1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/Analysis/BranchProbabilityInfo.h" 31 #include "llvm/Analysis/ConstantFolding.h" 32 #include "llvm/Analysis/EHPersonalities.h" 33 #include "llvm/Analysis/Loads.h" 34 #include "llvm/Analysis/MemoryLocation.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/Analysis/VectorUtils.h" 38 #include "llvm/CodeGen/Analysis.h" 39 #include "llvm/CodeGen/FunctionLoweringInfo.h" 40 #include "llvm/CodeGen/GCMetadata.h" 41 #include "llvm/CodeGen/ISDOpcodes.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineFrameInfo.h" 44 #include "llvm/CodeGen/MachineFunction.h" 45 #include "llvm/CodeGen/MachineInstr.h" 46 #include "llvm/CodeGen/MachineInstrBuilder.h" 47 #include "llvm/CodeGen/MachineJumpTableInfo.h" 48 #include "llvm/CodeGen/MachineMemOperand.h" 49 #include "llvm/CodeGen/MachineModuleInfo.h" 50 #include "llvm/CodeGen/MachineOperand.h" 51 #include "llvm/CodeGen/MachineRegisterInfo.h" 52 #include "llvm/CodeGen/RuntimeLibcalls.h" 53 #include "llvm/CodeGen/SelectionDAG.h" 54 #include "llvm/CodeGen/SelectionDAGNodes.h" 55 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 56 #include "llvm/CodeGen/StackMaps.h" 57 #include "llvm/CodeGen/TargetFrameLowering.h" 58 #include "llvm/CodeGen/TargetInstrInfo.h" 59 #include "llvm/CodeGen/TargetLowering.h" 60 #include "llvm/CodeGen/TargetOpcodes.h" 61 #include "llvm/CodeGen/TargetRegisterInfo.h" 62 #include "llvm/CodeGen/TargetSubtargetInfo.h" 63 #include "llvm/CodeGen/ValueTypes.h" 64 #include "llvm/CodeGen/WinEHFuncInfo.h" 65 #include "llvm/IR/Argument.h" 66 #include "llvm/IR/Attributes.h" 67 #include "llvm/IR/BasicBlock.h" 68 #include "llvm/IR/CFG.h" 69 #include "llvm/IR/CallSite.h" 70 #include "llvm/IR/CallingConv.h" 71 #include "llvm/IR/Constant.h" 72 #include "llvm/IR/ConstantRange.h" 73 #include "llvm/IR/Constants.h" 74 #include "llvm/IR/DataLayout.h" 75 #include "llvm/IR/DebugInfoMetadata.h" 76 #include "llvm/IR/DebugLoc.h" 77 #include "llvm/IR/DerivedTypes.h" 78 #include "llvm/IR/Function.h" 79 #include "llvm/IR/GetElementPtrTypeIterator.h" 80 #include "llvm/IR/InlineAsm.h" 81 #include "llvm/IR/InstrTypes.h" 82 #include "llvm/IR/Instruction.h" 83 #include "llvm/IR/Instructions.h" 84 #include "llvm/IR/IntrinsicInst.h" 85 #include "llvm/IR/Intrinsics.h" 86 #include "llvm/IR/LLVMContext.h" 87 #include "llvm/IR/Metadata.h" 88 #include "llvm/IR/Module.h" 89 #include "llvm/IR/Operator.h" 90 #include "llvm/IR/PatternMatch.h" 91 #include "llvm/IR/Statepoint.h" 92 #include "llvm/IR/Type.h" 93 #include "llvm/IR/User.h" 94 #include "llvm/IR/Value.h" 95 #include "llvm/MC/MCContext.h" 96 #include "llvm/MC/MCSymbol.h" 97 #include "llvm/Support/AtomicOrdering.h" 98 #include "llvm/Support/BranchProbability.h" 99 #include "llvm/Support/Casting.h" 100 #include "llvm/Support/CodeGen.h" 101 #include "llvm/Support/CommandLine.h" 102 #include "llvm/Support/Compiler.h" 103 #include "llvm/Support/Debug.h" 104 #include "llvm/Support/ErrorHandling.h" 105 #include "llvm/Support/MachineValueType.h" 106 #include "llvm/Support/MathExtras.h" 107 #include "llvm/Support/raw_ostream.h" 108 #include "llvm/Target/TargetIntrinsicInfo.h" 109 #include "llvm/Target/TargetMachine.h" 110 #include "llvm/Target/TargetOptions.h" 111 #include "llvm/Transforms/Utils/Local.h" 112 #include <algorithm> 113 #include <cassert> 114 #include <cstddef> 115 #include <cstdint> 116 #include <cstring> 117 #include <iterator> 118 #include <limits> 119 #include <numeric> 120 #include <tuple> 121 #include <utility> 122 #include <vector> 123 124 using namespace llvm; 125 using namespace PatternMatch; 126 127 #define DEBUG_TYPE "isel" 128 129 /// LimitFloatPrecision - Generate low-precision inline sequences for 130 /// some float libcalls (6, 8 or 12 bits). 131 static unsigned LimitFloatPrecision; 132 133 static cl::opt<unsigned, true> 134 LimitFPPrecision("limit-float-precision", 135 cl::desc("Generate low-precision inline sequences " 136 "for some float libcalls"), 137 cl::location(LimitFloatPrecision), cl::Hidden, 138 cl::init(0)); 139 140 static cl::opt<unsigned> SwitchPeelThreshold( 141 "switch-peel-threshold", cl::Hidden, cl::init(66), 142 cl::desc("Set the case probability threshold for peeling the case from a " 143 "switch statement. A value greater than 100 will void this " 144 "optimization")); 145 146 // Limit the width of DAG chains. This is important in general to prevent 147 // DAG-based analysis from blowing up. For example, alias analysis and 148 // load clustering may not complete in reasonable time. It is difficult to 149 // recognize and avoid this situation within each individual analysis, and 150 // future analyses are likely to have the same behavior. Limiting DAG width is 151 // the safe approach and will be especially important with global DAGs. 152 // 153 // MaxParallelChains default is arbitrarily high to avoid affecting 154 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 155 // sequence over this should have been converted to llvm.memcpy by the 156 // frontend. It is easy to induce this behavior with .ll code such as: 157 // %buffer = alloca [4096 x i8] 158 // %data = load [4096 x i8]* %argPtr 159 // store [4096 x i8] %data, [4096 x i8]* %buffer 160 static const unsigned MaxParallelChains = 64; 161 162 // Return the calling convention if the Value passed requires ABI mangling as it 163 // is a parameter to a function or a return value from a function which is not 164 // an intrinsic. 165 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) { 166 if (auto *R = dyn_cast<ReturnInst>(V)) 167 return R->getParent()->getParent()->getCallingConv(); 168 169 if (auto *CI = dyn_cast<CallInst>(V)) { 170 const bool IsInlineAsm = CI->isInlineAsm(); 171 const bool IsIndirectFunctionCall = 172 !IsInlineAsm && !CI->getCalledFunction(); 173 174 // It is possible that the call instruction is an inline asm statement or an 175 // indirect function call in which case the return value of 176 // getCalledFunction() would be nullptr. 177 const bool IsInstrinsicCall = 178 !IsInlineAsm && !IsIndirectFunctionCall && 179 CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic; 180 181 if (!IsInlineAsm && !IsInstrinsicCall) 182 return CI->getCallingConv(); 183 } 184 185 return None; 186 } 187 188 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 189 const SDValue *Parts, unsigned NumParts, 190 MVT PartVT, EVT ValueVT, const Value *V, 191 Optional<CallingConv::ID> CC); 192 193 /// getCopyFromParts - Create a value that contains the specified legal parts 194 /// combined into the value they represent. If the parts combine to a type 195 /// larger than ValueVT then AssertOp can be used to specify whether the extra 196 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 197 /// (ISD::AssertSext). 198 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 199 const SDValue *Parts, unsigned NumParts, 200 MVT PartVT, EVT ValueVT, const Value *V, 201 Optional<CallingConv::ID> CC = None, 202 Optional<ISD::NodeType> AssertOp = None) { 203 if (ValueVT.isVector()) 204 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 205 CC); 206 207 assert(NumParts > 0 && "No parts to assemble!"); 208 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 209 SDValue Val = Parts[0]; 210 211 if (NumParts > 1) { 212 // Assemble the value from multiple parts. 213 if (ValueVT.isInteger()) { 214 unsigned PartBits = PartVT.getSizeInBits(); 215 unsigned ValueBits = ValueVT.getSizeInBits(); 216 217 // Assemble the power of 2 part. 218 unsigned RoundParts = NumParts & (NumParts - 1) ? 219 1 << Log2_32(NumParts) : NumParts; 220 unsigned RoundBits = PartBits * RoundParts; 221 EVT RoundVT = RoundBits == ValueBits ? 222 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 223 SDValue Lo, Hi; 224 225 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 226 227 if (RoundParts > 2) { 228 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 229 PartVT, HalfVT, V); 230 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 231 RoundParts / 2, PartVT, HalfVT, V); 232 } else { 233 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 234 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 235 } 236 237 if (DAG.getDataLayout().isBigEndian()) 238 std::swap(Lo, Hi); 239 240 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 241 242 if (RoundParts < NumParts) { 243 // Assemble the trailing non-power-of-2 part. 244 unsigned OddParts = NumParts - RoundParts; 245 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 246 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 247 OddVT, V, CC); 248 249 // Combine the round and odd parts. 250 Lo = Val; 251 if (DAG.getDataLayout().isBigEndian()) 252 std::swap(Lo, Hi); 253 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 254 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 255 Hi = 256 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 257 DAG.getConstant(Lo.getValueSizeInBits(), DL, 258 TLI.getPointerTy(DAG.getDataLayout()))); 259 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 260 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 261 } 262 } else if (PartVT.isFloatingPoint()) { 263 // FP split into multiple FP parts (for ppcf128) 264 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 265 "Unexpected split"); 266 SDValue Lo, Hi; 267 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 268 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 269 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 270 std::swap(Lo, Hi); 271 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 272 } else { 273 // FP split into integer parts (soft fp) 274 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 275 !PartVT.isVector() && "Unexpected split"); 276 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 277 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 278 } 279 } 280 281 // There is now one part, held in Val. Correct it to match ValueVT. 282 // PartEVT is the type of the register class that holds the value. 283 // ValueVT is the type of the inline asm operation. 284 EVT PartEVT = Val.getValueType(); 285 286 if (PartEVT == ValueVT) 287 return Val; 288 289 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 290 ValueVT.bitsLT(PartEVT)) { 291 // For an FP value in an integer part, we need to truncate to the right 292 // width first. 293 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 294 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 295 } 296 297 // Handle types that have the same size. 298 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 299 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 300 301 // Handle types with different sizes. 302 if (PartEVT.isInteger() && ValueVT.isInteger()) { 303 if (ValueVT.bitsLT(PartEVT)) { 304 // For a truncate, see if we have any information to 305 // indicate whether the truncated bits will always be 306 // zero or sign-extension. 307 if (AssertOp.hasValue()) 308 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 309 DAG.getValueType(ValueVT)); 310 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 311 } 312 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 313 } 314 315 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 316 // FP_ROUND's are always exact here. 317 if (ValueVT.bitsLT(Val.getValueType())) 318 return DAG.getNode( 319 ISD::FP_ROUND, DL, ValueVT, Val, 320 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 321 322 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 323 } 324 325 llvm_unreachable("Unknown mismatch!"); 326 } 327 328 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 329 const Twine &ErrMsg) { 330 const Instruction *I = dyn_cast_or_null<Instruction>(V); 331 if (!V) 332 return Ctx.emitError(ErrMsg); 333 334 const char *AsmError = ", possible invalid constraint for vector type"; 335 if (const CallInst *CI = dyn_cast<CallInst>(I)) 336 if (isa<InlineAsm>(CI->getCalledValue())) 337 return Ctx.emitError(I, ErrMsg + AsmError); 338 339 return Ctx.emitError(I, ErrMsg); 340 } 341 342 /// getCopyFromPartsVector - Create a value that contains the specified legal 343 /// parts combined into the value they represent. If the parts combine to a 344 /// type larger than ValueVT then AssertOp can be used to specify whether the 345 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 346 /// ValueVT (ISD::AssertSext). 347 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 348 const SDValue *Parts, unsigned NumParts, 349 MVT PartVT, EVT ValueVT, const Value *V, 350 Optional<CallingConv::ID> CallConv) { 351 assert(ValueVT.isVector() && "Not a vector value"); 352 assert(NumParts > 0 && "No parts to assemble!"); 353 const bool IsABIRegCopy = CallConv.hasValue(); 354 355 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 356 SDValue Val = Parts[0]; 357 358 // Handle a multi-element vector. 359 if (NumParts > 1) { 360 EVT IntermediateVT; 361 MVT RegisterVT; 362 unsigned NumIntermediates; 363 unsigned NumRegs; 364 365 if (IsABIRegCopy) { 366 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 367 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 368 NumIntermediates, RegisterVT); 369 } else { 370 NumRegs = 371 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 372 NumIntermediates, RegisterVT); 373 } 374 375 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 376 NumParts = NumRegs; // Silence a compiler warning. 377 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 378 assert(RegisterVT.getSizeInBits() == 379 Parts[0].getSimpleValueType().getSizeInBits() && 380 "Part type sizes don't match!"); 381 382 // Assemble the parts into intermediate operands. 383 SmallVector<SDValue, 8> Ops(NumIntermediates); 384 if (NumIntermediates == NumParts) { 385 // If the register was not expanded, truncate or copy the value, 386 // as appropriate. 387 for (unsigned i = 0; i != NumParts; ++i) 388 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 389 PartVT, IntermediateVT, V); 390 } else if (NumParts > 0) { 391 // If the intermediate type was expanded, build the intermediate 392 // operands from the parts. 393 assert(NumParts % NumIntermediates == 0 && 394 "Must expand into a divisible number of parts!"); 395 unsigned Factor = NumParts / NumIntermediates; 396 for (unsigned i = 0; i != NumIntermediates; ++i) 397 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 398 PartVT, IntermediateVT, V); 399 } 400 401 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 402 // intermediate operands. 403 EVT BuiltVectorTy = 404 EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(), 405 (IntermediateVT.isVector() 406 ? IntermediateVT.getVectorNumElements() * NumParts 407 : NumIntermediates)); 408 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 409 : ISD::BUILD_VECTOR, 410 DL, BuiltVectorTy, Ops); 411 } 412 413 // There is now one part, held in Val. Correct it to match ValueVT. 414 EVT PartEVT = Val.getValueType(); 415 416 if (PartEVT == ValueVT) 417 return Val; 418 419 if (PartEVT.isVector()) { 420 // If the element type of the source/dest vectors are the same, but the 421 // parts vector has more elements than the value vector, then we have a 422 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 423 // elements we want. 424 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 425 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 426 "Cannot narrow, it would be a lossy transformation"); 427 return DAG.getNode( 428 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 429 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 430 } 431 432 // Vector/Vector bitcast. 433 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 434 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 435 436 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 437 "Cannot handle this kind of promotion"); 438 // Promoted vector extract 439 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 440 441 } 442 443 // Trivial bitcast if the types are the same size and the destination 444 // vector type is legal. 445 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 446 TLI.isTypeLegal(ValueVT)) 447 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 448 449 if (ValueVT.getVectorNumElements() != 1) { 450 // Certain ABIs require that vectors are passed as integers. For vectors 451 // are the same size, this is an obvious bitcast. 452 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 453 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 454 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 455 // Bitcast Val back the original type and extract the corresponding 456 // vector we want. 457 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 458 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 459 ValueVT.getVectorElementType(), Elts); 460 Val = DAG.getBitcast(WiderVecType, Val); 461 return DAG.getNode( 462 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 463 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 464 } 465 466 diagnosePossiblyInvalidConstraint( 467 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 468 return DAG.getUNDEF(ValueVT); 469 } 470 471 // Handle cases such as i8 -> <1 x i1> 472 EVT ValueSVT = ValueVT.getVectorElementType(); 473 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) 474 Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 475 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 476 477 return DAG.getBuildVector(ValueVT, DL, Val); 478 } 479 480 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 481 SDValue Val, SDValue *Parts, unsigned NumParts, 482 MVT PartVT, const Value *V, 483 Optional<CallingConv::ID> CallConv); 484 485 /// getCopyToParts - Create a series of nodes that contain the specified value 486 /// split into legal parts. If the parts contain more bits than Val, then, for 487 /// integers, ExtendKind can be used to specify how to generate the extra bits. 488 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 489 SDValue *Parts, unsigned NumParts, MVT PartVT, 490 const Value *V, 491 Optional<CallingConv::ID> CallConv = None, 492 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 493 EVT ValueVT = Val.getValueType(); 494 495 // Handle the vector case separately. 496 if (ValueVT.isVector()) 497 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 498 CallConv); 499 500 unsigned PartBits = PartVT.getSizeInBits(); 501 unsigned OrigNumParts = NumParts; 502 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 503 "Copying to an illegal type!"); 504 505 if (NumParts == 0) 506 return; 507 508 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 509 EVT PartEVT = PartVT; 510 if (PartEVT == ValueVT) { 511 assert(NumParts == 1 && "No-op copy with multiple parts!"); 512 Parts[0] = Val; 513 return; 514 } 515 516 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 517 // If the parts cover more bits than the value has, promote the value. 518 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 519 assert(NumParts == 1 && "Do not know what to promote to!"); 520 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 521 } else { 522 if (ValueVT.isFloatingPoint()) { 523 // FP values need to be bitcast, then extended if they are being put 524 // into a larger container. 525 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 526 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 527 } 528 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 529 ValueVT.isInteger() && 530 "Unknown mismatch!"); 531 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 532 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 533 if (PartVT == MVT::x86mmx) 534 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 535 } 536 } else if (PartBits == ValueVT.getSizeInBits()) { 537 // Different types of the same size. 538 assert(NumParts == 1 && PartEVT != ValueVT); 539 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 540 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 541 // If the parts cover less bits than value has, truncate the value. 542 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 543 ValueVT.isInteger() && 544 "Unknown mismatch!"); 545 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 546 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 547 if (PartVT == MVT::x86mmx) 548 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 549 } 550 551 // The value may have changed - recompute ValueVT. 552 ValueVT = Val.getValueType(); 553 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 554 "Failed to tile the value with PartVT!"); 555 556 if (NumParts == 1) { 557 if (PartEVT != ValueVT) { 558 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 559 "scalar-to-vector conversion failed"); 560 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 561 } 562 563 Parts[0] = Val; 564 return; 565 } 566 567 // Expand the value into multiple parts. 568 if (NumParts & (NumParts - 1)) { 569 // The number of parts is not a power of 2. Split off and copy the tail. 570 assert(PartVT.isInteger() && ValueVT.isInteger() && 571 "Do not know what to expand to!"); 572 unsigned RoundParts = 1 << Log2_32(NumParts); 573 unsigned RoundBits = RoundParts * PartBits; 574 unsigned OddParts = NumParts - RoundParts; 575 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 576 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false)); 577 578 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 579 CallConv); 580 581 if (DAG.getDataLayout().isBigEndian()) 582 // The odd parts were reversed by getCopyToParts - unreverse them. 583 std::reverse(Parts + RoundParts, Parts + NumParts); 584 585 NumParts = RoundParts; 586 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 587 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 588 } 589 590 // The number of parts is a power of 2. Repeatedly bisect the value using 591 // EXTRACT_ELEMENT. 592 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 593 EVT::getIntegerVT(*DAG.getContext(), 594 ValueVT.getSizeInBits()), 595 Val); 596 597 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 598 for (unsigned i = 0; i < NumParts; i += StepSize) { 599 unsigned ThisBits = StepSize * PartBits / 2; 600 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 601 SDValue &Part0 = Parts[i]; 602 SDValue &Part1 = Parts[i+StepSize/2]; 603 604 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 605 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 606 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 607 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 608 609 if (ThisBits == PartBits && ThisVT != PartVT) { 610 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 611 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 612 } 613 } 614 } 615 616 if (DAG.getDataLayout().isBigEndian()) 617 std::reverse(Parts, Parts + OrigNumParts); 618 } 619 620 static SDValue widenVectorToPartType(SelectionDAG &DAG, 621 SDValue Val, const SDLoc &DL, EVT PartVT) { 622 if (!PartVT.isVector()) 623 return SDValue(); 624 625 EVT ValueVT = Val.getValueType(); 626 unsigned PartNumElts = PartVT.getVectorNumElements(); 627 unsigned ValueNumElts = ValueVT.getVectorNumElements(); 628 if (PartNumElts > ValueNumElts && 629 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 630 EVT ElementVT = PartVT.getVectorElementType(); 631 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 632 // undef elements. 633 SmallVector<SDValue, 16> Ops; 634 DAG.ExtractVectorElements(Val, Ops); 635 SDValue EltUndef = DAG.getUNDEF(ElementVT); 636 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i) 637 Ops.push_back(EltUndef); 638 639 // FIXME: Use CONCAT for 2x -> 4x. 640 return DAG.getBuildVector(PartVT, DL, Ops); 641 } 642 643 return SDValue(); 644 } 645 646 /// getCopyToPartsVector - Create a series of nodes that contain the specified 647 /// value split into legal parts. 648 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 649 SDValue Val, SDValue *Parts, unsigned NumParts, 650 MVT PartVT, const Value *V, 651 Optional<CallingConv::ID> CallConv) { 652 EVT ValueVT = Val.getValueType(); 653 assert(ValueVT.isVector() && "Not a vector"); 654 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 655 const bool IsABIRegCopy = CallConv.hasValue(); 656 657 if (NumParts == 1) { 658 EVT PartEVT = PartVT; 659 if (PartEVT == ValueVT) { 660 // Nothing to do. 661 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 662 // Bitconvert vector->vector case. 663 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 664 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 665 Val = Widened; 666 } else if (PartVT.isVector() && 667 PartEVT.getVectorElementType().bitsGE( 668 ValueVT.getVectorElementType()) && 669 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 670 671 // Promoted vector extract 672 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 673 } else { 674 if (ValueVT.getVectorNumElements() == 1) { 675 Val = DAG.getNode( 676 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 677 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 678 } else { 679 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 680 "lossy conversion of vector to scalar type"); 681 EVT IntermediateType = 682 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 683 Val = DAG.getBitcast(IntermediateType, Val); 684 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 685 } 686 } 687 688 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 689 Parts[0] = Val; 690 return; 691 } 692 693 // Handle a multi-element vector. 694 EVT IntermediateVT; 695 MVT RegisterVT; 696 unsigned NumIntermediates; 697 unsigned NumRegs; 698 if (IsABIRegCopy) { 699 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 700 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 701 NumIntermediates, RegisterVT); 702 } else { 703 NumRegs = 704 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 705 NumIntermediates, RegisterVT); 706 } 707 708 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 709 NumParts = NumRegs; // Silence a compiler warning. 710 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 711 712 unsigned IntermediateNumElts = IntermediateVT.isVector() ? 713 IntermediateVT.getVectorNumElements() : 1; 714 715 // Convert the vector to the appropiate type if necessary. 716 unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts; 717 718 EVT BuiltVectorTy = EVT::getVectorVT( 719 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts); 720 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 721 if (ValueVT != BuiltVectorTy) { 722 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) 723 Val = Widened; 724 725 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 726 } 727 728 // Split the vector into intermediate operands. 729 SmallVector<SDValue, 8> Ops(NumIntermediates); 730 for (unsigned i = 0; i != NumIntermediates; ++i) { 731 if (IntermediateVT.isVector()) { 732 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 733 DAG.getConstant(i * IntermediateNumElts, DL, IdxVT)); 734 } else { 735 Ops[i] = DAG.getNode( 736 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 737 DAG.getConstant(i, DL, IdxVT)); 738 } 739 } 740 741 // Split the intermediate operands into legal parts. 742 if (NumParts == NumIntermediates) { 743 // If the register was not expanded, promote or copy the value, 744 // as appropriate. 745 for (unsigned i = 0; i != NumParts; ++i) 746 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 747 } else if (NumParts > 0) { 748 // If the intermediate type was expanded, split each the value into 749 // legal parts. 750 assert(NumIntermediates != 0 && "division by zero"); 751 assert(NumParts % NumIntermediates == 0 && 752 "Must expand into a divisible number of parts!"); 753 unsigned Factor = NumParts / NumIntermediates; 754 for (unsigned i = 0; i != NumIntermediates; ++i) 755 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 756 CallConv); 757 } 758 } 759 760 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 761 EVT valuevt, Optional<CallingConv::ID> CC) 762 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 763 RegCount(1, regs.size()), CallConv(CC) {} 764 765 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 766 const DataLayout &DL, unsigned Reg, Type *Ty, 767 Optional<CallingConv::ID> CC) { 768 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 769 770 CallConv = CC; 771 772 for (EVT ValueVT : ValueVTs) { 773 unsigned NumRegs = 774 isABIMangled() 775 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 776 : TLI.getNumRegisters(Context, ValueVT); 777 MVT RegisterVT = 778 isABIMangled() 779 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 780 : TLI.getRegisterType(Context, ValueVT); 781 for (unsigned i = 0; i != NumRegs; ++i) 782 Regs.push_back(Reg + i); 783 RegVTs.push_back(RegisterVT); 784 RegCount.push_back(NumRegs); 785 Reg += NumRegs; 786 } 787 } 788 789 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 790 FunctionLoweringInfo &FuncInfo, 791 const SDLoc &dl, SDValue &Chain, 792 SDValue *Flag, const Value *V) const { 793 // A Value with type {} or [0 x %t] needs no registers. 794 if (ValueVTs.empty()) 795 return SDValue(); 796 797 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 798 799 // Assemble the legal parts into the final values. 800 SmallVector<SDValue, 4> Values(ValueVTs.size()); 801 SmallVector<SDValue, 8> Parts; 802 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 803 // Copy the legal parts from the registers. 804 EVT ValueVT = ValueVTs[Value]; 805 unsigned NumRegs = RegCount[Value]; 806 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 807 *DAG.getContext(), 808 CallConv.getValue(), RegVTs[Value]) 809 : RegVTs[Value]; 810 811 Parts.resize(NumRegs); 812 for (unsigned i = 0; i != NumRegs; ++i) { 813 SDValue P; 814 if (!Flag) { 815 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 816 } else { 817 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 818 *Flag = P.getValue(2); 819 } 820 821 Chain = P.getValue(1); 822 Parts[i] = P; 823 824 // If the source register was virtual and if we know something about it, 825 // add an assert node. 826 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 827 !RegisterVT.isInteger()) 828 continue; 829 830 const FunctionLoweringInfo::LiveOutInfo *LOI = 831 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 832 if (!LOI) 833 continue; 834 835 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 836 unsigned NumSignBits = LOI->NumSignBits; 837 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 838 839 if (NumZeroBits == RegSize) { 840 // The current value is a zero. 841 // Explicitly express that as it would be easier for 842 // optimizations to kick in. 843 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 844 continue; 845 } 846 847 // FIXME: We capture more information than the dag can represent. For 848 // now, just use the tightest assertzext/assertsext possible. 849 bool isSExt; 850 EVT FromVT(MVT::Other); 851 if (NumZeroBits) { 852 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 853 isSExt = false; 854 } else if (NumSignBits > 1) { 855 FromVT = 856 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 857 isSExt = true; 858 } else { 859 continue; 860 } 861 // Add an assertion node. 862 assert(FromVT != MVT::Other); 863 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 864 RegisterVT, P, DAG.getValueType(FromVT)); 865 } 866 867 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 868 RegisterVT, ValueVT, V, CallConv); 869 Part += NumRegs; 870 Parts.clear(); 871 } 872 873 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 874 } 875 876 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 877 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 878 const Value *V, 879 ISD::NodeType PreferredExtendType) const { 880 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 881 ISD::NodeType ExtendKind = PreferredExtendType; 882 883 // Get the list of the values's legal parts. 884 unsigned NumRegs = Regs.size(); 885 SmallVector<SDValue, 8> Parts(NumRegs); 886 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 887 unsigned NumParts = RegCount[Value]; 888 889 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 890 *DAG.getContext(), 891 CallConv.getValue(), RegVTs[Value]) 892 : RegVTs[Value]; 893 894 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 895 ExtendKind = ISD::ZERO_EXTEND; 896 897 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 898 NumParts, RegisterVT, V, CallConv, ExtendKind); 899 Part += NumParts; 900 } 901 902 // Copy the parts into the registers. 903 SmallVector<SDValue, 8> Chains(NumRegs); 904 for (unsigned i = 0; i != NumRegs; ++i) { 905 SDValue Part; 906 if (!Flag) { 907 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 908 } else { 909 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 910 *Flag = Part.getValue(1); 911 } 912 913 Chains[i] = Part.getValue(0); 914 } 915 916 if (NumRegs == 1 || Flag) 917 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 918 // flagged to it. That is the CopyToReg nodes and the user are considered 919 // a single scheduling unit. If we create a TokenFactor and return it as 920 // chain, then the TokenFactor is both a predecessor (operand) of the 921 // user as well as a successor (the TF operands are flagged to the user). 922 // c1, f1 = CopyToReg 923 // c2, f2 = CopyToReg 924 // c3 = TokenFactor c1, c2 925 // ... 926 // = op c3, ..., f2 927 Chain = Chains[NumRegs-1]; 928 else 929 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 930 } 931 932 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 933 unsigned MatchingIdx, const SDLoc &dl, 934 SelectionDAG &DAG, 935 std::vector<SDValue> &Ops) const { 936 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 937 938 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 939 if (HasMatching) 940 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 941 else if (!Regs.empty() && 942 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 943 // Put the register class of the virtual registers in the flag word. That 944 // way, later passes can recompute register class constraints for inline 945 // assembly as well as normal instructions. 946 // Don't do this for tied operands that can use the regclass information 947 // from the def. 948 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 949 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 950 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 951 } 952 953 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 954 Ops.push_back(Res); 955 956 if (Code == InlineAsm::Kind_Clobber) { 957 // Clobbers should always have a 1:1 mapping with registers, and may 958 // reference registers that have illegal (e.g. vector) types. Hence, we 959 // shouldn't try to apply any sort of splitting logic to them. 960 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 961 "No 1:1 mapping from clobbers to regs?"); 962 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 963 (void)SP; 964 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 965 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 966 assert( 967 (Regs[I] != SP || 968 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 969 "If we clobbered the stack pointer, MFI should know about it."); 970 } 971 return; 972 } 973 974 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 975 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 976 MVT RegisterVT = RegVTs[Value]; 977 for (unsigned i = 0; i != NumRegs; ++i) { 978 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 979 unsigned TheReg = Regs[Reg++]; 980 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 981 } 982 } 983 } 984 985 SmallVector<std::pair<unsigned, unsigned>, 4> 986 RegsForValue::getRegsAndSizes() const { 987 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec; 988 unsigned I = 0; 989 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 990 unsigned RegCount = std::get<0>(CountAndVT); 991 MVT RegisterVT = std::get<1>(CountAndVT); 992 unsigned RegisterSize = RegisterVT.getSizeInBits(); 993 for (unsigned E = I + RegCount; I != E; ++I) 994 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 995 } 996 return OutVec; 997 } 998 999 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1000 const TargetLibraryInfo *li) { 1001 AA = aa; 1002 GFI = gfi; 1003 LibInfo = li; 1004 DL = &DAG.getDataLayout(); 1005 Context = DAG.getContext(); 1006 LPadToCallSiteMap.clear(); 1007 } 1008 1009 void SelectionDAGBuilder::clear() { 1010 NodeMap.clear(); 1011 UnusedArgNodeMap.clear(); 1012 PendingLoads.clear(); 1013 PendingExports.clear(); 1014 CurInst = nullptr; 1015 HasTailCall = false; 1016 SDNodeOrder = LowestSDNodeOrder; 1017 StatepointLowering.clear(); 1018 } 1019 1020 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1021 DanglingDebugInfoMap.clear(); 1022 } 1023 1024 SDValue SelectionDAGBuilder::getRoot() { 1025 if (PendingLoads.empty()) 1026 return DAG.getRoot(); 1027 1028 if (PendingLoads.size() == 1) { 1029 SDValue Root = PendingLoads[0]; 1030 DAG.setRoot(Root); 1031 PendingLoads.clear(); 1032 return Root; 1033 } 1034 1035 // Otherwise, we have to make a token factor node. 1036 SDValue Root = DAG.getTokenFactor(getCurSDLoc(), PendingLoads); 1037 PendingLoads.clear(); 1038 DAG.setRoot(Root); 1039 return Root; 1040 } 1041 1042 SDValue SelectionDAGBuilder::getControlRoot() { 1043 SDValue Root = DAG.getRoot(); 1044 1045 if (PendingExports.empty()) 1046 return Root; 1047 1048 // Turn all of the CopyToReg chains into one factored node. 1049 if (Root.getOpcode() != ISD::EntryToken) { 1050 unsigned i = 0, e = PendingExports.size(); 1051 for (; i != e; ++i) { 1052 assert(PendingExports[i].getNode()->getNumOperands() > 1); 1053 if (PendingExports[i].getNode()->getOperand(0) == Root) 1054 break; // Don't add the root if we already indirectly depend on it. 1055 } 1056 1057 if (i == e) 1058 PendingExports.push_back(Root); 1059 } 1060 1061 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 1062 PendingExports); 1063 PendingExports.clear(); 1064 DAG.setRoot(Root); 1065 return Root; 1066 } 1067 1068 void SelectionDAGBuilder::visit(const Instruction &I) { 1069 // Set up outgoing PHI node register values before emitting the terminator. 1070 if (I.isTerminator()) { 1071 HandlePHINodesInSuccessorBlocks(I.getParent()); 1072 } 1073 1074 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1075 if (!isa<DbgInfoIntrinsic>(I)) 1076 ++SDNodeOrder; 1077 1078 CurInst = &I; 1079 1080 visit(I.getOpcode(), I); 1081 1082 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) { 1083 // Propagate the fast-math-flags of this IR instruction to the DAG node that 1084 // maps to this instruction. 1085 // TODO: We could handle all flags (nsw, etc) here. 1086 // TODO: If an IR instruction maps to >1 node, only the final node will have 1087 // flags set. 1088 if (SDNode *Node = getNodeForIRValue(&I)) { 1089 SDNodeFlags IncomingFlags; 1090 IncomingFlags.copyFMF(*FPMO); 1091 if (!Node->getFlags().isDefined()) 1092 Node->setFlags(IncomingFlags); 1093 else 1094 Node->intersectFlagsWith(IncomingFlags); 1095 } 1096 } 1097 1098 if (!I.isTerminator() && !HasTailCall && 1099 !isStatepoint(&I)) // statepoints handle their exports internally 1100 CopyToExportRegsIfNeeded(&I); 1101 1102 CurInst = nullptr; 1103 } 1104 1105 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1106 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1107 } 1108 1109 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1110 // Note: this doesn't use InstVisitor, because it has to work with 1111 // ConstantExpr's in addition to instructions. 1112 switch (Opcode) { 1113 default: llvm_unreachable("Unknown instruction type encountered!"); 1114 // Build the switch statement using the Instruction.def file. 1115 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1116 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1117 #include "llvm/IR/Instruction.def" 1118 } 1119 } 1120 1121 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1122 const DIExpression *Expr) { 1123 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1124 const DbgValueInst *DI = DDI.getDI(); 1125 DIVariable *DanglingVariable = DI->getVariable(); 1126 DIExpression *DanglingExpr = DI->getExpression(); 1127 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1128 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1129 return true; 1130 } 1131 return false; 1132 }; 1133 1134 for (auto &DDIMI : DanglingDebugInfoMap) { 1135 DanglingDebugInfoVector &DDIV = DDIMI.second; 1136 1137 // If debug info is to be dropped, run it through final checks to see 1138 // whether it can be salvaged. 1139 for (auto &DDI : DDIV) 1140 if (isMatchingDbgValue(DDI)) 1141 salvageUnresolvedDbgValue(DDI); 1142 1143 DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end()); 1144 } 1145 } 1146 1147 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1148 // generate the debug data structures now that we've seen its definition. 1149 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1150 SDValue Val) { 1151 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1152 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1153 return; 1154 1155 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1156 for (auto &DDI : DDIV) { 1157 const DbgValueInst *DI = DDI.getDI(); 1158 assert(DI && "Ill-formed DanglingDebugInfo"); 1159 DebugLoc dl = DDI.getdl(); 1160 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1161 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1162 DILocalVariable *Variable = DI->getVariable(); 1163 DIExpression *Expr = DI->getExpression(); 1164 assert(Variable->isValidLocationForIntrinsic(dl) && 1165 "Expected inlined-at fields to agree"); 1166 SDDbgValue *SDV; 1167 if (Val.getNode()) { 1168 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1169 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1170 // we couldn't resolve it directly when examining the DbgValue intrinsic 1171 // in the first place we should not be more successful here). Unless we 1172 // have some test case that prove this to be correct we should avoid 1173 // calling EmitFuncArgumentDbgValue here. 1174 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1175 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1176 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1177 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1178 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1179 // inserted after the definition of Val when emitting the instructions 1180 // after ISel. An alternative could be to teach 1181 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1182 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1183 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1184 << ValSDNodeOrder << "\n"); 1185 SDV = getDbgValue(Val, Variable, Expr, dl, 1186 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1187 DAG.AddDbgValue(SDV, Val.getNode(), false); 1188 } else 1189 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1190 << "in EmitFuncArgumentDbgValue\n"); 1191 } else { 1192 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1193 auto Undef = 1194 UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1195 auto SDV = 1196 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1197 DAG.AddDbgValue(SDV, nullptr, false); 1198 } 1199 } 1200 DDIV.clear(); 1201 } 1202 1203 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1204 Value *V = DDI.getDI()->getValue(); 1205 DILocalVariable *Var = DDI.getDI()->getVariable(); 1206 DIExpression *Expr = DDI.getDI()->getExpression(); 1207 DebugLoc DL = DDI.getdl(); 1208 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1209 unsigned SDOrder = DDI.getSDNodeOrder(); 1210 1211 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1212 // that DW_OP_stack_value is desired. 1213 assert(isa<DbgValueInst>(DDI.getDI())); 1214 bool StackValue = true; 1215 1216 // Can this Value can be encoded without any further work? 1217 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) 1218 return; 1219 1220 // Attempt to salvage back through as many instructions as possible. Bail if 1221 // a non-instruction is seen, such as a constant expression or global 1222 // variable. FIXME: Further work could recover those too. 1223 while (isa<Instruction>(V)) { 1224 Instruction &VAsInst = *cast<Instruction>(V); 1225 DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue); 1226 1227 // If we cannot salvage any further, and haven't yet found a suitable debug 1228 // expression, bail out. 1229 if (!NewExpr) 1230 break; 1231 1232 // New value and expr now represent this debuginfo. 1233 V = VAsInst.getOperand(0); 1234 Expr = NewExpr; 1235 1236 // Some kind of simplification occurred: check whether the operand of the 1237 // salvaged debug expression can be encoded in this DAG. 1238 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) { 1239 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1240 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1241 return; 1242 } 1243 } 1244 1245 // This was the final opportunity to salvage this debug information, and it 1246 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1247 // any earlier variable location. 1248 auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1249 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1250 DAG.AddDbgValue(SDV, nullptr, false); 1251 1252 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1253 << "\n"); 1254 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1255 << "\n"); 1256 } 1257 1258 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var, 1259 DIExpression *Expr, DebugLoc dl, 1260 DebugLoc InstDL, unsigned Order) { 1261 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1262 SDDbgValue *SDV; 1263 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1264 isa<ConstantPointerNull>(V)) { 1265 SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder); 1266 DAG.AddDbgValue(SDV, nullptr, false); 1267 return true; 1268 } 1269 1270 // If the Value is a frame index, we can create a FrameIndex debug value 1271 // without relying on the DAG at all. 1272 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1273 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1274 if (SI != FuncInfo.StaticAllocaMap.end()) { 1275 auto SDV = 1276 DAG.getFrameIndexDbgValue(Var, Expr, SI->second, 1277 /*IsIndirect*/ false, dl, SDNodeOrder); 1278 // Do not attach the SDNodeDbgValue to an SDNode: this variable location 1279 // is still available even if the SDNode gets optimized out. 1280 DAG.AddDbgValue(SDV, nullptr, false); 1281 return true; 1282 } 1283 } 1284 1285 // Do not use getValue() in here; we don't want to generate code at 1286 // this point if it hasn't been done yet. 1287 SDValue N = NodeMap[V]; 1288 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1289 N = UnusedArgNodeMap[V]; 1290 if (N.getNode()) { 1291 if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) 1292 return true; 1293 SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder); 1294 DAG.AddDbgValue(SDV, N.getNode(), false); 1295 return true; 1296 } 1297 1298 // Special rules apply for the first dbg.values of parameter variables in a 1299 // function. Identify them by the fact they reference Argument Values, that 1300 // they're parameters, and they are parameters of the current function. We 1301 // need to let them dangle until they get an SDNode. 1302 bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() && 1303 !InstDL.getInlinedAt(); 1304 if (!IsParamOfFunc) { 1305 // The value is not used in this block yet (or it would have an SDNode). 1306 // We still want the value to appear for the user if possible -- if it has 1307 // an associated VReg, we can refer to that instead. 1308 auto VMI = FuncInfo.ValueMap.find(V); 1309 if (VMI != FuncInfo.ValueMap.end()) { 1310 unsigned Reg = VMI->second; 1311 // If this is a PHI node, it may be split up into several MI PHI nodes 1312 // (in FunctionLoweringInfo::set). 1313 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1314 V->getType(), None); 1315 if (RFV.occupiesMultipleRegs()) { 1316 unsigned Offset = 0; 1317 unsigned BitsToDescribe = 0; 1318 if (auto VarSize = Var->getSizeInBits()) 1319 BitsToDescribe = *VarSize; 1320 if (auto Fragment = Expr->getFragmentInfo()) 1321 BitsToDescribe = Fragment->SizeInBits; 1322 for (auto RegAndSize : RFV.getRegsAndSizes()) { 1323 unsigned RegisterSize = RegAndSize.second; 1324 // Bail out if all bits are described already. 1325 if (Offset >= BitsToDescribe) 1326 break; 1327 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1328 ? BitsToDescribe - Offset 1329 : RegisterSize; 1330 auto FragmentExpr = DIExpression::createFragmentExpression( 1331 Expr, Offset, FragmentSize); 1332 if (!FragmentExpr) 1333 continue; 1334 SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first, 1335 false, dl, SDNodeOrder); 1336 DAG.AddDbgValue(SDV, nullptr, false); 1337 Offset += RegisterSize; 1338 } 1339 } else { 1340 SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder); 1341 DAG.AddDbgValue(SDV, nullptr, false); 1342 } 1343 return true; 1344 } 1345 } 1346 1347 return false; 1348 } 1349 1350 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1351 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1352 for (auto &Pair : DanglingDebugInfoMap) 1353 for (auto &DDI : Pair.getSecond()) 1354 salvageUnresolvedDbgValue(DDI); 1355 clearDanglingDebugInfo(); 1356 } 1357 1358 /// getCopyFromRegs - If there was virtual register allocated for the value V 1359 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1360 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1361 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1362 SDValue Result; 1363 1364 if (It != FuncInfo.ValueMap.end()) { 1365 unsigned InReg = It->second; 1366 1367 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1368 DAG.getDataLayout(), InReg, Ty, 1369 None); // This is not an ABI copy. 1370 SDValue Chain = DAG.getEntryNode(); 1371 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1372 V); 1373 resolveDanglingDebugInfo(V, Result); 1374 } 1375 1376 return Result; 1377 } 1378 1379 /// getValue - Return an SDValue for the given Value. 1380 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1381 // If we already have an SDValue for this value, use it. It's important 1382 // to do this first, so that we don't create a CopyFromReg if we already 1383 // have a regular SDValue. 1384 SDValue &N = NodeMap[V]; 1385 if (N.getNode()) return N; 1386 1387 // If there's a virtual register allocated and initialized for this 1388 // value, use it. 1389 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1390 return copyFromReg; 1391 1392 // Otherwise create a new SDValue and remember it. 1393 SDValue Val = getValueImpl(V); 1394 NodeMap[V] = Val; 1395 resolveDanglingDebugInfo(V, Val); 1396 return Val; 1397 } 1398 1399 // Return true if SDValue exists for the given Value 1400 bool SelectionDAGBuilder::findValue(const Value *V) const { 1401 return (NodeMap.find(V) != NodeMap.end()) || 1402 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1403 } 1404 1405 /// getNonRegisterValue - Return an SDValue for the given Value, but 1406 /// don't look in FuncInfo.ValueMap for a virtual register. 1407 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1408 // If we already have an SDValue for this value, use it. 1409 SDValue &N = NodeMap[V]; 1410 if (N.getNode()) { 1411 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1412 // Remove the debug location from the node as the node is about to be used 1413 // in a location which may differ from the original debug location. This 1414 // is relevant to Constant and ConstantFP nodes because they can appear 1415 // as constant expressions inside PHI nodes. 1416 N->setDebugLoc(DebugLoc()); 1417 } 1418 return N; 1419 } 1420 1421 // Otherwise create a new SDValue and remember it. 1422 SDValue Val = getValueImpl(V); 1423 NodeMap[V] = Val; 1424 resolveDanglingDebugInfo(V, Val); 1425 return Val; 1426 } 1427 1428 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1429 /// Create an SDValue for the given value. 1430 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1431 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1432 1433 if (const Constant *C = dyn_cast<Constant>(V)) { 1434 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1435 1436 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1437 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1438 1439 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1440 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1441 1442 if (isa<ConstantPointerNull>(C)) { 1443 unsigned AS = V->getType()->getPointerAddressSpace(); 1444 return DAG.getConstant(0, getCurSDLoc(), 1445 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1446 } 1447 1448 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1449 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1450 1451 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1452 return DAG.getUNDEF(VT); 1453 1454 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1455 visit(CE->getOpcode(), *CE); 1456 SDValue N1 = NodeMap[V]; 1457 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1458 return N1; 1459 } 1460 1461 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1462 SmallVector<SDValue, 4> Constants; 1463 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1464 OI != OE; ++OI) { 1465 SDNode *Val = getValue(*OI).getNode(); 1466 // If the operand is an empty aggregate, there are no values. 1467 if (!Val) continue; 1468 // Add each leaf value from the operand to the Constants list 1469 // to form a flattened list of all the values. 1470 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1471 Constants.push_back(SDValue(Val, i)); 1472 } 1473 1474 return DAG.getMergeValues(Constants, getCurSDLoc()); 1475 } 1476 1477 if (const ConstantDataSequential *CDS = 1478 dyn_cast<ConstantDataSequential>(C)) { 1479 SmallVector<SDValue, 4> Ops; 1480 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1481 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1482 // Add each leaf value from the operand to the Constants list 1483 // to form a flattened list of all the values. 1484 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1485 Ops.push_back(SDValue(Val, i)); 1486 } 1487 1488 if (isa<ArrayType>(CDS->getType())) 1489 return DAG.getMergeValues(Ops, getCurSDLoc()); 1490 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1491 } 1492 1493 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1494 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1495 "Unknown struct or array constant!"); 1496 1497 SmallVector<EVT, 4> ValueVTs; 1498 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1499 unsigned NumElts = ValueVTs.size(); 1500 if (NumElts == 0) 1501 return SDValue(); // empty struct 1502 SmallVector<SDValue, 4> Constants(NumElts); 1503 for (unsigned i = 0; i != NumElts; ++i) { 1504 EVT EltVT = ValueVTs[i]; 1505 if (isa<UndefValue>(C)) 1506 Constants[i] = DAG.getUNDEF(EltVT); 1507 else if (EltVT.isFloatingPoint()) 1508 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1509 else 1510 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1511 } 1512 1513 return DAG.getMergeValues(Constants, getCurSDLoc()); 1514 } 1515 1516 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1517 return DAG.getBlockAddress(BA, VT); 1518 1519 VectorType *VecTy = cast<VectorType>(V->getType()); 1520 unsigned NumElements = VecTy->getNumElements(); 1521 1522 // Now that we know the number and type of the elements, get that number of 1523 // elements into the Ops array based on what kind of constant it is. 1524 SmallVector<SDValue, 16> Ops; 1525 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1526 for (unsigned i = 0; i != NumElements; ++i) 1527 Ops.push_back(getValue(CV->getOperand(i))); 1528 } else { 1529 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1530 EVT EltVT = 1531 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1532 1533 SDValue Op; 1534 if (EltVT.isFloatingPoint()) 1535 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1536 else 1537 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1538 Ops.assign(NumElements, Op); 1539 } 1540 1541 // Create a BUILD_VECTOR node. 1542 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1543 } 1544 1545 // If this is a static alloca, generate it as the frameindex instead of 1546 // computation. 1547 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1548 DenseMap<const AllocaInst*, int>::iterator SI = 1549 FuncInfo.StaticAllocaMap.find(AI); 1550 if (SI != FuncInfo.StaticAllocaMap.end()) 1551 return DAG.getFrameIndex(SI->second, 1552 TLI.getFrameIndexTy(DAG.getDataLayout())); 1553 } 1554 1555 // If this is an instruction which fast-isel has deferred, select it now. 1556 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1557 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1558 1559 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1560 Inst->getType(), getABIRegCopyCC(V)); 1561 SDValue Chain = DAG.getEntryNode(); 1562 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1563 } 1564 1565 llvm_unreachable("Can't get register for value!"); 1566 } 1567 1568 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1569 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1570 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1571 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1572 bool IsSEH = isAsynchronousEHPersonality(Pers); 1573 bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX; 1574 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1575 if (!IsSEH) 1576 CatchPadMBB->setIsEHScopeEntry(); 1577 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1578 if (IsMSVCCXX || IsCoreCLR) 1579 CatchPadMBB->setIsEHFuncletEntry(); 1580 // Wasm does not need catchpads anymore 1581 if (!IsWasmCXX) 1582 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, 1583 getControlRoot())); 1584 } 1585 1586 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1587 // Update machine-CFG edge. 1588 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1589 FuncInfo.MBB->addSuccessor(TargetMBB); 1590 1591 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1592 bool IsSEH = isAsynchronousEHPersonality(Pers); 1593 if (IsSEH) { 1594 // If this is not a fall-through branch or optimizations are switched off, 1595 // emit the branch. 1596 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1597 TM.getOptLevel() == CodeGenOpt::None) 1598 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1599 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1600 return; 1601 } 1602 1603 // Figure out the funclet membership for the catchret's successor. 1604 // This will be used by the FuncletLayout pass to determine how to order the 1605 // BB's. 1606 // A 'catchret' returns to the outer scope's color. 1607 Value *ParentPad = I.getCatchSwitchParentPad(); 1608 const BasicBlock *SuccessorColor; 1609 if (isa<ConstantTokenNone>(ParentPad)) 1610 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1611 else 1612 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1613 assert(SuccessorColor && "No parent funclet for catchret!"); 1614 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1615 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1616 1617 // Create the terminator node. 1618 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1619 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1620 DAG.getBasicBlock(SuccessorColorMBB)); 1621 DAG.setRoot(Ret); 1622 } 1623 1624 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1625 // Don't emit any special code for the cleanuppad instruction. It just marks 1626 // the start of an EH scope/funclet. 1627 FuncInfo.MBB->setIsEHScopeEntry(); 1628 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1629 if (Pers != EHPersonality::Wasm_CXX) { 1630 FuncInfo.MBB->setIsEHFuncletEntry(); 1631 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1632 } 1633 } 1634 1635 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and 1636 // the control flow always stops at the single catch pad, as it does for a 1637 // cleanup pad. In case the exception caught is not of the types the catch pad 1638 // catches, it will be rethrown by a rethrow. 1639 static void findWasmUnwindDestinations( 1640 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1641 BranchProbability Prob, 1642 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1643 &UnwindDests) { 1644 while (EHPadBB) { 1645 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1646 if (isa<CleanupPadInst>(Pad)) { 1647 // Stop on cleanup pads. 1648 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1649 UnwindDests.back().first->setIsEHScopeEntry(); 1650 break; 1651 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1652 // Add the catchpad handlers to the possible destinations. We don't 1653 // continue to the unwind destination of the catchswitch for wasm. 1654 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1655 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1656 UnwindDests.back().first->setIsEHScopeEntry(); 1657 } 1658 break; 1659 } else { 1660 continue; 1661 } 1662 } 1663 } 1664 1665 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1666 /// many places it could ultimately go. In the IR, we have a single unwind 1667 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1668 /// This function skips over imaginary basic blocks that hold catchswitch 1669 /// instructions, and finds all the "real" machine 1670 /// basic block destinations. As those destinations may not be successors of 1671 /// EHPadBB, here we also calculate the edge probability to those destinations. 1672 /// The passed-in Prob is the edge probability to EHPadBB. 1673 static void findUnwindDestinations( 1674 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1675 BranchProbability Prob, 1676 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1677 &UnwindDests) { 1678 EHPersonality Personality = 1679 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1680 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1681 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1682 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1683 bool IsSEH = isAsynchronousEHPersonality(Personality); 1684 1685 if (IsWasmCXX) { 1686 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1687 return; 1688 } 1689 1690 while (EHPadBB) { 1691 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1692 BasicBlock *NewEHPadBB = nullptr; 1693 if (isa<LandingPadInst>(Pad)) { 1694 // Stop on landingpads. They are not funclets. 1695 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1696 break; 1697 } else if (isa<CleanupPadInst>(Pad)) { 1698 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1699 // personalities. 1700 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1701 UnwindDests.back().first->setIsEHScopeEntry(); 1702 UnwindDests.back().first->setIsEHFuncletEntry(); 1703 break; 1704 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1705 // Add the catchpad handlers to the possible destinations. 1706 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1707 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1708 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1709 if (IsMSVCCXX || IsCoreCLR) 1710 UnwindDests.back().first->setIsEHFuncletEntry(); 1711 if (!IsSEH) 1712 UnwindDests.back().first->setIsEHScopeEntry(); 1713 } 1714 NewEHPadBB = CatchSwitch->getUnwindDest(); 1715 } else { 1716 continue; 1717 } 1718 1719 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1720 if (BPI && NewEHPadBB) 1721 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1722 EHPadBB = NewEHPadBB; 1723 } 1724 } 1725 1726 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1727 // Update successor info. 1728 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1729 auto UnwindDest = I.getUnwindDest(); 1730 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1731 BranchProbability UnwindDestProb = 1732 (BPI && UnwindDest) 1733 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1734 : BranchProbability::getZero(); 1735 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1736 for (auto &UnwindDest : UnwindDests) { 1737 UnwindDest.first->setIsEHPad(); 1738 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1739 } 1740 FuncInfo.MBB->normalizeSuccProbs(); 1741 1742 // Create the terminator node. 1743 SDValue Ret = 1744 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1745 DAG.setRoot(Ret); 1746 } 1747 1748 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1749 report_fatal_error("visitCatchSwitch not yet implemented!"); 1750 } 1751 1752 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1753 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1754 auto &DL = DAG.getDataLayout(); 1755 SDValue Chain = getControlRoot(); 1756 SmallVector<ISD::OutputArg, 8> Outs; 1757 SmallVector<SDValue, 8> OutVals; 1758 1759 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1760 // lower 1761 // 1762 // %val = call <ty> @llvm.experimental.deoptimize() 1763 // ret <ty> %val 1764 // 1765 // differently. 1766 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1767 LowerDeoptimizingReturn(); 1768 return; 1769 } 1770 1771 if (!FuncInfo.CanLowerReturn) { 1772 unsigned DemoteReg = FuncInfo.DemoteRegister; 1773 const Function *F = I.getParent()->getParent(); 1774 1775 // Emit a store of the return value through the virtual register. 1776 // Leave Outs empty so that LowerReturn won't try to load return 1777 // registers the usual way. 1778 SmallVector<EVT, 1> PtrValueVTs; 1779 ComputeValueVTs(TLI, DL, 1780 F->getReturnType()->getPointerTo( 1781 DAG.getDataLayout().getAllocaAddrSpace()), 1782 PtrValueVTs); 1783 1784 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1785 DemoteReg, PtrValueVTs[0]); 1786 SDValue RetOp = getValue(I.getOperand(0)); 1787 1788 SmallVector<EVT, 4> ValueVTs; 1789 SmallVector<uint64_t, 4> Offsets; 1790 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1791 unsigned NumValues = ValueVTs.size(); 1792 1793 SmallVector<SDValue, 4> Chains(NumValues); 1794 for (unsigned i = 0; i != NumValues; ++i) { 1795 // An aggregate return value cannot wrap around the address space, so 1796 // offsets to its parts don't wrap either. 1797 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]); 1798 Chains[i] = DAG.getStore( 1799 Chain, getCurSDLoc(), SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1800 // FIXME: better loc info would be nice. 1801 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1802 } 1803 1804 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1805 MVT::Other, Chains); 1806 } else if (I.getNumOperands() != 0) { 1807 SmallVector<EVT, 4> ValueVTs; 1808 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1809 unsigned NumValues = ValueVTs.size(); 1810 if (NumValues) { 1811 SDValue RetOp = getValue(I.getOperand(0)); 1812 1813 const Function *F = I.getParent()->getParent(); 1814 1815 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1816 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1817 Attribute::SExt)) 1818 ExtendKind = ISD::SIGN_EXTEND; 1819 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1820 Attribute::ZExt)) 1821 ExtendKind = ISD::ZERO_EXTEND; 1822 1823 LLVMContext &Context = F->getContext(); 1824 bool RetInReg = F->getAttributes().hasAttribute( 1825 AttributeList::ReturnIndex, Attribute::InReg); 1826 1827 for (unsigned j = 0; j != NumValues; ++j) { 1828 EVT VT = ValueVTs[j]; 1829 1830 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1831 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1832 1833 CallingConv::ID CC = F->getCallingConv(); 1834 1835 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1836 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1837 SmallVector<SDValue, 4> Parts(NumParts); 1838 getCopyToParts(DAG, getCurSDLoc(), 1839 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1840 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1841 1842 // 'inreg' on function refers to return value 1843 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1844 if (RetInReg) 1845 Flags.setInReg(); 1846 1847 // Propagate extension type if any 1848 if (ExtendKind == ISD::SIGN_EXTEND) 1849 Flags.setSExt(); 1850 else if (ExtendKind == ISD::ZERO_EXTEND) 1851 Flags.setZExt(); 1852 1853 for (unsigned i = 0; i < NumParts; ++i) { 1854 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1855 VT, /*isfixed=*/true, 0, 0)); 1856 OutVals.push_back(Parts[i]); 1857 } 1858 } 1859 } 1860 } 1861 1862 // Push in swifterror virtual register as the last element of Outs. This makes 1863 // sure swifterror virtual register will be returned in the swifterror 1864 // physical register. 1865 const Function *F = I.getParent()->getParent(); 1866 if (TLI.supportSwiftError() && 1867 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1868 assert(FuncInfo.SwiftErrorArg && "Need a swift error argument"); 1869 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1870 Flags.setSwiftError(); 1871 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1872 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1873 true /*isfixed*/, 1 /*origidx*/, 1874 0 /*partOffs*/)); 1875 // Create SDNode for the swifterror virtual register. 1876 OutVals.push_back( 1877 DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt( 1878 &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first, 1879 EVT(TLI.getPointerTy(DL)))); 1880 } 1881 1882 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1883 CallingConv::ID CallConv = 1884 DAG.getMachineFunction().getFunction().getCallingConv(); 1885 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1886 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1887 1888 // Verify that the target's LowerReturn behaved as expected. 1889 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1890 "LowerReturn didn't return a valid chain!"); 1891 1892 // Update the DAG with the new chain value resulting from return lowering. 1893 DAG.setRoot(Chain); 1894 } 1895 1896 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1897 /// created for it, emit nodes to copy the value into the virtual 1898 /// registers. 1899 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1900 // Skip empty types 1901 if (V->getType()->isEmptyTy()) 1902 return; 1903 1904 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1905 if (VMI != FuncInfo.ValueMap.end()) { 1906 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1907 CopyValueToVirtualRegister(V, VMI->second); 1908 } 1909 } 1910 1911 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1912 /// the current basic block, add it to ValueMap now so that we'll get a 1913 /// CopyTo/FromReg. 1914 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1915 // No need to export constants. 1916 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1917 1918 // Already exported? 1919 if (FuncInfo.isExportedInst(V)) return; 1920 1921 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1922 CopyValueToVirtualRegister(V, Reg); 1923 } 1924 1925 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1926 const BasicBlock *FromBB) { 1927 // The operands of the setcc have to be in this block. We don't know 1928 // how to export them from some other block. 1929 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1930 // Can export from current BB. 1931 if (VI->getParent() == FromBB) 1932 return true; 1933 1934 // Is already exported, noop. 1935 return FuncInfo.isExportedInst(V); 1936 } 1937 1938 // If this is an argument, we can export it if the BB is the entry block or 1939 // if it is already exported. 1940 if (isa<Argument>(V)) { 1941 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1942 return true; 1943 1944 // Otherwise, can only export this if it is already exported. 1945 return FuncInfo.isExportedInst(V); 1946 } 1947 1948 // Otherwise, constants can always be exported. 1949 return true; 1950 } 1951 1952 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1953 BranchProbability 1954 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1955 const MachineBasicBlock *Dst) const { 1956 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1957 const BasicBlock *SrcBB = Src->getBasicBlock(); 1958 const BasicBlock *DstBB = Dst->getBasicBlock(); 1959 if (!BPI) { 1960 // If BPI is not available, set the default probability as 1 / N, where N is 1961 // the number of successors. 1962 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 1963 return BranchProbability(1, SuccSize); 1964 } 1965 return BPI->getEdgeProbability(SrcBB, DstBB); 1966 } 1967 1968 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1969 MachineBasicBlock *Dst, 1970 BranchProbability Prob) { 1971 if (!FuncInfo.BPI) 1972 Src->addSuccessorWithoutProb(Dst); 1973 else { 1974 if (Prob.isUnknown()) 1975 Prob = getEdgeProbability(Src, Dst); 1976 Src->addSuccessor(Dst, Prob); 1977 } 1978 } 1979 1980 static bool InBlock(const Value *V, const BasicBlock *BB) { 1981 if (const Instruction *I = dyn_cast<Instruction>(V)) 1982 return I->getParent() == BB; 1983 return true; 1984 } 1985 1986 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1987 /// This function emits a branch and is used at the leaves of an OR or an 1988 /// AND operator tree. 1989 void 1990 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1991 MachineBasicBlock *TBB, 1992 MachineBasicBlock *FBB, 1993 MachineBasicBlock *CurBB, 1994 MachineBasicBlock *SwitchBB, 1995 BranchProbability TProb, 1996 BranchProbability FProb, 1997 bool InvertCond) { 1998 const BasicBlock *BB = CurBB->getBasicBlock(); 1999 2000 // If the leaf of the tree is a comparison, merge the condition into 2001 // the caseblock. 2002 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2003 // The operands of the cmp have to be in this block. We don't know 2004 // how to export them from some other block. If this is the first block 2005 // of the sequence, no exporting is needed. 2006 if (CurBB == SwitchBB || 2007 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2008 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2009 ISD::CondCode Condition; 2010 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2011 ICmpInst::Predicate Pred = 2012 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2013 Condition = getICmpCondCode(Pred); 2014 } else { 2015 const FCmpInst *FC = cast<FCmpInst>(Cond); 2016 FCmpInst::Predicate Pred = 2017 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2018 Condition = getFCmpCondCode(Pred); 2019 if (TM.Options.NoNaNsFPMath) 2020 Condition = getFCmpCodeWithoutNaN(Condition); 2021 } 2022 2023 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2024 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2025 SwitchCases.push_back(CB); 2026 return; 2027 } 2028 } 2029 2030 // Create a CaseBlock record representing this branch. 2031 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2032 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2033 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2034 SwitchCases.push_back(CB); 2035 } 2036 2037 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2038 MachineBasicBlock *TBB, 2039 MachineBasicBlock *FBB, 2040 MachineBasicBlock *CurBB, 2041 MachineBasicBlock *SwitchBB, 2042 Instruction::BinaryOps Opc, 2043 BranchProbability TProb, 2044 BranchProbability FProb, 2045 bool InvertCond) { 2046 // Skip over not part of the tree and remember to invert op and operands at 2047 // next level. 2048 Value *NotCond; 2049 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2050 InBlock(NotCond, CurBB->getBasicBlock())) { 2051 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2052 !InvertCond); 2053 return; 2054 } 2055 2056 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2057 // Compute the effective opcode for Cond, taking into account whether it needs 2058 // to be inverted, e.g. 2059 // and (not (or A, B)), C 2060 // gets lowered as 2061 // and (and (not A, not B), C) 2062 unsigned BOpc = 0; 2063 if (BOp) { 2064 BOpc = BOp->getOpcode(); 2065 if (InvertCond) { 2066 if (BOpc == Instruction::And) 2067 BOpc = Instruction::Or; 2068 else if (BOpc == Instruction::Or) 2069 BOpc = Instruction::And; 2070 } 2071 } 2072 2073 // If this node is not part of the or/and tree, emit it as a branch. 2074 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 2075 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 2076 BOp->getParent() != CurBB->getBasicBlock() || 2077 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 2078 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 2079 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2080 TProb, FProb, InvertCond); 2081 return; 2082 } 2083 2084 // Create TmpBB after CurBB. 2085 MachineFunction::iterator BBI(CurBB); 2086 MachineFunction &MF = DAG.getMachineFunction(); 2087 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2088 CurBB->getParent()->insert(++BBI, TmpBB); 2089 2090 if (Opc == Instruction::Or) { 2091 // Codegen X | Y as: 2092 // BB1: 2093 // jmp_if_X TBB 2094 // jmp TmpBB 2095 // TmpBB: 2096 // jmp_if_Y TBB 2097 // jmp FBB 2098 // 2099 2100 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2101 // The requirement is that 2102 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2103 // = TrueProb for original BB. 2104 // Assuming the original probabilities are A and B, one choice is to set 2105 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2106 // A/(1+B) and 2B/(1+B). This choice assumes that 2107 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2108 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2109 // TmpBB, but the math is more complicated. 2110 2111 auto NewTrueProb = TProb / 2; 2112 auto NewFalseProb = TProb / 2 + FProb; 2113 // Emit the LHS condition. 2114 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 2115 NewTrueProb, NewFalseProb, InvertCond); 2116 2117 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2118 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2119 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2120 // Emit the RHS condition into TmpBB. 2121 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2122 Probs[0], Probs[1], InvertCond); 2123 } else { 2124 assert(Opc == Instruction::And && "Unknown merge op!"); 2125 // Codegen X & Y as: 2126 // BB1: 2127 // jmp_if_X TmpBB 2128 // jmp FBB 2129 // TmpBB: 2130 // jmp_if_Y TBB 2131 // jmp FBB 2132 // 2133 // This requires creation of TmpBB after CurBB. 2134 2135 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2136 // The requirement is that 2137 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2138 // = FalseProb for original BB. 2139 // Assuming the original probabilities are A and B, one choice is to set 2140 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2141 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2142 // TrueProb for BB1 * FalseProb for TmpBB. 2143 2144 auto NewTrueProb = TProb + FProb / 2; 2145 auto NewFalseProb = FProb / 2; 2146 // Emit the LHS condition. 2147 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 2148 NewTrueProb, NewFalseProb, InvertCond); 2149 2150 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2151 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2152 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2153 // Emit the RHS condition into TmpBB. 2154 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2155 Probs[0], Probs[1], InvertCond); 2156 } 2157 } 2158 2159 /// If the set of cases should be emitted as a series of branches, return true. 2160 /// If we should emit this as a bunch of and/or'd together conditions, return 2161 /// false. 2162 bool 2163 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2164 if (Cases.size() != 2) return true; 2165 2166 // If this is two comparisons of the same values or'd or and'd together, they 2167 // will get folded into a single comparison, so don't emit two blocks. 2168 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2169 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2170 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2171 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2172 return false; 2173 } 2174 2175 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2176 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2177 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2178 Cases[0].CC == Cases[1].CC && 2179 isa<Constant>(Cases[0].CmpRHS) && 2180 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2181 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2182 return false; 2183 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2184 return false; 2185 } 2186 2187 return true; 2188 } 2189 2190 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2191 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2192 2193 // Update machine-CFG edges. 2194 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2195 2196 if (I.isUnconditional()) { 2197 // Update machine-CFG edges. 2198 BrMBB->addSuccessor(Succ0MBB); 2199 2200 // If this is not a fall-through branch or optimizations are switched off, 2201 // emit the branch. 2202 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2203 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2204 MVT::Other, getControlRoot(), 2205 DAG.getBasicBlock(Succ0MBB))); 2206 2207 return; 2208 } 2209 2210 // If this condition is one of the special cases we handle, do special stuff 2211 // now. 2212 const Value *CondVal = I.getCondition(); 2213 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2214 2215 // If this is a series of conditions that are or'd or and'd together, emit 2216 // this as a sequence of branches instead of setcc's with and/or operations. 2217 // As long as jumps are not expensive, this should improve performance. 2218 // For example, instead of something like: 2219 // cmp A, B 2220 // C = seteq 2221 // cmp D, E 2222 // F = setle 2223 // or C, F 2224 // jnz foo 2225 // Emit: 2226 // cmp A, B 2227 // je foo 2228 // cmp D, E 2229 // jle foo 2230 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 2231 Instruction::BinaryOps Opcode = BOp->getOpcode(); 2232 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 2233 !I.getMetadata(LLVMContext::MD_unpredictable) && 2234 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 2235 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 2236 Opcode, 2237 getEdgeProbability(BrMBB, Succ0MBB), 2238 getEdgeProbability(BrMBB, Succ1MBB), 2239 /*InvertCond=*/false); 2240 // If the compares in later blocks need to use values not currently 2241 // exported from this block, export them now. This block should always 2242 // be the first entry. 2243 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2244 2245 // Allow some cases to be rejected. 2246 if (ShouldEmitAsBranches(SwitchCases)) { 2247 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 2248 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 2249 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 2250 } 2251 2252 // Emit the branch for this block. 2253 visitSwitchCase(SwitchCases[0], BrMBB); 2254 SwitchCases.erase(SwitchCases.begin()); 2255 return; 2256 } 2257 2258 // Okay, we decided not to do this, remove any inserted MBB's and clear 2259 // SwitchCases. 2260 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 2261 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 2262 2263 SwitchCases.clear(); 2264 } 2265 } 2266 2267 // Create a CaseBlock record representing this branch. 2268 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2269 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2270 2271 // Use visitSwitchCase to actually insert the fast branch sequence for this 2272 // cond branch. 2273 visitSwitchCase(CB, BrMBB); 2274 } 2275 2276 /// visitSwitchCase - Emits the necessary code to represent a single node in 2277 /// the binary search tree resulting from lowering a switch instruction. 2278 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2279 MachineBasicBlock *SwitchBB) { 2280 SDValue Cond; 2281 SDValue CondLHS = getValue(CB.CmpLHS); 2282 SDLoc dl = CB.DL; 2283 2284 // Build the setcc now. 2285 if (!CB.CmpMHS) { 2286 // Fold "(X == true)" to X and "(X == false)" to !X to 2287 // handle common cases produced by branch lowering. 2288 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2289 CB.CC == ISD::SETEQ) 2290 Cond = CondLHS; 2291 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2292 CB.CC == ISD::SETEQ) { 2293 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2294 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2295 } else 2296 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 2297 } else { 2298 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2299 2300 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2301 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2302 2303 SDValue CmpOp = getValue(CB.CmpMHS); 2304 EVT VT = CmpOp.getValueType(); 2305 2306 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2307 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2308 ISD::SETLE); 2309 } else { 2310 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2311 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2312 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2313 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2314 } 2315 } 2316 2317 // Update successor info 2318 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2319 // TrueBB and FalseBB are always different unless the incoming IR is 2320 // degenerate. This only happens when running llc on weird IR. 2321 if (CB.TrueBB != CB.FalseBB) 2322 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2323 SwitchBB->normalizeSuccProbs(); 2324 2325 // If the lhs block is the next block, invert the condition so that we can 2326 // fall through to the lhs instead of the rhs block. 2327 if (CB.TrueBB == NextBlock(SwitchBB)) { 2328 std::swap(CB.TrueBB, CB.FalseBB); 2329 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2330 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2331 } 2332 2333 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2334 MVT::Other, getControlRoot(), Cond, 2335 DAG.getBasicBlock(CB.TrueBB)); 2336 2337 // Insert the false branch. Do this even if it's a fall through branch, 2338 // this makes it easier to do DAG optimizations which require inverting 2339 // the branch condition. 2340 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2341 DAG.getBasicBlock(CB.FalseBB)); 2342 2343 DAG.setRoot(BrCond); 2344 } 2345 2346 /// visitJumpTable - Emit JumpTable node in the current MBB 2347 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 2348 // Emit the code for the jump table 2349 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2350 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2351 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2352 JT.Reg, PTy); 2353 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2354 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2355 MVT::Other, Index.getValue(1), 2356 Table, Index); 2357 DAG.setRoot(BrJumpTable); 2358 } 2359 2360 /// visitJumpTableHeader - This function emits necessary code to produce index 2361 /// in the JumpTable from switch case. 2362 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 2363 JumpTableHeader &JTH, 2364 MachineBasicBlock *SwitchBB) { 2365 SDLoc dl = getCurSDLoc(); 2366 2367 // Subtract the lowest switch case value from the value being switched on and 2368 // conditional branch to default mbb if the result is greater than the 2369 // difference between smallest and largest cases. 2370 SDValue SwitchOp = getValue(JTH.SValue); 2371 EVT VT = SwitchOp.getValueType(); 2372 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2373 DAG.getConstant(JTH.First, dl, VT)); 2374 2375 // The SDNode we just created, which holds the value being switched on minus 2376 // the smallest case value, needs to be copied to a virtual register so it 2377 // can be used as an index into the jump table in a subsequent basic block. 2378 // This value may be smaller or larger than the target's pointer type, and 2379 // therefore require extension or truncating. 2380 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2381 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2382 2383 unsigned JumpTableReg = 2384 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2385 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2386 JumpTableReg, SwitchOp); 2387 JT.Reg = JumpTableReg; 2388 2389 // Emit the range check for the jump table, and branch to the default block 2390 // for the switch statement if the value being switched on exceeds the largest 2391 // case in the switch. 2392 SDValue CMP = DAG.getSetCC( 2393 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2394 Sub.getValueType()), 2395 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2396 2397 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2398 MVT::Other, CopyTo, CMP, 2399 DAG.getBasicBlock(JT.Default)); 2400 2401 // Avoid emitting unnecessary branches to the next block. 2402 if (JT.MBB != NextBlock(SwitchBB)) 2403 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2404 DAG.getBasicBlock(JT.MBB)); 2405 2406 DAG.setRoot(BrCond); 2407 } 2408 2409 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2410 /// variable if there exists one. 2411 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2412 SDValue &Chain) { 2413 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2414 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2415 MachineFunction &MF = DAG.getMachineFunction(); 2416 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2417 MachineSDNode *Node = 2418 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2419 if (Global) { 2420 MachinePointerInfo MPInfo(Global); 2421 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2422 MachineMemOperand::MODereferenceable; 2423 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2424 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy)); 2425 DAG.setNodeMemRefs(Node, {MemRef}); 2426 } 2427 return SDValue(Node, 0); 2428 } 2429 2430 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2431 /// tail spliced into a stack protector check success bb. 2432 /// 2433 /// For a high level explanation of how this fits into the stack protector 2434 /// generation see the comment on the declaration of class 2435 /// StackProtectorDescriptor. 2436 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2437 MachineBasicBlock *ParentBB) { 2438 2439 // First create the loads to the guard/stack slot for the comparison. 2440 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2441 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2442 2443 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2444 int FI = MFI.getStackProtectorIndex(); 2445 2446 SDValue Guard; 2447 SDLoc dl = getCurSDLoc(); 2448 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2449 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2450 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2451 2452 // Generate code to load the content of the guard slot. 2453 SDValue GuardVal = DAG.getLoad( 2454 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 2455 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2456 MachineMemOperand::MOVolatile); 2457 2458 if (TLI.useStackGuardXorFP()) 2459 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2460 2461 // Retrieve guard check function, nullptr if instrumentation is inlined. 2462 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2463 // The target provides a guard check function to validate the guard value. 2464 // Generate a call to that function with the content of the guard slot as 2465 // argument. 2466 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2467 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2468 2469 TargetLowering::ArgListTy Args; 2470 TargetLowering::ArgListEntry Entry; 2471 Entry.Node = GuardVal; 2472 Entry.Ty = FnTy->getParamType(0); 2473 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) 2474 Entry.IsInReg = true; 2475 Args.push_back(Entry); 2476 2477 TargetLowering::CallLoweringInfo CLI(DAG); 2478 CLI.setDebugLoc(getCurSDLoc()) 2479 .setChain(DAG.getEntryNode()) 2480 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2481 getValue(GuardCheckFn), std::move(Args)); 2482 2483 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2484 DAG.setRoot(Result.second); 2485 return; 2486 } 2487 2488 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2489 // Otherwise, emit a volatile load to retrieve the stack guard value. 2490 SDValue Chain = DAG.getEntryNode(); 2491 if (TLI.useLoadStackGuardNode()) { 2492 Guard = getLoadStackGuard(DAG, dl, Chain); 2493 } else { 2494 const Value *IRGuard = TLI.getSDagStackGuard(M); 2495 SDValue GuardPtr = getValue(IRGuard); 2496 2497 Guard = 2498 DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0), 2499 Align, MachineMemOperand::MOVolatile); 2500 } 2501 2502 // Perform the comparison via a subtract/getsetcc. 2503 EVT VT = Guard.getValueType(); 2504 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal); 2505 2506 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2507 *DAG.getContext(), 2508 Sub.getValueType()), 2509 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2510 2511 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2512 // branch to failure MBB. 2513 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2514 MVT::Other, GuardVal.getOperand(0), 2515 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2516 // Otherwise branch to success MBB. 2517 SDValue Br = DAG.getNode(ISD::BR, dl, 2518 MVT::Other, BrCond, 2519 DAG.getBasicBlock(SPD.getSuccessMBB())); 2520 2521 DAG.setRoot(Br); 2522 } 2523 2524 /// Codegen the failure basic block for a stack protector check. 2525 /// 2526 /// A failure stack protector machine basic block consists simply of a call to 2527 /// __stack_chk_fail(). 2528 /// 2529 /// For a high level explanation of how this fits into the stack protector 2530 /// generation see the comment on the declaration of class 2531 /// StackProtectorDescriptor. 2532 void 2533 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2534 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2535 SDValue Chain = 2536 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2537 None, false, getCurSDLoc(), false, false).second; 2538 DAG.setRoot(Chain); 2539 } 2540 2541 /// visitBitTestHeader - This function emits necessary code to produce value 2542 /// suitable for "bit tests" 2543 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2544 MachineBasicBlock *SwitchBB) { 2545 SDLoc dl = getCurSDLoc(); 2546 2547 // Subtract the minimum value 2548 SDValue SwitchOp = getValue(B.SValue); 2549 EVT VT = SwitchOp.getValueType(); 2550 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2551 DAG.getConstant(B.First, dl, VT)); 2552 2553 // Check range 2554 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2555 SDValue RangeCmp = DAG.getSetCC( 2556 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2557 Sub.getValueType()), 2558 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2559 2560 // Determine the type of the test operands. 2561 bool UsePtrType = false; 2562 if (!TLI.isTypeLegal(VT)) 2563 UsePtrType = true; 2564 else { 2565 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2566 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2567 // Switch table case range are encoded into series of masks. 2568 // Just use pointer type, it's guaranteed to fit. 2569 UsePtrType = true; 2570 break; 2571 } 2572 } 2573 if (UsePtrType) { 2574 VT = TLI.getPointerTy(DAG.getDataLayout()); 2575 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2576 } 2577 2578 B.RegVT = VT.getSimpleVT(); 2579 B.Reg = FuncInfo.CreateReg(B.RegVT); 2580 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2581 2582 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2583 2584 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2585 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2586 SwitchBB->normalizeSuccProbs(); 2587 2588 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2589 MVT::Other, CopyTo, RangeCmp, 2590 DAG.getBasicBlock(B.Default)); 2591 2592 // Avoid emitting unnecessary branches to the next block. 2593 if (MBB != NextBlock(SwitchBB)) 2594 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2595 DAG.getBasicBlock(MBB)); 2596 2597 DAG.setRoot(BrRange); 2598 } 2599 2600 /// visitBitTestCase - this function produces one "bit test" 2601 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2602 MachineBasicBlock* NextMBB, 2603 BranchProbability BranchProbToNext, 2604 unsigned Reg, 2605 BitTestCase &B, 2606 MachineBasicBlock *SwitchBB) { 2607 SDLoc dl = getCurSDLoc(); 2608 MVT VT = BB.RegVT; 2609 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2610 SDValue Cmp; 2611 unsigned PopCount = countPopulation(B.Mask); 2612 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2613 if (PopCount == 1) { 2614 // Testing for a single bit; just compare the shift count with what it 2615 // would need to be to shift a 1 bit in that position. 2616 Cmp = DAG.getSetCC( 2617 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2618 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2619 ISD::SETEQ); 2620 } else if (PopCount == BB.Range) { 2621 // There is only one zero bit in the range, test for it directly. 2622 Cmp = DAG.getSetCC( 2623 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2624 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2625 ISD::SETNE); 2626 } else { 2627 // Make desired shift 2628 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2629 DAG.getConstant(1, dl, VT), ShiftOp); 2630 2631 // Emit bit tests and jumps 2632 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2633 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2634 Cmp = DAG.getSetCC( 2635 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2636 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2637 } 2638 2639 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2640 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2641 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2642 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2643 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2644 // one as they are relative probabilities (and thus work more like weights), 2645 // and hence we need to normalize them to let the sum of them become one. 2646 SwitchBB->normalizeSuccProbs(); 2647 2648 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2649 MVT::Other, getControlRoot(), 2650 Cmp, DAG.getBasicBlock(B.TargetBB)); 2651 2652 // Avoid emitting unnecessary branches to the next block. 2653 if (NextMBB != NextBlock(SwitchBB)) 2654 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2655 DAG.getBasicBlock(NextMBB)); 2656 2657 DAG.setRoot(BrAnd); 2658 } 2659 2660 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2661 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2662 2663 // Retrieve successors. Look through artificial IR level blocks like 2664 // catchswitch for successors. 2665 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2666 const BasicBlock *EHPadBB = I.getSuccessor(1); 2667 2668 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2669 // have to do anything here to lower funclet bundles. 2670 assert(!I.hasOperandBundlesOtherThan( 2671 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2672 "Cannot lower invokes with arbitrary operand bundles yet!"); 2673 2674 const Value *Callee(I.getCalledValue()); 2675 const Function *Fn = dyn_cast<Function>(Callee); 2676 if (isa<InlineAsm>(Callee)) 2677 visitInlineAsm(&I); 2678 else if (Fn && Fn->isIntrinsic()) { 2679 switch (Fn->getIntrinsicID()) { 2680 default: 2681 llvm_unreachable("Cannot invoke this intrinsic"); 2682 case Intrinsic::donothing: 2683 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2684 break; 2685 case Intrinsic::experimental_patchpoint_void: 2686 case Intrinsic::experimental_patchpoint_i64: 2687 visitPatchpoint(&I, EHPadBB); 2688 break; 2689 case Intrinsic::experimental_gc_statepoint: 2690 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2691 break; 2692 } 2693 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2694 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2695 // Eventually we will support lowering the @llvm.experimental.deoptimize 2696 // intrinsic, and right now there are no plans to support other intrinsics 2697 // with deopt state. 2698 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2699 } else { 2700 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2701 } 2702 2703 // If the value of the invoke is used outside of its defining block, make it 2704 // available as a virtual register. 2705 // We already took care of the exported value for the statepoint instruction 2706 // during call to the LowerStatepoint. 2707 if (!isStatepoint(I)) { 2708 CopyToExportRegsIfNeeded(&I); 2709 } 2710 2711 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2712 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2713 BranchProbability EHPadBBProb = 2714 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2715 : BranchProbability::getZero(); 2716 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2717 2718 // Update successor info. 2719 addSuccessorWithProb(InvokeMBB, Return); 2720 for (auto &UnwindDest : UnwindDests) { 2721 UnwindDest.first->setIsEHPad(); 2722 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2723 } 2724 InvokeMBB->normalizeSuccProbs(); 2725 2726 // Drop into normal successor. 2727 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2728 DAG.getBasicBlock(Return))); 2729 } 2730 2731 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2732 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2733 2734 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2735 // have to do anything here to lower funclet bundles. 2736 assert(!I.hasOperandBundlesOtherThan( 2737 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2738 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2739 2740 assert(isa<InlineAsm>(I.getCalledValue()) && 2741 "Only know how to handle inlineasm callbr"); 2742 visitInlineAsm(&I); 2743 2744 // Retrieve successors. 2745 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2746 2747 // Update successor info. 2748 addSuccessorWithProb(CallBrMBB, Return); 2749 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2750 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 2751 addSuccessorWithProb(CallBrMBB, Target); 2752 } 2753 CallBrMBB->normalizeSuccProbs(); 2754 2755 // Drop into default successor. 2756 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2757 MVT::Other, getControlRoot(), 2758 DAG.getBasicBlock(Return))); 2759 } 2760 2761 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2762 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2763 } 2764 2765 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2766 assert(FuncInfo.MBB->isEHPad() && 2767 "Call to landingpad not in landing pad!"); 2768 2769 // If there aren't registers to copy the values into (e.g., during SjLj 2770 // exceptions), then don't bother to create these DAG nodes. 2771 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2772 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2773 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2774 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2775 return; 2776 2777 // If landingpad's return type is token type, we don't create DAG nodes 2778 // for its exception pointer and selector value. The extraction of exception 2779 // pointer or selector value from token type landingpads is not currently 2780 // supported. 2781 if (LP.getType()->isTokenTy()) 2782 return; 2783 2784 SmallVector<EVT, 2> ValueVTs; 2785 SDLoc dl = getCurSDLoc(); 2786 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2787 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2788 2789 // Get the two live-in registers as SDValues. The physregs have already been 2790 // copied into virtual registers. 2791 SDValue Ops[2]; 2792 if (FuncInfo.ExceptionPointerVirtReg) { 2793 Ops[0] = DAG.getZExtOrTrunc( 2794 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2795 FuncInfo.ExceptionPointerVirtReg, 2796 TLI.getPointerTy(DAG.getDataLayout())), 2797 dl, ValueVTs[0]); 2798 } else { 2799 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2800 } 2801 Ops[1] = DAG.getZExtOrTrunc( 2802 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2803 FuncInfo.ExceptionSelectorVirtReg, 2804 TLI.getPointerTy(DAG.getDataLayout())), 2805 dl, ValueVTs[1]); 2806 2807 // Merge into one. 2808 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2809 DAG.getVTList(ValueVTs), Ops); 2810 setValue(&LP, Res); 2811 } 2812 2813 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2814 #ifndef NDEBUG 2815 for (const CaseCluster &CC : Clusters) 2816 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2817 #endif 2818 2819 llvm::sort(Clusters, [](const CaseCluster &a, const CaseCluster &b) { 2820 return a.Low->getValue().slt(b.Low->getValue()); 2821 }); 2822 2823 // Merge adjacent clusters with the same destination. 2824 const unsigned N = Clusters.size(); 2825 unsigned DstIndex = 0; 2826 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2827 CaseCluster &CC = Clusters[SrcIndex]; 2828 const ConstantInt *CaseVal = CC.Low; 2829 MachineBasicBlock *Succ = CC.MBB; 2830 2831 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2832 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2833 // If this case has the same successor and is a neighbour, merge it into 2834 // the previous cluster. 2835 Clusters[DstIndex - 1].High = CaseVal; 2836 Clusters[DstIndex - 1].Prob += CC.Prob; 2837 } else { 2838 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2839 sizeof(Clusters[SrcIndex])); 2840 } 2841 } 2842 Clusters.resize(DstIndex); 2843 } 2844 2845 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2846 MachineBasicBlock *Last) { 2847 // Update JTCases. 2848 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2849 if (JTCases[i].first.HeaderBB == First) 2850 JTCases[i].first.HeaderBB = Last; 2851 2852 // Update BitTestCases. 2853 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2854 if (BitTestCases[i].Parent == First) 2855 BitTestCases[i].Parent = Last; 2856 } 2857 2858 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2859 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2860 2861 // Update machine-CFG edges with unique successors. 2862 SmallSet<BasicBlock*, 32> Done; 2863 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2864 BasicBlock *BB = I.getSuccessor(i); 2865 bool Inserted = Done.insert(BB).second; 2866 if (!Inserted) 2867 continue; 2868 2869 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2870 addSuccessorWithProb(IndirectBrMBB, Succ); 2871 } 2872 IndirectBrMBB->normalizeSuccProbs(); 2873 2874 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2875 MVT::Other, getControlRoot(), 2876 getValue(I.getAddress()))); 2877 } 2878 2879 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2880 if (!DAG.getTarget().Options.TrapUnreachable) 2881 return; 2882 2883 // We may be able to ignore unreachable behind a noreturn call. 2884 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 2885 const BasicBlock &BB = *I.getParent(); 2886 if (&I != &BB.front()) { 2887 BasicBlock::const_iterator PredI = 2888 std::prev(BasicBlock::const_iterator(&I)); 2889 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 2890 if (Call->doesNotReturn()) 2891 return; 2892 } 2893 } 2894 } 2895 2896 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2897 } 2898 2899 void SelectionDAGBuilder::visitFSub(const User &I) { 2900 // -0.0 - X --> fneg 2901 Type *Ty = I.getType(); 2902 if (isa<Constant>(I.getOperand(0)) && 2903 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2904 SDValue Op2 = getValue(I.getOperand(1)); 2905 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2906 Op2.getValueType(), Op2)); 2907 return; 2908 } 2909 2910 visitBinary(I, ISD::FSUB); 2911 } 2912 2913 /// Checks if the given instruction performs a vector reduction, in which case 2914 /// we have the freedom to alter the elements in the result as long as the 2915 /// reduction of them stays unchanged. 2916 static bool isVectorReductionOp(const User *I) { 2917 const Instruction *Inst = dyn_cast<Instruction>(I); 2918 if (!Inst || !Inst->getType()->isVectorTy()) 2919 return false; 2920 2921 auto OpCode = Inst->getOpcode(); 2922 switch (OpCode) { 2923 case Instruction::Add: 2924 case Instruction::Mul: 2925 case Instruction::And: 2926 case Instruction::Or: 2927 case Instruction::Xor: 2928 break; 2929 case Instruction::FAdd: 2930 case Instruction::FMul: 2931 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2932 if (FPOp->getFastMathFlags().isFast()) 2933 break; 2934 LLVM_FALLTHROUGH; 2935 default: 2936 return false; 2937 } 2938 2939 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 2940 // Ensure the reduction size is a power of 2. 2941 if (!isPowerOf2_32(ElemNum)) 2942 return false; 2943 2944 unsigned ElemNumToReduce = ElemNum; 2945 2946 // Do DFS search on the def-use chain from the given instruction. We only 2947 // allow four kinds of operations during the search until we reach the 2948 // instruction that extracts the first element from the vector: 2949 // 2950 // 1. The reduction operation of the same opcode as the given instruction. 2951 // 2952 // 2. PHI node. 2953 // 2954 // 3. ShuffleVector instruction together with a reduction operation that 2955 // does a partial reduction. 2956 // 2957 // 4. ExtractElement that extracts the first element from the vector, and we 2958 // stop searching the def-use chain here. 2959 // 2960 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 2961 // from 1-3 to the stack to continue the DFS. The given instruction is not 2962 // a reduction operation if we meet any other instructions other than those 2963 // listed above. 2964 2965 SmallVector<const User *, 16> UsersToVisit{Inst}; 2966 SmallPtrSet<const User *, 16> Visited; 2967 bool ReduxExtracted = false; 2968 2969 while (!UsersToVisit.empty()) { 2970 auto User = UsersToVisit.back(); 2971 UsersToVisit.pop_back(); 2972 if (!Visited.insert(User).second) 2973 continue; 2974 2975 for (const auto &U : User->users()) { 2976 auto Inst = dyn_cast<Instruction>(U); 2977 if (!Inst) 2978 return false; 2979 2980 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 2981 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2982 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast()) 2983 return false; 2984 UsersToVisit.push_back(U); 2985 } else if (const ShuffleVectorInst *ShufInst = 2986 dyn_cast<ShuffleVectorInst>(U)) { 2987 // Detect the following pattern: A ShuffleVector instruction together 2988 // with a reduction that do partial reduction on the first and second 2989 // ElemNumToReduce / 2 elements, and store the result in 2990 // ElemNumToReduce / 2 elements in another vector. 2991 2992 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 2993 if (ResultElements < ElemNum) 2994 return false; 2995 2996 if (ElemNumToReduce == 1) 2997 return false; 2998 if (!isa<UndefValue>(U->getOperand(1))) 2999 return false; 3000 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 3001 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 3002 return false; 3003 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 3004 if (ShufInst->getMaskValue(i) != -1) 3005 return false; 3006 3007 // There is only one user of this ShuffleVector instruction, which 3008 // must be a reduction operation. 3009 if (!U->hasOneUse()) 3010 return false; 3011 3012 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 3013 if (!U2 || U2->getOpcode() != OpCode) 3014 return false; 3015 3016 // Check operands of the reduction operation. 3017 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 3018 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 3019 UsersToVisit.push_back(U2); 3020 ElemNumToReduce /= 2; 3021 } else 3022 return false; 3023 } else if (isa<ExtractElementInst>(U)) { 3024 // At this moment we should have reduced all elements in the vector. 3025 if (ElemNumToReduce != 1) 3026 return false; 3027 3028 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 3029 if (!Val || !Val->isZero()) 3030 return false; 3031 3032 ReduxExtracted = true; 3033 } else 3034 return false; 3035 } 3036 } 3037 return ReduxExtracted; 3038 } 3039 3040 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3041 SDNodeFlags Flags; 3042 3043 SDValue Op = getValue(I.getOperand(0)); 3044 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3045 Op, Flags); 3046 setValue(&I, UnNodeValue); 3047 } 3048 3049 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3050 SDNodeFlags Flags; 3051 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3052 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3053 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3054 } 3055 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) { 3056 Flags.setExact(ExactOp->isExact()); 3057 } 3058 if (isVectorReductionOp(&I)) { 3059 Flags.setVectorReduction(true); 3060 LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 3061 } 3062 3063 SDValue Op1 = getValue(I.getOperand(0)); 3064 SDValue Op2 = getValue(I.getOperand(1)); 3065 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3066 Op1, Op2, Flags); 3067 setValue(&I, BinNodeValue); 3068 } 3069 3070 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3071 SDValue Op1 = getValue(I.getOperand(0)); 3072 SDValue Op2 = getValue(I.getOperand(1)); 3073 3074 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3075 Op1.getValueType(), DAG.getDataLayout()); 3076 3077 // Coerce the shift amount to the right type if we can. 3078 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3079 unsigned ShiftSize = ShiftTy.getSizeInBits(); 3080 unsigned Op2Size = Op2.getValueSizeInBits(); 3081 SDLoc DL = getCurSDLoc(); 3082 3083 // If the operand is smaller than the shift count type, promote it. 3084 if (ShiftSize > Op2Size) 3085 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 3086 3087 // If the operand is larger than the shift count type but the shift 3088 // count type has enough bits to represent any shift value, truncate 3089 // it now. This is a common case and it exposes the truncate to 3090 // optimization early. 3091 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 3092 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 3093 // Otherwise we'll need to temporarily settle for some other convenient 3094 // type. Type legalization will make adjustments once the shiftee is split. 3095 else 3096 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 3097 } 3098 3099 bool nuw = false; 3100 bool nsw = false; 3101 bool exact = false; 3102 3103 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3104 3105 if (const OverflowingBinaryOperator *OFBinOp = 3106 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3107 nuw = OFBinOp->hasNoUnsignedWrap(); 3108 nsw = OFBinOp->hasNoSignedWrap(); 3109 } 3110 if (const PossiblyExactOperator *ExactOp = 3111 dyn_cast<const PossiblyExactOperator>(&I)) 3112 exact = ExactOp->isExact(); 3113 } 3114 SDNodeFlags Flags; 3115 Flags.setExact(exact); 3116 Flags.setNoSignedWrap(nsw); 3117 Flags.setNoUnsignedWrap(nuw); 3118 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3119 Flags); 3120 setValue(&I, Res); 3121 } 3122 3123 void SelectionDAGBuilder::visitSDiv(const User &I) { 3124 SDValue Op1 = getValue(I.getOperand(0)); 3125 SDValue Op2 = getValue(I.getOperand(1)); 3126 3127 SDNodeFlags Flags; 3128 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3129 cast<PossiblyExactOperator>(&I)->isExact()); 3130 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3131 Op2, Flags)); 3132 } 3133 3134 void SelectionDAGBuilder::visitICmp(const User &I) { 3135 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3136 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3137 predicate = IC->getPredicate(); 3138 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3139 predicate = ICmpInst::Predicate(IC->getPredicate()); 3140 SDValue Op1 = getValue(I.getOperand(0)); 3141 SDValue Op2 = getValue(I.getOperand(1)); 3142 ISD::CondCode Opcode = getICmpCondCode(predicate); 3143 3144 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3145 I.getType()); 3146 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3147 } 3148 3149 void SelectionDAGBuilder::visitFCmp(const User &I) { 3150 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3151 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3152 predicate = FC->getPredicate(); 3153 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3154 predicate = FCmpInst::Predicate(FC->getPredicate()); 3155 SDValue Op1 = getValue(I.getOperand(0)); 3156 SDValue Op2 = getValue(I.getOperand(1)); 3157 3158 ISD::CondCode Condition = getFCmpCondCode(predicate); 3159 auto *FPMO = dyn_cast<FPMathOperator>(&I); 3160 if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath) 3161 Condition = getFCmpCodeWithoutNaN(Condition); 3162 3163 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3164 I.getType()); 3165 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3166 } 3167 3168 // Check if the condition of the select has one use or two users that are both 3169 // selects with the same condition. 3170 static bool hasOnlySelectUsers(const Value *Cond) { 3171 return llvm::all_of(Cond->users(), [](const Value *V) { 3172 return isa<SelectInst>(V); 3173 }); 3174 } 3175 3176 void SelectionDAGBuilder::visitSelect(const User &I) { 3177 SmallVector<EVT, 4> ValueVTs; 3178 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3179 ValueVTs); 3180 unsigned NumValues = ValueVTs.size(); 3181 if (NumValues == 0) return; 3182 3183 SmallVector<SDValue, 4> Values(NumValues); 3184 SDValue Cond = getValue(I.getOperand(0)); 3185 SDValue LHSVal = getValue(I.getOperand(1)); 3186 SDValue RHSVal = getValue(I.getOperand(2)); 3187 auto BaseOps = {Cond}; 3188 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 3189 ISD::VSELECT : ISD::SELECT; 3190 3191 // Min/max matching is only viable if all output VTs are the same. 3192 if (is_splat(ValueVTs)) { 3193 EVT VT = ValueVTs[0]; 3194 LLVMContext &Ctx = *DAG.getContext(); 3195 auto &TLI = DAG.getTargetLoweringInfo(); 3196 3197 // We care about the legality of the operation after it has been type 3198 // legalized. 3199 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 3200 VT != TLI.getTypeToTransformTo(Ctx, VT)) 3201 VT = TLI.getTypeToTransformTo(Ctx, VT); 3202 3203 // If the vselect is legal, assume we want to leave this as a vector setcc + 3204 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3205 // min/max is legal on the scalar type. 3206 bool UseScalarMinMax = VT.isVector() && 3207 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3208 3209 Value *LHS, *RHS; 3210 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3211 ISD::NodeType Opc = ISD::DELETED_NODE; 3212 switch (SPR.Flavor) { 3213 case SPF_UMAX: Opc = ISD::UMAX; break; 3214 case SPF_UMIN: Opc = ISD::UMIN; break; 3215 case SPF_SMAX: Opc = ISD::SMAX; break; 3216 case SPF_SMIN: Opc = ISD::SMIN; break; 3217 case SPF_FMINNUM: 3218 switch (SPR.NaNBehavior) { 3219 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3220 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3221 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3222 case SPNB_RETURNS_ANY: { 3223 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3224 Opc = ISD::FMINNUM; 3225 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3226 Opc = ISD::FMINIMUM; 3227 else if (UseScalarMinMax) 3228 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3229 ISD::FMINNUM : ISD::FMINIMUM; 3230 break; 3231 } 3232 } 3233 break; 3234 case SPF_FMAXNUM: 3235 switch (SPR.NaNBehavior) { 3236 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3237 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3238 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3239 case SPNB_RETURNS_ANY: 3240 3241 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3242 Opc = ISD::FMAXNUM; 3243 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3244 Opc = ISD::FMAXIMUM; 3245 else if (UseScalarMinMax) 3246 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3247 ISD::FMAXNUM : ISD::FMAXIMUM; 3248 break; 3249 } 3250 break; 3251 default: break; 3252 } 3253 3254 if (Opc != ISD::DELETED_NODE && 3255 (TLI.isOperationLegalOrCustom(Opc, VT) || 3256 (UseScalarMinMax && 3257 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3258 // If the underlying comparison instruction is used by any other 3259 // instruction, the consumed instructions won't be destroyed, so it is 3260 // not profitable to convert to a min/max. 3261 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3262 OpCode = Opc; 3263 LHSVal = getValue(LHS); 3264 RHSVal = getValue(RHS); 3265 BaseOps = {}; 3266 } 3267 } 3268 3269 for (unsigned i = 0; i != NumValues; ++i) { 3270 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3271 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3272 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3273 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 3274 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 3275 Ops); 3276 } 3277 3278 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3279 DAG.getVTList(ValueVTs), Values)); 3280 } 3281 3282 void SelectionDAGBuilder::visitTrunc(const User &I) { 3283 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3284 SDValue N = getValue(I.getOperand(0)); 3285 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3286 I.getType()); 3287 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3288 } 3289 3290 void SelectionDAGBuilder::visitZExt(const User &I) { 3291 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3292 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3293 SDValue N = getValue(I.getOperand(0)); 3294 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3295 I.getType()); 3296 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3297 } 3298 3299 void SelectionDAGBuilder::visitSExt(const User &I) { 3300 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3301 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3302 SDValue N = getValue(I.getOperand(0)); 3303 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3304 I.getType()); 3305 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3306 } 3307 3308 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3309 // FPTrunc is never a no-op cast, no need to check 3310 SDValue N = getValue(I.getOperand(0)); 3311 SDLoc dl = getCurSDLoc(); 3312 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3313 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3314 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3315 DAG.getTargetConstant( 3316 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3317 } 3318 3319 void SelectionDAGBuilder::visitFPExt(const User &I) { 3320 // FPExt is never a no-op cast, no need to check 3321 SDValue N = getValue(I.getOperand(0)); 3322 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3323 I.getType()); 3324 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3325 } 3326 3327 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3328 // FPToUI is never a no-op cast, no need to check 3329 SDValue N = getValue(I.getOperand(0)); 3330 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3331 I.getType()); 3332 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3333 } 3334 3335 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3336 // FPToSI is never a no-op cast, no need to check 3337 SDValue N = getValue(I.getOperand(0)); 3338 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3339 I.getType()); 3340 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3341 } 3342 3343 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3344 // UIToFP is never a no-op cast, no need to check 3345 SDValue N = getValue(I.getOperand(0)); 3346 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3347 I.getType()); 3348 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3349 } 3350 3351 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3352 // SIToFP is never a no-op cast, no need to check 3353 SDValue N = getValue(I.getOperand(0)); 3354 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3355 I.getType()); 3356 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3357 } 3358 3359 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3360 // What to do depends on the size of the integer and the size of the pointer. 3361 // We can either truncate, zero extend, or no-op, accordingly. 3362 SDValue N = getValue(I.getOperand(0)); 3363 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3364 I.getType()); 3365 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3366 } 3367 3368 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3369 // What to do depends on the size of the integer and the size of the pointer. 3370 // We can either truncate, zero extend, or no-op, accordingly. 3371 SDValue N = getValue(I.getOperand(0)); 3372 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3373 I.getType()); 3374 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3375 } 3376 3377 void SelectionDAGBuilder::visitBitCast(const User &I) { 3378 SDValue N = getValue(I.getOperand(0)); 3379 SDLoc dl = getCurSDLoc(); 3380 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3381 I.getType()); 3382 3383 // BitCast assures us that source and destination are the same size so this is 3384 // either a BITCAST or a no-op. 3385 if (DestVT != N.getValueType()) 3386 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3387 DestVT, N)); // convert types. 3388 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3389 // might fold any kind of constant expression to an integer constant and that 3390 // is not what we are looking for. Only recognize a bitcast of a genuine 3391 // constant integer as an opaque constant. 3392 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3393 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3394 /*isOpaque*/true)); 3395 else 3396 setValue(&I, N); // noop cast. 3397 } 3398 3399 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3400 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3401 const Value *SV = I.getOperand(0); 3402 SDValue N = getValue(SV); 3403 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3404 3405 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3406 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3407 3408 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3409 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3410 3411 setValue(&I, N); 3412 } 3413 3414 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3415 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3416 SDValue InVec = getValue(I.getOperand(0)); 3417 SDValue InVal = getValue(I.getOperand(1)); 3418 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3419 TLI.getVectorIdxTy(DAG.getDataLayout())); 3420 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3421 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3422 InVec, InVal, InIdx)); 3423 } 3424 3425 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3426 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3427 SDValue InVec = getValue(I.getOperand(0)); 3428 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3429 TLI.getVectorIdxTy(DAG.getDataLayout())); 3430 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3431 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3432 InVec, InIdx)); 3433 } 3434 3435 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3436 SDValue Src1 = getValue(I.getOperand(0)); 3437 SDValue Src2 = getValue(I.getOperand(1)); 3438 SDLoc DL = getCurSDLoc(); 3439 3440 SmallVector<int, 8> Mask; 3441 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3442 unsigned MaskNumElts = Mask.size(); 3443 3444 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3445 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3446 EVT SrcVT = Src1.getValueType(); 3447 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3448 3449 if (SrcNumElts == MaskNumElts) { 3450 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3451 return; 3452 } 3453 3454 // Normalize the shuffle vector since mask and vector length don't match. 3455 if (SrcNumElts < MaskNumElts) { 3456 // Mask is longer than the source vectors. We can use concatenate vector to 3457 // make the mask and vectors lengths match. 3458 3459 if (MaskNumElts % SrcNumElts == 0) { 3460 // Mask length is a multiple of the source vector length. 3461 // Check if the shuffle is some kind of concatenation of the input 3462 // vectors. 3463 unsigned NumConcat = MaskNumElts / SrcNumElts; 3464 bool IsConcat = true; 3465 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3466 for (unsigned i = 0; i != MaskNumElts; ++i) { 3467 int Idx = Mask[i]; 3468 if (Idx < 0) 3469 continue; 3470 // Ensure the indices in each SrcVT sized piece are sequential and that 3471 // the same source is used for the whole piece. 3472 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3473 (ConcatSrcs[i / SrcNumElts] >= 0 && 3474 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3475 IsConcat = false; 3476 break; 3477 } 3478 // Remember which source this index came from. 3479 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3480 } 3481 3482 // The shuffle is concatenating multiple vectors together. Just emit 3483 // a CONCAT_VECTORS operation. 3484 if (IsConcat) { 3485 SmallVector<SDValue, 8> ConcatOps; 3486 for (auto Src : ConcatSrcs) { 3487 if (Src < 0) 3488 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3489 else if (Src == 0) 3490 ConcatOps.push_back(Src1); 3491 else 3492 ConcatOps.push_back(Src2); 3493 } 3494 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3495 return; 3496 } 3497 } 3498 3499 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3500 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3501 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3502 PaddedMaskNumElts); 3503 3504 // Pad both vectors with undefs to make them the same length as the mask. 3505 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3506 3507 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3508 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3509 MOps1[0] = Src1; 3510 MOps2[0] = Src2; 3511 3512 Src1 = Src1.isUndef() 3513 ? DAG.getUNDEF(PaddedVT) 3514 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3515 Src2 = Src2.isUndef() 3516 ? DAG.getUNDEF(PaddedVT) 3517 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3518 3519 // Readjust mask for new input vector length. 3520 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3521 for (unsigned i = 0; i != MaskNumElts; ++i) { 3522 int Idx = Mask[i]; 3523 if (Idx >= (int)SrcNumElts) 3524 Idx -= SrcNumElts - PaddedMaskNumElts; 3525 MappedOps[i] = Idx; 3526 } 3527 3528 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3529 3530 // If the concatenated vector was padded, extract a subvector with the 3531 // correct number of elements. 3532 if (MaskNumElts != PaddedMaskNumElts) 3533 Result = DAG.getNode( 3534 ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3535 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3536 3537 setValue(&I, Result); 3538 return; 3539 } 3540 3541 if (SrcNumElts > MaskNumElts) { 3542 // Analyze the access pattern of the vector to see if we can extract 3543 // two subvectors and do the shuffle. 3544 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3545 bool CanExtract = true; 3546 for (int Idx : Mask) { 3547 unsigned Input = 0; 3548 if (Idx < 0) 3549 continue; 3550 3551 if (Idx >= (int)SrcNumElts) { 3552 Input = 1; 3553 Idx -= SrcNumElts; 3554 } 3555 3556 // If all the indices come from the same MaskNumElts sized portion of 3557 // the sources we can use extract. Also make sure the extract wouldn't 3558 // extract past the end of the source. 3559 int NewStartIdx = alignDown(Idx, MaskNumElts); 3560 if (NewStartIdx + MaskNumElts > SrcNumElts || 3561 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3562 CanExtract = false; 3563 // Make sure we always update StartIdx as we use it to track if all 3564 // elements are undef. 3565 StartIdx[Input] = NewStartIdx; 3566 } 3567 3568 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3569 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3570 return; 3571 } 3572 if (CanExtract) { 3573 // Extract appropriate subvector and generate a vector shuffle 3574 for (unsigned Input = 0; Input < 2; ++Input) { 3575 SDValue &Src = Input == 0 ? Src1 : Src2; 3576 if (StartIdx[Input] < 0) 3577 Src = DAG.getUNDEF(VT); 3578 else { 3579 Src = DAG.getNode( 3580 ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3581 DAG.getConstant(StartIdx[Input], DL, 3582 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3583 } 3584 } 3585 3586 // Calculate new mask. 3587 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3588 for (int &Idx : MappedOps) { 3589 if (Idx >= (int)SrcNumElts) 3590 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3591 else if (Idx >= 0) 3592 Idx -= StartIdx[0]; 3593 } 3594 3595 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3596 return; 3597 } 3598 } 3599 3600 // We can't use either concat vectors or extract subvectors so fall back to 3601 // replacing the shuffle with extract and build vector. 3602 // to insert and build vector. 3603 EVT EltVT = VT.getVectorElementType(); 3604 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3605 SmallVector<SDValue,8> Ops; 3606 for (int Idx : Mask) { 3607 SDValue Res; 3608 3609 if (Idx < 0) { 3610 Res = DAG.getUNDEF(EltVT); 3611 } else { 3612 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3613 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3614 3615 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3616 EltVT, Src, DAG.getConstant(Idx, DL, IdxVT)); 3617 } 3618 3619 Ops.push_back(Res); 3620 } 3621 3622 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3623 } 3624 3625 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3626 ArrayRef<unsigned> Indices; 3627 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3628 Indices = IV->getIndices(); 3629 else 3630 Indices = cast<ConstantExpr>(&I)->getIndices(); 3631 3632 const Value *Op0 = I.getOperand(0); 3633 const Value *Op1 = I.getOperand(1); 3634 Type *AggTy = I.getType(); 3635 Type *ValTy = Op1->getType(); 3636 bool IntoUndef = isa<UndefValue>(Op0); 3637 bool FromUndef = isa<UndefValue>(Op1); 3638 3639 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3640 3641 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3642 SmallVector<EVT, 4> AggValueVTs; 3643 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3644 SmallVector<EVT, 4> ValValueVTs; 3645 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3646 3647 unsigned NumAggValues = AggValueVTs.size(); 3648 unsigned NumValValues = ValValueVTs.size(); 3649 SmallVector<SDValue, 4> Values(NumAggValues); 3650 3651 // Ignore an insertvalue that produces an empty object 3652 if (!NumAggValues) { 3653 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3654 return; 3655 } 3656 3657 SDValue Agg = getValue(Op0); 3658 unsigned i = 0; 3659 // Copy the beginning value(s) from the original aggregate. 3660 for (; i != LinearIndex; ++i) 3661 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3662 SDValue(Agg.getNode(), Agg.getResNo() + i); 3663 // Copy values from the inserted value(s). 3664 if (NumValValues) { 3665 SDValue Val = getValue(Op1); 3666 for (; i != LinearIndex + NumValValues; ++i) 3667 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3668 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3669 } 3670 // Copy remaining value(s) from the original aggregate. 3671 for (; i != NumAggValues; ++i) 3672 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3673 SDValue(Agg.getNode(), Agg.getResNo() + i); 3674 3675 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3676 DAG.getVTList(AggValueVTs), Values)); 3677 } 3678 3679 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3680 ArrayRef<unsigned> Indices; 3681 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3682 Indices = EV->getIndices(); 3683 else 3684 Indices = cast<ConstantExpr>(&I)->getIndices(); 3685 3686 const Value *Op0 = I.getOperand(0); 3687 Type *AggTy = Op0->getType(); 3688 Type *ValTy = I.getType(); 3689 bool OutOfUndef = isa<UndefValue>(Op0); 3690 3691 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3692 3693 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3694 SmallVector<EVT, 4> ValValueVTs; 3695 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3696 3697 unsigned NumValValues = ValValueVTs.size(); 3698 3699 // Ignore a extractvalue that produces an empty object 3700 if (!NumValValues) { 3701 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3702 return; 3703 } 3704 3705 SmallVector<SDValue, 4> Values(NumValValues); 3706 3707 SDValue Agg = getValue(Op0); 3708 // Copy out the selected value(s). 3709 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3710 Values[i - LinearIndex] = 3711 OutOfUndef ? 3712 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3713 SDValue(Agg.getNode(), Agg.getResNo() + i); 3714 3715 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3716 DAG.getVTList(ValValueVTs), Values)); 3717 } 3718 3719 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3720 Value *Op0 = I.getOperand(0); 3721 // Note that the pointer operand may be a vector of pointers. Take the scalar 3722 // element which holds a pointer. 3723 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3724 SDValue N = getValue(Op0); 3725 SDLoc dl = getCurSDLoc(); 3726 3727 // Normalize Vector GEP - all scalar operands should be converted to the 3728 // splat vector. 3729 unsigned VectorWidth = I.getType()->isVectorTy() ? 3730 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 3731 3732 if (VectorWidth && !N.getValueType().isVector()) { 3733 LLVMContext &Context = *DAG.getContext(); 3734 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); 3735 N = DAG.getSplatBuildVector(VT, dl, N); 3736 } 3737 3738 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3739 GTI != E; ++GTI) { 3740 const Value *Idx = GTI.getOperand(); 3741 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3742 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3743 if (Field) { 3744 // N = N + Offset 3745 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3746 3747 // In an inbounds GEP with an offset that is nonnegative even when 3748 // interpreted as signed, assume there is no unsigned overflow. 3749 SDNodeFlags Flags; 3750 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3751 Flags.setNoUnsignedWrap(true); 3752 3753 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3754 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3755 } 3756 } else { 3757 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3758 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3759 APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3760 3761 // If this is a scalar constant or a splat vector of constants, 3762 // handle it quickly. 3763 const auto *CI = dyn_cast<ConstantInt>(Idx); 3764 if (!CI && isa<ConstantDataVector>(Idx) && 3765 cast<ConstantDataVector>(Idx)->getSplatValue()) 3766 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3767 3768 if (CI) { 3769 if (CI->isZero()) 3770 continue; 3771 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize); 3772 LLVMContext &Context = *DAG.getContext(); 3773 SDValue OffsVal = VectorWidth ? 3774 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) : 3775 DAG.getConstant(Offs, dl, IdxTy); 3776 3777 // In an inbouds GEP with an offset that is nonnegative even when 3778 // interpreted as signed, assume there is no unsigned overflow. 3779 SDNodeFlags Flags; 3780 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3781 Flags.setNoUnsignedWrap(true); 3782 3783 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3784 continue; 3785 } 3786 3787 // N = N + Idx * ElementSize; 3788 SDValue IdxN = getValue(Idx); 3789 3790 if (!IdxN.getValueType().isVector() && VectorWidth) { 3791 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth); 3792 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3793 } 3794 3795 // If the index is smaller or larger than intptr_t, truncate or extend 3796 // it. 3797 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3798 3799 // If this is a multiply by a power of two, turn it into a shl 3800 // immediately. This is a very common case. 3801 if (ElementSize != 1) { 3802 if (ElementSize.isPowerOf2()) { 3803 unsigned Amt = ElementSize.logBase2(); 3804 IdxN = DAG.getNode(ISD::SHL, dl, 3805 N.getValueType(), IdxN, 3806 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3807 } else { 3808 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3809 IdxN = DAG.getNode(ISD::MUL, dl, 3810 N.getValueType(), IdxN, Scale); 3811 } 3812 } 3813 3814 N = DAG.getNode(ISD::ADD, dl, 3815 N.getValueType(), N, IdxN); 3816 } 3817 } 3818 3819 setValue(&I, N); 3820 } 3821 3822 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3823 // If this is a fixed sized alloca in the entry block of the function, 3824 // allocate it statically on the stack. 3825 if (FuncInfo.StaticAllocaMap.count(&I)) 3826 return; // getValue will auto-populate this. 3827 3828 SDLoc dl = getCurSDLoc(); 3829 Type *Ty = I.getAllocatedType(); 3830 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3831 auto &DL = DAG.getDataLayout(); 3832 uint64_t TySize = DL.getTypeAllocSize(Ty); 3833 unsigned Align = 3834 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3835 3836 SDValue AllocSize = getValue(I.getArraySize()); 3837 3838 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3839 if (AllocSize.getValueType() != IntPtr) 3840 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3841 3842 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3843 AllocSize, 3844 DAG.getConstant(TySize, dl, IntPtr)); 3845 3846 // Handle alignment. If the requested alignment is less than or equal to 3847 // the stack alignment, ignore it. If the size is greater than or equal to 3848 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3849 unsigned StackAlign = 3850 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3851 if (Align <= StackAlign) 3852 Align = 0; 3853 3854 // Round the size of the allocation up to the stack alignment size 3855 // by add SA-1 to the size. This doesn't overflow because we're computing 3856 // an address inside an alloca. 3857 SDNodeFlags Flags; 3858 Flags.setNoUnsignedWrap(true); 3859 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 3860 DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags); 3861 3862 // Mask out the low bits for alignment purposes. 3863 AllocSize = 3864 DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 3865 DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr)); 3866 3867 SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)}; 3868 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3869 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3870 setValue(&I, DSA); 3871 DAG.setRoot(DSA.getValue(1)); 3872 3873 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3874 } 3875 3876 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3877 if (I.isAtomic()) 3878 return visitAtomicLoad(I); 3879 3880 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3881 const Value *SV = I.getOperand(0); 3882 if (TLI.supportSwiftError()) { 3883 // Swifterror values can come from either a function parameter with 3884 // swifterror attribute or an alloca with swifterror attribute. 3885 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3886 if (Arg->hasSwiftErrorAttr()) 3887 return visitLoadFromSwiftError(I); 3888 } 3889 3890 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3891 if (Alloca->isSwiftError()) 3892 return visitLoadFromSwiftError(I); 3893 } 3894 } 3895 3896 SDValue Ptr = getValue(SV); 3897 3898 Type *Ty = I.getType(); 3899 3900 bool isVolatile = I.isVolatile(); 3901 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3902 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 3903 bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout()); 3904 unsigned Alignment = I.getAlignment(); 3905 3906 AAMDNodes AAInfo; 3907 I.getAAMetadata(AAInfo); 3908 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3909 3910 SmallVector<EVT, 4> ValueVTs; 3911 SmallVector<uint64_t, 4> Offsets; 3912 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3913 unsigned NumValues = ValueVTs.size(); 3914 if (NumValues == 0) 3915 return; 3916 3917 SDValue Root; 3918 bool ConstantMemory = false; 3919 if (isVolatile || NumValues > MaxParallelChains) 3920 // Serialize volatile loads with other side effects. 3921 Root = getRoot(); 3922 else if (AA && 3923 AA->pointsToConstantMemory(MemoryLocation( 3924 SV, 3925 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 3926 AAInfo))) { 3927 // Do not serialize (non-volatile) loads of constant memory with anything. 3928 Root = DAG.getEntryNode(); 3929 ConstantMemory = true; 3930 } else { 3931 // Do not serialize non-volatile loads against each other. 3932 Root = DAG.getRoot(); 3933 } 3934 3935 SDLoc dl = getCurSDLoc(); 3936 3937 if (isVolatile) 3938 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3939 3940 // An aggregate load cannot wrap around the address space, so offsets to its 3941 // parts don't wrap either. 3942 SDNodeFlags Flags; 3943 Flags.setNoUnsignedWrap(true); 3944 3945 SmallVector<SDValue, 4> Values(NumValues); 3946 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3947 EVT PtrVT = Ptr.getValueType(); 3948 unsigned ChainI = 0; 3949 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3950 // Serializing loads here may result in excessive register pressure, and 3951 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3952 // could recover a bit by hoisting nodes upward in the chain by recognizing 3953 // they are side-effect free or do not alias. The optimizer should really 3954 // avoid this case by converting large object/array copies to llvm.memcpy 3955 // (MaxParallelChains should always remain as failsafe). 3956 if (ChainI == MaxParallelChains) { 3957 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3958 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3959 makeArrayRef(Chains.data(), ChainI)); 3960 Root = Chain; 3961 ChainI = 0; 3962 } 3963 SDValue A = DAG.getNode(ISD::ADD, dl, 3964 PtrVT, Ptr, 3965 DAG.getConstant(Offsets[i], dl, PtrVT), 3966 Flags); 3967 auto MMOFlags = MachineMemOperand::MONone; 3968 if (isVolatile) 3969 MMOFlags |= MachineMemOperand::MOVolatile; 3970 if (isNonTemporal) 3971 MMOFlags |= MachineMemOperand::MONonTemporal; 3972 if (isInvariant) 3973 MMOFlags |= MachineMemOperand::MOInvariant; 3974 if (isDereferenceable) 3975 MMOFlags |= MachineMemOperand::MODereferenceable; 3976 MMOFlags |= TLI.getMMOFlags(I); 3977 3978 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A, 3979 MachinePointerInfo(SV, Offsets[i]), Alignment, 3980 MMOFlags, AAInfo, Ranges); 3981 3982 Values[i] = L; 3983 Chains[ChainI] = L.getValue(1); 3984 } 3985 3986 if (!ConstantMemory) { 3987 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3988 makeArrayRef(Chains.data(), ChainI)); 3989 if (isVolatile) 3990 DAG.setRoot(Chain); 3991 else 3992 PendingLoads.push_back(Chain); 3993 } 3994 3995 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3996 DAG.getVTList(ValueVTs), Values)); 3997 } 3998 3999 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4000 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4001 "call visitStoreToSwiftError when backend supports swifterror"); 4002 4003 SmallVector<EVT, 4> ValueVTs; 4004 SmallVector<uint64_t, 4> Offsets; 4005 const Value *SrcV = I.getOperand(0); 4006 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4007 SrcV->getType(), ValueVTs, &Offsets); 4008 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4009 "expect a single EVT for swifterror"); 4010 4011 SDValue Src = getValue(SrcV); 4012 // Create a virtual register, then update the virtual register. 4013 unsigned VReg; bool CreatedVReg; 4014 std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I); 4015 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4016 // Chain can be getRoot or getControlRoot. 4017 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4018 SDValue(Src.getNode(), Src.getResNo())); 4019 DAG.setRoot(CopyNode); 4020 if (CreatedVReg) 4021 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg); 4022 } 4023 4024 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4025 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4026 "call visitLoadFromSwiftError when backend supports swifterror"); 4027 4028 assert(!I.isVolatile() && 4029 I.getMetadata(LLVMContext::MD_nontemporal) == nullptr && 4030 I.getMetadata(LLVMContext::MD_invariant_load) == nullptr && 4031 "Support volatile, non temporal, invariant for load_from_swift_error"); 4032 4033 const Value *SV = I.getOperand(0); 4034 Type *Ty = I.getType(); 4035 AAMDNodes AAInfo; 4036 I.getAAMetadata(AAInfo); 4037 assert( 4038 (!AA || 4039 !AA->pointsToConstantMemory(MemoryLocation( 4040 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4041 AAInfo))) && 4042 "load_from_swift_error should not be constant memory"); 4043 4044 SmallVector<EVT, 4> ValueVTs; 4045 SmallVector<uint64_t, 4> Offsets; 4046 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4047 ValueVTs, &Offsets); 4048 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4049 "expect a single EVT for swifterror"); 4050 4051 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4052 SDValue L = DAG.getCopyFromReg( 4053 getRoot(), getCurSDLoc(), 4054 FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first, 4055 ValueVTs[0]); 4056 4057 setValue(&I, L); 4058 } 4059 4060 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4061 if (I.isAtomic()) 4062 return visitAtomicStore(I); 4063 4064 const Value *SrcV = I.getOperand(0); 4065 const Value *PtrV = I.getOperand(1); 4066 4067 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4068 if (TLI.supportSwiftError()) { 4069 // Swifterror values can come from either a function parameter with 4070 // swifterror attribute or an alloca with swifterror attribute. 4071 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4072 if (Arg->hasSwiftErrorAttr()) 4073 return visitStoreToSwiftError(I); 4074 } 4075 4076 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4077 if (Alloca->isSwiftError()) 4078 return visitStoreToSwiftError(I); 4079 } 4080 } 4081 4082 SmallVector<EVT, 4> ValueVTs; 4083 SmallVector<uint64_t, 4> Offsets; 4084 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4085 SrcV->getType(), ValueVTs, &Offsets); 4086 unsigned NumValues = ValueVTs.size(); 4087 if (NumValues == 0) 4088 return; 4089 4090 // Get the lowered operands. Note that we do this after 4091 // checking if NumResults is zero, because with zero results 4092 // the operands won't have values in the map. 4093 SDValue Src = getValue(SrcV); 4094 SDValue Ptr = getValue(PtrV); 4095 4096 SDValue Root = getRoot(); 4097 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4098 SDLoc dl = getCurSDLoc(); 4099 EVT PtrVT = Ptr.getValueType(); 4100 unsigned Alignment = I.getAlignment(); 4101 AAMDNodes AAInfo; 4102 I.getAAMetadata(AAInfo); 4103 4104 auto MMOFlags = MachineMemOperand::MONone; 4105 if (I.isVolatile()) 4106 MMOFlags |= MachineMemOperand::MOVolatile; 4107 if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr) 4108 MMOFlags |= MachineMemOperand::MONonTemporal; 4109 MMOFlags |= TLI.getMMOFlags(I); 4110 4111 // An aggregate load cannot wrap around the address space, so offsets to its 4112 // parts don't wrap either. 4113 SDNodeFlags Flags; 4114 Flags.setNoUnsignedWrap(true); 4115 4116 unsigned ChainI = 0; 4117 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4118 // See visitLoad comments. 4119 if (ChainI == MaxParallelChains) { 4120 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4121 makeArrayRef(Chains.data(), ChainI)); 4122 Root = Chain; 4123 ChainI = 0; 4124 } 4125 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 4126 DAG.getConstant(Offsets[i], dl, PtrVT), Flags); 4127 SDValue St = DAG.getStore( 4128 Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add, 4129 MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo); 4130 Chains[ChainI] = St; 4131 } 4132 4133 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4134 makeArrayRef(Chains.data(), ChainI)); 4135 DAG.setRoot(StoreNode); 4136 } 4137 4138 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4139 bool IsCompressing) { 4140 SDLoc sdl = getCurSDLoc(); 4141 4142 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4143 unsigned& Alignment) { 4144 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4145 Src0 = I.getArgOperand(0); 4146 Ptr = I.getArgOperand(1); 4147 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 4148 Mask = I.getArgOperand(3); 4149 }; 4150 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4151 unsigned& Alignment) { 4152 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4153 Src0 = I.getArgOperand(0); 4154 Ptr = I.getArgOperand(1); 4155 Mask = I.getArgOperand(2); 4156 Alignment = 0; 4157 }; 4158 4159 Value *PtrOperand, *MaskOperand, *Src0Operand; 4160 unsigned Alignment; 4161 if (IsCompressing) 4162 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4163 else 4164 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4165 4166 SDValue Ptr = getValue(PtrOperand); 4167 SDValue Src0 = getValue(Src0Operand); 4168 SDValue Mask = getValue(MaskOperand); 4169 4170 EVT VT = Src0.getValueType(); 4171 if (!Alignment) 4172 Alignment = DAG.getEVTAlignment(VT); 4173 4174 AAMDNodes AAInfo; 4175 I.getAAMetadata(AAInfo); 4176 4177 MachineMemOperand *MMO = 4178 DAG.getMachineFunction(). 4179 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4180 MachineMemOperand::MOStore, VT.getStoreSize(), 4181 Alignment, AAInfo); 4182 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 4183 MMO, false /* Truncating */, 4184 IsCompressing); 4185 DAG.setRoot(StoreNode); 4186 setValue(&I, StoreNode); 4187 } 4188 4189 // Get a uniform base for the Gather/Scatter intrinsic. 4190 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4191 // We try to represent it as a base pointer + vector of indices. 4192 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4193 // The first operand of the GEP may be a single pointer or a vector of pointers 4194 // Example: 4195 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4196 // or 4197 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4198 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4199 // 4200 // When the first GEP operand is a single pointer - it is the uniform base we 4201 // are looking for. If first operand of the GEP is a splat vector - we 4202 // extract the splat value and use it as a uniform base. 4203 // In all other cases the function returns 'false'. 4204 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index, 4205 SDValue &Scale, SelectionDAGBuilder* SDB) { 4206 SelectionDAG& DAG = SDB->DAG; 4207 LLVMContext &Context = *DAG.getContext(); 4208 4209 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 4210 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4211 if (!GEP) 4212 return false; 4213 4214 const Value *GEPPtr = GEP->getPointerOperand(); 4215 if (!GEPPtr->getType()->isVectorTy()) 4216 Ptr = GEPPtr; 4217 else if (!(Ptr = getSplatValue(GEPPtr))) 4218 return false; 4219 4220 unsigned FinalIndex = GEP->getNumOperands() - 1; 4221 Value *IndexVal = GEP->getOperand(FinalIndex); 4222 4223 // Ensure all the other indices are 0. 4224 for (unsigned i = 1; i < FinalIndex; ++i) { 4225 auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i)); 4226 if (!C || !C->isZero()) 4227 return false; 4228 } 4229 4230 // The operands of the GEP may be defined in another basic block. 4231 // In this case we'll not find nodes for the operands. 4232 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 4233 return false; 4234 4235 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4236 const DataLayout &DL = DAG.getDataLayout(); 4237 Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()), 4238 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4239 Base = SDB->getValue(Ptr); 4240 Index = SDB->getValue(IndexVal); 4241 4242 if (!Index.getValueType().isVector()) { 4243 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 4244 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 4245 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 4246 } 4247 return true; 4248 } 4249 4250 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4251 SDLoc sdl = getCurSDLoc(); 4252 4253 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 4254 const Value *Ptr = I.getArgOperand(1); 4255 SDValue Src0 = getValue(I.getArgOperand(0)); 4256 SDValue Mask = getValue(I.getArgOperand(3)); 4257 EVT VT = Src0.getValueType(); 4258 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 4259 if (!Alignment) 4260 Alignment = DAG.getEVTAlignment(VT); 4261 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4262 4263 AAMDNodes AAInfo; 4264 I.getAAMetadata(AAInfo); 4265 4266 SDValue Base; 4267 SDValue Index; 4268 SDValue Scale; 4269 const Value *BasePtr = Ptr; 4270 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); 4271 4272 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 4273 MachineMemOperand *MMO = DAG.getMachineFunction(). 4274 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 4275 MachineMemOperand::MOStore, VT.getStoreSize(), 4276 Alignment, AAInfo); 4277 if (!UniformBase) { 4278 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4279 Index = getValue(Ptr); 4280 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4281 } 4282 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale }; 4283 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4284 Ops, MMO); 4285 DAG.setRoot(Scatter); 4286 setValue(&I, Scatter); 4287 } 4288 4289 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4290 SDLoc sdl = getCurSDLoc(); 4291 4292 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4293 unsigned& Alignment) { 4294 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4295 Ptr = I.getArgOperand(0); 4296 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4297 Mask = I.getArgOperand(2); 4298 Src0 = I.getArgOperand(3); 4299 }; 4300 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4301 unsigned& Alignment) { 4302 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4303 Ptr = I.getArgOperand(0); 4304 Alignment = 0; 4305 Mask = I.getArgOperand(1); 4306 Src0 = I.getArgOperand(2); 4307 }; 4308 4309 Value *PtrOperand, *MaskOperand, *Src0Operand; 4310 unsigned Alignment; 4311 if (IsExpanding) 4312 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4313 else 4314 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4315 4316 SDValue Ptr = getValue(PtrOperand); 4317 SDValue Src0 = getValue(Src0Operand); 4318 SDValue Mask = getValue(MaskOperand); 4319 4320 EVT VT = Src0.getValueType(); 4321 if (!Alignment) 4322 Alignment = DAG.getEVTAlignment(VT); 4323 4324 AAMDNodes AAInfo; 4325 I.getAAMetadata(AAInfo); 4326 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4327 4328 // Do not serialize masked loads of constant memory with anything. 4329 bool AddToChain = 4330 !AA || !AA->pointsToConstantMemory(MemoryLocation( 4331 PtrOperand, 4332 LocationSize::precise( 4333 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4334 AAInfo)); 4335 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4336 4337 MachineMemOperand *MMO = 4338 DAG.getMachineFunction(). 4339 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4340 MachineMemOperand::MOLoad, VT.getStoreSize(), 4341 Alignment, AAInfo, Ranges); 4342 4343 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 4344 ISD::NON_EXTLOAD, IsExpanding); 4345 if (AddToChain) 4346 PendingLoads.push_back(Load.getValue(1)); 4347 setValue(&I, Load); 4348 } 4349 4350 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4351 SDLoc sdl = getCurSDLoc(); 4352 4353 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4354 const Value *Ptr = I.getArgOperand(0); 4355 SDValue Src0 = getValue(I.getArgOperand(3)); 4356 SDValue Mask = getValue(I.getArgOperand(2)); 4357 4358 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4359 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4360 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 4361 if (!Alignment) 4362 Alignment = DAG.getEVTAlignment(VT); 4363 4364 AAMDNodes AAInfo; 4365 I.getAAMetadata(AAInfo); 4366 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4367 4368 SDValue Root = DAG.getRoot(); 4369 SDValue Base; 4370 SDValue Index; 4371 SDValue Scale; 4372 const Value *BasePtr = Ptr; 4373 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); 4374 bool ConstantMemory = false; 4375 if (UniformBase && AA && 4376 AA->pointsToConstantMemory( 4377 MemoryLocation(BasePtr, 4378 LocationSize::precise( 4379 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4380 AAInfo))) { 4381 // Do not serialize (non-volatile) loads of constant memory with anything. 4382 Root = DAG.getEntryNode(); 4383 ConstantMemory = true; 4384 } 4385 4386 MachineMemOperand *MMO = 4387 DAG.getMachineFunction(). 4388 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 4389 MachineMemOperand::MOLoad, VT.getStoreSize(), 4390 Alignment, AAInfo, Ranges); 4391 4392 if (!UniformBase) { 4393 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4394 Index = getValue(Ptr); 4395 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4396 } 4397 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4398 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4399 Ops, MMO); 4400 4401 SDValue OutChain = Gather.getValue(1); 4402 if (!ConstantMemory) 4403 PendingLoads.push_back(OutChain); 4404 setValue(&I, Gather); 4405 } 4406 4407 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4408 SDLoc dl = getCurSDLoc(); 4409 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4410 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4411 SyncScope::ID SSID = I.getSyncScopeID(); 4412 4413 SDValue InChain = getRoot(); 4414 4415 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4416 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4417 4418 auto Alignment = DAG.getEVTAlignment(MemVT); 4419 4420 // FIXME: Volatile isn't really correct; we should keep track of atomic 4421 // orderings in the memoperand. 4422 auto Flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad | 4423 MachineMemOperand::MOStore; 4424 4425 MachineFunction &MF = DAG.getMachineFunction(); 4426 MachineMemOperand *MMO = 4427 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4428 Flags, MemVT.getStoreSize(), Alignment, 4429 AAMDNodes(), nullptr, SSID, SuccessOrdering, 4430 FailureOrdering); 4431 4432 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4433 dl, MemVT, VTs, InChain, 4434 getValue(I.getPointerOperand()), 4435 getValue(I.getCompareOperand()), 4436 getValue(I.getNewValOperand()), MMO); 4437 4438 SDValue OutChain = L.getValue(2); 4439 4440 setValue(&I, L); 4441 DAG.setRoot(OutChain); 4442 } 4443 4444 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4445 SDLoc dl = getCurSDLoc(); 4446 ISD::NodeType NT; 4447 switch (I.getOperation()) { 4448 default: llvm_unreachable("Unknown atomicrmw operation"); 4449 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4450 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4451 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4452 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4453 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4454 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4455 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4456 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4457 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4458 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4459 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4460 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4461 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4462 } 4463 AtomicOrdering Ordering = I.getOrdering(); 4464 SyncScope::ID SSID = I.getSyncScopeID(); 4465 4466 SDValue InChain = getRoot(); 4467 4468 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4469 auto Alignment = DAG.getEVTAlignment(MemVT); 4470 4471 // For now, atomics are considered to be volatile always, and they are 4472 // chained as such. 4473 // FIXME: Volatile isn't really correct; we should keep track of atomic 4474 // orderings in the memoperand. 4475 auto Flags = MachineMemOperand::MOVolatile | 4476 MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 4477 4478 MachineFunction &MF = DAG.getMachineFunction(); 4479 MachineMemOperand *MMO = 4480 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags, 4481 MemVT.getStoreSize(), Alignment, AAMDNodes(), 4482 nullptr, SSID, Ordering); 4483 4484 SDValue L = 4485 DAG.getAtomic(NT, dl, MemVT, InChain, 4486 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4487 MMO); 4488 4489 SDValue OutChain = L.getValue(1); 4490 4491 setValue(&I, L); 4492 DAG.setRoot(OutChain); 4493 } 4494 4495 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4496 SDLoc dl = getCurSDLoc(); 4497 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4498 SDValue Ops[3]; 4499 Ops[0] = getRoot(); 4500 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl, 4501 TLI.getFenceOperandTy(DAG.getDataLayout())); 4502 Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl, 4503 TLI.getFenceOperandTy(DAG.getDataLayout())); 4504 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4505 } 4506 4507 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4508 SDLoc dl = getCurSDLoc(); 4509 AtomicOrdering Order = I.getOrdering(); 4510 SyncScope::ID SSID = I.getSyncScopeID(); 4511 4512 SDValue InChain = getRoot(); 4513 4514 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4515 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4516 4517 if (!TLI.supportsUnalignedAtomics() && 4518 I.getAlignment() < VT.getStoreSize()) 4519 report_fatal_error("Cannot generate unaligned atomic load"); 4520 4521 MachineMemOperand *MMO = 4522 DAG.getMachineFunction(). 4523 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4524 MachineMemOperand::MOVolatile | 4525 MachineMemOperand::MOLoad, 4526 VT.getStoreSize(), 4527 I.getAlignment() ? I.getAlignment() : 4528 DAG.getEVTAlignment(VT), 4529 AAMDNodes(), nullptr, SSID, Order); 4530 4531 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4532 SDValue L = 4533 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 4534 getValue(I.getPointerOperand()), MMO); 4535 4536 SDValue OutChain = L.getValue(1); 4537 4538 setValue(&I, L); 4539 DAG.setRoot(OutChain); 4540 } 4541 4542 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4543 SDLoc dl = getCurSDLoc(); 4544 4545 AtomicOrdering Ordering = I.getOrdering(); 4546 SyncScope::ID SSID = I.getSyncScopeID(); 4547 4548 SDValue InChain = getRoot(); 4549 4550 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4551 EVT VT = 4552 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4553 4554 if (I.getAlignment() < VT.getStoreSize()) 4555 report_fatal_error("Cannot generate unaligned atomic store"); 4556 4557 // For now, atomics are considered to be volatile always, and they are 4558 // chained as such. 4559 // FIXME: Volatile isn't really correct; we should keep track of atomic 4560 // orderings in the memoperand. 4561 auto Flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOStore; 4562 4563 MachineFunction &MF = DAG.getMachineFunction(); 4564 MachineMemOperand *MMO = 4565 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags, 4566 VT.getStoreSize(), I.getAlignment(), AAMDNodes(), 4567 nullptr, SSID, Ordering); 4568 SDValue OutChain = 4569 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, InChain, 4570 getValue(I.getPointerOperand()), getValue(I.getValueOperand()), 4571 MMO); 4572 4573 4574 DAG.setRoot(OutChain); 4575 } 4576 4577 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4578 /// node. 4579 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4580 unsigned Intrinsic) { 4581 // Ignore the callsite's attributes. A specific call site may be marked with 4582 // readnone, but the lowering code will expect the chain based on the 4583 // definition. 4584 const Function *F = I.getCalledFunction(); 4585 bool HasChain = !F->doesNotAccessMemory(); 4586 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4587 4588 // Build the operand list. 4589 SmallVector<SDValue, 8> Ops; 4590 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4591 if (OnlyLoad) { 4592 // We don't need to serialize loads against other loads. 4593 Ops.push_back(DAG.getRoot()); 4594 } else { 4595 Ops.push_back(getRoot()); 4596 } 4597 } 4598 4599 // Info is set by getTgtMemInstrinsic 4600 TargetLowering::IntrinsicInfo Info; 4601 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4602 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4603 DAG.getMachineFunction(), 4604 Intrinsic); 4605 4606 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4607 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4608 Info.opc == ISD::INTRINSIC_W_CHAIN) 4609 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4610 TLI.getPointerTy(DAG.getDataLayout()))); 4611 4612 // Add all operands of the call to the operand list. 4613 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4614 SDValue Op = getValue(I.getArgOperand(i)); 4615 Ops.push_back(Op); 4616 } 4617 4618 SmallVector<EVT, 4> ValueVTs; 4619 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4620 4621 if (HasChain) 4622 ValueVTs.push_back(MVT::Other); 4623 4624 SDVTList VTs = DAG.getVTList(ValueVTs); 4625 4626 // Create the node. 4627 SDValue Result; 4628 if (IsTgtIntrinsic) { 4629 // This is target intrinsic that touches memory 4630 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, 4631 Ops, Info.memVT, 4632 MachinePointerInfo(Info.ptrVal, Info.offset), Info.align, 4633 Info.flags, Info.size); 4634 } else if (!HasChain) { 4635 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4636 } else if (!I.getType()->isVoidTy()) { 4637 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4638 } else { 4639 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4640 } 4641 4642 if (HasChain) { 4643 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4644 if (OnlyLoad) 4645 PendingLoads.push_back(Chain); 4646 else 4647 DAG.setRoot(Chain); 4648 } 4649 4650 if (!I.getType()->isVoidTy()) { 4651 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4652 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4653 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4654 } else 4655 Result = lowerRangeToAssertZExt(DAG, I, Result); 4656 4657 setValue(&I, Result); 4658 } 4659 } 4660 4661 /// GetSignificand - Get the significand and build it into a floating-point 4662 /// number with exponent of 1: 4663 /// 4664 /// Op = (Op & 0x007fffff) | 0x3f800000; 4665 /// 4666 /// where Op is the hexadecimal representation of floating point value. 4667 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4668 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4669 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4670 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4671 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4672 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4673 } 4674 4675 /// GetExponent - Get the exponent: 4676 /// 4677 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4678 /// 4679 /// where Op is the hexadecimal representation of floating point value. 4680 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4681 const TargetLowering &TLI, const SDLoc &dl) { 4682 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4683 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4684 SDValue t1 = DAG.getNode( 4685 ISD::SRL, dl, MVT::i32, t0, 4686 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4687 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4688 DAG.getConstant(127, dl, MVT::i32)); 4689 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4690 } 4691 4692 /// getF32Constant - Get 32-bit floating point constant. 4693 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4694 const SDLoc &dl) { 4695 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4696 MVT::f32); 4697 } 4698 4699 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4700 SelectionDAG &DAG) { 4701 // TODO: What fast-math-flags should be set on the floating-point nodes? 4702 4703 // IntegerPartOfX = ((int32_t)(t0); 4704 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4705 4706 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4707 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4708 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4709 4710 // IntegerPartOfX <<= 23; 4711 IntegerPartOfX = DAG.getNode( 4712 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4713 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4714 DAG.getDataLayout()))); 4715 4716 SDValue TwoToFractionalPartOfX; 4717 if (LimitFloatPrecision <= 6) { 4718 // For floating-point precision of 6: 4719 // 4720 // TwoToFractionalPartOfX = 4721 // 0.997535578f + 4722 // (0.735607626f + 0.252464424f * x) * x; 4723 // 4724 // error 0.0144103317, which is 6 bits 4725 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4726 getF32Constant(DAG, 0x3e814304, dl)); 4727 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4728 getF32Constant(DAG, 0x3f3c50c8, dl)); 4729 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4730 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4731 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4732 } else if (LimitFloatPrecision <= 12) { 4733 // For floating-point precision of 12: 4734 // 4735 // TwoToFractionalPartOfX = 4736 // 0.999892986f + 4737 // (0.696457318f + 4738 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4739 // 4740 // error 0.000107046256, which is 13 to 14 bits 4741 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4742 getF32Constant(DAG, 0x3da235e3, dl)); 4743 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4744 getF32Constant(DAG, 0x3e65b8f3, dl)); 4745 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4746 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4747 getF32Constant(DAG, 0x3f324b07, dl)); 4748 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4749 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4750 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4751 } else { // LimitFloatPrecision <= 18 4752 // For floating-point precision of 18: 4753 // 4754 // TwoToFractionalPartOfX = 4755 // 0.999999982f + 4756 // (0.693148872f + 4757 // (0.240227044f + 4758 // (0.554906021e-1f + 4759 // (0.961591928e-2f + 4760 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4761 // error 2.47208000*10^(-7), which is better than 18 bits 4762 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4763 getF32Constant(DAG, 0x3924b03e, dl)); 4764 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4765 getF32Constant(DAG, 0x3ab24b87, dl)); 4766 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4767 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4768 getF32Constant(DAG, 0x3c1d8c17, dl)); 4769 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4770 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4771 getF32Constant(DAG, 0x3d634a1d, dl)); 4772 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4773 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4774 getF32Constant(DAG, 0x3e75fe14, dl)); 4775 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4776 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4777 getF32Constant(DAG, 0x3f317234, dl)); 4778 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4779 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4780 getF32Constant(DAG, 0x3f800000, dl)); 4781 } 4782 4783 // Add the exponent into the result in integer domain. 4784 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4785 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4786 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4787 } 4788 4789 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4790 /// limited-precision mode. 4791 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4792 const TargetLowering &TLI) { 4793 if (Op.getValueType() == MVT::f32 && 4794 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4795 4796 // Put the exponent in the right bit position for later addition to the 4797 // final result: 4798 // 4799 // #define LOG2OFe 1.4426950f 4800 // t0 = Op * LOG2OFe 4801 4802 // TODO: What fast-math-flags should be set here? 4803 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4804 getF32Constant(DAG, 0x3fb8aa3b, dl)); 4805 return getLimitedPrecisionExp2(t0, dl, DAG); 4806 } 4807 4808 // No special expansion. 4809 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4810 } 4811 4812 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4813 /// limited-precision mode. 4814 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4815 const TargetLowering &TLI) { 4816 // TODO: What fast-math-flags should be set on the floating-point nodes? 4817 4818 if (Op.getValueType() == MVT::f32 && 4819 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4820 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4821 4822 // Scale the exponent by log(2) [0.69314718f]. 4823 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4824 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4825 getF32Constant(DAG, 0x3f317218, dl)); 4826 4827 // Get the significand and build it into a floating-point number with 4828 // exponent of 1. 4829 SDValue X = GetSignificand(DAG, Op1, dl); 4830 4831 SDValue LogOfMantissa; 4832 if (LimitFloatPrecision <= 6) { 4833 // For floating-point precision of 6: 4834 // 4835 // LogofMantissa = 4836 // -1.1609546f + 4837 // (1.4034025f - 0.23903021f * x) * x; 4838 // 4839 // error 0.0034276066, which is better than 8 bits 4840 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4841 getF32Constant(DAG, 0xbe74c456, dl)); 4842 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4843 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4844 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4845 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4846 getF32Constant(DAG, 0x3f949a29, dl)); 4847 } else if (LimitFloatPrecision <= 12) { 4848 // For floating-point precision of 12: 4849 // 4850 // LogOfMantissa = 4851 // -1.7417939f + 4852 // (2.8212026f + 4853 // (-1.4699568f + 4854 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4855 // 4856 // error 0.000061011436, which is 14 bits 4857 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4858 getF32Constant(DAG, 0xbd67b6d6, dl)); 4859 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4860 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4861 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4862 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4863 getF32Constant(DAG, 0x3fbc278b, dl)); 4864 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4865 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4866 getF32Constant(DAG, 0x40348e95, dl)); 4867 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4868 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4869 getF32Constant(DAG, 0x3fdef31a, dl)); 4870 } else { // LimitFloatPrecision <= 18 4871 // For floating-point precision of 18: 4872 // 4873 // LogOfMantissa = 4874 // -2.1072184f + 4875 // (4.2372794f + 4876 // (-3.7029485f + 4877 // (2.2781945f + 4878 // (-0.87823314f + 4879 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4880 // 4881 // error 0.0000023660568, which is better than 18 bits 4882 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4883 getF32Constant(DAG, 0xbc91e5ac, dl)); 4884 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4885 getF32Constant(DAG, 0x3e4350aa, dl)); 4886 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4887 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4888 getF32Constant(DAG, 0x3f60d3e3, dl)); 4889 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4890 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4891 getF32Constant(DAG, 0x4011cdf0, dl)); 4892 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4893 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4894 getF32Constant(DAG, 0x406cfd1c, dl)); 4895 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4896 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4897 getF32Constant(DAG, 0x408797cb, dl)); 4898 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4899 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4900 getF32Constant(DAG, 0x4006dcab, dl)); 4901 } 4902 4903 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4904 } 4905 4906 // No special expansion. 4907 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4908 } 4909 4910 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4911 /// limited-precision mode. 4912 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4913 const TargetLowering &TLI) { 4914 // TODO: What fast-math-flags should be set on the floating-point nodes? 4915 4916 if (Op.getValueType() == MVT::f32 && 4917 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4918 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4919 4920 // Get the exponent. 4921 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4922 4923 // Get the significand and build it into a floating-point number with 4924 // exponent of 1. 4925 SDValue X = GetSignificand(DAG, Op1, dl); 4926 4927 // Different possible minimax approximations of significand in 4928 // floating-point for various degrees of accuracy over [1,2]. 4929 SDValue Log2ofMantissa; 4930 if (LimitFloatPrecision <= 6) { 4931 // For floating-point precision of 6: 4932 // 4933 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4934 // 4935 // error 0.0049451742, which is more than 7 bits 4936 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4937 getF32Constant(DAG, 0xbeb08fe0, dl)); 4938 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4939 getF32Constant(DAG, 0x40019463, dl)); 4940 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4941 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4942 getF32Constant(DAG, 0x3fd6633d, dl)); 4943 } else if (LimitFloatPrecision <= 12) { 4944 // For floating-point precision of 12: 4945 // 4946 // Log2ofMantissa = 4947 // -2.51285454f + 4948 // (4.07009056f + 4949 // (-2.12067489f + 4950 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4951 // 4952 // error 0.0000876136000, which is better than 13 bits 4953 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4954 getF32Constant(DAG, 0xbda7262e, dl)); 4955 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4956 getF32Constant(DAG, 0x3f25280b, dl)); 4957 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4958 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4959 getF32Constant(DAG, 0x4007b923, dl)); 4960 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4961 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4962 getF32Constant(DAG, 0x40823e2f, dl)); 4963 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4964 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4965 getF32Constant(DAG, 0x4020d29c, dl)); 4966 } else { // LimitFloatPrecision <= 18 4967 // For floating-point precision of 18: 4968 // 4969 // Log2ofMantissa = 4970 // -3.0400495f + 4971 // (6.1129976f + 4972 // (-5.3420409f + 4973 // (3.2865683f + 4974 // (-1.2669343f + 4975 // (0.27515199f - 4976 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4977 // 4978 // error 0.0000018516, which is better than 18 bits 4979 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4980 getF32Constant(DAG, 0xbcd2769e, dl)); 4981 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4982 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4983 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4984 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4985 getF32Constant(DAG, 0x3fa22ae7, dl)); 4986 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4987 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4988 getF32Constant(DAG, 0x40525723, dl)); 4989 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4990 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4991 getF32Constant(DAG, 0x40aaf200, dl)); 4992 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4993 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4994 getF32Constant(DAG, 0x40c39dad, dl)); 4995 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4996 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4997 getF32Constant(DAG, 0x4042902c, dl)); 4998 } 4999 5000 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5001 } 5002 5003 // No special expansion. 5004 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 5005 } 5006 5007 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5008 /// limited-precision mode. 5009 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5010 const TargetLowering &TLI) { 5011 // TODO: What fast-math-flags should be set on the floating-point nodes? 5012 5013 if (Op.getValueType() == MVT::f32 && 5014 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5015 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5016 5017 // Scale the exponent by log10(2) [0.30102999f]. 5018 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5019 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5020 getF32Constant(DAG, 0x3e9a209a, dl)); 5021 5022 // Get the significand and build it into a floating-point number with 5023 // exponent of 1. 5024 SDValue X = GetSignificand(DAG, Op1, dl); 5025 5026 SDValue Log10ofMantissa; 5027 if (LimitFloatPrecision <= 6) { 5028 // For floating-point precision of 6: 5029 // 5030 // Log10ofMantissa = 5031 // -0.50419619f + 5032 // (0.60948995f - 0.10380950f * x) * x; 5033 // 5034 // error 0.0014886165, which is 6 bits 5035 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5036 getF32Constant(DAG, 0xbdd49a13, dl)); 5037 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5038 getF32Constant(DAG, 0x3f1c0789, dl)); 5039 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5040 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5041 getF32Constant(DAG, 0x3f011300, dl)); 5042 } else if (LimitFloatPrecision <= 12) { 5043 // For floating-point precision of 12: 5044 // 5045 // Log10ofMantissa = 5046 // -0.64831180f + 5047 // (0.91751397f + 5048 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5049 // 5050 // error 0.00019228036, which is better than 12 bits 5051 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5052 getF32Constant(DAG, 0x3d431f31, dl)); 5053 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5054 getF32Constant(DAG, 0x3ea21fb2, dl)); 5055 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5056 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5057 getF32Constant(DAG, 0x3f6ae232, dl)); 5058 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5059 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5060 getF32Constant(DAG, 0x3f25f7c3, dl)); 5061 } else { // LimitFloatPrecision <= 18 5062 // For floating-point precision of 18: 5063 // 5064 // Log10ofMantissa = 5065 // -0.84299375f + 5066 // (1.5327582f + 5067 // (-1.0688956f + 5068 // (0.49102474f + 5069 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5070 // 5071 // error 0.0000037995730, which is better than 18 bits 5072 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5073 getF32Constant(DAG, 0x3c5d51ce, dl)); 5074 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5075 getF32Constant(DAG, 0x3e00685a, dl)); 5076 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5077 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5078 getF32Constant(DAG, 0x3efb6798, dl)); 5079 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5080 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5081 getF32Constant(DAG, 0x3f88d192, dl)); 5082 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5083 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5084 getF32Constant(DAG, 0x3fc4316c, dl)); 5085 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5086 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5087 getF32Constant(DAG, 0x3f57ce70, dl)); 5088 } 5089 5090 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5091 } 5092 5093 // No special expansion. 5094 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 5095 } 5096 5097 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5098 /// limited-precision mode. 5099 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5100 const TargetLowering &TLI) { 5101 if (Op.getValueType() == MVT::f32 && 5102 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5103 return getLimitedPrecisionExp2(Op, dl, DAG); 5104 5105 // No special expansion. 5106 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 5107 } 5108 5109 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5110 /// limited-precision mode with x == 10.0f. 5111 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5112 SelectionDAG &DAG, const TargetLowering &TLI) { 5113 bool IsExp10 = false; 5114 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5115 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5116 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5117 APFloat Ten(10.0f); 5118 IsExp10 = LHSC->isExactlyValue(Ten); 5119 } 5120 } 5121 5122 // TODO: What fast-math-flags should be set on the FMUL node? 5123 if (IsExp10) { 5124 // Put the exponent in the right bit position for later addition to the 5125 // final result: 5126 // 5127 // #define LOG2OF10 3.3219281f 5128 // t0 = Op * LOG2OF10; 5129 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5130 getF32Constant(DAG, 0x40549a78, dl)); 5131 return getLimitedPrecisionExp2(t0, dl, DAG); 5132 } 5133 5134 // No special expansion. 5135 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 5136 } 5137 5138 /// ExpandPowI - Expand a llvm.powi intrinsic. 5139 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5140 SelectionDAG &DAG) { 5141 // If RHS is a constant, we can expand this out to a multiplication tree, 5142 // otherwise we end up lowering to a call to __powidf2 (for example). When 5143 // optimizing for size, we only want to do this if the expansion would produce 5144 // a small number of multiplies, otherwise we do the full expansion. 5145 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5146 // Get the exponent as a positive value. 5147 unsigned Val = RHSC->getSExtValue(); 5148 if ((int)Val < 0) Val = -Val; 5149 5150 // powi(x, 0) -> 1.0 5151 if (Val == 0) 5152 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5153 5154 const Function &F = DAG.getMachineFunction().getFunction(); 5155 if (!F.optForSize() || 5156 // If optimizing for size, don't insert too many multiplies. 5157 // This inserts up to 5 multiplies. 5158 countPopulation(Val) + Log2_32(Val) < 7) { 5159 // We use the simple binary decomposition method to generate the multiply 5160 // sequence. There are more optimal ways to do this (for example, 5161 // powi(x,15) generates one more multiply than it should), but this has 5162 // the benefit of being both really simple and much better than a libcall. 5163 SDValue Res; // Logically starts equal to 1.0 5164 SDValue CurSquare = LHS; 5165 // TODO: Intrinsics should have fast-math-flags that propagate to these 5166 // nodes. 5167 while (Val) { 5168 if (Val & 1) { 5169 if (Res.getNode()) 5170 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 5171 else 5172 Res = CurSquare; // 1.0*CurSquare. 5173 } 5174 5175 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5176 CurSquare, CurSquare); 5177 Val >>= 1; 5178 } 5179 5180 // If the original was negative, invert the result, producing 1/(x*x*x). 5181 if (RHSC->getSExtValue() < 0) 5182 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5183 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5184 return Res; 5185 } 5186 } 5187 5188 // Otherwise, expand to a libcall. 5189 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5190 } 5191 5192 // getUnderlyingArgReg - Find underlying register used for a truncated or 5193 // bitcasted argument. 5194 static unsigned getUnderlyingArgReg(const SDValue &N) { 5195 switch (N.getOpcode()) { 5196 case ISD::CopyFromReg: 5197 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 5198 case ISD::BITCAST: 5199 case ISD::AssertZext: 5200 case ISD::AssertSext: 5201 case ISD::TRUNCATE: 5202 return getUnderlyingArgReg(N.getOperand(0)); 5203 default: 5204 return 0; 5205 } 5206 } 5207 5208 /// If the DbgValueInst is a dbg_value of a function argument, create the 5209 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5210 /// instruction selection, they will be inserted to the entry BB. 5211 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5212 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5213 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 5214 const Argument *Arg = dyn_cast<Argument>(V); 5215 if (!Arg) 5216 return false; 5217 5218 if (!IsDbgDeclare) { 5219 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5220 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5221 // the entry block. 5222 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5223 if (!IsInEntryBlock) 5224 return false; 5225 5226 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5227 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5228 // variable that also is a param. 5229 // 5230 // Although, if we are at the top of the entry block already, we can still 5231 // emit using ArgDbgValue. This might catch some situations when the 5232 // dbg.value refers to an argument that isn't used in the entry block, so 5233 // any CopyToReg node would be optimized out and the only way to express 5234 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5235 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5236 // we should only emit as ArgDbgValue if the Variable is an argument to the 5237 // current function, and the dbg.value intrinsic is found in the entry 5238 // block. 5239 bool VariableIsFunctionInputArg = Variable->isParameter() && 5240 !DL->getInlinedAt(); 5241 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5242 if (!IsInPrologue && !VariableIsFunctionInputArg) 5243 return false; 5244 5245 // Here we assume that a function argument on IR level only can be used to 5246 // describe one input parameter on source level. If we for example have 5247 // source code like this 5248 // 5249 // struct A { long x, y; }; 5250 // void foo(struct A a, long b) { 5251 // ... 5252 // b = a.x; 5253 // ... 5254 // } 5255 // 5256 // and IR like this 5257 // 5258 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5259 // entry: 5260 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5261 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5262 // call void @llvm.dbg.value(metadata i32 %b, "b", 5263 // ... 5264 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5265 // ... 5266 // 5267 // then the last dbg.value is describing a parameter "b" using a value that 5268 // is an argument. But since we already has used %a1 to describe a parameter 5269 // we should not handle that last dbg.value here (that would result in an 5270 // incorrect hoisting of the DBG_VALUE to the function entry). 5271 // Notice that we allow one dbg.value per IR level argument, to accomodate 5272 // for the situation with fragments above. 5273 if (VariableIsFunctionInputArg) { 5274 unsigned ArgNo = Arg->getArgNo(); 5275 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5276 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5277 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5278 return false; 5279 FuncInfo.DescribedArgs.set(ArgNo); 5280 } 5281 } 5282 5283 MachineFunction &MF = DAG.getMachineFunction(); 5284 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5285 5286 bool IsIndirect = false; 5287 Optional<MachineOperand> Op; 5288 // Some arguments' frame index is recorded during argument lowering. 5289 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5290 if (FI != std::numeric_limits<int>::max()) 5291 Op = MachineOperand::CreateFI(FI); 5292 5293 if (!Op && N.getNode()) { 5294 unsigned Reg = getUnderlyingArgReg(N); 5295 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 5296 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5297 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 5298 if (PR) 5299 Reg = PR; 5300 } 5301 if (Reg) { 5302 Op = MachineOperand::CreateReg(Reg, false); 5303 IsIndirect = IsDbgDeclare; 5304 } 5305 } 5306 5307 if (!Op && N.getNode()) 5308 // Check if frame index is available. 5309 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 5310 if (FrameIndexSDNode *FINode = 5311 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5312 Op = MachineOperand::CreateFI(FINode->getIndex()); 5313 5314 if (!Op) { 5315 // Check if ValueMap has reg number. 5316 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 5317 if (VMI != FuncInfo.ValueMap.end()) { 5318 const auto &TLI = DAG.getTargetLoweringInfo(); 5319 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5320 V->getType(), getABIRegCopyCC(V)); 5321 if (RFV.occupiesMultipleRegs()) { 5322 unsigned Offset = 0; 5323 for (auto RegAndSize : RFV.getRegsAndSizes()) { 5324 Op = MachineOperand::CreateReg(RegAndSize.first, false); 5325 auto FragmentExpr = DIExpression::createFragmentExpression( 5326 Expr, Offset, RegAndSize.second); 5327 if (!FragmentExpr) 5328 continue; 5329 FuncInfo.ArgDbgValues.push_back( 5330 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, 5331 Op->getReg(), Variable, *FragmentExpr)); 5332 Offset += RegAndSize.second; 5333 } 5334 return true; 5335 } 5336 Op = MachineOperand::CreateReg(VMI->second, false); 5337 IsIndirect = IsDbgDeclare; 5338 } 5339 } 5340 5341 if (!Op) 5342 return false; 5343 5344 assert(Variable->isValidLocationForIntrinsic(DL) && 5345 "Expected inlined-at fields to agree"); 5346 IsIndirect = (Op->isReg()) ? IsIndirect : true; 5347 FuncInfo.ArgDbgValues.push_back( 5348 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 5349 *Op, Variable, Expr)); 5350 5351 return true; 5352 } 5353 5354 /// Return the appropriate SDDbgValue based on N. 5355 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5356 DILocalVariable *Variable, 5357 DIExpression *Expr, 5358 const DebugLoc &dl, 5359 unsigned DbgSDNodeOrder) { 5360 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5361 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5362 // stack slot locations. 5363 // 5364 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5365 // debug values here after optimization: 5366 // 5367 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5368 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5369 // 5370 // Both describe the direct values of their associated variables. 5371 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5372 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5373 } 5374 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5375 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5376 } 5377 5378 // VisualStudio defines setjmp as _setjmp 5379 #if defined(_MSC_VER) && defined(setjmp) && \ 5380 !defined(setjmp_undefined_for_msvc) 5381 # pragma push_macro("setjmp") 5382 # undef setjmp 5383 # define setjmp_undefined_for_msvc 5384 #endif 5385 5386 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5387 switch (Intrinsic) { 5388 case Intrinsic::smul_fix: 5389 return ISD::SMULFIX; 5390 case Intrinsic::umul_fix: 5391 return ISD::UMULFIX; 5392 default: 5393 llvm_unreachable("Unhandled fixed point intrinsic"); 5394 } 5395 } 5396 5397 /// Lower the call to the specified intrinsic function. If we want to emit this 5398 /// as a call to a named external function, return the name. Otherwise, lower it 5399 /// and return null. 5400 const char * 5401 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 5402 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5403 SDLoc sdl = getCurSDLoc(); 5404 DebugLoc dl = getCurDebugLoc(); 5405 SDValue Res; 5406 5407 switch (Intrinsic) { 5408 default: 5409 // By default, turn this into a target intrinsic node. 5410 visitTargetIntrinsic(I, Intrinsic); 5411 return nullptr; 5412 case Intrinsic::vastart: visitVAStart(I); return nullptr; 5413 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 5414 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 5415 case Intrinsic::returnaddress: 5416 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5417 TLI.getPointerTy(DAG.getDataLayout()), 5418 getValue(I.getArgOperand(0)))); 5419 return nullptr; 5420 case Intrinsic::addressofreturnaddress: 5421 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5422 TLI.getPointerTy(DAG.getDataLayout()))); 5423 return nullptr; 5424 case Intrinsic::sponentry: 5425 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5426 TLI.getPointerTy(DAG.getDataLayout()))); 5427 return nullptr; 5428 case Intrinsic::frameaddress: 5429 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5430 TLI.getPointerTy(DAG.getDataLayout()), 5431 getValue(I.getArgOperand(0)))); 5432 return nullptr; 5433 case Intrinsic::read_register: { 5434 Value *Reg = I.getArgOperand(0); 5435 SDValue Chain = getRoot(); 5436 SDValue RegName = 5437 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5438 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5439 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5440 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5441 setValue(&I, Res); 5442 DAG.setRoot(Res.getValue(1)); 5443 return nullptr; 5444 } 5445 case Intrinsic::write_register: { 5446 Value *Reg = I.getArgOperand(0); 5447 Value *RegValue = I.getArgOperand(1); 5448 SDValue Chain = getRoot(); 5449 SDValue RegName = 5450 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5451 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5452 RegName, getValue(RegValue))); 5453 return nullptr; 5454 } 5455 case Intrinsic::setjmp: 5456 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 5457 case Intrinsic::longjmp: 5458 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 5459 case Intrinsic::memcpy: { 5460 const auto &MCI = cast<MemCpyInst>(I); 5461 SDValue Op1 = getValue(I.getArgOperand(0)); 5462 SDValue Op2 = getValue(I.getArgOperand(1)); 5463 SDValue Op3 = getValue(I.getArgOperand(2)); 5464 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5465 unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1); 5466 unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1); 5467 unsigned Align = MinAlign(DstAlign, SrcAlign); 5468 bool isVol = MCI.isVolatile(); 5469 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5470 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5471 // node. 5472 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5473 false, isTC, 5474 MachinePointerInfo(I.getArgOperand(0)), 5475 MachinePointerInfo(I.getArgOperand(1))); 5476 updateDAGForMaybeTailCall(MC); 5477 return nullptr; 5478 } 5479 case Intrinsic::memset: { 5480 const auto &MSI = cast<MemSetInst>(I); 5481 SDValue Op1 = getValue(I.getArgOperand(0)); 5482 SDValue Op2 = getValue(I.getArgOperand(1)); 5483 SDValue Op3 = getValue(I.getArgOperand(2)); 5484 // @llvm.memset defines 0 and 1 to both mean no alignment. 5485 unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1); 5486 bool isVol = MSI.isVolatile(); 5487 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5488 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5489 isTC, MachinePointerInfo(I.getArgOperand(0))); 5490 updateDAGForMaybeTailCall(MS); 5491 return nullptr; 5492 } 5493 case Intrinsic::memmove: { 5494 const auto &MMI = cast<MemMoveInst>(I); 5495 SDValue Op1 = getValue(I.getArgOperand(0)); 5496 SDValue Op2 = getValue(I.getArgOperand(1)); 5497 SDValue Op3 = getValue(I.getArgOperand(2)); 5498 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5499 unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1); 5500 unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1); 5501 unsigned Align = MinAlign(DstAlign, SrcAlign); 5502 bool isVol = MMI.isVolatile(); 5503 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5504 // FIXME: Support passing different dest/src alignments to the memmove DAG 5505 // node. 5506 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5507 isTC, MachinePointerInfo(I.getArgOperand(0)), 5508 MachinePointerInfo(I.getArgOperand(1))); 5509 updateDAGForMaybeTailCall(MM); 5510 return nullptr; 5511 } 5512 case Intrinsic::memcpy_element_unordered_atomic: { 5513 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5514 SDValue Dst = getValue(MI.getRawDest()); 5515 SDValue Src = getValue(MI.getRawSource()); 5516 SDValue Length = getValue(MI.getLength()); 5517 5518 unsigned DstAlign = MI.getDestAlignment(); 5519 unsigned SrcAlign = MI.getSourceAlignment(); 5520 Type *LengthTy = MI.getLength()->getType(); 5521 unsigned ElemSz = MI.getElementSizeInBytes(); 5522 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5523 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5524 SrcAlign, Length, LengthTy, ElemSz, isTC, 5525 MachinePointerInfo(MI.getRawDest()), 5526 MachinePointerInfo(MI.getRawSource())); 5527 updateDAGForMaybeTailCall(MC); 5528 return nullptr; 5529 } 5530 case Intrinsic::memmove_element_unordered_atomic: { 5531 auto &MI = cast<AtomicMemMoveInst>(I); 5532 SDValue Dst = getValue(MI.getRawDest()); 5533 SDValue Src = getValue(MI.getRawSource()); 5534 SDValue Length = getValue(MI.getLength()); 5535 5536 unsigned DstAlign = MI.getDestAlignment(); 5537 unsigned SrcAlign = MI.getSourceAlignment(); 5538 Type *LengthTy = MI.getLength()->getType(); 5539 unsigned ElemSz = MI.getElementSizeInBytes(); 5540 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5541 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5542 SrcAlign, Length, LengthTy, ElemSz, isTC, 5543 MachinePointerInfo(MI.getRawDest()), 5544 MachinePointerInfo(MI.getRawSource())); 5545 updateDAGForMaybeTailCall(MC); 5546 return nullptr; 5547 } 5548 case Intrinsic::memset_element_unordered_atomic: { 5549 auto &MI = cast<AtomicMemSetInst>(I); 5550 SDValue Dst = getValue(MI.getRawDest()); 5551 SDValue Val = getValue(MI.getValue()); 5552 SDValue Length = getValue(MI.getLength()); 5553 5554 unsigned DstAlign = MI.getDestAlignment(); 5555 Type *LengthTy = MI.getLength()->getType(); 5556 unsigned ElemSz = MI.getElementSizeInBytes(); 5557 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5558 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5559 LengthTy, ElemSz, isTC, 5560 MachinePointerInfo(MI.getRawDest())); 5561 updateDAGForMaybeTailCall(MC); 5562 return nullptr; 5563 } 5564 case Intrinsic::dbg_addr: 5565 case Intrinsic::dbg_declare: { 5566 const auto &DI = cast<DbgVariableIntrinsic>(I); 5567 DILocalVariable *Variable = DI.getVariable(); 5568 DIExpression *Expression = DI.getExpression(); 5569 dropDanglingDebugInfo(Variable, Expression); 5570 assert(Variable && "Missing variable"); 5571 5572 // Check if address has undef value. 5573 const Value *Address = DI.getVariableLocation(); 5574 if (!Address || isa<UndefValue>(Address) || 5575 (Address->use_empty() && !isa<Argument>(Address))) { 5576 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5577 return nullptr; 5578 } 5579 5580 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5581 5582 // Check if this variable can be described by a frame index, typically 5583 // either as a static alloca or a byval parameter. 5584 int FI = std::numeric_limits<int>::max(); 5585 if (const auto *AI = 5586 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5587 if (AI->isStaticAlloca()) { 5588 auto I = FuncInfo.StaticAllocaMap.find(AI); 5589 if (I != FuncInfo.StaticAllocaMap.end()) 5590 FI = I->second; 5591 } 5592 } else if (const auto *Arg = dyn_cast<Argument>( 5593 Address->stripInBoundsConstantOffsets())) { 5594 FI = FuncInfo.getArgumentFrameIndex(Arg); 5595 } 5596 5597 // llvm.dbg.addr is control dependent and always generates indirect 5598 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5599 // the MachineFunction variable table. 5600 if (FI != std::numeric_limits<int>::max()) { 5601 if (Intrinsic == Intrinsic::dbg_addr) { 5602 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 5603 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder); 5604 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 5605 } 5606 return nullptr; 5607 } 5608 5609 SDValue &N = NodeMap[Address]; 5610 if (!N.getNode() && isa<Argument>(Address)) 5611 // Check unused arguments map. 5612 N = UnusedArgNodeMap[Address]; 5613 SDDbgValue *SDV; 5614 if (N.getNode()) { 5615 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5616 Address = BCI->getOperand(0); 5617 // Parameters are handled specially. 5618 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5619 if (isParameter && FINode) { 5620 // Byval parameter. We have a frame index at this point. 5621 SDV = 5622 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 5623 /*IsIndirect*/ true, dl, SDNodeOrder); 5624 } else if (isa<Argument>(Address)) { 5625 // Address is an argument, so try to emit its dbg value using 5626 // virtual register info from the FuncInfo.ValueMap. 5627 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5628 return nullptr; 5629 } else { 5630 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5631 true, dl, SDNodeOrder); 5632 } 5633 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5634 } else { 5635 // If Address is an argument then try to emit its dbg value using 5636 // virtual register info from the FuncInfo.ValueMap. 5637 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5638 N)) { 5639 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5640 } 5641 } 5642 return nullptr; 5643 } 5644 case Intrinsic::dbg_label: { 5645 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 5646 DILabel *Label = DI.getLabel(); 5647 assert(Label && "Missing label"); 5648 5649 SDDbgLabel *SDV; 5650 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 5651 DAG.AddDbgLabel(SDV); 5652 return nullptr; 5653 } 5654 case Intrinsic::dbg_value: { 5655 const DbgValueInst &DI = cast<DbgValueInst>(I); 5656 assert(DI.getVariable() && "Missing variable"); 5657 5658 DILocalVariable *Variable = DI.getVariable(); 5659 DIExpression *Expression = DI.getExpression(); 5660 dropDanglingDebugInfo(Variable, Expression); 5661 const Value *V = DI.getValue(); 5662 if (!V) 5663 return nullptr; 5664 5665 if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(), 5666 SDNodeOrder)) 5667 return nullptr; 5668 5669 // TODO: Dangling debug info will eventually either be resolved or produce 5670 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 5671 // between the original dbg.value location and its resolved DBG_VALUE, which 5672 // we should ideally fill with an extra Undef DBG_VALUE. 5673 5674 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder); 5675 return nullptr; 5676 } 5677 5678 case Intrinsic::eh_typeid_for: { 5679 // Find the type id for the given typeinfo. 5680 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5681 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5682 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5683 setValue(&I, Res); 5684 return nullptr; 5685 } 5686 5687 case Intrinsic::eh_return_i32: 5688 case Intrinsic::eh_return_i64: 5689 DAG.getMachineFunction().setCallsEHReturn(true); 5690 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5691 MVT::Other, 5692 getControlRoot(), 5693 getValue(I.getArgOperand(0)), 5694 getValue(I.getArgOperand(1)))); 5695 return nullptr; 5696 case Intrinsic::eh_unwind_init: 5697 DAG.getMachineFunction().setCallsUnwindInit(true); 5698 return nullptr; 5699 case Intrinsic::eh_dwarf_cfa: 5700 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5701 TLI.getPointerTy(DAG.getDataLayout()), 5702 getValue(I.getArgOperand(0)))); 5703 return nullptr; 5704 case Intrinsic::eh_sjlj_callsite: { 5705 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5706 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5707 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5708 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5709 5710 MMI.setCurrentCallSite(CI->getZExtValue()); 5711 return nullptr; 5712 } 5713 case Intrinsic::eh_sjlj_functioncontext: { 5714 // Get and store the index of the function context. 5715 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5716 AllocaInst *FnCtx = 5717 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5718 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5719 MFI.setFunctionContextIndex(FI); 5720 return nullptr; 5721 } 5722 case Intrinsic::eh_sjlj_setjmp: { 5723 SDValue Ops[2]; 5724 Ops[0] = getRoot(); 5725 Ops[1] = getValue(I.getArgOperand(0)); 5726 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5727 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5728 setValue(&I, Op.getValue(0)); 5729 DAG.setRoot(Op.getValue(1)); 5730 return nullptr; 5731 } 5732 case Intrinsic::eh_sjlj_longjmp: 5733 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5734 getRoot(), getValue(I.getArgOperand(0)))); 5735 return nullptr; 5736 case Intrinsic::eh_sjlj_setup_dispatch: 5737 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 5738 getRoot())); 5739 return nullptr; 5740 case Intrinsic::masked_gather: 5741 visitMaskedGather(I); 5742 return nullptr; 5743 case Intrinsic::masked_load: 5744 visitMaskedLoad(I); 5745 return nullptr; 5746 case Intrinsic::masked_scatter: 5747 visitMaskedScatter(I); 5748 return nullptr; 5749 case Intrinsic::masked_store: 5750 visitMaskedStore(I); 5751 return nullptr; 5752 case Intrinsic::masked_expandload: 5753 visitMaskedLoad(I, true /* IsExpanding */); 5754 return nullptr; 5755 case Intrinsic::masked_compressstore: 5756 visitMaskedStore(I, true /* IsCompressing */); 5757 return nullptr; 5758 case Intrinsic::x86_mmx_pslli_w: 5759 case Intrinsic::x86_mmx_pslli_d: 5760 case Intrinsic::x86_mmx_pslli_q: 5761 case Intrinsic::x86_mmx_psrli_w: 5762 case Intrinsic::x86_mmx_psrli_d: 5763 case Intrinsic::x86_mmx_psrli_q: 5764 case Intrinsic::x86_mmx_psrai_w: 5765 case Intrinsic::x86_mmx_psrai_d: { 5766 SDValue ShAmt = getValue(I.getArgOperand(1)); 5767 if (isa<ConstantSDNode>(ShAmt)) { 5768 visitTargetIntrinsic(I, Intrinsic); 5769 return nullptr; 5770 } 5771 unsigned NewIntrinsic = 0; 5772 EVT ShAmtVT = MVT::v2i32; 5773 switch (Intrinsic) { 5774 case Intrinsic::x86_mmx_pslli_w: 5775 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5776 break; 5777 case Intrinsic::x86_mmx_pslli_d: 5778 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5779 break; 5780 case Intrinsic::x86_mmx_pslli_q: 5781 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5782 break; 5783 case Intrinsic::x86_mmx_psrli_w: 5784 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5785 break; 5786 case Intrinsic::x86_mmx_psrli_d: 5787 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5788 break; 5789 case Intrinsic::x86_mmx_psrli_q: 5790 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5791 break; 5792 case Intrinsic::x86_mmx_psrai_w: 5793 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5794 break; 5795 case Intrinsic::x86_mmx_psrai_d: 5796 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5797 break; 5798 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5799 } 5800 5801 // The vector shift intrinsics with scalars uses 32b shift amounts but 5802 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5803 // to be zero. 5804 // We must do this early because v2i32 is not a legal type. 5805 SDValue ShOps[2]; 5806 ShOps[0] = ShAmt; 5807 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 5808 ShAmt = DAG.getBuildVector(ShAmtVT, sdl, ShOps); 5809 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5810 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5811 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5812 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 5813 getValue(I.getArgOperand(0)), ShAmt); 5814 setValue(&I, Res); 5815 return nullptr; 5816 } 5817 case Intrinsic::powi: 5818 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5819 getValue(I.getArgOperand(1)), DAG)); 5820 return nullptr; 5821 case Intrinsic::log: 5822 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5823 return nullptr; 5824 case Intrinsic::log2: 5825 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5826 return nullptr; 5827 case Intrinsic::log10: 5828 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5829 return nullptr; 5830 case Intrinsic::exp: 5831 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5832 return nullptr; 5833 case Intrinsic::exp2: 5834 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5835 return nullptr; 5836 case Intrinsic::pow: 5837 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5838 getValue(I.getArgOperand(1)), DAG, TLI)); 5839 return nullptr; 5840 case Intrinsic::sqrt: 5841 case Intrinsic::fabs: 5842 case Intrinsic::sin: 5843 case Intrinsic::cos: 5844 case Intrinsic::floor: 5845 case Intrinsic::ceil: 5846 case Intrinsic::trunc: 5847 case Intrinsic::rint: 5848 case Intrinsic::nearbyint: 5849 case Intrinsic::round: 5850 case Intrinsic::canonicalize: { 5851 unsigned Opcode; 5852 switch (Intrinsic) { 5853 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5854 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5855 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5856 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5857 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5858 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5859 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5860 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5861 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5862 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5863 case Intrinsic::round: Opcode = ISD::FROUND; break; 5864 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 5865 } 5866 5867 setValue(&I, DAG.getNode(Opcode, sdl, 5868 getValue(I.getArgOperand(0)).getValueType(), 5869 getValue(I.getArgOperand(0)))); 5870 return nullptr; 5871 } 5872 case Intrinsic::minnum: { 5873 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5874 unsigned Opc = 5875 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT) 5876 ? ISD::FMINIMUM 5877 : ISD::FMINNUM; 5878 setValue(&I, DAG.getNode(Opc, sdl, VT, 5879 getValue(I.getArgOperand(0)), 5880 getValue(I.getArgOperand(1)))); 5881 return nullptr; 5882 } 5883 case Intrinsic::maxnum: { 5884 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5885 unsigned Opc = 5886 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT) 5887 ? ISD::FMAXIMUM 5888 : ISD::FMAXNUM; 5889 setValue(&I, DAG.getNode(Opc, sdl, VT, 5890 getValue(I.getArgOperand(0)), 5891 getValue(I.getArgOperand(1)))); 5892 return nullptr; 5893 } 5894 case Intrinsic::minimum: 5895 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 5896 getValue(I.getArgOperand(0)).getValueType(), 5897 getValue(I.getArgOperand(0)), 5898 getValue(I.getArgOperand(1)))); 5899 return nullptr; 5900 case Intrinsic::maximum: 5901 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 5902 getValue(I.getArgOperand(0)).getValueType(), 5903 getValue(I.getArgOperand(0)), 5904 getValue(I.getArgOperand(1)))); 5905 return nullptr; 5906 case Intrinsic::copysign: 5907 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5908 getValue(I.getArgOperand(0)).getValueType(), 5909 getValue(I.getArgOperand(0)), 5910 getValue(I.getArgOperand(1)))); 5911 return nullptr; 5912 case Intrinsic::fma: 5913 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5914 getValue(I.getArgOperand(0)).getValueType(), 5915 getValue(I.getArgOperand(0)), 5916 getValue(I.getArgOperand(1)), 5917 getValue(I.getArgOperand(2)))); 5918 return nullptr; 5919 case Intrinsic::experimental_constrained_fadd: 5920 case Intrinsic::experimental_constrained_fsub: 5921 case Intrinsic::experimental_constrained_fmul: 5922 case Intrinsic::experimental_constrained_fdiv: 5923 case Intrinsic::experimental_constrained_frem: 5924 case Intrinsic::experimental_constrained_fma: 5925 case Intrinsic::experimental_constrained_sqrt: 5926 case Intrinsic::experimental_constrained_pow: 5927 case Intrinsic::experimental_constrained_powi: 5928 case Intrinsic::experimental_constrained_sin: 5929 case Intrinsic::experimental_constrained_cos: 5930 case Intrinsic::experimental_constrained_exp: 5931 case Intrinsic::experimental_constrained_exp2: 5932 case Intrinsic::experimental_constrained_log: 5933 case Intrinsic::experimental_constrained_log10: 5934 case Intrinsic::experimental_constrained_log2: 5935 case Intrinsic::experimental_constrained_rint: 5936 case Intrinsic::experimental_constrained_nearbyint: 5937 case Intrinsic::experimental_constrained_maxnum: 5938 case Intrinsic::experimental_constrained_minnum: 5939 case Intrinsic::experimental_constrained_ceil: 5940 case Intrinsic::experimental_constrained_floor: 5941 case Intrinsic::experimental_constrained_round: 5942 case Intrinsic::experimental_constrained_trunc: 5943 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 5944 return nullptr; 5945 case Intrinsic::fmuladd: { 5946 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5947 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5948 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 5949 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5950 getValue(I.getArgOperand(0)).getValueType(), 5951 getValue(I.getArgOperand(0)), 5952 getValue(I.getArgOperand(1)), 5953 getValue(I.getArgOperand(2)))); 5954 } else { 5955 // TODO: Intrinsic calls should have fast-math-flags. 5956 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5957 getValue(I.getArgOperand(0)).getValueType(), 5958 getValue(I.getArgOperand(0)), 5959 getValue(I.getArgOperand(1))); 5960 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5961 getValue(I.getArgOperand(0)).getValueType(), 5962 Mul, 5963 getValue(I.getArgOperand(2))); 5964 setValue(&I, Add); 5965 } 5966 return nullptr; 5967 } 5968 case Intrinsic::convert_to_fp16: 5969 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5970 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5971 getValue(I.getArgOperand(0)), 5972 DAG.getTargetConstant(0, sdl, 5973 MVT::i32)))); 5974 return nullptr; 5975 case Intrinsic::convert_from_fp16: 5976 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 5977 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5978 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5979 getValue(I.getArgOperand(0))))); 5980 return nullptr; 5981 case Intrinsic::pcmarker: { 5982 SDValue Tmp = getValue(I.getArgOperand(0)); 5983 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5984 return nullptr; 5985 } 5986 case Intrinsic::readcyclecounter: { 5987 SDValue Op = getRoot(); 5988 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5989 DAG.getVTList(MVT::i64, MVT::Other), Op); 5990 setValue(&I, Res); 5991 DAG.setRoot(Res.getValue(1)); 5992 return nullptr; 5993 } 5994 case Intrinsic::bitreverse: 5995 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 5996 getValue(I.getArgOperand(0)).getValueType(), 5997 getValue(I.getArgOperand(0)))); 5998 return nullptr; 5999 case Intrinsic::bswap: 6000 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6001 getValue(I.getArgOperand(0)).getValueType(), 6002 getValue(I.getArgOperand(0)))); 6003 return nullptr; 6004 case Intrinsic::cttz: { 6005 SDValue Arg = getValue(I.getArgOperand(0)); 6006 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6007 EVT Ty = Arg.getValueType(); 6008 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6009 sdl, Ty, Arg)); 6010 return nullptr; 6011 } 6012 case Intrinsic::ctlz: { 6013 SDValue Arg = getValue(I.getArgOperand(0)); 6014 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6015 EVT Ty = Arg.getValueType(); 6016 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6017 sdl, Ty, Arg)); 6018 return nullptr; 6019 } 6020 case Intrinsic::ctpop: { 6021 SDValue Arg = getValue(I.getArgOperand(0)); 6022 EVT Ty = Arg.getValueType(); 6023 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6024 return nullptr; 6025 } 6026 case Intrinsic::fshl: 6027 case Intrinsic::fshr: { 6028 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6029 SDValue X = getValue(I.getArgOperand(0)); 6030 SDValue Y = getValue(I.getArgOperand(1)); 6031 SDValue Z = getValue(I.getArgOperand(2)); 6032 EVT VT = X.getValueType(); 6033 SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT); 6034 SDValue Zero = DAG.getConstant(0, sdl, VT); 6035 SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC); 6036 6037 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6038 if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) { 6039 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6040 return nullptr; 6041 } 6042 6043 // When X == Y, this is rotate. If the data type has a power-of-2 size, we 6044 // avoid the select that is necessary in the general case to filter out 6045 // the 0-shift possibility that leads to UB. 6046 if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) { 6047 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6048 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6049 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6050 return nullptr; 6051 } 6052 6053 // Some targets only rotate one way. Try the opposite direction. 6054 RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL; 6055 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6056 // Negate the shift amount because it is safe to ignore the high bits. 6057 SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6058 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt)); 6059 return nullptr; 6060 } 6061 6062 // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW)) 6063 // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW)) 6064 SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6065 SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC); 6066 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt); 6067 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt); 6068 setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY)); 6069 return nullptr; 6070 } 6071 6072 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 6073 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 6074 SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt); 6075 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt); 6076 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6077 SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY); 6078 6079 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 6080 // and that is undefined. We must compare and select to avoid UB. 6081 EVT CCVT = MVT::i1; 6082 if (VT.isVector()) 6083 CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements()); 6084 6085 // For fshl, 0-shift returns the 1st arg (X). 6086 // For fshr, 0-shift returns the 2nd arg (Y). 6087 SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ); 6088 setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or)); 6089 return nullptr; 6090 } 6091 case Intrinsic::sadd_sat: { 6092 SDValue Op1 = getValue(I.getArgOperand(0)); 6093 SDValue Op2 = getValue(I.getArgOperand(1)); 6094 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6095 return nullptr; 6096 } 6097 case Intrinsic::uadd_sat: { 6098 SDValue Op1 = getValue(I.getArgOperand(0)); 6099 SDValue Op2 = getValue(I.getArgOperand(1)); 6100 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6101 return nullptr; 6102 } 6103 case Intrinsic::ssub_sat: { 6104 SDValue Op1 = getValue(I.getArgOperand(0)); 6105 SDValue Op2 = getValue(I.getArgOperand(1)); 6106 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6107 return nullptr; 6108 } 6109 case Intrinsic::usub_sat: { 6110 SDValue Op1 = getValue(I.getArgOperand(0)); 6111 SDValue Op2 = getValue(I.getArgOperand(1)); 6112 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6113 return nullptr; 6114 } 6115 case Intrinsic::smul_fix: 6116 case Intrinsic::umul_fix: { 6117 SDValue Op1 = getValue(I.getArgOperand(0)); 6118 SDValue Op2 = getValue(I.getArgOperand(1)); 6119 SDValue Op3 = getValue(I.getArgOperand(2)); 6120 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6121 Op1.getValueType(), Op1, Op2, Op3)); 6122 return nullptr; 6123 } 6124 case Intrinsic::stacksave: { 6125 SDValue Op = getRoot(); 6126 Res = DAG.getNode( 6127 ISD::STACKSAVE, sdl, 6128 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 6129 setValue(&I, Res); 6130 DAG.setRoot(Res.getValue(1)); 6131 return nullptr; 6132 } 6133 case Intrinsic::stackrestore: 6134 Res = getValue(I.getArgOperand(0)); 6135 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6136 return nullptr; 6137 case Intrinsic::get_dynamic_area_offset: { 6138 SDValue Op = getRoot(); 6139 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6140 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6141 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6142 // target. 6143 if (PtrTy != ResTy) 6144 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6145 " intrinsic!"); 6146 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6147 Op); 6148 DAG.setRoot(Op); 6149 setValue(&I, Res); 6150 return nullptr; 6151 } 6152 case Intrinsic::stackguard: { 6153 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6154 MachineFunction &MF = DAG.getMachineFunction(); 6155 const Module &M = *MF.getFunction().getParent(); 6156 SDValue Chain = getRoot(); 6157 if (TLI.useLoadStackGuardNode()) { 6158 Res = getLoadStackGuard(DAG, sdl, Chain); 6159 } else { 6160 const Value *Global = TLI.getSDagStackGuard(M); 6161 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 6162 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6163 MachinePointerInfo(Global, 0), Align, 6164 MachineMemOperand::MOVolatile); 6165 } 6166 if (TLI.useStackGuardXorFP()) 6167 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6168 DAG.setRoot(Chain); 6169 setValue(&I, Res); 6170 return nullptr; 6171 } 6172 case Intrinsic::stackprotector: { 6173 // Emit code into the DAG to store the stack guard onto the stack. 6174 MachineFunction &MF = DAG.getMachineFunction(); 6175 MachineFrameInfo &MFI = MF.getFrameInfo(); 6176 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6177 SDValue Src, Chain = getRoot(); 6178 6179 if (TLI.useLoadStackGuardNode()) 6180 Src = getLoadStackGuard(DAG, sdl, Chain); 6181 else 6182 Src = getValue(I.getArgOperand(0)); // The guard's value. 6183 6184 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6185 6186 int FI = FuncInfo.StaticAllocaMap[Slot]; 6187 MFI.setStackProtectorIndex(FI); 6188 6189 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6190 6191 // Store the stack protector onto the stack. 6192 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 6193 DAG.getMachineFunction(), FI), 6194 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 6195 setValue(&I, Res); 6196 DAG.setRoot(Res); 6197 return nullptr; 6198 } 6199 case Intrinsic::objectsize: { 6200 // If we don't know by now, we're never going to know. 6201 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 6202 6203 assert(CI && "Non-constant type in __builtin_object_size?"); 6204 6205 SDValue Arg = getValue(I.getCalledValue()); 6206 EVT Ty = Arg.getValueType(); 6207 6208 if (CI->isZero()) 6209 Res = DAG.getConstant(-1ULL, sdl, Ty); 6210 else 6211 Res = DAG.getConstant(0, sdl, Ty); 6212 6213 setValue(&I, Res); 6214 return nullptr; 6215 } 6216 6217 case Intrinsic::is_constant: 6218 // If this wasn't constant-folded away by now, then it's not a 6219 // constant. 6220 setValue(&I, DAG.getConstant(0, sdl, MVT::i1)); 6221 return nullptr; 6222 6223 case Intrinsic::annotation: 6224 case Intrinsic::ptr_annotation: 6225 case Intrinsic::launder_invariant_group: 6226 case Intrinsic::strip_invariant_group: 6227 // Drop the intrinsic, but forward the value 6228 setValue(&I, getValue(I.getOperand(0))); 6229 return nullptr; 6230 case Intrinsic::assume: 6231 case Intrinsic::var_annotation: 6232 case Intrinsic::sideeffect: 6233 // Discard annotate attributes, assumptions, and artificial side-effects. 6234 return nullptr; 6235 6236 case Intrinsic::codeview_annotation: { 6237 // Emit a label associated with this metadata. 6238 MachineFunction &MF = DAG.getMachineFunction(); 6239 MCSymbol *Label = 6240 MF.getMMI().getContext().createTempSymbol("annotation", true); 6241 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6242 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6243 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6244 DAG.setRoot(Res); 6245 return nullptr; 6246 } 6247 6248 case Intrinsic::init_trampoline: { 6249 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6250 6251 SDValue Ops[6]; 6252 Ops[0] = getRoot(); 6253 Ops[1] = getValue(I.getArgOperand(0)); 6254 Ops[2] = getValue(I.getArgOperand(1)); 6255 Ops[3] = getValue(I.getArgOperand(2)); 6256 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6257 Ops[5] = DAG.getSrcValue(F); 6258 6259 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6260 6261 DAG.setRoot(Res); 6262 return nullptr; 6263 } 6264 case Intrinsic::adjust_trampoline: 6265 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6266 TLI.getPointerTy(DAG.getDataLayout()), 6267 getValue(I.getArgOperand(0)))); 6268 return nullptr; 6269 case Intrinsic::gcroot: { 6270 assert(DAG.getMachineFunction().getFunction().hasGC() && 6271 "only valid in functions with gc specified, enforced by Verifier"); 6272 assert(GFI && "implied by previous"); 6273 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6274 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6275 6276 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6277 GFI->addStackRoot(FI->getIndex(), TypeMap); 6278 return nullptr; 6279 } 6280 case Intrinsic::gcread: 6281 case Intrinsic::gcwrite: 6282 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6283 case Intrinsic::flt_rounds: 6284 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 6285 return nullptr; 6286 6287 case Intrinsic::expect: 6288 // Just replace __builtin_expect(exp, c) with EXP. 6289 setValue(&I, getValue(I.getArgOperand(0))); 6290 return nullptr; 6291 6292 case Intrinsic::debugtrap: 6293 case Intrinsic::trap: { 6294 StringRef TrapFuncName = 6295 I.getAttributes() 6296 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 6297 .getValueAsString(); 6298 if (TrapFuncName.empty()) { 6299 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 6300 ISD::TRAP : ISD::DEBUGTRAP; 6301 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 6302 return nullptr; 6303 } 6304 TargetLowering::ArgListTy Args; 6305 6306 TargetLowering::CallLoweringInfo CLI(DAG); 6307 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6308 CallingConv::C, I.getType(), 6309 DAG.getExternalSymbol(TrapFuncName.data(), 6310 TLI.getPointerTy(DAG.getDataLayout())), 6311 std::move(Args)); 6312 6313 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6314 DAG.setRoot(Result.second); 6315 return nullptr; 6316 } 6317 6318 case Intrinsic::uadd_with_overflow: 6319 case Intrinsic::sadd_with_overflow: 6320 case Intrinsic::usub_with_overflow: 6321 case Intrinsic::ssub_with_overflow: 6322 case Intrinsic::umul_with_overflow: 6323 case Intrinsic::smul_with_overflow: { 6324 ISD::NodeType Op; 6325 switch (Intrinsic) { 6326 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6327 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6328 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6329 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6330 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6331 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6332 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6333 } 6334 SDValue Op1 = getValue(I.getArgOperand(0)); 6335 SDValue Op2 = getValue(I.getArgOperand(1)); 6336 6337 EVT ResultVT = Op1.getValueType(); 6338 EVT OverflowVT = MVT::i1; 6339 if (ResultVT.isVector()) 6340 OverflowVT = EVT::getVectorVT( 6341 *Context, OverflowVT, ResultVT.getVectorNumElements()); 6342 6343 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6344 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6345 return nullptr; 6346 } 6347 case Intrinsic::prefetch: { 6348 SDValue Ops[5]; 6349 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6350 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6351 Ops[0] = DAG.getRoot(); 6352 Ops[1] = getValue(I.getArgOperand(0)); 6353 Ops[2] = getValue(I.getArgOperand(1)); 6354 Ops[3] = getValue(I.getArgOperand(2)); 6355 Ops[4] = getValue(I.getArgOperand(3)); 6356 SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 6357 DAG.getVTList(MVT::Other), Ops, 6358 EVT::getIntegerVT(*Context, 8), 6359 MachinePointerInfo(I.getArgOperand(0)), 6360 0, /* align */ 6361 Flags); 6362 6363 // Chain the prefetch in parallell with any pending loads, to stay out of 6364 // the way of later optimizations. 6365 PendingLoads.push_back(Result); 6366 Result = getRoot(); 6367 DAG.setRoot(Result); 6368 return nullptr; 6369 } 6370 case Intrinsic::lifetime_start: 6371 case Intrinsic::lifetime_end: { 6372 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6373 // Stack coloring is not enabled in O0, discard region information. 6374 if (TM.getOptLevel() == CodeGenOpt::None) 6375 return nullptr; 6376 6377 const int64_t ObjectSize = 6378 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6379 Value *const ObjectPtr = I.getArgOperand(1); 6380 SmallVector<Value *, 4> Allocas; 6381 GetUnderlyingObjects(ObjectPtr, Allocas, *DL); 6382 6383 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 6384 E = Allocas.end(); Object != E; ++Object) { 6385 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 6386 6387 // Could not find an Alloca. 6388 if (!LifetimeObject) 6389 continue; 6390 6391 // First check that the Alloca is static, otherwise it won't have a 6392 // valid frame index. 6393 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6394 if (SI == FuncInfo.StaticAllocaMap.end()) 6395 return nullptr; 6396 6397 const int FrameIndex = SI->second; 6398 int64_t Offset; 6399 if (GetPointerBaseWithConstantOffset( 6400 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6401 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6402 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6403 Offset); 6404 DAG.setRoot(Res); 6405 } 6406 return nullptr; 6407 } 6408 case Intrinsic::invariant_start: 6409 // Discard region information. 6410 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6411 return nullptr; 6412 case Intrinsic::invariant_end: 6413 // Discard region information. 6414 return nullptr; 6415 case Intrinsic::clear_cache: 6416 return TLI.getClearCacheBuiltinName(); 6417 case Intrinsic::donothing: 6418 // ignore 6419 return nullptr; 6420 case Intrinsic::experimental_stackmap: 6421 visitStackmap(I); 6422 return nullptr; 6423 case Intrinsic::experimental_patchpoint_void: 6424 case Intrinsic::experimental_patchpoint_i64: 6425 visitPatchpoint(&I); 6426 return nullptr; 6427 case Intrinsic::experimental_gc_statepoint: 6428 LowerStatepoint(ImmutableStatepoint(&I)); 6429 return nullptr; 6430 case Intrinsic::experimental_gc_result: 6431 visitGCResult(cast<GCResultInst>(I)); 6432 return nullptr; 6433 case Intrinsic::experimental_gc_relocate: 6434 visitGCRelocate(cast<GCRelocateInst>(I)); 6435 return nullptr; 6436 case Intrinsic::instrprof_increment: 6437 llvm_unreachable("instrprof failed to lower an increment"); 6438 case Intrinsic::instrprof_value_profile: 6439 llvm_unreachable("instrprof failed to lower a value profiling call"); 6440 case Intrinsic::localescape: { 6441 MachineFunction &MF = DAG.getMachineFunction(); 6442 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6443 6444 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6445 // is the same on all targets. 6446 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 6447 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6448 if (isa<ConstantPointerNull>(Arg)) 6449 continue; // Skip null pointers. They represent a hole in index space. 6450 AllocaInst *Slot = cast<AllocaInst>(Arg); 6451 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6452 "can only escape static allocas"); 6453 int FI = FuncInfo.StaticAllocaMap[Slot]; 6454 MCSymbol *FrameAllocSym = 6455 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6456 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6457 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6458 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6459 .addSym(FrameAllocSym) 6460 .addFrameIndex(FI); 6461 } 6462 6463 return nullptr; 6464 } 6465 6466 case Intrinsic::localrecover: { 6467 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6468 MachineFunction &MF = DAG.getMachineFunction(); 6469 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 6470 6471 // Get the symbol that defines the frame offset. 6472 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6473 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6474 unsigned IdxVal = 6475 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6476 MCSymbol *FrameAllocSym = 6477 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6478 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6479 6480 // Create a MCSymbol for the label to avoid any target lowering 6481 // that would make this PC relative. 6482 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6483 SDValue OffsetVal = 6484 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6485 6486 // Add the offset to the FP. 6487 Value *FP = I.getArgOperand(1); 6488 SDValue FPVal = getValue(FP); 6489 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 6490 setValue(&I, Add); 6491 6492 return nullptr; 6493 } 6494 6495 case Intrinsic::eh_exceptionpointer: 6496 case Intrinsic::eh_exceptioncode: { 6497 // Get the exception pointer vreg, copy from it, and resize it to fit. 6498 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6499 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6500 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6501 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6502 SDValue N = 6503 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6504 if (Intrinsic == Intrinsic::eh_exceptioncode) 6505 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6506 setValue(&I, N); 6507 return nullptr; 6508 } 6509 case Intrinsic::xray_customevent: { 6510 // Here we want to make sure that the intrinsic behaves as if it has a 6511 // specific calling convention, and only for x86_64. 6512 // FIXME: Support other platforms later. 6513 const auto &Triple = DAG.getTarget().getTargetTriple(); 6514 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6515 return nullptr; 6516 6517 SDLoc DL = getCurSDLoc(); 6518 SmallVector<SDValue, 8> Ops; 6519 6520 // We want to say that we always want the arguments in registers. 6521 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6522 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6523 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6524 SDValue Chain = getRoot(); 6525 Ops.push_back(LogEntryVal); 6526 Ops.push_back(StrSizeVal); 6527 Ops.push_back(Chain); 6528 6529 // We need to enforce the calling convention for the callsite, so that 6530 // argument ordering is enforced correctly, and that register allocation can 6531 // see that some registers may be assumed clobbered and have to preserve 6532 // them across calls to the intrinsic. 6533 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6534 DL, NodeTys, Ops); 6535 SDValue patchableNode = SDValue(MN, 0); 6536 DAG.setRoot(patchableNode); 6537 setValue(&I, patchableNode); 6538 return nullptr; 6539 } 6540 case Intrinsic::xray_typedevent: { 6541 // Here we want to make sure that the intrinsic behaves as if it has a 6542 // specific calling convention, and only for x86_64. 6543 // FIXME: Support other platforms later. 6544 const auto &Triple = DAG.getTarget().getTargetTriple(); 6545 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6546 return nullptr; 6547 6548 SDLoc DL = getCurSDLoc(); 6549 SmallVector<SDValue, 8> Ops; 6550 6551 // We want to say that we always want the arguments in registers. 6552 // It's unclear to me how manipulating the selection DAG here forces callers 6553 // to provide arguments in registers instead of on the stack. 6554 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6555 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6556 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6557 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6558 SDValue Chain = getRoot(); 6559 Ops.push_back(LogTypeId); 6560 Ops.push_back(LogEntryVal); 6561 Ops.push_back(StrSizeVal); 6562 Ops.push_back(Chain); 6563 6564 // We need to enforce the calling convention for the callsite, so that 6565 // argument ordering is enforced correctly, and that register allocation can 6566 // see that some registers may be assumed clobbered and have to preserve 6567 // them across calls to the intrinsic. 6568 MachineSDNode *MN = DAG.getMachineNode( 6569 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6570 SDValue patchableNode = SDValue(MN, 0); 6571 DAG.setRoot(patchableNode); 6572 setValue(&I, patchableNode); 6573 return nullptr; 6574 } 6575 case Intrinsic::experimental_deoptimize: 6576 LowerDeoptimizeCall(&I); 6577 return nullptr; 6578 6579 case Intrinsic::experimental_vector_reduce_fadd: 6580 case Intrinsic::experimental_vector_reduce_fmul: 6581 case Intrinsic::experimental_vector_reduce_add: 6582 case Intrinsic::experimental_vector_reduce_mul: 6583 case Intrinsic::experimental_vector_reduce_and: 6584 case Intrinsic::experimental_vector_reduce_or: 6585 case Intrinsic::experimental_vector_reduce_xor: 6586 case Intrinsic::experimental_vector_reduce_smax: 6587 case Intrinsic::experimental_vector_reduce_smin: 6588 case Intrinsic::experimental_vector_reduce_umax: 6589 case Intrinsic::experimental_vector_reduce_umin: 6590 case Intrinsic::experimental_vector_reduce_fmax: 6591 case Intrinsic::experimental_vector_reduce_fmin: 6592 visitVectorReduce(I, Intrinsic); 6593 return nullptr; 6594 6595 case Intrinsic::icall_branch_funnel: { 6596 SmallVector<SDValue, 16> Ops; 6597 Ops.push_back(DAG.getRoot()); 6598 Ops.push_back(getValue(I.getArgOperand(0))); 6599 6600 int64_t Offset; 6601 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6602 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6603 if (!Base) 6604 report_fatal_error( 6605 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6606 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6607 6608 struct BranchFunnelTarget { 6609 int64_t Offset; 6610 SDValue Target; 6611 }; 6612 SmallVector<BranchFunnelTarget, 8> Targets; 6613 6614 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6615 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6616 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6617 if (ElemBase != Base) 6618 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6619 "to the same GlobalValue"); 6620 6621 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6622 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6623 if (!GA) 6624 report_fatal_error( 6625 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6626 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6627 GA->getGlobal(), getCurSDLoc(), 6628 Val.getValueType(), GA->getOffset())}); 6629 } 6630 llvm::sort(Targets, 6631 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6632 return T1.Offset < T2.Offset; 6633 }); 6634 6635 for (auto &T : Targets) { 6636 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6637 Ops.push_back(T.Target); 6638 } 6639 6640 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6641 getCurSDLoc(), MVT::Other, Ops), 6642 0); 6643 DAG.setRoot(N); 6644 setValue(&I, N); 6645 HasTailCall = true; 6646 return nullptr; 6647 } 6648 6649 case Intrinsic::wasm_landingpad_index: 6650 // Information this intrinsic contained has been transferred to 6651 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 6652 // delete it now. 6653 return nullptr; 6654 } 6655 } 6656 6657 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6658 const ConstrainedFPIntrinsic &FPI) { 6659 SDLoc sdl = getCurSDLoc(); 6660 unsigned Opcode; 6661 switch (FPI.getIntrinsicID()) { 6662 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6663 case Intrinsic::experimental_constrained_fadd: 6664 Opcode = ISD::STRICT_FADD; 6665 break; 6666 case Intrinsic::experimental_constrained_fsub: 6667 Opcode = ISD::STRICT_FSUB; 6668 break; 6669 case Intrinsic::experimental_constrained_fmul: 6670 Opcode = ISD::STRICT_FMUL; 6671 break; 6672 case Intrinsic::experimental_constrained_fdiv: 6673 Opcode = ISD::STRICT_FDIV; 6674 break; 6675 case Intrinsic::experimental_constrained_frem: 6676 Opcode = ISD::STRICT_FREM; 6677 break; 6678 case Intrinsic::experimental_constrained_fma: 6679 Opcode = ISD::STRICT_FMA; 6680 break; 6681 case Intrinsic::experimental_constrained_sqrt: 6682 Opcode = ISD::STRICT_FSQRT; 6683 break; 6684 case Intrinsic::experimental_constrained_pow: 6685 Opcode = ISD::STRICT_FPOW; 6686 break; 6687 case Intrinsic::experimental_constrained_powi: 6688 Opcode = ISD::STRICT_FPOWI; 6689 break; 6690 case Intrinsic::experimental_constrained_sin: 6691 Opcode = ISD::STRICT_FSIN; 6692 break; 6693 case Intrinsic::experimental_constrained_cos: 6694 Opcode = ISD::STRICT_FCOS; 6695 break; 6696 case Intrinsic::experimental_constrained_exp: 6697 Opcode = ISD::STRICT_FEXP; 6698 break; 6699 case Intrinsic::experimental_constrained_exp2: 6700 Opcode = ISD::STRICT_FEXP2; 6701 break; 6702 case Intrinsic::experimental_constrained_log: 6703 Opcode = ISD::STRICT_FLOG; 6704 break; 6705 case Intrinsic::experimental_constrained_log10: 6706 Opcode = ISD::STRICT_FLOG10; 6707 break; 6708 case Intrinsic::experimental_constrained_log2: 6709 Opcode = ISD::STRICT_FLOG2; 6710 break; 6711 case Intrinsic::experimental_constrained_rint: 6712 Opcode = ISD::STRICT_FRINT; 6713 break; 6714 case Intrinsic::experimental_constrained_nearbyint: 6715 Opcode = ISD::STRICT_FNEARBYINT; 6716 break; 6717 case Intrinsic::experimental_constrained_maxnum: 6718 Opcode = ISD::STRICT_FMAXNUM; 6719 break; 6720 case Intrinsic::experimental_constrained_minnum: 6721 Opcode = ISD::STRICT_FMINNUM; 6722 break; 6723 case Intrinsic::experimental_constrained_ceil: 6724 Opcode = ISD::STRICT_FCEIL; 6725 break; 6726 case Intrinsic::experimental_constrained_floor: 6727 Opcode = ISD::STRICT_FFLOOR; 6728 break; 6729 case Intrinsic::experimental_constrained_round: 6730 Opcode = ISD::STRICT_FROUND; 6731 break; 6732 case Intrinsic::experimental_constrained_trunc: 6733 Opcode = ISD::STRICT_FTRUNC; 6734 break; 6735 } 6736 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6737 SDValue Chain = getRoot(); 6738 SmallVector<EVT, 4> ValueVTs; 6739 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6740 ValueVTs.push_back(MVT::Other); // Out chain 6741 6742 SDVTList VTs = DAG.getVTList(ValueVTs); 6743 SDValue Result; 6744 if (FPI.isUnaryOp()) 6745 Result = DAG.getNode(Opcode, sdl, VTs, 6746 { Chain, getValue(FPI.getArgOperand(0)) }); 6747 else if (FPI.isTernaryOp()) 6748 Result = DAG.getNode(Opcode, sdl, VTs, 6749 { Chain, getValue(FPI.getArgOperand(0)), 6750 getValue(FPI.getArgOperand(1)), 6751 getValue(FPI.getArgOperand(2)) }); 6752 else 6753 Result = DAG.getNode(Opcode, sdl, VTs, 6754 { Chain, getValue(FPI.getArgOperand(0)), 6755 getValue(FPI.getArgOperand(1)) }); 6756 6757 assert(Result.getNode()->getNumValues() == 2); 6758 SDValue OutChain = Result.getValue(1); 6759 DAG.setRoot(OutChain); 6760 SDValue FPResult = Result.getValue(0); 6761 setValue(&FPI, FPResult); 6762 } 6763 6764 std::pair<SDValue, SDValue> 6765 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 6766 const BasicBlock *EHPadBB) { 6767 MachineFunction &MF = DAG.getMachineFunction(); 6768 MachineModuleInfo &MMI = MF.getMMI(); 6769 MCSymbol *BeginLabel = nullptr; 6770 6771 if (EHPadBB) { 6772 // Insert a label before the invoke call to mark the try range. This can be 6773 // used to detect deletion of the invoke via the MachineModuleInfo. 6774 BeginLabel = MMI.getContext().createTempSymbol(); 6775 6776 // For SjLj, keep track of which landing pads go with which invokes 6777 // so as to maintain the ordering of pads in the LSDA. 6778 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 6779 if (CallSiteIndex) { 6780 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 6781 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 6782 6783 // Now that the call site is handled, stop tracking it. 6784 MMI.setCurrentCallSite(0); 6785 } 6786 6787 // Both PendingLoads and PendingExports must be flushed here; 6788 // this call might not return. 6789 (void)getRoot(); 6790 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 6791 6792 CLI.setChain(getRoot()); 6793 } 6794 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6795 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6796 6797 assert((CLI.IsTailCall || Result.second.getNode()) && 6798 "Non-null chain expected with non-tail call!"); 6799 assert((Result.second.getNode() || !Result.first.getNode()) && 6800 "Null value expected with tail call!"); 6801 6802 if (!Result.second.getNode()) { 6803 // As a special case, a null chain means that a tail call has been emitted 6804 // and the DAG root is already updated. 6805 HasTailCall = true; 6806 6807 // Since there's no actual continuation from this block, nothing can be 6808 // relying on us setting vregs for them. 6809 PendingExports.clear(); 6810 } else { 6811 DAG.setRoot(Result.second); 6812 } 6813 6814 if (EHPadBB) { 6815 // Insert a label at the end of the invoke call to mark the try range. This 6816 // can be used to detect deletion of the invoke via the MachineModuleInfo. 6817 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 6818 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 6819 6820 // Inform MachineModuleInfo of range. 6821 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 6822 // There is a platform (e.g. wasm) that uses funclet style IR but does not 6823 // actually use outlined funclets and their LSDA info style. 6824 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 6825 assert(CLI.CS); 6826 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 6827 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()), 6828 BeginLabel, EndLabel); 6829 } else if (!isScopedEHPersonality(Pers)) { 6830 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 6831 } 6832 } 6833 6834 return Result; 6835 } 6836 6837 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 6838 bool isTailCall, 6839 const BasicBlock *EHPadBB) { 6840 auto &DL = DAG.getDataLayout(); 6841 FunctionType *FTy = CS.getFunctionType(); 6842 Type *RetTy = CS.getType(); 6843 6844 TargetLowering::ArgListTy Args; 6845 Args.reserve(CS.arg_size()); 6846 6847 const Value *SwiftErrorVal = nullptr; 6848 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6849 6850 // We can't tail call inside a function with a swifterror argument. Lowering 6851 // does not support this yet. It would have to move into the swifterror 6852 // register before the call. 6853 auto *Caller = CS.getInstruction()->getParent()->getParent(); 6854 if (TLI.supportSwiftError() && 6855 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 6856 isTailCall = false; 6857 6858 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 6859 i != e; ++i) { 6860 TargetLowering::ArgListEntry Entry; 6861 const Value *V = *i; 6862 6863 // Skip empty types 6864 if (V->getType()->isEmptyTy()) 6865 continue; 6866 6867 SDValue ArgNode = getValue(V); 6868 Entry.Node = ArgNode; Entry.Ty = V->getType(); 6869 6870 Entry.setAttributes(&CS, i - CS.arg_begin()); 6871 6872 // Use swifterror virtual register as input to the call. 6873 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 6874 SwiftErrorVal = V; 6875 // We find the virtual register for the actual swifterror argument. 6876 // Instead of using the Value, we use the virtual register instead. 6877 Entry.Node = DAG.getRegister(FuncInfo 6878 .getOrCreateSwiftErrorVRegUseAt( 6879 CS.getInstruction(), FuncInfo.MBB, V) 6880 .first, 6881 EVT(TLI.getPointerTy(DL))); 6882 } 6883 6884 Args.push_back(Entry); 6885 6886 // If we have an explicit sret argument that is an Instruction, (i.e., it 6887 // might point to function-local memory), we can't meaningfully tail-call. 6888 if (Entry.IsSRet && isa<Instruction>(V)) 6889 isTailCall = false; 6890 } 6891 6892 // Check if target-independent constraints permit a tail call here. 6893 // Target-dependent constraints are checked within TLI->LowerCallTo. 6894 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 6895 isTailCall = false; 6896 6897 // Disable tail calls if there is an swifterror argument. Targets have not 6898 // been updated to support tail calls. 6899 if (TLI.supportSwiftError() && SwiftErrorVal) 6900 isTailCall = false; 6901 6902 TargetLowering::CallLoweringInfo CLI(DAG); 6903 CLI.setDebugLoc(getCurSDLoc()) 6904 .setChain(getRoot()) 6905 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 6906 .setTailCall(isTailCall) 6907 .setConvergent(CS.isConvergent()); 6908 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 6909 6910 if (Result.first.getNode()) { 6911 const Instruction *Inst = CS.getInstruction(); 6912 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 6913 setValue(Inst, Result.first); 6914 } 6915 6916 // The last element of CLI.InVals has the SDValue for swifterror return. 6917 // Here we copy it to a virtual register and update SwiftErrorMap for 6918 // book-keeping. 6919 if (SwiftErrorVal && TLI.supportSwiftError()) { 6920 // Get the last element of InVals. 6921 SDValue Src = CLI.InVals.back(); 6922 unsigned VReg; bool CreatedVReg; 6923 std::tie(VReg, CreatedVReg) = 6924 FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction()); 6925 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 6926 // We update the virtual register for the actual swifterror argument. 6927 if (CreatedVReg) 6928 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg); 6929 DAG.setRoot(CopyNode); 6930 } 6931 } 6932 6933 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 6934 SelectionDAGBuilder &Builder) { 6935 // Check to see if this load can be trivially constant folded, e.g. if the 6936 // input is from a string literal. 6937 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 6938 // Cast pointer to the type we really want to load. 6939 Type *LoadTy = 6940 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 6941 if (LoadVT.isVector()) 6942 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 6943 6944 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 6945 PointerType::getUnqual(LoadTy)); 6946 6947 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 6948 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 6949 return Builder.getValue(LoadCst); 6950 } 6951 6952 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 6953 // still constant memory, the input chain can be the entry node. 6954 SDValue Root; 6955 bool ConstantMemory = false; 6956 6957 // Do not serialize (non-volatile) loads of constant memory with anything. 6958 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 6959 Root = Builder.DAG.getEntryNode(); 6960 ConstantMemory = true; 6961 } else { 6962 // Do not serialize non-volatile loads against each other. 6963 Root = Builder.DAG.getRoot(); 6964 } 6965 6966 SDValue Ptr = Builder.getValue(PtrVal); 6967 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 6968 Ptr, MachinePointerInfo(PtrVal), 6969 /* Alignment = */ 1); 6970 6971 if (!ConstantMemory) 6972 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 6973 return LoadVal; 6974 } 6975 6976 /// Record the value for an instruction that produces an integer result, 6977 /// converting the type where necessary. 6978 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 6979 SDValue Value, 6980 bool IsSigned) { 6981 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6982 I.getType(), true); 6983 if (IsSigned) 6984 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 6985 else 6986 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 6987 setValue(&I, Value); 6988 } 6989 6990 /// See if we can lower a memcmp call into an optimized form. If so, return 6991 /// true and lower it. Otherwise return false, and it will be lowered like a 6992 /// normal call. 6993 /// The caller already checked that \p I calls the appropriate LibFunc with a 6994 /// correct prototype. 6995 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 6996 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 6997 const Value *Size = I.getArgOperand(2); 6998 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 6999 if (CSize && CSize->getZExtValue() == 0) { 7000 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7001 I.getType(), true); 7002 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7003 return true; 7004 } 7005 7006 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7007 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7008 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7009 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7010 if (Res.first.getNode()) { 7011 processIntegerCallValue(I, Res.first, true); 7012 PendingLoads.push_back(Res.second); 7013 return true; 7014 } 7015 7016 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7017 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7018 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7019 return false; 7020 7021 // If the target has a fast compare for the given size, it will return a 7022 // preferred load type for that size. Require that the load VT is legal and 7023 // that the target supports unaligned loads of that type. Otherwise, return 7024 // INVALID. 7025 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7026 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7027 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7028 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7029 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7030 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7031 // TODO: Check alignment of src and dest ptrs. 7032 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7033 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7034 if (!TLI.isTypeLegal(LVT) || 7035 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7036 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7037 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7038 } 7039 7040 return LVT; 7041 }; 7042 7043 // This turns into unaligned loads. We only do this if the target natively 7044 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7045 // we'll only produce a small number of byte loads. 7046 MVT LoadVT; 7047 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7048 switch (NumBitsToCompare) { 7049 default: 7050 return false; 7051 case 16: 7052 LoadVT = MVT::i16; 7053 break; 7054 case 32: 7055 LoadVT = MVT::i32; 7056 break; 7057 case 64: 7058 case 128: 7059 case 256: 7060 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7061 break; 7062 } 7063 7064 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7065 return false; 7066 7067 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7068 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7069 7070 // Bitcast to a wide integer type if the loads are vectors. 7071 if (LoadVT.isVector()) { 7072 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7073 LoadL = DAG.getBitcast(CmpVT, LoadL); 7074 LoadR = DAG.getBitcast(CmpVT, LoadR); 7075 } 7076 7077 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7078 processIntegerCallValue(I, Cmp, false); 7079 return true; 7080 } 7081 7082 /// See if we can lower a memchr call into an optimized form. If so, return 7083 /// true and lower it. Otherwise return false, and it will be lowered like a 7084 /// normal call. 7085 /// The caller already checked that \p I calls the appropriate LibFunc with a 7086 /// correct prototype. 7087 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 7088 const Value *Src = I.getArgOperand(0); 7089 const Value *Char = I.getArgOperand(1); 7090 const Value *Length = I.getArgOperand(2); 7091 7092 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7093 std::pair<SDValue, SDValue> Res = 7094 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 7095 getValue(Src), getValue(Char), getValue(Length), 7096 MachinePointerInfo(Src)); 7097 if (Res.first.getNode()) { 7098 setValue(&I, Res.first); 7099 PendingLoads.push_back(Res.second); 7100 return true; 7101 } 7102 7103 return false; 7104 } 7105 7106 /// See if we can lower a mempcpy call into an optimized form. If so, return 7107 /// true and lower it. Otherwise return false, and it will be lowered like a 7108 /// normal call. 7109 /// The caller already checked that \p I calls the appropriate LibFunc with a 7110 /// correct prototype. 7111 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 7112 SDValue Dst = getValue(I.getArgOperand(0)); 7113 SDValue Src = getValue(I.getArgOperand(1)); 7114 SDValue Size = getValue(I.getArgOperand(2)); 7115 7116 unsigned DstAlign = DAG.InferPtrAlignment(Dst); 7117 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 7118 unsigned Align = std::min(DstAlign, SrcAlign); 7119 if (Align == 0) // Alignment of one or both could not be inferred. 7120 Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved. 7121 7122 bool isVol = false; 7123 SDLoc sdl = getCurSDLoc(); 7124 7125 // In the mempcpy context we need to pass in a false value for isTailCall 7126 // because the return pointer needs to be adjusted by the size of 7127 // the copied memory. 7128 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol, 7129 false, /*isTailCall=*/false, 7130 MachinePointerInfo(I.getArgOperand(0)), 7131 MachinePointerInfo(I.getArgOperand(1))); 7132 assert(MC.getNode() != nullptr && 7133 "** memcpy should not be lowered as TailCall in mempcpy context **"); 7134 DAG.setRoot(MC); 7135 7136 // Check if Size needs to be truncated or extended. 7137 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 7138 7139 // Adjust return pointer to point just past the last dst byte. 7140 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 7141 Dst, Size); 7142 setValue(&I, DstPlusSize); 7143 return true; 7144 } 7145 7146 /// See if we can lower a strcpy call into an optimized form. If so, return 7147 /// true and lower it, otherwise return false and it will be lowered like a 7148 /// normal call. 7149 /// The caller already checked that \p I calls the appropriate LibFunc with a 7150 /// correct prototype. 7151 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 7152 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7153 7154 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7155 std::pair<SDValue, SDValue> Res = 7156 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 7157 getValue(Arg0), getValue(Arg1), 7158 MachinePointerInfo(Arg0), 7159 MachinePointerInfo(Arg1), isStpcpy); 7160 if (Res.first.getNode()) { 7161 setValue(&I, Res.first); 7162 DAG.setRoot(Res.second); 7163 return true; 7164 } 7165 7166 return false; 7167 } 7168 7169 /// See if we can lower a strcmp call into an optimized form. If so, return 7170 /// true and lower it, otherwise return false and it will be lowered like a 7171 /// normal call. 7172 /// The caller already checked that \p I calls the appropriate LibFunc with a 7173 /// correct prototype. 7174 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 7175 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7176 7177 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7178 std::pair<SDValue, SDValue> Res = 7179 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 7180 getValue(Arg0), getValue(Arg1), 7181 MachinePointerInfo(Arg0), 7182 MachinePointerInfo(Arg1)); 7183 if (Res.first.getNode()) { 7184 processIntegerCallValue(I, Res.first, true); 7185 PendingLoads.push_back(Res.second); 7186 return true; 7187 } 7188 7189 return false; 7190 } 7191 7192 /// See if we can lower a strlen call into an optimized form. If so, return 7193 /// true and lower it, otherwise return false and it will be lowered like a 7194 /// normal call. 7195 /// The caller already checked that \p I calls the appropriate LibFunc with a 7196 /// correct prototype. 7197 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 7198 const Value *Arg0 = I.getArgOperand(0); 7199 7200 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7201 std::pair<SDValue, SDValue> Res = 7202 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 7203 getValue(Arg0), MachinePointerInfo(Arg0)); 7204 if (Res.first.getNode()) { 7205 processIntegerCallValue(I, Res.first, false); 7206 PendingLoads.push_back(Res.second); 7207 return true; 7208 } 7209 7210 return false; 7211 } 7212 7213 /// See if we can lower a strnlen call into an optimized form. If so, return 7214 /// true and lower it, otherwise return false and it will be lowered like a 7215 /// normal call. 7216 /// The caller already checked that \p I calls the appropriate LibFunc with a 7217 /// correct prototype. 7218 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 7219 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7220 7221 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7222 std::pair<SDValue, SDValue> Res = 7223 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 7224 getValue(Arg0), getValue(Arg1), 7225 MachinePointerInfo(Arg0)); 7226 if (Res.first.getNode()) { 7227 processIntegerCallValue(I, Res.first, false); 7228 PendingLoads.push_back(Res.second); 7229 return true; 7230 } 7231 7232 return false; 7233 } 7234 7235 /// See if we can lower a unary floating-point operation into an SDNode with 7236 /// the specified Opcode. If so, return true and lower it, otherwise return 7237 /// false and it will be lowered like a normal call. 7238 /// The caller already checked that \p I calls the appropriate LibFunc with a 7239 /// correct prototype. 7240 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 7241 unsigned Opcode) { 7242 // We already checked this call's prototype; verify it doesn't modify errno. 7243 if (!I.onlyReadsMemory()) 7244 return false; 7245 7246 SDValue Tmp = getValue(I.getArgOperand(0)); 7247 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 7248 return true; 7249 } 7250 7251 /// See if we can lower a binary floating-point operation into an SDNode with 7252 /// the specified Opcode. If so, return true and lower it. Otherwise return 7253 /// false, and it will be lowered like a normal call. 7254 /// The caller already checked that \p I calls the appropriate LibFunc with a 7255 /// correct prototype. 7256 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 7257 unsigned Opcode) { 7258 // We already checked this call's prototype; verify it doesn't modify errno. 7259 if (!I.onlyReadsMemory()) 7260 return false; 7261 7262 SDValue Tmp0 = getValue(I.getArgOperand(0)); 7263 SDValue Tmp1 = getValue(I.getArgOperand(1)); 7264 EVT VT = Tmp0.getValueType(); 7265 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 7266 return true; 7267 } 7268 7269 void SelectionDAGBuilder::visitCall(const CallInst &I) { 7270 // Handle inline assembly differently. 7271 if (isa<InlineAsm>(I.getCalledValue())) { 7272 visitInlineAsm(&I); 7273 return; 7274 } 7275 7276 const char *RenameFn = nullptr; 7277 if (Function *F = I.getCalledFunction()) { 7278 if (F->isDeclaration()) { 7279 // Is this an LLVM intrinsic or a target-specific intrinsic? 7280 unsigned IID = F->getIntrinsicID(); 7281 if (!IID) 7282 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 7283 IID = II->getIntrinsicID(F); 7284 7285 if (IID) { 7286 RenameFn = visitIntrinsicCall(I, IID); 7287 if (!RenameFn) 7288 return; 7289 } 7290 } 7291 7292 // Check for well-known libc/libm calls. If the function is internal, it 7293 // can't be a library call. Don't do the check if marked as nobuiltin for 7294 // some reason or the call site requires strict floating point semantics. 7295 LibFunc Func; 7296 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 7297 F->hasName() && LibInfo->getLibFunc(*F, Func) && 7298 LibInfo->hasOptimizedCodeGen(Func)) { 7299 switch (Func) { 7300 default: break; 7301 case LibFunc_copysign: 7302 case LibFunc_copysignf: 7303 case LibFunc_copysignl: 7304 // We already checked this call's prototype; verify it doesn't modify 7305 // errno. 7306 if (I.onlyReadsMemory()) { 7307 SDValue LHS = getValue(I.getArgOperand(0)); 7308 SDValue RHS = getValue(I.getArgOperand(1)); 7309 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 7310 LHS.getValueType(), LHS, RHS)); 7311 return; 7312 } 7313 break; 7314 case LibFunc_fabs: 7315 case LibFunc_fabsf: 7316 case LibFunc_fabsl: 7317 if (visitUnaryFloatCall(I, ISD::FABS)) 7318 return; 7319 break; 7320 case LibFunc_fmin: 7321 case LibFunc_fminf: 7322 case LibFunc_fminl: 7323 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 7324 return; 7325 break; 7326 case LibFunc_fmax: 7327 case LibFunc_fmaxf: 7328 case LibFunc_fmaxl: 7329 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 7330 return; 7331 break; 7332 case LibFunc_sin: 7333 case LibFunc_sinf: 7334 case LibFunc_sinl: 7335 if (visitUnaryFloatCall(I, ISD::FSIN)) 7336 return; 7337 break; 7338 case LibFunc_cos: 7339 case LibFunc_cosf: 7340 case LibFunc_cosl: 7341 if (visitUnaryFloatCall(I, ISD::FCOS)) 7342 return; 7343 break; 7344 case LibFunc_sqrt: 7345 case LibFunc_sqrtf: 7346 case LibFunc_sqrtl: 7347 case LibFunc_sqrt_finite: 7348 case LibFunc_sqrtf_finite: 7349 case LibFunc_sqrtl_finite: 7350 if (visitUnaryFloatCall(I, ISD::FSQRT)) 7351 return; 7352 break; 7353 case LibFunc_floor: 7354 case LibFunc_floorf: 7355 case LibFunc_floorl: 7356 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 7357 return; 7358 break; 7359 case LibFunc_nearbyint: 7360 case LibFunc_nearbyintf: 7361 case LibFunc_nearbyintl: 7362 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 7363 return; 7364 break; 7365 case LibFunc_ceil: 7366 case LibFunc_ceilf: 7367 case LibFunc_ceill: 7368 if (visitUnaryFloatCall(I, ISD::FCEIL)) 7369 return; 7370 break; 7371 case LibFunc_rint: 7372 case LibFunc_rintf: 7373 case LibFunc_rintl: 7374 if (visitUnaryFloatCall(I, ISD::FRINT)) 7375 return; 7376 break; 7377 case LibFunc_round: 7378 case LibFunc_roundf: 7379 case LibFunc_roundl: 7380 if (visitUnaryFloatCall(I, ISD::FROUND)) 7381 return; 7382 break; 7383 case LibFunc_trunc: 7384 case LibFunc_truncf: 7385 case LibFunc_truncl: 7386 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 7387 return; 7388 break; 7389 case LibFunc_log2: 7390 case LibFunc_log2f: 7391 case LibFunc_log2l: 7392 if (visitUnaryFloatCall(I, ISD::FLOG2)) 7393 return; 7394 break; 7395 case LibFunc_exp2: 7396 case LibFunc_exp2f: 7397 case LibFunc_exp2l: 7398 if (visitUnaryFloatCall(I, ISD::FEXP2)) 7399 return; 7400 break; 7401 case LibFunc_memcmp: 7402 if (visitMemCmpCall(I)) 7403 return; 7404 break; 7405 case LibFunc_mempcpy: 7406 if (visitMemPCpyCall(I)) 7407 return; 7408 break; 7409 case LibFunc_memchr: 7410 if (visitMemChrCall(I)) 7411 return; 7412 break; 7413 case LibFunc_strcpy: 7414 if (visitStrCpyCall(I, false)) 7415 return; 7416 break; 7417 case LibFunc_stpcpy: 7418 if (visitStrCpyCall(I, true)) 7419 return; 7420 break; 7421 case LibFunc_strcmp: 7422 if (visitStrCmpCall(I)) 7423 return; 7424 break; 7425 case LibFunc_strlen: 7426 if (visitStrLenCall(I)) 7427 return; 7428 break; 7429 case LibFunc_strnlen: 7430 if (visitStrNLenCall(I)) 7431 return; 7432 break; 7433 } 7434 } 7435 } 7436 7437 SDValue Callee; 7438 if (!RenameFn) 7439 Callee = getValue(I.getCalledValue()); 7440 else 7441 Callee = DAG.getExternalSymbol( 7442 RenameFn, 7443 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 7444 7445 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 7446 // have to do anything here to lower funclet bundles. 7447 assert(!I.hasOperandBundlesOtherThan( 7448 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 7449 "Cannot lower calls with arbitrary operand bundles!"); 7450 7451 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 7452 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 7453 else 7454 // Check if we can potentially perform a tail call. More detailed checking 7455 // is be done within LowerCallTo, after more information about the call is 7456 // known. 7457 LowerCallTo(&I, Callee, I.isTailCall()); 7458 } 7459 7460 namespace { 7461 7462 /// AsmOperandInfo - This contains information for each constraint that we are 7463 /// lowering. 7464 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 7465 public: 7466 /// CallOperand - If this is the result output operand or a clobber 7467 /// this is null, otherwise it is the incoming operand to the CallInst. 7468 /// This gets modified as the asm is processed. 7469 SDValue CallOperand; 7470 7471 /// AssignedRegs - If this is a register or register class operand, this 7472 /// contains the set of register corresponding to the operand. 7473 RegsForValue AssignedRegs; 7474 7475 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 7476 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 7477 } 7478 7479 /// Whether or not this operand accesses memory 7480 bool hasMemory(const TargetLowering &TLI) const { 7481 // Indirect operand accesses access memory. 7482 if (isIndirect) 7483 return true; 7484 7485 for (const auto &Code : Codes) 7486 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 7487 return true; 7488 7489 return false; 7490 } 7491 7492 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 7493 /// corresponds to. If there is no Value* for this operand, it returns 7494 /// MVT::Other. 7495 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 7496 const DataLayout &DL) const { 7497 if (!CallOperandVal) return MVT::Other; 7498 7499 if (isa<BasicBlock>(CallOperandVal)) 7500 return TLI.getPointerTy(DL); 7501 7502 llvm::Type *OpTy = CallOperandVal->getType(); 7503 7504 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 7505 // If this is an indirect operand, the operand is a pointer to the 7506 // accessed type. 7507 if (isIndirect) { 7508 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 7509 if (!PtrTy) 7510 report_fatal_error("Indirect operand for inline asm not a pointer!"); 7511 OpTy = PtrTy->getElementType(); 7512 } 7513 7514 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 7515 if (StructType *STy = dyn_cast<StructType>(OpTy)) 7516 if (STy->getNumElements() == 1) 7517 OpTy = STy->getElementType(0); 7518 7519 // If OpTy is not a single value, it may be a struct/union that we 7520 // can tile with integers. 7521 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7522 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7523 switch (BitSize) { 7524 default: break; 7525 case 1: 7526 case 8: 7527 case 16: 7528 case 32: 7529 case 64: 7530 case 128: 7531 OpTy = IntegerType::get(Context, BitSize); 7532 break; 7533 } 7534 } 7535 7536 return TLI.getValueType(DL, OpTy, true); 7537 } 7538 }; 7539 7540 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>; 7541 7542 } // end anonymous namespace 7543 7544 /// Make sure that the output operand \p OpInfo and its corresponding input 7545 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7546 /// out). 7547 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7548 SDISelAsmOperandInfo &MatchingOpInfo, 7549 SelectionDAG &DAG) { 7550 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7551 return; 7552 7553 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7554 const auto &TLI = DAG.getTargetLoweringInfo(); 7555 7556 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7557 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7558 OpInfo.ConstraintVT); 7559 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7560 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7561 MatchingOpInfo.ConstraintVT); 7562 if ((OpInfo.ConstraintVT.isInteger() != 7563 MatchingOpInfo.ConstraintVT.isInteger()) || 7564 (MatchRC.second != InputRC.second)) { 7565 // FIXME: error out in a more elegant fashion 7566 report_fatal_error("Unsupported asm: input constraint" 7567 " with a matching output constraint of" 7568 " incompatible type!"); 7569 } 7570 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 7571 } 7572 7573 /// Get a direct memory input to behave well as an indirect operand. 7574 /// This may introduce stores, hence the need for a \p Chain. 7575 /// \return The (possibly updated) chain. 7576 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 7577 SDISelAsmOperandInfo &OpInfo, 7578 SelectionDAG &DAG) { 7579 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7580 7581 // If we don't have an indirect input, put it in the constpool if we can, 7582 // otherwise spill it to a stack slot. 7583 // TODO: This isn't quite right. We need to handle these according to 7584 // the addressing mode that the constraint wants. Also, this may take 7585 // an additional register for the computation and we don't want that 7586 // either. 7587 7588 // If the operand is a float, integer, or vector constant, spill to a 7589 // constant pool entry to get its address. 7590 const Value *OpVal = OpInfo.CallOperandVal; 7591 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 7592 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 7593 OpInfo.CallOperand = DAG.getConstantPool( 7594 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 7595 return Chain; 7596 } 7597 7598 // Otherwise, create a stack slot and emit a store to it before the asm. 7599 Type *Ty = OpVal->getType(); 7600 auto &DL = DAG.getDataLayout(); 7601 uint64_t TySize = DL.getTypeAllocSize(Ty); 7602 unsigned Align = DL.getPrefTypeAlignment(Ty); 7603 MachineFunction &MF = DAG.getMachineFunction(); 7604 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7605 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 7606 Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot, 7607 MachinePointerInfo::getFixedStack(MF, SSFI)); 7608 OpInfo.CallOperand = StackSlot; 7609 7610 return Chain; 7611 } 7612 7613 /// GetRegistersForValue - Assign registers (virtual or physical) for the 7614 /// specified operand. We prefer to assign virtual registers, to allow the 7615 /// register allocator to handle the assignment process. However, if the asm 7616 /// uses features that we can't model on machineinstrs, we have SDISel do the 7617 /// allocation. This produces generally horrible, but correct, code. 7618 /// 7619 /// OpInfo describes the operand 7620 /// RefOpInfo describes the matching operand if any, the operand otherwise 7621 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 7622 SDISelAsmOperandInfo &OpInfo, 7623 SDISelAsmOperandInfo &RefOpInfo) { 7624 LLVMContext &Context = *DAG.getContext(); 7625 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7626 7627 MachineFunction &MF = DAG.getMachineFunction(); 7628 SmallVector<unsigned, 4> Regs; 7629 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7630 7631 // No work to do for memory operations. 7632 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 7633 return; 7634 7635 // If this is a constraint for a single physreg, or a constraint for a 7636 // register class, find it. 7637 unsigned AssignedReg; 7638 const TargetRegisterClass *RC; 7639 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 7640 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 7641 // RC is unset only on failure. Return immediately. 7642 if (!RC) 7643 return; 7644 7645 // Get the actual register value type. This is important, because the user 7646 // may have asked for (e.g.) the AX register in i32 type. We need to 7647 // remember that AX is actually i16 to get the right extension. 7648 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 7649 7650 if (OpInfo.ConstraintVT != MVT::Other) { 7651 // If this is an FP operand in an integer register (or visa versa), or more 7652 // generally if the operand value disagrees with the register class we plan 7653 // to stick it in, fix the operand type. 7654 // 7655 // If this is an input value, the bitcast to the new type is done now. 7656 // Bitcast for output value is done at the end of visitInlineAsm(). 7657 if ((OpInfo.Type == InlineAsm::isOutput || 7658 OpInfo.Type == InlineAsm::isInput) && 7659 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 7660 // Try to convert to the first EVT that the reg class contains. If the 7661 // types are identical size, use a bitcast to convert (e.g. two differing 7662 // vector types). Note: output bitcast is done at the end of 7663 // visitInlineAsm(). 7664 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 7665 // Exclude indirect inputs while they are unsupported because the code 7666 // to perform the load is missing and thus OpInfo.CallOperand still 7667 // refers to the input address rather than the pointed-to value. 7668 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 7669 OpInfo.CallOperand = 7670 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 7671 OpInfo.ConstraintVT = RegVT; 7672 // If the operand is an FP value and we want it in integer registers, 7673 // use the corresponding integer type. This turns an f64 value into 7674 // i64, which can be passed with two i32 values on a 32-bit machine. 7675 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7676 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7677 if (OpInfo.Type == InlineAsm::isInput) 7678 OpInfo.CallOperand = 7679 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 7680 OpInfo.ConstraintVT = VT; 7681 } 7682 } 7683 } 7684 7685 // No need to allocate a matching input constraint since the constraint it's 7686 // matching to has already been allocated. 7687 if (OpInfo.isMatchingInputConstraint()) 7688 return; 7689 7690 EVT ValueVT = OpInfo.ConstraintVT; 7691 if (OpInfo.ConstraintVT == MVT::Other) 7692 ValueVT = RegVT; 7693 7694 // Initialize NumRegs. 7695 unsigned NumRegs = 1; 7696 if (OpInfo.ConstraintVT != MVT::Other) 7697 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 7698 7699 // If this is a constraint for a specific physical register, like {r17}, 7700 // assign it now. 7701 7702 // If this associated to a specific register, initialize iterator to correct 7703 // place. If virtual, make sure we have enough registers 7704 7705 // Initialize iterator if necessary 7706 TargetRegisterClass::iterator I = RC->begin(); 7707 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7708 7709 // Do not check for single registers. 7710 if (AssignedReg) { 7711 for (; *I != AssignedReg; ++I) 7712 assert(I != RC->end() && "AssignedReg should be member of RC"); 7713 } 7714 7715 for (; NumRegs; --NumRegs, ++I) { 7716 assert(I != RC->end() && "Ran out of registers to allocate!"); 7717 auto R = (AssignedReg) ? *I : RegInfo.createVirtualRegister(RC); 7718 Regs.push_back(R); 7719 } 7720 7721 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7722 } 7723 7724 static unsigned 7725 findMatchingInlineAsmOperand(unsigned OperandNo, 7726 const std::vector<SDValue> &AsmNodeOperands) { 7727 // Scan until we find the definition we already emitted of this operand. 7728 unsigned CurOp = InlineAsm::Op_FirstOperand; 7729 for (; OperandNo; --OperandNo) { 7730 // Advance to the next operand. 7731 unsigned OpFlag = 7732 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7733 assert((InlineAsm::isRegDefKind(OpFlag) || 7734 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 7735 InlineAsm::isMemKind(OpFlag)) && 7736 "Skipped past definitions?"); 7737 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 7738 } 7739 return CurOp; 7740 } 7741 7742 namespace { 7743 7744 class ExtraFlags { 7745 unsigned Flags = 0; 7746 7747 public: 7748 explicit ExtraFlags(ImmutableCallSite CS) { 7749 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7750 if (IA->hasSideEffects()) 7751 Flags |= InlineAsm::Extra_HasSideEffects; 7752 if (IA->isAlignStack()) 7753 Flags |= InlineAsm::Extra_IsAlignStack; 7754 if (CS.isConvergent()) 7755 Flags |= InlineAsm::Extra_IsConvergent; 7756 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 7757 } 7758 7759 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 7760 // Ideally, we would only check against memory constraints. However, the 7761 // meaning of an Other constraint can be target-specific and we can't easily 7762 // reason about it. Therefore, be conservative and set MayLoad/MayStore 7763 // for Other constraints as well. 7764 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 7765 OpInfo.ConstraintType == TargetLowering::C_Other) { 7766 if (OpInfo.Type == InlineAsm::isInput) 7767 Flags |= InlineAsm::Extra_MayLoad; 7768 else if (OpInfo.Type == InlineAsm::isOutput) 7769 Flags |= InlineAsm::Extra_MayStore; 7770 else if (OpInfo.Type == InlineAsm::isClobber) 7771 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 7772 } 7773 } 7774 7775 unsigned get() const { return Flags; } 7776 }; 7777 7778 } // end anonymous namespace 7779 7780 /// visitInlineAsm - Handle a call to an InlineAsm object. 7781 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 7782 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7783 7784 /// ConstraintOperands - Information about all of the constraints. 7785 SDISelAsmOperandInfoVector ConstraintOperands; 7786 7787 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7788 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 7789 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 7790 7791 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 7792 // AsmDialect, MayLoad, MayStore). 7793 bool HasSideEffect = IA->hasSideEffects(); 7794 ExtraFlags ExtraInfo(CS); 7795 7796 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 7797 unsigned ResNo = 0; // ResNo - The result number of the next output. 7798 for (auto &T : TargetConstraints) { 7799 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 7800 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 7801 7802 // Compute the value type for each operand. 7803 if (OpInfo.Type == InlineAsm::isInput || 7804 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 7805 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 7806 7807 // Process the call argument. BasicBlocks are labels, currently appearing 7808 // only in asm's. 7809 const Instruction *I = CS.getInstruction(); 7810 if (isa<CallBrInst>(I) && 7811 (ArgNo - 1) >= (cast<CallBrInst>(I)->getNumArgOperands() - 7812 cast<CallBrInst>(I)->getNumIndirectDests())) { 7813 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal); 7814 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true); 7815 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT); 7816 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 7817 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 7818 } else { 7819 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 7820 } 7821 7822 OpInfo.ConstraintVT = 7823 OpInfo 7824 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 7825 .getSimpleVT(); 7826 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 7827 // The return value of the call is this value. As such, there is no 7828 // corresponding argument. 7829 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7830 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 7831 OpInfo.ConstraintVT = TLI.getSimpleValueType( 7832 DAG.getDataLayout(), STy->getElementType(ResNo)); 7833 } else { 7834 assert(ResNo == 0 && "Asm only has one result!"); 7835 OpInfo.ConstraintVT = 7836 TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 7837 } 7838 ++ResNo; 7839 } else { 7840 OpInfo.ConstraintVT = MVT::Other; 7841 } 7842 7843 if (!HasSideEffect) 7844 HasSideEffect = OpInfo.hasMemory(TLI); 7845 7846 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 7847 // FIXME: Could we compute this on OpInfo rather than T? 7848 7849 // Compute the constraint code and ConstraintType to use. 7850 TLI.ComputeConstraintToUse(T, SDValue()); 7851 7852 ExtraInfo.update(T); 7853 } 7854 7855 // We won't need to flush pending loads if this asm doesn't touch 7856 // memory and is nonvolatile. 7857 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 7858 7859 // Second pass over the constraints: compute which constraint option to use. 7860 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 7861 // If this is an output operand with a matching input operand, look up the 7862 // matching input. If their types mismatch, e.g. one is an integer, the 7863 // other is floating point, or their sizes are different, flag it as an 7864 // error. 7865 if (OpInfo.hasMatchingInput()) { 7866 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 7867 patchMatchingInput(OpInfo, Input, DAG); 7868 } 7869 7870 // Compute the constraint code and ConstraintType to use. 7871 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 7872 7873 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7874 OpInfo.Type == InlineAsm::isClobber) 7875 continue; 7876 7877 // If this is a memory input, and if the operand is not indirect, do what we 7878 // need to provide an address for the memory input. 7879 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7880 !OpInfo.isIndirect) { 7881 assert((OpInfo.isMultipleAlternative || 7882 (OpInfo.Type == InlineAsm::isInput)) && 7883 "Can only indirectify direct input operands!"); 7884 7885 // Memory operands really want the address of the value. 7886 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 7887 7888 // There is no longer a Value* corresponding to this operand. 7889 OpInfo.CallOperandVal = nullptr; 7890 7891 // It is now an indirect operand. 7892 OpInfo.isIndirect = true; 7893 } 7894 7895 } 7896 7897 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 7898 std::vector<SDValue> AsmNodeOperands; 7899 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 7900 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 7901 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 7902 7903 // If we have a !srcloc metadata node associated with it, we want to attach 7904 // this to the ultimately generated inline asm machineinstr. To do this, we 7905 // pass in the third operand as this (potentially null) inline asm MDNode. 7906 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 7907 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 7908 7909 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 7910 // bits as operand 3. 7911 AsmNodeOperands.push_back(DAG.getTargetConstant( 7912 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7913 7914 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 7915 // this, assign virtual and physical registers for inputs and otput. 7916 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 7917 // Assign Registers. 7918 SDISelAsmOperandInfo &RefOpInfo = 7919 OpInfo.isMatchingInputConstraint() 7920 ? ConstraintOperands[OpInfo.getMatchedOperand()] 7921 : OpInfo; 7922 GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 7923 7924 switch (OpInfo.Type) { 7925 case InlineAsm::isOutput: 7926 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 7927 (OpInfo.ConstraintType == TargetLowering::C_Other && 7928 OpInfo.isIndirect)) { 7929 unsigned ConstraintID = 7930 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7931 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7932 "Failed to convert memory constraint code to constraint id."); 7933 7934 // Add information to the INLINEASM node to know about this output. 7935 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7936 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 7937 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 7938 MVT::i32)); 7939 AsmNodeOperands.push_back(OpInfo.CallOperand); 7940 break; 7941 } else if ((OpInfo.ConstraintType == TargetLowering::C_Other && 7942 !OpInfo.isIndirect) || 7943 OpInfo.ConstraintType == TargetLowering::C_Register || 7944 OpInfo.ConstraintType == TargetLowering::C_RegisterClass) { 7945 // Otherwise, this outputs to a register (directly for C_Register / 7946 // C_RegisterClass, and a target-defined fashion for C_Other). Find a 7947 // register that we can use. 7948 if (OpInfo.AssignedRegs.Regs.empty()) { 7949 emitInlineAsmError( 7950 CS, "couldn't allocate output register for constraint '" + 7951 Twine(OpInfo.ConstraintCode) + "'"); 7952 return; 7953 } 7954 7955 // Add information to the INLINEASM node to know that this register is 7956 // set. 7957 OpInfo.AssignedRegs.AddInlineAsmOperands( 7958 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 7959 : InlineAsm::Kind_RegDef, 7960 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 7961 } 7962 break; 7963 7964 case InlineAsm::isInput: { 7965 SDValue InOperandVal = OpInfo.CallOperand; 7966 7967 if (OpInfo.isMatchingInputConstraint()) { 7968 // If this is required to match an output register we have already set, 7969 // just use its register. 7970 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 7971 AsmNodeOperands); 7972 unsigned OpFlag = 7973 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7974 if (InlineAsm::isRegDefKind(OpFlag) || 7975 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 7976 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 7977 if (OpInfo.isIndirect) { 7978 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 7979 emitInlineAsmError(CS, "inline asm not supported yet:" 7980 " don't know how to handle tied " 7981 "indirect register inputs"); 7982 return; 7983 } 7984 7985 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 7986 SmallVector<unsigned, 4> Regs; 7987 7988 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) { 7989 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 7990 MachineRegisterInfo &RegInfo = 7991 DAG.getMachineFunction().getRegInfo(); 7992 for (unsigned i = 0; i != NumRegs; ++i) 7993 Regs.push_back(RegInfo.createVirtualRegister(RC)); 7994 } else { 7995 emitInlineAsmError(CS, "inline asm error: This value type register " 7996 "class is not natively supported!"); 7997 return; 7998 } 7999 8000 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8001 8002 SDLoc dl = getCurSDLoc(); 8003 // Use the produced MatchedRegs object to 8004 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 8005 CS.getInstruction()); 8006 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8007 true, OpInfo.getMatchedOperand(), dl, 8008 DAG, AsmNodeOperands); 8009 break; 8010 } 8011 8012 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8013 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8014 "Unexpected number of operands"); 8015 // Add information to the INLINEASM node to know about this input. 8016 // See InlineAsm.h isUseOperandTiedToDef. 8017 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8018 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8019 OpInfo.getMatchedOperand()); 8020 AsmNodeOperands.push_back(DAG.getTargetConstant( 8021 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8022 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8023 break; 8024 } 8025 8026 // Treat indirect 'X' constraint as memory. 8027 if (OpInfo.ConstraintType == TargetLowering::C_Other && 8028 OpInfo.isIndirect) 8029 OpInfo.ConstraintType = TargetLowering::C_Memory; 8030 8031 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 8032 std::vector<SDValue> Ops; 8033 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8034 Ops, DAG); 8035 if (Ops.empty()) { 8036 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 8037 Twine(OpInfo.ConstraintCode) + "'"); 8038 return; 8039 } 8040 8041 // Add information to the INLINEASM node to know about this input. 8042 unsigned ResOpType = 8043 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8044 AsmNodeOperands.push_back(DAG.getTargetConstant( 8045 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8046 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 8047 break; 8048 } 8049 8050 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8051 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 8052 assert(InOperandVal.getValueType() == 8053 TLI.getPointerTy(DAG.getDataLayout()) && 8054 "Memory operands expect pointer values"); 8055 8056 unsigned ConstraintID = 8057 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8058 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8059 "Failed to convert memory constraint code to constraint id."); 8060 8061 // Add information to the INLINEASM node to know about this input. 8062 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8063 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8064 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8065 getCurSDLoc(), 8066 MVT::i32)); 8067 AsmNodeOperands.push_back(InOperandVal); 8068 break; 8069 } 8070 8071 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 8072 OpInfo.ConstraintType == TargetLowering::C_Register) && 8073 "Unknown constraint type!"); 8074 8075 // TODO: Support this. 8076 if (OpInfo.isIndirect) { 8077 emitInlineAsmError( 8078 CS, "Don't know how to handle indirect register inputs yet " 8079 "for constraint '" + 8080 Twine(OpInfo.ConstraintCode) + "'"); 8081 return; 8082 } 8083 8084 // Copy the input into the appropriate registers. 8085 if (OpInfo.AssignedRegs.Regs.empty()) { 8086 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 8087 Twine(OpInfo.ConstraintCode) + "'"); 8088 return; 8089 } 8090 8091 SDLoc dl = getCurSDLoc(); 8092 8093 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 8094 Chain, &Flag, CS.getInstruction()); 8095 8096 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 8097 dl, DAG, AsmNodeOperands); 8098 break; 8099 } 8100 case InlineAsm::isClobber: 8101 // Add the clobbered value to the operand list, so that the register 8102 // allocator is aware that the physreg got clobbered. 8103 if (!OpInfo.AssignedRegs.Regs.empty()) 8104 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 8105 false, 0, getCurSDLoc(), DAG, 8106 AsmNodeOperands); 8107 break; 8108 } 8109 } 8110 8111 // Finish up input operands. Set the input chain and add the flag last. 8112 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 8113 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 8114 8115 unsigned ISDOpc = isa<CallBrInst>(CS.getInstruction()) ? ISD::INLINEASM_BR : ISD::INLINEASM; 8116 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 8117 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 8118 Flag = Chain.getValue(1); 8119 8120 // Do additional work to generate outputs. 8121 8122 SmallVector<EVT, 1> ResultVTs; 8123 SmallVector<SDValue, 1> ResultValues; 8124 SmallVector<SDValue, 8> OutChains; 8125 8126 llvm::Type *CSResultType = CS.getType(); 8127 ArrayRef<Type *> ResultTypes; 8128 if (StructType *StructResult = dyn_cast<StructType>(CSResultType)) 8129 ResultTypes = StructResult->elements(); 8130 else if (!CSResultType->isVoidTy()) 8131 ResultTypes = makeArrayRef(CSResultType); 8132 8133 auto CurResultType = ResultTypes.begin(); 8134 auto handleRegAssign = [&](SDValue V) { 8135 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 8136 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 8137 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 8138 ++CurResultType; 8139 // If the type of the inline asm call site return value is different but has 8140 // same size as the type of the asm output bitcast it. One example of this 8141 // is for vectors with different width / number of elements. This can 8142 // happen for register classes that can contain multiple different value 8143 // types. The preg or vreg allocated may not have the same VT as was 8144 // expected. 8145 // 8146 // This can also happen for a return value that disagrees with the register 8147 // class it is put in, eg. a double in a general-purpose register on a 8148 // 32-bit machine. 8149 if (ResultVT != V.getValueType() && 8150 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 8151 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 8152 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 8153 V.getValueType().isInteger()) { 8154 // If a result value was tied to an input value, the computed result 8155 // may have a wider width than the expected result. Extract the 8156 // relevant portion. 8157 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 8158 } 8159 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 8160 ResultVTs.push_back(ResultVT); 8161 ResultValues.push_back(V); 8162 }; 8163 8164 // Deal with output operands. 8165 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8166 if (OpInfo.Type == InlineAsm::isOutput) { 8167 SDValue Val; 8168 // Skip trivial output operands. 8169 if (OpInfo.AssignedRegs.Regs.empty()) 8170 continue; 8171 8172 switch (OpInfo.ConstraintType) { 8173 case TargetLowering::C_Register: 8174 case TargetLowering::C_RegisterClass: 8175 Val = OpInfo.AssignedRegs.getCopyFromRegs( 8176 DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction()); 8177 break; 8178 case TargetLowering::C_Other: 8179 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 8180 OpInfo, DAG); 8181 break; 8182 case TargetLowering::C_Memory: 8183 break; // Already handled. 8184 case TargetLowering::C_Unknown: 8185 assert(false && "Unexpected unknown constraint"); 8186 } 8187 8188 // Indirect output manifest as stores. Record output chains. 8189 if (OpInfo.isIndirect) { 8190 const Value *Ptr = OpInfo.CallOperandVal; 8191 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 8192 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 8193 MachinePointerInfo(Ptr)); 8194 OutChains.push_back(Store); 8195 } else { 8196 // generate CopyFromRegs to associated registers. 8197 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 8198 if (Val.getOpcode() == ISD::MERGE_VALUES) { 8199 for (const SDValue &V : Val->op_values()) 8200 handleRegAssign(V); 8201 } else 8202 handleRegAssign(Val); 8203 } 8204 } 8205 } 8206 8207 // Set results. 8208 if (!ResultValues.empty()) { 8209 assert(CurResultType == ResultTypes.end() && 8210 "Mismatch in number of ResultTypes"); 8211 assert(ResultValues.size() == ResultTypes.size() && 8212 "Mismatch in number of output operands in asm result"); 8213 8214 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 8215 DAG.getVTList(ResultVTs), ResultValues); 8216 setValue(CS.getInstruction(), V); 8217 } 8218 8219 // Collect store chains. 8220 if (!OutChains.empty()) 8221 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 8222 8223 // Only Update Root if inline assembly has a memory effect. 8224 if (ResultValues.empty() || HasSideEffect || !OutChains.empty()) 8225 DAG.setRoot(Chain); 8226 } 8227 8228 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 8229 const Twine &Message) { 8230 LLVMContext &Ctx = *DAG.getContext(); 8231 Ctx.emitError(CS.getInstruction(), Message); 8232 8233 // Make sure we leave the DAG in a valid state 8234 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8235 SmallVector<EVT, 1> ValueVTs; 8236 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8237 8238 if (ValueVTs.empty()) 8239 return; 8240 8241 SmallVector<SDValue, 1> Ops; 8242 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 8243 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 8244 8245 setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc())); 8246 } 8247 8248 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 8249 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 8250 MVT::Other, getRoot(), 8251 getValue(I.getArgOperand(0)), 8252 DAG.getSrcValue(I.getArgOperand(0)))); 8253 } 8254 8255 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 8256 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8257 const DataLayout &DL = DAG.getDataLayout(); 8258 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 8259 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 8260 DAG.getSrcValue(I.getOperand(0)), 8261 DL.getABITypeAlignment(I.getType())); 8262 setValue(&I, V); 8263 DAG.setRoot(V.getValue(1)); 8264 } 8265 8266 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 8267 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 8268 MVT::Other, getRoot(), 8269 getValue(I.getArgOperand(0)), 8270 DAG.getSrcValue(I.getArgOperand(0)))); 8271 } 8272 8273 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 8274 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 8275 MVT::Other, getRoot(), 8276 getValue(I.getArgOperand(0)), 8277 getValue(I.getArgOperand(1)), 8278 DAG.getSrcValue(I.getArgOperand(0)), 8279 DAG.getSrcValue(I.getArgOperand(1)))); 8280 } 8281 8282 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 8283 const Instruction &I, 8284 SDValue Op) { 8285 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 8286 if (!Range) 8287 return Op; 8288 8289 ConstantRange CR = getConstantRangeFromMetadata(*Range); 8290 if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet()) 8291 return Op; 8292 8293 APInt Lo = CR.getUnsignedMin(); 8294 if (!Lo.isMinValue()) 8295 return Op; 8296 8297 APInt Hi = CR.getUnsignedMax(); 8298 unsigned Bits = std::max(Hi.getActiveBits(), 8299 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 8300 8301 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 8302 8303 SDLoc SL = getCurSDLoc(); 8304 8305 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 8306 DAG.getValueType(SmallVT)); 8307 unsigned NumVals = Op.getNode()->getNumValues(); 8308 if (NumVals == 1) 8309 return ZExt; 8310 8311 SmallVector<SDValue, 4> Ops; 8312 8313 Ops.push_back(ZExt); 8314 for (unsigned I = 1; I != NumVals; ++I) 8315 Ops.push_back(Op.getValue(I)); 8316 8317 return DAG.getMergeValues(Ops, SL); 8318 } 8319 8320 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 8321 /// the call being lowered. 8322 /// 8323 /// This is a helper for lowering intrinsics that follow a target calling 8324 /// convention or require stack pointer adjustment. Only a subset of the 8325 /// intrinsic's operands need to participate in the calling convention. 8326 void SelectionDAGBuilder::populateCallLoweringInfo( 8327 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 8328 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 8329 bool IsPatchPoint) { 8330 TargetLowering::ArgListTy Args; 8331 Args.reserve(NumArgs); 8332 8333 // Populate the argument list. 8334 // Attributes for args start at offset 1, after the return attribute. 8335 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 8336 ArgI != ArgE; ++ArgI) { 8337 const Value *V = Call->getOperand(ArgI); 8338 8339 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 8340 8341 TargetLowering::ArgListEntry Entry; 8342 Entry.Node = getValue(V); 8343 Entry.Ty = V->getType(); 8344 Entry.setAttributes(Call, ArgI); 8345 Args.push_back(Entry); 8346 } 8347 8348 CLI.setDebugLoc(getCurSDLoc()) 8349 .setChain(getRoot()) 8350 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 8351 .setDiscardResult(Call->use_empty()) 8352 .setIsPatchPoint(IsPatchPoint); 8353 } 8354 8355 /// Add a stack map intrinsic call's live variable operands to a stackmap 8356 /// or patchpoint target node's operand list. 8357 /// 8358 /// Constants are converted to TargetConstants purely as an optimization to 8359 /// avoid constant materialization and register allocation. 8360 /// 8361 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 8362 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 8363 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 8364 /// address materialization and register allocation, but may also be required 8365 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 8366 /// alloca in the entry block, then the runtime may assume that the alloca's 8367 /// StackMap location can be read immediately after compilation and that the 8368 /// location is valid at any point during execution (this is similar to the 8369 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 8370 /// only available in a register, then the runtime would need to trap when 8371 /// execution reaches the StackMap in order to read the alloca's location. 8372 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 8373 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 8374 SelectionDAGBuilder &Builder) { 8375 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 8376 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 8377 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 8378 Ops.push_back( 8379 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 8380 Ops.push_back( 8381 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 8382 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 8383 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 8384 Ops.push_back(Builder.DAG.getTargetFrameIndex( 8385 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 8386 } else 8387 Ops.push_back(OpVal); 8388 } 8389 } 8390 8391 /// Lower llvm.experimental.stackmap directly to its target opcode. 8392 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 8393 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 8394 // [live variables...]) 8395 8396 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 8397 8398 SDValue Chain, InFlag, Callee, NullPtr; 8399 SmallVector<SDValue, 32> Ops; 8400 8401 SDLoc DL = getCurSDLoc(); 8402 Callee = getValue(CI.getCalledValue()); 8403 NullPtr = DAG.getIntPtrConstant(0, DL, true); 8404 8405 // The stackmap intrinsic only records the live variables (the arguemnts 8406 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 8407 // intrinsic, this won't be lowered to a function call. This means we don't 8408 // have to worry about calling conventions and target specific lowering code. 8409 // Instead we perform the call lowering right here. 8410 // 8411 // chain, flag = CALLSEQ_START(chain, 0, 0) 8412 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 8413 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 8414 // 8415 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 8416 InFlag = Chain.getValue(1); 8417 8418 // Add the <id> and <numBytes> constants. 8419 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 8420 Ops.push_back(DAG.getTargetConstant( 8421 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 8422 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 8423 Ops.push_back(DAG.getTargetConstant( 8424 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 8425 MVT::i32)); 8426 8427 // Push live variables for the stack map. 8428 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 8429 8430 // We are not pushing any register mask info here on the operands list, 8431 // because the stackmap doesn't clobber anything. 8432 8433 // Push the chain and the glue flag. 8434 Ops.push_back(Chain); 8435 Ops.push_back(InFlag); 8436 8437 // Create the STACKMAP node. 8438 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8439 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 8440 Chain = SDValue(SM, 0); 8441 InFlag = Chain.getValue(1); 8442 8443 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 8444 8445 // Stackmaps don't generate values, so nothing goes into the NodeMap. 8446 8447 // Set the root to the target-lowered call chain. 8448 DAG.setRoot(Chain); 8449 8450 // Inform the Frame Information that we have a stackmap in this function. 8451 FuncInfo.MF->getFrameInfo().setHasStackMap(); 8452 } 8453 8454 /// Lower llvm.experimental.patchpoint directly to its target opcode. 8455 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 8456 const BasicBlock *EHPadBB) { 8457 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 8458 // i32 <numBytes>, 8459 // i8* <target>, 8460 // i32 <numArgs>, 8461 // [Args...], 8462 // [live variables...]) 8463 8464 CallingConv::ID CC = CS.getCallingConv(); 8465 bool IsAnyRegCC = CC == CallingConv::AnyReg; 8466 bool HasDef = !CS->getType()->isVoidTy(); 8467 SDLoc dl = getCurSDLoc(); 8468 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 8469 8470 // Handle immediate and symbolic callees. 8471 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 8472 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 8473 /*isTarget=*/true); 8474 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 8475 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 8476 SDLoc(SymbolicCallee), 8477 SymbolicCallee->getValueType(0)); 8478 8479 // Get the real number of arguments participating in the call <numArgs> 8480 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 8481 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 8482 8483 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 8484 // Intrinsics include all meta-operands up to but not including CC. 8485 unsigned NumMetaOpers = PatchPointOpers::CCPos; 8486 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 8487 "Not enough arguments provided to the patchpoint intrinsic"); 8488 8489 // For AnyRegCC the arguments are lowered later on manually. 8490 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 8491 Type *ReturnTy = 8492 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 8493 8494 TargetLowering::CallLoweringInfo CLI(DAG); 8495 populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()), 8496 NumMetaOpers, NumCallArgs, Callee, ReturnTy, true); 8497 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8498 8499 SDNode *CallEnd = Result.second.getNode(); 8500 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 8501 CallEnd = CallEnd->getOperand(0).getNode(); 8502 8503 /// Get a call instruction from the call sequence chain. 8504 /// Tail calls are not allowed. 8505 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 8506 "Expected a callseq node."); 8507 SDNode *Call = CallEnd->getOperand(0).getNode(); 8508 bool HasGlue = Call->getGluedNode(); 8509 8510 // Replace the target specific call node with the patchable intrinsic. 8511 SmallVector<SDValue, 8> Ops; 8512 8513 // Add the <id> and <numBytes> constants. 8514 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 8515 Ops.push_back(DAG.getTargetConstant( 8516 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 8517 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 8518 Ops.push_back(DAG.getTargetConstant( 8519 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 8520 MVT::i32)); 8521 8522 // Add the callee. 8523 Ops.push_back(Callee); 8524 8525 // Adjust <numArgs> to account for any arguments that have been passed on the 8526 // stack instead. 8527 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 8528 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 8529 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 8530 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 8531 8532 // Add the calling convention 8533 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 8534 8535 // Add the arguments we omitted previously. The register allocator should 8536 // place these in any free register. 8537 if (IsAnyRegCC) 8538 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 8539 Ops.push_back(getValue(CS.getArgument(i))); 8540 8541 // Push the arguments from the call instruction up to the register mask. 8542 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 8543 Ops.append(Call->op_begin() + 2, e); 8544 8545 // Push live variables for the stack map. 8546 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 8547 8548 // Push the register mask info. 8549 if (HasGlue) 8550 Ops.push_back(*(Call->op_end()-2)); 8551 else 8552 Ops.push_back(*(Call->op_end()-1)); 8553 8554 // Push the chain (this is originally the first operand of the call, but 8555 // becomes now the last or second to last operand). 8556 Ops.push_back(*(Call->op_begin())); 8557 8558 // Push the glue flag (last operand). 8559 if (HasGlue) 8560 Ops.push_back(*(Call->op_end()-1)); 8561 8562 SDVTList NodeTys; 8563 if (IsAnyRegCC && HasDef) { 8564 // Create the return types based on the intrinsic definition 8565 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8566 SmallVector<EVT, 3> ValueVTs; 8567 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8568 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 8569 8570 // There is always a chain and a glue type at the end 8571 ValueVTs.push_back(MVT::Other); 8572 ValueVTs.push_back(MVT::Glue); 8573 NodeTys = DAG.getVTList(ValueVTs); 8574 } else 8575 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8576 8577 // Replace the target specific call node with a PATCHPOINT node. 8578 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 8579 dl, NodeTys, Ops); 8580 8581 // Update the NodeMap. 8582 if (HasDef) { 8583 if (IsAnyRegCC) 8584 setValue(CS.getInstruction(), SDValue(MN, 0)); 8585 else 8586 setValue(CS.getInstruction(), Result.first); 8587 } 8588 8589 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 8590 // call sequence. Furthermore the location of the chain and glue can change 8591 // when the AnyReg calling convention is used and the intrinsic returns a 8592 // value. 8593 if (IsAnyRegCC && HasDef) { 8594 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 8595 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 8596 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 8597 } else 8598 DAG.ReplaceAllUsesWith(Call, MN); 8599 DAG.DeleteNode(Call); 8600 8601 // Inform the Frame Information that we have a patchpoint in this function. 8602 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 8603 } 8604 8605 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 8606 unsigned Intrinsic) { 8607 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8608 SDValue Op1 = getValue(I.getArgOperand(0)); 8609 SDValue Op2; 8610 if (I.getNumArgOperands() > 1) 8611 Op2 = getValue(I.getArgOperand(1)); 8612 SDLoc dl = getCurSDLoc(); 8613 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8614 SDValue Res; 8615 FastMathFlags FMF; 8616 if (isa<FPMathOperator>(I)) 8617 FMF = I.getFastMathFlags(); 8618 8619 switch (Intrinsic) { 8620 case Intrinsic::experimental_vector_reduce_fadd: 8621 if (FMF.isFast()) 8622 Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2); 8623 else 8624 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 8625 break; 8626 case Intrinsic::experimental_vector_reduce_fmul: 8627 if (FMF.isFast()) 8628 Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2); 8629 else 8630 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 8631 break; 8632 case Intrinsic::experimental_vector_reduce_add: 8633 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 8634 break; 8635 case Intrinsic::experimental_vector_reduce_mul: 8636 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 8637 break; 8638 case Intrinsic::experimental_vector_reduce_and: 8639 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 8640 break; 8641 case Intrinsic::experimental_vector_reduce_or: 8642 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 8643 break; 8644 case Intrinsic::experimental_vector_reduce_xor: 8645 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 8646 break; 8647 case Intrinsic::experimental_vector_reduce_smax: 8648 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 8649 break; 8650 case Intrinsic::experimental_vector_reduce_smin: 8651 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 8652 break; 8653 case Intrinsic::experimental_vector_reduce_umax: 8654 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 8655 break; 8656 case Intrinsic::experimental_vector_reduce_umin: 8657 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 8658 break; 8659 case Intrinsic::experimental_vector_reduce_fmax: 8660 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1); 8661 break; 8662 case Intrinsic::experimental_vector_reduce_fmin: 8663 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1); 8664 break; 8665 default: 8666 llvm_unreachable("Unhandled vector reduce intrinsic"); 8667 } 8668 setValue(&I, Res); 8669 } 8670 8671 /// Returns an AttributeList representing the attributes applied to the return 8672 /// value of the given call. 8673 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 8674 SmallVector<Attribute::AttrKind, 2> Attrs; 8675 if (CLI.RetSExt) 8676 Attrs.push_back(Attribute::SExt); 8677 if (CLI.RetZExt) 8678 Attrs.push_back(Attribute::ZExt); 8679 if (CLI.IsInReg) 8680 Attrs.push_back(Attribute::InReg); 8681 8682 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 8683 Attrs); 8684 } 8685 8686 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 8687 /// implementation, which just calls LowerCall. 8688 /// FIXME: When all targets are 8689 /// migrated to using LowerCall, this hook should be integrated into SDISel. 8690 std::pair<SDValue, SDValue> 8691 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 8692 // Handle the incoming return values from the call. 8693 CLI.Ins.clear(); 8694 Type *OrigRetTy = CLI.RetTy; 8695 SmallVector<EVT, 4> RetTys; 8696 SmallVector<uint64_t, 4> Offsets; 8697 auto &DL = CLI.DAG.getDataLayout(); 8698 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 8699 8700 if (CLI.IsPostTypeLegalization) { 8701 // If we are lowering a libcall after legalization, split the return type. 8702 SmallVector<EVT, 4> OldRetTys = std::move(RetTys); 8703 SmallVector<uint64_t, 4> OldOffsets = std::move(Offsets); 8704 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 8705 EVT RetVT = OldRetTys[i]; 8706 uint64_t Offset = OldOffsets[i]; 8707 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 8708 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 8709 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 8710 RetTys.append(NumRegs, RegisterVT); 8711 for (unsigned j = 0; j != NumRegs; ++j) 8712 Offsets.push_back(Offset + j * RegisterVTByteSZ); 8713 } 8714 } 8715 8716 SmallVector<ISD::OutputArg, 4> Outs; 8717 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 8718 8719 bool CanLowerReturn = 8720 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 8721 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 8722 8723 SDValue DemoteStackSlot; 8724 int DemoteStackIdx = -100; 8725 if (!CanLowerReturn) { 8726 // FIXME: equivalent assert? 8727 // assert(!CS.hasInAllocaArgument() && 8728 // "sret demotion is incompatible with inalloca"); 8729 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 8730 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 8731 MachineFunction &MF = CLI.DAG.getMachineFunction(); 8732 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 8733 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 8734 DL.getAllocaAddrSpace()); 8735 8736 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 8737 ArgListEntry Entry; 8738 Entry.Node = DemoteStackSlot; 8739 Entry.Ty = StackSlotPtrType; 8740 Entry.IsSExt = false; 8741 Entry.IsZExt = false; 8742 Entry.IsInReg = false; 8743 Entry.IsSRet = true; 8744 Entry.IsNest = false; 8745 Entry.IsByVal = false; 8746 Entry.IsReturned = false; 8747 Entry.IsSwiftSelf = false; 8748 Entry.IsSwiftError = false; 8749 Entry.Alignment = Align; 8750 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 8751 CLI.NumFixedArgs += 1; 8752 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 8753 8754 // sret demotion isn't compatible with tail-calls, since the sret argument 8755 // points into the callers stack frame. 8756 CLI.IsTailCall = false; 8757 } else { 8758 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 8759 EVT VT = RetTys[I]; 8760 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 8761 CLI.CallConv, VT); 8762 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 8763 CLI.CallConv, VT); 8764 for (unsigned i = 0; i != NumRegs; ++i) { 8765 ISD::InputArg MyFlags; 8766 MyFlags.VT = RegisterVT; 8767 MyFlags.ArgVT = VT; 8768 MyFlags.Used = CLI.IsReturnValueUsed; 8769 if (CLI.RetSExt) 8770 MyFlags.Flags.setSExt(); 8771 if (CLI.RetZExt) 8772 MyFlags.Flags.setZExt(); 8773 if (CLI.IsInReg) 8774 MyFlags.Flags.setInReg(); 8775 CLI.Ins.push_back(MyFlags); 8776 } 8777 } 8778 } 8779 8780 // We push in swifterror return as the last element of CLI.Ins. 8781 ArgListTy &Args = CLI.getArgs(); 8782 if (supportSwiftError()) { 8783 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8784 if (Args[i].IsSwiftError) { 8785 ISD::InputArg MyFlags; 8786 MyFlags.VT = getPointerTy(DL); 8787 MyFlags.ArgVT = EVT(getPointerTy(DL)); 8788 MyFlags.Flags.setSwiftError(); 8789 CLI.Ins.push_back(MyFlags); 8790 } 8791 } 8792 } 8793 8794 // Handle all of the outgoing arguments. 8795 CLI.Outs.clear(); 8796 CLI.OutVals.clear(); 8797 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8798 SmallVector<EVT, 4> ValueVTs; 8799 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 8800 // FIXME: Split arguments if CLI.IsPostTypeLegalization 8801 Type *FinalType = Args[i].Ty; 8802 if (Args[i].IsByVal) 8803 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 8804 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 8805 FinalType, CLI.CallConv, CLI.IsVarArg); 8806 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 8807 ++Value) { 8808 EVT VT = ValueVTs[Value]; 8809 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 8810 SDValue Op = SDValue(Args[i].Node.getNode(), 8811 Args[i].Node.getResNo() + Value); 8812 ISD::ArgFlagsTy Flags; 8813 8814 // Certain targets (such as MIPS), may have a different ABI alignment 8815 // for a type depending on the context. Give the target a chance to 8816 // specify the alignment it wants. 8817 unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL); 8818 8819 if (Args[i].IsZExt) 8820 Flags.setZExt(); 8821 if (Args[i].IsSExt) 8822 Flags.setSExt(); 8823 if (Args[i].IsInReg) { 8824 // If we are using vectorcall calling convention, a structure that is 8825 // passed InReg - is surely an HVA 8826 if (CLI.CallConv == CallingConv::X86_VectorCall && 8827 isa<StructType>(FinalType)) { 8828 // The first value of a structure is marked 8829 if (0 == Value) 8830 Flags.setHvaStart(); 8831 Flags.setHva(); 8832 } 8833 // Set InReg Flag 8834 Flags.setInReg(); 8835 } 8836 if (Args[i].IsSRet) 8837 Flags.setSRet(); 8838 if (Args[i].IsSwiftSelf) 8839 Flags.setSwiftSelf(); 8840 if (Args[i].IsSwiftError) 8841 Flags.setSwiftError(); 8842 if (Args[i].IsByVal) 8843 Flags.setByVal(); 8844 if (Args[i].IsInAlloca) { 8845 Flags.setInAlloca(); 8846 // Set the byval flag for CCAssignFn callbacks that don't know about 8847 // inalloca. This way we can know how many bytes we should've allocated 8848 // and how many bytes a callee cleanup function will pop. If we port 8849 // inalloca to more targets, we'll have to add custom inalloca handling 8850 // in the various CC lowering callbacks. 8851 Flags.setByVal(); 8852 } 8853 if (Args[i].IsByVal || Args[i].IsInAlloca) { 8854 PointerType *Ty = cast<PointerType>(Args[i].Ty); 8855 Type *ElementTy = Ty->getElementType(); 8856 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 8857 // For ByVal, alignment should come from FE. BE will guess if this 8858 // info is not there but there are cases it cannot get right. 8859 unsigned FrameAlign; 8860 if (Args[i].Alignment) 8861 FrameAlign = Args[i].Alignment; 8862 else 8863 FrameAlign = getByValTypeAlignment(ElementTy, DL); 8864 Flags.setByValAlign(FrameAlign); 8865 } 8866 if (Args[i].IsNest) 8867 Flags.setNest(); 8868 if (NeedsRegBlock) 8869 Flags.setInConsecutiveRegs(); 8870 Flags.setOrigAlign(OriginalAlignment); 8871 8872 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 8873 CLI.CallConv, VT); 8874 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 8875 CLI.CallConv, VT); 8876 SmallVector<SDValue, 4> Parts(NumParts); 8877 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 8878 8879 if (Args[i].IsSExt) 8880 ExtendKind = ISD::SIGN_EXTEND; 8881 else if (Args[i].IsZExt) 8882 ExtendKind = ISD::ZERO_EXTEND; 8883 8884 // Conservatively only handle 'returned' on non-vectors that can be lowered, 8885 // for now. 8886 if (Args[i].IsReturned && !Op.getValueType().isVector() && 8887 CanLowerReturn) { 8888 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 8889 "unexpected use of 'returned'"); 8890 // Before passing 'returned' to the target lowering code, ensure that 8891 // either the register MVT and the actual EVT are the same size or that 8892 // the return value and argument are extended in the same way; in these 8893 // cases it's safe to pass the argument register value unchanged as the 8894 // return register value (although it's at the target's option whether 8895 // to do so) 8896 // TODO: allow code generation to take advantage of partially preserved 8897 // registers rather than clobbering the entire register when the 8898 // parameter extension method is not compatible with the return 8899 // extension method 8900 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 8901 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 8902 CLI.RetZExt == Args[i].IsZExt)) 8903 Flags.setReturned(); 8904 } 8905 8906 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 8907 CLI.CS.getInstruction(), CLI.CallConv, ExtendKind); 8908 8909 for (unsigned j = 0; j != NumParts; ++j) { 8910 // if it isn't first piece, alignment must be 1 8911 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 8912 i < CLI.NumFixedArgs, 8913 i, j*Parts[j].getValueType().getStoreSize()); 8914 if (NumParts > 1 && j == 0) 8915 MyFlags.Flags.setSplit(); 8916 else if (j != 0) { 8917 MyFlags.Flags.setOrigAlign(1); 8918 if (j == NumParts - 1) 8919 MyFlags.Flags.setSplitEnd(); 8920 } 8921 8922 CLI.Outs.push_back(MyFlags); 8923 CLI.OutVals.push_back(Parts[j]); 8924 } 8925 8926 if (NeedsRegBlock && Value == NumValues - 1) 8927 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 8928 } 8929 } 8930 8931 SmallVector<SDValue, 4> InVals; 8932 CLI.Chain = LowerCall(CLI, InVals); 8933 8934 // Update CLI.InVals to use outside of this function. 8935 CLI.InVals = InVals; 8936 8937 // Verify that the target's LowerCall behaved as expected. 8938 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 8939 "LowerCall didn't return a valid chain!"); 8940 assert((!CLI.IsTailCall || InVals.empty()) && 8941 "LowerCall emitted a return value for a tail call!"); 8942 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 8943 "LowerCall didn't emit the correct number of values!"); 8944 8945 // For a tail call, the return value is merely live-out and there aren't 8946 // any nodes in the DAG representing it. Return a special value to 8947 // indicate that a tail call has been emitted and no more Instructions 8948 // should be processed in the current block. 8949 if (CLI.IsTailCall) { 8950 CLI.DAG.setRoot(CLI.Chain); 8951 return std::make_pair(SDValue(), SDValue()); 8952 } 8953 8954 #ifndef NDEBUG 8955 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 8956 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 8957 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 8958 "LowerCall emitted a value with the wrong type!"); 8959 } 8960 #endif 8961 8962 SmallVector<SDValue, 4> ReturnValues; 8963 if (!CanLowerReturn) { 8964 // The instruction result is the result of loading from the 8965 // hidden sret parameter. 8966 SmallVector<EVT, 1> PVTs; 8967 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 8968 8969 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 8970 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 8971 EVT PtrVT = PVTs[0]; 8972 8973 unsigned NumValues = RetTys.size(); 8974 ReturnValues.resize(NumValues); 8975 SmallVector<SDValue, 4> Chains(NumValues); 8976 8977 // An aggregate return value cannot wrap around the address space, so 8978 // offsets to its parts don't wrap either. 8979 SDNodeFlags Flags; 8980 Flags.setNoUnsignedWrap(true); 8981 8982 for (unsigned i = 0; i < NumValues; ++i) { 8983 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 8984 CLI.DAG.getConstant(Offsets[i], CLI.DL, 8985 PtrVT), Flags); 8986 SDValue L = CLI.DAG.getLoad( 8987 RetTys[i], CLI.DL, CLI.Chain, Add, 8988 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 8989 DemoteStackIdx, Offsets[i]), 8990 /* Alignment = */ 1); 8991 ReturnValues[i] = L; 8992 Chains[i] = L.getValue(1); 8993 } 8994 8995 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 8996 } else { 8997 // Collect the legal value parts into potentially illegal values 8998 // that correspond to the original function's return values. 8999 Optional<ISD::NodeType> AssertOp; 9000 if (CLI.RetSExt) 9001 AssertOp = ISD::AssertSext; 9002 else if (CLI.RetZExt) 9003 AssertOp = ISD::AssertZext; 9004 unsigned CurReg = 0; 9005 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9006 EVT VT = RetTys[I]; 9007 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9008 CLI.CallConv, VT); 9009 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9010 CLI.CallConv, VT); 9011 9012 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 9013 NumRegs, RegisterVT, VT, nullptr, 9014 CLI.CallConv, AssertOp)); 9015 CurReg += NumRegs; 9016 } 9017 9018 // For a function returning void, there is no return value. We can't create 9019 // such a node, so we just return a null return value in that case. In 9020 // that case, nothing will actually look at the value. 9021 if (ReturnValues.empty()) 9022 return std::make_pair(SDValue(), CLI.Chain); 9023 } 9024 9025 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 9026 CLI.DAG.getVTList(RetTys), ReturnValues); 9027 return std::make_pair(Res, CLI.Chain); 9028 } 9029 9030 void TargetLowering::LowerOperationWrapper(SDNode *N, 9031 SmallVectorImpl<SDValue> &Results, 9032 SelectionDAG &DAG) const { 9033 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 9034 Results.push_back(Res); 9035 } 9036 9037 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9038 llvm_unreachable("LowerOperation not implemented for this target!"); 9039 } 9040 9041 void 9042 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 9043 SDValue Op = getNonRegisterValue(V); 9044 assert((Op.getOpcode() != ISD::CopyFromReg || 9045 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 9046 "Copy from a reg to the same reg!"); 9047 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 9048 9049 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9050 // If this is an InlineAsm we have to match the registers required, not the 9051 // notional registers required by the type. 9052 9053 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 9054 None); // This is not an ABI copy. 9055 SDValue Chain = DAG.getEntryNode(); 9056 9057 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 9058 FuncInfo.PreferredExtendType.end()) 9059 ? ISD::ANY_EXTEND 9060 : FuncInfo.PreferredExtendType[V]; 9061 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 9062 PendingExports.push_back(Chain); 9063 } 9064 9065 #include "llvm/CodeGen/SelectionDAGISel.h" 9066 9067 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 9068 /// entry block, return true. This includes arguments used by switches, since 9069 /// the switch may expand into multiple basic blocks. 9070 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 9071 // With FastISel active, we may be splitting blocks, so force creation 9072 // of virtual registers for all non-dead arguments. 9073 if (FastISel) 9074 return A->use_empty(); 9075 9076 const BasicBlock &Entry = A->getParent()->front(); 9077 for (const User *U : A->users()) 9078 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 9079 return false; // Use not in entry block. 9080 9081 return true; 9082 } 9083 9084 using ArgCopyElisionMapTy = 9085 DenseMap<const Argument *, 9086 std::pair<const AllocaInst *, const StoreInst *>>; 9087 9088 /// Scan the entry block of the function in FuncInfo for arguments that look 9089 /// like copies into a local alloca. Record any copied arguments in 9090 /// ArgCopyElisionCandidates. 9091 static void 9092 findArgumentCopyElisionCandidates(const DataLayout &DL, 9093 FunctionLoweringInfo *FuncInfo, 9094 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 9095 // Record the state of every static alloca used in the entry block. Argument 9096 // allocas are all used in the entry block, so we need approximately as many 9097 // entries as we have arguments. 9098 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 9099 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 9100 unsigned NumArgs = FuncInfo->Fn->arg_size(); 9101 StaticAllocas.reserve(NumArgs * 2); 9102 9103 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 9104 if (!V) 9105 return nullptr; 9106 V = V->stripPointerCasts(); 9107 const auto *AI = dyn_cast<AllocaInst>(V); 9108 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 9109 return nullptr; 9110 auto Iter = StaticAllocas.insert({AI, Unknown}); 9111 return &Iter.first->second; 9112 }; 9113 9114 // Look for stores of arguments to static allocas. Look through bitcasts and 9115 // GEPs to handle type coercions, as long as the alloca is fully initialized 9116 // by the store. Any non-store use of an alloca escapes it and any subsequent 9117 // unanalyzed store might write it. 9118 // FIXME: Handle structs initialized with multiple stores. 9119 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 9120 // Look for stores, and handle non-store uses conservatively. 9121 const auto *SI = dyn_cast<StoreInst>(&I); 9122 if (!SI) { 9123 // We will look through cast uses, so ignore them completely. 9124 if (I.isCast()) 9125 continue; 9126 // Ignore debug info intrinsics, they don't escape or store to allocas. 9127 if (isa<DbgInfoIntrinsic>(I)) 9128 continue; 9129 // This is an unknown instruction. Assume it escapes or writes to all 9130 // static alloca operands. 9131 for (const Use &U : I.operands()) { 9132 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 9133 *Info = StaticAllocaInfo::Clobbered; 9134 } 9135 continue; 9136 } 9137 9138 // If the stored value is a static alloca, mark it as escaped. 9139 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 9140 *Info = StaticAllocaInfo::Clobbered; 9141 9142 // Check if the destination is a static alloca. 9143 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 9144 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 9145 if (!Info) 9146 continue; 9147 const AllocaInst *AI = cast<AllocaInst>(Dst); 9148 9149 // Skip allocas that have been initialized or clobbered. 9150 if (*Info != StaticAllocaInfo::Unknown) 9151 continue; 9152 9153 // Check if the stored value is an argument, and that this store fully 9154 // initializes the alloca. Don't elide copies from the same argument twice. 9155 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 9156 const auto *Arg = dyn_cast<Argument>(Val); 9157 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 9158 Arg->getType()->isEmptyTy() || 9159 DL.getTypeStoreSize(Arg->getType()) != 9160 DL.getTypeAllocSize(AI->getAllocatedType()) || 9161 ArgCopyElisionCandidates.count(Arg)) { 9162 *Info = StaticAllocaInfo::Clobbered; 9163 continue; 9164 } 9165 9166 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 9167 << '\n'); 9168 9169 // Mark this alloca and store for argument copy elision. 9170 *Info = StaticAllocaInfo::Elidable; 9171 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 9172 9173 // Stop scanning if we've seen all arguments. This will happen early in -O0 9174 // builds, which is useful, because -O0 builds have large entry blocks and 9175 // many allocas. 9176 if (ArgCopyElisionCandidates.size() == NumArgs) 9177 break; 9178 } 9179 } 9180 9181 /// Try to elide argument copies from memory into a local alloca. Succeeds if 9182 /// ArgVal is a load from a suitable fixed stack object. 9183 static void tryToElideArgumentCopy( 9184 FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains, 9185 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 9186 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 9187 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 9188 SDValue ArgVal, bool &ArgHasUses) { 9189 // Check if this is a load from a fixed stack object. 9190 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 9191 if (!LNode) 9192 return; 9193 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 9194 if (!FINode) 9195 return; 9196 9197 // Check that the fixed stack object is the right size and alignment. 9198 // Look at the alignment that the user wrote on the alloca instead of looking 9199 // at the stack object. 9200 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 9201 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 9202 const AllocaInst *AI = ArgCopyIter->second.first; 9203 int FixedIndex = FINode->getIndex(); 9204 int &AllocaIndex = FuncInfo->StaticAllocaMap[AI]; 9205 int OldIndex = AllocaIndex; 9206 MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo(); 9207 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 9208 LLVM_DEBUG( 9209 dbgs() << " argument copy elision failed due to bad fixed stack " 9210 "object size\n"); 9211 return; 9212 } 9213 unsigned RequiredAlignment = AI->getAlignment(); 9214 if (!RequiredAlignment) { 9215 RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment( 9216 AI->getAllocatedType()); 9217 } 9218 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) { 9219 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 9220 "greater than stack argument alignment (" 9221 << RequiredAlignment << " vs " 9222 << MFI.getObjectAlignment(FixedIndex) << ")\n"); 9223 return; 9224 } 9225 9226 // Perform the elision. Delete the old stack object and replace its only use 9227 // in the variable info map. Mark the stack object as mutable. 9228 LLVM_DEBUG({ 9229 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 9230 << " Replacing frame index " << OldIndex << " with " << FixedIndex 9231 << '\n'; 9232 }); 9233 MFI.RemoveStackObject(OldIndex); 9234 MFI.setIsImmutableObjectIndex(FixedIndex, false); 9235 AllocaIndex = FixedIndex; 9236 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 9237 Chains.push_back(ArgVal.getValue(1)); 9238 9239 // Avoid emitting code for the store implementing the copy. 9240 const StoreInst *SI = ArgCopyIter->second.second; 9241 ElidedArgCopyInstrs.insert(SI); 9242 9243 // Check for uses of the argument again so that we can avoid exporting ArgVal 9244 // if it is't used by anything other than the store. 9245 for (const Value *U : Arg.users()) { 9246 if (U != SI) { 9247 ArgHasUses = true; 9248 break; 9249 } 9250 } 9251 } 9252 9253 void SelectionDAGISel::LowerArguments(const Function &F) { 9254 SelectionDAG &DAG = SDB->DAG; 9255 SDLoc dl = SDB->getCurSDLoc(); 9256 const DataLayout &DL = DAG.getDataLayout(); 9257 SmallVector<ISD::InputArg, 16> Ins; 9258 9259 if (!FuncInfo->CanLowerReturn) { 9260 // Put in an sret pointer parameter before all the other parameters. 9261 SmallVector<EVT, 1> ValueVTs; 9262 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9263 F.getReturnType()->getPointerTo( 9264 DAG.getDataLayout().getAllocaAddrSpace()), 9265 ValueVTs); 9266 9267 // NOTE: Assuming that a pointer will never break down to more than one VT 9268 // or one register. 9269 ISD::ArgFlagsTy Flags; 9270 Flags.setSRet(); 9271 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 9272 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 9273 ISD::InputArg::NoArgIndex, 0); 9274 Ins.push_back(RetArg); 9275 } 9276 9277 // Look for stores of arguments to static allocas. Mark such arguments with a 9278 // flag to ask the target to give us the memory location of that argument if 9279 // available. 9280 ArgCopyElisionMapTy ArgCopyElisionCandidates; 9281 findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates); 9282 9283 // Set up the incoming argument description vector. 9284 for (const Argument &Arg : F.args()) { 9285 unsigned ArgNo = Arg.getArgNo(); 9286 SmallVector<EVT, 4> ValueVTs; 9287 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9288 bool isArgValueUsed = !Arg.use_empty(); 9289 unsigned PartBase = 0; 9290 Type *FinalType = Arg.getType(); 9291 if (Arg.hasAttribute(Attribute::ByVal)) 9292 FinalType = cast<PointerType>(FinalType)->getElementType(); 9293 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 9294 FinalType, F.getCallingConv(), F.isVarArg()); 9295 for (unsigned Value = 0, NumValues = ValueVTs.size(); 9296 Value != NumValues; ++Value) { 9297 EVT VT = ValueVTs[Value]; 9298 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 9299 ISD::ArgFlagsTy Flags; 9300 9301 // Certain targets (such as MIPS), may have a different ABI alignment 9302 // for a type depending on the context. Give the target a chance to 9303 // specify the alignment it wants. 9304 unsigned OriginalAlignment = 9305 TLI->getABIAlignmentForCallingConv(ArgTy, DL); 9306 9307 if (Arg.hasAttribute(Attribute::ZExt)) 9308 Flags.setZExt(); 9309 if (Arg.hasAttribute(Attribute::SExt)) 9310 Flags.setSExt(); 9311 if (Arg.hasAttribute(Attribute::InReg)) { 9312 // If we are using vectorcall calling convention, a structure that is 9313 // passed InReg - is surely an HVA 9314 if (F.getCallingConv() == CallingConv::X86_VectorCall && 9315 isa<StructType>(Arg.getType())) { 9316 // The first value of a structure is marked 9317 if (0 == Value) 9318 Flags.setHvaStart(); 9319 Flags.setHva(); 9320 } 9321 // Set InReg Flag 9322 Flags.setInReg(); 9323 } 9324 if (Arg.hasAttribute(Attribute::StructRet)) 9325 Flags.setSRet(); 9326 if (Arg.hasAttribute(Attribute::SwiftSelf)) 9327 Flags.setSwiftSelf(); 9328 if (Arg.hasAttribute(Attribute::SwiftError)) 9329 Flags.setSwiftError(); 9330 if (Arg.hasAttribute(Attribute::ByVal)) 9331 Flags.setByVal(); 9332 if (Arg.hasAttribute(Attribute::InAlloca)) { 9333 Flags.setInAlloca(); 9334 // Set the byval flag for CCAssignFn callbacks that don't know about 9335 // inalloca. This way we can know how many bytes we should've allocated 9336 // and how many bytes a callee cleanup function will pop. If we port 9337 // inalloca to more targets, we'll have to add custom inalloca handling 9338 // in the various CC lowering callbacks. 9339 Flags.setByVal(); 9340 } 9341 if (F.getCallingConv() == CallingConv::X86_INTR) { 9342 // IA Interrupt passes frame (1st parameter) by value in the stack. 9343 if (ArgNo == 0) 9344 Flags.setByVal(); 9345 } 9346 if (Flags.isByVal() || Flags.isInAlloca()) { 9347 PointerType *Ty = cast<PointerType>(Arg.getType()); 9348 Type *ElementTy = Ty->getElementType(); 9349 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 9350 // For ByVal, alignment should be passed from FE. BE will guess if 9351 // this info is not there but there are cases it cannot get right. 9352 unsigned FrameAlign; 9353 if (Arg.getParamAlignment()) 9354 FrameAlign = Arg.getParamAlignment(); 9355 else 9356 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 9357 Flags.setByValAlign(FrameAlign); 9358 } 9359 if (Arg.hasAttribute(Attribute::Nest)) 9360 Flags.setNest(); 9361 if (NeedsRegBlock) 9362 Flags.setInConsecutiveRegs(); 9363 Flags.setOrigAlign(OriginalAlignment); 9364 if (ArgCopyElisionCandidates.count(&Arg)) 9365 Flags.setCopyElisionCandidate(); 9366 9367 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 9368 *CurDAG->getContext(), F.getCallingConv(), VT); 9369 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 9370 *CurDAG->getContext(), F.getCallingConv(), VT); 9371 for (unsigned i = 0; i != NumRegs; ++i) { 9372 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 9373 ArgNo, PartBase+i*RegisterVT.getStoreSize()); 9374 if (NumRegs > 1 && i == 0) 9375 MyFlags.Flags.setSplit(); 9376 // if it isn't first piece, alignment must be 1 9377 else if (i > 0) { 9378 MyFlags.Flags.setOrigAlign(1); 9379 if (i == NumRegs - 1) 9380 MyFlags.Flags.setSplitEnd(); 9381 } 9382 Ins.push_back(MyFlags); 9383 } 9384 if (NeedsRegBlock && Value == NumValues - 1) 9385 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 9386 PartBase += VT.getStoreSize(); 9387 } 9388 } 9389 9390 // Call the target to set up the argument values. 9391 SmallVector<SDValue, 8> InVals; 9392 SDValue NewRoot = TLI->LowerFormalArguments( 9393 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 9394 9395 // Verify that the target's LowerFormalArguments behaved as expected. 9396 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 9397 "LowerFormalArguments didn't return a valid chain!"); 9398 assert(InVals.size() == Ins.size() && 9399 "LowerFormalArguments didn't emit the correct number of values!"); 9400 LLVM_DEBUG({ 9401 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 9402 assert(InVals[i].getNode() && 9403 "LowerFormalArguments emitted a null value!"); 9404 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 9405 "LowerFormalArguments emitted a value with the wrong type!"); 9406 } 9407 }); 9408 9409 // Update the DAG with the new chain value resulting from argument lowering. 9410 DAG.setRoot(NewRoot); 9411 9412 // Set up the argument values. 9413 unsigned i = 0; 9414 if (!FuncInfo->CanLowerReturn) { 9415 // Create a virtual register for the sret pointer, and put in a copy 9416 // from the sret argument into it. 9417 SmallVector<EVT, 1> ValueVTs; 9418 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9419 F.getReturnType()->getPointerTo( 9420 DAG.getDataLayout().getAllocaAddrSpace()), 9421 ValueVTs); 9422 MVT VT = ValueVTs[0].getSimpleVT(); 9423 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 9424 Optional<ISD::NodeType> AssertOp = None; 9425 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 9426 nullptr, F.getCallingConv(), AssertOp); 9427 9428 MachineFunction& MF = SDB->DAG.getMachineFunction(); 9429 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 9430 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 9431 FuncInfo->DemoteRegister = SRetReg; 9432 NewRoot = 9433 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 9434 DAG.setRoot(NewRoot); 9435 9436 // i indexes lowered arguments. Bump it past the hidden sret argument. 9437 ++i; 9438 } 9439 9440 SmallVector<SDValue, 4> Chains; 9441 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 9442 for (const Argument &Arg : F.args()) { 9443 SmallVector<SDValue, 4> ArgValues; 9444 SmallVector<EVT, 4> ValueVTs; 9445 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9446 unsigned NumValues = ValueVTs.size(); 9447 if (NumValues == 0) 9448 continue; 9449 9450 bool ArgHasUses = !Arg.use_empty(); 9451 9452 // Elide the copying store if the target loaded this argument from a 9453 // suitable fixed stack object. 9454 if (Ins[i].Flags.isCopyElisionCandidate()) { 9455 tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 9456 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 9457 InVals[i], ArgHasUses); 9458 } 9459 9460 // If this argument is unused then remember its value. It is used to generate 9461 // debugging information. 9462 bool isSwiftErrorArg = 9463 TLI->supportSwiftError() && 9464 Arg.hasAttribute(Attribute::SwiftError); 9465 if (!ArgHasUses && !isSwiftErrorArg) { 9466 SDB->setUnusedArgValue(&Arg, InVals[i]); 9467 9468 // Also remember any frame index for use in FastISel. 9469 if (FrameIndexSDNode *FI = 9470 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 9471 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9472 } 9473 9474 for (unsigned Val = 0; Val != NumValues; ++Val) { 9475 EVT VT = ValueVTs[Val]; 9476 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 9477 F.getCallingConv(), VT); 9478 unsigned NumParts = TLI->getNumRegistersForCallingConv( 9479 *CurDAG->getContext(), F.getCallingConv(), VT); 9480 9481 // Even an apparant 'unused' swifterror argument needs to be returned. So 9482 // we do generate a copy for it that can be used on return from the 9483 // function. 9484 if (ArgHasUses || isSwiftErrorArg) { 9485 Optional<ISD::NodeType> AssertOp; 9486 if (Arg.hasAttribute(Attribute::SExt)) 9487 AssertOp = ISD::AssertSext; 9488 else if (Arg.hasAttribute(Attribute::ZExt)) 9489 AssertOp = ISD::AssertZext; 9490 9491 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 9492 PartVT, VT, nullptr, 9493 F.getCallingConv(), AssertOp)); 9494 } 9495 9496 i += NumParts; 9497 } 9498 9499 // We don't need to do anything else for unused arguments. 9500 if (ArgValues.empty()) 9501 continue; 9502 9503 // Note down frame index. 9504 if (FrameIndexSDNode *FI = 9505 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 9506 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9507 9508 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 9509 SDB->getCurSDLoc()); 9510 9511 SDB->setValue(&Arg, Res); 9512 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 9513 // We want to associate the argument with the frame index, among 9514 // involved operands, that correspond to the lowest address. The 9515 // getCopyFromParts function, called earlier, is swapping the order of 9516 // the operands to BUILD_PAIR depending on endianness. The result of 9517 // that swapping is that the least significant bits of the argument will 9518 // be in the first operand of the BUILD_PAIR node, and the most 9519 // significant bits will be in the second operand. 9520 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 9521 if (LoadSDNode *LNode = 9522 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 9523 if (FrameIndexSDNode *FI = 9524 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 9525 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9526 } 9527 9528 // Update the SwiftErrorVRegDefMap. 9529 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 9530 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9531 if (TargetRegisterInfo::isVirtualRegister(Reg)) 9532 FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, 9533 FuncInfo->SwiftErrorArg, Reg); 9534 } 9535 9536 // If this argument is live outside of the entry block, insert a copy from 9537 // wherever we got it to the vreg that other BB's will reference it as. 9538 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 9539 // If we can, though, try to skip creating an unnecessary vreg. 9540 // FIXME: This isn't very clean... it would be nice to make this more 9541 // general. It's also subtly incompatible with the hacks FastISel 9542 // uses with vregs. 9543 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9544 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 9545 FuncInfo->ValueMap[&Arg] = Reg; 9546 continue; 9547 } 9548 } 9549 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 9550 FuncInfo->InitializeRegForValue(&Arg); 9551 SDB->CopyToExportRegsIfNeeded(&Arg); 9552 } 9553 } 9554 9555 if (!Chains.empty()) { 9556 Chains.push_back(NewRoot); 9557 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 9558 } 9559 9560 DAG.setRoot(NewRoot); 9561 9562 assert(i == InVals.size() && "Argument register count mismatch!"); 9563 9564 // If any argument copy elisions occurred and we have debug info, update the 9565 // stale frame indices used in the dbg.declare variable info table. 9566 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 9567 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 9568 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 9569 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 9570 if (I != ArgCopyElisionFrameIndexMap.end()) 9571 VI.Slot = I->second; 9572 } 9573 } 9574 9575 // Finally, if the target has anything special to do, allow it to do so. 9576 EmitFunctionEntryCode(); 9577 } 9578 9579 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 9580 /// ensure constants are generated when needed. Remember the virtual registers 9581 /// that need to be added to the Machine PHI nodes as input. We cannot just 9582 /// directly add them, because expansion might result in multiple MBB's for one 9583 /// BB. As such, the start of the BB might correspond to a different MBB than 9584 /// the end. 9585 void 9586 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 9587 const Instruction *TI = LLVMBB->getTerminator(); 9588 9589 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 9590 9591 // Check PHI nodes in successors that expect a value to be available from this 9592 // block. 9593 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 9594 const BasicBlock *SuccBB = TI->getSuccessor(succ); 9595 if (!isa<PHINode>(SuccBB->begin())) continue; 9596 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 9597 9598 // If this terminator has multiple identical successors (common for 9599 // switches), only handle each succ once. 9600 if (!SuccsHandled.insert(SuccMBB).second) 9601 continue; 9602 9603 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 9604 9605 // At this point we know that there is a 1-1 correspondence between LLVM PHI 9606 // nodes and Machine PHI nodes, but the incoming operands have not been 9607 // emitted yet. 9608 for (const PHINode &PN : SuccBB->phis()) { 9609 // Ignore dead phi's. 9610 if (PN.use_empty()) 9611 continue; 9612 9613 // Skip empty types 9614 if (PN.getType()->isEmptyTy()) 9615 continue; 9616 9617 unsigned Reg; 9618 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 9619 9620 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 9621 unsigned &RegOut = ConstantsOut[C]; 9622 if (RegOut == 0) { 9623 RegOut = FuncInfo.CreateRegs(C->getType()); 9624 CopyValueToVirtualRegister(C, RegOut); 9625 } 9626 Reg = RegOut; 9627 } else { 9628 DenseMap<const Value *, unsigned>::iterator I = 9629 FuncInfo.ValueMap.find(PHIOp); 9630 if (I != FuncInfo.ValueMap.end()) 9631 Reg = I->second; 9632 else { 9633 assert(isa<AllocaInst>(PHIOp) && 9634 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 9635 "Didn't codegen value into a register!??"); 9636 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 9637 CopyValueToVirtualRegister(PHIOp, Reg); 9638 } 9639 } 9640 9641 // Remember that this register needs to added to the machine PHI node as 9642 // the input for this MBB. 9643 SmallVector<EVT, 4> ValueVTs; 9644 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9645 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 9646 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 9647 EVT VT = ValueVTs[vti]; 9648 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 9649 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 9650 FuncInfo.PHINodesToUpdate.push_back( 9651 std::make_pair(&*MBBI++, Reg + i)); 9652 Reg += NumRegisters; 9653 } 9654 } 9655 } 9656 9657 ConstantsOut.clear(); 9658 } 9659 9660 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 9661 /// is 0. 9662 MachineBasicBlock * 9663 SelectionDAGBuilder::StackProtectorDescriptor:: 9664 AddSuccessorMBB(const BasicBlock *BB, 9665 MachineBasicBlock *ParentMBB, 9666 bool IsLikely, 9667 MachineBasicBlock *SuccMBB) { 9668 // If SuccBB has not been created yet, create it. 9669 if (!SuccMBB) { 9670 MachineFunction *MF = ParentMBB->getParent(); 9671 MachineFunction::iterator BBI(ParentMBB); 9672 SuccMBB = MF->CreateMachineBasicBlock(BB); 9673 MF->insert(++BBI, SuccMBB); 9674 } 9675 // Add it as a successor of ParentMBB. 9676 ParentMBB->addSuccessor( 9677 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 9678 return SuccMBB; 9679 } 9680 9681 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 9682 MachineFunction::iterator I(MBB); 9683 if (++I == FuncInfo.MF->end()) 9684 return nullptr; 9685 return &*I; 9686 } 9687 9688 /// During lowering new call nodes can be created (such as memset, etc.). 9689 /// Those will become new roots of the current DAG, but complications arise 9690 /// when they are tail calls. In such cases, the call lowering will update 9691 /// the root, but the builder still needs to know that a tail call has been 9692 /// lowered in order to avoid generating an additional return. 9693 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 9694 // If the node is null, we do have a tail call. 9695 if (MaybeTC.getNode() != nullptr) 9696 DAG.setRoot(MaybeTC); 9697 else 9698 HasTailCall = true; 9699 } 9700 9701 uint64_t 9702 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters, 9703 unsigned First, unsigned Last) const { 9704 assert(Last >= First); 9705 const APInt &LowCase = Clusters[First].Low->getValue(); 9706 const APInt &HighCase = Clusters[Last].High->getValue(); 9707 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 9708 9709 // FIXME: A range of consecutive cases has 100% density, but only requires one 9710 // comparison to lower. We should discriminate against such consecutive ranges 9711 // in jump tables. 9712 9713 return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1; 9714 } 9715 9716 uint64_t SelectionDAGBuilder::getJumpTableNumCases( 9717 const SmallVectorImpl<unsigned> &TotalCases, unsigned First, 9718 unsigned Last) const { 9719 assert(Last >= First); 9720 assert(TotalCases[Last] >= TotalCases[First]); 9721 uint64_t NumCases = 9722 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 9723 return NumCases; 9724 } 9725 9726 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters, 9727 unsigned First, unsigned Last, 9728 const SwitchInst *SI, 9729 MachineBasicBlock *DefaultMBB, 9730 CaseCluster &JTCluster) { 9731 assert(First <= Last); 9732 9733 auto Prob = BranchProbability::getZero(); 9734 unsigned NumCmps = 0; 9735 std::vector<MachineBasicBlock*> Table; 9736 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 9737 9738 // Initialize probabilities in JTProbs. 9739 for (unsigned I = First; I <= Last; ++I) 9740 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 9741 9742 for (unsigned I = First; I <= Last; ++I) { 9743 assert(Clusters[I].Kind == CC_Range); 9744 Prob += Clusters[I].Prob; 9745 const APInt &Low = Clusters[I].Low->getValue(); 9746 const APInt &High = Clusters[I].High->getValue(); 9747 NumCmps += (Low == High) ? 1 : 2; 9748 if (I != First) { 9749 // Fill the gap between this and the previous cluster. 9750 const APInt &PreviousHigh = Clusters[I - 1].High->getValue(); 9751 assert(PreviousHigh.slt(Low)); 9752 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 9753 for (uint64_t J = 0; J < Gap; J++) 9754 Table.push_back(DefaultMBB); 9755 } 9756 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 9757 for (uint64_t J = 0; J < ClusterSize; ++J) 9758 Table.push_back(Clusters[I].MBB); 9759 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 9760 } 9761 9762 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9763 unsigned NumDests = JTProbs.size(); 9764 if (TLI.isSuitableForBitTests( 9765 NumDests, NumCmps, Clusters[First].Low->getValue(), 9766 Clusters[Last].High->getValue(), DAG.getDataLayout())) { 9767 // Clusters[First..Last] should be lowered as bit tests instead. 9768 return false; 9769 } 9770 9771 // Create the MBB that will load from and jump through the table. 9772 // Note: We create it here, but it's not inserted into the function yet. 9773 MachineFunction *CurMF = FuncInfo.MF; 9774 MachineBasicBlock *JumpTableMBB = 9775 CurMF->CreateMachineBasicBlock(SI->getParent()); 9776 9777 // Add successors. Note: use table order for determinism. 9778 SmallPtrSet<MachineBasicBlock *, 8> Done; 9779 for (MachineBasicBlock *Succ : Table) { 9780 if (Done.count(Succ)) 9781 continue; 9782 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 9783 Done.insert(Succ); 9784 } 9785 JumpTableMBB->normalizeSuccProbs(); 9786 9787 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 9788 ->createJumpTableIndex(Table); 9789 9790 // Set up the jump table info. 9791 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 9792 JumpTableHeader JTH(Clusters[First].Low->getValue(), 9793 Clusters[Last].High->getValue(), SI->getCondition(), 9794 nullptr, false); 9795 JTCases.emplace_back(std::move(JTH), std::move(JT)); 9796 9797 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 9798 JTCases.size() - 1, Prob); 9799 return true; 9800 } 9801 9802 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 9803 const SwitchInst *SI, 9804 MachineBasicBlock *DefaultMBB) { 9805 #ifndef NDEBUG 9806 // Clusters must be non-empty, sorted, and only contain Range clusters. 9807 assert(!Clusters.empty()); 9808 for (CaseCluster &C : Clusters) 9809 assert(C.Kind == CC_Range); 9810 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 9811 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 9812 #endif 9813 9814 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9815 if (!TLI.areJTsAllowed(SI->getParent()->getParent())) 9816 return; 9817 9818 const int64_t N = Clusters.size(); 9819 const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries(); 9820 const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2; 9821 9822 if (N < 2 || N < MinJumpTableEntries) 9823 return; 9824 9825 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 9826 SmallVector<unsigned, 8> TotalCases(N); 9827 for (unsigned i = 0; i < N; ++i) { 9828 const APInt &Hi = Clusters[i].High->getValue(); 9829 const APInt &Lo = Clusters[i].Low->getValue(); 9830 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 9831 if (i != 0) 9832 TotalCases[i] += TotalCases[i - 1]; 9833 } 9834 9835 // Cheap case: the whole range may be suitable for jump table. 9836 uint64_t Range = getJumpTableRange(Clusters,0, N - 1); 9837 uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1); 9838 assert(NumCases < UINT64_MAX / 100); 9839 assert(Range >= NumCases); 9840 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 9841 CaseCluster JTCluster; 9842 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 9843 Clusters[0] = JTCluster; 9844 Clusters.resize(1); 9845 return; 9846 } 9847 } 9848 9849 // The algorithm below is not suitable for -O0. 9850 if (TM.getOptLevel() == CodeGenOpt::None) 9851 return; 9852 9853 // Split Clusters into minimum number of dense partitions. The algorithm uses 9854 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 9855 // for the Case Statement'" (1994), but builds the MinPartitions array in 9856 // reverse order to make it easier to reconstruct the partitions in ascending 9857 // order. In the choice between two optimal partitionings, it picks the one 9858 // which yields more jump tables. 9859 9860 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 9861 SmallVector<unsigned, 8> MinPartitions(N); 9862 // LastElement[i] is the last element of the partition starting at i. 9863 SmallVector<unsigned, 8> LastElement(N); 9864 // PartitionsScore[i] is used to break ties when choosing between two 9865 // partitionings resulting in the same number of partitions. 9866 SmallVector<unsigned, 8> PartitionsScore(N); 9867 // For PartitionsScore, a small number of comparisons is considered as good as 9868 // a jump table and a single comparison is considered better than a jump 9869 // table. 9870 enum PartitionScores : unsigned { 9871 NoTable = 0, 9872 Table = 1, 9873 FewCases = 1, 9874 SingleCase = 2 9875 }; 9876 9877 // Base case: There is only one way to partition Clusters[N-1]. 9878 MinPartitions[N - 1] = 1; 9879 LastElement[N - 1] = N - 1; 9880 PartitionsScore[N - 1] = PartitionScores::SingleCase; 9881 9882 // Note: loop indexes are signed to avoid underflow. 9883 for (int64_t i = N - 2; i >= 0; i--) { 9884 // Find optimal partitioning of Clusters[i..N-1]. 9885 // Baseline: Put Clusters[i] into a partition on its own. 9886 MinPartitions[i] = MinPartitions[i + 1] + 1; 9887 LastElement[i] = i; 9888 PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase; 9889 9890 // Search for a solution that results in fewer partitions. 9891 for (int64_t j = N - 1; j > i; j--) { 9892 // Try building a partition from Clusters[i..j]. 9893 uint64_t Range = getJumpTableRange(Clusters, i, j); 9894 uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j); 9895 assert(NumCases < UINT64_MAX / 100); 9896 assert(Range >= NumCases); 9897 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 9898 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 9899 unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1]; 9900 int64_t NumEntries = j - i + 1; 9901 9902 if (NumEntries == 1) 9903 Score += PartitionScores::SingleCase; 9904 else if (NumEntries <= SmallNumberOfEntries) 9905 Score += PartitionScores::FewCases; 9906 else if (NumEntries >= MinJumpTableEntries) 9907 Score += PartitionScores::Table; 9908 9909 // If this leads to fewer partitions, or to the same number of 9910 // partitions with better score, it is a better partitioning. 9911 if (NumPartitions < MinPartitions[i] || 9912 (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) { 9913 MinPartitions[i] = NumPartitions; 9914 LastElement[i] = j; 9915 PartitionsScore[i] = Score; 9916 } 9917 } 9918 } 9919 } 9920 9921 // Iterate over the partitions, replacing some with jump tables in-place. 9922 unsigned DstIndex = 0; 9923 for (unsigned First = 0, Last; First < N; First = Last + 1) { 9924 Last = LastElement[First]; 9925 assert(Last >= First); 9926 assert(DstIndex <= First); 9927 unsigned NumClusters = Last - First + 1; 9928 9929 CaseCluster JTCluster; 9930 if (NumClusters >= MinJumpTableEntries && 9931 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 9932 Clusters[DstIndex++] = JTCluster; 9933 } else { 9934 for (unsigned I = First; I <= Last; ++I) 9935 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 9936 } 9937 } 9938 Clusters.resize(DstIndex); 9939 } 9940 9941 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 9942 unsigned First, unsigned Last, 9943 const SwitchInst *SI, 9944 CaseCluster &BTCluster) { 9945 assert(First <= Last); 9946 if (First == Last) 9947 return false; 9948 9949 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 9950 unsigned NumCmps = 0; 9951 for (int64_t I = First; I <= Last; ++I) { 9952 assert(Clusters[I].Kind == CC_Range); 9953 Dests.set(Clusters[I].MBB->getNumber()); 9954 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 9955 } 9956 unsigned NumDests = Dests.count(); 9957 9958 APInt Low = Clusters[First].Low->getValue(); 9959 APInt High = Clusters[Last].High->getValue(); 9960 assert(Low.slt(High)); 9961 9962 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9963 const DataLayout &DL = DAG.getDataLayout(); 9964 if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL)) 9965 return false; 9966 9967 APInt LowBound; 9968 APInt CmpRange; 9969 9970 const int BitWidth = TLI.getPointerTy(DL).getSizeInBits(); 9971 assert(TLI.rangeFitsInWord(Low, High, DL) && 9972 "Case range must fit in bit mask!"); 9973 9974 // Check if the clusters cover a contiguous range such that no value in the 9975 // range will jump to the default statement. 9976 bool ContiguousRange = true; 9977 for (int64_t I = First + 1; I <= Last; ++I) { 9978 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 9979 ContiguousRange = false; 9980 break; 9981 } 9982 } 9983 9984 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 9985 // Optimize the case where all the case values fit in a word without having 9986 // to subtract minValue. In this case, we can optimize away the subtraction. 9987 LowBound = APInt::getNullValue(Low.getBitWidth()); 9988 CmpRange = High; 9989 ContiguousRange = false; 9990 } else { 9991 LowBound = Low; 9992 CmpRange = High - Low; 9993 } 9994 9995 CaseBitsVector CBV; 9996 auto TotalProb = BranchProbability::getZero(); 9997 for (unsigned i = First; i <= Last; ++i) { 9998 // Find the CaseBits for this destination. 9999 unsigned j; 10000 for (j = 0; j < CBV.size(); ++j) 10001 if (CBV[j].BB == Clusters[i].MBB) 10002 break; 10003 if (j == CBV.size()) 10004 CBV.push_back( 10005 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 10006 CaseBits *CB = &CBV[j]; 10007 10008 // Update Mask, Bits and ExtraProb. 10009 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 10010 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 10011 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 10012 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 10013 CB->Bits += Hi - Lo + 1; 10014 CB->ExtraProb += Clusters[i].Prob; 10015 TotalProb += Clusters[i].Prob; 10016 } 10017 10018 BitTestInfo BTI; 10019 llvm::sort(CBV, [](const CaseBits &a, const CaseBits &b) { 10020 // Sort by probability first, number of bits second, bit mask third. 10021 if (a.ExtraProb != b.ExtraProb) 10022 return a.ExtraProb > b.ExtraProb; 10023 if (a.Bits != b.Bits) 10024 return a.Bits > b.Bits; 10025 return a.Mask < b.Mask; 10026 }); 10027 10028 for (auto &CB : CBV) { 10029 MachineBasicBlock *BitTestBB = 10030 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 10031 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 10032 } 10033 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 10034 SI->getCondition(), -1U, MVT::Other, false, 10035 ContiguousRange, nullptr, nullptr, std::move(BTI), 10036 TotalProb); 10037 10038 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 10039 BitTestCases.size() - 1, TotalProb); 10040 return true; 10041 } 10042 10043 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 10044 const SwitchInst *SI) { 10045 // Partition Clusters into as few subsets as possible, where each subset has a 10046 // range that fits in a machine word and has <= 3 unique destinations. 10047 10048 #ifndef NDEBUG 10049 // Clusters must be sorted and contain Range or JumpTable clusters. 10050 assert(!Clusters.empty()); 10051 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 10052 for (const CaseCluster &C : Clusters) 10053 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 10054 for (unsigned i = 1; i < Clusters.size(); ++i) 10055 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 10056 #endif 10057 10058 // The algorithm below is not suitable for -O0. 10059 if (TM.getOptLevel() == CodeGenOpt::None) 10060 return; 10061 10062 // If target does not have legal shift left, do not emit bit tests at all. 10063 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10064 const DataLayout &DL = DAG.getDataLayout(); 10065 10066 EVT PTy = TLI.getPointerTy(DL); 10067 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 10068 return; 10069 10070 int BitWidth = PTy.getSizeInBits(); 10071 const int64_t N = Clusters.size(); 10072 10073 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 10074 SmallVector<unsigned, 8> MinPartitions(N); 10075 // LastElement[i] is the last element of the partition starting at i. 10076 SmallVector<unsigned, 8> LastElement(N); 10077 10078 // FIXME: This might not be the best algorithm for finding bit test clusters. 10079 10080 // Base case: There is only one way to partition Clusters[N-1]. 10081 MinPartitions[N - 1] = 1; 10082 LastElement[N - 1] = N - 1; 10083 10084 // Note: loop indexes are signed to avoid underflow. 10085 for (int64_t i = N - 2; i >= 0; --i) { 10086 // Find optimal partitioning of Clusters[i..N-1]. 10087 // Baseline: Put Clusters[i] into a partition on its own. 10088 MinPartitions[i] = MinPartitions[i + 1] + 1; 10089 LastElement[i] = i; 10090 10091 // Search for a solution that results in fewer partitions. 10092 // Note: the search is limited by BitWidth, reducing time complexity. 10093 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 10094 // Try building a partition from Clusters[i..j]. 10095 10096 // Check the range. 10097 if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(), 10098 Clusters[j].High->getValue(), DL)) 10099 continue; 10100 10101 // Check nbr of destinations and cluster types. 10102 // FIXME: This works, but doesn't seem very efficient. 10103 bool RangesOnly = true; 10104 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 10105 for (int64_t k = i; k <= j; k++) { 10106 if (Clusters[k].Kind != CC_Range) { 10107 RangesOnly = false; 10108 break; 10109 } 10110 Dests.set(Clusters[k].MBB->getNumber()); 10111 } 10112 if (!RangesOnly || Dests.count() > 3) 10113 break; 10114 10115 // Check if it's a better partition. 10116 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 10117 if (NumPartitions < MinPartitions[i]) { 10118 // Found a better partition. 10119 MinPartitions[i] = NumPartitions; 10120 LastElement[i] = j; 10121 } 10122 } 10123 } 10124 10125 // Iterate over the partitions, replacing with bit-test clusters in-place. 10126 unsigned DstIndex = 0; 10127 for (unsigned First = 0, Last; First < N; First = Last + 1) { 10128 Last = LastElement[First]; 10129 assert(First <= Last); 10130 assert(DstIndex <= First); 10131 10132 CaseCluster BitTestCluster; 10133 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 10134 Clusters[DstIndex++] = BitTestCluster; 10135 } else { 10136 size_t NumClusters = Last - First + 1; 10137 std::memmove(&Clusters[DstIndex], &Clusters[First], 10138 sizeof(Clusters[0]) * NumClusters); 10139 DstIndex += NumClusters; 10140 } 10141 } 10142 Clusters.resize(DstIndex); 10143 } 10144 10145 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10146 MachineBasicBlock *SwitchMBB, 10147 MachineBasicBlock *DefaultMBB) { 10148 MachineFunction *CurMF = FuncInfo.MF; 10149 MachineBasicBlock *NextMBB = nullptr; 10150 MachineFunction::iterator BBI(W.MBB); 10151 if (++BBI != FuncInfo.MF->end()) 10152 NextMBB = &*BBI; 10153 10154 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10155 10156 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10157 10158 if (Size == 2 && W.MBB == SwitchMBB) { 10159 // If any two of the cases has the same destination, and if one value 10160 // is the same as the other, but has one bit unset that the other has set, 10161 // use bit manipulation to do two compares at once. For example: 10162 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10163 // TODO: This could be extended to merge any 2 cases in switches with 3 10164 // cases. 10165 // TODO: Handle cases where W.CaseBB != SwitchBB. 10166 CaseCluster &Small = *W.FirstCluster; 10167 CaseCluster &Big = *W.LastCluster; 10168 10169 if (Small.Low == Small.High && Big.Low == Big.High && 10170 Small.MBB == Big.MBB) { 10171 const APInt &SmallValue = Small.Low->getValue(); 10172 const APInt &BigValue = Big.Low->getValue(); 10173 10174 // Check that there is only one bit different. 10175 APInt CommonBit = BigValue ^ SmallValue; 10176 if (CommonBit.isPowerOf2()) { 10177 SDValue CondLHS = getValue(Cond); 10178 EVT VT = CondLHS.getValueType(); 10179 SDLoc DL = getCurSDLoc(); 10180 10181 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10182 DAG.getConstant(CommonBit, DL, VT)); 10183 SDValue Cond = DAG.getSetCC( 10184 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10185 ISD::SETEQ); 10186 10187 // Update successor info. 10188 // Both Small and Big will jump to Small.BB, so we sum up the 10189 // probabilities. 10190 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10191 if (BPI) 10192 addSuccessorWithProb( 10193 SwitchMBB, DefaultMBB, 10194 // The default destination is the first successor in IR. 10195 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10196 else 10197 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10198 10199 // Insert the true branch. 10200 SDValue BrCond = 10201 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10202 DAG.getBasicBlock(Small.MBB)); 10203 // Insert the false branch. 10204 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10205 DAG.getBasicBlock(DefaultMBB)); 10206 10207 DAG.setRoot(BrCond); 10208 return; 10209 } 10210 } 10211 } 10212 10213 if (TM.getOptLevel() != CodeGenOpt::None) { 10214 // Here, we order cases by probability so the most likely case will be 10215 // checked first. However, two clusters can have the same probability in 10216 // which case their relative ordering is non-deterministic. So we use Low 10217 // as a tie-breaker as clusters are guaranteed to never overlap. 10218 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10219 [](const CaseCluster &a, const CaseCluster &b) { 10220 return a.Prob != b.Prob ? 10221 a.Prob > b.Prob : 10222 a.Low->getValue().slt(b.Low->getValue()); 10223 }); 10224 10225 // Rearrange the case blocks so that the last one falls through if possible 10226 // without changing the order of probabilities. 10227 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10228 --I; 10229 if (I->Prob > W.LastCluster->Prob) 10230 break; 10231 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10232 std::swap(*I, *W.LastCluster); 10233 break; 10234 } 10235 } 10236 } 10237 10238 // Compute total probability. 10239 BranchProbability DefaultProb = W.DefaultProb; 10240 BranchProbability UnhandledProbs = DefaultProb; 10241 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10242 UnhandledProbs += I->Prob; 10243 10244 MachineBasicBlock *CurMBB = W.MBB; 10245 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10246 MachineBasicBlock *Fallthrough; 10247 if (I == W.LastCluster) { 10248 // For the last cluster, fall through to the default destination. 10249 Fallthrough = DefaultMBB; 10250 } else { 10251 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10252 CurMF->insert(BBI, Fallthrough); 10253 // Put Cond in a virtual register to make it available from the new blocks. 10254 ExportFromCurrentBlock(Cond); 10255 } 10256 UnhandledProbs -= I->Prob; 10257 10258 switch (I->Kind) { 10259 case CC_JumpTable: { 10260 // FIXME: Optimize away range check based on pivot comparisons. 10261 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 10262 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 10263 10264 // The jump block hasn't been inserted yet; insert it here. 10265 MachineBasicBlock *JumpMBB = JT->MBB; 10266 CurMF->insert(BBI, JumpMBB); 10267 10268 auto JumpProb = I->Prob; 10269 auto FallthroughProb = UnhandledProbs; 10270 10271 // If the default statement is a target of the jump table, we evenly 10272 // distribute the default probability to successors of CurMBB. Also 10273 // update the probability on the edge from JumpMBB to Fallthrough. 10274 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10275 SE = JumpMBB->succ_end(); 10276 SI != SE; ++SI) { 10277 if (*SI == DefaultMBB) { 10278 JumpProb += DefaultProb / 2; 10279 FallthroughProb -= DefaultProb / 2; 10280 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10281 JumpMBB->normalizeSuccProbs(); 10282 break; 10283 } 10284 } 10285 10286 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10287 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10288 CurMBB->normalizeSuccProbs(); 10289 10290 // The jump table header will be inserted in our current block, do the 10291 // range check, and fall through to our fallthrough block. 10292 JTH->HeaderBB = CurMBB; 10293 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10294 10295 // If we're in the right place, emit the jump table header right now. 10296 if (CurMBB == SwitchMBB) { 10297 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10298 JTH->Emitted = true; 10299 } 10300 break; 10301 } 10302 case CC_BitTests: { 10303 // FIXME: Optimize away range check based on pivot comparisons. 10304 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 10305 10306 // The bit test blocks haven't been inserted yet; insert them here. 10307 for (BitTestCase &BTC : BTB->Cases) 10308 CurMF->insert(BBI, BTC.ThisBB); 10309 10310 // Fill in fields of the BitTestBlock. 10311 BTB->Parent = CurMBB; 10312 BTB->Default = Fallthrough; 10313 10314 BTB->DefaultProb = UnhandledProbs; 10315 // If the cases in bit test don't form a contiguous range, we evenly 10316 // distribute the probability on the edge to Fallthrough to two 10317 // successors of CurMBB. 10318 if (!BTB->ContiguousRange) { 10319 BTB->Prob += DefaultProb / 2; 10320 BTB->DefaultProb -= DefaultProb / 2; 10321 } 10322 10323 // If we're in the right place, emit the bit test header right now. 10324 if (CurMBB == SwitchMBB) { 10325 visitBitTestHeader(*BTB, SwitchMBB); 10326 BTB->Emitted = true; 10327 } 10328 break; 10329 } 10330 case CC_Range: { 10331 const Value *RHS, *LHS, *MHS; 10332 ISD::CondCode CC; 10333 if (I->Low == I->High) { 10334 // Check Cond == I->Low. 10335 CC = ISD::SETEQ; 10336 LHS = Cond; 10337 RHS=I->Low; 10338 MHS = nullptr; 10339 } else { 10340 // Check I->Low <= Cond <= I->High. 10341 CC = ISD::SETLE; 10342 LHS = I->Low; 10343 MHS = Cond; 10344 RHS = I->High; 10345 } 10346 10347 // The false probability is the sum of all unhandled cases. 10348 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10349 getCurSDLoc(), I->Prob, UnhandledProbs); 10350 10351 if (CurMBB == SwitchMBB) 10352 visitSwitchCase(CB, SwitchMBB); 10353 else 10354 SwitchCases.push_back(CB); 10355 10356 break; 10357 } 10358 } 10359 CurMBB = Fallthrough; 10360 } 10361 } 10362 10363 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10364 CaseClusterIt First, 10365 CaseClusterIt Last) { 10366 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10367 if (X.Prob != CC.Prob) 10368 return X.Prob > CC.Prob; 10369 10370 // Ties are broken by comparing the case value. 10371 return X.Low->getValue().slt(CC.Low->getValue()); 10372 }); 10373 } 10374 10375 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10376 const SwitchWorkListItem &W, 10377 Value *Cond, 10378 MachineBasicBlock *SwitchMBB) { 10379 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10380 "Clusters not sorted?"); 10381 10382 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10383 10384 // Balance the tree based on branch probabilities to create a near-optimal (in 10385 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10386 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10387 CaseClusterIt LastLeft = W.FirstCluster; 10388 CaseClusterIt FirstRight = W.LastCluster; 10389 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10390 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10391 10392 // Move LastLeft and FirstRight towards each other from opposite directions to 10393 // find a partitioning of the clusters which balances the probability on both 10394 // sides. If LeftProb and RightProb are equal, alternate which side is 10395 // taken to ensure 0-probability nodes are distributed evenly. 10396 unsigned I = 0; 10397 while (LastLeft + 1 < FirstRight) { 10398 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10399 LeftProb += (++LastLeft)->Prob; 10400 else 10401 RightProb += (--FirstRight)->Prob; 10402 I++; 10403 } 10404 10405 while (true) { 10406 // Our binary search tree differs from a typical BST in that ours can have up 10407 // to three values in each leaf. The pivot selection above doesn't take that 10408 // into account, which means the tree might require more nodes and be less 10409 // efficient. We compensate for this here. 10410 10411 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10412 unsigned NumRight = W.LastCluster - FirstRight + 1; 10413 10414 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10415 // If one side has less than 3 clusters, and the other has more than 3, 10416 // consider taking a cluster from the other side. 10417 10418 if (NumLeft < NumRight) { 10419 // Consider moving the first cluster on the right to the left side. 10420 CaseCluster &CC = *FirstRight; 10421 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10422 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10423 if (LeftSideRank <= RightSideRank) { 10424 // Moving the cluster to the left does not demote it. 10425 ++LastLeft; 10426 ++FirstRight; 10427 continue; 10428 } 10429 } else { 10430 assert(NumRight < NumLeft); 10431 // Consider moving the last element on the left to the right side. 10432 CaseCluster &CC = *LastLeft; 10433 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10434 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10435 if (RightSideRank <= LeftSideRank) { 10436 // Moving the cluster to the right does not demot it. 10437 --LastLeft; 10438 --FirstRight; 10439 continue; 10440 } 10441 } 10442 } 10443 break; 10444 } 10445 10446 assert(LastLeft + 1 == FirstRight); 10447 assert(LastLeft >= W.FirstCluster); 10448 assert(FirstRight <= W.LastCluster); 10449 10450 // Use the first element on the right as pivot since we will make less-than 10451 // comparisons against it. 10452 CaseClusterIt PivotCluster = FirstRight; 10453 assert(PivotCluster > W.FirstCluster); 10454 assert(PivotCluster <= W.LastCluster); 10455 10456 CaseClusterIt FirstLeft = W.FirstCluster; 10457 CaseClusterIt LastRight = W.LastCluster; 10458 10459 const ConstantInt *Pivot = PivotCluster->Low; 10460 10461 // New blocks will be inserted immediately after the current one. 10462 MachineFunction::iterator BBI(W.MBB); 10463 ++BBI; 10464 10465 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10466 // we can branch to its destination directly if it's squeezed exactly in 10467 // between the known lower bound and Pivot - 1. 10468 MachineBasicBlock *LeftMBB; 10469 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10470 FirstLeft->Low == W.GE && 10471 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10472 LeftMBB = FirstLeft->MBB; 10473 } else { 10474 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10475 FuncInfo.MF->insert(BBI, LeftMBB); 10476 WorkList.push_back( 10477 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10478 // Put Cond in a virtual register to make it available from the new blocks. 10479 ExportFromCurrentBlock(Cond); 10480 } 10481 10482 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10483 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10484 // directly if RHS.High equals the current upper bound. 10485 MachineBasicBlock *RightMBB; 10486 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10487 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10488 RightMBB = FirstRight->MBB; 10489 } else { 10490 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10491 FuncInfo.MF->insert(BBI, RightMBB); 10492 WorkList.push_back( 10493 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10494 // Put Cond in a virtual register to make it available from the new blocks. 10495 ExportFromCurrentBlock(Cond); 10496 } 10497 10498 // Create the CaseBlock record that will be used to lower the branch. 10499 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10500 getCurSDLoc(), LeftProb, RightProb); 10501 10502 if (W.MBB == SwitchMBB) 10503 visitSwitchCase(CB, SwitchMBB); 10504 else 10505 SwitchCases.push_back(CB); 10506 } 10507 10508 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10509 // from the swith statement. 10510 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10511 BranchProbability PeeledCaseProb) { 10512 if (PeeledCaseProb == BranchProbability::getOne()) 10513 return BranchProbability::getZero(); 10514 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10515 10516 uint32_t Numerator = CaseProb.getNumerator(); 10517 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10518 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10519 } 10520 10521 // Try to peel the top probability case if it exceeds the threshold. 10522 // Return current MachineBasicBlock for the switch statement if the peeling 10523 // does not occur. 10524 // If the peeling is performed, return the newly created MachineBasicBlock 10525 // for the peeled switch statement. Also update Clusters to remove the peeled 10526 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10527 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10528 const SwitchInst &SI, CaseClusterVector &Clusters, 10529 BranchProbability &PeeledCaseProb) { 10530 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10531 // Don't perform if there is only one cluster or optimizing for size. 10532 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10533 TM.getOptLevel() == CodeGenOpt::None || 10534 SwitchMBB->getParent()->getFunction().optForMinSize()) 10535 return SwitchMBB; 10536 10537 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10538 unsigned PeeledCaseIndex = 0; 10539 bool SwitchPeeled = false; 10540 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10541 CaseCluster &CC = Clusters[Index]; 10542 if (CC.Prob < TopCaseProb) 10543 continue; 10544 TopCaseProb = CC.Prob; 10545 PeeledCaseIndex = Index; 10546 SwitchPeeled = true; 10547 } 10548 if (!SwitchPeeled) 10549 return SwitchMBB; 10550 10551 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10552 << TopCaseProb << "\n"); 10553 10554 // Record the MBB for the peeled switch statement. 10555 MachineFunction::iterator BBI(SwitchMBB); 10556 ++BBI; 10557 MachineBasicBlock *PeeledSwitchMBB = 10558 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10559 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10560 10561 ExportFromCurrentBlock(SI.getCondition()); 10562 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10563 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10564 nullptr, nullptr, TopCaseProb.getCompl()}; 10565 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10566 10567 Clusters.erase(PeeledCaseIt); 10568 for (CaseCluster &CC : Clusters) { 10569 LLVM_DEBUG( 10570 dbgs() << "Scale the probablity for one cluster, before scaling: " 10571 << CC.Prob << "\n"); 10572 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10573 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10574 } 10575 PeeledCaseProb = TopCaseProb; 10576 return PeeledSwitchMBB; 10577 } 10578 10579 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10580 // Extract cases from the switch. 10581 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10582 CaseClusterVector Clusters; 10583 Clusters.reserve(SI.getNumCases()); 10584 for (auto I : SI.cases()) { 10585 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10586 const ConstantInt *CaseVal = I.getCaseValue(); 10587 BranchProbability Prob = 10588 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10589 : BranchProbability(1, SI.getNumCases() + 1); 10590 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10591 } 10592 10593 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10594 10595 // Cluster adjacent cases with the same destination. We do this at all 10596 // optimization levels because it's cheap to do and will make codegen faster 10597 // if there are many clusters. 10598 sortAndRangeify(Clusters); 10599 10600 if (TM.getOptLevel() != CodeGenOpt::None) { 10601 // Replace an unreachable default with the most popular destination. 10602 // FIXME: Exploit unreachable default more aggressively. 10603 bool UnreachableDefault = 10604 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 10605 if (UnreachableDefault && !Clusters.empty()) { 10606 DenseMap<const BasicBlock *, unsigned> Popularity; 10607 unsigned MaxPop = 0; 10608 const BasicBlock *MaxBB = nullptr; 10609 for (auto I : SI.cases()) { 10610 const BasicBlock *BB = I.getCaseSuccessor(); 10611 if (++Popularity[BB] > MaxPop) { 10612 MaxPop = Popularity[BB]; 10613 MaxBB = BB; 10614 } 10615 } 10616 // Set new default. 10617 assert(MaxPop > 0 && MaxBB); 10618 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 10619 10620 // Remove cases that were pointing to the destination that is now the 10621 // default. 10622 CaseClusterVector New; 10623 New.reserve(Clusters.size()); 10624 for (CaseCluster &CC : Clusters) { 10625 if (CC.MBB != DefaultMBB) 10626 New.push_back(CC); 10627 } 10628 Clusters = std::move(New); 10629 } 10630 } 10631 10632 // The branch probablity of the peeled case. 10633 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10634 MachineBasicBlock *PeeledSwitchMBB = 10635 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10636 10637 // If there is only the default destination, jump there directly. 10638 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10639 if (Clusters.empty()) { 10640 assert(PeeledSwitchMBB == SwitchMBB); 10641 SwitchMBB->addSuccessor(DefaultMBB); 10642 if (DefaultMBB != NextBlock(SwitchMBB)) { 10643 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10644 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10645 } 10646 return; 10647 } 10648 10649 findJumpTables(Clusters, &SI, DefaultMBB); 10650 findBitTestClusters(Clusters, &SI); 10651 10652 LLVM_DEBUG({ 10653 dbgs() << "Case clusters: "; 10654 for (const CaseCluster &C : Clusters) { 10655 if (C.Kind == CC_JumpTable) 10656 dbgs() << "JT:"; 10657 if (C.Kind == CC_BitTests) 10658 dbgs() << "BT:"; 10659 10660 C.Low->getValue().print(dbgs(), true); 10661 if (C.Low != C.High) { 10662 dbgs() << '-'; 10663 C.High->getValue().print(dbgs(), true); 10664 } 10665 dbgs() << ' '; 10666 } 10667 dbgs() << '\n'; 10668 }); 10669 10670 assert(!Clusters.empty()); 10671 SwitchWorkList WorkList; 10672 CaseClusterIt First = Clusters.begin(); 10673 CaseClusterIt Last = Clusters.end() - 1; 10674 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10675 // Scale the branchprobability for DefaultMBB if the peel occurs and 10676 // DefaultMBB is not replaced. 10677 if (PeeledCaseProb != BranchProbability::getZero() && 10678 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10679 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10680 WorkList.push_back( 10681 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10682 10683 while (!WorkList.empty()) { 10684 SwitchWorkListItem W = WorkList.back(); 10685 WorkList.pop_back(); 10686 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10687 10688 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10689 !DefaultMBB->getParent()->getFunction().optForMinSize()) { 10690 // For optimized builds, lower large range as a balanced binary tree. 10691 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10692 continue; 10693 } 10694 10695 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10696 } 10697 } 10698