xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 0252265be09bcd94c72cea95e21a773b3ea1c638)
1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #define DEBUG_TYPE "isel"
15 #include "SelectionDAGBuilder.h"
16 #include "SDNodeDbgValue.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/BranchProbabilityInfo.h"
22 #include "llvm/Analysis/ConstantFolding.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/CodeGen/Analysis.h"
25 #include "llvm/CodeGen/FastISel.h"
26 #include "llvm/CodeGen/FunctionLoweringInfo.h"
27 #include "llvm/CodeGen/GCMetadata.h"
28 #include "llvm/CodeGen/GCStrategy.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineFunction.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineJumpTableInfo.h"
33 #include "llvm/CodeGen/MachineModuleInfo.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/SelectionDAG.h"
36 #include "llvm/DebugInfo.h"
37 #include "llvm/IR/CallingConv.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DerivedTypes.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/GlobalVariable.h"
43 #include "llvm/IR/InlineAsm.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/Intrinsics.h"
47 #include "llvm/IR/LLVMContext.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/IntegersSubsetMapping.h"
53 #include "llvm/Support/MathExtras.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include "llvm/Target/TargetFrameLowering.h"
56 #include "llvm/Target/TargetInstrInfo.h"
57 #include "llvm/Target/TargetIntrinsicInfo.h"
58 #include "llvm/Target/TargetLibraryInfo.h"
59 #include "llvm/Target/TargetLowering.h"
60 #include "llvm/Target/TargetOptions.h"
61 #include <algorithm>
62 using namespace llvm;
63 
64 /// LimitFloatPrecision - Generate low-precision inline sequences for
65 /// some float libcalls (6, 8 or 12 bits).
66 static unsigned LimitFloatPrecision;
67 
68 static cl::opt<unsigned, true>
69 LimitFPPrecision("limit-float-precision",
70                  cl::desc("Generate low-precision inline sequences "
71                           "for some float libcalls"),
72                  cl::location(LimitFloatPrecision),
73                  cl::init(0));
74 
75 // Limit the width of DAG chains. This is important in general to prevent
76 // prevent DAG-based analysis from blowing up. For example, alias analysis and
77 // load clustering may not complete in reasonable time. It is difficult to
78 // recognize and avoid this situation within each individual analysis, and
79 // future analyses are likely to have the same behavior. Limiting DAG width is
80 // the safe approach, and will be especially important with global DAGs.
81 //
82 // MaxParallelChains default is arbitrarily high to avoid affecting
83 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
84 // sequence over this should have been converted to llvm.memcpy by the
85 // frontend. It easy to induce this behavior with .ll code such as:
86 // %buffer = alloca [4096 x i8]
87 // %data = load [4096 x i8]* %argPtr
88 // store [4096 x i8] %data, [4096 x i8]* %buffer
89 static const unsigned MaxParallelChains = 64;
90 
91 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
92                                       const SDValue *Parts, unsigned NumParts,
93                                       MVT PartVT, EVT ValueVT, const Value *V);
94 
95 /// getCopyFromParts - Create a value that contains the specified legal parts
96 /// combined into the value they represent.  If the parts combine to a type
97 /// larger then ValueVT then AssertOp can be used to specify whether the extra
98 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
99 /// (ISD::AssertSext).
100 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL,
101                                 const SDValue *Parts,
102                                 unsigned NumParts, MVT PartVT, EVT ValueVT,
103                                 const Value *V,
104                                 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
105   if (ValueVT.isVector())
106     return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
107                                   PartVT, ValueVT, V);
108 
109   assert(NumParts > 0 && "No parts to assemble!");
110   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
111   SDValue Val = Parts[0];
112 
113   if (NumParts > 1) {
114     // Assemble the value from multiple parts.
115     if (ValueVT.isInteger()) {
116       unsigned PartBits = PartVT.getSizeInBits();
117       unsigned ValueBits = ValueVT.getSizeInBits();
118 
119       // Assemble the power of 2 part.
120       unsigned RoundParts = NumParts & (NumParts - 1) ?
121         1 << Log2_32(NumParts) : NumParts;
122       unsigned RoundBits = PartBits * RoundParts;
123       EVT RoundVT = RoundBits == ValueBits ?
124         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
125       SDValue Lo, Hi;
126 
127       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
128 
129       if (RoundParts > 2) {
130         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
131                               PartVT, HalfVT, V);
132         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
133                               RoundParts / 2, PartVT, HalfVT, V);
134       } else {
135         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
136         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
137       }
138 
139       if (TLI.isBigEndian())
140         std::swap(Lo, Hi);
141 
142       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
143 
144       if (RoundParts < NumParts) {
145         // Assemble the trailing non-power-of-2 part.
146         unsigned OddParts = NumParts - RoundParts;
147         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
148         Hi = getCopyFromParts(DAG, DL,
149                               Parts + RoundParts, OddParts, PartVT, OddVT, V);
150 
151         // Combine the round and odd parts.
152         Lo = Val;
153         if (TLI.isBigEndian())
154           std::swap(Lo, Hi);
155         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
156         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
157         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
158                          DAG.getConstant(Lo.getValueType().getSizeInBits(),
159                                          TLI.getPointerTy()));
160         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
161         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
162       }
163     } else if (PartVT.isFloatingPoint()) {
164       // FP split into multiple FP parts (for ppcf128)
165       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
166              "Unexpected split");
167       SDValue Lo, Hi;
168       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
169       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
170       if (TLI.isBigEndian())
171         std::swap(Lo, Hi);
172       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
173     } else {
174       // FP split into integer parts (soft fp)
175       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
176              !PartVT.isVector() && "Unexpected split");
177       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
178       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
179     }
180   }
181 
182   // There is now one part, held in Val.  Correct it to match ValueVT.
183   EVT PartEVT = Val.getValueType();
184 
185   if (PartEVT == ValueVT)
186     return Val;
187 
188   if (PartEVT.isInteger() && ValueVT.isInteger()) {
189     if (ValueVT.bitsLT(PartEVT)) {
190       // For a truncate, see if we have any information to
191       // indicate whether the truncated bits will always be
192       // zero or sign-extension.
193       if (AssertOp != ISD::DELETED_NODE)
194         Val = DAG.getNode(AssertOp, DL, PartEVT, Val,
195                           DAG.getValueType(ValueVT));
196       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
197     }
198     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
199   }
200 
201   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
202     // FP_ROUND's are always exact here.
203     if (ValueVT.bitsLT(Val.getValueType()))
204       return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
205                          DAG.getTargetConstant(1, TLI.getPointerTy()));
206 
207     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
208   }
209 
210   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
211     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
212 
213   llvm_unreachable("Unknown mismatch!");
214 }
215 
216 /// getCopyFromPartsVector - Create a value that contains the specified legal
217 /// parts combined into the value they represent.  If the parts combine to a
218 /// type larger then ValueVT then AssertOp can be used to specify whether the
219 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
220 /// ValueVT (ISD::AssertSext).
221 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
222                                       const SDValue *Parts, unsigned NumParts,
223                                       MVT PartVT, EVT ValueVT, const Value *V) {
224   assert(ValueVT.isVector() && "Not a vector value");
225   assert(NumParts > 0 && "No parts to assemble!");
226   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
227   SDValue Val = Parts[0];
228 
229   // Handle a multi-element vector.
230   if (NumParts > 1) {
231     EVT IntermediateVT;
232     MVT RegisterVT;
233     unsigned NumIntermediates;
234     unsigned NumRegs =
235     TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
236                                NumIntermediates, RegisterVT);
237     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
238     NumParts = NumRegs; // Silence a compiler warning.
239     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
240     assert(RegisterVT == Parts[0].getSimpleValueType() &&
241            "Part type doesn't match part!");
242 
243     // Assemble the parts into intermediate operands.
244     SmallVector<SDValue, 8> Ops(NumIntermediates);
245     if (NumIntermediates == NumParts) {
246       // If the register was not expanded, truncate or copy the value,
247       // as appropriate.
248       for (unsigned i = 0; i != NumParts; ++i)
249         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
250                                   PartVT, IntermediateVT, V);
251     } else if (NumParts > 0) {
252       // If the intermediate type was expanded, build the intermediate
253       // operands from the parts.
254       assert(NumParts % NumIntermediates == 0 &&
255              "Must expand into a divisible number of parts!");
256       unsigned Factor = NumParts / NumIntermediates;
257       for (unsigned i = 0; i != NumIntermediates; ++i)
258         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
259                                   PartVT, IntermediateVT, V);
260     }
261 
262     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
263     // intermediate operands.
264     Val = DAG.getNode(IntermediateVT.isVector() ?
265                       ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
266                       ValueVT, &Ops[0], NumIntermediates);
267   }
268 
269   // There is now one part, held in Val.  Correct it to match ValueVT.
270   EVT PartEVT = Val.getValueType();
271 
272   if (PartEVT == ValueVT)
273     return Val;
274 
275   if (PartEVT.isVector()) {
276     // If the element type of the source/dest vectors are the same, but the
277     // parts vector has more elements than the value vector, then we have a
278     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
279     // elements we want.
280     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
281       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
282              "Cannot narrow, it would be a lossy transformation");
283       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
284                          DAG.getIntPtrConstant(0));
285     }
286 
287     // Vector/Vector bitcast.
288     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
289       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
290 
291     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
292       "Cannot handle this kind of promotion");
293     // Promoted vector extract
294     bool Smaller = ValueVT.bitsLE(PartEVT);
295     return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
296                        DL, ValueVT, Val);
297 
298   }
299 
300   // Trivial bitcast if the types are the same size and the destination
301   // vector type is legal.
302   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
303       TLI.isTypeLegal(ValueVT))
304     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
305 
306   // Handle cases such as i8 -> <1 x i1>
307   if (ValueVT.getVectorNumElements() != 1) {
308     LLVMContext &Ctx = *DAG.getContext();
309     Twine ErrMsg("non-trivial scalar-to-vector conversion");
310     if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) {
311       if (const CallInst *CI = dyn_cast<CallInst>(I))
312         if (isa<InlineAsm>(CI->getCalledValue()))
313           ErrMsg = ErrMsg + ", possible invalid constraint for vector type";
314       Ctx.emitError(I, ErrMsg);
315     } else {
316       Ctx.emitError(ErrMsg);
317     }
318     return DAG.getUNDEF(ValueVT);
319   }
320 
321   if (ValueVT.getVectorNumElements() == 1 &&
322       ValueVT.getVectorElementType() != PartEVT) {
323     bool Smaller = ValueVT.bitsLE(PartEVT);
324     Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
325                        DL, ValueVT.getScalarType(), Val);
326   }
327 
328   return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
329 }
330 
331 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl,
332                                  SDValue Val, SDValue *Parts, unsigned NumParts,
333                                  MVT PartVT, const Value *V);
334 
335 /// getCopyToParts - Create a series of nodes that contain the specified value
336 /// split into legal parts.  If the parts contain more bits than Val, then, for
337 /// integers, ExtendKind can be used to specify how to generate the extra bits.
338 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL,
339                            SDValue Val, SDValue *Parts, unsigned NumParts,
340                            MVT PartVT, const Value *V,
341                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
342   EVT ValueVT = Val.getValueType();
343 
344   // Handle the vector case separately.
345   if (ValueVT.isVector())
346     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
347 
348   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
349   unsigned PartBits = PartVT.getSizeInBits();
350   unsigned OrigNumParts = NumParts;
351   assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
352 
353   if (NumParts == 0)
354     return;
355 
356   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
357   EVT PartEVT = PartVT;
358   if (PartEVT == ValueVT) {
359     assert(NumParts == 1 && "No-op copy with multiple parts!");
360     Parts[0] = Val;
361     return;
362   }
363 
364   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
365     // If the parts cover more bits than the value has, promote the value.
366     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
367       assert(NumParts == 1 && "Do not know what to promote to!");
368       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
369     } else {
370       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
371              ValueVT.isInteger() &&
372              "Unknown mismatch!");
373       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
374       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
375       if (PartVT == MVT::x86mmx)
376         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
377     }
378   } else if (PartBits == ValueVT.getSizeInBits()) {
379     // Different types of the same size.
380     assert(NumParts == 1 && PartEVT != ValueVT);
381     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
382   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
383     // If the parts cover less bits than value has, truncate the value.
384     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
385            ValueVT.isInteger() &&
386            "Unknown mismatch!");
387     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
388     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
389     if (PartVT == MVT::x86mmx)
390       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
391   }
392 
393   // The value may have changed - recompute ValueVT.
394   ValueVT = Val.getValueType();
395   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
396          "Failed to tile the value with PartVT!");
397 
398   if (NumParts == 1) {
399     if (PartEVT != ValueVT) {
400       LLVMContext &Ctx = *DAG.getContext();
401       Twine ErrMsg("scalar-to-vector conversion failed");
402       if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) {
403         if (const CallInst *CI = dyn_cast<CallInst>(I))
404           if (isa<InlineAsm>(CI->getCalledValue()))
405             ErrMsg = ErrMsg + ", possible invalid constraint for vector type";
406         Ctx.emitError(I, ErrMsg);
407       } else {
408         Ctx.emitError(ErrMsg);
409       }
410     }
411 
412     Parts[0] = Val;
413     return;
414   }
415 
416   // Expand the value into multiple parts.
417   if (NumParts & (NumParts - 1)) {
418     // The number of parts is not a power of 2.  Split off and copy the tail.
419     assert(PartVT.isInteger() && ValueVT.isInteger() &&
420            "Do not know what to expand to!");
421     unsigned RoundParts = 1 << Log2_32(NumParts);
422     unsigned RoundBits = RoundParts * PartBits;
423     unsigned OddParts = NumParts - RoundParts;
424     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
425                                  DAG.getIntPtrConstant(RoundBits));
426     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
427 
428     if (TLI.isBigEndian())
429       // The odd parts were reversed by getCopyToParts - unreverse them.
430       std::reverse(Parts + RoundParts, Parts + NumParts);
431 
432     NumParts = RoundParts;
433     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
434     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
435   }
436 
437   // The number of parts is a power of 2.  Repeatedly bisect the value using
438   // EXTRACT_ELEMENT.
439   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
440                          EVT::getIntegerVT(*DAG.getContext(),
441                                            ValueVT.getSizeInBits()),
442                          Val);
443 
444   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
445     for (unsigned i = 0; i < NumParts; i += StepSize) {
446       unsigned ThisBits = StepSize * PartBits / 2;
447       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
448       SDValue &Part0 = Parts[i];
449       SDValue &Part1 = Parts[i+StepSize/2];
450 
451       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
452                           ThisVT, Part0, DAG.getIntPtrConstant(1));
453       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
454                           ThisVT, Part0, DAG.getIntPtrConstant(0));
455 
456       if (ThisBits == PartBits && ThisVT != PartVT) {
457         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
458         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
459       }
460     }
461   }
462 
463   if (TLI.isBigEndian())
464     std::reverse(Parts, Parts + OrigNumParts);
465 }
466 
467 
468 /// getCopyToPartsVector - Create a series of nodes that contain the specified
469 /// value split into legal parts.
470 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL,
471                                  SDValue Val, SDValue *Parts, unsigned NumParts,
472                                  MVT PartVT, const Value *V) {
473   EVT ValueVT = Val.getValueType();
474   assert(ValueVT.isVector() && "Not a vector");
475   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
476 
477   if (NumParts == 1) {
478     EVT PartEVT = PartVT;
479     if (PartEVT == ValueVT) {
480       // Nothing to do.
481     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
482       // Bitconvert vector->vector case.
483       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
484     } else if (PartVT.isVector() &&
485                PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
486                PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
487       EVT ElementVT = PartVT.getVectorElementType();
488       // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
489       // undef elements.
490       SmallVector<SDValue, 16> Ops;
491       for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
492         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
493                                   ElementVT, Val, DAG.getIntPtrConstant(i)));
494 
495       for (unsigned i = ValueVT.getVectorNumElements(),
496            e = PartVT.getVectorNumElements(); i != e; ++i)
497         Ops.push_back(DAG.getUNDEF(ElementVT));
498 
499       Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
500 
501       // FIXME: Use CONCAT for 2x -> 4x.
502 
503       //SDValue UndefElts = DAG.getUNDEF(VectorTy);
504       //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
505     } else if (PartVT.isVector() &&
506                PartEVT.getVectorElementType().bitsGE(
507                  ValueVT.getVectorElementType()) &&
508                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
509 
510       // Promoted vector extract
511       bool Smaller = PartEVT.bitsLE(ValueVT);
512       Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
513                         DL, PartVT, Val);
514     } else{
515       // Vector -> scalar conversion.
516       assert(ValueVT.getVectorNumElements() == 1 &&
517              "Only trivial vector-to-scalar conversions should get here!");
518       Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
519                         PartVT, Val, DAG.getIntPtrConstant(0));
520 
521       bool Smaller = ValueVT.bitsLE(PartVT);
522       Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
523                          DL, PartVT, Val);
524     }
525 
526     Parts[0] = Val;
527     return;
528   }
529 
530   // Handle a multi-element vector.
531   EVT IntermediateVT;
532   MVT RegisterVT;
533   unsigned NumIntermediates;
534   unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
535                                                 IntermediateVT,
536                                                 NumIntermediates, RegisterVT);
537   unsigned NumElements = ValueVT.getVectorNumElements();
538 
539   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
540   NumParts = NumRegs; // Silence a compiler warning.
541   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
542 
543   // Split the vector into intermediate operands.
544   SmallVector<SDValue, 8> Ops(NumIntermediates);
545   for (unsigned i = 0; i != NumIntermediates; ++i) {
546     if (IntermediateVT.isVector())
547       Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
548                            IntermediateVT, Val,
549                    DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
550     else
551       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
552                            IntermediateVT, Val, DAG.getIntPtrConstant(i));
553   }
554 
555   // Split the intermediate operands into legal parts.
556   if (NumParts == NumIntermediates) {
557     // If the register was not expanded, promote or copy the value,
558     // as appropriate.
559     for (unsigned i = 0; i != NumParts; ++i)
560       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
561   } else if (NumParts > 0) {
562     // If the intermediate type was expanded, split each the value into
563     // legal parts.
564     assert(NumParts % NumIntermediates == 0 &&
565            "Must expand into a divisible number of parts!");
566     unsigned Factor = NumParts / NumIntermediates;
567     for (unsigned i = 0; i != NumIntermediates; ++i)
568       getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
569   }
570 }
571 
572 namespace {
573   /// RegsForValue - This struct represents the registers (physical or virtual)
574   /// that a particular set of values is assigned, and the type information
575   /// about the value. The most common situation is to represent one value at a
576   /// time, but struct or array values are handled element-wise as multiple
577   /// values.  The splitting of aggregates is performed recursively, so that we
578   /// never have aggregate-typed registers. The values at this point do not
579   /// necessarily have legal types, so each value may require one or more
580   /// registers of some legal type.
581   ///
582   struct RegsForValue {
583     /// ValueVTs - The value types of the values, which may not be legal, and
584     /// may need be promoted or synthesized from one or more registers.
585     ///
586     SmallVector<EVT, 4> ValueVTs;
587 
588     /// RegVTs - The value types of the registers. This is the same size as
589     /// ValueVTs and it records, for each value, what the type of the assigned
590     /// register or registers are. (Individual values are never synthesized
591     /// from more than one type of register.)
592     ///
593     /// With virtual registers, the contents of RegVTs is redundant with TLI's
594     /// getRegisterType member function, however when with physical registers
595     /// it is necessary to have a separate record of the types.
596     ///
597     SmallVector<MVT, 4> RegVTs;
598 
599     /// Regs - This list holds the registers assigned to the values.
600     /// Each legal or promoted value requires one register, and each
601     /// expanded value requires multiple registers.
602     ///
603     SmallVector<unsigned, 4> Regs;
604 
605     RegsForValue() {}
606 
607     RegsForValue(const SmallVector<unsigned, 4> &regs,
608                  MVT regvt, EVT valuevt)
609       : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
610 
611     RegsForValue(LLVMContext &Context, const TargetLowering &tli,
612                  unsigned Reg, Type *Ty) {
613       ComputeValueVTs(tli, Ty, ValueVTs);
614 
615       for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
616         EVT ValueVT = ValueVTs[Value];
617         unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
618         MVT RegisterVT = tli.getRegisterType(Context, ValueVT);
619         for (unsigned i = 0; i != NumRegs; ++i)
620           Regs.push_back(Reg + i);
621         RegVTs.push_back(RegisterVT);
622         Reg += NumRegs;
623       }
624     }
625 
626     /// areValueTypesLegal - Return true if types of all the values are legal.
627     bool areValueTypesLegal(const TargetLowering &TLI) {
628       for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
629         MVT RegisterVT = RegVTs[Value];
630         if (!TLI.isTypeLegal(RegisterVT))
631           return false;
632       }
633       return true;
634     }
635 
636     /// append - Add the specified values to this one.
637     void append(const RegsForValue &RHS) {
638       ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
639       RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
640       Regs.append(RHS.Regs.begin(), RHS.Regs.end());
641     }
642 
643     /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
644     /// this value and returns the result as a ValueVTs value.  This uses
645     /// Chain/Flag as the input and updates them for the output Chain/Flag.
646     /// If the Flag pointer is NULL, no flag is used.
647     SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
648                             SDLoc dl,
649                             SDValue &Chain, SDValue *Flag,
650                             const Value *V = 0) const;
651 
652     /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
653     /// specified value into the registers specified by this object.  This uses
654     /// Chain/Flag as the input and updates them for the output Chain/Flag.
655     /// If the Flag pointer is NULL, no flag is used.
656     void getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
657                        SDValue &Chain, SDValue *Flag, const Value *V) const;
658 
659     /// AddInlineAsmOperands - Add this value to the specified inlineasm node
660     /// operand list.  This adds the code marker, matching input operand index
661     /// (if applicable), and includes the number of values added into it.
662     void AddInlineAsmOperands(unsigned Kind,
663                               bool HasMatching, unsigned MatchingIdx,
664                               SelectionDAG &DAG,
665                               std::vector<SDValue> &Ops) const;
666   };
667 }
668 
669 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
670 /// this value and returns the result as a ValueVT value.  This uses
671 /// Chain/Flag as the input and updates them for the output Chain/Flag.
672 /// If the Flag pointer is NULL, no flag is used.
673 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
674                                       FunctionLoweringInfo &FuncInfo,
675                                       SDLoc dl,
676                                       SDValue &Chain, SDValue *Flag,
677                                       const Value *V) const {
678   // A Value with type {} or [0 x %t] needs no registers.
679   if (ValueVTs.empty())
680     return SDValue();
681 
682   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
683 
684   // Assemble the legal parts into the final values.
685   SmallVector<SDValue, 4> Values(ValueVTs.size());
686   SmallVector<SDValue, 8> Parts;
687   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
688     // Copy the legal parts from the registers.
689     EVT ValueVT = ValueVTs[Value];
690     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
691     MVT RegisterVT = RegVTs[Value];
692 
693     Parts.resize(NumRegs);
694     for (unsigned i = 0; i != NumRegs; ++i) {
695       SDValue P;
696       if (Flag == 0) {
697         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
698       } else {
699         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
700         *Flag = P.getValue(2);
701       }
702 
703       Chain = P.getValue(1);
704       Parts[i] = P;
705 
706       // If the source register was virtual and if we know something about it,
707       // add an assert node.
708       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
709           !RegisterVT.isInteger() || RegisterVT.isVector())
710         continue;
711 
712       const FunctionLoweringInfo::LiveOutInfo *LOI =
713         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
714       if (!LOI)
715         continue;
716 
717       unsigned RegSize = RegisterVT.getSizeInBits();
718       unsigned NumSignBits = LOI->NumSignBits;
719       unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
720 
721       // FIXME: We capture more information than the dag can represent.  For
722       // now, just use the tightest assertzext/assertsext possible.
723       bool isSExt = true;
724       EVT FromVT(MVT::Other);
725       if (NumSignBits == RegSize)
726         isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
727       else if (NumZeroBits >= RegSize-1)
728         isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
729       else if (NumSignBits > RegSize-8)
730         isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
731       else if (NumZeroBits >= RegSize-8)
732         isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
733       else if (NumSignBits > RegSize-16)
734         isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
735       else if (NumZeroBits >= RegSize-16)
736         isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
737       else if (NumSignBits > RegSize-32)
738         isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
739       else if (NumZeroBits >= RegSize-32)
740         isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
741       else
742         continue;
743 
744       // Add an assertion node.
745       assert(FromVT != MVT::Other);
746       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
747                              RegisterVT, P, DAG.getValueType(FromVT));
748     }
749 
750     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
751                                      NumRegs, RegisterVT, ValueVT, V);
752     Part += NumRegs;
753     Parts.clear();
754   }
755 
756   return DAG.getNode(ISD::MERGE_VALUES, dl,
757                      DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
758                      &Values[0], ValueVTs.size());
759 }
760 
761 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
762 /// specified value into the registers specified by this object.  This uses
763 /// Chain/Flag as the input and updates them for the output Chain/Flag.
764 /// If the Flag pointer is NULL, no flag is used.
765 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
766                                  SDValue &Chain, SDValue *Flag,
767                                  const Value *V) const {
768   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
769 
770   // Get the list of the values's legal parts.
771   unsigned NumRegs = Regs.size();
772   SmallVector<SDValue, 8> Parts(NumRegs);
773   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
774     EVT ValueVT = ValueVTs[Value];
775     unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
776     MVT RegisterVT = RegVTs[Value];
777     ISD::NodeType ExtendKind =
778       TLI.isZExtFree(Val, RegisterVT)? ISD::ZERO_EXTEND: ISD::ANY_EXTEND;
779 
780     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
781                    &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
782     Part += NumParts;
783   }
784 
785   // Copy the parts into the registers.
786   SmallVector<SDValue, 8> Chains(NumRegs);
787   for (unsigned i = 0; i != NumRegs; ++i) {
788     SDValue Part;
789     if (Flag == 0) {
790       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
791     } else {
792       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
793       *Flag = Part.getValue(1);
794     }
795 
796     Chains[i] = Part.getValue(0);
797   }
798 
799   if (NumRegs == 1 || Flag)
800     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
801     // flagged to it. That is the CopyToReg nodes and the user are considered
802     // a single scheduling unit. If we create a TokenFactor and return it as
803     // chain, then the TokenFactor is both a predecessor (operand) of the
804     // user as well as a successor (the TF operands are flagged to the user).
805     // c1, f1 = CopyToReg
806     // c2, f2 = CopyToReg
807     // c3     = TokenFactor c1, c2
808     // ...
809     //        = op c3, ..., f2
810     Chain = Chains[NumRegs-1];
811   else
812     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
813 }
814 
815 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
816 /// operand list.  This adds the code marker and includes the number of
817 /// values added into it.
818 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
819                                         unsigned MatchingIdx,
820                                         SelectionDAG &DAG,
821                                         std::vector<SDValue> &Ops) const {
822   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
823 
824   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
825   if (HasMatching)
826     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
827   else if (!Regs.empty() &&
828            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
829     // Put the register class of the virtual registers in the flag word.  That
830     // way, later passes can recompute register class constraints for inline
831     // assembly as well as normal instructions.
832     // Don't do this for tied operands that can use the regclass information
833     // from the def.
834     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
835     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
836     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
837   }
838 
839   SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
840   Ops.push_back(Res);
841 
842   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
843     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
844     MVT RegisterVT = RegVTs[Value];
845     for (unsigned i = 0; i != NumRegs; ++i) {
846       assert(Reg < Regs.size() && "Mismatch in # registers expected");
847       Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
848     }
849   }
850 }
851 
852 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
853                                const TargetLibraryInfo *li) {
854   AA = &aa;
855   GFI = gfi;
856   LibInfo = li;
857   TD = DAG.getTarget().getDataLayout();
858   Context = DAG.getContext();
859   LPadToCallSiteMap.clear();
860 }
861 
862 /// clear - Clear out the current SelectionDAG and the associated
863 /// state and prepare this SelectionDAGBuilder object to be used
864 /// for a new block. This doesn't clear out information about
865 /// additional blocks that are needed to complete switch lowering
866 /// or PHI node updating; that information is cleared out as it is
867 /// consumed.
868 void SelectionDAGBuilder::clear() {
869   NodeMap.clear();
870   UnusedArgNodeMap.clear();
871   PendingLoads.clear();
872   PendingExports.clear();
873   CurInst = NULL;
874   HasTailCall = false;
875 }
876 
877 /// clearDanglingDebugInfo - Clear the dangling debug information
878 /// map. This function is separated from the clear so that debug
879 /// information that is dangling in a basic block can be properly
880 /// resolved in a different basic block. This allows the
881 /// SelectionDAG to resolve dangling debug information attached
882 /// to PHI nodes.
883 void SelectionDAGBuilder::clearDanglingDebugInfo() {
884   DanglingDebugInfoMap.clear();
885 }
886 
887 /// getRoot - Return the current virtual root of the Selection DAG,
888 /// flushing any PendingLoad items. This must be done before emitting
889 /// a store or any other node that may need to be ordered after any
890 /// prior load instructions.
891 ///
892 SDValue SelectionDAGBuilder::getRoot() {
893   if (PendingLoads.empty())
894     return DAG.getRoot();
895 
896   if (PendingLoads.size() == 1) {
897     SDValue Root = PendingLoads[0];
898     DAG.setRoot(Root);
899     PendingLoads.clear();
900     return Root;
901   }
902 
903   // Otherwise, we have to make a token factor node.
904   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
905                                &PendingLoads[0], PendingLoads.size());
906   PendingLoads.clear();
907   DAG.setRoot(Root);
908   return Root;
909 }
910 
911 /// getControlRoot - Similar to getRoot, but instead of flushing all the
912 /// PendingLoad items, flush all the PendingExports items. It is necessary
913 /// to do this before emitting a terminator instruction.
914 ///
915 SDValue SelectionDAGBuilder::getControlRoot() {
916   SDValue Root = DAG.getRoot();
917 
918   if (PendingExports.empty())
919     return Root;
920 
921   // Turn all of the CopyToReg chains into one factored node.
922   if (Root.getOpcode() != ISD::EntryToken) {
923     unsigned i = 0, e = PendingExports.size();
924     for (; i != e; ++i) {
925       assert(PendingExports[i].getNode()->getNumOperands() > 1);
926       if (PendingExports[i].getNode()->getOperand(0) == Root)
927         break;  // Don't add the root if we already indirectly depend on it.
928     }
929 
930     if (i == e)
931       PendingExports.push_back(Root);
932   }
933 
934   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
935                      &PendingExports[0],
936                      PendingExports.size());
937   PendingExports.clear();
938   DAG.setRoot(Root);
939   return Root;
940 }
941 
942 void SelectionDAGBuilder::visit(const Instruction &I) {
943   // Set up outgoing PHI node register values before emitting the terminator.
944   if (isa<TerminatorInst>(&I))
945     HandlePHINodesInSuccessorBlocks(I.getParent());
946 
947   ++SDNodeOrder;
948 
949   CurInst = &I;
950 
951   visit(I.getOpcode(), I);
952 
953   if (!isa<TerminatorInst>(&I) && !HasTailCall)
954     CopyToExportRegsIfNeeded(&I);
955 
956   CurInst = NULL;
957 }
958 
959 void SelectionDAGBuilder::visitPHI(const PHINode &) {
960   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
961 }
962 
963 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
964   // Note: this doesn't use InstVisitor, because it has to work with
965   // ConstantExpr's in addition to instructions.
966   switch (Opcode) {
967   default: llvm_unreachable("Unknown instruction type encountered!");
968     // Build the switch statement using the Instruction.def file.
969 #define HANDLE_INST(NUM, OPCODE, CLASS) \
970     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
971 #include "llvm/IR/Instruction.def"
972   }
973 }
974 
975 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
976 // generate the debug data structures now that we've seen its definition.
977 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
978                                                    SDValue Val) {
979   DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
980   if (DDI.getDI()) {
981     const DbgValueInst *DI = DDI.getDI();
982     DebugLoc dl = DDI.getdl();
983     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
984     MDNode *Variable = DI->getVariable();
985     uint64_t Offset = DI->getOffset();
986     SDDbgValue *SDV;
987     if (Val.getNode()) {
988       if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
989         SDV = DAG.getDbgValue(Variable, Val.getNode(),
990                               Val.getResNo(), Offset, dl, DbgSDNodeOrder);
991         DAG.AddDbgValue(SDV, Val.getNode(), false);
992       }
993     } else
994       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
995     DanglingDebugInfoMap[V] = DanglingDebugInfo();
996   }
997 }
998 
999 /// getValue - Return an SDValue for the given Value.
1000 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1001   // If we already have an SDValue for this value, use it. It's important
1002   // to do this first, so that we don't create a CopyFromReg if we already
1003   // have a regular SDValue.
1004   SDValue &N = NodeMap[V];
1005   if (N.getNode()) return N;
1006 
1007   // If there's a virtual register allocated and initialized for this
1008   // value, use it.
1009   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1010   if (It != FuncInfo.ValueMap.end()) {
1011     unsigned InReg = It->second;
1012     RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
1013     SDValue Chain = DAG.getEntryNode();
1014     N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, NULL, V);
1015     resolveDanglingDebugInfo(V, N);
1016     return N;
1017   }
1018 
1019   // Otherwise create a new SDValue and remember it.
1020   SDValue Val = getValueImpl(V);
1021   NodeMap[V] = Val;
1022   resolveDanglingDebugInfo(V, Val);
1023   return Val;
1024 }
1025 
1026 /// getNonRegisterValue - Return an SDValue for the given Value, but
1027 /// don't look in FuncInfo.ValueMap for a virtual register.
1028 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1029   // If we already have an SDValue for this value, use it.
1030   SDValue &N = NodeMap[V];
1031   if (N.getNode()) return N;
1032 
1033   // Otherwise create a new SDValue and remember it.
1034   SDValue Val = getValueImpl(V);
1035   NodeMap[V] = Val;
1036   resolveDanglingDebugInfo(V, Val);
1037   return Val;
1038 }
1039 
1040 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1041 /// Create an SDValue for the given value.
1042 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1043   if (const Constant *C = dyn_cast<Constant>(V)) {
1044     EVT VT = TLI.getValueType(V->getType(), true);
1045 
1046     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1047       return DAG.getConstant(*CI, VT);
1048 
1049     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1050       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1051 
1052     if (isa<ConstantPointerNull>(C))
1053       return DAG.getConstant(0, TLI.getPointerTy());
1054 
1055     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1056       return DAG.getConstantFP(*CFP, VT);
1057 
1058     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1059       return DAG.getUNDEF(VT);
1060 
1061     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1062       visit(CE->getOpcode(), *CE);
1063       SDValue N1 = NodeMap[V];
1064       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1065       return N1;
1066     }
1067 
1068     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1069       SmallVector<SDValue, 4> Constants;
1070       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1071            OI != OE; ++OI) {
1072         SDNode *Val = getValue(*OI).getNode();
1073         // If the operand is an empty aggregate, there are no values.
1074         if (!Val) continue;
1075         // Add each leaf value from the operand to the Constants list
1076         // to form a flattened list of all the values.
1077         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1078           Constants.push_back(SDValue(Val, i));
1079       }
1080 
1081       return DAG.getMergeValues(&Constants[0], Constants.size(),
1082                                 getCurSDLoc());
1083     }
1084 
1085     if (const ConstantDataSequential *CDS =
1086           dyn_cast<ConstantDataSequential>(C)) {
1087       SmallVector<SDValue, 4> Ops;
1088       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1089         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1090         // Add each leaf value from the operand to the Constants list
1091         // to form a flattened list of all the values.
1092         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1093           Ops.push_back(SDValue(Val, i));
1094       }
1095 
1096       if (isa<ArrayType>(CDS->getType()))
1097         return DAG.getMergeValues(&Ops[0], Ops.size(), getCurSDLoc());
1098       return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
1099                                       VT, &Ops[0], Ops.size());
1100     }
1101 
1102     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1103       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1104              "Unknown struct or array constant!");
1105 
1106       SmallVector<EVT, 4> ValueVTs;
1107       ComputeValueVTs(TLI, C->getType(), ValueVTs);
1108       unsigned NumElts = ValueVTs.size();
1109       if (NumElts == 0)
1110         return SDValue(); // empty struct
1111       SmallVector<SDValue, 4> Constants(NumElts);
1112       for (unsigned i = 0; i != NumElts; ++i) {
1113         EVT EltVT = ValueVTs[i];
1114         if (isa<UndefValue>(C))
1115           Constants[i] = DAG.getUNDEF(EltVT);
1116         else if (EltVT.isFloatingPoint())
1117           Constants[i] = DAG.getConstantFP(0, EltVT);
1118         else
1119           Constants[i] = DAG.getConstant(0, EltVT);
1120       }
1121 
1122       return DAG.getMergeValues(&Constants[0], NumElts,
1123                                 getCurSDLoc());
1124     }
1125 
1126     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1127       return DAG.getBlockAddress(BA, VT);
1128 
1129     VectorType *VecTy = cast<VectorType>(V->getType());
1130     unsigned NumElements = VecTy->getNumElements();
1131 
1132     // Now that we know the number and type of the elements, get that number of
1133     // elements into the Ops array based on what kind of constant it is.
1134     SmallVector<SDValue, 16> Ops;
1135     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1136       for (unsigned i = 0; i != NumElements; ++i)
1137         Ops.push_back(getValue(CV->getOperand(i)));
1138     } else {
1139       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1140       EVT EltVT = TLI.getValueType(VecTy->getElementType());
1141 
1142       SDValue Op;
1143       if (EltVT.isFloatingPoint())
1144         Op = DAG.getConstantFP(0, EltVT);
1145       else
1146         Op = DAG.getConstant(0, EltVT);
1147       Ops.assign(NumElements, Op);
1148     }
1149 
1150     // Create a BUILD_VECTOR node.
1151     return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
1152                                     VT, &Ops[0], Ops.size());
1153   }
1154 
1155   // If this is a static alloca, generate it as the frameindex instead of
1156   // computation.
1157   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1158     DenseMap<const AllocaInst*, int>::iterator SI =
1159       FuncInfo.StaticAllocaMap.find(AI);
1160     if (SI != FuncInfo.StaticAllocaMap.end())
1161       return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1162   }
1163 
1164   // If this is an instruction which fast-isel has deferred, select it now.
1165   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1166     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1167     RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1168     SDValue Chain = DAG.getEntryNode();
1169     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, NULL, V);
1170   }
1171 
1172   llvm_unreachable("Can't get register for value!");
1173 }
1174 
1175 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1176   SDValue Chain = getControlRoot();
1177   SmallVector<ISD::OutputArg, 8> Outs;
1178   SmallVector<SDValue, 8> OutVals;
1179 
1180   if (!FuncInfo.CanLowerReturn) {
1181     unsigned DemoteReg = FuncInfo.DemoteRegister;
1182     const Function *F = I.getParent()->getParent();
1183 
1184     // Emit a store of the return value through the virtual register.
1185     // Leave Outs empty so that LowerReturn won't try to load return
1186     // registers the usual way.
1187     SmallVector<EVT, 1> PtrValueVTs;
1188     ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1189                     PtrValueVTs);
1190 
1191     SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1192     SDValue RetOp = getValue(I.getOperand(0));
1193 
1194     SmallVector<EVT, 4> ValueVTs;
1195     SmallVector<uint64_t, 4> Offsets;
1196     ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1197     unsigned NumValues = ValueVTs.size();
1198 
1199     SmallVector<SDValue, 4> Chains(NumValues);
1200     for (unsigned i = 0; i != NumValues; ++i) {
1201       SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(),
1202                                 RetPtr.getValueType(), RetPtr,
1203                                 DAG.getIntPtrConstant(Offsets[i]));
1204       Chains[i] =
1205         DAG.getStore(Chain, getCurSDLoc(),
1206                      SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1207                      // FIXME: better loc info would be nice.
1208                      Add, MachinePointerInfo(), false, false, 0);
1209     }
1210 
1211     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1212                         MVT::Other, &Chains[0], NumValues);
1213   } else if (I.getNumOperands() != 0) {
1214     SmallVector<EVT, 4> ValueVTs;
1215     ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1216     unsigned NumValues = ValueVTs.size();
1217     if (NumValues) {
1218       SDValue RetOp = getValue(I.getOperand(0));
1219       for (unsigned j = 0, f = NumValues; j != f; ++j) {
1220         EVT VT = ValueVTs[j];
1221 
1222         ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1223 
1224         const Function *F = I.getParent()->getParent();
1225         if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1226                                             Attribute::SExt))
1227           ExtendKind = ISD::SIGN_EXTEND;
1228         else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1229                                                  Attribute::ZExt))
1230           ExtendKind = ISD::ZERO_EXTEND;
1231 
1232         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1233           VT = TLI.getTypeForExtArgOrReturn(VT.getSimpleVT(), ExtendKind);
1234 
1235         unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1236         MVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1237         SmallVector<SDValue, 4> Parts(NumParts);
1238         getCopyToParts(DAG, getCurSDLoc(),
1239                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1240                        &Parts[0], NumParts, PartVT, &I, ExtendKind);
1241 
1242         // 'inreg' on function refers to return value
1243         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1244         if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1245                                             Attribute::InReg))
1246           Flags.setInReg();
1247 
1248         // Propagate extension type if any
1249         if (ExtendKind == ISD::SIGN_EXTEND)
1250           Flags.setSExt();
1251         else if (ExtendKind == ISD::ZERO_EXTEND)
1252           Flags.setZExt();
1253 
1254         for (unsigned i = 0; i < NumParts; ++i) {
1255           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1256                                         /*isfixed=*/true, 0, 0));
1257           OutVals.push_back(Parts[i]);
1258         }
1259       }
1260     }
1261   }
1262 
1263   bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1264   CallingConv::ID CallConv =
1265     DAG.getMachineFunction().getFunction()->getCallingConv();
1266   Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1267                           Outs, OutVals, getCurSDLoc(), DAG);
1268 
1269   // Verify that the target's LowerReturn behaved as expected.
1270   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1271          "LowerReturn didn't return a valid chain!");
1272 
1273   // Update the DAG with the new chain value resulting from return lowering.
1274   DAG.setRoot(Chain);
1275 }
1276 
1277 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1278 /// created for it, emit nodes to copy the value into the virtual
1279 /// registers.
1280 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1281   // Skip empty types
1282   if (V->getType()->isEmptyTy())
1283     return;
1284 
1285   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1286   if (VMI != FuncInfo.ValueMap.end()) {
1287     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1288     CopyValueToVirtualRegister(V, VMI->second);
1289   }
1290 }
1291 
1292 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1293 /// the current basic block, add it to ValueMap now so that we'll get a
1294 /// CopyTo/FromReg.
1295 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1296   // No need to export constants.
1297   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1298 
1299   // Already exported?
1300   if (FuncInfo.isExportedInst(V)) return;
1301 
1302   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1303   CopyValueToVirtualRegister(V, Reg);
1304 }
1305 
1306 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1307                                                      const BasicBlock *FromBB) {
1308   // The operands of the setcc have to be in this block.  We don't know
1309   // how to export them from some other block.
1310   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1311     // Can export from current BB.
1312     if (VI->getParent() == FromBB)
1313       return true;
1314 
1315     // Is already exported, noop.
1316     return FuncInfo.isExportedInst(V);
1317   }
1318 
1319   // If this is an argument, we can export it if the BB is the entry block or
1320   // if it is already exported.
1321   if (isa<Argument>(V)) {
1322     if (FromBB == &FromBB->getParent()->getEntryBlock())
1323       return true;
1324 
1325     // Otherwise, can only export this if it is already exported.
1326     return FuncInfo.isExportedInst(V);
1327   }
1328 
1329   // Otherwise, constants can always be exported.
1330   return true;
1331 }
1332 
1333 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1334 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src,
1335                                             const MachineBasicBlock *Dst) const {
1336   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1337   if (!BPI)
1338     return 0;
1339   const BasicBlock *SrcBB = Src->getBasicBlock();
1340   const BasicBlock *DstBB = Dst->getBasicBlock();
1341   return BPI->getEdgeWeight(SrcBB, DstBB);
1342 }
1343 
1344 void SelectionDAGBuilder::
1345 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
1346                        uint32_t Weight /* = 0 */) {
1347   if (!Weight)
1348     Weight = getEdgeWeight(Src, Dst);
1349   Src->addSuccessor(Dst, Weight);
1350 }
1351 
1352 
1353 static bool InBlock(const Value *V, const BasicBlock *BB) {
1354   if (const Instruction *I = dyn_cast<Instruction>(V))
1355     return I->getParent() == BB;
1356   return true;
1357 }
1358 
1359 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1360 /// This function emits a branch and is used at the leaves of an OR or an
1361 /// AND operator tree.
1362 ///
1363 void
1364 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1365                                                   MachineBasicBlock *TBB,
1366                                                   MachineBasicBlock *FBB,
1367                                                   MachineBasicBlock *CurBB,
1368                                                   MachineBasicBlock *SwitchBB) {
1369   const BasicBlock *BB = CurBB->getBasicBlock();
1370 
1371   // If the leaf of the tree is a comparison, merge the condition into
1372   // the caseblock.
1373   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1374     // The operands of the cmp have to be in this block.  We don't know
1375     // how to export them from some other block.  If this is the first block
1376     // of the sequence, no exporting is needed.
1377     if (CurBB == SwitchBB ||
1378         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1379          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1380       ISD::CondCode Condition;
1381       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1382         Condition = getICmpCondCode(IC->getPredicate());
1383       } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1384         Condition = getFCmpCondCode(FC->getPredicate());
1385         if (TM.Options.NoNaNsFPMath)
1386           Condition = getFCmpCodeWithoutNaN(Condition);
1387       } else {
1388         Condition = ISD::SETEQ; // silence warning.
1389         llvm_unreachable("Unknown compare instruction");
1390       }
1391 
1392       CaseBlock CB(Condition, BOp->getOperand(0),
1393                    BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1394       SwitchCases.push_back(CB);
1395       return;
1396     }
1397   }
1398 
1399   // Create a CaseBlock record representing this branch.
1400   CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1401                NULL, TBB, FBB, CurBB);
1402   SwitchCases.push_back(CB);
1403 }
1404 
1405 /// FindMergedConditions - If Cond is an expression like
1406 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1407                                                MachineBasicBlock *TBB,
1408                                                MachineBasicBlock *FBB,
1409                                                MachineBasicBlock *CurBB,
1410                                                MachineBasicBlock *SwitchBB,
1411                                                unsigned Opc) {
1412   // If this node is not part of the or/and tree, emit it as a branch.
1413   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1414   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1415       (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1416       BOp->getParent() != CurBB->getBasicBlock() ||
1417       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1418       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1419     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1420     return;
1421   }
1422 
1423   //  Create TmpBB after CurBB.
1424   MachineFunction::iterator BBI = CurBB;
1425   MachineFunction &MF = DAG.getMachineFunction();
1426   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1427   CurBB->getParent()->insert(++BBI, TmpBB);
1428 
1429   if (Opc == Instruction::Or) {
1430     // Codegen X | Y as:
1431     //   jmp_if_X TBB
1432     //   jmp TmpBB
1433     // TmpBB:
1434     //   jmp_if_Y TBB
1435     //   jmp FBB
1436     //
1437 
1438     // Emit the LHS condition.
1439     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1440 
1441     // Emit the RHS condition into TmpBB.
1442     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1443   } else {
1444     assert(Opc == Instruction::And && "Unknown merge op!");
1445     // Codegen X & Y as:
1446     //   jmp_if_X TmpBB
1447     //   jmp FBB
1448     // TmpBB:
1449     //   jmp_if_Y TBB
1450     //   jmp FBB
1451     //
1452     //  This requires creation of TmpBB after CurBB.
1453 
1454     // Emit the LHS condition.
1455     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1456 
1457     // Emit the RHS condition into TmpBB.
1458     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1459   }
1460 }
1461 
1462 /// If the set of cases should be emitted as a series of branches, return true.
1463 /// If we should emit this as a bunch of and/or'd together conditions, return
1464 /// false.
1465 bool
1466 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1467   if (Cases.size() != 2) return true;
1468 
1469   // If this is two comparisons of the same values or'd or and'd together, they
1470   // will get folded into a single comparison, so don't emit two blocks.
1471   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1472        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1473       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1474        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1475     return false;
1476   }
1477 
1478   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1479   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1480   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1481       Cases[0].CC == Cases[1].CC &&
1482       isa<Constant>(Cases[0].CmpRHS) &&
1483       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1484     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1485       return false;
1486     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1487       return false;
1488   }
1489 
1490   return true;
1491 }
1492 
1493 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1494   MachineBasicBlock *BrMBB = FuncInfo.MBB;
1495 
1496   // Update machine-CFG edges.
1497   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1498 
1499   // Figure out which block is immediately after the current one.
1500   MachineBasicBlock *NextBlock = 0;
1501   MachineFunction::iterator BBI = BrMBB;
1502   if (++BBI != FuncInfo.MF->end())
1503     NextBlock = BBI;
1504 
1505   if (I.isUnconditional()) {
1506     // Update machine-CFG edges.
1507     BrMBB->addSuccessor(Succ0MBB);
1508 
1509     // If this is not a fall-through branch, emit the branch.
1510     if (Succ0MBB != NextBlock)
1511       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1512                               MVT::Other, getControlRoot(),
1513                               DAG.getBasicBlock(Succ0MBB)));
1514 
1515     return;
1516   }
1517 
1518   // If this condition is one of the special cases we handle, do special stuff
1519   // now.
1520   const Value *CondVal = I.getCondition();
1521   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1522 
1523   // If this is a series of conditions that are or'd or and'd together, emit
1524   // this as a sequence of branches instead of setcc's with and/or operations.
1525   // As long as jumps are not expensive, this should improve performance.
1526   // For example, instead of something like:
1527   //     cmp A, B
1528   //     C = seteq
1529   //     cmp D, E
1530   //     F = setle
1531   //     or C, F
1532   //     jnz foo
1533   // Emit:
1534   //     cmp A, B
1535   //     je foo
1536   //     cmp D, E
1537   //     jle foo
1538   //
1539   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1540     if (!TLI.isJumpExpensive() &&
1541         BOp->hasOneUse() &&
1542         (BOp->getOpcode() == Instruction::And ||
1543          BOp->getOpcode() == Instruction::Or)) {
1544       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1545                            BOp->getOpcode());
1546       // If the compares in later blocks need to use values not currently
1547       // exported from this block, export them now.  This block should always
1548       // be the first entry.
1549       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1550 
1551       // Allow some cases to be rejected.
1552       if (ShouldEmitAsBranches(SwitchCases)) {
1553         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1554           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1555           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1556         }
1557 
1558         // Emit the branch for this block.
1559         visitSwitchCase(SwitchCases[0], BrMBB);
1560         SwitchCases.erase(SwitchCases.begin());
1561         return;
1562       }
1563 
1564       // Okay, we decided not to do this, remove any inserted MBB's and clear
1565       // SwitchCases.
1566       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1567         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1568 
1569       SwitchCases.clear();
1570     }
1571   }
1572 
1573   // Create a CaseBlock record representing this branch.
1574   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1575                NULL, Succ0MBB, Succ1MBB, BrMBB);
1576 
1577   // Use visitSwitchCase to actually insert the fast branch sequence for this
1578   // cond branch.
1579   visitSwitchCase(CB, BrMBB);
1580 }
1581 
1582 /// visitSwitchCase - Emits the necessary code to represent a single node in
1583 /// the binary search tree resulting from lowering a switch instruction.
1584 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1585                                           MachineBasicBlock *SwitchBB) {
1586   SDValue Cond;
1587   SDValue CondLHS = getValue(CB.CmpLHS);
1588   SDLoc dl = getCurSDLoc();
1589 
1590   // Build the setcc now.
1591   if (CB.CmpMHS == NULL) {
1592     // Fold "(X == true)" to X and "(X == false)" to !X to
1593     // handle common cases produced by branch lowering.
1594     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1595         CB.CC == ISD::SETEQ)
1596       Cond = CondLHS;
1597     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1598              CB.CC == ISD::SETEQ) {
1599       SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1600       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1601     } else
1602       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1603   } else {
1604     assert(CB.CC == ISD::SETCC_INVALID &&
1605            "Condition is undefined for to-the-range belonging check.");
1606 
1607     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1608     const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1609 
1610     SDValue CmpOp = getValue(CB.CmpMHS);
1611     EVT VT = CmpOp.getValueType();
1612 
1613     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(false)) {
1614       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1615                           ISD::SETULE);
1616     } else {
1617       SDValue SUB = DAG.getNode(ISD::SUB, dl,
1618                                 VT, CmpOp, DAG.getConstant(Low, VT));
1619       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1620                           DAG.getConstant(High-Low, VT), ISD::SETULE);
1621     }
1622   }
1623 
1624   // Update successor info
1625   addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
1626   // TrueBB and FalseBB are always different unless the incoming IR is
1627   // degenerate. This only happens when running llc on weird IR.
1628   if (CB.TrueBB != CB.FalseBB)
1629     addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
1630 
1631   // Set NextBlock to be the MBB immediately after the current one, if any.
1632   // This is used to avoid emitting unnecessary branches to the next block.
1633   MachineBasicBlock *NextBlock = 0;
1634   MachineFunction::iterator BBI = SwitchBB;
1635   if (++BBI != FuncInfo.MF->end())
1636     NextBlock = BBI;
1637 
1638   // If the lhs block is the next block, invert the condition so that we can
1639   // fall through to the lhs instead of the rhs block.
1640   if (CB.TrueBB == NextBlock) {
1641     std::swap(CB.TrueBB, CB.FalseBB);
1642     SDValue True = DAG.getConstant(1, Cond.getValueType());
1643     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1644   }
1645 
1646   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1647                                MVT::Other, getControlRoot(), Cond,
1648                                DAG.getBasicBlock(CB.TrueBB));
1649 
1650   // Insert the false branch. Do this even if it's a fall through branch,
1651   // this makes it easier to do DAG optimizations which require inverting
1652   // the branch condition.
1653   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1654                        DAG.getBasicBlock(CB.FalseBB));
1655 
1656   DAG.setRoot(BrCond);
1657 }
1658 
1659 /// visitJumpTable - Emit JumpTable node in the current MBB
1660 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1661   // Emit the code for the jump table
1662   assert(JT.Reg != -1U && "Should lower JT Header first!");
1663   EVT PTy = TLI.getPointerTy();
1664   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1665                                      JT.Reg, PTy);
1666   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1667   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
1668                                     MVT::Other, Index.getValue(1),
1669                                     Table, Index);
1670   DAG.setRoot(BrJumpTable);
1671 }
1672 
1673 /// visitJumpTableHeader - This function emits necessary code to produce index
1674 /// in the JumpTable from switch case.
1675 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1676                                                JumpTableHeader &JTH,
1677                                                MachineBasicBlock *SwitchBB) {
1678   // Subtract the lowest switch case value from the value being switched on and
1679   // conditional branch to default mbb if the result is greater than the
1680   // difference between smallest and largest cases.
1681   SDValue SwitchOp = getValue(JTH.SValue);
1682   EVT VT = SwitchOp.getValueType();
1683   SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp,
1684                             DAG.getConstant(JTH.First, VT));
1685 
1686   // The SDNode we just created, which holds the value being switched on minus
1687   // the smallest case value, needs to be copied to a virtual register so it
1688   // can be used as an index into the jump table in a subsequent basic block.
1689   // This value may be smaller or larger than the target's pointer type, and
1690   // therefore require extension or truncating.
1691   SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI.getPointerTy());
1692 
1693   unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1694   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(),
1695                                     JumpTableReg, SwitchOp);
1696   JT.Reg = JumpTableReg;
1697 
1698   // Emit the range check for the jump table, and branch to the default block
1699   // for the switch statement if the value being switched on exceeds the largest
1700   // case in the switch.
1701   SDValue CMP = DAG.getSetCC(getCurSDLoc(),
1702                              TLI.getSetCCResultType(*DAG.getContext(),
1703                                                     Sub.getValueType()),
1704                              Sub,
1705                              DAG.getConstant(JTH.Last - JTH.First,VT),
1706                              ISD::SETUGT);
1707 
1708   // Set NextBlock to be the MBB immediately after the current one, if any.
1709   // This is used to avoid emitting unnecessary branches to the next block.
1710   MachineBasicBlock *NextBlock = 0;
1711   MachineFunction::iterator BBI = SwitchBB;
1712 
1713   if (++BBI != FuncInfo.MF->end())
1714     NextBlock = BBI;
1715 
1716   SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1717                                MVT::Other, CopyTo, CMP,
1718                                DAG.getBasicBlock(JT.Default));
1719 
1720   if (JT.MBB != NextBlock)
1721     BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond,
1722                          DAG.getBasicBlock(JT.MBB));
1723 
1724   DAG.setRoot(BrCond);
1725 }
1726 
1727 /// visitBitTestHeader - This function emits necessary code to produce value
1728 /// suitable for "bit tests"
1729 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1730                                              MachineBasicBlock *SwitchBB) {
1731   // Subtract the minimum value
1732   SDValue SwitchOp = getValue(B.SValue);
1733   EVT VT = SwitchOp.getValueType();
1734   SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp,
1735                             DAG.getConstant(B.First, VT));
1736 
1737   // Check range
1738   SDValue RangeCmp = DAG.getSetCC(getCurSDLoc(),
1739                                   TLI.getSetCCResultType(*DAG.getContext(),
1740                                                          Sub.getValueType()),
1741                                   Sub, DAG.getConstant(B.Range, VT),
1742                                   ISD::SETUGT);
1743 
1744   // Determine the type of the test operands.
1745   bool UsePtrType = false;
1746   if (!TLI.isTypeLegal(VT))
1747     UsePtrType = true;
1748   else {
1749     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1750       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
1751         // Switch table case range are encoded into series of masks.
1752         // Just use pointer type, it's guaranteed to fit.
1753         UsePtrType = true;
1754         break;
1755       }
1756   }
1757   if (UsePtrType) {
1758     VT = TLI.getPointerTy();
1759     Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT);
1760   }
1761 
1762   B.RegVT = VT.getSimpleVT();
1763   B.Reg = FuncInfo.CreateReg(B.RegVT);
1764   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(),
1765                                     B.Reg, Sub);
1766 
1767   // Set NextBlock to be the MBB immediately after the current one, if any.
1768   // This is used to avoid emitting unnecessary branches to the next block.
1769   MachineBasicBlock *NextBlock = 0;
1770   MachineFunction::iterator BBI = SwitchBB;
1771   if (++BBI != FuncInfo.MF->end())
1772     NextBlock = BBI;
1773 
1774   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1775 
1776   addSuccessorWithWeight(SwitchBB, B.Default);
1777   addSuccessorWithWeight(SwitchBB, MBB);
1778 
1779   SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1780                                 MVT::Other, CopyTo, RangeCmp,
1781                                 DAG.getBasicBlock(B.Default));
1782 
1783   if (MBB != NextBlock)
1784     BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo,
1785                           DAG.getBasicBlock(MBB));
1786 
1787   DAG.setRoot(BrRange);
1788 }
1789 
1790 /// visitBitTestCase - this function produces one "bit test"
1791 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1792                                            MachineBasicBlock* NextMBB,
1793                                            uint32_t BranchWeightToNext,
1794                                            unsigned Reg,
1795                                            BitTestCase &B,
1796                                            MachineBasicBlock *SwitchBB) {
1797   MVT VT = BB.RegVT;
1798   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1799                                        Reg, VT);
1800   SDValue Cmp;
1801   unsigned PopCount = CountPopulation_64(B.Mask);
1802   if (PopCount == 1) {
1803     // Testing for a single bit; just compare the shift count with what it
1804     // would need to be to shift a 1 bit in that position.
1805     Cmp = DAG.getSetCC(getCurSDLoc(),
1806                        TLI.getSetCCResultType(*DAG.getContext(), VT),
1807                        ShiftOp,
1808                        DAG.getConstant(countTrailingZeros(B.Mask), VT),
1809                        ISD::SETEQ);
1810   } else if (PopCount == BB.Range) {
1811     // There is only one zero bit in the range, test for it directly.
1812     Cmp = DAG.getSetCC(getCurSDLoc(),
1813                        TLI.getSetCCResultType(*DAG.getContext(), VT),
1814                        ShiftOp,
1815                        DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
1816                        ISD::SETNE);
1817   } else {
1818     // Make desired shift
1819     SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT,
1820                                     DAG.getConstant(1, VT), ShiftOp);
1821 
1822     // Emit bit tests and jumps
1823     SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(),
1824                                 VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1825     Cmp = DAG.getSetCC(getCurSDLoc(),
1826                        TLI.getSetCCResultType(*DAG.getContext(), VT),
1827                        AndOp, DAG.getConstant(0, VT),
1828                        ISD::SETNE);
1829   }
1830 
1831   // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight.
1832   addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight);
1833   // The branch weight from SwitchBB to NextMBB is BranchWeightToNext.
1834   addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext);
1835 
1836   SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1837                               MVT::Other, getControlRoot(),
1838                               Cmp, DAG.getBasicBlock(B.TargetBB));
1839 
1840   // Set NextBlock to be the MBB immediately after the current one, if any.
1841   // This is used to avoid emitting unnecessary branches to the next block.
1842   MachineBasicBlock *NextBlock = 0;
1843   MachineFunction::iterator BBI = SwitchBB;
1844   if (++BBI != FuncInfo.MF->end())
1845     NextBlock = BBI;
1846 
1847   if (NextMBB != NextBlock)
1848     BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd,
1849                         DAG.getBasicBlock(NextMBB));
1850 
1851   DAG.setRoot(BrAnd);
1852 }
1853 
1854 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1855   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1856 
1857   // Retrieve successors.
1858   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1859   MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1860 
1861   const Value *Callee(I.getCalledValue());
1862   const Function *Fn = dyn_cast<Function>(Callee);
1863   if (isa<InlineAsm>(Callee))
1864     visitInlineAsm(&I);
1865   else if (Fn && Fn->isIntrinsic()) {
1866     assert(Fn->getIntrinsicID() == Intrinsic::donothing);
1867     // Ignore invokes to @llvm.donothing: jump directly to the next BB.
1868   } else
1869     LowerCallTo(&I, getValue(Callee), false, LandingPad);
1870 
1871   // If the value of the invoke is used outside of its defining block, make it
1872   // available as a virtual register.
1873   CopyToExportRegsIfNeeded(&I);
1874 
1875   // Update successor info
1876   addSuccessorWithWeight(InvokeMBB, Return);
1877   addSuccessorWithWeight(InvokeMBB, LandingPad);
1878 
1879   // Drop into normal successor.
1880   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1881                           MVT::Other, getControlRoot(),
1882                           DAG.getBasicBlock(Return)));
1883 }
1884 
1885 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
1886   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
1887 }
1888 
1889 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
1890   assert(FuncInfo.MBB->isLandingPad() &&
1891          "Call to landingpad not in landing pad!");
1892 
1893   MachineBasicBlock *MBB = FuncInfo.MBB;
1894   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
1895   AddLandingPadInfo(LP, MMI, MBB);
1896 
1897   // If there aren't registers to copy the values into (e.g., during SjLj
1898   // exceptions), then don't bother to create these DAG nodes.
1899   if (TLI.getExceptionPointerRegister() == 0 &&
1900       TLI.getExceptionSelectorRegister() == 0)
1901     return;
1902 
1903   SmallVector<EVT, 2> ValueVTs;
1904   ComputeValueVTs(TLI, LP.getType(), ValueVTs);
1905 
1906   // Insert the EXCEPTIONADDR instruction.
1907   assert(FuncInfo.MBB->isLandingPad() &&
1908          "Call to eh.exception not in landing pad!");
1909   SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1910   SDValue Ops[2];
1911   Ops[0] = DAG.getRoot();
1912   SDValue Op1 = DAG.getNode(ISD::EXCEPTIONADDR, getCurSDLoc(), VTs, Ops, 1);
1913   SDValue Chain = Op1.getValue(1);
1914 
1915   // Insert the EHSELECTION instruction.
1916   VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1917   Ops[0] = Op1;
1918   Ops[1] = Chain;
1919   SDValue Op2 = DAG.getNode(ISD::EHSELECTION, getCurSDLoc(), VTs, Ops, 2);
1920   Chain = Op2.getValue(1);
1921   Op2 = DAG.getSExtOrTrunc(Op2, getCurSDLoc(), MVT::i32);
1922 
1923   Ops[0] = Op1;
1924   Ops[1] = Op2;
1925   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
1926                             DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
1927                             &Ops[0], 2);
1928 
1929   std::pair<SDValue, SDValue> RetPair = std::make_pair(Res, Chain);
1930   setValue(&LP, RetPair.first);
1931   DAG.setRoot(RetPair.second);
1932 }
1933 
1934 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1935 /// small case ranges).
1936 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1937                                                  CaseRecVector& WorkList,
1938                                                  const Value* SV,
1939                                                  MachineBasicBlock *Default,
1940                                                  MachineBasicBlock *SwitchBB) {
1941   // Size is the number of Cases represented by this range.
1942   size_t Size = CR.Range.second - CR.Range.first;
1943   if (Size > 3)
1944     return false;
1945 
1946   // Get the MachineFunction which holds the current MBB.  This is used when
1947   // inserting any additional MBBs necessary to represent the switch.
1948   MachineFunction *CurMF = FuncInfo.MF;
1949 
1950   // Figure out which block is immediately after the current one.
1951   MachineBasicBlock *NextBlock = 0;
1952   MachineFunction::iterator BBI = CR.CaseBB;
1953 
1954   if (++BBI != FuncInfo.MF->end())
1955     NextBlock = BBI;
1956 
1957   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1958   // If any two of the cases has the same destination, and if one value
1959   // is the same as the other, but has one bit unset that the other has set,
1960   // use bit manipulation to do two compares at once.  For example:
1961   // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1962   // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
1963   // TODO: Handle cases where CR.CaseBB != SwitchBB.
1964   if (Size == 2 && CR.CaseBB == SwitchBB) {
1965     Case &Small = *CR.Range.first;
1966     Case &Big = *(CR.Range.second-1);
1967 
1968     if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
1969       const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
1970       const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
1971 
1972       // Check that there is only one bit different.
1973       if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
1974           (SmallValue | BigValue) == BigValue) {
1975         // Isolate the common bit.
1976         APInt CommonBit = BigValue & ~SmallValue;
1977         assert((SmallValue | CommonBit) == BigValue &&
1978                CommonBit.countPopulation() == 1 && "Not a common bit?");
1979 
1980         SDValue CondLHS = getValue(SV);
1981         EVT VT = CondLHS.getValueType();
1982         SDLoc DL = getCurSDLoc();
1983 
1984         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
1985                                  DAG.getConstant(CommonBit, VT));
1986         SDValue Cond = DAG.getSetCC(DL, MVT::i1,
1987                                     Or, DAG.getConstant(BigValue, VT),
1988                                     ISD::SETEQ);
1989 
1990         // Update successor info.
1991         // Both Small and Big will jump to Small.BB, so we sum up the weights.
1992         addSuccessorWithWeight(SwitchBB, Small.BB,
1993                                Small.ExtraWeight + Big.ExtraWeight);
1994         addSuccessorWithWeight(SwitchBB, Default,
1995           // The default destination is the first successor in IR.
1996           BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0);
1997 
1998         // Insert the true branch.
1999         SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
2000                                      getControlRoot(), Cond,
2001                                      DAG.getBasicBlock(Small.BB));
2002 
2003         // Insert the false branch.
2004         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
2005                              DAG.getBasicBlock(Default));
2006 
2007         DAG.setRoot(BrCond);
2008         return true;
2009       }
2010     }
2011   }
2012 
2013   // Order cases by weight so the most likely case will be checked first.
2014   uint32_t UnhandledWeights = 0;
2015   if (BPI) {
2016     for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) {
2017       uint32_t IWeight = I->ExtraWeight;
2018       UnhandledWeights += IWeight;
2019       for (CaseItr J = CR.Range.first; J < I; ++J) {
2020         uint32_t JWeight = J->ExtraWeight;
2021         if (IWeight > JWeight)
2022           std::swap(*I, *J);
2023       }
2024     }
2025   }
2026   // Rearrange the case blocks so that the last one falls through if possible.
2027   Case &BackCase = *(CR.Range.second-1);
2028   if (Size > 1 &&
2029       NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
2030     // The last case block won't fall through into 'NextBlock' if we emit the
2031     // branches in this order.  See if rearranging a case value would help.
2032     // We start at the bottom as it's the case with the least weight.
2033     for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I){
2034       if (I->BB == NextBlock) {
2035         std::swap(*I, BackCase);
2036         break;
2037       }
2038     }
2039   }
2040 
2041   // Create a CaseBlock record representing a conditional branch to
2042   // the Case's target mbb if the value being switched on SV is equal
2043   // to C.
2044   MachineBasicBlock *CurBlock = CR.CaseBB;
2045   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2046     MachineBasicBlock *FallThrough;
2047     if (I != E-1) {
2048       FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
2049       CurMF->insert(BBI, FallThrough);
2050 
2051       // Put SV in a virtual register to make it available from the new blocks.
2052       ExportFromCurrentBlock(SV);
2053     } else {
2054       // If the last case doesn't match, go to the default block.
2055       FallThrough = Default;
2056     }
2057 
2058     const Value *RHS, *LHS, *MHS;
2059     ISD::CondCode CC;
2060     if (I->High == I->Low) {
2061       // This is just small small case range :) containing exactly 1 case
2062       CC = ISD::SETEQ;
2063       LHS = SV; RHS = I->High; MHS = NULL;
2064     } else {
2065       CC = ISD::SETCC_INVALID;
2066       LHS = I->Low; MHS = SV; RHS = I->High;
2067     }
2068 
2069     // The false weight should be sum of all un-handled cases.
2070     UnhandledWeights -= I->ExtraWeight;
2071     CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
2072                  /* me */ CurBlock,
2073                  /* trueweight */ I->ExtraWeight,
2074                  /* falseweight */ UnhandledWeights);
2075 
2076     // If emitting the first comparison, just call visitSwitchCase to emit the
2077     // code into the current block.  Otherwise, push the CaseBlock onto the
2078     // vector to be later processed by SDISel, and insert the node's MBB
2079     // before the next MBB.
2080     if (CurBlock == SwitchBB)
2081       visitSwitchCase(CB, SwitchBB);
2082     else
2083       SwitchCases.push_back(CB);
2084 
2085     CurBlock = FallThrough;
2086   }
2087 
2088   return true;
2089 }
2090 
2091 static inline bool areJTsAllowed(const TargetLowering &TLI) {
2092   return TLI.supportJumpTables() &&
2093           (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
2094            TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
2095 }
2096 
2097 static APInt ComputeRange(const APInt &First, const APInt &Last) {
2098   uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
2099   APInt LastExt = Last.zext(BitWidth), FirstExt = First.zext(BitWidth);
2100   return (LastExt - FirstExt + 1ULL);
2101 }
2102 
2103 /// handleJTSwitchCase - Emit jumptable for current switch case range
2104 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR,
2105                                              CaseRecVector &WorkList,
2106                                              const Value *SV,
2107                                              MachineBasicBlock *Default,
2108                                              MachineBasicBlock *SwitchBB) {
2109   Case& FrontCase = *CR.Range.first;
2110   Case& BackCase  = *(CR.Range.second-1);
2111 
2112   const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2113   const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2114 
2115   APInt TSize(First.getBitWidth(), 0);
2116   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I)
2117     TSize += I->size();
2118 
2119   if (!areJTsAllowed(TLI) || TSize.ult(TLI.getMinimumJumpTableEntries()))
2120     return false;
2121 
2122   APInt Range = ComputeRange(First, Last);
2123   // The density is TSize / Range. Require at least 40%.
2124   // It should not be possible for IntTSize to saturate for sane code, but make
2125   // sure we handle Range saturation correctly.
2126   uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10);
2127   uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10);
2128   if (IntTSize * 10 < IntRange * 4)
2129     return false;
2130 
2131   DEBUG(dbgs() << "Lowering jump table\n"
2132                << "First entry: " << First << ". Last entry: " << Last << '\n'
2133                << "Range: " << Range << ". Size: " << TSize << ".\n\n");
2134 
2135   // Get the MachineFunction which holds the current MBB.  This is used when
2136   // inserting any additional MBBs necessary to represent the switch.
2137   MachineFunction *CurMF = FuncInfo.MF;
2138 
2139   // Figure out which block is immediately after the current one.
2140   MachineFunction::iterator BBI = CR.CaseBB;
2141   ++BBI;
2142 
2143   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2144 
2145   // Create a new basic block to hold the code for loading the address
2146   // of the jump table, and jumping to it.  Update successor information;
2147   // we will either branch to the default case for the switch, or the jump
2148   // table.
2149   MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2150   CurMF->insert(BBI, JumpTableBB);
2151 
2152   addSuccessorWithWeight(CR.CaseBB, Default);
2153   addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
2154 
2155   // Build a vector of destination BBs, corresponding to each target
2156   // of the jump table. If the value of the jump table slot corresponds to
2157   // a case statement, push the case's BB onto the vector, otherwise, push
2158   // the default BB.
2159   std::vector<MachineBasicBlock*> DestBBs;
2160   APInt TEI = First;
2161   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2162     const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
2163     const APInt &High = cast<ConstantInt>(I->High)->getValue();
2164 
2165     if (Low.ule(TEI) && TEI.ule(High)) {
2166       DestBBs.push_back(I->BB);
2167       if (TEI==High)
2168         ++I;
2169     } else {
2170       DestBBs.push_back(Default);
2171     }
2172   }
2173 
2174   // Calculate weight for each unique destination in CR.
2175   DenseMap<MachineBasicBlock*, uint32_t> DestWeights;
2176   if (FuncInfo.BPI)
2177     for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2178       DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
2179           DestWeights.find(I->BB);
2180       if (Itr != DestWeights.end())
2181         Itr->second += I->ExtraWeight;
2182       else
2183         DestWeights[I->BB] = I->ExtraWeight;
2184     }
2185 
2186   // Update successor info. Add one edge to each unique successor.
2187   BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2188   for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2189          E = DestBBs.end(); I != E; ++I) {
2190     if (!SuccsHandled[(*I)->getNumber()]) {
2191       SuccsHandled[(*I)->getNumber()] = true;
2192       DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
2193           DestWeights.find(*I);
2194       addSuccessorWithWeight(JumpTableBB, *I,
2195                              Itr != DestWeights.end() ? Itr->second : 0);
2196     }
2197   }
2198 
2199   // Create a jump table index for this jump table.
2200   unsigned JTEncoding = TLI.getJumpTableEncoding();
2201   unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2202                        ->createJumpTableIndex(DestBBs);
2203 
2204   // Set the jump table information so that we can codegen it as a second
2205   // MachineBasicBlock
2206   JumpTable JT(-1U, JTI, JumpTableBB, Default);
2207   JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2208   if (CR.CaseBB == SwitchBB)
2209     visitJumpTableHeader(JT, JTH, SwitchBB);
2210 
2211   JTCases.push_back(JumpTableBlock(JTH, JT));
2212   return true;
2213 }
2214 
2215 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2216 /// 2 subtrees.
2217 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2218                                                   CaseRecVector& WorkList,
2219                                                   const Value* SV,
2220                                                   MachineBasicBlock *Default,
2221                                                   MachineBasicBlock *SwitchBB) {
2222   // Get the MachineFunction which holds the current MBB.  This is used when
2223   // inserting any additional MBBs necessary to represent the switch.
2224   MachineFunction *CurMF = FuncInfo.MF;
2225 
2226   // Figure out which block is immediately after the current one.
2227   MachineFunction::iterator BBI = CR.CaseBB;
2228   ++BBI;
2229 
2230   Case& FrontCase = *CR.Range.first;
2231   Case& BackCase  = *(CR.Range.second-1);
2232   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2233 
2234   // Size is the number of Cases represented by this range.
2235   unsigned Size = CR.Range.second - CR.Range.first;
2236 
2237   const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2238   const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2239   double FMetric = 0;
2240   CaseItr Pivot = CR.Range.first + Size/2;
2241 
2242   // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2243   // (heuristically) allow us to emit JumpTable's later.
2244   APInt TSize(First.getBitWidth(), 0);
2245   for (CaseItr I = CR.Range.first, E = CR.Range.second;
2246        I!=E; ++I)
2247     TSize += I->size();
2248 
2249   APInt LSize = FrontCase.size();
2250   APInt RSize = TSize-LSize;
2251   DEBUG(dbgs() << "Selecting best pivot: \n"
2252                << "First: " << First << ", Last: " << Last <<'\n'
2253                << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2254   for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2255        J!=E; ++I, ++J) {
2256     const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2257     const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2258     APInt Range = ComputeRange(LEnd, RBegin);
2259     assert((Range - 2ULL).isNonNegative() &&
2260            "Invalid case distance");
2261     // Use volatile double here to avoid excess precision issues on some hosts,
2262     // e.g. that use 80-bit X87 registers.
2263     volatile double LDensity =
2264        (double)LSize.roundToDouble() /
2265                            (LEnd - First + 1ULL).roundToDouble();
2266     volatile double RDensity =
2267       (double)RSize.roundToDouble() /
2268                            (Last - RBegin + 1ULL).roundToDouble();
2269     double Metric = Range.logBase2()*(LDensity+RDensity);
2270     // Should always split in some non-trivial place
2271     DEBUG(dbgs() <<"=>Step\n"
2272                  << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2273                  << "LDensity: " << LDensity
2274                  << ", RDensity: " << RDensity << '\n'
2275                  << "Metric: " << Metric << '\n');
2276     if (FMetric < Metric) {
2277       Pivot = J;
2278       FMetric = Metric;
2279       DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2280     }
2281 
2282     LSize += J->size();
2283     RSize -= J->size();
2284   }
2285   if (areJTsAllowed(TLI)) {
2286     // If our case is dense we *really* should handle it earlier!
2287     assert((FMetric > 0) && "Should handle dense range earlier!");
2288   } else {
2289     Pivot = CR.Range.first + Size/2;
2290   }
2291 
2292   CaseRange LHSR(CR.Range.first, Pivot);
2293   CaseRange RHSR(Pivot, CR.Range.second);
2294   const Constant *C = Pivot->Low;
2295   MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2296 
2297   // We know that we branch to the LHS if the Value being switched on is
2298   // less than the Pivot value, C.  We use this to optimize our binary
2299   // tree a bit, by recognizing that if SV is greater than or equal to the
2300   // LHS's Case Value, and that Case Value is exactly one less than the
2301   // Pivot's Value, then we can branch directly to the LHS's Target,
2302   // rather than creating a leaf node for it.
2303   if ((LHSR.second - LHSR.first) == 1 &&
2304       LHSR.first->High == CR.GE &&
2305       cast<ConstantInt>(C)->getValue() ==
2306       (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2307     TrueBB = LHSR.first->BB;
2308   } else {
2309     TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2310     CurMF->insert(BBI, TrueBB);
2311     WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2312 
2313     // Put SV in a virtual register to make it available from the new blocks.
2314     ExportFromCurrentBlock(SV);
2315   }
2316 
2317   // Similar to the optimization above, if the Value being switched on is
2318   // known to be less than the Constant CR.LT, and the current Case Value
2319   // is CR.LT - 1, then we can branch directly to the target block for
2320   // the current Case Value, rather than emitting a RHS leaf node for it.
2321   if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2322       cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2323       (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2324     FalseBB = RHSR.first->BB;
2325   } else {
2326     FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2327     CurMF->insert(BBI, FalseBB);
2328     WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2329 
2330     // Put SV in a virtual register to make it available from the new blocks.
2331     ExportFromCurrentBlock(SV);
2332   }
2333 
2334   // Create a CaseBlock record representing a conditional branch to
2335   // the LHS node if the value being switched on SV is less than C.
2336   // Otherwise, branch to LHS.
2337   CaseBlock CB(ISD::SETULT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2338 
2339   if (CR.CaseBB == SwitchBB)
2340     visitSwitchCase(CB, SwitchBB);
2341   else
2342     SwitchCases.push_back(CB);
2343 
2344   return true;
2345 }
2346 
2347 /// handleBitTestsSwitchCase - if current case range has few destination and
2348 /// range span less, than machine word bitwidth, encode case range into series
2349 /// of masks and emit bit tests with these masks.
2350 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2351                                                    CaseRecVector& WorkList,
2352                                                    const Value* SV,
2353                                                    MachineBasicBlock* Default,
2354                                                    MachineBasicBlock *SwitchBB){
2355   EVT PTy = TLI.getPointerTy();
2356   unsigned IntPtrBits = PTy.getSizeInBits();
2357 
2358   Case& FrontCase = *CR.Range.first;
2359   Case& BackCase  = *(CR.Range.second-1);
2360 
2361   // Get the MachineFunction which holds the current MBB.  This is used when
2362   // inserting any additional MBBs necessary to represent the switch.
2363   MachineFunction *CurMF = FuncInfo.MF;
2364 
2365   // If target does not have legal shift left, do not emit bit tests at all.
2366   if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2367     return false;
2368 
2369   size_t numCmps = 0;
2370   for (CaseItr I = CR.Range.first, E = CR.Range.second;
2371        I!=E; ++I) {
2372     // Single case counts one, case range - two.
2373     numCmps += (I->Low == I->High ? 1 : 2);
2374   }
2375 
2376   // Count unique destinations
2377   SmallSet<MachineBasicBlock*, 4> Dests;
2378   for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2379     Dests.insert(I->BB);
2380     if (Dests.size() > 3)
2381       // Don't bother the code below, if there are too much unique destinations
2382       return false;
2383   }
2384   DEBUG(dbgs() << "Total number of unique destinations: "
2385         << Dests.size() << '\n'
2386         << "Total number of comparisons: " << numCmps << '\n');
2387 
2388   // Compute span of values.
2389   const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2390   const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2391   APInt cmpRange = maxValue - minValue;
2392 
2393   DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2394                << "Low bound: " << minValue << '\n'
2395                << "High bound: " << maxValue << '\n');
2396 
2397   if (cmpRange.uge(IntPtrBits) ||
2398       (!(Dests.size() == 1 && numCmps >= 3) &&
2399        !(Dests.size() == 2 && numCmps >= 5) &&
2400        !(Dests.size() >= 3 && numCmps >= 6)))
2401     return false;
2402 
2403   DEBUG(dbgs() << "Emitting bit tests\n");
2404   APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2405 
2406   // Optimize the case where all the case values fit in a
2407   // word without having to subtract minValue. In this case,
2408   // we can optimize away the subtraction.
2409   if (maxValue.ult(IntPtrBits)) {
2410     cmpRange = maxValue;
2411   } else {
2412     lowBound = minValue;
2413   }
2414 
2415   CaseBitsVector CasesBits;
2416   unsigned i, count = 0;
2417 
2418   for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2419     MachineBasicBlock* Dest = I->BB;
2420     for (i = 0; i < count; ++i)
2421       if (Dest == CasesBits[i].BB)
2422         break;
2423 
2424     if (i == count) {
2425       assert((count < 3) && "Too much destinations to test!");
2426       CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/));
2427       count++;
2428     }
2429 
2430     const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2431     const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2432 
2433     uint64_t lo = (lowValue - lowBound).getZExtValue();
2434     uint64_t hi = (highValue - lowBound).getZExtValue();
2435     CasesBits[i].ExtraWeight += I->ExtraWeight;
2436 
2437     for (uint64_t j = lo; j <= hi; j++) {
2438       CasesBits[i].Mask |=  1ULL << j;
2439       CasesBits[i].Bits++;
2440     }
2441 
2442   }
2443   std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2444 
2445   BitTestInfo BTC;
2446 
2447   // Figure out which block is immediately after the current one.
2448   MachineFunction::iterator BBI = CR.CaseBB;
2449   ++BBI;
2450 
2451   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2452 
2453   DEBUG(dbgs() << "Cases:\n");
2454   for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2455     DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2456                  << ", Bits: " << CasesBits[i].Bits
2457                  << ", BB: " << CasesBits[i].BB << '\n');
2458 
2459     MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2460     CurMF->insert(BBI, CaseBB);
2461     BTC.push_back(BitTestCase(CasesBits[i].Mask,
2462                               CaseBB,
2463                               CasesBits[i].BB, CasesBits[i].ExtraWeight));
2464 
2465     // Put SV in a virtual register to make it available from the new blocks.
2466     ExportFromCurrentBlock(SV);
2467   }
2468 
2469   BitTestBlock BTB(lowBound, cmpRange, SV,
2470                    -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2471                    CR.CaseBB, Default, BTC);
2472 
2473   if (CR.CaseBB == SwitchBB)
2474     visitBitTestHeader(BTB, SwitchBB);
2475 
2476   BitTestCases.push_back(BTB);
2477 
2478   return true;
2479 }
2480 
2481 /// Clusterify - Transform simple list of Cases into list of CaseRange's
2482 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2483                                        const SwitchInst& SI) {
2484 
2485   /// Use a shorter form of declaration, and also
2486   /// show the we want to use CRSBuilder as Clusterifier.
2487   typedef IntegersSubsetMapping<MachineBasicBlock> Clusterifier;
2488 
2489   Clusterifier TheClusterifier;
2490 
2491   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2492   // Start with "simple" cases
2493   for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
2494        i != e; ++i) {
2495     const BasicBlock *SuccBB = i.getCaseSuccessor();
2496     MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
2497 
2498     TheClusterifier.add(i.getCaseValueEx(), SMBB,
2499         BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0);
2500   }
2501 
2502   TheClusterifier.optimize();
2503 
2504   size_t numCmps = 0;
2505   for (Clusterifier::RangeIterator i = TheClusterifier.begin(),
2506        e = TheClusterifier.end(); i != e; ++i, ++numCmps) {
2507     Clusterifier::Cluster &C = *i;
2508     // Update edge weight for the cluster.
2509     unsigned W = C.first.Weight;
2510 
2511     // FIXME: Currently work with ConstantInt based numbers.
2512     // Changing it to APInt based is a pretty heavy for this commit.
2513     Cases.push_back(Case(C.first.getLow().toConstantInt(),
2514                          C.first.getHigh().toConstantInt(), C.second, W));
2515 
2516     if (C.first.getLow() != C.first.getHigh())
2517     // A range counts double, since it requires two compares.
2518     ++numCmps;
2519   }
2520 
2521   return numCmps;
2522 }
2523 
2524 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2525                                            MachineBasicBlock *Last) {
2526   // Update JTCases.
2527   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2528     if (JTCases[i].first.HeaderBB == First)
2529       JTCases[i].first.HeaderBB = Last;
2530 
2531   // Update BitTestCases.
2532   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2533     if (BitTestCases[i].Parent == First)
2534       BitTestCases[i].Parent = Last;
2535 }
2536 
2537 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2538   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2539 
2540   // Figure out which block is immediately after the current one.
2541   MachineBasicBlock *NextBlock = 0;
2542   MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2543 
2544   // If there is only the default destination, branch to it if it is not the
2545   // next basic block.  Otherwise, just fall through.
2546   if (!SI.getNumCases()) {
2547     // Update machine-CFG edges.
2548 
2549     // If this is not a fall-through branch, emit the branch.
2550     SwitchMBB->addSuccessor(Default);
2551     if (Default != NextBlock)
2552       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2553                               MVT::Other, getControlRoot(),
2554                               DAG.getBasicBlock(Default)));
2555 
2556     return;
2557   }
2558 
2559   // If there are any non-default case statements, create a vector of Cases
2560   // representing each one, and sort the vector so that we can efficiently
2561   // create a binary search tree from them.
2562   CaseVector Cases;
2563   size_t numCmps = Clusterify(Cases, SI);
2564   DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2565                << ". Total compares: " << numCmps << '\n');
2566   (void)numCmps;
2567 
2568   // Get the Value to be switched on and default basic blocks, which will be
2569   // inserted into CaseBlock records, representing basic blocks in the binary
2570   // search tree.
2571   const Value *SV = SI.getCondition();
2572 
2573   // Push the initial CaseRec onto the worklist
2574   CaseRecVector WorkList;
2575   WorkList.push_back(CaseRec(SwitchMBB,0,0,
2576                              CaseRange(Cases.begin(),Cases.end())));
2577 
2578   while (!WorkList.empty()) {
2579     // Grab a record representing a case range to process off the worklist
2580     CaseRec CR = WorkList.back();
2581     WorkList.pop_back();
2582 
2583     if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2584       continue;
2585 
2586     // If the range has few cases (two or less) emit a series of specific
2587     // tests.
2588     if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2589       continue;
2590 
2591     // If the switch has more than N blocks, and is at least 40% dense, and the
2592     // target supports indirect branches, then emit a jump table rather than
2593     // lowering the switch to a binary tree of conditional branches.
2594     // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries().
2595     if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2596       continue;
2597 
2598     // Emit binary tree. We need to pick a pivot, and push left and right ranges
2599     // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2600     handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2601   }
2602 }
2603 
2604 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2605   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2606 
2607   // Update machine-CFG edges with unique successors.
2608   SmallSet<BasicBlock*, 32> Done;
2609   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2610     BasicBlock *BB = I.getSuccessor(i);
2611     bool Inserted = Done.insert(BB);
2612     if (!Inserted)
2613         continue;
2614 
2615     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2616     addSuccessorWithWeight(IndirectBrMBB, Succ);
2617   }
2618 
2619   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2620                           MVT::Other, getControlRoot(),
2621                           getValue(I.getAddress())));
2622 }
2623 
2624 void SelectionDAGBuilder::visitFSub(const User &I) {
2625   // -0.0 - X --> fneg
2626   Type *Ty = I.getType();
2627   if (isa<Constant>(I.getOperand(0)) &&
2628       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2629     SDValue Op2 = getValue(I.getOperand(1));
2630     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2631                              Op2.getValueType(), Op2));
2632     return;
2633   }
2634 
2635   visitBinary(I, ISD::FSUB);
2636 }
2637 
2638 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2639   SDValue Op1 = getValue(I.getOperand(0));
2640   SDValue Op2 = getValue(I.getOperand(1));
2641   setValue(&I, DAG.getNode(OpCode, getCurSDLoc(),
2642                            Op1.getValueType(), Op1, Op2));
2643 }
2644 
2645 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2646   SDValue Op1 = getValue(I.getOperand(0));
2647   SDValue Op2 = getValue(I.getOperand(1));
2648 
2649   EVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType());
2650 
2651   // Coerce the shift amount to the right type if we can.
2652   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2653     unsigned ShiftSize = ShiftTy.getSizeInBits();
2654     unsigned Op2Size = Op2.getValueType().getSizeInBits();
2655     SDLoc DL = getCurSDLoc();
2656 
2657     // If the operand is smaller than the shift count type, promote it.
2658     if (ShiftSize > Op2Size)
2659       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2660 
2661     // If the operand is larger than the shift count type but the shift
2662     // count type has enough bits to represent any shift value, truncate
2663     // it now. This is a common case and it exposes the truncate to
2664     // optimization early.
2665     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2666       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2667     // Otherwise we'll need to temporarily settle for some other convenient
2668     // type.  Type legalization will make adjustments once the shiftee is split.
2669     else
2670       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2671   }
2672 
2673   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(),
2674                            Op1.getValueType(), Op1, Op2));
2675 }
2676 
2677 void SelectionDAGBuilder::visitSDiv(const User &I) {
2678   SDValue Op1 = getValue(I.getOperand(0));
2679   SDValue Op2 = getValue(I.getOperand(1));
2680 
2681   // Turn exact SDivs into multiplications.
2682   // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2683   // exact bit.
2684   if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2685       !isa<ConstantSDNode>(Op1) &&
2686       isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2687     setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurSDLoc(), DAG));
2688   else
2689     setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(),
2690                              Op1, Op2));
2691 }
2692 
2693 void SelectionDAGBuilder::visitICmp(const User &I) {
2694   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2695   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2696     predicate = IC->getPredicate();
2697   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2698     predicate = ICmpInst::Predicate(IC->getPredicate());
2699   SDValue Op1 = getValue(I.getOperand(0));
2700   SDValue Op2 = getValue(I.getOperand(1));
2701   ISD::CondCode Opcode = getICmpCondCode(predicate);
2702 
2703   EVT DestVT = TLI.getValueType(I.getType());
2704   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2705 }
2706 
2707 void SelectionDAGBuilder::visitFCmp(const User &I) {
2708   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2709   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2710     predicate = FC->getPredicate();
2711   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2712     predicate = FCmpInst::Predicate(FC->getPredicate());
2713   SDValue Op1 = getValue(I.getOperand(0));
2714   SDValue Op2 = getValue(I.getOperand(1));
2715   ISD::CondCode Condition = getFCmpCondCode(predicate);
2716   if (TM.Options.NoNaNsFPMath)
2717     Condition = getFCmpCodeWithoutNaN(Condition);
2718   EVT DestVT = TLI.getValueType(I.getType());
2719   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2720 }
2721 
2722 void SelectionDAGBuilder::visitSelect(const User &I) {
2723   SmallVector<EVT, 4> ValueVTs;
2724   ComputeValueVTs(TLI, I.getType(), ValueVTs);
2725   unsigned NumValues = ValueVTs.size();
2726   if (NumValues == 0) return;
2727 
2728   SmallVector<SDValue, 4> Values(NumValues);
2729   SDValue Cond     = getValue(I.getOperand(0));
2730   SDValue TrueVal  = getValue(I.getOperand(1));
2731   SDValue FalseVal = getValue(I.getOperand(2));
2732   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2733     ISD::VSELECT : ISD::SELECT;
2734 
2735   for (unsigned i = 0; i != NumValues; ++i)
2736     Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
2737                             TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2738                             Cond,
2739                             SDValue(TrueVal.getNode(),
2740                                     TrueVal.getResNo() + i),
2741                             SDValue(FalseVal.getNode(),
2742                                     FalseVal.getResNo() + i));
2743 
2744   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2745                            DAG.getVTList(&ValueVTs[0], NumValues),
2746                            &Values[0], NumValues));
2747 }
2748 
2749 void SelectionDAGBuilder::visitTrunc(const User &I) {
2750   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2751   SDValue N = getValue(I.getOperand(0));
2752   EVT DestVT = TLI.getValueType(I.getType());
2753   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
2754 }
2755 
2756 void SelectionDAGBuilder::visitZExt(const User &I) {
2757   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2758   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2759   SDValue N = getValue(I.getOperand(0));
2760   EVT DestVT = TLI.getValueType(I.getType());
2761   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
2762 }
2763 
2764 void SelectionDAGBuilder::visitSExt(const User &I) {
2765   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2766   // SExt also can't be a cast to bool for same reason. So, nothing much to do
2767   SDValue N = getValue(I.getOperand(0));
2768   EVT DestVT = TLI.getValueType(I.getType());
2769   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
2770 }
2771 
2772 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2773   // FPTrunc is never a no-op cast, no need to check
2774   SDValue N = getValue(I.getOperand(0));
2775   EVT DestVT = TLI.getValueType(I.getType());
2776   setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(),
2777                            DestVT, N,
2778                            DAG.getTargetConstant(0, TLI.getPointerTy())));
2779 }
2780 
2781 void SelectionDAGBuilder::visitFPExt(const User &I){
2782   // FPExt is never a no-op cast, no need to check
2783   SDValue N = getValue(I.getOperand(0));
2784   EVT DestVT = TLI.getValueType(I.getType());
2785   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
2786 }
2787 
2788 void SelectionDAGBuilder::visitFPToUI(const User &I) {
2789   // FPToUI is never a no-op cast, no need to check
2790   SDValue N = getValue(I.getOperand(0));
2791   EVT DestVT = TLI.getValueType(I.getType());
2792   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
2793 }
2794 
2795 void SelectionDAGBuilder::visitFPToSI(const User &I) {
2796   // FPToSI is never a no-op cast, no need to check
2797   SDValue N = getValue(I.getOperand(0));
2798   EVT DestVT = TLI.getValueType(I.getType());
2799   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
2800 }
2801 
2802 void SelectionDAGBuilder::visitUIToFP(const User &I) {
2803   // UIToFP is never a no-op cast, no need to check
2804   SDValue N = getValue(I.getOperand(0));
2805   EVT DestVT = TLI.getValueType(I.getType());
2806   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
2807 }
2808 
2809 void SelectionDAGBuilder::visitSIToFP(const User &I){
2810   // SIToFP is never a no-op cast, no need to check
2811   SDValue N = getValue(I.getOperand(0));
2812   EVT DestVT = TLI.getValueType(I.getType());
2813   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
2814 }
2815 
2816 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2817   // What to do depends on the size of the integer and the size of the pointer.
2818   // We can either truncate, zero extend, or no-op, accordingly.
2819   SDValue N = getValue(I.getOperand(0));
2820   EVT DestVT = TLI.getValueType(I.getType());
2821   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2822 }
2823 
2824 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2825   // What to do depends on the size of the integer and the size of the pointer.
2826   // We can either truncate, zero extend, or no-op, accordingly.
2827   SDValue N = getValue(I.getOperand(0));
2828   EVT DestVT = TLI.getValueType(I.getType());
2829   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2830 }
2831 
2832 void SelectionDAGBuilder::visitBitCast(const User &I) {
2833   SDValue N = getValue(I.getOperand(0));
2834   EVT DestVT = TLI.getValueType(I.getType());
2835 
2836   // BitCast assures us that source and destination are the same size so this is
2837   // either a BITCAST or a no-op.
2838   if (DestVT != N.getValueType())
2839     setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(),
2840                              DestVT, N)); // convert types.
2841   else
2842     setValue(&I, N);            // noop cast.
2843 }
2844 
2845 void SelectionDAGBuilder::visitInsertElement(const User &I) {
2846   SDValue InVec = getValue(I.getOperand(0));
2847   SDValue InVal = getValue(I.getOperand(1));
2848   SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(),
2849                               TLI.getPointerTy(),
2850                               getValue(I.getOperand(2)));
2851   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
2852                            TLI.getValueType(I.getType()),
2853                            InVec, InVal, InIdx));
2854 }
2855 
2856 void SelectionDAGBuilder::visitExtractElement(const User &I) {
2857   SDValue InVec = getValue(I.getOperand(0));
2858   SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(),
2859                               TLI.getPointerTy(),
2860                               getValue(I.getOperand(1)));
2861   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
2862                            TLI.getValueType(I.getType()), InVec, InIdx));
2863 }
2864 
2865 // Utility for visitShuffleVector - Return true if every element in Mask,
2866 // beginning from position Pos and ending in Pos+Size, falls within the
2867 // specified sequential range [L, L+Pos). or is undef.
2868 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
2869                                 unsigned Pos, unsigned Size, int Low) {
2870   for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
2871     if (Mask[i] >= 0 && Mask[i] != Low)
2872       return false;
2873   return true;
2874 }
2875 
2876 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2877   SDValue Src1 = getValue(I.getOperand(0));
2878   SDValue Src2 = getValue(I.getOperand(1));
2879 
2880   SmallVector<int, 8> Mask;
2881   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
2882   unsigned MaskNumElts = Mask.size();
2883 
2884   EVT VT = TLI.getValueType(I.getType());
2885   EVT SrcVT = Src1.getValueType();
2886   unsigned SrcNumElts = SrcVT.getVectorNumElements();
2887 
2888   if (SrcNumElts == MaskNumElts) {
2889     setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
2890                                       &Mask[0]));
2891     return;
2892   }
2893 
2894   // Normalize the shuffle vector since mask and vector length don't match.
2895   if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2896     // Mask is longer than the source vectors and is a multiple of the source
2897     // vectors.  We can use concatenate vector to make the mask and vectors
2898     // lengths match.
2899     if (SrcNumElts*2 == MaskNumElts) {
2900       // First check for Src1 in low and Src2 in high
2901       if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
2902           isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
2903         // The shuffle is concatenating two vectors together.
2904         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
2905                                  VT, Src1, Src2));
2906         return;
2907       }
2908       // Then check for Src2 in low and Src1 in high
2909       if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
2910           isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
2911         // The shuffle is concatenating two vectors together.
2912         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
2913                                  VT, Src2, Src1));
2914         return;
2915       }
2916     }
2917 
2918     // Pad both vectors with undefs to make them the same length as the mask.
2919     unsigned NumConcat = MaskNumElts / SrcNumElts;
2920     bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2921     bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2922     SDValue UndefVal = DAG.getUNDEF(SrcVT);
2923 
2924     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2925     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2926     MOps1[0] = Src1;
2927     MOps2[0] = Src2;
2928 
2929     Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2930                                                   getCurSDLoc(), VT,
2931                                                   &MOps1[0], NumConcat);
2932     Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2933                                                   getCurSDLoc(), VT,
2934                                                   &MOps2[0], NumConcat);
2935 
2936     // Readjust mask for new input vector length.
2937     SmallVector<int, 8> MappedOps;
2938     for (unsigned i = 0; i != MaskNumElts; ++i) {
2939       int Idx = Mask[i];
2940       if (Idx >= (int)SrcNumElts)
2941         Idx -= SrcNumElts - MaskNumElts;
2942       MappedOps.push_back(Idx);
2943     }
2944 
2945     setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
2946                                       &MappedOps[0]));
2947     return;
2948   }
2949 
2950   if (SrcNumElts > MaskNumElts) {
2951     // Analyze the access pattern of the vector to see if we can extract
2952     // two subvectors and do the shuffle. The analysis is done by calculating
2953     // the range of elements the mask access on both vectors.
2954     int MinRange[2] = { static_cast<int>(SrcNumElts),
2955                         static_cast<int>(SrcNumElts)};
2956     int MaxRange[2] = {-1, -1};
2957 
2958     for (unsigned i = 0; i != MaskNumElts; ++i) {
2959       int Idx = Mask[i];
2960       unsigned Input = 0;
2961       if (Idx < 0)
2962         continue;
2963 
2964       if (Idx >= (int)SrcNumElts) {
2965         Input = 1;
2966         Idx -= SrcNumElts;
2967       }
2968       if (Idx > MaxRange[Input])
2969         MaxRange[Input] = Idx;
2970       if (Idx < MinRange[Input])
2971         MinRange[Input] = Idx;
2972     }
2973 
2974     // Check if the access is smaller than the vector size and can we find
2975     // a reasonable extract index.
2976     int RangeUse[2] = { -1, -1 };  // 0 = Unused, 1 = Extract, -1 = Can not
2977                                    // Extract.
2978     int StartIdx[2];  // StartIdx to extract from
2979     for (unsigned Input = 0; Input < 2; ++Input) {
2980       if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
2981         RangeUse[Input] = 0; // Unused
2982         StartIdx[Input] = 0;
2983         continue;
2984       }
2985 
2986       // Find a good start index that is a multiple of the mask length. Then
2987       // see if the rest of the elements are in range.
2988       StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2989       if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2990           StartIdx[Input] + MaskNumElts <= SrcNumElts)
2991         RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2992     }
2993 
2994     if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2995       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2996       return;
2997     }
2998     if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
2999       // Extract appropriate subvector and generate a vector shuffle
3000       for (unsigned Input = 0; Input < 2; ++Input) {
3001         SDValue &Src = Input == 0 ? Src1 : Src2;
3002         if (RangeUse[Input] == 0)
3003           Src = DAG.getUNDEF(VT);
3004         else
3005           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT,
3006                             Src, DAG.getIntPtrConstant(StartIdx[Input]));
3007       }
3008 
3009       // Calculate new mask.
3010       SmallVector<int, 8> MappedOps;
3011       for (unsigned i = 0; i != MaskNumElts; ++i) {
3012         int Idx = Mask[i];
3013         if (Idx >= 0) {
3014           if (Idx < (int)SrcNumElts)
3015             Idx -= StartIdx[0];
3016           else
3017             Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3018         }
3019         MappedOps.push_back(Idx);
3020       }
3021 
3022       setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3023                                         &MappedOps[0]));
3024       return;
3025     }
3026   }
3027 
3028   // We can't use either concat vectors or extract subvectors so fall back to
3029   // replacing the shuffle with extract and build vector.
3030   // to insert and build vector.
3031   EVT EltVT = VT.getVectorElementType();
3032   EVT PtrVT = TLI.getPointerTy();
3033   SmallVector<SDValue,8> Ops;
3034   for (unsigned i = 0; i != MaskNumElts; ++i) {
3035     int Idx = Mask[i];
3036     SDValue Res;
3037 
3038     if (Idx < 0) {
3039       Res = DAG.getUNDEF(EltVT);
3040     } else {
3041       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3042       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3043 
3044       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3045                         EltVT, Src, DAG.getConstant(Idx, PtrVT));
3046     }
3047 
3048     Ops.push_back(Res);
3049   }
3050 
3051   setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
3052                            VT, &Ops[0], Ops.size()));
3053 }
3054 
3055 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3056   const Value *Op0 = I.getOperand(0);
3057   const Value *Op1 = I.getOperand(1);
3058   Type *AggTy = I.getType();
3059   Type *ValTy = Op1->getType();
3060   bool IntoUndef = isa<UndefValue>(Op0);
3061   bool FromUndef = isa<UndefValue>(Op1);
3062 
3063   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3064 
3065   SmallVector<EVT, 4> AggValueVTs;
3066   ComputeValueVTs(TLI, AggTy, AggValueVTs);
3067   SmallVector<EVT, 4> ValValueVTs;
3068   ComputeValueVTs(TLI, ValTy, ValValueVTs);
3069 
3070   unsigned NumAggValues = AggValueVTs.size();
3071   unsigned NumValValues = ValValueVTs.size();
3072   SmallVector<SDValue, 4> Values(NumAggValues);
3073 
3074   SDValue Agg = getValue(Op0);
3075   unsigned i = 0;
3076   // Copy the beginning value(s) from the original aggregate.
3077   for (; i != LinearIndex; ++i)
3078     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3079                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3080   // Copy values from the inserted value(s).
3081   if (NumValValues) {
3082     SDValue Val = getValue(Op1);
3083     for (; i != LinearIndex + NumValValues; ++i)
3084       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3085                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3086   }
3087   // Copy remaining value(s) from the original aggregate.
3088   for (; i != NumAggValues; ++i)
3089     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3090                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3091 
3092   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3093                            DAG.getVTList(&AggValueVTs[0], NumAggValues),
3094                            &Values[0], NumAggValues));
3095 }
3096 
3097 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3098   const Value *Op0 = I.getOperand(0);
3099   Type *AggTy = Op0->getType();
3100   Type *ValTy = I.getType();
3101   bool OutOfUndef = isa<UndefValue>(Op0);
3102 
3103   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3104 
3105   SmallVector<EVT, 4> ValValueVTs;
3106   ComputeValueVTs(TLI, ValTy, ValValueVTs);
3107 
3108   unsigned NumValValues = ValValueVTs.size();
3109 
3110   // Ignore a extractvalue that produces an empty object
3111   if (!NumValValues) {
3112     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3113     return;
3114   }
3115 
3116   SmallVector<SDValue, 4> Values(NumValValues);
3117 
3118   SDValue Agg = getValue(Op0);
3119   // Copy out the selected value(s).
3120   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3121     Values[i - LinearIndex] =
3122       OutOfUndef ?
3123         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3124         SDValue(Agg.getNode(), Agg.getResNo() + i);
3125 
3126   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3127                            DAG.getVTList(&ValValueVTs[0], NumValValues),
3128                            &Values[0], NumValValues));
3129 }
3130 
3131 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3132   SDValue N = getValue(I.getOperand(0));
3133   // Note that the pointer operand may be a vector of pointers. Take the scalar
3134   // element which holds a pointer.
3135   Type *Ty = I.getOperand(0)->getType()->getScalarType();
3136 
3137   for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
3138        OI != E; ++OI) {
3139     const Value *Idx = *OI;
3140     if (StructType *StTy = dyn_cast<StructType>(Ty)) {
3141       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3142       if (Field) {
3143         // N = N + Offset
3144         uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
3145         N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N,
3146                         DAG.getConstant(Offset, N.getValueType()));
3147       }
3148 
3149       Ty = StTy->getElementType(Field);
3150     } else {
3151       Ty = cast<SequentialType>(Ty)->getElementType();
3152 
3153       // If this is a constant subscript, handle it quickly.
3154       if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3155         if (CI->isZero()) continue;
3156         uint64_t Offs =
3157             TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
3158         SDValue OffsVal;
3159         EVT PTy = TLI.getPointerTy();
3160         unsigned PtrBits = PTy.getSizeInBits();
3161         if (PtrBits < 64)
3162           OffsVal = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(),
3163                                 TLI.getPointerTy(),
3164                                 DAG.getConstant(Offs, MVT::i64));
3165         else
3166           OffsVal = DAG.getIntPtrConstant(Offs);
3167 
3168         N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N,
3169                         OffsVal);
3170         continue;
3171       }
3172 
3173       // N = N + Idx * ElementSize;
3174       APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
3175                                 TD->getTypeAllocSize(Ty));
3176       SDValue IdxN = getValue(Idx);
3177 
3178       // If the index is smaller or larger than intptr_t, truncate or extend
3179       // it.
3180       IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType());
3181 
3182       // If this is a multiply by a power of two, turn it into a shl
3183       // immediately.  This is a very common case.
3184       if (ElementSize != 1) {
3185         if (ElementSize.isPowerOf2()) {
3186           unsigned Amt = ElementSize.logBase2();
3187           IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(),
3188                              N.getValueType(), IdxN,
3189                              DAG.getConstant(Amt, IdxN.getValueType()));
3190         } else {
3191           SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType());
3192           IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(),
3193                              N.getValueType(), IdxN, Scale);
3194         }
3195       }
3196 
3197       N = DAG.getNode(ISD::ADD, getCurSDLoc(),
3198                       N.getValueType(), N, IdxN);
3199     }
3200   }
3201 
3202   setValue(&I, N);
3203 }
3204 
3205 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3206   // If this is a fixed sized alloca in the entry block of the function,
3207   // allocate it statically on the stack.
3208   if (FuncInfo.StaticAllocaMap.count(&I))
3209     return;   // getValue will auto-populate this.
3210 
3211   Type *Ty = I.getAllocatedType();
3212   uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty);
3213   unsigned Align =
3214     std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty),
3215              I.getAlignment());
3216 
3217   SDValue AllocSize = getValue(I.getArraySize());
3218 
3219   EVT IntPtr = TLI.getPointerTy();
3220   if (AllocSize.getValueType() != IntPtr)
3221     AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr);
3222 
3223   AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr,
3224                           AllocSize,
3225                           DAG.getConstant(TySize, IntPtr));
3226 
3227   // Handle alignment.  If the requested alignment is less than or equal to
3228   // the stack alignment, ignore it.  If the size is greater than or equal to
3229   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3230   unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
3231   if (Align <= StackAlign)
3232     Align = 0;
3233 
3234   // Round the size of the allocation up to the stack alignment size
3235   // by add SA-1 to the size.
3236   AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(),
3237                           AllocSize.getValueType(), AllocSize,
3238                           DAG.getIntPtrConstant(StackAlign-1));
3239 
3240   // Mask out the low bits for alignment purposes.
3241   AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(),
3242                           AllocSize.getValueType(), AllocSize,
3243                           DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3244 
3245   SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3246   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3247   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(),
3248                             VTs, Ops, 3);
3249   setValue(&I, DSA);
3250   DAG.setRoot(DSA.getValue(1));
3251 
3252   // Inform the Frame Information that we have just allocated a variable-sized
3253   // object.
3254   FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
3255 }
3256 
3257 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3258   if (I.isAtomic())
3259     return visitAtomicLoad(I);
3260 
3261   const Value *SV = I.getOperand(0);
3262   SDValue Ptr = getValue(SV);
3263 
3264   Type *Ty = I.getType();
3265 
3266   bool isVolatile = I.isVolatile();
3267   bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3268   bool isInvariant = I.getMetadata("invariant.load") != 0;
3269   unsigned Alignment = I.getAlignment();
3270   const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3271   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3272 
3273   SmallVector<EVT, 4> ValueVTs;
3274   SmallVector<uint64_t, 4> Offsets;
3275   ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3276   unsigned NumValues = ValueVTs.size();
3277   if (NumValues == 0)
3278     return;
3279 
3280   SDValue Root;
3281   bool ConstantMemory = false;
3282   if (I.isVolatile() || NumValues > MaxParallelChains)
3283     // Serialize volatile loads with other side effects.
3284     Root = getRoot();
3285   else if (AA->pointsToConstantMemory(
3286              AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3287     // Do not serialize (non-volatile) loads of constant memory with anything.
3288     Root = DAG.getEntryNode();
3289     ConstantMemory = true;
3290   } else {
3291     // Do not serialize non-volatile loads against each other.
3292     Root = DAG.getRoot();
3293   }
3294 
3295   SmallVector<SDValue, 4> Values(NumValues);
3296   SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3297                                           NumValues));
3298   EVT PtrVT = Ptr.getValueType();
3299   unsigned ChainI = 0;
3300   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3301     // Serializing loads here may result in excessive register pressure, and
3302     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3303     // could recover a bit by hoisting nodes upward in the chain by recognizing
3304     // they are side-effect free or do not alias. The optimizer should really
3305     // avoid this case by converting large object/array copies to llvm.memcpy
3306     // (MaxParallelChains should always remain as failsafe).
3307     if (ChainI == MaxParallelChains) {
3308       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3309       SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
3310                                   MVT::Other, &Chains[0], ChainI);
3311       Root = Chain;
3312       ChainI = 0;
3313     }
3314     SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(),
3315                             PtrVT, Ptr,
3316                             DAG.getConstant(Offsets[i], PtrVT));
3317     SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root,
3318                             A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3319                             isNonTemporal, isInvariant, Alignment, TBAAInfo,
3320                             Ranges);
3321 
3322     Values[i] = L;
3323     Chains[ChainI] = L.getValue(1);
3324   }
3325 
3326   if (!ConstantMemory) {
3327     SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
3328                                 MVT::Other, &Chains[0], ChainI);
3329     if (isVolatile)
3330       DAG.setRoot(Chain);
3331     else
3332       PendingLoads.push_back(Chain);
3333   }
3334 
3335   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3336                            DAG.getVTList(&ValueVTs[0], NumValues),
3337                            &Values[0], NumValues));
3338 }
3339 
3340 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3341   if (I.isAtomic())
3342     return visitAtomicStore(I);
3343 
3344   const Value *SrcV = I.getOperand(0);
3345   const Value *PtrV = I.getOperand(1);
3346 
3347   SmallVector<EVT, 4> ValueVTs;
3348   SmallVector<uint64_t, 4> Offsets;
3349   ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
3350   unsigned NumValues = ValueVTs.size();
3351   if (NumValues == 0)
3352     return;
3353 
3354   // Get the lowered operands. Note that we do this after
3355   // checking if NumResults is zero, because with zero results
3356   // the operands won't have values in the map.
3357   SDValue Src = getValue(SrcV);
3358   SDValue Ptr = getValue(PtrV);
3359 
3360   SDValue Root = getRoot();
3361   SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3362                                           NumValues));
3363   EVT PtrVT = Ptr.getValueType();
3364   bool isVolatile = I.isVolatile();
3365   bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3366   unsigned Alignment = I.getAlignment();
3367   const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3368 
3369   unsigned ChainI = 0;
3370   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3371     // See visitLoad comments.
3372     if (ChainI == MaxParallelChains) {
3373       SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
3374                                   MVT::Other, &Chains[0], ChainI);
3375       Root = Chain;
3376       ChainI = 0;
3377     }
3378     SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr,
3379                               DAG.getConstant(Offsets[i], PtrVT));
3380     SDValue St = DAG.getStore(Root, getCurSDLoc(),
3381                               SDValue(Src.getNode(), Src.getResNo() + i),
3382                               Add, MachinePointerInfo(PtrV, Offsets[i]),
3383                               isVolatile, isNonTemporal, Alignment, TBAAInfo);
3384     Chains[ChainI] = St;
3385   }
3386 
3387   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
3388                                   MVT::Other, &Chains[0], ChainI);
3389   DAG.setRoot(StoreNode);
3390 }
3391 
3392 static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order,
3393                                     SynchronizationScope Scope,
3394                                     bool Before, SDLoc dl,
3395                                     SelectionDAG &DAG,
3396                                     const TargetLowering &TLI) {
3397   // Fence, if necessary
3398   if (Before) {
3399     if (Order == AcquireRelease || Order == SequentiallyConsistent)
3400       Order = Release;
3401     else if (Order == Acquire || Order == Monotonic)
3402       return Chain;
3403   } else {
3404     if (Order == AcquireRelease)
3405       Order = Acquire;
3406     else if (Order == Release || Order == Monotonic)
3407       return Chain;
3408   }
3409   SDValue Ops[3];
3410   Ops[0] = Chain;
3411   Ops[1] = DAG.getConstant(Order, TLI.getPointerTy());
3412   Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy());
3413   return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3);
3414 }
3415 
3416 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3417   SDLoc dl = getCurSDLoc();
3418   AtomicOrdering Order = I.getOrdering();
3419   SynchronizationScope Scope = I.getSynchScope();
3420 
3421   SDValue InChain = getRoot();
3422 
3423   if (TLI.getInsertFencesForAtomic())
3424     InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3425                                    DAG, TLI);
3426 
3427   SDValue L =
3428     DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
3429                   getValue(I.getCompareOperand()).getValueType().getSimpleVT(),
3430                   InChain,
3431                   getValue(I.getPointerOperand()),
3432                   getValue(I.getCompareOperand()),
3433                   getValue(I.getNewValOperand()),
3434                   MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */,
3435                   TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3436                   Scope);
3437 
3438   SDValue OutChain = L.getValue(1);
3439 
3440   if (TLI.getInsertFencesForAtomic())
3441     OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3442                                     DAG, TLI);
3443 
3444   setValue(&I, L);
3445   DAG.setRoot(OutChain);
3446 }
3447 
3448 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3449   SDLoc dl = getCurSDLoc();
3450   ISD::NodeType NT;
3451   switch (I.getOperation()) {
3452   default: llvm_unreachable("Unknown atomicrmw operation");
3453   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3454   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3455   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3456   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3457   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3458   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3459   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3460   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3461   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3462   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3463   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3464   }
3465   AtomicOrdering Order = I.getOrdering();
3466   SynchronizationScope Scope = I.getSynchScope();
3467 
3468   SDValue InChain = getRoot();
3469 
3470   if (TLI.getInsertFencesForAtomic())
3471     InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3472                                    DAG, TLI);
3473 
3474   SDValue L =
3475     DAG.getAtomic(NT, dl,
3476                   getValue(I.getValOperand()).getValueType().getSimpleVT(),
3477                   InChain,
3478                   getValue(I.getPointerOperand()),
3479                   getValue(I.getValOperand()),
3480                   I.getPointerOperand(), 0 /* Alignment */,
3481                   TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3482                   Scope);
3483 
3484   SDValue OutChain = L.getValue(1);
3485 
3486   if (TLI.getInsertFencesForAtomic())
3487     OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3488                                     DAG, TLI);
3489 
3490   setValue(&I, L);
3491   DAG.setRoot(OutChain);
3492 }
3493 
3494 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3495   SDLoc dl = getCurSDLoc();
3496   SDValue Ops[3];
3497   Ops[0] = getRoot();
3498   Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy());
3499   Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy());
3500   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3));
3501 }
3502 
3503 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3504   SDLoc dl = getCurSDLoc();
3505   AtomicOrdering Order = I.getOrdering();
3506   SynchronizationScope Scope = I.getSynchScope();
3507 
3508   SDValue InChain = getRoot();
3509 
3510   EVT VT = TLI.getValueType(I.getType());
3511 
3512   if (I.getAlignment() < VT.getSizeInBits() / 8)
3513     report_fatal_error("Cannot generate unaligned atomic load");
3514 
3515   SDValue L =
3516     DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3517                   getValue(I.getPointerOperand()),
3518                   I.getPointerOperand(), I.getAlignment(),
3519                   TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3520                   Scope);
3521 
3522   SDValue OutChain = L.getValue(1);
3523 
3524   if (TLI.getInsertFencesForAtomic())
3525     OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3526                                     DAG, TLI);
3527 
3528   setValue(&I, L);
3529   DAG.setRoot(OutChain);
3530 }
3531 
3532 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3533   SDLoc dl = getCurSDLoc();
3534 
3535   AtomicOrdering Order = I.getOrdering();
3536   SynchronizationScope Scope = I.getSynchScope();
3537 
3538   SDValue InChain = getRoot();
3539 
3540   EVT VT = TLI.getValueType(I.getValueOperand()->getType());
3541 
3542   if (I.getAlignment() < VT.getSizeInBits() / 8)
3543     report_fatal_error("Cannot generate unaligned atomic store");
3544 
3545   if (TLI.getInsertFencesForAtomic())
3546     InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3547                                    DAG, TLI);
3548 
3549   SDValue OutChain =
3550     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3551                   InChain,
3552                   getValue(I.getPointerOperand()),
3553                   getValue(I.getValueOperand()),
3554                   I.getPointerOperand(), I.getAlignment(),
3555                   TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3556                   Scope);
3557 
3558   if (TLI.getInsertFencesForAtomic())
3559     OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3560                                     DAG, TLI);
3561 
3562   DAG.setRoot(OutChain);
3563 }
3564 
3565 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3566 /// node.
3567 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3568                                                unsigned Intrinsic) {
3569   bool HasChain = !I.doesNotAccessMemory();
3570   bool OnlyLoad = HasChain && I.onlyReadsMemory();
3571 
3572   // Build the operand list.
3573   SmallVector<SDValue, 8> Ops;
3574   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3575     if (OnlyLoad) {
3576       // We don't need to serialize loads against other loads.
3577       Ops.push_back(DAG.getRoot());
3578     } else {
3579       Ops.push_back(getRoot());
3580     }
3581   }
3582 
3583   // Info is set by getTgtMemInstrinsic
3584   TargetLowering::IntrinsicInfo Info;
3585   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3586 
3587   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3588   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3589       Info.opc == ISD::INTRINSIC_W_CHAIN)
3590     Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy()));
3591 
3592   // Add all operands of the call to the operand list.
3593   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3594     SDValue Op = getValue(I.getArgOperand(i));
3595     Ops.push_back(Op);
3596   }
3597 
3598   SmallVector<EVT, 4> ValueVTs;
3599   ComputeValueVTs(TLI, I.getType(), ValueVTs);
3600 
3601   if (HasChain)
3602     ValueVTs.push_back(MVT::Other);
3603 
3604   SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3605 
3606   // Create the node.
3607   SDValue Result;
3608   if (IsTgtIntrinsic) {
3609     // This is target intrinsic that touches memory
3610     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(),
3611                                      VTs, &Ops[0], Ops.size(),
3612                                      Info.memVT,
3613                                    MachinePointerInfo(Info.ptrVal, Info.offset),
3614                                      Info.align, Info.vol,
3615                                      Info.readMem, Info.writeMem);
3616   } else if (!HasChain) {
3617     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(),
3618                          VTs, &Ops[0], Ops.size());
3619   } else if (!I.getType()->isVoidTy()) {
3620     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(),
3621                          VTs, &Ops[0], Ops.size());
3622   } else {
3623     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(),
3624                          VTs, &Ops[0], Ops.size());
3625   }
3626 
3627   if (HasChain) {
3628     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3629     if (OnlyLoad)
3630       PendingLoads.push_back(Chain);
3631     else
3632       DAG.setRoot(Chain);
3633   }
3634 
3635   if (!I.getType()->isVoidTy()) {
3636     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3637       EVT VT = TLI.getValueType(PTy);
3638       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
3639     }
3640 
3641     setValue(&I, Result);
3642   }
3643 }
3644 
3645 /// GetSignificand - Get the significand and build it into a floating-point
3646 /// number with exponent of 1:
3647 ///
3648 ///   Op = (Op & 0x007fffff) | 0x3f800000;
3649 ///
3650 /// where Op is the hexadecimal representation of floating point value.
3651 static SDValue
3652 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) {
3653   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3654                            DAG.getConstant(0x007fffff, MVT::i32));
3655   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3656                            DAG.getConstant(0x3f800000, MVT::i32));
3657   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3658 }
3659 
3660 /// GetExponent - Get the exponent:
3661 ///
3662 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3663 ///
3664 /// where Op is the hexadecimal representation of floating point value.
3665 static SDValue
3666 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3667             SDLoc dl) {
3668   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3669                            DAG.getConstant(0x7f800000, MVT::i32));
3670   SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3671                            DAG.getConstant(23, TLI.getPointerTy()));
3672   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3673                            DAG.getConstant(127, MVT::i32));
3674   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3675 }
3676 
3677 /// getF32Constant - Get 32-bit floating point constant.
3678 static SDValue
3679 getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3680   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)),
3681                            MVT::f32);
3682 }
3683 
3684 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
3685 /// limited-precision mode.
3686 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3687                          const TargetLowering &TLI) {
3688   if (Op.getValueType() == MVT::f32 &&
3689       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3690 
3691     // Put the exponent in the right bit position for later addition to the
3692     // final result:
3693     //
3694     //   #define LOG2OFe 1.4426950f
3695     //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3696     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3697                              getF32Constant(DAG, 0x3fb8aa3b));
3698     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3699 
3700     //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3701     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3702     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3703 
3704     //   IntegerPartOfX <<= 23;
3705     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3706                                  DAG.getConstant(23, TLI.getPointerTy()));
3707 
3708     SDValue TwoToFracPartOfX;
3709     if (LimitFloatPrecision <= 6) {
3710       // For floating-point precision of 6:
3711       //
3712       //   TwoToFractionalPartOfX =
3713       //     0.997535578f +
3714       //       (0.735607626f + 0.252464424f * x) * x;
3715       //
3716       // error 0.0144103317, which is 6 bits
3717       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3718                                getF32Constant(DAG, 0x3e814304));
3719       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3720                                getF32Constant(DAG, 0x3f3c50c8));
3721       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3722       TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3723                                      getF32Constant(DAG, 0x3f7f5e7e));
3724     } else if (LimitFloatPrecision <= 12) {
3725       // For floating-point precision of 12:
3726       //
3727       //   TwoToFractionalPartOfX =
3728       //     0.999892986f +
3729       //       (0.696457318f +
3730       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3731       //
3732       // 0.000107046256 error, which is 13 to 14 bits
3733       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3734                                getF32Constant(DAG, 0x3da235e3));
3735       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3736                                getF32Constant(DAG, 0x3e65b8f3));
3737       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3738       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3739                                getF32Constant(DAG, 0x3f324b07));
3740       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3741       TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3742                                      getF32Constant(DAG, 0x3f7ff8fd));
3743     } else { // LimitFloatPrecision <= 18
3744       // For floating-point precision of 18:
3745       //
3746       //   TwoToFractionalPartOfX =
3747       //     0.999999982f +
3748       //       (0.693148872f +
3749       //         (0.240227044f +
3750       //           (0.554906021e-1f +
3751       //             (0.961591928e-2f +
3752       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3753       //
3754       // error 2.47208000*10^(-7), which is better than 18 bits
3755       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3756                                getF32Constant(DAG, 0x3924b03e));
3757       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3758                                getF32Constant(DAG, 0x3ab24b87));
3759       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3760       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3761                                getF32Constant(DAG, 0x3c1d8c17));
3762       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3763       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3764                                getF32Constant(DAG, 0x3d634a1d));
3765       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3766       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3767                                getF32Constant(DAG, 0x3e75fe14));
3768       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3769       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3770                                 getF32Constant(DAG, 0x3f317234));
3771       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3772       TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3773                                      getF32Constant(DAG, 0x3f800000));
3774     }
3775 
3776     // Add the exponent into the result in integer domain.
3777     SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX);
3778     return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3779                        DAG.getNode(ISD::ADD, dl, MVT::i32,
3780                                    t13, IntegerPartOfX));
3781   }
3782 
3783   // No special expansion.
3784   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
3785 }
3786 
3787 /// expandLog - Lower a log intrinsic. Handles the special sequences for
3788 /// limited-precision mode.
3789 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3790                          const TargetLowering &TLI) {
3791   if (Op.getValueType() == MVT::f32 &&
3792       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3793     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3794 
3795     // Scale the exponent by log(2) [0.69314718f].
3796     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3797     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3798                                         getF32Constant(DAG, 0x3f317218));
3799 
3800     // Get the significand and build it into a floating-point number with
3801     // exponent of 1.
3802     SDValue X = GetSignificand(DAG, Op1, dl);
3803 
3804     SDValue LogOfMantissa;
3805     if (LimitFloatPrecision <= 6) {
3806       // For floating-point precision of 6:
3807       //
3808       //   LogofMantissa =
3809       //     -1.1609546f +
3810       //       (1.4034025f - 0.23903021f * x) * x;
3811       //
3812       // error 0.0034276066, which is better than 8 bits
3813       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3814                                getF32Constant(DAG, 0xbe74c456));
3815       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3816                                getF32Constant(DAG, 0x3fb3a2b1));
3817       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3818       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3819                                   getF32Constant(DAG, 0x3f949a29));
3820     } else if (LimitFloatPrecision <= 12) {
3821       // For floating-point precision of 12:
3822       //
3823       //   LogOfMantissa =
3824       //     -1.7417939f +
3825       //       (2.8212026f +
3826       //         (-1.4699568f +
3827       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3828       //
3829       // error 0.000061011436, which is 14 bits
3830       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3831                                getF32Constant(DAG, 0xbd67b6d6));
3832       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3833                                getF32Constant(DAG, 0x3ee4f4b8));
3834       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3835       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3836                                getF32Constant(DAG, 0x3fbc278b));
3837       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3838       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3839                                getF32Constant(DAG, 0x40348e95));
3840       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3841       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3842                                   getF32Constant(DAG, 0x3fdef31a));
3843     } else { // LimitFloatPrecision <= 18
3844       // For floating-point precision of 18:
3845       //
3846       //   LogOfMantissa =
3847       //     -2.1072184f +
3848       //       (4.2372794f +
3849       //         (-3.7029485f +
3850       //           (2.2781945f +
3851       //             (-0.87823314f +
3852       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3853       //
3854       // error 0.0000023660568, which is better than 18 bits
3855       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3856                                getF32Constant(DAG, 0xbc91e5ac));
3857       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3858                                getF32Constant(DAG, 0x3e4350aa));
3859       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3860       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3861                                getF32Constant(DAG, 0x3f60d3e3));
3862       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3863       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3864                                getF32Constant(DAG, 0x4011cdf0));
3865       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3866       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3867                                getF32Constant(DAG, 0x406cfd1c));
3868       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3869       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3870                                getF32Constant(DAG, 0x408797cb));
3871       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3872       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3873                                   getF32Constant(DAG, 0x4006dcab));
3874     }
3875 
3876     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
3877   }
3878 
3879   // No special expansion.
3880   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
3881 }
3882 
3883 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
3884 /// limited-precision mode.
3885 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3886                           const TargetLowering &TLI) {
3887   if (Op.getValueType() == MVT::f32 &&
3888       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3889     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3890 
3891     // Get the exponent.
3892     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3893 
3894     // Get the significand and build it into a floating-point number with
3895     // exponent of 1.
3896     SDValue X = GetSignificand(DAG, Op1, dl);
3897 
3898     // Different possible minimax approximations of significand in
3899     // floating-point for various degrees of accuracy over [1,2].
3900     SDValue Log2ofMantissa;
3901     if (LimitFloatPrecision <= 6) {
3902       // For floating-point precision of 6:
3903       //
3904       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3905       //
3906       // error 0.0049451742, which is more than 7 bits
3907       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3908                                getF32Constant(DAG, 0xbeb08fe0));
3909       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3910                                getF32Constant(DAG, 0x40019463));
3911       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3912       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3913                                    getF32Constant(DAG, 0x3fd6633d));
3914     } else if (LimitFloatPrecision <= 12) {
3915       // For floating-point precision of 12:
3916       //
3917       //   Log2ofMantissa =
3918       //     -2.51285454f +
3919       //       (4.07009056f +
3920       //         (-2.12067489f +
3921       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3922       //
3923       // error 0.0000876136000, which is better than 13 bits
3924       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3925                                getF32Constant(DAG, 0xbda7262e));
3926       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3927                                getF32Constant(DAG, 0x3f25280b));
3928       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3929       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3930                                getF32Constant(DAG, 0x4007b923));
3931       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3932       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3933                                getF32Constant(DAG, 0x40823e2f));
3934       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3935       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3936                                    getF32Constant(DAG, 0x4020d29c));
3937     } else { // LimitFloatPrecision <= 18
3938       // For floating-point precision of 18:
3939       //
3940       //   Log2ofMantissa =
3941       //     -3.0400495f +
3942       //       (6.1129976f +
3943       //         (-5.3420409f +
3944       //           (3.2865683f +
3945       //             (-1.2669343f +
3946       //               (0.27515199f -
3947       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3948       //
3949       // error 0.0000018516, which is better than 18 bits
3950       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3951                                getF32Constant(DAG, 0xbcd2769e));
3952       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3953                                getF32Constant(DAG, 0x3e8ce0b9));
3954       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3955       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3956                                getF32Constant(DAG, 0x3fa22ae7));
3957       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3958       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3959                                getF32Constant(DAG, 0x40525723));
3960       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3961       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3962                                getF32Constant(DAG, 0x40aaf200));
3963       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3964       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3965                                getF32Constant(DAG, 0x40c39dad));
3966       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3967       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3968                                    getF32Constant(DAG, 0x4042902c));
3969     }
3970 
3971     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
3972   }
3973 
3974   // No special expansion.
3975   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
3976 }
3977 
3978 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
3979 /// limited-precision mode.
3980 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3981                            const TargetLowering &TLI) {
3982   if (Op.getValueType() == MVT::f32 &&
3983       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3984     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3985 
3986     // Scale the exponent by log10(2) [0.30102999f].
3987     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3988     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3989                                         getF32Constant(DAG, 0x3e9a209a));
3990 
3991     // Get the significand and build it into a floating-point number with
3992     // exponent of 1.
3993     SDValue X = GetSignificand(DAG, Op1, dl);
3994 
3995     SDValue Log10ofMantissa;
3996     if (LimitFloatPrecision <= 6) {
3997       // For floating-point precision of 6:
3998       //
3999       //   Log10ofMantissa =
4000       //     -0.50419619f +
4001       //       (0.60948995f - 0.10380950f * x) * x;
4002       //
4003       // error 0.0014886165, which is 6 bits
4004       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4005                                getF32Constant(DAG, 0xbdd49a13));
4006       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4007                                getF32Constant(DAG, 0x3f1c0789));
4008       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4009       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4010                                     getF32Constant(DAG, 0x3f011300));
4011     } else if (LimitFloatPrecision <= 12) {
4012       // For floating-point precision of 12:
4013       //
4014       //   Log10ofMantissa =
4015       //     -0.64831180f +
4016       //       (0.91751397f +
4017       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4018       //
4019       // error 0.00019228036, which is better than 12 bits
4020       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4021                                getF32Constant(DAG, 0x3d431f31));
4022       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4023                                getF32Constant(DAG, 0x3ea21fb2));
4024       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4025       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4026                                getF32Constant(DAG, 0x3f6ae232));
4027       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4028       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4029                                     getF32Constant(DAG, 0x3f25f7c3));
4030     } else { // LimitFloatPrecision <= 18
4031       // For floating-point precision of 18:
4032       //
4033       //   Log10ofMantissa =
4034       //     -0.84299375f +
4035       //       (1.5327582f +
4036       //         (-1.0688956f +
4037       //           (0.49102474f +
4038       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4039       //
4040       // error 0.0000037995730, which is better than 18 bits
4041       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4042                                getF32Constant(DAG, 0x3c5d51ce));
4043       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4044                                getF32Constant(DAG, 0x3e00685a));
4045       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4046       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4047                                getF32Constant(DAG, 0x3efb6798));
4048       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4049       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4050                                getF32Constant(DAG, 0x3f88d192));
4051       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4052       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4053                                getF32Constant(DAG, 0x3fc4316c));
4054       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4055       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4056                                     getF32Constant(DAG, 0x3f57ce70));
4057     }
4058 
4059     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4060   }
4061 
4062   // No special expansion.
4063   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4064 }
4065 
4066 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4067 /// limited-precision mode.
4068 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4069                           const TargetLowering &TLI) {
4070   if (Op.getValueType() == MVT::f32 &&
4071       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4072     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
4073 
4074     //   FractionalPartOfX = x - (float)IntegerPartOfX;
4075     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4076     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
4077 
4078     //   IntegerPartOfX <<= 23;
4079     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4080                                  DAG.getConstant(23, TLI.getPointerTy()));
4081 
4082     SDValue TwoToFractionalPartOfX;
4083     if (LimitFloatPrecision <= 6) {
4084       // For floating-point precision of 6:
4085       //
4086       //   TwoToFractionalPartOfX =
4087       //     0.997535578f +
4088       //       (0.735607626f + 0.252464424f * x) * x;
4089       //
4090       // error 0.0144103317, which is 6 bits
4091       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4092                                getF32Constant(DAG, 0x3e814304));
4093       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4094                                getF32Constant(DAG, 0x3f3c50c8));
4095       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4096       TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4097                                            getF32Constant(DAG, 0x3f7f5e7e));
4098     } else if (LimitFloatPrecision <= 12) {
4099       // For floating-point precision of 12:
4100       //
4101       //   TwoToFractionalPartOfX =
4102       //     0.999892986f +
4103       //       (0.696457318f +
4104       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4105       //
4106       // error 0.000107046256, which is 13 to 14 bits
4107       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4108                                getF32Constant(DAG, 0x3da235e3));
4109       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4110                                getF32Constant(DAG, 0x3e65b8f3));
4111       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4112       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4113                                getF32Constant(DAG, 0x3f324b07));
4114       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4115       TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4116                                            getF32Constant(DAG, 0x3f7ff8fd));
4117     } else { // LimitFloatPrecision <= 18
4118       // For floating-point precision of 18:
4119       //
4120       //   TwoToFractionalPartOfX =
4121       //     0.999999982f +
4122       //       (0.693148872f +
4123       //         (0.240227044f +
4124       //           (0.554906021e-1f +
4125       //             (0.961591928e-2f +
4126       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4127       // error 2.47208000*10^(-7), which is better than 18 bits
4128       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4129                                getF32Constant(DAG, 0x3924b03e));
4130       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4131                                getF32Constant(DAG, 0x3ab24b87));
4132       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4133       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4134                                getF32Constant(DAG, 0x3c1d8c17));
4135       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4136       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4137                                getF32Constant(DAG, 0x3d634a1d));
4138       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4139       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4140                                getF32Constant(DAG, 0x3e75fe14));
4141       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4142       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4143                                 getF32Constant(DAG, 0x3f317234));
4144       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4145       TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4146                                            getF32Constant(DAG, 0x3f800000));
4147     }
4148 
4149     // Add the exponent into the result in integer domain.
4150     SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32,
4151                               TwoToFractionalPartOfX);
4152     return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4153                        DAG.getNode(ISD::ADD, dl, MVT::i32,
4154                                    t13, IntegerPartOfX));
4155   }
4156 
4157   // No special expansion.
4158   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4159 }
4160 
4161 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4162 /// limited-precision mode with x == 10.0f.
4163 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS,
4164                          SelectionDAG &DAG, const TargetLowering &TLI) {
4165   bool IsExp10 = false;
4166   if (LHS.getValueType() == MVT::f32 && LHS.getValueType() == MVT::f32 &&
4167       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4168     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4169       APFloat Ten(10.0f);
4170       IsExp10 = LHSC->isExactlyValue(Ten);
4171     }
4172   }
4173 
4174   if (IsExp10) {
4175     // Put the exponent in the right bit position for later addition to the
4176     // final result:
4177     //
4178     //   #define LOG2OF10 3.3219281f
4179     //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
4180     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4181                              getF32Constant(DAG, 0x40549a78));
4182     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4183 
4184     //   FractionalPartOfX = x - (float)IntegerPartOfX;
4185     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4186     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4187 
4188     //   IntegerPartOfX <<= 23;
4189     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4190                                  DAG.getConstant(23, TLI.getPointerTy()));
4191 
4192     SDValue TwoToFractionalPartOfX;
4193     if (LimitFloatPrecision <= 6) {
4194       // For floating-point precision of 6:
4195       //
4196       //   twoToFractionalPartOfX =
4197       //     0.997535578f +
4198       //       (0.735607626f + 0.252464424f * x) * x;
4199       //
4200       // error 0.0144103317, which is 6 bits
4201       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4202                                getF32Constant(DAG, 0x3e814304));
4203       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4204                                getF32Constant(DAG, 0x3f3c50c8));
4205       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4206       TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4207                                            getF32Constant(DAG, 0x3f7f5e7e));
4208     } else if (LimitFloatPrecision <= 12) {
4209       // For floating-point precision of 12:
4210       //
4211       //   TwoToFractionalPartOfX =
4212       //     0.999892986f +
4213       //       (0.696457318f +
4214       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4215       //
4216       // error 0.000107046256, which is 13 to 14 bits
4217       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4218                                getF32Constant(DAG, 0x3da235e3));
4219       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4220                                getF32Constant(DAG, 0x3e65b8f3));
4221       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4222       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4223                                getF32Constant(DAG, 0x3f324b07));
4224       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4225       TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4226                                            getF32Constant(DAG, 0x3f7ff8fd));
4227     } else { // LimitFloatPrecision <= 18
4228       // For floating-point precision of 18:
4229       //
4230       //   TwoToFractionalPartOfX =
4231       //     0.999999982f +
4232       //       (0.693148872f +
4233       //         (0.240227044f +
4234       //           (0.554906021e-1f +
4235       //             (0.961591928e-2f +
4236       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4237       // error 2.47208000*10^(-7), which is better than 18 bits
4238       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4239                                getF32Constant(DAG, 0x3924b03e));
4240       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4241                                getF32Constant(DAG, 0x3ab24b87));
4242       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4243       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4244                                getF32Constant(DAG, 0x3c1d8c17));
4245       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4246       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4247                                getF32Constant(DAG, 0x3d634a1d));
4248       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4249       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4250                                getF32Constant(DAG, 0x3e75fe14));
4251       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4252       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4253                                 getF32Constant(DAG, 0x3f317234));
4254       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4255       TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4256                                            getF32Constant(DAG, 0x3f800000));
4257     }
4258 
4259     SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX);
4260     return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4261                        DAG.getNode(ISD::ADD, dl, MVT::i32,
4262                                    t13, IntegerPartOfX));
4263   }
4264 
4265   // No special expansion.
4266   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4267 }
4268 
4269 
4270 /// ExpandPowI - Expand a llvm.powi intrinsic.
4271 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS,
4272                           SelectionDAG &DAG) {
4273   // If RHS is a constant, we can expand this out to a multiplication tree,
4274   // otherwise we end up lowering to a call to __powidf2 (for example).  When
4275   // optimizing for size, we only want to do this if the expansion would produce
4276   // a small number of multiplies, otherwise we do the full expansion.
4277   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4278     // Get the exponent as a positive value.
4279     unsigned Val = RHSC->getSExtValue();
4280     if ((int)Val < 0) Val = -Val;
4281 
4282     // powi(x, 0) -> 1.0
4283     if (Val == 0)
4284       return DAG.getConstantFP(1.0, LHS.getValueType());
4285 
4286     const Function *F = DAG.getMachineFunction().getFunction();
4287     if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
4288                                          Attribute::OptimizeForSize) ||
4289         // If optimizing for size, don't insert too many multiplies.  This
4290         // inserts up to 5 multiplies.
4291         CountPopulation_32(Val)+Log2_32(Val) < 7) {
4292       // We use the simple binary decomposition method to generate the multiply
4293       // sequence.  There are more optimal ways to do this (for example,
4294       // powi(x,15) generates one more multiply than it should), but this has
4295       // the benefit of being both really simple and much better than a libcall.
4296       SDValue Res;  // Logically starts equal to 1.0
4297       SDValue CurSquare = LHS;
4298       while (Val) {
4299         if (Val & 1) {
4300           if (Res.getNode())
4301             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4302           else
4303             Res = CurSquare;  // 1.0*CurSquare.
4304         }
4305 
4306         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4307                                 CurSquare, CurSquare);
4308         Val >>= 1;
4309       }
4310 
4311       // If the original was negative, invert the result, producing 1/(x*x*x).
4312       if (RHSC->getSExtValue() < 0)
4313         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4314                           DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4315       return Res;
4316     }
4317   }
4318 
4319   // Otherwise, expand to a libcall.
4320   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4321 }
4322 
4323 // getTruncatedArgReg - Find underlying register used for an truncated
4324 // argument.
4325 static unsigned getTruncatedArgReg(const SDValue &N) {
4326   if (N.getOpcode() != ISD::TRUNCATE)
4327     return 0;
4328 
4329   const SDValue &Ext = N.getOperand(0);
4330   if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){
4331     const SDValue &CFR = Ext.getOperand(0);
4332     if (CFR.getOpcode() == ISD::CopyFromReg)
4333       return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4334     if (CFR.getOpcode() == ISD::TRUNCATE)
4335       return getTruncatedArgReg(CFR);
4336   }
4337   return 0;
4338 }
4339 
4340 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4341 /// argument, create the corresponding DBG_VALUE machine instruction for it now.
4342 /// At the end of instruction selection, they will be inserted to the entry BB.
4343 bool
4344 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4345                                               int64_t Offset,
4346                                               const SDValue &N) {
4347   const Argument *Arg = dyn_cast<Argument>(V);
4348   if (!Arg)
4349     return false;
4350 
4351   MachineFunction &MF = DAG.getMachineFunction();
4352   const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4353 
4354   // Ignore inlined function arguments here.
4355   DIVariable DV(Variable);
4356   if (DV.isInlinedFnArgument(MF.getFunction()))
4357     return false;
4358 
4359   Optional<MachineOperand> Op;
4360   // Some arguments' frame index is recorded during argument lowering.
4361   if (int FI = FuncInfo.getArgumentFrameIndex(Arg))
4362     Op = MachineOperand::CreateFI(FI);
4363 
4364   if (!Op && N.getNode()) {
4365     unsigned Reg;
4366     if (N.getOpcode() == ISD::CopyFromReg)
4367       Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4368     else
4369       Reg = getTruncatedArgReg(N);
4370     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4371       MachineRegisterInfo &RegInfo = MF.getRegInfo();
4372       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4373       if (PR)
4374         Reg = PR;
4375     }
4376     if (Reg)
4377       Op = MachineOperand::CreateReg(Reg, false);
4378   }
4379 
4380   if (!Op) {
4381     // Check if ValueMap has reg number.
4382     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4383     if (VMI != FuncInfo.ValueMap.end())
4384       Op = MachineOperand::CreateReg(VMI->second, false);
4385   }
4386 
4387   if (!Op && N.getNode())
4388     // Check if frame index is available.
4389     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4390       if (FrameIndexSDNode *FINode =
4391           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4392         Op = MachineOperand::CreateFI(FINode->getIndex());
4393 
4394   if (!Op)
4395     return false;
4396 
4397   if (Op->isReg())
4398     Op->setIsDebug();
4399 
4400   FuncInfo.ArgDbgValues.push_back(
4401       BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE))
4402           .addOperand(*Op).addImm(Offset).addMetadata(Variable));
4403   return true;
4404 }
4405 
4406 // VisualStudio defines setjmp as _setjmp
4407 #if defined(_MSC_VER) && defined(setjmp) && \
4408                          !defined(setjmp_undefined_for_msvc)
4409 #  pragma push_macro("setjmp")
4410 #  undef setjmp
4411 #  define setjmp_undefined_for_msvc
4412 #endif
4413 
4414 /// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4415 /// we want to emit this as a call to a named external function, return the name
4416 /// otherwise lower it and return null.
4417 const char *
4418 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4419   SDLoc sdl = getCurSDLoc();
4420   DebugLoc dl = getCurDebugLoc();
4421   SDValue Res;
4422 
4423   switch (Intrinsic) {
4424   default:
4425     // By default, turn this into a target intrinsic node.
4426     visitTargetIntrinsic(I, Intrinsic);
4427     return 0;
4428   case Intrinsic::vastart:  visitVAStart(I); return 0;
4429   case Intrinsic::vaend:    visitVAEnd(I); return 0;
4430   case Intrinsic::vacopy:   visitVACopy(I); return 0;
4431   case Intrinsic::returnaddress:
4432     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI.getPointerTy(),
4433                              getValue(I.getArgOperand(0))));
4434     return 0;
4435   case Intrinsic::frameaddress:
4436     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(),
4437                              getValue(I.getArgOperand(0))));
4438     return 0;
4439   case Intrinsic::setjmp:
4440     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
4441   case Intrinsic::longjmp:
4442     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
4443   case Intrinsic::memcpy: {
4444     // Assert for address < 256 since we support only user defined address
4445     // spaces.
4446     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4447            < 256 &&
4448            cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4449            < 256 &&
4450            "Unknown address space");
4451     SDValue Op1 = getValue(I.getArgOperand(0));
4452     SDValue Op2 = getValue(I.getArgOperand(1));
4453     SDValue Op3 = getValue(I.getArgOperand(2));
4454     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4455     if (!Align)
4456       Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
4457     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4458     DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false,
4459                               MachinePointerInfo(I.getArgOperand(0)),
4460                               MachinePointerInfo(I.getArgOperand(1))));
4461     return 0;
4462   }
4463   case Intrinsic::memset: {
4464     // Assert for address < 256 since we support only user defined address
4465     // spaces.
4466     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4467            < 256 &&
4468            "Unknown address space");
4469     SDValue Op1 = getValue(I.getArgOperand(0));
4470     SDValue Op2 = getValue(I.getArgOperand(1));
4471     SDValue Op3 = getValue(I.getArgOperand(2));
4472     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4473     if (!Align)
4474       Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
4475     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4476     DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4477                               MachinePointerInfo(I.getArgOperand(0))));
4478     return 0;
4479   }
4480   case Intrinsic::memmove: {
4481     // Assert for address < 256 since we support only user defined address
4482     // spaces.
4483     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4484            < 256 &&
4485            cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4486            < 256 &&
4487            "Unknown address space");
4488     SDValue Op1 = getValue(I.getArgOperand(0));
4489     SDValue Op2 = getValue(I.getArgOperand(1));
4490     SDValue Op3 = getValue(I.getArgOperand(2));
4491     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4492     if (!Align)
4493       Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
4494     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4495     DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4496                                MachinePointerInfo(I.getArgOperand(0)),
4497                                MachinePointerInfo(I.getArgOperand(1))));
4498     return 0;
4499   }
4500   case Intrinsic::dbg_declare: {
4501     const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4502     MDNode *Variable = DI.getVariable();
4503     const Value *Address = DI.getAddress();
4504     if (!Address || !DIVariable(Variable).Verify()) {
4505       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4506       return 0;
4507     }
4508 
4509     // Check if address has undef value.
4510     if (isa<UndefValue>(Address) ||
4511         (Address->use_empty() && !isa<Argument>(Address))) {
4512       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4513       return 0;
4514     }
4515 
4516     SDValue &N = NodeMap[Address];
4517     if (!N.getNode() && isa<Argument>(Address))
4518       // Check unused arguments map.
4519       N = UnusedArgNodeMap[Address];
4520     SDDbgValue *SDV;
4521     if (N.getNode()) {
4522       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4523         Address = BCI->getOperand(0);
4524       // Parameters are handled specially.
4525       bool isParameter =
4526         (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable ||
4527          isa<Argument>(Address));
4528 
4529       const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4530 
4531       if (isParameter && !AI) {
4532         FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4533         if (FINode)
4534           // Byval parameter.  We have a frame index at this point.
4535           SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4536                                 0, dl, SDNodeOrder);
4537         else {
4538           // Address is an argument, so try to emit its dbg value using
4539           // virtual register info from the FuncInfo.ValueMap.
4540           EmitFuncArgumentDbgValue(Address, Variable, 0, N);
4541           return 0;
4542         }
4543       } else if (AI)
4544         SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4545                               0, dl, SDNodeOrder);
4546       else {
4547         // Can't do anything with other non-AI cases yet.
4548         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4549         DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t");
4550         DEBUG(Address->dump());
4551         return 0;
4552       }
4553       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4554     } else {
4555       // If Address is an argument then try to emit its dbg value using
4556       // virtual register info from the FuncInfo.ValueMap.
4557       if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4558         // If variable is pinned by a alloca in dominating bb then
4559         // use StaticAllocaMap.
4560         if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4561           if (AI->getParent() != DI.getParent()) {
4562             DenseMap<const AllocaInst*, int>::iterator SI =
4563               FuncInfo.StaticAllocaMap.find(AI);
4564             if (SI != FuncInfo.StaticAllocaMap.end()) {
4565               SDV = DAG.getDbgValue(Variable, SI->second,
4566                                     0, dl, SDNodeOrder);
4567               DAG.AddDbgValue(SDV, 0, false);
4568               return 0;
4569             }
4570           }
4571         }
4572         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4573       }
4574     }
4575     return 0;
4576   }
4577   case Intrinsic::dbg_value: {
4578     const DbgValueInst &DI = cast<DbgValueInst>(I);
4579     if (!DIVariable(DI.getVariable()).Verify())
4580       return 0;
4581 
4582     MDNode *Variable = DI.getVariable();
4583     uint64_t Offset = DI.getOffset();
4584     const Value *V = DI.getValue();
4585     if (!V)
4586       return 0;
4587 
4588     SDDbgValue *SDV;
4589     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4590       SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4591       DAG.AddDbgValue(SDV, 0, false);
4592     } else {
4593       // Do not use getValue() in here; we don't want to generate code at
4594       // this point if it hasn't been done yet.
4595       SDValue N = NodeMap[V];
4596       if (!N.getNode() && isa<Argument>(V))
4597         // Check unused arguments map.
4598         N = UnusedArgNodeMap[V];
4599       if (N.getNode()) {
4600         if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4601           SDV = DAG.getDbgValue(Variable, N.getNode(),
4602                                 N.getResNo(), Offset, dl, SDNodeOrder);
4603           DAG.AddDbgValue(SDV, N.getNode(), false);
4604         }
4605       } else if (!V->use_empty() ) {
4606         // Do not call getValue(V) yet, as we don't want to generate code.
4607         // Remember it for later.
4608         DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4609         DanglingDebugInfoMap[V] = DDI;
4610       } else {
4611         // We may expand this to cover more cases.  One case where we have no
4612         // data available is an unreferenced parameter.
4613         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4614       }
4615     }
4616 
4617     // Build a debug info table entry.
4618     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4619       V = BCI->getOperand(0);
4620     const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4621     // Don't handle byval struct arguments or VLAs, for example.
4622     if (!AI) {
4623       DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
4624       DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
4625       return 0;
4626     }
4627     DenseMap<const AllocaInst*, int>::iterator SI =
4628       FuncInfo.StaticAllocaMap.find(AI);
4629     if (SI == FuncInfo.StaticAllocaMap.end())
4630       return 0; // VLAs.
4631     int FI = SI->second;
4632 
4633     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4634     if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4635       MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4636     return 0;
4637   }
4638 
4639   case Intrinsic::eh_typeid_for: {
4640     // Find the type id for the given typeinfo.
4641     GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4642     unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4643     Res = DAG.getConstant(TypeID, MVT::i32);
4644     setValue(&I, Res);
4645     return 0;
4646   }
4647 
4648   case Intrinsic::eh_return_i32:
4649   case Intrinsic::eh_return_i64:
4650     DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4651     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
4652                             MVT::Other,
4653                             getControlRoot(),
4654                             getValue(I.getArgOperand(0)),
4655                             getValue(I.getArgOperand(1))));
4656     return 0;
4657   case Intrinsic::eh_unwind_init:
4658     DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4659     return 0;
4660   case Intrinsic::eh_dwarf_cfa: {
4661     SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl,
4662                                         TLI.getPointerTy());
4663     SDValue Offset = DAG.getNode(ISD::ADD, sdl,
4664                                  TLI.getPointerTy(),
4665                                  DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl,
4666                                              TLI.getPointerTy()),
4667                                  CfaArg);
4668     SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl,
4669                              TLI.getPointerTy(),
4670                              DAG.getConstant(0, TLI.getPointerTy()));
4671     setValue(&I, DAG.getNode(ISD::ADD, sdl, TLI.getPointerTy(),
4672                              FA, Offset));
4673     return 0;
4674   }
4675   case Intrinsic::eh_sjlj_callsite: {
4676     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4677     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4678     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4679     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4680 
4681     MMI.setCurrentCallSite(CI->getZExtValue());
4682     return 0;
4683   }
4684   case Intrinsic::eh_sjlj_functioncontext: {
4685     // Get and store the index of the function context.
4686     MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4687     AllocaInst *FnCtx =
4688       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4689     int FI = FuncInfo.StaticAllocaMap[FnCtx];
4690     MFI->setFunctionContextIndex(FI);
4691     return 0;
4692   }
4693   case Intrinsic::eh_sjlj_setjmp: {
4694     SDValue Ops[2];
4695     Ops[0] = getRoot();
4696     Ops[1] = getValue(I.getArgOperand(0));
4697     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
4698                              DAG.getVTList(MVT::i32, MVT::Other),
4699                              Ops, 2);
4700     setValue(&I, Op.getValue(0));
4701     DAG.setRoot(Op.getValue(1));
4702     return 0;
4703   }
4704   case Intrinsic::eh_sjlj_longjmp: {
4705     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
4706                             getRoot(), getValue(I.getArgOperand(0))));
4707     return 0;
4708   }
4709 
4710   case Intrinsic::x86_mmx_pslli_w:
4711   case Intrinsic::x86_mmx_pslli_d:
4712   case Intrinsic::x86_mmx_pslli_q:
4713   case Intrinsic::x86_mmx_psrli_w:
4714   case Intrinsic::x86_mmx_psrli_d:
4715   case Intrinsic::x86_mmx_psrli_q:
4716   case Intrinsic::x86_mmx_psrai_w:
4717   case Intrinsic::x86_mmx_psrai_d: {
4718     SDValue ShAmt = getValue(I.getArgOperand(1));
4719     if (isa<ConstantSDNode>(ShAmt)) {
4720       visitTargetIntrinsic(I, Intrinsic);
4721       return 0;
4722     }
4723     unsigned NewIntrinsic = 0;
4724     EVT ShAmtVT = MVT::v2i32;
4725     switch (Intrinsic) {
4726     case Intrinsic::x86_mmx_pslli_w:
4727       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4728       break;
4729     case Intrinsic::x86_mmx_pslli_d:
4730       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4731       break;
4732     case Intrinsic::x86_mmx_pslli_q:
4733       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4734       break;
4735     case Intrinsic::x86_mmx_psrli_w:
4736       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4737       break;
4738     case Intrinsic::x86_mmx_psrli_d:
4739       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4740       break;
4741     case Intrinsic::x86_mmx_psrli_q:
4742       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4743       break;
4744     case Intrinsic::x86_mmx_psrai_w:
4745       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4746       break;
4747     case Intrinsic::x86_mmx_psrai_d:
4748       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4749       break;
4750     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4751     }
4752 
4753     // The vector shift intrinsics with scalars uses 32b shift amounts but
4754     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4755     // to be zero.
4756     // We must do this early because v2i32 is not a legal type.
4757     SDValue ShOps[2];
4758     ShOps[0] = ShAmt;
4759     ShOps[1] = DAG.getConstant(0, MVT::i32);
4760     ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, &ShOps[0], 2);
4761     EVT DestVT = TLI.getValueType(I.getType());
4762     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
4763     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
4764                        DAG.getConstant(NewIntrinsic, MVT::i32),
4765                        getValue(I.getArgOperand(0)), ShAmt);
4766     setValue(&I, Res);
4767     return 0;
4768   }
4769   case Intrinsic::x86_avx_vinsertf128_pd_256:
4770   case Intrinsic::x86_avx_vinsertf128_ps_256:
4771   case Intrinsic::x86_avx_vinsertf128_si_256:
4772   case Intrinsic::x86_avx2_vinserti128: {
4773     EVT DestVT = TLI.getValueType(I.getType());
4774     EVT ElVT = TLI.getValueType(I.getArgOperand(1)->getType());
4775     uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) *
4776                    ElVT.getVectorNumElements();
4777     Res = DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, DestVT,
4778                       getValue(I.getArgOperand(0)),
4779                       getValue(I.getArgOperand(1)),
4780                       DAG.getIntPtrConstant(Idx));
4781     setValue(&I, Res);
4782     return 0;
4783   }
4784   case Intrinsic::x86_avx_vextractf128_pd_256:
4785   case Intrinsic::x86_avx_vextractf128_ps_256:
4786   case Intrinsic::x86_avx_vextractf128_si_256:
4787   case Intrinsic::x86_avx2_vextracti128: {
4788     EVT DestVT = TLI.getValueType(I.getType());
4789     uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) *
4790                    DestVT.getVectorNumElements();
4791     Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, DestVT,
4792                       getValue(I.getArgOperand(0)),
4793                       DAG.getIntPtrConstant(Idx));
4794     setValue(&I, Res);
4795     return 0;
4796   }
4797   case Intrinsic::convertff:
4798   case Intrinsic::convertfsi:
4799   case Intrinsic::convertfui:
4800   case Intrinsic::convertsif:
4801   case Intrinsic::convertuif:
4802   case Intrinsic::convertss:
4803   case Intrinsic::convertsu:
4804   case Intrinsic::convertus:
4805   case Intrinsic::convertuu: {
4806     ISD::CvtCode Code = ISD::CVT_INVALID;
4807     switch (Intrinsic) {
4808     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4809     case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4810     case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4811     case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4812     case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4813     case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4814     case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4815     case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4816     case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4817     case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4818     }
4819     EVT DestVT = TLI.getValueType(I.getType());
4820     const Value *Op1 = I.getArgOperand(0);
4821     Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1),
4822                                DAG.getValueType(DestVT),
4823                                DAG.getValueType(getValue(Op1).getValueType()),
4824                                getValue(I.getArgOperand(1)),
4825                                getValue(I.getArgOperand(2)),
4826                                Code);
4827     setValue(&I, Res);
4828     return 0;
4829   }
4830   case Intrinsic::powi:
4831     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
4832                             getValue(I.getArgOperand(1)), DAG));
4833     return 0;
4834   case Intrinsic::log:
4835     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4836     return 0;
4837   case Intrinsic::log2:
4838     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4839     return 0;
4840   case Intrinsic::log10:
4841     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4842     return 0;
4843   case Intrinsic::exp:
4844     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4845     return 0;
4846   case Intrinsic::exp2:
4847     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4848     return 0;
4849   case Intrinsic::pow:
4850     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
4851                            getValue(I.getArgOperand(1)), DAG, TLI));
4852     return 0;
4853   case Intrinsic::sqrt:
4854   case Intrinsic::fabs:
4855   case Intrinsic::sin:
4856   case Intrinsic::cos:
4857   case Intrinsic::floor:
4858   case Intrinsic::ceil:
4859   case Intrinsic::trunc:
4860   case Intrinsic::rint:
4861   case Intrinsic::nearbyint: {
4862     unsigned Opcode;
4863     switch (Intrinsic) {
4864     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4865     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
4866     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
4867     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
4868     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
4869     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
4870     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
4871     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
4872     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
4873     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
4874     }
4875 
4876     setValue(&I, DAG.getNode(Opcode, sdl,
4877                              getValue(I.getArgOperand(0)).getValueType(),
4878                              getValue(I.getArgOperand(0))));
4879     return 0;
4880   }
4881   case Intrinsic::fma:
4882     setValue(&I, DAG.getNode(ISD::FMA, sdl,
4883                              getValue(I.getArgOperand(0)).getValueType(),
4884                              getValue(I.getArgOperand(0)),
4885                              getValue(I.getArgOperand(1)),
4886                              getValue(I.getArgOperand(2))));
4887     return 0;
4888   case Intrinsic::fmuladd: {
4889     EVT VT = TLI.getValueType(I.getType());
4890     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
4891         TLI.isFMAFasterThanMulAndAdd(VT)){
4892       setValue(&I, DAG.getNode(ISD::FMA, sdl,
4893                                getValue(I.getArgOperand(0)).getValueType(),
4894                                getValue(I.getArgOperand(0)),
4895                                getValue(I.getArgOperand(1)),
4896                                getValue(I.getArgOperand(2))));
4897     } else {
4898       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
4899                                 getValue(I.getArgOperand(0)).getValueType(),
4900                                 getValue(I.getArgOperand(0)),
4901                                 getValue(I.getArgOperand(1)));
4902       SDValue Add = DAG.getNode(ISD::FADD, sdl,
4903                                 getValue(I.getArgOperand(0)).getValueType(),
4904                                 Mul,
4905                                 getValue(I.getArgOperand(2)));
4906       setValue(&I, Add);
4907     }
4908     return 0;
4909   }
4910   case Intrinsic::convert_to_fp16:
4911     setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, sdl,
4912                              MVT::i16, getValue(I.getArgOperand(0))));
4913     return 0;
4914   case Intrinsic::convert_from_fp16:
4915     setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, sdl,
4916                              MVT::f32, getValue(I.getArgOperand(0))));
4917     return 0;
4918   case Intrinsic::pcmarker: {
4919     SDValue Tmp = getValue(I.getArgOperand(0));
4920     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
4921     return 0;
4922   }
4923   case Intrinsic::readcyclecounter: {
4924     SDValue Op = getRoot();
4925     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
4926                       DAG.getVTList(MVT::i64, MVT::Other),
4927                       &Op, 1);
4928     setValue(&I, Res);
4929     DAG.setRoot(Res.getValue(1));
4930     return 0;
4931   }
4932   case Intrinsic::bswap:
4933     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
4934                              getValue(I.getArgOperand(0)).getValueType(),
4935                              getValue(I.getArgOperand(0))));
4936     return 0;
4937   case Intrinsic::cttz: {
4938     SDValue Arg = getValue(I.getArgOperand(0));
4939     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4940     EVT Ty = Arg.getValueType();
4941     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
4942                              sdl, Ty, Arg));
4943     return 0;
4944   }
4945   case Intrinsic::ctlz: {
4946     SDValue Arg = getValue(I.getArgOperand(0));
4947     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4948     EVT Ty = Arg.getValueType();
4949     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
4950                              sdl, Ty, Arg));
4951     return 0;
4952   }
4953   case Intrinsic::ctpop: {
4954     SDValue Arg = getValue(I.getArgOperand(0));
4955     EVT Ty = Arg.getValueType();
4956     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
4957     return 0;
4958   }
4959   case Intrinsic::stacksave: {
4960     SDValue Op = getRoot();
4961     Res = DAG.getNode(ISD::STACKSAVE, sdl,
4962                       DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4963     setValue(&I, Res);
4964     DAG.setRoot(Res.getValue(1));
4965     return 0;
4966   }
4967   case Intrinsic::stackrestore: {
4968     Res = getValue(I.getArgOperand(0));
4969     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
4970     return 0;
4971   }
4972   case Intrinsic::stackprotector: {
4973     // Emit code into the DAG to store the stack guard onto the stack.
4974     MachineFunction &MF = DAG.getMachineFunction();
4975     MachineFrameInfo *MFI = MF.getFrameInfo();
4976     EVT PtrTy = TLI.getPointerTy();
4977 
4978     SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
4979     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
4980 
4981     int FI = FuncInfo.StaticAllocaMap[Slot];
4982     MFI->setStackProtectorIndex(FI);
4983 
4984     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4985 
4986     // Store the stack protector onto the stack.
4987     Res = DAG.getStore(getRoot(), sdl, Src, FIN,
4988                        MachinePointerInfo::getFixedStack(FI),
4989                        true, false, 0);
4990     setValue(&I, Res);
4991     DAG.setRoot(Res);
4992     return 0;
4993   }
4994   case Intrinsic::objectsize: {
4995     // If we don't know by now, we're never going to know.
4996     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
4997 
4998     assert(CI && "Non-constant type in __builtin_object_size?");
4999 
5000     SDValue Arg = getValue(I.getCalledValue());
5001     EVT Ty = Arg.getValueType();
5002 
5003     if (CI->isZero())
5004       Res = DAG.getConstant(-1ULL, Ty);
5005     else
5006       Res = DAG.getConstant(0, Ty);
5007 
5008     setValue(&I, Res);
5009     return 0;
5010   }
5011   case Intrinsic::annotation:
5012   case Intrinsic::ptr_annotation:
5013     // Drop the intrinsic, but forward the value
5014     setValue(&I, getValue(I.getOperand(0)));
5015     return 0;
5016   case Intrinsic::var_annotation:
5017     // Discard annotate attributes
5018     return 0;
5019 
5020   case Intrinsic::init_trampoline: {
5021     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5022 
5023     SDValue Ops[6];
5024     Ops[0] = getRoot();
5025     Ops[1] = getValue(I.getArgOperand(0));
5026     Ops[2] = getValue(I.getArgOperand(1));
5027     Ops[3] = getValue(I.getArgOperand(2));
5028     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5029     Ops[5] = DAG.getSrcValue(F);
5030 
5031     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops, 6);
5032 
5033     DAG.setRoot(Res);
5034     return 0;
5035   }
5036   case Intrinsic::adjust_trampoline: {
5037     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5038                              TLI.getPointerTy(),
5039                              getValue(I.getArgOperand(0))));
5040     return 0;
5041   }
5042   case Intrinsic::gcroot:
5043     if (GFI) {
5044       const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5045       const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5046 
5047       FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5048       GFI->addStackRoot(FI->getIndex(), TypeMap);
5049     }
5050     return 0;
5051   case Intrinsic::gcread:
5052   case Intrinsic::gcwrite:
5053     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5054   case Intrinsic::flt_rounds:
5055     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5056     return 0;
5057 
5058   case Intrinsic::expect: {
5059     // Just replace __builtin_expect(exp, c) with EXP.
5060     setValue(&I, getValue(I.getArgOperand(0)));
5061     return 0;
5062   }
5063 
5064   case Intrinsic::debugtrap:
5065   case Intrinsic::trap: {
5066     StringRef TrapFuncName = TM.Options.getTrapFunctionName();
5067     if (TrapFuncName.empty()) {
5068       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5069         ISD::TRAP : ISD::DEBUGTRAP;
5070       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5071       return 0;
5072     }
5073     TargetLowering::ArgListTy Args;
5074     TargetLowering::
5075     CallLoweringInfo CLI(getRoot(), I.getType(),
5076                  false, false, false, false, 0, CallingConv::C,
5077                  /*isTailCall=*/false,
5078                  /*doesNotRet=*/false, /*isReturnValueUsed=*/true,
5079                  DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()),
5080                  Args, DAG, sdl);
5081     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5082     DAG.setRoot(Result.second);
5083     return 0;
5084   }
5085 
5086   case Intrinsic::uadd_with_overflow:
5087   case Intrinsic::sadd_with_overflow:
5088   case Intrinsic::usub_with_overflow:
5089   case Intrinsic::ssub_with_overflow:
5090   case Intrinsic::umul_with_overflow:
5091   case Intrinsic::smul_with_overflow: {
5092     ISD::NodeType Op;
5093     switch (Intrinsic) {
5094     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5095     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5096     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5097     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5098     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5099     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5100     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5101     }
5102     SDValue Op1 = getValue(I.getArgOperand(0));
5103     SDValue Op2 = getValue(I.getArgOperand(1));
5104 
5105     SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5106     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5107     return 0;
5108   }
5109   case Intrinsic::prefetch: {
5110     SDValue Ops[5];
5111     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5112     Ops[0] = getRoot();
5113     Ops[1] = getValue(I.getArgOperand(0));
5114     Ops[2] = getValue(I.getArgOperand(1));
5115     Ops[3] = getValue(I.getArgOperand(2));
5116     Ops[4] = getValue(I.getArgOperand(3));
5117     DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5118                                         DAG.getVTList(MVT::Other),
5119                                         &Ops[0], 5,
5120                                         EVT::getIntegerVT(*Context, 8),
5121                                         MachinePointerInfo(I.getArgOperand(0)),
5122                                         0, /* align */
5123                                         false, /* volatile */
5124                                         rw==0, /* read */
5125                                         rw==1)); /* write */
5126     return 0;
5127   }
5128   case Intrinsic::lifetime_start:
5129   case Intrinsic::lifetime_end: {
5130     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5131     // Stack coloring is not enabled in O0, discard region information.
5132     if (TM.getOptLevel() == CodeGenOpt::None)
5133       return 0;
5134 
5135     SmallVector<Value *, 4> Allocas;
5136     GetUnderlyingObjects(I.getArgOperand(1), Allocas, TD);
5137 
5138     for (SmallVector<Value*, 4>::iterator Object = Allocas.begin(),
5139          E = Allocas.end(); Object != E; ++Object) {
5140       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5141 
5142       // Could not find an Alloca.
5143       if (!LifetimeObject)
5144         continue;
5145 
5146       int FI = FuncInfo.StaticAllocaMap[LifetimeObject];
5147 
5148       SDValue Ops[2];
5149       Ops[0] = getRoot();
5150       Ops[1] = DAG.getFrameIndex(FI, TLI.getPointerTy(), true);
5151       unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5152 
5153       Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops, 2);
5154       DAG.setRoot(Res);
5155     }
5156     return 0;
5157   }
5158   case Intrinsic::invariant_start:
5159     // Discard region information.
5160     setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
5161     return 0;
5162   case Intrinsic::invariant_end:
5163     // Discard region information.
5164     return 0;
5165   case Intrinsic::donothing:
5166     // ignore
5167     return 0;
5168   }
5169 }
5170 
5171 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5172                                       bool isTailCall,
5173                                       MachineBasicBlock *LandingPad) {
5174   PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
5175   FunctionType *FTy = cast<FunctionType>(PT->getElementType());
5176   Type *RetTy = FTy->getReturnType();
5177   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5178   MCSymbol *BeginLabel = 0;
5179 
5180   TargetLowering::ArgListTy Args;
5181   TargetLowering::ArgListEntry Entry;
5182   Args.reserve(CS.arg_size());
5183 
5184   // Check whether the function can return without sret-demotion.
5185   SmallVector<ISD::OutputArg, 4> Outs;
5186   GetReturnInfo(RetTy, CS.getAttributes(), Outs, TLI);
5187 
5188   bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
5189                                            DAG.getMachineFunction(),
5190                                            FTy->isVarArg(), Outs,
5191                                            FTy->getContext());
5192 
5193   SDValue DemoteStackSlot;
5194   int DemoteStackIdx = -100;
5195 
5196   if (!CanLowerReturn) {
5197     uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(
5198                       FTy->getReturnType());
5199     unsigned Align  = TLI.getDataLayout()->getPrefTypeAlignment(
5200                       FTy->getReturnType());
5201     MachineFunction &MF = DAG.getMachineFunction();
5202     DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5203     Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
5204 
5205     DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
5206     Entry.Node = DemoteStackSlot;
5207     Entry.Ty = StackSlotPtrType;
5208     Entry.isSExt = false;
5209     Entry.isZExt = false;
5210     Entry.isInReg = false;
5211     Entry.isSRet = true;
5212     Entry.isNest = false;
5213     Entry.isByVal = false;
5214     Entry.isReturned = false;
5215     Entry.Alignment = Align;
5216     Args.push_back(Entry);
5217     RetTy = Type::getVoidTy(FTy->getContext());
5218   }
5219 
5220   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5221        i != e; ++i) {
5222     const Value *V = *i;
5223 
5224     // Skip empty types
5225     if (V->getType()->isEmptyTy())
5226       continue;
5227 
5228     SDValue ArgNode = getValue(V);
5229     Entry.Node = ArgNode; Entry.Ty = V->getType();
5230 
5231     unsigned attrInd = i - CS.arg_begin() + 1;
5232     Entry.isSExt     = CS.paramHasAttr(attrInd, Attribute::SExt);
5233     Entry.isZExt     = CS.paramHasAttr(attrInd, Attribute::ZExt);
5234     Entry.isInReg    = CS.paramHasAttr(attrInd, Attribute::InReg);
5235     Entry.isSRet     = CS.paramHasAttr(attrInd, Attribute::StructRet);
5236     Entry.isNest     = CS.paramHasAttr(attrInd, Attribute::Nest);
5237     Entry.isByVal    = CS.paramHasAttr(attrInd, Attribute::ByVal);
5238     Entry.isReturned = CS.paramHasAttr(attrInd, Attribute::Returned);
5239     Entry.Alignment  = CS.getParamAlignment(attrInd);
5240     Args.push_back(Entry);
5241   }
5242 
5243   if (LandingPad) {
5244     // Insert a label before the invoke call to mark the try range.  This can be
5245     // used to detect deletion of the invoke via the MachineModuleInfo.
5246     BeginLabel = MMI.getContext().CreateTempSymbol();
5247 
5248     // For SjLj, keep track of which landing pads go with which invokes
5249     // so as to maintain the ordering of pads in the LSDA.
5250     unsigned CallSiteIndex = MMI.getCurrentCallSite();
5251     if (CallSiteIndex) {
5252       MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5253       LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex);
5254 
5255       // Now that the call site is handled, stop tracking it.
5256       MMI.setCurrentCallSite(0);
5257     }
5258 
5259     // Both PendingLoads and PendingExports must be flushed here;
5260     // this call might not return.
5261     (void)getRoot();
5262     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
5263   }
5264 
5265   // Check if target-independent constraints permit a tail call here.
5266   // Target-dependent constraints are checked within TLI.LowerCallTo.
5267   if (isTailCall && !isInTailCallPosition(CS, TLI))
5268     isTailCall = false;
5269 
5270   TargetLowering::
5271   CallLoweringInfo CLI(getRoot(), RetTy, FTy, isTailCall, Callee, Args, DAG,
5272                        getCurSDLoc(), CS);
5273   std::pair<SDValue,SDValue> Result = TLI.LowerCallTo(CLI);
5274   assert((isTailCall || Result.second.getNode()) &&
5275          "Non-null chain expected with non-tail call!");
5276   assert((Result.second.getNode() || !Result.first.getNode()) &&
5277          "Null value expected with tail call!");
5278   if (Result.first.getNode()) {
5279     setValue(CS.getInstruction(), Result.first);
5280   } else if (!CanLowerReturn && Result.second.getNode()) {
5281     // The instruction result is the result of loading from the
5282     // hidden sret parameter.
5283     SmallVector<EVT, 1> PVTs;
5284     Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
5285 
5286     ComputeValueVTs(TLI, PtrRetTy, PVTs);
5287     assert(PVTs.size() == 1 && "Pointers should fit in one register");
5288     EVT PtrVT = PVTs[0];
5289 
5290     SmallVector<EVT, 4> RetTys;
5291     SmallVector<uint64_t, 4> Offsets;
5292     RetTy = FTy->getReturnType();
5293     ComputeValueVTs(TLI, RetTy, RetTys, &Offsets);
5294 
5295     unsigned NumValues = RetTys.size();
5296     SmallVector<SDValue, 4> Values(NumValues);
5297     SmallVector<SDValue, 4> Chains(NumValues);
5298 
5299     for (unsigned i = 0; i < NumValues; ++i) {
5300       SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT,
5301                                 DemoteStackSlot,
5302                                 DAG.getConstant(Offsets[i], PtrVT));
5303       SDValue L = DAG.getLoad(RetTys[i], getCurSDLoc(), Result.second, Add,
5304                   MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
5305                               false, false, false, 1);
5306       Values[i] = L;
5307       Chains[i] = L.getValue(1);
5308     }
5309 
5310     SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
5311                                 MVT::Other, &Chains[0], NumValues);
5312     PendingLoads.push_back(Chain);
5313 
5314     setValue(CS.getInstruction(),
5315              DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
5316                          DAG.getVTList(&RetTys[0], RetTys.size()),
5317                          &Values[0], Values.size()));
5318   }
5319 
5320   if (!Result.second.getNode()) {
5321     // As a special case, a null chain means that a tail call has been emitted and
5322     // the DAG root is already updated.
5323     HasTailCall = true;
5324   } else {
5325     DAG.setRoot(Result.second);
5326   }
5327 
5328   if (LandingPad) {
5329     // Insert a label at the end of the invoke call to mark the try range.  This
5330     // can be used to detect deletion of the invoke via the MachineModuleInfo.
5331     MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5332     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
5333 
5334     // Inform MachineModuleInfo of range.
5335     MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5336   }
5337 }
5338 
5339 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5340 /// value is equal or not-equal to zero.
5341 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5342   for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
5343        UI != E; ++UI) {
5344     if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
5345       if (IC->isEquality())
5346         if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5347           if (C->isNullValue())
5348             continue;
5349     // Unknown instruction.
5350     return false;
5351   }
5352   return true;
5353 }
5354 
5355 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5356                              Type *LoadTy,
5357                              SelectionDAGBuilder &Builder) {
5358 
5359   // Check to see if this load can be trivially constant folded, e.g. if the
5360   // input is from a string literal.
5361   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5362     // Cast pointer to the type we really want to load.
5363     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5364                                          PointerType::getUnqual(LoadTy));
5365 
5366     if (const Constant *LoadCst =
5367           ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5368                                        Builder.TD))
5369       return Builder.getValue(LoadCst);
5370   }
5371 
5372   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5373   // still constant memory, the input chain can be the entry node.
5374   SDValue Root;
5375   bool ConstantMemory = false;
5376 
5377   // Do not serialize (non-volatile) loads of constant memory with anything.
5378   if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5379     Root = Builder.DAG.getEntryNode();
5380     ConstantMemory = true;
5381   } else {
5382     // Do not serialize non-volatile loads against each other.
5383     Root = Builder.DAG.getRoot();
5384   }
5385 
5386   SDValue Ptr = Builder.getValue(PtrVal);
5387   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
5388                                         Ptr, MachinePointerInfo(PtrVal),
5389                                         false /*volatile*/,
5390                                         false /*nontemporal*/,
5391                                         false /*isinvariant*/, 1 /* align=1 */);
5392 
5393   if (!ConstantMemory)
5394     Builder.PendingLoads.push_back(LoadVal.getValue(1));
5395   return LoadVal;
5396 }
5397 
5398 
5399 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5400 /// If so, return true and lower it, otherwise return false and it will be
5401 /// lowered like a normal call.
5402 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5403   // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5404   if (I.getNumArgOperands() != 3)
5405     return false;
5406 
5407   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5408   if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5409       !I.getArgOperand(2)->getType()->isIntegerTy() ||
5410       !I.getType()->isIntegerTy())
5411     return false;
5412 
5413   const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
5414 
5415   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5416   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5417   if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
5418     bool ActuallyDoIt = true;
5419     MVT LoadVT;
5420     Type *LoadTy;
5421     switch (Size->getZExtValue()) {
5422     default:
5423       LoadVT = MVT::Other;
5424       LoadTy = 0;
5425       ActuallyDoIt = false;
5426       break;
5427     case 2:
5428       LoadVT = MVT::i16;
5429       LoadTy = Type::getInt16Ty(Size->getContext());
5430       break;
5431     case 4:
5432       LoadVT = MVT::i32;
5433       LoadTy = Type::getInt32Ty(Size->getContext());
5434       break;
5435     case 8:
5436       LoadVT = MVT::i64;
5437       LoadTy = Type::getInt64Ty(Size->getContext());
5438       break;
5439         /*
5440     case 16:
5441       LoadVT = MVT::v4i32;
5442       LoadTy = Type::getInt32Ty(Size->getContext());
5443       LoadTy = VectorType::get(LoadTy, 4);
5444       break;
5445          */
5446     }
5447 
5448     // This turns into unaligned loads.  We only do this if the target natively
5449     // supports the MVT we'll be loading or if it is small enough (<= 4) that
5450     // we'll only produce a small number of byte loads.
5451 
5452     // Require that we can find a legal MVT, and only do this if the target
5453     // supports unaligned loads of that type.  Expanding into byte loads would
5454     // bloat the code.
5455     if (ActuallyDoIt && Size->getZExtValue() > 4) {
5456       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5457       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5458       if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
5459         ActuallyDoIt = false;
5460     }
5461 
5462     if (ActuallyDoIt) {
5463       SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5464       SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5465 
5466       SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal,
5467                                  ISD::SETNE);
5468       EVT CallVT = TLI.getValueType(I.getType(), true);
5469       setValue(&I, DAG.getZExtOrTrunc(Res, getCurSDLoc(), CallVT));
5470       return true;
5471     }
5472   }
5473 
5474 
5475   return false;
5476 }
5477 
5478 /// visitUnaryFloatCall - If a call instruction is a unary floating-point
5479 /// operation (as expected), translate it to an SDNode with the specified opcode
5480 /// and return true.
5481 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
5482                                               unsigned Opcode) {
5483   // Sanity check that it really is a unary floating-point call.
5484   if (I.getNumArgOperands() != 1 ||
5485       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
5486       I.getType() != I.getArgOperand(0)->getType() ||
5487       !I.onlyReadsMemory())
5488     return false;
5489 
5490   SDValue Tmp = getValue(I.getArgOperand(0));
5491   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
5492   return true;
5493 }
5494 
5495 void SelectionDAGBuilder::visitCall(const CallInst &I) {
5496   // Handle inline assembly differently.
5497   if (isa<InlineAsm>(I.getCalledValue())) {
5498     visitInlineAsm(&I);
5499     return;
5500   }
5501 
5502   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5503   ComputeUsesVAFloatArgument(I, &MMI);
5504 
5505   const char *RenameFn = 0;
5506   if (Function *F = I.getCalledFunction()) {
5507     if (F->isDeclaration()) {
5508       if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5509         if (unsigned IID = II->getIntrinsicID(F)) {
5510           RenameFn = visitIntrinsicCall(I, IID);
5511           if (!RenameFn)
5512             return;
5513         }
5514       }
5515       if (unsigned IID = F->getIntrinsicID()) {
5516         RenameFn = visitIntrinsicCall(I, IID);
5517         if (!RenameFn)
5518           return;
5519       }
5520     }
5521 
5522     // Check for well-known libc/libm calls.  If the function is internal, it
5523     // can't be a library call.
5524     LibFunc::Func Func;
5525     if (!F->hasLocalLinkage() && F->hasName() &&
5526         LibInfo->getLibFunc(F->getName(), Func) &&
5527         LibInfo->hasOptimizedCodeGen(Func)) {
5528       switch (Func) {
5529       default: break;
5530       case LibFunc::copysign:
5531       case LibFunc::copysignf:
5532       case LibFunc::copysignl:
5533         if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5534             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5535             I.getType() == I.getArgOperand(0)->getType() &&
5536             I.getType() == I.getArgOperand(1)->getType() &&
5537             I.onlyReadsMemory()) {
5538           SDValue LHS = getValue(I.getArgOperand(0));
5539           SDValue RHS = getValue(I.getArgOperand(1));
5540           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
5541                                    LHS.getValueType(), LHS, RHS));
5542           return;
5543         }
5544         break;
5545       case LibFunc::fabs:
5546       case LibFunc::fabsf:
5547       case LibFunc::fabsl:
5548         if (visitUnaryFloatCall(I, ISD::FABS))
5549           return;
5550         break;
5551       case LibFunc::sin:
5552       case LibFunc::sinf:
5553       case LibFunc::sinl:
5554         if (visitUnaryFloatCall(I, ISD::FSIN))
5555           return;
5556         break;
5557       case LibFunc::cos:
5558       case LibFunc::cosf:
5559       case LibFunc::cosl:
5560         if (visitUnaryFloatCall(I, ISD::FCOS))
5561           return;
5562         break;
5563       case LibFunc::sqrt:
5564       case LibFunc::sqrtf:
5565       case LibFunc::sqrtl:
5566       case LibFunc::sqrt_finite:
5567       case LibFunc::sqrtf_finite:
5568       case LibFunc::sqrtl_finite:
5569         if (visitUnaryFloatCall(I, ISD::FSQRT))
5570           return;
5571         break;
5572       case LibFunc::floor:
5573       case LibFunc::floorf:
5574       case LibFunc::floorl:
5575         if (visitUnaryFloatCall(I, ISD::FFLOOR))
5576           return;
5577         break;
5578       case LibFunc::nearbyint:
5579       case LibFunc::nearbyintf:
5580       case LibFunc::nearbyintl:
5581         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
5582           return;
5583         break;
5584       case LibFunc::ceil:
5585       case LibFunc::ceilf:
5586       case LibFunc::ceill:
5587         if (visitUnaryFloatCall(I, ISD::FCEIL))
5588           return;
5589         break;
5590       case LibFunc::rint:
5591       case LibFunc::rintf:
5592       case LibFunc::rintl:
5593         if (visitUnaryFloatCall(I, ISD::FRINT))
5594           return;
5595         break;
5596       case LibFunc::trunc:
5597       case LibFunc::truncf:
5598       case LibFunc::truncl:
5599         if (visitUnaryFloatCall(I, ISD::FTRUNC))
5600           return;
5601         break;
5602       case LibFunc::log2:
5603       case LibFunc::log2f:
5604       case LibFunc::log2l:
5605         if (visitUnaryFloatCall(I, ISD::FLOG2))
5606           return;
5607         break;
5608       case LibFunc::exp2:
5609       case LibFunc::exp2f:
5610       case LibFunc::exp2l:
5611         if (visitUnaryFloatCall(I, ISD::FEXP2))
5612           return;
5613         break;
5614       case LibFunc::memcmp:
5615         if (visitMemCmpCall(I))
5616           return;
5617         break;
5618       }
5619     }
5620   }
5621 
5622   SDValue Callee;
5623   if (!RenameFn)
5624     Callee = getValue(I.getCalledValue());
5625   else
5626     Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5627 
5628   // Check if we can potentially perform a tail call. More detailed checking is
5629   // be done within LowerCallTo, after more information about the call is known.
5630   LowerCallTo(&I, Callee, I.isTailCall());
5631 }
5632 
5633 namespace {
5634 
5635 /// AsmOperandInfo - This contains information for each constraint that we are
5636 /// lowering.
5637 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5638 public:
5639   /// CallOperand - If this is the result output operand or a clobber
5640   /// this is null, otherwise it is the incoming operand to the CallInst.
5641   /// This gets modified as the asm is processed.
5642   SDValue CallOperand;
5643 
5644   /// AssignedRegs - If this is a register or register class operand, this
5645   /// contains the set of register corresponding to the operand.
5646   RegsForValue AssignedRegs;
5647 
5648   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5649     : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5650   }
5651 
5652   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5653   /// corresponds to.  If there is no Value* for this operand, it returns
5654   /// MVT::Other.
5655   EVT getCallOperandValEVT(LLVMContext &Context,
5656                            const TargetLowering &TLI,
5657                            const DataLayout *TD) const {
5658     if (CallOperandVal == 0) return MVT::Other;
5659 
5660     if (isa<BasicBlock>(CallOperandVal))
5661       return TLI.getPointerTy();
5662 
5663     llvm::Type *OpTy = CallOperandVal->getType();
5664 
5665     // FIXME: code duplicated from TargetLowering::ParseConstraints().
5666     // If this is an indirect operand, the operand is a pointer to the
5667     // accessed type.
5668     if (isIndirect) {
5669       llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5670       if (!PtrTy)
5671         report_fatal_error("Indirect operand for inline asm not a pointer!");
5672       OpTy = PtrTy->getElementType();
5673     }
5674 
5675     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5676     if (StructType *STy = dyn_cast<StructType>(OpTy))
5677       if (STy->getNumElements() == 1)
5678         OpTy = STy->getElementType(0);
5679 
5680     // If OpTy is not a single value, it may be a struct/union that we
5681     // can tile with integers.
5682     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5683       unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5684       switch (BitSize) {
5685       default: break;
5686       case 1:
5687       case 8:
5688       case 16:
5689       case 32:
5690       case 64:
5691       case 128:
5692         OpTy = IntegerType::get(Context, BitSize);
5693         break;
5694       }
5695     }
5696 
5697     return TLI.getValueType(OpTy, true);
5698   }
5699 };
5700 
5701 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5702 
5703 } // end anonymous namespace
5704 
5705 /// GetRegistersForValue - Assign registers (virtual or physical) for the
5706 /// specified operand.  We prefer to assign virtual registers, to allow the
5707 /// register allocator to handle the assignment process.  However, if the asm
5708 /// uses features that we can't model on machineinstrs, we have SDISel do the
5709 /// allocation.  This produces generally horrible, but correct, code.
5710 ///
5711 ///   OpInfo describes the operand.
5712 ///
5713 static void GetRegistersForValue(SelectionDAG &DAG,
5714                                  const TargetLowering &TLI,
5715                                  SDLoc DL,
5716                                  SDISelAsmOperandInfo &OpInfo) {
5717   LLVMContext &Context = *DAG.getContext();
5718 
5719   MachineFunction &MF = DAG.getMachineFunction();
5720   SmallVector<unsigned, 4> Regs;
5721 
5722   // If this is a constraint for a single physreg, or a constraint for a
5723   // register class, find it.
5724   std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5725     TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5726                                      OpInfo.ConstraintVT);
5727 
5728   unsigned NumRegs = 1;
5729   if (OpInfo.ConstraintVT != MVT::Other) {
5730     // If this is a FP input in an integer register (or visa versa) insert a bit
5731     // cast of the input value.  More generally, handle any case where the input
5732     // value disagrees with the register class we plan to stick this in.
5733     if (OpInfo.Type == InlineAsm::isInput &&
5734         PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5735       // Try to convert to the first EVT that the reg class contains.  If the
5736       // types are identical size, use a bitcast to convert (e.g. two differing
5737       // vector types).
5738       MVT RegVT = *PhysReg.second->vt_begin();
5739       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5740         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5741                                          RegVT, OpInfo.CallOperand);
5742         OpInfo.ConstraintVT = RegVT;
5743       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5744         // If the input is a FP value and we want it in FP registers, do a
5745         // bitcast to the corresponding integer type.  This turns an f64 value
5746         // into i64, which can be passed with two i32 values on a 32-bit
5747         // machine.
5748         RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
5749         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5750                                          RegVT, OpInfo.CallOperand);
5751         OpInfo.ConstraintVT = RegVT;
5752       }
5753     }
5754 
5755     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5756   }
5757 
5758   MVT RegVT;
5759   EVT ValueVT = OpInfo.ConstraintVT;
5760 
5761   // If this is a constraint for a specific physical register, like {r17},
5762   // assign it now.
5763   if (unsigned AssignedReg = PhysReg.first) {
5764     const TargetRegisterClass *RC = PhysReg.second;
5765     if (OpInfo.ConstraintVT == MVT::Other)
5766       ValueVT = *RC->vt_begin();
5767 
5768     // Get the actual register value type.  This is important, because the user
5769     // may have asked for (e.g.) the AX register in i32 type.  We need to
5770     // remember that AX is actually i16 to get the right extension.
5771     RegVT = *RC->vt_begin();
5772 
5773     // This is a explicit reference to a physical register.
5774     Regs.push_back(AssignedReg);
5775 
5776     // If this is an expanded reference, add the rest of the regs to Regs.
5777     if (NumRegs != 1) {
5778       TargetRegisterClass::iterator I = RC->begin();
5779       for (; *I != AssignedReg; ++I)
5780         assert(I != RC->end() && "Didn't find reg!");
5781 
5782       // Already added the first reg.
5783       --NumRegs; ++I;
5784       for (; NumRegs; --NumRegs, ++I) {
5785         assert(I != RC->end() && "Ran out of registers to allocate!");
5786         Regs.push_back(*I);
5787       }
5788     }
5789 
5790     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5791     return;
5792   }
5793 
5794   // Otherwise, if this was a reference to an LLVM register class, create vregs
5795   // for this reference.
5796   if (const TargetRegisterClass *RC = PhysReg.second) {
5797     RegVT = *RC->vt_begin();
5798     if (OpInfo.ConstraintVT == MVT::Other)
5799       ValueVT = RegVT;
5800 
5801     // Create the appropriate number of virtual registers.
5802     MachineRegisterInfo &RegInfo = MF.getRegInfo();
5803     for (; NumRegs; --NumRegs)
5804       Regs.push_back(RegInfo.createVirtualRegister(RC));
5805 
5806     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5807     return;
5808   }
5809 
5810   // Otherwise, we couldn't allocate enough registers for this.
5811 }
5812 
5813 /// visitInlineAsm - Handle a call to an InlineAsm object.
5814 ///
5815 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5816   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5817 
5818   /// ConstraintOperands - Information about all of the constraints.
5819   SDISelAsmOperandInfoVector ConstraintOperands;
5820 
5821   TargetLowering::AsmOperandInfoVector
5822     TargetConstraints = TLI.ParseConstraints(CS);
5823 
5824   bool hasMemory = false;
5825 
5826   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5827   unsigned ResNo = 0;   // ResNo - The result number of the next output.
5828   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5829     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5830     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5831 
5832     MVT OpVT = MVT::Other;
5833 
5834     // Compute the value type for each operand.
5835     switch (OpInfo.Type) {
5836     case InlineAsm::isOutput:
5837       // Indirect outputs just consume an argument.
5838       if (OpInfo.isIndirect) {
5839         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5840         break;
5841       }
5842 
5843       // The return value of the call is this value.  As such, there is no
5844       // corresponding argument.
5845       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5846       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
5847         OpVT = TLI.getSimpleValueType(STy->getElementType(ResNo));
5848       } else {
5849         assert(ResNo == 0 && "Asm only has one result!");
5850         OpVT = TLI.getSimpleValueType(CS.getType());
5851       }
5852       ++ResNo;
5853       break;
5854     case InlineAsm::isInput:
5855       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5856       break;
5857     case InlineAsm::isClobber:
5858       // Nothing to do.
5859       break;
5860     }
5861 
5862     // If this is an input or an indirect output, process the call argument.
5863     // BasicBlocks are labels, currently appearing only in asm's.
5864     if (OpInfo.CallOperandVal) {
5865       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5866         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5867       } else {
5868         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5869       }
5870 
5871       OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD).
5872         getSimpleVT();
5873     }
5874 
5875     OpInfo.ConstraintVT = OpVT;
5876 
5877     // Indirect operand accesses access memory.
5878     if (OpInfo.isIndirect)
5879       hasMemory = true;
5880     else {
5881       for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5882         TargetLowering::ConstraintType
5883           CType = TLI.getConstraintType(OpInfo.Codes[j]);
5884         if (CType == TargetLowering::C_Memory) {
5885           hasMemory = true;
5886           break;
5887         }
5888       }
5889     }
5890   }
5891 
5892   SDValue Chain, Flag;
5893 
5894   // We won't need to flush pending loads if this asm doesn't touch
5895   // memory and is nonvolatile.
5896   if (hasMemory || IA->hasSideEffects())
5897     Chain = getRoot();
5898   else
5899     Chain = DAG.getRoot();
5900 
5901   // Second pass over the constraints: compute which constraint option to use
5902   // and assign registers to constraints that want a specific physreg.
5903   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5904     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5905 
5906     // If this is an output operand with a matching input operand, look up the
5907     // matching input. If their types mismatch, e.g. one is an integer, the
5908     // other is floating point, or their sizes are different, flag it as an
5909     // error.
5910     if (OpInfo.hasMatchingInput()) {
5911       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5912 
5913       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5914         std::pair<unsigned, const TargetRegisterClass*> MatchRC =
5915           TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5916                                            OpInfo.ConstraintVT);
5917         std::pair<unsigned, const TargetRegisterClass*> InputRC =
5918           TLI.getRegForInlineAsmConstraint(Input.ConstraintCode,
5919                                            Input.ConstraintVT);
5920         if ((OpInfo.ConstraintVT.isInteger() !=
5921              Input.ConstraintVT.isInteger()) ||
5922             (MatchRC.second != InputRC.second)) {
5923           report_fatal_error("Unsupported asm: input constraint"
5924                              " with a matching output constraint of"
5925                              " incompatible type!");
5926         }
5927         Input.ConstraintVT = OpInfo.ConstraintVT;
5928       }
5929     }
5930 
5931     // Compute the constraint code and ConstraintType to use.
5932     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5933 
5934     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5935         OpInfo.Type == InlineAsm::isClobber)
5936       continue;
5937 
5938     // If this is a memory input, and if the operand is not indirect, do what we
5939     // need to to provide an address for the memory input.
5940     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5941         !OpInfo.isIndirect) {
5942       assert((OpInfo.isMultipleAlternative ||
5943               (OpInfo.Type == InlineAsm::isInput)) &&
5944              "Can only indirectify direct input operands!");
5945 
5946       // Memory operands really want the address of the value.  If we don't have
5947       // an indirect input, put it in the constpool if we can, otherwise spill
5948       // it to a stack slot.
5949       // TODO: This isn't quite right. We need to handle these according to
5950       // the addressing mode that the constraint wants. Also, this may take
5951       // an additional register for the computation and we don't want that
5952       // either.
5953 
5954       // If the operand is a float, integer, or vector constant, spill to a
5955       // constant pool entry to get its address.
5956       const Value *OpVal = OpInfo.CallOperandVal;
5957       if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5958           isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
5959         OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5960                                                  TLI.getPointerTy());
5961       } else {
5962         // Otherwise, create a stack slot and emit a store to it before the
5963         // asm.
5964         Type *Ty = OpVal->getType();
5965         uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty);
5966         unsigned Align  = TLI.getDataLayout()->getPrefTypeAlignment(Ty);
5967         MachineFunction &MF = DAG.getMachineFunction();
5968         int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5969         SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5970         Chain = DAG.getStore(Chain, getCurSDLoc(),
5971                              OpInfo.CallOperand, StackSlot,
5972                              MachinePointerInfo::getFixedStack(SSFI),
5973                              false, false, 0);
5974         OpInfo.CallOperand = StackSlot;
5975       }
5976 
5977       // There is no longer a Value* corresponding to this operand.
5978       OpInfo.CallOperandVal = 0;
5979 
5980       // It is now an indirect operand.
5981       OpInfo.isIndirect = true;
5982     }
5983 
5984     // If this constraint is for a specific register, allocate it before
5985     // anything else.
5986     if (OpInfo.ConstraintType == TargetLowering::C_Register)
5987       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
5988   }
5989 
5990   // Second pass - Loop over all of the operands, assigning virtual or physregs
5991   // to register class operands.
5992   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5993     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5994 
5995     // C_Register operands have already been allocated, Other/Memory don't need
5996     // to be.
5997     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
5998       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
5999   }
6000 
6001   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6002   std::vector<SDValue> AsmNodeOperands;
6003   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6004   AsmNodeOperands.push_back(
6005           DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
6006                                       TLI.getPointerTy()));
6007 
6008   // If we have a !srcloc metadata node associated with it, we want to attach
6009   // this to the ultimately generated inline asm machineinstr.  To do this, we
6010   // pass in the third operand as this (potentially null) inline asm MDNode.
6011   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6012   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6013 
6014   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6015   // bits as operand 3.
6016   unsigned ExtraInfo = 0;
6017   if (IA->hasSideEffects())
6018     ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6019   if (IA->isAlignStack())
6020     ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6021   // Set the asm dialect.
6022   ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
6023 
6024   // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
6025   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6026     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
6027 
6028     // Compute the constraint code and ConstraintType to use.
6029     TLI.ComputeConstraintToUse(OpInfo, SDValue());
6030 
6031     // Ideally, we would only check against memory constraints.  However, the
6032     // meaning of an other constraint can be target-specific and we can't easily
6033     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
6034     // for other constriants as well.
6035     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
6036         OpInfo.ConstraintType == TargetLowering::C_Other) {
6037       if (OpInfo.Type == InlineAsm::isInput)
6038         ExtraInfo |= InlineAsm::Extra_MayLoad;
6039       else if (OpInfo.Type == InlineAsm::isOutput)
6040         ExtraInfo |= InlineAsm::Extra_MayStore;
6041       else if (OpInfo.Type == InlineAsm::isClobber)
6042         ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
6043     }
6044   }
6045 
6046   AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
6047                                                   TLI.getPointerTy()));
6048 
6049   // Loop over all of the inputs, copying the operand values into the
6050   // appropriate registers and processing the output regs.
6051   RegsForValue RetValRegs;
6052 
6053   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6054   std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6055 
6056   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6057     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6058 
6059     switch (OpInfo.Type) {
6060     case InlineAsm::isOutput: {
6061       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6062           OpInfo.ConstraintType != TargetLowering::C_Register) {
6063         // Memory output, or 'other' output (e.g. 'X' constraint).
6064         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6065 
6066         // Add information to the INLINEASM node to know about this output.
6067         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6068         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
6069                                                         TLI.getPointerTy()));
6070         AsmNodeOperands.push_back(OpInfo.CallOperand);
6071         break;
6072       }
6073 
6074       // Otherwise, this is a register or register class output.
6075 
6076       // Copy the output from the appropriate register.  Find a register that
6077       // we can use.
6078       if (OpInfo.AssignedRegs.Regs.empty()) {
6079         LLVMContext &Ctx = *DAG.getContext();
6080         Ctx.emitError(CS.getInstruction(),
6081                       "couldn't allocate output register for constraint '" +
6082                            Twine(OpInfo.ConstraintCode) + "'");
6083         break;
6084       }
6085 
6086       // If this is an indirect operand, store through the pointer after the
6087       // asm.
6088       if (OpInfo.isIndirect) {
6089         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6090                                                       OpInfo.CallOperandVal));
6091       } else {
6092         // This is the result value of the call.
6093         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6094         // Concatenate this output onto the outputs list.
6095         RetValRegs.append(OpInfo.AssignedRegs);
6096       }
6097 
6098       // Add information to the INLINEASM node to know that this register is
6099       // set.
6100       OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
6101                                            InlineAsm::Kind_RegDefEarlyClobber :
6102                                                InlineAsm::Kind_RegDef,
6103                                                false,
6104                                                0,
6105                                                DAG,
6106                                                AsmNodeOperands);
6107       break;
6108     }
6109     case InlineAsm::isInput: {
6110       SDValue InOperandVal = OpInfo.CallOperand;
6111 
6112       if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6113         // If this is required to match an output register we have already set,
6114         // just use its register.
6115         unsigned OperandNo = OpInfo.getMatchedOperand();
6116 
6117         // Scan until we find the definition we already emitted of this operand.
6118         // When we find it, create a RegsForValue operand.
6119         unsigned CurOp = InlineAsm::Op_FirstOperand;
6120         for (; OperandNo; --OperandNo) {
6121           // Advance to the next operand.
6122           unsigned OpFlag =
6123             cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6124           assert((InlineAsm::isRegDefKind(OpFlag) ||
6125                   InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6126                   InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6127           CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6128         }
6129 
6130         unsigned OpFlag =
6131           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6132         if (InlineAsm::isRegDefKind(OpFlag) ||
6133             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6134           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6135           if (OpInfo.isIndirect) {
6136             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6137             LLVMContext &Ctx = *DAG.getContext();
6138             Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
6139                           " don't know how to handle tied "
6140                           "indirect register inputs");
6141             report_fatal_error("Cannot handle indirect register inputs!");
6142           }
6143 
6144           RegsForValue MatchedRegs;
6145           MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6146           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
6147           MatchedRegs.RegVTs.push_back(RegVT);
6148           MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6149           for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6150                i != e; ++i) {
6151             if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT))
6152               MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC));
6153             else {
6154               LLVMContext &Ctx = *DAG.getContext();
6155               Ctx.emitError(CS.getInstruction(), "inline asm error: This value"
6156                             " type register class is not natively supported!");
6157               report_fatal_error("inline asm error: This value type register "
6158                                  "class is not natively supported!");
6159             }
6160           }
6161           // Use the produced MatchedRegs object to
6162           MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(),
6163                                     Chain, &Flag, CS.getInstruction());
6164           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6165                                            true, OpInfo.getMatchedOperand(),
6166                                            DAG, AsmNodeOperands);
6167           break;
6168         }
6169 
6170         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6171         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6172                "Unexpected number of operands");
6173         // Add information to the INLINEASM node to know about this input.
6174         // See InlineAsm.h isUseOperandTiedToDef.
6175         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6176                                                     OpInfo.getMatchedOperand());
6177         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
6178                                                         TLI.getPointerTy()));
6179         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6180         break;
6181       }
6182 
6183       // Treat indirect 'X' constraint as memory.
6184       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6185           OpInfo.isIndirect)
6186         OpInfo.ConstraintType = TargetLowering::C_Memory;
6187 
6188       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6189         std::vector<SDValue> Ops;
6190         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6191                                          Ops, DAG);
6192         if (Ops.empty()) {
6193           LLVMContext &Ctx = *DAG.getContext();
6194           Ctx.emitError(CS.getInstruction(),
6195                         "invalid operand for inline asm constraint '" +
6196                         Twine(OpInfo.ConstraintCode) + "'");
6197           break;
6198         }
6199 
6200         // Add information to the INLINEASM node to know about this input.
6201         unsigned ResOpType =
6202           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6203         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6204                                                         TLI.getPointerTy()));
6205         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6206         break;
6207       }
6208 
6209       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6210         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6211         assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
6212                "Memory operands expect pointer values");
6213 
6214         // Add information to the INLINEASM node to know about this input.
6215         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6216         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6217                                                         TLI.getPointerTy()));
6218         AsmNodeOperands.push_back(InOperandVal);
6219         break;
6220       }
6221 
6222       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6223               OpInfo.ConstraintType == TargetLowering::C_Register) &&
6224              "Unknown constraint type!");
6225 
6226       // TODO: Support this.
6227       if (OpInfo.isIndirect) {
6228         LLVMContext &Ctx = *DAG.getContext();
6229         Ctx.emitError(CS.getInstruction(),
6230                       "Don't know how to handle indirect register inputs yet "
6231                       "for constraint '" + Twine(OpInfo.ConstraintCode) + "'");
6232         break;
6233       }
6234 
6235       // Copy the input into the appropriate registers.
6236       if (OpInfo.AssignedRegs.Regs.empty()) {
6237         LLVMContext &Ctx = *DAG.getContext();
6238         Ctx.emitError(CS.getInstruction(),
6239                       "couldn't allocate input reg for constraint '" +
6240                            Twine(OpInfo.ConstraintCode) + "'");
6241         break;
6242       }
6243 
6244       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(),
6245                                         Chain, &Flag, CS.getInstruction());
6246 
6247       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6248                                                DAG, AsmNodeOperands);
6249       break;
6250     }
6251     case InlineAsm::isClobber: {
6252       // Add the clobbered value to the operand list, so that the register
6253       // allocator is aware that the physreg got clobbered.
6254       if (!OpInfo.AssignedRegs.Regs.empty())
6255         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6256                                                  false, 0, DAG,
6257                                                  AsmNodeOperands);
6258       break;
6259     }
6260     }
6261   }
6262 
6263   // Finish up input operands.  Set the input chain and add the flag last.
6264   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6265   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6266 
6267   Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
6268                       DAG.getVTList(MVT::Other, MVT::Glue),
6269                       &AsmNodeOperands[0], AsmNodeOperands.size());
6270   Flag = Chain.getValue(1);
6271 
6272   // If this asm returns a register value, copy the result from that register
6273   // and set it as the value of the call.
6274   if (!RetValRegs.Regs.empty()) {
6275     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6276                                              Chain, &Flag, CS.getInstruction());
6277 
6278     // FIXME: Why don't we do this for inline asms with MRVs?
6279     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6280       EVT ResultType = TLI.getValueType(CS.getType());
6281 
6282       // If any of the results of the inline asm is a vector, it may have the
6283       // wrong width/num elts.  This can happen for register classes that can
6284       // contain multiple different value types.  The preg or vreg allocated may
6285       // not have the same VT as was expected.  Convert it to the right type
6286       // with bit_convert.
6287       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6288         Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
6289                           ResultType, Val);
6290 
6291       } else if (ResultType != Val.getValueType() &&
6292                  ResultType.isInteger() && Val.getValueType().isInteger()) {
6293         // If a result value was tied to an input value, the computed result may
6294         // have a wider width than the expected result.  Extract the relevant
6295         // portion.
6296         Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
6297       }
6298 
6299       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6300     }
6301 
6302     setValue(CS.getInstruction(), Val);
6303     // Don't need to use this as a chain in this case.
6304     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6305       return;
6306   }
6307 
6308   std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6309 
6310   // Process indirect outputs, first output all of the flagged copies out of
6311   // physregs.
6312   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6313     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6314     const Value *Ptr = IndirectStoresToEmit[i].second;
6315     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6316                                              Chain, &Flag, IA);
6317     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6318   }
6319 
6320   // Emit the non-flagged stores from the physregs.
6321   SmallVector<SDValue, 8> OutChains;
6322   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6323     SDValue Val = DAG.getStore(Chain, getCurSDLoc(),
6324                                StoresToEmit[i].first,
6325                                getValue(StoresToEmit[i].second),
6326                                MachinePointerInfo(StoresToEmit[i].second),
6327                                false, false, 0);
6328     OutChains.push_back(Val);
6329   }
6330 
6331   if (!OutChains.empty())
6332     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
6333                         &OutChains[0], OutChains.size());
6334 
6335   DAG.setRoot(Chain);
6336 }
6337 
6338 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6339   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
6340                           MVT::Other, getRoot(),
6341                           getValue(I.getArgOperand(0)),
6342                           DAG.getSrcValue(I.getArgOperand(0))));
6343 }
6344 
6345 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6346   const DataLayout &TD = *TLI.getDataLayout();
6347   SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurSDLoc(),
6348                            getRoot(), getValue(I.getOperand(0)),
6349                            DAG.getSrcValue(I.getOperand(0)),
6350                            TD.getABITypeAlignment(I.getType()));
6351   setValue(&I, V);
6352   DAG.setRoot(V.getValue(1));
6353 }
6354 
6355 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6356   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
6357                           MVT::Other, getRoot(),
6358                           getValue(I.getArgOperand(0)),
6359                           DAG.getSrcValue(I.getArgOperand(0))));
6360 }
6361 
6362 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6363   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
6364                           MVT::Other, getRoot(),
6365                           getValue(I.getArgOperand(0)),
6366                           getValue(I.getArgOperand(1)),
6367                           DAG.getSrcValue(I.getArgOperand(0)),
6368                           DAG.getSrcValue(I.getArgOperand(1))));
6369 }
6370 
6371 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
6372 /// implementation, which just calls LowerCall.
6373 /// FIXME: When all targets are
6374 /// migrated to using LowerCall, this hook should be integrated into SDISel.
6375 std::pair<SDValue, SDValue>
6376 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
6377   // Handle the incoming return values from the call.
6378   CLI.Ins.clear();
6379   SmallVector<EVT, 4> RetTys;
6380   ComputeValueVTs(*this, CLI.RetTy, RetTys);
6381   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6382     EVT VT = RetTys[I];
6383     MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
6384     unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
6385     for (unsigned i = 0; i != NumRegs; ++i) {
6386       ISD::InputArg MyFlags;
6387       MyFlags.VT = RegisterVT;
6388       MyFlags.Used = CLI.IsReturnValueUsed;
6389       if (CLI.RetSExt)
6390         MyFlags.Flags.setSExt();
6391       if (CLI.RetZExt)
6392         MyFlags.Flags.setZExt();
6393       if (CLI.IsInReg)
6394         MyFlags.Flags.setInReg();
6395       CLI.Ins.push_back(MyFlags);
6396     }
6397   }
6398 
6399   // Handle all of the outgoing arguments.
6400   CLI.Outs.clear();
6401   CLI.OutVals.clear();
6402   ArgListTy &Args = CLI.Args;
6403   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6404     SmallVector<EVT, 4> ValueVTs;
6405     ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6406     for (unsigned Value = 0, NumValues = ValueVTs.size();
6407          Value != NumValues; ++Value) {
6408       EVT VT = ValueVTs[Value];
6409       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
6410       SDValue Op = SDValue(Args[i].Node.getNode(),
6411                            Args[i].Node.getResNo() + Value);
6412       ISD::ArgFlagsTy Flags;
6413       unsigned OriginalAlignment =
6414         getDataLayout()->getABITypeAlignment(ArgTy);
6415 
6416       if (Args[i].isZExt)
6417         Flags.setZExt();
6418       if (Args[i].isSExt)
6419         Flags.setSExt();
6420       if (Args[i].isInReg)
6421         Flags.setInReg();
6422       if (Args[i].isSRet)
6423         Flags.setSRet();
6424       if (Args[i].isByVal) {
6425         Flags.setByVal();
6426         PointerType *Ty = cast<PointerType>(Args[i].Ty);
6427         Type *ElementTy = Ty->getElementType();
6428         Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy));
6429         // For ByVal, alignment should come from FE.  BE will guess if this
6430         // info is not there but there are cases it cannot get right.
6431         unsigned FrameAlign;
6432         if (Args[i].Alignment)
6433           FrameAlign = Args[i].Alignment;
6434         else
6435           FrameAlign = getByValTypeAlignment(ElementTy);
6436         Flags.setByValAlign(FrameAlign);
6437       }
6438       if (Args[i].isNest)
6439         Flags.setNest();
6440       Flags.setOrigAlign(OriginalAlignment);
6441 
6442       MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
6443       unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
6444       SmallVector<SDValue, 4> Parts(NumParts);
6445       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6446 
6447       if (Args[i].isSExt)
6448         ExtendKind = ISD::SIGN_EXTEND;
6449       else if (Args[i].isZExt)
6450         ExtendKind = ISD::ZERO_EXTEND;
6451 
6452       // Conservatively only handle 'returned' on non-vectors for now
6453       if (Args[i].isReturned && !Op.getValueType().isVector()) {
6454         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
6455                "unexpected use of 'returned'");
6456         // Before passing 'returned' to the target lowering code, ensure that
6457         // either the register MVT and the actual EVT are the same size or that
6458         // the return value and argument are extended in the same way; in these
6459         // cases it's safe to pass the argument register value unchanged as the
6460         // return register value (although it's at the target's option whether
6461         // to do so)
6462         // TODO: allow code generation to take advantage of partially preserved
6463         // registers rather than clobbering the entire register when the
6464         // parameter extension method is not compatible with the return
6465         // extension method
6466         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
6467             (ExtendKind != ISD::ANY_EXTEND &&
6468              CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt))
6469         Flags.setReturned();
6470       }
6471 
6472       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts,
6473                      PartVT, CLI.CS ? CLI.CS->getInstruction() : 0, ExtendKind);
6474 
6475       for (unsigned j = 0; j != NumParts; ++j) {
6476         // if it isn't first piece, alignment must be 1
6477         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6478                                i < CLI.NumFixedArgs,
6479                                i, j*Parts[j].getValueType().getStoreSize());
6480         if (NumParts > 1 && j == 0)
6481           MyFlags.Flags.setSplit();
6482         else if (j != 0)
6483           MyFlags.Flags.setOrigAlign(1);
6484 
6485         CLI.Outs.push_back(MyFlags);
6486         CLI.OutVals.push_back(Parts[j]);
6487       }
6488     }
6489   }
6490 
6491   SmallVector<SDValue, 4> InVals;
6492   CLI.Chain = LowerCall(CLI, InVals);
6493 
6494   // Verify that the target's LowerCall behaved as expected.
6495   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
6496          "LowerCall didn't return a valid chain!");
6497   assert((!CLI.IsTailCall || InVals.empty()) &&
6498          "LowerCall emitted a return value for a tail call!");
6499   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
6500          "LowerCall didn't emit the correct number of values!");
6501 
6502   // For a tail call, the return value is merely live-out and there aren't
6503   // any nodes in the DAG representing it. Return a special value to
6504   // indicate that a tail call has been emitted and no more Instructions
6505   // should be processed in the current block.
6506   if (CLI.IsTailCall) {
6507     CLI.DAG.setRoot(CLI.Chain);
6508     return std::make_pair(SDValue(), SDValue());
6509   }
6510 
6511   DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
6512           assert(InVals[i].getNode() &&
6513                  "LowerCall emitted a null value!");
6514           assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
6515                  "LowerCall emitted a value with the wrong type!");
6516         });
6517 
6518   // Collect the legal value parts into potentially illegal values
6519   // that correspond to the original function's return values.
6520   ISD::NodeType AssertOp = ISD::DELETED_NODE;
6521   if (CLI.RetSExt)
6522     AssertOp = ISD::AssertSext;
6523   else if (CLI.RetZExt)
6524     AssertOp = ISD::AssertZext;
6525   SmallVector<SDValue, 4> ReturnValues;
6526   unsigned CurReg = 0;
6527   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6528     EVT VT = RetTys[I];
6529     MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
6530     unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
6531 
6532     ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
6533                                             NumRegs, RegisterVT, VT, NULL,
6534                                             AssertOp));
6535     CurReg += NumRegs;
6536   }
6537 
6538   // For a function returning void, there is no return value. We can't create
6539   // such a node, so we just return a null return value in that case. In
6540   // that case, nothing will actually look at the value.
6541   if (ReturnValues.empty())
6542     return std::make_pair(SDValue(), CLI.Chain);
6543 
6544   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
6545                                 CLI.DAG.getVTList(&RetTys[0], RetTys.size()),
6546                             &ReturnValues[0], ReturnValues.size());
6547   return std::make_pair(Res, CLI.Chain);
6548 }
6549 
6550 void TargetLowering::LowerOperationWrapper(SDNode *N,
6551                                            SmallVectorImpl<SDValue> &Results,
6552                                            SelectionDAG &DAG) const {
6553   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6554   if (Res.getNode())
6555     Results.push_back(Res);
6556 }
6557 
6558 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6559   llvm_unreachable("LowerOperation not implemented for this target!");
6560 }
6561 
6562 void
6563 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6564   SDValue Op = getNonRegisterValue(V);
6565   assert((Op.getOpcode() != ISD::CopyFromReg ||
6566           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6567          "Copy from a reg to the same reg!");
6568   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6569 
6570   RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6571   SDValue Chain = DAG.getEntryNode();
6572   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, 0, V);
6573   PendingExports.push_back(Chain);
6574 }
6575 
6576 #include "llvm/CodeGen/SelectionDAGISel.h"
6577 
6578 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
6579 /// entry block, return true.  This includes arguments used by switches, since
6580 /// the switch may expand into multiple basic blocks.
6581 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
6582   // With FastISel active, we may be splitting blocks, so force creation
6583   // of virtual registers for all non-dead arguments.
6584   if (FastISel)
6585     return A->use_empty();
6586 
6587   const BasicBlock *Entry = A->getParent()->begin();
6588   for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
6589        UI != E; ++UI) {
6590     const User *U = *UI;
6591     if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
6592       return false;  // Use not in entry block.
6593   }
6594   return true;
6595 }
6596 
6597 void SelectionDAGISel::LowerArguments(const Function &F) {
6598   SelectionDAG &DAG = SDB->DAG;
6599   SDLoc dl = SDB->getCurSDLoc();
6600   const DataLayout *TD = TLI->getDataLayout();
6601   SmallVector<ISD::InputArg, 16> Ins;
6602 
6603   if (!FuncInfo->CanLowerReturn) {
6604     // Put in an sret pointer parameter before all the other parameters.
6605     SmallVector<EVT, 1> ValueVTs;
6606     ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6607 
6608     // NOTE: Assuming that a pointer will never break down to more than one VT
6609     // or one register.
6610     ISD::ArgFlagsTy Flags;
6611     Flags.setSRet();
6612     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
6613     ISD::InputArg RetArg(Flags, RegisterVT, true, 0, 0);
6614     Ins.push_back(RetArg);
6615   }
6616 
6617   // Set up the incoming argument description vector.
6618   unsigned Idx = 1;
6619   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6620        I != E; ++I, ++Idx) {
6621     SmallVector<EVT, 4> ValueVTs;
6622     ComputeValueVTs(*TLI, I->getType(), ValueVTs);
6623     bool isArgValueUsed = !I->use_empty();
6624     for (unsigned Value = 0, NumValues = ValueVTs.size();
6625          Value != NumValues; ++Value) {
6626       EVT VT = ValueVTs[Value];
6627       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6628       ISD::ArgFlagsTy Flags;
6629       unsigned OriginalAlignment =
6630         TD->getABITypeAlignment(ArgTy);
6631 
6632       if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
6633         Flags.setZExt();
6634       if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
6635         Flags.setSExt();
6636       if (F.getAttributes().hasAttribute(Idx, Attribute::InReg))
6637         Flags.setInReg();
6638       if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet))
6639         Flags.setSRet();
6640       if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) {
6641         Flags.setByVal();
6642         PointerType *Ty = cast<PointerType>(I->getType());
6643         Type *ElementTy = Ty->getElementType();
6644         Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
6645         // For ByVal, alignment should be passed from FE.  BE will guess if
6646         // this info is not there but there are cases it cannot get right.
6647         unsigned FrameAlign;
6648         if (F.getParamAlignment(Idx))
6649           FrameAlign = F.getParamAlignment(Idx);
6650         else
6651           FrameAlign = TLI->getByValTypeAlignment(ElementTy);
6652         Flags.setByValAlign(FrameAlign);
6653       }
6654       if (F.getAttributes().hasAttribute(Idx, Attribute::Nest))
6655         Flags.setNest();
6656       Flags.setOrigAlign(OriginalAlignment);
6657 
6658       MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
6659       unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT);
6660       for (unsigned i = 0; i != NumRegs; ++i) {
6661         ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed,
6662                               Idx-1, i*RegisterVT.getStoreSize());
6663         if (NumRegs > 1 && i == 0)
6664           MyFlags.Flags.setSplit();
6665         // if it isn't first piece, alignment must be 1
6666         else if (i > 0)
6667           MyFlags.Flags.setOrigAlign(1);
6668         Ins.push_back(MyFlags);
6669       }
6670     }
6671   }
6672 
6673   // Call the target to set up the argument values.
6674   SmallVector<SDValue, 8> InVals;
6675   SDValue NewRoot = TLI->LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6676                                               F.isVarArg(), Ins,
6677                                               dl, DAG, InVals);
6678 
6679   // Verify that the target's LowerFormalArguments behaved as expected.
6680   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6681          "LowerFormalArguments didn't return a valid chain!");
6682   assert(InVals.size() == Ins.size() &&
6683          "LowerFormalArguments didn't emit the correct number of values!");
6684   DEBUG({
6685       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6686         assert(InVals[i].getNode() &&
6687                "LowerFormalArguments emitted a null value!");
6688         assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6689                "LowerFormalArguments emitted a value with the wrong type!");
6690       }
6691     });
6692 
6693   // Update the DAG with the new chain value resulting from argument lowering.
6694   DAG.setRoot(NewRoot);
6695 
6696   // Set up the argument values.
6697   unsigned i = 0;
6698   Idx = 1;
6699   if (!FuncInfo->CanLowerReturn) {
6700     // Create a virtual register for the sret pointer, and put in a copy
6701     // from the sret argument into it.
6702     SmallVector<EVT, 1> ValueVTs;
6703     ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6704     MVT VT = ValueVTs[0].getSimpleVT();
6705     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
6706     ISD::NodeType AssertOp = ISD::DELETED_NODE;
6707     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6708                                         RegVT, VT, NULL, AssertOp);
6709 
6710     MachineFunction& MF = SDB->DAG.getMachineFunction();
6711     MachineRegisterInfo& RegInfo = MF.getRegInfo();
6712     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
6713     FuncInfo->DemoteRegister = SRetReg;
6714     NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(),
6715                                     SRetReg, ArgValue);
6716     DAG.setRoot(NewRoot);
6717 
6718     // i indexes lowered arguments.  Bump it past the hidden sret argument.
6719     // Idx indexes LLVM arguments.  Don't touch it.
6720     ++i;
6721   }
6722 
6723   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6724       ++I, ++Idx) {
6725     SmallVector<SDValue, 4> ArgValues;
6726     SmallVector<EVT, 4> ValueVTs;
6727     ComputeValueVTs(*TLI, I->getType(), ValueVTs);
6728     unsigned NumValues = ValueVTs.size();
6729 
6730     // If this argument is unused then remember its value. It is used to generate
6731     // debugging information.
6732     if (I->use_empty() && NumValues) {
6733       SDB->setUnusedArgValue(I, InVals[i]);
6734 
6735       // Also remember any frame index for use in FastISel.
6736       if (FrameIndexSDNode *FI =
6737           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
6738         FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6739     }
6740 
6741     for (unsigned Val = 0; Val != NumValues; ++Val) {
6742       EVT VT = ValueVTs[Val];
6743       MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
6744       unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT);
6745 
6746       if (!I->use_empty()) {
6747         ISD::NodeType AssertOp = ISD::DELETED_NODE;
6748         if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
6749           AssertOp = ISD::AssertSext;
6750         else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
6751           AssertOp = ISD::AssertZext;
6752 
6753         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6754                                              NumParts, PartVT, VT,
6755                                              NULL, AssertOp));
6756       }
6757 
6758       i += NumParts;
6759     }
6760 
6761     // We don't need to do anything else for unused arguments.
6762     if (ArgValues.empty())
6763       continue;
6764 
6765     // Note down frame index.
6766     if (FrameIndexSDNode *FI =
6767         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6768       FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6769 
6770     SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6771                                      SDB->getCurSDLoc());
6772 
6773     SDB->setValue(I, Res);
6774     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
6775       if (LoadSDNode *LNode =
6776           dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
6777         if (FrameIndexSDNode *FI =
6778             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
6779         FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6780     }
6781 
6782     // If this argument is live outside of the entry block, insert a copy from
6783     // wherever we got it to the vreg that other BB's will reference it as.
6784     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
6785       // If we can, though, try to skip creating an unnecessary vreg.
6786       // FIXME: This isn't very clean... it would be nice to make this more
6787       // general.  It's also subtly incompatible with the hacks FastISel
6788       // uses with vregs.
6789       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
6790       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
6791         FuncInfo->ValueMap[I] = Reg;
6792         continue;
6793       }
6794     }
6795     if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) {
6796       FuncInfo->InitializeRegForValue(I);
6797       SDB->CopyToExportRegsIfNeeded(I);
6798     }
6799   }
6800 
6801   assert(i == InVals.size() && "Argument register count mismatch!");
6802 
6803   // Finally, if the target has anything special to do, allow it to do so.
6804   // FIXME: this should insert code into the DAG!
6805   EmitFunctionEntryCode();
6806 }
6807 
6808 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6809 /// ensure constants are generated when needed.  Remember the virtual registers
6810 /// that need to be added to the Machine PHI nodes as input.  We cannot just
6811 /// directly add them, because expansion might result in multiple MBB's for one
6812 /// BB.  As such, the start of the BB might correspond to a different MBB than
6813 /// the end.
6814 ///
6815 void
6816 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6817   const TerminatorInst *TI = LLVMBB->getTerminator();
6818 
6819   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6820 
6821   // Check successor nodes' PHI nodes that expect a constant to be available
6822   // from this block.
6823   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6824     const BasicBlock *SuccBB = TI->getSuccessor(succ);
6825     if (!isa<PHINode>(SuccBB->begin())) continue;
6826     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6827 
6828     // If this terminator has multiple identical successors (common for
6829     // switches), only handle each succ once.
6830     if (!SuccsHandled.insert(SuccMBB)) continue;
6831 
6832     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6833 
6834     // At this point we know that there is a 1-1 correspondence between LLVM PHI
6835     // nodes and Machine PHI nodes, but the incoming operands have not been
6836     // emitted yet.
6837     for (BasicBlock::const_iterator I = SuccBB->begin();
6838          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6839       // Ignore dead phi's.
6840       if (PN->use_empty()) continue;
6841 
6842       // Skip empty types
6843       if (PN->getType()->isEmptyTy())
6844         continue;
6845 
6846       unsigned Reg;
6847       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6848 
6849       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6850         unsigned &RegOut = ConstantsOut[C];
6851         if (RegOut == 0) {
6852           RegOut = FuncInfo.CreateRegs(C->getType());
6853           CopyValueToVirtualRegister(C, RegOut);
6854         }
6855         Reg = RegOut;
6856       } else {
6857         DenseMap<const Value *, unsigned>::iterator I =
6858           FuncInfo.ValueMap.find(PHIOp);
6859         if (I != FuncInfo.ValueMap.end())
6860           Reg = I->second;
6861         else {
6862           assert(isa<AllocaInst>(PHIOp) &&
6863                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6864                  "Didn't codegen value into a register!??");
6865           Reg = FuncInfo.CreateRegs(PHIOp->getType());
6866           CopyValueToVirtualRegister(PHIOp, Reg);
6867         }
6868       }
6869 
6870       // Remember that this register needs to added to the machine PHI node as
6871       // the input for this MBB.
6872       SmallVector<EVT, 4> ValueVTs;
6873       ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6874       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6875         EVT VT = ValueVTs[vti];
6876         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6877         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6878           FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6879         Reg += NumRegisters;
6880       }
6881     }
6882   }
6883   ConstantsOut.clear();
6884 }
6885