1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "isel" 15 #include "SelectionDAGBuilder.h" 16 #include "FunctionLoweringInfo.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Constants.h" 21 #include "llvm/CallingConv.h" 22 #include "llvm/DerivedTypes.h" 23 #include "llvm/Function.h" 24 #include "llvm/GlobalVariable.h" 25 #include "llvm/InlineAsm.h" 26 #include "llvm/Instructions.h" 27 #include "llvm/Intrinsics.h" 28 #include "llvm/IntrinsicInst.h" 29 #include "llvm/LLVMContext.h" 30 #include "llvm/Module.h" 31 #include "llvm/CodeGen/FastISel.h" 32 #include "llvm/CodeGen/GCStrategy.h" 33 #include "llvm/CodeGen/GCMetadata.h" 34 #include "llvm/CodeGen/MachineFunction.h" 35 #include "llvm/CodeGen/MachineFrameInfo.h" 36 #include "llvm/CodeGen/MachineInstrBuilder.h" 37 #include "llvm/CodeGen/MachineJumpTableInfo.h" 38 #include "llvm/CodeGen/MachineModuleInfo.h" 39 #include "llvm/CodeGen/MachineRegisterInfo.h" 40 #include "llvm/CodeGen/PseudoSourceValue.h" 41 #include "llvm/CodeGen/SelectionDAG.h" 42 #include "llvm/CodeGen/DwarfWriter.h" 43 #include "llvm/Analysis/DebugInfo.h" 44 #include "llvm/Target/TargetRegisterInfo.h" 45 #include "llvm/Target/TargetData.h" 46 #include "llvm/Target/TargetFrameInfo.h" 47 #include "llvm/Target/TargetInstrInfo.h" 48 #include "llvm/Target/TargetIntrinsicInfo.h" 49 #include "llvm/Target/TargetLowering.h" 50 #include "llvm/Target/TargetOptions.h" 51 #include "llvm/Support/Compiler.h" 52 #include "llvm/Support/CommandLine.h" 53 #include "llvm/Support/Debug.h" 54 #include "llvm/Support/ErrorHandling.h" 55 #include "llvm/Support/MathExtras.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include <algorithm> 58 using namespace llvm; 59 60 /// LimitFloatPrecision - Generate low-precision inline sequences for 61 /// some float libcalls (6, 8 or 12 bits). 62 static unsigned LimitFloatPrecision; 63 64 static cl::opt<unsigned, true> 65 LimitFPPrecision("limit-float-precision", 66 cl::desc("Generate low-precision inline sequences " 67 "for some float libcalls"), 68 cl::location(LimitFloatPrecision), 69 cl::init(0)); 70 71 namespace { 72 /// RegsForValue - This struct represents the registers (physical or virtual) 73 /// that a particular set of values is assigned, and the type information about 74 /// the value. The most common situation is to represent one value at a time, 75 /// but struct or array values are handled element-wise as multiple values. 76 /// The splitting of aggregates is performed recursively, so that we never 77 /// have aggregate-typed registers. The values at this point do not necessarily 78 /// have legal types, so each value may require one or more registers of some 79 /// legal type. 80 /// 81 struct RegsForValue { 82 /// TLI - The TargetLowering object. 83 /// 84 const TargetLowering *TLI; 85 86 /// ValueVTs - The value types of the values, which may not be legal, and 87 /// may need be promoted or synthesized from one or more registers. 88 /// 89 SmallVector<EVT, 4> ValueVTs; 90 91 /// RegVTs - The value types of the registers. This is the same size as 92 /// ValueVTs and it records, for each value, what the type of the assigned 93 /// register or registers are. (Individual values are never synthesized 94 /// from more than one type of register.) 95 /// 96 /// With virtual registers, the contents of RegVTs is redundant with TLI's 97 /// getRegisterType member function, however when with physical registers 98 /// it is necessary to have a separate record of the types. 99 /// 100 SmallVector<EVT, 4> RegVTs; 101 102 /// Regs - This list holds the registers assigned to the values. 103 /// Each legal or promoted value requires one register, and each 104 /// expanded value requires multiple registers. 105 /// 106 SmallVector<unsigned, 4> Regs; 107 108 RegsForValue() : TLI(0) {} 109 110 RegsForValue(const TargetLowering &tli, 111 const SmallVector<unsigned, 4> ®s, 112 EVT regvt, EVT valuevt) 113 : TLI(&tli), ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 114 RegsForValue(const TargetLowering &tli, 115 const SmallVector<unsigned, 4> ®s, 116 const SmallVector<EVT, 4> ®vts, 117 const SmallVector<EVT, 4> &valuevts) 118 : TLI(&tli), ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {} 119 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 120 unsigned Reg, const Type *Ty) : TLI(&tli) { 121 ComputeValueVTs(tli, Ty, ValueVTs); 122 123 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 124 EVT ValueVT = ValueVTs[Value]; 125 unsigned NumRegs = TLI->getNumRegisters(Context, ValueVT); 126 EVT RegisterVT = TLI->getRegisterType(Context, ValueVT); 127 for (unsigned i = 0; i != NumRegs; ++i) 128 Regs.push_back(Reg + i); 129 RegVTs.push_back(RegisterVT); 130 Reg += NumRegs; 131 } 132 } 133 134 /// append - Add the specified values to this one. 135 void append(const RegsForValue &RHS) { 136 TLI = RHS.TLI; 137 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 138 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 139 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 140 } 141 142 143 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 144 /// this value and returns the result as a ValueVTs value. This uses 145 /// Chain/Flag as the input and updates them for the output Chain/Flag. 146 /// If the Flag pointer is NULL, no flag is used. 147 SDValue getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl, 148 SDValue &Chain, SDValue *Flag) const; 149 150 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 151 /// specified value into the registers specified by this object. This uses 152 /// Chain/Flag as the input and updates them for the output Chain/Flag. 153 /// If the Flag pointer is NULL, no flag is used. 154 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 155 SDValue &Chain, SDValue *Flag) const; 156 157 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 158 /// operand list. This adds the code marker, matching input operand index 159 /// (if applicable), and includes the number of values added into it. 160 void AddInlineAsmOperands(unsigned Code, 161 bool HasMatching, unsigned MatchingIdx, 162 SelectionDAG &DAG, std::vector<SDValue> &Ops) const; 163 }; 164 } 165 166 /// getCopyFromParts - Create a value that contains the specified legal parts 167 /// combined into the value they represent. If the parts combine to a type 168 /// larger then ValueVT then AssertOp can be used to specify whether the extra 169 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 170 /// (ISD::AssertSext). 171 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc dl, 172 const SDValue *Parts, 173 unsigned NumParts, EVT PartVT, EVT ValueVT, 174 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 175 assert(NumParts > 0 && "No parts to assemble!"); 176 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 177 SDValue Val = Parts[0]; 178 179 if (NumParts > 1) { 180 // Assemble the value from multiple parts. 181 if (!ValueVT.isVector() && ValueVT.isInteger()) { 182 unsigned PartBits = PartVT.getSizeInBits(); 183 unsigned ValueBits = ValueVT.getSizeInBits(); 184 185 // Assemble the power of 2 part. 186 unsigned RoundParts = NumParts & (NumParts - 1) ? 187 1 << Log2_32(NumParts) : NumParts; 188 unsigned RoundBits = PartBits * RoundParts; 189 EVT RoundVT = RoundBits == ValueBits ? 190 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 191 SDValue Lo, Hi; 192 193 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 194 195 if (RoundParts > 2) { 196 Lo = getCopyFromParts(DAG, dl, Parts, RoundParts/2, PartVT, HalfVT); 197 Hi = getCopyFromParts(DAG, dl, Parts+RoundParts/2, RoundParts/2, 198 PartVT, HalfVT); 199 } else { 200 Lo = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[0]); 201 Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[1]); 202 } 203 if (TLI.isBigEndian()) 204 std::swap(Lo, Hi); 205 Val = DAG.getNode(ISD::BUILD_PAIR, dl, RoundVT, Lo, Hi); 206 207 if (RoundParts < NumParts) { 208 // Assemble the trailing non-power-of-2 part. 209 unsigned OddParts = NumParts - RoundParts; 210 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 211 Hi = getCopyFromParts(DAG, dl, 212 Parts+RoundParts, OddParts, PartVT, OddVT); 213 214 // Combine the round and odd parts. 215 Lo = Val; 216 if (TLI.isBigEndian()) 217 std::swap(Lo, Hi); 218 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 219 Hi = DAG.getNode(ISD::ANY_EXTEND, dl, TotalVT, Hi); 220 Hi = DAG.getNode(ISD::SHL, dl, TotalVT, Hi, 221 DAG.getConstant(Lo.getValueType().getSizeInBits(), 222 TLI.getPointerTy())); 223 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, TotalVT, Lo); 224 Val = DAG.getNode(ISD::OR, dl, TotalVT, Lo, Hi); 225 } 226 } else if (ValueVT.isVector()) { 227 // Handle a multi-element vector. 228 EVT IntermediateVT, RegisterVT; 229 unsigned NumIntermediates; 230 unsigned NumRegs = 231 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 232 NumIntermediates, RegisterVT); 233 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 234 NumParts = NumRegs; // Silence a compiler warning. 235 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 236 assert(RegisterVT == Parts[0].getValueType() && 237 "Part type doesn't match part!"); 238 239 // Assemble the parts into intermediate operands. 240 SmallVector<SDValue, 8> Ops(NumIntermediates); 241 if (NumIntermediates == NumParts) { 242 // If the register was not expanded, truncate or copy the value, 243 // as appropriate. 244 for (unsigned i = 0; i != NumParts; ++i) 245 Ops[i] = getCopyFromParts(DAG, dl, &Parts[i], 1, 246 PartVT, IntermediateVT); 247 } else if (NumParts > 0) { 248 // If the intermediate type was expanded, build the intermediate operands 249 // from the parts. 250 assert(NumParts % NumIntermediates == 0 && 251 "Must expand into a divisible number of parts!"); 252 unsigned Factor = NumParts / NumIntermediates; 253 for (unsigned i = 0; i != NumIntermediates; ++i) 254 Ops[i] = getCopyFromParts(DAG, dl, &Parts[i * Factor], Factor, 255 PartVT, IntermediateVT); 256 } 257 258 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate 259 // operands. 260 Val = DAG.getNode(IntermediateVT.isVector() ? 261 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, dl, 262 ValueVT, &Ops[0], NumIntermediates); 263 } else if (PartVT.isFloatingPoint()) { 264 // FP split into multiple FP parts (for ppcf128) 265 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) && 266 "Unexpected split"); 267 SDValue Lo, Hi; 268 Lo = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[0]); 269 Hi = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[1]); 270 if (TLI.isBigEndian()) 271 std::swap(Lo, Hi); 272 Val = DAG.getNode(ISD::BUILD_PAIR, dl, ValueVT, Lo, Hi); 273 } else { 274 // FP split into integer parts (soft fp) 275 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 276 !PartVT.isVector() && "Unexpected split"); 277 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 278 Val = getCopyFromParts(DAG, dl, Parts, NumParts, PartVT, IntVT); 279 } 280 } 281 282 // There is now one part, held in Val. Correct it to match ValueVT. 283 PartVT = Val.getValueType(); 284 285 if (PartVT == ValueVT) 286 return Val; 287 288 if (PartVT.isVector()) { 289 assert(ValueVT.isVector() && "Unknown vector conversion!"); 290 return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val); 291 } 292 293 if (ValueVT.isVector()) { 294 assert(ValueVT.getVectorElementType() == PartVT && 295 ValueVT.getVectorNumElements() == 1 && 296 "Only trivial scalar-to-vector conversions should get here!"); 297 return DAG.getNode(ISD::BUILD_VECTOR, dl, ValueVT, Val); 298 } 299 300 if (PartVT.isInteger() && 301 ValueVT.isInteger()) { 302 if (ValueVT.bitsLT(PartVT)) { 303 // For a truncate, see if we have any information to 304 // indicate whether the truncated bits will always be 305 // zero or sign-extension. 306 if (AssertOp != ISD::DELETED_NODE) 307 Val = DAG.getNode(AssertOp, dl, PartVT, Val, 308 DAG.getValueType(ValueVT)); 309 return DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val); 310 } else { 311 return DAG.getNode(ISD::ANY_EXTEND, dl, ValueVT, Val); 312 } 313 } 314 315 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 316 if (ValueVT.bitsLT(Val.getValueType())) 317 // FP_ROUND's are always exact here. 318 return DAG.getNode(ISD::FP_ROUND, dl, ValueVT, Val, 319 DAG.getIntPtrConstant(1)); 320 return DAG.getNode(ISD::FP_EXTEND, dl, ValueVT, Val); 321 } 322 323 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) 324 return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val); 325 326 llvm_unreachable("Unknown mismatch!"); 327 return SDValue(); 328 } 329 330 /// getCopyToParts - Create a series of nodes that contain the specified value 331 /// split into legal parts. If the parts contain more bits than Val, then, for 332 /// integers, ExtendKind can be used to specify how to generate the extra bits. 333 static void getCopyToParts(SelectionDAG &DAG, DebugLoc dl, SDValue Val, 334 SDValue *Parts, unsigned NumParts, EVT PartVT, 335 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 336 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 337 EVT PtrVT = TLI.getPointerTy(); 338 EVT ValueVT = Val.getValueType(); 339 unsigned PartBits = PartVT.getSizeInBits(); 340 unsigned OrigNumParts = NumParts; 341 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 342 343 if (!NumParts) 344 return; 345 346 if (!ValueVT.isVector()) { 347 if (PartVT == ValueVT) { 348 assert(NumParts == 1 && "No-op copy with multiple parts!"); 349 Parts[0] = Val; 350 return; 351 } 352 353 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 354 // If the parts cover more bits than the value has, promote the value. 355 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 356 assert(NumParts == 1 && "Do not know what to promote to!"); 357 Val = DAG.getNode(ISD::FP_EXTEND, dl, PartVT, Val); 358 } else if (PartVT.isInteger() && ValueVT.isInteger()) { 359 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 360 Val = DAG.getNode(ExtendKind, dl, ValueVT, Val); 361 } else { 362 llvm_unreachable("Unknown mismatch!"); 363 } 364 } else if (PartBits == ValueVT.getSizeInBits()) { 365 // Different types of the same size. 366 assert(NumParts == 1 && PartVT != ValueVT); 367 Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val); 368 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 369 // If the parts cover less bits than value has, truncate the value. 370 if (PartVT.isInteger() && ValueVT.isInteger()) { 371 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 372 Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val); 373 } else { 374 llvm_unreachable("Unknown mismatch!"); 375 } 376 } 377 378 // The value may have changed - recompute ValueVT. 379 ValueVT = Val.getValueType(); 380 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 381 "Failed to tile the value with PartVT!"); 382 383 if (NumParts == 1) { 384 assert(PartVT == ValueVT && "Type conversion failed!"); 385 Parts[0] = Val; 386 return; 387 } 388 389 // Expand the value into multiple parts. 390 if (NumParts & (NumParts - 1)) { 391 // The number of parts is not a power of 2. Split off and copy the tail. 392 assert(PartVT.isInteger() && ValueVT.isInteger() && 393 "Do not know what to expand to!"); 394 unsigned RoundParts = 1 << Log2_32(NumParts); 395 unsigned RoundBits = RoundParts * PartBits; 396 unsigned OddParts = NumParts - RoundParts; 397 SDValue OddVal = DAG.getNode(ISD::SRL, dl, ValueVT, Val, 398 DAG.getConstant(RoundBits, 399 TLI.getPointerTy())); 400 getCopyToParts(DAG, dl, OddVal, Parts + RoundParts, OddParts, PartVT); 401 if (TLI.isBigEndian()) 402 // The odd parts were reversed by getCopyToParts - unreverse them. 403 std::reverse(Parts + RoundParts, Parts + NumParts); 404 NumParts = RoundParts; 405 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 406 Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val); 407 } 408 409 // The number of parts is a power of 2. Repeatedly bisect the value using 410 // EXTRACT_ELEMENT. 411 Parts[0] = DAG.getNode(ISD::BIT_CONVERT, dl, 412 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()), 413 Val); 414 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 415 for (unsigned i = 0; i < NumParts; i += StepSize) { 416 unsigned ThisBits = StepSize * PartBits / 2; 417 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 418 SDValue &Part0 = Parts[i]; 419 SDValue &Part1 = Parts[i+StepSize/2]; 420 421 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 422 ThisVT, Part0, 423 DAG.getConstant(1, PtrVT)); 424 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 425 ThisVT, Part0, 426 DAG.getConstant(0, PtrVT)); 427 428 if (ThisBits == PartBits && ThisVT != PartVT) { 429 Part0 = DAG.getNode(ISD::BIT_CONVERT, dl, 430 PartVT, Part0); 431 Part1 = DAG.getNode(ISD::BIT_CONVERT, dl, 432 PartVT, Part1); 433 } 434 } 435 } 436 437 if (TLI.isBigEndian()) 438 std::reverse(Parts, Parts + OrigNumParts); 439 440 return; 441 } 442 443 // Vector ValueVT. 444 if (NumParts == 1) { 445 if (PartVT != ValueVT) { 446 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 447 Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val); 448 } else { 449 assert(ValueVT.getVectorElementType() == PartVT && 450 ValueVT.getVectorNumElements() == 1 && 451 "Only trivial vector-to-scalar conversions should get here!"); 452 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 453 PartVT, Val, 454 DAG.getConstant(0, PtrVT)); 455 } 456 } 457 458 Parts[0] = Val; 459 return; 460 } 461 462 // Handle a multi-element vector. 463 EVT IntermediateVT, RegisterVT; 464 unsigned NumIntermediates; 465 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 466 IntermediateVT, NumIntermediates, RegisterVT); 467 unsigned NumElements = ValueVT.getVectorNumElements(); 468 469 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 470 NumParts = NumRegs; // Silence a compiler warning. 471 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 472 473 // Split the vector into intermediate operands. 474 SmallVector<SDValue, 8> Ops(NumIntermediates); 475 for (unsigned i = 0; i != NumIntermediates; ++i) 476 if (IntermediateVT.isVector()) 477 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, 478 IntermediateVT, Val, 479 DAG.getConstant(i * (NumElements / NumIntermediates), 480 PtrVT)); 481 else 482 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 483 IntermediateVT, Val, 484 DAG.getConstant(i, PtrVT)); 485 486 // Split the intermediate operands into legal parts. 487 if (NumParts == NumIntermediates) { 488 // If the register was not expanded, promote or copy the value, 489 // as appropriate. 490 for (unsigned i = 0; i != NumParts; ++i) 491 getCopyToParts(DAG, dl, Ops[i], &Parts[i], 1, PartVT); 492 } else if (NumParts > 0) { 493 // If the intermediate type was expanded, split each the value into 494 // legal parts. 495 assert(NumParts % NumIntermediates == 0 && 496 "Must expand into a divisible number of parts!"); 497 unsigned Factor = NumParts / NumIntermediates; 498 for (unsigned i = 0; i != NumIntermediates; ++i) 499 getCopyToParts(DAG, dl, Ops[i], &Parts[i * Factor], Factor, PartVT); 500 } 501 } 502 503 504 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) { 505 AA = &aa; 506 GFI = gfi; 507 TD = DAG.getTarget().getTargetData(); 508 } 509 510 /// clear - Clear out the curret SelectionDAG and the associated 511 /// state and prepare this SelectionDAGBuilder object to be used 512 /// for a new block. This doesn't clear out information about 513 /// additional blocks that are needed to complete switch lowering 514 /// or PHI node updating; that information is cleared out as it is 515 /// consumed. 516 void SelectionDAGBuilder::clear() { 517 NodeMap.clear(); 518 PendingLoads.clear(); 519 PendingExports.clear(); 520 EdgeMapping.clear(); 521 DAG.clear(); 522 CurDebugLoc = DebugLoc::getUnknownLoc(); 523 HasTailCall = false; 524 } 525 526 /// getRoot - Return the current virtual root of the Selection DAG, 527 /// flushing any PendingLoad items. This must be done before emitting 528 /// a store or any other node that may need to be ordered after any 529 /// prior load instructions. 530 /// 531 SDValue SelectionDAGBuilder::getRoot() { 532 if (PendingLoads.empty()) 533 return DAG.getRoot(); 534 535 if (PendingLoads.size() == 1) { 536 SDValue Root = PendingLoads[0]; 537 DAG.setRoot(Root); 538 PendingLoads.clear(); 539 return Root; 540 } 541 542 // Otherwise, we have to make a token factor node. 543 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 544 &PendingLoads[0], PendingLoads.size()); 545 PendingLoads.clear(); 546 DAG.setRoot(Root); 547 return Root; 548 } 549 550 /// getControlRoot - Similar to getRoot, but instead of flushing all the 551 /// PendingLoad items, flush all the PendingExports items. It is necessary 552 /// to do this before emitting a terminator instruction. 553 /// 554 SDValue SelectionDAGBuilder::getControlRoot() { 555 SDValue Root = DAG.getRoot(); 556 557 if (PendingExports.empty()) 558 return Root; 559 560 // Turn all of the CopyToReg chains into one factored node. 561 if (Root.getOpcode() != ISD::EntryToken) { 562 unsigned i = 0, e = PendingExports.size(); 563 for (; i != e; ++i) { 564 assert(PendingExports[i].getNode()->getNumOperands() > 1); 565 if (PendingExports[i].getNode()->getOperand(0) == Root) 566 break; // Don't add the root if we already indirectly depend on it. 567 } 568 569 if (i == e) 570 PendingExports.push_back(Root); 571 } 572 573 Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 574 &PendingExports[0], 575 PendingExports.size()); 576 PendingExports.clear(); 577 DAG.setRoot(Root); 578 return Root; 579 } 580 581 void SelectionDAGBuilder::visit(Instruction &I) { 582 visit(I.getOpcode(), I); 583 } 584 585 void SelectionDAGBuilder::visit(unsigned Opcode, User &I) { 586 // We're processing a new instruction. 587 ++SDNodeOrder; 588 589 SDNode *PrevNode = DAG.getRoot().getNode(); 590 591 // Note: this doesn't use InstVisitor, because it has to work with 592 // ConstantExpr's in addition to instructions. 593 switch (Opcode) { 594 default: llvm_unreachable("Unknown instruction type encountered!"); 595 // Build the switch statement using the Instruction.def file. 596 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 597 case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break; 598 #include "llvm/Instruction.def" 599 } 600 601 if (DisableScheduling && DAG.getRoot().getNode() != PrevNode) 602 DAG.AssignOrdering(DAG.getRoot().getNode(), SDNodeOrder); 603 } 604 605 SDValue SelectionDAGBuilder::getValue(const Value *V) { 606 SDValue &N = NodeMap[V]; 607 if (N.getNode()) return N; 608 609 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) { 610 EVT VT = TLI.getValueType(V->getType(), true); 611 612 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 613 return N = DAG.getConstant(*CI, VT); 614 615 if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) 616 return N = DAG.getGlobalAddress(GV, VT); 617 618 if (isa<ConstantPointerNull>(C)) 619 return N = DAG.getConstant(0, TLI.getPointerTy()); 620 621 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 622 return N = DAG.getConstantFP(*CFP, VT); 623 624 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 625 return N = DAG.getUNDEF(VT); 626 627 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 628 visit(CE->getOpcode(), *CE); 629 SDValue N1 = NodeMap[V]; 630 assert(N1.getNode() && "visit didn't populate the ValueMap!"); 631 return N1; 632 } 633 634 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 635 SmallVector<SDValue, 4> Constants; 636 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 637 OI != OE; ++OI) { 638 SDNode *Val = getValue(*OI).getNode(); 639 // If the operand is an empty aggregate, there are no values. 640 if (!Val) continue; 641 // Add each leaf value from the operand to the Constants list 642 // to form a flattened list of all the values. 643 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 644 Constants.push_back(SDValue(Val, i)); 645 } 646 return DAG.getMergeValues(&Constants[0], Constants.size(), 647 getCurDebugLoc()); 648 } 649 650 if (isa<StructType>(C->getType()) || isa<ArrayType>(C->getType())) { 651 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 652 "Unknown struct or array constant!"); 653 654 SmallVector<EVT, 4> ValueVTs; 655 ComputeValueVTs(TLI, C->getType(), ValueVTs); 656 unsigned NumElts = ValueVTs.size(); 657 if (NumElts == 0) 658 return SDValue(); // empty struct 659 SmallVector<SDValue, 4> Constants(NumElts); 660 for (unsigned i = 0; i != NumElts; ++i) { 661 EVT EltVT = ValueVTs[i]; 662 if (isa<UndefValue>(C)) 663 Constants[i] = DAG.getUNDEF(EltVT); 664 else if (EltVT.isFloatingPoint()) 665 Constants[i] = DAG.getConstantFP(0, EltVT); 666 else 667 Constants[i] = DAG.getConstant(0, EltVT); 668 } 669 return DAG.getMergeValues(&Constants[0], NumElts, getCurDebugLoc()); 670 } 671 672 if (BlockAddress *BA = dyn_cast<BlockAddress>(C)) 673 return DAG.getBlockAddress(BA, VT); 674 675 const VectorType *VecTy = cast<VectorType>(V->getType()); 676 unsigned NumElements = VecTy->getNumElements(); 677 678 // Now that we know the number and type of the elements, get that number of 679 // elements into the Ops array based on what kind of constant it is. 680 SmallVector<SDValue, 16> Ops; 681 if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) { 682 for (unsigned i = 0; i != NumElements; ++i) 683 Ops.push_back(getValue(CP->getOperand(i))); 684 } else { 685 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 686 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 687 688 SDValue Op; 689 if (EltVT.isFloatingPoint()) 690 Op = DAG.getConstantFP(0, EltVT); 691 else 692 Op = DAG.getConstant(0, EltVT); 693 Ops.assign(NumElements, Op); 694 } 695 696 // Create a BUILD_VECTOR node. 697 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 698 VT, &Ops[0], Ops.size()); 699 } 700 701 // If this is a static alloca, generate it as the frameindex instead of 702 // computation. 703 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 704 DenseMap<const AllocaInst*, int>::iterator SI = 705 FuncInfo.StaticAllocaMap.find(AI); 706 if (SI != FuncInfo.StaticAllocaMap.end()) 707 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 708 } 709 710 unsigned InReg = FuncInfo.ValueMap[V]; 711 assert(InReg && "Value not in map!"); 712 713 RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType()); 714 SDValue Chain = DAG.getEntryNode(); 715 return RFV.getCopyFromRegs(DAG, getCurDebugLoc(), Chain, NULL); 716 } 717 718 /// Get the EVTs and ArgFlags collections that represent the return type 719 /// of the given function. This does not require a DAG or a return value, and 720 /// is suitable for use before any DAGs for the function are constructed. 721 static void getReturnInfo(const Type* ReturnType, 722 Attributes attr, SmallVectorImpl<EVT> &OutVTs, 723 SmallVectorImpl<ISD::ArgFlagsTy> &OutFlags, 724 TargetLowering &TLI, 725 SmallVectorImpl<uint64_t> *Offsets = 0) { 726 SmallVector<EVT, 4> ValueVTs; 727 ComputeValueVTs(TLI, ReturnType, ValueVTs, Offsets); 728 unsigned NumValues = ValueVTs.size(); 729 if ( NumValues == 0 ) return; 730 731 for (unsigned j = 0, f = NumValues; j != f; ++j) { 732 EVT VT = ValueVTs[j]; 733 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 734 735 if (attr & Attribute::SExt) 736 ExtendKind = ISD::SIGN_EXTEND; 737 else if (attr & Attribute::ZExt) 738 ExtendKind = ISD::ZERO_EXTEND; 739 740 // FIXME: C calling convention requires the return type to be promoted to 741 // at least 32-bit. But this is not necessary for non-C calling 742 // conventions. The frontend should mark functions whose return values 743 // require promoting with signext or zeroext attributes. 744 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { 745 EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32); 746 if (VT.bitsLT(MinVT)) 747 VT = MinVT; 748 } 749 750 unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT); 751 EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT); 752 // 'inreg' on function refers to return value 753 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 754 if (attr & Attribute::InReg) 755 Flags.setInReg(); 756 757 // Propagate extension type if any 758 if (attr & Attribute::SExt) 759 Flags.setSExt(); 760 else if (attr & Attribute::ZExt) 761 Flags.setZExt(); 762 763 for (unsigned i = 0; i < NumParts; ++i) { 764 OutVTs.push_back(PartVT); 765 OutFlags.push_back(Flags); 766 } 767 } 768 } 769 770 void SelectionDAGBuilder::visitRet(ReturnInst &I) { 771 SDValue Chain = getControlRoot(); 772 SmallVector<ISD::OutputArg, 8> Outs; 773 FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo(); 774 775 if (!FLI.CanLowerReturn) { 776 unsigned DemoteReg = FLI.DemoteRegister; 777 const Function *F = I.getParent()->getParent(); 778 779 // Emit a store of the return value through the virtual register. 780 // Leave Outs empty so that LowerReturn won't try to load return 781 // registers the usual way. 782 SmallVector<EVT, 1> PtrValueVTs; 783 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 784 PtrValueVTs); 785 786 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 787 SDValue RetOp = getValue(I.getOperand(0)); 788 789 SmallVector<EVT, 4> ValueVTs; 790 SmallVector<uint64_t, 4> Offsets; 791 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 792 unsigned NumValues = ValueVTs.size(); 793 794 SmallVector<SDValue, 4> Chains(NumValues); 795 EVT PtrVT = PtrValueVTs[0]; 796 for (unsigned i = 0; i != NumValues; ++i) 797 Chains[i] = DAG.getStore(Chain, getCurDebugLoc(), 798 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 799 DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, RetPtr, 800 DAG.getConstant(Offsets[i], PtrVT)), 801 NULL, Offsets[i], false, 0); 802 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 803 MVT::Other, &Chains[0], NumValues); 804 } 805 else { 806 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 807 SmallVector<EVT, 4> ValueVTs; 808 ComputeValueVTs(TLI, I.getOperand(i)->getType(), ValueVTs); 809 unsigned NumValues = ValueVTs.size(); 810 if (NumValues == 0) continue; 811 812 SDValue RetOp = getValue(I.getOperand(i)); 813 for (unsigned j = 0, f = NumValues; j != f; ++j) { 814 EVT VT = ValueVTs[j]; 815 816 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 817 818 const Function *F = I.getParent()->getParent(); 819 if (F->paramHasAttr(0, Attribute::SExt)) 820 ExtendKind = ISD::SIGN_EXTEND; 821 else if (F->paramHasAttr(0, Attribute::ZExt)) 822 ExtendKind = ISD::ZERO_EXTEND; 823 824 // FIXME: C calling convention requires the return type to be promoted to 825 // at least 32-bit. But this is not necessary for non-C calling 826 // conventions. The frontend should mark functions whose return values 827 // require promoting with signext or zeroext attributes. 828 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { 829 EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32); 830 if (VT.bitsLT(MinVT)) 831 VT = MinVT; 832 } 833 834 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT); 835 EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT); 836 SmallVector<SDValue, 4> Parts(NumParts); 837 getCopyToParts(DAG, getCurDebugLoc(), 838 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 839 &Parts[0], NumParts, PartVT, ExtendKind); 840 841 // 'inreg' on function refers to return value 842 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 843 if (F->paramHasAttr(0, Attribute::InReg)) 844 Flags.setInReg(); 845 846 // Propagate extension type if any 847 if (F->paramHasAttr(0, Attribute::SExt)) 848 Flags.setSExt(); 849 else if (F->paramHasAttr(0, Attribute::ZExt)) 850 Flags.setZExt(); 851 852 for (unsigned i = 0; i < NumParts; ++i) 853 Outs.push_back(ISD::OutputArg(Flags, Parts[i], /*isfixed=*/true)); 854 } 855 } 856 } 857 858 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 859 CallingConv::ID CallConv = 860 DAG.getMachineFunction().getFunction()->getCallingConv(); 861 Chain = TLI.LowerReturn(Chain, CallConv, isVarArg, 862 Outs, getCurDebugLoc(), DAG); 863 864 // Verify that the target's LowerReturn behaved as expected. 865 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 866 "LowerReturn didn't return a valid chain!"); 867 868 // Update the DAG with the new chain value resulting from return lowering. 869 DAG.setRoot(Chain); 870 } 871 872 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 873 /// created for it, emit nodes to copy the value into the virtual 874 /// registers. 875 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(Value *V) { 876 if (!V->use_empty()) { 877 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 878 if (VMI != FuncInfo.ValueMap.end()) 879 CopyValueToVirtualRegister(V, VMI->second); 880 } 881 } 882 883 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 884 /// the current basic block, add it to ValueMap now so that we'll get a 885 /// CopyTo/FromReg. 886 void SelectionDAGBuilder::ExportFromCurrentBlock(Value *V) { 887 // No need to export constants. 888 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 889 890 // Already exported? 891 if (FuncInfo.isExportedInst(V)) return; 892 893 unsigned Reg = FuncInfo.InitializeRegForValue(V); 894 CopyValueToVirtualRegister(V, Reg); 895 } 896 897 bool SelectionDAGBuilder::isExportableFromCurrentBlock(Value *V, 898 const BasicBlock *FromBB) { 899 // The operands of the setcc have to be in this block. We don't know 900 // how to export them from some other block. 901 if (Instruction *VI = dyn_cast<Instruction>(V)) { 902 // Can export from current BB. 903 if (VI->getParent() == FromBB) 904 return true; 905 906 // Is already exported, noop. 907 return FuncInfo.isExportedInst(V); 908 } 909 910 // If this is an argument, we can export it if the BB is the entry block or 911 // if it is already exported. 912 if (isa<Argument>(V)) { 913 if (FromBB == &FromBB->getParent()->getEntryBlock()) 914 return true; 915 916 // Otherwise, can only export this if it is already exported. 917 return FuncInfo.isExportedInst(V); 918 } 919 920 // Otherwise, constants can always be exported. 921 return true; 922 } 923 924 static bool InBlock(const Value *V, const BasicBlock *BB) { 925 if (const Instruction *I = dyn_cast<Instruction>(V)) 926 return I->getParent() == BB; 927 return true; 928 } 929 930 /// getFCmpCondCode - Return the ISD condition code corresponding to 931 /// the given LLVM IR floating-point condition code. This includes 932 /// consideration of global floating-point math flags. 933 /// 934 static ISD::CondCode getFCmpCondCode(FCmpInst::Predicate Pred) { 935 ISD::CondCode FPC, FOC; 936 switch (Pred) { 937 case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break; 938 case FCmpInst::FCMP_OEQ: FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break; 939 case FCmpInst::FCMP_OGT: FOC = ISD::SETGT; FPC = ISD::SETOGT; break; 940 case FCmpInst::FCMP_OGE: FOC = ISD::SETGE; FPC = ISD::SETOGE; break; 941 case FCmpInst::FCMP_OLT: FOC = ISD::SETLT; FPC = ISD::SETOLT; break; 942 case FCmpInst::FCMP_OLE: FOC = ISD::SETLE; FPC = ISD::SETOLE; break; 943 case FCmpInst::FCMP_ONE: FOC = ISD::SETNE; FPC = ISD::SETONE; break; 944 case FCmpInst::FCMP_ORD: FOC = FPC = ISD::SETO; break; 945 case FCmpInst::FCMP_UNO: FOC = FPC = ISD::SETUO; break; 946 case FCmpInst::FCMP_UEQ: FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break; 947 case FCmpInst::FCMP_UGT: FOC = ISD::SETGT; FPC = ISD::SETUGT; break; 948 case FCmpInst::FCMP_UGE: FOC = ISD::SETGE; FPC = ISD::SETUGE; break; 949 case FCmpInst::FCMP_ULT: FOC = ISD::SETLT; FPC = ISD::SETULT; break; 950 case FCmpInst::FCMP_ULE: FOC = ISD::SETLE; FPC = ISD::SETULE; break; 951 case FCmpInst::FCMP_UNE: FOC = ISD::SETNE; FPC = ISD::SETUNE; break; 952 case FCmpInst::FCMP_TRUE: FOC = FPC = ISD::SETTRUE; break; 953 default: 954 llvm_unreachable("Invalid FCmp predicate opcode!"); 955 FOC = FPC = ISD::SETFALSE; 956 break; 957 } 958 if (FiniteOnlyFPMath()) 959 return FOC; 960 else 961 return FPC; 962 } 963 964 /// getICmpCondCode - Return the ISD condition code corresponding to 965 /// the given LLVM IR integer condition code. 966 /// 967 static ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred) { 968 switch (Pred) { 969 case ICmpInst::ICMP_EQ: return ISD::SETEQ; 970 case ICmpInst::ICMP_NE: return ISD::SETNE; 971 case ICmpInst::ICMP_SLE: return ISD::SETLE; 972 case ICmpInst::ICMP_ULE: return ISD::SETULE; 973 case ICmpInst::ICMP_SGE: return ISD::SETGE; 974 case ICmpInst::ICMP_UGE: return ISD::SETUGE; 975 case ICmpInst::ICMP_SLT: return ISD::SETLT; 976 case ICmpInst::ICMP_ULT: return ISD::SETULT; 977 case ICmpInst::ICMP_SGT: return ISD::SETGT; 978 case ICmpInst::ICMP_UGT: return ISD::SETUGT; 979 default: 980 llvm_unreachable("Invalid ICmp predicate opcode!"); 981 return ISD::SETNE; 982 } 983 } 984 985 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 986 /// This function emits a branch and is used at the leaves of an OR or an 987 /// AND operator tree. 988 /// 989 void 990 SelectionDAGBuilder::EmitBranchForMergedCondition(Value *Cond, 991 MachineBasicBlock *TBB, 992 MachineBasicBlock *FBB, 993 MachineBasicBlock *CurBB) { 994 const BasicBlock *BB = CurBB->getBasicBlock(); 995 996 // If the leaf of the tree is a comparison, merge the condition into 997 // the caseblock. 998 if (CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 999 // The operands of the cmp have to be in this block. We don't know 1000 // how to export them from some other block. If this is the first block 1001 // of the sequence, no exporting is needed. 1002 if (CurBB == CurMBB || 1003 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1004 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1005 ISD::CondCode Condition; 1006 if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1007 Condition = getICmpCondCode(IC->getPredicate()); 1008 } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1009 Condition = getFCmpCondCode(FC->getPredicate()); 1010 } else { 1011 Condition = ISD::SETEQ; // silence warning. 1012 llvm_unreachable("Unknown compare instruction"); 1013 } 1014 1015 CaseBlock CB(Condition, BOp->getOperand(0), 1016 BOp->getOperand(1), NULL, TBB, FBB, CurBB); 1017 SwitchCases.push_back(CB); 1018 return; 1019 } 1020 } 1021 1022 // Create a CaseBlock record representing this branch. 1023 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1024 NULL, TBB, FBB, CurBB); 1025 SwitchCases.push_back(CB); 1026 } 1027 1028 /// FindMergedConditions - If Cond is an expression like 1029 void SelectionDAGBuilder::FindMergedConditions(Value *Cond, 1030 MachineBasicBlock *TBB, 1031 MachineBasicBlock *FBB, 1032 MachineBasicBlock *CurBB, 1033 unsigned Opc) { 1034 // If this node is not part of the or/and tree, emit it as a branch. 1035 Instruction *BOp = dyn_cast<Instruction>(Cond); 1036 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1037 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1038 BOp->getParent() != CurBB->getBasicBlock() || 1039 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1040 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1041 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB); 1042 return; 1043 } 1044 1045 // Create TmpBB after CurBB. 1046 MachineFunction::iterator BBI = CurBB; 1047 MachineFunction &MF = DAG.getMachineFunction(); 1048 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1049 CurBB->getParent()->insert(++BBI, TmpBB); 1050 1051 if (Opc == Instruction::Or) { 1052 // Codegen X | Y as: 1053 // jmp_if_X TBB 1054 // jmp TmpBB 1055 // TmpBB: 1056 // jmp_if_Y TBB 1057 // jmp FBB 1058 // 1059 1060 // Emit the LHS condition. 1061 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc); 1062 1063 // Emit the RHS condition into TmpBB. 1064 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc); 1065 } else { 1066 assert(Opc == Instruction::And && "Unknown merge op!"); 1067 // Codegen X & Y as: 1068 // jmp_if_X TmpBB 1069 // jmp FBB 1070 // TmpBB: 1071 // jmp_if_Y TBB 1072 // jmp FBB 1073 // 1074 // This requires creation of TmpBB after CurBB. 1075 1076 // Emit the LHS condition. 1077 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc); 1078 1079 // Emit the RHS condition into TmpBB. 1080 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc); 1081 } 1082 } 1083 1084 /// If the set of cases should be emitted as a series of branches, return true. 1085 /// If we should emit this as a bunch of and/or'd together conditions, return 1086 /// false. 1087 bool 1088 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){ 1089 if (Cases.size() != 2) return true; 1090 1091 // If this is two comparisons of the same values or'd or and'd together, they 1092 // will get folded into a single comparison, so don't emit two blocks. 1093 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1094 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1095 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1096 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1097 return false; 1098 } 1099 1100 return true; 1101 } 1102 1103 void SelectionDAGBuilder::visitBr(BranchInst &I) { 1104 // Update machine-CFG edges. 1105 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1106 1107 // Figure out which block is immediately after the current one. 1108 MachineBasicBlock *NextBlock = 0; 1109 MachineFunction::iterator BBI = CurMBB; 1110 if (++BBI != FuncInfo.MF->end()) 1111 NextBlock = BBI; 1112 1113 if (I.isUnconditional()) { 1114 // Update machine-CFG edges. 1115 CurMBB->addSuccessor(Succ0MBB); 1116 1117 // If this is not a fall-through branch, emit the branch. 1118 if (Succ0MBB != NextBlock) 1119 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1120 MVT::Other, getControlRoot(), 1121 DAG.getBasicBlock(Succ0MBB))); 1122 return; 1123 } 1124 1125 // If this condition is one of the special cases we handle, do special stuff 1126 // now. 1127 Value *CondVal = I.getCondition(); 1128 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1129 1130 // If this is a series of conditions that are or'd or and'd together, emit 1131 // this as a sequence of branches instead of setcc's with and/or operations. 1132 // For example, instead of something like: 1133 // cmp A, B 1134 // C = seteq 1135 // cmp D, E 1136 // F = setle 1137 // or C, F 1138 // jnz foo 1139 // Emit: 1140 // cmp A, B 1141 // je foo 1142 // cmp D, E 1143 // jle foo 1144 // 1145 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1146 if (BOp->hasOneUse() && 1147 (BOp->getOpcode() == Instruction::And || 1148 BOp->getOpcode() == Instruction::Or)) { 1149 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode()); 1150 // If the compares in later blocks need to use values not currently 1151 // exported from this block, export them now. This block should always 1152 // be the first entry. 1153 assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!"); 1154 1155 // Allow some cases to be rejected. 1156 if (ShouldEmitAsBranches(SwitchCases)) { 1157 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1158 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1159 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1160 } 1161 1162 // Emit the branch for this block. 1163 visitSwitchCase(SwitchCases[0]); 1164 SwitchCases.erase(SwitchCases.begin()); 1165 return; 1166 } 1167 1168 // Okay, we decided not to do this, remove any inserted MBB's and clear 1169 // SwitchCases. 1170 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1171 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1172 1173 SwitchCases.clear(); 1174 } 1175 } 1176 1177 // Create a CaseBlock record representing this branch. 1178 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1179 NULL, Succ0MBB, Succ1MBB, CurMBB); 1180 // Use visitSwitchCase to actually insert the fast branch sequence for this 1181 // cond branch. 1182 visitSwitchCase(CB); 1183 } 1184 1185 /// visitSwitchCase - Emits the necessary code to represent a single node in 1186 /// the binary search tree resulting from lowering a switch instruction. 1187 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB) { 1188 SDValue Cond; 1189 SDValue CondLHS = getValue(CB.CmpLHS); 1190 DebugLoc dl = getCurDebugLoc(); 1191 1192 // Build the setcc now. 1193 if (CB.CmpMHS == NULL) { 1194 // Fold "(X == true)" to X and "(X == false)" to !X to 1195 // handle common cases produced by branch lowering. 1196 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1197 CB.CC == ISD::SETEQ) 1198 Cond = CondLHS; 1199 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1200 CB.CC == ISD::SETEQ) { 1201 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1202 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1203 } else 1204 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1205 } else { 1206 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1207 1208 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1209 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1210 1211 SDValue CmpOp = getValue(CB.CmpMHS); 1212 EVT VT = CmpOp.getValueType(); 1213 1214 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1215 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1216 ISD::SETLE); 1217 } else { 1218 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1219 VT, CmpOp, DAG.getConstant(Low, VT)); 1220 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1221 DAG.getConstant(High-Low, VT), ISD::SETULE); 1222 } 1223 } 1224 1225 // Update successor info 1226 CurMBB->addSuccessor(CB.TrueBB); 1227 CurMBB->addSuccessor(CB.FalseBB); 1228 1229 // Set NextBlock to be the MBB immediately after the current one, if any. 1230 // This is used to avoid emitting unnecessary branches to the next block. 1231 MachineBasicBlock *NextBlock = 0; 1232 MachineFunction::iterator BBI = CurMBB; 1233 if (++BBI != FuncInfo.MF->end()) 1234 NextBlock = BBI; 1235 1236 // If the lhs block is the next block, invert the condition so that we can 1237 // fall through to the lhs instead of the rhs block. 1238 if (CB.TrueBB == NextBlock) { 1239 std::swap(CB.TrueBB, CB.FalseBB); 1240 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1241 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1242 } 1243 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1244 MVT::Other, getControlRoot(), Cond, 1245 DAG.getBasicBlock(CB.TrueBB)); 1246 1247 // If the branch was constant folded, fix up the CFG. 1248 if (BrCond.getOpcode() == ISD::BR) { 1249 CurMBB->removeSuccessor(CB.FalseBB); 1250 DAG.setRoot(BrCond); 1251 } else { 1252 // Otherwise, go ahead and insert the false branch. 1253 if (BrCond == getControlRoot()) 1254 CurMBB->removeSuccessor(CB.TrueBB); 1255 1256 if (CB.FalseBB == NextBlock) 1257 DAG.setRoot(BrCond); 1258 else 1259 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1260 DAG.getBasicBlock(CB.FalseBB))); 1261 } 1262 } 1263 1264 /// visitJumpTable - Emit JumpTable node in the current MBB 1265 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1266 // Emit the code for the jump table 1267 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1268 EVT PTy = TLI.getPointerTy(); 1269 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1270 JT.Reg, PTy); 1271 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1272 DAG.setRoot(DAG.getNode(ISD::BR_JT, getCurDebugLoc(), 1273 MVT::Other, Index.getValue(1), 1274 Table, Index)); 1275 } 1276 1277 /// visitJumpTableHeader - This function emits necessary code to produce index 1278 /// in the JumpTable from switch case. 1279 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1280 JumpTableHeader &JTH) { 1281 // Subtract the lowest switch case value from the value being switched on and 1282 // conditional branch to default mbb if the result is greater than the 1283 // difference between smallest and largest cases. 1284 SDValue SwitchOp = getValue(JTH.SValue); 1285 EVT VT = SwitchOp.getValueType(); 1286 SDValue SUB = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1287 DAG.getConstant(JTH.First, VT)); 1288 1289 // The SDNode we just created, which holds the value being switched on minus 1290 // the the smallest case value, needs to be copied to a virtual register so it 1291 // can be used as an index into the jump table in a subsequent basic block. 1292 // This value may be smaller or larger than the target's pointer type, and 1293 // therefore require extension or truncating. 1294 SwitchOp = DAG.getZExtOrTrunc(SUB, getCurDebugLoc(), TLI.getPointerTy()); 1295 1296 unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy()); 1297 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1298 JumpTableReg, SwitchOp); 1299 JT.Reg = JumpTableReg; 1300 1301 // Emit the range check for the jump table, and branch to the default block 1302 // for the switch statement if the value being switched on exceeds the largest 1303 // case in the switch. 1304 SDValue CMP = DAG.getSetCC(getCurDebugLoc(), 1305 TLI.getSetCCResultType(SUB.getValueType()), SUB, 1306 DAG.getConstant(JTH.Last-JTH.First,VT), 1307 ISD::SETUGT); 1308 1309 // Set NextBlock to be the MBB immediately after the current one, if any. 1310 // This is used to avoid emitting unnecessary branches to the next block. 1311 MachineBasicBlock *NextBlock = 0; 1312 MachineFunction::iterator BBI = CurMBB; 1313 if (++BBI != FuncInfo.MF->end()) 1314 NextBlock = BBI; 1315 1316 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1317 MVT::Other, CopyTo, CMP, 1318 DAG.getBasicBlock(JT.Default)); 1319 1320 if (JT.MBB == NextBlock) 1321 DAG.setRoot(BrCond); 1322 else 1323 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond, 1324 DAG.getBasicBlock(JT.MBB))); 1325 } 1326 1327 /// visitBitTestHeader - This function emits necessary code to produce value 1328 /// suitable for "bit tests" 1329 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B) { 1330 // Subtract the minimum value 1331 SDValue SwitchOp = getValue(B.SValue); 1332 EVT VT = SwitchOp.getValueType(); 1333 SDValue SUB = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1334 DAG.getConstant(B.First, VT)); 1335 1336 // Check range 1337 SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(), 1338 TLI.getSetCCResultType(SUB.getValueType()), 1339 SUB, DAG.getConstant(B.Range, VT), 1340 ISD::SETUGT); 1341 1342 SDValue ShiftOp = DAG.getZExtOrTrunc(SUB, getCurDebugLoc(), TLI.getPointerTy()); 1343 1344 B.Reg = FuncInfo.MakeReg(TLI.getPointerTy()); 1345 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1346 B.Reg, ShiftOp); 1347 1348 // Set NextBlock to be the MBB immediately after the current one, if any. 1349 // This is used to avoid emitting unnecessary branches to the next block. 1350 MachineBasicBlock *NextBlock = 0; 1351 MachineFunction::iterator BBI = CurMBB; 1352 if (++BBI != FuncInfo.MF->end()) 1353 NextBlock = BBI; 1354 1355 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1356 1357 CurMBB->addSuccessor(B.Default); 1358 CurMBB->addSuccessor(MBB); 1359 1360 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1361 MVT::Other, CopyTo, RangeCmp, 1362 DAG.getBasicBlock(B.Default)); 1363 1364 if (MBB == NextBlock) 1365 DAG.setRoot(BrRange); 1366 else 1367 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo, 1368 DAG.getBasicBlock(MBB))); 1369 } 1370 1371 /// visitBitTestCase - this function produces one "bit test" 1372 void SelectionDAGBuilder::visitBitTestCase(MachineBasicBlock* NextMBB, 1373 unsigned Reg, 1374 BitTestCase &B) { 1375 // Make desired shift 1376 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg, 1377 TLI.getPointerTy()); 1378 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), 1379 TLI.getPointerTy(), 1380 DAG.getConstant(1, TLI.getPointerTy()), 1381 ShiftOp); 1382 1383 // Emit bit tests and jumps 1384 SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(), 1385 TLI.getPointerTy(), SwitchVal, 1386 DAG.getConstant(B.Mask, TLI.getPointerTy())); 1387 SDValue AndCmp = DAG.getSetCC(getCurDebugLoc(), 1388 TLI.getSetCCResultType(AndOp.getValueType()), 1389 AndOp, DAG.getConstant(0, TLI.getPointerTy()), 1390 ISD::SETNE); 1391 1392 CurMBB->addSuccessor(B.TargetBB); 1393 CurMBB->addSuccessor(NextMBB); 1394 1395 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1396 MVT::Other, getControlRoot(), 1397 AndCmp, DAG.getBasicBlock(B.TargetBB)); 1398 1399 // Set NextBlock to be the MBB immediately after the current one, if any. 1400 // This is used to avoid emitting unnecessary branches to the next block. 1401 MachineBasicBlock *NextBlock = 0; 1402 MachineFunction::iterator BBI = CurMBB; 1403 if (++BBI != FuncInfo.MF->end()) 1404 NextBlock = BBI; 1405 1406 if (NextMBB == NextBlock) 1407 DAG.setRoot(BrAnd); 1408 else 1409 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd, 1410 DAG.getBasicBlock(NextMBB))); 1411 } 1412 1413 void SelectionDAGBuilder::visitInvoke(InvokeInst &I) { 1414 // Retrieve successors. 1415 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1416 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1417 1418 const Value *Callee(I.getCalledValue()); 1419 if (isa<InlineAsm>(Callee)) 1420 visitInlineAsm(&I); 1421 else 1422 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1423 1424 // If the value of the invoke is used outside of its defining block, make it 1425 // available as a virtual register. 1426 CopyToExportRegsIfNeeded(&I); 1427 1428 // Update successor info 1429 CurMBB->addSuccessor(Return); 1430 CurMBB->addSuccessor(LandingPad); 1431 1432 // Drop into normal successor. 1433 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1434 MVT::Other, getControlRoot(), 1435 DAG.getBasicBlock(Return))); 1436 } 1437 1438 void SelectionDAGBuilder::visitUnwind(UnwindInst &I) { 1439 } 1440 1441 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 1442 /// small case ranges). 1443 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 1444 CaseRecVector& WorkList, 1445 Value* SV, 1446 MachineBasicBlock* Default) { 1447 Case& BackCase = *(CR.Range.second-1); 1448 1449 // Size is the number of Cases represented by this range. 1450 size_t Size = CR.Range.second - CR.Range.first; 1451 if (Size > 3) 1452 return false; 1453 1454 // Get the MachineFunction which holds the current MBB. This is used when 1455 // inserting any additional MBBs necessary to represent the switch. 1456 MachineFunction *CurMF = FuncInfo.MF; 1457 1458 // Figure out which block is immediately after the current one. 1459 MachineBasicBlock *NextBlock = 0; 1460 MachineFunction::iterator BBI = CR.CaseBB; 1461 1462 if (++BBI != FuncInfo.MF->end()) 1463 NextBlock = BBI; 1464 1465 // TODO: If any two of the cases has the same destination, and if one value 1466 // is the same as the other, but has one bit unset that the other has set, 1467 // use bit manipulation to do two compares at once. For example: 1468 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 1469 1470 // Rearrange the case blocks so that the last one falls through if possible. 1471 if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 1472 // The last case block won't fall through into 'NextBlock' if we emit the 1473 // branches in this order. See if rearranging a case value would help. 1474 for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) { 1475 if (I->BB == NextBlock) { 1476 std::swap(*I, BackCase); 1477 break; 1478 } 1479 } 1480 } 1481 1482 // Create a CaseBlock record representing a conditional branch to 1483 // the Case's target mbb if the value being switched on SV is equal 1484 // to C. 1485 MachineBasicBlock *CurBlock = CR.CaseBB; 1486 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 1487 MachineBasicBlock *FallThrough; 1488 if (I != E-1) { 1489 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 1490 CurMF->insert(BBI, FallThrough); 1491 1492 // Put SV in a virtual register to make it available from the new blocks. 1493 ExportFromCurrentBlock(SV); 1494 } else { 1495 // If the last case doesn't match, go to the default block. 1496 FallThrough = Default; 1497 } 1498 1499 Value *RHS, *LHS, *MHS; 1500 ISD::CondCode CC; 1501 if (I->High == I->Low) { 1502 // This is just small small case range :) containing exactly 1 case 1503 CC = ISD::SETEQ; 1504 LHS = SV; RHS = I->High; MHS = NULL; 1505 } else { 1506 CC = ISD::SETLE; 1507 LHS = I->Low; MHS = SV; RHS = I->High; 1508 } 1509 CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock); 1510 1511 // If emitting the first comparison, just call visitSwitchCase to emit the 1512 // code into the current block. Otherwise, push the CaseBlock onto the 1513 // vector to be later processed by SDISel, and insert the node's MBB 1514 // before the next MBB. 1515 if (CurBlock == CurMBB) 1516 visitSwitchCase(CB); 1517 else 1518 SwitchCases.push_back(CB); 1519 1520 CurBlock = FallThrough; 1521 } 1522 1523 return true; 1524 } 1525 1526 static inline bool areJTsAllowed(const TargetLowering &TLI) { 1527 return !DisableJumpTables && 1528 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 1529 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 1530 } 1531 1532 static APInt ComputeRange(const APInt &First, const APInt &Last) { 1533 APInt LastExt(Last), FirstExt(First); 1534 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 1535 LastExt.sext(BitWidth); FirstExt.sext(BitWidth); 1536 return (LastExt - FirstExt + 1ULL); 1537 } 1538 1539 /// handleJTSwitchCase - Emit jumptable for current switch case range 1540 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR, 1541 CaseRecVector& WorkList, 1542 Value* SV, 1543 MachineBasicBlock* Default) { 1544 Case& FrontCase = *CR.Range.first; 1545 Case& BackCase = *(CR.Range.second-1); 1546 1547 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 1548 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 1549 1550 APInt TSize(First.getBitWidth(), 0); 1551 for (CaseItr I = CR.Range.first, E = CR.Range.second; 1552 I!=E; ++I) 1553 TSize += I->size(); 1554 1555 if (!areJTsAllowed(TLI) || TSize.ult(APInt(First.getBitWidth(), 4))) 1556 return false; 1557 1558 APInt Range = ComputeRange(First, Last); 1559 double Density = TSize.roundToDouble() / Range.roundToDouble(); 1560 if (Density < 0.4) 1561 return false; 1562 1563 DEBUG(errs() << "Lowering jump table\n" 1564 << "First entry: " << First << ". Last entry: " << Last << '\n' 1565 << "Range: " << Range 1566 << "Size: " << TSize << ". Density: " << Density << "\n\n"); 1567 1568 // Get the MachineFunction which holds the current MBB. This is used when 1569 // inserting any additional MBBs necessary to represent the switch. 1570 MachineFunction *CurMF = FuncInfo.MF; 1571 1572 // Figure out which block is immediately after the current one. 1573 MachineFunction::iterator BBI = CR.CaseBB; 1574 ++BBI; 1575 1576 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 1577 1578 // Create a new basic block to hold the code for loading the address 1579 // of the jump table, and jumping to it. Update successor information; 1580 // we will either branch to the default case for the switch, or the jump 1581 // table. 1582 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1583 CurMF->insert(BBI, JumpTableBB); 1584 CR.CaseBB->addSuccessor(Default); 1585 CR.CaseBB->addSuccessor(JumpTableBB); 1586 1587 // Build a vector of destination BBs, corresponding to each target 1588 // of the jump table. If the value of the jump table slot corresponds to 1589 // a case statement, push the case's BB onto the vector, otherwise, push 1590 // the default BB. 1591 std::vector<MachineBasicBlock*> DestBBs; 1592 APInt TEI = First; 1593 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 1594 const APInt& Low = cast<ConstantInt>(I->Low)->getValue(); 1595 const APInt& High = cast<ConstantInt>(I->High)->getValue(); 1596 1597 if (Low.sle(TEI) && TEI.sle(High)) { 1598 DestBBs.push_back(I->BB); 1599 if (TEI==High) 1600 ++I; 1601 } else { 1602 DestBBs.push_back(Default); 1603 } 1604 } 1605 1606 // Update successor info. Add one edge to each unique successor. 1607 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 1608 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 1609 E = DestBBs.end(); I != E; ++I) { 1610 if (!SuccsHandled[(*I)->getNumber()]) { 1611 SuccsHandled[(*I)->getNumber()] = true; 1612 JumpTableBB->addSuccessor(*I); 1613 } 1614 } 1615 1616 // Create a jump table index for this jump table, or return an existing 1617 // one. 1618 unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs); 1619 1620 // Set the jump table information so that we can codegen it as a second 1621 // MachineBasicBlock 1622 JumpTable JT(-1U, JTI, JumpTableBB, Default); 1623 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == CurMBB)); 1624 if (CR.CaseBB == CurMBB) 1625 visitJumpTableHeader(JT, JTH); 1626 1627 JTCases.push_back(JumpTableBlock(JTH, JT)); 1628 1629 return true; 1630 } 1631 1632 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 1633 /// 2 subtrees. 1634 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 1635 CaseRecVector& WorkList, 1636 Value* SV, 1637 MachineBasicBlock* Default) { 1638 // Get the MachineFunction which holds the current MBB. This is used when 1639 // inserting any additional MBBs necessary to represent the switch. 1640 MachineFunction *CurMF = FuncInfo.MF; 1641 1642 // Figure out which block is immediately after the current one. 1643 MachineFunction::iterator BBI = CR.CaseBB; 1644 ++BBI; 1645 1646 Case& FrontCase = *CR.Range.first; 1647 Case& BackCase = *(CR.Range.second-1); 1648 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 1649 1650 // Size is the number of Cases represented by this range. 1651 unsigned Size = CR.Range.second - CR.Range.first; 1652 1653 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 1654 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 1655 double FMetric = 0; 1656 CaseItr Pivot = CR.Range.first + Size/2; 1657 1658 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 1659 // (heuristically) allow us to emit JumpTable's later. 1660 APInt TSize(First.getBitWidth(), 0); 1661 for (CaseItr I = CR.Range.first, E = CR.Range.second; 1662 I!=E; ++I) 1663 TSize += I->size(); 1664 1665 APInt LSize = FrontCase.size(); 1666 APInt RSize = TSize-LSize; 1667 DEBUG(errs() << "Selecting best pivot: \n" 1668 << "First: " << First << ", Last: " << Last <<'\n' 1669 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 1670 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 1671 J!=E; ++I, ++J) { 1672 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 1673 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 1674 APInt Range = ComputeRange(LEnd, RBegin); 1675 assert((Range - 2ULL).isNonNegative() && 1676 "Invalid case distance"); 1677 double LDensity = (double)LSize.roundToDouble() / 1678 (LEnd - First + 1ULL).roundToDouble(); 1679 double RDensity = (double)RSize.roundToDouble() / 1680 (Last - RBegin + 1ULL).roundToDouble(); 1681 double Metric = Range.logBase2()*(LDensity+RDensity); 1682 // Should always split in some non-trivial place 1683 DEBUG(errs() <<"=>Step\n" 1684 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 1685 << "LDensity: " << LDensity 1686 << ", RDensity: " << RDensity << '\n' 1687 << "Metric: " << Metric << '\n'); 1688 if (FMetric < Metric) { 1689 Pivot = J; 1690 FMetric = Metric; 1691 DEBUG(errs() << "Current metric set to: " << FMetric << '\n'); 1692 } 1693 1694 LSize += J->size(); 1695 RSize -= J->size(); 1696 } 1697 if (areJTsAllowed(TLI)) { 1698 // If our case is dense we *really* should handle it earlier! 1699 assert((FMetric > 0) && "Should handle dense range earlier!"); 1700 } else { 1701 Pivot = CR.Range.first + Size/2; 1702 } 1703 1704 CaseRange LHSR(CR.Range.first, Pivot); 1705 CaseRange RHSR(Pivot, CR.Range.second); 1706 Constant *C = Pivot->Low; 1707 MachineBasicBlock *FalseBB = 0, *TrueBB = 0; 1708 1709 // We know that we branch to the LHS if the Value being switched on is 1710 // less than the Pivot value, C. We use this to optimize our binary 1711 // tree a bit, by recognizing that if SV is greater than or equal to the 1712 // LHS's Case Value, and that Case Value is exactly one less than the 1713 // Pivot's Value, then we can branch directly to the LHS's Target, 1714 // rather than creating a leaf node for it. 1715 if ((LHSR.second - LHSR.first) == 1 && 1716 LHSR.first->High == CR.GE && 1717 cast<ConstantInt>(C)->getValue() == 1718 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 1719 TrueBB = LHSR.first->BB; 1720 } else { 1721 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1722 CurMF->insert(BBI, TrueBB); 1723 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 1724 1725 // Put SV in a virtual register to make it available from the new blocks. 1726 ExportFromCurrentBlock(SV); 1727 } 1728 1729 // Similar to the optimization above, if the Value being switched on is 1730 // known to be less than the Constant CR.LT, and the current Case Value 1731 // is CR.LT - 1, then we can branch directly to the target block for 1732 // the current Case Value, rather than emitting a RHS leaf node for it. 1733 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 1734 cast<ConstantInt>(RHSR.first->Low)->getValue() == 1735 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 1736 FalseBB = RHSR.first->BB; 1737 } else { 1738 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1739 CurMF->insert(BBI, FalseBB); 1740 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 1741 1742 // Put SV in a virtual register to make it available from the new blocks. 1743 ExportFromCurrentBlock(SV); 1744 } 1745 1746 // Create a CaseBlock record representing a conditional branch to 1747 // the LHS node if the value being switched on SV is less than C. 1748 // Otherwise, branch to LHS. 1749 CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); 1750 1751 if (CR.CaseBB == CurMBB) 1752 visitSwitchCase(CB); 1753 else 1754 SwitchCases.push_back(CB); 1755 1756 return true; 1757 } 1758 1759 /// handleBitTestsSwitchCase - if current case range has few destination and 1760 /// range span less, than machine word bitwidth, encode case range into series 1761 /// of masks and emit bit tests with these masks. 1762 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 1763 CaseRecVector& WorkList, 1764 Value* SV, 1765 MachineBasicBlock* Default){ 1766 EVT PTy = TLI.getPointerTy(); 1767 unsigned IntPtrBits = PTy.getSizeInBits(); 1768 1769 Case& FrontCase = *CR.Range.first; 1770 Case& BackCase = *(CR.Range.second-1); 1771 1772 // Get the MachineFunction which holds the current MBB. This is used when 1773 // inserting any additional MBBs necessary to represent the switch. 1774 MachineFunction *CurMF = FuncInfo.MF; 1775 1776 // If target does not have legal shift left, do not emit bit tests at all. 1777 if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy())) 1778 return false; 1779 1780 size_t numCmps = 0; 1781 for (CaseItr I = CR.Range.first, E = CR.Range.second; 1782 I!=E; ++I) { 1783 // Single case counts one, case range - two. 1784 numCmps += (I->Low == I->High ? 1 : 2); 1785 } 1786 1787 // Count unique destinations 1788 SmallSet<MachineBasicBlock*, 4> Dests; 1789 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 1790 Dests.insert(I->BB); 1791 if (Dests.size() > 3) 1792 // Don't bother the code below, if there are too much unique destinations 1793 return false; 1794 } 1795 DEBUG(errs() << "Total number of unique destinations: " << Dests.size() << '\n' 1796 << "Total number of comparisons: " << numCmps << '\n'); 1797 1798 // Compute span of values. 1799 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 1800 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 1801 APInt cmpRange = maxValue - minValue; 1802 1803 DEBUG(errs() << "Compare range: " << cmpRange << '\n' 1804 << "Low bound: " << minValue << '\n' 1805 << "High bound: " << maxValue << '\n'); 1806 1807 if (cmpRange.uge(APInt(cmpRange.getBitWidth(), IntPtrBits)) || 1808 (!(Dests.size() == 1 && numCmps >= 3) && 1809 !(Dests.size() == 2 && numCmps >= 5) && 1810 !(Dests.size() >= 3 && numCmps >= 6))) 1811 return false; 1812 1813 DEBUG(errs() << "Emitting bit tests\n"); 1814 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 1815 1816 // Optimize the case where all the case values fit in a 1817 // word without having to subtract minValue. In this case, 1818 // we can optimize away the subtraction. 1819 if (minValue.isNonNegative() && 1820 maxValue.slt(APInt(maxValue.getBitWidth(), IntPtrBits))) { 1821 cmpRange = maxValue; 1822 } else { 1823 lowBound = minValue; 1824 } 1825 1826 CaseBitsVector CasesBits; 1827 unsigned i, count = 0; 1828 1829 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 1830 MachineBasicBlock* Dest = I->BB; 1831 for (i = 0; i < count; ++i) 1832 if (Dest == CasesBits[i].BB) 1833 break; 1834 1835 if (i == count) { 1836 assert((count < 3) && "Too much destinations to test!"); 1837 CasesBits.push_back(CaseBits(0, Dest, 0)); 1838 count++; 1839 } 1840 1841 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 1842 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 1843 1844 uint64_t lo = (lowValue - lowBound).getZExtValue(); 1845 uint64_t hi = (highValue - lowBound).getZExtValue(); 1846 1847 for (uint64_t j = lo; j <= hi; j++) { 1848 CasesBits[i].Mask |= 1ULL << j; 1849 CasesBits[i].Bits++; 1850 } 1851 1852 } 1853 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 1854 1855 BitTestInfo BTC; 1856 1857 // Figure out which block is immediately after the current one. 1858 MachineFunction::iterator BBI = CR.CaseBB; 1859 ++BBI; 1860 1861 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 1862 1863 DEBUG(errs() << "Cases:\n"); 1864 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 1865 DEBUG(errs() << "Mask: " << CasesBits[i].Mask 1866 << ", Bits: " << CasesBits[i].Bits 1867 << ", BB: " << CasesBits[i].BB << '\n'); 1868 1869 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1870 CurMF->insert(BBI, CaseBB); 1871 BTC.push_back(BitTestCase(CasesBits[i].Mask, 1872 CaseBB, 1873 CasesBits[i].BB)); 1874 1875 // Put SV in a virtual register to make it available from the new blocks. 1876 ExportFromCurrentBlock(SV); 1877 } 1878 1879 BitTestBlock BTB(lowBound, cmpRange, SV, 1880 -1U, (CR.CaseBB == CurMBB), 1881 CR.CaseBB, Default, BTC); 1882 1883 if (CR.CaseBB == CurMBB) 1884 visitBitTestHeader(BTB); 1885 1886 BitTestCases.push_back(BTB); 1887 1888 return true; 1889 } 1890 1891 1892 /// Clusterify - Transform simple list of Cases into list of CaseRange's 1893 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 1894 const SwitchInst& SI) { 1895 size_t numCmps = 0; 1896 1897 // Start with "simple" cases 1898 for (size_t i = 1; i < SI.getNumSuccessors(); ++i) { 1899 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)]; 1900 Cases.push_back(Case(SI.getSuccessorValue(i), 1901 SI.getSuccessorValue(i), 1902 SMBB)); 1903 } 1904 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 1905 1906 // Merge case into clusters 1907 if (Cases.size() >= 2) 1908 // Must recompute end() each iteration because it may be 1909 // invalidated by erase if we hold on to it 1910 for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) { 1911 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 1912 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 1913 MachineBasicBlock* nextBB = J->BB; 1914 MachineBasicBlock* currentBB = I->BB; 1915 1916 // If the two neighboring cases go to the same destination, merge them 1917 // into a single case. 1918 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 1919 I->High = J->High; 1920 J = Cases.erase(J); 1921 } else { 1922 I = J++; 1923 } 1924 } 1925 1926 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { 1927 if (I->Low != I->High) 1928 // A range counts double, since it requires two compares. 1929 ++numCmps; 1930 } 1931 1932 return numCmps; 1933 } 1934 1935 void SelectionDAGBuilder::visitSwitch(SwitchInst &SI) { 1936 // Figure out which block is immediately after the current one. 1937 MachineBasicBlock *NextBlock = 0; 1938 1939 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 1940 1941 // If there is only the default destination, branch to it if it is not the 1942 // next basic block. Otherwise, just fall through. 1943 if (SI.getNumOperands() == 2) { 1944 // Update machine-CFG edges. 1945 1946 // If this is not a fall-through branch, emit the branch. 1947 CurMBB->addSuccessor(Default); 1948 if (Default != NextBlock) 1949 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1950 MVT::Other, getControlRoot(), 1951 DAG.getBasicBlock(Default))); 1952 return; 1953 } 1954 1955 // If there are any non-default case statements, create a vector of Cases 1956 // representing each one, and sort the vector so that we can efficiently 1957 // create a binary search tree from them. 1958 CaseVector Cases; 1959 size_t numCmps = Clusterify(Cases, SI); 1960 DEBUG(errs() << "Clusterify finished. Total clusters: " << Cases.size() 1961 << ". Total compares: " << numCmps << '\n'); 1962 numCmps = 0; 1963 1964 // Get the Value to be switched on and default basic blocks, which will be 1965 // inserted into CaseBlock records, representing basic blocks in the binary 1966 // search tree. 1967 Value *SV = SI.getOperand(0); 1968 1969 // Push the initial CaseRec onto the worklist 1970 CaseRecVector WorkList; 1971 WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end()))); 1972 1973 while (!WorkList.empty()) { 1974 // Grab a record representing a case range to process off the worklist 1975 CaseRec CR = WorkList.back(); 1976 WorkList.pop_back(); 1977 1978 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default)) 1979 continue; 1980 1981 // If the range has few cases (two or less) emit a series of specific 1982 // tests. 1983 if (handleSmallSwitchRange(CR, WorkList, SV, Default)) 1984 continue; 1985 1986 // If the switch has more than 5 blocks, and at least 40% dense, and the 1987 // target supports indirect branches, then emit a jump table rather than 1988 // lowering the switch to a binary tree of conditional branches. 1989 if (handleJTSwitchCase(CR, WorkList, SV, Default)) 1990 continue; 1991 1992 // Emit binary tree. We need to pick a pivot, and push left and right ranges 1993 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 1994 handleBTSplitSwitchCase(CR, WorkList, SV, Default); 1995 } 1996 } 1997 1998 void SelectionDAGBuilder::visitIndirectBr(IndirectBrInst &I) { 1999 // Update machine-CFG edges. 2000 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) 2001 CurMBB->addSuccessor(FuncInfo.MBBMap[I.getSuccessor(i)]); 2002 2003 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(), 2004 MVT::Other, getControlRoot(), 2005 getValue(I.getAddress()))); 2006 } 2007 2008 2009 void SelectionDAGBuilder::visitFSub(User &I) { 2010 // -0.0 - X --> fneg 2011 const Type *Ty = I.getType(); 2012 if (isa<VectorType>(Ty)) { 2013 if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) { 2014 const VectorType *DestTy = cast<VectorType>(I.getType()); 2015 const Type *ElTy = DestTy->getElementType(); 2016 unsigned VL = DestTy->getNumElements(); 2017 std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy)); 2018 Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size()); 2019 if (CV == CNZ) { 2020 SDValue Op2 = getValue(I.getOperand(1)); 2021 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2022 Op2.getValueType(), Op2)); 2023 return; 2024 } 2025 } 2026 } 2027 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0))) 2028 if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) { 2029 SDValue Op2 = getValue(I.getOperand(1)); 2030 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2031 Op2.getValueType(), Op2)); 2032 return; 2033 } 2034 2035 visitBinary(I, ISD::FSUB); 2036 } 2037 2038 void SelectionDAGBuilder::visitBinary(User &I, unsigned OpCode) { 2039 SDValue Op1 = getValue(I.getOperand(0)); 2040 SDValue Op2 = getValue(I.getOperand(1)); 2041 2042 setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(), 2043 Op1.getValueType(), Op1, Op2)); 2044 } 2045 2046 void SelectionDAGBuilder::visitShift(User &I, unsigned Opcode) { 2047 SDValue Op1 = getValue(I.getOperand(0)); 2048 SDValue Op2 = getValue(I.getOperand(1)); 2049 if (!isa<VectorType>(I.getType()) && 2050 Op2.getValueType() != TLI.getShiftAmountTy()) { 2051 // If the operand is smaller than the shift count type, promote it. 2052 EVT PTy = TLI.getPointerTy(); 2053 EVT STy = TLI.getShiftAmountTy(); 2054 if (STy.bitsGT(Op2.getValueType())) 2055 Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(), 2056 TLI.getShiftAmountTy(), Op2); 2057 // If the operand is larger than the shift count type but the shift 2058 // count type has enough bits to represent any shift value, truncate 2059 // it now. This is a common case and it exposes the truncate to 2060 // optimization early. 2061 else if (STy.getSizeInBits() >= 2062 Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2063 Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2064 TLI.getShiftAmountTy(), Op2); 2065 // Otherwise we'll need to temporarily settle for some other 2066 // convenient type; type legalization will make adjustments as 2067 // needed. 2068 else if (PTy.bitsLT(Op2.getValueType())) 2069 Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2070 TLI.getPointerTy(), Op2); 2071 else if (PTy.bitsGT(Op2.getValueType())) 2072 Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(), 2073 TLI.getPointerTy(), Op2); 2074 } 2075 2076 setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), 2077 Op1.getValueType(), Op1, Op2)); 2078 } 2079 2080 void SelectionDAGBuilder::visitICmp(User &I) { 2081 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2082 if (ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2083 predicate = IC->getPredicate(); 2084 else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2085 predicate = ICmpInst::Predicate(IC->getPredicate()); 2086 SDValue Op1 = getValue(I.getOperand(0)); 2087 SDValue Op2 = getValue(I.getOperand(1)); 2088 ISD::CondCode Opcode = getICmpCondCode(predicate); 2089 2090 EVT DestVT = TLI.getValueType(I.getType()); 2091 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode)); 2092 } 2093 2094 void SelectionDAGBuilder::visitFCmp(User &I) { 2095 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2096 if (FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2097 predicate = FC->getPredicate(); 2098 else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2099 predicate = FCmpInst::Predicate(FC->getPredicate()); 2100 SDValue Op1 = getValue(I.getOperand(0)); 2101 SDValue Op2 = getValue(I.getOperand(1)); 2102 ISD::CondCode Condition = getFCmpCondCode(predicate); 2103 EVT DestVT = TLI.getValueType(I.getType()); 2104 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition)); 2105 } 2106 2107 void SelectionDAGBuilder::visitSelect(User &I) { 2108 SmallVector<EVT, 4> ValueVTs; 2109 ComputeValueVTs(TLI, I.getType(), ValueVTs); 2110 unsigned NumValues = ValueVTs.size(); 2111 if (NumValues != 0) { 2112 SmallVector<SDValue, 4> Values(NumValues); 2113 SDValue Cond = getValue(I.getOperand(0)); 2114 SDValue TrueVal = getValue(I.getOperand(1)); 2115 SDValue FalseVal = getValue(I.getOperand(2)); 2116 2117 for (unsigned i = 0; i != NumValues; ++i) 2118 Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(), 2119 TrueVal.getNode()->getValueType(i), Cond, 2120 SDValue(TrueVal.getNode(), TrueVal.getResNo() + i), 2121 SDValue(FalseVal.getNode(), FalseVal.getResNo() + i)); 2122 2123 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2124 DAG.getVTList(&ValueVTs[0], NumValues), 2125 &Values[0], NumValues)); 2126 } 2127 } 2128 2129 2130 void SelectionDAGBuilder::visitTrunc(User &I) { 2131 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2132 SDValue N = getValue(I.getOperand(0)); 2133 EVT DestVT = TLI.getValueType(I.getType()); 2134 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N)); 2135 } 2136 2137 void SelectionDAGBuilder::visitZExt(User &I) { 2138 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2139 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2140 SDValue N = getValue(I.getOperand(0)); 2141 EVT DestVT = TLI.getValueType(I.getType()); 2142 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N)); 2143 } 2144 2145 void SelectionDAGBuilder::visitSExt(User &I) { 2146 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2147 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2148 SDValue N = getValue(I.getOperand(0)); 2149 EVT DestVT = TLI.getValueType(I.getType()); 2150 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N)); 2151 } 2152 2153 void SelectionDAGBuilder::visitFPTrunc(User &I) { 2154 // FPTrunc is never a no-op cast, no need to check 2155 SDValue N = getValue(I.getOperand(0)); 2156 EVT DestVT = TLI.getValueType(I.getType()); 2157 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(), 2158 DestVT, N, DAG.getIntPtrConstant(0))); 2159 } 2160 2161 void SelectionDAGBuilder::visitFPExt(User &I){ 2162 // FPTrunc is never a no-op cast, no need to check 2163 SDValue N = getValue(I.getOperand(0)); 2164 EVT DestVT = TLI.getValueType(I.getType()); 2165 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N)); 2166 } 2167 2168 void SelectionDAGBuilder::visitFPToUI(User &I) { 2169 // FPToUI is never a no-op cast, no need to check 2170 SDValue N = getValue(I.getOperand(0)); 2171 EVT DestVT = TLI.getValueType(I.getType()); 2172 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N)); 2173 } 2174 2175 void SelectionDAGBuilder::visitFPToSI(User &I) { 2176 // FPToSI is never a no-op cast, no need to check 2177 SDValue N = getValue(I.getOperand(0)); 2178 EVT DestVT = TLI.getValueType(I.getType()); 2179 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N)); 2180 } 2181 2182 void SelectionDAGBuilder::visitUIToFP(User &I) { 2183 // UIToFP is never a no-op cast, no need to check 2184 SDValue N = getValue(I.getOperand(0)); 2185 EVT DestVT = TLI.getValueType(I.getType()); 2186 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2187 } 2188 2189 void SelectionDAGBuilder::visitSIToFP(User &I){ 2190 // SIToFP is never a no-op cast, no need to check 2191 SDValue N = getValue(I.getOperand(0)); 2192 EVT DestVT = TLI.getValueType(I.getType()); 2193 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2194 } 2195 2196 void SelectionDAGBuilder::visitPtrToInt(User &I) { 2197 // What to do depends on the size of the integer and the size of the pointer. 2198 // We can either truncate, zero extend, or no-op, accordingly. 2199 SDValue N = getValue(I.getOperand(0)); 2200 EVT SrcVT = N.getValueType(); 2201 EVT DestVT = TLI.getValueType(I.getType()); 2202 SDValue Result = DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT); 2203 setValue(&I, Result); 2204 } 2205 2206 void SelectionDAGBuilder::visitIntToPtr(User &I) { 2207 // What to do depends on the size of the integer and the size of the pointer. 2208 // We can either truncate, zero extend, or no-op, accordingly. 2209 SDValue N = getValue(I.getOperand(0)); 2210 EVT SrcVT = N.getValueType(); 2211 EVT DestVT = TLI.getValueType(I.getType()); 2212 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2213 } 2214 2215 void SelectionDAGBuilder::visitBitCast(User &I) { 2216 SDValue N = getValue(I.getOperand(0)); 2217 EVT DestVT = TLI.getValueType(I.getType()); 2218 2219 // BitCast assures us that source and destination are the same size so this 2220 // is either a BIT_CONVERT or a no-op. 2221 if (DestVT != N.getValueType()) 2222 setValue(&I, DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 2223 DestVT, N)); // convert types 2224 else 2225 setValue(&I, N); // noop cast. 2226 } 2227 2228 void SelectionDAGBuilder::visitInsertElement(User &I) { 2229 SDValue InVec = getValue(I.getOperand(0)); 2230 SDValue InVal = getValue(I.getOperand(1)); 2231 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2232 TLI.getPointerTy(), 2233 getValue(I.getOperand(2))); 2234 2235 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(), 2236 TLI.getValueType(I.getType()), 2237 InVec, InVal, InIdx)); 2238 } 2239 2240 void SelectionDAGBuilder::visitExtractElement(User &I) { 2241 SDValue InVec = getValue(I.getOperand(0)); 2242 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2243 TLI.getPointerTy(), 2244 getValue(I.getOperand(1))); 2245 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2246 TLI.getValueType(I.getType()), InVec, InIdx)); 2247 } 2248 2249 2250 // Utility for visitShuffleVector - Returns true if the mask is mask starting 2251 // from SIndx and increasing to the element length (undefs are allowed). 2252 static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) { 2253 unsigned MaskNumElts = Mask.size(); 2254 for (unsigned i = 0; i != MaskNumElts; ++i) 2255 if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx))) 2256 return false; 2257 return true; 2258 } 2259 2260 void SelectionDAGBuilder::visitShuffleVector(User &I) { 2261 SmallVector<int, 8> Mask; 2262 SDValue Src1 = getValue(I.getOperand(0)); 2263 SDValue Src2 = getValue(I.getOperand(1)); 2264 2265 // Convert the ConstantVector mask operand into an array of ints, with -1 2266 // representing undef values. 2267 SmallVector<Constant*, 8> MaskElts; 2268 cast<Constant>(I.getOperand(2))->getVectorElements(*DAG.getContext(), 2269 MaskElts); 2270 unsigned MaskNumElts = MaskElts.size(); 2271 for (unsigned i = 0; i != MaskNumElts; ++i) { 2272 if (isa<UndefValue>(MaskElts[i])) 2273 Mask.push_back(-1); 2274 else 2275 Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue()); 2276 } 2277 2278 EVT VT = TLI.getValueType(I.getType()); 2279 EVT SrcVT = Src1.getValueType(); 2280 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2281 2282 if (SrcNumElts == MaskNumElts) { 2283 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2284 &Mask[0])); 2285 return; 2286 } 2287 2288 // Normalize the shuffle vector since mask and vector length don't match. 2289 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2290 // Mask is longer than the source vectors and is a multiple of the source 2291 // vectors. We can use concatenate vector to make the mask and vectors 2292 // lengths match. 2293 if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) { 2294 // The shuffle is concatenating two vectors together. 2295 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), 2296 VT, Src1, Src2)); 2297 return; 2298 } 2299 2300 // Pad both vectors with undefs to make them the same length as the mask. 2301 unsigned NumConcat = MaskNumElts / SrcNumElts; 2302 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2303 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2304 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2305 2306 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2307 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2308 MOps1[0] = Src1; 2309 MOps2[0] = Src2; 2310 2311 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2312 getCurDebugLoc(), VT, 2313 &MOps1[0], NumConcat); 2314 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2315 getCurDebugLoc(), VT, 2316 &MOps2[0], NumConcat); 2317 2318 // Readjust mask for new input vector length. 2319 SmallVector<int, 8> MappedOps; 2320 for (unsigned i = 0; i != MaskNumElts; ++i) { 2321 int Idx = Mask[i]; 2322 if (Idx < (int)SrcNumElts) 2323 MappedOps.push_back(Idx); 2324 else 2325 MappedOps.push_back(Idx + MaskNumElts - SrcNumElts); 2326 } 2327 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2328 &MappedOps[0])); 2329 return; 2330 } 2331 2332 if (SrcNumElts > MaskNumElts) { 2333 // Analyze the access pattern of the vector to see if we can extract 2334 // two subvectors and do the shuffle. The analysis is done by calculating 2335 // the range of elements the mask access on both vectors. 2336 int MinRange[2] = { SrcNumElts+1, SrcNumElts+1}; 2337 int MaxRange[2] = {-1, -1}; 2338 2339 for (unsigned i = 0; i != MaskNumElts; ++i) { 2340 int Idx = Mask[i]; 2341 int Input = 0; 2342 if (Idx < 0) 2343 continue; 2344 2345 if (Idx >= (int)SrcNumElts) { 2346 Input = 1; 2347 Idx -= SrcNumElts; 2348 } 2349 if (Idx > MaxRange[Input]) 2350 MaxRange[Input] = Idx; 2351 if (Idx < MinRange[Input]) 2352 MinRange[Input] = Idx; 2353 } 2354 2355 // Check if the access is smaller than the vector size and can we find 2356 // a reasonable extract index. 2357 int RangeUse[2] = { 2, 2 }; // 0 = Unused, 1 = Extract, 2 = Can not Extract. 2358 int StartIdx[2]; // StartIdx to extract from 2359 for (int Input=0; Input < 2; ++Input) { 2360 if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) { 2361 RangeUse[Input] = 0; // Unused 2362 StartIdx[Input] = 0; 2363 } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) { 2364 // Fits within range but we should see if we can find a good 2365 // start index that is a multiple of the mask length. 2366 if (MaxRange[Input] < (int)MaskNumElts) { 2367 RangeUse[Input] = 1; // Extract from beginning of the vector 2368 StartIdx[Input] = 0; 2369 } else { 2370 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2371 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2372 StartIdx[Input] + MaskNumElts < SrcNumElts) 2373 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2374 } 2375 } 2376 } 2377 2378 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2379 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2380 return; 2381 } 2382 else if (RangeUse[0] < 2 && RangeUse[1] < 2) { 2383 // Extract appropriate subvector and generate a vector shuffle 2384 for (int Input=0; Input < 2; ++Input) { 2385 SDValue& Src = Input == 0 ? Src1 : Src2; 2386 if (RangeUse[Input] == 0) { 2387 Src = DAG.getUNDEF(VT); 2388 } else { 2389 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT, 2390 Src, DAG.getIntPtrConstant(StartIdx[Input])); 2391 } 2392 } 2393 // Calculate new mask. 2394 SmallVector<int, 8> MappedOps; 2395 for (unsigned i = 0; i != MaskNumElts; ++i) { 2396 int Idx = Mask[i]; 2397 if (Idx < 0) 2398 MappedOps.push_back(Idx); 2399 else if (Idx < (int)SrcNumElts) 2400 MappedOps.push_back(Idx - StartIdx[0]); 2401 else 2402 MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts); 2403 } 2404 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2405 &MappedOps[0])); 2406 return; 2407 } 2408 } 2409 2410 // We can't use either concat vectors or extract subvectors so fall back to 2411 // replacing the shuffle with extract and build vector. 2412 // to insert and build vector. 2413 EVT EltVT = VT.getVectorElementType(); 2414 EVT PtrVT = TLI.getPointerTy(); 2415 SmallVector<SDValue,8> Ops; 2416 for (unsigned i = 0; i != MaskNumElts; ++i) { 2417 if (Mask[i] < 0) { 2418 Ops.push_back(DAG.getUNDEF(EltVT)); 2419 } else { 2420 int Idx = Mask[i]; 2421 if (Idx < (int)SrcNumElts) 2422 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2423 EltVT, Src1, DAG.getConstant(Idx, PtrVT))); 2424 else 2425 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2426 EltVT, Src2, 2427 DAG.getConstant(Idx - SrcNumElts, PtrVT))); 2428 } 2429 } 2430 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 2431 VT, &Ops[0], Ops.size())); 2432 } 2433 2434 void SelectionDAGBuilder::visitInsertValue(InsertValueInst &I) { 2435 const Value *Op0 = I.getOperand(0); 2436 const Value *Op1 = I.getOperand(1); 2437 const Type *AggTy = I.getType(); 2438 const Type *ValTy = Op1->getType(); 2439 bool IntoUndef = isa<UndefValue>(Op0); 2440 bool FromUndef = isa<UndefValue>(Op1); 2441 2442 unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy, 2443 I.idx_begin(), I.idx_end()); 2444 2445 SmallVector<EVT, 4> AggValueVTs; 2446 ComputeValueVTs(TLI, AggTy, AggValueVTs); 2447 SmallVector<EVT, 4> ValValueVTs; 2448 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2449 2450 unsigned NumAggValues = AggValueVTs.size(); 2451 unsigned NumValValues = ValValueVTs.size(); 2452 SmallVector<SDValue, 4> Values(NumAggValues); 2453 2454 SDValue Agg = getValue(Op0); 2455 SDValue Val = getValue(Op1); 2456 unsigned i = 0; 2457 // Copy the beginning value(s) from the original aggregate. 2458 for (; i != LinearIndex; ++i) 2459 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2460 SDValue(Agg.getNode(), Agg.getResNo() + i); 2461 // Copy values from the inserted value(s). 2462 for (; i != LinearIndex + NumValValues; ++i) 2463 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2464 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2465 // Copy remaining value(s) from the original aggregate. 2466 for (; i != NumAggValues; ++i) 2467 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2468 SDValue(Agg.getNode(), Agg.getResNo() + i); 2469 2470 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2471 DAG.getVTList(&AggValueVTs[0], NumAggValues), 2472 &Values[0], NumAggValues)); 2473 } 2474 2475 void SelectionDAGBuilder::visitExtractValue(ExtractValueInst &I) { 2476 const Value *Op0 = I.getOperand(0); 2477 const Type *AggTy = Op0->getType(); 2478 const Type *ValTy = I.getType(); 2479 bool OutOfUndef = isa<UndefValue>(Op0); 2480 2481 unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy, 2482 I.idx_begin(), I.idx_end()); 2483 2484 SmallVector<EVT, 4> ValValueVTs; 2485 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2486 2487 unsigned NumValValues = ValValueVTs.size(); 2488 SmallVector<SDValue, 4> Values(NumValValues); 2489 2490 SDValue Agg = getValue(Op0); 2491 // Copy out the selected value(s). 2492 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2493 Values[i - LinearIndex] = 2494 OutOfUndef ? 2495 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2496 SDValue(Agg.getNode(), Agg.getResNo() + i); 2497 2498 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2499 DAG.getVTList(&ValValueVTs[0], NumValValues), 2500 &Values[0], NumValValues)); 2501 } 2502 2503 2504 void SelectionDAGBuilder::visitGetElementPtr(User &I) { 2505 SDValue N = getValue(I.getOperand(0)); 2506 const Type *Ty = I.getOperand(0)->getType(); 2507 2508 for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end(); 2509 OI != E; ++OI) { 2510 Value *Idx = *OI; 2511 if (const StructType *StTy = dyn_cast<StructType>(Ty)) { 2512 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 2513 if (Field) { 2514 // N = N + Offset 2515 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); 2516 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 2517 DAG.getIntPtrConstant(Offset)); 2518 } 2519 Ty = StTy->getElementType(Field); 2520 } else { 2521 Ty = cast<SequentialType>(Ty)->getElementType(); 2522 2523 // If this is a constant subscript, handle it quickly. 2524 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 2525 if (CI->getZExtValue() == 0) continue; 2526 uint64_t Offs = 2527 TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 2528 SDValue OffsVal; 2529 EVT PTy = TLI.getPointerTy(); 2530 unsigned PtrBits = PTy.getSizeInBits(); 2531 if (PtrBits < 64) { 2532 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2533 TLI.getPointerTy(), 2534 DAG.getConstant(Offs, MVT::i64)); 2535 } else 2536 OffsVal = DAG.getIntPtrConstant(Offs); 2537 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 2538 OffsVal); 2539 continue; 2540 } 2541 2542 // N = N + Idx * ElementSize; 2543 APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(), 2544 TD->getTypeAllocSize(Ty)); 2545 SDValue IdxN = getValue(Idx); 2546 2547 // If the index is smaller or larger than intptr_t, truncate or extend 2548 // it. 2549 IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType()); 2550 2551 // If this is a multiply by a power of two, turn it into a shl 2552 // immediately. This is a very common case. 2553 if (ElementSize != 1) { 2554 if (ElementSize.isPowerOf2()) { 2555 unsigned Amt = ElementSize.logBase2(); 2556 IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(), 2557 N.getValueType(), IdxN, 2558 DAG.getConstant(Amt, TLI.getPointerTy())); 2559 } else { 2560 SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy()); 2561 IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(), 2562 N.getValueType(), IdxN, Scale); 2563 } 2564 } 2565 2566 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2567 N.getValueType(), N, IdxN); 2568 } 2569 } 2570 setValue(&I, N); 2571 } 2572 2573 void SelectionDAGBuilder::visitAlloca(AllocaInst &I) { 2574 // If this is a fixed sized alloca in the entry block of the function, 2575 // allocate it statically on the stack. 2576 if (FuncInfo.StaticAllocaMap.count(&I)) 2577 return; // getValue will auto-populate this. 2578 2579 const Type *Ty = I.getAllocatedType(); 2580 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 2581 unsigned Align = 2582 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), 2583 I.getAlignment()); 2584 2585 SDValue AllocSize = getValue(I.getArraySize()); 2586 2587 AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), AllocSize.getValueType(), 2588 AllocSize, 2589 DAG.getConstant(TySize, AllocSize.getValueType())); 2590 2591 2592 2593 EVT IntPtr = TLI.getPointerTy(); 2594 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr); 2595 2596 // Handle alignment. If the requested alignment is less than or equal to 2597 // the stack alignment, ignore it. If the size is greater than or equal to 2598 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 2599 unsigned StackAlign = 2600 TLI.getTargetMachine().getFrameInfo()->getStackAlignment(); 2601 if (Align <= StackAlign) 2602 Align = 0; 2603 2604 // Round the size of the allocation up to the stack alignment size 2605 // by add SA-1 to the size. 2606 AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2607 AllocSize.getValueType(), AllocSize, 2608 DAG.getIntPtrConstant(StackAlign-1)); 2609 // Mask out the low bits for alignment purposes. 2610 AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(), 2611 AllocSize.getValueType(), AllocSize, 2612 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 2613 2614 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 2615 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 2616 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(), 2617 VTs, Ops, 3); 2618 setValue(&I, DSA); 2619 DAG.setRoot(DSA.getValue(1)); 2620 2621 // Inform the Frame Information that we have just allocated a variable-sized 2622 // object. 2623 FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(); 2624 } 2625 2626 void SelectionDAGBuilder::visitLoad(LoadInst &I) { 2627 const Value *SV = I.getOperand(0); 2628 SDValue Ptr = getValue(SV); 2629 2630 const Type *Ty = I.getType(); 2631 bool isVolatile = I.isVolatile(); 2632 unsigned Alignment = I.getAlignment(); 2633 2634 SmallVector<EVT, 4> ValueVTs; 2635 SmallVector<uint64_t, 4> Offsets; 2636 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 2637 unsigned NumValues = ValueVTs.size(); 2638 if (NumValues == 0) 2639 return; 2640 2641 SDValue Root; 2642 bool ConstantMemory = false; 2643 if (I.isVolatile()) 2644 // Serialize volatile loads with other side effects. 2645 Root = getRoot(); 2646 else if (AA->pointsToConstantMemory(SV)) { 2647 // Do not serialize (non-volatile) loads of constant memory with anything. 2648 Root = DAG.getEntryNode(); 2649 ConstantMemory = true; 2650 } else { 2651 // Do not serialize non-volatile loads against each other. 2652 Root = DAG.getRoot(); 2653 } 2654 2655 SmallVector<SDValue, 4> Values(NumValues); 2656 SmallVector<SDValue, 4> Chains(NumValues); 2657 EVT PtrVT = Ptr.getValueType(); 2658 for (unsigned i = 0; i != NumValues; ++i) { 2659 SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root, 2660 DAG.getNode(ISD::ADD, getCurDebugLoc(), 2661 PtrVT, Ptr, 2662 DAG.getConstant(Offsets[i], PtrVT)), 2663 SV, Offsets[i], isVolatile, Alignment); 2664 Values[i] = L; 2665 Chains[i] = L.getValue(1); 2666 } 2667 2668 if (!ConstantMemory) { 2669 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 2670 MVT::Other, 2671 &Chains[0], NumValues); 2672 if (isVolatile) 2673 DAG.setRoot(Chain); 2674 else 2675 PendingLoads.push_back(Chain); 2676 } 2677 2678 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2679 DAG.getVTList(&ValueVTs[0], NumValues), 2680 &Values[0], NumValues)); 2681 } 2682 2683 2684 void SelectionDAGBuilder::visitStore(StoreInst &I) { 2685 Value *SrcV = I.getOperand(0); 2686 Value *PtrV = I.getOperand(1); 2687 2688 SmallVector<EVT, 4> ValueVTs; 2689 SmallVector<uint64_t, 4> Offsets; 2690 ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets); 2691 unsigned NumValues = ValueVTs.size(); 2692 if (NumValues == 0) 2693 return; 2694 2695 // Get the lowered operands. Note that we do this after 2696 // checking if NumResults is zero, because with zero results 2697 // the operands won't have values in the map. 2698 SDValue Src = getValue(SrcV); 2699 SDValue Ptr = getValue(PtrV); 2700 2701 SDValue Root = getRoot(); 2702 SmallVector<SDValue, 4> Chains(NumValues); 2703 EVT PtrVT = Ptr.getValueType(); 2704 bool isVolatile = I.isVolatile(); 2705 unsigned Alignment = I.getAlignment(); 2706 for (unsigned i = 0; i != NumValues; ++i) 2707 Chains[i] = DAG.getStore(Root, getCurDebugLoc(), 2708 SDValue(Src.getNode(), Src.getResNo() + i), 2709 DAG.getNode(ISD::ADD, getCurDebugLoc(), 2710 PtrVT, Ptr, 2711 DAG.getConstant(Offsets[i], PtrVT)), 2712 PtrV, Offsets[i], isVolatile, Alignment); 2713 2714 DAG.setRoot(DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 2715 MVT::Other, &Chains[0], NumValues)); 2716 } 2717 2718 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 2719 /// node. 2720 void SelectionDAGBuilder::visitTargetIntrinsic(CallInst &I, 2721 unsigned Intrinsic) { 2722 bool HasChain = !I.doesNotAccessMemory(); 2723 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 2724 2725 // Build the operand list. 2726 SmallVector<SDValue, 8> Ops; 2727 if (HasChain) { // If this intrinsic has side-effects, chainify it. 2728 if (OnlyLoad) { 2729 // We don't need to serialize loads against other loads. 2730 Ops.push_back(DAG.getRoot()); 2731 } else { 2732 Ops.push_back(getRoot()); 2733 } 2734 } 2735 2736 // Info is set by getTgtMemInstrinsic 2737 TargetLowering::IntrinsicInfo Info; 2738 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 2739 2740 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 2741 if (!IsTgtIntrinsic) 2742 Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy())); 2743 2744 // Add all operands of the call to the operand list. 2745 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) { 2746 SDValue Op = getValue(I.getOperand(i)); 2747 assert(TLI.isTypeLegal(Op.getValueType()) && 2748 "Intrinsic uses a non-legal type?"); 2749 Ops.push_back(Op); 2750 } 2751 2752 SmallVector<EVT, 4> ValueVTs; 2753 ComputeValueVTs(TLI, I.getType(), ValueVTs); 2754 #ifndef NDEBUG 2755 for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) { 2756 assert(TLI.isTypeLegal(ValueVTs[Val]) && 2757 "Intrinsic uses a non-legal type?"); 2758 } 2759 #endif // NDEBUG 2760 if (HasChain) 2761 ValueVTs.push_back(MVT::Other); 2762 2763 SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); 2764 2765 // Create the node. 2766 SDValue Result; 2767 if (IsTgtIntrinsic) { 2768 // This is target intrinsic that touches memory 2769 Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(), 2770 VTs, &Ops[0], Ops.size(), 2771 Info.memVT, Info.ptrVal, Info.offset, 2772 Info.align, Info.vol, 2773 Info.readMem, Info.writeMem); 2774 } 2775 else if (!HasChain) 2776 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(), 2777 VTs, &Ops[0], Ops.size()); 2778 else if (I.getType() != Type::getVoidTy(*DAG.getContext())) 2779 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(), 2780 VTs, &Ops[0], Ops.size()); 2781 else 2782 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(), 2783 VTs, &Ops[0], Ops.size()); 2784 2785 if (HasChain) { 2786 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 2787 if (OnlyLoad) 2788 PendingLoads.push_back(Chain); 2789 else 2790 DAG.setRoot(Chain); 2791 } 2792 if (I.getType() != Type::getVoidTy(*DAG.getContext())) { 2793 if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 2794 EVT VT = TLI.getValueType(PTy); 2795 Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result); 2796 } 2797 setValue(&I, Result); 2798 } 2799 } 2800 2801 /// GetSignificand - Get the significand and build it into a floating-point 2802 /// number with exponent of 1: 2803 /// 2804 /// Op = (Op & 0x007fffff) | 0x3f800000; 2805 /// 2806 /// where Op is the hexidecimal representation of floating point value. 2807 static SDValue 2808 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) { 2809 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 2810 DAG.getConstant(0x007fffff, MVT::i32)); 2811 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 2812 DAG.getConstant(0x3f800000, MVT::i32)); 2813 return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t2); 2814 } 2815 2816 /// GetExponent - Get the exponent: 2817 /// 2818 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 2819 /// 2820 /// where Op is the hexidecimal representation of floating point value. 2821 static SDValue 2822 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 2823 DebugLoc dl) { 2824 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 2825 DAG.getConstant(0x7f800000, MVT::i32)); 2826 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 2827 DAG.getConstant(23, TLI.getPointerTy())); 2828 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 2829 DAG.getConstant(127, MVT::i32)); 2830 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 2831 } 2832 2833 /// getF32Constant - Get 32-bit floating point constant. 2834 static SDValue 2835 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 2836 return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32); 2837 } 2838 2839 /// Inlined utility function to implement binary input atomic intrinsics for 2840 /// visitIntrinsicCall: I is a call instruction 2841 /// Op is the associated NodeType for I 2842 const char * 2843 SelectionDAGBuilder::implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op) { 2844 SDValue Root = getRoot(); 2845 SDValue L = 2846 DAG.getAtomic(Op, getCurDebugLoc(), 2847 getValue(I.getOperand(2)).getValueType().getSimpleVT(), 2848 Root, 2849 getValue(I.getOperand(1)), 2850 getValue(I.getOperand(2)), 2851 I.getOperand(1)); 2852 setValue(&I, L); 2853 DAG.setRoot(L.getValue(1)); 2854 return 0; 2855 } 2856 2857 // implVisitAluOverflow - Lower arithmetic overflow instrinsics. 2858 const char * 2859 SelectionDAGBuilder::implVisitAluOverflow(CallInst &I, ISD::NodeType Op) { 2860 SDValue Op1 = getValue(I.getOperand(1)); 2861 SDValue Op2 = getValue(I.getOperand(2)); 2862 2863 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 2864 SDValue Result = DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2); 2865 2866 setValue(&I, Result); 2867 return 0; 2868 } 2869 2870 /// visitExp - Lower an exp intrinsic. Handles the special sequences for 2871 /// limited-precision mode. 2872 void 2873 SelectionDAGBuilder::visitExp(CallInst &I) { 2874 SDValue result; 2875 DebugLoc dl = getCurDebugLoc(); 2876 2877 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && 2878 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 2879 SDValue Op = getValue(I.getOperand(1)); 2880 2881 // Put the exponent in the right bit position for later addition to the 2882 // final result: 2883 // 2884 // #define LOG2OFe 1.4426950f 2885 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 2886 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 2887 getF32Constant(DAG, 0x3fb8aa3b)); 2888 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 2889 2890 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 2891 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 2892 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 2893 2894 // IntegerPartOfX <<= 23; 2895 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 2896 DAG.getConstant(23, TLI.getPointerTy())); 2897 2898 if (LimitFloatPrecision <= 6) { 2899 // For floating-point precision of 6: 2900 // 2901 // TwoToFractionalPartOfX = 2902 // 0.997535578f + 2903 // (0.735607626f + 0.252464424f * x) * x; 2904 // 2905 // error 0.0144103317, which is 6 bits 2906 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 2907 getF32Constant(DAG, 0x3e814304)); 2908 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 2909 getF32Constant(DAG, 0x3f3c50c8)); 2910 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 2911 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 2912 getF32Constant(DAG, 0x3f7f5e7e)); 2913 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t5); 2914 2915 // Add the exponent into the result in integer domain. 2916 SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32, 2917 TwoToFracPartOfX, IntegerPartOfX); 2918 2919 result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t6); 2920 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 2921 // For floating-point precision of 12: 2922 // 2923 // TwoToFractionalPartOfX = 2924 // 0.999892986f + 2925 // (0.696457318f + 2926 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 2927 // 2928 // 0.000107046256 error, which is 13 to 14 bits 2929 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 2930 getF32Constant(DAG, 0x3da235e3)); 2931 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 2932 getF32Constant(DAG, 0x3e65b8f3)); 2933 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 2934 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 2935 getF32Constant(DAG, 0x3f324b07)); 2936 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 2937 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 2938 getF32Constant(DAG, 0x3f7ff8fd)); 2939 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t7); 2940 2941 // Add the exponent into the result in integer domain. 2942 SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32, 2943 TwoToFracPartOfX, IntegerPartOfX); 2944 2945 result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t8); 2946 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 2947 // For floating-point precision of 18: 2948 // 2949 // TwoToFractionalPartOfX = 2950 // 0.999999982f + 2951 // (0.693148872f + 2952 // (0.240227044f + 2953 // (0.554906021e-1f + 2954 // (0.961591928e-2f + 2955 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 2956 // 2957 // error 2.47208000*10^(-7), which is better than 18 bits 2958 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 2959 getF32Constant(DAG, 0x3924b03e)); 2960 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 2961 getF32Constant(DAG, 0x3ab24b87)); 2962 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 2963 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 2964 getF32Constant(DAG, 0x3c1d8c17)); 2965 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 2966 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 2967 getF32Constant(DAG, 0x3d634a1d)); 2968 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 2969 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 2970 getF32Constant(DAG, 0x3e75fe14)); 2971 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 2972 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 2973 getF32Constant(DAG, 0x3f317234)); 2974 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 2975 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 2976 getF32Constant(DAG, 0x3f800000)); 2977 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl, 2978 MVT::i32, t13); 2979 2980 // Add the exponent into the result in integer domain. 2981 SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32, 2982 TwoToFracPartOfX, IntegerPartOfX); 2983 2984 result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t14); 2985 } 2986 } else { 2987 // No special expansion. 2988 result = DAG.getNode(ISD::FEXP, dl, 2989 getValue(I.getOperand(1)).getValueType(), 2990 getValue(I.getOperand(1))); 2991 } 2992 2993 setValue(&I, result); 2994 } 2995 2996 /// visitLog - Lower a log intrinsic. Handles the special sequences for 2997 /// limited-precision mode. 2998 void 2999 SelectionDAGBuilder::visitLog(CallInst &I) { 3000 SDValue result; 3001 DebugLoc dl = getCurDebugLoc(); 3002 3003 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && 3004 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3005 SDValue Op = getValue(I.getOperand(1)); 3006 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); 3007 3008 // Scale the exponent by log(2) [0.69314718f]. 3009 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3010 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3011 getF32Constant(DAG, 0x3f317218)); 3012 3013 // Get the significand and build it into a floating-point number with 3014 // exponent of 1. 3015 SDValue X = GetSignificand(DAG, Op1, dl); 3016 3017 if (LimitFloatPrecision <= 6) { 3018 // For floating-point precision of 6: 3019 // 3020 // LogofMantissa = 3021 // -1.1609546f + 3022 // (1.4034025f - 0.23903021f * x) * x; 3023 // 3024 // error 0.0034276066, which is better than 8 bits 3025 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3026 getF32Constant(DAG, 0xbe74c456)); 3027 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3028 getF32Constant(DAG, 0x3fb3a2b1)); 3029 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3030 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3031 getF32Constant(DAG, 0x3f949a29)); 3032 3033 result = DAG.getNode(ISD::FADD, dl, 3034 MVT::f32, LogOfExponent, LogOfMantissa); 3035 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3036 // For floating-point precision of 12: 3037 // 3038 // LogOfMantissa = 3039 // -1.7417939f + 3040 // (2.8212026f + 3041 // (-1.4699568f + 3042 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3043 // 3044 // error 0.000061011436, which is 14 bits 3045 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3046 getF32Constant(DAG, 0xbd67b6d6)); 3047 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3048 getF32Constant(DAG, 0x3ee4f4b8)); 3049 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3050 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3051 getF32Constant(DAG, 0x3fbc278b)); 3052 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3053 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3054 getF32Constant(DAG, 0x40348e95)); 3055 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3056 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3057 getF32Constant(DAG, 0x3fdef31a)); 3058 3059 result = DAG.getNode(ISD::FADD, dl, 3060 MVT::f32, LogOfExponent, LogOfMantissa); 3061 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3062 // For floating-point precision of 18: 3063 // 3064 // LogOfMantissa = 3065 // -2.1072184f + 3066 // (4.2372794f + 3067 // (-3.7029485f + 3068 // (2.2781945f + 3069 // (-0.87823314f + 3070 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3071 // 3072 // error 0.0000023660568, which is better than 18 bits 3073 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3074 getF32Constant(DAG, 0xbc91e5ac)); 3075 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3076 getF32Constant(DAG, 0x3e4350aa)); 3077 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3078 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3079 getF32Constant(DAG, 0x3f60d3e3)); 3080 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3081 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3082 getF32Constant(DAG, 0x4011cdf0)); 3083 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3084 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3085 getF32Constant(DAG, 0x406cfd1c)); 3086 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3087 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3088 getF32Constant(DAG, 0x408797cb)); 3089 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3090 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3091 getF32Constant(DAG, 0x4006dcab)); 3092 3093 result = DAG.getNode(ISD::FADD, dl, 3094 MVT::f32, LogOfExponent, LogOfMantissa); 3095 } 3096 } else { 3097 // No special expansion. 3098 result = DAG.getNode(ISD::FLOG, dl, 3099 getValue(I.getOperand(1)).getValueType(), 3100 getValue(I.getOperand(1))); 3101 } 3102 3103 setValue(&I, result); 3104 } 3105 3106 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for 3107 /// limited-precision mode. 3108 void 3109 SelectionDAGBuilder::visitLog2(CallInst &I) { 3110 SDValue result; 3111 DebugLoc dl = getCurDebugLoc(); 3112 3113 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && 3114 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3115 SDValue Op = getValue(I.getOperand(1)); 3116 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); 3117 3118 // Get the exponent. 3119 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3120 3121 // Get the significand and build it into a floating-point number with 3122 // exponent of 1. 3123 SDValue X = GetSignificand(DAG, Op1, dl); 3124 3125 // Different possible minimax approximations of significand in 3126 // floating-point for various degrees of accuracy over [1,2]. 3127 if (LimitFloatPrecision <= 6) { 3128 // For floating-point precision of 6: 3129 // 3130 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3131 // 3132 // error 0.0049451742, which is more than 7 bits 3133 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3134 getF32Constant(DAG, 0xbeb08fe0)); 3135 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3136 getF32Constant(DAG, 0x40019463)); 3137 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3138 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3139 getF32Constant(DAG, 0x3fd6633d)); 3140 3141 result = DAG.getNode(ISD::FADD, dl, 3142 MVT::f32, LogOfExponent, Log2ofMantissa); 3143 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3144 // For floating-point precision of 12: 3145 // 3146 // Log2ofMantissa = 3147 // -2.51285454f + 3148 // (4.07009056f + 3149 // (-2.12067489f + 3150 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3151 // 3152 // error 0.0000876136000, which is better than 13 bits 3153 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3154 getF32Constant(DAG, 0xbda7262e)); 3155 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3156 getF32Constant(DAG, 0x3f25280b)); 3157 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3158 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3159 getF32Constant(DAG, 0x4007b923)); 3160 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3161 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3162 getF32Constant(DAG, 0x40823e2f)); 3163 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3164 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3165 getF32Constant(DAG, 0x4020d29c)); 3166 3167 result = DAG.getNode(ISD::FADD, dl, 3168 MVT::f32, LogOfExponent, Log2ofMantissa); 3169 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3170 // For floating-point precision of 18: 3171 // 3172 // Log2ofMantissa = 3173 // -3.0400495f + 3174 // (6.1129976f + 3175 // (-5.3420409f + 3176 // (3.2865683f + 3177 // (-1.2669343f + 3178 // (0.27515199f - 3179 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3180 // 3181 // error 0.0000018516, which is better than 18 bits 3182 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3183 getF32Constant(DAG, 0xbcd2769e)); 3184 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3185 getF32Constant(DAG, 0x3e8ce0b9)); 3186 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3187 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3188 getF32Constant(DAG, 0x3fa22ae7)); 3189 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3190 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3191 getF32Constant(DAG, 0x40525723)); 3192 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3193 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3194 getF32Constant(DAG, 0x40aaf200)); 3195 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3196 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3197 getF32Constant(DAG, 0x40c39dad)); 3198 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3199 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3200 getF32Constant(DAG, 0x4042902c)); 3201 3202 result = DAG.getNode(ISD::FADD, dl, 3203 MVT::f32, LogOfExponent, Log2ofMantissa); 3204 } 3205 } else { 3206 // No special expansion. 3207 result = DAG.getNode(ISD::FLOG2, dl, 3208 getValue(I.getOperand(1)).getValueType(), 3209 getValue(I.getOperand(1))); 3210 } 3211 3212 setValue(&I, result); 3213 } 3214 3215 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for 3216 /// limited-precision mode. 3217 void 3218 SelectionDAGBuilder::visitLog10(CallInst &I) { 3219 SDValue result; 3220 DebugLoc dl = getCurDebugLoc(); 3221 3222 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && 3223 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3224 SDValue Op = getValue(I.getOperand(1)); 3225 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); 3226 3227 // Scale the exponent by log10(2) [0.30102999f]. 3228 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3229 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3230 getF32Constant(DAG, 0x3e9a209a)); 3231 3232 // Get the significand and build it into a floating-point number with 3233 // exponent of 1. 3234 SDValue X = GetSignificand(DAG, Op1, dl); 3235 3236 if (LimitFloatPrecision <= 6) { 3237 // For floating-point precision of 6: 3238 // 3239 // Log10ofMantissa = 3240 // -0.50419619f + 3241 // (0.60948995f - 0.10380950f * x) * x; 3242 // 3243 // error 0.0014886165, which is 6 bits 3244 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3245 getF32Constant(DAG, 0xbdd49a13)); 3246 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3247 getF32Constant(DAG, 0x3f1c0789)); 3248 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3249 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3250 getF32Constant(DAG, 0x3f011300)); 3251 3252 result = DAG.getNode(ISD::FADD, dl, 3253 MVT::f32, LogOfExponent, Log10ofMantissa); 3254 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3255 // For floating-point precision of 12: 3256 // 3257 // Log10ofMantissa = 3258 // -0.64831180f + 3259 // (0.91751397f + 3260 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3261 // 3262 // error 0.00019228036, which is better than 12 bits 3263 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3264 getF32Constant(DAG, 0x3d431f31)); 3265 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3266 getF32Constant(DAG, 0x3ea21fb2)); 3267 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3268 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3269 getF32Constant(DAG, 0x3f6ae232)); 3270 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3271 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3272 getF32Constant(DAG, 0x3f25f7c3)); 3273 3274 result = DAG.getNode(ISD::FADD, dl, 3275 MVT::f32, LogOfExponent, Log10ofMantissa); 3276 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3277 // For floating-point precision of 18: 3278 // 3279 // Log10ofMantissa = 3280 // -0.84299375f + 3281 // (1.5327582f + 3282 // (-1.0688956f + 3283 // (0.49102474f + 3284 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 3285 // 3286 // error 0.0000037995730, which is better than 18 bits 3287 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3288 getF32Constant(DAG, 0x3c5d51ce)); 3289 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3290 getF32Constant(DAG, 0x3e00685a)); 3291 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3292 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3293 getF32Constant(DAG, 0x3efb6798)); 3294 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3295 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3296 getF32Constant(DAG, 0x3f88d192)); 3297 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3298 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3299 getF32Constant(DAG, 0x3fc4316c)); 3300 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3301 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 3302 getF32Constant(DAG, 0x3f57ce70)); 3303 3304 result = DAG.getNode(ISD::FADD, dl, 3305 MVT::f32, LogOfExponent, Log10ofMantissa); 3306 } 3307 } else { 3308 // No special expansion. 3309 result = DAG.getNode(ISD::FLOG10, dl, 3310 getValue(I.getOperand(1)).getValueType(), 3311 getValue(I.getOperand(1))); 3312 } 3313 3314 setValue(&I, result); 3315 } 3316 3317 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for 3318 /// limited-precision mode. 3319 void 3320 SelectionDAGBuilder::visitExp2(CallInst &I) { 3321 SDValue result; 3322 DebugLoc dl = getCurDebugLoc(); 3323 3324 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && 3325 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3326 SDValue Op = getValue(I.getOperand(1)); 3327 3328 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 3329 3330 // FractionalPartOfX = x - (float)IntegerPartOfX; 3331 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3332 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 3333 3334 // IntegerPartOfX <<= 23; 3335 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3336 DAG.getConstant(23, TLI.getPointerTy())); 3337 3338 if (LimitFloatPrecision <= 6) { 3339 // For floating-point precision of 6: 3340 // 3341 // TwoToFractionalPartOfX = 3342 // 0.997535578f + 3343 // (0.735607626f + 0.252464424f * x) * x; 3344 // 3345 // error 0.0144103317, which is 6 bits 3346 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3347 getF32Constant(DAG, 0x3e814304)); 3348 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3349 getF32Constant(DAG, 0x3f3c50c8)); 3350 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3351 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3352 getF32Constant(DAG, 0x3f7f5e7e)); 3353 SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5); 3354 SDValue TwoToFractionalPartOfX = 3355 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 3356 3357 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3358 MVT::f32, TwoToFractionalPartOfX); 3359 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3360 // For floating-point precision of 12: 3361 // 3362 // TwoToFractionalPartOfX = 3363 // 0.999892986f + 3364 // (0.696457318f + 3365 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3366 // 3367 // error 0.000107046256, which is 13 to 14 bits 3368 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3369 getF32Constant(DAG, 0x3da235e3)); 3370 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3371 getF32Constant(DAG, 0x3e65b8f3)); 3372 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3373 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3374 getF32Constant(DAG, 0x3f324b07)); 3375 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3376 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3377 getF32Constant(DAG, 0x3f7ff8fd)); 3378 SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7); 3379 SDValue TwoToFractionalPartOfX = 3380 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 3381 3382 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3383 MVT::f32, TwoToFractionalPartOfX); 3384 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3385 // For floating-point precision of 18: 3386 // 3387 // TwoToFractionalPartOfX = 3388 // 0.999999982f + 3389 // (0.693148872f + 3390 // (0.240227044f + 3391 // (0.554906021e-1f + 3392 // (0.961591928e-2f + 3393 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3394 // error 2.47208000*10^(-7), which is better than 18 bits 3395 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3396 getF32Constant(DAG, 0x3924b03e)); 3397 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3398 getF32Constant(DAG, 0x3ab24b87)); 3399 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3400 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3401 getF32Constant(DAG, 0x3c1d8c17)); 3402 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3403 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3404 getF32Constant(DAG, 0x3d634a1d)); 3405 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3406 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3407 getF32Constant(DAG, 0x3e75fe14)); 3408 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3409 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3410 getF32Constant(DAG, 0x3f317234)); 3411 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3412 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3413 getF32Constant(DAG, 0x3f800000)); 3414 SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13); 3415 SDValue TwoToFractionalPartOfX = 3416 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 3417 3418 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3419 MVT::f32, TwoToFractionalPartOfX); 3420 } 3421 } else { 3422 // No special expansion. 3423 result = DAG.getNode(ISD::FEXP2, dl, 3424 getValue(I.getOperand(1)).getValueType(), 3425 getValue(I.getOperand(1))); 3426 } 3427 3428 setValue(&I, result); 3429 } 3430 3431 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 3432 /// limited-precision mode with x == 10.0f. 3433 void 3434 SelectionDAGBuilder::visitPow(CallInst &I) { 3435 SDValue result; 3436 Value *Val = I.getOperand(1); 3437 DebugLoc dl = getCurDebugLoc(); 3438 bool IsExp10 = false; 3439 3440 if (getValue(Val).getValueType() == MVT::f32 && 3441 getValue(I.getOperand(2)).getValueType() == MVT::f32 && 3442 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3443 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) { 3444 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3445 APFloat Ten(10.0f); 3446 IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten); 3447 } 3448 } 3449 } 3450 3451 if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3452 SDValue Op = getValue(I.getOperand(2)); 3453 3454 // Put the exponent in the right bit position for later addition to the 3455 // final result: 3456 // 3457 // #define LOG2OF10 3.3219281f 3458 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 3459 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3460 getF32Constant(DAG, 0x40549a78)); 3461 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3462 3463 // FractionalPartOfX = x - (float)IntegerPartOfX; 3464 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3465 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3466 3467 // IntegerPartOfX <<= 23; 3468 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3469 DAG.getConstant(23, TLI.getPointerTy())); 3470 3471 if (LimitFloatPrecision <= 6) { 3472 // For floating-point precision of 6: 3473 // 3474 // twoToFractionalPartOfX = 3475 // 0.997535578f + 3476 // (0.735607626f + 0.252464424f * x) * x; 3477 // 3478 // error 0.0144103317, which is 6 bits 3479 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3480 getF32Constant(DAG, 0x3e814304)); 3481 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3482 getF32Constant(DAG, 0x3f3c50c8)); 3483 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3484 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3485 getF32Constant(DAG, 0x3f7f5e7e)); 3486 SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5); 3487 SDValue TwoToFractionalPartOfX = 3488 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 3489 3490 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3491 MVT::f32, TwoToFractionalPartOfX); 3492 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3493 // For floating-point precision of 12: 3494 // 3495 // TwoToFractionalPartOfX = 3496 // 0.999892986f + 3497 // (0.696457318f + 3498 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3499 // 3500 // error 0.000107046256, which is 13 to 14 bits 3501 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3502 getF32Constant(DAG, 0x3da235e3)); 3503 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3504 getF32Constant(DAG, 0x3e65b8f3)); 3505 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3506 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3507 getF32Constant(DAG, 0x3f324b07)); 3508 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3509 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3510 getF32Constant(DAG, 0x3f7ff8fd)); 3511 SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7); 3512 SDValue TwoToFractionalPartOfX = 3513 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 3514 3515 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3516 MVT::f32, TwoToFractionalPartOfX); 3517 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3518 // For floating-point precision of 18: 3519 // 3520 // TwoToFractionalPartOfX = 3521 // 0.999999982f + 3522 // (0.693148872f + 3523 // (0.240227044f + 3524 // (0.554906021e-1f + 3525 // (0.961591928e-2f + 3526 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3527 // error 2.47208000*10^(-7), which is better than 18 bits 3528 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3529 getF32Constant(DAG, 0x3924b03e)); 3530 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3531 getF32Constant(DAG, 0x3ab24b87)); 3532 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3533 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3534 getF32Constant(DAG, 0x3c1d8c17)); 3535 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3536 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3537 getF32Constant(DAG, 0x3d634a1d)); 3538 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3539 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3540 getF32Constant(DAG, 0x3e75fe14)); 3541 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3542 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3543 getF32Constant(DAG, 0x3f317234)); 3544 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3545 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3546 getF32Constant(DAG, 0x3f800000)); 3547 SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13); 3548 SDValue TwoToFractionalPartOfX = 3549 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 3550 3551 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3552 MVT::f32, TwoToFractionalPartOfX); 3553 } 3554 } else { 3555 // No special expansion. 3556 result = DAG.getNode(ISD::FPOW, dl, 3557 getValue(I.getOperand(1)).getValueType(), 3558 getValue(I.getOperand(1)), 3559 getValue(I.getOperand(2))); 3560 } 3561 3562 setValue(&I, result); 3563 } 3564 3565 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 3566 /// we want to emit this as a call to a named external function, return the name 3567 /// otherwise lower it and return null. 3568 const char * 3569 SelectionDAGBuilder::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) { 3570 DebugLoc dl = getCurDebugLoc(); 3571 switch (Intrinsic) { 3572 default: 3573 // By default, turn this into a target intrinsic node. 3574 visitTargetIntrinsic(I, Intrinsic); 3575 return 0; 3576 case Intrinsic::vastart: visitVAStart(I); return 0; 3577 case Intrinsic::vaend: visitVAEnd(I); return 0; 3578 case Intrinsic::vacopy: visitVACopy(I); return 0; 3579 case Intrinsic::returnaddress: 3580 setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(), 3581 getValue(I.getOperand(1)))); 3582 return 0; 3583 case Intrinsic::frameaddress: 3584 setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(), 3585 getValue(I.getOperand(1)))); 3586 return 0; 3587 case Intrinsic::setjmp: 3588 return "_setjmp"+!TLI.usesUnderscoreSetJmp(); 3589 break; 3590 case Intrinsic::longjmp: 3591 return "_longjmp"+!TLI.usesUnderscoreLongJmp(); 3592 break; 3593 case Intrinsic::memcpy: { 3594 SDValue Op1 = getValue(I.getOperand(1)); 3595 SDValue Op2 = getValue(I.getOperand(2)); 3596 SDValue Op3 = getValue(I.getOperand(3)); 3597 unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue(); 3598 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, false, 3599 I.getOperand(1), 0, I.getOperand(2), 0)); 3600 return 0; 3601 } 3602 case Intrinsic::memset: { 3603 SDValue Op1 = getValue(I.getOperand(1)); 3604 SDValue Op2 = getValue(I.getOperand(2)); 3605 SDValue Op3 = getValue(I.getOperand(3)); 3606 unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue(); 3607 DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, 3608 I.getOperand(1), 0)); 3609 return 0; 3610 } 3611 case Intrinsic::memmove: { 3612 SDValue Op1 = getValue(I.getOperand(1)); 3613 SDValue Op2 = getValue(I.getOperand(2)); 3614 SDValue Op3 = getValue(I.getOperand(3)); 3615 unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue(); 3616 3617 // If the source and destination are known to not be aliases, we can 3618 // lower memmove as memcpy. 3619 uint64_t Size = -1ULL; 3620 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3)) 3621 Size = C->getZExtValue(); 3622 if (AA->alias(I.getOperand(1), Size, I.getOperand(2), Size) == 3623 AliasAnalysis::NoAlias) { 3624 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, false, 3625 I.getOperand(1), 0, I.getOperand(2), 0)); 3626 return 0; 3627 } 3628 3629 DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, 3630 I.getOperand(1), 0, I.getOperand(2), 0)); 3631 return 0; 3632 } 3633 case Intrinsic::dbg_stoppoint: 3634 case Intrinsic::dbg_region_start: 3635 case Intrinsic::dbg_region_end: 3636 case Intrinsic::dbg_func_start: 3637 // FIXME - Remove this instructions once the dust settles. 3638 return 0; 3639 case Intrinsic::dbg_declare: { 3640 if (OptLevel != CodeGenOpt::None) 3641 // FIXME: Variable debug info is not supported here. 3642 return 0; 3643 DwarfWriter *DW = DAG.getDwarfWriter(); 3644 if (!DW) 3645 return 0; 3646 DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 3647 if (!isValidDebugInfoIntrinsic(DI, CodeGenOpt::None)) 3648 return 0; 3649 3650 MDNode *Variable = DI.getVariable(); 3651 Value *Address = DI.getAddress(); 3652 if (BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 3653 Address = BCI->getOperand(0); 3654 AllocaInst *AI = dyn_cast<AllocaInst>(Address); 3655 // Don't handle byval struct arguments or VLAs, for example. 3656 if (!AI) 3657 return 0; 3658 DenseMap<const AllocaInst*, int>::iterator SI = 3659 FuncInfo.StaticAllocaMap.find(AI); 3660 if (SI == FuncInfo.StaticAllocaMap.end()) 3661 return 0; // VLAs. 3662 int FI = SI->second; 3663 3664 MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); 3665 if (MMI) { 3666 MetadataContext &TheMetadata = 3667 DI.getParent()->getContext().getMetadata(); 3668 unsigned MDDbgKind = TheMetadata.getMDKind("dbg"); 3669 MDNode *Dbg = TheMetadata.getMD(MDDbgKind, &DI); 3670 MMI->setVariableDbgInfo(Variable, FI, Dbg); 3671 } 3672 return 0; 3673 } 3674 case Intrinsic::eh_exception: { 3675 // Insert the EXCEPTIONADDR instruction. 3676 assert(CurMBB->isLandingPad() &&"Call to eh.exception not in landing pad!"); 3677 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 3678 SDValue Ops[1]; 3679 Ops[0] = DAG.getRoot(); 3680 SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1); 3681 setValue(&I, Op); 3682 DAG.setRoot(Op.getValue(1)); 3683 return 0; 3684 } 3685 3686 case Intrinsic::eh_selector: { 3687 MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); 3688 3689 if (CurMBB->isLandingPad()) 3690 AddCatchInfo(I, MMI, CurMBB); 3691 else { 3692 #ifndef NDEBUG 3693 FuncInfo.CatchInfoLost.insert(&I); 3694 #endif 3695 // FIXME: Mark exception selector register as live in. Hack for PR1508. 3696 unsigned Reg = TLI.getExceptionSelectorRegister(); 3697 if (Reg) CurMBB->addLiveIn(Reg); 3698 } 3699 3700 // Insert the EHSELECTION instruction. 3701 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 3702 SDValue Ops[2]; 3703 Ops[0] = getValue(I.getOperand(1)); 3704 Ops[1] = getRoot(); 3705 SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2); 3706 3707 DAG.setRoot(Op.getValue(1)); 3708 3709 setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32)); 3710 return 0; 3711 } 3712 3713 case Intrinsic::eh_typeid_for: { 3714 MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); 3715 3716 if (MMI) { 3717 // Find the type id for the given typeinfo. 3718 GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1)); 3719 3720 unsigned TypeID = MMI->getTypeIDFor(GV); 3721 setValue(&I, DAG.getConstant(TypeID, MVT::i32)); 3722 } else { 3723 // Return something different to eh_selector. 3724 setValue(&I, DAG.getConstant(1, MVT::i32)); 3725 } 3726 3727 return 0; 3728 } 3729 3730 case Intrinsic::eh_return_i32: 3731 case Intrinsic::eh_return_i64: 3732 if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) { 3733 MMI->setCallsEHReturn(true); 3734 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl, 3735 MVT::Other, 3736 getControlRoot(), 3737 getValue(I.getOperand(1)), 3738 getValue(I.getOperand(2)))); 3739 } else { 3740 setValue(&I, DAG.getConstant(0, TLI.getPointerTy())); 3741 } 3742 3743 return 0; 3744 case Intrinsic::eh_unwind_init: 3745 if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) { 3746 MMI->setCallsUnwindInit(true); 3747 } 3748 3749 return 0; 3750 3751 case Intrinsic::eh_dwarf_cfa: { 3752 EVT VT = getValue(I.getOperand(1)).getValueType(); 3753 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), dl, 3754 TLI.getPointerTy()); 3755 3756 SDValue Offset = DAG.getNode(ISD::ADD, dl, 3757 TLI.getPointerTy(), 3758 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 3759 TLI.getPointerTy()), 3760 CfaArg); 3761 setValue(&I, DAG.getNode(ISD::ADD, dl, 3762 TLI.getPointerTy(), 3763 DAG.getNode(ISD::FRAMEADDR, dl, 3764 TLI.getPointerTy(), 3765 DAG.getConstant(0, 3766 TLI.getPointerTy())), 3767 Offset)); 3768 return 0; 3769 } 3770 case Intrinsic::convertff: 3771 case Intrinsic::convertfsi: 3772 case Intrinsic::convertfui: 3773 case Intrinsic::convertsif: 3774 case Intrinsic::convertuif: 3775 case Intrinsic::convertss: 3776 case Intrinsic::convertsu: 3777 case Intrinsic::convertus: 3778 case Intrinsic::convertuu: { 3779 ISD::CvtCode Code = ISD::CVT_INVALID; 3780 switch (Intrinsic) { 3781 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 3782 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 3783 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 3784 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 3785 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 3786 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 3787 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 3788 case Intrinsic::convertus: Code = ISD::CVT_US; break; 3789 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 3790 } 3791 EVT DestVT = TLI.getValueType(I.getType()); 3792 Value* Op1 = I.getOperand(1); 3793 setValue(&I, DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1), 3794 DAG.getValueType(DestVT), 3795 DAG.getValueType(getValue(Op1).getValueType()), 3796 getValue(I.getOperand(2)), 3797 getValue(I.getOperand(3)), 3798 Code)); 3799 return 0; 3800 } 3801 3802 case Intrinsic::sqrt: 3803 setValue(&I, DAG.getNode(ISD::FSQRT, dl, 3804 getValue(I.getOperand(1)).getValueType(), 3805 getValue(I.getOperand(1)))); 3806 return 0; 3807 case Intrinsic::powi: 3808 setValue(&I, DAG.getNode(ISD::FPOWI, dl, 3809 getValue(I.getOperand(1)).getValueType(), 3810 getValue(I.getOperand(1)), 3811 getValue(I.getOperand(2)))); 3812 return 0; 3813 case Intrinsic::sin: 3814 setValue(&I, DAG.getNode(ISD::FSIN, dl, 3815 getValue(I.getOperand(1)).getValueType(), 3816 getValue(I.getOperand(1)))); 3817 return 0; 3818 case Intrinsic::cos: 3819 setValue(&I, DAG.getNode(ISD::FCOS, dl, 3820 getValue(I.getOperand(1)).getValueType(), 3821 getValue(I.getOperand(1)))); 3822 return 0; 3823 case Intrinsic::log: 3824 visitLog(I); 3825 return 0; 3826 case Intrinsic::log2: 3827 visitLog2(I); 3828 return 0; 3829 case Intrinsic::log10: 3830 visitLog10(I); 3831 return 0; 3832 case Intrinsic::exp: 3833 visitExp(I); 3834 return 0; 3835 case Intrinsic::exp2: 3836 visitExp2(I); 3837 return 0; 3838 case Intrinsic::pow: 3839 visitPow(I); 3840 return 0; 3841 case Intrinsic::pcmarker: { 3842 SDValue Tmp = getValue(I.getOperand(1)); 3843 DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp)); 3844 return 0; 3845 } 3846 case Intrinsic::readcyclecounter: { 3847 SDValue Op = getRoot(); 3848 SDValue Tmp = DAG.getNode(ISD::READCYCLECOUNTER, dl, 3849 DAG.getVTList(MVT::i64, MVT::Other), 3850 &Op, 1); 3851 setValue(&I, Tmp); 3852 DAG.setRoot(Tmp.getValue(1)); 3853 return 0; 3854 } 3855 case Intrinsic::bswap: 3856 setValue(&I, DAG.getNode(ISD::BSWAP, dl, 3857 getValue(I.getOperand(1)).getValueType(), 3858 getValue(I.getOperand(1)))); 3859 return 0; 3860 case Intrinsic::cttz: { 3861 SDValue Arg = getValue(I.getOperand(1)); 3862 EVT Ty = Arg.getValueType(); 3863 SDValue result = DAG.getNode(ISD::CTTZ, dl, Ty, Arg); 3864 setValue(&I, result); 3865 return 0; 3866 } 3867 case Intrinsic::ctlz: { 3868 SDValue Arg = getValue(I.getOperand(1)); 3869 EVT Ty = Arg.getValueType(); 3870 SDValue result = DAG.getNode(ISD::CTLZ, dl, Ty, Arg); 3871 setValue(&I, result); 3872 return 0; 3873 } 3874 case Intrinsic::ctpop: { 3875 SDValue Arg = getValue(I.getOperand(1)); 3876 EVT Ty = Arg.getValueType(); 3877 SDValue result = DAG.getNode(ISD::CTPOP, dl, Ty, Arg); 3878 setValue(&I, result); 3879 return 0; 3880 } 3881 case Intrinsic::stacksave: { 3882 SDValue Op = getRoot(); 3883 SDValue Tmp = DAG.getNode(ISD::STACKSAVE, dl, 3884 DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1); 3885 setValue(&I, Tmp); 3886 DAG.setRoot(Tmp.getValue(1)); 3887 return 0; 3888 } 3889 case Intrinsic::stackrestore: { 3890 SDValue Tmp = getValue(I.getOperand(1)); 3891 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Tmp)); 3892 return 0; 3893 } 3894 case Intrinsic::stackprotector: { 3895 // Emit code into the DAG to store the stack guard onto the stack. 3896 MachineFunction &MF = DAG.getMachineFunction(); 3897 MachineFrameInfo *MFI = MF.getFrameInfo(); 3898 EVT PtrTy = TLI.getPointerTy(); 3899 3900 SDValue Src = getValue(I.getOperand(1)); // The guard's value. 3901 AllocaInst *Slot = cast<AllocaInst>(I.getOperand(2)); 3902 3903 int FI = FuncInfo.StaticAllocaMap[Slot]; 3904 MFI->setStackProtectorIndex(FI); 3905 3906 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 3907 3908 // Store the stack protector onto the stack. 3909 SDValue Result = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN, 3910 PseudoSourceValue::getFixedStack(FI), 3911 0, true); 3912 setValue(&I, Result); 3913 DAG.setRoot(Result); 3914 return 0; 3915 } 3916 case Intrinsic::objectsize: { 3917 // If we don't know by now, we're never going to know. 3918 ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(2)); 3919 3920 assert(CI && "Non-constant type in __builtin_object_size?"); 3921 3922 SDValue Arg = getValue(I.getOperand(0)); 3923 EVT Ty = Arg.getValueType(); 3924 3925 if (CI->getZExtValue() < 2) 3926 setValue(&I, DAG.getConstant(-1ULL, Ty)); 3927 else 3928 setValue(&I, DAG.getConstant(0, Ty)); 3929 return 0; 3930 } 3931 case Intrinsic::var_annotation: 3932 // Discard annotate attributes 3933 return 0; 3934 3935 case Intrinsic::init_trampoline: { 3936 const Function *F = cast<Function>(I.getOperand(2)->stripPointerCasts()); 3937 3938 SDValue Ops[6]; 3939 Ops[0] = getRoot(); 3940 Ops[1] = getValue(I.getOperand(1)); 3941 Ops[2] = getValue(I.getOperand(2)); 3942 Ops[3] = getValue(I.getOperand(3)); 3943 Ops[4] = DAG.getSrcValue(I.getOperand(1)); 3944 Ops[5] = DAG.getSrcValue(F); 3945 3946 SDValue Tmp = DAG.getNode(ISD::TRAMPOLINE, dl, 3947 DAG.getVTList(TLI.getPointerTy(), MVT::Other), 3948 Ops, 6); 3949 3950 setValue(&I, Tmp); 3951 DAG.setRoot(Tmp.getValue(1)); 3952 return 0; 3953 } 3954 3955 case Intrinsic::gcroot: 3956 if (GFI) { 3957 Value *Alloca = I.getOperand(1); 3958 Constant *TypeMap = cast<Constant>(I.getOperand(2)); 3959 3960 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 3961 GFI->addStackRoot(FI->getIndex(), TypeMap); 3962 } 3963 return 0; 3964 3965 case Intrinsic::gcread: 3966 case Intrinsic::gcwrite: 3967 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 3968 return 0; 3969 3970 case Intrinsic::flt_rounds: { 3971 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32)); 3972 return 0; 3973 } 3974 3975 case Intrinsic::trap: { 3976 DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot())); 3977 return 0; 3978 } 3979 3980 case Intrinsic::uadd_with_overflow: 3981 return implVisitAluOverflow(I, ISD::UADDO); 3982 case Intrinsic::sadd_with_overflow: 3983 return implVisitAluOverflow(I, ISD::SADDO); 3984 case Intrinsic::usub_with_overflow: 3985 return implVisitAluOverflow(I, ISD::USUBO); 3986 case Intrinsic::ssub_with_overflow: 3987 return implVisitAluOverflow(I, ISD::SSUBO); 3988 case Intrinsic::umul_with_overflow: 3989 return implVisitAluOverflow(I, ISD::UMULO); 3990 case Intrinsic::smul_with_overflow: 3991 return implVisitAluOverflow(I, ISD::SMULO); 3992 3993 case Intrinsic::prefetch: { 3994 SDValue Ops[4]; 3995 Ops[0] = getRoot(); 3996 Ops[1] = getValue(I.getOperand(1)); 3997 Ops[2] = getValue(I.getOperand(2)); 3998 Ops[3] = getValue(I.getOperand(3)); 3999 DAG.setRoot(DAG.getNode(ISD::PREFETCH, dl, MVT::Other, &Ops[0], 4)); 4000 return 0; 4001 } 4002 4003 case Intrinsic::memory_barrier: { 4004 SDValue Ops[6]; 4005 Ops[0] = getRoot(); 4006 for (int x = 1; x < 6; ++x) 4007 Ops[x] = getValue(I.getOperand(x)); 4008 4009 DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6)); 4010 return 0; 4011 } 4012 case Intrinsic::atomic_cmp_swap: { 4013 SDValue Root = getRoot(); 4014 SDValue L = 4015 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(), 4016 getValue(I.getOperand(2)).getValueType().getSimpleVT(), 4017 Root, 4018 getValue(I.getOperand(1)), 4019 getValue(I.getOperand(2)), 4020 getValue(I.getOperand(3)), 4021 I.getOperand(1)); 4022 setValue(&I, L); 4023 DAG.setRoot(L.getValue(1)); 4024 return 0; 4025 } 4026 case Intrinsic::atomic_load_add: 4027 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD); 4028 case Intrinsic::atomic_load_sub: 4029 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB); 4030 case Intrinsic::atomic_load_or: 4031 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR); 4032 case Intrinsic::atomic_load_xor: 4033 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR); 4034 case Intrinsic::atomic_load_and: 4035 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND); 4036 case Intrinsic::atomic_load_nand: 4037 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND); 4038 case Intrinsic::atomic_load_max: 4039 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX); 4040 case Intrinsic::atomic_load_min: 4041 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN); 4042 case Intrinsic::atomic_load_umin: 4043 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN); 4044 case Intrinsic::atomic_load_umax: 4045 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX); 4046 case Intrinsic::atomic_swap: 4047 return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP); 4048 4049 case Intrinsic::invariant_start: 4050 case Intrinsic::lifetime_start: 4051 // Discard region information. 4052 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 4053 return 0; 4054 case Intrinsic::invariant_end: 4055 case Intrinsic::lifetime_end: 4056 // Discard region information. 4057 return 0; 4058 } 4059 } 4060 4061 /// Test if the given instruction is in a position to be optimized 4062 /// with a tail-call. This roughly means that it's in a block with 4063 /// a return and there's nothing that needs to be scheduled 4064 /// between it and the return. 4065 /// 4066 /// This function only tests target-independent requirements. 4067 /// For target-dependent requirements, a target should override 4068 /// TargetLowering::IsEligibleForTailCallOptimization. 4069 /// 4070 static bool 4071 isInTailCallPosition(const Instruction *I, Attributes CalleeRetAttr, 4072 const TargetLowering &TLI) { 4073 const BasicBlock *ExitBB = I->getParent(); 4074 const TerminatorInst *Term = ExitBB->getTerminator(); 4075 const ReturnInst *Ret = dyn_cast<ReturnInst>(Term); 4076 const Function *F = ExitBB->getParent(); 4077 4078 // The block must end in a return statement or an unreachable. 4079 if (!Ret && !isa<UnreachableInst>(Term)) return false; 4080 4081 // If I will have a chain, make sure no other instruction that will have a 4082 // chain interposes between I and the return. 4083 if (I->mayHaveSideEffects() || I->mayReadFromMemory() || 4084 !I->isSafeToSpeculativelyExecute()) 4085 for (BasicBlock::const_iterator BBI = prior(prior(ExitBB->end())); ; 4086 --BBI) { 4087 if (&*BBI == I) 4088 break; 4089 if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() || 4090 !BBI->isSafeToSpeculativelyExecute()) 4091 return false; 4092 } 4093 4094 // If the block ends with a void return or unreachable, it doesn't matter 4095 // what the call's return type is. 4096 if (!Ret || Ret->getNumOperands() == 0) return true; 4097 4098 // If the return value is undef, it doesn't matter what the call's 4099 // return type is. 4100 if (isa<UndefValue>(Ret->getOperand(0))) return true; 4101 4102 // Conservatively require the attributes of the call to match those of 4103 // the return. Ignore noalias because it doesn't affect the call sequence. 4104 unsigned CallerRetAttr = F->getAttributes().getRetAttributes(); 4105 if ((CalleeRetAttr ^ CallerRetAttr) & ~Attribute::NoAlias) 4106 return false; 4107 4108 // Otherwise, make sure the unmodified return value of I is the return value. 4109 for (const Instruction *U = dyn_cast<Instruction>(Ret->getOperand(0)); ; 4110 U = dyn_cast<Instruction>(U->getOperand(0))) { 4111 if (!U) 4112 return false; 4113 if (!U->hasOneUse()) 4114 return false; 4115 if (U == I) 4116 break; 4117 // Check for a truly no-op truncate. 4118 if (isa<TruncInst>(U) && 4119 TLI.isTruncateFree(U->getOperand(0)->getType(), U->getType())) 4120 continue; 4121 // Check for a truly no-op bitcast. 4122 if (isa<BitCastInst>(U) && 4123 (U->getOperand(0)->getType() == U->getType() || 4124 (isa<PointerType>(U->getOperand(0)->getType()) && 4125 isa<PointerType>(U->getType())))) 4126 continue; 4127 // Otherwise it's not a true no-op. 4128 return false; 4129 } 4130 4131 return true; 4132 } 4133 4134 void SelectionDAGBuilder::LowerCallTo(CallSite CS, SDValue Callee, 4135 bool isTailCall, 4136 MachineBasicBlock *LandingPad) { 4137 const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 4138 const FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 4139 const Type *RetTy = FTy->getReturnType(); 4140 MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); 4141 unsigned BeginLabel = 0, EndLabel = 0; 4142 4143 TargetLowering::ArgListTy Args; 4144 TargetLowering::ArgListEntry Entry; 4145 Args.reserve(CS.arg_size()); 4146 4147 // Check whether the function can return without sret-demotion. 4148 SmallVector<EVT, 4> OutVTs; 4149 SmallVector<ISD::ArgFlagsTy, 4> OutsFlags; 4150 SmallVector<uint64_t, 4> Offsets; 4151 getReturnInfo(RetTy, CS.getAttributes().getRetAttributes(), 4152 OutVTs, OutsFlags, TLI, &Offsets); 4153 4154 4155 bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(), 4156 FTy->isVarArg(), OutVTs, OutsFlags, DAG); 4157 4158 SDValue DemoteStackSlot; 4159 4160 if (!CanLowerReturn) { 4161 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize( 4162 FTy->getReturnType()); 4163 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment( 4164 FTy->getReturnType()); 4165 MachineFunction &MF = DAG.getMachineFunction(); 4166 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 4167 const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); 4168 4169 DemoteStackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 4170 Entry.Node = DemoteStackSlot; 4171 Entry.Ty = StackSlotPtrType; 4172 Entry.isSExt = false; 4173 Entry.isZExt = false; 4174 Entry.isInReg = false; 4175 Entry.isSRet = true; 4176 Entry.isNest = false; 4177 Entry.isByVal = false; 4178 Entry.Alignment = Align; 4179 Args.push_back(Entry); 4180 RetTy = Type::getVoidTy(FTy->getContext()); 4181 } 4182 4183 for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 4184 i != e; ++i) { 4185 SDValue ArgNode = getValue(*i); 4186 Entry.Node = ArgNode; Entry.Ty = (*i)->getType(); 4187 4188 unsigned attrInd = i - CS.arg_begin() + 1; 4189 Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt); 4190 Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt); 4191 Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg); 4192 Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet); 4193 Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest); 4194 Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal); 4195 Entry.Alignment = CS.getParamAlignment(attrInd); 4196 Args.push_back(Entry); 4197 } 4198 4199 if (LandingPad && MMI) { 4200 // Insert a label before the invoke call to mark the try range. This can be 4201 // used to detect deletion of the invoke via the MachineModuleInfo. 4202 BeginLabel = MMI->NextLabelID(); 4203 4204 // Both PendingLoads and PendingExports must be flushed here; 4205 // this call might not return. 4206 (void)getRoot(); 4207 DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getCurDebugLoc(), 4208 getControlRoot(), BeginLabel)); 4209 } 4210 4211 // Check if target-independent constraints permit a tail call here. 4212 // Target-dependent constraints are checked within TLI.LowerCallTo. 4213 if (isTailCall && 4214 !isInTailCallPosition(CS.getInstruction(), 4215 CS.getAttributes().getRetAttributes(), 4216 TLI)) 4217 isTailCall = false; 4218 4219 std::pair<SDValue,SDValue> Result = 4220 TLI.LowerCallTo(getRoot(), RetTy, 4221 CS.paramHasAttr(0, Attribute::SExt), 4222 CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(), 4223 CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(), 4224 CS.getCallingConv(), 4225 isTailCall, 4226 !CS.getInstruction()->use_empty(), 4227 Callee, Args, DAG, getCurDebugLoc()); 4228 assert((isTailCall || Result.second.getNode()) && 4229 "Non-null chain expected with non-tail call!"); 4230 assert((Result.second.getNode() || !Result.first.getNode()) && 4231 "Null value expected with tail call!"); 4232 if (Result.first.getNode()) 4233 setValue(CS.getInstruction(), Result.first); 4234 else if (!CanLowerReturn && Result.second.getNode()) { 4235 // The instruction result is the result of loading from the 4236 // hidden sret parameter. 4237 SmallVector<EVT, 1> PVTs; 4238 const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); 4239 4240 ComputeValueVTs(TLI, PtrRetTy, PVTs); 4241 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 4242 EVT PtrVT = PVTs[0]; 4243 unsigned NumValues = OutVTs.size(); 4244 SmallVector<SDValue, 4> Values(NumValues); 4245 SmallVector<SDValue, 4> Chains(NumValues); 4246 4247 for (unsigned i = 0; i < NumValues; ++i) { 4248 SDValue L = DAG.getLoad(OutVTs[i], getCurDebugLoc(), Result.second, 4249 DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, DemoteStackSlot, 4250 DAG.getConstant(Offsets[i], PtrVT)), 4251 NULL, Offsets[i], false, 1); 4252 Values[i] = L; 4253 Chains[i] = L.getValue(1); 4254 } 4255 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 4256 MVT::Other, &Chains[0], NumValues); 4257 PendingLoads.push_back(Chain); 4258 4259 setValue(CS.getInstruction(), DAG.getNode(ISD::MERGE_VALUES, 4260 getCurDebugLoc(), DAG.getVTList(&OutVTs[0], NumValues), 4261 &Values[0], NumValues)); 4262 } 4263 // As a special case, a null chain means that a tail call has 4264 // been emitted and the DAG root is already updated. 4265 if (Result.second.getNode()) 4266 DAG.setRoot(Result.second); 4267 else 4268 HasTailCall = true; 4269 4270 if (LandingPad && MMI) { 4271 // Insert a label at the end of the invoke call to mark the try range. This 4272 // can be used to detect deletion of the invoke via the MachineModuleInfo. 4273 EndLabel = MMI->NextLabelID(); 4274 DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getCurDebugLoc(), 4275 getRoot(), EndLabel)); 4276 4277 // Inform MachineModuleInfo of range. 4278 MMI->addInvoke(LandingPad, BeginLabel, EndLabel); 4279 } 4280 } 4281 4282 4283 void SelectionDAGBuilder::visitCall(CallInst &I) { 4284 const char *RenameFn = 0; 4285 if (Function *F = I.getCalledFunction()) { 4286 if (F->isDeclaration()) { 4287 const TargetIntrinsicInfo *II = TLI.getTargetMachine().getIntrinsicInfo(); 4288 if (II) { 4289 if (unsigned IID = II->getIntrinsicID(F)) { 4290 RenameFn = visitIntrinsicCall(I, IID); 4291 if (!RenameFn) 4292 return; 4293 } 4294 } 4295 if (unsigned IID = F->getIntrinsicID()) { 4296 RenameFn = visitIntrinsicCall(I, IID); 4297 if (!RenameFn) 4298 return; 4299 } 4300 } 4301 4302 // Check for well-known libc/libm calls. If the function is internal, it 4303 // can't be a library call. 4304 if (!F->hasLocalLinkage() && F->hasName()) { 4305 StringRef Name = F->getName(); 4306 if (Name == "copysign" || Name == "copysignf") { 4307 if (I.getNumOperands() == 3 && // Basic sanity checks. 4308 I.getOperand(1)->getType()->isFloatingPoint() && 4309 I.getType() == I.getOperand(1)->getType() && 4310 I.getType() == I.getOperand(2)->getType()) { 4311 SDValue LHS = getValue(I.getOperand(1)); 4312 SDValue RHS = getValue(I.getOperand(2)); 4313 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(), 4314 LHS.getValueType(), LHS, RHS)); 4315 return; 4316 } 4317 } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") { 4318 if (I.getNumOperands() == 2 && // Basic sanity checks. 4319 I.getOperand(1)->getType()->isFloatingPoint() && 4320 I.getType() == I.getOperand(1)->getType()) { 4321 SDValue Tmp = getValue(I.getOperand(1)); 4322 setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(), 4323 Tmp.getValueType(), Tmp)); 4324 return; 4325 } 4326 } else if (Name == "sin" || Name == "sinf" || Name == "sinl") { 4327 if (I.getNumOperands() == 2 && // Basic sanity checks. 4328 I.getOperand(1)->getType()->isFloatingPoint() && 4329 I.getType() == I.getOperand(1)->getType() && 4330 I.onlyReadsMemory()) { 4331 SDValue Tmp = getValue(I.getOperand(1)); 4332 setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(), 4333 Tmp.getValueType(), Tmp)); 4334 return; 4335 } 4336 } else if (Name == "cos" || Name == "cosf" || Name == "cosl") { 4337 if (I.getNumOperands() == 2 && // Basic sanity checks. 4338 I.getOperand(1)->getType()->isFloatingPoint() && 4339 I.getType() == I.getOperand(1)->getType() && 4340 I.onlyReadsMemory()) { 4341 SDValue Tmp = getValue(I.getOperand(1)); 4342 setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(), 4343 Tmp.getValueType(), Tmp)); 4344 return; 4345 } 4346 } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") { 4347 if (I.getNumOperands() == 2 && // Basic sanity checks. 4348 I.getOperand(1)->getType()->isFloatingPoint() && 4349 I.getType() == I.getOperand(1)->getType() && 4350 I.onlyReadsMemory()) { 4351 SDValue Tmp = getValue(I.getOperand(1)); 4352 setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(), 4353 Tmp.getValueType(), Tmp)); 4354 return; 4355 } 4356 } 4357 } 4358 } else if (isa<InlineAsm>(I.getOperand(0))) { 4359 visitInlineAsm(&I); 4360 return; 4361 } 4362 4363 SDValue Callee; 4364 if (!RenameFn) 4365 Callee = getValue(I.getOperand(0)); 4366 else 4367 Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); 4368 4369 // Check if we can potentially perform a tail call. More detailed 4370 // checking is be done within LowerCallTo, after more information 4371 // about the call is known. 4372 bool isTailCall = PerformTailCallOpt && I.isTailCall(); 4373 4374 LowerCallTo(&I, Callee, isTailCall); 4375 } 4376 4377 4378 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 4379 /// this value and returns the result as a ValueVT value. This uses 4380 /// Chain/Flag as the input and updates them for the output Chain/Flag. 4381 /// If the Flag pointer is NULL, no flag is used. 4382 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl, 4383 SDValue &Chain, 4384 SDValue *Flag) const { 4385 // Assemble the legal parts into the final values. 4386 SmallVector<SDValue, 4> Values(ValueVTs.size()); 4387 SmallVector<SDValue, 8> Parts; 4388 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 4389 // Copy the legal parts from the registers. 4390 EVT ValueVT = ValueVTs[Value]; 4391 unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVT); 4392 EVT RegisterVT = RegVTs[Value]; 4393 4394 Parts.resize(NumRegs); 4395 for (unsigned i = 0; i != NumRegs; ++i) { 4396 SDValue P; 4397 if (Flag == 0) 4398 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 4399 else { 4400 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 4401 *Flag = P.getValue(2); 4402 } 4403 Chain = P.getValue(1); 4404 4405 // If the source register was virtual and if we know something about it, 4406 // add an assert node. 4407 if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) && 4408 RegisterVT.isInteger() && !RegisterVT.isVector()) { 4409 unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister; 4410 FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo(); 4411 if (FLI.LiveOutRegInfo.size() > SlotNo) { 4412 FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[SlotNo]; 4413 4414 unsigned RegSize = RegisterVT.getSizeInBits(); 4415 unsigned NumSignBits = LOI.NumSignBits; 4416 unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes(); 4417 4418 // FIXME: We capture more information than the dag can represent. For 4419 // now, just use the tightest assertzext/assertsext possible. 4420 bool isSExt = true; 4421 EVT FromVT(MVT::Other); 4422 if (NumSignBits == RegSize) 4423 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 4424 else if (NumZeroBits >= RegSize-1) 4425 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 4426 else if (NumSignBits > RegSize-8) 4427 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 4428 else if (NumZeroBits >= RegSize-8) 4429 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 4430 else if (NumSignBits > RegSize-16) 4431 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 4432 else if (NumZeroBits >= RegSize-16) 4433 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 4434 else if (NumSignBits > RegSize-32) 4435 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 4436 else if (NumZeroBits >= RegSize-32) 4437 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 4438 4439 if (FromVT != MVT::Other) { 4440 P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 4441 RegisterVT, P, DAG.getValueType(FromVT)); 4442 4443 } 4444 } 4445 } 4446 4447 Parts[i] = P; 4448 } 4449 4450 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 4451 NumRegs, RegisterVT, ValueVT); 4452 Part += NumRegs; 4453 Parts.clear(); 4454 } 4455 4456 return DAG.getNode(ISD::MERGE_VALUES, dl, 4457 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 4458 &Values[0], ValueVTs.size()); 4459 } 4460 4461 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 4462 /// specified value into the registers specified by this object. This uses 4463 /// Chain/Flag as the input and updates them for the output Chain/Flag. 4464 /// If the Flag pointer is NULL, no flag is used. 4465 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 4466 SDValue &Chain, SDValue *Flag) const { 4467 // Get the list of the values's legal parts. 4468 unsigned NumRegs = Regs.size(); 4469 SmallVector<SDValue, 8> Parts(NumRegs); 4470 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 4471 EVT ValueVT = ValueVTs[Value]; 4472 unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), ValueVT); 4473 EVT RegisterVT = RegVTs[Value]; 4474 4475 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 4476 &Parts[Part], NumParts, RegisterVT); 4477 Part += NumParts; 4478 } 4479 4480 // Copy the parts into the registers. 4481 SmallVector<SDValue, 8> Chains(NumRegs); 4482 for (unsigned i = 0; i != NumRegs; ++i) { 4483 SDValue Part; 4484 if (Flag == 0) 4485 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 4486 else { 4487 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 4488 *Flag = Part.getValue(1); 4489 } 4490 Chains[i] = Part.getValue(0); 4491 } 4492 4493 if (NumRegs == 1 || Flag) 4494 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 4495 // flagged to it. That is the CopyToReg nodes and the user are considered 4496 // a single scheduling unit. If we create a TokenFactor and return it as 4497 // chain, then the TokenFactor is both a predecessor (operand) of the 4498 // user as well as a successor (the TF operands are flagged to the user). 4499 // c1, f1 = CopyToReg 4500 // c2, f2 = CopyToReg 4501 // c3 = TokenFactor c1, c2 4502 // ... 4503 // = op c3, ..., f2 4504 Chain = Chains[NumRegs-1]; 4505 else 4506 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); 4507 } 4508 4509 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 4510 /// operand list. This adds the code marker and includes the number of 4511 /// values added into it. 4512 void RegsForValue::AddInlineAsmOperands(unsigned Code, 4513 bool HasMatching,unsigned MatchingIdx, 4514 SelectionDAG &DAG, 4515 std::vector<SDValue> &Ops) const { 4516 EVT IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy(); 4517 assert(Regs.size() < (1 << 13) && "Too many inline asm outputs!"); 4518 unsigned Flag = Code | (Regs.size() << 3); 4519 if (HasMatching) 4520 Flag |= 0x80000000 | (MatchingIdx << 16); 4521 Ops.push_back(DAG.getTargetConstant(Flag, IntPtrTy)); 4522 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 4523 unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 4524 EVT RegisterVT = RegVTs[Value]; 4525 for (unsigned i = 0; i != NumRegs; ++i) { 4526 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 4527 Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT)); 4528 } 4529 } 4530 } 4531 4532 /// isAllocatableRegister - If the specified register is safe to allocate, 4533 /// i.e. it isn't a stack pointer or some other special register, return the 4534 /// register class for the register. Otherwise, return null. 4535 static const TargetRegisterClass * 4536 isAllocatableRegister(unsigned Reg, MachineFunction &MF, 4537 const TargetLowering &TLI, 4538 const TargetRegisterInfo *TRI) { 4539 EVT FoundVT = MVT::Other; 4540 const TargetRegisterClass *FoundRC = 0; 4541 for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(), 4542 E = TRI->regclass_end(); RCI != E; ++RCI) { 4543 EVT ThisVT = MVT::Other; 4544 4545 const TargetRegisterClass *RC = *RCI; 4546 // If none of the the value types for this register class are valid, we 4547 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4548 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end(); 4549 I != E; ++I) { 4550 if (TLI.isTypeLegal(*I)) { 4551 // If we have already found this register in a different register class, 4552 // choose the one with the largest VT specified. For example, on 4553 // PowerPC, we favor f64 register classes over f32. 4554 if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) { 4555 ThisVT = *I; 4556 break; 4557 } 4558 } 4559 } 4560 4561 if (ThisVT == MVT::Other) continue; 4562 4563 // NOTE: This isn't ideal. In particular, this might allocate the 4564 // frame pointer in functions that need it (due to them not being taken 4565 // out of allocation, because a variable sized allocation hasn't been seen 4566 // yet). This is a slight code pessimization, but should still work. 4567 for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF), 4568 E = RC->allocation_order_end(MF); I != E; ++I) 4569 if (*I == Reg) { 4570 // We found a matching register class. Keep looking at others in case 4571 // we find one with larger registers that this physreg is also in. 4572 FoundRC = RC; 4573 FoundVT = ThisVT; 4574 break; 4575 } 4576 } 4577 return FoundRC; 4578 } 4579 4580 4581 namespace llvm { 4582 /// AsmOperandInfo - This contains information for each constraint that we are 4583 /// lowering. 4584 class VISIBILITY_HIDDEN SDISelAsmOperandInfo : 4585 public TargetLowering::AsmOperandInfo { 4586 public: 4587 /// CallOperand - If this is the result output operand or a clobber 4588 /// this is null, otherwise it is the incoming operand to the CallInst. 4589 /// This gets modified as the asm is processed. 4590 SDValue CallOperand; 4591 4592 /// AssignedRegs - If this is a register or register class operand, this 4593 /// contains the set of register corresponding to the operand. 4594 RegsForValue AssignedRegs; 4595 4596 explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info) 4597 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { 4598 } 4599 4600 /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers 4601 /// busy in OutputRegs/InputRegs. 4602 void MarkAllocatedRegs(bool isOutReg, bool isInReg, 4603 std::set<unsigned> &OutputRegs, 4604 std::set<unsigned> &InputRegs, 4605 const TargetRegisterInfo &TRI) const { 4606 if (isOutReg) { 4607 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 4608 MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI); 4609 } 4610 if (isInReg) { 4611 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 4612 MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI); 4613 } 4614 } 4615 4616 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 4617 /// corresponds to. If there is no Value* for this operand, it returns 4618 /// MVT::Other. 4619 EVT getCallOperandValEVT(LLVMContext &Context, 4620 const TargetLowering &TLI, 4621 const TargetData *TD) const { 4622 if (CallOperandVal == 0) return MVT::Other; 4623 4624 if (isa<BasicBlock>(CallOperandVal)) 4625 return TLI.getPointerTy(); 4626 4627 const llvm::Type *OpTy = CallOperandVal->getType(); 4628 4629 // If this is an indirect operand, the operand is a pointer to the 4630 // accessed type. 4631 if (isIndirect) 4632 OpTy = cast<PointerType>(OpTy)->getElementType(); 4633 4634 // If OpTy is not a single value, it may be a struct/union that we 4635 // can tile with integers. 4636 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 4637 unsigned BitSize = TD->getTypeSizeInBits(OpTy); 4638 switch (BitSize) { 4639 default: break; 4640 case 1: 4641 case 8: 4642 case 16: 4643 case 32: 4644 case 64: 4645 case 128: 4646 OpTy = IntegerType::get(Context, BitSize); 4647 break; 4648 } 4649 } 4650 4651 return TLI.getValueType(OpTy, true); 4652 } 4653 4654 private: 4655 /// MarkRegAndAliases - Mark the specified register and all aliases in the 4656 /// specified set. 4657 static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs, 4658 const TargetRegisterInfo &TRI) { 4659 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg"); 4660 Regs.insert(Reg); 4661 if (const unsigned *Aliases = TRI.getAliasSet(Reg)) 4662 for (; *Aliases; ++Aliases) 4663 Regs.insert(*Aliases); 4664 } 4665 }; 4666 } // end llvm namespace. 4667 4668 4669 /// GetRegistersForValue - Assign registers (virtual or physical) for the 4670 /// specified operand. We prefer to assign virtual registers, to allow the 4671 /// register allocator to handle the assignment process. However, if the asm 4672 /// uses features that we can't model on machineinstrs, we have SDISel do the 4673 /// allocation. This produces generally horrible, but correct, code. 4674 /// 4675 /// OpInfo describes the operand. 4676 /// Input and OutputRegs are the set of already allocated physical registers. 4677 /// 4678 void SelectionDAGBuilder:: 4679 GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, 4680 std::set<unsigned> &OutputRegs, 4681 std::set<unsigned> &InputRegs) { 4682 LLVMContext &Context = FuncInfo.Fn->getContext(); 4683 4684 // Compute whether this value requires an input register, an output register, 4685 // or both. 4686 bool isOutReg = false; 4687 bool isInReg = false; 4688 switch (OpInfo.Type) { 4689 case InlineAsm::isOutput: 4690 isOutReg = true; 4691 4692 // If there is an input constraint that matches this, we need to reserve 4693 // the input register so no other inputs allocate to it. 4694 isInReg = OpInfo.hasMatchingInput(); 4695 break; 4696 case InlineAsm::isInput: 4697 isInReg = true; 4698 isOutReg = false; 4699 break; 4700 case InlineAsm::isClobber: 4701 isOutReg = true; 4702 isInReg = true; 4703 break; 4704 } 4705 4706 4707 MachineFunction &MF = DAG.getMachineFunction(); 4708 SmallVector<unsigned, 4> Regs; 4709 4710 // If this is a constraint for a single physreg, or a constraint for a 4711 // register class, find it. 4712 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 4713 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 4714 OpInfo.ConstraintVT); 4715 4716 unsigned NumRegs = 1; 4717 if (OpInfo.ConstraintVT != MVT::Other) { 4718 // If this is a FP input in an integer register (or visa versa) insert a bit 4719 // cast of the input value. More generally, handle any case where the input 4720 // value disagrees with the register class we plan to stick this in. 4721 if (OpInfo.Type == InlineAsm::isInput && 4722 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 4723 // Try to convert to the first EVT that the reg class contains. If the 4724 // types are identical size, use a bitcast to convert (e.g. two differing 4725 // vector types). 4726 EVT RegVT = *PhysReg.second->vt_begin(); 4727 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 4728 OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 4729 RegVT, OpInfo.CallOperand); 4730 OpInfo.ConstraintVT = RegVT; 4731 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 4732 // If the input is a FP value and we want it in FP registers, do a 4733 // bitcast to the corresponding integer type. This turns an f64 value 4734 // into i64, which can be passed with two i32 values on a 32-bit 4735 // machine. 4736 RegVT = EVT::getIntegerVT(Context, 4737 OpInfo.ConstraintVT.getSizeInBits()); 4738 OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 4739 RegVT, OpInfo.CallOperand); 4740 OpInfo.ConstraintVT = RegVT; 4741 } 4742 } 4743 4744 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 4745 } 4746 4747 EVT RegVT; 4748 EVT ValueVT = OpInfo.ConstraintVT; 4749 4750 // If this is a constraint for a specific physical register, like {r17}, 4751 // assign it now. 4752 if (unsigned AssignedReg = PhysReg.first) { 4753 const TargetRegisterClass *RC = PhysReg.second; 4754 if (OpInfo.ConstraintVT == MVT::Other) 4755 ValueVT = *RC->vt_begin(); 4756 4757 // Get the actual register value type. This is important, because the user 4758 // may have asked for (e.g.) the AX register in i32 type. We need to 4759 // remember that AX is actually i16 to get the right extension. 4760 RegVT = *RC->vt_begin(); 4761 4762 // This is a explicit reference to a physical register. 4763 Regs.push_back(AssignedReg); 4764 4765 // If this is an expanded reference, add the rest of the regs to Regs. 4766 if (NumRegs != 1) { 4767 TargetRegisterClass::iterator I = RC->begin(); 4768 for (; *I != AssignedReg; ++I) 4769 assert(I != RC->end() && "Didn't find reg!"); 4770 4771 // Already added the first reg. 4772 --NumRegs; ++I; 4773 for (; NumRegs; --NumRegs, ++I) { 4774 assert(I != RC->end() && "Ran out of registers to allocate!"); 4775 Regs.push_back(*I); 4776 } 4777 } 4778 OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT); 4779 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 4780 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); 4781 return; 4782 } 4783 4784 // Otherwise, if this was a reference to an LLVM register class, create vregs 4785 // for this reference. 4786 if (const TargetRegisterClass *RC = PhysReg.second) { 4787 RegVT = *RC->vt_begin(); 4788 if (OpInfo.ConstraintVT == MVT::Other) 4789 ValueVT = RegVT; 4790 4791 // Create the appropriate number of virtual registers. 4792 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4793 for (; NumRegs; --NumRegs) 4794 Regs.push_back(RegInfo.createVirtualRegister(RC)); 4795 4796 OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT); 4797 return; 4798 } 4799 4800 // This is a reference to a register class that doesn't directly correspond 4801 // to an LLVM register class. Allocate NumRegs consecutive, available, 4802 // registers from the class. 4803 std::vector<unsigned> RegClassRegs 4804 = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode, 4805 OpInfo.ConstraintVT); 4806 4807 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 4808 unsigned NumAllocated = 0; 4809 for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) { 4810 unsigned Reg = RegClassRegs[i]; 4811 // See if this register is available. 4812 if ((isOutReg && OutputRegs.count(Reg)) || // Already used. 4813 (isInReg && InputRegs.count(Reg))) { // Already used. 4814 // Make sure we find consecutive registers. 4815 NumAllocated = 0; 4816 continue; 4817 } 4818 4819 // Check to see if this register is allocatable (i.e. don't give out the 4820 // stack pointer). 4821 const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI); 4822 if (!RC) { // Couldn't allocate this register. 4823 // Reset NumAllocated to make sure we return consecutive registers. 4824 NumAllocated = 0; 4825 continue; 4826 } 4827 4828 // Okay, this register is good, we can use it. 4829 ++NumAllocated; 4830 4831 // If we allocated enough consecutive registers, succeed. 4832 if (NumAllocated == NumRegs) { 4833 unsigned RegStart = (i-NumAllocated)+1; 4834 unsigned RegEnd = i+1; 4835 // Mark all of the allocated registers used. 4836 for (unsigned i = RegStart; i != RegEnd; ++i) 4837 Regs.push_back(RegClassRegs[i]); 4838 4839 OpInfo.AssignedRegs = RegsForValue(TLI, Regs, *RC->vt_begin(), 4840 OpInfo.ConstraintVT); 4841 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); 4842 return; 4843 } 4844 } 4845 4846 // Otherwise, we couldn't allocate enough registers for this. 4847 } 4848 4849 /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being 4850 /// processed uses a memory 'm' constraint. 4851 static bool 4852 hasInlineAsmMemConstraint(std::vector<InlineAsm::ConstraintInfo> &CInfos, 4853 const TargetLowering &TLI) { 4854 for (unsigned i = 0, e = CInfos.size(); i != e; ++i) { 4855 InlineAsm::ConstraintInfo &CI = CInfos[i]; 4856 for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) { 4857 TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]); 4858 if (CType == TargetLowering::C_Memory) 4859 return true; 4860 } 4861 4862 // Indirect operand accesses access memory. 4863 if (CI.isIndirect) 4864 return true; 4865 } 4866 4867 return false; 4868 } 4869 4870 /// visitInlineAsm - Handle a call to an InlineAsm object. 4871 /// 4872 void SelectionDAGBuilder::visitInlineAsm(CallSite CS) { 4873 InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 4874 4875 /// ConstraintOperands - Information about all of the constraints. 4876 std::vector<SDISelAsmOperandInfo> ConstraintOperands; 4877 4878 std::set<unsigned> OutputRegs, InputRegs; 4879 4880 // Do a prepass over the constraints, canonicalizing them, and building up the 4881 // ConstraintOperands list. 4882 std::vector<InlineAsm::ConstraintInfo> 4883 ConstraintInfos = IA->ParseConstraints(); 4884 4885 bool hasMemory = hasInlineAsmMemConstraint(ConstraintInfos, TLI); 4886 4887 SDValue Chain, Flag; 4888 4889 // We won't need to flush pending loads if this asm doesn't touch 4890 // memory and is nonvolatile. 4891 if (hasMemory || IA->hasSideEffects()) 4892 Chain = getRoot(); 4893 else 4894 Chain = DAG.getRoot(); 4895 4896 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 4897 unsigned ResNo = 0; // ResNo - The result number of the next output. 4898 for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { 4899 ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i])); 4900 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 4901 4902 EVT OpVT = MVT::Other; 4903 4904 // Compute the value type for each operand. 4905 switch (OpInfo.Type) { 4906 case InlineAsm::isOutput: 4907 // Indirect outputs just consume an argument. 4908 if (OpInfo.isIndirect) { 4909 OpInfo.CallOperandVal = CS.getArgument(ArgNo++); 4910 break; 4911 } 4912 4913 // The return value of the call is this value. As such, there is no 4914 // corresponding argument. 4915 assert(CS.getType() != Type::getVoidTy(*DAG.getContext()) && 4916 "Bad inline asm!"); 4917 if (const StructType *STy = dyn_cast<StructType>(CS.getType())) { 4918 OpVT = TLI.getValueType(STy->getElementType(ResNo)); 4919 } else { 4920 assert(ResNo == 0 && "Asm only has one result!"); 4921 OpVT = TLI.getValueType(CS.getType()); 4922 } 4923 ++ResNo; 4924 break; 4925 case InlineAsm::isInput: 4926 OpInfo.CallOperandVal = CS.getArgument(ArgNo++); 4927 break; 4928 case InlineAsm::isClobber: 4929 // Nothing to do. 4930 break; 4931 } 4932 4933 // If this is an input or an indirect output, process the call argument. 4934 // BasicBlocks are labels, currently appearing only in asm's. 4935 if (OpInfo.CallOperandVal) { 4936 // Strip bitcasts, if any. This mostly comes up for functions. 4937 OpInfo.CallOperandVal = OpInfo.CallOperandVal->stripPointerCasts(); 4938 4939 if (BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 4940 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 4941 } else { 4942 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 4943 } 4944 4945 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD); 4946 } 4947 4948 OpInfo.ConstraintVT = OpVT; 4949 } 4950 4951 // Second pass over the constraints: compute which constraint option to use 4952 // and assign registers to constraints that want a specific physreg. 4953 for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { 4954 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 4955 4956 // If this is an output operand with a matching input operand, look up the 4957 // matching input. If their types mismatch, e.g. one is an integer, the 4958 // other is floating point, or their sizes are different, flag it as an 4959 // error. 4960 if (OpInfo.hasMatchingInput()) { 4961 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4962 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4963 if ((OpInfo.ConstraintVT.isInteger() != 4964 Input.ConstraintVT.isInteger()) || 4965 (OpInfo.ConstraintVT.getSizeInBits() != 4966 Input.ConstraintVT.getSizeInBits())) { 4967 llvm_report_error("Unsupported asm: input constraint" 4968 " with a matching output constraint of incompatible" 4969 " type!"); 4970 } 4971 Input.ConstraintVT = OpInfo.ConstraintVT; 4972 } 4973 } 4974 4975 // Compute the constraint code and ConstraintType to use. 4976 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, hasMemory, &DAG); 4977 4978 // If this is a memory input, and if the operand is not indirect, do what we 4979 // need to to provide an address for the memory input. 4980 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 4981 !OpInfo.isIndirect) { 4982 assert(OpInfo.Type == InlineAsm::isInput && 4983 "Can only indirectify direct input operands!"); 4984 4985 // Memory operands really want the address of the value. If we don't have 4986 // an indirect input, put it in the constpool if we can, otherwise spill 4987 // it to a stack slot. 4988 4989 // If the operand is a float, integer, or vector constant, spill to a 4990 // constant pool entry to get its address. 4991 Value *OpVal = OpInfo.CallOperandVal; 4992 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 4993 isa<ConstantVector>(OpVal)) { 4994 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 4995 TLI.getPointerTy()); 4996 } else { 4997 // Otherwise, create a stack slot and emit a store to it before the 4998 // asm. 4999 const Type *Ty = OpVal->getType(); 5000 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 5001 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty); 5002 MachineFunction &MF = DAG.getMachineFunction(); 5003 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5004 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 5005 Chain = DAG.getStore(Chain, getCurDebugLoc(), 5006 OpInfo.CallOperand, StackSlot, NULL, 0); 5007 OpInfo.CallOperand = StackSlot; 5008 } 5009 5010 // There is no longer a Value* corresponding to this operand. 5011 OpInfo.CallOperandVal = 0; 5012 // It is now an indirect operand. 5013 OpInfo.isIndirect = true; 5014 } 5015 5016 // If this constraint is for a specific register, allocate it before 5017 // anything else. 5018 if (OpInfo.ConstraintType == TargetLowering::C_Register) 5019 GetRegistersForValue(OpInfo, OutputRegs, InputRegs); 5020 } 5021 ConstraintInfos.clear(); 5022 5023 5024 // Second pass - Loop over all of the operands, assigning virtual or physregs 5025 // to register class operands. 5026 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5027 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5028 5029 // C_Register operands have already been allocated, Other/Memory don't need 5030 // to be. 5031 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 5032 GetRegistersForValue(OpInfo, OutputRegs, InputRegs); 5033 } 5034 5035 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 5036 std::vector<SDValue> AsmNodeOperands; 5037 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 5038 AsmNodeOperands.push_back( 5039 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other)); 5040 5041 5042 // Loop over all of the inputs, copying the operand values into the 5043 // appropriate registers and processing the output regs. 5044 RegsForValue RetValRegs; 5045 5046 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 5047 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 5048 5049 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5050 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5051 5052 switch (OpInfo.Type) { 5053 case InlineAsm::isOutput: { 5054 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 5055 OpInfo.ConstraintType != TargetLowering::C_Register) { 5056 // Memory output, or 'other' output (e.g. 'X' constraint). 5057 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 5058 5059 // Add information to the INLINEASM node to know about this output. 5060 unsigned ResOpType = 4/*MEM*/ | (1<<3); 5061 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 5062 TLI.getPointerTy())); 5063 AsmNodeOperands.push_back(OpInfo.CallOperand); 5064 break; 5065 } 5066 5067 // Otherwise, this is a register or register class output. 5068 5069 // Copy the output from the appropriate register. Find a register that 5070 // we can use. 5071 if (OpInfo.AssignedRegs.Regs.empty()) { 5072 llvm_report_error("Couldn't allocate output reg for" 5073 " constraint '" + OpInfo.ConstraintCode + "'!"); 5074 } 5075 5076 // If this is an indirect operand, store through the pointer after the 5077 // asm. 5078 if (OpInfo.isIndirect) { 5079 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 5080 OpInfo.CallOperandVal)); 5081 } else { 5082 // This is the result value of the call. 5083 assert(CS.getType() != Type::getVoidTy(*DAG.getContext()) && 5084 "Bad inline asm!"); 5085 // Concatenate this output onto the outputs list. 5086 RetValRegs.append(OpInfo.AssignedRegs); 5087 } 5088 5089 // Add information to the INLINEASM node to know that this register is 5090 // set. 5091 OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ? 5092 6 /* EARLYCLOBBER REGDEF */ : 5093 2 /* REGDEF */ , 5094 false, 5095 0, 5096 DAG, AsmNodeOperands); 5097 break; 5098 } 5099 case InlineAsm::isInput: { 5100 SDValue InOperandVal = OpInfo.CallOperand; 5101 5102 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 5103 // If this is required to match an output register we have already set, 5104 // just use its register. 5105 unsigned OperandNo = OpInfo.getMatchedOperand(); 5106 5107 // Scan until we find the definition we already emitted of this operand. 5108 // When we find it, create a RegsForValue operand. 5109 unsigned CurOp = 2; // The first operand. 5110 for (; OperandNo; --OperandNo) { 5111 // Advance to the next operand. 5112 unsigned OpFlag = 5113 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 5114 assert(((OpFlag & 7) == 2 /*REGDEF*/ || 5115 (OpFlag & 7) == 6 /*EARLYCLOBBER REGDEF*/ || 5116 (OpFlag & 7) == 4 /*MEM*/) && 5117 "Skipped past definitions?"); 5118 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 5119 } 5120 5121 unsigned OpFlag = 5122 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 5123 if ((OpFlag & 7) == 2 /*REGDEF*/ 5124 || (OpFlag & 7) == 6 /* EARLYCLOBBER REGDEF */) { 5125 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 5126 if (OpInfo.isIndirect) { 5127 llvm_report_error("Don't know how to handle tied indirect " 5128 "register inputs yet!"); 5129 } 5130 RegsForValue MatchedRegs; 5131 MatchedRegs.TLI = &TLI; 5132 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 5133 EVT RegVT = AsmNodeOperands[CurOp+1].getValueType(); 5134 MatchedRegs.RegVTs.push_back(RegVT); 5135 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 5136 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 5137 i != e; ++i) 5138 MatchedRegs.Regs. 5139 push_back(RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT))); 5140 5141 // Use the produced MatchedRegs object to 5142 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 5143 Chain, &Flag); 5144 MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, 5145 true, OpInfo.getMatchedOperand(), 5146 DAG, AsmNodeOperands); 5147 break; 5148 } else { 5149 assert(((OpFlag & 7) == 4) && "Unknown matching constraint!"); 5150 assert((InlineAsm::getNumOperandRegisters(OpFlag)) == 1 && 5151 "Unexpected number of operands"); 5152 // Add information to the INLINEASM node to know about this input. 5153 // See InlineAsm.h isUseOperandTiedToDef. 5154 OpFlag |= 0x80000000 | (OpInfo.getMatchedOperand() << 16); 5155 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 5156 TLI.getPointerTy())); 5157 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 5158 break; 5159 } 5160 } 5161 5162 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 5163 assert(!OpInfo.isIndirect && 5164 "Don't know how to handle indirect other inputs yet!"); 5165 5166 std::vector<SDValue> Ops; 5167 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0], 5168 hasMemory, Ops, DAG); 5169 if (Ops.empty()) { 5170 llvm_report_error("Invalid operand for inline asm" 5171 " constraint '" + OpInfo.ConstraintCode + "'!"); 5172 } 5173 5174 // Add information to the INLINEASM node to know about this input. 5175 unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3); 5176 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 5177 TLI.getPointerTy())); 5178 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 5179 break; 5180 } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 5181 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 5182 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 5183 "Memory operands expect pointer values"); 5184 5185 // Add information to the INLINEASM node to know about this input. 5186 unsigned ResOpType = 4/*MEM*/ | (1<<3); 5187 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 5188 TLI.getPointerTy())); 5189 AsmNodeOperands.push_back(InOperandVal); 5190 break; 5191 } 5192 5193 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 5194 OpInfo.ConstraintType == TargetLowering::C_Register) && 5195 "Unknown constraint type!"); 5196 assert(!OpInfo.isIndirect && 5197 "Don't know how to handle indirect register inputs yet!"); 5198 5199 // Copy the input into the appropriate registers. 5200 if (OpInfo.AssignedRegs.Regs.empty()) { 5201 llvm_report_error("Couldn't allocate input reg for" 5202 " constraint '"+ OpInfo.ConstraintCode +"'!"); 5203 } 5204 5205 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 5206 Chain, &Flag); 5207 5208 OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, false, 0, 5209 DAG, AsmNodeOperands); 5210 break; 5211 } 5212 case InlineAsm::isClobber: { 5213 // Add the clobbered value to the operand list, so that the register 5214 // allocator is aware that the physreg got clobbered. 5215 if (!OpInfo.AssignedRegs.Regs.empty()) 5216 OpInfo.AssignedRegs.AddInlineAsmOperands(6 /* EARLYCLOBBER REGDEF */, 5217 false, 0, DAG,AsmNodeOperands); 5218 break; 5219 } 5220 } 5221 } 5222 5223 // Finish up input operands. 5224 AsmNodeOperands[0] = Chain; 5225 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 5226 5227 Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(), 5228 DAG.getVTList(MVT::Other, MVT::Flag), 5229 &AsmNodeOperands[0], AsmNodeOperands.size()); 5230 Flag = Chain.getValue(1); 5231 5232 // If this asm returns a register value, copy the result from that register 5233 // and set it as the value of the call. 5234 if (!RetValRegs.Regs.empty()) { 5235 SDValue Val = RetValRegs.getCopyFromRegs(DAG, getCurDebugLoc(), 5236 Chain, &Flag); 5237 5238 // FIXME: Why don't we do this for inline asms with MRVs? 5239 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 5240 EVT ResultType = TLI.getValueType(CS.getType()); 5241 5242 // If any of the results of the inline asm is a vector, it may have the 5243 // wrong width/num elts. This can happen for register classes that can 5244 // contain multiple different value types. The preg or vreg allocated may 5245 // not have the same VT as was expected. Convert it to the right type 5246 // with bit_convert. 5247 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 5248 Val = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 5249 ResultType, Val); 5250 5251 } else if (ResultType != Val.getValueType() && 5252 ResultType.isInteger() && Val.getValueType().isInteger()) { 5253 // If a result value was tied to an input value, the computed result may 5254 // have a wider width than the expected result. Extract the relevant 5255 // portion. 5256 Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val); 5257 } 5258 5259 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 5260 } 5261 5262 setValue(CS.getInstruction(), Val); 5263 // Don't need to use this as a chain in this case. 5264 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 5265 return; 5266 } 5267 5268 std::vector<std::pair<SDValue, Value*> > StoresToEmit; 5269 5270 // Process indirect outputs, first output all of the flagged copies out of 5271 // physregs. 5272 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 5273 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 5274 Value *Ptr = IndirectStoresToEmit[i].second; 5275 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, getCurDebugLoc(), 5276 Chain, &Flag); 5277 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 5278 5279 } 5280 5281 // Emit the non-flagged stores from the physregs. 5282 SmallVector<SDValue, 8> OutChains; 5283 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) 5284 OutChains.push_back(DAG.getStore(Chain, getCurDebugLoc(), 5285 StoresToEmit[i].first, 5286 getValue(StoresToEmit[i].second), 5287 StoresToEmit[i].second, 0)); 5288 if (!OutChains.empty()) 5289 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 5290 &OutChains[0], OutChains.size()); 5291 DAG.setRoot(Chain); 5292 } 5293 5294 void SelectionDAGBuilder::visitVAStart(CallInst &I) { 5295 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(), 5296 MVT::Other, getRoot(), 5297 getValue(I.getOperand(1)), 5298 DAG.getSrcValue(I.getOperand(1)))); 5299 } 5300 5301 void SelectionDAGBuilder::visitVAArg(VAArgInst &I) { 5302 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(), 5303 getRoot(), getValue(I.getOperand(0)), 5304 DAG.getSrcValue(I.getOperand(0))); 5305 setValue(&I, V); 5306 DAG.setRoot(V.getValue(1)); 5307 } 5308 5309 void SelectionDAGBuilder::visitVAEnd(CallInst &I) { 5310 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(), 5311 MVT::Other, getRoot(), 5312 getValue(I.getOperand(1)), 5313 DAG.getSrcValue(I.getOperand(1)))); 5314 } 5315 5316 void SelectionDAGBuilder::visitVACopy(CallInst &I) { 5317 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(), 5318 MVT::Other, getRoot(), 5319 getValue(I.getOperand(1)), 5320 getValue(I.getOperand(2)), 5321 DAG.getSrcValue(I.getOperand(1)), 5322 DAG.getSrcValue(I.getOperand(2)))); 5323 } 5324 5325 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 5326 /// implementation, which just calls LowerCall. 5327 /// FIXME: When all targets are 5328 /// migrated to using LowerCall, this hook should be integrated into SDISel. 5329 std::pair<SDValue, SDValue> 5330 TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy, 5331 bool RetSExt, bool RetZExt, bool isVarArg, 5332 bool isInreg, unsigned NumFixedArgs, 5333 CallingConv::ID CallConv, bool isTailCall, 5334 bool isReturnValueUsed, 5335 SDValue Callee, 5336 ArgListTy &Args, SelectionDAG &DAG, DebugLoc dl) { 5337 5338 assert((!isTailCall || PerformTailCallOpt) && 5339 "isTailCall set when tail-call optimizations are disabled!"); 5340 5341 // Handle all of the outgoing arguments. 5342 SmallVector<ISD::OutputArg, 32> Outs; 5343 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 5344 SmallVector<EVT, 4> ValueVTs; 5345 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 5346 for (unsigned Value = 0, NumValues = ValueVTs.size(); 5347 Value != NumValues; ++Value) { 5348 EVT VT = ValueVTs[Value]; 5349 const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext()); 5350 SDValue Op = SDValue(Args[i].Node.getNode(), 5351 Args[i].Node.getResNo() + Value); 5352 ISD::ArgFlagsTy Flags; 5353 unsigned OriginalAlignment = 5354 getTargetData()->getABITypeAlignment(ArgTy); 5355 5356 if (Args[i].isZExt) 5357 Flags.setZExt(); 5358 if (Args[i].isSExt) 5359 Flags.setSExt(); 5360 if (Args[i].isInReg) 5361 Flags.setInReg(); 5362 if (Args[i].isSRet) 5363 Flags.setSRet(); 5364 if (Args[i].isByVal) { 5365 Flags.setByVal(); 5366 const PointerType *Ty = cast<PointerType>(Args[i].Ty); 5367 const Type *ElementTy = Ty->getElementType(); 5368 unsigned FrameAlign = getByValTypeAlignment(ElementTy); 5369 unsigned FrameSize = getTargetData()->getTypeAllocSize(ElementTy); 5370 // For ByVal, alignment should come from FE. BE will guess if this 5371 // info is not there but there are cases it cannot get right. 5372 if (Args[i].Alignment) 5373 FrameAlign = Args[i].Alignment; 5374 Flags.setByValAlign(FrameAlign); 5375 Flags.setByValSize(FrameSize); 5376 } 5377 if (Args[i].isNest) 5378 Flags.setNest(); 5379 Flags.setOrigAlign(OriginalAlignment); 5380 5381 EVT PartVT = getRegisterType(RetTy->getContext(), VT); 5382 unsigned NumParts = getNumRegisters(RetTy->getContext(), VT); 5383 SmallVector<SDValue, 4> Parts(NumParts); 5384 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 5385 5386 if (Args[i].isSExt) 5387 ExtendKind = ISD::SIGN_EXTEND; 5388 else if (Args[i].isZExt) 5389 ExtendKind = ISD::ZERO_EXTEND; 5390 5391 getCopyToParts(DAG, dl, Op, &Parts[0], NumParts, PartVT, ExtendKind); 5392 5393 for (unsigned j = 0; j != NumParts; ++j) { 5394 // if it isn't first piece, alignment must be 1 5395 ISD::OutputArg MyFlags(Flags, Parts[j], i < NumFixedArgs); 5396 if (NumParts > 1 && j == 0) 5397 MyFlags.Flags.setSplit(); 5398 else if (j != 0) 5399 MyFlags.Flags.setOrigAlign(1); 5400 5401 Outs.push_back(MyFlags); 5402 } 5403 } 5404 } 5405 5406 // Handle the incoming return values from the call. 5407 SmallVector<ISD::InputArg, 32> Ins; 5408 SmallVector<EVT, 4> RetTys; 5409 ComputeValueVTs(*this, RetTy, RetTys); 5410 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 5411 EVT VT = RetTys[I]; 5412 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 5413 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 5414 for (unsigned i = 0; i != NumRegs; ++i) { 5415 ISD::InputArg MyFlags; 5416 MyFlags.VT = RegisterVT; 5417 MyFlags.Used = isReturnValueUsed; 5418 if (RetSExt) 5419 MyFlags.Flags.setSExt(); 5420 if (RetZExt) 5421 MyFlags.Flags.setZExt(); 5422 if (isInreg) 5423 MyFlags.Flags.setInReg(); 5424 Ins.push_back(MyFlags); 5425 } 5426 } 5427 5428 // Check if target-dependent constraints permit a tail call here. 5429 // Target-independent constraints should be checked by the caller. 5430 if (isTailCall && 5431 !IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, Ins, DAG)) 5432 isTailCall = false; 5433 5434 SmallVector<SDValue, 4> InVals; 5435 Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall, 5436 Outs, Ins, dl, DAG, InVals); 5437 5438 // Verify that the target's LowerCall behaved as expected. 5439 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 5440 "LowerCall didn't return a valid chain!"); 5441 assert((!isTailCall || InVals.empty()) && 5442 "LowerCall emitted a return value for a tail call!"); 5443 assert((isTailCall || InVals.size() == Ins.size()) && 5444 "LowerCall didn't emit the correct number of values!"); 5445 DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 5446 assert(InVals[i].getNode() && 5447 "LowerCall emitted a null value!"); 5448 assert(Ins[i].VT == InVals[i].getValueType() && 5449 "LowerCall emitted a value with the wrong type!"); 5450 }); 5451 5452 // For a tail call, the return value is merely live-out and there aren't 5453 // any nodes in the DAG representing it. Return a special value to 5454 // indicate that a tail call has been emitted and no more Instructions 5455 // should be processed in the current block. 5456 if (isTailCall) { 5457 DAG.setRoot(Chain); 5458 return std::make_pair(SDValue(), SDValue()); 5459 } 5460 5461 // Collect the legal value parts into potentially illegal values 5462 // that correspond to the original function's return values. 5463 ISD::NodeType AssertOp = ISD::DELETED_NODE; 5464 if (RetSExt) 5465 AssertOp = ISD::AssertSext; 5466 else if (RetZExt) 5467 AssertOp = ISD::AssertZext; 5468 SmallVector<SDValue, 4> ReturnValues; 5469 unsigned CurReg = 0; 5470 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 5471 EVT VT = RetTys[I]; 5472 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 5473 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 5474 5475 SDValue ReturnValue = 5476 getCopyFromParts(DAG, dl, &InVals[CurReg], NumRegs, RegisterVT, VT, 5477 AssertOp); 5478 ReturnValues.push_back(ReturnValue); 5479 CurReg += NumRegs; 5480 } 5481 5482 // For a function returning void, there is no return value. We can't create 5483 // such a node, so we just return a null return value in that case. In 5484 // that case, nothing will actualy look at the value. 5485 if (ReturnValues.empty()) 5486 return std::make_pair(SDValue(), Chain); 5487 5488 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 5489 DAG.getVTList(&RetTys[0], RetTys.size()), 5490 &ReturnValues[0], ReturnValues.size()); 5491 5492 return std::make_pair(Res, Chain); 5493 } 5494 5495 void TargetLowering::LowerOperationWrapper(SDNode *N, 5496 SmallVectorImpl<SDValue> &Results, 5497 SelectionDAG &DAG) { 5498 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 5499 if (Res.getNode()) 5500 Results.push_back(Res); 5501 } 5502 5503 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) { 5504 llvm_unreachable("LowerOperation not implemented for this target!"); 5505 return SDValue(); 5506 } 5507 5508 5509 void SelectionDAGBuilder::CopyValueToVirtualRegister(Value *V, unsigned Reg) { 5510 SDValue Op = getValue(V); 5511 assert((Op.getOpcode() != ISD::CopyFromReg || 5512 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 5513 "Copy from a reg to the same reg!"); 5514 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 5515 5516 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 5517 SDValue Chain = DAG.getEntryNode(); 5518 RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0); 5519 PendingExports.push_back(Chain); 5520 } 5521 5522 #include "llvm/CodeGen/SelectionDAGISel.h" 5523 5524 void SelectionDAGISel::LowerArguments(BasicBlock *LLVMBB) { 5525 // If this is the entry block, emit arguments. 5526 Function &F = *LLVMBB->getParent(); 5527 SelectionDAG &DAG = SDB->DAG; 5528 SDValue OldRoot = DAG.getRoot(); 5529 DebugLoc dl = SDB->getCurDebugLoc(); 5530 const TargetData *TD = TLI.getTargetData(); 5531 SmallVector<ISD::InputArg, 16> Ins; 5532 5533 // Check whether the function can return without sret-demotion. 5534 SmallVector<EVT, 4> OutVTs; 5535 SmallVector<ISD::ArgFlagsTy, 4> OutsFlags; 5536 getReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(), 5537 OutVTs, OutsFlags, TLI); 5538 FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo(); 5539 5540 FLI.CanLowerReturn = TLI.CanLowerReturn(F.getCallingConv(), F.isVarArg(), 5541 OutVTs, OutsFlags, DAG); 5542 if (!FLI.CanLowerReturn) { 5543 // Put in an sret pointer parameter before all the other parameters. 5544 SmallVector<EVT, 1> ValueVTs; 5545 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 5546 5547 // NOTE: Assuming that a pointer will never break down to more than one VT 5548 // or one register. 5549 ISD::ArgFlagsTy Flags; 5550 Flags.setSRet(); 5551 EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), ValueVTs[0]); 5552 ISD::InputArg RetArg(Flags, RegisterVT, true); 5553 Ins.push_back(RetArg); 5554 } 5555 5556 // Set up the incoming argument description vector. 5557 unsigned Idx = 1; 5558 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); 5559 I != E; ++I, ++Idx) { 5560 SmallVector<EVT, 4> ValueVTs; 5561 ComputeValueVTs(TLI, I->getType(), ValueVTs); 5562 bool isArgValueUsed = !I->use_empty(); 5563 for (unsigned Value = 0, NumValues = ValueVTs.size(); 5564 Value != NumValues; ++Value) { 5565 EVT VT = ValueVTs[Value]; 5566 const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 5567 ISD::ArgFlagsTy Flags; 5568 unsigned OriginalAlignment = 5569 TD->getABITypeAlignment(ArgTy); 5570 5571 if (F.paramHasAttr(Idx, Attribute::ZExt)) 5572 Flags.setZExt(); 5573 if (F.paramHasAttr(Idx, Attribute::SExt)) 5574 Flags.setSExt(); 5575 if (F.paramHasAttr(Idx, Attribute::InReg)) 5576 Flags.setInReg(); 5577 if (F.paramHasAttr(Idx, Attribute::StructRet)) 5578 Flags.setSRet(); 5579 if (F.paramHasAttr(Idx, Attribute::ByVal)) { 5580 Flags.setByVal(); 5581 const PointerType *Ty = cast<PointerType>(I->getType()); 5582 const Type *ElementTy = Ty->getElementType(); 5583 unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy); 5584 unsigned FrameSize = TD->getTypeAllocSize(ElementTy); 5585 // For ByVal, alignment should be passed from FE. BE will guess if 5586 // this info is not there but there are cases it cannot get right. 5587 if (F.getParamAlignment(Idx)) 5588 FrameAlign = F.getParamAlignment(Idx); 5589 Flags.setByValAlign(FrameAlign); 5590 Flags.setByValSize(FrameSize); 5591 } 5592 if (F.paramHasAttr(Idx, Attribute::Nest)) 5593 Flags.setNest(); 5594 Flags.setOrigAlign(OriginalAlignment); 5595 5596 EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 5597 unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT); 5598 for (unsigned i = 0; i != NumRegs; ++i) { 5599 ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed); 5600 if (NumRegs > 1 && i == 0) 5601 MyFlags.Flags.setSplit(); 5602 // if it isn't first piece, alignment must be 1 5603 else if (i > 0) 5604 MyFlags.Flags.setOrigAlign(1); 5605 Ins.push_back(MyFlags); 5606 } 5607 } 5608 } 5609 5610 // Call the target to set up the argument values. 5611 SmallVector<SDValue, 8> InVals; 5612 SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 5613 F.isVarArg(), Ins, 5614 dl, DAG, InVals); 5615 5616 // Verify that the target's LowerFormalArguments behaved as expected. 5617 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 5618 "LowerFormalArguments didn't return a valid chain!"); 5619 assert(InVals.size() == Ins.size() && 5620 "LowerFormalArguments didn't emit the correct number of values!"); 5621 DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 5622 assert(InVals[i].getNode() && 5623 "LowerFormalArguments emitted a null value!"); 5624 assert(Ins[i].VT == InVals[i].getValueType() && 5625 "LowerFormalArguments emitted a value with the wrong type!"); 5626 }); 5627 5628 // Update the DAG with the new chain value resulting from argument lowering. 5629 DAG.setRoot(NewRoot); 5630 5631 // Set up the argument values. 5632 unsigned i = 0; 5633 Idx = 1; 5634 if (!FLI.CanLowerReturn) { 5635 // Create a virtual register for the sret pointer, and put in a copy 5636 // from the sret argument into it. 5637 SmallVector<EVT, 1> ValueVTs; 5638 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 5639 EVT VT = ValueVTs[0]; 5640 EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 5641 ISD::NodeType AssertOp = ISD::DELETED_NODE; 5642 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, 5643 VT, AssertOp); 5644 5645 MachineFunction& MF = SDB->DAG.getMachineFunction(); 5646 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 5647 unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)); 5648 FLI.DemoteRegister = SRetReg; 5649 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(), SRetReg, ArgValue); 5650 DAG.setRoot(NewRoot); 5651 5652 // i indexes lowered arguments. Bump it past the hidden sret argument. 5653 // Idx indexes LLVM arguments. Don't touch it. 5654 ++i; 5655 } 5656 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 5657 ++I, ++Idx) { 5658 SmallVector<SDValue, 4> ArgValues; 5659 SmallVector<EVT, 4> ValueVTs; 5660 ComputeValueVTs(TLI, I->getType(), ValueVTs); 5661 unsigned NumValues = ValueVTs.size(); 5662 for (unsigned Value = 0; Value != NumValues; ++Value) { 5663 EVT VT = ValueVTs[Value]; 5664 EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 5665 unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT); 5666 5667 if (!I->use_empty()) { 5668 ISD::NodeType AssertOp = ISD::DELETED_NODE; 5669 if (F.paramHasAttr(Idx, Attribute::SExt)) 5670 AssertOp = ISD::AssertSext; 5671 else if (F.paramHasAttr(Idx, Attribute::ZExt)) 5672 AssertOp = ISD::AssertZext; 5673 5674 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 5675 PartVT, VT, AssertOp)); 5676 } 5677 i += NumParts; 5678 } 5679 if (!I->use_empty()) { 5680 SDB->setValue(I, DAG.getMergeValues(&ArgValues[0], NumValues, 5681 SDB->getCurDebugLoc())); 5682 // If this argument is live outside of the entry block, insert a copy from 5683 // whereever we got it to the vreg that other BB's will reference it as. 5684 SDB->CopyToExportRegsIfNeeded(I); 5685 } 5686 } 5687 assert(i == InVals.size() && "Argument register count mismatch!"); 5688 5689 // Finally, if the target has anything special to do, allow it to do so. 5690 // FIXME: this should insert code into the DAG! 5691 EmitFunctionEntryCode(F, SDB->DAG.getMachineFunction()); 5692 } 5693 5694 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 5695 /// ensure constants are generated when needed. Remember the virtual registers 5696 /// that need to be added to the Machine PHI nodes as input. We cannot just 5697 /// directly add them, because expansion might result in multiple MBB's for one 5698 /// BB. As such, the start of the BB might correspond to a different MBB than 5699 /// the end. 5700 /// 5701 void 5702 SelectionDAGISel::HandlePHINodesInSuccessorBlocks(BasicBlock *LLVMBB) { 5703 TerminatorInst *TI = LLVMBB->getTerminator(); 5704 5705 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 5706 5707 // Check successor nodes' PHI nodes that expect a constant to be available 5708 // from this block. 5709 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 5710 BasicBlock *SuccBB = TI->getSuccessor(succ); 5711 if (!isa<PHINode>(SuccBB->begin())) continue; 5712 MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB]; 5713 5714 // If this terminator has multiple identical successors (common for 5715 // switches), only handle each succ once. 5716 if (!SuccsHandled.insert(SuccMBB)) continue; 5717 5718 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 5719 PHINode *PN; 5720 5721 // At this point we know that there is a 1-1 correspondence between LLVM PHI 5722 // nodes and Machine PHI nodes, but the incoming operands have not been 5723 // emitted yet. 5724 for (BasicBlock::iterator I = SuccBB->begin(); 5725 (PN = dyn_cast<PHINode>(I)); ++I) { 5726 // Ignore dead phi's. 5727 if (PN->use_empty()) continue; 5728 5729 unsigned Reg; 5730 Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 5731 5732 if (Constant *C = dyn_cast<Constant>(PHIOp)) { 5733 unsigned &RegOut = SDB->ConstantsOut[C]; 5734 if (RegOut == 0) { 5735 RegOut = FuncInfo->CreateRegForValue(C); 5736 SDB->CopyValueToVirtualRegister(C, RegOut); 5737 } 5738 Reg = RegOut; 5739 } else { 5740 Reg = FuncInfo->ValueMap[PHIOp]; 5741 if (Reg == 0) { 5742 assert(isa<AllocaInst>(PHIOp) && 5743 FuncInfo->StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 5744 "Didn't codegen value into a register!??"); 5745 Reg = FuncInfo->CreateRegForValue(PHIOp); 5746 SDB->CopyValueToVirtualRegister(PHIOp, Reg); 5747 } 5748 } 5749 5750 // Remember that this register needs to added to the machine PHI node as 5751 // the input for this MBB. 5752 SmallVector<EVT, 4> ValueVTs; 5753 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 5754 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 5755 EVT VT = ValueVTs[vti]; 5756 unsigned NumRegisters = TLI.getNumRegisters(*CurDAG->getContext(), VT); 5757 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 5758 SDB->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 5759 Reg += NumRegisters; 5760 } 5761 } 5762 } 5763 SDB->ConstantsOut.clear(); 5764 } 5765 5766 /// This is the Fast-ISel version of HandlePHINodesInSuccessorBlocks. It only 5767 /// supports legal types, and it emits MachineInstrs directly instead of 5768 /// creating SelectionDAG nodes. 5769 /// 5770 bool 5771 SelectionDAGISel::HandlePHINodesInSuccessorBlocksFast(BasicBlock *LLVMBB, 5772 FastISel *F) { 5773 TerminatorInst *TI = LLVMBB->getTerminator(); 5774 5775 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 5776 unsigned OrigNumPHINodesToUpdate = SDB->PHINodesToUpdate.size(); 5777 5778 // Check successor nodes' PHI nodes that expect a constant to be available 5779 // from this block. 5780 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 5781 BasicBlock *SuccBB = TI->getSuccessor(succ); 5782 if (!isa<PHINode>(SuccBB->begin())) continue; 5783 MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB]; 5784 5785 // If this terminator has multiple identical successors (common for 5786 // switches), only handle each succ once. 5787 if (!SuccsHandled.insert(SuccMBB)) continue; 5788 5789 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 5790 PHINode *PN; 5791 5792 // At this point we know that there is a 1-1 correspondence between LLVM PHI 5793 // nodes and Machine PHI nodes, but the incoming operands have not been 5794 // emitted yet. 5795 for (BasicBlock::iterator I = SuccBB->begin(); 5796 (PN = dyn_cast<PHINode>(I)); ++I) { 5797 // Ignore dead phi's. 5798 if (PN->use_empty()) continue; 5799 5800 // Only handle legal types. Two interesting things to note here. First, 5801 // by bailing out early, we may leave behind some dead instructions, 5802 // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its 5803 // own moves. Second, this check is necessary becuase FastISel doesn't 5804 // use CreateRegForValue to create registers, so it always creates 5805 // exactly one register for each non-void instruction. 5806 EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true); 5807 if (VT == MVT::Other || !TLI.isTypeLegal(VT)) { 5808 // Promote MVT::i1. 5809 if (VT == MVT::i1) 5810 VT = TLI.getTypeToTransformTo(*CurDAG->getContext(), VT); 5811 else { 5812 SDB->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate); 5813 return false; 5814 } 5815 } 5816 5817 Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 5818 5819 unsigned Reg = F->getRegForValue(PHIOp); 5820 if (Reg == 0) { 5821 SDB->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate); 5822 return false; 5823 } 5824 SDB->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg)); 5825 } 5826 } 5827 5828 return true; 5829 } 5830