware of scalable
4540       // vectors.
4541       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges);
4542 
4543   if (!UniformBase) {
4544     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4545     Index = getValue(Ptr);
4546     IndexType = ISD::SIGNED_UNSCALED;
4547     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4548   }
4549 
4550   EVT IdxVT = Index.getValueType();
4551   EVT EltTy = IdxVT.getVectorElementType();
4552   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4553     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4554     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4555   }
4556 
4557   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4558   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4559                                        Ops, MMO, IndexType, ISD::NON_EXTLOAD);
4560 
4561   PendingLoads.push_back(Gather.getValue(1));
4562   setValue(&I, Gather);
4563 }
4564 
4565 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4566   SDLoc dl = getCurSDLoc();
4567   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4568   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4569   SyncScope::ID SSID = I.getSyncScopeID();
4570 
4571   SDValue InChain = getRoot();
4572 
4573   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4574   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4575 
4576   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4577   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4578 
4579   MachineFunction &MF = DAG.getMachineFunction();
4580   MachineMemOperand *MMO = MF.getMachineMemOperand(
4581       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4582       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
4583       FailureOrdering);
4584 
4585   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4586                                    dl, MemVT, VTs, InChain,
4587                                    getValue(I.getPointerOperand()),
4588                                    getValue(I.getCompareOperand()),
4589                                    getValue(I.getNewValOperand()), MMO);
4590 
4591   SDValue OutChain = L.getValue(2);
4592 
4593   setValue(&I, L);
4594   DAG.setRoot(OutChain);
4595 }
4596 
4597 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4598   SDLoc dl = getCurSDLoc();
4599   ISD::NodeType NT;
4600   switch (I.getOperation()) {
4601   default: llvm_unreachable("Unknown atomicrmw operation");
4602   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4603   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4604   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4605   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4606   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4607   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4608   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4609   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4610   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4611   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4612   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4613   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4614   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4615   }
4616   AtomicOrdering Ordering = I.getOrdering();
4617   SyncScope::ID SSID = I.getSyncScopeID();
4618 
4619   SDValue InChain = getRoot();
4620 
4621   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4622   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4623   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4624 
4625   MachineFunction &MF = DAG.getMachineFunction();
4626   MachineMemOperand *MMO = MF.getMachineMemOperand(
4627       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4628       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
4629 
4630   SDValue L =
4631     DAG.getAtomic(NT, dl, MemVT, InChain,
4632                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4633                   MMO);
4634 
4635   SDValue OutChain = L.getValue(1);
4636 
4637   setValue(&I, L);
4638   DAG.setRoot(OutChain);
4639 }
4640 
4641 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4642   SDLoc dl = getCurSDLoc();
4643   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4644   SDValue Ops[3];
4645   Ops[0] = getRoot();
4646   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4647                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4648   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4649                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4650   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4651 }
4652 
4653 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4654   SDLoc dl = getCurSDLoc();
4655   AtomicOrdering Order = I.getOrdering();
4656   SyncScope::ID SSID = I.getSyncScopeID();
4657 
4658   SDValue InChain = getRoot();
4659 
4660   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4661   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4662   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4663 
4664   if (!TLI.supportsUnalignedAtomics() &&
4665       I.getAlignment() < MemVT.getSizeInBits() / 8)
4666     report_fatal_error("Cannot generate unaligned atomic load");
4667 
4668   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4669 
4670   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4671       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4672       I.getAlign(), AAMDNodes(), nullptr, SSID, Order);
4673 
4674   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4675 
4676   SDValue Ptr = getValue(I.getPointerOperand());
4677 
4678   if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4679     // TODO: Once this is better exercised by tests, it should be merged with
4680     // the normal path for loads to prevent future divergence.
4681     SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4682     if (MemVT != VT)
4683       L = DAG.getPtrExtOrTrunc(L, dl, VT);
4684 
4685     setValue(&I, L);
4686     SDValue OutChain = L.getValue(1);
4687     if (!I.isUnordered())
4688       DAG.setRoot(OutChain);
4689     else
4690       PendingLoads.push_back(OutChain);
4691     return;
4692   }
4693 
4694   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4695                             Ptr, MMO);
4696 
4697   SDValue OutChain = L.getValue(1);
4698   if (MemVT != VT)
4699     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4700 
4701   setValue(&I, L);
4702   DAG.setRoot(OutChain);
4703 }
4704 
4705 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4706   SDLoc dl = getCurSDLoc();
4707 
4708   AtomicOrdering Ordering = I.getOrdering();
4709   SyncScope::ID SSID = I.getSyncScopeID();
4710 
4711   SDValue InChain = getRoot();
4712 
4713   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4714   EVT MemVT =
4715       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4716 
4717   if (I.getAlignment() < MemVT.getSizeInBits() / 8)
4718     report_fatal_error("Cannot generate unaligned atomic store");
4719 
4720   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4721 
4722   MachineFunction &MF = DAG.getMachineFunction();
4723   MachineMemOperand *MMO = MF.getMachineMemOperand(
4724       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4725       I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
4726 
4727   SDValue Val = getValue(I.getValueOperand());
4728   if (Val.getValueType() != MemVT)
4729     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4730   SDValue Ptr = getValue(I.getPointerOperand());
4731 
4732   if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4733     // TODO: Once this is better exercised by tests, it should be merged with
4734     // the normal path for stores to prevent future divergence.
4735     SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4736     DAG.setRoot(S);
4737     return;
4738   }
4739   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4740                                    Ptr, Val, MMO);
4741 
4742 
4743   DAG.setRoot(OutChain);
4744 }
4745 
4746 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4747 /// node.
4748 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4749                                                unsigned Intrinsic) {
4750   // Ignore the callsite's attributes. A specific call site may be marked with
4751   // readnone, but the lowering code will expect the chain based on the
4752   // definition.
4753   const Function *F = I.getCalledFunction();
4754   bool HasChain = !F->doesNotAccessMemory();
4755   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4756 
4757   // Build the operand list.
4758   SmallVector<SDValue, 8> Ops;
4759   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4760     if (OnlyLoad) {
4761       // We don't need to serialize loads against other loads.
4762       Ops.push_back(DAG.getRoot());
4763     } else {
4764       Ops.push_back(getRoot());
4765     }
4766   }
4767 
4768   // Info is set by getTgtMemInstrinsic
4769   TargetLowering::IntrinsicInfo Info;
4770   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4771   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4772                                                DAG.getMachineFunction(),
4773                                                Intrinsic);
4774 
4775   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4776   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4777       Info.opc == ISD::INTRINSIC_W_CHAIN)
4778     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4779                                         TLI.getPointerTy(DAG.getDataLayout())));
4780 
4781   // Add all operands of the call to the operand list.
4782   for (unsigned i = 0, e = I.arg_size(); i != e; ++i) {
4783     const Value *Arg = I.getArgOperand(i);
4784     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4785       Ops.push_back(getValue(Arg));
4786       continue;
4787     }
4788 
4789     // Use TargetConstant instead of a regular constant for immarg.
4790     EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true);
4791     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4792       assert(CI->getBitWidth() <= 64 &&
4793              "large intrinsic immediates not handled");
4794       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4795     } else {
4796       Ops.push_back(
4797           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4798     }
4799   }
4800 
4801   SmallVector<EVT, 4> ValueVTs;
4802   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4803 
4804   if (HasChain)
4805     ValueVTs.push_back(MVT::Other);
4806 
4807   SDVTList VTs = DAG.getVTList(ValueVTs);
4808 
4809   // Propagate fast-math-flags from IR to node(s).
4810   SDNodeFlags Flags;
4811   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
4812     Flags.copyFMF(*FPMO);
4813   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
4814 
4815   // Create the node.
4816   SDValue Result;
4817   if (IsTgtIntrinsic) {
4818     // This is target intrinsic that touches memory
4819     Result =
4820         DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT,
4821                                 MachinePointerInfo(Info.ptrVal, Info.offset),
4822                                 Info.align, Info.flags, Info.size,
4823                                 I.getAAMetadata());
4824   } else if (!HasChain) {
4825     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4826   } else if (!I.getType()->isVoidTy()) {
4827     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4828   } else {
4829     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4830   }
4831 
4832   if (HasChain) {
4833     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4834     if (OnlyLoad)
4835       PendingLoads.push_back(Chain);
4836     else
4837       DAG.setRoot(Chain);
4838   }
4839 
4840   if (!I.getType()->isVoidTy()) {
4841     if (!isa<VectorType>(I.getType()))
4842       Result = lowerRangeToAssertZExt(DAG, I, Result);
4843 
4844     MaybeAlign Alignment = I.getRetAlign();
4845     if (!Alignment)
4846       Alignment = F->getAttributes().getRetAlignment();
4847     // Insert `assertalign` node if there's an alignment.
4848     if (InsertAssertAlign && Alignment) {
4849       Result =
4850           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
4851     }
4852 
4853     setValue(&I, Result);
4854   }
4855 }
4856 
4857 /// GetSignificand - Get the significand and build it into a floating-point
4858 /// number with exponent of 1:
4859 ///
4860 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4861 ///
4862 /// where Op is the hexadecimal representation of floating point value.
4863 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4864   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4865                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4866   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4867                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4868   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4869 }
4870 
4871 /// GetExponent - Get the exponent:
4872 ///
4873 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4874 ///
4875 /// where Op is the hexadecimal representation of floating point value.
4876 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4877                            const TargetLowering &TLI, const SDLoc &dl) {
4878   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4879                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4880   SDValue t1 = DAG.getNode(
4881       ISD::SRL, dl, MVT::i32, t0,
4882       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4883   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4884                            DAG.getConstant(127, dl, MVT::i32));
4885   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4886 }
4887 
4888 /// getF32Constant - Get 32-bit floating point constant.
4889 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4890                               const SDLoc &dl) {
4891   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4892                            MVT::f32);
4893 }
4894 
4895 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4896                                        SelectionDAG &DAG) {
4897   // TODO: What fast-math-flags should be set on the floating-point nodes?
4898 
4899   //   IntegerPartOfX = ((int32_t)(t0);
4900   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4901 
4902   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4903   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4904   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4905 
4906   //   IntegerPartOfX <<= 23;
4907   IntegerPartOfX = DAG.getNode(
4908       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4909       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4910                                   DAG.getDataLayout())));
4911 
4912   SDValue TwoToFractionalPartOfX;
4913   if (LimitFloatPrecision <= 6) {
4914     // For floating-point precision of 6:
4915     //
4916     //   TwoToFractionalPartOfX =
4917     //     0.997535578f +
4918     //       (0.735607626f + 0.252464424f * x) * x;
4919     //
4920     // error 0.0144103317, which is 6 bits
4921     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4922                              getF32Constant(DAG, 0x3e814304, dl));
4923     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4924                              getF32Constant(DAG, 0x3f3c50c8, dl));
4925     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4926     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4927                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4928   } else if (LimitFloatPrecision <= 12) {
4929     // For floating-point precision of 12:
4930     //
4931     //   TwoToFractionalPartOfX =
4932     //     0.999892986f +
4933     //       (0.696457318f +
4934     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4935     //
4936     // error 0.000107046256, which is 13 to 14 bits
4937     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4938                              getF32Constant(DAG, 0x3da235e3, dl));
4939     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4940                              getF32Constant(DAG, 0x3e65b8f3, dl));
4941     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4942     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4943                              getF32Constant(DAG, 0x3f324b07, dl));
4944     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4945     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4946                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4947   } else { // LimitFloatPrecision <= 18
4948     // For floating-point precision of 18:
4949     //
4950     //   TwoToFractionalPartOfX =
4951     //     0.999999982f +
4952     //       (0.693148872f +
4953     //         (0.240227044f +
4954     //           (0.554906021e-1f +
4955     //             (0.961591928e-2f +
4956     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4957     // error 2.47208000*10^(-7), which is better than 18 bits
4958     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4959                              getF32Constant(DAG, 0x3924b03e, dl));
4960     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4961                              getF32Constant(DAG, 0x3ab24b87, dl));
4962     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4963     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4964                              getF32Constant(DAG, 0x3c1d8c17, dl));
4965     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4966     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4967                              getF32Constant(DAG, 0x3d634a1d, dl));
4968     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4969     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4970                              getF32Constant(DAG, 0x3e75fe14, dl));
4971     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4972     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4973                               getF32Constant(DAG, 0x3f317234, dl));
4974     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4975     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4976                                          getF32Constant(DAG, 0x3f800000, dl));
4977   }
4978 
4979   // Add the exponent into the result in integer domain.
4980   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4981   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4982                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4983 }
4984 
4985 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4986 /// limited-precision mode.
4987 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4988                          const TargetLowering &TLI, SDNodeFlags Flags) {
4989   if (Op.getValueType() == MVT::f32 &&
4990       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4991 
4992     // Put the exponent in the right bit position for later addition to the
4993     // final result:
4994     //
4995     // t0 = Op * log2(e)
4996 
4997     // TODO: What fast-math-flags should be set here?
4998     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4999                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5000     return getLimitedPrecisionExp2(t0, dl, DAG);
5001   }
5002 
5003   // No special expansion.
5004   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
5005 }
5006 
5007 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5008 /// limited-precision mode.
5009 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5010                          const TargetLowering &TLI, SDNodeFlags Flags) {
5011   // TODO: What fast-math-flags should be set on the floating-point nodes?
5012 
5013   if (Op.getValueType() == MVT::f32 &&
5014       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5015     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5016 
5017     // Scale the exponent by log(2).
5018     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5019     SDValue LogOfExponent =
5020         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5021                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5022 
5023     // Get the significand and build it into a floating-point number with
5024     // exponent of 1.
5025     SDValue X = GetSignificand(DAG, Op1, dl);
5026 
5027     SDValue LogOfMantissa;
5028     if (LimitFloatPrecision <= 6) {
5029       // For floating-point precision of 6:
5030       //
5031       //   LogofMantissa =
5032       //     -1.1609546f +
5033       //       (1.4034025f - 0.23903021f * x) * x;
5034       //
5035       // error 0.0034276066, which is better than 8 bits
5036       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5037                                getF32Constant(DAG, 0xbe74c456, dl));
5038       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5039                                getF32Constant(DAG, 0x3fb3a2b1, dl));
5040       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5041       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5042                                   getF32Constant(DAG, 0x3f949a29, dl));
5043     } else if (LimitFloatPrecision <= 12) {
5044       // For floating-point precision of 12:
5045       //
5046       //   LogOfMantissa =
5047       //     -1.7417939f +
5048       //       (2.8212026f +
5049       //         (-1.4699568f +
5050       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5051       //
5052       // error 0.000061011436, which is 14 bits
5053       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5054                                getF32Constant(DAG, 0xbd67b6d6, dl));
5055       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5056                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5057       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5058       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5059                                getF32Constant(DAG, 0x3fbc278b, dl));
5060       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5061       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5062                                getF32Constant(DAG, 0x40348e95, dl));
5063       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5064       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5065                                   getF32Constant(DAG, 0x3fdef31a, dl));
5066     } else { // LimitFloatPrecision <= 18
5067       // For floating-point precision of 18:
5068       //
5069       //   LogOfMantissa =
5070       //     -2.1072184f +
5071       //       (4.2372794f +
5072       //         (-3.7029485f +
5073       //           (2.2781945f +
5074       //             (-0.87823314f +
5075       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5076       //
5077       // error 0.0000023660568, which is better than 18 bits
5078       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5079                                getF32Constant(DAG, 0xbc91e5ac, dl));
5080       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5081                                getF32Constant(DAG, 0x3e4350aa, dl));
5082       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5083       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5084                                getF32Constant(DAG, 0x3f60d3e3, dl));
5085       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5086       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5087                                getF32Constant(DAG, 0x4011cdf0, dl));
5088       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5089       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5090                                getF32Constant(DAG, 0x406cfd1c, dl));
5091       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5092       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5093                                getF32Constant(DAG, 0x408797cb, dl));
5094       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5095       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5096                                   getF32Constant(DAG, 0x4006dcab, dl));
5097     }
5098 
5099     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5100   }
5101 
5102   // No special expansion.
5103   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5104 }
5105 
5106 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5107 /// limited-precision mode.
5108 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5109                           const TargetLowering &TLI, SDNodeFlags Flags) {
5110   // TODO: What fast-math-flags should be set on the floating-point nodes?
5111 
5112   if (Op.getValueType() == MVT::f32 &&
5113       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5114     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5115 
5116     // Get the exponent.
5117     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5118 
5119     // Get the significand and build it into a floating-point number with
5120     // exponent of 1.
5121     SDValue X = GetSignificand(DAG, Op1, dl);
5122 
5123     // Different possible minimax approximations of significand in
5124     // floating-point for various degrees of accuracy over [1,2].
5125     SDValue Log2ofMantissa;
5126     if (LimitFloatPrecision <= 6) {
5127       // For floating-point precision of 6:
5128       //
5129       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5130       //
5131       // error 0.0049451742, which is more than 7 bits
5132       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5133                                getF32Constant(DAG, 0xbeb08fe0, dl));
5134       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5135                                getF32Constant(DAG, 0x40019463, dl));
5136       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5137       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5138                                    getF32Constant(DAG, 0x3fd6633d, dl));
5139     } else if (LimitFloatPrecision <= 12) {
5140       // For floating-point precision of 12:
5141       //
5142       //   Log2ofMantissa =
5143       //     -2.51285454f +
5144       //       (4.07009056f +
5145       //         (-2.12067489f +
5146       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5147       //
5148       // error 0.0000876136000, which is better than 13 bits
5149       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5150                                getF32Constant(DAG, 0xbda7262e, dl));
5151       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5152                                getF32Constant(DAG, 0x3f25280b, dl));
5153       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5154       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5155                                getF32Constant(DAG, 0x4007b923, dl));
5156       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5157       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5158                                getF32Constant(DAG, 0x40823e2f, dl));
5159       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5160       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5161                                    getF32Constant(DAG, 0x4020d29c, dl));
5162     } else { // LimitFloatPrecision <= 18
5163       // For floating-point precision of 18:
5164       //
5165       //   Log2ofMantissa =
5166       //     -3.0400495f +
5167       //       (6.1129976f +
5168       //         (-5.3420409f +
5169       //           (3.2865683f +
5170       //             (-1.2669343f +
5171       //               (0.27515199f -
5172       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5173       //
5174       // error 0.0000018516, which is better than 18 bits
5175       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5176                                getF32Constant(DAG, 0xbcd2769e, dl));
5177       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5178                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5179       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5180       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5181                                getF32Constant(DAG, 0x3fa22ae7, dl));
5182       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5183       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5184                                getF32Constant(DAG, 0x40525723, dl));
5185       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5186       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5187                                getF32Constant(DAG, 0x40aaf200, dl));
5188       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5189       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5190                                getF32Constant(DAG, 0x40c39dad, dl));
5191       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5192       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5193                                    getF32Constant(DAG, 0x4042902c, dl));
5194     }
5195 
5196     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5197   }
5198 
5199   // No special expansion.
5200   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5201 }
5202 
5203 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5204 /// limited-precision mode.
5205 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5206                            const TargetLowering &TLI, SDNodeFlags Flags) {
5207   // TODO: What fast-math-flags should be set on the floating-point nodes?
5208 
5209   if (Op.getValueType() == MVT::f32 &&
5210       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5211     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5212 
5213     // Scale the exponent by log10(2) [0.30102999f].
5214     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5215     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5216                                         getF32Constant(DAG, 0x3e9a209a, dl));
5217 
5218     // Get the significand and build it into a floating-point number with
5219     // exponent of 1.
5220     SDValue X = GetSignificand(DAG, Op1, dl);
5221 
5222     SDValue Log10ofMantissa;
5223     if (LimitFloatPrecision <= 6) {
5224       // For floating-point precision of 6:
5225       //
5226       //   Log10ofMantissa =
5227       //     -0.50419619f +
5228       //       (0.60948995f - 0.10380950f * x) * x;
5229       //
5230       // error 0.0014886165, which is 6 bits
5231       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5232                                getF32Constant(DAG, 0xbdd49a13, dl));
5233       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5234                                getF32Constant(DAG, 0x3f1c0789, dl));
5235       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5236       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5237                                     getF32Constant(DAG, 0x3f011300, dl));
5238     } else if (LimitFloatPrecision <= 12) {
5239       // For floating-point precision of 12:
5240       //
5241       //   Log10ofMantissa =
5242       //     -0.64831180f +
5243       //       (0.91751397f +
5244       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5245       //
5246       // error 0.00019228036, which is better than 12 bits
5247       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5248                                getF32Constant(DAG, 0x3d431f31, dl));
5249       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5250                                getF32Constant(DAG, 0x3ea21fb2, dl));
5251       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5252       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5253                                getF32Constant(DAG, 0x3f6ae232, dl));
5254       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5255       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5256                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5257     } else { // LimitFloatPrecision <= 18
5258       // For floating-point precision of 18:
5259       //
5260       //   Log10ofMantissa =
5261       //     -0.84299375f +
5262       //       (1.5327582f +
5263       //         (-1.0688956f +
5264       //           (0.49102474f +
5265       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5266       //
5267       // error 0.0000037995730, which is better than 18 bits
5268       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5269                                getF32Constant(DAG, 0x3c5d51ce, dl));
5270       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5271                                getF32Constant(DAG, 0x3e00685a, dl));
5272       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5273       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5274                                getF32Constant(DAG, 0x3efb6798, dl));
5275       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5276       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5277                                getF32Constant(DAG, 0x3f88d192, dl));
5278       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5279       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5280                                getF32Constant(DAG, 0x3fc4316c, dl));
5281       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5282       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5283                                     getF32Constant(DAG, 0x3f57ce70, dl));
5284     }
5285 
5286     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5287   }
5288 
5289   // No special expansion.
5290   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5291 }
5292 
5293 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5294 /// limited-precision mode.
5295 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5296                           const TargetLowering &TLI, SDNodeFlags Flags) {
5297   if (Op.getValueType() == MVT::f32 &&
5298       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5299     return getLimitedPrecisionExp2(Op, dl, DAG);
5300 
5301   // No special expansion.
5302   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5303 }
5304 
5305 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5306 /// limited-precision mode with x == 10.0f.
5307 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5308                          SelectionDAG &DAG, const TargetLowering &TLI,
5309                          SDNodeFlags Flags) {
5310   bool IsExp10 = false;
5311   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5312       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5313     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5314       APFloat Ten(10.0f);
5315       IsExp10 = LHSC->isExactlyValue(Ten);
5316     }
5317   }
5318 
5319   // TODO: What fast-math-flags should be set on the FMUL node?
5320   if (IsExp10) {
5321     // Put the exponent in the right bit position for later addition to the
5322     // final result:
5323     //
5324     //   #define LOG2OF10 3.3219281f
5325     //   t0 = Op * LOG2OF10;
5326     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5327                              getF32Constant(DAG, 0x40549a78, dl));
5328     return getLimitedPrecisionExp2(t0, dl, DAG);
5329   }
5330 
5331   // No special expansion.
5332   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5333 }
5334 
5335 /// ExpandPowI - Expand a llvm.powi intrinsic.
5336 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5337                           SelectionDAG &DAG) {
5338   // If RHS is a constant, we can expand this out to a multiplication tree,
5339   // otherwise we end up lowering to a call to __powidf2 (for example).  When
5340   // optimizing for size, we only want to do this if the expansion would produce
5341   // a small number of multiplies, otherwise we do the full expansion.
5342   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5343     // Get the exponent as a positive value.
5344     unsigned Val = RHSC->getSExtValue();
5345     if ((int)Val < 0) Val = -Val;
5346 
5347     // powi(x, 0) -> 1.0
5348     if (Val == 0)
5349       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5350 
5351     bool OptForSize = DAG.shouldOptForSize();
5352     if (!OptForSize ||
5353         // If optimizing for size, don't insert too many multiplies.
5354         // This inserts up to 5 multiplies.
5355         countPopulation(Val) + Log2_32(Val) < 7) {
5356       // We use the simple binary decomposition method to generate the multiply
5357       // sequence.  There are more optimal ways to do this (for example,
5358       // powi(x,15) generates one more multiply than it should), but this has
5359       // the benefit of being both really simple and much better than a libcall.
5360       SDValue Res;  // Logically starts equal to 1.0
5361       SDValue CurSquare = LHS;
5362       // TODO: Intrinsics should have fast-math-flags that propagate to these
5363       // nodes.
5364       while (Val) {
5365         if (Val & 1) {
5366           if (Res.getNode())
5367             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
5368           else
5369             Res = CurSquare;  // 1.0*CurSquare.
5370         }
5371 
5372         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5373                                 CurSquare, CurSquare);
5374         Val >>= 1;
5375       }
5376 
5377       // If the original was negative, invert the result, producing 1/(x*x*x).
5378       if (RHSC->getSExtValue() < 0)
5379         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5380                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5381       return Res;
5382     }
5383   }
5384 
5385   // Otherwise, expand to a libcall.
5386   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5387 }
5388 
5389 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5390                             SDValue LHS, SDValue RHS, SDValue Scale,
5391                             SelectionDAG &DAG, const TargetLowering &TLI) {
5392   EVT VT = LHS.getValueType();
5393   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5394   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5395   LLVMContext &Ctx = *DAG.getContext();
5396 
5397   // If the type is legal but the operation isn't, this node might survive all
5398   // the way to operation legalization. If we end up there and we do not have
5399   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5400   // node.
5401 
5402   // Coax the legalizer into expanding the node during type legalization instead
5403   // by bumping the size by one bit. This will force it to Promote, enabling the
5404   // early expansion and avoiding the need to expand later.
5405 
5406   // We don't have to do this if Scale is 0; that can always be expanded, unless
5407   // it's a saturating signed operation. Those can experience true integer
5408   // division overflow, a case which we must avoid.
5409 
5410   // FIXME: We wouldn't have to do this (or any of the early
5411   // expansion/promotion) if it was possible to expand a libcall of an
5412   // illegal type during operation legalization. But it's not, so things
5413   // get a bit hacky.
5414   unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
5415   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5416       (TLI.isTypeLegal(VT) ||
5417        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5418     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5419         Opcode, VT, ScaleInt);
5420     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5421       EVT PromVT;
5422       if (VT.isScalarInteger())
5423         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5424       else if (VT.isVector()) {
5425         PromVT = VT.getVectorElementType();
5426         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5427         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5428       } else
5429         llvm_unreachable("Wrong VT for DIVFIX?");
5430       if (Signed) {
5431         LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT);
5432         RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT);
5433       } else {
5434         LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT);
5435         RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT);
5436       }
5437       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5438       // For saturating operations, we need to shift up the LHS to get the
5439       // proper saturation width, and then shift down again afterwards.
5440       if (Saturating)
5441         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5442                           DAG.getConstant(1, DL, ShiftTy));
5443       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5444       if (Saturating)
5445         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5446                           DAG.getConstant(1, DL, ShiftTy));
5447       return DAG.getZExtOrTrunc(Res, DL, VT);
5448     }
5449   }
5450 
5451   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5452 }
5453 
5454 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5455 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5456 static void
5457 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs,
5458                      const SDValue &N) {
5459   switch (N.getOpcode()) {
5460   case ISD::CopyFromReg: {
5461     SDValue Op = N.getOperand(1);
5462     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5463                       Op.getValueType().getSizeInBits());
5464     return;
5465   }
5466   case ISD::BITCAST:
5467   case ISD::AssertZext:
5468   case ISD::AssertSext:
5469   case ISD::TRUNCATE:
5470     getUnderlyingArgRegs(Regs, N.getOperand(0));
5471     return;
5472   case ISD::BUILD_PAIR:
5473   case ISD::BUILD_VECTOR:
5474   case ISD::CONCAT_VECTORS:
5475     for (SDValue Op : N->op_values())
5476       getUnderlyingArgRegs(Regs, Op);
5477     return;
5478   default:
5479     return;
5480   }
5481 }
5482 
5483 /// If the DbgValueInst is a dbg_value of a function argument, create the
5484 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5485 /// instruction selection, they will be inserted to the entry BB.
5486 /// We don't currently support this for variadic dbg_values, as they shouldn't
5487 /// appear for function arguments or in the prologue.
5488 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5489     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5490     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
5491   const Argument *Arg = dyn_cast<Argument>(V);
5492   if (!Arg)
5493     return false;
5494 
5495   MachineFunction &MF = DAG.getMachineFunction();
5496   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5497 
5498   // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind
5499   // we've been asked to pursue.
5500   auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr,
5501                               bool Indirect) {
5502     if (Reg.isVirtual() && MF.useDebugInstrRef()) {
5503       // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF
5504       // pointing at the VReg, which will be patched up later.
5505       auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF);
5506       auto MIB = BuildMI(MF, DL, Inst);
5507       MIB.addReg(Reg);
5508       MIB.addImm(0);
5509       MIB.addMetadata(Variable);
5510       auto *NewDIExpr = FragExpr;
5511       // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into
5512       // the DIExpression.
5513       if (Indirect)
5514         NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore);
5515       MIB.addMetadata(NewDIExpr);
5516       return MIB;
5517     } else {
5518       // Create a completely standard DBG_VALUE.
5519       auto &Inst = TII->get(TargetOpcode::DBG_VALUE);
5520       return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr);
5521     }
5522   };
5523 
5524   if (!IsDbgDeclare) {
5525     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5526     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5527     // the entry block.
5528     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5529     if (!IsInEntryBlock)
5530       return false;
5531 
5532     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5533     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5534     // variable that also is a param.
5535     //
5536     // Although, if we are at the top of the entry block already, we can still
5537     // emit using ArgDbgValue. This might catch some situations when the
5538     // dbg.value refers to an argument that isn't used in the entry block, so
5539     // any CopyToReg node would be optimized out and the only way to express
5540     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5541     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5542     // we should only emit as ArgDbgValue if the Variable is an argument to the
5543     // current function, and the dbg.value intrinsic is found in the entry
5544     // block.
5545     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5546         !DL->getInlinedAt();
5547     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5548     if (!IsInPrologue && !VariableIsFunctionInputArg)
5549       return false;
5550 
5551     // Here we assume that a function argument on IR level only can be used to
5552     // describe one input parameter on source level. If we for example have
5553     // source code like this
5554     //
5555     //    struct A { long x, y; };
5556     //    void foo(struct A a, long b) {
5557     //      ...
5558     //      b = a.x;
5559     //      ...
5560     //    }
5561     //
5562     // and IR like this
5563     //
5564     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5565     //  entry:
5566     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5567     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5568     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5569     //    ...
5570     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5571     //    ...
5572     //
5573     // then the last dbg.value is describing a parameter "b" using a value that
5574     // is an argument. But since we already has used %a1 to describe a parameter
5575     // we should not handle that last dbg.value here (that would result in an
5576     // incorrect hoisting of the DBG_VALUE to the function entry).
5577     // Notice that we allow one dbg.value per IR level argument, to accommodate
5578     // for the situation with fragments above.
5579     if (VariableIsFunctionInputArg) {
5580       unsigned ArgNo = Arg->getArgNo();
5581       if (ArgNo >= FuncInfo.DescribedArgs.size())
5582         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5583       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5584         return false;
5585       FuncInfo.DescribedArgs.set(ArgNo);
5586     }
5587   }
5588 
5589   bool IsIndirect = false;
5590   Optional<MachineOperand> Op;
5591   // Some arguments' frame index is recorded during argument lowering.
5592   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5593   if (FI != std::numeric_limits<int>::max())
5594     Op = MachineOperand::CreateFI(FI);
5595 
5596   SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes;
5597   if (!Op && N.getNode()) {
5598     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5599     Register Reg;
5600     if (ArgRegsAndSizes.size() == 1)
5601       Reg = ArgRegsAndSizes.front().first;
5602 
5603     if (Reg && Reg.isVirtual()) {
5604       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5605       Register PR = RegInfo.getLiveInPhysReg(Reg);
5606       if (PR)
5607         Reg = PR;
5608     }
5609     if (Reg) {
5610       Op = MachineOperand::CreateReg(Reg, false);
5611       IsIndirect = IsDbgDeclare;
5612     }
5613   }
5614 
5615   if (!Op && N.getNode()) {
5616     // Check if frame index is available.
5617     SDValue LCandidate = peekThroughBitcasts(N);
5618     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5619       if (FrameIndexSDNode *FINode =
5620           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5621         Op = MachineOperand::CreateFI(FINode->getIndex());
5622   }
5623 
5624   if (!Op) {
5625     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5626     auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>>
5627                                          SplitRegs) {
5628       unsigned Offset = 0;
5629       for (const auto &RegAndSize : SplitRegs) {
5630         // If the expression is already a fragment, the current register
5631         // offset+size might extend beyond the fragment. In this case, only
5632         // the register bits that are inside the fragment are relevant.
5633         int RegFragmentSizeInBits = RegAndSize.second;
5634         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5635           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5636           // The register is entirely outside the expression fragment,
5637           // so is irrelevant for debug info.
5638           if (Offset >= ExprFragmentSizeInBits)
5639             break;
5640           // The register is partially outside the expression fragment, only
5641           // the low bits within the fragment are relevant for debug info.
5642           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5643             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5644           }
5645         }
5646 
5647         auto FragmentExpr = DIExpression::createFragmentExpression(
5648             Expr, Offset, RegFragmentSizeInBits);
5649         Offset += RegAndSize.second;
5650         // If a valid fragment expression cannot be created, the variable's
5651         // correct value cannot be determined and so it is set as Undef.
5652         if (!FragmentExpr) {
5653           SDDbgValue *SDV = DAG.getConstantDbgValue(
5654               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5655           DAG.AddDbgValue(SDV, false);
5656           continue;
5657         }
5658         MachineInstr *NewMI =
5659             MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, IsDbgDeclare);
5660         FuncInfo.ArgDbgValues.push_back(NewMI);
5661       }
5662     };
5663 
5664     // Check if ValueMap has reg number.
5665     DenseMap<const Value *, Register>::const_iterator
5666       VMI = FuncInfo.ValueMap.find(V);
5667     if (VMI != FuncInfo.ValueMap.end()) {
5668       const auto &TLI = DAG.getTargetLoweringInfo();
5669       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5670                        V->getType(), None);
5671       if (RFV.occupiesMultipleRegs()) {
5672         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5673         return true;
5674       }
5675 
5676       Op = MachineOperand::CreateReg(VMI->second, false);
5677       IsIndirect = IsDbgDeclare;
5678     } else if (ArgRegsAndSizes.size() > 1) {
5679       // This was split due to the calling convention, and no virtual register
5680       // mapping exists for the value.
5681       splitMultiRegDbgValue(ArgRegsAndSizes);
5682       return true;
5683     }
5684   }
5685 
5686   if (!Op)
5687     return false;
5688 
5689   assert(Variable->isValidLocationForIntrinsic(DL) &&
5690          "Expected inlined-at fields to agree");
5691   MachineInstr *NewMI = nullptr;
5692 
5693   if (Op->isReg())
5694     NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect);
5695   else
5696     NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op,
5697                     Variable, Expr);
5698 
5699   FuncInfo.ArgDbgValues.push_back(NewMI);
5700   return true;
5701 }
5702 
5703 /// Return the appropriate SDDbgValue based on N.
5704 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5705                                              DILocalVariable *Variable,
5706                                              DIExpression *Expr,
5707                                              const DebugLoc &dl,
5708                                              unsigned DbgSDNodeOrder) {
5709   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5710     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5711     // stack slot locations.
5712     //
5713     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5714     // debug values here after optimization:
5715     //
5716     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5717     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5718     //
5719     // Both describe the direct values of their associated variables.
5720     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5721                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5722   }
5723   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5724                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5725 }
5726 
5727 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5728   switch (Intrinsic) {
5729   case Intrinsic::smul_fix:
5730     return ISD::SMULFIX;
5731   case Intrinsic::umul_fix:
5732     return ISD::UMULFIX;
5733   case Intrinsic::smul_fix_sat:
5734     return ISD::SMULFIXSAT;
5735   case Intrinsic::umul_fix_sat:
5736     return ISD::UMULFIXSAT;
5737   case Intrinsic::sdiv_fix:
5738     return ISD::SDIVFIX;
5739   case Intrinsic::udiv_fix:
5740     return ISD::UDIVFIX;
5741   case Intrinsic::sdiv_fix_sat:
5742     return ISD::SDIVFIXSAT;
5743   case Intrinsic::udiv_fix_sat:
5744     return ISD::UDIVFIXSAT;
5745   default:
5746     llvm_unreachable("Unhandled fixed point intrinsic");
5747   }
5748 }
5749 
5750 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5751                                            const char *FunctionName) {
5752   assert(FunctionName && "FunctionName must not be nullptr");
5753   SDValue Callee = DAG.getExternalSymbol(
5754       FunctionName,
5755       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5756   LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
5757 }
5758 
5759 /// Given a @llvm.call.preallocated.setup, return the corresponding
5760 /// preallocated call.
5761 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
5762   assert(cast<CallBase>(PreallocatedSetup)
5763                  ->getCalledFunction()
5764                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
5765          "expected call_preallocated_setup Value");
5766   for (auto *U : PreallocatedSetup->users()) {
5767     auto *UseCall = cast<CallBase>(U);
5768     const Function *Fn = UseCall->getCalledFunction();
5769     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
5770       return UseCall;
5771     }
5772   }
5773   llvm_unreachable("expected corresponding call to preallocated setup/arg");
5774 }
5775 
5776 /// Lower the call to the specified intrinsic function.
5777 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5778                                              unsigned Intrinsic) {
5779   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5780   SDLoc sdl = getCurSDLoc();
5781   DebugLoc dl = getCurDebugLoc();
5782   SDValue Res;
5783 
5784   SDNodeFlags Flags;
5785   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
5786     Flags.copyFMF(*FPOp);
5787 
5788   switch (Intrinsic) {
5789   default:
5790     // By default, turn this into a target intrinsic node.
5791     visitTargetIntrinsic(I, Intrinsic);
5792     return;
5793   case Intrinsic::vscale: {
5794     match(&I, m_VScale(DAG.getDataLayout()));
5795     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5796     setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1)));
5797     return;
5798   }
5799   case Intrinsic::vastart:  visitVAStart(I); return;
5800   case Intrinsic::vaend:    visitVAEnd(I); return;
5801   case Intrinsic::vacopy:   visitVACopy(I); return;
5802   case Intrinsic::returnaddress:
5803     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5804                              TLI.getPointerTy(DAG.getDataLayout()),
5805                              getValue(I.getArgOperand(0))));
5806     return;
5807   case Intrinsic::addressofreturnaddress:
5808     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5809                              TLI.getPointerTy(DAG.getDataLayout())));
5810     return;
5811   case Intrinsic::sponentry:
5812     setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl,
5813                              TLI.getFrameIndexTy(DAG.getDataLayout())));
5814     return;
5815   case Intrinsic::frameaddress:
5816     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5817                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5818                              getValue(I.getArgOperand(0))));
5819     return;
5820   case Intrinsic::read_volatile_register:
5821   case Intrinsic::read_register: {
5822     Value *Reg = I.getArgOperand(0);
5823     SDValue Chain = getRoot();
5824     SDValue RegName =
5825         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5826     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5827     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5828       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5829     setValue(&I, Res);
5830     DAG.setRoot(Res.getValue(1));
5831     return;
5832   }
5833   case Intrinsic::write_register: {
5834     Value *Reg = I.getArgOperand(0);
5835     Value *RegValue = I.getArgOperand(1);
5836     SDValue Chain = getRoot();
5837     SDValue RegName =
5838         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5839     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5840                             RegName, getValue(RegValue)));
5841     return;
5842   }
5843   case Intrinsic::memcpy: {
5844     const auto &MCI = cast<MemCpyInst>(I);
5845     SDValue Op1 = getValue(I.getArgOperand(0));
5846     SDValue Op2 = getValue(I.getArgOperand(1));
5847     SDValue Op3 = getValue(I.getArgOperand(2));
5848     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5849     Align DstAlign = MCI.getDestAlign().valueOrOne();
5850     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5851     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5852     bool isVol = MCI.isVolatile();
5853     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5854     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5855     // node.
5856     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5857     SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5858                                /* AlwaysInline */ false, isTC,
5859                                MachinePointerInfo(I.getArgOperand(0)),
5860                                MachinePointerInfo(I.getArgOperand(1)),
5861                                I.getAAMetadata());
5862     updateDAGForMaybeTailCall(MC);
5863     return;
5864   }
5865   case Intrinsic::memcpy_inline: {
5866     const auto &MCI = cast<MemCpyInlineInst>(I);
5867     SDValue Dst = getValue(I.getArgOperand(0));
5868     SDValue Src = getValue(I.getArgOperand(1));
5869     SDValue Size = getValue(I.getArgOperand(2));
5870     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
5871     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
5872     Align DstAlign = MCI.getDestAlign().valueOrOne();
5873     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5874     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5875     bool isVol = MCI.isVolatile();
5876     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5877     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5878     // node.
5879     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
5880                                /* AlwaysInline */ true, isTC,
5881                                MachinePointerInfo(I.getArgOperand(0)),
5882                                MachinePointerInfo(I.getArgOperand(1)),
5883                                I.getAAMetadata());
5884     updateDAGForMaybeTailCall(MC);
5885     return;
5886   }
5887   case Intrinsic::memset: {
5888     const auto &MSI = cast<MemSetInst>(I);
5889     SDValue Op1 = getValue(I.getArgOperand(0));
5890     SDValue Op2 = getValue(I.getArgOperand(1));
5891     SDValue Op3 = getValue(I.getArgOperand(2));
5892     // @llvm.memset defines 0 and 1 to both mean no alignment.
5893     Align Alignment = MSI.getDestAlign().valueOrOne();
5894     bool isVol = MSI.isVolatile();
5895     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5896     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5897     SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC,
5898                                MachinePointerInfo(I.getArgOperand(0)),
5899                                I.getAAMetadata());
5900     updateDAGForMaybeTailCall(MS);
5901     return;
5902   }
5903   case Intrinsic::memmove: {
5904     const auto &MMI = cast<MemMoveInst>(I);
5905     SDValue Op1 = getValue(I.getArgOperand(0));
5906     SDValue Op2 = getValue(I.getArgOperand(1));
5907     SDValue Op3 = getValue(I.getArgOperand(2));
5908     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5909     Align DstAlign = MMI.getDestAlign().valueOrOne();
5910     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
5911     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5912     bool isVol = MMI.isVolatile();
5913     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5914     // FIXME: Support passing different dest/src alignments to the memmove DAG
5915     // node.
5916     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5917     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5918                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5919                                 MachinePointerInfo(I.getArgOperand(1)),
5920                                 I.getAAMetadata());
5921     updateDAGForMaybeTailCall(MM);
5922     return;
5923   }
5924   case Intrinsic::memcpy_element_unordered_atomic: {
5925     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5926     SDValue Dst = getValue(MI.getRawDest());
5927     SDValue Src = getValue(MI.getRawSource());
5928     SDValue Length = getValue(MI.getLength());
5929 
5930     unsigned DstAlign = MI.getDestAlignment();
5931     unsigned SrcAlign = MI.getSourceAlignment();
5932     Type *LengthTy = MI.getLength()->getType();
5933     unsigned ElemSz = MI.getElementSizeInBytes();
5934     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5935     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5936                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5937                                      MachinePointerInfo(MI.getRawDest()),
5938                                      MachinePointerInfo(MI.getRawSource()));
5939     updateDAGForMaybeTailCall(MC);
5940     return;
5941   }
5942   case Intrinsic::memmove_element_unordered_atomic: {
5943     auto &MI = cast<AtomicMemMoveInst>(I);
5944     SDValue Dst = getValue(MI.getRawDest());
5945     SDValue Src = getValue(MI.getRawSource());
5946     SDValue Length = getValue(MI.getLength());
5947 
5948     unsigned DstAlign = MI.getDestAlignment();
5949     unsigned SrcAlign = MI.getSourceAlignment();
5950     Type *LengthTy = MI.getLength()->getType();
5951     unsigned ElemSz = MI.getElementSizeInBytes();
5952     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5953     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5954                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5955                                       MachinePointerInfo(MI.getRawDest()),
5956                                       MachinePointerInfo(MI.getRawSource()));
5957     updateDAGForMaybeTailCall(MC);
5958     return;
5959   }
5960   case Intrinsic::memset_element_unordered_atomic: {
5961     auto &MI = cast<AtomicMemSetInst>(I);
5962     SDValue Dst = getValue(MI.getRawDest());
5963     SDValue Val = getValue(MI.getValue());
5964     SDValue Length = getValue(MI.getLength());
5965 
5966     unsigned DstAlign = MI.getDestAlignment();
5967     Type *LengthTy = MI.getLength()->getType();
5968     unsigned ElemSz = MI.getElementSizeInBytes();
5969     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5970     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5971                                      LengthTy, ElemSz, isTC,
5972                                      MachinePointerInfo(MI.getRawDest()));
5973     updateDAGForMaybeTailCall(MC);
5974     return;
5975   }
5976   case Intrinsic::call_preallocated_setup: {
5977     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
5978     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
5979     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
5980                               getRoot(), SrcValue);
5981     setValue(&I, Res);
5982     DAG.setRoot(Res);
5983     return;
5984   }
5985   case Intrinsic::call_preallocated_arg: {
5986     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
5987     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
5988     SDValue Ops[3];
5989     Ops[0] = getRoot();
5990     Ops[1] = SrcValue;
5991     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
5992                                    MVT::i32); // arg index
5993     SDValue Res = DAG.getNode(
5994         ISD::PREALLOCATED_ARG, sdl,
5995         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
5996     setValue(&I, Res);
5997     DAG.setRoot(Res.getValue(1));
5998     return;
5999   }
6000   case Intrinsic::dbg_addr:
6001   case Intrinsic::dbg_declare: {
6002     // Assume dbg.addr and dbg.declare can not currently use DIArgList, i.e.
6003     // they are non-variadic.
6004     const auto &DI = cast<DbgVariableIntrinsic>(I);
6005     assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList");
6006     DILocalVariable *Variable = DI.getVariable();
6007     DIExpression *Expression = DI.getExpression();
6008     dropDanglingDebugInfo(Variable, Expression);
6009     assert(Variable && "Missing variable");
6010     LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI
6011                       << "\n");
6012     // Check if address has undef value.
6013     const Value *Address = DI.getVariableLocationOp(0);
6014     if (!Address || isa<UndefValue>(Address) ||
6015         (Address->use_empty() && !isa<Argument>(Address))) {
6016       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6017                         << " (bad/undef/unused-arg address)\n");
6018       return;
6019     }
6020 
6021     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
6022 
6023     // Check if this variable can be described by a frame index, typically
6024     // either as a static alloca or a byval parameter.
6025     int FI = std::numeric_limits<int>::max();
6026     if (const auto *AI =
6027             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
6028       if (AI->isStaticAlloca()) {
6029         auto I = FuncInfo.StaticAllocaMap.find(AI);
6030         if (I != FuncInfo.StaticAllocaMap.end())
6031           FI = I->second;
6032       }
6033     } else if (const auto *Arg = dyn_cast<Argument>(
6034                    Address->stripInBoundsConstantOffsets())) {
6035       FI = FuncInfo.getArgumentFrameIndex(Arg);
6036     }
6037 
6038     // llvm.dbg.addr is control dependent and always generates indirect
6039     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
6040     // the MachineFunction variable table.
6041     if (FI != std::numeric_limits<int>::max()) {
6042       if (Intrinsic == Intrinsic::dbg_addr) {
6043         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
6044             Variable, Expression, FI, getRoot().getNode(), /*IsIndirect*/ true,
6045             dl, SDNodeOrder);
6046         DAG.AddDbgValue(SDV, isParameter);
6047       } else {
6048         LLVM_DEBUG(dbgs() << "Skipping " << DI
6049                           << " (variable info stashed in MF side table)\n");
6050       }
6051       return;
6052     }
6053 
6054     SDValue &N = NodeMap[Address];
6055     if (!N.getNode() && isa<Argument>(Address))
6056       // Check unused arguments map.
6057       N = UnusedArgNodeMap[Address];
6058     SDDbgValue *SDV;
6059     if (N.getNode()) {
6060       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
6061         Address = BCI->getOperand(0);
6062       // Parameters are handled specially.
6063       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
6064       if (isParameter && FINode) {
6065         // Byval parameter. We have a frame index at this point.
6066         SDV =
6067             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
6068                                       /*IsIndirect*/ true, dl, SDNodeOrder);
6069       } else if (isa<Argument>(Address)) {
6070         // Address is an argument, so try to emit its dbg value using
6071         // virtual register info from the FuncInfo.ValueMap.
6072         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
6073         return;
6074       } else {
6075         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
6076                               true, dl, SDNodeOrder);
6077       }
6078       DAG.AddDbgValue(SDV, isParameter);
6079     } else {
6080       // If Address is an argument then try to emit its dbg value using
6081       // virtual register info from the FuncInfo.ValueMap.
6082       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
6083                                     N)) {
6084         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6085                           << " (could not emit func-arg dbg_value)\n");
6086       }
6087     }
6088     return;
6089   }
6090   case Intrinsic::dbg_label: {
6091     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
6092     DILabel *Label = DI.getLabel();
6093     assert(Label && "Missing label");
6094 
6095     SDDbgLabel *SDV;
6096     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
6097     DAG.AddDbgLabel(SDV);
6098     return;
6099   }
6100   case Intrinsic::dbg_value: {
6101     const DbgValueInst &DI = cast<DbgValueInst>(I);
6102     assert(DI.getVariable() && "Missing variable");
6103 
6104     DILocalVariable *Variable = DI.getVariable();
6105     DIExpression *Expression = DI.getExpression();
6106     dropDanglingDebugInfo(Variable, Expression);
6107     SmallVector<Value *, 4> Values(DI.getValues());
6108     if (Values.empty())
6109       return;
6110 
6111     if (llvm::is_contained(Values, nullptr))
6112       return;
6113 
6114     bool IsVariadic = DI.hasArgList();
6115     if (!handleDebugValue(Values, Variable, Expression, dl, DI.getDebugLoc(),
6116                           SDNodeOrder, IsVariadic))
6117       addDanglingDebugInfo(&DI, dl, SDNodeOrder);
6118     return;
6119   }
6120 
6121   case Intrinsic::eh_typeid_for: {
6122     // Find the type id for the given typeinfo.
6123     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6124     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6125     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6126     setValue(&I, Res);
6127     return;
6128   }
6129 
6130   case Intrinsic::eh_return_i32:
6131   case Intrinsic::eh_return_i64:
6132     DAG.getMachineFunction().setCallsEHReturn(true);
6133     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6134                             MVT::Other,
6135                             getControlRoot(),
6136                             getValue(I.getArgOperand(0)),
6137                             getValue(I.getArgOperand(1))));
6138     return;
6139   case Intrinsic::eh_unwind_init:
6140     DAG.getMachineFunction().setCallsUnwindInit(true);
6141     return;
6142   case Intrinsic::eh_dwarf_cfa:
6143     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6144                              TLI.getPointerTy(DAG.getDataLayout()),
6145                              getValue(I.getArgOperand(0))));
6146     return;
6147   case Intrinsic::eh_sjlj_callsite: {
6148     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6149     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
6150     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
6151     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6152 
6153     MMI.setCurrentCallSite(CI->getZExtValue());
6154     return;
6155   }
6156   case Intrinsic::eh_sjlj_functioncontext: {
6157     // Get and store the index of the function context.
6158     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6159     AllocaInst *FnCtx =
6160       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6161     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6162     MFI.setFunctionContextIndex(FI);
6163     return;
6164   }
6165   case Intrinsic::eh_sjlj_setjmp: {
6166     SDValue Ops[2];
6167     Ops[0] = getRoot();
6168     Ops[1] = getValue(I.getArgOperand(0));
6169     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6170                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6171     setValue(&I, Op.getValue(0));
6172     DAG.setRoot(Op.getValue(1));
6173     return;
6174   }
6175   case Intrinsic::eh_sjlj_longjmp:
6176     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6177                             getRoot(), getValue(I.getArgOperand(0))));
6178     return;
6179   case Intrinsic::eh_sjlj_setup_dispatch:
6180     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6181                             getRoot()));
6182     return;
6183   case Intrinsic::masked_gather:
6184     visitMaskedGather(I);
6185     return;
6186   case Intrinsic::masked_load:
6187     visitMaskedLoad(I);
6188     return;
6189   case Intrinsic::masked_scatter:
6190     visitMaskedScatter(I);
6191     return;
6192   case Intrinsic::masked_store:
6193     visitMaskedStore(I);
6194     return;
6195   case Intrinsic::masked_expandload:
6196     visitMaskedLoad(I, true /* IsExpanding */);
6197     return;
6198   case Intrinsic::masked_compressstore:
6199     visitMaskedStore(I, true /* IsCompressing */);
6200     return;
6201   case Intrinsic::powi:
6202     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6203                             getValue(I.getArgOperand(1)), DAG));
6204     return;
6205   case Intrinsic::log:
6206     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6207     return;
6208   case Intrinsic::log2:
6209     setValue(&I,
6210              expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6211     return;
6212   case Intrinsic::log10:
6213     setValue(&I,
6214              expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6215     return;
6216   case Intrinsic::exp:
6217     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6218     return;
6219   case Intrinsic::exp2:
6220     setValue(&I,
6221              expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6222     return;
6223   case Intrinsic::pow:
6224     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6225                            getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6226     return;
6227   case Intrinsic::sqrt:
6228   case Intrinsic::fabs:
6229   case Intrinsic::sin:
6230   case Intrinsic::cos:
6231   case Intrinsic::floor:
6232   case Intrinsic::ceil:
6233   case Intrinsic::trunc:
6234   case Intrinsic::rint:
6235   case Intrinsic::nearbyint:
6236   case Intrinsic::round:
6237   case Intrinsic::roundeven:
6238   case Intrinsic::canonicalize: {
6239     unsigned Opcode;
6240     switch (Intrinsic) {
6241     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6242     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6243     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6244     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6245     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6246     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6247     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6248     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6249     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6250     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6251     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6252     case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6253     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6254     }
6255 
6256     setValue(&I, DAG.getNode(Opcode, sdl,
6257                              getValue(I.getArgOperand(0)).getValueType(),
6258                              getValue(I.getArgOperand(0)), Flags));
6259     return;
6260   }
6261   case Intrinsic::lround:
6262   case Intrinsic::llround:
6263   case Intrinsic::lrint:
6264   case Intrinsic::llrint: {
6265     unsigned Opcode;
6266     switch (Intrinsic) {
6267     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6268     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6269     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6270     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6271     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6272     }
6273 
6274     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6275     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6276                              getValue(I.getArgOperand(0))));
6277     return;
6278   }
6279   case Intrinsic::minnum:
6280     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6281                              getValue(I.getArgOperand(0)).getValueType(),
6282                              getValue(I.getArgOperand(0)),
6283                              getValue(I.getArgOperand(1)), Flags));
6284     return;
6285   case Intrinsic::maxnum:
6286     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6287                              getValue(I.getArgOperand(0)).getValueType(),
6288                              getValue(I.getArgOperand(0)),
6289                              getValue(I.getArgOperand(1)), Flags));
6290     return;
6291   case Intrinsic::minimum:
6292     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6293                              getValue(I.getArgOperand(0)).getValueType(),
6294                              getValue(I.getArgOperand(0)),
6295                              getValue(I.getArgOperand(1)), Flags));
6296     return;
6297   case Intrinsic::maximum:
6298     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6299                              getValue(I.getArgOperand(0)).getValueType(),
6300                              getValue(I.getArgOperand(0)),
6301                              getValue(I.getArgOperand(1)), Flags));
6302     return;
6303   case Intrinsic::copysign:
6304     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6305                              getValue(I.getArgOperand(0)).getValueType(),
6306                              getValue(I.getArgOperand(0)),
6307                              getValue(I.getArgOperand(1)), Flags));
6308     return;
6309   case Intrinsic::arithmetic_fence: {
6310     setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl,
6311                              getValue(I.getArgOperand(0)).getValueType(),
6312                              getValue(I.getArgOperand(0)), Flags));
6313     return;
6314   }
6315   case Intrinsic::fma:
6316     setValue(&I, DAG.getNode(
6317                      ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6318                      getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6319                      getValue(I.getArgOperand(2)), Flags));
6320     return;
6321 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6322   case Intrinsic::INTRINSIC:
6323 #include "llvm/IR/ConstrainedOps.def"
6324     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6325     return;
6326 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6327 #include "llvm/IR/VPIntrinsics.def"
6328     visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
6329     return;
6330   case Intrinsic::fptrunc_round: {
6331     // Get the last argument, the metadata and convert it to an integer in the
6332     // call
6333     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata();
6334     Optional<RoundingMode> RoundMode =
6335         convertStrToRoundingMode(cast<MDString>(MD)->getString());
6336 
6337     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6338 
6339     // Propagate fast-math-flags from IR to node(s).
6340     SDNodeFlags Flags;
6341     Flags.copyFMF(*cast<FPMathOperator>(&I));
6342     SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
6343 
6344     SDValue Result;
6345     Result = DAG.getNode(
6346         ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)),
6347         DAG.getTargetConstant((int)RoundMode.getValue(), sdl,
6348                               TLI.getPointerTy(DAG.getDataLayout())));
6349     setValue(&I, Result);
6350 
6351     return;
6352   }
6353   case Intrinsic::fmuladd: {
6354     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6355     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6356         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6357       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6358                                getValue(I.getArgOperand(0)).getValueType(),
6359                                getValue(I.getArgOperand(0)),
6360                                getValue(I.getArgOperand(1)),
6361                                getValue(I.getArgOperand(2)), Flags));
6362     } else {
6363       // TODO: Intrinsic calls should have fast-math-flags.
6364       SDValue Mul = DAG.getNode(
6365           ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6366           getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6367       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6368                                 getValue(I.getArgOperand(0)).getValueType(),
6369                                 Mul, getValue(I.getArgOperand(2)), Flags);
6370       setValue(&I, Add);
6371     }
6372     return;
6373   }
6374   case Intrinsic::convert_to_fp16:
6375     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6376                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6377                                          getValue(I.getArgOperand(0)),
6378                                          DAG.getTargetConstant(0, sdl,
6379                                                                MVT::i32))));
6380     return;
6381   case Intrinsic::convert_from_fp16:
6382     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6383                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6384                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6385                                          getValue(I.getArgOperand(0)))));
6386     return;
6387   case Intrinsic::fptosi_sat: {
6388     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6389     setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
6390                              getValue(I.getArgOperand(0)),
6391                              DAG.getValueType(VT.getScalarType())));
6392     return;
6393   }
6394   case Intrinsic::fptoui_sat: {
6395     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6396     setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
6397                              getValue(I.getArgOperand(0)),
6398                              DAG.getValueType(VT.getScalarType())));
6399     return;
6400   }
6401   case Intrinsic::set_rounding:
6402     Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
6403                       {getRoot(), getValue(I.getArgOperand(0))});
6404     setValue(&I, Res);
6405     DAG.setRoot(Res.getValue(0));
6406     return;
6407   case Intrinsic::pcmarker: {
6408     SDValue Tmp = getValue(I.getArgOperand(0));
6409     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6410     return;
6411   }
6412   case Intrinsic::readcyclecounter: {
6413     SDValue Op = getRoot();
6414     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6415                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6416     setValue(&I, Res);
6417     DAG.setRoot(Res.getValue(1));
6418     return;
6419   }
6420   case Intrinsic::bitreverse:
6421     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6422                              getValue(I.getArgOperand(0)).getValueType(),
6423                              getValue(I.getArgOperand(0))));
6424     return;
6425   case Intrinsic::bswap:
6426     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6427                              getValue(I.getArgOperand(0)).getValueType(),
6428                              getValue(I.getArgOperand(0))));
6429     return;
6430   case Intrinsic::cttz: {
6431     SDValue Arg = getValue(I.getArgOperand(0));
6432     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6433     EVT Ty = Arg.getValueType();
6434     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6435                              sdl, Ty, Arg));
6436     return;
6437   }
6438   case Intrinsic::ctlz: {
6439     SDValue Arg = getValue(I.getArgOperand(0));
6440     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6441     EVT Ty = Arg.getValueType();
6442     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6443                              sdl, Ty, Arg));
6444     return;
6445   }
6446   case Intrinsic::ctpop: {
6447     SDValue Arg = getValue(I.getArgOperand(0));
6448     EVT Ty = Arg.getValueType();
6449     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6450     return;
6451   }
6452   case Intrinsic::fshl:
6453   case Intrinsic::fshr: {
6454     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6455     SDValue X = getValue(I.getArgOperand(0));
6456     SDValue Y = getValue(I.getArgOperand(1));
6457     SDValue Z = getValue(I.getArgOperand(2));
6458     EVT VT = X.getValueType();
6459 
6460     if (X == Y) {
6461       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6462       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6463     } else {
6464       auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6465       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6466     }
6467     return;
6468   }
6469   case Intrinsic::sadd_sat: {
6470     SDValue Op1 = getValue(I.getArgOperand(0));
6471     SDValue Op2 = getValue(I.getArgOperand(1));
6472     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6473     return;
6474   }
6475   case Intrinsic::uadd_sat: {
6476     SDValue Op1 = getValue(I.getArgOperand(0));
6477     SDValue Op2 = getValue(I.getArgOperand(1));
6478     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6479     return;
6480   }
6481   case Intrinsic::ssub_sat: {
6482     SDValue Op1 = getValue(I.getArgOperand(0));
6483     SDValue Op2 = getValue(I.getArgOperand(1));
6484     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6485     return;
6486   }
6487   case Intrinsic::usub_sat: {
6488     SDValue Op1 = getValue(I.getArgOperand(0));
6489     SDValue Op2 = getValue(I.getArgOperand(1));
6490     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6491     return;
6492   }
6493   case Intrinsic::sshl_sat: {
6494     SDValue Op1 = getValue(I.getArgOperand(0));
6495     SDValue Op2 = getValue(I.getArgOperand(1));
6496     setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6497     return;
6498   }
6499   case Intrinsic::ushl_sat: {
6500     SDValue Op1 = getValue(I.getArgOperand(0));
6501     SDValue Op2 = getValue(I.getArgOperand(1));
6502     setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6503     return;
6504   }
6505   case Intrinsic::smul_fix:
6506   case Intrinsic::umul_fix:
6507   case Intrinsic::smul_fix_sat:
6508   case Intrinsic::umul_fix_sat: {
6509     SDValue Op1 = getValue(I.getArgOperand(0));
6510     SDValue Op2 = getValue(I.getArgOperand(1));
6511     SDValue Op3 = getValue(I.getArgOperand(2));
6512     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6513                              Op1.getValueType(), Op1, Op2, Op3));
6514     return;
6515   }
6516   case Intrinsic::sdiv_fix:
6517   case Intrinsic::udiv_fix:
6518   case Intrinsic::sdiv_fix_sat:
6519   case Intrinsic::udiv_fix_sat: {
6520     SDValue Op1 = getValue(I.getArgOperand(0));
6521     SDValue Op2 = getValue(I.getArgOperand(1));
6522     SDValue Op3 = getValue(I.getArgOperand(2));
6523     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6524                               Op1, Op2, Op3, DAG, TLI));
6525     return;
6526   }
6527   case Intrinsic::smax: {
6528     SDValue Op1 = getValue(I.getArgOperand(0));
6529     SDValue Op2 = getValue(I.getArgOperand(1));
6530     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
6531     return;
6532   }
6533   case Intrinsic::smin: {
6534     SDValue Op1 = getValue(I.getArgOperand(0));
6535     SDValue Op2 = getValue(I.getArgOperand(1));
6536     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
6537     return;
6538   }
6539   case Intrinsic::umax: {
6540     SDValue Op1 = getValue(I.getArgOperand(0));
6541     SDValue Op2 = getValue(I.getArgOperand(1));
6542     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
6543     return;
6544   }
6545   case Intrinsic::umin: {
6546     SDValue Op1 = getValue(I.getArgOperand(0));
6547     SDValue Op2 = getValue(I.getArgOperand(1));
6548     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
6549     return;
6550   }
6551   case Intrinsic::abs: {
6552     // TODO: Preserve "int min is poison" arg in SDAG?
6553     SDValue Op1 = getValue(I.getArgOperand(0));
6554     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
6555     return;
6556   }
6557   case Intrinsic::stacksave: {
6558     SDValue Op = getRoot();
6559     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6560     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
6561     setValue(&I, Res);
6562     DAG.setRoot(Res.getValue(1));
6563     return;
6564   }
6565   case Intrinsic::stackrestore:
6566     Res = getValue(I.getArgOperand(0));
6567     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6568     return;
6569   case Intrinsic::get_dynamic_area_offset: {
6570     SDValue Op = getRoot();
6571     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6572     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6573     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6574     // target.
6575     if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
6576       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6577                          " intrinsic!");
6578     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6579                       Op);
6580     DAG.setRoot(Op);
6581     setValue(&I, Res);
6582     return;
6583   }
6584   case Intrinsic::stackguard: {
6585     MachineFunction &MF = DAG.getMachineFunction();
6586     const Module &M = *MF.getFunction().getParent();
6587     SDValue Chain = getRoot();
6588     if (TLI.useLoadStackGuardNode()) {
6589       Res = getLoadStackGuard(DAG, sdl, Chain);
6590     } else {
6591       EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6592       const Value *Global = TLI.getSDagStackGuard(M);
6593       Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType());
6594       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6595                         MachinePointerInfo(Global, 0), Align,
6596                         MachineMemOperand::MOVolatile);
6597     }
6598     if (TLI.useStackGuardXorFP())
6599       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6600     DAG.setRoot(Chain);
6601     setValue(&I, Res);
6602     return;
6603   }
6604   case Intrinsic::stackprotector: {
6605     // Emit code into the DAG to store the stack guard onto the stack.
6606     MachineFunction &MF = DAG.getMachineFunction();
6607     MachineFrameInfo &MFI = MF.getFrameInfo();
6608     SDValue Src, Chain = getRoot();
6609 
6610     if (TLI.useLoadStackGuardNode())
6611       Src = getLoadStackGuard(DAG, sdl, Chain);
6612     else
6613       Src = getValue(I.getArgOperand(0));   // The guard's value.
6614 
6615     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6616 
6617     int FI = FuncInfo.StaticAllocaMap[Slot];
6618     MFI.setStackProtectorIndex(FI);
6619     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6620 
6621     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6622 
6623     // Store the stack protector onto the stack.
6624     Res = DAG.getStore(
6625         Chain, sdl, Src, FIN,
6626         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
6627         MaybeAlign(), MachineMemOperand::MOVolatile);
6628     setValue(&I, Res);
6629     DAG.setRoot(Res);
6630     return;
6631   }
6632   case Intrinsic::objectsize:
6633     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6634 
6635   case Intrinsic::is_constant:
6636     llvm_unreachable("llvm.is.constant.* should have been lowered already");
6637 
6638   case Intrinsic::annotation:
6639   case Intrinsic::ptr_annotation:
6640   case Intrinsic::launder_invariant_group:
6641   case Intrinsic::strip_invariant_group:
6642     // Drop the intrinsic, but forward the value
6643     setValue(&I, getValue(I.getOperand(0)));
6644     return;
6645 
6646   case Intrinsic::assume:
6647   case Intrinsic::experimental_noalias_scope_decl:
6648   case Intrinsic::var_annotation:
6649   case Intrinsic::sideeffect:
6650     // Discard annotate attributes, noalias scope declarations, assumptions, and
6651     // artificial side-effects.
6652     return;
6653 
6654   case Intrinsic::codeview_annotation: {
6655     // Emit a label associated with this metadata.
6656     MachineFunction &MF = DAG.getMachineFunction();
6657     MCSymbol *Label =
6658         MF.getMMI().getContext().createTempSymbol("annotation", true);
6659     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6660     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6661     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6662     DAG.setRoot(Res);
6663     return;
6664   }
6665 
6666   case Intrinsic::init_trampoline: {
6667     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6668 
6669     SDValue Ops[6];
6670     Ops[0] = getRoot();
6671     Ops[1] = getValue(I.getArgOperand(0));
6672     Ops[2] = getValue(I.getArgOperand(1));
6673     Ops[3] = getValue(I.getArgOperand(2));
6674     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6675     Ops[5] = DAG.getSrcValue(F);
6676 
6677     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6678 
6679     DAG.setRoot(Res);
6680     return;
6681   }
6682   case Intrinsic::adjust_trampoline:
6683     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6684                              TLI.getPointerTy(DAG.getDataLayout()),
6685                              getValue(I.getArgOperand(0))));
6686     return;
6687   case Intrinsic::gcroot: {
6688     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6689            "only valid in functions with gc specified, enforced by Verifier");
6690     assert(GFI && "implied by previous");
6691     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6692     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6693 
6694     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6695     GFI->addStackRoot(FI->getIndex(), TypeMap);
6696     return;
6697   }
6698   case Intrinsic::gcread:
6699   case Intrinsic::gcwrite:
6700     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6701   case Intrinsic::flt_rounds:
6702     Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot());
6703     setValue(&I, Res);
6704     DAG.setRoot(Res.getValue(1));
6705     return;
6706 
6707   case Intrinsic::expect:
6708     // Just replace __builtin_expect(exp, c) with EXP.
6709     setValue(&I, getValue(I.getArgOperand(0)));
6710     return;
6711 
6712   case Intrinsic::ubsantrap:
6713   case Intrinsic::debugtrap:
6714   case Intrinsic::trap: {
6715     StringRef TrapFuncName =
6716         I.getAttributes().getFnAttr("trap-func-name").getValueAsString();
6717     if (TrapFuncName.empty()) {
6718       switch (Intrinsic) {
6719       case Intrinsic::trap:
6720         DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
6721         break;
6722       case Intrinsic::debugtrap:
6723         DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
6724         break;
6725       case Intrinsic::ubsantrap:
6726         DAG.setRoot(DAG.getNode(
6727             ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
6728             DAG.getTargetConstant(
6729                 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
6730                 MVT::i32)));
6731         break;
6732       default: llvm_unreachable("unknown trap intrinsic");
6733       }
6734       return;
6735     }
6736     TargetLowering::ArgListTy Args;
6737     if (Intrinsic == Intrinsic::ubsantrap) {
6738       Args.push_back(TargetLoweringBase::ArgListEntry());
6739       Args[0].Val = I.getArgOperand(0);
6740       Args[0].Node = getValue(Args[0].Val);
6741       Args[0].Ty = Args[0].Val->getType();
6742     }
6743 
6744     TargetLowering::CallLoweringInfo CLI(DAG);
6745     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6746         CallingConv::C, I.getType(),
6747         DAG.getExternalSymbol(TrapFuncName.data(),
6748                               TLI.getPointerTy(DAG.getDataLayout())),
6749         std::move(Args));
6750 
6751     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6752     DAG.setRoot(Result.second);
6753     return;
6754   }
6755 
6756   case Intrinsic::uadd_with_overflow:
6757   case Intrinsic::sadd_with_overflow:
6758   case Intrinsic::usub_with_overflow:
6759   case Intrinsic::ssub_with_overflow:
6760   case Intrinsic::umul_with_overflow:
6761   case Intrinsic::smul_with_overflow: {
6762     ISD::NodeType Op;
6763     switch (Intrinsic) {
6764     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6765     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6766     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6767     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6768     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6769     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6770     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6771     }
6772     SDValue Op1 = getValue(I.getArgOperand(0));
6773     SDValue Op2 = getValue(I.getArgOperand(1));
6774 
6775     EVT ResultVT = Op1.getValueType();
6776     EVT OverflowVT = MVT::i1;
6777     if (ResultVT.isVector())
6778       OverflowVT = EVT::getVectorVT(
6779           *Context, OverflowVT, ResultVT.getVectorElementCount());
6780 
6781     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6782     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6783     return;
6784   }
6785   case Intrinsic::prefetch: {
6786     SDValue Ops[5];
6787     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6788     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6789     Ops[0] = DAG.getRoot();
6790     Ops[1] = getValue(I.getArgOperand(0));
6791     Ops[2] = getValue(I.getArgOperand(1));
6792     Ops[3] = getValue(I.getArgOperand(2));
6793     Ops[4] = getValue(I.getArgOperand(3));
6794     SDValue Result = DAG.getMemIntrinsicNode(
6795         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
6796         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
6797         /* align */ None, Flags);
6798 
6799     // Chain the prefetch in parallell with any pending loads, to stay out of
6800     // the way of later optimizations.
6801     PendingLoads.push_back(Result);
6802     Result = getRoot();
6803     DAG.setRoot(Result);
6804     return;
6805   }
6806   case Intrinsic::lifetime_start:
6807   case Intrinsic::lifetime_end: {
6808     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6809     // Stack coloring is not enabled in O0, discard region information.
6810     if (TM.getOptLevel() == CodeGenOpt::None)
6811       return;
6812 
6813     const int64_t ObjectSize =
6814         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6815     Value *const ObjectPtr = I.getArgOperand(1);
6816     SmallVector<const Value *, 4> Allocas;
6817     getUnderlyingObjects(ObjectPtr, Allocas);
6818 
6819     for (const Value *Alloca : Allocas) {
6820       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca);
6821 
6822       // Could not find an Alloca.
6823       if (!LifetimeObject)
6824         continue;
6825 
6826       // First check that the Alloca is static, otherwise it won't have a
6827       // valid frame index.
6828       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6829       if (SI == FuncInfo.StaticAllocaMap.end())
6830         return;
6831 
6832       const int FrameIndex = SI->second;
6833       int64_t Offset;
6834       if (GetPointerBaseWithConstantOffset(
6835               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6836         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6837       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6838                                 Offset);
6839       DAG.setRoot(Res);
6840     }
6841     return;
6842   }
6843   case Intrinsic::pseudoprobe: {
6844     auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
6845     auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6846     auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
6847     Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
6848     DAG.setRoot(Res);
6849     return;
6850   }
6851   case Intrinsic::invariant_start:
6852     // Discard region information.
6853     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6854     return;
6855   case Intrinsic::invariant_end:
6856     // Discard region information.
6857     return;
6858   case Intrinsic::clear_cache:
6859     /// FunctionName may be null.
6860     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
6861       lowerCallToExternalSymbol(I, FunctionName);
6862     return;
6863   case Intrinsic::donothing:
6864   case Intrinsic::seh_try_begin:
6865   case Intrinsic::seh_scope_begin:
6866   case Intrinsic::seh_try_end:
6867   case Intrinsic::seh_scope_end:
6868     // ignore
6869     return;
6870   case Intrinsic::experimental_stackmap:
6871     visitStackmap(I);
6872     return;
6873   case Intrinsic::experimental_patchpoint_void:
6874   case Intrinsic::experimental_patchpoint_i64:
6875     visitPatchpoint(I);
6876     return;
6877   case Intrinsic::experimental_gc_statepoint:
6878     LowerStatepoint(cast<GCStatepointInst>(I));
6879     return;
6880   case Intrinsic::experimental_gc_result:
6881     visitGCResult(cast<GCResultInst>(I));
6882     return;
6883   case Intrinsic::experimental_gc_relocate:
6884     visitGCRelocate(cast<GCRelocateInst>(I));
6885     return;
6886   case Intrinsic::instrprof_cover:
6887     llvm_unreachable("instrprof failed to lower a cover");
6888   case Intrinsic::instrprof_increment:
6889     llvm_unreachable("instrprof failed to lower an increment");
6890   case Intrinsic::instrprof_value_profile:
6891     llvm_unreachable("instrprof failed to lower a value profiling call");
6892   case Intrinsic::localescape: {
6893     MachineFunction &MF = DAG.getMachineFunction();
6894     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6895 
6896     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6897     // is the same on all targets.
6898     for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) {
6899       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6900       if (isa<ConstantPointerNull>(Arg))
6901         continue; // Skip null pointers. They represent a hole in index space.
6902       AllocaInst *Slot = cast<AllocaInst>(Arg);
6903       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6904              "can only escape static allocas");
6905       int FI = FuncInfo.StaticAllocaMap[Slot];
6906       MCSymbol *FrameAllocSym =
6907           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6908               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6909       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6910               TII->get(TargetOpcode::LOCAL_ESCAPE))
6911           .addSym(FrameAllocSym)
6912           .addFrameIndex(FI);
6913     }
6914 
6915     return;
6916   }
6917 
6918   case Intrinsic::localrecover: {
6919     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6920     MachineFunction &MF = DAG.getMachineFunction();
6921 
6922     // Get the symbol that defines the frame offset.
6923     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6924     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6925     unsigned IdxVal =
6926         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6927     MCSymbol *FrameAllocSym =
6928         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6929             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6930 
6931     Value *FP = I.getArgOperand(1);
6932     SDValue FPVal = getValue(FP);
6933     EVT PtrVT = FPVal.getValueType();
6934 
6935     // Create a MCSymbol for the label to avoid any target lowering
6936     // that would make this PC relative.
6937     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6938     SDValue OffsetVal =
6939         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6940 
6941     // Add the offset to the FP.
6942     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
6943     setValue(&I, Add);
6944 
6945     return;
6946   }
6947 
6948   case Intrinsic::eh_exceptionpointer:
6949   case Intrinsic::eh_exceptioncode: {
6950     // Get the exception pointer vreg, copy from it, and resize it to fit.
6951     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6952     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6953     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6954     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6955     SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT);
6956     if (Intrinsic == Intrinsic::eh_exceptioncode)
6957       N = DAG.getZExtOrTrunc(N, sdl, MVT::i32);
6958     setValue(&I, N);
6959     return;
6960   }
6961   case Intrinsic::xray_customevent: {
6962     // Here we want to make sure that the intrinsic behaves as if it has a
6963     // specific calling convention, and only for x86_64.
6964     // FIXME: Support other platforms later.
6965     const auto &Triple = DAG.getTarget().getTargetTriple();
6966     if (Triple.getArch() != Triple::x86_64)
6967       return;
6968 
6969     SmallVector<SDValue, 8> Ops;
6970 
6971     // We want to say that we always want the arguments in registers.
6972     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6973     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6974     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6975     SDValue Chain = getRoot();
6976     Ops.push_back(LogEntryVal);
6977     Ops.push_back(StrSizeVal);
6978     Ops.push_back(Chain);
6979 
6980     // We need to enforce the calling convention for the callsite, so that
6981     // argument ordering is enforced correctly, and that register allocation can
6982     // see that some registers may be assumed clobbered and have to preserve
6983     // them across calls to the intrinsic.
6984     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6985                                            sdl, NodeTys, Ops);
6986     SDValue patchableNode = SDValue(MN, 0);
6987     DAG.setRoot(patchableNode);
6988     setValue(&I, patchableNode);
6989     return;
6990   }
6991   case Intrinsic::xray_typedevent: {
6992     // Here we want to make sure that the intrinsic behaves as if it has a
6993     // specific calling convention, and only for x86_64.
6994     // FIXME: Support other platforms later.
6995     const auto &Triple = DAG.getTarget().getTargetTriple();
6996     if (Triple.getArch() != Triple::x86_64)
6997       return;
6998 
6999     SmallVector<SDValue, 8> Ops;
7000 
7001     // We want to say that we always want the arguments in registers.
7002     // It's unclear to me how manipulating the selection DAG here forces callers
7003     // to provide arguments in registers instead of on the stack.
7004     SDValue LogTypeId = getValue(I.getArgOperand(0));
7005     SDValue LogEntryVal = getValue(I.getArgOperand(1));
7006     SDValue StrSizeVal = getValue(I.getArgOperand(2));
7007     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7008     SDValue Chain = getRoot();
7009     Ops.push_back(LogTypeId);
7010     Ops.push_back(LogEntryVal);
7011     Ops.push_back(StrSizeVal);
7012     Ops.push_back(Chain);
7013 
7014     // We need to enforce the calling convention for the callsite, so that
7015     // argument ordering is enforced correctly, and that register allocation can
7016     // see that some registers may be assumed clobbered and have to preserve
7017     // them across calls to the intrinsic.
7018     MachineSDNode *MN = DAG.getMachineNode(
7019         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops);
7020     SDValue patchableNode = SDValue(MN, 0);
7021     DAG.setRoot(patchableNode);
7022     setValue(&I, patchableNode);
7023     return;
7024   }
7025   case Intrinsic::experimental_deoptimize:
7026     LowerDeoptimizeCall(&I);
7027     return;
7028   case Intrinsic::experimental_stepvector:
7029     visitStepVector(I);
7030     return;
7031   case Intrinsic::vector_reduce_fadd:
7032   case Intrinsic::vector_reduce_fmul:
7033   case Intrinsic::vector_reduce_add:
7034   case Intrinsic::vector_reduce_mul:
7035   case Intrinsic::vector_reduce_and:
7036   case Intrinsic::vector_reduce_or:
7037   case Intrinsic::vector_reduce_xor:
7038   case Intrinsic::vector_reduce_smax:
7039   case Intrinsic::vector_reduce_smin:
7040   case Intrinsic::vector_reduce_umax:
7041   case Intrinsic::vector_reduce_umin:
7042   case Intrinsic::vector_reduce_fmax:
7043   case Intrinsic::vector_reduce_fmin:
7044     visitVectorReduce(I, Intrinsic);
7045     return;
7046 
7047   case Intrinsic::icall_branch_funnel: {
7048     SmallVector<SDValue, 16> Ops;
7049     Ops.push_back(getValue(I.getArgOperand(0)));
7050 
7051     int64_t Offset;
7052     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7053         I.getArgOperand(1), Offset, DAG.getDataLayout()));
7054     if (!Base)
7055       report_fatal_error(
7056           "llvm.icall.branch.funnel operand must be a GlobalValue");
7057     Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0));
7058 
7059     struct BranchFunnelTarget {
7060       int64_t Offset;
7061       SDValue Target;
7062     };
7063     SmallVector<BranchFunnelTarget, 8> Targets;
7064 
7065     for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) {
7066       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7067           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
7068       if (ElemBase != Base)
7069         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
7070                            "to the same GlobalValue");
7071 
7072       SDValue Val = getValue(I.getArgOperand(Op + 1));
7073       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
7074       if (!GA)
7075         report_fatal_error(
7076             "llvm.icall.branch.funnel operand must be a GlobalValue");
7077       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
7078                                      GA->getGlobal(), sdl, Val.getValueType(),
7079                                      GA->getOffset())});
7080     }
7081     llvm::sort(Targets,
7082                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
7083                  return T1.Offset < T2.Offset;
7084                });
7085 
7086     for (auto &T : Targets) {
7087       Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32));
7088       Ops.push_back(T.Target);
7089     }
7090 
7091     Ops.push_back(DAG.getRoot()); // Chain
7092     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl,
7093                                  MVT::Other, Ops),
7094               0);
7095     DAG.setRoot(N);
7096     setValue(&I, N);
7097     HasTailCall = true;
7098     return;
7099   }
7100 
7101   case Intrinsic::wasm_landingpad_index:
7102     // Information this intrinsic contained has been transferred to
7103     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
7104     // delete it now.
7105     return;
7106 
7107   case Intrinsic::aarch64_settag:
7108   case Intrinsic::aarch64_settag_zero: {
7109     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7110     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
7111     SDValue Val = TSI.EmitTargetCodeForSetTag(
7112         DAG, sdl, getRoot(), getValue(I.getArgOperand(0)),
7113         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
7114         ZeroMemory);
7115     DAG.setRoot(Val);
7116     setValue(&I, Val);
7117     return;
7118   }
7119   case Intrinsic::ptrmask: {
7120     SDValue Ptr = getValue(I.getOperand(0));
7121     SDValue Const = getValue(I.getOperand(1));
7122 
7123     EVT PtrVT = Ptr.getValueType();
7124     setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr,
7125                              DAG.getZExtOrTrunc(Const, sdl, PtrVT)));
7126     return;
7127   }
7128   case Intrinsic::get_active_lane_mask: {
7129     EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7130     SDValue Index = getValue(I.getOperand(0));
7131     EVT ElementVT = Index.getValueType();
7132 
7133     if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) {
7134       visitTargetIntrinsic(I, Intrinsic);
7135       return;
7136     }
7137 
7138     SDValue TripCount = getValue(I.getOperand(1));
7139     auto VecTy = CCVT.changeVectorElementType(ElementVT);
7140 
7141     SDValue VectorIndex, VectorTripCount;
7142     if (VecTy.isScalableVector()) {
7143       VectorIndex = DAG.getSplatVector(VecTy, sdl, Index);
7144       VectorTripCount = DAG.getSplatVector(VecTy, sdl, TripCount);
7145     } else {
7146       VectorIndex = DAG.getSplatBuildVector(VecTy, sdl, Index);
7147       VectorTripCount = DAG.getSplatBuildVector(VecTy, sdl, TripCount);
7148     }
7149     SDValue VectorStep = DAG.getStepVector(sdl, VecTy);
7150     SDValue VectorInduction = DAG.getNode(
7151         ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep);
7152     SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction,
7153                                  VectorTripCount, ISD::CondCode::SETULT);
7154     setValue(&I, SetCC);
7155     return;
7156   }
7157   case Intrinsic::experimental_vector_insert: {
7158     SDValue Vec = getValue(I.getOperand(0));
7159     SDValue SubVec = getValue(I.getOperand(1));
7160     SDValue Index = getValue(I.getOperand(2));
7161 
7162     // The intrinsic's index type is i64, but the SDNode requires an index type
7163     // suitable for the target. Convert the index as required.
7164     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7165     if (Index.getValueType() != VectorIdxTy)
7166       Index = DAG.getVectorIdxConstant(
7167           cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
7168 
7169     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7170     setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec,
7171                              Index));
7172     return;
7173   }
7174   case Intrinsic::experimental_vector_extract: {
7175     SDValue Vec = getValue(I.getOperand(0));
7176     SDValue Index = getValue(I.getOperand(1));
7177     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7178 
7179     // The intrinsic's index type is i64, but the SDNode requires an index type
7180     // suitable for the target. Convert the index as required.
7181     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7182     if (Index.getValueType() != VectorIdxTy)
7183       Index = DAG.getVectorIdxConstant(
7184           cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
7185 
7186     setValue(&I,
7187              DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index));
7188     return;
7189   }
7190   case Intrinsic::experimental_vector_reverse:
7191     visitVectorReverse(I);
7192     return;
7193   case Intrinsic::experimental_vector_splice:
7194     visitVectorSplice(I);
7195     return;
7196   }
7197 }
7198 
7199 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
7200     const ConstrainedFPIntrinsic &FPI) {
7201   SDLoc sdl = getCurSDLoc();
7202 
7203   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7204   SmallVector<EVT, 4> ValueVTs;
7205   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
7206   ValueVTs.push_back(MVT::Other); // Out chain
7207 
7208   // We do not need to serialize constrained FP intrinsics against
7209   // each other or against (nonvolatile) loads, so they can be
7210   // chained like loads.
7211   SDValue Chain = DAG.getRoot();
7212   SmallVector<SDValue, 4> Opers;
7213   Opers.push_back(Chain);
7214   if (FPI.isUnaryOp()) {
7215     Opers.push_back(getValue(FPI.getArgOperand(0)));
7216   } else if (FPI.isTernaryOp()) {
7217     Opers.push_back(getValue(FPI.getArgOperand(0)));
7218     Opers.push_back(getValue(FPI.getArgOperand(1)));
7219     Opers.push_back(getValue(FPI.getArgOperand(2)));
7220   } else {
7221     Opers.push_back(getValue(FPI.getArgOperand(0)));
7222     Opers.push_back(getValue(FPI.getArgOperand(1)));
7223   }
7224 
7225   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
7226     assert(Result.getNode()->getNumValues() == 2);
7227 
7228     // Push node to the appropriate list so that future instructions can be
7229     // chained up correctly.
7230     SDValue OutChain = Result.getValue(1);
7231     switch (EB) {
7232     case fp::ExceptionBehavior::ebIgnore:
7233       // The only reason why ebIgnore nodes still need to be chained is that
7234       // they might depend on the current rounding mode, and therefore must
7235       // not be moved across instruction that may change that mode.
7236       LLVM_FALLTHROUGH;
7237     case fp::ExceptionBehavior::ebMayTrap:
7238       // These must not be moved across calls or instructions that may change
7239       // floating-point exception masks.
7240       PendingConstrainedFP.push_back(OutChain);
7241       break;
7242     case fp::ExceptionBehavior::ebStrict:
7243       // These must not be moved across calls or instructions that may change
7244       // floating-point exception masks or read floating-point exception flags.
7245       // In addition, they cannot be optimized out even if unused.
7246       PendingConstrainedFPStrict.push_back(OutChain);
7247       break;
7248     }
7249   };
7250 
7251   SDVTList VTs = DAG.getVTList(ValueVTs);
7252   fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue();
7253 
7254   SDNodeFlags Flags;
7255   if (EB == fp::ExceptionBehavior::ebIgnore)
7256     Flags.setNoFPExcept(true);
7257 
7258   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
7259     Flags.copyFMF(*FPOp);
7260 
7261   unsigned Opcode;
7262   switch (FPI.getIntrinsicID()) {
7263   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7264 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7265   case Intrinsic::INTRINSIC:                                                   \
7266     Opcode = ISD::STRICT_##DAGN;                                               \
7267     break;
7268 #include "llvm/IR/ConstrainedOps.def"
7269   case Intrinsic::experimental_constrained_fmuladd: {
7270     Opcode = ISD::STRICT_FMA;
7271     // Break fmuladd into fmul and fadd.
7272     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
7273         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(),
7274                                         ValueVTs[0])) {
7275       Opers.pop_back();
7276       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
7277       pushOutChain(Mul, EB);
7278       Opcode = ISD::STRICT_FADD;
7279       Opers.clear();
7280       Opers.push_back(Mul.getValue(1));
7281       Opers.push_back(Mul.getValue(0));
7282       Opers.push_back(getValue(FPI.getArgOperand(2)));
7283     }
7284     break;
7285   }
7286   }
7287 
7288   // A few strict DAG nodes carry additional operands that are not
7289   // set up by the default code above.
7290   switch (Opcode) {
7291   default: break;
7292   case ISD::STRICT_FP_ROUND:
7293     Opers.push_back(
7294         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
7295     break;
7296   case ISD::STRICT_FSETCC:
7297   case ISD::STRICT_FSETCCS: {
7298     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
7299     ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
7300     if (TM.Options.NoNaNsFPMath)
7301       Condition = getFCmpCodeWithoutNaN(Condition);
7302     Opers.push_back(DAG.getCondCode(Condition));
7303     break;
7304   }
7305   }
7306 
7307   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
7308   pushOutChain(Result, EB);
7309 
7310   SDValue FPResult = Result.getValue(0);
7311   setValue(&FPI, FPResult);
7312 }
7313 
7314 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
7315   Optional<unsigned> ResOPC;
7316   switch (VPIntrin.getIntrinsicID()) {
7317 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
7318 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) ResOPC = ISD::VPSD;
7319 #define END_REGISTER_VP_INTRINSIC(VPID) break;
7320 #include "llvm/IR/VPIntrinsics.def"
7321   }
7322 
7323   if (!ResOPC.hasValue())
7324     llvm_unreachable(
7325         "Inconsistency: no SDNode available for this VPIntrinsic!");
7326 
7327   if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD ||
7328       *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) {
7329     if (VPIntrin.getFastMathFlags().allowReassoc())
7330       return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD
7331                                                 : ISD::VP_REDUCE_FMUL;
7332   }
7333 
7334   return ResOPC.getValue();
7335 }
7336 
7337 void SelectionDAGBuilder::visitVPLoadGather(const VPIntrinsic &VPIntrin, EVT VT,
7338                                             SmallVector<SDValue, 7> &OpValues,
7339                                             bool IsGather) {
7340   SDLoc DL = getCurSDLoc();
7341   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7342   Value *PtrOperand = VPIntrin.getArgOperand(0);
7343   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7344   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7345   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7346   SDValue LD;
7347   bool AddToChain = true;
7348   if (!IsGather) {
7349     // Do not serialize variable-length loads of constant memory with
7350     // anything.
7351     if (!Alignment)
7352       Alignment = DAG.getEVTAlign(VT);
7353     MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
7354     AddToChain = !AA || !AA->pointsToConstantMemory(ML);
7355     SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
7356     MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7357         MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
7358         MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7359     LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2],
7360                        MMO, false /*IsExpanding */);
7361   } else {
7362     if (!Alignment)
7363       Alignment = DAG.getEVTAlign(VT.getScalarType());
7364     unsigned AS =
7365         PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7366     MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7367         MachinePointerInfo(AS), MachineMemOperand::MOLoad,
7368         MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7369     SDValue Base, Index, Scale;
7370     ISD::MemIndexType IndexType;
7371     bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7372                                       this, VPIntrin.getParent());
7373     if (!UniformBase) {
7374       Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7375       Index = getValue(PtrOperand);
7376       IndexType = ISD::SIGNED_UNSCALED;
7377       Scale =
7378           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7379     }
7380     EVT IdxVT = Index.getValueType();
7381     EVT EltTy = IdxVT.getVectorElementType();
7382     if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7383       EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7384       Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7385     }
7386     LD = DAG.getGatherVP(
7387         DAG.getVTList(VT, MVT::Other), VT, DL,
7388         {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO,
7389         IndexType);
7390   }
7391   if (AddToChain)
7392     PendingLoads.push_back(LD.getValue(1));
7393   setValue(&VPIntrin, LD);
7394 }
7395 
7396 void SelectionDAGBuilder::visitVPStoreScatter(const VPIntrinsic &VPIntrin,
7397                                               SmallVector<SDValue, 7> &OpValues,
7398                                               bool IsScatter) {
7399   SDLoc DL = getCurSDLoc();
7400   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7401   Value *PtrOperand = VPIntrin.getArgOperand(1);
7402   EVT VT = OpValues[0].getValueType();
7403   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7404   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7405   SDValue ST;
7406   if (!IsScatter) {
7407     if (!Alignment)
7408       Alignment = DAG.getEVTAlign(VT);
7409     SDValue Ptr = OpValues[1];
7410     SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
7411     MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7412         MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
7413         MemoryLocation::UnknownSize, *Alignment, AAInfo);
7414     ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset,
7415                         OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED,
7416                         /* IsTruncating */ false, /*IsCompressing*/ false);
7417   } else {
7418     if (!Alignment)
7419       Alignment = DAG.getEVTAlign(VT.getScalarType());
7420     unsigned AS =
7421         PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7422     MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7423         MachinePointerInfo(AS), MachineMemOperand::MOStore,
7424         MemoryLocation::UnknownSize, *Alignment, AAInfo);
7425     SDValue Base, Index, Scale;
7426     ISD::MemIndexType IndexType;
7427     bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7428                                       this, VPIntrin.getParent());
7429     if (!UniformBase) {
7430       Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7431       Index = getValue(PtrOperand);
7432       IndexType = ISD::SIGNED_UNSCALED;
7433       Scale =
7434           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7435     }
7436     EVT IdxVT = Index.getValueType();
7437     EVT EltTy = IdxVT.getVectorElementType();
7438     if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7439       EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7440       Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7441     }
7442     ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL,
7443                           {getMemoryRoot(), OpValues[0], Base, Index, Scale,
7444                            OpValues[2], OpValues[3]},
7445                           MMO, IndexType);
7446   }
7447   DAG.setRoot(ST);
7448   setValue(&VPIntrin, ST);
7449 }
7450 
7451 void SelectionDAGBuilder::visitVPStridedLoad(
7452     const VPIntrinsic &VPIntrin, EVT VT, SmallVectorImpl<SDValue> &OpValues) {
7453   SDLoc DL = getCurSDLoc();
7454   Value *PtrOperand = VPIntrin.getArgOperand(0);
7455   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7456   if (!Alignment)
7457     Alignment = DAG.getEVTAlign(VT.getScalarType());
7458   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7459   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7460   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
7461   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
7462   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
7463   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7464       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
7465       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7466 
7467   SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1],
7468                                     OpValues[2], OpValues[3], MMO,
7469                                     false /*IsExpanding*/);
7470 
7471   if (AddToChain)
7472     PendingLoads.push_back(LD.getValue(1));
7473   setValue(&VPIntrin, LD);
7474 }
7475 
7476 void SelectionDAGBuilder::visitVPStridedStore(
7477     const VPIntrinsic &VPIntrin, SmallVectorImpl<SDValue> &OpValues) {
7478   SDLoc DL = getCurSDLoc();
7479   Value *PtrOperand = VPIntrin.getArgOperand(1);
7480   EVT VT = OpValues[0].getValueType();
7481   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7482   if (!Alignment)
7483     Alignment = DAG.getEVTAlign(VT.getScalarType());
7484   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7485   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7486       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
7487       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7488 
7489   SDValue ST = DAG.getStridedStoreVP(
7490       getMemoryRoot(), DL, OpValues[0], OpValues[1],
7491       DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3],
7492       OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false,
7493       /*IsCompressing*/ false);
7494 
7495   DAG.setRoot(ST);
7496   setValue(&VPIntrin, ST);
7497 }
7498 
7499 void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
7500     const VPIntrinsic &VPIntrin) {
7501   SDLoc DL = getCurSDLoc();
7502   unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
7503 
7504   SmallVector<EVT, 4> ValueVTs;
7505   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7506   ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
7507   SDVTList VTs = DAG.getVTList(ValueVTs);
7508 
7509   auto EVLParamPos =
7510       VPIntrinsic::getVectorLengthParamPos(VPIntrin.getIntrinsicID());
7511 
7512   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
7513   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
7514          "Unexpected target EVL type");
7515 
7516   // Request operands.
7517   SmallVector<SDValue, 7> OpValues;
7518   for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) {
7519     auto Op = getValue(VPIntrin.getArgOperand(I));
7520     if (I == EVLParamPos)
7521       Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op);
7522     OpValues.push_back(Op);
7523   }
7524 
7525   switch (Opcode) {
7526   default: {
7527     SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues);
7528     setValue(&VPIntrin, Result);
7529     break;
7530   }
7531   case ISD::VP_LOAD:
7532   case ISD::VP_GATHER:
7533     visitVPLoadGather(VPIntrin, ValueVTs[0], OpValues,
7534                       Opcode == ISD::VP_GATHER);
7535     break;
7536   case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
7537     visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues);
7538     break;
7539   case ISD::VP_STORE:
7540   case ISD::VP_SCATTER:
7541     visitVPStoreScatter(VPIntrin, OpValues, Opcode == ISD::VP_SCATTER);
7542     break;
7543   case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
7544     visitVPStridedStore(VPIntrin, OpValues);
7545     break;
7546   }
7547 }
7548 
7549 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
7550                                           const BasicBlock *EHPadBB,
7551                                           MCSymbol *&BeginLabel) {
7552   MachineFunction &MF = DAG.getMachineFunction();
7553   MachineModuleInfo &MMI = MF.getMMI();
7554 
7555   // Insert a label before the invoke call to mark the try range.  This can be
7556   // used to detect deletion of the invoke via the MachineModuleInfo.
7557   BeginLabel = MMI.getContext().createTempSymbol();
7558 
7559   // For SjLj, keep track of which landing pads go with which invokes
7560   // so as to maintain the ordering of pads in the LSDA.
7561   unsigned CallSiteIndex = MMI.getCurrentCallSite();
7562   if (CallSiteIndex) {
7563     MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7564     LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7565 
7566     // Now that the call site is handled, stop tracking it.
7567     MMI.setCurrentCallSite(0);
7568   }
7569 
7570   return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
7571 }
7572 
7573 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
7574                                         const BasicBlock *EHPadBB,
7575                                         MCSymbol *BeginLabel) {
7576   assert(BeginLabel && "BeginLabel should've been set");
7577 
7578   MachineFunction &MF = DAG.getMachineFunction();
7579   MachineModuleInfo &MMI = MF.getMMI();
7580 
7581   // Insert a label at the end of the invoke call to mark the try range.  This
7582   // can be used to detect deletion of the invoke via the MachineModuleInfo.
7583   MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7584   Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
7585 
7586   // Inform MachineModuleInfo of range.
7587   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7588   // There is a platform (e.g. wasm) that uses funclet style IR but does not
7589   // actually use outlined funclets and their LSDA info style.
7590   if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7591     assert(II && "II should've been set");
7592     WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
7593     EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
7594   } else if (!isScopedEHPersonality(Pers)) {
7595     assert(EHPadBB);
7596     MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7597   }
7598 
7599   return Chain;
7600 }
7601 
7602 std::pair<SDValue, SDValue>
7603 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
7604                                     const BasicBlock *EHPadBB) {
7605   MCSymbol *BeginLabel = nullptr;
7606 
7607   if (EHPadBB) {
7608     // Both PendingLoads and PendingExports must be flushed here;
7609     // this call might not return.
7610     (void)getRoot();
7611     DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
7612     CLI.setChain(getRoot());
7613   }
7614 
7615   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7616   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7617 
7618   assert((CLI.IsTailCall || Result.second.getNode()) &&
7619          "Non-null chain expected with non-tail call!");
7620   assert((Result.second.getNode() || !Result.first.getNode()) &&
7621          "Null value expected with tail call!");
7622 
7623   if (!Result.second.getNode()) {
7624     // As a special case, a null chain means that a tail call has been emitted
7625     // and the DAG root is already updated.
7626     HasTailCall = true;
7627 
7628     // Since there's no actual continuation from this block, nothing can be
7629     // relying on us setting vregs for them.
7630     PendingExports.clear();
7631   } else {
7632     DAG.setRoot(Result.second);
7633   }
7634 
7635   if (EHPadBB) {
7636     DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
7637                            BeginLabel));
7638   }
7639 
7640   return Result;
7641 }
7642 
7643 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
7644                                       bool isTailCall,
7645                                       bool isMustTailCall,
7646                                       const BasicBlock *EHPadBB) {
7647   auto &DL = DAG.getDataLayout();
7648   FunctionType *FTy = CB.getFunctionType();
7649   Type *RetTy = CB.getType();
7650 
7651   TargetLowering::ArgListTy Args;
7652   Args.reserve(CB.arg_size());
7653 
7654   const Value *SwiftErrorVal = nullptr;
7655   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7656 
7657   if (isTailCall) {
7658     // Avoid emitting tail calls in functions with the disable-tail-calls
7659     // attribute.
7660     auto *Caller = CB.getParent()->getParent();
7661     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
7662         "true" && !isMustTailCall)
7663       isTailCall = false;
7664 
7665     // We can't tail call inside a function with a swifterror argument. Lowering
7666     // does not support this yet. It would have to move into the swifterror
7667     // register before the call.
7668     if (TLI.supportSwiftError() &&
7669         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7670       isTailCall = false;
7671   }
7672 
7673   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
7674     TargetLowering::ArgListEntry Entry;
7675     const Value *V = *I;
7676 
7677     // Skip empty types
7678     if (V->getType()->isEmptyTy())
7679       continue;
7680 
7681     SDValue ArgNode = getValue(V);
7682     Entry.Node = ArgNode; Entry.Ty = V->getType();
7683 
7684     Entry.setAttributes(&CB, I - CB.arg_begin());
7685 
7686     // Use swifterror virtual register as input to the call.
7687     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7688       SwiftErrorVal = V;
7689       // We find the virtual register for the actual swifterror argument.
7690       // Instead of using the Value, we use the virtual register instead.
7691       Entry.Node =
7692           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
7693                           EVT(TLI.getPointerTy(DL)));
7694     }
7695 
7696     Args.push_back(Entry);
7697 
7698     // If we have an explicit sret argument that is an Instruction, (i.e., it
7699     // might point to function-local memory), we can't meaningfully tail-call.
7700     if (Entry.IsSRet && isa<Instruction>(V))
7701       isTailCall = false;
7702   }
7703 
7704   // If call site has a cfguardtarget operand bundle, create and add an
7705   // additional ArgListEntry.
7706   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
7707     TargetLowering::ArgListEntry Entry;
7708     Value *V = Bundle->Inputs[0];
7709     SDValue ArgNode = getValue(V);
7710     Entry.Node = ArgNode;
7711     Entry.Ty = V->getType();
7712     Entry.IsCFGuardTarget = true;
7713     Args.push_back(Entry);
7714   }
7715 
7716   // Check if target-independent constraints permit a tail call here.
7717   // Target-dependent constraints are checked within TLI->LowerCallTo.
7718   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
7719     isTailCall = false;
7720 
7721   // Disable tail calls if there is an swifterror argument. Targets have not
7722   // been updated to support tail calls.
7723   if (TLI.supportSwiftError() && SwiftErrorVal)
7724     isTailCall = false;
7725 
7726   TargetLowering::CallLoweringInfo CLI(DAG);
7727   CLI.setDebugLoc(getCurSDLoc())
7728       .setChain(getRoot())
7729       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
7730       .setTailCall(isTailCall)
7731       .setConvergent(CB.isConvergent())
7732       .setIsPreallocated(
7733           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
7734   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7735 
7736   if (Result.first.getNode()) {
7737     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
7738     setValue(&CB, Result.first);
7739   }
7740 
7741   // The last element of CLI.InVals has the SDValue for swifterror return.
7742   // Here we copy it to a virtual register and update SwiftErrorMap for
7743   // book-keeping.
7744   if (SwiftErrorVal && TLI.supportSwiftError()) {
7745     // Get the last element of InVals.
7746     SDValue Src = CLI.InVals.back();
7747     Register VReg =
7748         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
7749     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
7750     DAG.setRoot(CopyNode);
7751   }
7752 }
7753 
7754 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
7755                              SelectionDAGBuilder &Builder) {
7756   // Check to see if this load can be trivially constant folded, e.g. if the
7757   // input is from a string literal.
7758   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
7759     // Cast pointer to the type we really want to load.
7760     Type *LoadTy =
7761         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
7762     if (LoadVT.isVector())
7763       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
7764 
7765     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
7766                                          PointerType::getUnqual(LoadTy));
7767 
7768     if (const Constant *LoadCst =
7769             ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
7770                                          LoadTy, Builder.DAG.getDataLayout()))
7771       return Builder.getValue(LoadCst);
7772   }
7773 
7774   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
7775   // still constant memory, the input chain can be the entry node.
7776   SDValue Root;
7777   bool ConstantMemory = false;
7778 
7779   // Do not serialize (non-volatile) loads of constant memory with anything.
7780   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
7781     Root = Builder.DAG.getEntryNode();
7782     ConstantMemory = true;
7783   } else {
7784     // Do not serialize non-volatile loads against each other.
7785     Root = Builder.DAG.getRoot();
7786   }
7787 
7788   SDValue Ptr = Builder.getValue(PtrVal);
7789   SDValue LoadVal =
7790       Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
7791                           MachinePointerInfo(PtrVal), Align(1));
7792 
7793   if (!ConstantMemory)
7794     Builder.PendingLoads.push_back(LoadVal.getValue(1));
7795   return LoadVal;
7796 }
7797 
7798 /// Record the value for an instruction that produces an integer result,
7799 /// converting the type where necessary.
7800 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
7801                                                   SDValue Value,
7802                                                   bool IsSigned) {
7803   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7804                                                     I.getType(), true);
7805   if (IsSigned)
7806     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
7807   else
7808     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
7809   setValue(&I, Value);
7810 }
7811 
7812 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
7813 /// true and lower it. Otherwise return false, and it will be lowered like a
7814 /// normal call.
7815 /// The caller already checked that \p I calls the appropriate LibFunc with a
7816 /// correct prototype.
7817 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
7818   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7819   const Value *Size = I.getArgOperand(2);
7820   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
7821   if (CSize && CSize->getZExtValue() == 0) {
7822     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7823                                                           I.getType(), true);
7824     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7825     return true;
7826   }
7827 
7828   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7829   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7830       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7831       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7832   if (Res.first.getNode()) {
7833     processIntegerCallValue(I, Res.first, true);
7834     PendingLoads.push_back(Res.second);
7835     return true;
7836   }
7837 
7838   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
7839   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
7840   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7841     return false;
7842 
7843   // If the target has a fast compare for the given size, it will return a
7844   // preferred load type for that size. Require that the load VT is legal and
7845   // that the target supports unaligned loads of that type. Otherwise, return
7846   // INVALID.
7847   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
7848     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7849     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
7850     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
7851       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7852       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7853       // TODO: Check alignment of src and dest ptrs.
7854       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
7855       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
7856       if (!TLI.isTypeLegal(LVT) ||
7857           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
7858           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
7859         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
7860     }
7861 
7862     return LVT;
7863   };
7864 
7865   // This turns into unaligned loads. We only do this if the target natively
7866   // supports the MVT we'll be loading or if it is small enough (<= 4) that
7867   // we'll only produce a small number of byte loads.
7868   MVT LoadVT;
7869   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
7870   switch (NumBitsToCompare) {
7871   default:
7872     return false;
7873   case 16:
7874     LoadVT = MVT::i16;
7875     break;
7876   case 32:
7877     LoadVT = MVT::i32;
7878     break;
7879   case 64:
7880   case 128:
7881   case 256:
7882     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
7883     break;
7884   }
7885 
7886   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
7887     return false;
7888 
7889   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
7890   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
7891 
7892   // Bitcast to a wide integer type if the loads are vectors.
7893   if (LoadVT.isVector()) {
7894     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
7895     LoadL = DAG.getBitcast(CmpVT, LoadL);
7896     LoadR = DAG.getBitcast(CmpVT, LoadR);
7897   }
7898 
7899   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
7900   processIntegerCallValue(I, Cmp, false);
7901   return true;
7902 }
7903 
7904 /// See if we can lower a memchr call into an optimized form. If so, return
7905 /// true and lower it. Otherwise return false, and it will be lowered like a
7906 /// normal call.
7907 /// The caller already checked that \p I calls the appropriate LibFunc with a
7908 /// correct prototype.
7909 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
7910   const Value *Src = I.getArgOperand(0);
7911   const Value *Char = I.getArgOperand(1);
7912   const Value *Length = I.getArgOperand(2);
7913 
7914   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7915   std::pair<SDValue, SDValue> Res =
7916     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
7917                                 getValue(Src), getValue(Char), getValue(Length),
7918                                 MachinePointerInfo(Src));
7919   if (Res.first.getNode()) {
7920     setValue(&I, Res.first);
7921     PendingLoads.push_back(Res.second);
7922     return true;
7923   }
7924 
7925   return false;
7926 }
7927 
7928 /// See if we can lower a mempcpy call into an optimized form. If so, return
7929 /// true and lower it. Otherwise return false, and it will be lowered like a
7930 /// normal call.
7931 /// The caller already checked that \p I calls the appropriate LibFunc with a
7932 /// correct prototype.
7933 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
7934   SDValue Dst = getValue(I.getArgOperand(0));
7935   SDValue Src = getValue(I.getArgOperand(1));
7936   SDValue Size = getValue(I.getArgOperand(2));
7937 
7938   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
7939   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
7940   // DAG::getMemcpy needs Alignment to be defined.
7941   Align Alignment = std::min(DstAlign, SrcAlign);
7942 
7943   bool isVol = false;
7944   SDLoc sdl = getCurSDLoc();
7945 
7946   // In the mempcpy context we need to pass in a false value for isTailCall
7947   // because the return pointer needs to be adjusted by the size of
7948   // the copied memory.
7949   SDValue Root = isVol ? getRoot() : getMemoryRoot();
7950   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false,
7951                              /*isTailCall=*/false,
7952                              MachinePointerInfo(I.getArgOperand(0)),
7953                              MachinePointerInfo(I.getArgOperand(1)),
7954                              I.getAAMetadata());
7955   assert(MC.getNode() != nullptr &&
7956          "** memcpy should not be lowered as TailCall in mempcpy context **");
7957   DAG.setRoot(MC);
7958 
7959   // Check if Size needs to be truncated or extended.
7960   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
7961 
7962   // Adjust return pointer to point just past the last dst byte.
7963   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
7964                                     Dst, Size);
7965   setValue(&I, DstPlusSize);
7966   return true;
7967 }
7968 
7969 /// See if we can lower a strcpy call into an optimized form.  If so, return
7970 /// true and lower it, otherwise return false and it will be lowered like a
7971 /// normal call.
7972 /// The caller already checked that \p I calls the appropriate LibFunc with a
7973 /// correct prototype.
7974 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
7975   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7976 
7977   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7978   std::pair<SDValue, SDValue> Res =
7979     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
7980                                 getValue(Arg0), getValue(Arg1),
7981                                 MachinePointerInfo(Arg0),
7982                                 MachinePointerInfo(Arg1), isStpcpy);
7983   if (Res.first.getNode()) {
7984     setValue(&I, Res.first);
7985     DAG.setRoot(Res.second);
7986     return true;
7987   }
7988 
7989   return false;
7990 }
7991 
7992 /// See if we can lower a strcmp call into an optimized form.  If so, return
7993 /// true and lower it, otherwise return false and it will be lowered like a
7994 /// normal call.
7995 /// The caller already checked that \p I calls the appropriate LibFunc with a
7996 /// correct prototype.
7997 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
7998   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7999 
8000   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8001   std::pair<SDValue, SDValue> Res =
8002     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
8003                                 getValue(Arg0), getValue(Arg1),
8004                                 MachinePointerInfo(Arg0),
8005                                 MachinePointerInfo(Arg1));
8006   if (Res.first.getNode()) {
8007     processIntegerCallValue(I, Res.first, true);
8008     PendingLoads.push_back(Res.second);
8009     return true;
8010   }
8011 
8012   return false;
8013 }
8014 
8015 /// See if we can lower a strlen call into an optimized form.  If so, return
8016 /// true and lower it, otherwise return false and it will be lowered like a
8017 /// normal call.
8018 /// The caller already checked that \p I calls the appropriate LibFunc with a
8019 /// correct prototype.
8020 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
8021   const Value *Arg0 = I.getArgOperand(0);
8022 
8023   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8024   std::pair<SDValue, SDValue> Res =
8025     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
8026                                 getValue(Arg0), MachinePointerInfo(Arg0));
8027   if (Res.first.getNode()) {
8028     processIntegerCallValue(I, Res.first, false);
8029     PendingLoads.push_back(Res.second);
8030     return true;
8031   }
8032 
8033   return false;
8034 }
8035 
8036 /// See if we can lower a strnlen call into an optimized form.  If so, return
8037 /// true and lower it, otherwise return false and it will be lowered like a
8038 /// normal call.
8039 /// The caller already checked that \p I calls the appropriate LibFunc with a
8040 /// correct prototype.
8041 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
8042   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8043 
8044   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8045   std::pair<SDValue, SDValue> Res =
8046     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
8047                                  getValue(Arg0), getValue(Arg1),
8048                                  MachinePointerInfo(Arg0));
8049   if (Res.first.getNode()) {
8050     processIntegerCallValue(I, Res.first, false);
8051     PendingLoads.push_back(Res.second);
8052     return true;
8053   }
8054 
8055   return false;
8056 }
8057 
8058 /// See if we can lower a unary floating-point operation into an SDNode with
8059 /// the specified Opcode.  If so, return true and lower it, otherwise return
8060 /// false and it will be lowered like a normal call.
8061 /// The caller already checked that \p I calls the appropriate LibFunc with a
8062 /// correct prototype.
8063 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
8064                                               unsigned Opcode) {
8065   // We already checked this call's prototype; verify it doesn't modify errno.
8066   if (!I.onlyReadsMemory())
8067     return false;
8068 
8069   SDNodeFlags Flags;
8070   Flags.copyFMF(cast<FPMathOperator>(I));
8071 
8072   SDValue Tmp = getValue(I.getArgOperand(0));
8073   setValue(&I,
8074            DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
8075   return true;
8076 }
8077 
8078 /// See if we can lower a binary floating-point operation into an SDNode with
8079 /// the specified Opcode. If so, return true and lower it. Otherwise return
8080 /// false, and it will be lowered like a normal call.
8081 /// The caller already checked that \p I calls the appropriate LibFunc with a
8082 /// correct prototype.
8083 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
8084                                                unsigned Opcode) {
8085   // We already checked this call's prototype; verify it doesn't modify errno.
8086   if (!I.onlyReadsMemory())
8087     return false;
8088 
8089   SDNodeFlags Flags;
8090   Flags.copyFMF(cast<FPMathOperator>(I));
8091 
8092   SDValue Tmp0 = getValue(I.getArgOperand(0));
8093   SDValue Tmp1 = getValue(I.getArgOperand(1));
8094   EVT VT = Tmp0.getValueType();
8095   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
8096   return true;
8097 }
8098 
8099 void SelectionDAGBuilder::visitCall(const CallInst &I) {
8100   // Handle inline assembly differently.
8101   if (I.isInlineAsm()) {
8102     visitInlineAsm(I);
8103     return;
8104   }
8105 
8106   if (Function *F = I.getCalledFunction()) {
8107     diagnoseDontCall(I);
8108 
8109     if (F->isDeclaration()) {
8110       // Is this an LLVM intrinsic or a target-specific intrinsic?
8111       unsigned IID = F->getIntrinsicID();
8112       if (!IID)
8113         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
8114           IID = II->getIntrinsicID(F);
8115 
8116       if (IID) {
8117         visitIntrinsicCall(I, IID);
8118         return;
8119       }
8120     }
8121 
8122     // Check for well-known libc/libm calls.  If the function is internal, it
8123     // can't be a library call.  Don't do the check if marked as nobuiltin for
8124     // some reason or the call site requires strict floating point semantics.
8125     LibFunc Func;
8126     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
8127         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
8128         LibInfo->hasOptimizedCodeGen(Func)) {
8129       switch (Func) {
8130       default: break;
8131       case LibFunc_bcmp:
8132         if (visitMemCmpBCmpCall(I))
8133           return;
8134         break;
8135       case LibFunc_copysign:
8136       case LibFunc_copysignf:
8137       case LibFunc_copysignl:
8138         // We already checked this call's prototype; verify it doesn't modify
8139         // errno.
8140         if (I.onlyReadsMemory()) {
8141           SDValue LHS = getValue(I.getArgOperand(0));
8142           SDValue RHS = getValue(I.getArgOperand(1));
8143           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
8144                                    LHS.getValueType(), LHS, RHS));
8145           return;
8146         }
8147         break;
8148       case LibFunc_fabs:
8149       case LibFunc_fabsf:
8150       case LibFunc_fabsl:
8151         if (visitUnaryFloatCall(I, ISD::FABS))
8152           return;
8153         break;
8154       case LibFunc_fmin:
8155       case LibFunc_fminf:
8156       case LibFunc_fminl:
8157         if (visitBinaryFloatCall(I, ISD::FMINNUM))
8158           return;
8159         break;
8160       case LibFunc_fmax:
8161       case LibFunc_fmaxf:
8162       case LibFunc_fmaxl:
8163         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
8164           return;
8165         break;
8166       case LibFunc_sin:
8167       case LibFunc_sinf:
8168       case LibFunc_sinl:
8169         if (visitUnaryFloatCall(I, ISD::FSIN))
8170           return;
8171         break;
8172       case LibFunc_cos:
8173       case LibFunc_cosf:
8174       case LibFunc_cosl:
8175         if (visitUnaryFloatCall(I, ISD::FCOS))
8176           return;
8177         break;
8178       case LibFunc_sqrt:
8179       case LibFunc_sqrtf:
8180       case LibFunc_sqrtl:
8181       case LibFunc_sqrt_finite:
8182       case LibFunc_sqrtf_finite:
8183       case LibFunc_sqrtl_finite:
8184         if (visitUnaryFloatCall(I, ISD::FSQRT))
8185           return;
8186         break;
8187       case LibFunc_floor:
8188       case LibFunc_floorf:
8189       case LibFunc_floorl:
8190         if (visitUnaryFloatCall(I, ISD::FFLOOR))
8191           return;
8192         break;
8193       case LibFunc_nearbyint:
8194       case LibFunc_nearbyintf:
8195       case LibFunc_nearbyintl:
8196         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
8197           return;
8198         break;
8199       case LibFunc_ceil:
8200       case LibFunc_ceilf:
8201       case LibFunc_ceill:
8202         if (visitUnaryFloatCall(I, ISD::FCEIL))
8203           return;
8204         break;
8205       case LibFunc_rint:
8206       case LibFunc_rintf:
8207       case LibFunc_rintl:
8208         if (visitUnaryFloatCall(I, ISD::FRINT))
8209           return;
8210         break;
8211       case LibFunc_round:
8212       case LibFunc_roundf:
8213       case LibFunc_roundl:
8214         if (visitUnaryFloatCall(I, ISD::FROUND))
8215           return;
8216         break;
8217       case LibFunc_trunc:
8218       case LibFunc_truncf:
8219       case LibFunc_truncl:
8220         if (visitUnaryFloatCall(I, ISD::FTRUNC))
8221           return;
8222         break;
8223       case LibFunc_log2:
8224       case LibFunc_log2f:
8225       case LibFunc_log2l:
8226         if (visitUnaryFloatCall(I, ISD::FLOG2))
8227           return;
8228         break;
8229       case LibFunc_exp2:
8230       case LibFunc_exp2f:
8231       case LibFunc_exp2l:
8232         if (visitUnaryFloatCall(I, ISD::FEXP2))
8233           return;
8234         break;
8235       case LibFunc_memcmp:
8236         if (visitMemCmpBCmpCall(I))
8237           return;
8238         break;
8239       case LibFunc_mempcpy:
8240         if (visitMemPCpyCall(I))
8241           return;
8242         break;
8243       case LibFunc_memchr:
8244         if (visitMemChrCall(I))
8245           return;
8246         break;
8247       case LibFunc_strcpy:
8248         if (visitStrCpyCall(I, false))
8249           return;
8250         break;
8251       case LibFunc_stpcpy:
8252         if (visitStrCpyCall(I, true))
8253           return;
8254         break;
8255       case LibFunc_strcmp:
8256         if (visitStrCmpCall(I))
8257           return;
8258         break;
8259       case LibFunc_strlen:
8260         if (visitStrLenCall(I))
8261           return;
8262         break;
8263       case LibFunc_strnlen:
8264         if (visitStrNLenCall(I))
8265           return;
8266         break;
8267       }
8268     }
8269   }
8270 
8271   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
8272   // have to do anything here to lower funclet bundles.
8273   // CFGuardTarget bundles are lowered in LowerCallTo.
8274   assert(!I.hasOperandBundlesOtherThan(
8275              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
8276               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated,
8277               LLVMContext::OB_clang_arc_attachedcall}) &&
8278          "Cannot lower calls with arbitrary operand bundles!");
8279 
8280   SDValue Callee = getValue(I.getCalledOperand());
8281 
8282   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
8283     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
8284   else
8285     // Check if we can potentially perform a tail call. More detailed checking
8286     // is be done within LowerCallTo, after more information about the call is
8287     // known.
8288     LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
8289 }
8290 
8291 namespace {
8292 
8293 /// AsmOperandInfo - This contains information for each constraint that we are
8294 /// lowering.
8295 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
8296 public:
8297   /// CallOperand - If this is the result output operand or a clobber
8298   /// this is null, otherwise it is the incoming operand to the CallInst.
8299   /// This gets modified as the asm is processed.
8300   SDValue CallOperand;
8301 
8302   /// AssignedRegs - If this is a register or register class operand, this
8303   /// contains the set of register corresponding to the operand.
8304   RegsForValue AssignedRegs;
8305 
8306   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
8307     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
8308   }
8309 
8310   /// Whether or not this operand accesses memory
8311   bool hasMemory(const TargetLowering &TLI) const {
8312     // Indirect operand accesses access memory.
8313     if (isIndirect)
8314       return true;
8315 
8316     for (const auto &Code : Codes)
8317       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
8318         return true;
8319 
8320     return false;
8321   }
8322 
8323   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
8324   /// corresponds to.  If there is no Value* for this operand, it returns
8325   /// MVT::Other.
8326   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
8327                            const DataLayout &DL,
8328                            llvm::Type *ParamElemType) const {
8329     if (!CallOperandVal) return MVT::Other;
8330 
8331     if (isa<BasicBlock>(CallOperandVal))
8332       return TLI.getProgramPointerTy(DL);
8333 
8334     llvm::Type *OpTy = CallOperandVal->getType();
8335 
8336     // FIXME: code duplicated from TargetLowering::ParseConstraints().
8337     // If this is an indirect operand, the operand is a pointer to the
8338     // accessed type.
8339     if (isIndirect) {
8340       OpTy = ParamElemType;
8341       assert(OpTy && "Indirect operand must have elementtype attribute");
8342     }
8343 
8344     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
8345     if (StructType *STy = dyn_cast<StructType>(OpTy))
8346       if (STy->getNumElements() == 1)
8347         OpTy = STy->getElementType(0);
8348 
8349     // If OpTy is not a single value, it may be a struct/union that we
8350     // can tile with integers.
8351     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
8352       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
8353       switch (BitSize) {
8354       default: break;
8355       case 1:
8356       case 8:
8357       case 16:
8358       case 32:
8359       case 64:
8360       case 128:
8361         OpTy = IntegerType::get(Context, BitSize);
8362         break;
8363       }
8364     }
8365 
8366     return TLI.getAsmOperandValueType(DL, OpTy, true);
8367   }
8368 };
8369 
8370 
8371 } // end anonymous namespace
8372 
8373 /// Make sure that the output operand \p OpInfo and its corresponding input
8374 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
8375 /// out).
8376 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
8377                                SDISelAsmOperandInfo &MatchingOpInfo,
8378                                SelectionDAG &DAG) {
8379   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
8380     return;
8381 
8382   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
8383   const auto &TLI = DAG.getTargetLoweringInfo();
8384 
8385   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
8386       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
8387                                        OpInfo.ConstraintVT);
8388   std::pair<unsigned, const TargetRegisterClass *> InputRC =
8389       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
8390                                        MatchingOpInfo.ConstraintVT);
8391   if ((OpInfo.ConstraintVT.isInteger() !=
8392        MatchingOpInfo.ConstraintVT.isInteger()) ||
8393       (MatchRC.second != InputRC.second)) {
8394     // FIXME: error out in a more elegant fashion
8395     report_fatal_error("Unsupported asm: input constraint"
8396                        " with a matching output constraint of"
8397                        " incompatible type!");
8398   }
8399   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
8400 }
8401 
8402 /// Get a direct memory input to behave well as an indirect operand.
8403 /// This may introduce stores, hence the need for a \p Chain.
8404 /// \return The (possibly updated) chain.
8405 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
8406                                         SDISelAsmOperandInfo &OpInfo,
8407                                         SelectionDAG &DAG) {
8408   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8409 
8410   // If we don't have an indirect input, put it in the constpool if we can,
8411   // otherwise spill it to a stack slot.
8412   // TODO: This isn't quite right. We need to handle these according to
8413   // the addressing mode that the constraint wants. Also, this may take
8414   // an additional register for the computation and we don't want that
8415   // either.
8416 
8417   // If the operand is a float, integer, or vector constant, spill to a
8418   // constant pool entry to get its address.
8419   const Value *OpVal = OpInfo.CallOperandVal;
8420   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
8421       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
8422     OpInfo.CallOperand = DAG.getConstantPool(
8423         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
8424     return Chain;
8425   }
8426 
8427   // Otherwise, create a stack slot and emit a store to it before the asm.
8428   Type *Ty = OpVal->getType();
8429   auto &DL = DAG.getDataLayout();
8430   uint64_t TySize = DL.getTypeAllocSize(Ty);
8431   MachineFunction &MF = DAG.getMachineFunction();
8432   int SSFI = MF.getFrameInfo().CreateStackObject(
8433       TySize, DL.getPrefTypeAlign(Ty), false);
8434   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
8435   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
8436                             MachinePointerInfo::getFixedStack(MF, SSFI),
8437                             TLI.getMemValueType(DL, Ty));
8438   OpInfo.CallOperand = StackSlot;
8439 
8440   return Chain;
8441 }
8442 
8443 /// GetRegistersForValue - Assign registers (virtual or physical) for the
8444 /// specified operand.  We prefer to assign virtual registers, to allow the
8445 /// register allocator to handle the assignment process.  However, if the asm
8446 /// uses features that we can't model on machineinstrs, we have SDISel do the
8447 /// allocation.  This produces generally horrible, but correct, code.
8448 ///
8449 ///   OpInfo describes the operand
8450 ///   RefOpInfo describes the matching operand if any, the operand otherwise
8451 static llvm::Optional<unsigned>
8452 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
8453                      SDISelAsmOperandInfo &OpInfo,
8454                      SDISelAsmOperandInfo &RefOpInfo) {
8455   LLVMContext &Context = *DAG.getContext();
8456   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8457 
8458   MachineFunction &MF = DAG.getMachineFunction();
8459   SmallVector<unsigned, 4> Regs;
8460   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8461 
8462   // No work to do for memory operations.
8463   if (OpInfo.ConstraintType == TargetLowering::C_Memory)
8464     return None;
8465 
8466   // If this is a constraint for a single physreg, or a constraint for a
8467   // register class, find it.
8468   unsigned AssignedReg;
8469   const TargetRegisterClass *RC;
8470   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
8471       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
8472   // RC is unset only on failure. Return immediately.
8473   if (!RC)
8474     return None;
8475 
8476   // Get the actual register value type.  This is important, because the user
8477   // may have asked for (e.g.) the AX register in i32 type.  We need to
8478   // remember that AX is actually i16 to get the right extension.
8479   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
8480 
8481   if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
8482     // If this is an FP operand in an integer register (or visa versa), or more
8483     // generally if the operand value disagrees with the register class we plan
8484     // to stick it in, fix the operand type.
8485     //
8486     // If this is an input value, the bitcast to the new type is done now.
8487     // Bitcast for output value is done at the end of visitInlineAsm().
8488     if ((OpInfo.Type == InlineAsm::isOutput ||
8489          OpInfo.Type == InlineAsm::isInput) &&
8490         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
8491       // Try to convert to the first EVT that the reg class contains.  If the
8492       // types are identical size, use a bitcast to convert (e.g. two differing
8493       // vector types).  Note: output bitcast is done at the end of
8494       // visitInlineAsm().
8495       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
8496         // Exclude indirect inputs while they are unsupported because the code
8497         // to perform the load is missing and thus OpInfo.CallOperand still
8498         // refers to the input address rather than the pointed-to value.
8499         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
8500           OpInfo.CallOperand =
8501               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
8502         OpInfo.ConstraintVT = RegVT;
8503         // If the operand is an FP value and we want it in integer registers,
8504         // use the corresponding integer type. This turns an f64 value into
8505         // i64, which can be passed with two i32 values on a 32-bit machine.
8506       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
8507         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
8508         if (OpInfo.Type == InlineAsm::isInput)
8509           OpInfo.CallOperand =
8510               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
8511         OpInfo.ConstraintVT = VT;
8512       }
8513     }
8514   }
8515 
8516   // No need to allocate a matching input constraint since the constraint it's
8517   // matching to has already been allocated.
8518   if (OpInfo.isMatchingInputConstraint())
8519     return None;
8520 
8521   EVT ValueVT = OpInfo.ConstraintVT;
8522   if (OpInfo.ConstraintVT == MVT::Other)
8523     ValueVT = RegVT;
8524 
8525   // Initialize NumRegs.
8526   unsigned NumRegs = 1;
8527   if (OpInfo.ConstraintVT != MVT::Other)
8528     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT);
8529 
8530   // If this is a constraint for a specific physical register, like {r17},
8531   // assign it now.
8532 
8533   // If this associated to a specific register, initialize iterator to correct
8534   // place. If virtual, make sure we have enough registers
8535 
8536   // Initialize iterator if necessary
8537   TargetRegisterClass::iterator I = RC->begin();
8538   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8539 
8540   // Do not check for single registers.
8541   if (AssignedReg) {
8542     I = std::find(I, RC->end(), AssignedReg);
8543     if (I == RC->end()) {
8544       // RC does not contain the selected register, which indicates a
8545       // mismatch between the register and the required type/bitwidth.
8546       return {AssignedReg};
8547     }
8548   }
8549 
8550   for (; NumRegs; --NumRegs, ++I) {
8551     assert(I != RC->end() && "Ran out of registers to allocate!");
8552     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
8553     Regs.push_back(R);
8554   }
8555 
8556   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
8557   return None;
8558 }
8559 
8560 static unsigned
8561 findMatchingInlineAsmOperand(unsigned OperandNo,
8562                              const std::vector<SDValue> &AsmNodeOperands) {
8563   // Scan until we find the definition we already emitted of this operand.
8564   unsigned CurOp = InlineAsm::Op_FirstOperand;
8565   for (; OperandNo; --OperandNo) {
8566     // Advance to the next operand.
8567     unsigned OpFlag =
8568         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8569     assert((InlineAsm::isRegDefKind(OpFlag) ||
8570             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
8571             InlineAsm::isMemKind(OpFlag)) &&
8572            "Skipped past definitions?");
8573     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
8574   }
8575   return CurOp;
8576 }
8577 
8578 namespace {
8579 
8580 class ExtraFlags {
8581   unsigned Flags = 0;
8582 
8583 public:
8584   explicit ExtraFlags(const CallBase &Call) {
8585     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8586     if (IA->hasSideEffects())
8587       Flags |= InlineAsm::Extra_HasSideEffects;
8588     if (IA->isAlignStack())
8589       Flags |= InlineAsm::Extra_IsAlignStack;
8590     if (Call.isConvergent())
8591       Flags |= InlineAsm::Extra_IsConvergent;
8592     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
8593   }
8594 
8595   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
8596     // Ideally, we would only check against memory constraints.  However, the
8597     // meaning of an Other constraint can be target-specific and we can't easily
8598     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
8599     // for Other constraints as well.
8600     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8601         OpInfo.ConstraintType == TargetLowering::C_Other) {
8602       if (OpInfo.Type == InlineAsm::isInput)
8603         Flags |= InlineAsm::Extra_MayLoad;
8604       else if (OpInfo.Type == InlineAsm::isOutput)
8605         Flags |= InlineAsm::Extra_MayStore;
8606       else if (OpInfo.Type == InlineAsm::isClobber)
8607         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
8608     }
8609   }
8610 
8611   unsigned get() const { return Flags; }
8612 };
8613 
8614 } // end anonymous namespace
8615 
8616 /// visitInlineAsm - Handle a call to an InlineAsm object.
8617 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
8618                                          const BasicBlock *EHPadBB) {
8619   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8620 
8621   /// ConstraintOperands - Information about all of the constraints.
8622   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
8623 
8624   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8625   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
8626       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
8627 
8628   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8629   // AsmDialect, MayLoad, MayStore).
8630   bool HasSideEffect = IA->hasSideEffects();
8631   ExtraFlags ExtraInfo(Call);
8632 
8633   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
8634   unsigned ResNo = 0;   // ResNo - The result number of the next output.
8635   for (auto &T : TargetConstraints) {
8636     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
8637     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
8638 
8639     // Compute the value type for each operand.
8640     if (OpInfo.hasArg()) {
8641       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
8642       OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8643       Type *ParamElemTy = Call.getParamElementType(ArgNo);
8644       EVT VT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI,
8645                                            DAG.getDataLayout(), ParamElemTy);
8646       OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other;
8647       ArgNo++;
8648     } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
8649       // The return value of the call is this value.  As such, there is no
8650       // corresponding argument.
8651       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
8652       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
8653         OpInfo.ConstraintVT = TLI.getSimpleValueType(
8654             DAG.getDataLayout(), STy->getElementType(ResNo));
8655       } else {
8656         assert(ResNo == 0 && "Asm only has one result!");
8657         OpInfo.ConstraintVT = TLI.getAsmOperandValueType(
8658             DAG.getDataLayout(), Call.getType()).getSimpleVT();
8659       }
8660       ++ResNo;
8661     } else {
8662       OpInfo.ConstraintVT = MVT::Other;
8663     }
8664 
8665     if (!HasSideEffect)
8666       HasSideEffect = OpInfo.hasMemory(TLI);
8667 
8668     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8669     // FIXME: Could we compute this on OpInfo rather than T?
8670 
8671     // Compute the constraint code and ConstraintType to use.
8672     TLI.ComputeConstraintToUse(T, SDValue());
8673 
8674     if (T.ConstraintType == TargetLowering::C_Immediate &&
8675         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
8676       // We've delayed emitting a diagnostic like the "n" constraint because
8677       // inlining could cause an integer showing up.
8678       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
8679                                           "' expects an integer constant "
8680                                           "expression");
8681 
8682     ExtraInfo.update(T);
8683   }
8684 
8685   // We won't need to flush pending loads if this asm doesn't touch
8686   // memory and is nonvolatile.
8687   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8688 
8689   bool EmitEHLabels = isa<InvokeInst>(Call) && IA->canThrow();
8690   if (EmitEHLabels) {
8691     assert(EHPadBB && "InvokeInst must have an EHPadBB");
8692   }
8693   bool IsCallBr = isa<CallBrInst>(Call);
8694 
8695   if (IsCallBr || EmitEHLabels) {
8696     // If this is a callbr or invoke we need to flush pending exports since
8697     // inlineasm_br and invoke are terminators.
8698     // We need to do this before nodes are glued to the inlineasm_br node.
8699     Chain = getControlRoot();
8700   }
8701 
8702   MCSymbol *BeginLabel = nullptr;
8703   if (EmitEHLabels) {
8704     Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
8705   }
8706 
8707   // Second pass over the constraints: compute which constraint option to use.
8708   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8709     // If this is an output operand with a matching input operand, look up the
8710     // matching input. If their types mismatch, e.g. one is an integer, the
8711     // other is floating point, or their sizes are different, flag it as an
8712     // error.
8713     if (OpInfo.hasMatchingInput()) {
8714       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8715       patchMatchingInput(OpInfo, Input, DAG);
8716     }
8717 
8718     // Compute the constraint code and ConstraintType to use.
8719     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8720 
8721     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8722         OpInfo.Type == InlineAsm::isClobber)
8723       continue;
8724 
8725     // If this is a memory input, and if the operand is not indirect, do what we
8726     // need to provide an address for the memory input.
8727     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8728         !OpInfo.isIndirect) {
8729       assert((OpInfo.isMultipleAlternative ||
8730               (OpInfo.Type == InlineAsm::isInput)) &&
8731              "Can only indirectify direct input operands!");
8732 
8733       // Memory operands really want the address of the value.
8734       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8735 
8736       // There is no longer a Value* corresponding to this operand.
8737       OpInfo.CallOperandVal = nullptr;
8738 
8739       // It is now an indirect operand.
8740       OpInfo.isIndirect = true;
8741     }
8742 
8743   }
8744 
8745   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8746   std::vector<SDValue> AsmNodeOperands;
8747   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
8748   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
8749       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
8750 
8751   // If we have a !srcloc metadata node associated with it, we want to attach
8752   // this to the ultimately generated inline asm machineinstr.  To do this, we
8753   // pass in the third operand as this (potentially null) inline asm MDNode.
8754   const MDNode *SrcLoc = Call.getMetadata("srcloc");
8755   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
8756 
8757   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8758   // bits as operand 3.
8759   AsmNodeOperands.push_back(DAG.getTargetConstant(
8760       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8761 
8762   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8763   // this, assign virtual and physical registers for inputs and otput.
8764   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8765     // Assign Registers.
8766     SDISelAsmOperandInfo &RefOpInfo =
8767         OpInfo.isMatchingInputConstraint()
8768             ? ConstraintOperands[OpInfo.getMatchedOperand()]
8769             : OpInfo;
8770     const auto RegError =
8771         getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
8772     if (RegError.hasValue()) {
8773       const MachineFunction &MF = DAG.getMachineFunction();
8774       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8775       const char *RegName = TRI.getName(RegError.getValue());
8776       emitInlineAsmError(Call, "register '" + Twine(RegName) +
8777                                    "' allocated for constraint '" +
8778                                    Twine(OpInfo.ConstraintCode) +
8779                                    "' does not match required type");
8780       return;
8781     }
8782 
8783     auto DetectWriteToReservedRegister = [&]() {
8784       const MachineFunction &MF = DAG.getMachineFunction();
8785       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8786       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
8787         if (Register::isPhysicalRegister(Reg) &&
8788             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
8789           const char *RegName = TRI.getName(Reg);
8790           emitInlineAsmError(Call, "write to reserved register '" +
8791                                        Twine(RegName) + "'");
8792           return true;
8793         }
8794       }
8795       return false;
8796     };
8797 
8798     switch (OpInfo.Type) {
8799     case InlineAsm::isOutput:
8800       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8801         unsigned ConstraintID =
8802             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8803         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8804                "Failed to convert memory constraint code to constraint id.");
8805 
8806         // Add information to the INLINEASM node to know about this output.
8807         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8808         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
8809         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
8810                                                         MVT::i32));
8811         AsmNodeOperands.push_back(OpInfo.CallOperand);
8812       } else {
8813         // Otherwise, this outputs to a register (directly for C_Register /
8814         // C_RegisterClass, and a target-defined fashion for
8815         // C_Immediate/C_Other). Find a register that we can use.
8816         if (OpInfo.AssignedRegs.Regs.empty()) {
8817           emitInlineAsmError(
8818               Call, "couldn't allocate output register for constraint '" +
8819                         Twine(OpInfo.ConstraintCode) + "'");
8820           return;
8821         }
8822 
8823         if (DetectWriteToReservedRegister())
8824           return;
8825 
8826         // Add information to the INLINEASM node to know that this register is
8827         // set.
8828         OpInfo.AssignedRegs.AddInlineAsmOperands(
8829             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
8830                                   : InlineAsm::Kind_RegDef,
8831             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
8832       }
8833       break;
8834 
8835     case InlineAsm::isInput: {
8836       SDValue InOperandVal = OpInfo.CallOperand;
8837 
8838       if (OpInfo.isMatchingInputConstraint()) {
8839         // If this is required to match an output register we have already set,
8840         // just use its register.
8841         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
8842                                                   AsmNodeOperands);
8843         unsigned OpFlag =
8844           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8845         if (InlineAsm::isRegDefKind(OpFlag) ||
8846             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
8847           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8848           if (OpInfo.isIndirect) {
8849             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8850             emitInlineAsmError(Call, "inline asm not supported yet: "
8851                                      "don't know how to handle tied "
8852                                      "indirect register inputs");
8853             return;
8854           }
8855 
8856           SmallVector<unsigned, 4> Regs;
8857           MachineFunction &MF = DAG.getMachineFunction();
8858           MachineRegisterInfo &MRI = MF.getRegInfo();
8859           const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8860           auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]);
8861           Register TiedReg = R->getReg();
8862           MVT RegVT = R->getSimpleValueType(0);
8863           const TargetRegisterClass *RC =
8864               TiedReg.isVirtual()     ? MRI.getRegClass(TiedReg)
8865               : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT)
8866                                       : TRI.getMinimalPhysRegClass(TiedReg);
8867           unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
8868           for (unsigned i = 0; i != NumRegs; ++i)
8869             Regs.push_back(MRI.createVirtualRegister(RC));
8870 
8871           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8872 
8873           SDLoc dl = getCurSDLoc();
8874           // Use the produced MatchedRegs object to
8875           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call);
8876           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8877                                            true, OpInfo.getMatchedOperand(), dl,
8878                                            DAG, AsmNodeOperands);
8879           break;
8880         }
8881 
8882         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8883         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8884                "Unexpected number of operands");
8885         // Add information to the INLINEASM node to know about this input.
8886         // See InlineAsm.h isUseOperandTiedToDef.
8887         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8888         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8889                                                     OpInfo.getMatchedOperand());
8890         AsmNodeOperands.push_back(DAG.getTargetConstant(
8891             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8892         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8893         break;
8894       }
8895 
8896       // Treat indirect 'X' constraint as memory.
8897       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
8898           OpInfo.isIndirect)
8899         OpInfo.ConstraintType = TargetLowering::C_Memory;
8900 
8901       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8902           OpInfo.ConstraintType == TargetLowering::C_Other) {
8903         std::vector<SDValue> Ops;
8904         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
8905                                           Ops, DAG);
8906         if (Ops.empty()) {
8907           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
8908             if (isa<ConstantSDNode>(InOperandVal)) {
8909               emitInlineAsmError(Call, "value out of range for constraint '" +
8910                                            Twine(OpInfo.ConstraintCode) + "'");
8911               return;
8912             }
8913 
8914           emitInlineAsmError(Call,
8915                              "invalid operand for inline asm constraint '" +
8916                                  Twine(OpInfo.ConstraintCode) + "'");
8917           return;
8918         }
8919 
8920         // Add information to the INLINEASM node to know about this input.
8921         unsigned ResOpType =
8922           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
8923         AsmNodeOperands.push_back(DAG.getTargetConstant(
8924             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8925         llvm::append_range(AsmNodeOperands, Ops);
8926         break;
8927       }
8928 
8929       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8930         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
8931         assert(InOperandVal.getValueType() ==
8932                    TLI.getPointerTy(DAG.getDataLayout()) &&
8933                "Memory operands expect pointer values");
8934 
8935         unsigned ConstraintID =
8936             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8937         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8938                "Failed to convert memory constraint code to constraint id.");
8939 
8940         // Add information to the INLINEASM node to know about this input.
8941         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8942         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
8943         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
8944                                                         getCurSDLoc(),
8945                                                         MVT::i32));
8946         AsmNodeOperands.push_back(InOperandVal);
8947         break;
8948       }
8949 
8950       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
8951               OpInfo.ConstraintType == TargetLowering::C_Register) &&
8952              "Unknown constraint type!");
8953 
8954       // TODO: Support this.
8955       if (OpInfo.isIndirect) {
8956         emitInlineAsmError(
8957             Call, "Don't know how to handle indirect register inputs yet "
8958                   "for constraint '" +
8959                       Twine(OpInfo.ConstraintCode) + "'");
8960         return;
8961       }
8962 
8963       // Copy the input into the appropriate registers.
8964       if (OpInfo.AssignedRegs.Regs.empty()) {
8965         emitInlineAsmError(Call,
8966                            "couldn't allocate input reg for constraint '" +
8967                                Twine(OpInfo.ConstraintCode) + "'");
8968         return;
8969       }
8970 
8971       if (DetectWriteToReservedRegister())
8972         return;
8973 
8974       SDLoc dl = getCurSDLoc();
8975 
8976       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
8977                                         &Call);
8978 
8979       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
8980                                                dl, DAG, AsmNodeOperands);
8981       break;
8982     }
8983     case InlineAsm::isClobber:
8984       // Add the clobbered value to the operand list, so that the register
8985       // allocator is aware that the physreg got clobbered.
8986       if (!OpInfo.AssignedRegs.Regs.empty())
8987         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
8988                                                  false, 0, getCurSDLoc(), DAG,
8989                                                  AsmNodeOperands);
8990       break;
8991     }
8992   }
8993 
8994   // Finish up input operands.  Set the input chain and add the flag last.
8995   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
8996   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
8997 
8998   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
8999   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
9000                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
9001   Flag = Chain.getValue(1);
9002 
9003   // Do additional work to generate outputs.
9004 
9005   SmallVector<EVT, 1> ResultVTs;
9006   SmallVector<SDValue, 1> ResultValues;
9007   SmallVector<SDValue, 8> OutChains;
9008 
9009   llvm::Type *CallResultType = Call.getType();
9010   ArrayRef<Type *> ResultTypes;
9011   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
9012     ResultTypes = StructResult->elements();
9013   else if (!CallResultType->isVoidTy())
9014     ResultTypes = makeArrayRef(CallResultType);
9015 
9016   auto CurResultType = ResultTypes.begin();
9017   auto handleRegAssign = [&](SDValue V) {
9018     assert(CurResultType != ResultTypes.end() && "Unexpected value");
9019     assert((*CurResultType)->isSized() && "Unexpected unsized type");
9020     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
9021     ++CurResultType;
9022     // If the type of the inline asm call site return value is different but has
9023     // same size as the type of the asm output bitcast it.  One example of this
9024     // is for vectors with different width / number of elements.  This can
9025     // happen for register classes that can contain multiple different value
9026     // types.  The preg or vreg allocated may not have the same VT as was
9027     // expected.
9028     //
9029     // This can also happen for a return value that disagrees with the register
9030     // class it is put in, eg. a double in a general-purpose register on a
9031     // 32-bit machine.
9032     if (ResultVT != V.getValueType() &&
9033         ResultVT.getSizeInBits() == V.getValueSizeInBits())
9034       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
9035     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
9036              V.getValueType().isInteger()) {
9037       // If a result value was tied to an input value, the computed result
9038       // may have a wider width than the expected result.  Extract the
9039       // relevant portion.
9040       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
9041     }
9042     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
9043     ResultVTs.push_back(ResultVT);
9044     ResultValues.push_back(V);
9045   };
9046 
9047   // Deal with output operands.
9048   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9049     if (OpInfo.Type == InlineAsm::isOutput) {
9050       SDValue Val;
9051       // Skip trivial output operands.
9052       if (OpInfo.AssignedRegs.Regs.empty())
9053         continue;
9054 
9055       switch (OpInfo.ConstraintType) {
9056       case TargetLowering::C_Register:
9057       case TargetLowering::C_RegisterClass:
9058         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
9059                                                   Chain, &Flag, &Call);
9060         break;
9061       case TargetLowering::C_Immediate:
9062       case TargetLowering::C_Other:
9063         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
9064                                               OpInfo, DAG);
9065         break;
9066       case TargetLowering::C_Memory:
9067         break; // Already handled.
9068       case TargetLowering::C_Unknown:
9069         assert(false && "Unexpected unknown constraint");
9070       }
9071 
9072       // Indirect output manifest as stores. Record output chains.
9073       if (OpInfo.isIndirect) {
9074         const Value *Ptr = OpInfo.CallOperandVal;
9075         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
9076         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
9077                                      MachinePointerInfo(Ptr));
9078         OutChains.push_back(Store);
9079       } else {
9080         // generate CopyFromRegs to associated registers.
9081         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
9082         if (Val.getOpcode() == ISD::MERGE_VALUES) {
9083           for (const SDValue &V : Val->op_values())
9084             handleRegAssign(V);
9085         } else
9086           handleRegAssign(Val);
9087       }
9088     }
9089   }
9090 
9091   // Set results.
9092   if (!ResultValues.empty()) {
9093     assert(CurResultType == ResultTypes.end() &&
9094            "Mismatch in number of ResultTypes");
9095     assert(ResultValues.size() == ResultTypes.size() &&
9096            "Mismatch in number of output operands in asm result");
9097 
9098     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
9099                             DAG.getVTList(ResultVTs), ResultValues);
9100     setValue(&Call, V);
9101   }
9102 
9103   // Collect store chains.
9104   if (!OutChains.empty())
9105     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
9106 
9107   if (EmitEHLabels) {
9108     Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
9109   }
9110 
9111   // Only Update Root if inline assembly has a memory effect.
9112   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
9113       EmitEHLabels)
9114     DAG.setRoot(Chain);
9115 }
9116 
9117 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
9118                                              const Twine &Message) {
9119   LLVMContext &Ctx = *DAG.getContext();
9120   Ctx.emitError(&Call, Message);
9121 
9122   // Make sure we leave the DAG in a valid state
9123   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9124   SmallVector<EVT, 1> ValueVTs;
9125   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
9126 
9127   if (ValueVTs.empty())
9128     return;
9129 
9130   SmallVector<SDValue, 1> Ops;
9131   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
9132     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
9133 
9134   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
9135 }
9136 
9137 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
9138   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
9139                           MVT::Other, getRoot(),
9140                           getValue(I.getArgOperand(0)),
9141                           DAG.getSrcValue(I.getArgOperand(0))));
9142 }
9143 
9144 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
9145   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9146   const DataLayout &DL = DAG.getDataLayout();
9147   SDValue V = DAG.getVAArg(
9148       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
9149       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
9150       DL.getABITypeAlign(I.getType()).value());
9151   DAG.setRoot(V.getValue(1));
9152 
9153   if (I.getType()->isPointerTy())
9154     V = DAG.getPtrExtOrTrunc(
9155         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
9156   setValue(&I, V);
9157 }
9158 
9159 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
9160   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
9161                           MVT::Other, getRoot(),
9162                           getValue(I.getArgOperand(0)),
9163                           DAG.getSrcValue(I.getArgOperand(0))));
9164 }
9165 
9166 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
9167   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
9168                           MVT::Other, getRoot(),
9169                           getValue(I.getArgOperand(0)),
9170                           getValue(I.getArgOperand(1)),
9171                           DAG.getSrcValue(I.getArgOperand(0)),
9172                           DAG.getSrcValue(I.getArgOperand(1))));
9173 }
9174 
9175 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
9176                                                     const Instruction &I,
9177                                                     SDValue Op) {
9178   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
9179   if (!Range)
9180     return Op;
9181 
9182   ConstantRange CR = getConstantRangeFromMetadata(*Range);
9183   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
9184     return Op;
9185 
9186   APInt Lo = CR.getUnsignedMin();
9187   if (!Lo.isMinValue())
9188     return Op;
9189 
9190   APInt Hi = CR.getUnsignedMax();
9191   unsigned Bits = std::max(Hi.getActiveBits(),
9192                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
9193 
9194   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
9195 
9196   SDLoc SL = getCurSDLoc();
9197 
9198   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
9199                              DAG.getValueType(SmallVT));
9200   unsigned NumVals = Op.getNode()->getNumValues();
9201   if (NumVals == 1)
9202     return ZExt;
9203 
9204   SmallVector<SDValue, 4> Ops;
9205 
9206   Ops.push_back(ZExt);
9207   for (unsigned I = 1; I != NumVals; ++I)
9208     Ops.push_back(Op.getValue(I));
9209 
9210   return DAG.getMergeValues(Ops, SL);
9211 }
9212 
9213 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
9214 /// the call being lowered.
9215 ///
9216 /// This is a helper for lowering intrinsics that follow a target calling
9217 /// convention or require stack pointer adjustment. Only a subset of the
9218 /// intrinsic's operands need to participate in the calling convention.
9219 void SelectionDAGBuilder::populateCallLoweringInfo(
9220     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
9221     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
9222     bool IsPatchPoint) {
9223   TargetLowering::ArgListTy Args;
9224   Args.reserve(NumArgs);
9225 
9226   // Populate the argument list.
9227   // Attributes for args start at offset 1, after the return attribute.
9228   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
9229        ArgI != ArgE; ++ArgI) {
9230     const Value *V = Call->getOperand(ArgI);
9231 
9232     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
9233 
9234     TargetLowering::ArgListEntry Entry;
9235     Entry.Node = getValue(V);
9236     Entry.Ty = V->getType();
9237     Entry.setAttributes(Call, ArgI);
9238     Args.push_back(Entry);
9239   }
9240 
9241   CLI.setDebugLoc(getCurSDLoc())
9242       .setChain(getRoot())
9243       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
9244       .setDiscardResult(Call->use_empty())
9245       .setIsPatchPoint(IsPatchPoint)
9246       .setIsPreallocated(
9247           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
9248 }
9249 
9250 /// Add a stack map intrinsic call's live variable operands to a stackmap
9251 /// or patchpoint target node's operand list.
9252 ///
9253 /// Constants are converted to TargetConstants purely as an optimization to
9254 /// avoid constant materialization and register allocation.
9255 ///
9256 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
9257 /// generate addess computation nodes, and so FinalizeISel can convert the
9258 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
9259 /// address materialization and register allocation, but may also be required
9260 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
9261 /// alloca in the entry block, then the runtime may assume that the alloca's
9262 /// StackMap location can be read immediately after compilation and that the
9263 /// location is valid at any point during execution (this is similar to the
9264 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
9265 /// only available in a register, then the runtime would need to trap when
9266 /// execution reaches the StackMap in order to read the alloca's location.
9267 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
9268                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
9269                                 SelectionDAGBuilder &Builder) {
9270   for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) {
9271     SDValue OpVal = Builder.getValue(Call.getArgOperand(i));
9272     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
9273       Ops.push_back(
9274         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
9275       Ops.push_back(
9276         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
9277     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
9278       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
9279       Ops.push_back(Builder.DAG.getTargetFrameIndex(
9280           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
9281     } else
9282       Ops.push_back(OpVal);
9283   }
9284 }
9285 
9286 /// Lower llvm.experimental.stackmap directly to its target opcode.
9287 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
9288   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
9289   //                                  [live variables...])
9290 
9291   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
9292 
9293   SDValue Chain, InFlag, Callee, NullPtr;
9294   SmallVector<SDValue, 32> Ops;
9295 
9296   SDLoc DL = getCurSDLoc();
9297   Callee = getValue(CI.getCalledOperand());
9298   NullPtr = DAG.getIntPtrConstant(0, DL, true);
9299 
9300   // The stackmap intrinsic only records the live variables (the arguments
9301   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
9302   // intrinsic, this won't be lowered to a function call. This means we don't
9303   // have to worry about calling conventions and target specific lowering code.
9304   // Instead we perform the call lowering right here.
9305   //
9306   // chain, flag = CALLSEQ_START(chain, 0, 0)
9307   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
9308   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
9309   //
9310   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
9311   InFlag = Chain.getValue(1);
9312 
9313   // Add the <id> and <numBytes> constants.
9314   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
9315   Ops.push_back(DAG.getTargetConstant(
9316                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
9317   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
9318   Ops.push_back(DAG.getTargetConstant(
9319                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
9320                   MVT::i32));
9321 
9322   // Push live variables for the stack map.
9323   addStackMapLiveVars(CI, 2, DL, Ops, *this);
9324 
9325   // We are not pushing any register mask info here on the operands list,
9326   // because the stackmap doesn't clobber anything.
9327 
9328   // Push the chain and the glue flag.
9329   Ops.push_back(Chain);
9330   Ops.push_back(InFlag);
9331 
9332   // Create the STACKMAP node.
9333   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9334   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
9335   Chain = SDValue(SM, 0);
9336   InFlag = Chain.getValue(1);
9337 
9338   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
9339 
9340   // Stackmaps don't generate values, so nothing goes into the NodeMap.
9341 
9342   // Set the root to the target-lowered call chain.
9343   DAG.setRoot(Chain);
9344 
9345   // Inform the Frame Information that we have a stackmap in this function.
9346   FuncInfo.MF->getFrameInfo().setHasStackMap();
9347 }
9348 
9349 /// Lower llvm.experimental.patchpoint directly to its target opcode.
9350 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
9351                                           const BasicBlock *EHPadBB) {
9352   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
9353   //                                                 i32 <numBytes>,
9354   //                                                 i8* <target>,
9355   //                                                 i32 <numArgs>,
9356   //                                                 [Args...],
9357   //                                                 [live variables...])
9358 
9359   CallingConv::ID CC = CB.getCallingConv();
9360   bool IsAnyRegCC = CC == CallingConv::AnyReg;
9361   bool HasDef = !CB.getType()->isVoidTy();
9362   SDLoc dl = getCurSDLoc();
9363   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
9364 
9365   // Handle immediate and symbolic callees.
9366   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
9367     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
9368                                    /*isTarget=*/true);
9369   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
9370     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
9371                                          SDLoc(SymbolicCallee),
9372                                          SymbolicCallee->getValueType(0));
9373 
9374   // Get the real number of arguments participating in the call <numArgs>
9375   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
9376   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
9377 
9378   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
9379   // Intrinsics include all meta-operands up to but not including CC.
9380   unsigned NumMetaOpers = PatchPointOpers::CCPos;
9381   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
9382          "Not enough arguments provided to the patchpoint intrinsic");
9383 
9384   // For AnyRegCC the arguments are lowered later on manually.
9385   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
9386   Type *ReturnTy =
9387       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
9388 
9389   TargetLowering::CallLoweringInfo CLI(DAG);
9390   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
9391                            ReturnTy, true);
9392   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
9393 
9394   SDNode *CallEnd = Result.second.getNode();
9395   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
9396     CallEnd = CallEnd->getOperand(0).getNode();
9397 
9398   /// Get a call instruction from the call sequence chain.
9399   /// Tail calls are not allowed.
9400   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
9401          "Expected a callseq node.");
9402   SDNode *Call = CallEnd->getOperand(0).getNode();
9403   bool HasGlue = Call->getGluedNode();
9404 
9405   // Replace the target specific call node with the patchable intrinsic.
9406   SmallVector<SDValue, 8> Ops;
9407 
9408   // Add the <id> and <numBytes> constants.
9409   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
9410   Ops.push_back(DAG.getTargetConstant(
9411                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
9412   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
9413   Ops.push_back(DAG.getTargetConstant(
9414                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
9415                   MVT::i32));
9416 
9417   // Add the callee.
9418   Ops.push_back(Callee);
9419 
9420   // Adjust <numArgs> to account for any arguments that have been passed on the
9421   // stack instead.
9422   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
9423   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
9424   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
9425   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
9426 
9427   // Add the calling convention
9428   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
9429 
9430   // Add the arguments we omitted previously. The register allocator should
9431   // place these in any free register.
9432   if (IsAnyRegCC)
9433     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
9434       Ops.push_back(getValue(CB.getArgOperand(i)));
9435 
9436   // Push the arguments from the call instruction up to the register mask.
9437   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
9438   Ops.append(Call->op_begin() + 2, e);
9439 
9440   // Push live variables for the stack map.
9441   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
9442 
9443   // Push the register mask info.
9444   if (HasGlue)
9445     Ops.push_back(*(Call->op_end()-2));
9446   else
9447     Ops.push_back(*(Call->op_end()-1));
9448 
9449   // Push the chain (this is originally the first operand of the call, but
9450   // becomes now the last or second to last operand).
9451   Ops.push_back(*(Call->op_begin()));
9452 
9453   // Push the glue flag (last operand).
9454   if (HasGlue)
9455     Ops.push_back(*(Call->op_end()-1));
9456 
9457   SDVTList NodeTys;
9458   if (IsAnyRegCC && HasDef) {
9459     // Create the return types based on the intrinsic definition
9460     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9461     SmallVector<EVT, 3> ValueVTs;
9462     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
9463     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
9464 
9465     // There is always a chain and a glue type at the end
9466     ValueVTs.push_back(MVT::Other);
9467     ValueVTs.push_back(MVT::Glue);
9468     NodeTys = DAG.getVTList(ValueVTs);
9469   } else
9470     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9471 
9472   // Replace the target specific call node with a PATCHPOINT node.
9473   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
9474                                          dl, NodeTys, Ops);
9475 
9476   // Update the NodeMap.
9477   if (HasDef) {
9478     if (IsAnyRegCC)
9479       setValue(&CB, SDValue(MN, 0));
9480     else
9481       setValue(&CB, Result.first);
9482   }
9483 
9484   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
9485   // call sequence. Furthermore the location of the chain and glue can change
9486   // when the AnyReg calling convention is used and the intrinsic returns a
9487   // value.
9488   if (IsAnyRegCC && HasDef) {
9489     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
9490     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
9491     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
9492   } else
9493     DAG.ReplaceAllUsesWith(Call, MN);
9494   DAG.DeleteNode(Call);
9495 
9496   // Inform the Frame Information that we have a patchpoint in this function.
9497   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
9498 }
9499 
9500 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
9501                                             unsigned Intrinsic) {
9502   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9503   SDValue Op1 = getValue(I.getArgOperand(0));
9504   SDValue Op2;
9505   if (I.arg_size() > 1)
9506     Op2 = getValue(I.getArgOperand(1));
9507   SDLoc dl = getCurSDLoc();
9508   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
9509   SDValue Res;
9510   SDNodeFlags SDFlags;
9511   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
9512     SDFlags.copyFMF(*FPMO);
9513 
9514   switch (Intrinsic) {
9515   case Intrinsic::vector_reduce_fadd:
9516     if (SDFlags.hasAllowReassociation())
9517       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
9518                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
9519                         SDFlags);
9520     else
9521       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
9522     break;
9523   case Intrinsic::vector_reduce_fmul:
9524     if (SDFlags.hasAllowReassociation())
9525       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
9526                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
9527                         SDFlags);
9528     else
9529       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
9530     break;
9531   case Intrinsic::vector_reduce_add:
9532     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
9533     break;
9534   case Intrinsic::vector_reduce_mul:
9535     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
9536     break;
9537   case Intrinsic::vector_reduce_and:
9538     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
9539     break;
9540   case Intrinsic::vector_reduce_or:
9541     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
9542     break;
9543   case Intrinsic::vector_reduce_xor:
9544     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
9545     break;
9546   case Intrinsic::vector_reduce_smax:
9547     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
9548     break;
9549   case Intrinsic::vector_reduce_smin:
9550     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
9551     break;
9552   case Intrinsic::vector_reduce_umax:
9553     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
9554     break;
9555   case Intrinsic::vector_reduce_umin:
9556     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
9557     break;
9558   case Intrinsic::vector_reduce_fmax:
9559     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
9560     break;
9561   case Intrinsic::vector_reduce_fmin:
9562     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
9563     break;
9564   default:
9565     llvm_unreachable("Unhandled vector reduce intrinsic");
9566   }
9567   setValue(&I, Res);
9568 }
9569 
9570 /// Returns an AttributeList representing the attributes applied to the return
9571 /// value of the given call.
9572 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
9573   SmallVector<Attribute::AttrKind, 2> Attrs;
9574   if (CLI.RetSExt)
9575     Attrs.push_back(Attribute::SExt);
9576   if (CLI.RetZExt)
9577     Attrs.push_back(Attribute::ZExt);
9578   if (CLI.IsInReg)
9579     Attrs.push_back(Attribute::InReg);
9580 
9581   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
9582                             Attrs);
9583 }
9584 
9585 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
9586 /// implementation, which just calls LowerCall.
9587 /// FIXME: When all targets are
9588 /// migrated to using LowerCall, this hook should be integrated into SDISel.
9589 std::pair<SDValue, SDValue>
9590 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
9591   // Handle the incoming return values from the call.
9592   CLI.Ins.clear();
9593   Type *OrigRetTy = CLI.RetTy;
9594   SmallVector<EVT, 4> RetTys;
9595   SmallVector<uint64_t, 4> Offsets;
9596   auto &DL = CLI.DAG.getDataLayout();
9597   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
9598 
9599   if (CLI.IsPostTypeLegalization) {
9600     // If we are lowering a libcall after legalization, split the return type.
9601     SmallVector<EVT, 4> OldRetTys;
9602     SmallVector<uint64_t, 4> OldOffsets;
9603     RetTys.swap(OldRetTys);
9604     Offsets.swap(OldOffsets);
9605 
9606     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
9607       EVT RetVT = OldRetTys[i];
9608       uint64_t Offset = OldOffsets[i];
9609       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
9610       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
9611       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
9612       RetTys.append(NumRegs, RegisterVT);
9613       for (unsigned j = 0; j != NumRegs; ++j)
9614         Offsets.push_back(Offset + j * RegisterVTByteSZ);
9615     }
9616   }
9617 
9618   SmallVector<ISD::OutputArg, 4> Outs;
9619   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
9620 
9621   bool CanLowerReturn =
9622       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
9623                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
9624 
9625   SDValue DemoteStackSlot;
9626   int DemoteStackIdx = -100;
9627   if (!CanLowerReturn) {
9628     // FIXME: equivalent assert?
9629     // assert(!CS.hasInAllocaArgument() &&
9630     //        "sret demotion is incompatible with inalloca");
9631     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
9632     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
9633     MachineFunction &MF = CLI.DAG.getMachineFunction();
9634     DemoteStackIdx =
9635         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
9636     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
9637                                               DL.getAllocaAddrSpace());
9638 
9639     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
9640     ArgListEntry Entry;
9641     Entry.Node = DemoteStackSlot;
9642     Entry.Ty = StackSlotPtrType;
9643     Entry.IsSExt = false;
9644     Entry.IsZExt = false;
9645     Entry.IsInReg = false;
9646     Entry.IsSRet = true;
9647     Entry.IsNest = false;
9648     Entry.IsByVal = false;
9649     Entry.IsByRef = false;
9650     Entry.IsReturned = false;
9651     Entry.IsSwiftSelf = false;
9652     Entry.IsSwiftAsync = false;
9653     Entry.IsSwiftError = false;
9654     Entry.IsCFGuardTarget = false;
9655     Entry.Alignment = Alignment;
9656     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
9657     CLI.NumFixedArgs += 1;
9658     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
9659 
9660     // sret demotion isn't compatible with tail-calls, since the sret argument
9661     // points into the callers stack frame.
9662     CLI.IsTailCall = false;
9663   } else {
9664     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9665         CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL);
9666     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9667       ISD::ArgFlagsTy Flags;
9668       if (NeedsRegBlock) {
9669         Flags.setInConsecutiveRegs();
9670         if (I == RetTys.size() - 1)
9671           Flags.setInConsecutiveRegsLast();
9672       }
9673       EVT VT = RetTys[I];
9674       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9675                                                      CLI.CallConv, VT);
9676       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9677                                                        CLI.CallConv, VT);
9678       for (unsigned i = 0; i != NumRegs; ++i) {
9679         ISD::InputArg MyFlags;
9680         MyFlags.Flags = Flags;
9681         MyFlags.VT = RegisterVT;
9682         MyFlags.ArgVT = VT;
9683         MyFlags.Used = CLI.IsReturnValueUsed;
9684         if (CLI.RetTy->isPointerTy()) {
9685           MyFlags.Flags.setPointer();
9686           MyFlags.Flags.setPointerAddrSpace(
9687               cast<PointerType>(CLI.RetTy)->getAddressSpace());
9688         }
9689         if (CLI.RetSExt)
9690           MyFlags.Flags.setSExt();
9691         if (CLI.RetZExt)
9692           MyFlags.Flags.setZExt();
9693         if (CLI.IsInReg)
9694           MyFlags.Flags.setInReg();
9695         CLI.Ins.push_back(MyFlags);
9696       }
9697     }
9698   }
9699 
9700   // We push in swifterror return as the last element of CLI.Ins.
9701   ArgListTy &Args = CLI.getArgs();
9702   if (supportSwiftError()) {
9703     for (const ArgListEntry &Arg : Args) {
9704       if (Arg.IsSwiftError) {
9705         ISD::InputArg MyFlags;
9706         MyFlags.VT = getPointerTy(DL);
9707         MyFlags.ArgVT = EVT(getPointerTy(DL));
9708         MyFlags.Flags.setSwiftError();
9709         CLI.Ins.push_back(MyFlags);
9710       }
9711     }
9712   }
9713 
9714   // Handle all of the outgoing arguments.
9715   CLI.Outs.clear();
9716   CLI.OutVals.clear();
9717   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9718     SmallVector<EVT, 4> ValueVTs;
9719     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
9720     // FIXME: Split arguments if CLI.IsPostTypeLegalization
9721     Type *FinalType = Args[i].Ty;
9722     if (Args[i].IsByVal)
9723       FinalType = Args[i].IndirectType;
9724     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9725         FinalType, CLI.CallConv, CLI.IsVarArg, DL);
9726     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
9727          ++Value) {
9728       EVT VT = ValueVTs[Value];
9729       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
9730       SDValue Op = SDValue(Args[i].Node.getNode(),
9731                            Args[i].Node.getResNo() + Value);
9732       ISD::ArgFlagsTy Flags;
9733 
9734       // Certain targets (such as MIPS), may have a different ABI alignment
9735       // for a type depending on the context. Give the target a chance to
9736       // specify the alignment it wants.
9737       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
9738       Flags.setOrigAlign(OriginalAlignment);
9739 
9740       if (Args[i].Ty->isPointerTy()) {
9741         Flags.setPointer();
9742         Flags.setPointerAddrSpace(
9743             cast<PointerType>(Args[i].Ty)->getAddressSpace());
9744       }
9745       if (Args[i].IsZExt)
9746         Flags.setZExt();
9747       if (Args[i].IsSExt)
9748         Flags.setSExt();
9749       if (Args[i].IsInReg) {
9750         // If we are using vectorcall calling convention, a structure that is
9751         // passed InReg - is surely an HVA
9752         if (CLI.CallConv == CallingConv::X86_VectorCall &&
9753             isa<StructType>(FinalType)) {
9754           // The first value of a structure is marked
9755           if (0 == Value)
9756             Flags.setHvaStart();
9757           Flags.setHva();
9758         }
9759         // Set InReg Flag
9760         Flags.setInReg();
9761       }
9762       if (Args[i].IsSRet)
9763         Flags.setSRet();
9764       if (Args[i].IsSwiftSelf)
9765         Flags.setSwiftSelf();
9766       if (Args[i].IsSwiftAsync)
9767         Flags.setSwiftAsync();
9768       if (Args[i].IsSwiftError)
9769         Flags.setSwiftError();
9770       if (Args[i].IsCFGuardTarget)
9771         Flags.setCFGuardTarget();
9772       if (Args[i].IsByVal)
9773         Flags.setByVal();
9774       if (Args[i].IsByRef)
9775         Flags.setByRef();
9776       if (Args[i].IsPreallocated) {
9777         Flags.setPreallocated();
9778         // Set the byval flag for CCAssignFn callbacks that don't know about
9779         // preallocated.  This way we can know how many bytes we should've
9780         // allocated and how many bytes a callee cleanup function will pop.  If
9781         // we port preallocated to more targets, we'll have to add custom
9782         // preallocated handling in the various CC lowering callbacks.
9783         Flags.setByVal();
9784       }
9785       if (Args[i].IsInAlloca) {
9786         Flags.setInAlloca();
9787         // Set the byval flag for CCAssignFn callbacks that don't know about
9788         // inalloca.  This way we can know how many bytes we should've allocated
9789         // and how many bytes a callee cleanup function will pop.  If we port
9790         // inalloca to more targets, we'll have to add custom inalloca handling
9791         // in the various CC lowering callbacks.
9792         Flags.setByVal();
9793       }
9794       Align MemAlign;
9795       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
9796         unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType);
9797         Flags.setByValSize(FrameSize);
9798 
9799         // info is not there but there are cases it cannot get right.
9800         if (auto MA = Args[i].Alignment)
9801           MemAlign = *MA;
9802         else
9803           MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL));
9804       } else if (auto MA = Args[i].Alignment) {
9805         MemAlign = *MA;
9806       } else {
9807         MemAlign = OriginalAlignment;
9808       }
9809       Flags.setMemAlign(MemAlign);
9810       if (Args[i].IsNest)
9811         Flags.setNest();
9812       if (NeedsRegBlock)
9813         Flags.setInConsecutiveRegs();
9814 
9815       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9816                                                  CLI.CallConv, VT);
9817       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9818                                                         CLI.CallConv, VT);
9819       SmallVector<SDValue, 4> Parts(NumParts);
9820       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
9821 
9822       if (Args[i].IsSExt)
9823         ExtendKind = ISD::SIGN_EXTEND;
9824       else if (Args[i].IsZExt)
9825         ExtendKind = ISD::ZERO_EXTEND;
9826 
9827       // Conservatively only handle 'returned' on non-vectors that can be lowered,
9828       // for now.
9829       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
9830           CanLowerReturn) {
9831         assert((CLI.RetTy == Args[i].Ty ||
9832                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
9833                  CLI.RetTy->getPointerAddressSpace() ==
9834                      Args[i].Ty->getPointerAddressSpace())) &&
9835                RetTys.size() == NumValues && "unexpected use of 'returned'");
9836         // Before passing 'returned' to the target lowering code, ensure that
9837         // either the register MVT and the actual EVT are the same size or that
9838         // the return value and argument are extended in the same way; in these
9839         // cases it's safe to pass the argument register value unchanged as the
9840         // return register value (although it's at the target's option whether
9841         // to do so)
9842         // TODO: allow code generation to take advantage of partially preserved
9843         // registers rather than clobbering the entire register when the
9844         // parameter extension method is not compatible with the return
9845         // extension method
9846         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
9847             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
9848              CLI.RetZExt == Args[i].IsZExt))
9849           Flags.setReturned();
9850       }
9851 
9852       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
9853                      CLI.CallConv, ExtendKind);
9854 
9855       for (unsigned j = 0; j != NumParts; ++j) {
9856         // if it isn't first piece, alignment must be 1
9857         // For scalable vectors the scalable part is currently handled
9858         // by individual targets, so we just use the known minimum size here.
9859         ISD::OutputArg MyFlags(
9860             Flags, Parts[j].getValueType().getSimpleVT(), VT,
9861             i < CLI.NumFixedArgs, i,
9862             j * Parts[j].getValueType().getStoreSize().getKnownMinSize());
9863         if (NumParts > 1 && j == 0)
9864           MyFlags.Flags.setSplit();
9865         else if (j != 0) {
9866           MyFlags.Flags.setOrigAlign(Align(1));
9867           if (j == NumParts - 1)
9868             MyFlags.Flags.setSplitEnd();
9869         }
9870 
9871         CLI.Outs.push_back(MyFlags);
9872         CLI.OutVals.push_back(Parts[j]);
9873       }
9874 
9875       if (NeedsRegBlock && Value == NumValues - 1)
9876         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
9877     }
9878   }
9879 
9880   SmallVector<SDValue, 4> InVals;
9881   CLI.Chain = LowerCall(CLI, InVals);
9882 
9883   // Update CLI.InVals to use outside of this function.
9884   CLI.InVals = InVals;
9885 
9886   // Verify that the target's LowerCall behaved as expected.
9887   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
9888          "LowerCall didn't return a valid chain!");
9889   assert((!CLI.IsTailCall || InVals.empty()) &&
9890          "LowerCall emitted a return value for a tail call!");
9891   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
9892          "LowerCall didn't emit the correct number of values!");
9893 
9894   // For a tail call, the return value is merely live-out and there aren't
9895   // any nodes in the DAG representing it. Return a special value to
9896   // indicate that a tail call has been emitted and no more Instructions
9897   // should be processed in the current block.
9898   if (CLI.IsTailCall) {
9899     CLI.DAG.setRoot(CLI.Chain);
9900     return std::make_pair(SDValue(), SDValue());
9901   }
9902 
9903 #ifndef NDEBUG
9904   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
9905     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
9906     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
9907            "LowerCall emitted a value with the wrong type!");
9908   }
9909 #endif
9910 
9911   SmallVector<SDValue, 4> ReturnValues;
9912   if (!CanLowerReturn) {
9913     // The instruction result is the result of loading from the
9914     // hidden sret parameter.
9915     SmallVector<EVT, 1> PVTs;
9916     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
9917 
9918     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
9919     assert(PVTs.size() == 1 && "Pointers should fit in one register");
9920     EVT PtrVT = PVTs[0];
9921 
9922     unsigned NumValues = RetTys.size();
9923     ReturnValues.resize(NumValues);
9924     SmallVector<SDValue, 4> Chains(NumValues);
9925 
9926     // An aggregate return value cannot wrap around the address space, so
9927     // offsets to its parts don't wrap either.
9928     SDNodeFlags Flags;
9929     Flags.setNoUnsignedWrap(true);
9930 
9931     MachineFunction &MF = CLI.DAG.getMachineFunction();
9932     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
9933     for (unsigned i = 0; i < NumValues; ++i) {
9934       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
9935                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
9936                                                         PtrVT), Flags);
9937       SDValue L = CLI.DAG.getLoad(
9938           RetTys[i], CLI.DL, CLI.Chain, Add,
9939           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
9940                                             DemoteStackIdx, Offsets[i]),
9941           HiddenSRetAlign);
9942       ReturnValues[i] = L;
9943       Chains[i] = L.getValue(1);
9944     }
9945 
9946     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
9947   } else {
9948     // Collect the legal value parts into potentially illegal values
9949     // that correspond to the original function's return values.
9950     Optional<ISD::NodeType> AssertOp;
9951     if (CLI.RetSExt)
9952       AssertOp = ISD::AssertSext;
9953     else if (CLI.RetZExt)
9954       AssertOp = ISD::AssertZext;
9955     unsigned CurReg = 0;
9956     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9957       EVT VT = RetTys[I];
9958       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9959                                                      CLI.CallConv, VT);
9960       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9961                                                        CLI.CallConv, VT);
9962 
9963       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
9964                                               NumRegs, RegisterVT, VT, nullptr,
9965                                               CLI.CallConv, AssertOp));
9966       CurReg += NumRegs;
9967     }
9968 
9969     // For a function returning void, there is no return value. We can't create
9970     // such a node, so we just return a null return value in that case. In
9971     // that case, nothing will actually look at the value.
9972     if (ReturnValues.empty())
9973       return std::make_pair(SDValue(), CLI.Chain);
9974   }
9975 
9976   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
9977                                 CLI.DAG.getVTList(RetTys), ReturnValues);
9978   return std::make_pair(Res, CLI.Chain);
9979 }
9980 
9981 /// Places new result values for the node in Results (their number
9982 /// and types must exactly match those of the original return values of
9983 /// the node), or leaves Results empty, which indicates that the node is not
9984 /// to be custom lowered after all.
9985 void TargetLowering::LowerOperationWrapper(SDNode *N,
9986                                            SmallVectorImpl<SDValue> &Results,
9987                                            SelectionDAG &DAG) const {
9988   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
9989 
9990   if (!Res.getNode())
9991     return;
9992 
9993   // If the original node has one result, take the return value from
9994   // LowerOperation as is. It might not be result number 0.
9995   if (N->getNumValues() == 1) {
9996     Results.push_back(Res);
9997     return;
9998   }
9999 
10000   // If the original node has multiple results, then the return node should
10001   // have the same number of results.
10002   assert((N->getNumValues() == Res->getNumValues()) &&
10003       "Lowering returned the wrong number of results!");
10004 
10005   // Places new result values base on N result number.
10006   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
10007     Results.push_back(Res.getValue(I));
10008 }
10009 
10010 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10011   llvm_unreachable("LowerOperation not implemented for this target!");
10012 }
10013 
10014 void
10015 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
10016   SDValue Op = getNonRegisterValue(V);
10017   assert((Op.getOpcode() != ISD::CopyFromReg ||
10018           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
10019          "Copy from a reg to the same reg!");
10020   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
10021 
10022   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10023   // If this is an InlineAsm we have to match the registers required, not the
10024   // notional registers required by the type.
10025 
10026   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
10027                    None); // This is not an ABI copy.
10028   SDValue Chain = DAG.getEntryNode();
10029 
10030   ISD::NodeType ExtendType = ISD::ANY_EXTEND;
10031   auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V);
10032   if (PreferredExtendIt != FuncInfo.PreferredExtendType.end())
10033     ExtendType = PreferredExtendIt->second;
10034   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
10035   PendingExports.push_back(Chain);
10036 }
10037 
10038 #include "llvm/CodeGen/SelectionDAGISel.h"
10039 
10040 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
10041 /// entry block, return true.  This includes arguments used by switches, since
10042 /// the switch may expand into multiple basic blocks.
10043 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
10044   // With FastISel active, we may be splitting blocks, so force creation
10045   // of virtual registers for all non-dead arguments.
10046   if (FastISel)
10047     return A->use_empty();
10048 
10049   const BasicBlock &Entry = A->getParent()->front();
10050   for (const User *U : A->users())
10051     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
10052       return false;  // Use not in entry block.
10053 
10054   return true;
10055 }
10056 
10057 using ArgCopyElisionMapTy =
10058     DenseMap<const Argument *,
10059              std::pair<const AllocaInst *, const StoreInst *>>;
10060 
10061 /// Scan the entry block of the function in FuncInfo for arguments that look
10062 /// like copies into a local alloca. Record any copied arguments in
10063 /// ArgCopyElisionCandidates.
10064 static void
10065 findArgumentCopyElisionCandidates(const DataLayout &DL,
10066                                   FunctionLoweringInfo *FuncInfo,
10067                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
10068   // Record the state of every static alloca used in the entry block. Argument
10069   // allocas are all used in the entry block, so we need approximately as many
10070   // entries as we have arguments.
10071   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
10072   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
10073   unsigned NumArgs = FuncInfo->Fn->arg_size();
10074   StaticAllocas.reserve(NumArgs * 2);
10075 
10076   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
10077     if (!V)
10078       return nullptr;
10079     V = V->stripPointerCasts();
10080     const auto *AI = dyn_cast<AllocaInst>(V);
10081     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
10082       return nullptr;
10083     auto Iter = StaticAllocas.insert({AI, Unknown});
10084     return &Iter.first->second;
10085   };
10086 
10087   // Look for stores of arguments to static allocas. Look through bitcasts and
10088   // GEPs to handle type coercions, as long as the alloca is fully initialized
10089   // by the store. Any non-store use of an alloca escapes it and any subsequent
10090   // unanalyzed store might write it.
10091   // FIXME: Handle structs initialized with multiple stores.
10092   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
10093     // Look for stores, and handle non-store uses conservatively.
10094     const auto *SI = dyn_cast<StoreInst>(&I);
10095     if (!SI) {
10096       // We will look through cast uses, so ignore them completely.
10097       if (I.isCast())
10098         continue;
10099       // Ignore debug info and pseudo op intrinsics, they don't escape or store
10100       // to allocas.
10101       if (I.isDebugOrPseudoInst())
10102         continue;
10103       // This is an unknown instruction. Assume it escapes or writes to all
10104       // static alloca operands.
10105       for (const Use &U : I.operands()) {
10106         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
10107           *Info = StaticAllocaInfo::Clobbered;
10108       }
10109       continue;
10110     }
10111 
10112     // If the stored value is a static alloca, mark it as escaped.
10113     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
10114       *Info = StaticAllocaInfo::Clobbered;
10115 
10116     // Check if the destination is a static alloca.
10117     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
10118     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
10119     if (!Info)
10120       continue;
10121     const AllocaInst *AI = cast<AllocaInst>(Dst);
10122 
10123     // Skip allocas that have been initialized or clobbered.
10124     if (*Info != StaticAllocaInfo::Unknown)
10125       continue;
10126 
10127     // Check if the stored value is an argument, and that this store fully
10128     // initializes the alloca.
10129     // If the argument type has padding bits we can't directly forward a pointer
10130     // as the upper bits may contain garbage.
10131     // Don't elide copies from the same argument twice.
10132     const Value *Val = SI->getValueOperand()->stripPointerCasts();
10133     const auto *Arg = dyn_cast<Argument>(Val);
10134     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
10135         Arg->getType()->isEmptyTy() ||
10136         DL.getTypeStoreSize(Arg->getType()) !=
10137             DL.getTypeAllocSize(AI->getAllocatedType()) ||
10138         !DL.typeSizeEqualsStoreSize(Arg->getType()) ||
10139         ArgCopyElisionCandidates.count(Arg)) {
10140       *Info = StaticAllocaInfo::Clobbered;
10141       continue;
10142     }
10143 
10144     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
10145                       << '\n');
10146 
10147     // Mark this alloca and store for argument copy elision.
10148     *Info = StaticAllocaInfo::Elidable;
10149     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
10150 
10151     // Stop scanning if we've seen all arguments. This will happen early in -O0
10152     // builds, which is useful, because -O0 builds have large entry blocks and
10153     // many allocas.
10154     if (ArgCopyElisionCandidates.size() == NumArgs)
10155       break;
10156   }
10157 }
10158 
10159 /// Try to elide argument copies from memory into a local alloca. Succeeds if
10160 /// ArgVal is a load from a suitable fixed stack object.
10161 static void tryToElideArgumentCopy(
10162     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
10163     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
10164     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
10165     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
10166     SDValue ArgVal, bool &ArgHasUses) {
10167   // Check if this is a load from a fixed stack object.
10168   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
10169   if (!LNode)
10170     return;
10171   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
10172   if (!FINode)
10173     return;
10174 
10175   // Check that the fixed stack object is the right size and alignment.
10176   // Look at the alignment that the user wrote on the alloca instead of looking
10177   // at the stack object.
10178   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
10179   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
10180   const AllocaInst *AI = ArgCopyIter->second.first;
10181   int FixedIndex = FINode->getIndex();
10182   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
10183   int OldIndex = AllocaIndex;
10184   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
10185   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
10186     LLVM_DEBUG(
10187         dbgs() << "  argument copy elision failed due to bad fixed stack "
10188                   "object size\n");
10189     return;
10190   }
10191   Align RequiredAlignment = AI->getAlign();
10192   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
10193     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
10194                          "greater than stack argument alignment ("
10195                       << DebugStr(RequiredAlignment) << " vs "
10196                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
10197     return;
10198   }
10199 
10200   // Perform the elision. Delete the old stack object and replace its only use
10201   // in the variable info map. Mark the stack object as mutable.
10202   LLVM_DEBUG({
10203     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
10204            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
10205            << '\n';
10206   });
10207   MFI.RemoveStackObject(OldIndex);
10208   MFI.setIsImmutableObjectIndex(FixedIndex, false);
10209   AllocaIndex = FixedIndex;
10210   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
10211   Chains.push_back(ArgVal.getValue(1));
10212 
10213   // Avoid emitting code for the store implementing the copy.
10214   const StoreInst *SI = ArgCopyIter->second.second;
10215   ElidedArgCopyInstrs.insert(SI);
10216 
10217   // Check for uses of the argument again so that we can avoid exporting ArgVal
10218   // if it is't used by anything other than the store.
10219   for (const Value *U : Arg.users()) {
10220     if (U != SI) {
10221       ArgHasUses = true;
10222       break;
10223     }
10224   }
10225 }
10226 
10227 void SelectionDAGISel::LowerArguments(const Function &F) {
10228   SelectionDAG &DAG = SDB->DAG;
10229   SDLoc dl = SDB->getCurSDLoc();
10230   const DataLayout &DL = DAG.getDataLayout();
10231   SmallVector<ISD::InputArg, 16> Ins;
10232 
10233   // In Naked functions we aren't going to save any registers.
10234   if (F.hasFnAttribute(Attribute::Naked))
10235     return;
10236 
10237   if (!FuncInfo->CanLowerReturn) {
10238     // Put in an sret pointer parameter before all the other parameters.
10239     SmallVector<EVT, 1> ValueVTs;
10240     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10241                     F.getReturnType()->getPointerTo(
10242                         DAG.getDataLayout().getAllocaAddrSpace()),
10243                     ValueVTs);
10244 
10245     // NOTE: Assuming that a pointer will never break down to more than one VT
10246     // or one register.
10247     ISD::ArgFlagsTy Flags;
10248     Flags.setSRet();
10249     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
10250     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
10251                          ISD::InputArg::NoArgIndex, 0);
10252     Ins.push_back(RetArg);
10253   }
10254 
10255   // Look for stores of arguments to static allocas. Mark such arguments with a
10256   // flag to ask the target to give us the memory location of that argument if
10257   // available.
10258   ArgCopyElisionMapTy ArgCopyElisionCandidates;
10259   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
10260                                     ArgCopyElisionCandidates);
10261 
10262   // Set up the incoming argument description vector.
10263   for (const Argument &Arg : F.args()) {
10264     unsigned ArgNo = Arg.getArgNo();
10265     SmallVector<EVT, 4> ValueVTs;
10266     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10267     bool isArgValueUsed = !Arg.use_empty();
10268     unsigned PartBase = 0;
10269     Type *FinalType = Arg.getType();
10270     if (Arg.hasAttribute(Attribute::ByVal))
10271       FinalType = Arg.getParamByValType();
10272     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
10273         FinalType, F.getCallingConv(), F.isVarArg(), DL);
10274     for (unsigned Value = 0, NumValues = ValueVTs.size();
10275          Value != NumValues; ++Value) {
10276       EVT VT = ValueVTs[Value];
10277       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
10278       ISD::ArgFlagsTy Flags;
10279 
10280 
10281       if (Arg.getType()->isPointerTy()) {
10282         Flags.setPointer();
10283         Flags.setPointerAddrSpace(
10284             cast<PointerType>(Arg.getType())->getAddressSpace());
10285       }
10286       if (Arg.hasAttribute(Attribute::ZExt))
10287         Flags.setZExt();
10288       if (Arg.hasAttribute(Attribute::SExt))
10289         Flags.setSExt();
10290       if (Arg.hasAttribute(Attribute::InReg)) {
10291         // If we are using vectorcall calling convention, a structure that is
10292         // passed InReg - is surely an HVA
10293         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
10294             isa<StructType>(Arg.getType())) {
10295           // The first value of a structure is marked
10296           if (0 == Value)
10297             Flags.setHvaStart();
10298           Flags.setHva();
10299         }
10300         // Set InReg Flag
10301         Flags.setInReg();
10302       }
10303       if (Arg.hasAttribute(Attribute::StructRet))
10304         Flags.setSRet();
10305       if (Arg.hasAttribute(Attribute::SwiftSelf))
10306         Flags.setSwiftSelf();
10307       if (Arg.hasAttribute(Attribute::SwiftAsync))
10308         Flags.setSwiftAsync();
10309       if (Arg.hasAttribute(Attribute::SwiftError))
10310         Flags.setSwiftError();
10311       if (Arg.hasAttribute(Attribute::ByVal))
10312         Flags.setByVal();
10313       if (Arg.hasAttribute(Attribute::ByRef))
10314         Flags.setByRef();
10315       if (Arg.hasAttribute(Attribute::InAlloca)) {
10316         Flags.setInAlloca();
10317         // Set the byval flag for CCAssignFn callbacks that don't know about
10318         // inalloca.  This way we can know how many bytes we should've allocated
10319         // and how many bytes a callee cleanup function will pop.  If we port
10320         // inalloca to more targets, we'll have to add custom inalloca handling
10321         // in the various CC lowering callbacks.
10322         Flags.setByVal();
10323       }
10324       if (Arg.hasAttribute(Attribute::Preallocated)) {
10325         Flags.setPreallocated();
10326         // Set the byval flag for CCAssignFn callbacks that don't know about
10327         // preallocated.  This way we can know how many bytes we should've
10328         // allocated and how many bytes a callee cleanup function will pop.  If
10329         // we port preallocated to more targets, we'll have to add custom
10330         // preallocated handling in the various CC lowering callbacks.
10331         Flags.setByVal();
10332       }
10333 
10334       // Certain targets (such as MIPS), may have a different ABI alignment
10335       // for a type depending on the context. Give the target a chance to
10336       // specify the alignment it wants.
10337       const Align OriginalAlignment(
10338           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
10339       Flags.setOrigAlign(OriginalAlignment);
10340 
10341       Align MemAlign;
10342       Type *ArgMemTy = nullptr;
10343       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
10344           Flags.isByRef()) {
10345         if (!ArgMemTy)
10346           ArgMemTy = Arg.getPointeeInMemoryValueType();
10347 
10348         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
10349 
10350         // For in-memory arguments, size and alignment should be passed from FE.
10351         // BE will guess if this info is not there but there are cases it cannot
10352         // get right.
10353         if (auto ParamAlign = Arg.getParamStackAlign())
10354           MemAlign = *ParamAlign;
10355         else if ((ParamAlign = Arg.getParamAlign()))
10356           MemAlign = *ParamAlign;
10357         else
10358           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
10359         if (Flags.isByRef())
10360           Flags.setByRefSize(MemSize);
10361         else
10362           Flags.setByValSize(MemSize);
10363       } else if (auto ParamAlign = Arg.getParamStackAlign()) {
10364         MemAlign = *ParamAlign;
10365       } else {
10366         MemAlign = OriginalAlignment;
10367       }
10368       Flags.setMemAlign(MemAlign);
10369 
10370       if (Arg.hasAttribute(Attribute::Nest))
10371         Flags.setNest();
10372       if (NeedsRegBlock)
10373         Flags.setInConsecutiveRegs();
10374       if (ArgCopyElisionCandidates.count(&Arg))
10375         Flags.setCopyElisionCandidate();
10376       if (Arg.hasAttribute(Attribute::Returned))
10377         Flags.setReturned();
10378 
10379       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
10380           *CurDAG->getContext(), F.getCallingConv(), VT);
10381       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
10382           *CurDAG->getContext(), F.getCallingConv(), VT);
10383       for (unsigned i = 0; i != NumRegs; ++i) {
10384         // For scalable vectors, use the minimum size; individual targets
10385         // are responsible for handling scalable vector arguments and
10386         // return values.
10387         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
10388                  ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize());
10389         if (NumRegs > 1 && i == 0)
10390           MyFlags.Flags.setSplit();
10391         // if it isn't first piece, alignment must be 1
10392         else if (i > 0) {
10393           MyFlags.Flags.setOrigAlign(Align(1));
10394           if (i == NumRegs - 1)
10395             MyFlags.Flags.setSplitEnd();
10396         }
10397         Ins.push_back(MyFlags);
10398       }
10399       if (NeedsRegBlock && Value == NumValues - 1)
10400         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
10401       PartBase += VT.getStoreSize().getKnownMinSize();
10402     }
10403   }
10404 
10405   // Call the target to set up the argument values.
10406   SmallVector<SDValue, 8> InVals;
10407   SDValue NewRoot = TLI->LowerFormalArguments(
10408       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
10409 
10410   // Verify that the target's LowerFormalArguments behaved as expected.
10411   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
10412          "LowerFormalArguments didn't return a valid chain!");
10413   assert(InVals.size() == Ins.size() &&
10414          "LowerFormalArguments didn't emit the correct number of values!");
10415   LLVM_DEBUG({
10416     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
10417       assert(InVals[i].getNode() &&
10418              "LowerFormalArguments emitted a null value!");
10419       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
10420              "LowerFormalArguments emitted a value with the wrong type!");
10421     }
10422   });
10423 
10424   // Update the DAG with the new chain value resulting from argument lowering.
10425   DAG.setRoot(NewRoot);
10426 
10427   // Set up the argument values.
10428   unsigned i = 0;
10429   if (!FuncInfo->CanLowerReturn) {
10430     // Create a virtual register for the sret pointer, and put in a copy
10431     // from the sret argument into it.
10432     SmallVector<EVT, 1> ValueVTs;
10433     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10434                     F.getReturnType()->getPointerTo(
10435                         DAG.getDataLayout().getAllocaAddrSpace()),
10436                     ValueVTs);
10437     MVT VT = ValueVTs[0].getSimpleVT();
10438     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
10439     Optional<ISD::NodeType> AssertOp = None;
10440     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
10441                                         nullptr, F.getCallingConv(), AssertOp);
10442 
10443     MachineFunction& MF = SDB->DAG.getMachineFunction();
10444     MachineRegisterInfo& RegInfo = MF.getRegInfo();
10445     Register SRetReg =
10446         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
10447     FuncInfo->DemoteRegister = SRetReg;
10448     NewRoot =
10449         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
10450     DAG.setRoot(NewRoot);
10451 
10452     // i indexes lowered arguments.  Bump it past the hidden sret argument.
10453     ++i;
10454   }
10455 
10456   SmallVector<SDValue, 4> Chains;
10457   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
10458   for (const Argument &Arg : F.args()) {
10459     SmallVector<SDValue, 4> ArgValues;
10460     SmallVector<EVT, 4> ValueVTs;
10461     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10462     unsigned NumValues = ValueVTs.size();
10463     if (NumValues == 0)
10464       continue;
10465 
10466     bool ArgHasUses = !Arg.use_empty();
10467 
10468     // Elide the copying store if the target loaded this argument from a
10469     // suitable fixed stack object.
10470     if (Ins[i].Flags.isCopyElisionCandidate()) {
10471       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
10472                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
10473                              InVals[i], ArgHasUses);
10474     }
10475 
10476     // If this argument is unused then remember its value. It is used to generate
10477     // debugging information.
10478     bool isSwiftErrorArg =
10479         TLI->supportSwiftError() &&
10480         Arg.hasAttribute(Attribute::SwiftError);
10481     if (!ArgHasUses && !isSwiftErrorArg) {
10482       SDB->setUnusedArgValue(&Arg, InVals[i]);
10483 
10484       // Also remember any frame index for use in FastISel.
10485       if (FrameIndexSDNode *FI =
10486           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
10487         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10488     }
10489 
10490     for (unsigned Val = 0; Val != NumValues; ++Val) {
10491       EVT VT = ValueVTs[Val];
10492       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
10493                                                       F.getCallingConv(), VT);
10494       unsigned NumParts = TLI->getNumRegistersForCallingConv(
10495           *CurDAG->getContext(), F.getCallingConv(), VT);
10496 
10497       // Even an apparent 'unused' swifterror argument needs to be returned. So
10498       // we do generate a copy for it that can be used on return from the
10499       // function.
10500       if (ArgHasUses || isSwiftErrorArg) {
10501         Optional<ISD::NodeType> AssertOp;
10502         if (Arg.hasAttribute(Attribute::SExt))
10503           AssertOp = ISD::AssertSext;
10504         else if (Arg.hasAttribute(Attribute::ZExt))
10505           AssertOp = ISD::AssertZext;
10506 
10507         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
10508                                              PartVT, VT, nullptr,
10509                                              F.getCallingConv(), AssertOp));
10510       }
10511 
10512       i += NumParts;
10513     }
10514 
10515     // We don't need to do anything else for unused arguments.
10516     if (ArgValues.empty())
10517       continue;
10518 
10519     // Note down frame index.
10520     if (FrameIndexSDNode *FI =
10521         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
10522       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10523 
10524     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
10525                                      SDB->getCurSDLoc());
10526 
10527     SDB->setValue(&Arg, Res);
10528     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
10529       // We want to associate the argument with the frame index, among
10530       // involved operands, that correspond to the lowest address. The
10531       // getCopyFromParts function, called earlier, is swapping the order of
10532       // the operands to BUILD_PAIR depending on endianness. The result of
10533       // that swapping is that the least significant bits of the argument will
10534       // be in the first operand of the BUILD_PAIR node, and the most
10535       // significant bits will be in the second operand.
10536       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
10537       if (LoadSDNode *LNode =
10538           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
10539         if (FrameIndexSDNode *FI =
10540             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
10541           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10542     }
10543 
10544     // Analyses past this point are naive and don't expect an assertion.
10545     if (Res.getOpcode() == ISD::AssertZext)
10546       Res = Res.getOperand(0);
10547 
10548     // Update the SwiftErrorVRegDefMap.
10549     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
10550       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10551       if (Register::isVirtualRegister(Reg))
10552         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
10553                                    Reg);
10554     }
10555 
10556     // If this argument is live outside of the entry block, insert a copy from
10557     // wherever we got it to the vreg that other BB's will reference it as.
10558     if (Res.getOpcode() == ISD::CopyFromReg) {
10559       // If we can, though, try to skip creating an unnecessary vreg.
10560       // FIXME: This isn't very clean... it would be nice to make this more
10561       // general.
10562       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10563       if (Register::isVirtualRegister(Reg)) {
10564         FuncInfo->ValueMap[&Arg] = Reg;
10565         continue;
10566       }
10567     }
10568     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
10569       FuncInfo->InitializeRegForValue(&Arg);
10570       SDB->CopyToExportRegsIfNeeded(&Arg);
10571     }
10572   }
10573 
10574   if (!Chains.empty()) {
10575     Chains.push_back(NewRoot);
10576     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
10577   }
10578 
10579   DAG.setRoot(NewRoot);
10580 
10581   assert(i == InVals.size() && "Argument register count mismatch!");
10582 
10583   // If any argument copy elisions occurred and we have debug info, update the
10584   // stale frame indices used in the dbg.declare variable info table.
10585   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
10586   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
10587     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
10588       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
10589       if (I != ArgCopyElisionFrameIndexMap.end())
10590         VI.Slot = I->second;
10591     }
10592   }
10593 
10594   // Finally, if the target has anything special to do, allow it to do so.
10595   emitFunctionEntryCode();
10596 }
10597 
10598 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
10599 /// ensure constants are generated when needed.  Remember the virtual registers
10600 /// that need to be added to the Machine PHI nodes as input.  We cannot just
10601 /// directly add them, because expansion might result in multiple MBB's for one
10602 /// BB.  As such, the start of the BB might correspond to a different MBB than
10603 /// the end.
10604 void
10605 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
10606   const Instruction *TI = LLVMBB->getTerminator();
10607 
10608   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
10609 
10610   // Check PHI nodes in successors that expect a value to be available from this
10611   // block.
10612   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
10613     const BasicBlock *SuccBB = TI->getSuccessor(succ);
10614     if (!isa<PHINode>(SuccBB->begin())) continue;
10615     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
10616 
10617     // If this terminator has multiple identical successors (common for
10618     // switches), only handle each succ once.
10619     if (!SuccsHandled.insert(SuccMBB).second)
10620       continue;
10621 
10622     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
10623 
10624     // At this point we know that there is a 1-1 correspondence between LLVM PHI
10625     // nodes and Machine PHI nodes, but the incoming operands have not been
10626     // emitted yet.
10627     for (const PHINode &PN : SuccBB->phis()) {
10628       // Ignore dead phi's.
10629       if (PN.use_empty())
10630         continue;
10631 
10632       // Skip empty types
10633       if (PN.getType()->isEmptyTy())
10634         continue;
10635 
10636       unsigned Reg;
10637       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
10638 
10639       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
10640         unsigned &RegOut = ConstantsOut[C];
10641         if (RegOut == 0) {
10642           RegOut = FuncInfo.CreateRegs(C);
10643           CopyValueToVirtualRegister(C, RegOut);
10644         }
10645         Reg = RegOut;
10646       } else {
10647         DenseMap<const Value *, Register>::iterator I =
10648           FuncInfo.ValueMap.find(PHIOp);
10649         if (I != FuncInfo.ValueMap.end())
10650           Reg = I->second;
10651         else {
10652           assert(isa<AllocaInst>(PHIOp) &&
10653                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
10654                  "Didn't codegen value into a register!??");
10655           Reg = FuncInfo.CreateRegs(PHIOp);
10656           CopyValueToVirtualRegister(PHIOp, Reg);
10657         }
10658       }
10659 
10660       // Remember that this register needs to added to the machine PHI node as
10661       // the input for this MBB.
10662       SmallVector<EVT, 4> ValueVTs;
10663       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10664       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
10665       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
10666         EVT VT = ValueVTs[vti];
10667         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
10668         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
10669           FuncInfo.PHINodesToUpdate.push_back(
10670               std::make_pair(&*MBBI++, Reg + i));
10671         Reg += NumRegisters;
10672       }
10673     }
10674   }
10675 
10676   ConstantsOut.clear();
10677 }
10678 
10679 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
10680   MachineFunction::iterator I(MBB);
10681   if (++I == FuncInfo.MF->end())
10682     return nullptr;
10683   return &*I;
10684 }
10685 
10686 /// During lowering new call nodes can be created (such as memset, etc.).
10687 /// Those will become new roots of the current DAG, but complications arise
10688 /// when they are tail calls. In such cases, the call lowering will update
10689 /// the root, but the builder still needs to know that a tail call has been
10690 /// lowered in order to avoid generating an additional return.
10691 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
10692   // If the node is null, we do have a tail call.
10693   if (MaybeTC.getNode() != nullptr)
10694     DAG.setRoot(MaybeTC);
10695   else
10696     HasTailCall = true;
10697 }
10698 
10699 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10700                                         MachineBasicBlock *SwitchMBB,
10701                                         MachineBasicBlock *DefaultMBB) {
10702   MachineFunction *CurMF = FuncInfo.MF;
10703   MachineBasicBlock *NextMBB = nullptr;
10704   MachineFunction::iterator BBI(W.MBB);
10705   if (++BBI != FuncInfo.MF->end())
10706     NextMBB = &*BBI;
10707 
10708   unsigned Size = W.LastCluster - W.FirstCluster + 1;
10709 
10710   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10711 
10712   if (Size == 2 && W.MBB == SwitchMBB) {
10713     // If any two of the cases has the same destination, and if one value
10714     // is the same as the other, but has one bit unset that the other has set,
10715     // use bit manipulation to do two compares at once.  For example:
10716     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10717     // TODO: This could be extended to merge any 2 cases in switches with 3
10718     // cases.
10719     // TODO: Handle cases where W.CaseBB != SwitchBB.
10720     CaseCluster &Small = *W.FirstCluster;
10721     CaseCluster &Big = *W.LastCluster;
10722 
10723     if (Small.Low == Small.High && Big.Low == Big.High &&
10724         Small.MBB == Big.MBB) {
10725       const APInt &SmallValue = Small.Low->getValue();
10726       const APInt &BigValue = Big.Low->getValue();
10727 
10728       // Check that there is only one bit different.
10729       APInt CommonBit = BigValue ^ SmallValue;
10730       if (CommonBit.isPowerOf2()) {
10731         SDValue CondLHS = getValue(Cond);
10732         EVT VT = CondLHS.getValueType();
10733         SDLoc DL = getCurSDLoc();
10734 
10735         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10736                                  DAG.getConstant(CommonBit, DL, VT));
10737         SDValue Cond = DAG.getSetCC(
10738             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10739             ISD::SETEQ);
10740 
10741         // Update successor info.
10742         // Both Small and Big will jump to Small.BB, so we sum up the
10743         // probabilities.
10744         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10745         if (BPI)
10746           addSuccessorWithProb(
10747               SwitchMBB, DefaultMBB,
10748               // The default destination is the first successor in IR.
10749               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10750         else
10751           addSuccessorWithProb(SwitchMBB, DefaultMBB);
10752 
10753         // Insert the true branch.
10754         SDValue BrCond =
10755             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10756                         DAG.getBasicBlock(Small.MBB));
10757         // Insert the false branch.
10758         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10759                              DAG.getBasicBlock(DefaultMBB));
10760 
10761         DAG.setRoot(BrCond);
10762         return;
10763       }
10764     }
10765   }
10766 
10767   if (TM.getOptLevel() != CodeGenOpt::None) {
10768     // Here, we order cases by probability so the most likely case will be
10769     // checked first. However, two clusters can have the same probability in
10770     // which case their relative ordering is non-deterministic. So we use Low
10771     // as a tie-breaker as clusters are guaranteed to never overlap.
10772     llvm::sort(W.FirstCluster, W.LastCluster + 1,
10773                [](const CaseCluster &a, const CaseCluster &b) {
10774       return a.Prob != b.Prob ?
10775              a.Prob > b.Prob :
10776              a.Low->getValue().slt(b.Low->getValue());
10777     });
10778 
10779     // Rearrange the case blocks so that the last one falls through if possible
10780     // without changing the order of probabilities.
10781     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10782       --I;
10783       if (I->Prob > W.LastCluster->Prob)
10784         break;
10785       if (I->Kind == CC_Range && I->MBB == NextMBB) {
10786         std::swap(*I, *W.LastCluster);
10787         break;
10788       }
10789     }
10790   }
10791 
10792   // Compute total probability.
10793   BranchProbability DefaultProb = W.DefaultProb;
10794   BranchProbability UnhandledProbs = DefaultProb;
10795   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10796     UnhandledProbs += I->Prob;
10797 
10798   MachineBasicBlock *CurMBB = W.MBB;
10799   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10800     bool FallthroughUnreachable = false;
10801     MachineBasicBlock *Fallthrough;
10802     if (I == W.LastCluster) {
10803       // For the last cluster, fall through to the default destination.
10804       Fallthrough = DefaultMBB;
10805       FallthroughUnreachable = isa<UnreachableInst>(
10806           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
10807     } else {
10808       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10809       CurMF->insert(BBI, Fallthrough);
10810       // Put Cond in a virtual register to make it available from the new blocks.
10811       ExportFromCurrentBlock(Cond);
10812     }
10813     UnhandledProbs -= I->Prob;
10814 
10815     switch (I->Kind) {
10816       case CC_JumpTable: {
10817         // FIXME: Optimize away range check based on pivot comparisons.
10818         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
10819         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
10820 
10821         // The jump block hasn't been inserted yet; insert it here.
10822         MachineBasicBlock *JumpMBB = JT->MBB;
10823         CurMF->insert(BBI, JumpMBB);
10824 
10825         auto JumpProb = I->Prob;
10826         auto FallthroughProb = UnhandledProbs;
10827 
10828         // If the default statement is a target of the jump table, we evenly
10829         // distribute the default probability to successors of CurMBB. Also
10830         // update the probability on the edge from JumpMBB to Fallthrough.
10831         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10832                                               SE = JumpMBB->succ_end();
10833              SI != SE; ++SI) {
10834           if (*SI == DefaultMBB) {
10835             JumpProb += DefaultProb / 2;
10836             FallthroughProb -= DefaultProb / 2;
10837             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10838             JumpMBB->normalizeSuccProbs();
10839             break;
10840           }
10841         }
10842 
10843         if (FallthroughUnreachable)
10844           JTH->FallthroughUnreachable = true;
10845 
10846         if (!JTH->FallthroughUnreachable)
10847           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10848         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10849         CurMBB->normalizeSuccProbs();
10850 
10851         // The jump table header will be inserted in our current block, do the
10852         // range check, and fall through to our fallthrough block.
10853         JTH->HeaderBB = CurMBB;
10854         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10855 
10856         // If we're in the right place, emit the jump table header right now.
10857         if (CurMBB == SwitchMBB) {
10858           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10859           JTH->Emitted = true;
10860         }
10861         break;
10862       }
10863       case CC_BitTests: {
10864         // FIXME: Optimize away range check based on pivot comparisons.
10865         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
10866 
10867         // The bit test blocks haven't been inserted yet; insert them here.
10868         for (BitTestCase &BTC : BTB->Cases)
10869           CurMF->insert(BBI, BTC.ThisBB);
10870 
10871         // Fill in fields of the BitTestBlock.
10872         BTB->Parent = CurMBB;
10873         BTB->Default = Fallthrough;
10874 
10875         BTB->DefaultProb = UnhandledProbs;
10876         // If the cases in bit test don't form a contiguous range, we evenly
10877         // distribute the probability on the edge to Fallthrough to two
10878         // successors of CurMBB.
10879         if (!BTB->ContiguousRange) {
10880           BTB->Prob += DefaultProb / 2;
10881           BTB->DefaultProb -= DefaultProb / 2;
10882         }
10883 
10884         if (FallthroughUnreachable)
10885           BTB->FallthroughUnreachable = true;
10886 
10887         // If we're in the right place, emit the bit test header right now.
10888         if (CurMBB == SwitchMBB) {
10889           visitBitTestHeader(*BTB, SwitchMBB);
10890           BTB->Emitted = true;
10891         }
10892         break;
10893       }
10894       case CC_Range: {
10895         const Value *RHS, *LHS, *MHS;
10896         ISD::CondCode CC;
10897         if (I->Low == I->High) {
10898           // Check Cond == I->Low.
10899           CC = ISD::SETEQ;
10900           LHS = Cond;
10901           RHS=I->Low;
10902           MHS = nullptr;
10903         } else {
10904           // Check I->Low <= Cond <= I->High.
10905           CC = ISD::SETLE;
10906           LHS = I->Low;
10907           MHS = Cond;
10908           RHS = I->High;
10909         }
10910 
10911         // If Fallthrough is unreachable, fold away the comparison.
10912         if (FallthroughUnreachable)
10913           CC = ISD::SETTRUE;
10914 
10915         // The false probability is the sum of all unhandled cases.
10916         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10917                      getCurSDLoc(), I->Prob, UnhandledProbs);
10918 
10919         if (CurMBB == SwitchMBB)
10920           visitSwitchCase(CB, SwitchMBB);
10921         else
10922           SL->SwitchCases.push_back(CB);
10923 
10924         break;
10925       }
10926     }
10927     CurMBB = Fallthrough;
10928   }
10929 }
10930 
10931 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10932                                               CaseClusterIt First,
10933                                               CaseClusterIt Last) {
10934   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10935     if (X.Prob != CC.Prob)
10936       return X.Prob > CC.Prob;
10937 
10938     // Ties are broken by comparing the case value.
10939     return X.Low->getValue().slt(CC.Low->getValue());
10940   });
10941 }
10942 
10943 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10944                                         const SwitchWorkListItem &W,
10945                                         Value *Cond,
10946                                         MachineBasicBlock *SwitchMBB) {
10947   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10948          "Clusters not sorted?");
10949 
10950   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10951 
10952   // Balance the tree based on branch probabilities to create a near-optimal (in
10953   // terms of search time given key frequency) binary search tree. See e.g. Kurt
10954   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10955   CaseClusterIt LastLeft = W.FirstCluster;
10956   CaseClusterIt FirstRight = W.LastCluster;
10957   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10958   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10959 
10960   // Move LastLeft and FirstRight towards each other from opposite directions to
10961   // find a partitioning of the clusters which balances the probability on both
10962   // sides. If LeftProb and RightProb are equal, alternate which side is
10963   // taken to ensure 0-probability nodes are distributed evenly.
10964   unsigned I = 0;
10965   while (LastLeft + 1 < FirstRight) {
10966     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10967       LeftProb += (++LastLeft)->Prob;
10968     else
10969       RightProb += (--FirstRight)->Prob;
10970     I++;
10971   }
10972 
10973   while (true) {
10974     // Our binary search tree differs from a typical BST in that ours can have up
10975     // to three values in each leaf. The pivot selection above doesn't take that
10976     // into account, which means the tree might require more nodes and be less
10977     // efficient. We compensate for this here.
10978 
10979     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10980     unsigned NumRight = W.LastCluster - FirstRight + 1;
10981 
10982     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10983       // If one side has less than 3 clusters, and the other has more than 3,
10984       // consider taking a cluster from the other side.
10985 
10986       if (NumLeft < NumRight) {
10987         // Consider moving the first cluster on the right to the left side.
10988         CaseCluster &CC = *FirstRight;
10989         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10990         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10991         if (LeftSideRank <= RightSideRank) {
10992           // Moving the cluster to the left does not demote it.
10993           ++LastLeft;
10994           ++FirstRight;
10995           continue;
10996         }
10997       } else {
10998         assert(NumRight < NumLeft);
10999         // Consider moving the last element on the left to the right side.
11000         CaseCluster &CC = *LastLeft;
11001         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
11002         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
11003         if (RightSideRank <= LeftSideRank) {
11004           // Moving the cluster to the right does not demot it.
11005           --LastLeft;
11006           --FirstRight;
11007           continue;
11008         }
11009       }
11010     }
11011     break;
11012   }
11013 
11014   assert(LastLeft + 1 == FirstRight);
11015   assert(LastLeft >= W.FirstCluster);
11016   assert(FirstRight <= W.LastCluster);
11017 
11018   // Use the first element on the right as pivot since we will make less-than
11019   // comparisons against it.
11020   CaseClusterIt PivotCluster = FirstRight;
11021   assert(PivotCluster > W.FirstCluster);
11022   assert(PivotCluster <= W.LastCluster);
11023 
11024   CaseClusterIt FirstLeft = W.FirstCluster;
11025   CaseClusterIt LastRight = W.LastCluster;
11026 
11027   const ConstantInt *Pivot = PivotCluster->Low;
11028 
11029   // New blocks will be inserted immediately after the current one.
11030   MachineFunction::iterator BBI(W.MBB);
11031   ++BBI;
11032 
11033   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
11034   // we can branch to its destination directly if it's squeezed exactly in
11035   // between the known lower bound and Pivot - 1.
11036   MachineBasicBlock *LeftMBB;
11037   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
11038       FirstLeft->Low == W.GE &&
11039       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
11040     LeftMBB = FirstLeft->MBB;
11041   } else {
11042     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11043     FuncInfo.MF->insert(BBI, LeftMBB);
11044     WorkList.push_back(
11045         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
11046     // Put Cond in a virtual register to make it available from the new blocks.
11047     ExportFromCurrentBlock(Cond);
11048   }
11049 
11050   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
11051   // single cluster, RHS.Low == Pivot, and we can branch to its destination
11052   // directly if RHS.High equals the current upper bound.
11053   MachineBasicBlock *RightMBB;
11054   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
11055       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
11056     RightMBB = FirstRight->MBB;
11057   } else {
11058     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11059     FuncInfo.MF->insert(BBI, RightMBB);
11060     WorkList.push_back(
11061         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
11062     // Put Cond in a virtual register to make it available from the new blocks.
11063     ExportFromCurrentBlock(Cond);
11064   }
11065 
11066   // Create the CaseBlock record that will be used to lower the branch.
11067   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
11068                getCurSDLoc(), LeftProb, RightProb);
11069 
11070   if (W.MBB == SwitchMBB)
11071     visitSwitchCase(CB, SwitchMBB);
11072   else
11073     SL->SwitchCases.push_back(CB);
11074 }
11075 
11076 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
11077 // from the swith statement.
11078 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
11079                                             BranchProbability PeeledCaseProb) {
11080   if (PeeledCaseProb == BranchProbability::getOne())
11081     return BranchProbability::getZero();
11082   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
11083 
11084   uint32_t Numerator = CaseProb.getNumerator();
11085   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
11086   return BranchProbability(Numerator, std::max(Numerator, Denominator));
11087 }
11088 
11089 // Try to peel the top probability case if it exceeds the threshold.
11090 // Return current MachineBasicBlock for the switch statement if the peeling
11091 // does not occur.
11092 // If the peeling is performed, return the newly created MachineBasicBlock
11093 // for the peeled switch statement. Also update Clusters to remove the peeled
11094 // case. PeeledCaseProb is the BranchProbability for the peeled case.
11095 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
11096     const SwitchInst &SI, CaseClusterVector &Clusters,
11097     BranchProbability &PeeledCaseProb) {
11098   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11099   // Don't perform if there is only one cluster or optimizing for size.
11100   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
11101       TM.getOptLevel() == CodeGenOpt::None ||
11102       SwitchMBB->getParent()->getFunction().hasMinSize())
11103     return SwitchMBB;
11104 
11105   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
11106   unsigned PeeledCaseIndex = 0;
11107   bool SwitchPeeled = false;
11108   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
11109     CaseCluster &CC = Clusters[Index];
11110     if (CC.Prob < TopCaseProb)
11111       continue;
11112     TopCaseProb = CC.Prob;
11113     PeeledCaseIndex = Index;
11114     SwitchPeeled = true;
11115   }
11116   if (!SwitchPeeled)
11117     return SwitchMBB;
11118 
11119   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
11120                     << TopCaseProb << "\n");
11121 
11122   // Record the MBB for the peeled switch statement.
11123   MachineFunction::iterator BBI(SwitchMBB);
11124   ++BBI;
11125   MachineBasicBlock *PeeledSwitchMBB =
11126       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
11127   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
11128 
11129   ExportFromCurrentBlock(SI.getCondition());
11130   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
11131   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
11132                           nullptr,   nullptr,      TopCaseProb.getCompl()};
11133   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
11134 
11135   Clusters.erase(PeeledCaseIt);
11136   for (CaseCluster &CC : Clusters) {
11137     LLVM_DEBUG(
11138         dbgs() << "Scale the probablity for one cluster, before scaling: "
11139                << CC.Prob << "\n");
11140     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
11141     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
11142   }
11143   PeeledCaseProb = TopCaseProb;
11144   return PeeledSwitchMBB;
11145 }
11146 
11147 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
11148   // Extract cases from the switch.
11149   BranchProbabilityInfo *BPI = FuncInfo.BPI;
11150   CaseClusterVector Clusters;
11151   Clusters.reserve(SI.getNumCases());
11152   for (auto I : SI.cases()) {
11153     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
11154     const ConstantInt *CaseVal = I.getCaseValue();
11155     BranchProbability Prob =
11156         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
11157             : BranchProbability(1, SI.getNumCases() + 1);
11158     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
11159   }
11160 
11161   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
11162 
11163   // Cluster adjacent cases with the same destination. We do this at all
11164   // optimization levels because it's cheap to do and will make codegen faster
11165   // if there are many clusters.
11166   sortAndRangeify(Clusters);
11167 
11168   // The branch probablity of the peeled case.
11169   BranchProbability PeeledCaseProb = BranchProbability::getZero();
11170   MachineBasicBlock *PeeledSwitchMBB =
11171       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
11172 
11173   // If there is only the default destination, jump there directly.
11174   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11175   if (Clusters.empty()) {
11176     assert(PeeledSwitchMBB == SwitchMBB);
11177     SwitchMBB->addSuccessor(DefaultMBB);
11178     if (DefaultMBB != NextBlock(SwitchMBB)) {
11179       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
11180                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
11181     }
11182     return;
11183   }
11184 
11185   SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
11186   SL->findBitTestClusters(Clusters, &SI);
11187 
11188   LLVM_DEBUG({
11189     dbgs() << "Case clusters: ";
11190     for (const CaseCluster &C : Clusters) {
11191       if (C.Kind == CC_JumpTable)
11192         dbgs() << "JT:";
11193       if (C.Kind == CC_BitTests)
11194         dbgs() << "BT:";
11195 
11196       C.Low->getValue().print(dbgs(), true);
11197       if (C.Low != C.High) {
11198         dbgs() << '-';
11199         C.High->getValue().print(dbgs(), true);
11200       }
11201       dbgs() << ' ';
11202     }
11203     dbgs() << '\n';
11204   });
11205 
11206   assert(!Clusters.empty());
11207   SwitchWorkList WorkList;
11208   CaseClusterIt First = Clusters.begin();
11209   CaseClusterIt Last = Clusters.end() - 1;
11210   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
11211   // Scale the branchprobability for DefaultMBB if the peel occurs and
11212   // DefaultMBB is not replaced.
11213   if (PeeledCaseProb != BranchProbability::getZero() &&
11214       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
11215     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
11216   WorkList.push_back(
11217       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
11218 
11219   while (!WorkList.empty()) {
11220     SwitchWorkListItem W = WorkList.pop_back_val();
11221     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
11222 
11223     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
11224         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
11225       // For optimized builds, lower large range as a balanced binary tree.
11226       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
11227       continue;
11228     }
11229 
11230     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
11231   }
11232 }
11233 
11234 void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
11235   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11236   auto DL = getCurSDLoc();
11237   EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11238   setValue(&I, DAG.getStepVector(DL, ResultVT));
11239 }
11240 
11241 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
11242   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11243   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11244 
11245   SDLoc DL = getCurSDLoc();
11246   SDValue V = getValue(I.getOperand(0));
11247   assert(VT == V.getValueType() && "Malformed vector.reverse!");
11248 
11249   if (VT.isScalableVector()) {
11250     setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
11251     return;
11252   }
11253 
11254   // Use VECTOR_SHUFFLE for the fixed-length vector
11255   // to maintain existing behavior.
11256   SmallVector<int, 8> Mask;
11257   unsigned NumElts = VT.getVectorMinNumElements();
11258   for (unsigned i = 0; i != NumElts; ++i)
11259     Mask.push_back(NumElts - 1 - i);
11260 
11261   setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
11262 }
11263 
11264 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
11265   SmallVector<EVT, 4> ValueVTs;
11266   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
11267                   ValueVTs);
11268   unsigned NumValues = ValueVTs.size();
11269   if (NumValues == 0) return;
11270 
11271   SmallVector<SDValue, 4> Values(NumValues);
11272   SDValue Op = getValue(I.getOperand(0));
11273 
11274   for (unsigned i = 0; i != NumValues; ++i)
11275     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
11276                             SDValue(Op.getNode(), Op.getResNo() + i));
11277 
11278   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
11279                            DAG.getVTList(ValueVTs), Values));
11280 }
11281 
11282 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
11283   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11284   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11285 
11286   SDLoc DL = getCurSDLoc();
11287   SDValue V1 = getValue(I.getOperand(0));
11288   SDValue V2 = getValue(I.getOperand(1));
11289   int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue();
11290 
11291   // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
11292   if (VT.isScalableVector()) {
11293     MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
11294     setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2,
11295                              DAG.getConstant(Imm, DL, IdxVT)));
11296     return;
11297   }
11298 
11299   unsigned NumElts = VT.getVectorNumElements();
11300 
11301   uint64_t Idx = (NumElts + Imm) % NumElts;
11302 
11303   // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
11304   SmallVector<int, 8> Mask;
11305   for (unsigned i = 0; i < NumElts; ++i)
11306     Mask.push_back(Idx + i);
11307   setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
11308 }
11309