1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/BranchProbabilityInfo.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/EHPersonalities.h" 30 #include "llvm/Analysis/MemoryLocation.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/CodeGen/Analysis.h" 34 #include "llvm/CodeGen/FunctionLoweringInfo.h" 35 #include "llvm/CodeGen/GCMetadata.h" 36 #include "llvm/CodeGen/MachineBasicBlock.h" 37 #include "llvm/CodeGen/MachineFrameInfo.h" 38 #include "llvm/CodeGen/MachineFunction.h" 39 #include "llvm/CodeGen/MachineInstrBuilder.h" 40 #include "llvm/CodeGen/MachineInstrBundleIterator.h" 41 #include "llvm/CodeGen/MachineMemOperand.h" 42 #include "llvm/CodeGen/MachineModuleInfo.h" 43 #include "llvm/CodeGen/MachineOperand.h" 44 #include "llvm/CodeGen/MachineRegisterInfo.h" 45 #include "llvm/CodeGen/RuntimeLibcalls.h" 46 #include "llvm/CodeGen/SelectionDAG.h" 47 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 48 #include "llvm/CodeGen/StackMaps.h" 49 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 50 #include "llvm/CodeGen/TargetFrameLowering.h" 51 #include "llvm/CodeGen/TargetInstrInfo.h" 52 #include "llvm/CodeGen/TargetOpcodes.h" 53 #include "llvm/CodeGen/TargetRegisterInfo.h" 54 #include "llvm/CodeGen/TargetSubtargetInfo.h" 55 #include "llvm/CodeGen/WinEHFuncInfo.h" 56 #include "llvm/IR/Argument.h" 57 #include "llvm/IR/Attributes.h" 58 #include "llvm/IR/BasicBlock.h" 59 #include "llvm/IR/CFG.h" 60 #include "llvm/IR/CallingConv.h" 61 #include "llvm/IR/Constant.h" 62 #include "llvm/IR/ConstantRange.h" 63 #include "llvm/IR/Constants.h" 64 #include "llvm/IR/DataLayout.h" 65 #include "llvm/IR/DebugInfoMetadata.h" 66 #include "llvm/IR/DerivedTypes.h" 67 #include "llvm/IR/DiagnosticInfo.h" 68 #include "llvm/IR/Function.h" 69 #include "llvm/IR/GetElementPtrTypeIterator.h" 70 #include "llvm/IR/InlineAsm.h" 71 #include "llvm/IR/InstrTypes.h" 72 #include "llvm/IR/Instructions.h" 73 #include "llvm/IR/IntrinsicInst.h" 74 #include "llvm/IR/Intrinsics.h" 75 #include "llvm/IR/IntrinsicsAArch64.h" 76 #include "llvm/IR/IntrinsicsWebAssembly.h" 77 #include "llvm/IR/LLVMContext.h" 78 #include "llvm/IR/Metadata.h" 79 #include "llvm/IR/Module.h" 80 #include "llvm/IR/Operator.h" 81 #include "llvm/IR/PatternMatch.h" 82 #include "llvm/IR/Statepoint.h" 83 #include "llvm/IR/Type.h" 84 #include "llvm/IR/User.h" 85 #include "llvm/IR/Value.h" 86 #include "llvm/MC/MCContext.h" 87 #include "llvm/Support/AtomicOrdering.h" 88 #include "llvm/Support/Casting.h" 89 #include "llvm/Support/CommandLine.h" 90 #include "llvm/Support/Compiler.h" 91 #include "llvm/Support/Debug.h" 92 #include "llvm/Support/MathExtras.h" 93 #include "llvm/Support/raw_ostream.h" 94 #include "llvm/Target/TargetIntrinsicInfo.h" 95 #include "llvm/Target/TargetMachine.h" 96 #include "llvm/Target/TargetOptions.h" 97 #include "llvm/Transforms/Utils/Local.h" 98 #include <cstddef> 99 #include <iterator> 100 #include <limits> 101 #include <tuple> 102 103 using namespace llvm; 104 using namespace PatternMatch; 105 using namespace SwitchCG; 106 107 #define DEBUG_TYPE "isel" 108 109 /// LimitFloatPrecision - Generate low-precision inline sequences for 110 /// some float libcalls (6, 8 or 12 bits). 111 static unsigned LimitFloatPrecision; 112 113 static cl::opt<bool> 114 InsertAssertAlign("insert-assert-align", cl::init(true), 115 cl::desc("Insert the experimental `assertalign` node."), 116 cl::ReallyHidden); 117 118 static cl::opt<unsigned, true> 119 LimitFPPrecision("limit-float-precision", 120 cl::desc("Generate low-precision inline sequences " 121 "for some float libcalls"), 122 cl::location(LimitFloatPrecision), cl::Hidden, 123 cl::init(0)); 124 125 static cl::opt<unsigned> SwitchPeelThreshold( 126 "switch-peel-threshold", cl::Hidden, cl::init(66), 127 cl::desc("Set the case probability threshold for peeling the case from a " 128 "switch statement. A value greater than 100 will void this " 129 "optimization")); 130 131 // Limit the width of DAG chains. This is important in general to prevent 132 // DAG-based analysis from blowing up. For example, alias analysis and 133 // load clustering may not complete in reasonable time. It is difficult to 134 // recognize and avoid this situation within each individual analysis, and 135 // future analyses are likely to have the same behavior. Limiting DAG width is 136 // the safe approach and will be especially important with global DAGs. 137 // 138 // MaxParallelChains default is arbitrarily high to avoid affecting 139 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 140 // sequence over this should have been converted to llvm.memcpy by the 141 // frontend. It is easy to induce this behavior with .ll code such as: 142 // %buffer = alloca [4096 x i8] 143 // %data = load [4096 x i8]* %argPtr 144 // store [4096 x i8] %data, [4096 x i8]* %buffer 145 static const unsigned MaxParallelChains = 64; 146 147 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 148 const SDValue *Parts, unsigned NumParts, 149 MVT PartVT, EVT ValueVT, const Value *V, 150 Optional<CallingConv::ID> CC); 151 152 /// getCopyFromParts - Create a value that contains the specified legal parts 153 /// combined into the value they represent. If the parts combine to a type 154 /// larger than ValueVT then AssertOp can be used to specify whether the extra 155 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 156 /// (ISD::AssertSext). 157 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 158 const SDValue *Parts, unsigned NumParts, 159 MVT PartVT, EVT ValueVT, const Value *V, 160 Optional<CallingConv::ID> CC = None, 161 Optional<ISD::NodeType> AssertOp = None) { 162 // Let the target assemble the parts if it wants to 163 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 164 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 165 PartVT, ValueVT, CC)) 166 return Val; 167 168 if (ValueVT.isVector()) 169 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 170 CC); 171 172 assert(NumParts > 0 && "No parts to assemble!"); 173 SDValue Val = Parts[0]; 174 175 if (NumParts > 1) { 176 // Assemble the value from multiple parts. 177 if (ValueVT.isInteger()) { 178 unsigned PartBits = PartVT.getSizeInBits(); 179 unsigned ValueBits = ValueVT.getSizeInBits(); 180 181 // Assemble the power of 2 part. 182 unsigned RoundParts = 183 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 184 unsigned RoundBits = PartBits * RoundParts; 185 EVT RoundVT = RoundBits == ValueBits ? 186 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 187 SDValue Lo, Hi; 188 189 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 190 191 if (RoundParts > 2) { 192 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 193 PartVT, HalfVT, V); 194 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 195 RoundParts / 2, PartVT, HalfVT, V); 196 } else { 197 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 198 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 199 } 200 201 if (DAG.getDataLayout().isBigEndian()) 202 std::swap(Lo, Hi); 203 204 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 205 206 if (RoundParts < NumParts) { 207 // Assemble the trailing non-power-of-2 part. 208 unsigned OddParts = NumParts - RoundParts; 209 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 210 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 211 OddVT, V, CC); 212 213 // Combine the round and odd parts. 214 Lo = Val; 215 if (DAG.getDataLayout().isBigEndian()) 216 std::swap(Lo, Hi); 217 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 218 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 219 Hi = 220 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 221 DAG.getConstant(Lo.getValueSizeInBits(), DL, 222 TLI.getPointerTy(DAG.getDataLayout()))); 223 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 224 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 225 } 226 } else if (PartVT.isFloatingPoint()) { 227 // FP split into multiple FP parts (for ppcf128) 228 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 229 "Unexpected split"); 230 SDValue Lo, Hi; 231 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 232 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 233 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 234 std::swap(Lo, Hi); 235 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 236 } else { 237 // FP split into integer parts (soft fp) 238 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 239 !PartVT.isVector() && "Unexpected split"); 240 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 241 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 242 } 243 } 244 245 // There is now one part, held in Val. Correct it to match ValueVT. 246 // PartEVT is the type of the register class that holds the value. 247 // ValueVT is the type of the inline asm operation. 248 EVT PartEVT = Val.getValueType(); 249 250 if (PartEVT == ValueVT) 251 return Val; 252 253 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 254 ValueVT.bitsLT(PartEVT)) { 255 // For an FP value in an integer part, we need to truncate to the right 256 // width first. 257 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 258 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 259 } 260 261 // Handle types that have the same size. 262 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 263 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 264 265 // Handle types with different sizes. 266 if (PartEVT.isInteger() && ValueVT.isInteger()) { 267 if (ValueVT.bitsLT(PartEVT)) { 268 // For a truncate, see if we have any information to 269 // indicate whether the truncated bits will always be 270 // zero or sign-extension. 271 if (AssertOp.hasValue()) 272 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 273 DAG.getValueType(ValueVT)); 274 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 275 } 276 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 277 } 278 279 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 280 // FP_ROUND's are always exact here. 281 if (ValueVT.bitsLT(Val.getValueType())) 282 return DAG.getNode( 283 ISD::FP_ROUND, DL, ValueVT, Val, 284 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 285 286 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 287 } 288 289 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 290 // then truncating. 291 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 292 ValueVT.bitsLT(PartEVT)) { 293 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 294 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 295 } 296 297 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 298 } 299 300 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 301 const Twine &ErrMsg) { 302 const Instruction *I = dyn_cast_or_null<Instruction>(V); 303 if (!V) 304 return Ctx.emitError(ErrMsg); 305 306 const char *AsmError = ", possible invalid constraint for vector type"; 307 if (const CallInst *CI = dyn_cast<CallInst>(I)) 308 if (CI->isInlineAsm()) 309 return Ctx.emitError(I, ErrMsg + AsmError); 310 311 return Ctx.emitError(I, ErrMsg); 312 } 313 314 /// getCopyFromPartsVector - Create a value that contains the specified legal 315 /// parts combined into the value they represent. If the parts combine to a 316 /// type larger than ValueVT then AssertOp can be used to specify whether the 317 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 318 /// ValueVT (ISD::AssertSext). 319 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 320 const SDValue *Parts, unsigned NumParts, 321 MVT PartVT, EVT ValueVT, const Value *V, 322 Optional<CallingConv::ID> CallConv) { 323 assert(ValueVT.isVector() && "Not a vector value"); 324 assert(NumParts > 0 && "No parts to assemble!"); 325 const bool IsABIRegCopy = CallConv.hasValue(); 326 327 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 328 SDValue Val = Parts[0]; 329 330 // Handle a multi-element vector. 331 if (NumParts > 1) { 332 EVT IntermediateVT; 333 MVT RegisterVT; 334 unsigned NumIntermediates; 335 unsigned NumRegs; 336 337 if (IsABIRegCopy) { 338 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 339 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 340 NumIntermediates, RegisterVT); 341 } else { 342 NumRegs = 343 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 344 NumIntermediates, RegisterVT); 345 } 346 347 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 348 NumParts = NumRegs; // Silence a compiler warning. 349 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 350 assert(RegisterVT.getSizeInBits() == 351 Parts[0].getSimpleValueType().getSizeInBits() && 352 "Part type sizes don't match!"); 353 354 // Assemble the parts into intermediate operands. 355 SmallVector<SDValue, 8> Ops(NumIntermediates); 356 if (NumIntermediates == NumParts) { 357 // If the register was not expanded, truncate or copy the value, 358 // as appropriate. 359 for (unsigned i = 0; i != NumParts; ++i) 360 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 361 PartVT, IntermediateVT, V, CallConv); 362 } else if (NumParts > 0) { 363 // If the intermediate type was expanded, build the intermediate 364 // operands from the parts. 365 assert(NumParts % NumIntermediates == 0 && 366 "Must expand into a divisible number of parts!"); 367 unsigned Factor = NumParts / NumIntermediates; 368 for (unsigned i = 0; i != NumIntermediates; ++i) 369 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 370 PartVT, IntermediateVT, V, CallConv); 371 } 372 373 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 374 // intermediate operands. 375 EVT BuiltVectorTy = 376 IntermediateVT.isVector() 377 ? EVT::getVectorVT( 378 *DAG.getContext(), IntermediateVT.getScalarType(), 379 IntermediateVT.getVectorElementCount() * NumParts) 380 : EVT::getVectorVT(*DAG.getContext(), 381 IntermediateVT.getScalarType(), 382 NumIntermediates); 383 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 384 : ISD::BUILD_VECTOR, 385 DL, BuiltVectorTy, Ops); 386 } 387 388 // There is now one part, held in Val. Correct it to match ValueVT. 389 EVT PartEVT = Val.getValueType(); 390 391 if (PartEVT == ValueVT) 392 return Val; 393 394 if (PartEVT.isVector()) { 395 // Vector/Vector bitcast. 396 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 397 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 398 399 // If the element type of the source/dest vectors are the same, but the 400 // parts vector has more elements than the value vector, then we have a 401 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 402 // elements we want. 403 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) { 404 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 405 ValueVT.getVectorElementCount().getKnownMinValue()) && 406 (PartEVT.getVectorElementCount().isScalable() == 407 ValueVT.getVectorElementCount().isScalable()) && 408 "Cannot narrow, it would be a lossy transformation"); 409 PartEVT = 410 EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(), 411 ValueVT.getVectorElementCount()); 412 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val, 413 DAG.getVectorIdxConstant(0, DL)); 414 if (PartEVT == ValueVT) 415 return Val; 416 } 417 418 // Promoted vector extract 419 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 420 } 421 422 // Trivial bitcast if the types are the same size and the destination 423 // vector type is legal. 424 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 425 TLI.isTypeLegal(ValueVT)) 426 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 427 428 if (ValueVT.getVectorNumElements() != 1) { 429 // Certain ABIs require that vectors are passed as integers. For vectors 430 // are the same size, this is an obvious bitcast. 431 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 432 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 433 } else if (ValueVT.bitsLT(PartEVT)) { 434 const uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 435 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 436 // Drop the extra bits. 437 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 438 return DAG.getBitcast(ValueVT, Val); 439 } 440 441 diagnosePossiblyInvalidConstraint( 442 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 443 return DAG.getUNDEF(ValueVT); 444 } 445 446 // Handle cases such as i8 -> <1 x i1> 447 EVT ValueSVT = ValueVT.getVectorElementType(); 448 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 449 if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits()) 450 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 451 else 452 Val = ValueVT.isFloatingPoint() 453 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 454 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 455 } 456 457 return DAG.getBuildVector(ValueVT, DL, Val); 458 } 459 460 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 461 SDValue Val, SDValue *Parts, unsigned NumParts, 462 MVT PartVT, const Value *V, 463 Optional<CallingConv::ID> CallConv); 464 465 /// getCopyToParts - Create a series of nodes that contain the specified value 466 /// split into legal parts. If the parts contain more bits than Val, then, for 467 /// integers, ExtendKind can be used to specify how to generate the extra bits. 468 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 469 SDValue *Parts, unsigned NumParts, MVT PartVT, 470 const Value *V, 471 Optional<CallingConv::ID> CallConv = None, 472 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 473 // Let the target split the parts if it wants to 474 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 475 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 476 CallConv)) 477 return; 478 EVT ValueVT = Val.getValueType(); 479 480 // Handle the vector case separately. 481 if (ValueVT.isVector()) 482 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 483 CallConv); 484 485 unsigned PartBits = PartVT.getSizeInBits(); 486 unsigned OrigNumParts = NumParts; 487 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 488 "Copying to an illegal type!"); 489 490 if (NumParts == 0) 491 return; 492 493 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 494 EVT PartEVT = PartVT; 495 if (PartEVT == ValueVT) { 496 assert(NumParts == 1 && "No-op copy with multiple parts!"); 497 Parts[0] = Val; 498 return; 499 } 500 501 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 502 // If the parts cover more bits than the value has, promote the value. 503 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 504 assert(NumParts == 1 && "Do not know what to promote to!"); 505 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 506 } else { 507 if (ValueVT.isFloatingPoint()) { 508 // FP values need to be bitcast, then extended if they are being put 509 // into a larger container. 510 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 511 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 512 } 513 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 514 ValueVT.isInteger() && 515 "Unknown mismatch!"); 516 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 517 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 518 if (PartVT == MVT::x86mmx) 519 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 520 } 521 } else if (PartBits == ValueVT.getSizeInBits()) { 522 // Different types of the same size. 523 assert(NumParts == 1 && PartEVT != ValueVT); 524 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 525 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 526 // If the parts cover less bits than value has, truncate the value. 527 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 528 ValueVT.isInteger() && 529 "Unknown mismatch!"); 530 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 531 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 532 if (PartVT == MVT::x86mmx) 533 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 534 } 535 536 // The value may have changed - recompute ValueVT. 537 ValueVT = Val.getValueType(); 538 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 539 "Failed to tile the value with PartVT!"); 540 541 if (NumParts == 1) { 542 if (PartEVT != ValueVT) { 543 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 544 "scalar-to-vector conversion failed"); 545 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 546 } 547 548 Parts[0] = Val; 549 return; 550 } 551 552 // Expand the value into multiple parts. 553 if (NumParts & (NumParts - 1)) { 554 // The number of parts is not a power of 2. Split off and copy the tail. 555 assert(PartVT.isInteger() && ValueVT.isInteger() && 556 "Do not know what to expand to!"); 557 unsigned RoundParts = 1 << Log2_32(NumParts); 558 unsigned RoundBits = RoundParts * PartBits; 559 unsigned OddParts = NumParts - RoundParts; 560 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 561 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL)); 562 563 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 564 CallConv); 565 566 if (DAG.getDataLayout().isBigEndian()) 567 // The odd parts were reversed by getCopyToParts - unreverse them. 568 std::reverse(Parts + RoundParts, Parts + NumParts); 569 570 NumParts = RoundParts; 571 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 572 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 573 } 574 575 // The number of parts is a power of 2. Repeatedly bisect the value using 576 // EXTRACT_ELEMENT. 577 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 578 EVT::getIntegerVT(*DAG.getContext(), 579 ValueVT.getSizeInBits()), 580 Val); 581 582 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 583 for (unsigned i = 0; i < NumParts; i += StepSize) { 584 unsigned ThisBits = StepSize * PartBits / 2; 585 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 586 SDValue &Part0 = Parts[i]; 587 SDValue &Part1 = Parts[i+StepSize/2]; 588 589 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 590 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 591 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 592 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 593 594 if (ThisBits == PartBits && ThisVT != PartVT) { 595 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 596 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 597 } 598 } 599 } 600 601 if (DAG.getDataLayout().isBigEndian()) 602 std::reverse(Parts, Parts + OrigNumParts); 603 } 604 605 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, 606 const SDLoc &DL, EVT PartVT) { 607 if (!PartVT.isVector()) 608 return SDValue(); 609 610 EVT ValueVT = Val.getValueType(); 611 ElementCount PartNumElts = PartVT.getVectorElementCount(); 612 ElementCount ValueNumElts = ValueVT.getVectorElementCount(); 613 614 // We only support widening vectors with equivalent element types and 615 // fixed/scalable properties. If a target needs to widen a fixed-length type 616 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below. 617 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) || 618 PartNumElts.isScalable() != ValueNumElts.isScalable() || 619 PartVT.getVectorElementType() != ValueVT.getVectorElementType()) 620 return SDValue(); 621 622 // Widening a scalable vector to another scalable vector is done by inserting 623 // the vector into a larger undef one. 624 if (PartNumElts.isScalable()) 625 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 626 Val, DAG.getVectorIdxConstant(0, DL)); 627 628 EVT ElementVT = PartVT.getVectorElementType(); 629 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 630 // undef elements. 631 SmallVector<SDValue, 16> Ops; 632 DAG.ExtractVectorElements(Val, Ops); 633 SDValue EltUndef = DAG.getUNDEF(ElementVT); 634 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef); 635 636 // FIXME: Use CONCAT for 2x -> 4x. 637 return DAG.getBuildVector(PartVT, DL, Ops); 638 } 639 640 /// getCopyToPartsVector - Create a series of nodes that contain the specified 641 /// value split into legal parts. 642 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 643 SDValue Val, SDValue *Parts, unsigned NumParts, 644 MVT PartVT, const Value *V, 645 Optional<CallingConv::ID> CallConv) { 646 EVT ValueVT = Val.getValueType(); 647 assert(ValueVT.isVector() && "Not a vector"); 648 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 649 const bool IsABIRegCopy = CallConv.hasValue(); 650 651 if (NumParts == 1) { 652 EVT PartEVT = PartVT; 653 if (PartEVT == ValueVT) { 654 // Nothing to do. 655 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 656 // Bitconvert vector->vector case. 657 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 658 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 659 Val = Widened; 660 } else if (PartVT.isVector() && 661 PartEVT.getVectorElementType().bitsGE( 662 ValueVT.getVectorElementType()) && 663 PartEVT.getVectorElementCount() == 664 ValueVT.getVectorElementCount()) { 665 666 // Promoted vector extract 667 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 668 } else if (PartEVT.isVector() && 669 PartEVT.getVectorElementType() != 670 ValueVT.getVectorElementType() && 671 TLI.getTypeAction(*DAG.getContext(), ValueVT) == 672 TargetLowering::TypeWidenVector) { 673 // Combination of widening and promotion. 674 EVT WidenVT = 675 EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(), 676 PartVT.getVectorElementCount()); 677 SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT); 678 Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT); 679 } else { 680 if (ValueVT.getVectorElementCount().isScalar()) { 681 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 682 DAG.getVectorIdxConstant(0, DL)); 683 } else { 684 uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 685 assert(PartVT.getFixedSizeInBits() > ValueSize && 686 "lossy conversion of vector to scalar type"); 687 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 688 Val = DAG.getBitcast(IntermediateType, Val); 689 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 690 } 691 } 692 693 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 694 Parts[0] = Val; 695 return; 696 } 697 698 // Handle a multi-element vector. 699 EVT IntermediateVT; 700 MVT RegisterVT; 701 unsigned NumIntermediates; 702 unsigned NumRegs; 703 if (IsABIRegCopy) { 704 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 705 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 706 NumIntermediates, RegisterVT); 707 } else { 708 NumRegs = 709 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 710 NumIntermediates, RegisterVT); 711 } 712 713 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 714 NumParts = NumRegs; // Silence a compiler warning. 715 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 716 717 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 718 "Mixing scalable and fixed vectors when copying in parts"); 719 720 Optional<ElementCount> DestEltCnt; 721 722 if (IntermediateVT.isVector()) 723 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 724 else 725 DestEltCnt = ElementCount::getFixed(NumIntermediates); 726 727 EVT BuiltVectorTy = EVT::getVectorVT( 728 *DAG.getContext(), IntermediateVT.getScalarType(), DestEltCnt.getValue()); 729 730 if (ValueVT == BuiltVectorTy) { 731 // Nothing to do. 732 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) { 733 // Bitconvert vector->vector case. 734 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 735 } else { 736 if (BuiltVectorTy.getVectorElementType().bitsGT( 737 ValueVT.getVectorElementType())) { 738 // Integer promotion. 739 ValueVT = EVT::getVectorVT(*DAG.getContext(), 740 BuiltVectorTy.getVectorElementType(), 741 ValueVT.getVectorElementCount()); 742 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 743 } 744 745 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) { 746 Val = Widened; 747 } 748 } 749 750 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type"); 751 752 // Split the vector into intermediate operands. 753 SmallVector<SDValue, 8> Ops(NumIntermediates); 754 for (unsigned i = 0; i != NumIntermediates; ++i) { 755 if (IntermediateVT.isVector()) { 756 // This does something sensible for scalable vectors - see the 757 // definition of EXTRACT_SUBVECTOR for further details. 758 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 759 Ops[i] = 760 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 761 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 762 } else { 763 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 764 DAG.getVectorIdxConstant(i, DL)); 765 } 766 } 767 768 // Split the intermediate operands into legal parts. 769 if (NumParts == NumIntermediates) { 770 // If the register was not expanded, promote or copy the value, 771 // as appropriate. 772 for (unsigned i = 0; i != NumParts; ++i) 773 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 774 } else if (NumParts > 0) { 775 // If the intermediate type was expanded, split each the value into 776 // legal parts. 777 assert(NumIntermediates != 0 && "division by zero"); 778 assert(NumParts % NumIntermediates == 0 && 779 "Must expand into a divisible number of parts!"); 780 unsigned Factor = NumParts / NumIntermediates; 781 for (unsigned i = 0; i != NumIntermediates; ++i) 782 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 783 CallConv); 784 } 785 } 786 787 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 788 EVT valuevt, Optional<CallingConv::ID> CC) 789 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 790 RegCount(1, regs.size()), CallConv(CC) {} 791 792 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 793 const DataLayout &DL, unsigned Reg, Type *Ty, 794 Optional<CallingConv::ID> CC) { 795 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 796 797 CallConv = CC; 798 799 for (EVT ValueVT : ValueVTs) { 800 unsigned NumRegs = 801 isABIMangled() 802 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 803 : TLI.getNumRegisters(Context, ValueVT); 804 MVT RegisterVT = 805 isABIMangled() 806 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 807 : TLI.getRegisterType(Context, ValueVT); 808 for (unsigned i = 0; i != NumRegs; ++i) 809 Regs.push_back(Reg + i); 810 RegVTs.push_back(RegisterVT); 811 RegCount.push_back(NumRegs); 812 Reg += NumRegs; 813 } 814 } 815 816 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 817 FunctionLoweringInfo &FuncInfo, 818 const SDLoc &dl, SDValue &Chain, 819 SDValue *Flag, const Value *V) const { 820 // A Value with type {} or [0 x %t] needs no registers. 821 if (ValueVTs.empty()) 822 return SDValue(); 823 824 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 825 826 // Assemble the legal parts into the final values. 827 SmallVector<SDValue, 4> Values(ValueVTs.size()); 828 SmallVector<SDValue, 8> Parts; 829 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 830 // Copy the legal parts from the registers. 831 EVT ValueVT = ValueVTs[Value]; 832 unsigned NumRegs = RegCount[Value]; 833 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 834 *DAG.getContext(), 835 CallConv.getValue(), RegVTs[Value]) 836 : RegVTs[Value]; 837 838 Parts.resize(NumRegs); 839 for (unsigned i = 0; i != NumRegs; ++i) { 840 SDValue P; 841 if (!Flag) { 842 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 843 } else { 844 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 845 *Flag = P.getValue(2); 846 } 847 848 Chain = P.getValue(1); 849 Parts[i] = P; 850 851 // If the source register was virtual and if we know something about it, 852 // add an assert node. 853 if (!Register::isVirtualRegister(Regs[Part + i]) || 854 !RegisterVT.isInteger()) 855 continue; 856 857 const FunctionLoweringInfo::LiveOutInfo *LOI = 858 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 859 if (!LOI) 860 continue; 861 862 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 863 unsigned NumSignBits = LOI->NumSignBits; 864 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 865 866 if (NumZeroBits == RegSize) { 867 // The current value is a zero. 868 // Explicitly express that as it would be easier for 869 // optimizations to kick in. 870 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 871 continue; 872 } 873 874 // FIXME: We capture more information than the dag can represent. For 875 // now, just use the tightest assertzext/assertsext possible. 876 bool isSExt; 877 EVT FromVT(MVT::Other); 878 if (NumZeroBits) { 879 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 880 isSExt = false; 881 } else if (NumSignBits > 1) { 882 FromVT = 883 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 884 isSExt = true; 885 } else { 886 continue; 887 } 888 // Add an assertion node. 889 assert(FromVT != MVT::Other); 890 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 891 RegisterVT, P, DAG.getValueType(FromVT)); 892 } 893 894 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 895 RegisterVT, ValueVT, V, CallConv); 896 Part += NumRegs; 897 Parts.clear(); 898 } 899 900 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 901 } 902 903 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 904 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 905 const Value *V, 906 ISD::NodeType PreferredExtendType) const { 907 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 908 ISD::NodeType ExtendKind = PreferredExtendType; 909 910 // Get the list of the values's legal parts. 911 unsigned NumRegs = Regs.size(); 912 SmallVector<SDValue, 8> Parts(NumRegs); 913 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 914 unsigned NumParts = RegCount[Value]; 915 916 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 917 *DAG.getContext(), 918 CallConv.getValue(), RegVTs[Value]) 919 : RegVTs[Value]; 920 921 // We need to zero extend constants that are liveout to match assumptions 922 // in FunctionLoweringInfo::ComputePHILiveOutRegInfo. 923 if (ExtendKind == ISD::ANY_EXTEND && 924 (TLI.isZExtFree(Val, RegisterVT) || isa<ConstantSDNode>(Val))) 925 ExtendKind = ISD::ZERO_EXTEND; 926 927 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 928 NumParts, RegisterVT, V, CallConv, ExtendKind); 929 Part += NumParts; 930 } 931 932 // Copy the parts into the registers. 933 SmallVector<SDValue, 8> Chains(NumRegs); 934 for (unsigned i = 0; i != NumRegs; ++i) { 935 SDValue Part; 936 if (!Flag) { 937 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 938 } else { 939 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 940 *Flag = Part.getValue(1); 941 } 942 943 Chains[i] = Part.getValue(0); 944 } 945 946 if (NumRegs == 1 || Flag) 947 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 948 // flagged to it. That is the CopyToReg nodes and the user are considered 949 // a single scheduling unit. If we create a TokenFactor and return it as 950 // chain, then the TokenFactor is both a predecessor (operand) of the 951 // user as well as a successor (the TF operands are flagged to the user). 952 // c1, f1 = CopyToReg 953 // c2, f2 = CopyToReg 954 // c3 = TokenFactor c1, c2 955 // ... 956 // = op c3, ..., f2 957 Chain = Chains[NumRegs-1]; 958 else 959 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 960 } 961 962 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 963 unsigned MatchingIdx, const SDLoc &dl, 964 SelectionDAG &DAG, 965 std::vector<SDValue> &Ops) const { 966 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 967 968 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 969 if (HasMatching) 970 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 971 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 972 // Put the register class of the virtual registers in the flag word. That 973 // way, later passes can recompute register class constraints for inline 974 // assembly as well as normal instructions. 975 // Don't do this for tied operands that can use the regclass information 976 // from the def. 977 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 978 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 979 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 980 } 981 982 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 983 Ops.push_back(Res); 984 985 if (Code == InlineAsm::Kind_Clobber) { 986 // Clobbers should always have a 1:1 mapping with registers, and may 987 // reference registers that have illegal (e.g. vector) types. Hence, we 988 // shouldn't try to apply any sort of splitting logic to them. 989 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 990 "No 1:1 mapping from clobbers to regs?"); 991 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 992 (void)SP; 993 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 994 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 995 assert( 996 (Regs[I] != SP || 997 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 998 "If we clobbered the stack pointer, MFI should know about it."); 999 } 1000 return; 1001 } 1002 1003 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 1004 MVT RegisterVT = RegVTs[Value]; 1005 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value], 1006 RegisterVT); 1007 for (unsigned i = 0; i != NumRegs; ++i) { 1008 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 1009 unsigned TheReg = Regs[Reg++]; 1010 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 1011 } 1012 } 1013 } 1014 1015 SmallVector<std::pair<unsigned, TypeSize>, 4> 1016 RegsForValue::getRegsAndSizes() const { 1017 SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec; 1018 unsigned I = 0; 1019 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1020 unsigned RegCount = std::get<0>(CountAndVT); 1021 MVT RegisterVT = std::get<1>(CountAndVT); 1022 TypeSize RegisterSize = RegisterVT.getSizeInBits(); 1023 for (unsigned E = I + RegCount; I != E; ++I) 1024 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1025 } 1026 return OutVec; 1027 } 1028 1029 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1030 const TargetLibraryInfo *li) { 1031 AA = aa; 1032 GFI = gfi; 1033 LibInfo = li; 1034 Context = DAG.getContext(); 1035 LPadToCallSiteMap.clear(); 1036 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1037 } 1038 1039 void SelectionDAGBuilder::clear() { 1040 NodeMap.clear(); 1041 UnusedArgNodeMap.clear(); 1042 PendingLoads.clear(); 1043 PendingExports.clear(); 1044 PendingConstrainedFP.clear(); 1045 PendingConstrainedFPStrict.clear(); 1046 CurInst = nullptr; 1047 HasTailCall = false; 1048 SDNodeOrder = LowestSDNodeOrder; 1049 StatepointLowering.clear(); 1050 } 1051 1052 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1053 DanglingDebugInfoMap.clear(); 1054 } 1055 1056 // Update DAG root to include dependencies on Pending chains. 1057 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1058 SDValue Root = DAG.getRoot(); 1059 1060 if (Pending.empty()) 1061 return Root; 1062 1063 // Add current root to PendingChains, unless we already indirectly 1064 // depend on it. 1065 if (Root.getOpcode() != ISD::EntryToken) { 1066 unsigned i = 0, e = Pending.size(); 1067 for (; i != e; ++i) { 1068 assert(Pending[i].getNode()->getNumOperands() > 1); 1069 if (Pending[i].getNode()->getOperand(0) == Root) 1070 break; // Don't add the root if we already indirectly depend on it. 1071 } 1072 1073 if (i == e) 1074 Pending.push_back(Root); 1075 } 1076 1077 if (Pending.size() == 1) 1078 Root = Pending[0]; 1079 else 1080 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1081 1082 DAG.setRoot(Root); 1083 Pending.clear(); 1084 return Root; 1085 } 1086 1087 SDValue SelectionDAGBuilder::getMemoryRoot() { 1088 return updateRoot(PendingLoads); 1089 } 1090 1091 SDValue SelectionDAGBuilder::getRoot() { 1092 // Chain up all pending constrained intrinsics together with all 1093 // pending loads, by simply appending them to PendingLoads and 1094 // then calling getMemoryRoot(). 1095 PendingLoads.reserve(PendingLoads.size() + 1096 PendingConstrainedFP.size() + 1097 PendingConstrainedFPStrict.size()); 1098 PendingLoads.append(PendingConstrainedFP.begin(), 1099 PendingConstrainedFP.end()); 1100 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1101 PendingConstrainedFPStrict.end()); 1102 PendingConstrainedFP.clear(); 1103 PendingConstrainedFPStrict.clear(); 1104 return getMemoryRoot(); 1105 } 1106 1107 SDValue SelectionDAGBuilder::getControlRoot() { 1108 // We need to emit pending fpexcept.strict constrained intrinsics, 1109 // so append them to the PendingExports list. 1110 PendingExports.append(PendingConstrainedFPStrict.begin(), 1111 PendingConstrainedFPStrict.end()); 1112 PendingConstrainedFPStrict.clear(); 1113 return updateRoot(PendingExports); 1114 } 1115 1116 void SelectionDAGBuilder::visit(const Instruction &I) { 1117 // Set up outgoing PHI node register values before emitting the terminator. 1118 if (I.isTerminator()) { 1119 HandlePHINodesInSuccessorBlocks(I.getParent()); 1120 } 1121 1122 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1123 if (!isa<DbgInfoIntrinsic>(I)) 1124 ++SDNodeOrder; 1125 1126 CurInst = &I; 1127 1128 visit(I.getOpcode(), I); 1129 1130 if (!I.isTerminator() && !HasTailCall && 1131 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1132 CopyToExportRegsIfNeeded(&I); 1133 1134 CurInst = nullptr; 1135 } 1136 1137 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1138 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1139 } 1140 1141 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1142 // Note: this doesn't use InstVisitor, because it has to work with 1143 // ConstantExpr's in addition to instructions. 1144 switch (Opcode) { 1145 default: llvm_unreachable("Unknown instruction type encountered!"); 1146 // Build the switch statement using the Instruction.def file. 1147 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1148 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1149 #include "llvm/IR/Instruction.def" 1150 } 1151 } 1152 1153 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI, 1154 DebugLoc DL, unsigned Order) { 1155 // We treat variadic dbg_values differently at this stage. 1156 if (DI->hasArgList()) { 1157 // For variadic dbg_values we will now insert an undef. 1158 // FIXME: We can potentially recover these! 1159 SmallVector<SDDbgOperand, 2> Locs; 1160 for (const Value *V : DI->getValues()) { 1161 auto Undef = UndefValue::get(V->getType()); 1162 Locs.push_back(SDDbgOperand::fromConst(Undef)); 1163 } 1164 SDDbgValue *SDV = DAG.getDbgValueList( 1165 DI->getVariable(), DI->getExpression(), Locs, {}, 1166 /*IsIndirect=*/false, DL, Order, /*IsVariadic=*/true); 1167 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1168 } else { 1169 // TODO: Dangling debug info will eventually either be resolved or produce 1170 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 1171 // between the original dbg.value location and its resolved DBG_VALUE, 1172 // which we should ideally fill with an extra Undef DBG_VALUE. 1173 assert(DI->getNumVariableLocationOps() == 1 && 1174 "DbgValueInst without an ArgList should have a single location " 1175 "operand."); 1176 DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, DL, Order); 1177 } 1178 } 1179 1180 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1181 const DIExpression *Expr) { 1182 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1183 const DbgValueInst *DI = DDI.getDI(); 1184 DIVariable *DanglingVariable = DI->getVariable(); 1185 DIExpression *DanglingExpr = DI->getExpression(); 1186 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1187 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1188 return true; 1189 } 1190 return false; 1191 }; 1192 1193 for (auto &DDIMI : DanglingDebugInfoMap) { 1194 DanglingDebugInfoVector &DDIV = DDIMI.second; 1195 1196 // If debug info is to be dropped, run it through final checks to see 1197 // whether it can be salvaged. 1198 for (auto &DDI : DDIV) 1199 if (isMatchingDbgValue(DDI)) 1200 salvageUnresolvedDbgValue(DDI); 1201 1202 erase_if(DDIV, isMatchingDbgValue); 1203 } 1204 } 1205 1206 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1207 // generate the debug data structures now that we've seen its definition. 1208 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1209 SDValue Val) { 1210 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1211 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1212 return; 1213 1214 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1215 for (auto &DDI : DDIV) { 1216 const DbgValueInst *DI = DDI.getDI(); 1217 assert(!DI->hasArgList() && "Not implemented for variadic dbg_values"); 1218 assert(DI && "Ill-formed DanglingDebugInfo"); 1219 DebugLoc dl = DDI.getdl(); 1220 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1221 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1222 DILocalVariable *Variable = DI->getVariable(); 1223 DIExpression *Expr = DI->getExpression(); 1224 assert(Variable->isValidLocationForIntrinsic(dl) && 1225 "Expected inlined-at fields to agree"); 1226 SDDbgValue *SDV; 1227 if (Val.getNode()) { 1228 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1229 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1230 // we couldn't resolve it directly when examining the DbgValue intrinsic 1231 // in the first place we should not be more successful here). Unless we 1232 // have some test case that prove this to be correct we should avoid 1233 // calling EmitFuncArgumentDbgValue here. 1234 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1235 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1236 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1237 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1238 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1239 // inserted after the definition of Val when emitting the instructions 1240 // after ISel. An alternative could be to teach 1241 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1242 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1243 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1244 << ValSDNodeOrder << "\n"); 1245 SDV = getDbgValue(Val, Variable, Expr, dl, 1246 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1247 DAG.AddDbgValue(SDV, false); 1248 } else 1249 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1250 << "in EmitFuncArgumentDbgValue\n"); 1251 } else { 1252 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1253 auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType()); 1254 auto SDV = 1255 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1256 DAG.AddDbgValue(SDV, false); 1257 } 1258 } 1259 DDIV.clear(); 1260 } 1261 1262 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1263 // TODO: For the variadic implementation, instead of only checking the fail 1264 // state of `handleDebugValue`, we need know specifically which values were 1265 // invalid, so that we attempt to salvage only those values when processing 1266 // a DIArgList. 1267 assert(!DDI.getDI()->hasArgList() && 1268 "Not implemented for variadic dbg_values"); 1269 Value *V = DDI.getDI()->getValue(0); 1270 DILocalVariable *Var = DDI.getDI()->getVariable(); 1271 DIExpression *Expr = DDI.getDI()->getExpression(); 1272 DebugLoc DL = DDI.getdl(); 1273 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1274 unsigned SDOrder = DDI.getSDNodeOrder(); 1275 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1276 // that DW_OP_stack_value is desired. 1277 assert(isa<DbgValueInst>(DDI.getDI())); 1278 bool StackValue = true; 1279 1280 // Can this Value can be encoded without any further work? 1281 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, /*IsVariadic=*/false)) 1282 return; 1283 1284 // Attempt to salvage back through as many instructions as possible. Bail if 1285 // a non-instruction is seen, such as a constant expression or global 1286 // variable. FIXME: Further work could recover those too. 1287 while (isa<Instruction>(V)) { 1288 Instruction &VAsInst = *cast<Instruction>(V); 1289 // Temporary "0", awaiting real implementation. 1290 SmallVector<uint64_t, 16> Ops; 1291 SmallVector<Value *, 4> AdditionalValues; 1292 V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops, 1293 AdditionalValues); 1294 // If we cannot salvage any further, and haven't yet found a suitable debug 1295 // expression, bail out. 1296 if (!V) 1297 break; 1298 1299 // TODO: If AdditionalValues isn't empty, then the salvage can only be 1300 // represented with a DBG_VALUE_LIST, so we give up. When we have support 1301 // here for variadic dbg_values, remove that condition. 1302 if (!AdditionalValues.empty()) 1303 break; 1304 1305 // New value and expr now represent this debuginfo. 1306 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue); 1307 1308 // Some kind of simplification occurred: check whether the operand of the 1309 // salvaged debug expression can be encoded in this DAG. 1310 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, 1311 /*IsVariadic=*/false)) { 1312 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1313 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1314 return; 1315 } 1316 } 1317 1318 // This was the final opportunity to salvage this debug information, and it 1319 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1320 // any earlier variable location. 1321 auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType()); 1322 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1323 DAG.AddDbgValue(SDV, false); 1324 1325 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1326 << "\n"); 1327 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1328 << "\n"); 1329 } 1330 1331 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values, 1332 DILocalVariable *Var, 1333 DIExpression *Expr, DebugLoc dl, 1334 DebugLoc InstDL, unsigned Order, 1335 bool IsVariadic) { 1336 if (Values.empty()) 1337 return true; 1338 SmallVector<SDDbgOperand> LocationOps; 1339 SmallVector<SDNode *> Dependencies; 1340 for (const Value *V : Values) { 1341 // Constant value. 1342 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1343 isa<ConstantPointerNull>(V)) { 1344 LocationOps.emplace_back(SDDbgOperand::fromConst(V)); 1345 continue; 1346 } 1347 1348 // If the Value is a frame index, we can create a FrameIndex debug value 1349 // without relying on the DAG at all. 1350 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1351 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1352 if (SI != FuncInfo.StaticAllocaMap.end()) { 1353 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second)); 1354 continue; 1355 } 1356 } 1357 1358 // Do not use getValue() in here; we don't want to generate code at 1359 // this point if it hasn't been done yet. 1360 SDValue N = NodeMap[V]; 1361 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1362 N = UnusedArgNodeMap[V]; 1363 if (N.getNode()) { 1364 // Only emit func arg dbg value for non-variadic dbg.values for now. 1365 if (!IsVariadic && EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) 1366 return true; 1367 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 1368 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can 1369 // describe stack slot locations. 1370 // 1371 // Consider "int x = 0; int *px = &x;". There are two kinds of 1372 // interesting debug values here after optimization: 1373 // 1374 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 1375 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 1376 // 1377 // Both describe the direct values of their associated variables. 1378 Dependencies.push_back(N.getNode()); 1379 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex())); 1380 continue; 1381 } 1382 LocationOps.emplace_back( 1383 SDDbgOperand::fromNode(N.getNode(), N.getResNo())); 1384 continue; 1385 } 1386 1387 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1388 // Special rules apply for the first dbg.values of parameter variables in a 1389 // function. Identify them by the fact they reference Argument Values, that 1390 // they're parameters, and they are parameters of the current function. We 1391 // need to let them dangle until they get an SDNode. 1392 bool IsParamOfFunc = 1393 isa<Argument>(V) && Var->isParameter() && !InstDL.getInlinedAt(); 1394 if (IsParamOfFunc) 1395 return false; 1396 1397 // The value is not used in this block yet (or it would have an SDNode). 1398 // We still want the value to appear for the user if possible -- if it has 1399 // an associated VReg, we can refer to that instead. 1400 auto VMI = FuncInfo.ValueMap.find(V); 1401 if (VMI != FuncInfo.ValueMap.end()) { 1402 unsigned Reg = VMI->second; 1403 // If this is a PHI node, it may be split up into several MI PHI nodes 1404 // (in FunctionLoweringInfo::set). 1405 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1406 V->getType(), None); 1407 if (RFV.occupiesMultipleRegs()) { 1408 // FIXME: We could potentially support variadic dbg_values here. 1409 if (IsVariadic) 1410 return false; 1411 unsigned Offset = 0; 1412 unsigned BitsToDescribe = 0; 1413 if (auto VarSize = Var->getSizeInBits()) 1414 BitsToDescribe = *VarSize; 1415 if (auto Fragment = Expr->getFragmentInfo()) 1416 BitsToDescribe = Fragment->SizeInBits; 1417 for (const auto &RegAndSize : RFV.getRegsAndSizes()) { 1418 // Bail out if all bits are described already. 1419 if (Offset >= BitsToDescribe) 1420 break; 1421 // TODO: handle scalable vectors. 1422 unsigned RegisterSize = RegAndSize.second; 1423 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1424 ? BitsToDescribe - Offset 1425 : RegisterSize; 1426 auto FragmentExpr = DIExpression::createFragmentExpression( 1427 Expr, Offset, FragmentSize); 1428 if (!FragmentExpr) 1429 continue; 1430 SDDbgValue *SDV = DAG.getVRegDbgValue( 1431 Var, *FragmentExpr, RegAndSize.first, false, dl, SDNodeOrder); 1432 DAG.AddDbgValue(SDV, false); 1433 Offset += RegisterSize; 1434 } 1435 return true; 1436 } 1437 // We can use simple vreg locations for variadic dbg_values as well. 1438 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg)); 1439 continue; 1440 } 1441 // We failed to create a SDDbgOperand for V. 1442 return false; 1443 } 1444 1445 // We have created a SDDbgOperand for each Value in Values. 1446 // Should use Order instead of SDNodeOrder? 1447 assert(!LocationOps.empty()); 1448 SDDbgValue *SDV = 1449 DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies, 1450 /*IsIndirect=*/false, dl, SDNodeOrder, IsVariadic); 1451 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1452 return true; 1453 } 1454 1455 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1456 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1457 for (auto &Pair : DanglingDebugInfoMap) 1458 for (auto &DDI : Pair.second) 1459 salvageUnresolvedDbgValue(DDI); 1460 clearDanglingDebugInfo(); 1461 } 1462 1463 /// getCopyFromRegs - If there was virtual register allocated for the value V 1464 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1465 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1466 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1467 SDValue Result; 1468 1469 if (It != FuncInfo.ValueMap.end()) { 1470 Register InReg = It->second; 1471 1472 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1473 DAG.getDataLayout(), InReg, Ty, 1474 None); // This is not an ABI copy. 1475 SDValue Chain = DAG.getEntryNode(); 1476 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1477 V); 1478 resolveDanglingDebugInfo(V, Result); 1479 } 1480 1481 return Result; 1482 } 1483 1484 /// getValue - Return an SDValue for the given Value. 1485 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1486 // If we already have an SDValue for this value, use it. It's important 1487 // to do this first, so that we don't create a CopyFromReg if we already 1488 // have a regular SDValue. 1489 SDValue &N = NodeMap[V]; 1490 if (N.getNode()) return N; 1491 1492 // If there's a virtual register allocated and initialized for this 1493 // value, use it. 1494 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1495 return copyFromReg; 1496 1497 // Otherwise create a new SDValue and remember it. 1498 SDValue Val = getValueImpl(V); 1499 NodeMap[V] = Val; 1500 resolveDanglingDebugInfo(V, Val); 1501 return Val; 1502 } 1503 1504 /// getNonRegisterValue - Return an SDValue for the given Value, but 1505 /// don't look in FuncInfo.ValueMap for a virtual register. 1506 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1507 // If we already have an SDValue for this value, use it. 1508 SDValue &N = NodeMap[V]; 1509 if (N.getNode()) { 1510 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1511 // Remove the debug location from the node as the node is about to be used 1512 // in a location which may differ from the original debug location. This 1513 // is relevant to Constant and ConstantFP nodes because they can appear 1514 // as constant expressions inside PHI nodes. 1515 N->setDebugLoc(DebugLoc()); 1516 } 1517 return N; 1518 } 1519 1520 // Otherwise create a new SDValue and remember it. 1521 SDValue Val = getValueImpl(V); 1522 NodeMap[V] = Val; 1523 resolveDanglingDebugInfo(V, Val); 1524 return Val; 1525 } 1526 1527 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1528 /// Create an SDValue for the given value. 1529 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1530 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1531 1532 if (const Constant *C = dyn_cast<Constant>(V)) { 1533 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1534 1535 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1536 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1537 1538 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1539 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1540 1541 if (isa<ConstantPointerNull>(C)) { 1542 unsigned AS = V->getType()->getPointerAddressSpace(); 1543 return DAG.getConstant(0, getCurSDLoc(), 1544 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1545 } 1546 1547 if (match(C, m_VScale(DAG.getDataLayout()))) 1548 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1549 1550 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1551 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1552 1553 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1554 return DAG.getUNDEF(VT); 1555 1556 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1557 visit(CE->getOpcode(), *CE); 1558 SDValue N1 = NodeMap[V]; 1559 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1560 return N1; 1561 } 1562 1563 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1564 SmallVector<SDValue, 4> Constants; 1565 for (const Use &U : C->operands()) { 1566 SDNode *Val = getValue(U).getNode(); 1567 // If the operand is an empty aggregate, there are no values. 1568 if (!Val) continue; 1569 // Add each leaf value from the operand to the Constants list 1570 // to form a flattened list of all the values. 1571 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1572 Constants.push_back(SDValue(Val, i)); 1573 } 1574 1575 return DAG.getMergeValues(Constants, getCurSDLoc()); 1576 } 1577 1578 if (const ConstantDataSequential *CDS = 1579 dyn_cast<ConstantDataSequential>(C)) { 1580 SmallVector<SDValue, 4> Ops; 1581 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1582 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1583 // Add each leaf value from the operand to the Constants list 1584 // to form a flattened list of all the values. 1585 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1586 Ops.push_back(SDValue(Val, i)); 1587 } 1588 1589 if (isa<ArrayType>(CDS->getType())) 1590 return DAG.getMergeValues(Ops, getCurSDLoc()); 1591 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1592 } 1593 1594 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1595 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1596 "Unknown struct or array constant!"); 1597 1598 SmallVector<EVT, 4> ValueVTs; 1599 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1600 unsigned NumElts = ValueVTs.size(); 1601 if (NumElts == 0) 1602 return SDValue(); // empty struct 1603 SmallVector<SDValue, 4> Constants(NumElts); 1604 for (unsigned i = 0; i != NumElts; ++i) { 1605 EVT EltVT = ValueVTs[i]; 1606 if (isa<UndefValue>(C)) 1607 Constants[i] = DAG.getUNDEF(EltVT); 1608 else if (EltVT.isFloatingPoint()) 1609 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1610 else 1611 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1612 } 1613 1614 return DAG.getMergeValues(Constants, getCurSDLoc()); 1615 } 1616 1617 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1618 return DAG.getBlockAddress(BA, VT); 1619 1620 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) 1621 return getValue(Equiv->getGlobalValue()); 1622 1623 if (const auto *NC = dyn_cast<NoCFIValue>(C)) 1624 return getValue(NC->getGlobalValue()); 1625 1626 VectorType *VecTy = cast<VectorType>(V->getType()); 1627 1628 // Now that we know the number and type of the elements, get that number of 1629 // elements into the Ops array based on what kind of constant it is. 1630 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1631 SmallVector<SDValue, 16> Ops; 1632 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1633 for (unsigned i = 0; i != NumElements; ++i) 1634 Ops.push_back(getValue(CV->getOperand(i))); 1635 1636 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1637 } 1638 1639 if (isa<ConstantAggregateZero>(C)) { 1640 EVT EltVT = 1641 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1642 1643 SDValue Op; 1644 if (EltVT.isFloatingPoint()) 1645 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1646 else 1647 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1648 1649 if (isa<ScalableVectorType>(VecTy)) 1650 return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op); 1651 1652 SmallVector<SDValue, 16> Ops; 1653 Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op); 1654 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1655 } 1656 1657 llvm_unreachable("Unknown vector constant"); 1658 } 1659 1660 // If this is a static alloca, generate it as the frameindex instead of 1661 // computation. 1662 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1663 DenseMap<const AllocaInst*, int>::iterator SI = 1664 FuncInfo.StaticAllocaMap.find(AI); 1665 if (SI != FuncInfo.StaticAllocaMap.end()) 1666 return DAG.getFrameIndex(SI->second, 1667 TLI.getFrameIndexTy(DAG.getDataLayout())); 1668 } 1669 1670 // If this is an instruction which fast-isel has deferred, select it now. 1671 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1672 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1673 1674 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1675 Inst->getType(), None); 1676 SDValue Chain = DAG.getEntryNode(); 1677 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1678 } 1679 1680 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) 1681 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1682 1683 if (const auto *BB = dyn_cast<BasicBlock>(V)) 1684 return DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 1685 1686 llvm_unreachable("Can't get register for value!"); 1687 } 1688 1689 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1690 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1691 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1692 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1693 bool IsSEH = isAsynchronousEHPersonality(Pers); 1694 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1695 if (!IsSEH) 1696 CatchPadMBB->setIsEHScopeEntry(); 1697 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1698 if (IsMSVCCXX || IsCoreCLR) 1699 CatchPadMBB->setIsEHFuncletEntry(); 1700 } 1701 1702 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1703 // Update machine-CFG edge. 1704 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1705 FuncInfo.MBB->addSuccessor(TargetMBB); 1706 TargetMBB->setIsEHCatchretTarget(true); 1707 DAG.getMachineFunction().setHasEHCatchret(true); 1708 1709 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1710 bool IsSEH = isAsynchronousEHPersonality(Pers); 1711 if (IsSEH) { 1712 // If this is not a fall-through branch or optimizations are switched off, 1713 // emit the branch. 1714 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1715 TM.getOptLevel() == CodeGenOpt::None) 1716 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1717 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1718 return; 1719 } 1720 1721 // Figure out the funclet membership for the catchret's successor. 1722 // This will be used by the FuncletLayout pass to determine how to order the 1723 // BB's. 1724 // A 'catchret' returns to the outer scope's color. 1725 Value *ParentPad = I.getCatchSwitchParentPad(); 1726 const BasicBlock *SuccessorColor; 1727 if (isa<ConstantTokenNone>(ParentPad)) 1728 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1729 else 1730 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1731 assert(SuccessorColor && "No parent funclet for catchret!"); 1732 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1733 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1734 1735 // Create the terminator node. 1736 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1737 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1738 DAG.getBasicBlock(SuccessorColorMBB)); 1739 DAG.setRoot(Ret); 1740 } 1741 1742 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1743 // Don't emit any special code for the cleanuppad instruction. It just marks 1744 // the start of an EH scope/funclet. 1745 FuncInfo.MBB->setIsEHScopeEntry(); 1746 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1747 if (Pers != EHPersonality::Wasm_CXX) { 1748 FuncInfo.MBB->setIsEHFuncletEntry(); 1749 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1750 } 1751 } 1752 1753 // In wasm EH, even though a catchpad may not catch an exception if a tag does 1754 // not match, it is OK to add only the first unwind destination catchpad to the 1755 // successors, because there will be at least one invoke instruction within the 1756 // catch scope that points to the next unwind destination, if one exists, so 1757 // CFGSort cannot mess up with BB sorting order. 1758 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic 1759 // call within them, and catchpads only consisting of 'catch (...)' have a 1760 // '__cxa_end_catch' call within them, both of which generate invokes in case 1761 // the next unwind destination exists, i.e., the next unwind destination is not 1762 // the caller.) 1763 // 1764 // Having at most one EH pad successor is also simpler and helps later 1765 // transformations. 1766 // 1767 // For example, 1768 // current: 1769 // invoke void @foo to ... unwind label %catch.dispatch 1770 // catch.dispatch: 1771 // %0 = catchswitch within ... [label %catch.start] unwind label %next 1772 // catch.start: 1773 // ... 1774 // ... in this BB or some other child BB dominated by this BB there will be an 1775 // invoke that points to 'next' BB as an unwind destination 1776 // 1777 // next: ; We don't need to add this to 'current' BB's successor 1778 // ... 1779 static void findWasmUnwindDestinations( 1780 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1781 BranchProbability Prob, 1782 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1783 &UnwindDests) { 1784 while (EHPadBB) { 1785 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1786 if (isa<CleanupPadInst>(Pad)) { 1787 // Stop on cleanup pads. 1788 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1789 UnwindDests.back().first->setIsEHScopeEntry(); 1790 break; 1791 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1792 // Add the catchpad handlers to the possible destinations. We don't 1793 // continue to the unwind destination of the catchswitch for wasm. 1794 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1795 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1796 UnwindDests.back().first->setIsEHScopeEntry(); 1797 } 1798 break; 1799 } else { 1800 continue; 1801 } 1802 } 1803 } 1804 1805 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1806 /// many places it could ultimately go. In the IR, we have a single unwind 1807 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1808 /// This function skips over imaginary basic blocks that hold catchswitch 1809 /// instructions, and finds all the "real" machine 1810 /// basic block destinations. As those destinations may not be successors of 1811 /// EHPadBB, here we also calculate the edge probability to those destinations. 1812 /// The passed-in Prob is the edge probability to EHPadBB. 1813 static void findUnwindDestinations( 1814 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1815 BranchProbability Prob, 1816 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1817 &UnwindDests) { 1818 EHPersonality Personality = 1819 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1820 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1821 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1822 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1823 bool IsSEH = isAsynchronousEHPersonality(Personality); 1824 1825 if (IsWasmCXX) { 1826 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1827 assert(UnwindDests.size() <= 1 && 1828 "There should be at most one unwind destination for wasm"); 1829 return; 1830 } 1831 1832 while (EHPadBB) { 1833 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1834 BasicBlock *NewEHPadBB = nullptr; 1835 if (isa<LandingPadInst>(Pad)) { 1836 // Stop on landingpads. They are not funclets. 1837 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1838 break; 1839 } else if (isa<CleanupPadInst>(Pad)) { 1840 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1841 // personalities. 1842 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1843 UnwindDests.back().first->setIsEHScopeEntry(); 1844 UnwindDests.back().first->setIsEHFuncletEntry(); 1845 break; 1846 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1847 // Add the catchpad handlers to the possible destinations. 1848 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1849 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1850 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1851 if (IsMSVCCXX || IsCoreCLR) 1852 UnwindDests.back().first->setIsEHFuncletEntry(); 1853 if (!IsSEH) 1854 UnwindDests.back().first->setIsEHScopeEntry(); 1855 } 1856 NewEHPadBB = CatchSwitch->getUnwindDest(); 1857 } else { 1858 continue; 1859 } 1860 1861 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1862 if (BPI && NewEHPadBB) 1863 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1864 EHPadBB = NewEHPadBB; 1865 } 1866 } 1867 1868 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1869 // Update successor info. 1870 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1871 auto UnwindDest = I.getUnwindDest(); 1872 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1873 BranchProbability UnwindDestProb = 1874 (BPI && UnwindDest) 1875 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1876 : BranchProbability::getZero(); 1877 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1878 for (auto &UnwindDest : UnwindDests) { 1879 UnwindDest.first->setIsEHPad(); 1880 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1881 } 1882 FuncInfo.MBB->normalizeSuccProbs(); 1883 1884 // Create the terminator node. 1885 SDValue Ret = 1886 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1887 DAG.setRoot(Ret); 1888 } 1889 1890 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1891 report_fatal_error("visitCatchSwitch not yet implemented!"); 1892 } 1893 1894 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1895 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1896 auto &DL = DAG.getDataLayout(); 1897 SDValue Chain = getControlRoot(); 1898 SmallVector<ISD::OutputArg, 8> Outs; 1899 SmallVector<SDValue, 8> OutVals; 1900 1901 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1902 // lower 1903 // 1904 // %val = call <ty> @llvm.experimental.deoptimize() 1905 // ret <ty> %val 1906 // 1907 // differently. 1908 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1909 LowerDeoptimizingReturn(); 1910 return; 1911 } 1912 1913 if (!FuncInfo.CanLowerReturn) { 1914 unsigned DemoteReg = FuncInfo.DemoteRegister; 1915 const Function *F = I.getParent()->getParent(); 1916 1917 // Emit a store of the return value through the virtual register. 1918 // Leave Outs empty so that LowerReturn won't try to load return 1919 // registers the usual way. 1920 SmallVector<EVT, 1> PtrValueVTs; 1921 ComputeValueVTs(TLI, DL, 1922 F->getReturnType()->getPointerTo( 1923 DAG.getDataLayout().getAllocaAddrSpace()), 1924 PtrValueVTs); 1925 1926 SDValue RetPtr = 1927 DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]); 1928 SDValue RetOp = getValue(I.getOperand(0)); 1929 1930 SmallVector<EVT, 4> ValueVTs, MemVTs; 1931 SmallVector<uint64_t, 4> Offsets; 1932 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1933 &Offsets); 1934 unsigned NumValues = ValueVTs.size(); 1935 1936 SmallVector<SDValue, 4> Chains(NumValues); 1937 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 1938 for (unsigned i = 0; i != NumValues; ++i) { 1939 // An aggregate return value cannot wrap around the address space, so 1940 // offsets to its parts don't wrap either. 1941 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 1942 TypeSize::Fixed(Offsets[i])); 1943 1944 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 1945 if (MemVTs[i] != ValueVTs[i]) 1946 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1947 Chains[i] = DAG.getStore( 1948 Chain, getCurSDLoc(), Val, 1949 // FIXME: better loc info would be nice. 1950 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 1951 commonAlignment(BaseAlign, Offsets[i])); 1952 } 1953 1954 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1955 MVT::Other, Chains); 1956 } else if (I.getNumOperands() != 0) { 1957 SmallVector<EVT, 4> ValueVTs; 1958 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1959 unsigned NumValues = ValueVTs.size(); 1960 if (NumValues) { 1961 SDValue RetOp = getValue(I.getOperand(0)); 1962 1963 const Function *F = I.getParent()->getParent(); 1964 1965 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1966 I.getOperand(0)->getType(), F->getCallingConv(), 1967 /*IsVarArg*/ false, DL); 1968 1969 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1970 if (F->getAttributes().hasRetAttr(Attribute::SExt)) 1971 ExtendKind = ISD::SIGN_EXTEND; 1972 else if (F->getAttributes().hasRetAttr(Attribute::ZExt)) 1973 ExtendKind = ISD::ZERO_EXTEND; 1974 1975 LLVMContext &Context = F->getContext(); 1976 bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg); 1977 1978 for (unsigned j = 0; j != NumValues; ++j) { 1979 EVT VT = ValueVTs[j]; 1980 1981 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1982 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1983 1984 CallingConv::ID CC = F->getCallingConv(); 1985 1986 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1987 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1988 SmallVector<SDValue, 4> Parts(NumParts); 1989 getCopyToParts(DAG, getCurSDLoc(), 1990 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1991 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1992 1993 // 'inreg' on function refers to return value 1994 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1995 if (RetInReg) 1996 Flags.setInReg(); 1997 1998 if (I.getOperand(0)->getType()->isPointerTy()) { 1999 Flags.setPointer(); 2000 Flags.setPointerAddrSpace( 2001 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 2002 } 2003 2004 if (NeedsRegBlock) { 2005 Flags.setInConsecutiveRegs(); 2006 if (j == NumValues - 1) 2007 Flags.setInConsecutiveRegsLast(); 2008 } 2009 2010 // Propagate extension type if any 2011 if (ExtendKind == ISD::SIGN_EXTEND) 2012 Flags.setSExt(); 2013 else if (ExtendKind == ISD::ZERO_EXTEND) 2014 Flags.setZExt(); 2015 2016 for (unsigned i = 0; i < NumParts; ++i) { 2017 Outs.push_back(ISD::OutputArg(Flags, 2018 Parts[i].getValueType().getSimpleVT(), 2019 VT, /*isfixed=*/true, 0, 0)); 2020 OutVals.push_back(Parts[i]); 2021 } 2022 } 2023 } 2024 } 2025 2026 // Push in swifterror virtual register as the last element of Outs. This makes 2027 // sure swifterror virtual register will be returned in the swifterror 2028 // physical register. 2029 const Function *F = I.getParent()->getParent(); 2030 if (TLI.supportSwiftError() && 2031 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 2032 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 2033 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2034 Flags.setSwiftError(); 2035 Outs.push_back(ISD::OutputArg( 2036 Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)), 2037 /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0)); 2038 // Create SDNode for the swifterror virtual register. 2039 OutVals.push_back( 2040 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 2041 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 2042 EVT(TLI.getPointerTy(DL)))); 2043 } 2044 2045 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 2046 CallingConv::ID CallConv = 2047 DAG.getMachineFunction().getFunction().getCallingConv(); 2048 Chain = DAG.getTargetLoweringInfo().LowerReturn( 2049 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 2050 2051 // Verify that the target's LowerReturn behaved as expected. 2052 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 2053 "LowerReturn didn't return a valid chain!"); 2054 2055 // Update the DAG with the new chain value resulting from return lowering. 2056 DAG.setRoot(Chain); 2057 } 2058 2059 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 2060 /// created for it, emit nodes to copy the value into the virtual 2061 /// registers. 2062 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 2063 // Skip empty types 2064 if (V->getType()->isEmptyTy()) 2065 return; 2066 2067 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 2068 if (VMI != FuncInfo.ValueMap.end()) { 2069 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 2070 CopyValueToVirtualRegister(V, VMI->second); 2071 } 2072 } 2073 2074 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 2075 /// the current basic block, add it to ValueMap now so that we'll get a 2076 /// CopyTo/FromReg. 2077 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 2078 // No need to export constants. 2079 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 2080 2081 // Already exported? 2082 if (FuncInfo.isExportedInst(V)) return; 2083 2084 unsigned Reg = FuncInfo.InitializeRegForValue(V); 2085 CopyValueToVirtualRegister(V, Reg); 2086 } 2087 2088 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 2089 const BasicBlock *FromBB) { 2090 // The operands of the setcc have to be in this block. We don't know 2091 // how to export them from some other block. 2092 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 2093 // Can export from current BB. 2094 if (VI->getParent() == FromBB) 2095 return true; 2096 2097 // Is already exported, noop. 2098 return FuncInfo.isExportedInst(V); 2099 } 2100 2101 // If this is an argument, we can export it if the BB is the entry block or 2102 // if it is already exported. 2103 if (isa<Argument>(V)) { 2104 if (FromBB->isEntryBlock()) 2105 return true; 2106 2107 // Otherwise, can only export this if it is already exported. 2108 return FuncInfo.isExportedInst(V); 2109 } 2110 2111 // Otherwise, constants can always be exported. 2112 return true; 2113 } 2114 2115 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2116 BranchProbability 2117 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2118 const MachineBasicBlock *Dst) const { 2119 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2120 const BasicBlock *SrcBB = Src->getBasicBlock(); 2121 const BasicBlock *DstBB = Dst->getBasicBlock(); 2122 if (!BPI) { 2123 // If BPI is not available, set the default probability as 1 / N, where N is 2124 // the number of successors. 2125 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2126 return BranchProbability(1, SuccSize); 2127 } 2128 return BPI->getEdgeProbability(SrcBB, DstBB); 2129 } 2130 2131 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2132 MachineBasicBlock *Dst, 2133 BranchProbability Prob) { 2134 if (!FuncInfo.BPI) 2135 Src->addSuccessorWithoutProb(Dst); 2136 else { 2137 if (Prob.isUnknown()) 2138 Prob = getEdgeProbability(Src, Dst); 2139 Src->addSuccessor(Dst, Prob); 2140 } 2141 } 2142 2143 static bool InBlock(const Value *V, const BasicBlock *BB) { 2144 if (const Instruction *I = dyn_cast<Instruction>(V)) 2145 return I->getParent() == BB; 2146 return true; 2147 } 2148 2149 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2150 /// This function emits a branch and is used at the leaves of an OR or an 2151 /// AND operator tree. 2152 void 2153 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2154 MachineBasicBlock *TBB, 2155 MachineBasicBlock *FBB, 2156 MachineBasicBlock *CurBB, 2157 MachineBasicBlock *SwitchBB, 2158 BranchProbability TProb, 2159 BranchProbability FProb, 2160 bool InvertCond) { 2161 const BasicBlock *BB = CurBB->getBasicBlock(); 2162 2163 // If the leaf of the tree is a comparison, merge the condition into 2164 // the caseblock. 2165 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2166 // The operands of the cmp have to be in this block. We don't know 2167 // how to export them from some other block. If this is the first block 2168 // of the sequence, no exporting is needed. 2169 if (CurBB == SwitchBB || 2170 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2171 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2172 ISD::CondCode Condition; 2173 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2174 ICmpInst::Predicate Pred = 2175 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2176 Condition = getICmpCondCode(Pred); 2177 } else { 2178 const FCmpInst *FC = cast<FCmpInst>(Cond); 2179 FCmpInst::Predicate Pred = 2180 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2181 Condition = getFCmpCondCode(Pred); 2182 if (TM.Options.NoNaNsFPMath) 2183 Condition = getFCmpCodeWithoutNaN(Condition); 2184 } 2185 2186 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2187 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2188 SL->SwitchCases.push_back(CB); 2189 return; 2190 } 2191 } 2192 2193 // Create a CaseBlock record representing this branch. 2194 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2195 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2196 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2197 SL->SwitchCases.push_back(CB); 2198 } 2199 2200 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2201 MachineBasicBlock *TBB, 2202 MachineBasicBlock *FBB, 2203 MachineBasicBlock *CurBB, 2204 MachineBasicBlock *SwitchBB, 2205 Instruction::BinaryOps Opc, 2206 BranchProbability TProb, 2207 BranchProbability FProb, 2208 bool InvertCond) { 2209 // Skip over not part of the tree and remember to invert op and operands at 2210 // next level. 2211 Value *NotCond; 2212 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2213 InBlock(NotCond, CurBB->getBasicBlock())) { 2214 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2215 !InvertCond); 2216 return; 2217 } 2218 2219 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2220 const Value *BOpOp0, *BOpOp1; 2221 // Compute the effective opcode for Cond, taking into account whether it needs 2222 // to be inverted, e.g. 2223 // and (not (or A, B)), C 2224 // gets lowered as 2225 // and (and (not A, not B), C) 2226 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 2227 if (BOp) { 2228 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 2229 ? Instruction::And 2230 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 2231 ? Instruction::Or 2232 : (Instruction::BinaryOps)0); 2233 if (InvertCond) { 2234 if (BOpc == Instruction::And) 2235 BOpc = Instruction::Or; 2236 else if (BOpc == Instruction::Or) 2237 BOpc = Instruction::And; 2238 } 2239 } 2240 2241 // If this node is not part of the or/and tree, emit it as a branch. 2242 // Note that all nodes in the tree should have same opcode. 2243 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 2244 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 2245 !InBlock(BOpOp0, CurBB->getBasicBlock()) || 2246 !InBlock(BOpOp1, CurBB->getBasicBlock())) { 2247 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2248 TProb, FProb, InvertCond); 2249 return; 2250 } 2251 2252 // Create TmpBB after CurBB. 2253 MachineFunction::iterator BBI(CurBB); 2254 MachineFunction &MF = DAG.getMachineFunction(); 2255 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2256 CurBB->getParent()->insert(++BBI, TmpBB); 2257 2258 if (Opc == Instruction::Or) { 2259 // Codegen X | Y as: 2260 // BB1: 2261 // jmp_if_X TBB 2262 // jmp TmpBB 2263 // TmpBB: 2264 // jmp_if_Y TBB 2265 // jmp FBB 2266 // 2267 2268 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2269 // The requirement is that 2270 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2271 // = TrueProb for original BB. 2272 // Assuming the original probabilities are A and B, one choice is to set 2273 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2274 // A/(1+B) and 2B/(1+B). This choice assumes that 2275 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2276 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2277 // TmpBB, but the math is more complicated. 2278 2279 auto NewTrueProb = TProb / 2; 2280 auto NewFalseProb = TProb / 2 + FProb; 2281 // Emit the LHS condition. 2282 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 2283 NewFalseProb, InvertCond); 2284 2285 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2286 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2287 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2288 // Emit the RHS condition into TmpBB. 2289 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2290 Probs[1], InvertCond); 2291 } else { 2292 assert(Opc == Instruction::And && "Unknown merge op!"); 2293 // Codegen X & Y as: 2294 // BB1: 2295 // jmp_if_X TmpBB 2296 // jmp FBB 2297 // TmpBB: 2298 // jmp_if_Y TBB 2299 // jmp FBB 2300 // 2301 // This requires creation of TmpBB after CurBB. 2302 2303 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2304 // The requirement is that 2305 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2306 // = FalseProb for original BB. 2307 // Assuming the original probabilities are A and B, one choice is to set 2308 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2309 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2310 // TrueProb for BB1 * FalseProb for TmpBB. 2311 2312 auto NewTrueProb = TProb + FProb / 2; 2313 auto NewFalseProb = FProb / 2; 2314 // Emit the LHS condition. 2315 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 2316 NewFalseProb, InvertCond); 2317 2318 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2319 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2320 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2321 // Emit the RHS condition into TmpBB. 2322 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2323 Probs[1], InvertCond); 2324 } 2325 } 2326 2327 /// If the set of cases should be emitted as a series of branches, return true. 2328 /// If we should emit this as a bunch of and/or'd together conditions, return 2329 /// false. 2330 bool 2331 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2332 if (Cases.size() != 2) return true; 2333 2334 // If this is two comparisons of the same values or'd or and'd together, they 2335 // will get folded into a single comparison, so don't emit two blocks. 2336 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2337 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2338 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2339 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2340 return false; 2341 } 2342 2343 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2344 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2345 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2346 Cases[0].CC == Cases[1].CC && 2347 isa<Constant>(Cases[0].CmpRHS) && 2348 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2349 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2350 return false; 2351 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2352 return false; 2353 } 2354 2355 return true; 2356 } 2357 2358 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2359 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2360 2361 // Update machine-CFG edges. 2362 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2363 2364 if (I.isUnconditional()) { 2365 // Update machine-CFG edges. 2366 BrMBB->addSuccessor(Succ0MBB); 2367 2368 // If this is not a fall-through branch or optimizations are switched off, 2369 // emit the branch. 2370 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2371 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2372 MVT::Other, getControlRoot(), 2373 DAG.getBasicBlock(Succ0MBB))); 2374 2375 return; 2376 } 2377 2378 // If this condition is one of the special cases we handle, do special stuff 2379 // now. 2380 const Value *CondVal = I.getCondition(); 2381 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2382 2383 // If this is a series of conditions that are or'd or and'd together, emit 2384 // this as a sequence of branches instead of setcc's with and/or operations. 2385 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2386 // unpredictable branches, and vector extracts because those jumps are likely 2387 // expensive for any target), this should improve performance. 2388 // For example, instead of something like: 2389 // cmp A, B 2390 // C = seteq 2391 // cmp D, E 2392 // F = setle 2393 // or C, F 2394 // jnz foo 2395 // Emit: 2396 // cmp A, B 2397 // je foo 2398 // cmp D, E 2399 // jle foo 2400 const Instruction *BOp = dyn_cast<Instruction>(CondVal); 2401 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp && 2402 BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) { 2403 Value *Vec; 2404 const Value *BOp0, *BOp1; 2405 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 2406 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 2407 Opcode = Instruction::And; 2408 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 2409 Opcode = Instruction::Or; 2410 2411 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2412 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { 2413 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode, 2414 getEdgeProbability(BrMBB, Succ0MBB), 2415 getEdgeProbability(BrMBB, Succ1MBB), 2416 /*InvertCond=*/false); 2417 // If the compares in later blocks need to use values not currently 2418 // exported from this block, export them now. This block should always 2419 // be the first entry. 2420 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2421 2422 // Allow some cases to be rejected. 2423 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2424 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2425 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2426 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2427 } 2428 2429 // Emit the branch for this block. 2430 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2431 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2432 return; 2433 } 2434 2435 // Okay, we decided not to do this, remove any inserted MBB's and clear 2436 // SwitchCases. 2437 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2438 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2439 2440 SL->SwitchCases.clear(); 2441 } 2442 } 2443 2444 // Create a CaseBlock record representing this branch. 2445 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2446 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2447 2448 // Use visitSwitchCase to actually insert the fast branch sequence for this 2449 // cond branch. 2450 visitSwitchCase(CB, BrMBB); 2451 } 2452 2453 /// visitSwitchCase - Emits the necessary code to represent a single node in 2454 /// the binary search tree resulting from lowering a switch instruction. 2455 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2456 MachineBasicBlock *SwitchBB) { 2457 SDValue Cond; 2458 SDValue CondLHS = getValue(CB.CmpLHS); 2459 SDLoc dl = CB.DL; 2460 2461 if (CB.CC == ISD::SETTRUE) { 2462 // Branch or fall through to TrueBB. 2463 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2464 SwitchBB->normalizeSuccProbs(); 2465 if (CB.TrueBB != NextBlock(SwitchBB)) { 2466 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2467 DAG.getBasicBlock(CB.TrueBB))); 2468 } 2469 return; 2470 } 2471 2472 auto &TLI = DAG.getTargetLoweringInfo(); 2473 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2474 2475 // Build the setcc now. 2476 if (!CB.CmpMHS) { 2477 // Fold "(X == true)" to X and "(X == false)" to !X to 2478 // handle common cases produced by branch lowering. 2479 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2480 CB.CC == ISD::SETEQ) 2481 Cond = CondLHS; 2482 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2483 CB.CC == ISD::SETEQ) { 2484 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2485 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2486 } else { 2487 SDValue CondRHS = getValue(CB.CmpRHS); 2488 2489 // If a pointer's DAG type is larger than its memory type then the DAG 2490 // values are zero-extended. This breaks signed comparisons so truncate 2491 // back to the underlying type before doing the compare. 2492 if (CondLHS.getValueType() != MemVT) { 2493 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2494 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2495 } 2496 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2497 } 2498 } else { 2499 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2500 2501 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2502 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2503 2504 SDValue CmpOp = getValue(CB.CmpMHS); 2505 EVT VT = CmpOp.getValueType(); 2506 2507 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2508 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2509 ISD::SETLE); 2510 } else { 2511 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2512 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2513 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2514 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2515 } 2516 } 2517 2518 // Update successor info 2519 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2520 // TrueBB and FalseBB are always different unless the incoming IR is 2521 // degenerate. This only happens when running llc on weird IR. 2522 if (CB.TrueBB != CB.FalseBB) 2523 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2524 SwitchBB->normalizeSuccProbs(); 2525 2526 // If the lhs block is the next block, invert the condition so that we can 2527 // fall through to the lhs instead of the rhs block. 2528 if (CB.TrueBB == NextBlock(SwitchBB)) { 2529 std::swap(CB.TrueBB, CB.FalseBB); 2530 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2531 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2532 } 2533 2534 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2535 MVT::Other, getControlRoot(), Cond, 2536 DAG.getBasicBlock(CB.TrueBB)); 2537 2538 // Insert the false branch. Do this even if it's a fall through branch, 2539 // this makes it easier to do DAG optimizations which require inverting 2540 // the branch condition. 2541 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2542 DAG.getBasicBlock(CB.FalseBB)); 2543 2544 DAG.setRoot(BrCond); 2545 } 2546 2547 /// visitJumpTable - Emit JumpTable node in the current MBB 2548 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2549 // Emit the code for the jump table 2550 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2551 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2552 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2553 JT.Reg, PTy); 2554 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2555 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2556 MVT::Other, Index.getValue(1), 2557 Table, Index); 2558 DAG.setRoot(BrJumpTable); 2559 } 2560 2561 /// visitJumpTableHeader - This function emits necessary code to produce index 2562 /// in the JumpTable from switch case. 2563 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2564 JumpTableHeader &JTH, 2565 MachineBasicBlock *SwitchBB) { 2566 SDLoc dl = getCurSDLoc(); 2567 2568 // Subtract the lowest switch case value from the value being switched on. 2569 SDValue SwitchOp = getValue(JTH.SValue); 2570 EVT VT = SwitchOp.getValueType(); 2571 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2572 DAG.getConstant(JTH.First, dl, VT)); 2573 2574 // The SDNode we just created, which holds the value being switched on minus 2575 // the smallest case value, needs to be copied to a virtual register so it 2576 // can be used as an index into the jump table in a subsequent basic block. 2577 // This value may be smaller or larger than the target's pointer type, and 2578 // therefore require extension or truncating. 2579 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2580 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2581 2582 unsigned JumpTableReg = 2583 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2584 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2585 JumpTableReg, SwitchOp); 2586 JT.Reg = JumpTableReg; 2587 2588 if (!JTH.FallthroughUnreachable) { 2589 // Emit the range check for the jump table, and branch to the default block 2590 // for the switch statement if the value being switched on exceeds the 2591 // largest case in the switch. 2592 SDValue CMP = DAG.getSetCC( 2593 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2594 Sub.getValueType()), 2595 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2596 2597 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2598 MVT::Other, CopyTo, CMP, 2599 DAG.getBasicBlock(JT.Default)); 2600 2601 // Avoid emitting unnecessary branches to the next block. 2602 if (JT.MBB != NextBlock(SwitchBB)) 2603 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2604 DAG.getBasicBlock(JT.MBB)); 2605 2606 DAG.setRoot(BrCond); 2607 } else { 2608 // Avoid emitting unnecessary branches to the next block. 2609 if (JT.MBB != NextBlock(SwitchBB)) 2610 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2611 DAG.getBasicBlock(JT.MBB))); 2612 else 2613 DAG.setRoot(CopyTo); 2614 } 2615 } 2616 2617 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2618 /// variable if there exists one. 2619 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2620 SDValue &Chain) { 2621 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2622 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2623 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2624 MachineFunction &MF = DAG.getMachineFunction(); 2625 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2626 MachineSDNode *Node = 2627 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2628 if (Global) { 2629 MachinePointerInfo MPInfo(Global); 2630 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2631 MachineMemOperand::MODereferenceable; 2632 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2633 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); 2634 DAG.setNodeMemRefs(Node, {MemRef}); 2635 } 2636 if (PtrTy != PtrMemTy) 2637 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2638 return SDValue(Node, 0); 2639 } 2640 2641 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2642 /// tail spliced into a stack protector check success bb. 2643 /// 2644 /// For a high level explanation of how this fits into the stack protector 2645 /// generation see the comment on the declaration of class 2646 /// StackProtectorDescriptor. 2647 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2648 MachineBasicBlock *ParentBB) { 2649 2650 // First create the loads to the guard/stack slot for the comparison. 2651 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2652 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2653 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2654 2655 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2656 int FI = MFI.getStackProtectorIndex(); 2657 2658 SDValue Guard; 2659 SDLoc dl = getCurSDLoc(); 2660 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2661 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2662 Align Align = 2663 DAG.getDataLayout().getPrefTypeAlign(Type::getInt8PtrTy(M.getContext())); 2664 2665 // Generate code to load the content of the guard slot. 2666 SDValue GuardVal = DAG.getLoad( 2667 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2668 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2669 MachineMemOperand::MOVolatile); 2670 2671 if (TLI.useStackGuardXorFP()) 2672 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2673 2674 // Retrieve guard check function, nullptr if instrumentation is inlined. 2675 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2676 // The target provides a guard check function to validate the guard value. 2677 // Generate a call to that function with the content of the guard slot as 2678 // argument. 2679 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2680 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2681 2682 TargetLowering::ArgListTy Args; 2683 TargetLowering::ArgListEntry Entry; 2684 Entry.Node = GuardVal; 2685 Entry.Ty = FnTy->getParamType(0); 2686 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg)) 2687 Entry.IsInReg = true; 2688 Args.push_back(Entry); 2689 2690 TargetLowering::CallLoweringInfo CLI(DAG); 2691 CLI.setDebugLoc(getCurSDLoc()) 2692 .setChain(DAG.getEntryNode()) 2693 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2694 getValue(GuardCheckFn), std::move(Args)); 2695 2696 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2697 DAG.setRoot(Result.second); 2698 return; 2699 } 2700 2701 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2702 // Otherwise, emit a volatile load to retrieve the stack guard value. 2703 SDValue Chain = DAG.getEntryNode(); 2704 if (TLI.useLoadStackGuardNode()) { 2705 Guard = getLoadStackGuard(DAG, dl, Chain); 2706 } else { 2707 const Value *IRGuard = TLI.getSDagStackGuard(M); 2708 SDValue GuardPtr = getValue(IRGuard); 2709 2710 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2711 MachinePointerInfo(IRGuard, 0), Align, 2712 MachineMemOperand::MOVolatile); 2713 } 2714 2715 // Perform the comparison via a getsetcc. 2716 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2717 *DAG.getContext(), 2718 Guard.getValueType()), 2719 Guard, GuardVal, ISD::SETNE); 2720 2721 // If the guard/stackslot do not equal, branch to failure MBB. 2722 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2723 MVT::Other, GuardVal.getOperand(0), 2724 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2725 // Otherwise branch to success MBB. 2726 SDValue Br = DAG.getNode(ISD::BR, dl, 2727 MVT::Other, BrCond, 2728 DAG.getBasicBlock(SPD.getSuccessMBB())); 2729 2730 DAG.setRoot(Br); 2731 } 2732 2733 /// Codegen the failure basic block for a stack protector check. 2734 /// 2735 /// A failure stack protector machine basic block consists simply of a call to 2736 /// __stack_chk_fail(). 2737 /// 2738 /// For a high level explanation of how this fits into the stack protector 2739 /// generation see the comment on the declaration of class 2740 /// StackProtectorDescriptor. 2741 void 2742 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2743 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2744 TargetLowering::MakeLibCallOptions CallOptions; 2745 CallOptions.setDiscardResult(true); 2746 SDValue Chain = 2747 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2748 None, CallOptions, getCurSDLoc()).second; 2749 // On PS4, the "return address" must still be within the calling function, 2750 // even if it's at the very end, so emit an explicit TRAP here. 2751 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2752 if (TM.getTargetTriple().isPS4()) 2753 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2754 // WebAssembly needs an unreachable instruction after a non-returning call, 2755 // because the function return type can be different from __stack_chk_fail's 2756 // return type (void). 2757 if (TM.getTargetTriple().isWasm()) 2758 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2759 2760 DAG.setRoot(Chain); 2761 } 2762 2763 /// visitBitTestHeader - This function emits necessary code to produce value 2764 /// suitable for "bit tests" 2765 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2766 MachineBasicBlock *SwitchBB) { 2767 SDLoc dl = getCurSDLoc(); 2768 2769 // Subtract the minimum value. 2770 SDValue SwitchOp = getValue(B.SValue); 2771 EVT VT = SwitchOp.getValueType(); 2772 SDValue RangeSub = 2773 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2774 2775 // Determine the type of the test operands. 2776 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2777 bool UsePtrType = false; 2778 if (!TLI.isTypeLegal(VT)) { 2779 UsePtrType = true; 2780 } else { 2781 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2782 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2783 // Switch table case range are encoded into series of masks. 2784 // Just use pointer type, it's guaranteed to fit. 2785 UsePtrType = true; 2786 break; 2787 } 2788 } 2789 SDValue Sub = RangeSub; 2790 if (UsePtrType) { 2791 VT = TLI.getPointerTy(DAG.getDataLayout()); 2792 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2793 } 2794 2795 B.RegVT = VT.getSimpleVT(); 2796 B.Reg = FuncInfo.CreateReg(B.RegVT); 2797 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2798 2799 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2800 2801 if (!B.FallthroughUnreachable) 2802 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2803 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2804 SwitchBB->normalizeSuccProbs(); 2805 2806 SDValue Root = CopyTo; 2807 if (!B.FallthroughUnreachable) { 2808 // Conditional branch to the default block. 2809 SDValue RangeCmp = DAG.getSetCC(dl, 2810 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2811 RangeSub.getValueType()), 2812 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2813 ISD::SETUGT); 2814 2815 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2816 DAG.getBasicBlock(B.Default)); 2817 } 2818 2819 // Avoid emitting unnecessary branches to the next block. 2820 if (MBB != NextBlock(SwitchBB)) 2821 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2822 2823 DAG.setRoot(Root); 2824 } 2825 2826 /// visitBitTestCase - this function produces one "bit test" 2827 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2828 MachineBasicBlock* NextMBB, 2829 BranchProbability BranchProbToNext, 2830 unsigned Reg, 2831 BitTestCase &B, 2832 MachineBasicBlock *SwitchBB) { 2833 SDLoc dl = getCurSDLoc(); 2834 MVT VT = BB.RegVT; 2835 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2836 SDValue Cmp; 2837 unsigned PopCount = countPopulation(B.Mask); 2838 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2839 if (PopCount == 1) { 2840 // Testing for a single bit; just compare the shift count with what it 2841 // would need to be to shift a 1 bit in that position. 2842 Cmp = DAG.getSetCC( 2843 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2844 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2845 ISD::SETEQ); 2846 } else if (PopCount == BB.Range) { 2847 // There is only one zero bit in the range, test for it directly. 2848 Cmp = DAG.getSetCC( 2849 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2850 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2851 ISD::SETNE); 2852 } else { 2853 // Make desired shift 2854 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2855 DAG.getConstant(1, dl, VT), ShiftOp); 2856 2857 // Emit bit tests and jumps 2858 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2859 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2860 Cmp = DAG.getSetCC( 2861 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2862 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2863 } 2864 2865 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2866 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2867 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2868 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2869 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2870 // one as they are relative probabilities (and thus work more like weights), 2871 // and hence we need to normalize them to let the sum of them become one. 2872 SwitchBB->normalizeSuccProbs(); 2873 2874 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2875 MVT::Other, getControlRoot(), 2876 Cmp, DAG.getBasicBlock(B.TargetBB)); 2877 2878 // Avoid emitting unnecessary branches to the next block. 2879 if (NextMBB != NextBlock(SwitchBB)) 2880 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2881 DAG.getBasicBlock(NextMBB)); 2882 2883 DAG.setRoot(BrAnd); 2884 } 2885 2886 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2887 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2888 2889 // Retrieve successors. Look through artificial IR level blocks like 2890 // catchswitch for successors. 2891 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2892 const BasicBlock *EHPadBB = I.getSuccessor(1); 2893 2894 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2895 // have to do anything here to lower funclet bundles. 2896 assert(!I.hasOperandBundlesOtherThan( 2897 {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, 2898 LLVMContext::OB_gc_live, LLVMContext::OB_funclet, 2899 LLVMContext::OB_cfguardtarget, 2900 LLVMContext::OB_clang_arc_attachedcall}) && 2901 "Cannot lower invokes with arbitrary operand bundles yet!"); 2902 2903 const Value *Callee(I.getCalledOperand()); 2904 const Function *Fn = dyn_cast<Function>(Callee); 2905 if (isa<InlineAsm>(Callee)) 2906 visitInlineAsm(I, EHPadBB); 2907 else if (Fn && Fn->isIntrinsic()) { 2908 switch (Fn->getIntrinsicID()) { 2909 default: 2910 llvm_unreachable("Cannot invoke this intrinsic"); 2911 case Intrinsic::donothing: 2912 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2913 case Intrinsic::seh_try_begin: 2914 case Intrinsic::seh_scope_begin: 2915 case Intrinsic::seh_try_end: 2916 case Intrinsic::seh_scope_end: 2917 break; 2918 case Intrinsic::experimental_patchpoint_void: 2919 case Intrinsic::experimental_patchpoint_i64: 2920 visitPatchpoint(I, EHPadBB); 2921 break; 2922 case Intrinsic::experimental_gc_statepoint: 2923 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 2924 break; 2925 case Intrinsic::wasm_rethrow: { 2926 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2927 // special because it can be invoked, so we manually lower it to a DAG 2928 // node here. 2929 SmallVector<SDValue, 8> Ops; 2930 Ops.push_back(getRoot()); // inchain 2931 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2932 Ops.push_back( 2933 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(), 2934 TLI.getPointerTy(DAG.getDataLayout()))); 2935 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2936 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2937 break; 2938 } 2939 } 2940 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2941 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2942 // Eventually we will support lowering the @llvm.experimental.deoptimize 2943 // intrinsic, and right now there are no plans to support other intrinsics 2944 // with deopt state. 2945 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2946 } else { 2947 LowerCallTo(I, getValue(Callee), false, false, EHPadBB); 2948 } 2949 2950 // If the value of the invoke is used outside of its defining block, make it 2951 // available as a virtual register. 2952 // We already took care of the exported value for the statepoint instruction 2953 // during call to the LowerStatepoint. 2954 if (!isa<GCStatepointInst>(I)) { 2955 CopyToExportRegsIfNeeded(&I); 2956 } 2957 2958 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2959 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2960 BranchProbability EHPadBBProb = 2961 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2962 : BranchProbability::getZero(); 2963 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2964 2965 // Update successor info. 2966 addSuccessorWithProb(InvokeMBB, Return); 2967 for (auto &UnwindDest : UnwindDests) { 2968 UnwindDest.first->setIsEHPad(); 2969 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2970 } 2971 InvokeMBB->normalizeSuccProbs(); 2972 2973 // Drop into normal successor. 2974 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2975 DAG.getBasicBlock(Return))); 2976 } 2977 2978 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2979 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2980 2981 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2982 // have to do anything here to lower funclet bundles. 2983 assert(!I.hasOperandBundlesOtherThan( 2984 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2985 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2986 2987 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 2988 visitInlineAsm(I); 2989 CopyToExportRegsIfNeeded(&I); 2990 2991 // Retrieve successors. 2992 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2993 2994 // Update successor info. 2995 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 2996 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2997 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 2998 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 2999 Target->setIsInlineAsmBrIndirectTarget(); 3000 } 3001 CallBrMBB->normalizeSuccProbs(); 3002 3003 // Drop into default successor. 3004 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 3005 MVT::Other, getControlRoot(), 3006 DAG.getBasicBlock(Return))); 3007 } 3008 3009 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 3010 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 3011 } 3012 3013 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 3014 assert(FuncInfo.MBB->isEHPad() && 3015 "Call to landingpad not in landing pad!"); 3016 3017 // If there aren't registers to copy the values into (e.g., during SjLj 3018 // exceptions), then don't bother to create these DAG nodes. 3019 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3020 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 3021 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 3022 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 3023 return; 3024 3025 // If landingpad's return type is token type, we don't create DAG nodes 3026 // for its exception pointer and selector value. The extraction of exception 3027 // pointer or selector value from token type landingpads is not currently 3028 // supported. 3029 if (LP.getType()->isTokenTy()) 3030 return; 3031 3032 SmallVector<EVT, 2> ValueVTs; 3033 SDLoc dl = getCurSDLoc(); 3034 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 3035 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 3036 3037 // Get the two live-in registers as SDValues. The physregs have already been 3038 // copied into virtual registers. 3039 SDValue Ops[2]; 3040 if (FuncInfo.ExceptionPointerVirtReg) { 3041 Ops[0] = DAG.getZExtOrTrunc( 3042 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3043 FuncInfo.ExceptionPointerVirtReg, 3044 TLI.getPointerTy(DAG.getDataLayout())), 3045 dl, ValueVTs[0]); 3046 } else { 3047 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 3048 } 3049 Ops[1] = DAG.getZExtOrTrunc( 3050 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3051 FuncInfo.ExceptionSelectorVirtReg, 3052 TLI.getPointerTy(DAG.getDataLayout())), 3053 dl, ValueVTs[1]); 3054 3055 // Merge into one. 3056 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 3057 DAG.getVTList(ValueVTs), Ops); 3058 setValue(&LP, Res); 3059 } 3060 3061 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 3062 MachineBasicBlock *Last) { 3063 // Update JTCases. 3064 for (JumpTableBlock &JTB : SL->JTCases) 3065 if (JTB.first.HeaderBB == First) 3066 JTB.first.HeaderBB = Last; 3067 3068 // Update BitTestCases. 3069 for (BitTestBlock &BTB : SL->BitTestCases) 3070 if (BTB.Parent == First) 3071 BTB.Parent = Last; 3072 } 3073 3074 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 3075 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 3076 3077 // Update machine-CFG edges with unique successors. 3078 SmallSet<BasicBlock*, 32> Done; 3079 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 3080 BasicBlock *BB = I.getSuccessor(i); 3081 bool Inserted = Done.insert(BB).second; 3082 if (!Inserted) 3083 continue; 3084 3085 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 3086 addSuccessorWithProb(IndirectBrMBB, Succ); 3087 } 3088 IndirectBrMBB->normalizeSuccProbs(); 3089 3090 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 3091 MVT::Other, getControlRoot(), 3092 getValue(I.getAddress()))); 3093 } 3094 3095 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 3096 if (!DAG.getTarget().Options.TrapUnreachable) 3097 return; 3098 3099 // We may be able to ignore unreachable behind a noreturn call. 3100 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 3101 const BasicBlock &BB = *I.getParent(); 3102 if (&I != &BB.front()) { 3103 BasicBlock::const_iterator PredI = 3104 std::prev(BasicBlock::const_iterator(&I)); 3105 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 3106 if (Call->doesNotReturn()) 3107 return; 3108 } 3109 } 3110 } 3111 3112 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3113 } 3114 3115 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3116 SDNodeFlags Flags; 3117 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3118 Flags.copyFMF(*FPOp); 3119 3120 SDValue Op = getValue(I.getOperand(0)); 3121 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3122 Op, Flags); 3123 setValue(&I, UnNodeValue); 3124 } 3125 3126 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3127 SDNodeFlags Flags; 3128 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3129 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3130 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3131 } 3132 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 3133 Flags.setExact(ExactOp->isExact()); 3134 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3135 Flags.copyFMF(*FPOp); 3136 3137 SDValue Op1 = getValue(I.getOperand(0)); 3138 SDValue Op2 = getValue(I.getOperand(1)); 3139 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3140 Op1, Op2, Flags); 3141 setValue(&I, BinNodeValue); 3142 } 3143 3144 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3145 SDValue Op1 = getValue(I.getOperand(0)); 3146 SDValue Op2 = getValue(I.getOperand(1)); 3147 3148 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3149 Op1.getValueType(), DAG.getDataLayout()); 3150 3151 // Coerce the shift amount to the right type if we can. This exposes the 3152 // truncate or zext to optimization early. 3153 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3154 assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) && 3155 "Unexpected shift type"); 3156 Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy); 3157 } 3158 3159 bool nuw = false; 3160 bool nsw = false; 3161 bool exact = false; 3162 3163 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3164 3165 if (const OverflowingBinaryOperator *OFBinOp = 3166 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3167 nuw = OFBinOp->hasNoUnsignedWrap(); 3168 nsw = OFBinOp->hasNoSignedWrap(); 3169 } 3170 if (const PossiblyExactOperator *ExactOp = 3171 dyn_cast<const PossiblyExactOperator>(&I)) 3172 exact = ExactOp->isExact(); 3173 } 3174 SDNodeFlags Flags; 3175 Flags.setExact(exact); 3176 Flags.setNoSignedWrap(nsw); 3177 Flags.setNoUnsignedWrap(nuw); 3178 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3179 Flags); 3180 setValue(&I, Res); 3181 } 3182 3183 void SelectionDAGBuilder::visitSDiv(const User &I) { 3184 SDValue Op1 = getValue(I.getOperand(0)); 3185 SDValue Op2 = getValue(I.getOperand(1)); 3186 3187 SDNodeFlags Flags; 3188 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3189 cast<PossiblyExactOperator>(&I)->isExact()); 3190 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3191 Op2, Flags)); 3192 } 3193 3194 void SelectionDAGBuilder::visitICmp(const User &I) { 3195 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3196 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3197 predicate = IC->getPredicate(); 3198 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3199 predicate = ICmpInst::Predicate(IC->getPredicate()); 3200 SDValue Op1 = getValue(I.getOperand(0)); 3201 SDValue Op2 = getValue(I.getOperand(1)); 3202 ISD::CondCode Opcode = getICmpCondCode(predicate); 3203 3204 auto &TLI = DAG.getTargetLoweringInfo(); 3205 EVT MemVT = 3206 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3207 3208 // If a pointer's DAG type is larger than its memory type then the DAG values 3209 // are zero-extended. This breaks signed comparisons so truncate back to the 3210 // underlying type before doing the compare. 3211 if (Op1.getValueType() != MemVT) { 3212 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3213 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3214 } 3215 3216 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3217 I.getType()); 3218 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3219 } 3220 3221 void SelectionDAGBuilder::visitFCmp(const User &I) { 3222 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3223 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3224 predicate = FC->getPredicate(); 3225 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3226 predicate = FCmpInst::Predicate(FC->getPredicate()); 3227 SDValue Op1 = getValue(I.getOperand(0)); 3228 SDValue Op2 = getValue(I.getOperand(1)); 3229 3230 ISD::CondCode Condition = getFCmpCondCode(predicate); 3231 auto *FPMO = cast<FPMathOperator>(&I); 3232 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3233 Condition = getFCmpCodeWithoutNaN(Condition); 3234 3235 SDNodeFlags Flags; 3236 Flags.copyFMF(*FPMO); 3237 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3238 3239 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3240 I.getType()); 3241 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3242 } 3243 3244 // Check if the condition of the select has one use or two users that are both 3245 // selects with the same condition. 3246 static bool hasOnlySelectUsers(const Value *Cond) { 3247 return llvm::all_of(Cond->users(), [](const Value *V) { 3248 return isa<SelectInst>(V); 3249 }); 3250 } 3251 3252 void SelectionDAGBuilder::visitSelect(const User &I) { 3253 SmallVector<EVT, 4> ValueVTs; 3254 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3255 ValueVTs); 3256 unsigned NumValues = ValueVTs.size(); 3257 if (NumValues == 0) return; 3258 3259 SmallVector<SDValue, 4> Values(NumValues); 3260 SDValue Cond = getValue(I.getOperand(0)); 3261 SDValue LHSVal = getValue(I.getOperand(1)); 3262 SDValue RHSVal = getValue(I.getOperand(2)); 3263 SmallVector<SDValue, 1> BaseOps(1, Cond); 3264 ISD::NodeType OpCode = 3265 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3266 3267 bool IsUnaryAbs = false; 3268 bool Negate = false; 3269 3270 SDNodeFlags Flags; 3271 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3272 Flags.copyFMF(*FPOp); 3273 3274 // Min/max matching is only viable if all output VTs are the same. 3275 if (is_splat(ValueVTs)) { 3276 EVT VT = ValueVTs[0]; 3277 LLVMContext &Ctx = *DAG.getContext(); 3278 auto &TLI = DAG.getTargetLoweringInfo(); 3279 3280 // We care about the legality of the operation after it has been type 3281 // legalized. 3282 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3283 VT = TLI.getTypeToTransformTo(Ctx, VT); 3284 3285 // If the vselect is legal, assume we want to leave this as a vector setcc + 3286 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3287 // min/max is legal on the scalar type. 3288 bool UseScalarMinMax = VT.isVector() && 3289 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3290 3291 Value *LHS, *RHS; 3292 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3293 ISD::NodeType Opc = ISD::DELETED_NODE; 3294 switch (SPR.Flavor) { 3295 case SPF_UMAX: Opc = ISD::UMAX; break; 3296 case SPF_UMIN: Opc = ISD::UMIN; break; 3297 case SPF_SMAX: Opc = ISD::SMAX; break; 3298 case SPF_SMIN: Opc = ISD::SMIN; break; 3299 case SPF_FMINNUM: 3300 switch (SPR.NaNBehavior) { 3301 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3302 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3303 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3304 case SPNB_RETURNS_ANY: { 3305 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3306 Opc = ISD::FMINNUM; 3307 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3308 Opc = ISD::FMINIMUM; 3309 else if (UseScalarMinMax) 3310 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3311 ISD::FMINNUM : ISD::FMINIMUM; 3312 break; 3313 } 3314 } 3315 break; 3316 case SPF_FMAXNUM: 3317 switch (SPR.NaNBehavior) { 3318 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3319 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3320 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3321 case SPNB_RETURNS_ANY: 3322 3323 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3324 Opc = ISD::FMAXNUM; 3325 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3326 Opc = ISD::FMAXIMUM; 3327 else if (UseScalarMinMax) 3328 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3329 ISD::FMAXNUM : ISD::FMAXIMUM; 3330 break; 3331 } 3332 break; 3333 case SPF_NABS: 3334 Negate = true; 3335 LLVM_FALLTHROUGH; 3336 case SPF_ABS: 3337 IsUnaryAbs = true; 3338 Opc = ISD::ABS; 3339 break; 3340 default: break; 3341 } 3342 3343 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3344 (TLI.isOperationLegalOrCustom(Opc, VT) || 3345 (UseScalarMinMax && 3346 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3347 // If the underlying comparison instruction is used by any other 3348 // instruction, the consumed instructions won't be destroyed, so it is 3349 // not profitable to convert to a min/max. 3350 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3351 OpCode = Opc; 3352 LHSVal = getValue(LHS); 3353 RHSVal = getValue(RHS); 3354 BaseOps.clear(); 3355 } 3356 3357 if (IsUnaryAbs) { 3358 OpCode = Opc; 3359 LHSVal = getValue(LHS); 3360 BaseOps.clear(); 3361 } 3362 } 3363 3364 if (IsUnaryAbs) { 3365 for (unsigned i = 0; i != NumValues; ++i) { 3366 SDLoc dl = getCurSDLoc(); 3367 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); 3368 Values[i] = 3369 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); 3370 if (Negate) 3371 Values[i] = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT), 3372 Values[i]); 3373 } 3374 } else { 3375 for (unsigned i = 0; i != NumValues; ++i) { 3376 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3377 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3378 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3379 Values[i] = DAG.getNode( 3380 OpCode, getCurSDLoc(), 3381 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3382 } 3383 } 3384 3385 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3386 DAG.getVTList(ValueVTs), Values)); 3387 } 3388 3389 void SelectionDAGBuilder::visitTrunc(const User &I) { 3390 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3391 SDValue N = getValue(I.getOperand(0)); 3392 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3393 I.getType()); 3394 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3395 } 3396 3397 void SelectionDAGBuilder::visitZExt(const User &I) { 3398 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3399 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3400 SDValue N = getValue(I.getOperand(0)); 3401 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3402 I.getType()); 3403 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3404 } 3405 3406 void SelectionDAGBuilder::visitSExt(const User &I) { 3407 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3408 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3409 SDValue N = getValue(I.getOperand(0)); 3410 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3411 I.getType()); 3412 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3413 } 3414 3415 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3416 // FPTrunc is never a no-op cast, no need to check 3417 SDValue N = getValue(I.getOperand(0)); 3418 SDLoc dl = getCurSDLoc(); 3419 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3420 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3421 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3422 DAG.getTargetConstant( 3423 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3424 } 3425 3426 void SelectionDAGBuilder::visitFPExt(const User &I) { 3427 // FPExt is never a no-op cast, no need to check 3428 SDValue N = getValue(I.getOperand(0)); 3429 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3430 I.getType()); 3431 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3432 } 3433 3434 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3435 // FPToUI is never a no-op cast, no need to check 3436 SDValue N = getValue(I.getOperand(0)); 3437 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3438 I.getType()); 3439 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3440 } 3441 3442 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3443 // FPToSI is never a no-op cast, no need to check 3444 SDValue N = getValue(I.getOperand(0)); 3445 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3446 I.getType()); 3447 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3448 } 3449 3450 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3451 // UIToFP is never a no-op cast, no need to check 3452 SDValue N = getValue(I.getOperand(0)); 3453 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3454 I.getType()); 3455 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3456 } 3457 3458 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3459 // SIToFP is never a no-op cast, no need to check 3460 SDValue N = getValue(I.getOperand(0)); 3461 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3462 I.getType()); 3463 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3464 } 3465 3466 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3467 // What to do depends on the size of the integer and the size of the pointer. 3468 // We can either truncate, zero extend, or no-op, accordingly. 3469 SDValue N = getValue(I.getOperand(0)); 3470 auto &TLI = DAG.getTargetLoweringInfo(); 3471 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3472 I.getType()); 3473 EVT PtrMemVT = 3474 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3475 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3476 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3477 setValue(&I, N); 3478 } 3479 3480 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3481 // What to do depends on the size of the integer and the size of the pointer. 3482 // We can either truncate, zero extend, or no-op, accordingly. 3483 SDValue N = getValue(I.getOperand(0)); 3484 auto &TLI = DAG.getTargetLoweringInfo(); 3485 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3486 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3487 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3488 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3489 setValue(&I, N); 3490 } 3491 3492 void SelectionDAGBuilder::visitBitCast(const User &I) { 3493 SDValue N = getValue(I.getOperand(0)); 3494 SDLoc dl = getCurSDLoc(); 3495 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3496 I.getType()); 3497 3498 // BitCast assures us that source and destination are the same size so this is 3499 // either a BITCAST or a no-op. 3500 if (DestVT != N.getValueType()) 3501 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3502 DestVT, N)); // convert types. 3503 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3504 // might fold any kind of constant expression to an integer constant and that 3505 // is not what we are looking for. Only recognize a bitcast of a genuine 3506 // constant integer as an opaque constant. 3507 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3508 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3509 /*isOpaque*/true)); 3510 else 3511 setValue(&I, N); // noop cast. 3512 } 3513 3514 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3515 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3516 const Value *SV = I.getOperand(0); 3517 SDValue N = getValue(SV); 3518 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3519 3520 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3521 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3522 3523 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3524 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3525 3526 setValue(&I, N); 3527 } 3528 3529 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3530 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3531 SDValue InVec = getValue(I.getOperand(0)); 3532 SDValue InVal = getValue(I.getOperand(1)); 3533 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3534 TLI.getVectorIdxTy(DAG.getDataLayout())); 3535 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3536 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3537 InVec, InVal, InIdx)); 3538 } 3539 3540 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3541 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3542 SDValue InVec = getValue(I.getOperand(0)); 3543 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3544 TLI.getVectorIdxTy(DAG.getDataLayout())); 3545 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3546 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3547 InVec, InIdx)); 3548 } 3549 3550 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3551 SDValue Src1 = getValue(I.getOperand(0)); 3552 SDValue Src2 = getValue(I.getOperand(1)); 3553 ArrayRef<int> Mask; 3554 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3555 Mask = SVI->getShuffleMask(); 3556 else 3557 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3558 SDLoc DL = getCurSDLoc(); 3559 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3560 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3561 EVT SrcVT = Src1.getValueType(); 3562 3563 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3564 VT.isScalableVector()) { 3565 // Canonical splat form of first element of first input vector. 3566 SDValue FirstElt = 3567 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3568 DAG.getVectorIdxConstant(0, DL)); 3569 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3570 return; 3571 } 3572 3573 // For now, we only handle splats for scalable vectors. 3574 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3575 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3576 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3577 3578 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3579 unsigned MaskNumElts = Mask.size(); 3580 3581 if (SrcNumElts == MaskNumElts) { 3582 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3583 return; 3584 } 3585 3586 // Normalize the shuffle vector since mask and vector length don't match. 3587 if (SrcNumElts < MaskNumElts) { 3588 // Mask is longer than the source vectors. We can use concatenate vector to 3589 // make the mask and vectors lengths match. 3590 3591 if (MaskNumElts % SrcNumElts == 0) { 3592 // Mask length is a multiple of the source vector length. 3593 // Check if the shuffle is some kind of concatenation of the input 3594 // vectors. 3595 unsigned NumConcat = MaskNumElts / SrcNumElts; 3596 bool IsConcat = true; 3597 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3598 for (unsigned i = 0; i != MaskNumElts; ++i) { 3599 int Idx = Mask[i]; 3600 if (Idx < 0) 3601 continue; 3602 // Ensure the indices in each SrcVT sized piece are sequential and that 3603 // the same source is used for the whole piece. 3604 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3605 (ConcatSrcs[i / SrcNumElts] >= 0 && 3606 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3607 IsConcat = false; 3608 break; 3609 } 3610 // Remember which source this index came from. 3611 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3612 } 3613 3614 // The shuffle is concatenating multiple vectors together. Just emit 3615 // a CONCAT_VECTORS operation. 3616 if (IsConcat) { 3617 SmallVector<SDValue, 8> ConcatOps; 3618 for (auto Src : ConcatSrcs) { 3619 if (Src < 0) 3620 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3621 else if (Src == 0) 3622 ConcatOps.push_back(Src1); 3623 else 3624 ConcatOps.push_back(Src2); 3625 } 3626 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3627 return; 3628 } 3629 } 3630 3631 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3632 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3633 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3634 PaddedMaskNumElts); 3635 3636 // Pad both vectors with undefs to make them the same length as the mask. 3637 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3638 3639 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3640 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3641 MOps1[0] = Src1; 3642 MOps2[0] = Src2; 3643 3644 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3645 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3646 3647 // Readjust mask for new input vector length. 3648 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3649 for (unsigned i = 0; i != MaskNumElts; ++i) { 3650 int Idx = Mask[i]; 3651 if (Idx >= (int)SrcNumElts) 3652 Idx -= SrcNumElts - PaddedMaskNumElts; 3653 MappedOps[i] = Idx; 3654 } 3655 3656 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3657 3658 // If the concatenated vector was padded, extract a subvector with the 3659 // correct number of elements. 3660 if (MaskNumElts != PaddedMaskNumElts) 3661 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3662 DAG.getVectorIdxConstant(0, DL)); 3663 3664 setValue(&I, Result); 3665 return; 3666 } 3667 3668 if (SrcNumElts > MaskNumElts) { 3669 // Analyze the access pattern of the vector to see if we can extract 3670 // two subvectors and do the shuffle. 3671 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3672 bool CanExtract = true; 3673 for (int Idx : Mask) { 3674 unsigned Input = 0; 3675 if (Idx < 0) 3676 continue; 3677 3678 if (Idx >= (int)SrcNumElts) { 3679 Input = 1; 3680 Idx -= SrcNumElts; 3681 } 3682 3683 // If all the indices come from the same MaskNumElts sized portion of 3684 // the sources we can use extract. Also make sure the extract wouldn't 3685 // extract past the end of the source. 3686 int NewStartIdx = alignDown(Idx, MaskNumElts); 3687 if (NewStartIdx + MaskNumElts > SrcNumElts || 3688 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3689 CanExtract = false; 3690 // Make sure we always update StartIdx as we use it to track if all 3691 // elements are undef. 3692 StartIdx[Input] = NewStartIdx; 3693 } 3694 3695 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3696 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3697 return; 3698 } 3699 if (CanExtract) { 3700 // Extract appropriate subvector and generate a vector shuffle 3701 for (unsigned Input = 0; Input < 2; ++Input) { 3702 SDValue &Src = Input == 0 ? Src1 : Src2; 3703 if (StartIdx[Input] < 0) 3704 Src = DAG.getUNDEF(VT); 3705 else { 3706 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3707 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3708 } 3709 } 3710 3711 // Calculate new mask. 3712 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3713 for (int &Idx : MappedOps) { 3714 if (Idx >= (int)SrcNumElts) 3715 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3716 else if (Idx >= 0) 3717 Idx -= StartIdx[0]; 3718 } 3719 3720 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3721 return; 3722 } 3723 } 3724 3725 // We can't use either concat vectors or extract subvectors so fall back to 3726 // replacing the shuffle with extract and build vector. 3727 // to insert and build vector. 3728 EVT EltVT = VT.getVectorElementType(); 3729 SmallVector<SDValue,8> Ops; 3730 for (int Idx : Mask) { 3731 SDValue Res; 3732 3733 if (Idx < 0) { 3734 Res = DAG.getUNDEF(EltVT); 3735 } else { 3736 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3737 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3738 3739 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3740 DAG.getVectorIdxConstant(Idx, DL)); 3741 } 3742 3743 Ops.push_back(Res); 3744 } 3745 3746 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3747 } 3748 3749 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3750 ArrayRef<unsigned> Indices; 3751 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3752 Indices = IV->getIndices(); 3753 else 3754 Indices = cast<ConstantExpr>(&I)->getIndices(); 3755 3756 const Value *Op0 = I.getOperand(0); 3757 const Value *Op1 = I.getOperand(1); 3758 Type *AggTy = I.getType(); 3759 Type *ValTy = Op1->getType(); 3760 bool IntoUndef = isa<UndefValue>(Op0); 3761 bool FromUndef = isa<UndefValue>(Op1); 3762 3763 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3764 3765 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3766 SmallVector<EVT, 4> AggValueVTs; 3767 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3768 SmallVector<EVT, 4> ValValueVTs; 3769 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3770 3771 unsigned NumAggValues = AggValueVTs.size(); 3772 unsigned NumValValues = ValValueVTs.size(); 3773 SmallVector<SDValue, 4> Values(NumAggValues); 3774 3775 // Ignore an insertvalue that produces an empty object 3776 if (!NumAggValues) { 3777 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3778 return; 3779 } 3780 3781 SDValue Agg = getValue(Op0); 3782 unsigned i = 0; 3783 // Copy the beginning value(s) from the original aggregate. 3784 for (; i != LinearIndex; ++i) 3785 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3786 SDValue(Agg.getNode(), Agg.getResNo() + i); 3787 // Copy values from the inserted value(s). 3788 if (NumValValues) { 3789 SDValue Val = getValue(Op1); 3790 for (; i != LinearIndex + NumValValues; ++i) 3791 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3792 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3793 } 3794 // Copy remaining value(s) from the original aggregate. 3795 for (; i != NumAggValues; ++i) 3796 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3797 SDValue(Agg.getNode(), Agg.getResNo() + i); 3798 3799 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3800 DAG.getVTList(AggValueVTs), Values)); 3801 } 3802 3803 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3804 ArrayRef<unsigned> Indices; 3805 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3806 Indices = EV->getIndices(); 3807 else 3808 Indices = cast<ConstantExpr>(&I)->getIndices(); 3809 3810 const Value *Op0 = I.getOperand(0); 3811 Type *AggTy = Op0->getType(); 3812 Type *ValTy = I.getType(); 3813 bool OutOfUndef = isa<UndefValue>(Op0); 3814 3815 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3816 3817 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3818 SmallVector<EVT, 4> ValValueVTs; 3819 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3820 3821 unsigned NumValValues = ValValueVTs.size(); 3822 3823 // Ignore a extractvalue that produces an empty object 3824 if (!NumValValues) { 3825 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3826 return; 3827 } 3828 3829 SmallVector<SDValue, 4> Values(NumValValues); 3830 3831 SDValue Agg = getValue(Op0); 3832 // Copy out the selected value(s). 3833 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3834 Values[i - LinearIndex] = 3835 OutOfUndef ? 3836 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3837 SDValue(Agg.getNode(), Agg.getResNo() + i); 3838 3839 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3840 DAG.getVTList(ValValueVTs), Values)); 3841 } 3842 3843 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3844 Value *Op0 = I.getOperand(0); 3845 // Note that the pointer operand may be a vector of pointers. Take the scalar 3846 // element which holds a pointer. 3847 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3848 SDValue N = getValue(Op0); 3849 SDLoc dl = getCurSDLoc(); 3850 auto &TLI = DAG.getTargetLoweringInfo(); 3851 3852 // Normalize Vector GEP - all scalar operands should be converted to the 3853 // splat vector. 3854 bool IsVectorGEP = I.getType()->isVectorTy(); 3855 ElementCount VectorElementCount = 3856 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 3857 : ElementCount::getFixed(0); 3858 3859 if (IsVectorGEP && !N.getValueType().isVector()) { 3860 LLVMContext &Context = *DAG.getContext(); 3861 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 3862 if (VectorElementCount.isScalable()) 3863 N = DAG.getSplatVector(VT, dl, N); 3864 else 3865 N = DAG.getSplatBuildVector(VT, dl, N); 3866 } 3867 3868 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3869 GTI != E; ++GTI) { 3870 const Value *Idx = GTI.getOperand(); 3871 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3872 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3873 if (Field) { 3874 // N = N + Offset 3875 uint64_t Offset = 3876 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field); 3877 3878 // In an inbounds GEP with an offset that is nonnegative even when 3879 // interpreted as signed, assume there is no unsigned overflow. 3880 SDNodeFlags Flags; 3881 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3882 Flags.setNoUnsignedWrap(true); 3883 3884 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3885 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3886 } 3887 } else { 3888 // IdxSize is the width of the arithmetic according to IR semantics. 3889 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 3890 // (and fix up the result later). 3891 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3892 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3893 TypeSize ElementSize = 3894 DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType()); 3895 // We intentionally mask away the high bits here; ElementSize may not 3896 // fit in IdxTy. 3897 APInt ElementMul(IdxSize, ElementSize.getKnownMinSize()); 3898 bool ElementScalable = ElementSize.isScalable(); 3899 3900 // If this is a scalar constant or a splat vector of constants, 3901 // handle it quickly. 3902 const auto *C = dyn_cast<Constant>(Idx); 3903 if (C && isa<VectorType>(C->getType())) 3904 C = C->getSplatValue(); 3905 3906 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 3907 if (CI && CI->isZero()) 3908 continue; 3909 if (CI && !ElementScalable) { 3910 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 3911 LLVMContext &Context = *DAG.getContext(); 3912 SDValue OffsVal; 3913 if (IsVectorGEP) 3914 OffsVal = DAG.getConstant( 3915 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 3916 else 3917 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 3918 3919 // In an inbounds GEP with an offset that is nonnegative even when 3920 // interpreted as signed, assume there is no unsigned overflow. 3921 SDNodeFlags Flags; 3922 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3923 Flags.setNoUnsignedWrap(true); 3924 3925 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3926 3927 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3928 continue; 3929 } 3930 3931 // N = N + Idx * ElementMul; 3932 SDValue IdxN = getValue(Idx); 3933 3934 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 3935 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 3936 VectorElementCount); 3937 if (VectorElementCount.isScalable()) 3938 IdxN = DAG.getSplatVector(VT, dl, IdxN); 3939 else 3940 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3941 } 3942 3943 // If the index is smaller or larger than intptr_t, truncate or extend 3944 // it. 3945 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3946 3947 if (ElementScalable) { 3948 EVT VScaleTy = N.getValueType().getScalarType(); 3949 SDValue VScale = DAG.getNode( 3950 ISD::VSCALE, dl, VScaleTy, 3951 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 3952 if (IsVectorGEP) 3953 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 3954 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 3955 } else { 3956 // If this is a multiply by a power of two, turn it into a shl 3957 // immediately. This is a very common case. 3958 if (ElementMul != 1) { 3959 if (ElementMul.isPowerOf2()) { 3960 unsigned Amt = ElementMul.logBase2(); 3961 IdxN = DAG.getNode(ISD::SHL, dl, 3962 N.getValueType(), IdxN, 3963 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3964 } else { 3965 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 3966 IdxN.getValueType()); 3967 IdxN = DAG.getNode(ISD::MUL, dl, 3968 N.getValueType(), IdxN, Scale); 3969 } 3970 } 3971 } 3972 3973 N = DAG.getNode(ISD::ADD, dl, 3974 N.getValueType(), N, IdxN); 3975 } 3976 } 3977 3978 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 3979 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 3980 if (IsVectorGEP) { 3981 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 3982 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 3983 } 3984 3985 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 3986 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 3987 3988 setValue(&I, N); 3989 } 3990 3991 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3992 // If this is a fixed sized alloca in the entry block of the function, 3993 // allocate it statically on the stack. 3994 if (FuncInfo.StaticAllocaMap.count(&I)) 3995 return; // getValue will auto-populate this. 3996 3997 SDLoc dl = getCurSDLoc(); 3998 Type *Ty = I.getAllocatedType(); 3999 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4000 auto &DL = DAG.getDataLayout(); 4001 TypeSize TySize = DL.getTypeAllocSize(Ty); 4002 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 4003 4004 SDValue AllocSize = getValue(I.getArraySize()); 4005 4006 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 4007 if (AllocSize.getValueType() != IntPtr) 4008 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 4009 4010 if (TySize.isScalable()) 4011 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4012 DAG.getVScale(dl, IntPtr, 4013 APInt(IntPtr.getScalarSizeInBits(), 4014 TySize.getKnownMinValue()))); 4015 else 4016 AllocSize = 4017 DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4018 DAG.getConstant(TySize.getFixedValue(), dl, IntPtr)); 4019 4020 // Handle alignment. If the requested alignment is less than or equal to 4021 // the stack alignment, ignore it. If the size is greater than or equal to 4022 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 4023 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 4024 if (*Alignment <= StackAlign) 4025 Alignment = None; 4026 4027 const uint64_t StackAlignMask = StackAlign.value() - 1U; 4028 // Round the size of the allocation up to the stack alignment size 4029 // by add SA-1 to the size. This doesn't overflow because we're computing 4030 // an address inside an alloca. 4031 SDNodeFlags Flags; 4032 Flags.setNoUnsignedWrap(true); 4033 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4034 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 4035 4036 // Mask out the low bits for alignment purposes. 4037 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4038 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 4039 4040 SDValue Ops[] = { 4041 getRoot(), AllocSize, 4042 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 4043 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4044 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4045 setValue(&I, DSA); 4046 DAG.setRoot(DSA.getValue(1)); 4047 4048 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4049 } 4050 4051 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4052 if (I.isAtomic()) 4053 return visitAtomicLoad(I); 4054 4055 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4056 const Value *SV = I.getOperand(0); 4057 if (TLI.supportSwiftError()) { 4058 // Swifterror values can come from either a function parameter with 4059 // swifterror attribute or an alloca with swifterror attribute. 4060 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4061 if (Arg->hasSwiftErrorAttr()) 4062 return visitLoadFromSwiftError(I); 4063 } 4064 4065 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4066 if (Alloca->isSwiftError()) 4067 return visitLoadFromSwiftError(I); 4068 } 4069 } 4070 4071 SDValue Ptr = getValue(SV); 4072 4073 Type *Ty = I.getType(); 4074 Align Alignment = I.getAlign(); 4075 4076 AAMDNodes AAInfo = I.getAAMetadata(); 4077 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4078 4079 SmallVector<EVT, 4> ValueVTs, MemVTs; 4080 SmallVector<uint64_t, 4> Offsets; 4081 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4082 unsigned NumValues = ValueVTs.size(); 4083 if (NumValues == 0) 4084 return; 4085 4086 bool isVolatile = I.isVolatile(); 4087 4088 SDValue Root; 4089 bool ConstantMemory = false; 4090 if (isVolatile) 4091 // Serialize volatile loads with other side effects. 4092 Root = getRoot(); 4093 else if (NumValues > MaxParallelChains) 4094 Root = getMemoryRoot(); 4095 else if (AA && 4096 AA->pointsToConstantMemory(MemoryLocation( 4097 SV, 4098 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4099 AAInfo))) { 4100 // Do not serialize (non-volatile) loads of constant memory with anything. 4101 Root = DAG.getEntryNode(); 4102 ConstantMemory = true; 4103 } else { 4104 // Do not serialize non-volatile loads against each other. 4105 Root = DAG.getRoot(); 4106 } 4107 4108 SDLoc dl = getCurSDLoc(); 4109 4110 if (isVolatile) 4111 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4112 4113 // An aggregate load cannot wrap around the address space, so offsets to its 4114 // parts don't wrap either. 4115 SDNodeFlags Flags; 4116 Flags.setNoUnsignedWrap(true); 4117 4118 SmallVector<SDValue, 4> Values(NumValues); 4119 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4120 EVT PtrVT = Ptr.getValueType(); 4121 4122 MachineMemOperand::Flags MMOFlags 4123 = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4124 4125 unsigned ChainI = 0; 4126 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4127 // Serializing loads here may result in excessive register pressure, and 4128 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4129 // could recover a bit by hoisting nodes upward in the chain by recognizing 4130 // they are side-effect free or do not alias. The optimizer should really 4131 // avoid this case by converting large object/array copies to llvm.memcpy 4132 // (MaxParallelChains should always remain as failsafe). 4133 if (ChainI == MaxParallelChains) { 4134 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4135 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4136 makeArrayRef(Chains.data(), ChainI)); 4137 Root = Chain; 4138 ChainI = 0; 4139 } 4140 SDValue A = DAG.getNode(ISD::ADD, dl, 4141 PtrVT, Ptr, 4142 DAG.getConstant(Offsets[i], dl, PtrVT), 4143 Flags); 4144 4145 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4146 MachinePointerInfo(SV, Offsets[i]), Alignment, 4147 MMOFlags, AAInfo, Ranges); 4148 Chains[ChainI] = L.getValue(1); 4149 4150 if (MemVTs[i] != ValueVTs[i]) 4151 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4152 4153 Values[i] = L; 4154 } 4155 4156 if (!ConstantMemory) { 4157 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4158 makeArrayRef(Chains.data(), ChainI)); 4159 if (isVolatile) 4160 DAG.setRoot(Chain); 4161 else 4162 PendingLoads.push_back(Chain); 4163 } 4164 4165 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4166 DAG.getVTList(ValueVTs), Values)); 4167 } 4168 4169 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4170 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4171 "call visitStoreToSwiftError when backend supports swifterror"); 4172 4173 SmallVector<EVT, 4> ValueVTs; 4174 SmallVector<uint64_t, 4> Offsets; 4175 const Value *SrcV = I.getOperand(0); 4176 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4177 SrcV->getType(), ValueVTs, &Offsets); 4178 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4179 "expect a single EVT for swifterror"); 4180 4181 SDValue Src = getValue(SrcV); 4182 // Create a virtual register, then update the virtual register. 4183 Register VReg = 4184 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4185 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4186 // Chain can be getRoot or getControlRoot. 4187 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4188 SDValue(Src.getNode(), Src.getResNo())); 4189 DAG.setRoot(CopyNode); 4190 } 4191 4192 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4193 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4194 "call visitLoadFromSwiftError when backend supports swifterror"); 4195 4196 assert(!I.isVolatile() && 4197 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4198 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4199 "Support volatile, non temporal, invariant for load_from_swift_error"); 4200 4201 const Value *SV = I.getOperand(0); 4202 Type *Ty = I.getType(); 4203 assert( 4204 (!AA || 4205 !AA->pointsToConstantMemory(MemoryLocation( 4206 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4207 I.getAAMetadata()))) && 4208 "load_from_swift_error should not be constant memory"); 4209 4210 SmallVector<EVT, 4> ValueVTs; 4211 SmallVector<uint64_t, 4> Offsets; 4212 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4213 ValueVTs, &Offsets); 4214 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4215 "expect a single EVT for swifterror"); 4216 4217 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4218 SDValue L = DAG.getCopyFromReg( 4219 getRoot(), getCurSDLoc(), 4220 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4221 4222 setValue(&I, L); 4223 } 4224 4225 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4226 if (I.isAtomic()) 4227 return visitAtomicStore(I); 4228 4229 const Value *SrcV = I.getOperand(0); 4230 const Value *PtrV = I.getOperand(1); 4231 4232 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4233 if (TLI.supportSwiftError()) { 4234 // Swifterror values can come from either a function parameter with 4235 // swifterror attribute or an alloca with swifterror attribute. 4236 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4237 if (Arg->hasSwiftErrorAttr()) 4238 return visitStoreToSwiftError(I); 4239 } 4240 4241 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4242 if (Alloca->isSwiftError()) 4243 return visitStoreToSwiftError(I); 4244 } 4245 } 4246 4247 SmallVector<EVT, 4> ValueVTs, MemVTs; 4248 SmallVector<uint64_t, 4> Offsets; 4249 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4250 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4251 unsigned NumValues = ValueVTs.size(); 4252 if (NumValues == 0) 4253 return; 4254 4255 // Get the lowered operands. Note that we do this after 4256 // checking if NumResults is zero, because with zero results 4257 // the operands won't have values in the map. 4258 SDValue Src = getValue(SrcV); 4259 SDValue Ptr = getValue(PtrV); 4260 4261 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4262 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4263 SDLoc dl = getCurSDLoc(); 4264 Align Alignment = I.getAlign(); 4265 AAMDNodes AAInfo = I.getAAMetadata(); 4266 4267 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4268 4269 // An aggregate load cannot wrap around the address space, so offsets to its 4270 // parts don't wrap either. 4271 SDNodeFlags Flags; 4272 Flags.setNoUnsignedWrap(true); 4273 4274 unsigned ChainI = 0; 4275 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4276 // See visitLoad comments. 4277 if (ChainI == MaxParallelChains) { 4278 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4279 makeArrayRef(Chains.data(), ChainI)); 4280 Root = Chain; 4281 ChainI = 0; 4282 } 4283 SDValue Add = 4284 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags); 4285 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4286 if (MemVTs[i] != ValueVTs[i]) 4287 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4288 SDValue St = 4289 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4290 Alignment, MMOFlags, AAInfo); 4291 Chains[ChainI] = St; 4292 } 4293 4294 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4295 makeArrayRef(Chains.data(), ChainI)); 4296 DAG.setRoot(StoreNode); 4297 } 4298 4299 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4300 bool IsCompressing) { 4301 SDLoc sdl = getCurSDLoc(); 4302 4303 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4304 MaybeAlign &Alignment) { 4305 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4306 Src0 = I.getArgOperand(0); 4307 Ptr = I.getArgOperand(1); 4308 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue(); 4309 Mask = I.getArgOperand(3); 4310 }; 4311 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4312 MaybeAlign &Alignment) { 4313 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4314 Src0 = I.getArgOperand(0); 4315 Ptr = I.getArgOperand(1); 4316 Mask = I.getArgOperand(2); 4317 Alignment = None; 4318 }; 4319 4320 Value *PtrOperand, *MaskOperand, *Src0Operand; 4321 MaybeAlign Alignment; 4322 if (IsCompressing) 4323 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4324 else 4325 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4326 4327 SDValue Ptr = getValue(PtrOperand); 4328 SDValue Src0 = getValue(Src0Operand); 4329 SDValue Mask = getValue(MaskOperand); 4330 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4331 4332 EVT VT = Src0.getValueType(); 4333 if (!Alignment) 4334 Alignment = DAG.getEVTAlign(VT); 4335 4336 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4337 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4338 MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata()); 4339 SDValue StoreNode = 4340 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4341 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4342 DAG.setRoot(StoreNode); 4343 setValue(&I, StoreNode); 4344 } 4345 4346 // Get a uniform base for the Gather/Scatter intrinsic. 4347 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4348 // We try to represent it as a base pointer + vector of indices. 4349 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4350 // The first operand of the GEP may be a single pointer or a vector of pointers 4351 // Example: 4352 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4353 // or 4354 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4355 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4356 // 4357 // When the first GEP operand is a single pointer - it is the uniform base we 4358 // are looking for. If first operand of the GEP is a splat vector - we 4359 // extract the splat value and use it as a uniform base. 4360 // In all other cases the function returns 'false'. 4361 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4362 ISD::MemIndexType &IndexType, SDValue &Scale, 4363 SelectionDAGBuilder *SDB, const BasicBlock *CurBB) { 4364 SelectionDAG& DAG = SDB->DAG; 4365 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4366 const DataLayout &DL = DAG.getDataLayout(); 4367 4368 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type"); 4369 4370 // Handle splat constant pointer. 4371 if (auto *C = dyn_cast<Constant>(Ptr)) { 4372 C = C->getSplatValue(); 4373 if (!C) 4374 return false; 4375 4376 Base = SDB->getValue(C); 4377 4378 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 4379 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4380 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4381 IndexType = ISD::SIGNED_SCALED; 4382 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4383 return true; 4384 } 4385 4386 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4387 if (!GEP || GEP->getParent() != CurBB) 4388 return false; 4389 4390 if (GEP->getNumOperands() != 2) 4391 return false; 4392 4393 const Value *BasePtr = GEP->getPointerOperand(); 4394 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4395 4396 // Make sure the base is scalar and the index is a vector. 4397 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4398 return false; 4399 4400 Base = SDB->getValue(BasePtr); 4401 Index = SDB->getValue(IndexVal); 4402 IndexType = ISD::SIGNED_SCALED; 4403 Scale = DAG.getTargetConstant( 4404 DL.getTypeAllocSize(GEP->getResultElementType()), 4405 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4406 return true; 4407 } 4408 4409 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4410 SDLoc sdl = getCurSDLoc(); 4411 4412 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4413 const Value *Ptr = I.getArgOperand(1); 4414 SDValue Src0 = getValue(I.getArgOperand(0)); 4415 SDValue Mask = getValue(I.getArgOperand(3)); 4416 EVT VT = Src0.getValueType(); 4417 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4418 ->getMaybeAlignValue() 4419 .getValueOr(DAG.getEVTAlign(VT.getScalarType())); 4420 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4421 4422 SDValue Base; 4423 SDValue Index; 4424 ISD::MemIndexType IndexType; 4425 SDValue Scale; 4426 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4427 I.getParent()); 4428 4429 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4430 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4431 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4432 // TODO: Make MachineMemOperands aware of scalable 4433 // vectors. 4434 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata()); 4435 if (!UniformBase) { 4436 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4437 Index = getValue(Ptr); 4438 IndexType = ISD::SIGNED_UNSCALED; 4439 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4440 } 4441 4442 EVT IdxVT = Index.getValueType(); 4443 EVT EltTy = IdxVT.getVectorElementType(); 4444 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4445 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4446 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4447 } 4448 4449 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4450 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4451 Ops, MMO, IndexType, false); 4452 DAG.setRoot(Scatter); 4453 setValue(&I, Scatter); 4454 } 4455 4456 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4457 SDLoc sdl = getCurSDLoc(); 4458 4459 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4460 MaybeAlign &Alignment) { 4461 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4462 Ptr = I.getArgOperand(0); 4463 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue(); 4464 Mask = I.getArgOperand(2); 4465 Src0 = I.getArgOperand(3); 4466 }; 4467 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4468 MaybeAlign &Alignment) { 4469 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4470 Ptr = I.getArgOperand(0); 4471 Alignment = None; 4472 Mask = I.getArgOperand(1); 4473 Src0 = I.getArgOperand(2); 4474 }; 4475 4476 Value *PtrOperand, *MaskOperand, *Src0Operand; 4477 MaybeAlign Alignment; 4478 if (IsExpanding) 4479 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4480 else 4481 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4482 4483 SDValue Ptr = getValue(PtrOperand); 4484 SDValue Src0 = getValue(Src0Operand); 4485 SDValue Mask = getValue(MaskOperand); 4486 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4487 4488 EVT VT = Src0.getValueType(); 4489 if (!Alignment) 4490 Alignment = DAG.getEVTAlign(VT); 4491 4492 AAMDNodes AAInfo = I.getAAMetadata(); 4493 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4494 4495 // Do not serialize masked loads of constant memory with anything. 4496 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 4497 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4498 4499 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4500 4501 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4502 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4503 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 4504 4505 SDValue Load = 4506 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4507 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4508 if (AddToChain) 4509 PendingLoads.push_back(Load.getValue(1)); 4510 setValue(&I, Load); 4511 } 4512 4513 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4514 SDLoc sdl = getCurSDLoc(); 4515 4516 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4517 const Value *Ptr = I.getArgOperand(0); 4518 SDValue Src0 = getValue(I.getArgOperand(3)); 4519 SDValue Mask = getValue(I.getArgOperand(2)); 4520 4521 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4522 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4523 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 4524 ->getMaybeAlignValue() 4525 .getValueOr(DAG.getEVTAlign(VT.getScalarType())); 4526 4527 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4528 4529 SDValue Root = DAG.getRoot(); 4530 SDValue Base; 4531 SDValue Index; 4532 ISD::MemIndexType IndexType; 4533 SDValue Scale; 4534 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4535 I.getParent()); 4536 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4537 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4538 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4539 // TODO: Make MachineMemOperands aware of scalable 4540 // vectors. 4541 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges); 4542 4543 if (!UniformBase) { 4544 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4545 Index = getValue(Ptr); 4546 IndexType = ISD::SIGNED_UNSCALED; 4547 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4548 } 4549 4550 EVT IdxVT = Index.getValueType(); 4551 EVT EltTy = IdxVT.getVectorElementType(); 4552 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4553 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4554 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4555 } 4556 4557 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4558 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4559 Ops, MMO, IndexType, ISD::NON_EXTLOAD); 4560 4561 PendingLoads.push_back(Gather.getValue(1)); 4562 setValue(&I, Gather); 4563 } 4564 4565 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4566 SDLoc dl = getCurSDLoc(); 4567 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4568 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4569 SyncScope::ID SSID = I.getSyncScopeID(); 4570 4571 SDValue InChain = getRoot(); 4572 4573 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4574 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4575 4576 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4577 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4578 4579 MachineFunction &MF = DAG.getMachineFunction(); 4580 MachineMemOperand *MMO = MF.getMachineMemOperand( 4581 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4582 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, 4583 FailureOrdering); 4584 4585 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4586 dl, MemVT, VTs, InChain, 4587 getValue(I.getPointerOperand()), 4588 getValue(I.getCompareOperand()), 4589 getValue(I.getNewValOperand()), MMO); 4590 4591 SDValue OutChain = L.getValue(2); 4592 4593 setValue(&I, L); 4594 DAG.setRoot(OutChain); 4595 } 4596 4597 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4598 SDLoc dl = getCurSDLoc(); 4599 ISD::NodeType NT; 4600 switch (I.getOperation()) { 4601 default: llvm_unreachable("Unknown atomicrmw operation"); 4602 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4603 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4604 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4605 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4606 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4607 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4608 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4609 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4610 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4611 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4612 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4613 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4614 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4615 } 4616 AtomicOrdering Ordering = I.getOrdering(); 4617 SyncScope::ID SSID = I.getSyncScopeID(); 4618 4619 SDValue InChain = getRoot(); 4620 4621 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4622 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4623 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4624 4625 MachineFunction &MF = DAG.getMachineFunction(); 4626 MachineMemOperand *MMO = MF.getMachineMemOperand( 4627 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4628 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); 4629 4630 SDValue L = 4631 DAG.getAtomic(NT, dl, MemVT, InChain, 4632 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4633 MMO); 4634 4635 SDValue OutChain = L.getValue(1); 4636 4637 setValue(&I, L); 4638 DAG.setRoot(OutChain); 4639 } 4640 4641 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4642 SDLoc dl = getCurSDLoc(); 4643 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4644 SDValue Ops[3]; 4645 Ops[0] = getRoot(); 4646 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4647 TLI.getFenceOperandTy(DAG.getDataLayout())); 4648 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4649 TLI.getFenceOperandTy(DAG.getDataLayout())); 4650 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4651 } 4652 4653 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4654 SDLoc dl = getCurSDLoc(); 4655 AtomicOrdering Order = I.getOrdering(); 4656 SyncScope::ID SSID = I.getSyncScopeID(); 4657 4658 SDValue InChain = getRoot(); 4659 4660 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4661 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4662 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4663 4664 if (!TLI.supportsUnalignedAtomics() && 4665 I.getAlignment() < MemVT.getSizeInBits() / 8) 4666 report_fatal_error("Cannot generate unaligned atomic load"); 4667 4668 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4669 4670 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4671 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4672 I.getAlign(), AAMDNodes(), nullptr, SSID, Order); 4673 4674 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4675 4676 SDValue Ptr = getValue(I.getPointerOperand()); 4677 4678 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4679 // TODO: Once this is better exercised by tests, it should be merged with 4680 // the normal path for loads to prevent future divergence. 4681 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4682 if (MemVT != VT) 4683 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4684 4685 setValue(&I, L); 4686 SDValue OutChain = L.getValue(1); 4687 if (!I.isUnordered()) 4688 DAG.setRoot(OutChain); 4689 else 4690 PendingLoads.push_back(OutChain); 4691 return; 4692 } 4693 4694 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4695 Ptr, MMO); 4696 4697 SDValue OutChain = L.getValue(1); 4698 if (MemVT != VT) 4699 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4700 4701 setValue(&I, L); 4702 DAG.setRoot(OutChain); 4703 } 4704 4705 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4706 SDLoc dl = getCurSDLoc(); 4707 4708 AtomicOrdering Ordering = I.getOrdering(); 4709 SyncScope::ID SSID = I.getSyncScopeID(); 4710 4711 SDValue InChain = getRoot(); 4712 4713 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4714 EVT MemVT = 4715 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4716 4717 if (I.getAlignment() < MemVT.getSizeInBits() / 8) 4718 report_fatal_error("Cannot generate unaligned atomic store"); 4719 4720 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4721 4722 MachineFunction &MF = DAG.getMachineFunction(); 4723 MachineMemOperand *MMO = MF.getMachineMemOperand( 4724 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4725 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); 4726 4727 SDValue Val = getValue(I.getValueOperand()); 4728 if (Val.getValueType() != MemVT) 4729 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4730 SDValue Ptr = getValue(I.getPointerOperand()); 4731 4732 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4733 // TODO: Once this is better exercised by tests, it should be merged with 4734 // the normal path for stores to prevent future divergence. 4735 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4736 DAG.setRoot(S); 4737 return; 4738 } 4739 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4740 Ptr, Val, MMO); 4741 4742 4743 DAG.setRoot(OutChain); 4744 } 4745 4746 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4747 /// node. 4748 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4749 unsigned Intrinsic) { 4750 // Ignore the callsite's attributes. A specific call site may be marked with 4751 // readnone, but the lowering code will expect the chain based on the 4752 // definition. 4753 const Function *F = I.getCalledFunction(); 4754 bool HasChain = !F->doesNotAccessMemory(); 4755 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4756 4757 // Build the operand list. 4758 SmallVector<SDValue, 8> Ops; 4759 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4760 if (OnlyLoad) { 4761 // We don't need to serialize loads against other loads. 4762 Ops.push_back(DAG.getRoot()); 4763 } else { 4764 Ops.push_back(getRoot()); 4765 } 4766 } 4767 4768 // Info is set by getTgtMemInstrinsic 4769 TargetLowering::IntrinsicInfo Info; 4770 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4771 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4772 DAG.getMachineFunction(), 4773 Intrinsic); 4774 4775 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4776 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4777 Info.opc == ISD::INTRINSIC_W_CHAIN) 4778 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4779 TLI.getPointerTy(DAG.getDataLayout()))); 4780 4781 // Add all operands of the call to the operand list. 4782 for (unsigned i = 0, e = I.arg_size(); i != e; ++i) { 4783 const Value *Arg = I.getArgOperand(i); 4784 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4785 Ops.push_back(getValue(Arg)); 4786 continue; 4787 } 4788 4789 // Use TargetConstant instead of a regular constant for immarg. 4790 EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true); 4791 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4792 assert(CI->getBitWidth() <= 64 && 4793 "large intrinsic immediates not handled"); 4794 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4795 } else { 4796 Ops.push_back( 4797 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4798 } 4799 } 4800 4801 SmallVector<EVT, 4> ValueVTs; 4802 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4803 4804 if (HasChain) 4805 ValueVTs.push_back(MVT::Other); 4806 4807 SDVTList VTs = DAG.getVTList(ValueVTs); 4808 4809 // Propagate fast-math-flags from IR to node(s). 4810 SDNodeFlags Flags; 4811 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 4812 Flags.copyFMF(*FPMO); 4813 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 4814 4815 // Create the node. 4816 SDValue Result; 4817 if (IsTgtIntrinsic) { 4818 // This is target intrinsic that touches memory 4819 Result = 4820 DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, 4821 MachinePointerInfo(Info.ptrVal, Info.offset), 4822 Info.align, Info.flags, Info.size, 4823 I.getAAMetadata()); 4824 } else if (!HasChain) { 4825 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4826 } else if (!I.getType()->isVoidTy()) { 4827 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4828 } else { 4829 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4830 } 4831 4832 if (HasChain) { 4833 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4834 if (OnlyLoad) 4835 PendingLoads.push_back(Chain); 4836 else 4837 DAG.setRoot(Chain); 4838 } 4839 4840 if (!I.getType()->isVoidTy()) { 4841 if (!isa<VectorType>(I.getType())) 4842 Result = lowerRangeToAssertZExt(DAG, I, Result); 4843 4844 MaybeAlign Alignment = I.getRetAlign(); 4845 if (!Alignment) 4846 Alignment = F->getAttributes().getRetAlignment(); 4847 // Insert `assertalign` node if there's an alignment. 4848 if (InsertAssertAlign && Alignment) { 4849 Result = 4850 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 4851 } 4852 4853 setValue(&I, Result); 4854 } 4855 } 4856 4857 /// GetSignificand - Get the significand and build it into a floating-point 4858 /// number with exponent of 1: 4859 /// 4860 /// Op = (Op & 0x007fffff) | 0x3f800000; 4861 /// 4862 /// where Op is the hexadecimal representation of floating point value. 4863 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4864 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4865 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4866 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4867 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4868 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4869 } 4870 4871 /// GetExponent - Get the exponent: 4872 /// 4873 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4874 /// 4875 /// where Op is the hexadecimal representation of floating point value. 4876 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4877 const TargetLowering &TLI, const SDLoc &dl) { 4878 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4879 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4880 SDValue t1 = DAG.getNode( 4881 ISD::SRL, dl, MVT::i32, t0, 4882 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4883 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4884 DAG.getConstant(127, dl, MVT::i32)); 4885 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4886 } 4887 4888 /// getF32Constant - Get 32-bit floating point constant. 4889 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4890 const SDLoc &dl) { 4891 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4892 MVT::f32); 4893 } 4894 4895 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4896 SelectionDAG &DAG) { 4897 // TODO: What fast-math-flags should be set on the floating-point nodes? 4898 4899 // IntegerPartOfX = ((int32_t)(t0); 4900 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4901 4902 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4903 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4904 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4905 4906 // IntegerPartOfX <<= 23; 4907 IntegerPartOfX = DAG.getNode( 4908 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4909 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4910 DAG.getDataLayout()))); 4911 4912 SDValue TwoToFractionalPartOfX; 4913 if (LimitFloatPrecision <= 6) { 4914 // For floating-point precision of 6: 4915 // 4916 // TwoToFractionalPartOfX = 4917 // 0.997535578f + 4918 // (0.735607626f + 0.252464424f * x) * x; 4919 // 4920 // error 0.0144103317, which is 6 bits 4921 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4922 getF32Constant(DAG, 0x3e814304, dl)); 4923 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4924 getF32Constant(DAG, 0x3f3c50c8, dl)); 4925 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4926 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4927 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4928 } else if (LimitFloatPrecision <= 12) { 4929 // For floating-point precision of 12: 4930 // 4931 // TwoToFractionalPartOfX = 4932 // 0.999892986f + 4933 // (0.696457318f + 4934 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4935 // 4936 // error 0.000107046256, which is 13 to 14 bits 4937 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4938 getF32Constant(DAG, 0x3da235e3, dl)); 4939 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4940 getF32Constant(DAG, 0x3e65b8f3, dl)); 4941 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4942 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4943 getF32Constant(DAG, 0x3f324b07, dl)); 4944 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4945 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4946 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4947 } else { // LimitFloatPrecision <= 18 4948 // For floating-point precision of 18: 4949 // 4950 // TwoToFractionalPartOfX = 4951 // 0.999999982f + 4952 // (0.693148872f + 4953 // (0.240227044f + 4954 // (0.554906021e-1f + 4955 // (0.961591928e-2f + 4956 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4957 // error 2.47208000*10^(-7), which is better than 18 bits 4958 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4959 getF32Constant(DAG, 0x3924b03e, dl)); 4960 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4961 getF32Constant(DAG, 0x3ab24b87, dl)); 4962 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4963 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4964 getF32Constant(DAG, 0x3c1d8c17, dl)); 4965 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4966 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4967 getF32Constant(DAG, 0x3d634a1d, dl)); 4968 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4969 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4970 getF32Constant(DAG, 0x3e75fe14, dl)); 4971 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4972 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4973 getF32Constant(DAG, 0x3f317234, dl)); 4974 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4975 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4976 getF32Constant(DAG, 0x3f800000, dl)); 4977 } 4978 4979 // Add the exponent into the result in integer domain. 4980 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4981 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4982 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4983 } 4984 4985 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4986 /// limited-precision mode. 4987 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4988 const TargetLowering &TLI, SDNodeFlags Flags) { 4989 if (Op.getValueType() == MVT::f32 && 4990 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4991 4992 // Put the exponent in the right bit position for later addition to the 4993 // final result: 4994 // 4995 // t0 = Op * log2(e) 4996 4997 // TODO: What fast-math-flags should be set here? 4998 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4999 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5000 return getLimitedPrecisionExp2(t0, dl, DAG); 5001 } 5002 5003 // No special expansion. 5004 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 5005 } 5006 5007 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5008 /// limited-precision mode. 5009 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5010 const TargetLowering &TLI, SDNodeFlags Flags) { 5011 // TODO: What fast-math-flags should be set on the floating-point nodes? 5012 5013 if (Op.getValueType() == MVT::f32 && 5014 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5015 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5016 5017 // Scale the exponent by log(2). 5018 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5019 SDValue LogOfExponent = 5020 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5021 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5022 5023 // Get the significand and build it into a floating-point number with 5024 // exponent of 1. 5025 SDValue X = GetSignificand(DAG, Op1, dl); 5026 5027 SDValue LogOfMantissa; 5028 if (LimitFloatPrecision <= 6) { 5029 // For floating-point precision of 6: 5030 // 5031 // LogofMantissa = 5032 // -1.1609546f + 5033 // (1.4034025f - 0.23903021f * x) * x; 5034 // 5035 // error 0.0034276066, which is better than 8 bits 5036 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5037 getF32Constant(DAG, 0xbe74c456, dl)); 5038 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5039 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5040 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5041 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5042 getF32Constant(DAG, 0x3f949a29, dl)); 5043 } else if (LimitFloatPrecision <= 12) { 5044 // For floating-point precision of 12: 5045 // 5046 // LogOfMantissa = 5047 // -1.7417939f + 5048 // (2.8212026f + 5049 // (-1.4699568f + 5050 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5051 // 5052 // error 0.000061011436, which is 14 bits 5053 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5054 getF32Constant(DAG, 0xbd67b6d6, dl)); 5055 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5056 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5057 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5058 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5059 getF32Constant(DAG, 0x3fbc278b, dl)); 5060 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5061 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5062 getF32Constant(DAG, 0x40348e95, dl)); 5063 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5064 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5065 getF32Constant(DAG, 0x3fdef31a, dl)); 5066 } else { // LimitFloatPrecision <= 18 5067 // For floating-point precision of 18: 5068 // 5069 // LogOfMantissa = 5070 // -2.1072184f + 5071 // (4.2372794f + 5072 // (-3.7029485f + 5073 // (2.2781945f + 5074 // (-0.87823314f + 5075 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5076 // 5077 // error 0.0000023660568, which is better than 18 bits 5078 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5079 getF32Constant(DAG, 0xbc91e5ac, dl)); 5080 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5081 getF32Constant(DAG, 0x3e4350aa, dl)); 5082 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5083 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5084 getF32Constant(DAG, 0x3f60d3e3, dl)); 5085 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5086 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5087 getF32Constant(DAG, 0x4011cdf0, dl)); 5088 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5089 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5090 getF32Constant(DAG, 0x406cfd1c, dl)); 5091 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5092 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5093 getF32Constant(DAG, 0x408797cb, dl)); 5094 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5095 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5096 getF32Constant(DAG, 0x4006dcab, dl)); 5097 } 5098 5099 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5100 } 5101 5102 // No special expansion. 5103 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 5104 } 5105 5106 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5107 /// limited-precision mode. 5108 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5109 const TargetLowering &TLI, SDNodeFlags Flags) { 5110 // TODO: What fast-math-flags should be set on the floating-point nodes? 5111 5112 if (Op.getValueType() == MVT::f32 && 5113 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5114 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5115 5116 // Get the exponent. 5117 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5118 5119 // Get the significand and build it into a floating-point number with 5120 // exponent of 1. 5121 SDValue X = GetSignificand(DAG, Op1, dl); 5122 5123 // Different possible minimax approximations of significand in 5124 // floating-point for various degrees of accuracy over [1,2]. 5125 SDValue Log2ofMantissa; 5126 if (LimitFloatPrecision <= 6) { 5127 // For floating-point precision of 6: 5128 // 5129 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5130 // 5131 // error 0.0049451742, which is more than 7 bits 5132 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5133 getF32Constant(DAG, 0xbeb08fe0, dl)); 5134 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5135 getF32Constant(DAG, 0x40019463, dl)); 5136 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5137 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5138 getF32Constant(DAG, 0x3fd6633d, dl)); 5139 } else if (LimitFloatPrecision <= 12) { 5140 // For floating-point precision of 12: 5141 // 5142 // Log2ofMantissa = 5143 // -2.51285454f + 5144 // (4.07009056f + 5145 // (-2.12067489f + 5146 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5147 // 5148 // error 0.0000876136000, which is better than 13 bits 5149 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5150 getF32Constant(DAG, 0xbda7262e, dl)); 5151 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5152 getF32Constant(DAG, 0x3f25280b, dl)); 5153 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5154 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5155 getF32Constant(DAG, 0x4007b923, dl)); 5156 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5157 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5158 getF32Constant(DAG, 0x40823e2f, dl)); 5159 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5160 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5161 getF32Constant(DAG, 0x4020d29c, dl)); 5162 } else { // LimitFloatPrecision <= 18 5163 // For floating-point precision of 18: 5164 // 5165 // Log2ofMantissa = 5166 // -3.0400495f + 5167 // (6.1129976f + 5168 // (-5.3420409f + 5169 // (3.2865683f + 5170 // (-1.2669343f + 5171 // (0.27515199f - 5172 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5173 // 5174 // error 0.0000018516, which is better than 18 bits 5175 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5176 getF32Constant(DAG, 0xbcd2769e, dl)); 5177 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5178 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5179 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5180 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5181 getF32Constant(DAG, 0x3fa22ae7, dl)); 5182 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5183 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5184 getF32Constant(DAG, 0x40525723, dl)); 5185 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5186 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5187 getF32Constant(DAG, 0x40aaf200, dl)); 5188 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5189 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5190 getF32Constant(DAG, 0x40c39dad, dl)); 5191 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5192 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5193 getF32Constant(DAG, 0x4042902c, dl)); 5194 } 5195 5196 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5197 } 5198 5199 // No special expansion. 5200 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5201 } 5202 5203 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5204 /// limited-precision mode. 5205 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5206 const TargetLowering &TLI, SDNodeFlags Flags) { 5207 // TODO: What fast-math-flags should be set on the floating-point nodes? 5208 5209 if (Op.getValueType() == MVT::f32 && 5210 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5211 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5212 5213 // Scale the exponent by log10(2) [0.30102999f]. 5214 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5215 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5216 getF32Constant(DAG, 0x3e9a209a, dl)); 5217 5218 // Get the significand and build it into a floating-point number with 5219 // exponent of 1. 5220 SDValue X = GetSignificand(DAG, Op1, dl); 5221 5222 SDValue Log10ofMantissa; 5223 if (LimitFloatPrecision <= 6) { 5224 // For floating-point precision of 6: 5225 // 5226 // Log10ofMantissa = 5227 // -0.50419619f + 5228 // (0.60948995f - 0.10380950f * x) * x; 5229 // 5230 // error 0.0014886165, which is 6 bits 5231 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5232 getF32Constant(DAG, 0xbdd49a13, dl)); 5233 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5234 getF32Constant(DAG, 0x3f1c0789, dl)); 5235 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5236 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5237 getF32Constant(DAG, 0x3f011300, dl)); 5238 } else if (LimitFloatPrecision <= 12) { 5239 // For floating-point precision of 12: 5240 // 5241 // Log10ofMantissa = 5242 // -0.64831180f + 5243 // (0.91751397f + 5244 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5245 // 5246 // error 0.00019228036, which is better than 12 bits 5247 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5248 getF32Constant(DAG, 0x3d431f31, dl)); 5249 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5250 getF32Constant(DAG, 0x3ea21fb2, dl)); 5251 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5252 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5253 getF32Constant(DAG, 0x3f6ae232, dl)); 5254 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5255 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5256 getF32Constant(DAG, 0x3f25f7c3, dl)); 5257 } else { // LimitFloatPrecision <= 18 5258 // For floating-point precision of 18: 5259 // 5260 // Log10ofMantissa = 5261 // -0.84299375f + 5262 // (1.5327582f + 5263 // (-1.0688956f + 5264 // (0.49102474f + 5265 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5266 // 5267 // error 0.0000037995730, which is better than 18 bits 5268 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5269 getF32Constant(DAG, 0x3c5d51ce, dl)); 5270 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5271 getF32Constant(DAG, 0x3e00685a, dl)); 5272 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5273 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5274 getF32Constant(DAG, 0x3efb6798, dl)); 5275 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5276 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5277 getF32Constant(DAG, 0x3f88d192, dl)); 5278 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5279 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5280 getF32Constant(DAG, 0x3fc4316c, dl)); 5281 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5282 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5283 getF32Constant(DAG, 0x3f57ce70, dl)); 5284 } 5285 5286 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5287 } 5288 5289 // No special expansion. 5290 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5291 } 5292 5293 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5294 /// limited-precision mode. 5295 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5296 const TargetLowering &TLI, SDNodeFlags Flags) { 5297 if (Op.getValueType() == MVT::f32 && 5298 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5299 return getLimitedPrecisionExp2(Op, dl, DAG); 5300 5301 // No special expansion. 5302 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5303 } 5304 5305 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5306 /// limited-precision mode with x == 10.0f. 5307 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5308 SelectionDAG &DAG, const TargetLowering &TLI, 5309 SDNodeFlags Flags) { 5310 bool IsExp10 = false; 5311 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5312 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5313 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5314 APFloat Ten(10.0f); 5315 IsExp10 = LHSC->isExactlyValue(Ten); 5316 } 5317 } 5318 5319 // TODO: What fast-math-flags should be set on the FMUL node? 5320 if (IsExp10) { 5321 // Put the exponent in the right bit position for later addition to the 5322 // final result: 5323 // 5324 // #define LOG2OF10 3.3219281f 5325 // t0 = Op * LOG2OF10; 5326 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5327 getF32Constant(DAG, 0x40549a78, dl)); 5328 return getLimitedPrecisionExp2(t0, dl, DAG); 5329 } 5330 5331 // No special expansion. 5332 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5333 } 5334 5335 /// ExpandPowI - Expand a llvm.powi intrinsic. 5336 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5337 SelectionDAG &DAG) { 5338 // If RHS is a constant, we can expand this out to a multiplication tree, 5339 // otherwise we end up lowering to a call to __powidf2 (for example). When 5340 // optimizing for size, we only want to do this if the expansion would produce 5341 // a small number of multiplies, otherwise we do the full expansion. 5342 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5343 // Get the exponent as a positive value. 5344 unsigned Val = RHSC->getSExtValue(); 5345 if ((int)Val < 0) Val = -Val; 5346 5347 // powi(x, 0) -> 1.0 5348 if (Val == 0) 5349 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5350 5351 bool OptForSize = DAG.shouldOptForSize(); 5352 if (!OptForSize || 5353 // If optimizing for size, don't insert too many multiplies. 5354 // This inserts up to 5 multiplies. 5355 countPopulation(Val) + Log2_32(Val) < 7) { 5356 // We use the simple binary decomposition method to generate the multiply 5357 // sequence. There are more optimal ways to do this (for example, 5358 // powi(x,15) generates one more multiply than it should), but this has 5359 // the benefit of being both really simple and much better than a libcall. 5360 SDValue Res; // Logically starts equal to 1.0 5361 SDValue CurSquare = LHS; 5362 // TODO: Intrinsics should have fast-math-flags that propagate to these 5363 // nodes. 5364 while (Val) { 5365 if (Val & 1) { 5366 if (Res.getNode()) 5367 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 5368 else 5369 Res = CurSquare; // 1.0*CurSquare. 5370 } 5371 5372 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5373 CurSquare, CurSquare); 5374 Val >>= 1; 5375 } 5376 5377 // If the original was negative, invert the result, producing 1/(x*x*x). 5378 if (RHSC->getSExtValue() < 0) 5379 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5380 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5381 return Res; 5382 } 5383 } 5384 5385 // Otherwise, expand to a libcall. 5386 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5387 } 5388 5389 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5390 SDValue LHS, SDValue RHS, SDValue Scale, 5391 SelectionDAG &DAG, const TargetLowering &TLI) { 5392 EVT VT = LHS.getValueType(); 5393 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5394 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5395 LLVMContext &Ctx = *DAG.getContext(); 5396 5397 // If the type is legal but the operation isn't, this node might survive all 5398 // the way to operation legalization. If we end up there and we do not have 5399 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5400 // node. 5401 5402 // Coax the legalizer into expanding the node during type legalization instead 5403 // by bumping the size by one bit. This will force it to Promote, enabling the 5404 // early expansion and avoiding the need to expand later. 5405 5406 // We don't have to do this if Scale is 0; that can always be expanded, unless 5407 // it's a saturating signed operation. Those can experience true integer 5408 // division overflow, a case which we must avoid. 5409 5410 // FIXME: We wouldn't have to do this (or any of the early 5411 // expansion/promotion) if it was possible to expand a libcall of an 5412 // illegal type during operation legalization. But it's not, so things 5413 // get a bit hacky. 5414 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5415 if ((ScaleInt > 0 || (Saturating && Signed)) && 5416 (TLI.isTypeLegal(VT) || 5417 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5418 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5419 Opcode, VT, ScaleInt); 5420 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5421 EVT PromVT; 5422 if (VT.isScalarInteger()) 5423 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5424 else if (VT.isVector()) { 5425 PromVT = VT.getVectorElementType(); 5426 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5427 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5428 } else 5429 llvm_unreachable("Wrong VT for DIVFIX?"); 5430 if (Signed) { 5431 LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT); 5432 RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT); 5433 } else { 5434 LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT); 5435 RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT); 5436 } 5437 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5438 // For saturating operations, we need to shift up the LHS to get the 5439 // proper saturation width, and then shift down again afterwards. 5440 if (Saturating) 5441 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5442 DAG.getConstant(1, DL, ShiftTy)); 5443 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5444 if (Saturating) 5445 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5446 DAG.getConstant(1, DL, ShiftTy)); 5447 return DAG.getZExtOrTrunc(Res, DL, VT); 5448 } 5449 } 5450 5451 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5452 } 5453 5454 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5455 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5456 static void 5457 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs, 5458 const SDValue &N) { 5459 switch (N.getOpcode()) { 5460 case ISD::CopyFromReg: { 5461 SDValue Op = N.getOperand(1); 5462 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5463 Op.getValueType().getSizeInBits()); 5464 return; 5465 } 5466 case ISD::BITCAST: 5467 case ISD::AssertZext: 5468 case ISD::AssertSext: 5469 case ISD::TRUNCATE: 5470 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5471 return; 5472 case ISD::BUILD_PAIR: 5473 case ISD::BUILD_VECTOR: 5474 case ISD::CONCAT_VECTORS: 5475 for (SDValue Op : N->op_values()) 5476 getUnderlyingArgRegs(Regs, Op); 5477 return; 5478 default: 5479 return; 5480 } 5481 } 5482 5483 /// If the DbgValueInst is a dbg_value of a function argument, create the 5484 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5485 /// instruction selection, they will be inserted to the entry BB. 5486 /// We don't currently support this for variadic dbg_values, as they shouldn't 5487 /// appear for function arguments or in the prologue. 5488 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5489 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5490 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 5491 const Argument *Arg = dyn_cast<Argument>(V); 5492 if (!Arg) 5493 return false; 5494 5495 MachineFunction &MF = DAG.getMachineFunction(); 5496 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5497 5498 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind 5499 // we've been asked to pursue. 5500 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr, 5501 bool Indirect) { 5502 if (Reg.isVirtual() && MF.useDebugInstrRef()) { 5503 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF 5504 // pointing at the VReg, which will be patched up later. 5505 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF); 5506 auto MIB = BuildMI(MF, DL, Inst); 5507 MIB.addReg(Reg); 5508 MIB.addImm(0); 5509 MIB.addMetadata(Variable); 5510 auto *NewDIExpr = FragExpr; 5511 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into 5512 // the DIExpression. 5513 if (Indirect) 5514 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore); 5515 MIB.addMetadata(NewDIExpr); 5516 return MIB; 5517 } else { 5518 // Create a completely standard DBG_VALUE. 5519 auto &Inst = TII->get(TargetOpcode::DBG_VALUE); 5520 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr); 5521 } 5522 }; 5523 5524 if (!IsDbgDeclare) { 5525 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5526 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5527 // the entry block. 5528 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5529 if (!IsInEntryBlock) 5530 return false; 5531 5532 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5533 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5534 // variable that also is a param. 5535 // 5536 // Although, if we are at the top of the entry block already, we can still 5537 // emit using ArgDbgValue. This might catch some situations when the 5538 // dbg.value refers to an argument that isn't used in the entry block, so 5539 // any CopyToReg node would be optimized out and the only way to express 5540 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5541 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5542 // we should only emit as ArgDbgValue if the Variable is an argument to the 5543 // current function, and the dbg.value intrinsic is found in the entry 5544 // block. 5545 bool VariableIsFunctionInputArg = Variable->isParameter() && 5546 !DL->getInlinedAt(); 5547 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5548 if (!IsInPrologue && !VariableIsFunctionInputArg) 5549 return false; 5550 5551 // Here we assume that a function argument on IR level only can be used to 5552 // describe one input parameter on source level. If we for example have 5553 // source code like this 5554 // 5555 // struct A { long x, y; }; 5556 // void foo(struct A a, long b) { 5557 // ... 5558 // b = a.x; 5559 // ... 5560 // } 5561 // 5562 // and IR like this 5563 // 5564 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5565 // entry: 5566 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5567 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5568 // call void @llvm.dbg.value(metadata i32 %b, "b", 5569 // ... 5570 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5571 // ... 5572 // 5573 // then the last dbg.value is describing a parameter "b" using a value that 5574 // is an argument. But since we already has used %a1 to describe a parameter 5575 // we should not handle that last dbg.value here (that would result in an 5576 // incorrect hoisting of the DBG_VALUE to the function entry). 5577 // Notice that we allow one dbg.value per IR level argument, to accommodate 5578 // for the situation with fragments above. 5579 if (VariableIsFunctionInputArg) { 5580 unsigned ArgNo = Arg->getArgNo(); 5581 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5582 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5583 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5584 return false; 5585 FuncInfo.DescribedArgs.set(ArgNo); 5586 } 5587 } 5588 5589 bool IsIndirect = false; 5590 Optional<MachineOperand> Op; 5591 // Some arguments' frame index is recorded during argument lowering. 5592 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5593 if (FI != std::numeric_limits<int>::max()) 5594 Op = MachineOperand::CreateFI(FI); 5595 5596 SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes; 5597 if (!Op && N.getNode()) { 5598 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5599 Register Reg; 5600 if (ArgRegsAndSizes.size() == 1) 5601 Reg = ArgRegsAndSizes.front().first; 5602 5603 if (Reg && Reg.isVirtual()) { 5604 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5605 Register PR = RegInfo.getLiveInPhysReg(Reg); 5606 if (PR) 5607 Reg = PR; 5608 } 5609 if (Reg) { 5610 Op = MachineOperand::CreateReg(Reg, false); 5611 IsIndirect = IsDbgDeclare; 5612 } 5613 } 5614 5615 if (!Op && N.getNode()) { 5616 // Check if frame index is available. 5617 SDValue LCandidate = peekThroughBitcasts(N); 5618 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5619 if (FrameIndexSDNode *FINode = 5620 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5621 Op = MachineOperand::CreateFI(FINode->getIndex()); 5622 } 5623 5624 if (!Op) { 5625 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5626 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>> 5627 SplitRegs) { 5628 unsigned Offset = 0; 5629 for (const auto &RegAndSize : SplitRegs) { 5630 // If the expression is already a fragment, the current register 5631 // offset+size might extend beyond the fragment. In this case, only 5632 // the register bits that are inside the fragment are relevant. 5633 int RegFragmentSizeInBits = RegAndSize.second; 5634 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5635 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5636 // The register is entirely outside the expression fragment, 5637 // so is irrelevant for debug info. 5638 if (Offset >= ExprFragmentSizeInBits) 5639 break; 5640 // The register is partially outside the expression fragment, only 5641 // the low bits within the fragment are relevant for debug info. 5642 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5643 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5644 } 5645 } 5646 5647 auto FragmentExpr = DIExpression::createFragmentExpression( 5648 Expr, Offset, RegFragmentSizeInBits); 5649 Offset += RegAndSize.second; 5650 // If a valid fragment expression cannot be created, the variable's 5651 // correct value cannot be determined and so it is set as Undef. 5652 if (!FragmentExpr) { 5653 SDDbgValue *SDV = DAG.getConstantDbgValue( 5654 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5655 DAG.AddDbgValue(SDV, false); 5656 continue; 5657 } 5658 MachineInstr *NewMI = 5659 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, IsDbgDeclare); 5660 FuncInfo.ArgDbgValues.push_back(NewMI); 5661 } 5662 }; 5663 5664 // Check if ValueMap has reg number. 5665 DenseMap<const Value *, Register>::const_iterator 5666 VMI = FuncInfo.ValueMap.find(V); 5667 if (VMI != FuncInfo.ValueMap.end()) { 5668 const auto &TLI = DAG.getTargetLoweringInfo(); 5669 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5670 V->getType(), None); 5671 if (RFV.occupiesMultipleRegs()) { 5672 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5673 return true; 5674 } 5675 5676 Op = MachineOperand::CreateReg(VMI->second, false); 5677 IsIndirect = IsDbgDeclare; 5678 } else if (ArgRegsAndSizes.size() > 1) { 5679 // This was split due to the calling convention, and no virtual register 5680 // mapping exists for the value. 5681 splitMultiRegDbgValue(ArgRegsAndSizes); 5682 return true; 5683 } 5684 } 5685 5686 if (!Op) 5687 return false; 5688 5689 assert(Variable->isValidLocationForIntrinsic(DL) && 5690 "Expected inlined-at fields to agree"); 5691 MachineInstr *NewMI = nullptr; 5692 5693 if (Op->isReg()) 5694 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect); 5695 else 5696 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op, 5697 Variable, Expr); 5698 5699 FuncInfo.ArgDbgValues.push_back(NewMI); 5700 return true; 5701 } 5702 5703 /// Return the appropriate SDDbgValue based on N. 5704 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5705 DILocalVariable *Variable, 5706 DIExpression *Expr, 5707 const DebugLoc &dl, 5708 unsigned DbgSDNodeOrder) { 5709 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5710 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5711 // stack slot locations. 5712 // 5713 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5714 // debug values here after optimization: 5715 // 5716 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5717 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5718 // 5719 // Both describe the direct values of their associated variables. 5720 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5721 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5722 } 5723 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5724 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5725 } 5726 5727 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5728 switch (Intrinsic) { 5729 case Intrinsic::smul_fix: 5730 return ISD::SMULFIX; 5731 case Intrinsic::umul_fix: 5732 return ISD::UMULFIX; 5733 case Intrinsic::smul_fix_sat: 5734 return ISD::SMULFIXSAT; 5735 case Intrinsic::umul_fix_sat: 5736 return ISD::UMULFIXSAT; 5737 case Intrinsic::sdiv_fix: 5738 return ISD::SDIVFIX; 5739 case Intrinsic::udiv_fix: 5740 return ISD::UDIVFIX; 5741 case Intrinsic::sdiv_fix_sat: 5742 return ISD::SDIVFIXSAT; 5743 case Intrinsic::udiv_fix_sat: 5744 return ISD::UDIVFIXSAT; 5745 default: 5746 llvm_unreachable("Unhandled fixed point intrinsic"); 5747 } 5748 } 5749 5750 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5751 const char *FunctionName) { 5752 assert(FunctionName && "FunctionName must not be nullptr"); 5753 SDValue Callee = DAG.getExternalSymbol( 5754 FunctionName, 5755 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5756 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 5757 } 5758 5759 /// Given a @llvm.call.preallocated.setup, return the corresponding 5760 /// preallocated call. 5761 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 5762 assert(cast<CallBase>(PreallocatedSetup) 5763 ->getCalledFunction() 5764 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 5765 "expected call_preallocated_setup Value"); 5766 for (auto *U : PreallocatedSetup->users()) { 5767 auto *UseCall = cast<CallBase>(U); 5768 const Function *Fn = UseCall->getCalledFunction(); 5769 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 5770 return UseCall; 5771 } 5772 } 5773 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 5774 } 5775 5776 /// Lower the call to the specified intrinsic function. 5777 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5778 unsigned Intrinsic) { 5779 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5780 SDLoc sdl = getCurSDLoc(); 5781 DebugLoc dl = getCurDebugLoc(); 5782 SDValue Res; 5783 5784 SDNodeFlags Flags; 5785 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 5786 Flags.copyFMF(*FPOp); 5787 5788 switch (Intrinsic) { 5789 default: 5790 // By default, turn this into a target intrinsic node. 5791 visitTargetIntrinsic(I, Intrinsic); 5792 return; 5793 case Intrinsic::vscale: { 5794 match(&I, m_VScale(DAG.getDataLayout())); 5795 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5796 setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1))); 5797 return; 5798 } 5799 case Intrinsic::vastart: visitVAStart(I); return; 5800 case Intrinsic::vaend: visitVAEnd(I); return; 5801 case Intrinsic::vacopy: visitVACopy(I); return; 5802 case Intrinsic::returnaddress: 5803 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5804 TLI.getPointerTy(DAG.getDataLayout()), 5805 getValue(I.getArgOperand(0)))); 5806 return; 5807 case Intrinsic::addressofreturnaddress: 5808 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5809 TLI.getPointerTy(DAG.getDataLayout()))); 5810 return; 5811 case Intrinsic::sponentry: 5812 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5813 TLI.getFrameIndexTy(DAG.getDataLayout()))); 5814 return; 5815 case Intrinsic::frameaddress: 5816 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5817 TLI.getFrameIndexTy(DAG.getDataLayout()), 5818 getValue(I.getArgOperand(0)))); 5819 return; 5820 case Intrinsic::read_volatile_register: 5821 case Intrinsic::read_register: { 5822 Value *Reg = I.getArgOperand(0); 5823 SDValue Chain = getRoot(); 5824 SDValue RegName = 5825 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5826 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5827 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5828 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5829 setValue(&I, Res); 5830 DAG.setRoot(Res.getValue(1)); 5831 return; 5832 } 5833 case Intrinsic::write_register: { 5834 Value *Reg = I.getArgOperand(0); 5835 Value *RegValue = I.getArgOperand(1); 5836 SDValue Chain = getRoot(); 5837 SDValue RegName = 5838 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5839 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5840 RegName, getValue(RegValue))); 5841 return; 5842 } 5843 case Intrinsic::memcpy: { 5844 const auto &MCI = cast<MemCpyInst>(I); 5845 SDValue Op1 = getValue(I.getArgOperand(0)); 5846 SDValue Op2 = getValue(I.getArgOperand(1)); 5847 SDValue Op3 = getValue(I.getArgOperand(2)); 5848 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5849 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5850 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5851 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5852 bool isVol = MCI.isVolatile(); 5853 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5854 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5855 // node. 5856 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5857 SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5858 /* AlwaysInline */ false, isTC, 5859 MachinePointerInfo(I.getArgOperand(0)), 5860 MachinePointerInfo(I.getArgOperand(1)), 5861 I.getAAMetadata()); 5862 updateDAGForMaybeTailCall(MC); 5863 return; 5864 } 5865 case Intrinsic::memcpy_inline: { 5866 const auto &MCI = cast<MemCpyInlineInst>(I); 5867 SDValue Dst = getValue(I.getArgOperand(0)); 5868 SDValue Src = getValue(I.getArgOperand(1)); 5869 SDValue Size = getValue(I.getArgOperand(2)); 5870 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 5871 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 5872 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5873 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5874 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5875 bool isVol = MCI.isVolatile(); 5876 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5877 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5878 // node. 5879 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 5880 /* AlwaysInline */ true, isTC, 5881 MachinePointerInfo(I.getArgOperand(0)), 5882 MachinePointerInfo(I.getArgOperand(1)), 5883 I.getAAMetadata()); 5884 updateDAGForMaybeTailCall(MC); 5885 return; 5886 } 5887 case Intrinsic::memset: { 5888 const auto &MSI = cast<MemSetInst>(I); 5889 SDValue Op1 = getValue(I.getArgOperand(0)); 5890 SDValue Op2 = getValue(I.getArgOperand(1)); 5891 SDValue Op3 = getValue(I.getArgOperand(2)); 5892 // @llvm.memset defines 0 and 1 to both mean no alignment. 5893 Align Alignment = MSI.getDestAlign().valueOrOne(); 5894 bool isVol = MSI.isVolatile(); 5895 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5896 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5897 SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC, 5898 MachinePointerInfo(I.getArgOperand(0)), 5899 I.getAAMetadata()); 5900 updateDAGForMaybeTailCall(MS); 5901 return; 5902 } 5903 case Intrinsic::memmove: { 5904 const auto &MMI = cast<MemMoveInst>(I); 5905 SDValue Op1 = getValue(I.getArgOperand(0)); 5906 SDValue Op2 = getValue(I.getArgOperand(1)); 5907 SDValue Op3 = getValue(I.getArgOperand(2)); 5908 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5909 Align DstAlign = MMI.getDestAlign().valueOrOne(); 5910 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 5911 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5912 bool isVol = MMI.isVolatile(); 5913 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5914 // FIXME: Support passing different dest/src alignments to the memmove DAG 5915 // node. 5916 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5917 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5918 isTC, MachinePointerInfo(I.getArgOperand(0)), 5919 MachinePointerInfo(I.getArgOperand(1)), 5920 I.getAAMetadata()); 5921 updateDAGForMaybeTailCall(MM); 5922 return; 5923 } 5924 case Intrinsic::memcpy_element_unordered_atomic: { 5925 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5926 SDValue Dst = getValue(MI.getRawDest()); 5927 SDValue Src = getValue(MI.getRawSource()); 5928 SDValue Length = getValue(MI.getLength()); 5929 5930 unsigned DstAlign = MI.getDestAlignment(); 5931 unsigned SrcAlign = MI.getSourceAlignment(); 5932 Type *LengthTy = MI.getLength()->getType(); 5933 unsigned ElemSz = MI.getElementSizeInBytes(); 5934 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5935 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5936 SrcAlign, Length, LengthTy, ElemSz, isTC, 5937 MachinePointerInfo(MI.getRawDest()), 5938 MachinePointerInfo(MI.getRawSource())); 5939 updateDAGForMaybeTailCall(MC); 5940 return; 5941 } 5942 case Intrinsic::memmove_element_unordered_atomic: { 5943 auto &MI = cast<AtomicMemMoveInst>(I); 5944 SDValue Dst = getValue(MI.getRawDest()); 5945 SDValue Src = getValue(MI.getRawSource()); 5946 SDValue Length = getValue(MI.getLength()); 5947 5948 unsigned DstAlign = MI.getDestAlignment(); 5949 unsigned SrcAlign = MI.getSourceAlignment(); 5950 Type *LengthTy = MI.getLength()->getType(); 5951 unsigned ElemSz = MI.getElementSizeInBytes(); 5952 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5953 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5954 SrcAlign, Length, LengthTy, ElemSz, isTC, 5955 MachinePointerInfo(MI.getRawDest()), 5956 MachinePointerInfo(MI.getRawSource())); 5957 updateDAGForMaybeTailCall(MC); 5958 return; 5959 } 5960 case Intrinsic::memset_element_unordered_atomic: { 5961 auto &MI = cast<AtomicMemSetInst>(I); 5962 SDValue Dst = getValue(MI.getRawDest()); 5963 SDValue Val = getValue(MI.getValue()); 5964 SDValue Length = getValue(MI.getLength()); 5965 5966 unsigned DstAlign = MI.getDestAlignment(); 5967 Type *LengthTy = MI.getLength()->getType(); 5968 unsigned ElemSz = MI.getElementSizeInBytes(); 5969 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5970 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5971 LengthTy, ElemSz, isTC, 5972 MachinePointerInfo(MI.getRawDest())); 5973 updateDAGForMaybeTailCall(MC); 5974 return; 5975 } 5976 case Intrinsic::call_preallocated_setup: { 5977 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 5978 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 5979 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 5980 getRoot(), SrcValue); 5981 setValue(&I, Res); 5982 DAG.setRoot(Res); 5983 return; 5984 } 5985 case Intrinsic::call_preallocated_arg: { 5986 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 5987 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 5988 SDValue Ops[3]; 5989 Ops[0] = getRoot(); 5990 Ops[1] = SrcValue; 5991 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 5992 MVT::i32); // arg index 5993 SDValue Res = DAG.getNode( 5994 ISD::PREALLOCATED_ARG, sdl, 5995 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 5996 setValue(&I, Res); 5997 DAG.setRoot(Res.getValue(1)); 5998 return; 5999 } 6000 case Intrinsic::dbg_addr: 6001 case Intrinsic::dbg_declare: { 6002 // Assume dbg.addr and dbg.declare can not currently use DIArgList, i.e. 6003 // they are non-variadic. 6004 const auto &DI = cast<DbgVariableIntrinsic>(I); 6005 assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList"); 6006 DILocalVariable *Variable = DI.getVariable(); 6007 DIExpression *Expression = DI.getExpression(); 6008 dropDanglingDebugInfo(Variable, Expression); 6009 assert(Variable && "Missing variable"); 6010 LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI 6011 << "\n"); 6012 // Check if address has undef value. 6013 const Value *Address = DI.getVariableLocationOp(0); 6014 if (!Address || isa<UndefValue>(Address) || 6015 (Address->use_empty() && !isa<Argument>(Address))) { 6016 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6017 << " (bad/undef/unused-arg address)\n"); 6018 return; 6019 } 6020 6021 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 6022 6023 // Check if this variable can be described by a frame index, typically 6024 // either as a static alloca or a byval parameter. 6025 int FI = std::numeric_limits<int>::max(); 6026 if (const auto *AI = 6027 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 6028 if (AI->isStaticAlloca()) { 6029 auto I = FuncInfo.StaticAllocaMap.find(AI); 6030 if (I != FuncInfo.StaticAllocaMap.end()) 6031 FI = I->second; 6032 } 6033 } else if (const auto *Arg = dyn_cast<Argument>( 6034 Address->stripInBoundsConstantOffsets())) { 6035 FI = FuncInfo.getArgumentFrameIndex(Arg); 6036 } 6037 6038 // llvm.dbg.addr is control dependent and always generates indirect 6039 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 6040 // the MachineFunction variable table. 6041 if (FI != std::numeric_limits<int>::max()) { 6042 if (Intrinsic == Intrinsic::dbg_addr) { 6043 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 6044 Variable, Expression, FI, getRoot().getNode(), /*IsIndirect*/ true, 6045 dl, SDNodeOrder); 6046 DAG.AddDbgValue(SDV, isParameter); 6047 } else { 6048 LLVM_DEBUG(dbgs() << "Skipping " << DI 6049 << " (variable info stashed in MF side table)\n"); 6050 } 6051 return; 6052 } 6053 6054 SDValue &N = NodeMap[Address]; 6055 if (!N.getNode() && isa<Argument>(Address)) 6056 // Check unused arguments map. 6057 N = UnusedArgNodeMap[Address]; 6058 SDDbgValue *SDV; 6059 if (N.getNode()) { 6060 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 6061 Address = BCI->getOperand(0); 6062 // Parameters are handled specially. 6063 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 6064 if (isParameter && FINode) { 6065 // Byval parameter. We have a frame index at this point. 6066 SDV = 6067 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 6068 /*IsIndirect*/ true, dl, SDNodeOrder); 6069 } else if (isa<Argument>(Address)) { 6070 // Address is an argument, so try to emit its dbg value using 6071 // virtual register info from the FuncInfo.ValueMap. 6072 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 6073 return; 6074 } else { 6075 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 6076 true, dl, SDNodeOrder); 6077 } 6078 DAG.AddDbgValue(SDV, isParameter); 6079 } else { 6080 // If Address is an argument then try to emit its dbg value using 6081 // virtual register info from the FuncInfo.ValueMap. 6082 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 6083 N)) { 6084 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6085 << " (could not emit func-arg dbg_value)\n"); 6086 } 6087 } 6088 return; 6089 } 6090 case Intrinsic::dbg_label: { 6091 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6092 DILabel *Label = DI.getLabel(); 6093 assert(Label && "Missing label"); 6094 6095 SDDbgLabel *SDV; 6096 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6097 DAG.AddDbgLabel(SDV); 6098 return; 6099 } 6100 case Intrinsic::dbg_value: { 6101 const DbgValueInst &DI = cast<DbgValueInst>(I); 6102 assert(DI.getVariable() && "Missing variable"); 6103 6104 DILocalVariable *Variable = DI.getVariable(); 6105 DIExpression *Expression = DI.getExpression(); 6106 dropDanglingDebugInfo(Variable, Expression); 6107 SmallVector<Value *, 4> Values(DI.getValues()); 6108 if (Values.empty()) 6109 return; 6110 6111 if (llvm::is_contained(Values, nullptr)) 6112 return; 6113 6114 bool IsVariadic = DI.hasArgList(); 6115 if (!handleDebugValue(Values, Variable, Expression, dl, DI.getDebugLoc(), 6116 SDNodeOrder, IsVariadic)) 6117 addDanglingDebugInfo(&DI, dl, SDNodeOrder); 6118 return; 6119 } 6120 6121 case Intrinsic::eh_typeid_for: { 6122 // Find the type id for the given typeinfo. 6123 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6124 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6125 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6126 setValue(&I, Res); 6127 return; 6128 } 6129 6130 case Intrinsic::eh_return_i32: 6131 case Intrinsic::eh_return_i64: 6132 DAG.getMachineFunction().setCallsEHReturn(true); 6133 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6134 MVT::Other, 6135 getControlRoot(), 6136 getValue(I.getArgOperand(0)), 6137 getValue(I.getArgOperand(1)))); 6138 return; 6139 case Intrinsic::eh_unwind_init: 6140 DAG.getMachineFunction().setCallsUnwindInit(true); 6141 return; 6142 case Intrinsic::eh_dwarf_cfa: 6143 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6144 TLI.getPointerTy(DAG.getDataLayout()), 6145 getValue(I.getArgOperand(0)))); 6146 return; 6147 case Intrinsic::eh_sjlj_callsite: { 6148 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6149 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 6150 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 6151 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6152 6153 MMI.setCurrentCallSite(CI->getZExtValue()); 6154 return; 6155 } 6156 case Intrinsic::eh_sjlj_functioncontext: { 6157 // Get and store the index of the function context. 6158 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6159 AllocaInst *FnCtx = 6160 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6161 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6162 MFI.setFunctionContextIndex(FI); 6163 return; 6164 } 6165 case Intrinsic::eh_sjlj_setjmp: { 6166 SDValue Ops[2]; 6167 Ops[0] = getRoot(); 6168 Ops[1] = getValue(I.getArgOperand(0)); 6169 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6170 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6171 setValue(&I, Op.getValue(0)); 6172 DAG.setRoot(Op.getValue(1)); 6173 return; 6174 } 6175 case Intrinsic::eh_sjlj_longjmp: 6176 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6177 getRoot(), getValue(I.getArgOperand(0)))); 6178 return; 6179 case Intrinsic::eh_sjlj_setup_dispatch: 6180 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6181 getRoot())); 6182 return; 6183 case Intrinsic::masked_gather: 6184 visitMaskedGather(I); 6185 return; 6186 case Intrinsic::masked_load: 6187 visitMaskedLoad(I); 6188 return; 6189 case Intrinsic::masked_scatter: 6190 visitMaskedScatter(I); 6191 return; 6192 case Intrinsic::masked_store: 6193 visitMaskedStore(I); 6194 return; 6195 case Intrinsic::masked_expandload: 6196 visitMaskedLoad(I, true /* IsExpanding */); 6197 return; 6198 case Intrinsic::masked_compressstore: 6199 visitMaskedStore(I, true /* IsCompressing */); 6200 return; 6201 case Intrinsic::powi: 6202 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6203 getValue(I.getArgOperand(1)), DAG)); 6204 return; 6205 case Intrinsic::log: 6206 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6207 return; 6208 case Intrinsic::log2: 6209 setValue(&I, 6210 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6211 return; 6212 case Intrinsic::log10: 6213 setValue(&I, 6214 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6215 return; 6216 case Intrinsic::exp: 6217 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6218 return; 6219 case Intrinsic::exp2: 6220 setValue(&I, 6221 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6222 return; 6223 case Intrinsic::pow: 6224 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6225 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6226 return; 6227 case Intrinsic::sqrt: 6228 case Intrinsic::fabs: 6229 case Intrinsic::sin: 6230 case Intrinsic::cos: 6231 case Intrinsic::floor: 6232 case Intrinsic::ceil: 6233 case Intrinsic::trunc: 6234 case Intrinsic::rint: 6235 case Intrinsic::nearbyint: 6236 case Intrinsic::round: 6237 case Intrinsic::roundeven: 6238 case Intrinsic::canonicalize: { 6239 unsigned Opcode; 6240 switch (Intrinsic) { 6241 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6242 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6243 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6244 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6245 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6246 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6247 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6248 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6249 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6250 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6251 case Intrinsic::round: Opcode = ISD::FROUND; break; 6252 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6253 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6254 } 6255 6256 setValue(&I, DAG.getNode(Opcode, sdl, 6257 getValue(I.getArgOperand(0)).getValueType(), 6258 getValue(I.getArgOperand(0)), Flags)); 6259 return; 6260 } 6261 case Intrinsic::lround: 6262 case Intrinsic::llround: 6263 case Intrinsic::lrint: 6264 case Intrinsic::llrint: { 6265 unsigned Opcode; 6266 switch (Intrinsic) { 6267 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6268 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6269 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6270 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6271 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6272 } 6273 6274 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6275 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6276 getValue(I.getArgOperand(0)))); 6277 return; 6278 } 6279 case Intrinsic::minnum: 6280 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6281 getValue(I.getArgOperand(0)).getValueType(), 6282 getValue(I.getArgOperand(0)), 6283 getValue(I.getArgOperand(1)), Flags)); 6284 return; 6285 case Intrinsic::maxnum: 6286 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6287 getValue(I.getArgOperand(0)).getValueType(), 6288 getValue(I.getArgOperand(0)), 6289 getValue(I.getArgOperand(1)), Flags)); 6290 return; 6291 case Intrinsic::minimum: 6292 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6293 getValue(I.getArgOperand(0)).getValueType(), 6294 getValue(I.getArgOperand(0)), 6295 getValue(I.getArgOperand(1)), Flags)); 6296 return; 6297 case Intrinsic::maximum: 6298 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6299 getValue(I.getArgOperand(0)).getValueType(), 6300 getValue(I.getArgOperand(0)), 6301 getValue(I.getArgOperand(1)), Flags)); 6302 return; 6303 case Intrinsic::copysign: 6304 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6305 getValue(I.getArgOperand(0)).getValueType(), 6306 getValue(I.getArgOperand(0)), 6307 getValue(I.getArgOperand(1)), Flags)); 6308 return; 6309 case Intrinsic::arithmetic_fence: { 6310 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl, 6311 getValue(I.getArgOperand(0)).getValueType(), 6312 getValue(I.getArgOperand(0)), Flags)); 6313 return; 6314 } 6315 case Intrinsic::fma: 6316 setValue(&I, DAG.getNode( 6317 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 6318 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 6319 getValue(I.getArgOperand(2)), Flags)); 6320 return; 6321 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6322 case Intrinsic::INTRINSIC: 6323 #include "llvm/IR/ConstrainedOps.def" 6324 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6325 return; 6326 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 6327 #include "llvm/IR/VPIntrinsics.def" 6328 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I)); 6329 return; 6330 case Intrinsic::fptrunc_round: { 6331 // Get the last argument, the metadata and convert it to an integer in the 6332 // call 6333 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata(); 6334 Optional<RoundingMode> RoundMode = 6335 convertStrToRoundingMode(cast<MDString>(MD)->getString()); 6336 6337 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6338 6339 // Propagate fast-math-flags from IR to node(s). 6340 SDNodeFlags Flags; 6341 Flags.copyFMF(*cast<FPMathOperator>(&I)); 6342 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 6343 6344 SDValue Result; 6345 Result = DAG.getNode( 6346 ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)), 6347 DAG.getTargetConstant((int)RoundMode.getValue(), sdl, 6348 TLI.getPointerTy(DAG.getDataLayout()))); 6349 setValue(&I, Result); 6350 6351 return; 6352 } 6353 case Intrinsic::fmuladd: { 6354 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6355 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6356 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6357 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6358 getValue(I.getArgOperand(0)).getValueType(), 6359 getValue(I.getArgOperand(0)), 6360 getValue(I.getArgOperand(1)), 6361 getValue(I.getArgOperand(2)), Flags)); 6362 } else { 6363 // TODO: Intrinsic calls should have fast-math-flags. 6364 SDValue Mul = DAG.getNode( 6365 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 6366 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 6367 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6368 getValue(I.getArgOperand(0)).getValueType(), 6369 Mul, getValue(I.getArgOperand(2)), Flags); 6370 setValue(&I, Add); 6371 } 6372 return; 6373 } 6374 case Intrinsic::convert_to_fp16: 6375 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6376 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6377 getValue(I.getArgOperand(0)), 6378 DAG.getTargetConstant(0, sdl, 6379 MVT::i32)))); 6380 return; 6381 case Intrinsic::convert_from_fp16: 6382 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6383 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6384 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6385 getValue(I.getArgOperand(0))))); 6386 return; 6387 case Intrinsic::fptosi_sat: { 6388 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6389 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT, 6390 getValue(I.getArgOperand(0)), 6391 DAG.getValueType(VT.getScalarType()))); 6392 return; 6393 } 6394 case Intrinsic::fptoui_sat: { 6395 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6396 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT, 6397 getValue(I.getArgOperand(0)), 6398 DAG.getValueType(VT.getScalarType()))); 6399 return; 6400 } 6401 case Intrinsic::set_rounding: 6402 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other, 6403 {getRoot(), getValue(I.getArgOperand(0))}); 6404 setValue(&I, Res); 6405 DAG.setRoot(Res.getValue(0)); 6406 return; 6407 case Intrinsic::pcmarker: { 6408 SDValue Tmp = getValue(I.getArgOperand(0)); 6409 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6410 return; 6411 } 6412 case Intrinsic::readcyclecounter: { 6413 SDValue Op = getRoot(); 6414 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6415 DAG.getVTList(MVT::i64, MVT::Other), Op); 6416 setValue(&I, Res); 6417 DAG.setRoot(Res.getValue(1)); 6418 return; 6419 } 6420 case Intrinsic::bitreverse: 6421 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6422 getValue(I.getArgOperand(0)).getValueType(), 6423 getValue(I.getArgOperand(0)))); 6424 return; 6425 case Intrinsic::bswap: 6426 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6427 getValue(I.getArgOperand(0)).getValueType(), 6428 getValue(I.getArgOperand(0)))); 6429 return; 6430 case Intrinsic::cttz: { 6431 SDValue Arg = getValue(I.getArgOperand(0)); 6432 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6433 EVT Ty = Arg.getValueType(); 6434 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6435 sdl, Ty, Arg)); 6436 return; 6437 } 6438 case Intrinsic::ctlz: { 6439 SDValue Arg = getValue(I.getArgOperand(0)); 6440 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6441 EVT Ty = Arg.getValueType(); 6442 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6443 sdl, Ty, Arg)); 6444 return; 6445 } 6446 case Intrinsic::ctpop: { 6447 SDValue Arg = getValue(I.getArgOperand(0)); 6448 EVT Ty = Arg.getValueType(); 6449 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6450 return; 6451 } 6452 case Intrinsic::fshl: 6453 case Intrinsic::fshr: { 6454 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6455 SDValue X = getValue(I.getArgOperand(0)); 6456 SDValue Y = getValue(I.getArgOperand(1)); 6457 SDValue Z = getValue(I.getArgOperand(2)); 6458 EVT VT = X.getValueType(); 6459 6460 if (X == Y) { 6461 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6462 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6463 } else { 6464 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6465 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6466 } 6467 return; 6468 } 6469 case Intrinsic::sadd_sat: { 6470 SDValue Op1 = getValue(I.getArgOperand(0)); 6471 SDValue Op2 = getValue(I.getArgOperand(1)); 6472 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6473 return; 6474 } 6475 case Intrinsic::uadd_sat: { 6476 SDValue Op1 = getValue(I.getArgOperand(0)); 6477 SDValue Op2 = getValue(I.getArgOperand(1)); 6478 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6479 return; 6480 } 6481 case Intrinsic::ssub_sat: { 6482 SDValue Op1 = getValue(I.getArgOperand(0)); 6483 SDValue Op2 = getValue(I.getArgOperand(1)); 6484 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6485 return; 6486 } 6487 case Intrinsic::usub_sat: { 6488 SDValue Op1 = getValue(I.getArgOperand(0)); 6489 SDValue Op2 = getValue(I.getArgOperand(1)); 6490 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6491 return; 6492 } 6493 case Intrinsic::sshl_sat: { 6494 SDValue Op1 = getValue(I.getArgOperand(0)); 6495 SDValue Op2 = getValue(I.getArgOperand(1)); 6496 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6497 return; 6498 } 6499 case Intrinsic::ushl_sat: { 6500 SDValue Op1 = getValue(I.getArgOperand(0)); 6501 SDValue Op2 = getValue(I.getArgOperand(1)); 6502 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6503 return; 6504 } 6505 case Intrinsic::smul_fix: 6506 case Intrinsic::umul_fix: 6507 case Intrinsic::smul_fix_sat: 6508 case Intrinsic::umul_fix_sat: { 6509 SDValue Op1 = getValue(I.getArgOperand(0)); 6510 SDValue Op2 = getValue(I.getArgOperand(1)); 6511 SDValue Op3 = getValue(I.getArgOperand(2)); 6512 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6513 Op1.getValueType(), Op1, Op2, Op3)); 6514 return; 6515 } 6516 case Intrinsic::sdiv_fix: 6517 case Intrinsic::udiv_fix: 6518 case Intrinsic::sdiv_fix_sat: 6519 case Intrinsic::udiv_fix_sat: { 6520 SDValue Op1 = getValue(I.getArgOperand(0)); 6521 SDValue Op2 = getValue(I.getArgOperand(1)); 6522 SDValue Op3 = getValue(I.getArgOperand(2)); 6523 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6524 Op1, Op2, Op3, DAG, TLI)); 6525 return; 6526 } 6527 case Intrinsic::smax: { 6528 SDValue Op1 = getValue(I.getArgOperand(0)); 6529 SDValue Op2 = getValue(I.getArgOperand(1)); 6530 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 6531 return; 6532 } 6533 case Intrinsic::smin: { 6534 SDValue Op1 = getValue(I.getArgOperand(0)); 6535 SDValue Op2 = getValue(I.getArgOperand(1)); 6536 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 6537 return; 6538 } 6539 case Intrinsic::umax: { 6540 SDValue Op1 = getValue(I.getArgOperand(0)); 6541 SDValue Op2 = getValue(I.getArgOperand(1)); 6542 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 6543 return; 6544 } 6545 case Intrinsic::umin: { 6546 SDValue Op1 = getValue(I.getArgOperand(0)); 6547 SDValue Op2 = getValue(I.getArgOperand(1)); 6548 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 6549 return; 6550 } 6551 case Intrinsic::abs: { 6552 // TODO: Preserve "int min is poison" arg in SDAG? 6553 SDValue Op1 = getValue(I.getArgOperand(0)); 6554 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 6555 return; 6556 } 6557 case Intrinsic::stacksave: { 6558 SDValue Op = getRoot(); 6559 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6560 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 6561 setValue(&I, Res); 6562 DAG.setRoot(Res.getValue(1)); 6563 return; 6564 } 6565 case Intrinsic::stackrestore: 6566 Res = getValue(I.getArgOperand(0)); 6567 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6568 return; 6569 case Intrinsic::get_dynamic_area_offset: { 6570 SDValue Op = getRoot(); 6571 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6572 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6573 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6574 // target. 6575 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) 6576 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6577 " intrinsic!"); 6578 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6579 Op); 6580 DAG.setRoot(Op); 6581 setValue(&I, Res); 6582 return; 6583 } 6584 case Intrinsic::stackguard: { 6585 MachineFunction &MF = DAG.getMachineFunction(); 6586 const Module &M = *MF.getFunction().getParent(); 6587 SDValue Chain = getRoot(); 6588 if (TLI.useLoadStackGuardNode()) { 6589 Res = getLoadStackGuard(DAG, sdl, Chain); 6590 } else { 6591 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6592 const Value *Global = TLI.getSDagStackGuard(M); 6593 Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType()); 6594 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6595 MachinePointerInfo(Global, 0), Align, 6596 MachineMemOperand::MOVolatile); 6597 } 6598 if (TLI.useStackGuardXorFP()) 6599 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6600 DAG.setRoot(Chain); 6601 setValue(&I, Res); 6602 return; 6603 } 6604 case Intrinsic::stackprotector: { 6605 // Emit code into the DAG to store the stack guard onto the stack. 6606 MachineFunction &MF = DAG.getMachineFunction(); 6607 MachineFrameInfo &MFI = MF.getFrameInfo(); 6608 SDValue Src, Chain = getRoot(); 6609 6610 if (TLI.useLoadStackGuardNode()) 6611 Src = getLoadStackGuard(DAG, sdl, Chain); 6612 else 6613 Src = getValue(I.getArgOperand(0)); // The guard's value. 6614 6615 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6616 6617 int FI = FuncInfo.StaticAllocaMap[Slot]; 6618 MFI.setStackProtectorIndex(FI); 6619 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6620 6621 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6622 6623 // Store the stack protector onto the stack. 6624 Res = DAG.getStore( 6625 Chain, sdl, Src, FIN, 6626 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 6627 MaybeAlign(), MachineMemOperand::MOVolatile); 6628 setValue(&I, Res); 6629 DAG.setRoot(Res); 6630 return; 6631 } 6632 case Intrinsic::objectsize: 6633 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6634 6635 case Intrinsic::is_constant: 6636 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6637 6638 case Intrinsic::annotation: 6639 case Intrinsic::ptr_annotation: 6640 case Intrinsic::launder_invariant_group: 6641 case Intrinsic::strip_invariant_group: 6642 // Drop the intrinsic, but forward the value 6643 setValue(&I, getValue(I.getOperand(0))); 6644 return; 6645 6646 case Intrinsic::assume: 6647 case Intrinsic::experimental_noalias_scope_decl: 6648 case Intrinsic::var_annotation: 6649 case Intrinsic::sideeffect: 6650 // Discard annotate attributes, noalias scope declarations, assumptions, and 6651 // artificial side-effects. 6652 return; 6653 6654 case Intrinsic::codeview_annotation: { 6655 // Emit a label associated with this metadata. 6656 MachineFunction &MF = DAG.getMachineFunction(); 6657 MCSymbol *Label = 6658 MF.getMMI().getContext().createTempSymbol("annotation", true); 6659 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6660 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6661 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6662 DAG.setRoot(Res); 6663 return; 6664 } 6665 6666 case Intrinsic::init_trampoline: { 6667 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6668 6669 SDValue Ops[6]; 6670 Ops[0] = getRoot(); 6671 Ops[1] = getValue(I.getArgOperand(0)); 6672 Ops[2] = getValue(I.getArgOperand(1)); 6673 Ops[3] = getValue(I.getArgOperand(2)); 6674 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6675 Ops[5] = DAG.getSrcValue(F); 6676 6677 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6678 6679 DAG.setRoot(Res); 6680 return; 6681 } 6682 case Intrinsic::adjust_trampoline: 6683 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6684 TLI.getPointerTy(DAG.getDataLayout()), 6685 getValue(I.getArgOperand(0)))); 6686 return; 6687 case Intrinsic::gcroot: { 6688 assert(DAG.getMachineFunction().getFunction().hasGC() && 6689 "only valid in functions with gc specified, enforced by Verifier"); 6690 assert(GFI && "implied by previous"); 6691 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6692 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6693 6694 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6695 GFI->addStackRoot(FI->getIndex(), TypeMap); 6696 return; 6697 } 6698 case Intrinsic::gcread: 6699 case Intrinsic::gcwrite: 6700 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6701 case Intrinsic::flt_rounds: 6702 Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot()); 6703 setValue(&I, Res); 6704 DAG.setRoot(Res.getValue(1)); 6705 return; 6706 6707 case Intrinsic::expect: 6708 // Just replace __builtin_expect(exp, c) with EXP. 6709 setValue(&I, getValue(I.getArgOperand(0))); 6710 return; 6711 6712 case Intrinsic::ubsantrap: 6713 case Intrinsic::debugtrap: 6714 case Intrinsic::trap: { 6715 StringRef TrapFuncName = 6716 I.getAttributes().getFnAttr("trap-func-name").getValueAsString(); 6717 if (TrapFuncName.empty()) { 6718 switch (Intrinsic) { 6719 case Intrinsic::trap: 6720 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot())); 6721 break; 6722 case Intrinsic::debugtrap: 6723 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot())); 6724 break; 6725 case Intrinsic::ubsantrap: 6726 DAG.setRoot(DAG.getNode( 6727 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(), 6728 DAG.getTargetConstant( 6729 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl, 6730 MVT::i32))); 6731 break; 6732 default: llvm_unreachable("unknown trap intrinsic"); 6733 } 6734 return; 6735 } 6736 TargetLowering::ArgListTy Args; 6737 if (Intrinsic == Intrinsic::ubsantrap) { 6738 Args.push_back(TargetLoweringBase::ArgListEntry()); 6739 Args[0].Val = I.getArgOperand(0); 6740 Args[0].Node = getValue(Args[0].Val); 6741 Args[0].Ty = Args[0].Val->getType(); 6742 } 6743 6744 TargetLowering::CallLoweringInfo CLI(DAG); 6745 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6746 CallingConv::C, I.getType(), 6747 DAG.getExternalSymbol(TrapFuncName.data(), 6748 TLI.getPointerTy(DAG.getDataLayout())), 6749 std::move(Args)); 6750 6751 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6752 DAG.setRoot(Result.second); 6753 return; 6754 } 6755 6756 case Intrinsic::uadd_with_overflow: 6757 case Intrinsic::sadd_with_overflow: 6758 case Intrinsic::usub_with_overflow: 6759 case Intrinsic::ssub_with_overflow: 6760 case Intrinsic::umul_with_overflow: 6761 case Intrinsic::smul_with_overflow: { 6762 ISD::NodeType Op; 6763 switch (Intrinsic) { 6764 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6765 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6766 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6767 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6768 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6769 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6770 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6771 } 6772 SDValue Op1 = getValue(I.getArgOperand(0)); 6773 SDValue Op2 = getValue(I.getArgOperand(1)); 6774 6775 EVT ResultVT = Op1.getValueType(); 6776 EVT OverflowVT = MVT::i1; 6777 if (ResultVT.isVector()) 6778 OverflowVT = EVT::getVectorVT( 6779 *Context, OverflowVT, ResultVT.getVectorElementCount()); 6780 6781 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6782 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6783 return; 6784 } 6785 case Intrinsic::prefetch: { 6786 SDValue Ops[5]; 6787 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6788 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6789 Ops[0] = DAG.getRoot(); 6790 Ops[1] = getValue(I.getArgOperand(0)); 6791 Ops[2] = getValue(I.getArgOperand(1)); 6792 Ops[3] = getValue(I.getArgOperand(2)); 6793 Ops[4] = getValue(I.getArgOperand(3)); 6794 SDValue Result = DAG.getMemIntrinsicNode( 6795 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 6796 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 6797 /* align */ None, Flags); 6798 6799 // Chain the prefetch in parallell with any pending loads, to stay out of 6800 // the way of later optimizations. 6801 PendingLoads.push_back(Result); 6802 Result = getRoot(); 6803 DAG.setRoot(Result); 6804 return; 6805 } 6806 case Intrinsic::lifetime_start: 6807 case Intrinsic::lifetime_end: { 6808 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6809 // Stack coloring is not enabled in O0, discard region information. 6810 if (TM.getOptLevel() == CodeGenOpt::None) 6811 return; 6812 6813 const int64_t ObjectSize = 6814 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6815 Value *const ObjectPtr = I.getArgOperand(1); 6816 SmallVector<const Value *, 4> Allocas; 6817 getUnderlyingObjects(ObjectPtr, Allocas); 6818 6819 for (const Value *Alloca : Allocas) { 6820 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca); 6821 6822 // Could not find an Alloca. 6823 if (!LifetimeObject) 6824 continue; 6825 6826 // First check that the Alloca is static, otherwise it won't have a 6827 // valid frame index. 6828 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6829 if (SI == FuncInfo.StaticAllocaMap.end()) 6830 return; 6831 6832 const int FrameIndex = SI->second; 6833 int64_t Offset; 6834 if (GetPointerBaseWithConstantOffset( 6835 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6836 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6837 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6838 Offset); 6839 DAG.setRoot(Res); 6840 } 6841 return; 6842 } 6843 case Intrinsic::pseudoprobe: { 6844 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 6845 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6846 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 6847 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr); 6848 DAG.setRoot(Res); 6849 return; 6850 } 6851 case Intrinsic::invariant_start: 6852 // Discard region information. 6853 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6854 return; 6855 case Intrinsic::invariant_end: 6856 // Discard region information. 6857 return; 6858 case Intrinsic::clear_cache: 6859 /// FunctionName may be null. 6860 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6861 lowerCallToExternalSymbol(I, FunctionName); 6862 return; 6863 case Intrinsic::donothing: 6864 case Intrinsic::seh_try_begin: 6865 case Intrinsic::seh_scope_begin: 6866 case Intrinsic::seh_try_end: 6867 case Intrinsic::seh_scope_end: 6868 // ignore 6869 return; 6870 case Intrinsic::experimental_stackmap: 6871 visitStackmap(I); 6872 return; 6873 case Intrinsic::experimental_patchpoint_void: 6874 case Intrinsic::experimental_patchpoint_i64: 6875 visitPatchpoint(I); 6876 return; 6877 case Intrinsic::experimental_gc_statepoint: 6878 LowerStatepoint(cast<GCStatepointInst>(I)); 6879 return; 6880 case Intrinsic::experimental_gc_result: 6881 visitGCResult(cast<GCResultInst>(I)); 6882 return; 6883 case Intrinsic::experimental_gc_relocate: 6884 visitGCRelocate(cast<GCRelocateInst>(I)); 6885 return; 6886 case Intrinsic::instrprof_cover: 6887 llvm_unreachable("instrprof failed to lower a cover"); 6888 case Intrinsic::instrprof_increment: 6889 llvm_unreachable("instrprof failed to lower an increment"); 6890 case Intrinsic::instrprof_value_profile: 6891 llvm_unreachable("instrprof failed to lower a value profiling call"); 6892 case Intrinsic::localescape: { 6893 MachineFunction &MF = DAG.getMachineFunction(); 6894 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6895 6896 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6897 // is the same on all targets. 6898 for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) { 6899 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6900 if (isa<ConstantPointerNull>(Arg)) 6901 continue; // Skip null pointers. They represent a hole in index space. 6902 AllocaInst *Slot = cast<AllocaInst>(Arg); 6903 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6904 "can only escape static allocas"); 6905 int FI = FuncInfo.StaticAllocaMap[Slot]; 6906 MCSymbol *FrameAllocSym = 6907 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6908 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6909 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6910 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6911 .addSym(FrameAllocSym) 6912 .addFrameIndex(FI); 6913 } 6914 6915 return; 6916 } 6917 6918 case Intrinsic::localrecover: { 6919 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6920 MachineFunction &MF = DAG.getMachineFunction(); 6921 6922 // Get the symbol that defines the frame offset. 6923 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6924 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6925 unsigned IdxVal = 6926 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6927 MCSymbol *FrameAllocSym = 6928 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6929 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6930 6931 Value *FP = I.getArgOperand(1); 6932 SDValue FPVal = getValue(FP); 6933 EVT PtrVT = FPVal.getValueType(); 6934 6935 // Create a MCSymbol for the label to avoid any target lowering 6936 // that would make this PC relative. 6937 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6938 SDValue OffsetVal = 6939 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6940 6941 // Add the offset to the FP. 6942 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 6943 setValue(&I, Add); 6944 6945 return; 6946 } 6947 6948 case Intrinsic::eh_exceptionpointer: 6949 case Intrinsic::eh_exceptioncode: { 6950 // Get the exception pointer vreg, copy from it, and resize it to fit. 6951 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6952 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6953 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6954 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6955 SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT); 6956 if (Intrinsic == Intrinsic::eh_exceptioncode) 6957 N = DAG.getZExtOrTrunc(N, sdl, MVT::i32); 6958 setValue(&I, N); 6959 return; 6960 } 6961 case Intrinsic::xray_customevent: { 6962 // Here we want to make sure that the intrinsic behaves as if it has a 6963 // specific calling convention, and only for x86_64. 6964 // FIXME: Support other platforms later. 6965 const auto &Triple = DAG.getTarget().getTargetTriple(); 6966 if (Triple.getArch() != Triple::x86_64) 6967 return; 6968 6969 SmallVector<SDValue, 8> Ops; 6970 6971 // We want to say that we always want the arguments in registers. 6972 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6973 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6974 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6975 SDValue Chain = getRoot(); 6976 Ops.push_back(LogEntryVal); 6977 Ops.push_back(StrSizeVal); 6978 Ops.push_back(Chain); 6979 6980 // We need to enforce the calling convention for the callsite, so that 6981 // argument ordering is enforced correctly, and that register allocation can 6982 // see that some registers may be assumed clobbered and have to preserve 6983 // them across calls to the intrinsic. 6984 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6985 sdl, NodeTys, Ops); 6986 SDValue patchableNode = SDValue(MN, 0); 6987 DAG.setRoot(patchableNode); 6988 setValue(&I, patchableNode); 6989 return; 6990 } 6991 case Intrinsic::xray_typedevent: { 6992 // Here we want to make sure that the intrinsic behaves as if it has a 6993 // specific calling convention, and only for x86_64. 6994 // FIXME: Support other platforms later. 6995 const auto &Triple = DAG.getTarget().getTargetTriple(); 6996 if (Triple.getArch() != Triple::x86_64) 6997 return; 6998 6999 SmallVector<SDValue, 8> Ops; 7000 7001 // We want to say that we always want the arguments in registers. 7002 // It's unclear to me how manipulating the selection DAG here forces callers 7003 // to provide arguments in registers instead of on the stack. 7004 SDValue LogTypeId = getValue(I.getArgOperand(0)); 7005 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 7006 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 7007 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7008 SDValue Chain = getRoot(); 7009 Ops.push_back(LogTypeId); 7010 Ops.push_back(LogEntryVal); 7011 Ops.push_back(StrSizeVal); 7012 Ops.push_back(Chain); 7013 7014 // We need to enforce the calling convention for the callsite, so that 7015 // argument ordering is enforced correctly, and that register allocation can 7016 // see that some registers may be assumed clobbered and have to preserve 7017 // them across calls to the intrinsic. 7018 MachineSDNode *MN = DAG.getMachineNode( 7019 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops); 7020 SDValue patchableNode = SDValue(MN, 0); 7021 DAG.setRoot(patchableNode); 7022 setValue(&I, patchableNode); 7023 return; 7024 } 7025 case Intrinsic::experimental_deoptimize: 7026 LowerDeoptimizeCall(&I); 7027 return; 7028 case Intrinsic::experimental_stepvector: 7029 visitStepVector(I); 7030 return; 7031 case Intrinsic::vector_reduce_fadd: 7032 case Intrinsic::vector_reduce_fmul: 7033 case Intrinsic::vector_reduce_add: 7034 case Intrinsic::vector_reduce_mul: 7035 case Intrinsic::vector_reduce_and: 7036 case Intrinsic::vector_reduce_or: 7037 case Intrinsic::vector_reduce_xor: 7038 case Intrinsic::vector_reduce_smax: 7039 case Intrinsic::vector_reduce_smin: 7040 case Intrinsic::vector_reduce_umax: 7041 case Intrinsic::vector_reduce_umin: 7042 case Intrinsic::vector_reduce_fmax: 7043 case Intrinsic::vector_reduce_fmin: 7044 visitVectorReduce(I, Intrinsic); 7045 return; 7046 7047 case Intrinsic::icall_branch_funnel: { 7048 SmallVector<SDValue, 16> Ops; 7049 Ops.push_back(getValue(I.getArgOperand(0))); 7050 7051 int64_t Offset; 7052 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7053 I.getArgOperand(1), Offset, DAG.getDataLayout())); 7054 if (!Base) 7055 report_fatal_error( 7056 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7057 Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0)); 7058 7059 struct BranchFunnelTarget { 7060 int64_t Offset; 7061 SDValue Target; 7062 }; 7063 SmallVector<BranchFunnelTarget, 8> Targets; 7064 7065 for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) { 7066 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7067 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 7068 if (ElemBase != Base) 7069 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 7070 "to the same GlobalValue"); 7071 7072 SDValue Val = getValue(I.getArgOperand(Op + 1)); 7073 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 7074 if (!GA) 7075 report_fatal_error( 7076 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7077 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 7078 GA->getGlobal(), sdl, Val.getValueType(), 7079 GA->getOffset())}); 7080 } 7081 llvm::sort(Targets, 7082 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 7083 return T1.Offset < T2.Offset; 7084 }); 7085 7086 for (auto &T : Targets) { 7087 Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32)); 7088 Ops.push_back(T.Target); 7089 } 7090 7091 Ops.push_back(DAG.getRoot()); // Chain 7092 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl, 7093 MVT::Other, Ops), 7094 0); 7095 DAG.setRoot(N); 7096 setValue(&I, N); 7097 HasTailCall = true; 7098 return; 7099 } 7100 7101 case Intrinsic::wasm_landingpad_index: 7102 // Information this intrinsic contained has been transferred to 7103 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 7104 // delete it now. 7105 return; 7106 7107 case Intrinsic::aarch64_settag: 7108 case Intrinsic::aarch64_settag_zero: { 7109 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7110 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 7111 SDValue Val = TSI.EmitTargetCodeForSetTag( 7112 DAG, sdl, getRoot(), getValue(I.getArgOperand(0)), 7113 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 7114 ZeroMemory); 7115 DAG.setRoot(Val); 7116 setValue(&I, Val); 7117 return; 7118 } 7119 case Intrinsic::ptrmask: { 7120 SDValue Ptr = getValue(I.getOperand(0)); 7121 SDValue Const = getValue(I.getOperand(1)); 7122 7123 EVT PtrVT = Ptr.getValueType(); 7124 setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, 7125 DAG.getZExtOrTrunc(Const, sdl, PtrVT))); 7126 return; 7127 } 7128 case Intrinsic::get_active_lane_mask: { 7129 EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7130 SDValue Index = getValue(I.getOperand(0)); 7131 EVT ElementVT = Index.getValueType(); 7132 7133 if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) { 7134 visitTargetIntrinsic(I, Intrinsic); 7135 return; 7136 } 7137 7138 SDValue TripCount = getValue(I.getOperand(1)); 7139 auto VecTy = CCVT.changeVectorElementType(ElementVT); 7140 7141 SDValue VectorIndex, VectorTripCount; 7142 if (VecTy.isScalableVector()) { 7143 VectorIndex = DAG.getSplatVector(VecTy, sdl, Index); 7144 VectorTripCount = DAG.getSplatVector(VecTy, sdl, TripCount); 7145 } else { 7146 VectorIndex = DAG.getSplatBuildVector(VecTy, sdl, Index); 7147 VectorTripCount = DAG.getSplatBuildVector(VecTy, sdl, TripCount); 7148 } 7149 SDValue VectorStep = DAG.getStepVector(sdl, VecTy); 7150 SDValue VectorInduction = DAG.getNode( 7151 ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep); 7152 SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction, 7153 VectorTripCount, ISD::CondCode::SETULT); 7154 setValue(&I, SetCC); 7155 return; 7156 } 7157 case Intrinsic::experimental_vector_insert: { 7158 SDValue Vec = getValue(I.getOperand(0)); 7159 SDValue SubVec = getValue(I.getOperand(1)); 7160 SDValue Index = getValue(I.getOperand(2)); 7161 7162 // The intrinsic's index type is i64, but the SDNode requires an index type 7163 // suitable for the target. Convert the index as required. 7164 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7165 if (Index.getValueType() != VectorIdxTy) 7166 Index = DAG.getVectorIdxConstant( 7167 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7168 7169 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7170 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec, 7171 Index)); 7172 return; 7173 } 7174 case Intrinsic::experimental_vector_extract: { 7175 SDValue Vec = getValue(I.getOperand(0)); 7176 SDValue Index = getValue(I.getOperand(1)); 7177 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7178 7179 // The intrinsic's index type is i64, but the SDNode requires an index type 7180 // suitable for the target. Convert the index as required. 7181 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7182 if (Index.getValueType() != VectorIdxTy) 7183 Index = DAG.getVectorIdxConstant( 7184 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7185 7186 setValue(&I, 7187 DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index)); 7188 return; 7189 } 7190 case Intrinsic::experimental_vector_reverse: 7191 visitVectorReverse(I); 7192 return; 7193 case Intrinsic::experimental_vector_splice: 7194 visitVectorSplice(I); 7195 return; 7196 } 7197 } 7198 7199 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 7200 const ConstrainedFPIntrinsic &FPI) { 7201 SDLoc sdl = getCurSDLoc(); 7202 7203 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7204 SmallVector<EVT, 4> ValueVTs; 7205 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 7206 ValueVTs.push_back(MVT::Other); // Out chain 7207 7208 // We do not need to serialize constrained FP intrinsics against 7209 // each other or against (nonvolatile) loads, so they can be 7210 // chained like loads. 7211 SDValue Chain = DAG.getRoot(); 7212 SmallVector<SDValue, 4> Opers; 7213 Opers.push_back(Chain); 7214 if (FPI.isUnaryOp()) { 7215 Opers.push_back(getValue(FPI.getArgOperand(0))); 7216 } else if (FPI.isTernaryOp()) { 7217 Opers.push_back(getValue(FPI.getArgOperand(0))); 7218 Opers.push_back(getValue(FPI.getArgOperand(1))); 7219 Opers.push_back(getValue(FPI.getArgOperand(2))); 7220 } else { 7221 Opers.push_back(getValue(FPI.getArgOperand(0))); 7222 Opers.push_back(getValue(FPI.getArgOperand(1))); 7223 } 7224 7225 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 7226 assert(Result.getNode()->getNumValues() == 2); 7227 7228 // Push node to the appropriate list so that future instructions can be 7229 // chained up correctly. 7230 SDValue OutChain = Result.getValue(1); 7231 switch (EB) { 7232 case fp::ExceptionBehavior::ebIgnore: 7233 // The only reason why ebIgnore nodes still need to be chained is that 7234 // they might depend on the current rounding mode, and therefore must 7235 // not be moved across instruction that may change that mode. 7236 LLVM_FALLTHROUGH; 7237 case fp::ExceptionBehavior::ebMayTrap: 7238 // These must not be moved across calls or instructions that may change 7239 // floating-point exception masks. 7240 PendingConstrainedFP.push_back(OutChain); 7241 break; 7242 case fp::ExceptionBehavior::ebStrict: 7243 // These must not be moved across calls or instructions that may change 7244 // floating-point exception masks or read floating-point exception flags. 7245 // In addition, they cannot be optimized out even if unused. 7246 PendingConstrainedFPStrict.push_back(OutChain); 7247 break; 7248 } 7249 }; 7250 7251 SDVTList VTs = DAG.getVTList(ValueVTs); 7252 fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue(); 7253 7254 SDNodeFlags Flags; 7255 if (EB == fp::ExceptionBehavior::ebIgnore) 7256 Flags.setNoFPExcept(true); 7257 7258 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 7259 Flags.copyFMF(*FPOp); 7260 7261 unsigned Opcode; 7262 switch (FPI.getIntrinsicID()) { 7263 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7264 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7265 case Intrinsic::INTRINSIC: \ 7266 Opcode = ISD::STRICT_##DAGN; \ 7267 break; 7268 #include "llvm/IR/ConstrainedOps.def" 7269 case Intrinsic::experimental_constrained_fmuladd: { 7270 Opcode = ISD::STRICT_FMA; 7271 // Break fmuladd into fmul and fadd. 7272 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 7273 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), 7274 ValueVTs[0])) { 7275 Opers.pop_back(); 7276 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 7277 pushOutChain(Mul, EB); 7278 Opcode = ISD::STRICT_FADD; 7279 Opers.clear(); 7280 Opers.push_back(Mul.getValue(1)); 7281 Opers.push_back(Mul.getValue(0)); 7282 Opers.push_back(getValue(FPI.getArgOperand(2))); 7283 } 7284 break; 7285 } 7286 } 7287 7288 // A few strict DAG nodes carry additional operands that are not 7289 // set up by the default code above. 7290 switch (Opcode) { 7291 default: break; 7292 case ISD::STRICT_FP_ROUND: 7293 Opers.push_back( 7294 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 7295 break; 7296 case ISD::STRICT_FSETCC: 7297 case ISD::STRICT_FSETCCS: { 7298 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 7299 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate()); 7300 if (TM.Options.NoNaNsFPMath) 7301 Condition = getFCmpCodeWithoutNaN(Condition); 7302 Opers.push_back(DAG.getCondCode(Condition)); 7303 break; 7304 } 7305 } 7306 7307 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 7308 pushOutChain(Result, EB); 7309 7310 SDValue FPResult = Result.getValue(0); 7311 setValue(&FPI, FPResult); 7312 } 7313 7314 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) { 7315 Optional<unsigned> ResOPC; 7316 switch (VPIntrin.getIntrinsicID()) { 7317 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 7318 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) ResOPC = ISD::VPSD; 7319 #define END_REGISTER_VP_INTRINSIC(VPID) break; 7320 #include "llvm/IR/VPIntrinsics.def" 7321 } 7322 7323 if (!ResOPC.hasValue()) 7324 llvm_unreachable( 7325 "Inconsistency: no SDNode available for this VPIntrinsic!"); 7326 7327 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD || 7328 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) { 7329 if (VPIntrin.getFastMathFlags().allowReassoc()) 7330 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD 7331 : ISD::VP_REDUCE_FMUL; 7332 } 7333 7334 return ResOPC.getValue(); 7335 } 7336 7337 void SelectionDAGBuilder::visitVPLoadGather(const VPIntrinsic &VPIntrin, EVT VT, 7338 SmallVector<SDValue, 7> &OpValues, 7339 bool IsGather) { 7340 SDLoc DL = getCurSDLoc(); 7341 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7342 Value *PtrOperand = VPIntrin.getArgOperand(0); 7343 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7344 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7345 const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range); 7346 SDValue LD; 7347 bool AddToChain = true; 7348 if (!IsGather) { 7349 // Do not serialize variable-length loads of constant memory with 7350 // anything. 7351 if (!Alignment) 7352 Alignment = DAG.getEVTAlign(VT); 7353 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 7354 AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7355 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7356 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7357 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7358 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7359 LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2], 7360 MMO, false /*IsExpanding */); 7361 } else { 7362 if (!Alignment) 7363 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7364 unsigned AS = 7365 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7366 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7367 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 7368 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7369 SDValue Base, Index, Scale; 7370 ISD::MemIndexType IndexType; 7371 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7372 this, VPIntrin.getParent()); 7373 if (!UniformBase) { 7374 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7375 Index = getValue(PtrOperand); 7376 IndexType = ISD::SIGNED_UNSCALED; 7377 Scale = 7378 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7379 } 7380 EVT IdxVT = Index.getValueType(); 7381 EVT EltTy = IdxVT.getVectorElementType(); 7382 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7383 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7384 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7385 } 7386 LD = DAG.getGatherVP( 7387 DAG.getVTList(VT, MVT::Other), VT, DL, 7388 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO, 7389 IndexType); 7390 } 7391 if (AddToChain) 7392 PendingLoads.push_back(LD.getValue(1)); 7393 setValue(&VPIntrin, LD); 7394 } 7395 7396 void SelectionDAGBuilder::visitVPStoreScatter(const VPIntrinsic &VPIntrin, 7397 SmallVector<SDValue, 7> &OpValues, 7398 bool IsScatter) { 7399 SDLoc DL = getCurSDLoc(); 7400 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7401 Value *PtrOperand = VPIntrin.getArgOperand(1); 7402 EVT VT = OpValues[0].getValueType(); 7403 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7404 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7405 SDValue ST; 7406 if (!IsScatter) { 7407 if (!Alignment) 7408 Alignment = DAG.getEVTAlign(VT); 7409 SDValue Ptr = OpValues[1]; 7410 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 7411 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7412 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7413 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7414 ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset, 7415 OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED, 7416 /* IsTruncating */ false, /*IsCompressing*/ false); 7417 } else { 7418 if (!Alignment) 7419 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7420 unsigned AS = 7421 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7422 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7423 MachinePointerInfo(AS), MachineMemOperand::MOStore, 7424 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7425 SDValue Base, Index, Scale; 7426 ISD::MemIndexType IndexType; 7427 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7428 this, VPIntrin.getParent()); 7429 if (!UniformBase) { 7430 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7431 Index = getValue(PtrOperand); 7432 IndexType = ISD::SIGNED_UNSCALED; 7433 Scale = 7434 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7435 } 7436 EVT IdxVT = Index.getValueType(); 7437 EVT EltTy = IdxVT.getVectorElementType(); 7438 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7439 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7440 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7441 } 7442 ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL, 7443 {getMemoryRoot(), OpValues[0], Base, Index, Scale, 7444 OpValues[2], OpValues[3]}, 7445 MMO, IndexType); 7446 } 7447 DAG.setRoot(ST); 7448 setValue(&VPIntrin, ST); 7449 } 7450 7451 void SelectionDAGBuilder::visitVPStridedLoad( 7452 const VPIntrinsic &VPIntrin, EVT VT, SmallVectorImpl<SDValue> &OpValues) { 7453 SDLoc DL = getCurSDLoc(); 7454 Value *PtrOperand = VPIntrin.getArgOperand(0); 7455 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7456 if (!Alignment) 7457 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7458 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7459 const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range); 7460 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 7461 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7462 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7463 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7464 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7465 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7466 7467 SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], 7468 OpValues[2], OpValues[3], MMO, 7469 false /*IsExpanding*/); 7470 7471 if (AddToChain) 7472 PendingLoads.push_back(LD.getValue(1)); 7473 setValue(&VPIntrin, LD); 7474 } 7475 7476 void SelectionDAGBuilder::visitVPStridedStore( 7477 const VPIntrinsic &VPIntrin, SmallVectorImpl<SDValue> &OpValues) { 7478 SDLoc DL = getCurSDLoc(); 7479 Value *PtrOperand = VPIntrin.getArgOperand(1); 7480 EVT VT = OpValues[0].getValueType(); 7481 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7482 if (!Alignment) 7483 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7484 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7485 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7486 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7487 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7488 7489 SDValue ST = DAG.getStridedStoreVP( 7490 getMemoryRoot(), DL, OpValues[0], OpValues[1], 7491 DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3], 7492 OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false, 7493 /*IsCompressing*/ false); 7494 7495 DAG.setRoot(ST); 7496 setValue(&VPIntrin, ST); 7497 } 7498 7499 void SelectionDAGBuilder::visitVectorPredicationIntrinsic( 7500 const VPIntrinsic &VPIntrin) { 7501 SDLoc DL = getCurSDLoc(); 7502 unsigned Opcode = getISDForVPIntrinsic(VPIntrin); 7503 7504 SmallVector<EVT, 4> ValueVTs; 7505 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7506 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs); 7507 SDVTList VTs = DAG.getVTList(ValueVTs); 7508 7509 auto EVLParamPos = 7510 VPIntrinsic::getVectorLengthParamPos(VPIntrin.getIntrinsicID()); 7511 7512 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 7513 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 7514 "Unexpected target EVL type"); 7515 7516 // Request operands. 7517 SmallVector<SDValue, 7> OpValues; 7518 for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) { 7519 auto Op = getValue(VPIntrin.getArgOperand(I)); 7520 if (I == EVLParamPos) 7521 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op); 7522 OpValues.push_back(Op); 7523 } 7524 7525 switch (Opcode) { 7526 default: { 7527 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues); 7528 setValue(&VPIntrin, Result); 7529 break; 7530 } 7531 case ISD::VP_LOAD: 7532 case ISD::VP_GATHER: 7533 visitVPLoadGather(VPIntrin, ValueVTs[0], OpValues, 7534 Opcode == ISD::VP_GATHER); 7535 break; 7536 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: 7537 visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues); 7538 break; 7539 case ISD::VP_STORE: 7540 case ISD::VP_SCATTER: 7541 visitVPStoreScatter(VPIntrin, OpValues, Opcode == ISD::VP_SCATTER); 7542 break; 7543 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: 7544 visitVPStridedStore(VPIntrin, OpValues); 7545 break; 7546 } 7547 } 7548 7549 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain, 7550 const BasicBlock *EHPadBB, 7551 MCSymbol *&BeginLabel) { 7552 MachineFunction &MF = DAG.getMachineFunction(); 7553 MachineModuleInfo &MMI = MF.getMMI(); 7554 7555 // Insert a label before the invoke call to mark the try range. This can be 7556 // used to detect deletion of the invoke via the MachineModuleInfo. 7557 BeginLabel = MMI.getContext().createTempSymbol(); 7558 7559 // For SjLj, keep track of which landing pads go with which invokes 7560 // so as to maintain the ordering of pads in the LSDA. 7561 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 7562 if (CallSiteIndex) { 7563 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 7564 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 7565 7566 // Now that the call site is handled, stop tracking it. 7567 MMI.setCurrentCallSite(0); 7568 } 7569 7570 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel); 7571 } 7572 7573 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II, 7574 const BasicBlock *EHPadBB, 7575 MCSymbol *BeginLabel) { 7576 assert(BeginLabel && "BeginLabel should've been set"); 7577 7578 MachineFunction &MF = DAG.getMachineFunction(); 7579 MachineModuleInfo &MMI = MF.getMMI(); 7580 7581 // Insert a label at the end of the invoke call to mark the try range. This 7582 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7583 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7584 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel); 7585 7586 // Inform MachineModuleInfo of range. 7587 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7588 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7589 // actually use outlined funclets and their LSDA info style. 7590 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7591 assert(II && "II should've been set"); 7592 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); 7593 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel); 7594 } else if (!isScopedEHPersonality(Pers)) { 7595 assert(EHPadBB); 7596 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7597 } 7598 7599 return Chain; 7600 } 7601 7602 std::pair<SDValue, SDValue> 7603 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 7604 const BasicBlock *EHPadBB) { 7605 MCSymbol *BeginLabel = nullptr; 7606 7607 if (EHPadBB) { 7608 // Both PendingLoads and PendingExports must be flushed here; 7609 // this call might not return. 7610 (void)getRoot(); 7611 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel)); 7612 CLI.setChain(getRoot()); 7613 } 7614 7615 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7616 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7617 7618 assert((CLI.IsTailCall || Result.second.getNode()) && 7619 "Non-null chain expected with non-tail call!"); 7620 assert((Result.second.getNode() || !Result.first.getNode()) && 7621 "Null value expected with tail call!"); 7622 7623 if (!Result.second.getNode()) { 7624 // As a special case, a null chain means that a tail call has been emitted 7625 // and the DAG root is already updated. 7626 HasTailCall = true; 7627 7628 // Since there's no actual continuation from this block, nothing can be 7629 // relying on us setting vregs for them. 7630 PendingExports.clear(); 7631 } else { 7632 DAG.setRoot(Result.second); 7633 } 7634 7635 if (EHPadBB) { 7636 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB, 7637 BeginLabel)); 7638 } 7639 7640 return Result; 7641 } 7642 7643 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 7644 bool isTailCall, 7645 bool isMustTailCall, 7646 const BasicBlock *EHPadBB) { 7647 auto &DL = DAG.getDataLayout(); 7648 FunctionType *FTy = CB.getFunctionType(); 7649 Type *RetTy = CB.getType(); 7650 7651 TargetLowering::ArgListTy Args; 7652 Args.reserve(CB.arg_size()); 7653 7654 const Value *SwiftErrorVal = nullptr; 7655 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7656 7657 if (isTailCall) { 7658 // Avoid emitting tail calls in functions with the disable-tail-calls 7659 // attribute. 7660 auto *Caller = CB.getParent()->getParent(); 7661 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 7662 "true" && !isMustTailCall) 7663 isTailCall = false; 7664 7665 // We can't tail call inside a function with a swifterror argument. Lowering 7666 // does not support this yet. It would have to move into the swifterror 7667 // register before the call. 7668 if (TLI.supportSwiftError() && 7669 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7670 isTailCall = false; 7671 } 7672 7673 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 7674 TargetLowering::ArgListEntry Entry; 7675 const Value *V = *I; 7676 7677 // Skip empty types 7678 if (V->getType()->isEmptyTy()) 7679 continue; 7680 7681 SDValue ArgNode = getValue(V); 7682 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7683 7684 Entry.setAttributes(&CB, I - CB.arg_begin()); 7685 7686 // Use swifterror virtual register as input to the call. 7687 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7688 SwiftErrorVal = V; 7689 // We find the virtual register for the actual swifterror argument. 7690 // Instead of using the Value, we use the virtual register instead. 7691 Entry.Node = 7692 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 7693 EVT(TLI.getPointerTy(DL))); 7694 } 7695 7696 Args.push_back(Entry); 7697 7698 // If we have an explicit sret argument that is an Instruction, (i.e., it 7699 // might point to function-local memory), we can't meaningfully tail-call. 7700 if (Entry.IsSRet && isa<Instruction>(V)) 7701 isTailCall = false; 7702 } 7703 7704 // If call site has a cfguardtarget operand bundle, create and add an 7705 // additional ArgListEntry. 7706 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 7707 TargetLowering::ArgListEntry Entry; 7708 Value *V = Bundle->Inputs[0]; 7709 SDValue ArgNode = getValue(V); 7710 Entry.Node = ArgNode; 7711 Entry.Ty = V->getType(); 7712 Entry.IsCFGuardTarget = true; 7713 Args.push_back(Entry); 7714 } 7715 7716 // Check if target-independent constraints permit a tail call here. 7717 // Target-dependent constraints are checked within TLI->LowerCallTo. 7718 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 7719 isTailCall = false; 7720 7721 // Disable tail calls if there is an swifterror argument. Targets have not 7722 // been updated to support tail calls. 7723 if (TLI.supportSwiftError() && SwiftErrorVal) 7724 isTailCall = false; 7725 7726 TargetLowering::CallLoweringInfo CLI(DAG); 7727 CLI.setDebugLoc(getCurSDLoc()) 7728 .setChain(getRoot()) 7729 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 7730 .setTailCall(isTailCall) 7731 .setConvergent(CB.isConvergent()) 7732 .setIsPreallocated( 7733 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 7734 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7735 7736 if (Result.first.getNode()) { 7737 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 7738 setValue(&CB, Result.first); 7739 } 7740 7741 // The last element of CLI.InVals has the SDValue for swifterror return. 7742 // Here we copy it to a virtual register and update SwiftErrorMap for 7743 // book-keeping. 7744 if (SwiftErrorVal && TLI.supportSwiftError()) { 7745 // Get the last element of InVals. 7746 SDValue Src = CLI.InVals.back(); 7747 Register VReg = 7748 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 7749 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7750 DAG.setRoot(CopyNode); 7751 } 7752 } 7753 7754 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7755 SelectionDAGBuilder &Builder) { 7756 // Check to see if this load can be trivially constant folded, e.g. if the 7757 // input is from a string literal. 7758 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7759 // Cast pointer to the type we really want to load. 7760 Type *LoadTy = 7761 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7762 if (LoadVT.isVector()) 7763 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7764 7765 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7766 PointerType::getUnqual(LoadTy)); 7767 7768 if (const Constant *LoadCst = 7769 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 7770 LoadTy, Builder.DAG.getDataLayout())) 7771 return Builder.getValue(LoadCst); 7772 } 7773 7774 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7775 // still constant memory, the input chain can be the entry node. 7776 SDValue Root; 7777 bool ConstantMemory = false; 7778 7779 // Do not serialize (non-volatile) loads of constant memory with anything. 7780 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7781 Root = Builder.DAG.getEntryNode(); 7782 ConstantMemory = true; 7783 } else { 7784 // Do not serialize non-volatile loads against each other. 7785 Root = Builder.DAG.getRoot(); 7786 } 7787 7788 SDValue Ptr = Builder.getValue(PtrVal); 7789 SDValue LoadVal = 7790 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 7791 MachinePointerInfo(PtrVal), Align(1)); 7792 7793 if (!ConstantMemory) 7794 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7795 return LoadVal; 7796 } 7797 7798 /// Record the value for an instruction that produces an integer result, 7799 /// converting the type where necessary. 7800 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7801 SDValue Value, 7802 bool IsSigned) { 7803 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7804 I.getType(), true); 7805 if (IsSigned) 7806 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7807 else 7808 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7809 setValue(&I, Value); 7810 } 7811 7812 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 7813 /// true and lower it. Otherwise return false, and it will be lowered like a 7814 /// normal call. 7815 /// The caller already checked that \p I calls the appropriate LibFunc with a 7816 /// correct prototype. 7817 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 7818 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7819 const Value *Size = I.getArgOperand(2); 7820 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 7821 if (CSize && CSize->getZExtValue() == 0) { 7822 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7823 I.getType(), true); 7824 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7825 return true; 7826 } 7827 7828 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7829 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7830 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7831 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7832 if (Res.first.getNode()) { 7833 processIntegerCallValue(I, Res.first, true); 7834 PendingLoads.push_back(Res.second); 7835 return true; 7836 } 7837 7838 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7839 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7840 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7841 return false; 7842 7843 // If the target has a fast compare for the given size, it will return a 7844 // preferred load type for that size. Require that the load VT is legal and 7845 // that the target supports unaligned loads of that type. Otherwise, return 7846 // INVALID. 7847 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7848 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7849 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7850 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7851 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7852 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7853 // TODO: Check alignment of src and dest ptrs. 7854 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7855 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7856 if (!TLI.isTypeLegal(LVT) || 7857 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7858 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7859 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7860 } 7861 7862 return LVT; 7863 }; 7864 7865 // This turns into unaligned loads. We only do this if the target natively 7866 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7867 // we'll only produce a small number of byte loads. 7868 MVT LoadVT; 7869 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7870 switch (NumBitsToCompare) { 7871 default: 7872 return false; 7873 case 16: 7874 LoadVT = MVT::i16; 7875 break; 7876 case 32: 7877 LoadVT = MVT::i32; 7878 break; 7879 case 64: 7880 case 128: 7881 case 256: 7882 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7883 break; 7884 } 7885 7886 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7887 return false; 7888 7889 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7890 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7891 7892 // Bitcast to a wide integer type if the loads are vectors. 7893 if (LoadVT.isVector()) { 7894 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7895 LoadL = DAG.getBitcast(CmpVT, LoadL); 7896 LoadR = DAG.getBitcast(CmpVT, LoadR); 7897 } 7898 7899 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7900 processIntegerCallValue(I, Cmp, false); 7901 return true; 7902 } 7903 7904 /// See if we can lower a memchr call into an optimized form. If so, return 7905 /// true and lower it. Otherwise return false, and it will be lowered like a 7906 /// normal call. 7907 /// The caller already checked that \p I calls the appropriate LibFunc with a 7908 /// correct prototype. 7909 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 7910 const Value *Src = I.getArgOperand(0); 7911 const Value *Char = I.getArgOperand(1); 7912 const Value *Length = I.getArgOperand(2); 7913 7914 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7915 std::pair<SDValue, SDValue> Res = 7916 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 7917 getValue(Src), getValue(Char), getValue(Length), 7918 MachinePointerInfo(Src)); 7919 if (Res.first.getNode()) { 7920 setValue(&I, Res.first); 7921 PendingLoads.push_back(Res.second); 7922 return true; 7923 } 7924 7925 return false; 7926 } 7927 7928 /// See if we can lower a mempcpy call into an optimized form. If so, return 7929 /// true and lower it. Otherwise return false, and it will be lowered like a 7930 /// normal call. 7931 /// The caller already checked that \p I calls the appropriate LibFunc with a 7932 /// correct prototype. 7933 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 7934 SDValue Dst = getValue(I.getArgOperand(0)); 7935 SDValue Src = getValue(I.getArgOperand(1)); 7936 SDValue Size = getValue(I.getArgOperand(2)); 7937 7938 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 7939 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 7940 // DAG::getMemcpy needs Alignment to be defined. 7941 Align Alignment = std::min(DstAlign, SrcAlign); 7942 7943 bool isVol = false; 7944 SDLoc sdl = getCurSDLoc(); 7945 7946 // In the mempcpy context we need to pass in a false value for isTailCall 7947 // because the return pointer needs to be adjusted by the size of 7948 // the copied memory. 7949 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 7950 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false, 7951 /*isTailCall=*/false, 7952 MachinePointerInfo(I.getArgOperand(0)), 7953 MachinePointerInfo(I.getArgOperand(1)), 7954 I.getAAMetadata()); 7955 assert(MC.getNode() != nullptr && 7956 "** memcpy should not be lowered as TailCall in mempcpy context **"); 7957 DAG.setRoot(MC); 7958 7959 // Check if Size needs to be truncated or extended. 7960 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 7961 7962 // Adjust return pointer to point just past the last dst byte. 7963 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 7964 Dst, Size); 7965 setValue(&I, DstPlusSize); 7966 return true; 7967 } 7968 7969 /// See if we can lower a strcpy call into an optimized form. If so, return 7970 /// true and lower it, otherwise return false and it will be lowered like a 7971 /// normal call. 7972 /// The caller already checked that \p I calls the appropriate LibFunc with a 7973 /// correct prototype. 7974 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 7975 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7976 7977 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7978 std::pair<SDValue, SDValue> Res = 7979 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 7980 getValue(Arg0), getValue(Arg1), 7981 MachinePointerInfo(Arg0), 7982 MachinePointerInfo(Arg1), isStpcpy); 7983 if (Res.first.getNode()) { 7984 setValue(&I, Res.first); 7985 DAG.setRoot(Res.second); 7986 return true; 7987 } 7988 7989 return false; 7990 } 7991 7992 /// See if we can lower a strcmp call into an optimized form. If so, return 7993 /// true and lower it, otherwise return false and it will be lowered like a 7994 /// normal call. 7995 /// The caller already checked that \p I calls the appropriate LibFunc with a 7996 /// correct prototype. 7997 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 7998 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7999 8000 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8001 std::pair<SDValue, SDValue> Res = 8002 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 8003 getValue(Arg0), getValue(Arg1), 8004 MachinePointerInfo(Arg0), 8005 MachinePointerInfo(Arg1)); 8006 if (Res.first.getNode()) { 8007 processIntegerCallValue(I, Res.first, true); 8008 PendingLoads.push_back(Res.second); 8009 return true; 8010 } 8011 8012 return false; 8013 } 8014 8015 /// See if we can lower a strlen call into an optimized form. If so, return 8016 /// true and lower it, otherwise return false and it will be lowered like a 8017 /// normal call. 8018 /// The caller already checked that \p I calls the appropriate LibFunc with a 8019 /// correct prototype. 8020 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 8021 const Value *Arg0 = I.getArgOperand(0); 8022 8023 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8024 std::pair<SDValue, SDValue> Res = 8025 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 8026 getValue(Arg0), MachinePointerInfo(Arg0)); 8027 if (Res.first.getNode()) { 8028 processIntegerCallValue(I, Res.first, false); 8029 PendingLoads.push_back(Res.second); 8030 return true; 8031 } 8032 8033 return false; 8034 } 8035 8036 /// See if we can lower a strnlen call into an optimized form. If so, return 8037 /// true and lower it, otherwise return false and it will be lowered like a 8038 /// normal call. 8039 /// The caller already checked that \p I calls the appropriate LibFunc with a 8040 /// correct prototype. 8041 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 8042 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8043 8044 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8045 std::pair<SDValue, SDValue> Res = 8046 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 8047 getValue(Arg0), getValue(Arg1), 8048 MachinePointerInfo(Arg0)); 8049 if (Res.first.getNode()) { 8050 processIntegerCallValue(I, Res.first, false); 8051 PendingLoads.push_back(Res.second); 8052 return true; 8053 } 8054 8055 return false; 8056 } 8057 8058 /// See if we can lower a unary floating-point operation into an SDNode with 8059 /// the specified Opcode. If so, return true and lower it, otherwise return 8060 /// false and it will be lowered like a normal call. 8061 /// The caller already checked that \p I calls the appropriate LibFunc with a 8062 /// correct prototype. 8063 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 8064 unsigned Opcode) { 8065 // We already checked this call's prototype; verify it doesn't modify errno. 8066 if (!I.onlyReadsMemory()) 8067 return false; 8068 8069 SDNodeFlags Flags; 8070 Flags.copyFMF(cast<FPMathOperator>(I)); 8071 8072 SDValue Tmp = getValue(I.getArgOperand(0)); 8073 setValue(&I, 8074 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 8075 return true; 8076 } 8077 8078 /// See if we can lower a binary floating-point operation into an SDNode with 8079 /// the specified Opcode. If so, return true and lower it. Otherwise return 8080 /// false, and it will be lowered like a normal call. 8081 /// The caller already checked that \p I calls the appropriate LibFunc with a 8082 /// correct prototype. 8083 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 8084 unsigned Opcode) { 8085 // We already checked this call's prototype; verify it doesn't modify errno. 8086 if (!I.onlyReadsMemory()) 8087 return false; 8088 8089 SDNodeFlags Flags; 8090 Flags.copyFMF(cast<FPMathOperator>(I)); 8091 8092 SDValue Tmp0 = getValue(I.getArgOperand(0)); 8093 SDValue Tmp1 = getValue(I.getArgOperand(1)); 8094 EVT VT = Tmp0.getValueType(); 8095 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 8096 return true; 8097 } 8098 8099 void SelectionDAGBuilder::visitCall(const CallInst &I) { 8100 // Handle inline assembly differently. 8101 if (I.isInlineAsm()) { 8102 visitInlineAsm(I); 8103 return; 8104 } 8105 8106 if (Function *F = I.getCalledFunction()) { 8107 diagnoseDontCall(I); 8108 8109 if (F->isDeclaration()) { 8110 // Is this an LLVM intrinsic or a target-specific intrinsic? 8111 unsigned IID = F->getIntrinsicID(); 8112 if (!IID) 8113 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 8114 IID = II->getIntrinsicID(F); 8115 8116 if (IID) { 8117 visitIntrinsicCall(I, IID); 8118 return; 8119 } 8120 } 8121 8122 // Check for well-known libc/libm calls. If the function is internal, it 8123 // can't be a library call. Don't do the check if marked as nobuiltin for 8124 // some reason or the call site requires strict floating point semantics. 8125 LibFunc Func; 8126 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 8127 F->hasName() && LibInfo->getLibFunc(*F, Func) && 8128 LibInfo->hasOptimizedCodeGen(Func)) { 8129 switch (Func) { 8130 default: break; 8131 case LibFunc_bcmp: 8132 if (visitMemCmpBCmpCall(I)) 8133 return; 8134 break; 8135 case LibFunc_copysign: 8136 case LibFunc_copysignf: 8137 case LibFunc_copysignl: 8138 // We already checked this call's prototype; verify it doesn't modify 8139 // errno. 8140 if (I.onlyReadsMemory()) { 8141 SDValue LHS = getValue(I.getArgOperand(0)); 8142 SDValue RHS = getValue(I.getArgOperand(1)); 8143 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 8144 LHS.getValueType(), LHS, RHS)); 8145 return; 8146 } 8147 break; 8148 case LibFunc_fabs: 8149 case LibFunc_fabsf: 8150 case LibFunc_fabsl: 8151 if (visitUnaryFloatCall(I, ISD::FABS)) 8152 return; 8153 break; 8154 case LibFunc_fmin: 8155 case LibFunc_fminf: 8156 case LibFunc_fminl: 8157 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 8158 return; 8159 break; 8160 case LibFunc_fmax: 8161 case LibFunc_fmaxf: 8162 case LibFunc_fmaxl: 8163 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 8164 return; 8165 break; 8166 case LibFunc_sin: 8167 case LibFunc_sinf: 8168 case LibFunc_sinl: 8169 if (visitUnaryFloatCall(I, ISD::FSIN)) 8170 return; 8171 break; 8172 case LibFunc_cos: 8173 case LibFunc_cosf: 8174 case LibFunc_cosl: 8175 if (visitUnaryFloatCall(I, ISD::FCOS)) 8176 return; 8177 break; 8178 case LibFunc_sqrt: 8179 case LibFunc_sqrtf: 8180 case LibFunc_sqrtl: 8181 case LibFunc_sqrt_finite: 8182 case LibFunc_sqrtf_finite: 8183 case LibFunc_sqrtl_finite: 8184 if (visitUnaryFloatCall(I, ISD::FSQRT)) 8185 return; 8186 break; 8187 case LibFunc_floor: 8188 case LibFunc_floorf: 8189 case LibFunc_floorl: 8190 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 8191 return; 8192 break; 8193 case LibFunc_nearbyint: 8194 case LibFunc_nearbyintf: 8195 case LibFunc_nearbyintl: 8196 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 8197 return; 8198 break; 8199 case LibFunc_ceil: 8200 case LibFunc_ceilf: 8201 case LibFunc_ceill: 8202 if (visitUnaryFloatCall(I, ISD::FCEIL)) 8203 return; 8204 break; 8205 case LibFunc_rint: 8206 case LibFunc_rintf: 8207 case LibFunc_rintl: 8208 if (visitUnaryFloatCall(I, ISD::FRINT)) 8209 return; 8210 break; 8211 case LibFunc_round: 8212 case LibFunc_roundf: 8213 case LibFunc_roundl: 8214 if (visitUnaryFloatCall(I, ISD::FROUND)) 8215 return; 8216 break; 8217 case LibFunc_trunc: 8218 case LibFunc_truncf: 8219 case LibFunc_truncl: 8220 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 8221 return; 8222 break; 8223 case LibFunc_log2: 8224 case LibFunc_log2f: 8225 case LibFunc_log2l: 8226 if (visitUnaryFloatCall(I, ISD::FLOG2)) 8227 return; 8228 break; 8229 case LibFunc_exp2: 8230 case LibFunc_exp2f: 8231 case LibFunc_exp2l: 8232 if (visitUnaryFloatCall(I, ISD::FEXP2)) 8233 return; 8234 break; 8235 case LibFunc_memcmp: 8236 if (visitMemCmpBCmpCall(I)) 8237 return; 8238 break; 8239 case LibFunc_mempcpy: 8240 if (visitMemPCpyCall(I)) 8241 return; 8242 break; 8243 case LibFunc_memchr: 8244 if (visitMemChrCall(I)) 8245 return; 8246 break; 8247 case LibFunc_strcpy: 8248 if (visitStrCpyCall(I, false)) 8249 return; 8250 break; 8251 case LibFunc_stpcpy: 8252 if (visitStrCpyCall(I, true)) 8253 return; 8254 break; 8255 case LibFunc_strcmp: 8256 if (visitStrCmpCall(I)) 8257 return; 8258 break; 8259 case LibFunc_strlen: 8260 if (visitStrLenCall(I)) 8261 return; 8262 break; 8263 case LibFunc_strnlen: 8264 if (visitStrNLenCall(I)) 8265 return; 8266 break; 8267 } 8268 } 8269 } 8270 8271 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 8272 // have to do anything here to lower funclet bundles. 8273 // CFGuardTarget bundles are lowered in LowerCallTo. 8274 assert(!I.hasOperandBundlesOtherThan( 8275 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 8276 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated, 8277 LLVMContext::OB_clang_arc_attachedcall}) && 8278 "Cannot lower calls with arbitrary operand bundles!"); 8279 8280 SDValue Callee = getValue(I.getCalledOperand()); 8281 8282 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 8283 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 8284 else 8285 // Check if we can potentially perform a tail call. More detailed checking 8286 // is be done within LowerCallTo, after more information about the call is 8287 // known. 8288 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 8289 } 8290 8291 namespace { 8292 8293 /// AsmOperandInfo - This contains information for each constraint that we are 8294 /// lowering. 8295 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 8296 public: 8297 /// CallOperand - If this is the result output operand or a clobber 8298 /// this is null, otherwise it is the incoming operand to the CallInst. 8299 /// This gets modified as the asm is processed. 8300 SDValue CallOperand; 8301 8302 /// AssignedRegs - If this is a register or register class operand, this 8303 /// contains the set of register corresponding to the operand. 8304 RegsForValue AssignedRegs; 8305 8306 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 8307 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 8308 } 8309 8310 /// Whether or not this operand accesses memory 8311 bool hasMemory(const TargetLowering &TLI) const { 8312 // Indirect operand accesses access memory. 8313 if (isIndirect) 8314 return true; 8315 8316 for (const auto &Code : Codes) 8317 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 8318 return true; 8319 8320 return false; 8321 } 8322 8323 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 8324 /// corresponds to. If there is no Value* for this operand, it returns 8325 /// MVT::Other. 8326 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 8327 const DataLayout &DL, 8328 llvm::Type *ParamElemType) const { 8329 if (!CallOperandVal) return MVT::Other; 8330 8331 if (isa<BasicBlock>(CallOperandVal)) 8332 return TLI.getProgramPointerTy(DL); 8333 8334 llvm::Type *OpTy = CallOperandVal->getType(); 8335 8336 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 8337 // If this is an indirect operand, the operand is a pointer to the 8338 // accessed type. 8339 if (isIndirect) { 8340 OpTy = ParamElemType; 8341 assert(OpTy && "Indirect operand must have elementtype attribute"); 8342 } 8343 8344 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 8345 if (StructType *STy = dyn_cast<StructType>(OpTy)) 8346 if (STy->getNumElements() == 1) 8347 OpTy = STy->getElementType(0); 8348 8349 // If OpTy is not a single value, it may be a struct/union that we 8350 // can tile with integers. 8351 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 8352 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 8353 switch (BitSize) { 8354 default: break; 8355 case 1: 8356 case 8: 8357 case 16: 8358 case 32: 8359 case 64: 8360 case 128: 8361 OpTy = IntegerType::get(Context, BitSize); 8362 break; 8363 } 8364 } 8365 8366 return TLI.getAsmOperandValueType(DL, OpTy, true); 8367 } 8368 }; 8369 8370 8371 } // end anonymous namespace 8372 8373 /// Make sure that the output operand \p OpInfo and its corresponding input 8374 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 8375 /// out). 8376 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 8377 SDISelAsmOperandInfo &MatchingOpInfo, 8378 SelectionDAG &DAG) { 8379 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 8380 return; 8381 8382 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 8383 const auto &TLI = DAG.getTargetLoweringInfo(); 8384 8385 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 8386 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 8387 OpInfo.ConstraintVT); 8388 std::pair<unsigned, const TargetRegisterClass *> InputRC = 8389 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 8390 MatchingOpInfo.ConstraintVT); 8391 if ((OpInfo.ConstraintVT.isInteger() != 8392 MatchingOpInfo.ConstraintVT.isInteger()) || 8393 (MatchRC.second != InputRC.second)) { 8394 // FIXME: error out in a more elegant fashion 8395 report_fatal_error("Unsupported asm: input constraint" 8396 " with a matching output constraint of" 8397 " incompatible type!"); 8398 } 8399 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 8400 } 8401 8402 /// Get a direct memory input to behave well as an indirect operand. 8403 /// This may introduce stores, hence the need for a \p Chain. 8404 /// \return The (possibly updated) chain. 8405 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 8406 SDISelAsmOperandInfo &OpInfo, 8407 SelectionDAG &DAG) { 8408 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8409 8410 // If we don't have an indirect input, put it in the constpool if we can, 8411 // otherwise spill it to a stack slot. 8412 // TODO: This isn't quite right. We need to handle these according to 8413 // the addressing mode that the constraint wants. Also, this may take 8414 // an additional register for the computation and we don't want that 8415 // either. 8416 8417 // If the operand is a float, integer, or vector constant, spill to a 8418 // constant pool entry to get its address. 8419 const Value *OpVal = OpInfo.CallOperandVal; 8420 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 8421 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 8422 OpInfo.CallOperand = DAG.getConstantPool( 8423 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 8424 return Chain; 8425 } 8426 8427 // Otherwise, create a stack slot and emit a store to it before the asm. 8428 Type *Ty = OpVal->getType(); 8429 auto &DL = DAG.getDataLayout(); 8430 uint64_t TySize = DL.getTypeAllocSize(Ty); 8431 MachineFunction &MF = DAG.getMachineFunction(); 8432 int SSFI = MF.getFrameInfo().CreateStackObject( 8433 TySize, DL.getPrefTypeAlign(Ty), false); 8434 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 8435 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 8436 MachinePointerInfo::getFixedStack(MF, SSFI), 8437 TLI.getMemValueType(DL, Ty)); 8438 OpInfo.CallOperand = StackSlot; 8439 8440 return Chain; 8441 } 8442 8443 /// GetRegistersForValue - Assign registers (virtual or physical) for the 8444 /// specified operand. We prefer to assign virtual registers, to allow the 8445 /// register allocator to handle the assignment process. However, if the asm 8446 /// uses features that we can't model on machineinstrs, we have SDISel do the 8447 /// allocation. This produces generally horrible, but correct, code. 8448 /// 8449 /// OpInfo describes the operand 8450 /// RefOpInfo describes the matching operand if any, the operand otherwise 8451 static llvm::Optional<unsigned> 8452 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 8453 SDISelAsmOperandInfo &OpInfo, 8454 SDISelAsmOperandInfo &RefOpInfo) { 8455 LLVMContext &Context = *DAG.getContext(); 8456 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8457 8458 MachineFunction &MF = DAG.getMachineFunction(); 8459 SmallVector<unsigned, 4> Regs; 8460 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8461 8462 // No work to do for memory operations. 8463 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 8464 return None; 8465 8466 // If this is a constraint for a single physreg, or a constraint for a 8467 // register class, find it. 8468 unsigned AssignedReg; 8469 const TargetRegisterClass *RC; 8470 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 8471 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 8472 // RC is unset only on failure. Return immediately. 8473 if (!RC) 8474 return None; 8475 8476 // Get the actual register value type. This is important, because the user 8477 // may have asked for (e.g.) the AX register in i32 type. We need to 8478 // remember that AX is actually i16 to get the right extension. 8479 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 8480 8481 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) { 8482 // If this is an FP operand in an integer register (or visa versa), or more 8483 // generally if the operand value disagrees with the register class we plan 8484 // to stick it in, fix the operand type. 8485 // 8486 // If this is an input value, the bitcast to the new type is done now. 8487 // Bitcast for output value is done at the end of visitInlineAsm(). 8488 if ((OpInfo.Type == InlineAsm::isOutput || 8489 OpInfo.Type == InlineAsm::isInput) && 8490 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 8491 // Try to convert to the first EVT that the reg class contains. If the 8492 // types are identical size, use a bitcast to convert (e.g. two differing 8493 // vector types). Note: output bitcast is done at the end of 8494 // visitInlineAsm(). 8495 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 8496 // Exclude indirect inputs while they are unsupported because the code 8497 // to perform the load is missing and thus OpInfo.CallOperand still 8498 // refers to the input address rather than the pointed-to value. 8499 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 8500 OpInfo.CallOperand = 8501 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 8502 OpInfo.ConstraintVT = RegVT; 8503 // If the operand is an FP value and we want it in integer registers, 8504 // use the corresponding integer type. This turns an f64 value into 8505 // i64, which can be passed with two i32 values on a 32-bit machine. 8506 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 8507 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 8508 if (OpInfo.Type == InlineAsm::isInput) 8509 OpInfo.CallOperand = 8510 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 8511 OpInfo.ConstraintVT = VT; 8512 } 8513 } 8514 } 8515 8516 // No need to allocate a matching input constraint since the constraint it's 8517 // matching to has already been allocated. 8518 if (OpInfo.isMatchingInputConstraint()) 8519 return None; 8520 8521 EVT ValueVT = OpInfo.ConstraintVT; 8522 if (OpInfo.ConstraintVT == MVT::Other) 8523 ValueVT = RegVT; 8524 8525 // Initialize NumRegs. 8526 unsigned NumRegs = 1; 8527 if (OpInfo.ConstraintVT != MVT::Other) 8528 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT); 8529 8530 // If this is a constraint for a specific physical register, like {r17}, 8531 // assign it now. 8532 8533 // If this associated to a specific register, initialize iterator to correct 8534 // place. If virtual, make sure we have enough registers 8535 8536 // Initialize iterator if necessary 8537 TargetRegisterClass::iterator I = RC->begin(); 8538 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8539 8540 // Do not check for single registers. 8541 if (AssignedReg) { 8542 I = std::find(I, RC->end(), AssignedReg); 8543 if (I == RC->end()) { 8544 // RC does not contain the selected register, which indicates a 8545 // mismatch between the register and the required type/bitwidth. 8546 return {AssignedReg}; 8547 } 8548 } 8549 8550 for (; NumRegs; --NumRegs, ++I) { 8551 assert(I != RC->end() && "Ran out of registers to allocate!"); 8552 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 8553 Regs.push_back(R); 8554 } 8555 8556 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 8557 return None; 8558 } 8559 8560 static unsigned 8561 findMatchingInlineAsmOperand(unsigned OperandNo, 8562 const std::vector<SDValue> &AsmNodeOperands) { 8563 // Scan until we find the definition we already emitted of this operand. 8564 unsigned CurOp = InlineAsm::Op_FirstOperand; 8565 for (; OperandNo; --OperandNo) { 8566 // Advance to the next operand. 8567 unsigned OpFlag = 8568 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8569 assert((InlineAsm::isRegDefKind(OpFlag) || 8570 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 8571 InlineAsm::isMemKind(OpFlag)) && 8572 "Skipped past definitions?"); 8573 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 8574 } 8575 return CurOp; 8576 } 8577 8578 namespace { 8579 8580 class ExtraFlags { 8581 unsigned Flags = 0; 8582 8583 public: 8584 explicit ExtraFlags(const CallBase &Call) { 8585 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8586 if (IA->hasSideEffects()) 8587 Flags |= InlineAsm::Extra_HasSideEffects; 8588 if (IA->isAlignStack()) 8589 Flags |= InlineAsm::Extra_IsAlignStack; 8590 if (Call.isConvergent()) 8591 Flags |= InlineAsm::Extra_IsConvergent; 8592 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 8593 } 8594 8595 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 8596 // Ideally, we would only check against memory constraints. However, the 8597 // meaning of an Other constraint can be target-specific and we can't easily 8598 // reason about it. Therefore, be conservative and set MayLoad/MayStore 8599 // for Other constraints as well. 8600 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8601 OpInfo.ConstraintType == TargetLowering::C_Other) { 8602 if (OpInfo.Type == InlineAsm::isInput) 8603 Flags |= InlineAsm::Extra_MayLoad; 8604 else if (OpInfo.Type == InlineAsm::isOutput) 8605 Flags |= InlineAsm::Extra_MayStore; 8606 else if (OpInfo.Type == InlineAsm::isClobber) 8607 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 8608 } 8609 } 8610 8611 unsigned get() const { return Flags; } 8612 }; 8613 8614 } // end anonymous namespace 8615 8616 /// visitInlineAsm - Handle a call to an InlineAsm object. 8617 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call, 8618 const BasicBlock *EHPadBB) { 8619 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8620 8621 /// ConstraintOperands - Information about all of the constraints. 8622 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 8623 8624 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8625 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 8626 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 8627 8628 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 8629 // AsmDialect, MayLoad, MayStore). 8630 bool HasSideEffect = IA->hasSideEffects(); 8631 ExtraFlags ExtraInfo(Call); 8632 8633 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 8634 unsigned ResNo = 0; // ResNo - The result number of the next output. 8635 for (auto &T : TargetConstraints) { 8636 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 8637 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8638 8639 // Compute the value type for each operand. 8640 if (OpInfo.hasArg()) { 8641 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 8642 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8643 Type *ParamElemTy = Call.getParamElementType(ArgNo); 8644 EVT VT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 8645 DAG.getDataLayout(), ParamElemTy); 8646 OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other; 8647 ArgNo++; 8648 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 8649 // The return value of the call is this value. As such, there is no 8650 // corresponding argument. 8651 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 8652 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 8653 OpInfo.ConstraintVT = TLI.getSimpleValueType( 8654 DAG.getDataLayout(), STy->getElementType(ResNo)); 8655 } else { 8656 assert(ResNo == 0 && "Asm only has one result!"); 8657 OpInfo.ConstraintVT = TLI.getAsmOperandValueType( 8658 DAG.getDataLayout(), Call.getType()).getSimpleVT(); 8659 } 8660 ++ResNo; 8661 } else { 8662 OpInfo.ConstraintVT = MVT::Other; 8663 } 8664 8665 if (!HasSideEffect) 8666 HasSideEffect = OpInfo.hasMemory(TLI); 8667 8668 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8669 // FIXME: Could we compute this on OpInfo rather than T? 8670 8671 // Compute the constraint code and ConstraintType to use. 8672 TLI.ComputeConstraintToUse(T, SDValue()); 8673 8674 if (T.ConstraintType == TargetLowering::C_Immediate && 8675 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8676 // We've delayed emitting a diagnostic like the "n" constraint because 8677 // inlining could cause an integer showing up. 8678 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 8679 "' expects an integer constant " 8680 "expression"); 8681 8682 ExtraInfo.update(T); 8683 } 8684 8685 // We won't need to flush pending loads if this asm doesn't touch 8686 // memory and is nonvolatile. 8687 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8688 8689 bool EmitEHLabels = isa<InvokeInst>(Call) && IA->canThrow(); 8690 if (EmitEHLabels) { 8691 assert(EHPadBB && "InvokeInst must have an EHPadBB"); 8692 } 8693 bool IsCallBr = isa<CallBrInst>(Call); 8694 8695 if (IsCallBr || EmitEHLabels) { 8696 // If this is a callbr or invoke we need to flush pending exports since 8697 // inlineasm_br and invoke are terminators. 8698 // We need to do this before nodes are glued to the inlineasm_br node. 8699 Chain = getControlRoot(); 8700 } 8701 8702 MCSymbol *BeginLabel = nullptr; 8703 if (EmitEHLabels) { 8704 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel); 8705 } 8706 8707 // Second pass over the constraints: compute which constraint option to use. 8708 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8709 // If this is an output operand with a matching input operand, look up the 8710 // matching input. If their types mismatch, e.g. one is an integer, the 8711 // other is floating point, or their sizes are different, flag it as an 8712 // error. 8713 if (OpInfo.hasMatchingInput()) { 8714 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8715 patchMatchingInput(OpInfo, Input, DAG); 8716 } 8717 8718 // Compute the constraint code and ConstraintType to use. 8719 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8720 8721 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8722 OpInfo.Type == InlineAsm::isClobber) 8723 continue; 8724 8725 // If this is a memory input, and if the operand is not indirect, do what we 8726 // need to provide an address for the memory input. 8727 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8728 !OpInfo.isIndirect) { 8729 assert((OpInfo.isMultipleAlternative || 8730 (OpInfo.Type == InlineAsm::isInput)) && 8731 "Can only indirectify direct input operands!"); 8732 8733 // Memory operands really want the address of the value. 8734 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8735 8736 // There is no longer a Value* corresponding to this operand. 8737 OpInfo.CallOperandVal = nullptr; 8738 8739 // It is now an indirect operand. 8740 OpInfo.isIndirect = true; 8741 } 8742 8743 } 8744 8745 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8746 std::vector<SDValue> AsmNodeOperands; 8747 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8748 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8749 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 8750 8751 // If we have a !srcloc metadata node associated with it, we want to attach 8752 // this to the ultimately generated inline asm machineinstr. To do this, we 8753 // pass in the third operand as this (potentially null) inline asm MDNode. 8754 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 8755 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8756 8757 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8758 // bits as operand 3. 8759 AsmNodeOperands.push_back(DAG.getTargetConstant( 8760 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8761 8762 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8763 // this, assign virtual and physical registers for inputs and otput. 8764 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8765 // Assign Registers. 8766 SDISelAsmOperandInfo &RefOpInfo = 8767 OpInfo.isMatchingInputConstraint() 8768 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8769 : OpInfo; 8770 const auto RegError = 8771 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8772 if (RegError.hasValue()) { 8773 const MachineFunction &MF = DAG.getMachineFunction(); 8774 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8775 const char *RegName = TRI.getName(RegError.getValue()); 8776 emitInlineAsmError(Call, "register '" + Twine(RegName) + 8777 "' allocated for constraint '" + 8778 Twine(OpInfo.ConstraintCode) + 8779 "' does not match required type"); 8780 return; 8781 } 8782 8783 auto DetectWriteToReservedRegister = [&]() { 8784 const MachineFunction &MF = DAG.getMachineFunction(); 8785 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8786 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 8787 if (Register::isPhysicalRegister(Reg) && 8788 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 8789 const char *RegName = TRI.getName(Reg); 8790 emitInlineAsmError(Call, "write to reserved register '" + 8791 Twine(RegName) + "'"); 8792 return true; 8793 } 8794 } 8795 return false; 8796 }; 8797 8798 switch (OpInfo.Type) { 8799 case InlineAsm::isOutput: 8800 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8801 unsigned ConstraintID = 8802 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8803 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8804 "Failed to convert memory constraint code to constraint id."); 8805 8806 // Add information to the INLINEASM node to know about this output. 8807 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8808 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8809 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8810 MVT::i32)); 8811 AsmNodeOperands.push_back(OpInfo.CallOperand); 8812 } else { 8813 // Otherwise, this outputs to a register (directly for C_Register / 8814 // C_RegisterClass, and a target-defined fashion for 8815 // C_Immediate/C_Other). Find a register that we can use. 8816 if (OpInfo.AssignedRegs.Regs.empty()) { 8817 emitInlineAsmError( 8818 Call, "couldn't allocate output register for constraint '" + 8819 Twine(OpInfo.ConstraintCode) + "'"); 8820 return; 8821 } 8822 8823 if (DetectWriteToReservedRegister()) 8824 return; 8825 8826 // Add information to the INLINEASM node to know that this register is 8827 // set. 8828 OpInfo.AssignedRegs.AddInlineAsmOperands( 8829 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8830 : InlineAsm::Kind_RegDef, 8831 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8832 } 8833 break; 8834 8835 case InlineAsm::isInput: { 8836 SDValue InOperandVal = OpInfo.CallOperand; 8837 8838 if (OpInfo.isMatchingInputConstraint()) { 8839 // If this is required to match an output register we have already set, 8840 // just use its register. 8841 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8842 AsmNodeOperands); 8843 unsigned OpFlag = 8844 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8845 if (InlineAsm::isRegDefKind(OpFlag) || 8846 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8847 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8848 if (OpInfo.isIndirect) { 8849 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8850 emitInlineAsmError(Call, "inline asm not supported yet: " 8851 "don't know how to handle tied " 8852 "indirect register inputs"); 8853 return; 8854 } 8855 8856 SmallVector<unsigned, 4> Regs; 8857 MachineFunction &MF = DAG.getMachineFunction(); 8858 MachineRegisterInfo &MRI = MF.getRegInfo(); 8859 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8860 auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]); 8861 Register TiedReg = R->getReg(); 8862 MVT RegVT = R->getSimpleValueType(0); 8863 const TargetRegisterClass *RC = 8864 TiedReg.isVirtual() ? MRI.getRegClass(TiedReg) 8865 : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT) 8866 : TRI.getMinimalPhysRegClass(TiedReg); 8867 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8868 for (unsigned i = 0; i != NumRegs; ++i) 8869 Regs.push_back(MRI.createVirtualRegister(RC)); 8870 8871 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8872 8873 SDLoc dl = getCurSDLoc(); 8874 // Use the produced MatchedRegs object to 8875 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call); 8876 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8877 true, OpInfo.getMatchedOperand(), dl, 8878 DAG, AsmNodeOperands); 8879 break; 8880 } 8881 8882 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8883 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8884 "Unexpected number of operands"); 8885 // Add information to the INLINEASM node to know about this input. 8886 // See InlineAsm.h isUseOperandTiedToDef. 8887 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8888 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8889 OpInfo.getMatchedOperand()); 8890 AsmNodeOperands.push_back(DAG.getTargetConstant( 8891 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8892 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8893 break; 8894 } 8895 8896 // Treat indirect 'X' constraint as memory. 8897 if (OpInfo.ConstraintType == TargetLowering::C_Other && 8898 OpInfo.isIndirect) 8899 OpInfo.ConstraintType = TargetLowering::C_Memory; 8900 8901 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 8902 OpInfo.ConstraintType == TargetLowering::C_Other) { 8903 std::vector<SDValue> Ops; 8904 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8905 Ops, DAG); 8906 if (Ops.empty()) { 8907 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 8908 if (isa<ConstantSDNode>(InOperandVal)) { 8909 emitInlineAsmError(Call, "value out of range for constraint '" + 8910 Twine(OpInfo.ConstraintCode) + "'"); 8911 return; 8912 } 8913 8914 emitInlineAsmError(Call, 8915 "invalid operand for inline asm constraint '" + 8916 Twine(OpInfo.ConstraintCode) + "'"); 8917 return; 8918 } 8919 8920 // Add information to the INLINEASM node to know about this input. 8921 unsigned ResOpType = 8922 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8923 AsmNodeOperands.push_back(DAG.getTargetConstant( 8924 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8925 llvm::append_range(AsmNodeOperands, Ops); 8926 break; 8927 } 8928 8929 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8930 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 8931 assert(InOperandVal.getValueType() == 8932 TLI.getPointerTy(DAG.getDataLayout()) && 8933 "Memory operands expect pointer values"); 8934 8935 unsigned ConstraintID = 8936 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8937 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8938 "Failed to convert memory constraint code to constraint id."); 8939 8940 // Add information to the INLINEASM node to know about this input. 8941 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8942 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8943 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8944 getCurSDLoc(), 8945 MVT::i32)); 8946 AsmNodeOperands.push_back(InOperandVal); 8947 break; 8948 } 8949 8950 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 8951 OpInfo.ConstraintType == TargetLowering::C_Register) && 8952 "Unknown constraint type!"); 8953 8954 // TODO: Support this. 8955 if (OpInfo.isIndirect) { 8956 emitInlineAsmError( 8957 Call, "Don't know how to handle indirect register inputs yet " 8958 "for constraint '" + 8959 Twine(OpInfo.ConstraintCode) + "'"); 8960 return; 8961 } 8962 8963 // Copy the input into the appropriate registers. 8964 if (OpInfo.AssignedRegs.Regs.empty()) { 8965 emitInlineAsmError(Call, 8966 "couldn't allocate input reg for constraint '" + 8967 Twine(OpInfo.ConstraintCode) + "'"); 8968 return; 8969 } 8970 8971 if (DetectWriteToReservedRegister()) 8972 return; 8973 8974 SDLoc dl = getCurSDLoc(); 8975 8976 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 8977 &Call); 8978 8979 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 8980 dl, DAG, AsmNodeOperands); 8981 break; 8982 } 8983 case InlineAsm::isClobber: 8984 // Add the clobbered value to the operand list, so that the register 8985 // allocator is aware that the physreg got clobbered. 8986 if (!OpInfo.AssignedRegs.Regs.empty()) 8987 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 8988 false, 0, getCurSDLoc(), DAG, 8989 AsmNodeOperands); 8990 break; 8991 } 8992 } 8993 8994 // Finish up input operands. Set the input chain and add the flag last. 8995 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 8996 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 8997 8998 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 8999 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 9000 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 9001 Flag = Chain.getValue(1); 9002 9003 // Do additional work to generate outputs. 9004 9005 SmallVector<EVT, 1> ResultVTs; 9006 SmallVector<SDValue, 1> ResultValues; 9007 SmallVector<SDValue, 8> OutChains; 9008 9009 llvm::Type *CallResultType = Call.getType(); 9010 ArrayRef<Type *> ResultTypes; 9011 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 9012 ResultTypes = StructResult->elements(); 9013 else if (!CallResultType->isVoidTy()) 9014 ResultTypes = makeArrayRef(CallResultType); 9015 9016 auto CurResultType = ResultTypes.begin(); 9017 auto handleRegAssign = [&](SDValue V) { 9018 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 9019 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 9020 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 9021 ++CurResultType; 9022 // If the type of the inline asm call site return value is different but has 9023 // same size as the type of the asm output bitcast it. One example of this 9024 // is for vectors with different width / number of elements. This can 9025 // happen for register classes that can contain multiple different value 9026 // types. The preg or vreg allocated may not have the same VT as was 9027 // expected. 9028 // 9029 // This can also happen for a return value that disagrees with the register 9030 // class it is put in, eg. a double in a general-purpose register on a 9031 // 32-bit machine. 9032 if (ResultVT != V.getValueType() && 9033 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 9034 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 9035 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 9036 V.getValueType().isInteger()) { 9037 // If a result value was tied to an input value, the computed result 9038 // may have a wider width than the expected result. Extract the 9039 // relevant portion. 9040 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 9041 } 9042 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 9043 ResultVTs.push_back(ResultVT); 9044 ResultValues.push_back(V); 9045 }; 9046 9047 // Deal with output operands. 9048 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9049 if (OpInfo.Type == InlineAsm::isOutput) { 9050 SDValue Val; 9051 // Skip trivial output operands. 9052 if (OpInfo.AssignedRegs.Regs.empty()) 9053 continue; 9054 9055 switch (OpInfo.ConstraintType) { 9056 case TargetLowering::C_Register: 9057 case TargetLowering::C_RegisterClass: 9058 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 9059 Chain, &Flag, &Call); 9060 break; 9061 case TargetLowering::C_Immediate: 9062 case TargetLowering::C_Other: 9063 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 9064 OpInfo, DAG); 9065 break; 9066 case TargetLowering::C_Memory: 9067 break; // Already handled. 9068 case TargetLowering::C_Unknown: 9069 assert(false && "Unexpected unknown constraint"); 9070 } 9071 9072 // Indirect output manifest as stores. Record output chains. 9073 if (OpInfo.isIndirect) { 9074 const Value *Ptr = OpInfo.CallOperandVal; 9075 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 9076 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 9077 MachinePointerInfo(Ptr)); 9078 OutChains.push_back(Store); 9079 } else { 9080 // generate CopyFromRegs to associated registers. 9081 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 9082 if (Val.getOpcode() == ISD::MERGE_VALUES) { 9083 for (const SDValue &V : Val->op_values()) 9084 handleRegAssign(V); 9085 } else 9086 handleRegAssign(Val); 9087 } 9088 } 9089 } 9090 9091 // Set results. 9092 if (!ResultValues.empty()) { 9093 assert(CurResultType == ResultTypes.end() && 9094 "Mismatch in number of ResultTypes"); 9095 assert(ResultValues.size() == ResultTypes.size() && 9096 "Mismatch in number of output operands in asm result"); 9097 9098 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 9099 DAG.getVTList(ResultVTs), ResultValues); 9100 setValue(&Call, V); 9101 } 9102 9103 // Collect store chains. 9104 if (!OutChains.empty()) 9105 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 9106 9107 if (EmitEHLabels) { 9108 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel); 9109 } 9110 9111 // Only Update Root if inline assembly has a memory effect. 9112 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr || 9113 EmitEHLabels) 9114 DAG.setRoot(Chain); 9115 } 9116 9117 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 9118 const Twine &Message) { 9119 LLVMContext &Ctx = *DAG.getContext(); 9120 Ctx.emitError(&Call, Message); 9121 9122 // Make sure we leave the DAG in a valid state 9123 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9124 SmallVector<EVT, 1> ValueVTs; 9125 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 9126 9127 if (ValueVTs.empty()) 9128 return; 9129 9130 SmallVector<SDValue, 1> Ops; 9131 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 9132 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 9133 9134 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 9135 } 9136 9137 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 9138 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 9139 MVT::Other, getRoot(), 9140 getValue(I.getArgOperand(0)), 9141 DAG.getSrcValue(I.getArgOperand(0)))); 9142 } 9143 9144 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 9145 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9146 const DataLayout &DL = DAG.getDataLayout(); 9147 SDValue V = DAG.getVAArg( 9148 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 9149 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 9150 DL.getABITypeAlign(I.getType()).value()); 9151 DAG.setRoot(V.getValue(1)); 9152 9153 if (I.getType()->isPointerTy()) 9154 V = DAG.getPtrExtOrTrunc( 9155 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 9156 setValue(&I, V); 9157 } 9158 9159 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 9160 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 9161 MVT::Other, getRoot(), 9162 getValue(I.getArgOperand(0)), 9163 DAG.getSrcValue(I.getArgOperand(0)))); 9164 } 9165 9166 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 9167 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 9168 MVT::Other, getRoot(), 9169 getValue(I.getArgOperand(0)), 9170 getValue(I.getArgOperand(1)), 9171 DAG.getSrcValue(I.getArgOperand(0)), 9172 DAG.getSrcValue(I.getArgOperand(1)))); 9173 } 9174 9175 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 9176 const Instruction &I, 9177 SDValue Op) { 9178 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 9179 if (!Range) 9180 return Op; 9181 9182 ConstantRange CR = getConstantRangeFromMetadata(*Range); 9183 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 9184 return Op; 9185 9186 APInt Lo = CR.getUnsignedMin(); 9187 if (!Lo.isMinValue()) 9188 return Op; 9189 9190 APInt Hi = CR.getUnsignedMax(); 9191 unsigned Bits = std::max(Hi.getActiveBits(), 9192 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 9193 9194 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 9195 9196 SDLoc SL = getCurSDLoc(); 9197 9198 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 9199 DAG.getValueType(SmallVT)); 9200 unsigned NumVals = Op.getNode()->getNumValues(); 9201 if (NumVals == 1) 9202 return ZExt; 9203 9204 SmallVector<SDValue, 4> Ops; 9205 9206 Ops.push_back(ZExt); 9207 for (unsigned I = 1; I != NumVals; ++I) 9208 Ops.push_back(Op.getValue(I)); 9209 9210 return DAG.getMergeValues(Ops, SL); 9211 } 9212 9213 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 9214 /// the call being lowered. 9215 /// 9216 /// This is a helper for lowering intrinsics that follow a target calling 9217 /// convention or require stack pointer adjustment. Only a subset of the 9218 /// intrinsic's operands need to participate in the calling convention. 9219 void SelectionDAGBuilder::populateCallLoweringInfo( 9220 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 9221 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 9222 bool IsPatchPoint) { 9223 TargetLowering::ArgListTy Args; 9224 Args.reserve(NumArgs); 9225 9226 // Populate the argument list. 9227 // Attributes for args start at offset 1, after the return attribute. 9228 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 9229 ArgI != ArgE; ++ArgI) { 9230 const Value *V = Call->getOperand(ArgI); 9231 9232 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 9233 9234 TargetLowering::ArgListEntry Entry; 9235 Entry.Node = getValue(V); 9236 Entry.Ty = V->getType(); 9237 Entry.setAttributes(Call, ArgI); 9238 Args.push_back(Entry); 9239 } 9240 9241 CLI.setDebugLoc(getCurSDLoc()) 9242 .setChain(getRoot()) 9243 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 9244 .setDiscardResult(Call->use_empty()) 9245 .setIsPatchPoint(IsPatchPoint) 9246 .setIsPreallocated( 9247 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 9248 } 9249 9250 /// Add a stack map intrinsic call's live variable operands to a stackmap 9251 /// or patchpoint target node's operand list. 9252 /// 9253 /// Constants are converted to TargetConstants purely as an optimization to 9254 /// avoid constant materialization and register allocation. 9255 /// 9256 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 9257 /// generate addess computation nodes, and so FinalizeISel can convert the 9258 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 9259 /// address materialization and register allocation, but may also be required 9260 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 9261 /// alloca in the entry block, then the runtime may assume that the alloca's 9262 /// StackMap location can be read immediately after compilation and that the 9263 /// location is valid at any point during execution (this is similar to the 9264 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 9265 /// only available in a register, then the runtime would need to trap when 9266 /// execution reaches the StackMap in order to read the alloca's location. 9267 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 9268 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 9269 SelectionDAGBuilder &Builder) { 9270 for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) { 9271 SDValue OpVal = Builder.getValue(Call.getArgOperand(i)); 9272 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 9273 Ops.push_back( 9274 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 9275 Ops.push_back( 9276 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 9277 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 9278 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 9279 Ops.push_back(Builder.DAG.getTargetFrameIndex( 9280 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 9281 } else 9282 Ops.push_back(OpVal); 9283 } 9284 } 9285 9286 /// Lower llvm.experimental.stackmap directly to its target opcode. 9287 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 9288 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 9289 // [live variables...]) 9290 9291 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 9292 9293 SDValue Chain, InFlag, Callee, NullPtr; 9294 SmallVector<SDValue, 32> Ops; 9295 9296 SDLoc DL = getCurSDLoc(); 9297 Callee = getValue(CI.getCalledOperand()); 9298 NullPtr = DAG.getIntPtrConstant(0, DL, true); 9299 9300 // The stackmap intrinsic only records the live variables (the arguments 9301 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 9302 // intrinsic, this won't be lowered to a function call. This means we don't 9303 // have to worry about calling conventions and target specific lowering code. 9304 // Instead we perform the call lowering right here. 9305 // 9306 // chain, flag = CALLSEQ_START(chain, 0, 0) 9307 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 9308 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 9309 // 9310 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 9311 InFlag = Chain.getValue(1); 9312 9313 // Add the <id> and <numBytes> constants. 9314 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 9315 Ops.push_back(DAG.getTargetConstant( 9316 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 9317 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 9318 Ops.push_back(DAG.getTargetConstant( 9319 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 9320 MVT::i32)); 9321 9322 // Push live variables for the stack map. 9323 addStackMapLiveVars(CI, 2, DL, Ops, *this); 9324 9325 // We are not pushing any register mask info here on the operands list, 9326 // because the stackmap doesn't clobber anything. 9327 9328 // Push the chain and the glue flag. 9329 Ops.push_back(Chain); 9330 Ops.push_back(InFlag); 9331 9332 // Create the STACKMAP node. 9333 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9334 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 9335 Chain = SDValue(SM, 0); 9336 InFlag = Chain.getValue(1); 9337 9338 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 9339 9340 // Stackmaps don't generate values, so nothing goes into the NodeMap. 9341 9342 // Set the root to the target-lowered call chain. 9343 DAG.setRoot(Chain); 9344 9345 // Inform the Frame Information that we have a stackmap in this function. 9346 FuncInfo.MF->getFrameInfo().setHasStackMap(); 9347 } 9348 9349 /// Lower llvm.experimental.patchpoint directly to its target opcode. 9350 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 9351 const BasicBlock *EHPadBB) { 9352 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 9353 // i32 <numBytes>, 9354 // i8* <target>, 9355 // i32 <numArgs>, 9356 // [Args...], 9357 // [live variables...]) 9358 9359 CallingConv::ID CC = CB.getCallingConv(); 9360 bool IsAnyRegCC = CC == CallingConv::AnyReg; 9361 bool HasDef = !CB.getType()->isVoidTy(); 9362 SDLoc dl = getCurSDLoc(); 9363 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 9364 9365 // Handle immediate and symbolic callees. 9366 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 9367 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 9368 /*isTarget=*/true); 9369 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 9370 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 9371 SDLoc(SymbolicCallee), 9372 SymbolicCallee->getValueType(0)); 9373 9374 // Get the real number of arguments participating in the call <numArgs> 9375 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 9376 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 9377 9378 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 9379 // Intrinsics include all meta-operands up to but not including CC. 9380 unsigned NumMetaOpers = PatchPointOpers::CCPos; 9381 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 9382 "Not enough arguments provided to the patchpoint intrinsic"); 9383 9384 // For AnyRegCC the arguments are lowered later on manually. 9385 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 9386 Type *ReturnTy = 9387 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 9388 9389 TargetLowering::CallLoweringInfo CLI(DAG); 9390 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 9391 ReturnTy, true); 9392 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 9393 9394 SDNode *CallEnd = Result.second.getNode(); 9395 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 9396 CallEnd = CallEnd->getOperand(0).getNode(); 9397 9398 /// Get a call instruction from the call sequence chain. 9399 /// Tail calls are not allowed. 9400 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 9401 "Expected a callseq node."); 9402 SDNode *Call = CallEnd->getOperand(0).getNode(); 9403 bool HasGlue = Call->getGluedNode(); 9404 9405 // Replace the target specific call node with the patchable intrinsic. 9406 SmallVector<SDValue, 8> Ops; 9407 9408 // Add the <id> and <numBytes> constants. 9409 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 9410 Ops.push_back(DAG.getTargetConstant( 9411 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 9412 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 9413 Ops.push_back(DAG.getTargetConstant( 9414 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 9415 MVT::i32)); 9416 9417 // Add the callee. 9418 Ops.push_back(Callee); 9419 9420 // Adjust <numArgs> to account for any arguments that have been passed on the 9421 // stack instead. 9422 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 9423 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 9424 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 9425 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 9426 9427 // Add the calling convention 9428 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 9429 9430 // Add the arguments we omitted previously. The register allocator should 9431 // place these in any free register. 9432 if (IsAnyRegCC) 9433 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 9434 Ops.push_back(getValue(CB.getArgOperand(i))); 9435 9436 // Push the arguments from the call instruction up to the register mask. 9437 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 9438 Ops.append(Call->op_begin() + 2, e); 9439 9440 // Push live variables for the stack map. 9441 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 9442 9443 // Push the register mask info. 9444 if (HasGlue) 9445 Ops.push_back(*(Call->op_end()-2)); 9446 else 9447 Ops.push_back(*(Call->op_end()-1)); 9448 9449 // Push the chain (this is originally the first operand of the call, but 9450 // becomes now the last or second to last operand). 9451 Ops.push_back(*(Call->op_begin())); 9452 9453 // Push the glue flag (last operand). 9454 if (HasGlue) 9455 Ops.push_back(*(Call->op_end()-1)); 9456 9457 SDVTList NodeTys; 9458 if (IsAnyRegCC && HasDef) { 9459 // Create the return types based on the intrinsic definition 9460 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9461 SmallVector<EVT, 3> ValueVTs; 9462 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 9463 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 9464 9465 // There is always a chain and a glue type at the end 9466 ValueVTs.push_back(MVT::Other); 9467 ValueVTs.push_back(MVT::Glue); 9468 NodeTys = DAG.getVTList(ValueVTs); 9469 } else 9470 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9471 9472 // Replace the target specific call node with a PATCHPOINT node. 9473 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 9474 dl, NodeTys, Ops); 9475 9476 // Update the NodeMap. 9477 if (HasDef) { 9478 if (IsAnyRegCC) 9479 setValue(&CB, SDValue(MN, 0)); 9480 else 9481 setValue(&CB, Result.first); 9482 } 9483 9484 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 9485 // call sequence. Furthermore the location of the chain and glue can change 9486 // when the AnyReg calling convention is used and the intrinsic returns a 9487 // value. 9488 if (IsAnyRegCC && HasDef) { 9489 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 9490 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 9491 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 9492 } else 9493 DAG.ReplaceAllUsesWith(Call, MN); 9494 DAG.DeleteNode(Call); 9495 9496 // Inform the Frame Information that we have a patchpoint in this function. 9497 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 9498 } 9499 9500 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 9501 unsigned Intrinsic) { 9502 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9503 SDValue Op1 = getValue(I.getArgOperand(0)); 9504 SDValue Op2; 9505 if (I.arg_size() > 1) 9506 Op2 = getValue(I.getArgOperand(1)); 9507 SDLoc dl = getCurSDLoc(); 9508 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 9509 SDValue Res; 9510 SDNodeFlags SDFlags; 9511 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 9512 SDFlags.copyFMF(*FPMO); 9513 9514 switch (Intrinsic) { 9515 case Intrinsic::vector_reduce_fadd: 9516 if (SDFlags.hasAllowReassociation()) 9517 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 9518 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 9519 SDFlags); 9520 else 9521 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); 9522 break; 9523 case Intrinsic::vector_reduce_fmul: 9524 if (SDFlags.hasAllowReassociation()) 9525 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 9526 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 9527 SDFlags); 9528 else 9529 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); 9530 break; 9531 case Intrinsic::vector_reduce_add: 9532 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 9533 break; 9534 case Intrinsic::vector_reduce_mul: 9535 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 9536 break; 9537 case Intrinsic::vector_reduce_and: 9538 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 9539 break; 9540 case Intrinsic::vector_reduce_or: 9541 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 9542 break; 9543 case Intrinsic::vector_reduce_xor: 9544 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 9545 break; 9546 case Intrinsic::vector_reduce_smax: 9547 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 9548 break; 9549 case Intrinsic::vector_reduce_smin: 9550 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 9551 break; 9552 case Intrinsic::vector_reduce_umax: 9553 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 9554 break; 9555 case Intrinsic::vector_reduce_umin: 9556 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 9557 break; 9558 case Intrinsic::vector_reduce_fmax: 9559 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 9560 break; 9561 case Intrinsic::vector_reduce_fmin: 9562 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 9563 break; 9564 default: 9565 llvm_unreachable("Unhandled vector reduce intrinsic"); 9566 } 9567 setValue(&I, Res); 9568 } 9569 9570 /// Returns an AttributeList representing the attributes applied to the return 9571 /// value of the given call. 9572 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 9573 SmallVector<Attribute::AttrKind, 2> Attrs; 9574 if (CLI.RetSExt) 9575 Attrs.push_back(Attribute::SExt); 9576 if (CLI.RetZExt) 9577 Attrs.push_back(Attribute::ZExt); 9578 if (CLI.IsInReg) 9579 Attrs.push_back(Attribute::InReg); 9580 9581 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 9582 Attrs); 9583 } 9584 9585 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 9586 /// implementation, which just calls LowerCall. 9587 /// FIXME: When all targets are 9588 /// migrated to using LowerCall, this hook should be integrated into SDISel. 9589 std::pair<SDValue, SDValue> 9590 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 9591 // Handle the incoming return values from the call. 9592 CLI.Ins.clear(); 9593 Type *OrigRetTy = CLI.RetTy; 9594 SmallVector<EVT, 4> RetTys; 9595 SmallVector<uint64_t, 4> Offsets; 9596 auto &DL = CLI.DAG.getDataLayout(); 9597 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 9598 9599 if (CLI.IsPostTypeLegalization) { 9600 // If we are lowering a libcall after legalization, split the return type. 9601 SmallVector<EVT, 4> OldRetTys; 9602 SmallVector<uint64_t, 4> OldOffsets; 9603 RetTys.swap(OldRetTys); 9604 Offsets.swap(OldOffsets); 9605 9606 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 9607 EVT RetVT = OldRetTys[i]; 9608 uint64_t Offset = OldOffsets[i]; 9609 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 9610 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 9611 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 9612 RetTys.append(NumRegs, RegisterVT); 9613 for (unsigned j = 0; j != NumRegs; ++j) 9614 Offsets.push_back(Offset + j * RegisterVTByteSZ); 9615 } 9616 } 9617 9618 SmallVector<ISD::OutputArg, 4> Outs; 9619 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 9620 9621 bool CanLowerReturn = 9622 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 9623 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 9624 9625 SDValue DemoteStackSlot; 9626 int DemoteStackIdx = -100; 9627 if (!CanLowerReturn) { 9628 // FIXME: equivalent assert? 9629 // assert(!CS.hasInAllocaArgument() && 9630 // "sret demotion is incompatible with inalloca"); 9631 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 9632 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 9633 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9634 DemoteStackIdx = 9635 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 9636 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 9637 DL.getAllocaAddrSpace()); 9638 9639 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 9640 ArgListEntry Entry; 9641 Entry.Node = DemoteStackSlot; 9642 Entry.Ty = StackSlotPtrType; 9643 Entry.IsSExt = false; 9644 Entry.IsZExt = false; 9645 Entry.IsInReg = false; 9646 Entry.IsSRet = true; 9647 Entry.IsNest = false; 9648 Entry.IsByVal = false; 9649 Entry.IsByRef = false; 9650 Entry.IsReturned = false; 9651 Entry.IsSwiftSelf = false; 9652 Entry.IsSwiftAsync = false; 9653 Entry.IsSwiftError = false; 9654 Entry.IsCFGuardTarget = false; 9655 Entry.Alignment = Alignment; 9656 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 9657 CLI.NumFixedArgs += 1; 9658 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 9659 9660 // sret demotion isn't compatible with tail-calls, since the sret argument 9661 // points into the callers stack frame. 9662 CLI.IsTailCall = false; 9663 } else { 9664 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9665 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL); 9666 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9667 ISD::ArgFlagsTy Flags; 9668 if (NeedsRegBlock) { 9669 Flags.setInConsecutiveRegs(); 9670 if (I == RetTys.size() - 1) 9671 Flags.setInConsecutiveRegsLast(); 9672 } 9673 EVT VT = RetTys[I]; 9674 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9675 CLI.CallConv, VT); 9676 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9677 CLI.CallConv, VT); 9678 for (unsigned i = 0; i != NumRegs; ++i) { 9679 ISD::InputArg MyFlags; 9680 MyFlags.Flags = Flags; 9681 MyFlags.VT = RegisterVT; 9682 MyFlags.ArgVT = VT; 9683 MyFlags.Used = CLI.IsReturnValueUsed; 9684 if (CLI.RetTy->isPointerTy()) { 9685 MyFlags.Flags.setPointer(); 9686 MyFlags.Flags.setPointerAddrSpace( 9687 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9688 } 9689 if (CLI.RetSExt) 9690 MyFlags.Flags.setSExt(); 9691 if (CLI.RetZExt) 9692 MyFlags.Flags.setZExt(); 9693 if (CLI.IsInReg) 9694 MyFlags.Flags.setInReg(); 9695 CLI.Ins.push_back(MyFlags); 9696 } 9697 } 9698 } 9699 9700 // We push in swifterror return as the last element of CLI.Ins. 9701 ArgListTy &Args = CLI.getArgs(); 9702 if (supportSwiftError()) { 9703 for (const ArgListEntry &Arg : Args) { 9704 if (Arg.IsSwiftError) { 9705 ISD::InputArg MyFlags; 9706 MyFlags.VT = getPointerTy(DL); 9707 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9708 MyFlags.Flags.setSwiftError(); 9709 CLI.Ins.push_back(MyFlags); 9710 } 9711 } 9712 } 9713 9714 // Handle all of the outgoing arguments. 9715 CLI.Outs.clear(); 9716 CLI.OutVals.clear(); 9717 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9718 SmallVector<EVT, 4> ValueVTs; 9719 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9720 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9721 Type *FinalType = Args[i].Ty; 9722 if (Args[i].IsByVal) 9723 FinalType = Args[i].IndirectType; 9724 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9725 FinalType, CLI.CallConv, CLI.IsVarArg, DL); 9726 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9727 ++Value) { 9728 EVT VT = ValueVTs[Value]; 9729 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9730 SDValue Op = SDValue(Args[i].Node.getNode(), 9731 Args[i].Node.getResNo() + Value); 9732 ISD::ArgFlagsTy Flags; 9733 9734 // Certain targets (such as MIPS), may have a different ABI alignment 9735 // for a type depending on the context. Give the target a chance to 9736 // specify the alignment it wants. 9737 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 9738 Flags.setOrigAlign(OriginalAlignment); 9739 9740 if (Args[i].Ty->isPointerTy()) { 9741 Flags.setPointer(); 9742 Flags.setPointerAddrSpace( 9743 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9744 } 9745 if (Args[i].IsZExt) 9746 Flags.setZExt(); 9747 if (Args[i].IsSExt) 9748 Flags.setSExt(); 9749 if (Args[i].IsInReg) { 9750 // If we are using vectorcall calling convention, a structure that is 9751 // passed InReg - is surely an HVA 9752 if (CLI.CallConv == CallingConv::X86_VectorCall && 9753 isa<StructType>(FinalType)) { 9754 // The first value of a structure is marked 9755 if (0 == Value) 9756 Flags.setHvaStart(); 9757 Flags.setHva(); 9758 } 9759 // Set InReg Flag 9760 Flags.setInReg(); 9761 } 9762 if (Args[i].IsSRet) 9763 Flags.setSRet(); 9764 if (Args[i].IsSwiftSelf) 9765 Flags.setSwiftSelf(); 9766 if (Args[i].IsSwiftAsync) 9767 Flags.setSwiftAsync(); 9768 if (Args[i].IsSwiftError) 9769 Flags.setSwiftError(); 9770 if (Args[i].IsCFGuardTarget) 9771 Flags.setCFGuardTarget(); 9772 if (Args[i].IsByVal) 9773 Flags.setByVal(); 9774 if (Args[i].IsByRef) 9775 Flags.setByRef(); 9776 if (Args[i].IsPreallocated) { 9777 Flags.setPreallocated(); 9778 // Set the byval flag for CCAssignFn callbacks that don't know about 9779 // preallocated. This way we can know how many bytes we should've 9780 // allocated and how many bytes a callee cleanup function will pop. If 9781 // we port preallocated to more targets, we'll have to add custom 9782 // preallocated handling in the various CC lowering callbacks. 9783 Flags.setByVal(); 9784 } 9785 if (Args[i].IsInAlloca) { 9786 Flags.setInAlloca(); 9787 // Set the byval flag for CCAssignFn callbacks that don't know about 9788 // inalloca. This way we can know how many bytes we should've allocated 9789 // and how many bytes a callee cleanup function will pop. If we port 9790 // inalloca to more targets, we'll have to add custom inalloca handling 9791 // in the various CC lowering callbacks. 9792 Flags.setByVal(); 9793 } 9794 Align MemAlign; 9795 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 9796 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType); 9797 Flags.setByValSize(FrameSize); 9798 9799 // info is not there but there are cases it cannot get right. 9800 if (auto MA = Args[i].Alignment) 9801 MemAlign = *MA; 9802 else 9803 MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL)); 9804 } else if (auto MA = Args[i].Alignment) { 9805 MemAlign = *MA; 9806 } else { 9807 MemAlign = OriginalAlignment; 9808 } 9809 Flags.setMemAlign(MemAlign); 9810 if (Args[i].IsNest) 9811 Flags.setNest(); 9812 if (NeedsRegBlock) 9813 Flags.setInConsecutiveRegs(); 9814 9815 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9816 CLI.CallConv, VT); 9817 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9818 CLI.CallConv, VT); 9819 SmallVector<SDValue, 4> Parts(NumParts); 9820 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 9821 9822 if (Args[i].IsSExt) 9823 ExtendKind = ISD::SIGN_EXTEND; 9824 else if (Args[i].IsZExt) 9825 ExtendKind = ISD::ZERO_EXTEND; 9826 9827 // Conservatively only handle 'returned' on non-vectors that can be lowered, 9828 // for now. 9829 if (Args[i].IsReturned && !Op.getValueType().isVector() && 9830 CanLowerReturn) { 9831 assert((CLI.RetTy == Args[i].Ty || 9832 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 9833 CLI.RetTy->getPointerAddressSpace() == 9834 Args[i].Ty->getPointerAddressSpace())) && 9835 RetTys.size() == NumValues && "unexpected use of 'returned'"); 9836 // Before passing 'returned' to the target lowering code, ensure that 9837 // either the register MVT and the actual EVT are the same size or that 9838 // the return value and argument are extended in the same way; in these 9839 // cases it's safe to pass the argument register value unchanged as the 9840 // return register value (although it's at the target's option whether 9841 // to do so) 9842 // TODO: allow code generation to take advantage of partially preserved 9843 // registers rather than clobbering the entire register when the 9844 // parameter extension method is not compatible with the return 9845 // extension method 9846 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 9847 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 9848 CLI.RetZExt == Args[i].IsZExt)) 9849 Flags.setReturned(); 9850 } 9851 9852 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 9853 CLI.CallConv, ExtendKind); 9854 9855 for (unsigned j = 0; j != NumParts; ++j) { 9856 // if it isn't first piece, alignment must be 1 9857 // For scalable vectors the scalable part is currently handled 9858 // by individual targets, so we just use the known minimum size here. 9859 ISD::OutputArg MyFlags( 9860 Flags, Parts[j].getValueType().getSimpleVT(), VT, 9861 i < CLI.NumFixedArgs, i, 9862 j * Parts[j].getValueType().getStoreSize().getKnownMinSize()); 9863 if (NumParts > 1 && j == 0) 9864 MyFlags.Flags.setSplit(); 9865 else if (j != 0) { 9866 MyFlags.Flags.setOrigAlign(Align(1)); 9867 if (j == NumParts - 1) 9868 MyFlags.Flags.setSplitEnd(); 9869 } 9870 9871 CLI.Outs.push_back(MyFlags); 9872 CLI.OutVals.push_back(Parts[j]); 9873 } 9874 9875 if (NeedsRegBlock && Value == NumValues - 1) 9876 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 9877 } 9878 } 9879 9880 SmallVector<SDValue, 4> InVals; 9881 CLI.Chain = LowerCall(CLI, InVals); 9882 9883 // Update CLI.InVals to use outside of this function. 9884 CLI.InVals = InVals; 9885 9886 // Verify that the target's LowerCall behaved as expected. 9887 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 9888 "LowerCall didn't return a valid chain!"); 9889 assert((!CLI.IsTailCall || InVals.empty()) && 9890 "LowerCall emitted a return value for a tail call!"); 9891 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 9892 "LowerCall didn't emit the correct number of values!"); 9893 9894 // For a tail call, the return value is merely live-out and there aren't 9895 // any nodes in the DAG representing it. Return a special value to 9896 // indicate that a tail call has been emitted and no more Instructions 9897 // should be processed in the current block. 9898 if (CLI.IsTailCall) { 9899 CLI.DAG.setRoot(CLI.Chain); 9900 return std::make_pair(SDValue(), SDValue()); 9901 } 9902 9903 #ifndef NDEBUG 9904 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 9905 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 9906 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 9907 "LowerCall emitted a value with the wrong type!"); 9908 } 9909 #endif 9910 9911 SmallVector<SDValue, 4> ReturnValues; 9912 if (!CanLowerReturn) { 9913 // The instruction result is the result of loading from the 9914 // hidden sret parameter. 9915 SmallVector<EVT, 1> PVTs; 9916 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 9917 9918 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 9919 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 9920 EVT PtrVT = PVTs[0]; 9921 9922 unsigned NumValues = RetTys.size(); 9923 ReturnValues.resize(NumValues); 9924 SmallVector<SDValue, 4> Chains(NumValues); 9925 9926 // An aggregate return value cannot wrap around the address space, so 9927 // offsets to its parts don't wrap either. 9928 SDNodeFlags Flags; 9929 Flags.setNoUnsignedWrap(true); 9930 9931 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9932 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 9933 for (unsigned i = 0; i < NumValues; ++i) { 9934 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 9935 CLI.DAG.getConstant(Offsets[i], CLI.DL, 9936 PtrVT), Flags); 9937 SDValue L = CLI.DAG.getLoad( 9938 RetTys[i], CLI.DL, CLI.Chain, Add, 9939 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 9940 DemoteStackIdx, Offsets[i]), 9941 HiddenSRetAlign); 9942 ReturnValues[i] = L; 9943 Chains[i] = L.getValue(1); 9944 } 9945 9946 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 9947 } else { 9948 // Collect the legal value parts into potentially illegal values 9949 // that correspond to the original function's return values. 9950 Optional<ISD::NodeType> AssertOp; 9951 if (CLI.RetSExt) 9952 AssertOp = ISD::AssertSext; 9953 else if (CLI.RetZExt) 9954 AssertOp = ISD::AssertZext; 9955 unsigned CurReg = 0; 9956 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9957 EVT VT = RetTys[I]; 9958 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9959 CLI.CallConv, VT); 9960 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9961 CLI.CallConv, VT); 9962 9963 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 9964 NumRegs, RegisterVT, VT, nullptr, 9965 CLI.CallConv, AssertOp)); 9966 CurReg += NumRegs; 9967 } 9968 9969 // For a function returning void, there is no return value. We can't create 9970 // such a node, so we just return a null return value in that case. In 9971 // that case, nothing will actually look at the value. 9972 if (ReturnValues.empty()) 9973 return std::make_pair(SDValue(), CLI.Chain); 9974 } 9975 9976 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 9977 CLI.DAG.getVTList(RetTys), ReturnValues); 9978 return std::make_pair(Res, CLI.Chain); 9979 } 9980 9981 /// Places new result values for the node in Results (their number 9982 /// and types must exactly match those of the original return values of 9983 /// the node), or leaves Results empty, which indicates that the node is not 9984 /// to be custom lowered after all. 9985 void TargetLowering::LowerOperationWrapper(SDNode *N, 9986 SmallVectorImpl<SDValue> &Results, 9987 SelectionDAG &DAG) const { 9988 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 9989 9990 if (!Res.getNode()) 9991 return; 9992 9993 // If the original node has one result, take the return value from 9994 // LowerOperation as is. It might not be result number 0. 9995 if (N->getNumValues() == 1) { 9996 Results.push_back(Res); 9997 return; 9998 } 9999 10000 // If the original node has multiple results, then the return node should 10001 // have the same number of results. 10002 assert((N->getNumValues() == Res->getNumValues()) && 10003 "Lowering returned the wrong number of results!"); 10004 10005 // Places new result values base on N result number. 10006 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 10007 Results.push_back(Res.getValue(I)); 10008 } 10009 10010 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10011 llvm_unreachable("LowerOperation not implemented for this target!"); 10012 } 10013 10014 void 10015 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 10016 SDValue Op = getNonRegisterValue(V); 10017 assert((Op.getOpcode() != ISD::CopyFromReg || 10018 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 10019 "Copy from a reg to the same reg!"); 10020 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 10021 10022 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10023 // If this is an InlineAsm we have to match the registers required, not the 10024 // notional registers required by the type. 10025 10026 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 10027 None); // This is not an ABI copy. 10028 SDValue Chain = DAG.getEntryNode(); 10029 10030 ISD::NodeType ExtendType = ISD::ANY_EXTEND; 10031 auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V); 10032 if (PreferredExtendIt != FuncInfo.PreferredExtendType.end()) 10033 ExtendType = PreferredExtendIt->second; 10034 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 10035 PendingExports.push_back(Chain); 10036 } 10037 10038 #include "llvm/CodeGen/SelectionDAGISel.h" 10039 10040 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 10041 /// entry block, return true. This includes arguments used by switches, since 10042 /// the switch may expand into multiple basic blocks. 10043 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 10044 // With FastISel active, we may be splitting blocks, so force creation 10045 // of virtual registers for all non-dead arguments. 10046 if (FastISel) 10047 return A->use_empty(); 10048 10049 const BasicBlock &Entry = A->getParent()->front(); 10050 for (const User *U : A->users()) 10051 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 10052 return false; // Use not in entry block. 10053 10054 return true; 10055 } 10056 10057 using ArgCopyElisionMapTy = 10058 DenseMap<const Argument *, 10059 std::pair<const AllocaInst *, const StoreInst *>>; 10060 10061 /// Scan the entry block of the function in FuncInfo for arguments that look 10062 /// like copies into a local alloca. Record any copied arguments in 10063 /// ArgCopyElisionCandidates. 10064 static void 10065 findArgumentCopyElisionCandidates(const DataLayout &DL, 10066 FunctionLoweringInfo *FuncInfo, 10067 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 10068 // Record the state of every static alloca used in the entry block. Argument 10069 // allocas are all used in the entry block, so we need approximately as many 10070 // entries as we have arguments. 10071 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 10072 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 10073 unsigned NumArgs = FuncInfo->Fn->arg_size(); 10074 StaticAllocas.reserve(NumArgs * 2); 10075 10076 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 10077 if (!V) 10078 return nullptr; 10079 V = V->stripPointerCasts(); 10080 const auto *AI = dyn_cast<AllocaInst>(V); 10081 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 10082 return nullptr; 10083 auto Iter = StaticAllocas.insert({AI, Unknown}); 10084 return &Iter.first->second; 10085 }; 10086 10087 // Look for stores of arguments to static allocas. Look through bitcasts and 10088 // GEPs to handle type coercions, as long as the alloca is fully initialized 10089 // by the store. Any non-store use of an alloca escapes it and any subsequent 10090 // unanalyzed store might write it. 10091 // FIXME: Handle structs initialized with multiple stores. 10092 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 10093 // Look for stores, and handle non-store uses conservatively. 10094 const auto *SI = dyn_cast<StoreInst>(&I); 10095 if (!SI) { 10096 // We will look through cast uses, so ignore them completely. 10097 if (I.isCast()) 10098 continue; 10099 // Ignore debug info and pseudo op intrinsics, they don't escape or store 10100 // to allocas. 10101 if (I.isDebugOrPseudoInst()) 10102 continue; 10103 // This is an unknown instruction. Assume it escapes or writes to all 10104 // static alloca operands. 10105 for (const Use &U : I.operands()) { 10106 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 10107 *Info = StaticAllocaInfo::Clobbered; 10108 } 10109 continue; 10110 } 10111 10112 // If the stored value is a static alloca, mark it as escaped. 10113 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 10114 *Info = StaticAllocaInfo::Clobbered; 10115 10116 // Check if the destination is a static alloca. 10117 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 10118 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 10119 if (!Info) 10120 continue; 10121 const AllocaInst *AI = cast<AllocaInst>(Dst); 10122 10123 // Skip allocas that have been initialized or clobbered. 10124 if (*Info != StaticAllocaInfo::Unknown) 10125 continue; 10126 10127 // Check if the stored value is an argument, and that this store fully 10128 // initializes the alloca. 10129 // If the argument type has padding bits we can't directly forward a pointer 10130 // as the upper bits may contain garbage. 10131 // Don't elide copies from the same argument twice. 10132 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 10133 const auto *Arg = dyn_cast<Argument>(Val); 10134 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 10135 Arg->getType()->isEmptyTy() || 10136 DL.getTypeStoreSize(Arg->getType()) != 10137 DL.getTypeAllocSize(AI->getAllocatedType()) || 10138 !DL.typeSizeEqualsStoreSize(Arg->getType()) || 10139 ArgCopyElisionCandidates.count(Arg)) { 10140 *Info = StaticAllocaInfo::Clobbered; 10141 continue; 10142 } 10143 10144 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 10145 << '\n'); 10146 10147 // Mark this alloca and store for argument copy elision. 10148 *Info = StaticAllocaInfo::Elidable; 10149 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 10150 10151 // Stop scanning if we've seen all arguments. This will happen early in -O0 10152 // builds, which is useful, because -O0 builds have large entry blocks and 10153 // many allocas. 10154 if (ArgCopyElisionCandidates.size() == NumArgs) 10155 break; 10156 } 10157 } 10158 10159 /// Try to elide argument copies from memory into a local alloca. Succeeds if 10160 /// ArgVal is a load from a suitable fixed stack object. 10161 static void tryToElideArgumentCopy( 10162 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 10163 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 10164 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 10165 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 10166 SDValue ArgVal, bool &ArgHasUses) { 10167 // Check if this is a load from a fixed stack object. 10168 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 10169 if (!LNode) 10170 return; 10171 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 10172 if (!FINode) 10173 return; 10174 10175 // Check that the fixed stack object is the right size and alignment. 10176 // Look at the alignment that the user wrote on the alloca instead of looking 10177 // at the stack object. 10178 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 10179 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 10180 const AllocaInst *AI = ArgCopyIter->second.first; 10181 int FixedIndex = FINode->getIndex(); 10182 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 10183 int OldIndex = AllocaIndex; 10184 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 10185 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 10186 LLVM_DEBUG( 10187 dbgs() << " argument copy elision failed due to bad fixed stack " 10188 "object size\n"); 10189 return; 10190 } 10191 Align RequiredAlignment = AI->getAlign(); 10192 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 10193 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 10194 "greater than stack argument alignment (" 10195 << DebugStr(RequiredAlignment) << " vs " 10196 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 10197 return; 10198 } 10199 10200 // Perform the elision. Delete the old stack object and replace its only use 10201 // in the variable info map. Mark the stack object as mutable. 10202 LLVM_DEBUG({ 10203 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 10204 << " Replacing frame index " << OldIndex << " with " << FixedIndex 10205 << '\n'; 10206 }); 10207 MFI.RemoveStackObject(OldIndex); 10208 MFI.setIsImmutableObjectIndex(FixedIndex, false); 10209 AllocaIndex = FixedIndex; 10210 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 10211 Chains.push_back(ArgVal.getValue(1)); 10212 10213 // Avoid emitting code for the store implementing the copy. 10214 const StoreInst *SI = ArgCopyIter->second.second; 10215 ElidedArgCopyInstrs.insert(SI); 10216 10217 // Check for uses of the argument again so that we can avoid exporting ArgVal 10218 // if it is't used by anything other than the store. 10219 for (const Value *U : Arg.users()) { 10220 if (U != SI) { 10221 ArgHasUses = true; 10222 break; 10223 } 10224 } 10225 } 10226 10227 void SelectionDAGISel::LowerArguments(const Function &F) { 10228 SelectionDAG &DAG = SDB->DAG; 10229 SDLoc dl = SDB->getCurSDLoc(); 10230 const DataLayout &DL = DAG.getDataLayout(); 10231 SmallVector<ISD::InputArg, 16> Ins; 10232 10233 // In Naked functions we aren't going to save any registers. 10234 if (F.hasFnAttribute(Attribute::Naked)) 10235 return; 10236 10237 if (!FuncInfo->CanLowerReturn) { 10238 // Put in an sret pointer parameter before all the other parameters. 10239 SmallVector<EVT, 1> ValueVTs; 10240 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10241 F.getReturnType()->getPointerTo( 10242 DAG.getDataLayout().getAllocaAddrSpace()), 10243 ValueVTs); 10244 10245 // NOTE: Assuming that a pointer will never break down to more than one VT 10246 // or one register. 10247 ISD::ArgFlagsTy Flags; 10248 Flags.setSRet(); 10249 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 10250 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 10251 ISD::InputArg::NoArgIndex, 0); 10252 Ins.push_back(RetArg); 10253 } 10254 10255 // Look for stores of arguments to static allocas. Mark such arguments with a 10256 // flag to ask the target to give us the memory location of that argument if 10257 // available. 10258 ArgCopyElisionMapTy ArgCopyElisionCandidates; 10259 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 10260 ArgCopyElisionCandidates); 10261 10262 // Set up the incoming argument description vector. 10263 for (const Argument &Arg : F.args()) { 10264 unsigned ArgNo = Arg.getArgNo(); 10265 SmallVector<EVT, 4> ValueVTs; 10266 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10267 bool isArgValueUsed = !Arg.use_empty(); 10268 unsigned PartBase = 0; 10269 Type *FinalType = Arg.getType(); 10270 if (Arg.hasAttribute(Attribute::ByVal)) 10271 FinalType = Arg.getParamByValType(); 10272 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 10273 FinalType, F.getCallingConv(), F.isVarArg(), DL); 10274 for (unsigned Value = 0, NumValues = ValueVTs.size(); 10275 Value != NumValues; ++Value) { 10276 EVT VT = ValueVTs[Value]; 10277 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 10278 ISD::ArgFlagsTy Flags; 10279 10280 10281 if (Arg.getType()->isPointerTy()) { 10282 Flags.setPointer(); 10283 Flags.setPointerAddrSpace( 10284 cast<PointerType>(Arg.getType())->getAddressSpace()); 10285 } 10286 if (Arg.hasAttribute(Attribute::ZExt)) 10287 Flags.setZExt(); 10288 if (Arg.hasAttribute(Attribute::SExt)) 10289 Flags.setSExt(); 10290 if (Arg.hasAttribute(Attribute::InReg)) { 10291 // If we are using vectorcall calling convention, a structure that is 10292 // passed InReg - is surely an HVA 10293 if (F.getCallingConv() == CallingConv::X86_VectorCall && 10294 isa<StructType>(Arg.getType())) { 10295 // The first value of a structure is marked 10296 if (0 == Value) 10297 Flags.setHvaStart(); 10298 Flags.setHva(); 10299 } 10300 // Set InReg Flag 10301 Flags.setInReg(); 10302 } 10303 if (Arg.hasAttribute(Attribute::StructRet)) 10304 Flags.setSRet(); 10305 if (Arg.hasAttribute(Attribute::SwiftSelf)) 10306 Flags.setSwiftSelf(); 10307 if (Arg.hasAttribute(Attribute::SwiftAsync)) 10308 Flags.setSwiftAsync(); 10309 if (Arg.hasAttribute(Attribute::SwiftError)) 10310 Flags.setSwiftError(); 10311 if (Arg.hasAttribute(Attribute::ByVal)) 10312 Flags.setByVal(); 10313 if (Arg.hasAttribute(Attribute::ByRef)) 10314 Flags.setByRef(); 10315 if (Arg.hasAttribute(Attribute::InAlloca)) { 10316 Flags.setInAlloca(); 10317 // Set the byval flag for CCAssignFn callbacks that don't know about 10318 // inalloca. This way we can know how many bytes we should've allocated 10319 // and how many bytes a callee cleanup function will pop. If we port 10320 // inalloca to more targets, we'll have to add custom inalloca handling 10321 // in the various CC lowering callbacks. 10322 Flags.setByVal(); 10323 } 10324 if (Arg.hasAttribute(Attribute::Preallocated)) { 10325 Flags.setPreallocated(); 10326 // Set the byval flag for CCAssignFn callbacks that don't know about 10327 // preallocated. This way we can know how many bytes we should've 10328 // allocated and how many bytes a callee cleanup function will pop. If 10329 // we port preallocated to more targets, we'll have to add custom 10330 // preallocated handling in the various CC lowering callbacks. 10331 Flags.setByVal(); 10332 } 10333 10334 // Certain targets (such as MIPS), may have a different ABI alignment 10335 // for a type depending on the context. Give the target a chance to 10336 // specify the alignment it wants. 10337 const Align OriginalAlignment( 10338 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 10339 Flags.setOrigAlign(OriginalAlignment); 10340 10341 Align MemAlign; 10342 Type *ArgMemTy = nullptr; 10343 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 10344 Flags.isByRef()) { 10345 if (!ArgMemTy) 10346 ArgMemTy = Arg.getPointeeInMemoryValueType(); 10347 10348 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 10349 10350 // For in-memory arguments, size and alignment should be passed from FE. 10351 // BE will guess if this info is not there but there are cases it cannot 10352 // get right. 10353 if (auto ParamAlign = Arg.getParamStackAlign()) 10354 MemAlign = *ParamAlign; 10355 else if ((ParamAlign = Arg.getParamAlign())) 10356 MemAlign = *ParamAlign; 10357 else 10358 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 10359 if (Flags.isByRef()) 10360 Flags.setByRefSize(MemSize); 10361 else 10362 Flags.setByValSize(MemSize); 10363 } else if (auto ParamAlign = Arg.getParamStackAlign()) { 10364 MemAlign = *ParamAlign; 10365 } else { 10366 MemAlign = OriginalAlignment; 10367 } 10368 Flags.setMemAlign(MemAlign); 10369 10370 if (Arg.hasAttribute(Attribute::Nest)) 10371 Flags.setNest(); 10372 if (NeedsRegBlock) 10373 Flags.setInConsecutiveRegs(); 10374 if (ArgCopyElisionCandidates.count(&Arg)) 10375 Flags.setCopyElisionCandidate(); 10376 if (Arg.hasAttribute(Attribute::Returned)) 10377 Flags.setReturned(); 10378 10379 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 10380 *CurDAG->getContext(), F.getCallingConv(), VT); 10381 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 10382 *CurDAG->getContext(), F.getCallingConv(), VT); 10383 for (unsigned i = 0; i != NumRegs; ++i) { 10384 // For scalable vectors, use the minimum size; individual targets 10385 // are responsible for handling scalable vector arguments and 10386 // return values. 10387 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 10388 ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize()); 10389 if (NumRegs > 1 && i == 0) 10390 MyFlags.Flags.setSplit(); 10391 // if it isn't first piece, alignment must be 1 10392 else if (i > 0) { 10393 MyFlags.Flags.setOrigAlign(Align(1)); 10394 if (i == NumRegs - 1) 10395 MyFlags.Flags.setSplitEnd(); 10396 } 10397 Ins.push_back(MyFlags); 10398 } 10399 if (NeedsRegBlock && Value == NumValues - 1) 10400 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 10401 PartBase += VT.getStoreSize().getKnownMinSize(); 10402 } 10403 } 10404 10405 // Call the target to set up the argument values. 10406 SmallVector<SDValue, 8> InVals; 10407 SDValue NewRoot = TLI->LowerFormalArguments( 10408 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 10409 10410 // Verify that the target's LowerFormalArguments behaved as expected. 10411 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 10412 "LowerFormalArguments didn't return a valid chain!"); 10413 assert(InVals.size() == Ins.size() && 10414 "LowerFormalArguments didn't emit the correct number of values!"); 10415 LLVM_DEBUG({ 10416 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 10417 assert(InVals[i].getNode() && 10418 "LowerFormalArguments emitted a null value!"); 10419 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 10420 "LowerFormalArguments emitted a value with the wrong type!"); 10421 } 10422 }); 10423 10424 // Update the DAG with the new chain value resulting from argument lowering. 10425 DAG.setRoot(NewRoot); 10426 10427 // Set up the argument values. 10428 unsigned i = 0; 10429 if (!FuncInfo->CanLowerReturn) { 10430 // Create a virtual register for the sret pointer, and put in a copy 10431 // from the sret argument into it. 10432 SmallVector<EVT, 1> ValueVTs; 10433 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10434 F.getReturnType()->getPointerTo( 10435 DAG.getDataLayout().getAllocaAddrSpace()), 10436 ValueVTs); 10437 MVT VT = ValueVTs[0].getSimpleVT(); 10438 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 10439 Optional<ISD::NodeType> AssertOp = None; 10440 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 10441 nullptr, F.getCallingConv(), AssertOp); 10442 10443 MachineFunction& MF = SDB->DAG.getMachineFunction(); 10444 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 10445 Register SRetReg = 10446 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 10447 FuncInfo->DemoteRegister = SRetReg; 10448 NewRoot = 10449 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 10450 DAG.setRoot(NewRoot); 10451 10452 // i indexes lowered arguments. Bump it past the hidden sret argument. 10453 ++i; 10454 } 10455 10456 SmallVector<SDValue, 4> Chains; 10457 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 10458 for (const Argument &Arg : F.args()) { 10459 SmallVector<SDValue, 4> ArgValues; 10460 SmallVector<EVT, 4> ValueVTs; 10461 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10462 unsigned NumValues = ValueVTs.size(); 10463 if (NumValues == 0) 10464 continue; 10465 10466 bool ArgHasUses = !Arg.use_empty(); 10467 10468 // Elide the copying store if the target loaded this argument from a 10469 // suitable fixed stack object. 10470 if (Ins[i].Flags.isCopyElisionCandidate()) { 10471 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 10472 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 10473 InVals[i], ArgHasUses); 10474 } 10475 10476 // If this argument is unused then remember its value. It is used to generate 10477 // debugging information. 10478 bool isSwiftErrorArg = 10479 TLI->supportSwiftError() && 10480 Arg.hasAttribute(Attribute::SwiftError); 10481 if (!ArgHasUses && !isSwiftErrorArg) { 10482 SDB->setUnusedArgValue(&Arg, InVals[i]); 10483 10484 // Also remember any frame index for use in FastISel. 10485 if (FrameIndexSDNode *FI = 10486 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 10487 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10488 } 10489 10490 for (unsigned Val = 0; Val != NumValues; ++Val) { 10491 EVT VT = ValueVTs[Val]; 10492 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 10493 F.getCallingConv(), VT); 10494 unsigned NumParts = TLI->getNumRegistersForCallingConv( 10495 *CurDAG->getContext(), F.getCallingConv(), VT); 10496 10497 // Even an apparent 'unused' swifterror argument needs to be returned. So 10498 // we do generate a copy for it that can be used on return from the 10499 // function. 10500 if (ArgHasUses || isSwiftErrorArg) { 10501 Optional<ISD::NodeType> AssertOp; 10502 if (Arg.hasAttribute(Attribute::SExt)) 10503 AssertOp = ISD::AssertSext; 10504 else if (Arg.hasAttribute(Attribute::ZExt)) 10505 AssertOp = ISD::AssertZext; 10506 10507 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 10508 PartVT, VT, nullptr, 10509 F.getCallingConv(), AssertOp)); 10510 } 10511 10512 i += NumParts; 10513 } 10514 10515 // We don't need to do anything else for unused arguments. 10516 if (ArgValues.empty()) 10517 continue; 10518 10519 // Note down frame index. 10520 if (FrameIndexSDNode *FI = 10521 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 10522 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10523 10524 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 10525 SDB->getCurSDLoc()); 10526 10527 SDB->setValue(&Arg, Res); 10528 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 10529 // We want to associate the argument with the frame index, among 10530 // involved operands, that correspond to the lowest address. The 10531 // getCopyFromParts function, called earlier, is swapping the order of 10532 // the operands to BUILD_PAIR depending on endianness. The result of 10533 // that swapping is that the least significant bits of the argument will 10534 // be in the first operand of the BUILD_PAIR node, and the most 10535 // significant bits will be in the second operand. 10536 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 10537 if (LoadSDNode *LNode = 10538 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 10539 if (FrameIndexSDNode *FI = 10540 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 10541 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10542 } 10543 10544 // Analyses past this point are naive and don't expect an assertion. 10545 if (Res.getOpcode() == ISD::AssertZext) 10546 Res = Res.getOperand(0); 10547 10548 // Update the SwiftErrorVRegDefMap. 10549 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 10550 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10551 if (Register::isVirtualRegister(Reg)) 10552 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 10553 Reg); 10554 } 10555 10556 // If this argument is live outside of the entry block, insert a copy from 10557 // wherever we got it to the vreg that other BB's will reference it as. 10558 if (Res.getOpcode() == ISD::CopyFromReg) { 10559 // If we can, though, try to skip creating an unnecessary vreg. 10560 // FIXME: This isn't very clean... it would be nice to make this more 10561 // general. 10562 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10563 if (Register::isVirtualRegister(Reg)) { 10564 FuncInfo->ValueMap[&Arg] = Reg; 10565 continue; 10566 } 10567 } 10568 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 10569 FuncInfo->InitializeRegForValue(&Arg); 10570 SDB->CopyToExportRegsIfNeeded(&Arg); 10571 } 10572 } 10573 10574 if (!Chains.empty()) { 10575 Chains.push_back(NewRoot); 10576 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 10577 } 10578 10579 DAG.setRoot(NewRoot); 10580 10581 assert(i == InVals.size() && "Argument register count mismatch!"); 10582 10583 // If any argument copy elisions occurred and we have debug info, update the 10584 // stale frame indices used in the dbg.declare variable info table. 10585 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 10586 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 10587 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 10588 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 10589 if (I != ArgCopyElisionFrameIndexMap.end()) 10590 VI.Slot = I->second; 10591 } 10592 } 10593 10594 // Finally, if the target has anything special to do, allow it to do so. 10595 emitFunctionEntryCode(); 10596 } 10597 10598 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 10599 /// ensure constants are generated when needed. Remember the virtual registers 10600 /// that need to be added to the Machine PHI nodes as input. We cannot just 10601 /// directly add them, because expansion might result in multiple MBB's for one 10602 /// BB. As such, the start of the BB might correspond to a different MBB than 10603 /// the end. 10604 void 10605 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 10606 const Instruction *TI = LLVMBB->getTerminator(); 10607 10608 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 10609 10610 // Check PHI nodes in successors that expect a value to be available from this 10611 // block. 10612 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 10613 const BasicBlock *SuccBB = TI->getSuccessor(succ); 10614 if (!isa<PHINode>(SuccBB->begin())) continue; 10615 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 10616 10617 // If this terminator has multiple identical successors (common for 10618 // switches), only handle each succ once. 10619 if (!SuccsHandled.insert(SuccMBB).second) 10620 continue; 10621 10622 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 10623 10624 // At this point we know that there is a 1-1 correspondence between LLVM PHI 10625 // nodes and Machine PHI nodes, but the incoming operands have not been 10626 // emitted yet. 10627 for (const PHINode &PN : SuccBB->phis()) { 10628 // Ignore dead phi's. 10629 if (PN.use_empty()) 10630 continue; 10631 10632 // Skip empty types 10633 if (PN.getType()->isEmptyTy()) 10634 continue; 10635 10636 unsigned Reg; 10637 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 10638 10639 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 10640 unsigned &RegOut = ConstantsOut[C]; 10641 if (RegOut == 0) { 10642 RegOut = FuncInfo.CreateRegs(C); 10643 CopyValueToVirtualRegister(C, RegOut); 10644 } 10645 Reg = RegOut; 10646 } else { 10647 DenseMap<const Value *, Register>::iterator I = 10648 FuncInfo.ValueMap.find(PHIOp); 10649 if (I != FuncInfo.ValueMap.end()) 10650 Reg = I->second; 10651 else { 10652 assert(isa<AllocaInst>(PHIOp) && 10653 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 10654 "Didn't codegen value into a register!??"); 10655 Reg = FuncInfo.CreateRegs(PHIOp); 10656 CopyValueToVirtualRegister(PHIOp, Reg); 10657 } 10658 } 10659 10660 // Remember that this register needs to added to the machine PHI node as 10661 // the input for this MBB. 10662 SmallVector<EVT, 4> ValueVTs; 10663 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10664 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 10665 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 10666 EVT VT = ValueVTs[vti]; 10667 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 10668 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 10669 FuncInfo.PHINodesToUpdate.push_back( 10670 std::make_pair(&*MBBI++, Reg + i)); 10671 Reg += NumRegisters; 10672 } 10673 } 10674 } 10675 10676 ConstantsOut.clear(); 10677 } 10678 10679 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 10680 MachineFunction::iterator I(MBB); 10681 if (++I == FuncInfo.MF->end()) 10682 return nullptr; 10683 return &*I; 10684 } 10685 10686 /// During lowering new call nodes can be created (such as memset, etc.). 10687 /// Those will become new roots of the current DAG, but complications arise 10688 /// when they are tail calls. In such cases, the call lowering will update 10689 /// the root, but the builder still needs to know that a tail call has been 10690 /// lowered in order to avoid generating an additional return. 10691 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 10692 // If the node is null, we do have a tail call. 10693 if (MaybeTC.getNode() != nullptr) 10694 DAG.setRoot(MaybeTC); 10695 else 10696 HasTailCall = true; 10697 } 10698 10699 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10700 MachineBasicBlock *SwitchMBB, 10701 MachineBasicBlock *DefaultMBB) { 10702 MachineFunction *CurMF = FuncInfo.MF; 10703 MachineBasicBlock *NextMBB = nullptr; 10704 MachineFunction::iterator BBI(W.MBB); 10705 if (++BBI != FuncInfo.MF->end()) 10706 NextMBB = &*BBI; 10707 10708 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10709 10710 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10711 10712 if (Size == 2 && W.MBB == SwitchMBB) { 10713 // If any two of the cases has the same destination, and if one value 10714 // is the same as the other, but has one bit unset that the other has set, 10715 // use bit manipulation to do two compares at once. For example: 10716 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10717 // TODO: This could be extended to merge any 2 cases in switches with 3 10718 // cases. 10719 // TODO: Handle cases where W.CaseBB != SwitchBB. 10720 CaseCluster &Small = *W.FirstCluster; 10721 CaseCluster &Big = *W.LastCluster; 10722 10723 if (Small.Low == Small.High && Big.Low == Big.High && 10724 Small.MBB == Big.MBB) { 10725 const APInt &SmallValue = Small.Low->getValue(); 10726 const APInt &BigValue = Big.Low->getValue(); 10727 10728 // Check that there is only one bit different. 10729 APInt CommonBit = BigValue ^ SmallValue; 10730 if (CommonBit.isPowerOf2()) { 10731 SDValue CondLHS = getValue(Cond); 10732 EVT VT = CondLHS.getValueType(); 10733 SDLoc DL = getCurSDLoc(); 10734 10735 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10736 DAG.getConstant(CommonBit, DL, VT)); 10737 SDValue Cond = DAG.getSetCC( 10738 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10739 ISD::SETEQ); 10740 10741 // Update successor info. 10742 // Both Small and Big will jump to Small.BB, so we sum up the 10743 // probabilities. 10744 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10745 if (BPI) 10746 addSuccessorWithProb( 10747 SwitchMBB, DefaultMBB, 10748 // The default destination is the first successor in IR. 10749 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10750 else 10751 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10752 10753 // Insert the true branch. 10754 SDValue BrCond = 10755 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10756 DAG.getBasicBlock(Small.MBB)); 10757 // Insert the false branch. 10758 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10759 DAG.getBasicBlock(DefaultMBB)); 10760 10761 DAG.setRoot(BrCond); 10762 return; 10763 } 10764 } 10765 } 10766 10767 if (TM.getOptLevel() != CodeGenOpt::None) { 10768 // Here, we order cases by probability so the most likely case will be 10769 // checked first. However, two clusters can have the same probability in 10770 // which case their relative ordering is non-deterministic. So we use Low 10771 // as a tie-breaker as clusters are guaranteed to never overlap. 10772 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10773 [](const CaseCluster &a, const CaseCluster &b) { 10774 return a.Prob != b.Prob ? 10775 a.Prob > b.Prob : 10776 a.Low->getValue().slt(b.Low->getValue()); 10777 }); 10778 10779 // Rearrange the case blocks so that the last one falls through if possible 10780 // without changing the order of probabilities. 10781 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10782 --I; 10783 if (I->Prob > W.LastCluster->Prob) 10784 break; 10785 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10786 std::swap(*I, *W.LastCluster); 10787 break; 10788 } 10789 } 10790 } 10791 10792 // Compute total probability. 10793 BranchProbability DefaultProb = W.DefaultProb; 10794 BranchProbability UnhandledProbs = DefaultProb; 10795 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10796 UnhandledProbs += I->Prob; 10797 10798 MachineBasicBlock *CurMBB = W.MBB; 10799 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10800 bool FallthroughUnreachable = false; 10801 MachineBasicBlock *Fallthrough; 10802 if (I == W.LastCluster) { 10803 // For the last cluster, fall through to the default destination. 10804 Fallthrough = DefaultMBB; 10805 FallthroughUnreachable = isa<UnreachableInst>( 10806 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 10807 } else { 10808 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10809 CurMF->insert(BBI, Fallthrough); 10810 // Put Cond in a virtual register to make it available from the new blocks. 10811 ExportFromCurrentBlock(Cond); 10812 } 10813 UnhandledProbs -= I->Prob; 10814 10815 switch (I->Kind) { 10816 case CC_JumpTable: { 10817 // FIXME: Optimize away range check based on pivot comparisons. 10818 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 10819 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 10820 10821 // The jump block hasn't been inserted yet; insert it here. 10822 MachineBasicBlock *JumpMBB = JT->MBB; 10823 CurMF->insert(BBI, JumpMBB); 10824 10825 auto JumpProb = I->Prob; 10826 auto FallthroughProb = UnhandledProbs; 10827 10828 // If the default statement is a target of the jump table, we evenly 10829 // distribute the default probability to successors of CurMBB. Also 10830 // update the probability on the edge from JumpMBB to Fallthrough. 10831 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10832 SE = JumpMBB->succ_end(); 10833 SI != SE; ++SI) { 10834 if (*SI == DefaultMBB) { 10835 JumpProb += DefaultProb / 2; 10836 FallthroughProb -= DefaultProb / 2; 10837 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10838 JumpMBB->normalizeSuccProbs(); 10839 break; 10840 } 10841 } 10842 10843 if (FallthroughUnreachable) 10844 JTH->FallthroughUnreachable = true; 10845 10846 if (!JTH->FallthroughUnreachable) 10847 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10848 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10849 CurMBB->normalizeSuccProbs(); 10850 10851 // The jump table header will be inserted in our current block, do the 10852 // range check, and fall through to our fallthrough block. 10853 JTH->HeaderBB = CurMBB; 10854 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10855 10856 // If we're in the right place, emit the jump table header right now. 10857 if (CurMBB == SwitchMBB) { 10858 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10859 JTH->Emitted = true; 10860 } 10861 break; 10862 } 10863 case CC_BitTests: { 10864 // FIXME: Optimize away range check based on pivot comparisons. 10865 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 10866 10867 // The bit test blocks haven't been inserted yet; insert them here. 10868 for (BitTestCase &BTC : BTB->Cases) 10869 CurMF->insert(BBI, BTC.ThisBB); 10870 10871 // Fill in fields of the BitTestBlock. 10872 BTB->Parent = CurMBB; 10873 BTB->Default = Fallthrough; 10874 10875 BTB->DefaultProb = UnhandledProbs; 10876 // If the cases in bit test don't form a contiguous range, we evenly 10877 // distribute the probability on the edge to Fallthrough to two 10878 // successors of CurMBB. 10879 if (!BTB->ContiguousRange) { 10880 BTB->Prob += DefaultProb / 2; 10881 BTB->DefaultProb -= DefaultProb / 2; 10882 } 10883 10884 if (FallthroughUnreachable) 10885 BTB->FallthroughUnreachable = true; 10886 10887 // If we're in the right place, emit the bit test header right now. 10888 if (CurMBB == SwitchMBB) { 10889 visitBitTestHeader(*BTB, SwitchMBB); 10890 BTB->Emitted = true; 10891 } 10892 break; 10893 } 10894 case CC_Range: { 10895 const Value *RHS, *LHS, *MHS; 10896 ISD::CondCode CC; 10897 if (I->Low == I->High) { 10898 // Check Cond == I->Low. 10899 CC = ISD::SETEQ; 10900 LHS = Cond; 10901 RHS=I->Low; 10902 MHS = nullptr; 10903 } else { 10904 // Check I->Low <= Cond <= I->High. 10905 CC = ISD::SETLE; 10906 LHS = I->Low; 10907 MHS = Cond; 10908 RHS = I->High; 10909 } 10910 10911 // If Fallthrough is unreachable, fold away the comparison. 10912 if (FallthroughUnreachable) 10913 CC = ISD::SETTRUE; 10914 10915 // The false probability is the sum of all unhandled cases. 10916 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10917 getCurSDLoc(), I->Prob, UnhandledProbs); 10918 10919 if (CurMBB == SwitchMBB) 10920 visitSwitchCase(CB, SwitchMBB); 10921 else 10922 SL->SwitchCases.push_back(CB); 10923 10924 break; 10925 } 10926 } 10927 CurMBB = Fallthrough; 10928 } 10929 } 10930 10931 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10932 CaseClusterIt First, 10933 CaseClusterIt Last) { 10934 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10935 if (X.Prob != CC.Prob) 10936 return X.Prob > CC.Prob; 10937 10938 // Ties are broken by comparing the case value. 10939 return X.Low->getValue().slt(CC.Low->getValue()); 10940 }); 10941 } 10942 10943 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10944 const SwitchWorkListItem &W, 10945 Value *Cond, 10946 MachineBasicBlock *SwitchMBB) { 10947 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10948 "Clusters not sorted?"); 10949 10950 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10951 10952 // Balance the tree based on branch probabilities to create a near-optimal (in 10953 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10954 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10955 CaseClusterIt LastLeft = W.FirstCluster; 10956 CaseClusterIt FirstRight = W.LastCluster; 10957 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10958 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10959 10960 // Move LastLeft and FirstRight towards each other from opposite directions to 10961 // find a partitioning of the clusters which balances the probability on both 10962 // sides. If LeftProb and RightProb are equal, alternate which side is 10963 // taken to ensure 0-probability nodes are distributed evenly. 10964 unsigned I = 0; 10965 while (LastLeft + 1 < FirstRight) { 10966 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10967 LeftProb += (++LastLeft)->Prob; 10968 else 10969 RightProb += (--FirstRight)->Prob; 10970 I++; 10971 } 10972 10973 while (true) { 10974 // Our binary search tree differs from a typical BST in that ours can have up 10975 // to three values in each leaf. The pivot selection above doesn't take that 10976 // into account, which means the tree might require more nodes and be less 10977 // efficient. We compensate for this here. 10978 10979 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10980 unsigned NumRight = W.LastCluster - FirstRight + 1; 10981 10982 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10983 // If one side has less than 3 clusters, and the other has more than 3, 10984 // consider taking a cluster from the other side. 10985 10986 if (NumLeft < NumRight) { 10987 // Consider moving the first cluster on the right to the left side. 10988 CaseCluster &CC = *FirstRight; 10989 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10990 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10991 if (LeftSideRank <= RightSideRank) { 10992 // Moving the cluster to the left does not demote it. 10993 ++LastLeft; 10994 ++FirstRight; 10995 continue; 10996 } 10997 } else { 10998 assert(NumRight < NumLeft); 10999 // Consider moving the last element on the left to the right side. 11000 CaseCluster &CC = *LastLeft; 11001 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 11002 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 11003 if (RightSideRank <= LeftSideRank) { 11004 // Moving the cluster to the right does not demot it. 11005 --LastLeft; 11006 --FirstRight; 11007 continue; 11008 } 11009 } 11010 } 11011 break; 11012 } 11013 11014 assert(LastLeft + 1 == FirstRight); 11015 assert(LastLeft >= W.FirstCluster); 11016 assert(FirstRight <= W.LastCluster); 11017 11018 // Use the first element on the right as pivot since we will make less-than 11019 // comparisons against it. 11020 CaseClusterIt PivotCluster = FirstRight; 11021 assert(PivotCluster > W.FirstCluster); 11022 assert(PivotCluster <= W.LastCluster); 11023 11024 CaseClusterIt FirstLeft = W.FirstCluster; 11025 CaseClusterIt LastRight = W.LastCluster; 11026 11027 const ConstantInt *Pivot = PivotCluster->Low; 11028 11029 // New blocks will be inserted immediately after the current one. 11030 MachineFunction::iterator BBI(W.MBB); 11031 ++BBI; 11032 11033 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 11034 // we can branch to its destination directly if it's squeezed exactly in 11035 // between the known lower bound and Pivot - 1. 11036 MachineBasicBlock *LeftMBB; 11037 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 11038 FirstLeft->Low == W.GE && 11039 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 11040 LeftMBB = FirstLeft->MBB; 11041 } else { 11042 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11043 FuncInfo.MF->insert(BBI, LeftMBB); 11044 WorkList.push_back( 11045 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 11046 // Put Cond in a virtual register to make it available from the new blocks. 11047 ExportFromCurrentBlock(Cond); 11048 } 11049 11050 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 11051 // single cluster, RHS.Low == Pivot, and we can branch to its destination 11052 // directly if RHS.High equals the current upper bound. 11053 MachineBasicBlock *RightMBB; 11054 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 11055 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 11056 RightMBB = FirstRight->MBB; 11057 } else { 11058 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11059 FuncInfo.MF->insert(BBI, RightMBB); 11060 WorkList.push_back( 11061 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 11062 // Put Cond in a virtual register to make it available from the new blocks. 11063 ExportFromCurrentBlock(Cond); 11064 } 11065 11066 // Create the CaseBlock record that will be used to lower the branch. 11067 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 11068 getCurSDLoc(), LeftProb, RightProb); 11069 11070 if (W.MBB == SwitchMBB) 11071 visitSwitchCase(CB, SwitchMBB); 11072 else 11073 SL->SwitchCases.push_back(CB); 11074 } 11075 11076 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 11077 // from the swith statement. 11078 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 11079 BranchProbability PeeledCaseProb) { 11080 if (PeeledCaseProb == BranchProbability::getOne()) 11081 return BranchProbability::getZero(); 11082 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 11083 11084 uint32_t Numerator = CaseProb.getNumerator(); 11085 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 11086 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 11087 } 11088 11089 // Try to peel the top probability case if it exceeds the threshold. 11090 // Return current MachineBasicBlock for the switch statement if the peeling 11091 // does not occur. 11092 // If the peeling is performed, return the newly created MachineBasicBlock 11093 // for the peeled switch statement. Also update Clusters to remove the peeled 11094 // case. PeeledCaseProb is the BranchProbability for the peeled case. 11095 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 11096 const SwitchInst &SI, CaseClusterVector &Clusters, 11097 BranchProbability &PeeledCaseProb) { 11098 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11099 // Don't perform if there is only one cluster or optimizing for size. 11100 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 11101 TM.getOptLevel() == CodeGenOpt::None || 11102 SwitchMBB->getParent()->getFunction().hasMinSize()) 11103 return SwitchMBB; 11104 11105 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 11106 unsigned PeeledCaseIndex = 0; 11107 bool SwitchPeeled = false; 11108 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 11109 CaseCluster &CC = Clusters[Index]; 11110 if (CC.Prob < TopCaseProb) 11111 continue; 11112 TopCaseProb = CC.Prob; 11113 PeeledCaseIndex = Index; 11114 SwitchPeeled = true; 11115 } 11116 if (!SwitchPeeled) 11117 return SwitchMBB; 11118 11119 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 11120 << TopCaseProb << "\n"); 11121 11122 // Record the MBB for the peeled switch statement. 11123 MachineFunction::iterator BBI(SwitchMBB); 11124 ++BBI; 11125 MachineBasicBlock *PeeledSwitchMBB = 11126 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 11127 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 11128 11129 ExportFromCurrentBlock(SI.getCondition()); 11130 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 11131 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 11132 nullptr, nullptr, TopCaseProb.getCompl()}; 11133 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 11134 11135 Clusters.erase(PeeledCaseIt); 11136 for (CaseCluster &CC : Clusters) { 11137 LLVM_DEBUG( 11138 dbgs() << "Scale the probablity for one cluster, before scaling: " 11139 << CC.Prob << "\n"); 11140 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 11141 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 11142 } 11143 PeeledCaseProb = TopCaseProb; 11144 return PeeledSwitchMBB; 11145 } 11146 11147 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 11148 // Extract cases from the switch. 11149 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11150 CaseClusterVector Clusters; 11151 Clusters.reserve(SI.getNumCases()); 11152 for (auto I : SI.cases()) { 11153 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 11154 const ConstantInt *CaseVal = I.getCaseValue(); 11155 BranchProbability Prob = 11156 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 11157 : BranchProbability(1, SI.getNumCases() + 1); 11158 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 11159 } 11160 11161 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 11162 11163 // Cluster adjacent cases with the same destination. We do this at all 11164 // optimization levels because it's cheap to do and will make codegen faster 11165 // if there are many clusters. 11166 sortAndRangeify(Clusters); 11167 11168 // The branch probablity of the peeled case. 11169 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 11170 MachineBasicBlock *PeeledSwitchMBB = 11171 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 11172 11173 // If there is only the default destination, jump there directly. 11174 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11175 if (Clusters.empty()) { 11176 assert(PeeledSwitchMBB == SwitchMBB); 11177 SwitchMBB->addSuccessor(DefaultMBB); 11178 if (DefaultMBB != NextBlock(SwitchMBB)) { 11179 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 11180 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 11181 } 11182 return; 11183 } 11184 11185 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 11186 SL->findBitTestClusters(Clusters, &SI); 11187 11188 LLVM_DEBUG({ 11189 dbgs() << "Case clusters: "; 11190 for (const CaseCluster &C : Clusters) { 11191 if (C.Kind == CC_JumpTable) 11192 dbgs() << "JT:"; 11193 if (C.Kind == CC_BitTests) 11194 dbgs() << "BT:"; 11195 11196 C.Low->getValue().print(dbgs(), true); 11197 if (C.Low != C.High) { 11198 dbgs() << '-'; 11199 C.High->getValue().print(dbgs(), true); 11200 } 11201 dbgs() << ' '; 11202 } 11203 dbgs() << '\n'; 11204 }); 11205 11206 assert(!Clusters.empty()); 11207 SwitchWorkList WorkList; 11208 CaseClusterIt First = Clusters.begin(); 11209 CaseClusterIt Last = Clusters.end() - 1; 11210 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 11211 // Scale the branchprobability for DefaultMBB if the peel occurs and 11212 // DefaultMBB is not replaced. 11213 if (PeeledCaseProb != BranchProbability::getZero() && 11214 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 11215 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 11216 WorkList.push_back( 11217 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 11218 11219 while (!WorkList.empty()) { 11220 SwitchWorkListItem W = WorkList.pop_back_val(); 11221 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 11222 11223 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 11224 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 11225 // For optimized builds, lower large range as a balanced binary tree. 11226 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 11227 continue; 11228 } 11229 11230 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 11231 } 11232 } 11233 11234 void SelectionDAGBuilder::visitStepVector(const CallInst &I) { 11235 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11236 auto DL = getCurSDLoc(); 11237 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11238 setValue(&I, DAG.getStepVector(DL, ResultVT)); 11239 } 11240 11241 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) { 11242 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11243 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11244 11245 SDLoc DL = getCurSDLoc(); 11246 SDValue V = getValue(I.getOperand(0)); 11247 assert(VT == V.getValueType() && "Malformed vector.reverse!"); 11248 11249 if (VT.isScalableVector()) { 11250 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V)); 11251 return; 11252 } 11253 11254 // Use VECTOR_SHUFFLE for the fixed-length vector 11255 // to maintain existing behavior. 11256 SmallVector<int, 8> Mask; 11257 unsigned NumElts = VT.getVectorMinNumElements(); 11258 for (unsigned i = 0; i != NumElts; ++i) 11259 Mask.push_back(NumElts - 1 - i); 11260 11261 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask)); 11262 } 11263 11264 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 11265 SmallVector<EVT, 4> ValueVTs; 11266 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 11267 ValueVTs); 11268 unsigned NumValues = ValueVTs.size(); 11269 if (NumValues == 0) return; 11270 11271 SmallVector<SDValue, 4> Values(NumValues); 11272 SDValue Op = getValue(I.getOperand(0)); 11273 11274 for (unsigned i = 0; i != NumValues; ++i) 11275 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 11276 SDValue(Op.getNode(), Op.getResNo() + i)); 11277 11278 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 11279 DAG.getVTList(ValueVTs), Values)); 11280 } 11281 11282 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) { 11283 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11284 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11285 11286 SDLoc DL = getCurSDLoc(); 11287 SDValue V1 = getValue(I.getOperand(0)); 11288 SDValue V2 = getValue(I.getOperand(1)); 11289 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue(); 11290 11291 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node. 11292 if (VT.isScalableVector()) { 11293 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 11294 setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2, 11295 DAG.getConstant(Imm, DL, IdxVT))); 11296 return; 11297 } 11298 11299 unsigned NumElts = VT.getVectorNumElements(); 11300 11301 uint64_t Idx = (NumElts + Imm) % NumElts; 11302 11303 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors. 11304 SmallVector<int, 8> Mask; 11305 for (unsigned i = 0; i < NumElts; ++i) 11306 Mask.push_back(Idx + i); 11307 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask)); 11308 } 11309