xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 01ac6d1587e8613ba4278786e8341f8b492ac941)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/BranchProbabilityInfo.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/Analysis/Loads.h"
32 #include "llvm/Analysis/MemoryLocation.h"
33 #include "llvm/Analysis/ProfileSummaryInfo.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/Analysis/VectorUtils.h"
37 #include "llvm/CodeGen/Analysis.h"
38 #include "llvm/CodeGen/FunctionLoweringInfo.h"
39 #include "llvm/CodeGen/GCMetadata.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineFrameInfo.h"
42 #include "llvm/CodeGen/MachineFunction.h"
43 #include "llvm/CodeGen/MachineInstr.h"
44 #include "llvm/CodeGen/MachineInstrBuilder.h"
45 #include "llvm/CodeGen/MachineJumpTableInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/RuntimeLibcalls.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
53 #include "llvm/CodeGen/StackMaps.h"
54 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
55 #include "llvm/CodeGen/TargetFrameLowering.h"
56 #include "llvm/CodeGen/TargetInstrInfo.h"
57 #include "llvm/CodeGen/TargetOpcodes.h"
58 #include "llvm/CodeGen/TargetRegisterInfo.h"
59 #include "llvm/CodeGen/TargetSubtargetInfo.h"
60 #include "llvm/CodeGen/WinEHFuncInfo.h"
61 #include "llvm/IR/Argument.h"
62 #include "llvm/IR/Attributes.h"
63 #include "llvm/IR/BasicBlock.h"
64 #include "llvm/IR/CFG.h"
65 #include "llvm/IR/CallingConv.h"
66 #include "llvm/IR/Constant.h"
67 #include "llvm/IR/ConstantRange.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DataLayout.h"
70 #include "llvm/IR/DebugInfoMetadata.h"
71 #include "llvm/IR/DerivedTypes.h"
72 #include "llvm/IR/Function.h"
73 #include "llvm/IR/GetElementPtrTypeIterator.h"
74 #include "llvm/IR/InlineAsm.h"
75 #include "llvm/IR/InstrTypes.h"
76 #include "llvm/IR/Instructions.h"
77 #include "llvm/IR/IntrinsicInst.h"
78 #include "llvm/IR/Intrinsics.h"
79 #include "llvm/IR/IntrinsicsAArch64.h"
80 #include "llvm/IR/IntrinsicsWebAssembly.h"
81 #include "llvm/IR/LLVMContext.h"
82 #include "llvm/IR/Metadata.h"
83 #include "llvm/IR/Module.h"
84 #include "llvm/IR/Operator.h"
85 #include "llvm/IR/PatternMatch.h"
86 #include "llvm/IR/Statepoint.h"
87 #include "llvm/IR/Type.h"
88 #include "llvm/IR/User.h"
89 #include "llvm/IR/Value.h"
90 #include "llvm/MC/MCContext.h"
91 #include "llvm/MC/MCSymbol.h"
92 #include "llvm/Support/AtomicOrdering.h"
93 #include "llvm/Support/Casting.h"
94 #include "llvm/Support/CommandLine.h"
95 #include "llvm/Support/Compiler.h"
96 #include "llvm/Support/Debug.h"
97 #include "llvm/Support/MathExtras.h"
98 #include "llvm/Support/raw_ostream.h"
99 #include "llvm/Target/TargetIntrinsicInfo.h"
100 #include "llvm/Target/TargetMachine.h"
101 #include "llvm/Target/TargetOptions.h"
102 #include "llvm/Transforms/Utils/Local.h"
103 #include <cstddef>
104 #include <cstring>
105 #include <iterator>
106 #include <limits>
107 #include <numeric>
108 #include <tuple>
109 
110 using namespace llvm;
111 using namespace PatternMatch;
112 using namespace SwitchCG;
113 
114 #define DEBUG_TYPE "isel"
115 
116 /// LimitFloatPrecision - Generate low-precision inline sequences for
117 /// some float libcalls (6, 8 or 12 bits).
118 static unsigned LimitFloatPrecision;
119 
120 static cl::opt<bool>
121     InsertAssertAlign("insert-assert-align", cl::init(true),
122                       cl::desc("Insert the experimental `assertalign` node."),
123                       cl::ReallyHidden);
124 
125 static cl::opt<unsigned, true>
126     LimitFPPrecision("limit-float-precision",
127                      cl::desc("Generate low-precision inline sequences "
128                               "for some float libcalls"),
129                      cl::location(LimitFloatPrecision), cl::Hidden,
130                      cl::init(0));
131 
132 static cl::opt<unsigned> SwitchPeelThreshold(
133     "switch-peel-threshold", cl::Hidden, cl::init(66),
134     cl::desc("Set the case probability threshold for peeling the case from a "
135              "switch statement. A value greater than 100 will void this "
136              "optimization"));
137 
138 // Limit the width of DAG chains. This is important in general to prevent
139 // DAG-based analysis from blowing up. For example, alias analysis and
140 // load clustering may not complete in reasonable time. It is difficult to
141 // recognize and avoid this situation within each individual analysis, and
142 // future analyses are likely to have the same behavior. Limiting DAG width is
143 // the safe approach and will be especially important with global DAGs.
144 //
145 // MaxParallelChains default is arbitrarily high to avoid affecting
146 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
147 // sequence over this should have been converted to llvm.memcpy by the
148 // frontend. It is easy to induce this behavior with .ll code such as:
149 // %buffer = alloca [4096 x i8]
150 // %data = load [4096 x i8]* %argPtr
151 // store [4096 x i8] %data, [4096 x i8]* %buffer
152 static const unsigned MaxParallelChains = 64;
153 
154 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
155                                       const SDValue *Parts, unsigned NumParts,
156                                       MVT PartVT, EVT ValueVT, const Value *V,
157                                       Optional<CallingConv::ID> CC);
158 
159 /// getCopyFromParts - Create a value that contains the specified legal parts
160 /// combined into the value they represent.  If the parts combine to a type
161 /// larger than ValueVT then AssertOp can be used to specify whether the extra
162 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
163 /// (ISD::AssertSext).
164 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
165                                 const SDValue *Parts, unsigned NumParts,
166                                 MVT PartVT, EVT ValueVT, const Value *V,
167                                 Optional<CallingConv::ID> CC = None,
168                                 Optional<ISD::NodeType> AssertOp = None) {
169   // Let the target assemble the parts if it wants to
170   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
171   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
172                                                    PartVT, ValueVT, CC))
173     return Val;
174 
175   if (ValueVT.isVector())
176     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
177                                   CC);
178 
179   assert(NumParts > 0 && "No parts to assemble!");
180   SDValue Val = Parts[0];
181 
182   if (NumParts > 1) {
183     // Assemble the value from multiple parts.
184     if (ValueVT.isInteger()) {
185       unsigned PartBits = PartVT.getSizeInBits();
186       unsigned ValueBits = ValueVT.getSizeInBits();
187 
188       // Assemble the power of 2 part.
189       unsigned RoundParts =
190           (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts;
191       unsigned RoundBits = PartBits * RoundParts;
192       EVT RoundVT = RoundBits == ValueBits ?
193         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
194       SDValue Lo, Hi;
195 
196       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
197 
198       if (RoundParts > 2) {
199         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
200                               PartVT, HalfVT, V);
201         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
202                               RoundParts / 2, PartVT, HalfVT, V);
203       } else {
204         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
205         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
206       }
207 
208       if (DAG.getDataLayout().isBigEndian())
209         std::swap(Lo, Hi);
210 
211       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
212 
213       if (RoundParts < NumParts) {
214         // Assemble the trailing non-power-of-2 part.
215         unsigned OddParts = NumParts - RoundParts;
216         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
217         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
218                               OddVT, V, CC);
219 
220         // Combine the round and odd parts.
221         Lo = Val;
222         if (DAG.getDataLayout().isBigEndian())
223           std::swap(Lo, Hi);
224         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
225         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
226         Hi =
227             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
228                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
229                                         TLI.getPointerTy(DAG.getDataLayout())));
230         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
231         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
232       }
233     } else if (PartVT.isFloatingPoint()) {
234       // FP split into multiple FP parts (for ppcf128)
235       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
236              "Unexpected split");
237       SDValue Lo, Hi;
238       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
239       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
240       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
241         std::swap(Lo, Hi);
242       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
243     } else {
244       // FP split into integer parts (soft fp)
245       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
246              !PartVT.isVector() && "Unexpected split");
247       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
248       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
249     }
250   }
251 
252   // There is now one part, held in Val.  Correct it to match ValueVT.
253   // PartEVT is the type of the register class that holds the value.
254   // ValueVT is the type of the inline asm operation.
255   EVT PartEVT = Val.getValueType();
256 
257   if (PartEVT == ValueVT)
258     return Val;
259 
260   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
261       ValueVT.bitsLT(PartEVT)) {
262     // For an FP value in an integer part, we need to truncate to the right
263     // width first.
264     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
265     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
266   }
267 
268   // Handle types that have the same size.
269   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
270     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
271 
272   // Handle types with different sizes.
273   if (PartEVT.isInteger() && ValueVT.isInteger()) {
274     if (ValueVT.bitsLT(PartEVT)) {
275       // For a truncate, see if we have any information to
276       // indicate whether the truncated bits will always be
277       // zero or sign-extension.
278       if (AssertOp.hasValue())
279         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
280                           DAG.getValueType(ValueVT));
281       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
282     }
283     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
284   }
285 
286   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
287     // FP_ROUND's are always exact here.
288     if (ValueVT.bitsLT(Val.getValueType()))
289       return DAG.getNode(
290           ISD::FP_ROUND, DL, ValueVT, Val,
291           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
292 
293     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
294   }
295 
296   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
297   // then truncating.
298   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
299       ValueVT.bitsLT(PartEVT)) {
300     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
301     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
302   }
303 
304   report_fatal_error("Unknown mismatch in getCopyFromParts!");
305 }
306 
307 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
308                                               const Twine &ErrMsg) {
309   const Instruction *I = dyn_cast_or_null<Instruction>(V);
310   if (!V)
311     return Ctx.emitError(ErrMsg);
312 
313   const char *AsmError = ", possible invalid constraint for vector type";
314   if (const CallInst *CI = dyn_cast<CallInst>(I))
315     if (CI->isInlineAsm())
316       return Ctx.emitError(I, ErrMsg + AsmError);
317 
318   return Ctx.emitError(I, ErrMsg);
319 }
320 
321 /// getCopyFromPartsVector - Create a value that contains the specified legal
322 /// parts combined into the value they represent.  If the parts combine to a
323 /// type larger than ValueVT then AssertOp can be used to specify whether the
324 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
325 /// ValueVT (ISD::AssertSext).
326 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
327                                       const SDValue *Parts, unsigned NumParts,
328                                       MVT PartVT, EVT ValueVT, const Value *V,
329                                       Optional<CallingConv::ID> CallConv) {
330   assert(ValueVT.isVector() && "Not a vector value");
331   assert(NumParts > 0 && "No parts to assemble!");
332   const bool IsABIRegCopy = CallConv.hasValue();
333 
334   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
335   SDValue Val = Parts[0];
336 
337   // Handle a multi-element vector.
338   if (NumParts > 1) {
339     EVT IntermediateVT;
340     MVT RegisterVT;
341     unsigned NumIntermediates;
342     unsigned NumRegs;
343 
344     if (IsABIRegCopy) {
345       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
346           *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
347           NumIntermediates, RegisterVT);
348     } else {
349       NumRegs =
350           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
351                                      NumIntermediates, RegisterVT);
352     }
353 
354     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
355     NumParts = NumRegs; // Silence a compiler warning.
356     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
357     assert(RegisterVT.getSizeInBits() ==
358            Parts[0].getSimpleValueType().getSizeInBits() &&
359            "Part type sizes don't match!");
360 
361     // Assemble the parts into intermediate operands.
362     SmallVector<SDValue, 8> Ops(NumIntermediates);
363     if (NumIntermediates == NumParts) {
364       // If the register was not expanded, truncate or copy the value,
365       // as appropriate.
366       for (unsigned i = 0; i != NumParts; ++i)
367         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
368                                   PartVT, IntermediateVT, V, CallConv);
369     } else if (NumParts > 0) {
370       // If the intermediate type was expanded, build the intermediate
371       // operands from the parts.
372       assert(NumParts % NumIntermediates == 0 &&
373              "Must expand into a divisible number of parts!");
374       unsigned Factor = NumParts / NumIntermediates;
375       for (unsigned i = 0; i != NumIntermediates; ++i)
376         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
377                                   PartVT, IntermediateVT, V, CallConv);
378     }
379 
380     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
381     // intermediate operands.
382     EVT BuiltVectorTy =
383         IntermediateVT.isVector()
384             ? EVT::getVectorVT(
385                   *DAG.getContext(), IntermediateVT.getScalarType(),
386                   IntermediateVT.getVectorElementCount() * NumParts)
387             : EVT::getVectorVT(*DAG.getContext(),
388                                IntermediateVT.getScalarType(),
389                                NumIntermediates);
390     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
391                                                 : ISD::BUILD_VECTOR,
392                       DL, BuiltVectorTy, Ops);
393   }
394 
395   // There is now one part, held in Val.  Correct it to match ValueVT.
396   EVT PartEVT = Val.getValueType();
397 
398   if (PartEVT == ValueVT)
399     return Val;
400 
401   if (PartEVT.isVector()) {
402     // If the element type of the source/dest vectors are the same, but the
403     // parts vector has more elements than the value vector, then we have a
404     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
405     // elements we want.
406     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
407       assert((PartEVT.getVectorElementCount().getKnownMinValue() >
408               ValueVT.getVectorElementCount().getKnownMinValue()) &&
409              (PartEVT.getVectorElementCount().isScalable() ==
410               ValueVT.getVectorElementCount().isScalable()) &&
411              "Cannot narrow, it would be a lossy transformation");
412       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
413                          DAG.getVectorIdxConstant(0, DL));
414     }
415 
416     // Vector/Vector bitcast.
417     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
418       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
419 
420     assert(PartEVT.getVectorElementCount() == ValueVT.getVectorElementCount() &&
421       "Cannot handle this kind of promotion");
422     // Promoted vector extract
423     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
424 
425   }
426 
427   // Trivial bitcast if the types are the same size and the destination
428   // vector type is legal.
429   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
430       TLI.isTypeLegal(ValueVT))
431     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
432 
433   if (ValueVT.getVectorNumElements() != 1) {
434      // Certain ABIs require that vectors are passed as integers. For vectors
435      // are the same size, this is an obvious bitcast.
436      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
437        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
438      } else if (ValueVT.bitsLT(PartEVT)) {
439        const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
440        EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
441        // Drop the extra bits.
442        Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
443        return DAG.getBitcast(ValueVT, Val);
444      }
445 
446      diagnosePossiblyInvalidConstraint(
447          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
448      return DAG.getUNDEF(ValueVT);
449   }
450 
451   // Handle cases such as i8 -> <1 x i1>
452   EVT ValueSVT = ValueVT.getVectorElementType();
453   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
454     if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits())
455       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
456     else
457       Val = ValueVT.isFloatingPoint()
458                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
459                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
460   }
461 
462   return DAG.getBuildVector(ValueVT, DL, Val);
463 }
464 
465 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
466                                  SDValue Val, SDValue *Parts, unsigned NumParts,
467                                  MVT PartVT, const Value *V,
468                                  Optional<CallingConv::ID> CallConv);
469 
470 /// getCopyToParts - Create a series of nodes that contain the specified value
471 /// split into legal parts.  If the parts contain more bits than Val, then, for
472 /// integers, ExtendKind can be used to specify how to generate the extra bits.
473 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
474                            SDValue *Parts, unsigned NumParts, MVT PartVT,
475                            const Value *V,
476                            Optional<CallingConv::ID> CallConv = None,
477                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
478   // Let the target split the parts if it wants to
479   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
480   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
481                                       CallConv))
482     return;
483   EVT ValueVT = Val.getValueType();
484 
485   // Handle the vector case separately.
486   if (ValueVT.isVector())
487     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
488                                 CallConv);
489 
490   unsigned PartBits = PartVT.getSizeInBits();
491   unsigned OrigNumParts = NumParts;
492   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
493          "Copying to an illegal type!");
494 
495   if (NumParts == 0)
496     return;
497 
498   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
499   EVT PartEVT = PartVT;
500   if (PartEVT == ValueVT) {
501     assert(NumParts == 1 && "No-op copy with multiple parts!");
502     Parts[0] = Val;
503     return;
504   }
505 
506   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
507     // If the parts cover more bits than the value has, promote the value.
508     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
509       assert(NumParts == 1 && "Do not know what to promote to!");
510       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
511     } else {
512       if (ValueVT.isFloatingPoint()) {
513         // FP values need to be bitcast, then extended if they are being put
514         // into a larger container.
515         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
516         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
517       }
518       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
519              ValueVT.isInteger() &&
520              "Unknown mismatch!");
521       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
522       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
523       if (PartVT == MVT::x86mmx)
524         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
525     }
526   } else if (PartBits == ValueVT.getSizeInBits()) {
527     // Different types of the same size.
528     assert(NumParts == 1 && PartEVT != ValueVT);
529     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
530   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
531     // If the parts cover less bits than value has, truncate the value.
532     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
533            ValueVT.isInteger() &&
534            "Unknown mismatch!");
535     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
536     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
537     if (PartVT == MVT::x86mmx)
538       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
539   }
540 
541   // The value may have changed - recompute ValueVT.
542   ValueVT = Val.getValueType();
543   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
544          "Failed to tile the value with PartVT!");
545 
546   if (NumParts == 1) {
547     if (PartEVT != ValueVT) {
548       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
549                                         "scalar-to-vector conversion failed");
550       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
551     }
552 
553     Parts[0] = Val;
554     return;
555   }
556 
557   // Expand the value into multiple parts.
558   if (NumParts & (NumParts - 1)) {
559     // The number of parts is not a power of 2.  Split off and copy the tail.
560     assert(PartVT.isInteger() && ValueVT.isInteger() &&
561            "Do not know what to expand to!");
562     unsigned RoundParts = 1 << Log2_32(NumParts);
563     unsigned RoundBits = RoundParts * PartBits;
564     unsigned OddParts = NumParts - RoundParts;
565     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
566       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false));
567 
568     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
569                    CallConv);
570 
571     if (DAG.getDataLayout().isBigEndian())
572       // The odd parts were reversed by getCopyToParts - unreverse them.
573       std::reverse(Parts + RoundParts, Parts + NumParts);
574 
575     NumParts = RoundParts;
576     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
577     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
578   }
579 
580   // The number of parts is a power of 2.  Repeatedly bisect the value using
581   // EXTRACT_ELEMENT.
582   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
583                          EVT::getIntegerVT(*DAG.getContext(),
584                                            ValueVT.getSizeInBits()),
585                          Val);
586 
587   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
588     for (unsigned i = 0; i < NumParts; i += StepSize) {
589       unsigned ThisBits = StepSize * PartBits / 2;
590       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
591       SDValue &Part0 = Parts[i];
592       SDValue &Part1 = Parts[i+StepSize/2];
593 
594       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
595                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
596       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
597                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
598 
599       if (ThisBits == PartBits && ThisVT != PartVT) {
600         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
601         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
602       }
603     }
604   }
605 
606   if (DAG.getDataLayout().isBigEndian())
607     std::reverse(Parts, Parts + OrigNumParts);
608 }
609 
610 static SDValue widenVectorToPartType(SelectionDAG &DAG,
611                                      SDValue Val, const SDLoc &DL, EVT PartVT) {
612   if (!PartVT.isFixedLengthVector())
613     return SDValue();
614 
615   EVT ValueVT = Val.getValueType();
616   unsigned PartNumElts = PartVT.getVectorNumElements();
617   unsigned ValueNumElts = ValueVT.getVectorNumElements();
618   if (PartNumElts > ValueNumElts &&
619       PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
620     EVT ElementVT = PartVT.getVectorElementType();
621     // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
622     // undef elements.
623     SmallVector<SDValue, 16> Ops;
624     DAG.ExtractVectorElements(Val, Ops);
625     SDValue EltUndef = DAG.getUNDEF(ElementVT);
626     for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i)
627       Ops.push_back(EltUndef);
628 
629     // FIXME: Use CONCAT for 2x -> 4x.
630     return DAG.getBuildVector(PartVT, DL, Ops);
631   }
632 
633   return SDValue();
634 }
635 
636 /// getCopyToPartsVector - Create a series of nodes that contain the specified
637 /// value split into legal parts.
638 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
639                                  SDValue Val, SDValue *Parts, unsigned NumParts,
640                                  MVT PartVT, const Value *V,
641                                  Optional<CallingConv::ID> CallConv) {
642   EVT ValueVT = Val.getValueType();
643   assert(ValueVT.isVector() && "Not a vector");
644   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
645   const bool IsABIRegCopy = CallConv.hasValue();
646 
647   if (NumParts == 1) {
648     EVT PartEVT = PartVT;
649     if (PartEVT == ValueVT) {
650       // Nothing to do.
651     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
652       // Bitconvert vector->vector case.
653       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
654     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
655       Val = Widened;
656     } else if (PartVT.isVector() &&
657                PartEVT.getVectorElementType().bitsGE(
658                    ValueVT.getVectorElementType()) &&
659                PartEVT.getVectorElementCount() ==
660                    ValueVT.getVectorElementCount()) {
661 
662       // Promoted vector extract
663       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
664     } else {
665       if (ValueVT.getVectorElementCount().isScalar()) {
666         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
667                           DAG.getVectorIdxConstant(0, DL));
668       } else {
669         uint64_t ValueSize = ValueVT.getFixedSizeInBits();
670         assert(PartVT.getFixedSizeInBits() > ValueSize &&
671                "lossy conversion of vector to scalar type");
672         EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
673         Val = DAG.getBitcast(IntermediateType, Val);
674         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
675       }
676     }
677 
678     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
679     Parts[0] = Val;
680     return;
681   }
682 
683   // Handle a multi-element vector.
684   EVT IntermediateVT;
685   MVT RegisterVT;
686   unsigned NumIntermediates;
687   unsigned NumRegs;
688   if (IsABIRegCopy) {
689     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
690         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
691         NumIntermediates, RegisterVT);
692   } else {
693     NumRegs =
694         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
695                                    NumIntermediates, RegisterVT);
696   }
697 
698   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
699   NumParts = NumRegs; // Silence a compiler warning.
700   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
701 
702   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
703          "Mixing scalable and fixed vectors when copying in parts");
704 
705   Optional<ElementCount> DestEltCnt;
706 
707   if (IntermediateVT.isVector())
708     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
709   else
710     DestEltCnt = ElementCount::getFixed(NumIntermediates);
711 
712   EVT BuiltVectorTy = EVT::getVectorVT(
713       *DAG.getContext(), IntermediateVT.getScalarType(), DestEltCnt.getValue());
714 
715   if (ValueVT == BuiltVectorTy) {
716     // Nothing to do.
717   } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
718     // Bitconvert vector->vector case.
719     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
720   } else if (SDValue Widened =
721                  widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
722     Val = Widened;
723   } else if (BuiltVectorTy.getVectorElementType().bitsGE(
724                  ValueVT.getVectorElementType()) &&
725              BuiltVectorTy.getVectorElementCount() ==
726                  ValueVT.getVectorElementCount()) {
727     // Promoted vector extract
728     Val = DAG.getAnyExtOrTrunc(Val, DL, BuiltVectorTy);
729   }
730 
731   assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
732 
733   // Split the vector into intermediate operands.
734   SmallVector<SDValue, 8> Ops(NumIntermediates);
735   for (unsigned i = 0; i != NumIntermediates; ++i) {
736     if (IntermediateVT.isVector()) {
737       // This does something sensible for scalable vectors - see the
738       // definition of EXTRACT_SUBVECTOR for further details.
739       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
740       Ops[i] =
741           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
742                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
743     } else {
744       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
745                            DAG.getVectorIdxConstant(i, DL));
746     }
747   }
748 
749   // Split the intermediate operands into legal parts.
750   if (NumParts == NumIntermediates) {
751     // If the register was not expanded, promote or copy the value,
752     // as appropriate.
753     for (unsigned i = 0; i != NumParts; ++i)
754       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
755   } else if (NumParts > 0) {
756     // If the intermediate type was expanded, split each the value into
757     // legal parts.
758     assert(NumIntermediates != 0 && "division by zero");
759     assert(NumParts % NumIntermediates == 0 &&
760            "Must expand into a divisible number of parts!");
761     unsigned Factor = NumParts / NumIntermediates;
762     for (unsigned i = 0; i != NumIntermediates; ++i)
763       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
764                      CallConv);
765   }
766 }
767 
768 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
769                            EVT valuevt, Optional<CallingConv::ID> CC)
770     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
771       RegCount(1, regs.size()), CallConv(CC) {}
772 
773 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
774                            const DataLayout &DL, unsigned Reg, Type *Ty,
775                            Optional<CallingConv::ID> CC) {
776   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
777 
778   CallConv = CC;
779 
780   for (EVT ValueVT : ValueVTs) {
781     unsigned NumRegs =
782         isABIMangled()
783             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
784             : TLI.getNumRegisters(Context, ValueVT);
785     MVT RegisterVT =
786         isABIMangled()
787             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
788             : TLI.getRegisterType(Context, ValueVT);
789     for (unsigned i = 0; i != NumRegs; ++i)
790       Regs.push_back(Reg + i);
791     RegVTs.push_back(RegisterVT);
792     RegCount.push_back(NumRegs);
793     Reg += NumRegs;
794   }
795 }
796 
797 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
798                                       FunctionLoweringInfo &FuncInfo,
799                                       const SDLoc &dl, SDValue &Chain,
800                                       SDValue *Flag, const Value *V) const {
801   // A Value with type {} or [0 x %t] needs no registers.
802   if (ValueVTs.empty())
803     return SDValue();
804 
805   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
806 
807   // Assemble the legal parts into the final values.
808   SmallVector<SDValue, 4> Values(ValueVTs.size());
809   SmallVector<SDValue, 8> Parts;
810   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
811     // Copy the legal parts from the registers.
812     EVT ValueVT = ValueVTs[Value];
813     unsigned NumRegs = RegCount[Value];
814     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
815                                           *DAG.getContext(),
816                                           CallConv.getValue(), RegVTs[Value])
817                                     : RegVTs[Value];
818 
819     Parts.resize(NumRegs);
820     for (unsigned i = 0; i != NumRegs; ++i) {
821       SDValue P;
822       if (!Flag) {
823         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
824       } else {
825         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
826         *Flag = P.getValue(2);
827       }
828 
829       Chain = P.getValue(1);
830       Parts[i] = P;
831 
832       // If the source register was virtual and if we know something about it,
833       // add an assert node.
834       if (!Register::isVirtualRegister(Regs[Part + i]) ||
835           !RegisterVT.isInteger())
836         continue;
837 
838       const FunctionLoweringInfo::LiveOutInfo *LOI =
839         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
840       if (!LOI)
841         continue;
842 
843       unsigned RegSize = RegisterVT.getScalarSizeInBits();
844       unsigned NumSignBits = LOI->NumSignBits;
845       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
846 
847       if (NumZeroBits == RegSize) {
848         // The current value is a zero.
849         // Explicitly express that as it would be easier for
850         // optimizations to kick in.
851         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
852         continue;
853       }
854 
855       // FIXME: We capture more information than the dag can represent.  For
856       // now, just use the tightest assertzext/assertsext possible.
857       bool isSExt;
858       EVT FromVT(MVT::Other);
859       if (NumZeroBits) {
860         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
861         isSExt = false;
862       } else if (NumSignBits > 1) {
863         FromVT =
864             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
865         isSExt = true;
866       } else {
867         continue;
868       }
869       // Add an assertion node.
870       assert(FromVT != MVT::Other);
871       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
872                              RegisterVT, P, DAG.getValueType(FromVT));
873     }
874 
875     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
876                                      RegisterVT, ValueVT, V, CallConv);
877     Part += NumRegs;
878     Parts.clear();
879   }
880 
881   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
882 }
883 
884 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
885                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
886                                  const Value *V,
887                                  ISD::NodeType PreferredExtendType) const {
888   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
889   ISD::NodeType ExtendKind = PreferredExtendType;
890 
891   // Get the list of the values's legal parts.
892   unsigned NumRegs = Regs.size();
893   SmallVector<SDValue, 8> Parts(NumRegs);
894   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
895     unsigned NumParts = RegCount[Value];
896 
897     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
898                                           *DAG.getContext(),
899                                           CallConv.getValue(), RegVTs[Value])
900                                     : RegVTs[Value];
901 
902     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
903       ExtendKind = ISD::ZERO_EXTEND;
904 
905     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
906                    NumParts, RegisterVT, V, CallConv, ExtendKind);
907     Part += NumParts;
908   }
909 
910   // Copy the parts into the registers.
911   SmallVector<SDValue, 8> Chains(NumRegs);
912   for (unsigned i = 0; i != NumRegs; ++i) {
913     SDValue Part;
914     if (!Flag) {
915       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
916     } else {
917       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
918       *Flag = Part.getValue(1);
919     }
920 
921     Chains[i] = Part.getValue(0);
922   }
923 
924   if (NumRegs == 1 || Flag)
925     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
926     // flagged to it. That is the CopyToReg nodes and the user are considered
927     // a single scheduling unit. If we create a TokenFactor and return it as
928     // chain, then the TokenFactor is both a predecessor (operand) of the
929     // user as well as a successor (the TF operands are flagged to the user).
930     // c1, f1 = CopyToReg
931     // c2, f2 = CopyToReg
932     // c3     = TokenFactor c1, c2
933     // ...
934     //        = op c3, ..., f2
935     Chain = Chains[NumRegs-1];
936   else
937     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
938 }
939 
940 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
941                                         unsigned MatchingIdx, const SDLoc &dl,
942                                         SelectionDAG &DAG,
943                                         std::vector<SDValue> &Ops) const {
944   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
945 
946   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
947   if (HasMatching)
948     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
949   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
950     // Put the register class of the virtual registers in the flag word.  That
951     // way, later passes can recompute register class constraints for inline
952     // assembly as well as normal instructions.
953     // Don't do this for tied operands that can use the regclass information
954     // from the def.
955     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
956     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
957     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
958   }
959 
960   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
961   Ops.push_back(Res);
962 
963   if (Code == InlineAsm::Kind_Clobber) {
964     // Clobbers should always have a 1:1 mapping with registers, and may
965     // reference registers that have illegal (e.g. vector) types. Hence, we
966     // shouldn't try to apply any sort of splitting logic to them.
967     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
968            "No 1:1 mapping from clobbers to regs?");
969     Register SP = TLI.getStackPointerRegisterToSaveRestore();
970     (void)SP;
971     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
972       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
973       assert(
974           (Regs[I] != SP ||
975            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
976           "If we clobbered the stack pointer, MFI should know about it.");
977     }
978     return;
979   }
980 
981   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
982     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
983     MVT RegisterVT = RegVTs[Value];
984     for (unsigned i = 0; i != NumRegs; ++i) {
985       assert(Reg < Regs.size() && "Mismatch in # registers expected");
986       unsigned TheReg = Regs[Reg++];
987       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
988     }
989   }
990 }
991 
992 SmallVector<std::pair<unsigned, TypeSize>, 4>
993 RegsForValue::getRegsAndSizes() const {
994   SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec;
995   unsigned I = 0;
996   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
997     unsigned RegCount = std::get<0>(CountAndVT);
998     MVT RegisterVT = std::get<1>(CountAndVT);
999     TypeSize RegisterSize = RegisterVT.getSizeInBits();
1000     for (unsigned E = I + RegCount; I != E; ++I)
1001       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1002   }
1003   return OutVec;
1004 }
1005 
1006 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1007                                const TargetLibraryInfo *li) {
1008   AA = aa;
1009   GFI = gfi;
1010   LibInfo = li;
1011   DL = &DAG.getDataLayout();
1012   Context = DAG.getContext();
1013   LPadToCallSiteMap.clear();
1014   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1015 }
1016 
1017 void SelectionDAGBuilder::clear() {
1018   NodeMap.clear();
1019   UnusedArgNodeMap.clear();
1020   PendingLoads.clear();
1021   PendingExports.clear();
1022   PendingConstrainedFP.clear();
1023   PendingConstrainedFPStrict.clear();
1024   CurInst = nullptr;
1025   HasTailCall = false;
1026   SDNodeOrder = LowestSDNodeOrder;
1027   StatepointLowering.clear();
1028 }
1029 
1030 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1031   DanglingDebugInfoMap.clear();
1032 }
1033 
1034 // Update DAG root to include dependencies on Pending chains.
1035 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1036   SDValue Root = DAG.getRoot();
1037 
1038   if (Pending.empty())
1039     return Root;
1040 
1041   // Add current root to PendingChains, unless we already indirectly
1042   // depend on it.
1043   if (Root.getOpcode() != ISD::EntryToken) {
1044     unsigned i = 0, e = Pending.size();
1045     for (; i != e; ++i) {
1046       assert(Pending[i].getNode()->getNumOperands() > 1);
1047       if (Pending[i].getNode()->getOperand(0) == Root)
1048         break;  // Don't add the root if we already indirectly depend on it.
1049     }
1050 
1051     if (i == e)
1052       Pending.push_back(Root);
1053   }
1054 
1055   if (Pending.size() == 1)
1056     Root = Pending[0];
1057   else
1058     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1059 
1060   DAG.setRoot(Root);
1061   Pending.clear();
1062   return Root;
1063 }
1064 
1065 SDValue SelectionDAGBuilder::getMemoryRoot() {
1066   return updateRoot(PendingLoads);
1067 }
1068 
1069 SDValue SelectionDAGBuilder::getRoot() {
1070   // Chain up all pending constrained intrinsics together with all
1071   // pending loads, by simply appending them to PendingLoads and
1072   // then calling getMemoryRoot().
1073   PendingLoads.reserve(PendingLoads.size() +
1074                        PendingConstrainedFP.size() +
1075                        PendingConstrainedFPStrict.size());
1076   PendingLoads.append(PendingConstrainedFP.begin(),
1077                       PendingConstrainedFP.end());
1078   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1079                       PendingConstrainedFPStrict.end());
1080   PendingConstrainedFP.clear();
1081   PendingConstrainedFPStrict.clear();
1082   return getMemoryRoot();
1083 }
1084 
1085 SDValue SelectionDAGBuilder::getControlRoot() {
1086   // We need to emit pending fpexcept.strict constrained intrinsics,
1087   // so append them to the PendingExports list.
1088   PendingExports.append(PendingConstrainedFPStrict.begin(),
1089                         PendingConstrainedFPStrict.end());
1090   PendingConstrainedFPStrict.clear();
1091   return updateRoot(PendingExports);
1092 }
1093 
1094 void SelectionDAGBuilder::visit(const Instruction &I) {
1095   // Set up outgoing PHI node register values before emitting the terminator.
1096   if (I.isTerminator()) {
1097     HandlePHINodesInSuccessorBlocks(I.getParent());
1098   }
1099 
1100   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1101   if (!isa<DbgInfoIntrinsic>(I))
1102     ++SDNodeOrder;
1103 
1104   CurInst = &I;
1105 
1106   visit(I.getOpcode(), I);
1107 
1108   if (!I.isTerminator() && !HasTailCall &&
1109       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1110     CopyToExportRegsIfNeeded(&I);
1111 
1112   CurInst = nullptr;
1113 }
1114 
1115 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1116   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1117 }
1118 
1119 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1120   // Note: this doesn't use InstVisitor, because it has to work with
1121   // ConstantExpr's in addition to instructions.
1122   switch (Opcode) {
1123   default: llvm_unreachable("Unknown instruction type encountered!");
1124     // Build the switch statement using the Instruction.def file.
1125 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1126     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1127 #include "llvm/IR/Instruction.def"
1128   }
1129 }
1130 
1131 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI,
1132                                                DebugLoc DL, unsigned Order) {
1133   // We treat variadic dbg_values differently at this stage.
1134   if (DI->hasArgList()) {
1135     // For variadic dbg_values we will now insert an undef.
1136     // FIXME: We can potentially recover these!
1137     SmallVector<SDDbgOperand, 2> Locs;
1138     for (const Value *V : DI->getValues()) {
1139       auto Undef = UndefValue::get(V->getType());
1140       Locs.push_back(SDDbgOperand::fromConst(Undef));
1141     }
1142     SDDbgValue *SDV = DAG.getDbgValueList(
1143         DI->getVariable(), DI->getExpression(), Locs, {},
1144         /*IsIndirect=*/false, DL, Order, /*IsVariadic=*/true);
1145     DAG.AddDbgValue(SDV, /*isParameter=*/false);
1146   } else {
1147     // TODO: Dangling debug info will eventually either be resolved or produce
1148     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
1149     // between the original dbg.value location and its resolved DBG_VALUE,
1150     // which we should ideally fill with an extra Undef DBG_VALUE.
1151     assert(DI->getNumVariableLocationOps() == 1 &&
1152            "DbgValueInst without an ArgList should have a single location "
1153            "operand.");
1154     DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, DL, Order);
1155   }
1156 }
1157 
1158 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1159                                                 const DIExpression *Expr) {
1160   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1161     const DbgValueInst *DI = DDI.getDI();
1162     DIVariable *DanglingVariable = DI->getVariable();
1163     DIExpression *DanglingExpr = DI->getExpression();
1164     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1165       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1166       return true;
1167     }
1168     return false;
1169   };
1170 
1171   for (auto &DDIMI : DanglingDebugInfoMap) {
1172     DanglingDebugInfoVector &DDIV = DDIMI.second;
1173 
1174     // If debug info is to be dropped, run it through final checks to see
1175     // whether it can be salvaged.
1176     for (auto &DDI : DDIV)
1177       if (isMatchingDbgValue(DDI))
1178         salvageUnresolvedDbgValue(DDI);
1179 
1180     erase_if(DDIV, isMatchingDbgValue);
1181   }
1182 }
1183 
1184 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1185 // generate the debug data structures now that we've seen its definition.
1186 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1187                                                    SDValue Val) {
1188   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1189   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1190     return;
1191 
1192   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1193   for (auto &DDI : DDIV) {
1194     const DbgValueInst *DI = DDI.getDI();
1195     assert(!DI->hasArgList() && "Not implemented for variadic dbg_values");
1196     assert(DI && "Ill-formed DanglingDebugInfo");
1197     DebugLoc dl = DDI.getdl();
1198     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1199     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1200     DILocalVariable *Variable = DI->getVariable();
1201     DIExpression *Expr = DI->getExpression();
1202     assert(Variable->isValidLocationForIntrinsic(dl) &&
1203            "Expected inlined-at fields to agree");
1204     SDDbgValue *SDV;
1205     if (Val.getNode()) {
1206       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1207       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1208       // we couldn't resolve it directly when examining the DbgValue intrinsic
1209       // in the first place we should not be more successful here). Unless we
1210       // have some test case that prove this to be correct we should avoid
1211       // calling EmitFuncArgumentDbgValue here.
1212       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1213         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1214                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1215         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1216         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1217         // inserted after the definition of Val when emitting the instructions
1218         // after ISel. An alternative could be to teach
1219         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1220         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1221                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1222                    << ValSDNodeOrder << "\n");
1223         SDV = getDbgValue(Val, Variable, Expr, dl,
1224                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1225         DAG.AddDbgValue(SDV, false);
1226       } else
1227         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1228                           << "in EmitFuncArgumentDbgValue\n");
1229     } else {
1230       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1231       auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType());
1232       auto SDV =
1233           DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1234       DAG.AddDbgValue(SDV, false);
1235     }
1236   }
1237   DDIV.clear();
1238 }
1239 
1240 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1241   assert(!DDI.getDI()->hasArgList() &&
1242          "Not implemented for variadic dbg_values");
1243   Value *V = DDI.getDI()->getValue(0);
1244   DILocalVariable *Var = DDI.getDI()->getVariable();
1245   DIExpression *Expr = DDI.getDI()->getExpression();
1246   DebugLoc DL = DDI.getdl();
1247   DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1248   unsigned SDOrder = DDI.getSDNodeOrder();
1249   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1250   // that DW_OP_stack_value is desired.
1251   assert(isa<DbgValueInst>(DDI.getDI()));
1252   bool StackValue = true;
1253 
1254   // Can this Value can be encoded without any further work?
1255   if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, /*IsVariadic=*/false))
1256     return;
1257 
1258   // Attempt to salvage back through as many instructions as possible. Bail if
1259   // a non-instruction is seen, such as a constant expression or global
1260   // variable. FIXME: Further work could recover those too.
1261   while (isa<Instruction>(V)) {
1262     Instruction &VAsInst = *cast<Instruction>(V);
1263     DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue);
1264 
1265     // If we cannot salvage any further, and haven't yet found a suitable debug
1266     // expression, bail out.
1267     if (!NewExpr)
1268       break;
1269 
1270     // New value and expr now represent this debuginfo.
1271     V = VAsInst.getOperand(0);
1272     Expr = NewExpr;
1273 
1274     // Some kind of simplification occurred: check whether the operand of the
1275     // salvaged debug expression can be encoded in this DAG.
1276     if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder,
1277                          /*IsVariadic=*/false)) {
1278       LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n  "
1279                         << DDI.getDI() << "\nBy stripping back to:\n  " << V);
1280       return;
1281     }
1282   }
1283 
1284   // This was the final opportunity to salvage this debug information, and it
1285   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1286   // any earlier variable location.
1287   auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType());
1288   auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1289   DAG.AddDbgValue(SDV, false);
1290 
1291   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << DDI.getDI()
1292                     << "\n");
1293   LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *DDI.getDI()->getOperand(0)
1294                     << "\n");
1295 }
1296 
1297 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values,
1298                                            DILocalVariable *Var,
1299                                            DIExpression *Expr, DebugLoc dl,
1300                                            DebugLoc InstDL, unsigned Order,
1301                                            bool IsVariadic) {
1302   if (Values.empty())
1303     return true;
1304   SDDbgValue::LocOpVector LocationOps;
1305   SDDbgValue::SDNodeVector Dependencies;
1306   for (const Value *V : Values) {
1307     // Constant value.
1308     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1309         isa<ConstantPointerNull>(V)) {
1310       LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1311       continue;
1312     }
1313 
1314     // If the Value is a frame index, we can create a FrameIndex debug value
1315     // without relying on the DAG at all.
1316     if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1317       auto SI = FuncInfo.StaticAllocaMap.find(AI);
1318       if (SI != FuncInfo.StaticAllocaMap.end()) {
1319         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1320         continue;
1321       }
1322     }
1323 
1324     // Do not use getValue() in here; we don't want to generate code at
1325     // this point if it hasn't been done yet.
1326     SDValue N = NodeMap[V];
1327     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1328       N = UnusedArgNodeMap[V];
1329     if (N.getNode()) {
1330       // Only emit func arg dbg value for non-variadic dbg.values for now.
1331       if (!IsVariadic && EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N))
1332         return true;
1333       Dependencies.push_back(N.getNode());
1334       if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1335         // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1336         // describe stack slot locations.
1337         //
1338         // Consider "int x = 0; int *px = &x;". There are two kinds of
1339         // interesting debug values here after optimization:
1340         //
1341         //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
1342         //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1343         //
1344         // Both describe the direct values of their associated variables.
1345         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1346         continue;
1347       }
1348       LocationOps.emplace_back(
1349           SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1350       continue;
1351     }
1352 
1353     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1354     // Special rules apply for the first dbg.values of parameter variables in a
1355     // function. Identify them by the fact they reference Argument Values, that
1356     // they're parameters, and they are parameters of the current function. We
1357     // need to let them dangle until they get an SDNode.
1358     bool IsParamOfFunc =
1359         isa<Argument>(V) && Var->isParameter() && !InstDL.getInlinedAt();
1360     if (IsParamOfFunc)
1361       return false;
1362 
1363     // The value is not used in this block yet (or it would have an SDNode).
1364     // We still want the value to appear for the user if possible -- if it has
1365     // an associated VReg, we can refer to that instead.
1366     auto VMI = FuncInfo.ValueMap.find(V);
1367     if (VMI != FuncInfo.ValueMap.end()) {
1368       unsigned Reg = VMI->second;
1369       // If this is a PHI node, it may be split up into several MI PHI nodes
1370       // (in FunctionLoweringInfo::set).
1371       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1372                        V->getType(), None);
1373       if (RFV.occupiesMultipleRegs()) {
1374         // FIXME: We could potentially support variadic dbg_values here.
1375         if (IsVariadic)
1376           return false;
1377         unsigned Offset = 0;
1378         unsigned BitsToDescribe = 0;
1379         if (auto VarSize = Var->getSizeInBits())
1380           BitsToDescribe = *VarSize;
1381         if (auto Fragment = Expr->getFragmentInfo())
1382           BitsToDescribe = Fragment->SizeInBits;
1383         for (auto RegAndSize : RFV.getRegsAndSizes()) {
1384           // Bail out if all bits are described already.
1385           if (Offset >= BitsToDescribe)
1386             break;
1387           // TODO: handle scalable vectors.
1388           unsigned RegisterSize = RegAndSize.second;
1389           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1390                                       ? BitsToDescribe - Offset
1391                                       : RegisterSize;
1392           auto FragmentExpr = DIExpression::createFragmentExpression(
1393               Expr, Offset, FragmentSize);
1394           if (!FragmentExpr)
1395             continue;
1396           SDDbgValue *SDV = DAG.getVRegDbgValue(
1397               Var, *FragmentExpr, RegAndSize.first, false, dl, SDNodeOrder);
1398           DAG.AddDbgValue(SDV, false);
1399           Offset += RegisterSize;
1400         }
1401         return true;
1402       }
1403       // We can use simple vreg locations for variadic dbg_values as well.
1404       LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1405       continue;
1406     }
1407     // We failed to create a SDDbgOperand for V.
1408     return false;
1409   }
1410 
1411   // We have created a SDDbgOperand for each Value in Values.
1412   // Should use Order instead of SDNodeOrder?
1413   assert(!LocationOps.empty());
1414   SDDbgValue *SDV =
1415       DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1416                           /*IsIndirect=*/false, dl, SDNodeOrder, IsVariadic);
1417   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1418   return true;
1419 }
1420 
1421 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1422   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1423   for (auto &Pair : DanglingDebugInfoMap)
1424     for (auto &DDI : Pair.second)
1425       salvageUnresolvedDbgValue(DDI);
1426   clearDanglingDebugInfo();
1427 }
1428 
1429 /// getCopyFromRegs - If there was virtual register allocated for the value V
1430 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1431 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1432   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1433   SDValue Result;
1434 
1435   if (It != FuncInfo.ValueMap.end()) {
1436     Register InReg = It->second;
1437 
1438     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1439                      DAG.getDataLayout(), InReg, Ty,
1440                      None); // This is not an ABI copy.
1441     SDValue Chain = DAG.getEntryNode();
1442     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1443                                  V);
1444     resolveDanglingDebugInfo(V, Result);
1445   }
1446 
1447   return Result;
1448 }
1449 
1450 /// getValue - Return an SDValue for the given Value.
1451 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1452   // If we already have an SDValue for this value, use it. It's important
1453   // to do this first, so that we don't create a CopyFromReg if we already
1454   // have a regular SDValue.
1455   SDValue &N = NodeMap[V];
1456   if (N.getNode()) return N;
1457 
1458   // If there's a virtual register allocated and initialized for this
1459   // value, use it.
1460   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1461     return copyFromReg;
1462 
1463   // Otherwise create a new SDValue and remember it.
1464   SDValue Val = getValueImpl(V);
1465   NodeMap[V] = Val;
1466   resolveDanglingDebugInfo(V, Val);
1467   return Val;
1468 }
1469 
1470 /// getNonRegisterValue - Return an SDValue for the given Value, but
1471 /// don't look in FuncInfo.ValueMap for a virtual register.
1472 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1473   // If we already have an SDValue for this value, use it.
1474   SDValue &N = NodeMap[V];
1475   if (N.getNode()) {
1476     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1477       // Remove the debug location from the node as the node is about to be used
1478       // in a location which may differ from the original debug location.  This
1479       // is relevant to Constant and ConstantFP nodes because they can appear
1480       // as constant expressions inside PHI nodes.
1481       N->setDebugLoc(DebugLoc());
1482     }
1483     return N;
1484   }
1485 
1486   // Otherwise create a new SDValue and remember it.
1487   SDValue Val = getValueImpl(V);
1488   NodeMap[V] = Val;
1489   resolveDanglingDebugInfo(V, Val);
1490   return Val;
1491 }
1492 
1493 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1494 /// Create an SDValue for the given value.
1495 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1496   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1497 
1498   if (const Constant *C = dyn_cast<Constant>(V)) {
1499     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1500 
1501     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1502       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1503 
1504     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1505       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1506 
1507     if (isa<ConstantPointerNull>(C)) {
1508       unsigned AS = V->getType()->getPointerAddressSpace();
1509       return DAG.getConstant(0, getCurSDLoc(),
1510                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1511     }
1512 
1513     if (match(C, m_VScale(DAG.getDataLayout())))
1514       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1515 
1516     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1517       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1518 
1519     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1520       return DAG.getUNDEF(VT);
1521 
1522     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1523       visit(CE->getOpcode(), *CE);
1524       SDValue N1 = NodeMap[V];
1525       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1526       return N1;
1527     }
1528 
1529     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1530       SmallVector<SDValue, 4> Constants;
1531       for (const Use &U : C->operands()) {
1532         SDNode *Val = getValue(U).getNode();
1533         // If the operand is an empty aggregate, there are no values.
1534         if (!Val) continue;
1535         // Add each leaf value from the operand to the Constants list
1536         // to form a flattened list of all the values.
1537         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1538           Constants.push_back(SDValue(Val, i));
1539       }
1540 
1541       return DAG.getMergeValues(Constants, getCurSDLoc());
1542     }
1543 
1544     if (const ConstantDataSequential *CDS =
1545           dyn_cast<ConstantDataSequential>(C)) {
1546       SmallVector<SDValue, 4> Ops;
1547       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1548         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1549         // Add each leaf value from the operand to the Constants list
1550         // to form a flattened list of all the values.
1551         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1552           Ops.push_back(SDValue(Val, i));
1553       }
1554 
1555       if (isa<ArrayType>(CDS->getType()))
1556         return DAG.getMergeValues(Ops, getCurSDLoc());
1557       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1558     }
1559 
1560     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1561       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1562              "Unknown struct or array constant!");
1563 
1564       SmallVector<EVT, 4> ValueVTs;
1565       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1566       unsigned NumElts = ValueVTs.size();
1567       if (NumElts == 0)
1568         return SDValue(); // empty struct
1569       SmallVector<SDValue, 4> Constants(NumElts);
1570       for (unsigned i = 0; i != NumElts; ++i) {
1571         EVT EltVT = ValueVTs[i];
1572         if (isa<UndefValue>(C))
1573           Constants[i] = DAG.getUNDEF(EltVT);
1574         else if (EltVT.isFloatingPoint())
1575           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1576         else
1577           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1578       }
1579 
1580       return DAG.getMergeValues(Constants, getCurSDLoc());
1581     }
1582 
1583     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1584       return DAG.getBlockAddress(BA, VT);
1585 
1586     if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1587       return getValue(Equiv->getGlobalValue());
1588 
1589     VectorType *VecTy = cast<VectorType>(V->getType());
1590 
1591     // Now that we know the number and type of the elements, get that number of
1592     // elements into the Ops array based on what kind of constant it is.
1593     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1594       SmallVector<SDValue, 16> Ops;
1595       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1596       for (unsigned i = 0; i != NumElements; ++i)
1597         Ops.push_back(getValue(CV->getOperand(i)));
1598 
1599       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1600     } else if (isa<ConstantAggregateZero>(C)) {
1601       EVT EltVT =
1602           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1603 
1604       SDValue Op;
1605       if (EltVT.isFloatingPoint())
1606         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1607       else
1608         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1609 
1610       if (isa<ScalableVectorType>(VecTy))
1611         return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op);
1612       else {
1613         SmallVector<SDValue, 16> Ops;
1614         Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op);
1615         return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1616       }
1617     }
1618     llvm_unreachable("Unknown vector constant");
1619   }
1620 
1621   // If this is a static alloca, generate it as the frameindex instead of
1622   // computation.
1623   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1624     DenseMap<const AllocaInst*, int>::iterator SI =
1625       FuncInfo.StaticAllocaMap.find(AI);
1626     if (SI != FuncInfo.StaticAllocaMap.end())
1627       return DAG.getFrameIndex(SI->second,
1628                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1629   }
1630 
1631   // If this is an instruction which fast-isel has deferred, select it now.
1632   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1633     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1634 
1635     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1636                      Inst->getType(), None);
1637     SDValue Chain = DAG.getEntryNode();
1638     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1639   }
1640 
1641   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) {
1642     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1643   }
1644   llvm_unreachable("Can't get register for value!");
1645 }
1646 
1647 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1648   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1649   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1650   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1651   bool IsSEH = isAsynchronousEHPersonality(Pers);
1652   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1653   if (!IsSEH)
1654     CatchPadMBB->setIsEHScopeEntry();
1655   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1656   if (IsMSVCCXX || IsCoreCLR)
1657     CatchPadMBB->setIsEHFuncletEntry();
1658 }
1659 
1660 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1661   // Update machine-CFG edge.
1662   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1663   FuncInfo.MBB->addSuccessor(TargetMBB);
1664   TargetMBB->setIsEHCatchretTarget(true);
1665   DAG.getMachineFunction().setHasEHCatchret(true);
1666 
1667   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1668   bool IsSEH = isAsynchronousEHPersonality(Pers);
1669   if (IsSEH) {
1670     // If this is not a fall-through branch or optimizations are switched off,
1671     // emit the branch.
1672     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1673         TM.getOptLevel() == CodeGenOpt::None)
1674       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1675                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1676     return;
1677   }
1678 
1679   // Figure out the funclet membership for the catchret's successor.
1680   // This will be used by the FuncletLayout pass to determine how to order the
1681   // BB's.
1682   // A 'catchret' returns to the outer scope's color.
1683   Value *ParentPad = I.getCatchSwitchParentPad();
1684   const BasicBlock *SuccessorColor;
1685   if (isa<ConstantTokenNone>(ParentPad))
1686     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1687   else
1688     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1689   assert(SuccessorColor && "No parent funclet for catchret!");
1690   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1691   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1692 
1693   // Create the terminator node.
1694   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1695                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1696                             DAG.getBasicBlock(SuccessorColorMBB));
1697   DAG.setRoot(Ret);
1698 }
1699 
1700 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1701   // Don't emit any special code for the cleanuppad instruction. It just marks
1702   // the start of an EH scope/funclet.
1703   FuncInfo.MBB->setIsEHScopeEntry();
1704   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1705   if (Pers != EHPersonality::Wasm_CXX) {
1706     FuncInfo.MBB->setIsEHFuncletEntry();
1707     FuncInfo.MBB->setIsCleanupFuncletEntry();
1708   }
1709 }
1710 
1711 // In wasm EH, even though a catchpad may not catch an exception if a tag does
1712 // not match, it is OK to add only the first unwind destination catchpad to the
1713 // successors, because there will be at least one invoke instruction within the
1714 // catch scope that points to the next unwind destination, if one exists, so
1715 // CFGSort cannot mess up with BB sorting order.
1716 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
1717 // call within them, and catchpads only consisting of 'catch (...)' have a
1718 // '__cxa_end_catch' call within them, both of which generate invokes in case
1719 // the next unwind destination exists, i.e., the next unwind destination is not
1720 // the caller.)
1721 //
1722 // Having at most one EH pad successor is also simpler and helps later
1723 // transformations.
1724 //
1725 // For example,
1726 // current:
1727 //   invoke void @foo to ... unwind label %catch.dispatch
1728 // catch.dispatch:
1729 //   %0 = catchswitch within ... [label %catch.start] unwind label %next
1730 // catch.start:
1731 //   ...
1732 //   ... in this BB or some other child BB dominated by this BB there will be an
1733 //   invoke that points to 'next' BB as an unwind destination
1734 //
1735 // next: ; We don't need to add this to 'current' BB's successor
1736 //   ...
1737 static void findWasmUnwindDestinations(
1738     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1739     BranchProbability Prob,
1740     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1741         &UnwindDests) {
1742   while (EHPadBB) {
1743     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1744     if (isa<CleanupPadInst>(Pad)) {
1745       // Stop on cleanup pads.
1746       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1747       UnwindDests.back().first->setIsEHScopeEntry();
1748       break;
1749     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1750       // Add the catchpad handlers to the possible destinations. We don't
1751       // continue to the unwind destination of the catchswitch for wasm.
1752       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1753         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1754         UnwindDests.back().first->setIsEHScopeEntry();
1755       }
1756       break;
1757     } else {
1758       continue;
1759     }
1760   }
1761 }
1762 
1763 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1764 /// many places it could ultimately go. In the IR, we have a single unwind
1765 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1766 /// This function skips over imaginary basic blocks that hold catchswitch
1767 /// instructions, and finds all the "real" machine
1768 /// basic block destinations. As those destinations may not be successors of
1769 /// EHPadBB, here we also calculate the edge probability to those destinations.
1770 /// The passed-in Prob is the edge probability to EHPadBB.
1771 static void findUnwindDestinations(
1772     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1773     BranchProbability Prob,
1774     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1775         &UnwindDests) {
1776   EHPersonality Personality =
1777     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1778   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1779   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1780   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1781   bool IsSEH = isAsynchronousEHPersonality(Personality);
1782 
1783   if (IsWasmCXX) {
1784     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1785     assert(UnwindDests.size() <= 1 &&
1786            "There should be at most one unwind destination for wasm");
1787     return;
1788   }
1789 
1790   while (EHPadBB) {
1791     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1792     BasicBlock *NewEHPadBB = nullptr;
1793     if (isa<LandingPadInst>(Pad)) {
1794       // Stop on landingpads. They are not funclets.
1795       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1796       break;
1797     } else if (isa<CleanupPadInst>(Pad)) {
1798       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1799       // personalities.
1800       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1801       UnwindDests.back().first->setIsEHScopeEntry();
1802       UnwindDests.back().first->setIsEHFuncletEntry();
1803       break;
1804     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1805       // Add the catchpad handlers to the possible destinations.
1806       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1807         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1808         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1809         if (IsMSVCCXX || IsCoreCLR)
1810           UnwindDests.back().first->setIsEHFuncletEntry();
1811         if (!IsSEH)
1812           UnwindDests.back().first->setIsEHScopeEntry();
1813       }
1814       NewEHPadBB = CatchSwitch->getUnwindDest();
1815     } else {
1816       continue;
1817     }
1818 
1819     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1820     if (BPI && NewEHPadBB)
1821       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1822     EHPadBB = NewEHPadBB;
1823   }
1824 }
1825 
1826 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1827   // Update successor info.
1828   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1829   auto UnwindDest = I.getUnwindDest();
1830   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1831   BranchProbability UnwindDestProb =
1832       (BPI && UnwindDest)
1833           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1834           : BranchProbability::getZero();
1835   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1836   for (auto &UnwindDest : UnwindDests) {
1837     UnwindDest.first->setIsEHPad();
1838     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1839   }
1840   FuncInfo.MBB->normalizeSuccProbs();
1841 
1842   // Create the terminator node.
1843   SDValue Ret =
1844       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1845   DAG.setRoot(Ret);
1846 }
1847 
1848 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1849   report_fatal_error("visitCatchSwitch not yet implemented!");
1850 }
1851 
1852 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1853   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1854   auto &DL = DAG.getDataLayout();
1855   SDValue Chain = getControlRoot();
1856   SmallVector<ISD::OutputArg, 8> Outs;
1857   SmallVector<SDValue, 8> OutVals;
1858 
1859   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1860   // lower
1861   //
1862   //   %val = call <ty> @llvm.experimental.deoptimize()
1863   //   ret <ty> %val
1864   //
1865   // differently.
1866   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1867     LowerDeoptimizingReturn();
1868     return;
1869   }
1870 
1871   if (!FuncInfo.CanLowerReturn) {
1872     unsigned DemoteReg = FuncInfo.DemoteRegister;
1873     const Function *F = I.getParent()->getParent();
1874 
1875     // Emit a store of the return value through the virtual register.
1876     // Leave Outs empty so that LowerReturn won't try to load return
1877     // registers the usual way.
1878     SmallVector<EVT, 1> PtrValueVTs;
1879     ComputeValueVTs(TLI, DL,
1880                     F->getReturnType()->getPointerTo(
1881                         DAG.getDataLayout().getAllocaAddrSpace()),
1882                     PtrValueVTs);
1883 
1884     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1885                                         DemoteReg, PtrValueVTs[0]);
1886     SDValue RetOp = getValue(I.getOperand(0));
1887 
1888     SmallVector<EVT, 4> ValueVTs, MemVTs;
1889     SmallVector<uint64_t, 4> Offsets;
1890     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1891                     &Offsets);
1892     unsigned NumValues = ValueVTs.size();
1893 
1894     SmallVector<SDValue, 4> Chains(NumValues);
1895     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
1896     for (unsigned i = 0; i != NumValues; ++i) {
1897       // An aggregate return value cannot wrap around the address space, so
1898       // offsets to its parts don't wrap either.
1899       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
1900                                            TypeSize::Fixed(Offsets[i]));
1901 
1902       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
1903       if (MemVTs[i] != ValueVTs[i])
1904         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
1905       Chains[i] = DAG.getStore(
1906           Chain, getCurSDLoc(), Val,
1907           // FIXME: better loc info would be nice.
1908           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
1909           commonAlignment(BaseAlign, Offsets[i]));
1910     }
1911 
1912     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1913                         MVT::Other, Chains);
1914   } else if (I.getNumOperands() != 0) {
1915     SmallVector<EVT, 4> ValueVTs;
1916     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1917     unsigned NumValues = ValueVTs.size();
1918     if (NumValues) {
1919       SDValue RetOp = getValue(I.getOperand(0));
1920 
1921       const Function *F = I.getParent()->getParent();
1922 
1923       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1924           I.getOperand(0)->getType(), F->getCallingConv(),
1925           /*IsVarArg*/ false);
1926 
1927       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1928       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1929                                           Attribute::SExt))
1930         ExtendKind = ISD::SIGN_EXTEND;
1931       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1932                                                Attribute::ZExt))
1933         ExtendKind = ISD::ZERO_EXTEND;
1934 
1935       LLVMContext &Context = F->getContext();
1936       bool RetInReg = F->getAttributes().hasAttribute(
1937           AttributeList::ReturnIndex, Attribute::InReg);
1938 
1939       for (unsigned j = 0; j != NumValues; ++j) {
1940         EVT VT = ValueVTs[j];
1941 
1942         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1943           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1944 
1945         CallingConv::ID CC = F->getCallingConv();
1946 
1947         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1948         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1949         SmallVector<SDValue, 4> Parts(NumParts);
1950         getCopyToParts(DAG, getCurSDLoc(),
1951                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1952                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1953 
1954         // 'inreg' on function refers to return value
1955         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1956         if (RetInReg)
1957           Flags.setInReg();
1958 
1959         if (I.getOperand(0)->getType()->isPointerTy()) {
1960           Flags.setPointer();
1961           Flags.setPointerAddrSpace(
1962               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
1963         }
1964 
1965         if (NeedsRegBlock) {
1966           Flags.setInConsecutiveRegs();
1967           if (j == NumValues - 1)
1968             Flags.setInConsecutiveRegsLast();
1969         }
1970 
1971         // Propagate extension type if any
1972         if (ExtendKind == ISD::SIGN_EXTEND)
1973           Flags.setSExt();
1974         else if (ExtendKind == ISD::ZERO_EXTEND)
1975           Flags.setZExt();
1976 
1977         for (unsigned i = 0; i < NumParts; ++i) {
1978           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1979                                         VT, /*isfixed=*/true, 0, 0));
1980           OutVals.push_back(Parts[i]);
1981         }
1982       }
1983     }
1984   }
1985 
1986   // Push in swifterror virtual register as the last element of Outs. This makes
1987   // sure swifterror virtual register will be returned in the swifterror
1988   // physical register.
1989   const Function *F = I.getParent()->getParent();
1990   if (TLI.supportSwiftError() &&
1991       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1992     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
1993     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1994     Flags.setSwiftError();
1995     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1996                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1997                                   true /*isfixed*/, 1 /*origidx*/,
1998                                   0 /*partOffs*/));
1999     // Create SDNode for the swifterror virtual register.
2000     OutVals.push_back(
2001         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
2002                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
2003                         EVT(TLI.getPointerTy(DL))));
2004   }
2005 
2006   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
2007   CallingConv::ID CallConv =
2008     DAG.getMachineFunction().getFunction().getCallingConv();
2009   Chain = DAG.getTargetLoweringInfo().LowerReturn(
2010       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2011 
2012   // Verify that the target's LowerReturn behaved as expected.
2013   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2014          "LowerReturn didn't return a valid chain!");
2015 
2016   // Update the DAG with the new chain value resulting from return lowering.
2017   DAG.setRoot(Chain);
2018 }
2019 
2020 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
2021 /// created for it, emit nodes to copy the value into the virtual
2022 /// registers.
2023 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
2024   // Skip empty types
2025   if (V->getType()->isEmptyTy())
2026     return;
2027 
2028   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
2029   if (VMI != FuncInfo.ValueMap.end()) {
2030     assert(!V->use_empty() && "Unused value assigned virtual registers!");
2031     CopyValueToVirtualRegister(V, VMI->second);
2032   }
2033 }
2034 
2035 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
2036 /// the current basic block, add it to ValueMap now so that we'll get a
2037 /// CopyTo/FromReg.
2038 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
2039   // No need to export constants.
2040   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2041 
2042   // Already exported?
2043   if (FuncInfo.isExportedInst(V)) return;
2044 
2045   unsigned Reg = FuncInfo.InitializeRegForValue(V);
2046   CopyValueToVirtualRegister(V, Reg);
2047 }
2048 
2049 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
2050                                                      const BasicBlock *FromBB) {
2051   // The operands of the setcc have to be in this block.  We don't know
2052   // how to export them from some other block.
2053   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2054     // Can export from current BB.
2055     if (VI->getParent() == FromBB)
2056       return true;
2057 
2058     // Is already exported, noop.
2059     return FuncInfo.isExportedInst(V);
2060   }
2061 
2062   // If this is an argument, we can export it if the BB is the entry block or
2063   // if it is already exported.
2064   if (isa<Argument>(V)) {
2065     if (FromBB == &FromBB->getParent()->getEntryBlock())
2066       return true;
2067 
2068     // Otherwise, can only export this if it is already exported.
2069     return FuncInfo.isExportedInst(V);
2070   }
2071 
2072   // Otherwise, constants can always be exported.
2073   return true;
2074 }
2075 
2076 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2077 BranchProbability
2078 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2079                                         const MachineBasicBlock *Dst) const {
2080   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2081   const BasicBlock *SrcBB = Src->getBasicBlock();
2082   const BasicBlock *DstBB = Dst->getBasicBlock();
2083   if (!BPI) {
2084     // If BPI is not available, set the default probability as 1 / N, where N is
2085     // the number of successors.
2086     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2087     return BranchProbability(1, SuccSize);
2088   }
2089   return BPI->getEdgeProbability(SrcBB, DstBB);
2090 }
2091 
2092 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2093                                                MachineBasicBlock *Dst,
2094                                                BranchProbability Prob) {
2095   if (!FuncInfo.BPI)
2096     Src->addSuccessorWithoutProb(Dst);
2097   else {
2098     if (Prob.isUnknown())
2099       Prob = getEdgeProbability(Src, Dst);
2100     Src->addSuccessor(Dst, Prob);
2101   }
2102 }
2103 
2104 static bool InBlock(const Value *V, const BasicBlock *BB) {
2105   if (const Instruction *I = dyn_cast<Instruction>(V))
2106     return I->getParent() == BB;
2107   return true;
2108 }
2109 
2110 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2111 /// This function emits a branch and is used at the leaves of an OR or an
2112 /// AND operator tree.
2113 void
2114 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2115                                                   MachineBasicBlock *TBB,
2116                                                   MachineBasicBlock *FBB,
2117                                                   MachineBasicBlock *CurBB,
2118                                                   MachineBasicBlock *SwitchBB,
2119                                                   BranchProbability TProb,
2120                                                   BranchProbability FProb,
2121                                                   bool InvertCond) {
2122   const BasicBlock *BB = CurBB->getBasicBlock();
2123 
2124   // If the leaf of the tree is a comparison, merge the condition into
2125   // the caseblock.
2126   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2127     // The operands of the cmp have to be in this block.  We don't know
2128     // how to export them from some other block.  If this is the first block
2129     // of the sequence, no exporting is needed.
2130     if (CurBB == SwitchBB ||
2131         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2132          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2133       ISD::CondCode Condition;
2134       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2135         ICmpInst::Predicate Pred =
2136             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2137         Condition = getICmpCondCode(Pred);
2138       } else {
2139         const FCmpInst *FC = cast<FCmpInst>(Cond);
2140         FCmpInst::Predicate Pred =
2141             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2142         Condition = getFCmpCondCode(Pred);
2143         if (TM.Options.NoNaNsFPMath)
2144           Condition = getFCmpCodeWithoutNaN(Condition);
2145       }
2146 
2147       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2148                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2149       SL->SwitchCases.push_back(CB);
2150       return;
2151     }
2152   }
2153 
2154   // Create a CaseBlock record representing this branch.
2155   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2156   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2157                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2158   SL->SwitchCases.push_back(CB);
2159 }
2160 
2161 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2162                                                MachineBasicBlock *TBB,
2163                                                MachineBasicBlock *FBB,
2164                                                MachineBasicBlock *CurBB,
2165                                                MachineBasicBlock *SwitchBB,
2166                                                Instruction::BinaryOps Opc,
2167                                                BranchProbability TProb,
2168                                                BranchProbability FProb,
2169                                                bool InvertCond) {
2170   // Skip over not part of the tree and remember to invert op and operands at
2171   // next level.
2172   Value *NotCond;
2173   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2174       InBlock(NotCond, CurBB->getBasicBlock())) {
2175     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2176                          !InvertCond);
2177     return;
2178   }
2179 
2180   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2181   const Value *BOpOp0, *BOpOp1;
2182   // Compute the effective opcode for Cond, taking into account whether it needs
2183   // to be inverted, e.g.
2184   //   and (not (or A, B)), C
2185   // gets lowered as
2186   //   and (and (not A, not B), C)
2187   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
2188   if (BOp) {
2189     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2190                ? Instruction::And
2191                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2192                       ? Instruction::Or
2193                       : (Instruction::BinaryOps)0);
2194     if (InvertCond) {
2195       if (BOpc == Instruction::And)
2196         BOpc = Instruction::Or;
2197       else if (BOpc == Instruction::Or)
2198         BOpc = Instruction::And;
2199     }
2200   }
2201 
2202   // If this node is not part of the or/and tree, emit it as a branch.
2203   // Note that all nodes in the tree should have same opcode.
2204   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2205   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2206       !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2207       !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2208     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2209                                  TProb, FProb, InvertCond);
2210     return;
2211   }
2212 
2213   //  Create TmpBB after CurBB.
2214   MachineFunction::iterator BBI(CurBB);
2215   MachineFunction &MF = DAG.getMachineFunction();
2216   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2217   CurBB->getParent()->insert(++BBI, TmpBB);
2218 
2219   if (Opc == Instruction::Or) {
2220     // Codegen X | Y as:
2221     // BB1:
2222     //   jmp_if_X TBB
2223     //   jmp TmpBB
2224     // TmpBB:
2225     //   jmp_if_Y TBB
2226     //   jmp FBB
2227     //
2228 
2229     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2230     // The requirement is that
2231     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2232     //     = TrueProb for original BB.
2233     // Assuming the original probabilities are A and B, one choice is to set
2234     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2235     // A/(1+B) and 2B/(1+B). This choice assumes that
2236     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2237     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2238     // TmpBB, but the math is more complicated.
2239 
2240     auto NewTrueProb = TProb / 2;
2241     auto NewFalseProb = TProb / 2 + FProb;
2242     // Emit the LHS condition.
2243     FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2244                          NewFalseProb, InvertCond);
2245 
2246     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2247     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2248     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2249     // Emit the RHS condition into TmpBB.
2250     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2251                          Probs[1], InvertCond);
2252   } else {
2253     assert(Opc == Instruction::And && "Unknown merge op!");
2254     // Codegen X & Y as:
2255     // BB1:
2256     //   jmp_if_X TmpBB
2257     //   jmp FBB
2258     // TmpBB:
2259     //   jmp_if_Y TBB
2260     //   jmp FBB
2261     //
2262     //  This requires creation of TmpBB after CurBB.
2263 
2264     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2265     // The requirement is that
2266     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2267     //     = FalseProb for original BB.
2268     // Assuming the original probabilities are A and B, one choice is to set
2269     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2270     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2271     // TrueProb for BB1 * FalseProb for TmpBB.
2272 
2273     auto NewTrueProb = TProb + FProb / 2;
2274     auto NewFalseProb = FProb / 2;
2275     // Emit the LHS condition.
2276     FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2277                          NewFalseProb, InvertCond);
2278 
2279     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2280     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2281     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2282     // Emit the RHS condition into TmpBB.
2283     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2284                          Probs[1], InvertCond);
2285   }
2286 }
2287 
2288 /// If the set of cases should be emitted as a series of branches, return true.
2289 /// If we should emit this as a bunch of and/or'd together conditions, return
2290 /// false.
2291 bool
2292 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2293   if (Cases.size() != 2) return true;
2294 
2295   // If this is two comparisons of the same values or'd or and'd together, they
2296   // will get folded into a single comparison, so don't emit two blocks.
2297   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2298        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2299       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2300        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2301     return false;
2302   }
2303 
2304   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2305   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2306   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2307       Cases[0].CC == Cases[1].CC &&
2308       isa<Constant>(Cases[0].CmpRHS) &&
2309       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2310     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2311       return false;
2312     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2313       return false;
2314   }
2315 
2316   return true;
2317 }
2318 
2319 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2320   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2321 
2322   // Update machine-CFG edges.
2323   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2324 
2325   if (I.isUnconditional()) {
2326     // Update machine-CFG edges.
2327     BrMBB->addSuccessor(Succ0MBB);
2328 
2329     // If this is not a fall-through branch or optimizations are switched off,
2330     // emit the branch.
2331     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2332       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2333                               MVT::Other, getControlRoot(),
2334                               DAG.getBasicBlock(Succ0MBB)));
2335 
2336     return;
2337   }
2338 
2339   // If this condition is one of the special cases we handle, do special stuff
2340   // now.
2341   const Value *CondVal = I.getCondition();
2342   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2343 
2344   // If this is a series of conditions that are or'd or and'd together, emit
2345   // this as a sequence of branches instead of setcc's with and/or operations.
2346   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2347   // unpredictable branches, and vector extracts because those jumps are likely
2348   // expensive for any target), this should improve performance.
2349   // For example, instead of something like:
2350   //     cmp A, B
2351   //     C = seteq
2352   //     cmp D, E
2353   //     F = setle
2354   //     or C, F
2355   //     jnz foo
2356   // Emit:
2357   //     cmp A, B
2358   //     je foo
2359   //     cmp D, E
2360   //     jle foo
2361   const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2362   if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2363       BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) {
2364     Value *Vec;
2365     const Value *BOp0, *BOp1;
2366     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
2367     if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2368       Opcode = Instruction::And;
2369     else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2370       Opcode = Instruction::Or;
2371 
2372     if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2373                     match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
2374       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2375                            getEdgeProbability(BrMBB, Succ0MBB),
2376                            getEdgeProbability(BrMBB, Succ1MBB),
2377                            /*InvertCond=*/false);
2378       // If the compares in later blocks need to use values not currently
2379       // exported from this block, export them now.  This block should always
2380       // be the first entry.
2381       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2382 
2383       // Allow some cases to be rejected.
2384       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2385         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2386           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2387           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2388         }
2389 
2390         // Emit the branch for this block.
2391         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2392         SL->SwitchCases.erase(SL->SwitchCases.begin());
2393         return;
2394       }
2395 
2396       // Okay, we decided not to do this, remove any inserted MBB's and clear
2397       // SwitchCases.
2398       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2399         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2400 
2401       SL->SwitchCases.clear();
2402     }
2403   }
2404 
2405   // Create a CaseBlock record representing this branch.
2406   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2407                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2408 
2409   // Use visitSwitchCase to actually insert the fast branch sequence for this
2410   // cond branch.
2411   visitSwitchCase(CB, BrMBB);
2412 }
2413 
2414 /// visitSwitchCase - Emits the necessary code to represent a single node in
2415 /// the binary search tree resulting from lowering a switch instruction.
2416 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2417                                           MachineBasicBlock *SwitchBB) {
2418   SDValue Cond;
2419   SDValue CondLHS = getValue(CB.CmpLHS);
2420   SDLoc dl = CB.DL;
2421 
2422   if (CB.CC == ISD::SETTRUE) {
2423     // Branch or fall through to TrueBB.
2424     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2425     SwitchBB->normalizeSuccProbs();
2426     if (CB.TrueBB != NextBlock(SwitchBB)) {
2427       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2428                               DAG.getBasicBlock(CB.TrueBB)));
2429     }
2430     return;
2431   }
2432 
2433   auto &TLI = DAG.getTargetLoweringInfo();
2434   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2435 
2436   // Build the setcc now.
2437   if (!CB.CmpMHS) {
2438     // Fold "(X == true)" to X and "(X == false)" to !X to
2439     // handle common cases produced by branch lowering.
2440     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2441         CB.CC == ISD::SETEQ)
2442       Cond = CondLHS;
2443     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2444              CB.CC == ISD::SETEQ) {
2445       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2446       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2447     } else {
2448       SDValue CondRHS = getValue(CB.CmpRHS);
2449 
2450       // If a pointer's DAG type is larger than its memory type then the DAG
2451       // values are zero-extended. This breaks signed comparisons so truncate
2452       // back to the underlying type before doing the compare.
2453       if (CondLHS.getValueType() != MemVT) {
2454         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2455         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2456       }
2457       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2458     }
2459   } else {
2460     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2461 
2462     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2463     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2464 
2465     SDValue CmpOp = getValue(CB.CmpMHS);
2466     EVT VT = CmpOp.getValueType();
2467 
2468     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2469       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2470                           ISD::SETLE);
2471     } else {
2472       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2473                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2474       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2475                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2476     }
2477   }
2478 
2479   // Update successor info
2480   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2481   // TrueBB and FalseBB are always different unless the incoming IR is
2482   // degenerate. This only happens when running llc on weird IR.
2483   if (CB.TrueBB != CB.FalseBB)
2484     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2485   SwitchBB->normalizeSuccProbs();
2486 
2487   // If the lhs block is the next block, invert the condition so that we can
2488   // fall through to the lhs instead of the rhs block.
2489   if (CB.TrueBB == NextBlock(SwitchBB)) {
2490     std::swap(CB.TrueBB, CB.FalseBB);
2491     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2492     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2493   }
2494 
2495   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2496                                MVT::Other, getControlRoot(), Cond,
2497                                DAG.getBasicBlock(CB.TrueBB));
2498 
2499   // Insert the false branch. Do this even if it's a fall through branch,
2500   // this makes it easier to do DAG optimizations which require inverting
2501   // the branch condition.
2502   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2503                        DAG.getBasicBlock(CB.FalseBB));
2504 
2505   DAG.setRoot(BrCond);
2506 }
2507 
2508 /// visitJumpTable - Emit JumpTable node in the current MBB
2509 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2510   // Emit the code for the jump table
2511   assert(JT.Reg != -1U && "Should lower JT Header first!");
2512   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2513   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2514                                      JT.Reg, PTy);
2515   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2516   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2517                                     MVT::Other, Index.getValue(1),
2518                                     Table, Index);
2519   DAG.setRoot(BrJumpTable);
2520 }
2521 
2522 /// visitJumpTableHeader - This function emits necessary code to produce index
2523 /// in the JumpTable from switch case.
2524 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2525                                                JumpTableHeader &JTH,
2526                                                MachineBasicBlock *SwitchBB) {
2527   SDLoc dl = getCurSDLoc();
2528 
2529   // Subtract the lowest switch case value from the value being switched on.
2530   SDValue SwitchOp = getValue(JTH.SValue);
2531   EVT VT = SwitchOp.getValueType();
2532   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2533                             DAG.getConstant(JTH.First, dl, VT));
2534 
2535   // The SDNode we just created, which holds the value being switched on minus
2536   // the smallest case value, needs to be copied to a virtual register so it
2537   // can be used as an index into the jump table in a subsequent basic block.
2538   // This value may be smaller or larger than the target's pointer type, and
2539   // therefore require extension or truncating.
2540   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2541   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2542 
2543   unsigned JumpTableReg =
2544       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2545   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2546                                     JumpTableReg, SwitchOp);
2547   JT.Reg = JumpTableReg;
2548 
2549   if (!JTH.OmitRangeCheck) {
2550     // Emit the range check for the jump table, and branch to the default block
2551     // for the switch statement if the value being switched on exceeds the
2552     // largest case in the switch.
2553     SDValue CMP = DAG.getSetCC(
2554         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2555                                    Sub.getValueType()),
2556         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2557 
2558     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2559                                  MVT::Other, CopyTo, CMP,
2560                                  DAG.getBasicBlock(JT.Default));
2561 
2562     // Avoid emitting unnecessary branches to the next block.
2563     if (JT.MBB != NextBlock(SwitchBB))
2564       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2565                            DAG.getBasicBlock(JT.MBB));
2566 
2567     DAG.setRoot(BrCond);
2568   } else {
2569     // Avoid emitting unnecessary branches to the next block.
2570     if (JT.MBB != NextBlock(SwitchBB))
2571       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2572                               DAG.getBasicBlock(JT.MBB)));
2573     else
2574       DAG.setRoot(CopyTo);
2575   }
2576 }
2577 
2578 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2579 /// variable if there exists one.
2580 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2581                                  SDValue &Chain) {
2582   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2583   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2584   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2585   MachineFunction &MF = DAG.getMachineFunction();
2586   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2587   MachineSDNode *Node =
2588       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2589   if (Global) {
2590     MachinePointerInfo MPInfo(Global);
2591     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2592                  MachineMemOperand::MODereferenceable;
2593     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2594         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
2595     DAG.setNodeMemRefs(Node, {MemRef});
2596   }
2597   if (PtrTy != PtrMemTy)
2598     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2599   return SDValue(Node, 0);
2600 }
2601 
2602 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2603 /// tail spliced into a stack protector check success bb.
2604 ///
2605 /// For a high level explanation of how this fits into the stack protector
2606 /// generation see the comment on the declaration of class
2607 /// StackProtectorDescriptor.
2608 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2609                                                   MachineBasicBlock *ParentBB) {
2610 
2611   // First create the loads to the guard/stack slot for the comparison.
2612   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2613   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2614   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2615 
2616   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2617   int FI = MFI.getStackProtectorIndex();
2618 
2619   SDValue Guard;
2620   SDLoc dl = getCurSDLoc();
2621   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2622   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2623   Align Align = DL->getPrefTypeAlign(Type::getInt8PtrTy(M.getContext()));
2624 
2625   // Generate code to load the content of the guard slot.
2626   SDValue GuardVal = DAG.getLoad(
2627       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2628       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2629       MachineMemOperand::MOVolatile);
2630 
2631   if (TLI.useStackGuardXorFP())
2632     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2633 
2634   // Retrieve guard check function, nullptr if instrumentation is inlined.
2635   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2636     // The target provides a guard check function to validate the guard value.
2637     // Generate a call to that function with the content of the guard slot as
2638     // argument.
2639     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2640     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2641 
2642     TargetLowering::ArgListTy Args;
2643     TargetLowering::ArgListEntry Entry;
2644     Entry.Node = GuardVal;
2645     Entry.Ty = FnTy->getParamType(0);
2646     if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg))
2647       Entry.IsInReg = true;
2648     Args.push_back(Entry);
2649 
2650     TargetLowering::CallLoweringInfo CLI(DAG);
2651     CLI.setDebugLoc(getCurSDLoc())
2652         .setChain(DAG.getEntryNode())
2653         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2654                    getValue(GuardCheckFn), std::move(Args));
2655 
2656     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2657     DAG.setRoot(Result.second);
2658     return;
2659   }
2660 
2661   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2662   // Otherwise, emit a volatile load to retrieve the stack guard value.
2663   SDValue Chain = DAG.getEntryNode();
2664   if (TLI.useLoadStackGuardNode()) {
2665     Guard = getLoadStackGuard(DAG, dl, Chain);
2666   } else {
2667     const Value *IRGuard = TLI.getSDagStackGuard(M);
2668     SDValue GuardPtr = getValue(IRGuard);
2669 
2670     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2671                         MachinePointerInfo(IRGuard, 0), Align,
2672                         MachineMemOperand::MOVolatile);
2673   }
2674 
2675   // Perform the comparison via a getsetcc.
2676   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2677                                                         *DAG.getContext(),
2678                                                         Guard.getValueType()),
2679                              Guard, GuardVal, ISD::SETNE);
2680 
2681   // If the guard/stackslot do not equal, branch to failure MBB.
2682   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2683                                MVT::Other, GuardVal.getOperand(0),
2684                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2685   // Otherwise branch to success MBB.
2686   SDValue Br = DAG.getNode(ISD::BR, dl,
2687                            MVT::Other, BrCond,
2688                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2689 
2690   DAG.setRoot(Br);
2691 }
2692 
2693 /// Codegen the failure basic block for a stack protector check.
2694 ///
2695 /// A failure stack protector machine basic block consists simply of a call to
2696 /// __stack_chk_fail().
2697 ///
2698 /// For a high level explanation of how this fits into the stack protector
2699 /// generation see the comment on the declaration of class
2700 /// StackProtectorDescriptor.
2701 void
2702 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2703   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2704   TargetLowering::MakeLibCallOptions CallOptions;
2705   CallOptions.setDiscardResult(true);
2706   SDValue Chain =
2707       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2708                       None, CallOptions, getCurSDLoc()).second;
2709   // On PS4, the "return address" must still be within the calling function,
2710   // even if it's at the very end, so emit an explicit TRAP here.
2711   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2712   if (TM.getTargetTriple().isPS4CPU())
2713     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2714   // WebAssembly needs an unreachable instruction after a non-returning call,
2715   // because the function return type can be different from __stack_chk_fail's
2716   // return type (void).
2717   if (TM.getTargetTriple().isWasm())
2718     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2719 
2720   DAG.setRoot(Chain);
2721 }
2722 
2723 /// visitBitTestHeader - This function emits necessary code to produce value
2724 /// suitable for "bit tests"
2725 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2726                                              MachineBasicBlock *SwitchBB) {
2727   SDLoc dl = getCurSDLoc();
2728 
2729   // Subtract the minimum value.
2730   SDValue SwitchOp = getValue(B.SValue);
2731   EVT VT = SwitchOp.getValueType();
2732   SDValue RangeSub =
2733       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2734 
2735   // Determine the type of the test operands.
2736   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2737   bool UsePtrType = false;
2738   if (!TLI.isTypeLegal(VT)) {
2739     UsePtrType = true;
2740   } else {
2741     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2742       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2743         // Switch table case range are encoded into series of masks.
2744         // Just use pointer type, it's guaranteed to fit.
2745         UsePtrType = true;
2746         break;
2747       }
2748   }
2749   SDValue Sub = RangeSub;
2750   if (UsePtrType) {
2751     VT = TLI.getPointerTy(DAG.getDataLayout());
2752     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2753   }
2754 
2755   B.RegVT = VT.getSimpleVT();
2756   B.Reg = FuncInfo.CreateReg(B.RegVT);
2757   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2758 
2759   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2760 
2761   if (!B.OmitRangeCheck)
2762     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2763   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2764   SwitchBB->normalizeSuccProbs();
2765 
2766   SDValue Root = CopyTo;
2767   if (!B.OmitRangeCheck) {
2768     // Conditional branch to the default block.
2769     SDValue RangeCmp = DAG.getSetCC(dl,
2770         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2771                                RangeSub.getValueType()),
2772         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2773         ISD::SETUGT);
2774 
2775     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2776                        DAG.getBasicBlock(B.Default));
2777   }
2778 
2779   // Avoid emitting unnecessary branches to the next block.
2780   if (MBB != NextBlock(SwitchBB))
2781     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2782 
2783   DAG.setRoot(Root);
2784 }
2785 
2786 /// visitBitTestCase - this function produces one "bit test"
2787 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2788                                            MachineBasicBlock* NextMBB,
2789                                            BranchProbability BranchProbToNext,
2790                                            unsigned Reg,
2791                                            BitTestCase &B,
2792                                            MachineBasicBlock *SwitchBB) {
2793   SDLoc dl = getCurSDLoc();
2794   MVT VT = BB.RegVT;
2795   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2796   SDValue Cmp;
2797   unsigned PopCount = countPopulation(B.Mask);
2798   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2799   if (PopCount == 1) {
2800     // Testing for a single bit; just compare the shift count with what it
2801     // would need to be to shift a 1 bit in that position.
2802     Cmp = DAG.getSetCC(
2803         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2804         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2805         ISD::SETEQ);
2806   } else if (PopCount == BB.Range) {
2807     // There is only one zero bit in the range, test for it directly.
2808     Cmp = DAG.getSetCC(
2809         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2810         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2811         ISD::SETNE);
2812   } else {
2813     // Make desired shift
2814     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2815                                     DAG.getConstant(1, dl, VT), ShiftOp);
2816 
2817     // Emit bit tests and jumps
2818     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2819                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2820     Cmp = DAG.getSetCC(
2821         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2822         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2823   }
2824 
2825   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2826   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2827   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2828   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2829   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2830   // one as they are relative probabilities (and thus work more like weights),
2831   // and hence we need to normalize them to let the sum of them become one.
2832   SwitchBB->normalizeSuccProbs();
2833 
2834   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2835                               MVT::Other, getControlRoot(),
2836                               Cmp, DAG.getBasicBlock(B.TargetBB));
2837 
2838   // Avoid emitting unnecessary branches to the next block.
2839   if (NextMBB != NextBlock(SwitchBB))
2840     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2841                         DAG.getBasicBlock(NextMBB));
2842 
2843   DAG.setRoot(BrAnd);
2844 }
2845 
2846 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2847   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2848 
2849   // Retrieve successors. Look through artificial IR level blocks like
2850   // catchswitch for successors.
2851   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2852   const BasicBlock *EHPadBB = I.getSuccessor(1);
2853 
2854   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2855   // have to do anything here to lower funclet bundles.
2856   assert(!I.hasOperandBundlesOtherThan(
2857              {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition,
2858               LLVMContext::OB_gc_live, LLVMContext::OB_funclet,
2859               LLVMContext::OB_cfguardtarget,
2860               LLVMContext::OB_clang_arc_attachedcall}) &&
2861          "Cannot lower invokes with arbitrary operand bundles yet!");
2862 
2863   const Value *Callee(I.getCalledOperand());
2864   const Function *Fn = dyn_cast<Function>(Callee);
2865   if (isa<InlineAsm>(Callee))
2866     visitInlineAsm(I);
2867   else if (Fn && Fn->isIntrinsic()) {
2868     switch (Fn->getIntrinsicID()) {
2869     default:
2870       llvm_unreachable("Cannot invoke this intrinsic");
2871     case Intrinsic::donothing:
2872       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2873       break;
2874     case Intrinsic::experimental_patchpoint_void:
2875     case Intrinsic::experimental_patchpoint_i64:
2876       visitPatchpoint(I, EHPadBB);
2877       break;
2878     case Intrinsic::experimental_gc_statepoint:
2879       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
2880       break;
2881     case Intrinsic::wasm_rethrow: {
2882       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2883       // special because it can be invoked, so we manually lower it to a DAG
2884       // node here.
2885       SmallVector<SDValue, 8> Ops;
2886       Ops.push_back(getRoot()); // inchain
2887       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2888       Ops.push_back(
2889           DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
2890                                 TLI.getPointerTy(DAG.getDataLayout())));
2891       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2892       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2893       break;
2894     }
2895     }
2896   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2897     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2898     // Eventually we will support lowering the @llvm.experimental.deoptimize
2899     // intrinsic, and right now there are no plans to support other intrinsics
2900     // with deopt state.
2901     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2902   } else {
2903     LowerCallTo(I, getValue(Callee), false, EHPadBB);
2904   }
2905 
2906   // If the value of the invoke is used outside of its defining block, make it
2907   // available as a virtual register.
2908   // We already took care of the exported value for the statepoint instruction
2909   // during call to the LowerStatepoint.
2910   if (!isa<GCStatepointInst>(I)) {
2911     CopyToExportRegsIfNeeded(&I);
2912   }
2913 
2914   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2915   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2916   BranchProbability EHPadBBProb =
2917       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2918           : BranchProbability::getZero();
2919   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2920 
2921   // Update successor info.
2922   addSuccessorWithProb(InvokeMBB, Return);
2923   for (auto &UnwindDest : UnwindDests) {
2924     UnwindDest.first->setIsEHPad();
2925     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2926   }
2927   InvokeMBB->normalizeSuccProbs();
2928 
2929   // Drop into normal successor.
2930   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2931                           DAG.getBasicBlock(Return)));
2932 }
2933 
2934 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2935   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2936 
2937   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2938   // have to do anything here to lower funclet bundles.
2939   assert(!I.hasOperandBundlesOtherThan(
2940              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2941          "Cannot lower callbrs with arbitrary operand bundles yet!");
2942 
2943   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
2944   visitInlineAsm(I);
2945   CopyToExportRegsIfNeeded(&I);
2946 
2947   // Retrieve successors.
2948   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
2949 
2950   // Update successor info.
2951   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
2952   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
2953     MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)];
2954     addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
2955     Target->setIsInlineAsmBrIndirectTarget();
2956   }
2957   CallBrMBB->normalizeSuccProbs();
2958 
2959   // Drop into default successor.
2960   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2961                           MVT::Other, getControlRoot(),
2962                           DAG.getBasicBlock(Return)));
2963 }
2964 
2965 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2966   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2967 }
2968 
2969 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2970   assert(FuncInfo.MBB->isEHPad() &&
2971          "Call to landingpad not in landing pad!");
2972 
2973   // If there aren't registers to copy the values into (e.g., during SjLj
2974   // exceptions), then don't bother to create these DAG nodes.
2975   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2976   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2977   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2978       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2979     return;
2980 
2981   // If landingpad's return type is token type, we don't create DAG nodes
2982   // for its exception pointer and selector value. The extraction of exception
2983   // pointer or selector value from token type landingpads is not currently
2984   // supported.
2985   if (LP.getType()->isTokenTy())
2986     return;
2987 
2988   SmallVector<EVT, 2> ValueVTs;
2989   SDLoc dl = getCurSDLoc();
2990   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2991   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2992 
2993   // Get the two live-in registers as SDValues. The physregs have already been
2994   // copied into virtual registers.
2995   SDValue Ops[2];
2996   if (FuncInfo.ExceptionPointerVirtReg) {
2997     Ops[0] = DAG.getZExtOrTrunc(
2998         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2999                            FuncInfo.ExceptionPointerVirtReg,
3000                            TLI.getPointerTy(DAG.getDataLayout())),
3001         dl, ValueVTs[0]);
3002   } else {
3003     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
3004   }
3005   Ops[1] = DAG.getZExtOrTrunc(
3006       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3007                          FuncInfo.ExceptionSelectorVirtReg,
3008                          TLI.getPointerTy(DAG.getDataLayout())),
3009       dl, ValueVTs[1]);
3010 
3011   // Merge into one.
3012   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3013                             DAG.getVTList(ValueVTs), Ops);
3014   setValue(&LP, Res);
3015 }
3016 
3017 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
3018                                            MachineBasicBlock *Last) {
3019   // Update JTCases.
3020   for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i)
3021     if (SL->JTCases[i].first.HeaderBB == First)
3022       SL->JTCases[i].first.HeaderBB = Last;
3023 
3024   // Update BitTestCases.
3025   for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i)
3026     if (SL->BitTestCases[i].Parent == First)
3027       SL->BitTestCases[i].Parent = Last;
3028 }
3029 
3030 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3031   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3032 
3033   // Update machine-CFG edges with unique successors.
3034   SmallSet<BasicBlock*, 32> Done;
3035   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3036     BasicBlock *BB = I.getSuccessor(i);
3037     bool Inserted = Done.insert(BB).second;
3038     if (!Inserted)
3039         continue;
3040 
3041     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
3042     addSuccessorWithProb(IndirectBrMBB, Succ);
3043   }
3044   IndirectBrMBB->normalizeSuccProbs();
3045 
3046   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
3047                           MVT::Other, getControlRoot(),
3048                           getValue(I.getAddress())));
3049 }
3050 
3051 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3052   if (!DAG.getTarget().Options.TrapUnreachable)
3053     return;
3054 
3055   // We may be able to ignore unreachable behind a noreturn call.
3056   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
3057     const BasicBlock &BB = *I.getParent();
3058     if (&I != &BB.front()) {
3059       BasicBlock::const_iterator PredI =
3060         std::prev(BasicBlock::const_iterator(&I));
3061       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
3062         if (Call->doesNotReturn())
3063           return;
3064       }
3065     }
3066   }
3067 
3068   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3069 }
3070 
3071 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3072   SDNodeFlags Flags;
3073 
3074   SDValue Op = getValue(I.getOperand(0));
3075   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3076                                     Op, Flags);
3077   setValue(&I, UnNodeValue);
3078 }
3079 
3080 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3081   SDNodeFlags Flags;
3082   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3083     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3084     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3085   }
3086   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3087     Flags.setExact(ExactOp->isExact());
3088   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3089     Flags.copyFMF(*FPOp);
3090 
3091   SDValue Op1 = getValue(I.getOperand(0));
3092   SDValue Op2 = getValue(I.getOperand(1));
3093   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3094                                      Op1, Op2, Flags);
3095   setValue(&I, BinNodeValue);
3096 }
3097 
3098 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3099   SDValue Op1 = getValue(I.getOperand(0));
3100   SDValue Op2 = getValue(I.getOperand(1));
3101 
3102   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3103       Op1.getValueType(), DAG.getDataLayout());
3104 
3105   // Coerce the shift amount to the right type if we can.
3106   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3107     unsigned ShiftSize = ShiftTy.getSizeInBits();
3108     unsigned Op2Size = Op2.getValueSizeInBits();
3109     SDLoc DL = getCurSDLoc();
3110 
3111     // If the operand is smaller than the shift count type, promote it.
3112     if (ShiftSize > Op2Size)
3113       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
3114 
3115     // If the operand is larger than the shift count type but the shift
3116     // count type has enough bits to represent any shift value, truncate
3117     // it now. This is a common case and it exposes the truncate to
3118     // optimization early.
3119     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
3120       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
3121     // Otherwise we'll need to temporarily settle for some other convenient
3122     // type.  Type legalization will make adjustments once the shiftee is split.
3123     else
3124       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
3125   }
3126 
3127   bool nuw = false;
3128   bool nsw = false;
3129   bool exact = false;
3130 
3131   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3132 
3133     if (const OverflowingBinaryOperator *OFBinOp =
3134             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3135       nuw = OFBinOp->hasNoUnsignedWrap();
3136       nsw = OFBinOp->hasNoSignedWrap();
3137     }
3138     if (const PossiblyExactOperator *ExactOp =
3139             dyn_cast<const PossiblyExactOperator>(&I))
3140       exact = ExactOp->isExact();
3141   }
3142   SDNodeFlags Flags;
3143   Flags.setExact(exact);
3144   Flags.setNoSignedWrap(nsw);
3145   Flags.setNoUnsignedWrap(nuw);
3146   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3147                             Flags);
3148   setValue(&I, Res);
3149 }
3150 
3151 void SelectionDAGBuilder::visitSDiv(const User &I) {
3152   SDValue Op1 = getValue(I.getOperand(0));
3153   SDValue Op2 = getValue(I.getOperand(1));
3154 
3155   SDNodeFlags Flags;
3156   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3157                  cast<PossiblyExactOperator>(&I)->isExact());
3158   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3159                            Op2, Flags));
3160 }
3161 
3162 void SelectionDAGBuilder::visitICmp(const User &I) {
3163   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3164   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3165     predicate = IC->getPredicate();
3166   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3167     predicate = ICmpInst::Predicate(IC->getPredicate());
3168   SDValue Op1 = getValue(I.getOperand(0));
3169   SDValue Op2 = getValue(I.getOperand(1));
3170   ISD::CondCode Opcode = getICmpCondCode(predicate);
3171 
3172   auto &TLI = DAG.getTargetLoweringInfo();
3173   EVT MemVT =
3174       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3175 
3176   // If a pointer's DAG type is larger than its memory type then the DAG values
3177   // are zero-extended. This breaks signed comparisons so truncate back to the
3178   // underlying type before doing the compare.
3179   if (Op1.getValueType() != MemVT) {
3180     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3181     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3182   }
3183 
3184   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3185                                                         I.getType());
3186   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3187 }
3188 
3189 void SelectionDAGBuilder::visitFCmp(const User &I) {
3190   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3191   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3192     predicate = FC->getPredicate();
3193   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3194     predicate = FCmpInst::Predicate(FC->getPredicate());
3195   SDValue Op1 = getValue(I.getOperand(0));
3196   SDValue Op2 = getValue(I.getOperand(1));
3197 
3198   ISD::CondCode Condition = getFCmpCondCode(predicate);
3199   auto *FPMO = cast<FPMathOperator>(&I);
3200   if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3201     Condition = getFCmpCodeWithoutNaN(Condition);
3202 
3203   SDNodeFlags Flags;
3204   Flags.copyFMF(*FPMO);
3205   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3206 
3207   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3208                                                         I.getType());
3209   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3210 }
3211 
3212 // Check if the condition of the select has one use or two users that are both
3213 // selects with the same condition.
3214 static bool hasOnlySelectUsers(const Value *Cond) {
3215   return llvm::all_of(Cond->users(), [](const Value *V) {
3216     return isa<SelectInst>(V);
3217   });
3218 }
3219 
3220 void SelectionDAGBuilder::visitSelect(const User &I) {
3221   SmallVector<EVT, 4> ValueVTs;
3222   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3223                   ValueVTs);
3224   unsigned NumValues = ValueVTs.size();
3225   if (NumValues == 0) return;
3226 
3227   SmallVector<SDValue, 4> Values(NumValues);
3228   SDValue Cond     = getValue(I.getOperand(0));
3229   SDValue LHSVal   = getValue(I.getOperand(1));
3230   SDValue RHSVal   = getValue(I.getOperand(2));
3231   SmallVector<SDValue, 1> BaseOps(1, Cond);
3232   ISD::NodeType OpCode =
3233       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3234 
3235   bool IsUnaryAbs = false;
3236   bool Negate = false;
3237 
3238   SDNodeFlags Flags;
3239   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3240     Flags.copyFMF(*FPOp);
3241 
3242   // Min/max matching is only viable if all output VTs are the same.
3243   if (is_splat(ValueVTs)) {
3244     EVT VT = ValueVTs[0];
3245     LLVMContext &Ctx = *DAG.getContext();
3246     auto &TLI = DAG.getTargetLoweringInfo();
3247 
3248     // We care about the legality of the operation after it has been type
3249     // legalized.
3250     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3251       VT = TLI.getTypeToTransformTo(Ctx, VT);
3252 
3253     // If the vselect is legal, assume we want to leave this as a vector setcc +
3254     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3255     // min/max is legal on the scalar type.
3256     bool UseScalarMinMax = VT.isVector() &&
3257       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3258 
3259     Value *LHS, *RHS;
3260     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3261     ISD::NodeType Opc = ISD::DELETED_NODE;
3262     switch (SPR.Flavor) {
3263     case SPF_UMAX:    Opc = ISD::UMAX; break;
3264     case SPF_UMIN:    Opc = ISD::UMIN; break;
3265     case SPF_SMAX:    Opc = ISD::SMAX; break;
3266     case SPF_SMIN:    Opc = ISD::SMIN; break;
3267     case SPF_FMINNUM:
3268       switch (SPR.NaNBehavior) {
3269       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3270       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3271       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3272       case SPNB_RETURNS_ANY: {
3273         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3274           Opc = ISD::FMINNUM;
3275         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3276           Opc = ISD::FMINIMUM;
3277         else if (UseScalarMinMax)
3278           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3279             ISD::FMINNUM : ISD::FMINIMUM;
3280         break;
3281       }
3282       }
3283       break;
3284     case SPF_FMAXNUM:
3285       switch (SPR.NaNBehavior) {
3286       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3287       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3288       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3289       case SPNB_RETURNS_ANY:
3290 
3291         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3292           Opc = ISD::FMAXNUM;
3293         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3294           Opc = ISD::FMAXIMUM;
3295         else if (UseScalarMinMax)
3296           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3297             ISD::FMAXNUM : ISD::FMAXIMUM;
3298         break;
3299       }
3300       break;
3301     case SPF_NABS:
3302       Negate = true;
3303       LLVM_FALLTHROUGH;
3304     case SPF_ABS:
3305       IsUnaryAbs = true;
3306       Opc = ISD::ABS;
3307       break;
3308     default: break;
3309     }
3310 
3311     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3312         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3313          (UseScalarMinMax &&
3314           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3315         // If the underlying comparison instruction is used by any other
3316         // instruction, the consumed instructions won't be destroyed, so it is
3317         // not profitable to convert to a min/max.
3318         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3319       OpCode = Opc;
3320       LHSVal = getValue(LHS);
3321       RHSVal = getValue(RHS);
3322       BaseOps.clear();
3323     }
3324 
3325     if (IsUnaryAbs) {
3326       OpCode = Opc;
3327       LHSVal = getValue(LHS);
3328       BaseOps.clear();
3329     }
3330   }
3331 
3332   if (IsUnaryAbs) {
3333     for (unsigned i = 0; i != NumValues; ++i) {
3334       SDLoc dl = getCurSDLoc();
3335       EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3336       Values[i] =
3337           DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3338       if (Negate)
3339         Values[i] = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT),
3340                                 Values[i]);
3341     }
3342   } else {
3343     for (unsigned i = 0; i != NumValues; ++i) {
3344       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3345       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3346       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3347       Values[i] = DAG.getNode(
3348           OpCode, getCurSDLoc(),
3349           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3350     }
3351   }
3352 
3353   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3354                            DAG.getVTList(ValueVTs), Values));
3355 }
3356 
3357 void SelectionDAGBuilder::visitTrunc(const User &I) {
3358   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3359   SDValue N = getValue(I.getOperand(0));
3360   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3361                                                         I.getType());
3362   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3363 }
3364 
3365 void SelectionDAGBuilder::visitZExt(const User &I) {
3366   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3367   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3368   SDValue N = getValue(I.getOperand(0));
3369   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3370                                                         I.getType());
3371   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3372 }
3373 
3374 void SelectionDAGBuilder::visitSExt(const User &I) {
3375   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3376   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3377   SDValue N = getValue(I.getOperand(0));
3378   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3379                                                         I.getType());
3380   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3381 }
3382 
3383 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3384   // FPTrunc is never a no-op cast, no need to check
3385   SDValue N = getValue(I.getOperand(0));
3386   SDLoc dl = getCurSDLoc();
3387   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3388   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3389   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3390                            DAG.getTargetConstant(
3391                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3392 }
3393 
3394 void SelectionDAGBuilder::visitFPExt(const User &I) {
3395   // FPExt is never a no-op cast, no need to check
3396   SDValue N = getValue(I.getOperand(0));
3397   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3398                                                         I.getType());
3399   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3400 }
3401 
3402 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3403   // FPToUI is never a no-op cast, no need to check
3404   SDValue N = getValue(I.getOperand(0));
3405   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3406                                                         I.getType());
3407   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3408 }
3409 
3410 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3411   // FPToSI is never a no-op cast, no need to check
3412   SDValue N = getValue(I.getOperand(0));
3413   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3414                                                         I.getType());
3415   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3416 }
3417 
3418 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3419   // UIToFP is never a no-op cast, no need to check
3420   SDValue N = getValue(I.getOperand(0));
3421   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3422                                                         I.getType());
3423   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3424 }
3425 
3426 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3427   // SIToFP is never a no-op cast, no need to check
3428   SDValue N = getValue(I.getOperand(0));
3429   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3430                                                         I.getType());
3431   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3432 }
3433 
3434 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3435   // What to do depends on the size of the integer and the size of the pointer.
3436   // We can either truncate, zero extend, or no-op, accordingly.
3437   SDValue N = getValue(I.getOperand(0));
3438   auto &TLI = DAG.getTargetLoweringInfo();
3439   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3440                                                         I.getType());
3441   EVT PtrMemVT =
3442       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3443   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3444   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3445   setValue(&I, N);
3446 }
3447 
3448 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3449   // What to do depends on the size of the integer and the size of the pointer.
3450   // We can either truncate, zero extend, or no-op, accordingly.
3451   SDValue N = getValue(I.getOperand(0));
3452   auto &TLI = DAG.getTargetLoweringInfo();
3453   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3454   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3455   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3456   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3457   setValue(&I, N);
3458 }
3459 
3460 void SelectionDAGBuilder::visitBitCast(const User &I) {
3461   SDValue N = getValue(I.getOperand(0));
3462   SDLoc dl = getCurSDLoc();
3463   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3464                                                         I.getType());
3465 
3466   // BitCast assures us that source and destination are the same size so this is
3467   // either a BITCAST or a no-op.
3468   if (DestVT != N.getValueType())
3469     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3470                              DestVT, N)); // convert types.
3471   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3472   // might fold any kind of constant expression to an integer constant and that
3473   // is not what we are looking for. Only recognize a bitcast of a genuine
3474   // constant integer as an opaque constant.
3475   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3476     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3477                                  /*isOpaque*/true));
3478   else
3479     setValue(&I, N);            // noop cast.
3480 }
3481 
3482 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3483   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3484   const Value *SV = I.getOperand(0);
3485   SDValue N = getValue(SV);
3486   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3487 
3488   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3489   unsigned DestAS = I.getType()->getPointerAddressSpace();
3490 
3491   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3492     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3493 
3494   setValue(&I, N);
3495 }
3496 
3497 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3498   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3499   SDValue InVec = getValue(I.getOperand(0));
3500   SDValue InVal = getValue(I.getOperand(1));
3501   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3502                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3503   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3504                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3505                            InVec, InVal, InIdx));
3506 }
3507 
3508 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3509   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3510   SDValue InVec = getValue(I.getOperand(0));
3511   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3512                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3513   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3514                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3515                            InVec, InIdx));
3516 }
3517 
3518 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3519   SDValue Src1 = getValue(I.getOperand(0));
3520   SDValue Src2 = getValue(I.getOperand(1));
3521   ArrayRef<int> Mask;
3522   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3523     Mask = SVI->getShuffleMask();
3524   else
3525     Mask = cast<ConstantExpr>(I).getShuffleMask();
3526   SDLoc DL = getCurSDLoc();
3527   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3528   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3529   EVT SrcVT = Src1.getValueType();
3530 
3531   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
3532       VT.isScalableVector()) {
3533     // Canonical splat form of first element of first input vector.
3534     SDValue FirstElt =
3535         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3536                     DAG.getVectorIdxConstant(0, DL));
3537     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3538     return;
3539   }
3540 
3541   // For now, we only handle splats for scalable vectors.
3542   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3543   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3544   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3545 
3546   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3547   unsigned MaskNumElts = Mask.size();
3548 
3549   if (SrcNumElts == MaskNumElts) {
3550     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3551     return;
3552   }
3553 
3554   // Normalize the shuffle vector since mask and vector length don't match.
3555   if (SrcNumElts < MaskNumElts) {
3556     // Mask is longer than the source vectors. We can use concatenate vector to
3557     // make the mask and vectors lengths match.
3558 
3559     if (MaskNumElts % SrcNumElts == 0) {
3560       // Mask length is a multiple of the source vector length.
3561       // Check if the shuffle is some kind of concatenation of the input
3562       // vectors.
3563       unsigned NumConcat = MaskNumElts / SrcNumElts;
3564       bool IsConcat = true;
3565       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3566       for (unsigned i = 0; i != MaskNumElts; ++i) {
3567         int Idx = Mask[i];
3568         if (Idx < 0)
3569           continue;
3570         // Ensure the indices in each SrcVT sized piece are sequential and that
3571         // the same source is used for the whole piece.
3572         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3573             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3574              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3575           IsConcat = false;
3576           break;
3577         }
3578         // Remember which source this index came from.
3579         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3580       }
3581 
3582       // The shuffle is concatenating multiple vectors together. Just emit
3583       // a CONCAT_VECTORS operation.
3584       if (IsConcat) {
3585         SmallVector<SDValue, 8> ConcatOps;
3586         for (auto Src : ConcatSrcs) {
3587           if (Src < 0)
3588             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3589           else if (Src == 0)
3590             ConcatOps.push_back(Src1);
3591           else
3592             ConcatOps.push_back(Src2);
3593         }
3594         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3595         return;
3596       }
3597     }
3598 
3599     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3600     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3601     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3602                                     PaddedMaskNumElts);
3603 
3604     // Pad both vectors with undefs to make them the same length as the mask.
3605     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3606 
3607     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3608     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3609     MOps1[0] = Src1;
3610     MOps2[0] = Src2;
3611 
3612     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3613     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3614 
3615     // Readjust mask for new input vector length.
3616     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3617     for (unsigned i = 0; i != MaskNumElts; ++i) {
3618       int Idx = Mask[i];
3619       if (Idx >= (int)SrcNumElts)
3620         Idx -= SrcNumElts - PaddedMaskNumElts;
3621       MappedOps[i] = Idx;
3622     }
3623 
3624     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3625 
3626     // If the concatenated vector was padded, extract a subvector with the
3627     // correct number of elements.
3628     if (MaskNumElts != PaddedMaskNumElts)
3629       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3630                            DAG.getVectorIdxConstant(0, DL));
3631 
3632     setValue(&I, Result);
3633     return;
3634   }
3635 
3636   if (SrcNumElts > MaskNumElts) {
3637     // Analyze the access pattern of the vector to see if we can extract
3638     // two subvectors and do the shuffle.
3639     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3640     bool CanExtract = true;
3641     for (int Idx : Mask) {
3642       unsigned Input = 0;
3643       if (Idx < 0)
3644         continue;
3645 
3646       if (Idx >= (int)SrcNumElts) {
3647         Input = 1;
3648         Idx -= SrcNumElts;
3649       }
3650 
3651       // If all the indices come from the same MaskNumElts sized portion of
3652       // the sources we can use extract. Also make sure the extract wouldn't
3653       // extract past the end of the source.
3654       int NewStartIdx = alignDown(Idx, MaskNumElts);
3655       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3656           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3657         CanExtract = false;
3658       // Make sure we always update StartIdx as we use it to track if all
3659       // elements are undef.
3660       StartIdx[Input] = NewStartIdx;
3661     }
3662 
3663     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3664       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3665       return;
3666     }
3667     if (CanExtract) {
3668       // Extract appropriate subvector and generate a vector shuffle
3669       for (unsigned Input = 0; Input < 2; ++Input) {
3670         SDValue &Src = Input == 0 ? Src1 : Src2;
3671         if (StartIdx[Input] < 0)
3672           Src = DAG.getUNDEF(VT);
3673         else {
3674           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3675                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
3676         }
3677       }
3678 
3679       // Calculate new mask.
3680       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3681       for (int &Idx : MappedOps) {
3682         if (Idx >= (int)SrcNumElts)
3683           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3684         else if (Idx >= 0)
3685           Idx -= StartIdx[0];
3686       }
3687 
3688       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3689       return;
3690     }
3691   }
3692 
3693   // We can't use either concat vectors or extract subvectors so fall back to
3694   // replacing the shuffle with extract and build vector.
3695   // to insert and build vector.
3696   EVT EltVT = VT.getVectorElementType();
3697   SmallVector<SDValue,8> Ops;
3698   for (int Idx : Mask) {
3699     SDValue Res;
3700 
3701     if (Idx < 0) {
3702       Res = DAG.getUNDEF(EltVT);
3703     } else {
3704       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3705       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3706 
3707       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
3708                         DAG.getVectorIdxConstant(Idx, DL));
3709     }
3710 
3711     Ops.push_back(Res);
3712   }
3713 
3714   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3715 }
3716 
3717 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3718   ArrayRef<unsigned> Indices;
3719   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3720     Indices = IV->getIndices();
3721   else
3722     Indices = cast<ConstantExpr>(&I)->getIndices();
3723 
3724   const Value *Op0 = I.getOperand(0);
3725   const Value *Op1 = I.getOperand(1);
3726   Type *AggTy = I.getType();
3727   Type *ValTy = Op1->getType();
3728   bool IntoUndef = isa<UndefValue>(Op0);
3729   bool FromUndef = isa<UndefValue>(Op1);
3730 
3731   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3732 
3733   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3734   SmallVector<EVT, 4> AggValueVTs;
3735   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3736   SmallVector<EVT, 4> ValValueVTs;
3737   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3738 
3739   unsigned NumAggValues = AggValueVTs.size();
3740   unsigned NumValValues = ValValueVTs.size();
3741   SmallVector<SDValue, 4> Values(NumAggValues);
3742 
3743   // Ignore an insertvalue that produces an empty object
3744   if (!NumAggValues) {
3745     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3746     return;
3747   }
3748 
3749   SDValue Agg = getValue(Op0);
3750   unsigned i = 0;
3751   // Copy the beginning value(s) from the original aggregate.
3752   for (; i != LinearIndex; ++i)
3753     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3754                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3755   // Copy values from the inserted value(s).
3756   if (NumValValues) {
3757     SDValue Val = getValue(Op1);
3758     for (; i != LinearIndex + NumValValues; ++i)
3759       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3760                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3761   }
3762   // Copy remaining value(s) from the original aggregate.
3763   for (; i != NumAggValues; ++i)
3764     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3765                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3766 
3767   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3768                            DAG.getVTList(AggValueVTs), Values));
3769 }
3770 
3771 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3772   ArrayRef<unsigned> Indices;
3773   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3774     Indices = EV->getIndices();
3775   else
3776     Indices = cast<ConstantExpr>(&I)->getIndices();
3777 
3778   const Value *Op0 = I.getOperand(0);
3779   Type *AggTy = Op0->getType();
3780   Type *ValTy = I.getType();
3781   bool OutOfUndef = isa<UndefValue>(Op0);
3782 
3783   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3784 
3785   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3786   SmallVector<EVT, 4> ValValueVTs;
3787   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3788 
3789   unsigned NumValValues = ValValueVTs.size();
3790 
3791   // Ignore a extractvalue that produces an empty object
3792   if (!NumValValues) {
3793     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3794     return;
3795   }
3796 
3797   SmallVector<SDValue, 4> Values(NumValValues);
3798 
3799   SDValue Agg = getValue(Op0);
3800   // Copy out the selected value(s).
3801   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3802     Values[i - LinearIndex] =
3803       OutOfUndef ?
3804         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3805         SDValue(Agg.getNode(), Agg.getResNo() + i);
3806 
3807   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3808                            DAG.getVTList(ValValueVTs), Values));
3809 }
3810 
3811 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3812   Value *Op0 = I.getOperand(0);
3813   // Note that the pointer operand may be a vector of pointers. Take the scalar
3814   // element which holds a pointer.
3815   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3816   SDValue N = getValue(Op0);
3817   SDLoc dl = getCurSDLoc();
3818   auto &TLI = DAG.getTargetLoweringInfo();
3819 
3820   // Normalize Vector GEP - all scalar operands should be converted to the
3821   // splat vector.
3822   bool IsVectorGEP = I.getType()->isVectorTy();
3823   ElementCount VectorElementCount =
3824       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
3825                   : ElementCount::getFixed(0);
3826 
3827   if (IsVectorGEP && !N.getValueType().isVector()) {
3828     LLVMContext &Context = *DAG.getContext();
3829     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
3830     if (VectorElementCount.isScalable())
3831       N = DAG.getSplatVector(VT, dl, N);
3832     else
3833       N = DAG.getSplatBuildVector(VT, dl, N);
3834   }
3835 
3836   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3837        GTI != E; ++GTI) {
3838     const Value *Idx = GTI.getOperand();
3839     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3840       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3841       if (Field) {
3842         // N = N + Offset
3843         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3844 
3845         // In an inbounds GEP with an offset that is nonnegative even when
3846         // interpreted as signed, assume there is no unsigned overflow.
3847         SDNodeFlags Flags;
3848         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3849           Flags.setNoUnsignedWrap(true);
3850 
3851         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3852                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3853       }
3854     } else {
3855       // IdxSize is the width of the arithmetic according to IR semantics.
3856       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
3857       // (and fix up the result later).
3858       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3859       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3860       TypeSize ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
3861       // We intentionally mask away the high bits here; ElementSize may not
3862       // fit in IdxTy.
3863       APInt ElementMul(IdxSize, ElementSize.getKnownMinSize());
3864       bool ElementScalable = ElementSize.isScalable();
3865 
3866       // If this is a scalar constant or a splat vector of constants,
3867       // handle it quickly.
3868       const auto *C = dyn_cast<Constant>(Idx);
3869       if (C && isa<VectorType>(C->getType()))
3870         C = C->getSplatValue();
3871 
3872       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
3873       if (CI && CI->isZero())
3874         continue;
3875       if (CI && !ElementScalable) {
3876         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
3877         LLVMContext &Context = *DAG.getContext();
3878         SDValue OffsVal;
3879         if (IsVectorGEP)
3880           OffsVal = DAG.getConstant(
3881               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
3882         else
3883           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
3884 
3885         // In an inbounds GEP with an offset that is nonnegative even when
3886         // interpreted as signed, assume there is no unsigned overflow.
3887         SDNodeFlags Flags;
3888         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3889           Flags.setNoUnsignedWrap(true);
3890 
3891         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3892 
3893         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3894         continue;
3895       }
3896 
3897       // N = N + Idx * ElementMul;
3898       SDValue IdxN = getValue(Idx);
3899 
3900       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
3901         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
3902                                   VectorElementCount);
3903         if (VectorElementCount.isScalable())
3904           IdxN = DAG.getSplatVector(VT, dl, IdxN);
3905         else
3906           IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3907       }
3908 
3909       // If the index is smaller or larger than intptr_t, truncate or extend
3910       // it.
3911       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3912 
3913       if (ElementScalable) {
3914         EVT VScaleTy = N.getValueType().getScalarType();
3915         SDValue VScale = DAG.getNode(
3916             ISD::VSCALE, dl, VScaleTy,
3917             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
3918         if (IsVectorGEP)
3919           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
3920         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
3921       } else {
3922         // If this is a multiply by a power of two, turn it into a shl
3923         // immediately.  This is a very common case.
3924         if (ElementMul != 1) {
3925           if (ElementMul.isPowerOf2()) {
3926             unsigned Amt = ElementMul.logBase2();
3927             IdxN = DAG.getNode(ISD::SHL, dl,
3928                                N.getValueType(), IdxN,
3929                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
3930           } else {
3931             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
3932                                             IdxN.getValueType());
3933             IdxN = DAG.getNode(ISD::MUL, dl,
3934                                N.getValueType(), IdxN, Scale);
3935           }
3936         }
3937       }
3938 
3939       N = DAG.getNode(ISD::ADD, dl,
3940                       N.getValueType(), N, IdxN);
3941     }
3942   }
3943 
3944   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
3945   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
3946   if (IsVectorGEP) {
3947     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
3948     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
3949   }
3950 
3951   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
3952     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
3953 
3954   setValue(&I, N);
3955 }
3956 
3957 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3958   // If this is a fixed sized alloca in the entry block of the function,
3959   // allocate it statically on the stack.
3960   if (FuncInfo.StaticAllocaMap.count(&I))
3961     return;   // getValue will auto-populate this.
3962 
3963   SDLoc dl = getCurSDLoc();
3964   Type *Ty = I.getAllocatedType();
3965   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3966   auto &DL = DAG.getDataLayout();
3967   uint64_t TySize = DL.getTypeAllocSize(Ty);
3968   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
3969 
3970   SDValue AllocSize = getValue(I.getArraySize());
3971 
3972   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3973   if (AllocSize.getValueType() != IntPtr)
3974     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3975 
3976   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3977                           AllocSize,
3978                           DAG.getConstant(TySize, dl, IntPtr));
3979 
3980   // Handle alignment.  If the requested alignment is less than or equal to
3981   // the stack alignment, ignore it.  If the size is greater than or equal to
3982   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3983   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
3984   if (*Alignment <= StackAlign)
3985     Alignment = None;
3986 
3987   const uint64_t StackAlignMask = StackAlign.value() - 1U;
3988   // Round the size of the allocation up to the stack alignment size
3989   // by add SA-1 to the size. This doesn't overflow because we're computing
3990   // an address inside an alloca.
3991   SDNodeFlags Flags;
3992   Flags.setNoUnsignedWrap(true);
3993   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
3994                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
3995 
3996   // Mask out the low bits for alignment purposes.
3997   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
3998                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
3999 
4000   SDValue Ops[] = {
4001       getRoot(), AllocSize,
4002       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4003   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4004   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4005   setValue(&I, DSA);
4006   DAG.setRoot(DSA.getValue(1));
4007 
4008   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4009 }
4010 
4011 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4012   if (I.isAtomic())
4013     return visitAtomicLoad(I);
4014 
4015   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4016   const Value *SV = I.getOperand(0);
4017   if (TLI.supportSwiftError()) {
4018     // Swifterror values can come from either a function parameter with
4019     // swifterror attribute or an alloca with swifterror attribute.
4020     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4021       if (Arg->hasSwiftErrorAttr())
4022         return visitLoadFromSwiftError(I);
4023     }
4024 
4025     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4026       if (Alloca->isSwiftError())
4027         return visitLoadFromSwiftError(I);
4028     }
4029   }
4030 
4031   SDValue Ptr = getValue(SV);
4032 
4033   Type *Ty = I.getType();
4034   Align Alignment = I.getAlign();
4035 
4036   AAMDNodes AAInfo;
4037   I.getAAMetadata(AAInfo);
4038   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4039 
4040   SmallVector<EVT, 4> ValueVTs, MemVTs;
4041   SmallVector<uint64_t, 4> Offsets;
4042   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4043   unsigned NumValues = ValueVTs.size();
4044   if (NumValues == 0)
4045     return;
4046 
4047   bool isVolatile = I.isVolatile();
4048 
4049   SDValue Root;
4050   bool ConstantMemory = false;
4051   if (isVolatile)
4052     // Serialize volatile loads with other side effects.
4053     Root = getRoot();
4054   else if (NumValues > MaxParallelChains)
4055     Root = getMemoryRoot();
4056   else if (AA &&
4057            AA->pointsToConstantMemory(MemoryLocation(
4058                SV,
4059                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4060                AAInfo))) {
4061     // Do not serialize (non-volatile) loads of constant memory with anything.
4062     Root = DAG.getEntryNode();
4063     ConstantMemory = true;
4064   } else {
4065     // Do not serialize non-volatile loads against each other.
4066     Root = DAG.getRoot();
4067   }
4068 
4069   SDLoc dl = getCurSDLoc();
4070 
4071   if (isVolatile)
4072     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4073 
4074   // An aggregate load cannot wrap around the address space, so offsets to its
4075   // parts don't wrap either.
4076   SDNodeFlags Flags;
4077   Flags.setNoUnsignedWrap(true);
4078 
4079   SmallVector<SDValue, 4> Values(NumValues);
4080   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4081   EVT PtrVT = Ptr.getValueType();
4082 
4083   MachineMemOperand::Flags MMOFlags
4084     = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4085 
4086   unsigned ChainI = 0;
4087   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4088     // Serializing loads here may result in excessive register pressure, and
4089     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4090     // could recover a bit by hoisting nodes upward in the chain by recognizing
4091     // they are side-effect free or do not alias. The optimizer should really
4092     // avoid this case by converting large object/array copies to llvm.memcpy
4093     // (MaxParallelChains should always remain as failsafe).
4094     if (ChainI == MaxParallelChains) {
4095       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4096       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4097                                   makeArrayRef(Chains.data(), ChainI));
4098       Root = Chain;
4099       ChainI = 0;
4100     }
4101     SDValue A = DAG.getNode(ISD::ADD, dl,
4102                             PtrVT, Ptr,
4103                             DAG.getConstant(Offsets[i], dl, PtrVT),
4104                             Flags);
4105 
4106     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4107                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4108                             MMOFlags, AAInfo, Ranges);
4109     Chains[ChainI] = L.getValue(1);
4110 
4111     if (MemVTs[i] != ValueVTs[i])
4112       L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4113 
4114     Values[i] = L;
4115   }
4116 
4117   if (!ConstantMemory) {
4118     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4119                                 makeArrayRef(Chains.data(), ChainI));
4120     if (isVolatile)
4121       DAG.setRoot(Chain);
4122     else
4123       PendingLoads.push_back(Chain);
4124   }
4125 
4126   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4127                            DAG.getVTList(ValueVTs), Values));
4128 }
4129 
4130 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4131   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4132          "call visitStoreToSwiftError when backend supports swifterror");
4133 
4134   SmallVector<EVT, 4> ValueVTs;
4135   SmallVector<uint64_t, 4> Offsets;
4136   const Value *SrcV = I.getOperand(0);
4137   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4138                   SrcV->getType(), ValueVTs, &Offsets);
4139   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4140          "expect a single EVT for swifterror");
4141 
4142   SDValue Src = getValue(SrcV);
4143   // Create a virtual register, then update the virtual register.
4144   Register VReg =
4145       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4146   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4147   // Chain can be getRoot or getControlRoot.
4148   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4149                                       SDValue(Src.getNode(), Src.getResNo()));
4150   DAG.setRoot(CopyNode);
4151 }
4152 
4153 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4154   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4155          "call visitLoadFromSwiftError when backend supports swifterror");
4156 
4157   assert(!I.isVolatile() &&
4158          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4159          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4160          "Support volatile, non temporal, invariant for load_from_swift_error");
4161 
4162   const Value *SV = I.getOperand(0);
4163   Type *Ty = I.getType();
4164   AAMDNodes AAInfo;
4165   I.getAAMetadata(AAInfo);
4166   assert(
4167       (!AA ||
4168        !AA->pointsToConstantMemory(MemoryLocation(
4169            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4170            AAInfo))) &&
4171       "load_from_swift_error should not be constant memory");
4172 
4173   SmallVector<EVT, 4> ValueVTs;
4174   SmallVector<uint64_t, 4> Offsets;
4175   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4176                   ValueVTs, &Offsets);
4177   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4178          "expect a single EVT for swifterror");
4179 
4180   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4181   SDValue L = DAG.getCopyFromReg(
4182       getRoot(), getCurSDLoc(),
4183       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4184 
4185   setValue(&I, L);
4186 }
4187 
4188 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4189   if (I.isAtomic())
4190     return visitAtomicStore(I);
4191 
4192   const Value *SrcV = I.getOperand(0);
4193   const Value *PtrV = I.getOperand(1);
4194 
4195   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4196   if (TLI.supportSwiftError()) {
4197     // Swifterror values can come from either a function parameter with
4198     // swifterror attribute or an alloca with swifterror attribute.
4199     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4200       if (Arg->hasSwiftErrorAttr())
4201         return visitStoreToSwiftError(I);
4202     }
4203 
4204     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4205       if (Alloca->isSwiftError())
4206         return visitStoreToSwiftError(I);
4207     }
4208   }
4209 
4210   SmallVector<EVT, 4> ValueVTs, MemVTs;
4211   SmallVector<uint64_t, 4> Offsets;
4212   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4213                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4214   unsigned NumValues = ValueVTs.size();
4215   if (NumValues == 0)
4216     return;
4217 
4218   // Get the lowered operands. Note that we do this after
4219   // checking if NumResults is zero, because with zero results
4220   // the operands won't have values in the map.
4221   SDValue Src = getValue(SrcV);
4222   SDValue Ptr = getValue(PtrV);
4223 
4224   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4225   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4226   SDLoc dl = getCurSDLoc();
4227   Align Alignment = I.getAlign();
4228   AAMDNodes AAInfo;
4229   I.getAAMetadata(AAInfo);
4230 
4231   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4232 
4233   // An aggregate load cannot wrap around the address space, so offsets to its
4234   // parts don't wrap either.
4235   SDNodeFlags Flags;
4236   Flags.setNoUnsignedWrap(true);
4237 
4238   unsigned ChainI = 0;
4239   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4240     // See visitLoad comments.
4241     if (ChainI == MaxParallelChains) {
4242       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4243                                   makeArrayRef(Chains.data(), ChainI));
4244       Root = Chain;
4245       ChainI = 0;
4246     }
4247     SDValue Add =
4248         DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags);
4249     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4250     if (MemVTs[i] != ValueVTs[i])
4251       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4252     SDValue St =
4253         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4254                      Alignment, MMOFlags, AAInfo);
4255     Chains[ChainI] = St;
4256   }
4257 
4258   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4259                                   makeArrayRef(Chains.data(), ChainI));
4260   DAG.setRoot(StoreNode);
4261 }
4262 
4263 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4264                                            bool IsCompressing) {
4265   SDLoc sdl = getCurSDLoc();
4266 
4267   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4268                                MaybeAlign &Alignment) {
4269     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4270     Src0 = I.getArgOperand(0);
4271     Ptr = I.getArgOperand(1);
4272     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue();
4273     Mask = I.getArgOperand(3);
4274   };
4275   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4276                                     MaybeAlign &Alignment) {
4277     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4278     Src0 = I.getArgOperand(0);
4279     Ptr = I.getArgOperand(1);
4280     Mask = I.getArgOperand(2);
4281     Alignment = None;
4282   };
4283 
4284   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4285   MaybeAlign Alignment;
4286   if (IsCompressing)
4287     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4288   else
4289     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4290 
4291   SDValue Ptr = getValue(PtrOperand);
4292   SDValue Src0 = getValue(Src0Operand);
4293   SDValue Mask = getValue(MaskOperand);
4294   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4295 
4296   EVT VT = Src0.getValueType();
4297   if (!Alignment)
4298     Alignment = DAG.getEVTAlign(VT);
4299 
4300   AAMDNodes AAInfo;
4301   I.getAAMetadata(AAInfo);
4302 
4303   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4304       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
4305       // TODO: Make MachineMemOperands aware of scalable
4306       // vectors.
4307       VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo);
4308   SDValue StoreNode =
4309       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4310                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4311   DAG.setRoot(StoreNode);
4312   setValue(&I, StoreNode);
4313 }
4314 
4315 // Get a uniform base for the Gather/Scatter intrinsic.
4316 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4317 // We try to represent it as a base pointer + vector of indices.
4318 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4319 // The first operand of the GEP may be a single pointer or a vector of pointers
4320 // Example:
4321 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4322 //  or
4323 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4324 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4325 //
4326 // When the first GEP operand is a single pointer - it is the uniform base we
4327 // are looking for. If first operand of the GEP is a splat vector - we
4328 // extract the splat value and use it as a uniform base.
4329 // In all other cases the function returns 'false'.
4330 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4331                            ISD::MemIndexType &IndexType, SDValue &Scale,
4332                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB) {
4333   SelectionDAG& DAG = SDB->DAG;
4334   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4335   const DataLayout &DL = DAG.getDataLayout();
4336 
4337   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
4338 
4339   // Handle splat constant pointer.
4340   if (auto *C = dyn_cast<Constant>(Ptr)) {
4341     C = C->getSplatValue();
4342     if (!C)
4343       return false;
4344 
4345     Base = SDB->getValue(C);
4346 
4347     unsigned NumElts = cast<FixedVectorType>(Ptr->getType())->getNumElements();
4348     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4349     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4350     IndexType = ISD::SIGNED_SCALED;
4351     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4352     return true;
4353   }
4354 
4355   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4356   if (!GEP || GEP->getParent() != CurBB)
4357     return false;
4358 
4359   if (GEP->getNumOperands() != 2)
4360     return false;
4361 
4362   const Value *BasePtr = GEP->getPointerOperand();
4363   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4364 
4365   // Make sure the base is scalar and the index is a vector.
4366   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4367     return false;
4368 
4369   Base = SDB->getValue(BasePtr);
4370   Index = SDB->getValue(IndexVal);
4371   IndexType = ISD::SIGNED_SCALED;
4372   Scale = DAG.getTargetConstant(
4373               DL.getTypeAllocSize(GEP->getResultElementType()),
4374               SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4375   return true;
4376 }
4377 
4378 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4379   SDLoc sdl = getCurSDLoc();
4380 
4381   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4382   const Value *Ptr = I.getArgOperand(1);
4383   SDValue Src0 = getValue(I.getArgOperand(0));
4384   SDValue Mask = getValue(I.getArgOperand(3));
4385   EVT VT = Src0.getValueType();
4386   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4387                         ->getMaybeAlignValue()
4388                         .getValueOr(DAG.getEVTAlign(VT));
4389   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4390 
4391   AAMDNodes AAInfo;
4392   I.getAAMetadata(AAInfo);
4393 
4394   SDValue Base;
4395   SDValue Index;
4396   ISD::MemIndexType IndexType;
4397   SDValue Scale;
4398   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4399                                     I.getParent());
4400 
4401   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4402   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4403       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4404       // TODO: Make MachineMemOperands aware of scalable
4405       // vectors.
4406       MemoryLocation::UnknownSize, Alignment, AAInfo);
4407   if (!UniformBase) {
4408     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4409     Index = getValue(Ptr);
4410     IndexType = ISD::SIGNED_UNSCALED;
4411     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4412   }
4413 
4414   EVT IdxVT = Index.getValueType();
4415   EVT EltTy = IdxVT.getVectorElementType();
4416   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4417     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4418     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4419   }
4420 
4421   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4422   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4423                                          Ops, MMO, IndexType, false);
4424   DAG.setRoot(Scatter);
4425   setValue(&I, Scatter);
4426 }
4427 
4428 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4429   SDLoc sdl = getCurSDLoc();
4430 
4431   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4432                               MaybeAlign &Alignment) {
4433     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4434     Ptr = I.getArgOperand(0);
4435     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
4436     Mask = I.getArgOperand(2);
4437     Src0 = I.getArgOperand(3);
4438   };
4439   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4440                                  MaybeAlign &Alignment) {
4441     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4442     Ptr = I.getArgOperand(0);
4443     Alignment = None;
4444     Mask = I.getArgOperand(1);
4445     Src0 = I.getArgOperand(2);
4446   };
4447 
4448   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4449   MaybeAlign Alignment;
4450   if (IsExpanding)
4451     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4452   else
4453     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4454 
4455   SDValue Ptr = getValue(PtrOperand);
4456   SDValue Src0 = getValue(Src0Operand);
4457   SDValue Mask = getValue(MaskOperand);
4458   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4459 
4460   EVT VT = Src0.getValueType();
4461   if (!Alignment)
4462     Alignment = DAG.getEVTAlign(VT);
4463 
4464   AAMDNodes AAInfo;
4465   I.getAAMetadata(AAInfo);
4466   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4467 
4468   // Do not serialize masked loads of constant memory with anything.
4469   MemoryLocation ML;
4470   if (VT.isScalableVector())
4471     ML = MemoryLocation::getAfter(PtrOperand);
4472   else
4473     ML = MemoryLocation(PtrOperand, LocationSize::precise(
4474                            DAG.getDataLayout().getTypeStoreSize(I.getType())),
4475                            AAInfo);
4476   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4477 
4478   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4479 
4480   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4481       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
4482       // TODO: Make MachineMemOperands aware of scalable
4483       // vectors.
4484       VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo, Ranges);
4485 
4486   SDValue Load =
4487       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4488                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4489   if (AddToChain)
4490     PendingLoads.push_back(Load.getValue(1));
4491   setValue(&I, Load);
4492 }
4493 
4494 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4495   SDLoc sdl = getCurSDLoc();
4496 
4497   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4498   const Value *Ptr = I.getArgOperand(0);
4499   SDValue Src0 = getValue(I.getArgOperand(3));
4500   SDValue Mask = getValue(I.getArgOperand(2));
4501 
4502   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4503   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4504   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
4505                         ->getMaybeAlignValue()
4506                         .getValueOr(DAG.getEVTAlign(VT));
4507 
4508   AAMDNodes AAInfo;
4509   I.getAAMetadata(AAInfo);
4510   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4511 
4512   SDValue Root = DAG.getRoot();
4513   SDValue Base;
4514   SDValue Index;
4515   ISD::MemIndexType IndexType;
4516   SDValue Scale;
4517   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4518                                     I.getParent());
4519   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4520   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4521       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4522       // TODO: Make MachineMemOperands aware of scalable
4523       // vectors.
4524       MemoryLocation::UnknownSize, Alignment, AAInfo, Ranges);
4525 
4526   if (!UniformBase) {
4527     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4528     Index = getValue(Ptr);
4529     IndexType = ISD::SIGNED_UNSCALED;
4530     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4531   }
4532 
4533   EVT IdxVT = Index.getValueType();
4534   EVT EltTy = IdxVT.getVectorElementType();
4535   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4536     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4537     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4538   }
4539 
4540   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4541   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4542                                        Ops, MMO, IndexType, ISD::NON_EXTLOAD);
4543 
4544   PendingLoads.push_back(Gather.getValue(1));
4545   setValue(&I, Gather);
4546 }
4547 
4548 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4549   SDLoc dl = getCurSDLoc();
4550   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4551   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4552   SyncScope::ID SSID = I.getSyncScopeID();
4553 
4554   SDValue InChain = getRoot();
4555 
4556   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4557   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4558 
4559   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4560   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4561 
4562   MachineFunction &MF = DAG.getMachineFunction();
4563   MachineMemOperand *MMO = MF.getMachineMemOperand(
4564       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4565       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
4566       FailureOrdering);
4567 
4568   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4569                                    dl, MemVT, VTs, InChain,
4570                                    getValue(I.getPointerOperand()),
4571                                    getValue(I.getCompareOperand()),
4572                                    getValue(I.getNewValOperand()), MMO);
4573 
4574   SDValue OutChain = L.getValue(2);
4575 
4576   setValue(&I, L);
4577   DAG.setRoot(OutChain);
4578 }
4579 
4580 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4581   SDLoc dl = getCurSDLoc();
4582   ISD::NodeType NT;
4583   switch (I.getOperation()) {
4584   default: llvm_unreachable("Unknown atomicrmw operation");
4585   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4586   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4587   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4588   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4589   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4590   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4591   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4592   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4593   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4594   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4595   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4596   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4597   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4598   }
4599   AtomicOrdering Ordering = I.getOrdering();
4600   SyncScope::ID SSID = I.getSyncScopeID();
4601 
4602   SDValue InChain = getRoot();
4603 
4604   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4605   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4606   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4607 
4608   MachineFunction &MF = DAG.getMachineFunction();
4609   MachineMemOperand *MMO = MF.getMachineMemOperand(
4610       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4611       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
4612 
4613   SDValue L =
4614     DAG.getAtomic(NT, dl, MemVT, InChain,
4615                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4616                   MMO);
4617 
4618   SDValue OutChain = L.getValue(1);
4619 
4620   setValue(&I, L);
4621   DAG.setRoot(OutChain);
4622 }
4623 
4624 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4625   SDLoc dl = getCurSDLoc();
4626   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4627   SDValue Ops[3];
4628   Ops[0] = getRoot();
4629   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4630                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4631   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4632                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4633   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4634 }
4635 
4636 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4637   SDLoc dl = getCurSDLoc();
4638   AtomicOrdering Order = I.getOrdering();
4639   SyncScope::ID SSID = I.getSyncScopeID();
4640 
4641   SDValue InChain = getRoot();
4642 
4643   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4644   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4645   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4646 
4647   if (!TLI.supportsUnalignedAtomics() &&
4648       I.getAlignment() < MemVT.getSizeInBits() / 8)
4649     report_fatal_error("Cannot generate unaligned atomic load");
4650 
4651   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4652 
4653   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4654       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4655       I.getAlign(), AAMDNodes(), nullptr, SSID, Order);
4656 
4657   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4658 
4659   SDValue Ptr = getValue(I.getPointerOperand());
4660 
4661   if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4662     // TODO: Once this is better exercised by tests, it should be merged with
4663     // the normal path for loads to prevent future divergence.
4664     SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4665     if (MemVT != VT)
4666       L = DAG.getPtrExtOrTrunc(L, dl, VT);
4667 
4668     setValue(&I, L);
4669     SDValue OutChain = L.getValue(1);
4670     if (!I.isUnordered())
4671       DAG.setRoot(OutChain);
4672     else
4673       PendingLoads.push_back(OutChain);
4674     return;
4675   }
4676 
4677   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4678                             Ptr, MMO);
4679 
4680   SDValue OutChain = L.getValue(1);
4681   if (MemVT != VT)
4682     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4683 
4684   setValue(&I, L);
4685   DAG.setRoot(OutChain);
4686 }
4687 
4688 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4689   SDLoc dl = getCurSDLoc();
4690 
4691   AtomicOrdering Ordering = I.getOrdering();
4692   SyncScope::ID SSID = I.getSyncScopeID();
4693 
4694   SDValue InChain = getRoot();
4695 
4696   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4697   EVT MemVT =
4698       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4699 
4700   if (I.getAlignment() < MemVT.getSizeInBits() / 8)
4701     report_fatal_error("Cannot generate unaligned atomic store");
4702 
4703   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4704 
4705   MachineFunction &MF = DAG.getMachineFunction();
4706   MachineMemOperand *MMO = MF.getMachineMemOperand(
4707       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4708       I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
4709 
4710   SDValue Val = getValue(I.getValueOperand());
4711   if (Val.getValueType() != MemVT)
4712     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4713   SDValue Ptr = getValue(I.getPointerOperand());
4714 
4715   if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4716     // TODO: Once this is better exercised by tests, it should be merged with
4717     // the normal path for stores to prevent future divergence.
4718     SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4719     DAG.setRoot(S);
4720     return;
4721   }
4722   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4723                                    Ptr, Val, MMO);
4724 
4725 
4726   DAG.setRoot(OutChain);
4727 }
4728 
4729 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4730 /// node.
4731 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4732                                                unsigned Intrinsic) {
4733   // Ignore the callsite's attributes. A specific call site may be marked with
4734   // readnone, but the lowering code will expect the chain based on the
4735   // definition.
4736   const Function *F = I.getCalledFunction();
4737   bool HasChain = !F->doesNotAccessMemory();
4738   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4739 
4740   // Build the operand list.
4741   SmallVector<SDValue, 8> Ops;
4742   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4743     if (OnlyLoad) {
4744       // We don't need to serialize loads against other loads.
4745       Ops.push_back(DAG.getRoot());
4746     } else {
4747       Ops.push_back(getRoot());
4748     }
4749   }
4750 
4751   // Info is set by getTgtMemInstrinsic
4752   TargetLowering::IntrinsicInfo Info;
4753   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4754   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4755                                                DAG.getMachineFunction(),
4756                                                Intrinsic);
4757 
4758   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4759   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4760       Info.opc == ISD::INTRINSIC_W_CHAIN)
4761     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4762                                         TLI.getPointerTy(DAG.getDataLayout())));
4763 
4764   // Add all operands of the call to the operand list.
4765   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4766     const Value *Arg = I.getArgOperand(i);
4767     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4768       Ops.push_back(getValue(Arg));
4769       continue;
4770     }
4771 
4772     // Use TargetConstant instead of a regular constant for immarg.
4773     EVT VT = TLI.getValueType(*DL, Arg->getType(), true);
4774     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4775       assert(CI->getBitWidth() <= 64 &&
4776              "large intrinsic immediates not handled");
4777       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4778     } else {
4779       Ops.push_back(
4780           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4781     }
4782   }
4783 
4784   SmallVector<EVT, 4> ValueVTs;
4785   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4786 
4787   if (HasChain)
4788     ValueVTs.push_back(MVT::Other);
4789 
4790   SDVTList VTs = DAG.getVTList(ValueVTs);
4791 
4792   // Create the node.
4793   SDValue Result;
4794   if (IsTgtIntrinsic) {
4795     // This is target intrinsic that touches memory
4796     AAMDNodes AAInfo;
4797     I.getAAMetadata(AAInfo);
4798     Result =
4799         DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT,
4800                                 MachinePointerInfo(Info.ptrVal, Info.offset),
4801                                 Info.align, Info.flags, Info.size, AAInfo);
4802   } else if (!HasChain) {
4803     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4804   } else if (!I.getType()->isVoidTy()) {
4805     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4806   } else {
4807     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4808   }
4809 
4810   if (HasChain) {
4811     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4812     if (OnlyLoad)
4813       PendingLoads.push_back(Chain);
4814     else
4815       DAG.setRoot(Chain);
4816   }
4817 
4818   if (!I.getType()->isVoidTy()) {
4819     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4820       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4821       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4822     } else
4823       Result = lowerRangeToAssertZExt(DAG, I, Result);
4824 
4825     MaybeAlign Alignment = I.getRetAlign();
4826     if (!Alignment)
4827       Alignment = F->getAttributes().getRetAlignment();
4828     // Insert `assertalign` node if there's an alignment.
4829     if (InsertAssertAlign && Alignment) {
4830       Result =
4831           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
4832     }
4833 
4834     setValue(&I, Result);
4835   }
4836 }
4837 
4838 /// GetSignificand - Get the significand and build it into a floating-point
4839 /// number with exponent of 1:
4840 ///
4841 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4842 ///
4843 /// where Op is the hexadecimal representation of floating point value.
4844 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4845   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4846                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4847   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4848                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4849   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4850 }
4851 
4852 /// GetExponent - Get the exponent:
4853 ///
4854 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4855 ///
4856 /// where Op is the hexadecimal representation of floating point value.
4857 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4858                            const TargetLowering &TLI, const SDLoc &dl) {
4859   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4860                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4861   SDValue t1 = DAG.getNode(
4862       ISD::SRL, dl, MVT::i32, t0,
4863       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4864   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4865                            DAG.getConstant(127, dl, MVT::i32));
4866   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4867 }
4868 
4869 /// getF32Constant - Get 32-bit floating point constant.
4870 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4871                               const SDLoc &dl) {
4872   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4873                            MVT::f32);
4874 }
4875 
4876 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4877                                        SelectionDAG &DAG) {
4878   // TODO: What fast-math-flags should be set on the floating-point nodes?
4879 
4880   //   IntegerPartOfX = ((int32_t)(t0);
4881   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4882 
4883   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4884   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4885   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4886 
4887   //   IntegerPartOfX <<= 23;
4888   IntegerPartOfX = DAG.getNode(
4889       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4890       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4891                                   DAG.getDataLayout())));
4892 
4893   SDValue TwoToFractionalPartOfX;
4894   if (LimitFloatPrecision <= 6) {
4895     // For floating-point precision of 6:
4896     //
4897     //   TwoToFractionalPartOfX =
4898     //     0.997535578f +
4899     //       (0.735607626f + 0.252464424f * x) * x;
4900     //
4901     // error 0.0144103317, which is 6 bits
4902     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4903                              getF32Constant(DAG, 0x3e814304, dl));
4904     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4905                              getF32Constant(DAG, 0x3f3c50c8, dl));
4906     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4907     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4908                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4909   } else if (LimitFloatPrecision <= 12) {
4910     // For floating-point precision of 12:
4911     //
4912     //   TwoToFractionalPartOfX =
4913     //     0.999892986f +
4914     //       (0.696457318f +
4915     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4916     //
4917     // error 0.000107046256, which is 13 to 14 bits
4918     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4919                              getF32Constant(DAG, 0x3da235e3, dl));
4920     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4921                              getF32Constant(DAG, 0x3e65b8f3, dl));
4922     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4923     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4924                              getF32Constant(DAG, 0x3f324b07, dl));
4925     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4926     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4927                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4928   } else { // LimitFloatPrecision <= 18
4929     // For floating-point precision of 18:
4930     //
4931     //   TwoToFractionalPartOfX =
4932     //     0.999999982f +
4933     //       (0.693148872f +
4934     //         (0.240227044f +
4935     //           (0.554906021e-1f +
4936     //             (0.961591928e-2f +
4937     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4938     // error 2.47208000*10^(-7), which is better than 18 bits
4939     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4940                              getF32Constant(DAG, 0x3924b03e, dl));
4941     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4942                              getF32Constant(DAG, 0x3ab24b87, dl));
4943     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4944     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4945                              getF32Constant(DAG, 0x3c1d8c17, dl));
4946     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4947     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4948                              getF32Constant(DAG, 0x3d634a1d, dl));
4949     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4950     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4951                              getF32Constant(DAG, 0x3e75fe14, dl));
4952     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4953     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4954                               getF32Constant(DAG, 0x3f317234, dl));
4955     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4956     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4957                                          getF32Constant(DAG, 0x3f800000, dl));
4958   }
4959 
4960   // Add the exponent into the result in integer domain.
4961   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4962   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4963                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4964 }
4965 
4966 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4967 /// limited-precision mode.
4968 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4969                          const TargetLowering &TLI, SDNodeFlags Flags) {
4970   if (Op.getValueType() == MVT::f32 &&
4971       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4972 
4973     // Put the exponent in the right bit position for later addition to the
4974     // final result:
4975     //
4976     // t0 = Op * log2(e)
4977 
4978     // TODO: What fast-math-flags should be set here?
4979     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4980                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
4981     return getLimitedPrecisionExp2(t0, dl, DAG);
4982   }
4983 
4984   // No special expansion.
4985   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
4986 }
4987 
4988 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4989 /// limited-precision mode.
4990 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4991                          const TargetLowering &TLI, SDNodeFlags Flags) {
4992   // TODO: What fast-math-flags should be set on the floating-point nodes?
4993 
4994   if (Op.getValueType() == MVT::f32 &&
4995       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4996     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4997 
4998     // Scale the exponent by log(2).
4999     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5000     SDValue LogOfExponent =
5001         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5002                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5003 
5004     // Get the significand and build it into a floating-point number with
5005     // exponent of 1.
5006     SDValue X = GetSignificand(DAG, Op1, dl);
5007 
5008     SDValue LogOfMantissa;
5009     if (LimitFloatPrecision <= 6) {
5010       // For floating-point precision of 6:
5011       //
5012       //   LogofMantissa =
5013       //     -1.1609546f +
5014       //       (1.4034025f - 0.23903021f * x) * x;
5015       //
5016       // error 0.0034276066, which is better than 8 bits
5017       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5018                                getF32Constant(DAG, 0xbe74c456, dl));
5019       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5020                                getF32Constant(DAG, 0x3fb3a2b1, dl));
5021       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5022       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5023                                   getF32Constant(DAG, 0x3f949a29, dl));
5024     } else if (LimitFloatPrecision <= 12) {
5025       // For floating-point precision of 12:
5026       //
5027       //   LogOfMantissa =
5028       //     -1.7417939f +
5029       //       (2.8212026f +
5030       //         (-1.4699568f +
5031       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5032       //
5033       // error 0.000061011436, which is 14 bits
5034       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5035                                getF32Constant(DAG, 0xbd67b6d6, dl));
5036       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5037                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5038       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5039       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5040                                getF32Constant(DAG, 0x3fbc278b, dl));
5041       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5042       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5043                                getF32Constant(DAG, 0x40348e95, dl));
5044       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5045       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5046                                   getF32Constant(DAG, 0x3fdef31a, dl));
5047     } else { // LimitFloatPrecision <= 18
5048       // For floating-point precision of 18:
5049       //
5050       //   LogOfMantissa =
5051       //     -2.1072184f +
5052       //       (4.2372794f +
5053       //         (-3.7029485f +
5054       //           (2.2781945f +
5055       //             (-0.87823314f +
5056       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5057       //
5058       // error 0.0000023660568, which is better than 18 bits
5059       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5060                                getF32Constant(DAG, 0xbc91e5ac, dl));
5061       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5062                                getF32Constant(DAG, 0x3e4350aa, dl));
5063       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5064       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5065                                getF32Constant(DAG, 0x3f60d3e3, dl));
5066       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5067       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5068                                getF32Constant(DAG, 0x4011cdf0, dl));
5069       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5070       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5071                                getF32Constant(DAG, 0x406cfd1c, dl));
5072       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5073       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5074                                getF32Constant(DAG, 0x408797cb, dl));
5075       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5076       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5077                                   getF32Constant(DAG, 0x4006dcab, dl));
5078     }
5079 
5080     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5081   }
5082 
5083   // No special expansion.
5084   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5085 }
5086 
5087 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5088 /// limited-precision mode.
5089 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5090                           const TargetLowering &TLI, SDNodeFlags Flags) {
5091   // TODO: What fast-math-flags should be set on the floating-point nodes?
5092 
5093   if (Op.getValueType() == MVT::f32 &&
5094       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5095     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5096 
5097     // Get the exponent.
5098     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5099 
5100     // Get the significand and build it into a floating-point number with
5101     // exponent of 1.
5102     SDValue X = GetSignificand(DAG, Op1, dl);
5103 
5104     // Different possible minimax approximations of significand in
5105     // floating-point for various degrees of accuracy over [1,2].
5106     SDValue Log2ofMantissa;
5107     if (LimitFloatPrecision <= 6) {
5108       // For floating-point precision of 6:
5109       //
5110       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5111       //
5112       // error 0.0049451742, which is more than 7 bits
5113       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5114                                getF32Constant(DAG, 0xbeb08fe0, dl));
5115       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5116                                getF32Constant(DAG, 0x40019463, dl));
5117       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5118       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5119                                    getF32Constant(DAG, 0x3fd6633d, dl));
5120     } else if (LimitFloatPrecision <= 12) {
5121       // For floating-point precision of 12:
5122       //
5123       //   Log2ofMantissa =
5124       //     -2.51285454f +
5125       //       (4.07009056f +
5126       //         (-2.12067489f +
5127       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5128       //
5129       // error 0.0000876136000, which is better than 13 bits
5130       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5131                                getF32Constant(DAG, 0xbda7262e, dl));
5132       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5133                                getF32Constant(DAG, 0x3f25280b, dl));
5134       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5135       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5136                                getF32Constant(DAG, 0x4007b923, dl));
5137       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5138       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5139                                getF32Constant(DAG, 0x40823e2f, dl));
5140       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5141       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5142                                    getF32Constant(DAG, 0x4020d29c, dl));
5143     } else { // LimitFloatPrecision <= 18
5144       // For floating-point precision of 18:
5145       //
5146       //   Log2ofMantissa =
5147       //     -3.0400495f +
5148       //       (6.1129976f +
5149       //         (-5.3420409f +
5150       //           (3.2865683f +
5151       //             (-1.2669343f +
5152       //               (0.27515199f -
5153       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5154       //
5155       // error 0.0000018516, which is better than 18 bits
5156       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5157                                getF32Constant(DAG, 0xbcd2769e, dl));
5158       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5159                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5160       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5161       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5162                                getF32Constant(DAG, 0x3fa22ae7, dl));
5163       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5164       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5165                                getF32Constant(DAG, 0x40525723, dl));
5166       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5167       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5168                                getF32Constant(DAG, 0x40aaf200, dl));
5169       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5170       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5171                                getF32Constant(DAG, 0x40c39dad, dl));
5172       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5173       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5174                                    getF32Constant(DAG, 0x4042902c, dl));
5175     }
5176 
5177     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5178   }
5179 
5180   // No special expansion.
5181   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5182 }
5183 
5184 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5185 /// limited-precision mode.
5186 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5187                            const TargetLowering &TLI, SDNodeFlags Flags) {
5188   // TODO: What fast-math-flags should be set on the floating-point nodes?
5189 
5190   if (Op.getValueType() == MVT::f32 &&
5191       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5192     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5193 
5194     // Scale the exponent by log10(2) [0.30102999f].
5195     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5196     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5197                                         getF32Constant(DAG, 0x3e9a209a, dl));
5198 
5199     // Get the significand and build it into a floating-point number with
5200     // exponent of 1.
5201     SDValue X = GetSignificand(DAG, Op1, dl);
5202 
5203     SDValue Log10ofMantissa;
5204     if (LimitFloatPrecision <= 6) {
5205       // For floating-point precision of 6:
5206       //
5207       //   Log10ofMantissa =
5208       //     -0.50419619f +
5209       //       (0.60948995f - 0.10380950f * x) * x;
5210       //
5211       // error 0.0014886165, which is 6 bits
5212       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5213                                getF32Constant(DAG, 0xbdd49a13, dl));
5214       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5215                                getF32Constant(DAG, 0x3f1c0789, dl));
5216       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5217       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5218                                     getF32Constant(DAG, 0x3f011300, dl));
5219     } else if (LimitFloatPrecision <= 12) {
5220       // For floating-point precision of 12:
5221       //
5222       //   Log10ofMantissa =
5223       //     -0.64831180f +
5224       //       (0.91751397f +
5225       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5226       //
5227       // error 0.00019228036, which is better than 12 bits
5228       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5229                                getF32Constant(DAG, 0x3d431f31, dl));
5230       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5231                                getF32Constant(DAG, 0x3ea21fb2, dl));
5232       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5233       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5234                                getF32Constant(DAG, 0x3f6ae232, dl));
5235       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5236       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5237                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5238     } else { // LimitFloatPrecision <= 18
5239       // For floating-point precision of 18:
5240       //
5241       //   Log10ofMantissa =
5242       //     -0.84299375f +
5243       //       (1.5327582f +
5244       //         (-1.0688956f +
5245       //           (0.49102474f +
5246       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5247       //
5248       // error 0.0000037995730, which is better than 18 bits
5249       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5250                                getF32Constant(DAG, 0x3c5d51ce, dl));
5251       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5252                                getF32Constant(DAG, 0x3e00685a, dl));
5253       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5254       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5255                                getF32Constant(DAG, 0x3efb6798, dl));
5256       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5257       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5258                                getF32Constant(DAG, 0x3f88d192, dl));
5259       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5260       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5261                                getF32Constant(DAG, 0x3fc4316c, dl));
5262       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5263       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5264                                     getF32Constant(DAG, 0x3f57ce70, dl));
5265     }
5266 
5267     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5268   }
5269 
5270   // No special expansion.
5271   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5272 }
5273 
5274 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5275 /// limited-precision mode.
5276 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5277                           const TargetLowering &TLI, SDNodeFlags Flags) {
5278   if (Op.getValueType() == MVT::f32 &&
5279       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5280     return getLimitedPrecisionExp2(Op, dl, DAG);
5281 
5282   // No special expansion.
5283   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5284 }
5285 
5286 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5287 /// limited-precision mode with x == 10.0f.
5288 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5289                          SelectionDAG &DAG, const TargetLowering &TLI,
5290                          SDNodeFlags Flags) {
5291   bool IsExp10 = false;
5292   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5293       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5294     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5295       APFloat Ten(10.0f);
5296       IsExp10 = LHSC->isExactlyValue(Ten);
5297     }
5298   }
5299 
5300   // TODO: What fast-math-flags should be set on the FMUL node?
5301   if (IsExp10) {
5302     // Put the exponent in the right bit position for later addition to the
5303     // final result:
5304     //
5305     //   #define LOG2OF10 3.3219281f
5306     //   t0 = Op * LOG2OF10;
5307     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5308                              getF32Constant(DAG, 0x40549a78, dl));
5309     return getLimitedPrecisionExp2(t0, dl, DAG);
5310   }
5311 
5312   // No special expansion.
5313   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5314 }
5315 
5316 /// ExpandPowI - Expand a llvm.powi intrinsic.
5317 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5318                           SelectionDAG &DAG) {
5319   // If RHS is a constant, we can expand this out to a multiplication tree,
5320   // otherwise we end up lowering to a call to __powidf2 (for example).  When
5321   // optimizing for size, we only want to do this if the expansion would produce
5322   // a small number of multiplies, otherwise we do the full expansion.
5323   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5324     // Get the exponent as a positive value.
5325     unsigned Val = RHSC->getSExtValue();
5326     if ((int)Val < 0) Val = -Val;
5327 
5328     // powi(x, 0) -> 1.0
5329     if (Val == 0)
5330       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5331 
5332     bool OptForSize = DAG.shouldOptForSize();
5333     if (!OptForSize ||
5334         // If optimizing for size, don't insert too many multiplies.
5335         // This inserts up to 5 multiplies.
5336         countPopulation(Val) + Log2_32(Val) < 7) {
5337       // We use the simple binary decomposition method to generate the multiply
5338       // sequence.  There are more optimal ways to do this (for example,
5339       // powi(x,15) generates one more multiply than it should), but this has
5340       // the benefit of being both really simple and much better than a libcall.
5341       SDValue Res;  // Logically starts equal to 1.0
5342       SDValue CurSquare = LHS;
5343       // TODO: Intrinsics should have fast-math-flags that propagate to these
5344       // nodes.
5345       while (Val) {
5346         if (Val & 1) {
5347           if (Res.getNode())
5348             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
5349           else
5350             Res = CurSquare;  // 1.0*CurSquare.
5351         }
5352 
5353         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5354                                 CurSquare, CurSquare);
5355         Val >>= 1;
5356       }
5357 
5358       // If the original was negative, invert the result, producing 1/(x*x*x).
5359       if (RHSC->getSExtValue() < 0)
5360         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5361                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5362       return Res;
5363     }
5364   }
5365 
5366   // Otherwise, expand to a libcall.
5367   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5368 }
5369 
5370 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5371                             SDValue LHS, SDValue RHS, SDValue Scale,
5372                             SelectionDAG &DAG, const TargetLowering &TLI) {
5373   EVT VT = LHS.getValueType();
5374   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5375   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5376   LLVMContext &Ctx = *DAG.getContext();
5377 
5378   // If the type is legal but the operation isn't, this node might survive all
5379   // the way to operation legalization. If we end up there and we do not have
5380   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5381   // node.
5382 
5383   // Coax the legalizer into expanding the node during type legalization instead
5384   // by bumping the size by one bit. This will force it to Promote, enabling the
5385   // early expansion and avoiding the need to expand later.
5386 
5387   // We don't have to do this if Scale is 0; that can always be expanded, unless
5388   // it's a saturating signed operation. Those can experience true integer
5389   // division overflow, a case which we must avoid.
5390 
5391   // FIXME: We wouldn't have to do this (or any of the early
5392   // expansion/promotion) if it was possible to expand a libcall of an
5393   // illegal type during operation legalization. But it's not, so things
5394   // get a bit hacky.
5395   unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
5396   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5397       (TLI.isTypeLegal(VT) ||
5398        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5399     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5400         Opcode, VT, ScaleInt);
5401     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5402       EVT PromVT;
5403       if (VT.isScalarInteger())
5404         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5405       else if (VT.isVector()) {
5406         PromVT = VT.getVectorElementType();
5407         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5408         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5409       } else
5410         llvm_unreachable("Wrong VT for DIVFIX?");
5411       if (Signed) {
5412         LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT);
5413         RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT);
5414       } else {
5415         LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT);
5416         RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT);
5417       }
5418       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5419       // For saturating operations, we need to shift up the LHS to get the
5420       // proper saturation width, and then shift down again afterwards.
5421       if (Saturating)
5422         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5423                           DAG.getConstant(1, DL, ShiftTy));
5424       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5425       if (Saturating)
5426         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5427                           DAG.getConstant(1, DL, ShiftTy));
5428       return DAG.getZExtOrTrunc(Res, DL, VT);
5429     }
5430   }
5431 
5432   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5433 }
5434 
5435 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5436 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5437 static void
5438 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs,
5439                      const SDValue &N) {
5440   switch (N.getOpcode()) {
5441   case ISD::CopyFromReg: {
5442     SDValue Op = N.getOperand(1);
5443     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5444                       Op.getValueType().getSizeInBits());
5445     return;
5446   }
5447   case ISD::BITCAST:
5448   case ISD::AssertZext:
5449   case ISD::AssertSext:
5450   case ISD::TRUNCATE:
5451     getUnderlyingArgRegs(Regs, N.getOperand(0));
5452     return;
5453   case ISD::BUILD_PAIR:
5454   case ISD::BUILD_VECTOR:
5455   case ISD::CONCAT_VECTORS:
5456     for (SDValue Op : N->op_values())
5457       getUnderlyingArgRegs(Regs, Op);
5458     return;
5459   default:
5460     return;
5461   }
5462 }
5463 
5464 /// If the DbgValueInst is a dbg_value of a function argument, create the
5465 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5466 /// instruction selection, they will be inserted to the entry BB.
5467 /// We don't currently support this for variadic dbg_values, as they shouldn't
5468 /// appear for function arguments or in the prologue.
5469 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5470     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5471     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
5472   const Argument *Arg = dyn_cast<Argument>(V);
5473   if (!Arg)
5474     return false;
5475 
5476   if (!IsDbgDeclare) {
5477     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5478     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5479     // the entry block.
5480     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5481     if (!IsInEntryBlock)
5482       return false;
5483 
5484     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5485     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5486     // variable that also is a param.
5487     //
5488     // Although, if we are at the top of the entry block already, we can still
5489     // emit using ArgDbgValue. This might catch some situations when the
5490     // dbg.value refers to an argument that isn't used in the entry block, so
5491     // any CopyToReg node would be optimized out and the only way to express
5492     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5493     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5494     // we should only emit as ArgDbgValue if the Variable is an argument to the
5495     // current function, and the dbg.value intrinsic is found in the entry
5496     // block.
5497     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5498         !DL->getInlinedAt();
5499     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5500     if (!IsInPrologue && !VariableIsFunctionInputArg)
5501       return false;
5502 
5503     // Here we assume that a function argument on IR level only can be used to
5504     // describe one input parameter on source level. If we for example have
5505     // source code like this
5506     //
5507     //    struct A { long x, y; };
5508     //    void foo(struct A a, long b) {
5509     //      ...
5510     //      b = a.x;
5511     //      ...
5512     //    }
5513     //
5514     // and IR like this
5515     //
5516     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5517     //  entry:
5518     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5519     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5520     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5521     //    ...
5522     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5523     //    ...
5524     //
5525     // then the last dbg.value is describing a parameter "b" using a value that
5526     // is an argument. But since we already has used %a1 to describe a parameter
5527     // we should not handle that last dbg.value here (that would result in an
5528     // incorrect hoisting of the DBG_VALUE to the function entry).
5529     // Notice that we allow one dbg.value per IR level argument, to accommodate
5530     // for the situation with fragments above.
5531     if (VariableIsFunctionInputArg) {
5532       unsigned ArgNo = Arg->getArgNo();
5533       if (ArgNo >= FuncInfo.DescribedArgs.size())
5534         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5535       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5536         return false;
5537       FuncInfo.DescribedArgs.set(ArgNo);
5538     }
5539   }
5540 
5541   MachineFunction &MF = DAG.getMachineFunction();
5542   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5543 
5544   bool IsIndirect = false;
5545   Optional<MachineOperand> Op;
5546   // Some arguments' frame index is recorded during argument lowering.
5547   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5548   if (FI != std::numeric_limits<int>::max())
5549     Op = MachineOperand::CreateFI(FI);
5550 
5551   SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes;
5552   if (!Op && N.getNode()) {
5553     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5554     Register Reg;
5555     if (ArgRegsAndSizes.size() == 1)
5556       Reg = ArgRegsAndSizes.front().first;
5557 
5558     if (Reg && Reg.isVirtual()) {
5559       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5560       Register PR = RegInfo.getLiveInPhysReg(Reg);
5561       if (PR)
5562         Reg = PR;
5563     }
5564     if (Reg) {
5565       Op = MachineOperand::CreateReg(Reg, false);
5566       IsIndirect = IsDbgDeclare;
5567     }
5568   }
5569 
5570   if (!Op && N.getNode()) {
5571     // Check if frame index is available.
5572     SDValue LCandidate = peekThroughBitcasts(N);
5573     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5574       if (FrameIndexSDNode *FINode =
5575           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5576         Op = MachineOperand::CreateFI(FINode->getIndex());
5577   }
5578 
5579   if (!Op) {
5580     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5581     auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>>
5582                                          SplitRegs) {
5583       unsigned Offset = 0;
5584       for (auto RegAndSize : SplitRegs) {
5585         // If the expression is already a fragment, the current register
5586         // offset+size might extend beyond the fragment. In this case, only
5587         // the register bits that are inside the fragment are relevant.
5588         int RegFragmentSizeInBits = RegAndSize.second;
5589         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5590           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5591           // The register is entirely outside the expression fragment,
5592           // so is irrelevant for debug info.
5593           if (Offset >= ExprFragmentSizeInBits)
5594             break;
5595           // The register is partially outside the expression fragment, only
5596           // the low bits within the fragment are relevant for debug info.
5597           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5598             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5599           }
5600         }
5601 
5602         auto FragmentExpr = DIExpression::createFragmentExpression(
5603             Expr, Offset, RegFragmentSizeInBits);
5604         Offset += RegAndSize.second;
5605         // If a valid fragment expression cannot be created, the variable's
5606         // correct value cannot be determined and so it is set as Undef.
5607         if (!FragmentExpr) {
5608           SDDbgValue *SDV = DAG.getConstantDbgValue(
5609               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5610           DAG.AddDbgValue(SDV, false);
5611           continue;
5612         }
5613         assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?");
5614         FuncInfo.ArgDbgValues.push_back(
5615           BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
5616                   RegAndSize.first, Variable, *FragmentExpr));
5617       }
5618     };
5619 
5620     // Check if ValueMap has reg number.
5621     DenseMap<const Value *, Register>::const_iterator
5622       VMI = FuncInfo.ValueMap.find(V);
5623     if (VMI != FuncInfo.ValueMap.end()) {
5624       const auto &TLI = DAG.getTargetLoweringInfo();
5625       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5626                        V->getType(), None);
5627       if (RFV.occupiesMultipleRegs()) {
5628         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5629         return true;
5630       }
5631 
5632       Op = MachineOperand::CreateReg(VMI->second, false);
5633       IsIndirect = IsDbgDeclare;
5634     } else if (ArgRegsAndSizes.size() > 1) {
5635       // This was split due to the calling convention, and no virtual register
5636       // mapping exists for the value.
5637       splitMultiRegDbgValue(ArgRegsAndSizes);
5638       return true;
5639     }
5640   }
5641 
5642   if (!Op)
5643     return false;
5644 
5645   assert(Variable->isValidLocationForIntrinsic(DL) &&
5646          "Expected inlined-at fields to agree");
5647   IsIndirect = (Op->isReg()) ? IsIndirect : true;
5648   FuncInfo.ArgDbgValues.push_back(
5649       BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
5650               *Op, Variable, Expr));
5651 
5652   return true;
5653 }
5654 
5655 /// Return the appropriate SDDbgValue based on N.
5656 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5657                                              DILocalVariable *Variable,
5658                                              DIExpression *Expr,
5659                                              const DebugLoc &dl,
5660                                              unsigned DbgSDNodeOrder) {
5661   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5662     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5663     // stack slot locations.
5664     //
5665     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5666     // debug values here after optimization:
5667     //
5668     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5669     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5670     //
5671     // Both describe the direct values of their associated variables.
5672     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5673                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5674   }
5675   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5676                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5677 }
5678 
5679 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5680   switch (Intrinsic) {
5681   case Intrinsic::smul_fix:
5682     return ISD::SMULFIX;
5683   case Intrinsic::umul_fix:
5684     return ISD::UMULFIX;
5685   case Intrinsic::smul_fix_sat:
5686     return ISD::SMULFIXSAT;
5687   case Intrinsic::umul_fix_sat:
5688     return ISD::UMULFIXSAT;
5689   case Intrinsic::sdiv_fix:
5690     return ISD::SDIVFIX;
5691   case Intrinsic::udiv_fix:
5692     return ISD::UDIVFIX;
5693   case Intrinsic::sdiv_fix_sat:
5694     return ISD::SDIVFIXSAT;
5695   case Intrinsic::udiv_fix_sat:
5696     return ISD::UDIVFIXSAT;
5697   default:
5698     llvm_unreachable("Unhandled fixed point intrinsic");
5699   }
5700 }
5701 
5702 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5703                                            const char *FunctionName) {
5704   assert(FunctionName && "FunctionName must not be nullptr");
5705   SDValue Callee = DAG.getExternalSymbol(
5706       FunctionName,
5707       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5708   LowerCallTo(I, Callee, I.isTailCall());
5709 }
5710 
5711 /// Given a @llvm.call.preallocated.setup, return the corresponding
5712 /// preallocated call.
5713 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
5714   assert(cast<CallBase>(PreallocatedSetup)
5715                  ->getCalledFunction()
5716                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
5717          "expected call_preallocated_setup Value");
5718   for (auto *U : PreallocatedSetup->users()) {
5719     auto *UseCall = cast<CallBase>(U);
5720     const Function *Fn = UseCall->getCalledFunction();
5721     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
5722       return UseCall;
5723     }
5724   }
5725   llvm_unreachable("expected corresponding call to preallocated setup/arg");
5726 }
5727 
5728 /// Lower the call to the specified intrinsic function.
5729 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5730                                              unsigned Intrinsic) {
5731   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5732   SDLoc sdl = getCurSDLoc();
5733   DebugLoc dl = getCurDebugLoc();
5734   SDValue Res;
5735 
5736   SDNodeFlags Flags;
5737   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
5738     Flags.copyFMF(*FPOp);
5739 
5740   switch (Intrinsic) {
5741   default:
5742     // By default, turn this into a target intrinsic node.
5743     visitTargetIntrinsic(I, Intrinsic);
5744     return;
5745   case Intrinsic::vscale: {
5746     match(&I, m_VScale(DAG.getDataLayout()));
5747     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5748     setValue(&I,
5749              DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)));
5750     return;
5751   }
5752   case Intrinsic::vastart:  visitVAStart(I); return;
5753   case Intrinsic::vaend:    visitVAEnd(I); return;
5754   case Intrinsic::vacopy:   visitVACopy(I); return;
5755   case Intrinsic::returnaddress:
5756     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5757                              TLI.getPointerTy(DAG.getDataLayout()),
5758                              getValue(I.getArgOperand(0))));
5759     return;
5760   case Intrinsic::addressofreturnaddress:
5761     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5762                              TLI.getPointerTy(DAG.getDataLayout())));
5763     return;
5764   case Intrinsic::sponentry:
5765     setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl,
5766                              TLI.getFrameIndexTy(DAG.getDataLayout())));
5767     return;
5768   case Intrinsic::frameaddress:
5769     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5770                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5771                              getValue(I.getArgOperand(0))));
5772     return;
5773   case Intrinsic::read_volatile_register:
5774   case Intrinsic::read_register: {
5775     Value *Reg = I.getArgOperand(0);
5776     SDValue Chain = getRoot();
5777     SDValue RegName =
5778         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5779     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5780     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5781       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5782     setValue(&I, Res);
5783     DAG.setRoot(Res.getValue(1));
5784     return;
5785   }
5786   case Intrinsic::write_register: {
5787     Value *Reg = I.getArgOperand(0);
5788     Value *RegValue = I.getArgOperand(1);
5789     SDValue Chain = getRoot();
5790     SDValue RegName =
5791         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5792     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5793                             RegName, getValue(RegValue)));
5794     return;
5795   }
5796   case Intrinsic::memcpy: {
5797     const auto &MCI = cast<MemCpyInst>(I);
5798     SDValue Op1 = getValue(I.getArgOperand(0));
5799     SDValue Op2 = getValue(I.getArgOperand(1));
5800     SDValue Op3 = getValue(I.getArgOperand(2));
5801     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5802     Align DstAlign = MCI.getDestAlign().valueOrOne();
5803     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5804     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5805     bool isVol = MCI.isVolatile();
5806     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5807     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5808     // node.
5809     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5810     SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5811                                /* AlwaysInline */ false, isTC,
5812                                MachinePointerInfo(I.getArgOperand(0)),
5813                                MachinePointerInfo(I.getArgOperand(1)));
5814     updateDAGForMaybeTailCall(MC);
5815     return;
5816   }
5817   case Intrinsic::memcpy_inline: {
5818     const auto &MCI = cast<MemCpyInlineInst>(I);
5819     SDValue Dst = getValue(I.getArgOperand(0));
5820     SDValue Src = getValue(I.getArgOperand(1));
5821     SDValue Size = getValue(I.getArgOperand(2));
5822     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
5823     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
5824     Align DstAlign = MCI.getDestAlign().valueOrOne();
5825     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5826     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5827     bool isVol = MCI.isVolatile();
5828     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5829     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5830     // node.
5831     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
5832                                /* AlwaysInline */ true, isTC,
5833                                MachinePointerInfo(I.getArgOperand(0)),
5834                                MachinePointerInfo(I.getArgOperand(1)));
5835     updateDAGForMaybeTailCall(MC);
5836     return;
5837   }
5838   case Intrinsic::memset: {
5839     const auto &MSI = cast<MemSetInst>(I);
5840     SDValue Op1 = getValue(I.getArgOperand(0));
5841     SDValue Op2 = getValue(I.getArgOperand(1));
5842     SDValue Op3 = getValue(I.getArgOperand(2));
5843     // @llvm.memset defines 0 and 1 to both mean no alignment.
5844     Align Alignment = MSI.getDestAlign().valueOrOne();
5845     bool isVol = MSI.isVolatile();
5846     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5847     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5848     SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC,
5849                                MachinePointerInfo(I.getArgOperand(0)));
5850     updateDAGForMaybeTailCall(MS);
5851     return;
5852   }
5853   case Intrinsic::memmove: {
5854     const auto &MMI = cast<MemMoveInst>(I);
5855     SDValue Op1 = getValue(I.getArgOperand(0));
5856     SDValue Op2 = getValue(I.getArgOperand(1));
5857     SDValue Op3 = getValue(I.getArgOperand(2));
5858     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5859     Align DstAlign = MMI.getDestAlign().valueOrOne();
5860     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
5861     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5862     bool isVol = MMI.isVolatile();
5863     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5864     // FIXME: Support passing different dest/src alignments to the memmove DAG
5865     // node.
5866     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5867     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5868                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5869                                 MachinePointerInfo(I.getArgOperand(1)));
5870     updateDAGForMaybeTailCall(MM);
5871     return;
5872   }
5873   case Intrinsic::memcpy_element_unordered_atomic: {
5874     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5875     SDValue Dst = getValue(MI.getRawDest());
5876     SDValue Src = getValue(MI.getRawSource());
5877     SDValue Length = getValue(MI.getLength());
5878 
5879     unsigned DstAlign = MI.getDestAlignment();
5880     unsigned SrcAlign = MI.getSourceAlignment();
5881     Type *LengthTy = MI.getLength()->getType();
5882     unsigned ElemSz = MI.getElementSizeInBytes();
5883     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5884     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5885                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5886                                      MachinePointerInfo(MI.getRawDest()),
5887                                      MachinePointerInfo(MI.getRawSource()));
5888     updateDAGForMaybeTailCall(MC);
5889     return;
5890   }
5891   case Intrinsic::memmove_element_unordered_atomic: {
5892     auto &MI = cast<AtomicMemMoveInst>(I);
5893     SDValue Dst = getValue(MI.getRawDest());
5894     SDValue Src = getValue(MI.getRawSource());
5895     SDValue Length = getValue(MI.getLength());
5896 
5897     unsigned DstAlign = MI.getDestAlignment();
5898     unsigned SrcAlign = MI.getSourceAlignment();
5899     Type *LengthTy = MI.getLength()->getType();
5900     unsigned ElemSz = MI.getElementSizeInBytes();
5901     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5902     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5903                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5904                                       MachinePointerInfo(MI.getRawDest()),
5905                                       MachinePointerInfo(MI.getRawSource()));
5906     updateDAGForMaybeTailCall(MC);
5907     return;
5908   }
5909   case Intrinsic::memset_element_unordered_atomic: {
5910     auto &MI = cast<AtomicMemSetInst>(I);
5911     SDValue Dst = getValue(MI.getRawDest());
5912     SDValue Val = getValue(MI.getValue());
5913     SDValue Length = getValue(MI.getLength());
5914 
5915     unsigned DstAlign = MI.getDestAlignment();
5916     Type *LengthTy = MI.getLength()->getType();
5917     unsigned ElemSz = MI.getElementSizeInBytes();
5918     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5919     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5920                                      LengthTy, ElemSz, isTC,
5921                                      MachinePointerInfo(MI.getRawDest()));
5922     updateDAGForMaybeTailCall(MC);
5923     return;
5924   }
5925   case Intrinsic::call_preallocated_setup: {
5926     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
5927     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
5928     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
5929                               getRoot(), SrcValue);
5930     setValue(&I, Res);
5931     DAG.setRoot(Res);
5932     return;
5933   }
5934   case Intrinsic::call_preallocated_arg: {
5935     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
5936     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
5937     SDValue Ops[3];
5938     Ops[0] = getRoot();
5939     Ops[1] = SrcValue;
5940     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
5941                                    MVT::i32); // arg index
5942     SDValue Res = DAG.getNode(
5943         ISD::PREALLOCATED_ARG, sdl,
5944         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
5945     setValue(&I, Res);
5946     DAG.setRoot(Res.getValue(1));
5947     return;
5948   }
5949   case Intrinsic::dbg_addr:
5950   case Intrinsic::dbg_declare: {
5951     // Assume dbg.addr and dbg.declare can not currently use DIArgList, i.e.
5952     // they are non-variadic.
5953     const auto &DI = cast<DbgVariableIntrinsic>(I);
5954     assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList");
5955     DILocalVariable *Variable = DI.getVariable();
5956     DIExpression *Expression = DI.getExpression();
5957     dropDanglingDebugInfo(Variable, Expression);
5958     assert(Variable && "Missing variable");
5959     LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI
5960                       << "\n");
5961     // Check if address has undef value.
5962     const Value *Address = DI.getVariableLocationOp(0);
5963     if (!Address || isa<UndefValue>(Address) ||
5964         (Address->use_empty() && !isa<Argument>(Address))) {
5965       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
5966                         << " (bad/undef/unused-arg address)\n");
5967       return;
5968     }
5969 
5970     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5971 
5972     // Check if this variable can be described by a frame index, typically
5973     // either as a static alloca or a byval parameter.
5974     int FI = std::numeric_limits<int>::max();
5975     if (const auto *AI =
5976             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5977       if (AI->isStaticAlloca()) {
5978         auto I = FuncInfo.StaticAllocaMap.find(AI);
5979         if (I != FuncInfo.StaticAllocaMap.end())
5980           FI = I->second;
5981       }
5982     } else if (const auto *Arg = dyn_cast<Argument>(
5983                    Address->stripInBoundsConstantOffsets())) {
5984       FI = FuncInfo.getArgumentFrameIndex(Arg);
5985     }
5986 
5987     // llvm.dbg.addr is control dependent and always generates indirect
5988     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5989     // the MachineFunction variable table.
5990     if (FI != std::numeric_limits<int>::max()) {
5991       if (Intrinsic == Intrinsic::dbg_addr) {
5992         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
5993             Variable, Expression, FI, getRoot().getNode(), /*IsIndirect*/ true,
5994             dl, SDNodeOrder);
5995         DAG.AddDbgValue(SDV, isParameter);
5996       } else {
5997         LLVM_DEBUG(dbgs() << "Skipping " << DI
5998                           << " (variable info stashed in MF side table)\n");
5999       }
6000       return;
6001     }
6002 
6003     SDValue &N = NodeMap[Address];
6004     if (!N.getNode() && isa<Argument>(Address))
6005       // Check unused arguments map.
6006       N = UnusedArgNodeMap[Address];
6007     SDDbgValue *SDV;
6008     if (N.getNode()) {
6009       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
6010         Address = BCI->getOperand(0);
6011       // Parameters are handled specially.
6012       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
6013       if (isParameter && FINode) {
6014         // Byval parameter. We have a frame index at this point.
6015         SDV =
6016             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
6017                                       /*IsIndirect*/ true, dl, SDNodeOrder);
6018       } else if (isa<Argument>(Address)) {
6019         // Address is an argument, so try to emit its dbg value using
6020         // virtual register info from the FuncInfo.ValueMap.
6021         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
6022         return;
6023       } else {
6024         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
6025                               true, dl, SDNodeOrder);
6026       }
6027       DAG.AddDbgValue(SDV, isParameter);
6028     } else {
6029       // If Address is an argument then try to emit its dbg value using
6030       // virtual register info from the FuncInfo.ValueMap.
6031       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
6032                                     N)) {
6033         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6034                           << " (could not emit func-arg dbg_value)\n");
6035       }
6036     }
6037     return;
6038   }
6039   case Intrinsic::dbg_label: {
6040     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
6041     DILabel *Label = DI.getLabel();
6042     assert(Label && "Missing label");
6043 
6044     SDDbgLabel *SDV;
6045     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
6046     DAG.AddDbgLabel(SDV);
6047     return;
6048   }
6049   case Intrinsic::dbg_value: {
6050     const DbgValueInst &DI = cast<DbgValueInst>(I);
6051     assert(DI.getVariable() && "Missing variable");
6052 
6053     DILocalVariable *Variable = DI.getVariable();
6054     DIExpression *Expression = DI.getExpression();
6055     dropDanglingDebugInfo(Variable, Expression);
6056     SmallVector<Value *> Values(DI.getValues());
6057     if (Values.empty())
6058       return;
6059 
6060     if (std::count(Values.begin(), Values.end(), nullptr))
6061       return;
6062 
6063     bool IsVariadic = DI.hasArgList();
6064     if (!handleDebugValue(Values, Variable, Expression, dl, DI.getDebugLoc(),
6065                           SDNodeOrder, IsVariadic))
6066       addDanglingDebugInfo(&DI, dl, SDNodeOrder);
6067     return;
6068   }
6069 
6070   case Intrinsic::eh_typeid_for: {
6071     // Find the type id for the given typeinfo.
6072     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6073     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6074     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6075     setValue(&I, Res);
6076     return;
6077   }
6078 
6079   case Intrinsic::eh_return_i32:
6080   case Intrinsic::eh_return_i64:
6081     DAG.getMachineFunction().setCallsEHReturn(true);
6082     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6083                             MVT::Other,
6084                             getControlRoot(),
6085                             getValue(I.getArgOperand(0)),
6086                             getValue(I.getArgOperand(1))));
6087     return;
6088   case Intrinsic::eh_unwind_init:
6089     DAG.getMachineFunction().setCallsUnwindInit(true);
6090     return;
6091   case Intrinsic::eh_dwarf_cfa:
6092     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6093                              TLI.getPointerTy(DAG.getDataLayout()),
6094                              getValue(I.getArgOperand(0))));
6095     return;
6096   case Intrinsic::eh_sjlj_callsite: {
6097     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6098     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
6099     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
6100     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6101 
6102     MMI.setCurrentCallSite(CI->getZExtValue());
6103     return;
6104   }
6105   case Intrinsic::eh_sjlj_functioncontext: {
6106     // Get and store the index of the function context.
6107     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6108     AllocaInst *FnCtx =
6109       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6110     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6111     MFI.setFunctionContextIndex(FI);
6112     return;
6113   }
6114   case Intrinsic::eh_sjlj_setjmp: {
6115     SDValue Ops[2];
6116     Ops[0] = getRoot();
6117     Ops[1] = getValue(I.getArgOperand(0));
6118     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6119                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6120     setValue(&I, Op.getValue(0));
6121     DAG.setRoot(Op.getValue(1));
6122     return;
6123   }
6124   case Intrinsic::eh_sjlj_longjmp:
6125     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6126                             getRoot(), getValue(I.getArgOperand(0))));
6127     return;
6128   case Intrinsic::eh_sjlj_setup_dispatch:
6129     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6130                             getRoot()));
6131     return;
6132   case Intrinsic::masked_gather:
6133     visitMaskedGather(I);
6134     return;
6135   case Intrinsic::masked_load:
6136     visitMaskedLoad(I);
6137     return;
6138   case Intrinsic::masked_scatter:
6139     visitMaskedScatter(I);
6140     return;
6141   case Intrinsic::masked_store:
6142     visitMaskedStore(I);
6143     return;
6144   case Intrinsic::masked_expandload:
6145     visitMaskedLoad(I, true /* IsExpanding */);
6146     return;
6147   case Intrinsic::masked_compressstore:
6148     visitMaskedStore(I, true /* IsCompressing */);
6149     return;
6150   case Intrinsic::powi:
6151     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6152                             getValue(I.getArgOperand(1)), DAG));
6153     return;
6154   case Intrinsic::log:
6155     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6156     return;
6157   case Intrinsic::log2:
6158     setValue(&I,
6159              expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6160     return;
6161   case Intrinsic::log10:
6162     setValue(&I,
6163              expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6164     return;
6165   case Intrinsic::exp:
6166     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6167     return;
6168   case Intrinsic::exp2:
6169     setValue(&I,
6170              expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6171     return;
6172   case Intrinsic::pow:
6173     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6174                            getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6175     return;
6176   case Intrinsic::sqrt:
6177   case Intrinsic::fabs:
6178   case Intrinsic::sin:
6179   case Intrinsic::cos:
6180   case Intrinsic::floor:
6181   case Intrinsic::ceil:
6182   case Intrinsic::trunc:
6183   case Intrinsic::rint:
6184   case Intrinsic::nearbyint:
6185   case Intrinsic::round:
6186   case Intrinsic::roundeven:
6187   case Intrinsic::canonicalize: {
6188     unsigned Opcode;
6189     switch (Intrinsic) {
6190     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6191     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6192     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6193     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6194     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6195     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6196     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6197     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6198     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6199     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6200     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6201     case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6202     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6203     }
6204 
6205     setValue(&I, DAG.getNode(Opcode, sdl,
6206                              getValue(I.getArgOperand(0)).getValueType(),
6207                              getValue(I.getArgOperand(0)), Flags));
6208     return;
6209   }
6210   case Intrinsic::lround:
6211   case Intrinsic::llround:
6212   case Intrinsic::lrint:
6213   case Intrinsic::llrint: {
6214     unsigned Opcode;
6215     switch (Intrinsic) {
6216     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6217     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6218     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6219     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6220     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6221     }
6222 
6223     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6224     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6225                              getValue(I.getArgOperand(0))));
6226     return;
6227   }
6228   case Intrinsic::minnum:
6229     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6230                              getValue(I.getArgOperand(0)).getValueType(),
6231                              getValue(I.getArgOperand(0)),
6232                              getValue(I.getArgOperand(1)), Flags));
6233     return;
6234   case Intrinsic::maxnum:
6235     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6236                              getValue(I.getArgOperand(0)).getValueType(),
6237                              getValue(I.getArgOperand(0)),
6238                              getValue(I.getArgOperand(1)), Flags));
6239     return;
6240   case Intrinsic::minimum:
6241     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6242                              getValue(I.getArgOperand(0)).getValueType(),
6243                              getValue(I.getArgOperand(0)),
6244                              getValue(I.getArgOperand(1)), Flags));
6245     return;
6246   case Intrinsic::maximum:
6247     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6248                              getValue(I.getArgOperand(0)).getValueType(),
6249                              getValue(I.getArgOperand(0)),
6250                              getValue(I.getArgOperand(1)), Flags));
6251     return;
6252   case Intrinsic::copysign:
6253     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6254                              getValue(I.getArgOperand(0)).getValueType(),
6255                              getValue(I.getArgOperand(0)),
6256                              getValue(I.getArgOperand(1)), Flags));
6257     return;
6258   case Intrinsic::fma:
6259     setValue(&I, DAG.getNode(
6260                      ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6261                      getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6262                      getValue(I.getArgOperand(2)), Flags));
6263     return;
6264 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6265   case Intrinsic::INTRINSIC:
6266 #include "llvm/IR/ConstrainedOps.def"
6267     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6268     return;
6269 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6270 #include "llvm/IR/VPIntrinsics.def"
6271     visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
6272     return;
6273   case Intrinsic::fmuladd: {
6274     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6275     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6276         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6277       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6278                                getValue(I.getArgOperand(0)).getValueType(),
6279                                getValue(I.getArgOperand(0)),
6280                                getValue(I.getArgOperand(1)),
6281                                getValue(I.getArgOperand(2)), Flags));
6282     } else {
6283       // TODO: Intrinsic calls should have fast-math-flags.
6284       SDValue Mul = DAG.getNode(
6285           ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6286           getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6287       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6288                                 getValue(I.getArgOperand(0)).getValueType(),
6289                                 Mul, getValue(I.getArgOperand(2)), Flags);
6290       setValue(&I, Add);
6291     }
6292     return;
6293   }
6294   case Intrinsic::convert_to_fp16:
6295     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6296                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6297                                          getValue(I.getArgOperand(0)),
6298                                          DAG.getTargetConstant(0, sdl,
6299                                                                MVT::i32))));
6300     return;
6301   case Intrinsic::convert_from_fp16:
6302     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6303                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6304                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6305                                          getValue(I.getArgOperand(0)))));
6306     return;
6307   case Intrinsic::fptosi_sat: {
6308     EVT Type = TLI.getValueType(DAG.getDataLayout(), I.getType());
6309     SDValue SatW = DAG.getConstant(Type.getScalarSizeInBits(), sdl, MVT::i32);
6310     setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, Type,
6311                              getValue(I.getArgOperand(0)), SatW));
6312     return;
6313   }
6314   case Intrinsic::fptoui_sat: {
6315     EVT Type = TLI.getValueType(DAG.getDataLayout(), I.getType());
6316     SDValue SatW = DAG.getConstant(Type.getScalarSizeInBits(), sdl, MVT::i32);
6317     setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, Type,
6318                              getValue(I.getArgOperand(0)), SatW));
6319     return;
6320   }
6321   case Intrinsic::set_rounding:
6322     Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
6323                       {getRoot(), getValue(I.getArgOperand(0))});
6324     setValue(&I, Res);
6325     DAG.setRoot(Res.getValue(0));
6326     return;
6327   case Intrinsic::pcmarker: {
6328     SDValue Tmp = getValue(I.getArgOperand(0));
6329     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6330     return;
6331   }
6332   case Intrinsic::readcyclecounter: {
6333     SDValue Op = getRoot();
6334     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6335                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6336     setValue(&I, Res);
6337     DAG.setRoot(Res.getValue(1));
6338     return;
6339   }
6340   case Intrinsic::bitreverse:
6341     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6342                              getValue(I.getArgOperand(0)).getValueType(),
6343                              getValue(I.getArgOperand(0))));
6344     return;
6345   case Intrinsic::bswap:
6346     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6347                              getValue(I.getArgOperand(0)).getValueType(),
6348                              getValue(I.getArgOperand(0))));
6349     return;
6350   case Intrinsic::cttz: {
6351     SDValue Arg = getValue(I.getArgOperand(0));
6352     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6353     EVT Ty = Arg.getValueType();
6354     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6355                              sdl, Ty, Arg));
6356     return;
6357   }
6358   case Intrinsic::ctlz: {
6359     SDValue Arg = getValue(I.getArgOperand(0));
6360     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6361     EVT Ty = Arg.getValueType();
6362     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6363                              sdl, Ty, Arg));
6364     return;
6365   }
6366   case Intrinsic::ctpop: {
6367     SDValue Arg = getValue(I.getArgOperand(0));
6368     EVT Ty = Arg.getValueType();
6369     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6370     return;
6371   }
6372   case Intrinsic::fshl:
6373   case Intrinsic::fshr: {
6374     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6375     SDValue X = getValue(I.getArgOperand(0));
6376     SDValue Y = getValue(I.getArgOperand(1));
6377     SDValue Z = getValue(I.getArgOperand(2));
6378     EVT VT = X.getValueType();
6379 
6380     if (X == Y) {
6381       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6382       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6383     } else {
6384       auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6385       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6386     }
6387     return;
6388   }
6389   case Intrinsic::sadd_sat: {
6390     SDValue Op1 = getValue(I.getArgOperand(0));
6391     SDValue Op2 = getValue(I.getArgOperand(1));
6392     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6393     return;
6394   }
6395   case Intrinsic::uadd_sat: {
6396     SDValue Op1 = getValue(I.getArgOperand(0));
6397     SDValue Op2 = getValue(I.getArgOperand(1));
6398     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6399     return;
6400   }
6401   case Intrinsic::ssub_sat: {
6402     SDValue Op1 = getValue(I.getArgOperand(0));
6403     SDValue Op2 = getValue(I.getArgOperand(1));
6404     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6405     return;
6406   }
6407   case Intrinsic::usub_sat: {
6408     SDValue Op1 = getValue(I.getArgOperand(0));
6409     SDValue Op2 = getValue(I.getArgOperand(1));
6410     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6411     return;
6412   }
6413   case Intrinsic::sshl_sat: {
6414     SDValue Op1 = getValue(I.getArgOperand(0));
6415     SDValue Op2 = getValue(I.getArgOperand(1));
6416     setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6417     return;
6418   }
6419   case Intrinsic::ushl_sat: {
6420     SDValue Op1 = getValue(I.getArgOperand(0));
6421     SDValue Op2 = getValue(I.getArgOperand(1));
6422     setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6423     return;
6424   }
6425   case Intrinsic::smul_fix:
6426   case Intrinsic::umul_fix:
6427   case Intrinsic::smul_fix_sat:
6428   case Intrinsic::umul_fix_sat: {
6429     SDValue Op1 = getValue(I.getArgOperand(0));
6430     SDValue Op2 = getValue(I.getArgOperand(1));
6431     SDValue Op3 = getValue(I.getArgOperand(2));
6432     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6433                              Op1.getValueType(), Op1, Op2, Op3));
6434     return;
6435   }
6436   case Intrinsic::sdiv_fix:
6437   case Intrinsic::udiv_fix:
6438   case Intrinsic::sdiv_fix_sat:
6439   case Intrinsic::udiv_fix_sat: {
6440     SDValue Op1 = getValue(I.getArgOperand(0));
6441     SDValue Op2 = getValue(I.getArgOperand(1));
6442     SDValue Op3 = getValue(I.getArgOperand(2));
6443     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6444                               Op1, Op2, Op3, DAG, TLI));
6445     return;
6446   }
6447   case Intrinsic::smax: {
6448     SDValue Op1 = getValue(I.getArgOperand(0));
6449     SDValue Op2 = getValue(I.getArgOperand(1));
6450     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
6451     return;
6452   }
6453   case Intrinsic::smin: {
6454     SDValue Op1 = getValue(I.getArgOperand(0));
6455     SDValue Op2 = getValue(I.getArgOperand(1));
6456     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
6457     return;
6458   }
6459   case Intrinsic::umax: {
6460     SDValue Op1 = getValue(I.getArgOperand(0));
6461     SDValue Op2 = getValue(I.getArgOperand(1));
6462     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
6463     return;
6464   }
6465   case Intrinsic::umin: {
6466     SDValue Op1 = getValue(I.getArgOperand(0));
6467     SDValue Op2 = getValue(I.getArgOperand(1));
6468     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
6469     return;
6470   }
6471   case Intrinsic::abs: {
6472     // TODO: Preserve "int min is poison" arg in SDAG?
6473     SDValue Op1 = getValue(I.getArgOperand(0));
6474     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
6475     return;
6476   }
6477   case Intrinsic::stacksave: {
6478     SDValue Op = getRoot();
6479     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6480     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
6481     setValue(&I, Res);
6482     DAG.setRoot(Res.getValue(1));
6483     return;
6484   }
6485   case Intrinsic::stackrestore:
6486     Res = getValue(I.getArgOperand(0));
6487     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6488     return;
6489   case Intrinsic::get_dynamic_area_offset: {
6490     SDValue Op = getRoot();
6491     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6492     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6493     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6494     // target.
6495     if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
6496       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6497                          " intrinsic!");
6498     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6499                       Op);
6500     DAG.setRoot(Op);
6501     setValue(&I, Res);
6502     return;
6503   }
6504   case Intrinsic::stackguard: {
6505     MachineFunction &MF = DAG.getMachineFunction();
6506     const Module &M = *MF.getFunction().getParent();
6507     SDValue Chain = getRoot();
6508     if (TLI.useLoadStackGuardNode()) {
6509       Res = getLoadStackGuard(DAG, sdl, Chain);
6510     } else {
6511       EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6512       const Value *Global = TLI.getSDagStackGuard(M);
6513       Align Align = DL->getPrefTypeAlign(Global->getType());
6514       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6515                         MachinePointerInfo(Global, 0), Align,
6516                         MachineMemOperand::MOVolatile);
6517     }
6518     if (TLI.useStackGuardXorFP())
6519       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6520     DAG.setRoot(Chain);
6521     setValue(&I, Res);
6522     return;
6523   }
6524   case Intrinsic::stackprotector: {
6525     // Emit code into the DAG to store the stack guard onto the stack.
6526     MachineFunction &MF = DAG.getMachineFunction();
6527     MachineFrameInfo &MFI = MF.getFrameInfo();
6528     SDValue Src, Chain = getRoot();
6529 
6530     if (TLI.useLoadStackGuardNode())
6531       Src = getLoadStackGuard(DAG, sdl, Chain);
6532     else
6533       Src = getValue(I.getArgOperand(0));   // The guard's value.
6534 
6535     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6536 
6537     int FI = FuncInfo.StaticAllocaMap[Slot];
6538     MFI.setStackProtectorIndex(FI);
6539     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6540 
6541     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6542 
6543     // Store the stack protector onto the stack.
6544     Res = DAG.getStore(
6545         Chain, sdl, Src, FIN,
6546         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
6547         MaybeAlign(), MachineMemOperand::MOVolatile);
6548     setValue(&I, Res);
6549     DAG.setRoot(Res);
6550     return;
6551   }
6552   case Intrinsic::objectsize:
6553     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6554 
6555   case Intrinsic::is_constant:
6556     llvm_unreachable("llvm.is.constant.* should have been lowered already");
6557 
6558   case Intrinsic::annotation:
6559   case Intrinsic::ptr_annotation:
6560   case Intrinsic::launder_invariant_group:
6561   case Intrinsic::strip_invariant_group:
6562     // Drop the intrinsic, but forward the value
6563     setValue(&I, getValue(I.getOperand(0)));
6564     return;
6565 
6566   case Intrinsic::assume:
6567   case Intrinsic::experimental_noalias_scope_decl:
6568   case Intrinsic::var_annotation:
6569   case Intrinsic::sideeffect:
6570     // Discard annotate attributes, noalias scope declarations, assumptions, and
6571     // artificial side-effects.
6572     return;
6573 
6574   case Intrinsic::codeview_annotation: {
6575     // Emit a label associated with this metadata.
6576     MachineFunction &MF = DAG.getMachineFunction();
6577     MCSymbol *Label =
6578         MF.getMMI().getContext().createTempSymbol("annotation", true);
6579     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6580     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6581     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6582     DAG.setRoot(Res);
6583     return;
6584   }
6585 
6586   case Intrinsic::init_trampoline: {
6587     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6588 
6589     SDValue Ops[6];
6590     Ops[0] = getRoot();
6591     Ops[1] = getValue(I.getArgOperand(0));
6592     Ops[2] = getValue(I.getArgOperand(1));
6593     Ops[3] = getValue(I.getArgOperand(2));
6594     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6595     Ops[5] = DAG.getSrcValue(F);
6596 
6597     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6598 
6599     DAG.setRoot(Res);
6600     return;
6601   }
6602   case Intrinsic::adjust_trampoline:
6603     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6604                              TLI.getPointerTy(DAG.getDataLayout()),
6605                              getValue(I.getArgOperand(0))));
6606     return;
6607   case Intrinsic::gcroot: {
6608     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6609            "only valid in functions with gc specified, enforced by Verifier");
6610     assert(GFI && "implied by previous");
6611     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6612     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6613 
6614     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6615     GFI->addStackRoot(FI->getIndex(), TypeMap);
6616     return;
6617   }
6618   case Intrinsic::gcread:
6619   case Intrinsic::gcwrite:
6620     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6621   case Intrinsic::flt_rounds:
6622     Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot());
6623     setValue(&I, Res);
6624     DAG.setRoot(Res.getValue(1));
6625     return;
6626 
6627   case Intrinsic::expect:
6628     // Just replace __builtin_expect(exp, c) with EXP.
6629     setValue(&I, getValue(I.getArgOperand(0)));
6630     return;
6631 
6632   case Intrinsic::ubsantrap:
6633   case Intrinsic::debugtrap:
6634   case Intrinsic::trap: {
6635     StringRef TrapFuncName =
6636         I.getAttributes()
6637             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
6638             .getValueAsString();
6639     if (TrapFuncName.empty()) {
6640       switch (Intrinsic) {
6641       case Intrinsic::trap:
6642         DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
6643         break;
6644       case Intrinsic::debugtrap:
6645         DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
6646         break;
6647       case Intrinsic::ubsantrap:
6648         DAG.setRoot(DAG.getNode(
6649             ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
6650             DAG.getTargetConstant(
6651                 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
6652                 MVT::i32)));
6653         break;
6654       default: llvm_unreachable("unknown trap intrinsic");
6655       }
6656       return;
6657     }
6658     TargetLowering::ArgListTy Args;
6659     if (Intrinsic == Intrinsic::ubsantrap) {
6660       Args.push_back(TargetLoweringBase::ArgListEntry());
6661       Args[0].Val = I.getArgOperand(0);
6662       Args[0].Node = getValue(Args[0].Val);
6663       Args[0].Ty = Args[0].Val->getType();
6664     }
6665 
6666     TargetLowering::CallLoweringInfo CLI(DAG);
6667     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6668         CallingConv::C, I.getType(),
6669         DAG.getExternalSymbol(TrapFuncName.data(),
6670                               TLI.getPointerTy(DAG.getDataLayout())),
6671         std::move(Args));
6672 
6673     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6674     DAG.setRoot(Result.second);
6675     return;
6676   }
6677 
6678   case Intrinsic::uadd_with_overflow:
6679   case Intrinsic::sadd_with_overflow:
6680   case Intrinsic::usub_with_overflow:
6681   case Intrinsic::ssub_with_overflow:
6682   case Intrinsic::umul_with_overflow:
6683   case Intrinsic::smul_with_overflow: {
6684     ISD::NodeType Op;
6685     switch (Intrinsic) {
6686     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6687     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6688     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6689     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6690     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6691     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6692     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6693     }
6694     SDValue Op1 = getValue(I.getArgOperand(0));
6695     SDValue Op2 = getValue(I.getArgOperand(1));
6696 
6697     EVT ResultVT = Op1.getValueType();
6698     EVT OverflowVT = MVT::i1;
6699     if (ResultVT.isVector())
6700       OverflowVT = EVT::getVectorVT(
6701           *Context, OverflowVT, ResultVT.getVectorElementCount());
6702 
6703     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6704     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6705     return;
6706   }
6707   case Intrinsic::prefetch: {
6708     SDValue Ops[5];
6709     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6710     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6711     Ops[0] = DAG.getRoot();
6712     Ops[1] = getValue(I.getArgOperand(0));
6713     Ops[2] = getValue(I.getArgOperand(1));
6714     Ops[3] = getValue(I.getArgOperand(2));
6715     Ops[4] = getValue(I.getArgOperand(3));
6716     SDValue Result = DAG.getMemIntrinsicNode(
6717         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
6718         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
6719         /* align */ None, Flags);
6720 
6721     // Chain the prefetch in parallell with any pending loads, to stay out of
6722     // the way of later optimizations.
6723     PendingLoads.push_back(Result);
6724     Result = getRoot();
6725     DAG.setRoot(Result);
6726     return;
6727   }
6728   case Intrinsic::lifetime_start:
6729   case Intrinsic::lifetime_end: {
6730     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6731     // Stack coloring is not enabled in O0, discard region information.
6732     if (TM.getOptLevel() == CodeGenOpt::None)
6733       return;
6734 
6735     const int64_t ObjectSize =
6736         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6737     Value *const ObjectPtr = I.getArgOperand(1);
6738     SmallVector<const Value *, 4> Allocas;
6739     getUnderlyingObjects(ObjectPtr, Allocas);
6740 
6741     for (const Value *Alloca : Allocas) {
6742       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca);
6743 
6744       // Could not find an Alloca.
6745       if (!LifetimeObject)
6746         continue;
6747 
6748       // First check that the Alloca is static, otherwise it won't have a
6749       // valid frame index.
6750       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6751       if (SI == FuncInfo.StaticAllocaMap.end())
6752         return;
6753 
6754       const int FrameIndex = SI->second;
6755       int64_t Offset;
6756       if (GetPointerBaseWithConstantOffset(
6757               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6758         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6759       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6760                                 Offset);
6761       DAG.setRoot(Res);
6762     }
6763     return;
6764   }
6765   case Intrinsic::pseudoprobe: {
6766     auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
6767     auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6768     auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
6769     Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
6770     DAG.setRoot(Res);
6771     return;
6772   }
6773   case Intrinsic::invariant_start:
6774     // Discard region information.
6775     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6776     return;
6777   case Intrinsic::invariant_end:
6778     // Discard region information.
6779     return;
6780   case Intrinsic::clear_cache:
6781     /// FunctionName may be null.
6782     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
6783       lowerCallToExternalSymbol(I, FunctionName);
6784     return;
6785   case Intrinsic::donothing:
6786     // ignore
6787     return;
6788   case Intrinsic::experimental_stackmap:
6789     visitStackmap(I);
6790     return;
6791   case Intrinsic::experimental_patchpoint_void:
6792   case Intrinsic::experimental_patchpoint_i64:
6793     visitPatchpoint(I);
6794     return;
6795   case Intrinsic::experimental_gc_statepoint:
6796     LowerStatepoint(cast<GCStatepointInst>(I));
6797     return;
6798   case Intrinsic::experimental_gc_result:
6799     visitGCResult(cast<GCResultInst>(I));
6800     return;
6801   case Intrinsic::experimental_gc_relocate:
6802     visitGCRelocate(cast<GCRelocateInst>(I));
6803     return;
6804   case Intrinsic::instrprof_increment:
6805     llvm_unreachable("instrprof failed to lower an increment");
6806   case Intrinsic::instrprof_value_profile:
6807     llvm_unreachable("instrprof failed to lower a value profiling call");
6808   case Intrinsic::localescape: {
6809     MachineFunction &MF = DAG.getMachineFunction();
6810     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6811 
6812     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6813     // is the same on all targets.
6814     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6815       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6816       if (isa<ConstantPointerNull>(Arg))
6817         continue; // Skip null pointers. They represent a hole in index space.
6818       AllocaInst *Slot = cast<AllocaInst>(Arg);
6819       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6820              "can only escape static allocas");
6821       int FI = FuncInfo.StaticAllocaMap[Slot];
6822       MCSymbol *FrameAllocSym =
6823           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6824               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6825       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6826               TII->get(TargetOpcode::LOCAL_ESCAPE))
6827           .addSym(FrameAllocSym)
6828           .addFrameIndex(FI);
6829     }
6830 
6831     return;
6832   }
6833 
6834   case Intrinsic::localrecover: {
6835     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6836     MachineFunction &MF = DAG.getMachineFunction();
6837 
6838     // Get the symbol that defines the frame offset.
6839     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6840     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6841     unsigned IdxVal =
6842         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6843     MCSymbol *FrameAllocSym =
6844         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6845             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6846 
6847     Value *FP = I.getArgOperand(1);
6848     SDValue FPVal = getValue(FP);
6849     EVT PtrVT = FPVal.getValueType();
6850 
6851     // Create a MCSymbol for the label to avoid any target lowering
6852     // that would make this PC relative.
6853     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6854     SDValue OffsetVal =
6855         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6856 
6857     // Add the offset to the FP.
6858     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
6859     setValue(&I, Add);
6860 
6861     return;
6862   }
6863 
6864   case Intrinsic::eh_exceptionpointer:
6865   case Intrinsic::eh_exceptioncode: {
6866     // Get the exception pointer vreg, copy from it, and resize it to fit.
6867     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6868     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6869     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6870     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6871     SDValue N =
6872         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6873     if (Intrinsic == Intrinsic::eh_exceptioncode)
6874       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6875     setValue(&I, N);
6876     return;
6877   }
6878   case Intrinsic::xray_customevent: {
6879     // Here we want to make sure that the intrinsic behaves as if it has a
6880     // specific calling convention, and only for x86_64.
6881     // FIXME: Support other platforms later.
6882     const auto &Triple = DAG.getTarget().getTargetTriple();
6883     if (Triple.getArch() != Triple::x86_64)
6884       return;
6885 
6886     SDLoc DL = getCurSDLoc();
6887     SmallVector<SDValue, 8> Ops;
6888 
6889     // We want to say that we always want the arguments in registers.
6890     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6891     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6892     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6893     SDValue Chain = getRoot();
6894     Ops.push_back(LogEntryVal);
6895     Ops.push_back(StrSizeVal);
6896     Ops.push_back(Chain);
6897 
6898     // We need to enforce the calling convention for the callsite, so that
6899     // argument ordering is enforced correctly, and that register allocation can
6900     // see that some registers may be assumed clobbered and have to preserve
6901     // them across calls to the intrinsic.
6902     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6903                                            DL, NodeTys, Ops);
6904     SDValue patchableNode = SDValue(MN, 0);
6905     DAG.setRoot(patchableNode);
6906     setValue(&I, patchableNode);
6907     return;
6908   }
6909   case Intrinsic::xray_typedevent: {
6910     // Here we want to make sure that the intrinsic behaves as if it has a
6911     // specific calling convention, and only for x86_64.
6912     // FIXME: Support other platforms later.
6913     const auto &Triple = DAG.getTarget().getTargetTriple();
6914     if (Triple.getArch() != Triple::x86_64)
6915       return;
6916 
6917     SDLoc DL = getCurSDLoc();
6918     SmallVector<SDValue, 8> Ops;
6919 
6920     // We want to say that we always want the arguments in registers.
6921     // It's unclear to me how manipulating the selection DAG here forces callers
6922     // to provide arguments in registers instead of on the stack.
6923     SDValue LogTypeId = getValue(I.getArgOperand(0));
6924     SDValue LogEntryVal = getValue(I.getArgOperand(1));
6925     SDValue StrSizeVal = getValue(I.getArgOperand(2));
6926     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6927     SDValue Chain = getRoot();
6928     Ops.push_back(LogTypeId);
6929     Ops.push_back(LogEntryVal);
6930     Ops.push_back(StrSizeVal);
6931     Ops.push_back(Chain);
6932 
6933     // We need to enforce the calling convention for the callsite, so that
6934     // argument ordering is enforced correctly, and that register allocation can
6935     // see that some registers may be assumed clobbered and have to preserve
6936     // them across calls to the intrinsic.
6937     MachineSDNode *MN = DAG.getMachineNode(
6938         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6939     SDValue patchableNode = SDValue(MN, 0);
6940     DAG.setRoot(patchableNode);
6941     setValue(&I, patchableNode);
6942     return;
6943   }
6944   case Intrinsic::experimental_deoptimize:
6945     LowerDeoptimizeCall(&I);
6946     return;
6947 
6948   case Intrinsic::vector_reduce_fadd:
6949   case Intrinsic::vector_reduce_fmul:
6950   case Intrinsic::vector_reduce_add:
6951   case Intrinsic::vector_reduce_mul:
6952   case Intrinsic::vector_reduce_and:
6953   case Intrinsic::vector_reduce_or:
6954   case Intrinsic::vector_reduce_xor:
6955   case Intrinsic::vector_reduce_smax:
6956   case Intrinsic::vector_reduce_smin:
6957   case Intrinsic::vector_reduce_umax:
6958   case Intrinsic::vector_reduce_umin:
6959   case Intrinsic::vector_reduce_fmax:
6960   case Intrinsic::vector_reduce_fmin:
6961     visitVectorReduce(I, Intrinsic);
6962     return;
6963 
6964   case Intrinsic::icall_branch_funnel: {
6965     SmallVector<SDValue, 16> Ops;
6966     Ops.push_back(getValue(I.getArgOperand(0)));
6967 
6968     int64_t Offset;
6969     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6970         I.getArgOperand(1), Offset, DAG.getDataLayout()));
6971     if (!Base)
6972       report_fatal_error(
6973           "llvm.icall.branch.funnel operand must be a GlobalValue");
6974     Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6975 
6976     struct BranchFunnelTarget {
6977       int64_t Offset;
6978       SDValue Target;
6979     };
6980     SmallVector<BranchFunnelTarget, 8> Targets;
6981 
6982     for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
6983       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6984           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
6985       if (ElemBase != Base)
6986         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6987                            "to the same GlobalValue");
6988 
6989       SDValue Val = getValue(I.getArgOperand(Op + 1));
6990       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
6991       if (!GA)
6992         report_fatal_error(
6993             "llvm.icall.branch.funnel operand must be a GlobalValue");
6994       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
6995                                      GA->getGlobal(), getCurSDLoc(),
6996                                      Val.getValueType(), GA->getOffset())});
6997     }
6998     llvm::sort(Targets,
6999                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
7000                  return T1.Offset < T2.Offset;
7001                });
7002 
7003     for (auto &T : Targets) {
7004       Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
7005       Ops.push_back(T.Target);
7006     }
7007 
7008     Ops.push_back(DAG.getRoot()); // Chain
7009     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
7010                                  getCurSDLoc(), MVT::Other, Ops),
7011               0);
7012     DAG.setRoot(N);
7013     setValue(&I, N);
7014     HasTailCall = true;
7015     return;
7016   }
7017 
7018   case Intrinsic::wasm_landingpad_index:
7019     // Information this intrinsic contained has been transferred to
7020     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
7021     // delete it now.
7022     return;
7023 
7024   case Intrinsic::aarch64_settag:
7025   case Intrinsic::aarch64_settag_zero: {
7026     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7027     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
7028     SDValue Val = TSI.EmitTargetCodeForSetTag(
7029         DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)),
7030         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
7031         ZeroMemory);
7032     DAG.setRoot(Val);
7033     setValue(&I, Val);
7034     return;
7035   }
7036   case Intrinsic::ptrmask: {
7037     SDValue Ptr = getValue(I.getOperand(0));
7038     SDValue Const = getValue(I.getOperand(1));
7039 
7040     EVT PtrVT = Ptr.getValueType();
7041     setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), PtrVT, Ptr,
7042                              DAG.getZExtOrTrunc(Const, getCurSDLoc(), PtrVT)));
7043     return;
7044   }
7045   case Intrinsic::get_active_lane_mask: {
7046     auto DL = getCurSDLoc();
7047     SDValue Index = getValue(I.getOperand(0));
7048     SDValue TripCount = getValue(I.getOperand(1));
7049     Type *ElementTy = I.getOperand(0)->getType();
7050     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7051     unsigned VecWidth = VT.getVectorNumElements();
7052 
7053     SmallVector<SDValue, 16> OpsTripCount;
7054     SmallVector<SDValue, 16> OpsIndex;
7055     SmallVector<SDValue, 16> OpsStepConstants;
7056     for (unsigned i = 0; i < VecWidth; i++) {
7057       OpsTripCount.push_back(TripCount);
7058       OpsIndex.push_back(Index);
7059       OpsStepConstants.push_back(
7060           DAG.getConstant(i, DL, EVT::getEVT(ElementTy)));
7061     }
7062 
7063     EVT CCVT = EVT::getVectorVT(I.getContext(), MVT::i1, VecWidth);
7064 
7065     auto VecTy = EVT::getEVT(FixedVectorType::get(ElementTy, VecWidth));
7066     SDValue VectorIndex = DAG.getBuildVector(VecTy, DL, OpsIndex);
7067     SDValue VectorStep = DAG.getBuildVector(VecTy, DL, OpsStepConstants);
7068     SDValue VectorInduction = DAG.getNode(
7069        ISD::UADDO, DL, DAG.getVTList(VecTy, CCVT), VectorIndex, VectorStep);
7070     SDValue VectorTripCount = DAG.getBuildVector(VecTy, DL, OpsTripCount);
7071     SDValue SetCC = DAG.getSetCC(DL, CCVT, VectorInduction.getValue(0),
7072                                  VectorTripCount, ISD::CondCode::SETULT);
7073     setValue(&I, DAG.getNode(ISD::AND, DL, CCVT,
7074                              DAG.getNOT(DL, VectorInduction.getValue(1), CCVT),
7075                              SetCC));
7076     return;
7077   }
7078   case Intrinsic::experimental_vector_insert: {
7079     auto DL = getCurSDLoc();
7080 
7081     SDValue Vec = getValue(I.getOperand(0));
7082     SDValue SubVec = getValue(I.getOperand(1));
7083     SDValue Index = getValue(I.getOperand(2));
7084 
7085     // The intrinsic's index type is i64, but the SDNode requires an index type
7086     // suitable for the target. Convert the index as required.
7087     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7088     if (Index.getValueType() != VectorIdxTy)
7089       Index = DAG.getVectorIdxConstant(
7090           cast<ConstantSDNode>(Index)->getZExtValue(), DL);
7091 
7092     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7093     setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ResultVT, Vec, SubVec,
7094                              Index));
7095     return;
7096   }
7097   case Intrinsic::experimental_vector_extract: {
7098     auto DL = getCurSDLoc();
7099 
7100     SDValue Vec = getValue(I.getOperand(0));
7101     SDValue Index = getValue(I.getOperand(1));
7102     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7103 
7104     // The intrinsic's index type is i64, but the SDNode requires an index type
7105     // suitable for the target. Convert the index as required.
7106     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7107     if (Index.getValueType() != VectorIdxTy)
7108       Index = DAG.getVectorIdxConstant(
7109           cast<ConstantSDNode>(Index)->getZExtValue(), DL);
7110 
7111     setValue(&I, DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ResultVT, Vec, Index));
7112     return;
7113   }
7114   case Intrinsic::experimental_vector_reverse:
7115     visitVectorReverse(I);
7116     return;
7117   case Intrinsic::experimental_vector_splice:
7118     visitVectorSplice(I);
7119     return;
7120   }
7121 }
7122 
7123 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
7124     const ConstrainedFPIntrinsic &FPI) {
7125   SDLoc sdl = getCurSDLoc();
7126 
7127   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7128   SmallVector<EVT, 4> ValueVTs;
7129   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
7130   ValueVTs.push_back(MVT::Other); // Out chain
7131 
7132   // We do not need to serialize constrained FP intrinsics against
7133   // each other or against (nonvolatile) loads, so they can be
7134   // chained like loads.
7135   SDValue Chain = DAG.getRoot();
7136   SmallVector<SDValue, 4> Opers;
7137   Opers.push_back(Chain);
7138   if (FPI.isUnaryOp()) {
7139     Opers.push_back(getValue(FPI.getArgOperand(0)));
7140   } else if (FPI.isTernaryOp()) {
7141     Opers.push_back(getValue(FPI.getArgOperand(0)));
7142     Opers.push_back(getValue(FPI.getArgOperand(1)));
7143     Opers.push_back(getValue(FPI.getArgOperand(2)));
7144   } else {
7145     Opers.push_back(getValue(FPI.getArgOperand(0)));
7146     Opers.push_back(getValue(FPI.getArgOperand(1)));
7147   }
7148 
7149   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
7150     assert(Result.getNode()->getNumValues() == 2);
7151 
7152     // Push node to the appropriate list so that future instructions can be
7153     // chained up correctly.
7154     SDValue OutChain = Result.getValue(1);
7155     switch (EB) {
7156     case fp::ExceptionBehavior::ebIgnore:
7157       // The only reason why ebIgnore nodes still need to be chained is that
7158       // they might depend on the current rounding mode, and therefore must
7159       // not be moved across instruction that may change that mode.
7160       LLVM_FALLTHROUGH;
7161     case fp::ExceptionBehavior::ebMayTrap:
7162       // These must not be moved across calls or instructions that may change
7163       // floating-point exception masks.
7164       PendingConstrainedFP.push_back(OutChain);
7165       break;
7166     case fp::ExceptionBehavior::ebStrict:
7167       // These must not be moved across calls or instructions that may change
7168       // floating-point exception masks or read floating-point exception flags.
7169       // In addition, they cannot be optimized out even if unused.
7170       PendingConstrainedFPStrict.push_back(OutChain);
7171       break;
7172     }
7173   };
7174 
7175   SDVTList VTs = DAG.getVTList(ValueVTs);
7176   fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue();
7177 
7178   SDNodeFlags Flags;
7179   if (EB == fp::ExceptionBehavior::ebIgnore)
7180     Flags.setNoFPExcept(true);
7181 
7182   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
7183     Flags.copyFMF(*FPOp);
7184 
7185   unsigned Opcode;
7186   switch (FPI.getIntrinsicID()) {
7187   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7188 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7189   case Intrinsic::INTRINSIC:                                                   \
7190     Opcode = ISD::STRICT_##DAGN;                                               \
7191     break;
7192 #include "llvm/IR/ConstrainedOps.def"
7193   case Intrinsic::experimental_constrained_fmuladd: {
7194     Opcode = ISD::STRICT_FMA;
7195     // Break fmuladd into fmul and fadd.
7196     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
7197         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(),
7198                                         ValueVTs[0])) {
7199       Opers.pop_back();
7200       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
7201       pushOutChain(Mul, EB);
7202       Opcode = ISD::STRICT_FADD;
7203       Opers.clear();
7204       Opers.push_back(Mul.getValue(1));
7205       Opers.push_back(Mul.getValue(0));
7206       Opers.push_back(getValue(FPI.getArgOperand(2)));
7207     }
7208     break;
7209   }
7210   }
7211 
7212   // A few strict DAG nodes carry additional operands that are not
7213   // set up by the default code above.
7214   switch (Opcode) {
7215   default: break;
7216   case ISD::STRICT_FP_ROUND:
7217     Opers.push_back(
7218         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
7219     break;
7220   case ISD::STRICT_FSETCC:
7221   case ISD::STRICT_FSETCCS: {
7222     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
7223     ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
7224     if (TM.Options.NoNaNsFPMath)
7225       Condition = getFCmpCodeWithoutNaN(Condition);
7226     Opers.push_back(DAG.getCondCode(Condition));
7227     break;
7228   }
7229   }
7230 
7231   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
7232   pushOutChain(Result, EB);
7233 
7234   SDValue FPResult = Result.getValue(0);
7235   setValue(&FPI, FPResult);
7236 }
7237 
7238 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
7239   Optional<unsigned> ResOPC;
7240   switch (VPIntrin.getIntrinsicID()) {
7241 #define BEGIN_REGISTER_VP_INTRINSIC(INTRIN, ...) case Intrinsic::INTRIN:
7242 #define BEGIN_REGISTER_VP_SDNODE(VPSDID, ...) ResOPC = ISD::VPSDID;
7243 #define END_REGISTER_VP_INTRINSIC(...) break;
7244 #include "llvm/IR/VPIntrinsics.def"
7245   }
7246 
7247   if (!ResOPC.hasValue())
7248     llvm_unreachable(
7249         "Inconsistency: no SDNode available for this VPIntrinsic!");
7250 
7251   return ResOPC.getValue();
7252 }
7253 
7254 void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
7255     const VPIntrinsic &VPIntrin) {
7256   unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
7257 
7258   SmallVector<EVT, 4> ValueVTs;
7259   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7260   ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
7261   SDVTList VTs = DAG.getVTList(ValueVTs);
7262 
7263   // Request operands.
7264   SmallVector<SDValue, 7> OpValues;
7265   for (int i = 0; i < (int)VPIntrin.getNumArgOperands(); ++i)
7266     OpValues.push_back(getValue(VPIntrin.getArgOperand(i)));
7267 
7268   SDLoc DL = getCurSDLoc();
7269   SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues);
7270   setValue(&VPIntrin, Result);
7271 }
7272 
7273 std::pair<SDValue, SDValue>
7274 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
7275                                     const BasicBlock *EHPadBB) {
7276   MachineFunction &MF = DAG.getMachineFunction();
7277   MachineModuleInfo &MMI = MF.getMMI();
7278   MCSymbol *BeginLabel = nullptr;
7279 
7280   if (EHPadBB) {
7281     // Insert a label before the invoke call to mark the try range.  This can be
7282     // used to detect deletion of the invoke via the MachineModuleInfo.
7283     BeginLabel = MMI.getContext().createTempSymbol();
7284 
7285     // For SjLj, keep track of which landing pads go with which invokes
7286     // so as to maintain the ordering of pads in the LSDA.
7287     unsigned CallSiteIndex = MMI.getCurrentCallSite();
7288     if (CallSiteIndex) {
7289       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7290       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7291 
7292       // Now that the call site is handled, stop tracking it.
7293       MMI.setCurrentCallSite(0);
7294     }
7295 
7296     // Both PendingLoads and PendingExports must be flushed here;
7297     // this call might not return.
7298     (void)getRoot();
7299     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
7300 
7301     CLI.setChain(getRoot());
7302   }
7303   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7304   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7305 
7306   assert((CLI.IsTailCall || Result.second.getNode()) &&
7307          "Non-null chain expected with non-tail call!");
7308   assert((Result.second.getNode() || !Result.first.getNode()) &&
7309          "Null value expected with tail call!");
7310 
7311   if (!Result.second.getNode()) {
7312     // As a special case, a null chain means that a tail call has been emitted
7313     // and the DAG root is already updated.
7314     HasTailCall = true;
7315 
7316     // Since there's no actual continuation from this block, nothing can be
7317     // relying on us setting vregs for them.
7318     PendingExports.clear();
7319   } else {
7320     DAG.setRoot(Result.second);
7321   }
7322 
7323   if (EHPadBB) {
7324     // Insert a label at the end of the invoke call to mark the try range.  This
7325     // can be used to detect deletion of the invoke via the MachineModuleInfo.
7326     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7327     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
7328 
7329     // Inform MachineModuleInfo of range.
7330     auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7331     // There is a platform (e.g. wasm) that uses funclet style IR but does not
7332     // actually use outlined funclets and their LSDA info style.
7333     if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7334       assert(CLI.CB);
7335       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
7336       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CB), BeginLabel, EndLabel);
7337     } else if (!isScopedEHPersonality(Pers)) {
7338       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7339     }
7340   }
7341 
7342   return Result;
7343 }
7344 
7345 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
7346                                       bool isTailCall,
7347                                       const BasicBlock *EHPadBB) {
7348   auto &DL = DAG.getDataLayout();
7349   FunctionType *FTy = CB.getFunctionType();
7350   Type *RetTy = CB.getType();
7351 
7352   TargetLowering::ArgListTy Args;
7353   Args.reserve(CB.arg_size());
7354 
7355   const Value *SwiftErrorVal = nullptr;
7356   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7357 
7358   if (isTailCall) {
7359     // Avoid emitting tail calls in functions with the disable-tail-calls
7360     // attribute.
7361     auto *Caller = CB.getParent()->getParent();
7362     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
7363         "true")
7364       isTailCall = false;
7365 
7366     // We can't tail call inside a function with a swifterror argument. Lowering
7367     // does not support this yet. It would have to move into the swifterror
7368     // register before the call.
7369     if (TLI.supportSwiftError() &&
7370         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7371       isTailCall = false;
7372   }
7373 
7374   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
7375     TargetLowering::ArgListEntry Entry;
7376     const Value *V = *I;
7377 
7378     // Skip empty types
7379     if (V->getType()->isEmptyTy())
7380       continue;
7381 
7382     SDValue ArgNode = getValue(V);
7383     Entry.Node = ArgNode; Entry.Ty = V->getType();
7384 
7385     Entry.setAttributes(&CB, I - CB.arg_begin());
7386 
7387     // Use swifterror virtual register as input to the call.
7388     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7389       SwiftErrorVal = V;
7390       // We find the virtual register for the actual swifterror argument.
7391       // Instead of using the Value, we use the virtual register instead.
7392       Entry.Node =
7393           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
7394                           EVT(TLI.getPointerTy(DL)));
7395     }
7396 
7397     Args.push_back(Entry);
7398 
7399     // If we have an explicit sret argument that is an Instruction, (i.e., it
7400     // might point to function-local memory), we can't meaningfully tail-call.
7401     if (Entry.IsSRet && isa<Instruction>(V))
7402       isTailCall = false;
7403   }
7404 
7405   // If call site has a cfguardtarget operand bundle, create and add an
7406   // additional ArgListEntry.
7407   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
7408     TargetLowering::ArgListEntry Entry;
7409     Value *V = Bundle->Inputs[0];
7410     SDValue ArgNode = getValue(V);
7411     Entry.Node = ArgNode;
7412     Entry.Ty = V->getType();
7413     Entry.IsCFGuardTarget = true;
7414     Args.push_back(Entry);
7415   }
7416 
7417   // Check if target-independent constraints permit a tail call here.
7418   // Target-dependent constraints are checked within TLI->LowerCallTo.
7419   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
7420     isTailCall = false;
7421 
7422   // Disable tail calls if there is an swifterror argument. Targets have not
7423   // been updated to support tail calls.
7424   if (TLI.supportSwiftError() && SwiftErrorVal)
7425     isTailCall = false;
7426 
7427   TargetLowering::CallLoweringInfo CLI(DAG);
7428   CLI.setDebugLoc(getCurSDLoc())
7429       .setChain(getRoot())
7430       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
7431       .setTailCall(isTailCall)
7432       .setConvergent(CB.isConvergent())
7433       .setIsPreallocated(
7434           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
7435   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7436 
7437   if (Result.first.getNode()) {
7438     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
7439     setValue(&CB, Result.first);
7440   }
7441 
7442   // The last element of CLI.InVals has the SDValue for swifterror return.
7443   // Here we copy it to a virtual register and update SwiftErrorMap for
7444   // book-keeping.
7445   if (SwiftErrorVal && TLI.supportSwiftError()) {
7446     // Get the last element of InVals.
7447     SDValue Src = CLI.InVals.back();
7448     Register VReg =
7449         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
7450     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
7451     DAG.setRoot(CopyNode);
7452   }
7453 }
7454 
7455 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
7456                              SelectionDAGBuilder &Builder) {
7457   // Check to see if this load can be trivially constant folded, e.g. if the
7458   // input is from a string literal.
7459   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
7460     // Cast pointer to the type we really want to load.
7461     Type *LoadTy =
7462         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
7463     if (LoadVT.isVector())
7464       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
7465 
7466     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
7467                                          PointerType::getUnqual(LoadTy));
7468 
7469     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
7470             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
7471       return Builder.getValue(LoadCst);
7472   }
7473 
7474   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
7475   // still constant memory, the input chain can be the entry node.
7476   SDValue Root;
7477   bool ConstantMemory = false;
7478 
7479   // Do not serialize (non-volatile) loads of constant memory with anything.
7480   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
7481     Root = Builder.DAG.getEntryNode();
7482     ConstantMemory = true;
7483   } else {
7484     // Do not serialize non-volatile loads against each other.
7485     Root = Builder.DAG.getRoot();
7486   }
7487 
7488   SDValue Ptr = Builder.getValue(PtrVal);
7489   SDValue LoadVal =
7490       Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
7491                           MachinePointerInfo(PtrVal), Align(1));
7492 
7493   if (!ConstantMemory)
7494     Builder.PendingLoads.push_back(LoadVal.getValue(1));
7495   return LoadVal;
7496 }
7497 
7498 /// Record the value for an instruction that produces an integer result,
7499 /// converting the type where necessary.
7500 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
7501                                                   SDValue Value,
7502                                                   bool IsSigned) {
7503   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7504                                                     I.getType(), true);
7505   if (IsSigned)
7506     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
7507   else
7508     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
7509   setValue(&I, Value);
7510 }
7511 
7512 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
7513 /// true and lower it. Otherwise return false, and it will be lowered like a
7514 /// normal call.
7515 /// The caller already checked that \p I calls the appropriate LibFunc with a
7516 /// correct prototype.
7517 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
7518   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7519   const Value *Size = I.getArgOperand(2);
7520   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
7521   if (CSize && CSize->getZExtValue() == 0) {
7522     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7523                                                           I.getType(), true);
7524     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7525     return true;
7526   }
7527 
7528   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7529   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7530       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7531       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7532   if (Res.first.getNode()) {
7533     processIntegerCallValue(I, Res.first, true);
7534     PendingLoads.push_back(Res.second);
7535     return true;
7536   }
7537 
7538   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
7539   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
7540   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7541     return false;
7542 
7543   // If the target has a fast compare for the given size, it will return a
7544   // preferred load type for that size. Require that the load VT is legal and
7545   // that the target supports unaligned loads of that type. Otherwise, return
7546   // INVALID.
7547   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
7548     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7549     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
7550     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
7551       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7552       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7553       // TODO: Check alignment of src and dest ptrs.
7554       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
7555       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
7556       if (!TLI.isTypeLegal(LVT) ||
7557           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
7558           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
7559         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
7560     }
7561 
7562     return LVT;
7563   };
7564 
7565   // This turns into unaligned loads. We only do this if the target natively
7566   // supports the MVT we'll be loading or if it is small enough (<= 4) that
7567   // we'll only produce a small number of byte loads.
7568   MVT LoadVT;
7569   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
7570   switch (NumBitsToCompare) {
7571   default:
7572     return false;
7573   case 16:
7574     LoadVT = MVT::i16;
7575     break;
7576   case 32:
7577     LoadVT = MVT::i32;
7578     break;
7579   case 64:
7580   case 128:
7581   case 256:
7582     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
7583     break;
7584   }
7585 
7586   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
7587     return false;
7588 
7589   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
7590   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
7591 
7592   // Bitcast to a wide integer type if the loads are vectors.
7593   if (LoadVT.isVector()) {
7594     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
7595     LoadL = DAG.getBitcast(CmpVT, LoadL);
7596     LoadR = DAG.getBitcast(CmpVT, LoadR);
7597   }
7598 
7599   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
7600   processIntegerCallValue(I, Cmp, false);
7601   return true;
7602 }
7603 
7604 /// See if we can lower a memchr call into an optimized form. If so, return
7605 /// true and lower it. Otherwise return false, and it will be lowered like a
7606 /// normal call.
7607 /// The caller already checked that \p I calls the appropriate LibFunc with a
7608 /// correct prototype.
7609 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
7610   const Value *Src = I.getArgOperand(0);
7611   const Value *Char = I.getArgOperand(1);
7612   const Value *Length = I.getArgOperand(2);
7613 
7614   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7615   std::pair<SDValue, SDValue> Res =
7616     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
7617                                 getValue(Src), getValue(Char), getValue(Length),
7618                                 MachinePointerInfo(Src));
7619   if (Res.first.getNode()) {
7620     setValue(&I, Res.first);
7621     PendingLoads.push_back(Res.second);
7622     return true;
7623   }
7624 
7625   return false;
7626 }
7627 
7628 /// See if we can lower a mempcpy call into an optimized form. If so, return
7629 /// true and lower it. Otherwise return false, and it will be lowered like a
7630 /// normal call.
7631 /// The caller already checked that \p I calls the appropriate LibFunc with a
7632 /// correct prototype.
7633 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
7634   SDValue Dst = getValue(I.getArgOperand(0));
7635   SDValue Src = getValue(I.getArgOperand(1));
7636   SDValue Size = getValue(I.getArgOperand(2));
7637 
7638   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
7639   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
7640   // DAG::getMemcpy needs Alignment to be defined.
7641   Align Alignment = std::min(DstAlign, SrcAlign);
7642 
7643   bool isVol = false;
7644   SDLoc sdl = getCurSDLoc();
7645 
7646   // In the mempcpy context we need to pass in a false value for isTailCall
7647   // because the return pointer needs to be adjusted by the size of
7648   // the copied memory.
7649   SDValue Root = isVol ? getRoot() : getMemoryRoot();
7650   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false,
7651                              /*isTailCall=*/false,
7652                              MachinePointerInfo(I.getArgOperand(0)),
7653                              MachinePointerInfo(I.getArgOperand(1)));
7654   assert(MC.getNode() != nullptr &&
7655          "** memcpy should not be lowered as TailCall in mempcpy context **");
7656   DAG.setRoot(MC);
7657 
7658   // Check if Size needs to be truncated or extended.
7659   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
7660 
7661   // Adjust return pointer to point just past the last dst byte.
7662   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
7663                                     Dst, Size);
7664   setValue(&I, DstPlusSize);
7665   return true;
7666 }
7667 
7668 /// See if we can lower a strcpy call into an optimized form.  If so, return
7669 /// true and lower it, otherwise return false and it will be lowered like a
7670 /// normal call.
7671 /// The caller already checked that \p I calls the appropriate LibFunc with a
7672 /// correct prototype.
7673 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
7674   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7675 
7676   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7677   std::pair<SDValue, SDValue> Res =
7678     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
7679                                 getValue(Arg0), getValue(Arg1),
7680                                 MachinePointerInfo(Arg0),
7681                                 MachinePointerInfo(Arg1), isStpcpy);
7682   if (Res.first.getNode()) {
7683     setValue(&I, Res.first);
7684     DAG.setRoot(Res.second);
7685     return true;
7686   }
7687 
7688   return false;
7689 }
7690 
7691 /// See if we can lower a strcmp call into an optimized form.  If so, return
7692 /// true and lower it, otherwise return false and it will be lowered like a
7693 /// normal call.
7694 /// The caller already checked that \p I calls the appropriate LibFunc with a
7695 /// correct prototype.
7696 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
7697   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7698 
7699   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7700   std::pair<SDValue, SDValue> Res =
7701     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
7702                                 getValue(Arg0), getValue(Arg1),
7703                                 MachinePointerInfo(Arg0),
7704                                 MachinePointerInfo(Arg1));
7705   if (Res.first.getNode()) {
7706     processIntegerCallValue(I, Res.first, true);
7707     PendingLoads.push_back(Res.second);
7708     return true;
7709   }
7710 
7711   return false;
7712 }
7713 
7714 /// See if we can lower a strlen call into an optimized form.  If so, return
7715 /// true and lower it, otherwise return false and it will be lowered like a
7716 /// normal call.
7717 /// The caller already checked that \p I calls the appropriate LibFunc with a
7718 /// correct prototype.
7719 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
7720   const Value *Arg0 = I.getArgOperand(0);
7721 
7722   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7723   std::pair<SDValue, SDValue> Res =
7724     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
7725                                 getValue(Arg0), MachinePointerInfo(Arg0));
7726   if (Res.first.getNode()) {
7727     processIntegerCallValue(I, Res.first, false);
7728     PendingLoads.push_back(Res.second);
7729     return true;
7730   }
7731 
7732   return false;
7733 }
7734 
7735 /// See if we can lower a strnlen call into an optimized form.  If so, return
7736 /// true and lower it, otherwise return false and it will be lowered like a
7737 /// normal call.
7738 /// The caller already checked that \p I calls the appropriate LibFunc with a
7739 /// correct prototype.
7740 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
7741   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7742 
7743   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7744   std::pair<SDValue, SDValue> Res =
7745     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
7746                                  getValue(Arg0), getValue(Arg1),
7747                                  MachinePointerInfo(Arg0));
7748   if (Res.first.getNode()) {
7749     processIntegerCallValue(I, Res.first, false);
7750     PendingLoads.push_back(Res.second);
7751     return true;
7752   }
7753 
7754   return false;
7755 }
7756 
7757 /// See if we can lower a unary floating-point operation into an SDNode with
7758 /// the specified Opcode.  If so, return true and lower it, otherwise return
7759 /// false and it will be lowered like a normal call.
7760 /// The caller already checked that \p I calls the appropriate LibFunc with a
7761 /// correct prototype.
7762 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
7763                                               unsigned Opcode) {
7764   // We already checked this call's prototype; verify it doesn't modify errno.
7765   if (!I.onlyReadsMemory())
7766     return false;
7767 
7768   SDNodeFlags Flags;
7769   Flags.copyFMF(cast<FPMathOperator>(I));
7770 
7771   SDValue Tmp = getValue(I.getArgOperand(0));
7772   setValue(&I,
7773            DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
7774   return true;
7775 }
7776 
7777 /// See if we can lower a binary floating-point operation into an SDNode with
7778 /// the specified Opcode. If so, return true and lower it. Otherwise return
7779 /// false, and it will be lowered like a normal call.
7780 /// The caller already checked that \p I calls the appropriate LibFunc with a
7781 /// correct prototype.
7782 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
7783                                                unsigned Opcode) {
7784   // We already checked this call's prototype; verify it doesn't modify errno.
7785   if (!I.onlyReadsMemory())
7786     return false;
7787 
7788   SDNodeFlags Flags;
7789   Flags.copyFMF(cast<FPMathOperator>(I));
7790 
7791   SDValue Tmp0 = getValue(I.getArgOperand(0));
7792   SDValue Tmp1 = getValue(I.getArgOperand(1));
7793   EVT VT = Tmp0.getValueType();
7794   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
7795   return true;
7796 }
7797 
7798 void SelectionDAGBuilder::visitCall(const CallInst &I) {
7799   // Handle inline assembly differently.
7800   if (I.isInlineAsm()) {
7801     visitInlineAsm(I);
7802     return;
7803   }
7804 
7805   if (Function *F = I.getCalledFunction()) {
7806     if (F->isDeclaration()) {
7807       // Is this an LLVM intrinsic or a target-specific intrinsic?
7808       unsigned IID = F->getIntrinsicID();
7809       if (!IID)
7810         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
7811           IID = II->getIntrinsicID(F);
7812 
7813       if (IID) {
7814         visitIntrinsicCall(I, IID);
7815         return;
7816       }
7817     }
7818 
7819     // Check for well-known libc/libm calls.  If the function is internal, it
7820     // can't be a library call.  Don't do the check if marked as nobuiltin for
7821     // some reason or the call site requires strict floating point semantics.
7822     LibFunc Func;
7823     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
7824         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
7825         LibInfo->hasOptimizedCodeGen(Func)) {
7826       switch (Func) {
7827       default: break;
7828       case LibFunc_bcmp:
7829         if (visitMemCmpBCmpCall(I))
7830           return;
7831         break;
7832       case LibFunc_copysign:
7833       case LibFunc_copysignf:
7834       case LibFunc_copysignl:
7835         // We already checked this call's prototype; verify it doesn't modify
7836         // errno.
7837         if (I.onlyReadsMemory()) {
7838           SDValue LHS = getValue(I.getArgOperand(0));
7839           SDValue RHS = getValue(I.getArgOperand(1));
7840           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
7841                                    LHS.getValueType(), LHS, RHS));
7842           return;
7843         }
7844         break;
7845       case LibFunc_fabs:
7846       case LibFunc_fabsf:
7847       case LibFunc_fabsl:
7848         if (visitUnaryFloatCall(I, ISD::FABS))
7849           return;
7850         break;
7851       case LibFunc_fmin:
7852       case LibFunc_fminf:
7853       case LibFunc_fminl:
7854         if (visitBinaryFloatCall(I, ISD::FMINNUM))
7855           return;
7856         break;
7857       case LibFunc_fmax:
7858       case LibFunc_fmaxf:
7859       case LibFunc_fmaxl:
7860         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
7861           return;
7862         break;
7863       case LibFunc_sin:
7864       case LibFunc_sinf:
7865       case LibFunc_sinl:
7866         if (visitUnaryFloatCall(I, ISD::FSIN))
7867           return;
7868         break;
7869       case LibFunc_cos:
7870       case LibFunc_cosf:
7871       case LibFunc_cosl:
7872         if (visitUnaryFloatCall(I, ISD::FCOS))
7873           return;
7874         break;
7875       case LibFunc_sqrt:
7876       case LibFunc_sqrtf:
7877       case LibFunc_sqrtl:
7878       case LibFunc_sqrt_finite:
7879       case LibFunc_sqrtf_finite:
7880       case LibFunc_sqrtl_finite:
7881         if (visitUnaryFloatCall(I, ISD::FSQRT))
7882           return;
7883         break;
7884       case LibFunc_floor:
7885       case LibFunc_floorf:
7886       case LibFunc_floorl:
7887         if (visitUnaryFloatCall(I, ISD::FFLOOR))
7888           return;
7889         break;
7890       case LibFunc_nearbyint:
7891       case LibFunc_nearbyintf:
7892       case LibFunc_nearbyintl:
7893         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
7894           return;
7895         break;
7896       case LibFunc_ceil:
7897       case LibFunc_ceilf:
7898       case LibFunc_ceill:
7899         if (visitUnaryFloatCall(I, ISD::FCEIL))
7900           return;
7901         break;
7902       case LibFunc_rint:
7903       case LibFunc_rintf:
7904       case LibFunc_rintl:
7905         if (visitUnaryFloatCall(I, ISD::FRINT))
7906           return;
7907         break;
7908       case LibFunc_round:
7909       case LibFunc_roundf:
7910       case LibFunc_roundl:
7911         if (visitUnaryFloatCall(I, ISD::FROUND))
7912           return;
7913         break;
7914       case LibFunc_trunc:
7915       case LibFunc_truncf:
7916       case LibFunc_truncl:
7917         if (visitUnaryFloatCall(I, ISD::FTRUNC))
7918           return;
7919         break;
7920       case LibFunc_log2:
7921       case LibFunc_log2f:
7922       case LibFunc_log2l:
7923         if (visitUnaryFloatCall(I, ISD::FLOG2))
7924           return;
7925         break;
7926       case LibFunc_exp2:
7927       case LibFunc_exp2f:
7928       case LibFunc_exp2l:
7929         if (visitUnaryFloatCall(I, ISD::FEXP2))
7930           return;
7931         break;
7932       case LibFunc_memcmp:
7933         if (visitMemCmpBCmpCall(I))
7934           return;
7935         break;
7936       case LibFunc_mempcpy:
7937         if (visitMemPCpyCall(I))
7938           return;
7939         break;
7940       case LibFunc_memchr:
7941         if (visitMemChrCall(I))
7942           return;
7943         break;
7944       case LibFunc_strcpy:
7945         if (visitStrCpyCall(I, false))
7946           return;
7947         break;
7948       case LibFunc_stpcpy:
7949         if (visitStrCpyCall(I, true))
7950           return;
7951         break;
7952       case LibFunc_strcmp:
7953         if (visitStrCmpCall(I))
7954           return;
7955         break;
7956       case LibFunc_strlen:
7957         if (visitStrLenCall(I))
7958           return;
7959         break;
7960       case LibFunc_strnlen:
7961         if (visitStrNLenCall(I))
7962           return;
7963         break;
7964       }
7965     }
7966   }
7967 
7968   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
7969   // have to do anything here to lower funclet bundles.
7970   // CFGuardTarget bundles are lowered in LowerCallTo.
7971   assert(!I.hasOperandBundlesOtherThan(
7972              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
7973               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated,
7974               LLVMContext::OB_clang_arc_attachedcall}) &&
7975          "Cannot lower calls with arbitrary operand bundles!");
7976 
7977   SDValue Callee = getValue(I.getCalledOperand());
7978 
7979   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
7980     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
7981   else
7982     // Check if we can potentially perform a tail call. More detailed checking
7983     // is be done within LowerCallTo, after more information about the call is
7984     // known.
7985     LowerCallTo(I, Callee, I.isTailCall());
7986 }
7987 
7988 namespace {
7989 
7990 /// AsmOperandInfo - This contains information for each constraint that we are
7991 /// lowering.
7992 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
7993 public:
7994   /// CallOperand - If this is the result output operand or a clobber
7995   /// this is null, otherwise it is the incoming operand to the CallInst.
7996   /// This gets modified as the asm is processed.
7997   SDValue CallOperand;
7998 
7999   /// AssignedRegs - If this is a register or register class operand, this
8000   /// contains the set of register corresponding to the operand.
8001   RegsForValue AssignedRegs;
8002 
8003   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
8004     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
8005   }
8006 
8007   /// Whether or not this operand accesses memory
8008   bool hasMemory(const TargetLowering &TLI) const {
8009     // Indirect operand accesses access memory.
8010     if (isIndirect)
8011       return true;
8012 
8013     for (const auto &Code : Codes)
8014       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
8015         return true;
8016 
8017     return false;
8018   }
8019 
8020   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
8021   /// corresponds to.  If there is no Value* for this operand, it returns
8022   /// MVT::Other.
8023   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
8024                            const DataLayout &DL) const {
8025     if (!CallOperandVal) return MVT::Other;
8026 
8027     if (isa<BasicBlock>(CallOperandVal))
8028       return TLI.getProgramPointerTy(DL);
8029 
8030     llvm::Type *OpTy = CallOperandVal->getType();
8031 
8032     // FIXME: code duplicated from TargetLowering::ParseConstraints().
8033     // If this is an indirect operand, the operand is a pointer to the
8034     // accessed type.
8035     if (isIndirect) {
8036       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
8037       if (!PtrTy)
8038         report_fatal_error("Indirect operand for inline asm not a pointer!");
8039       OpTy = PtrTy->getElementType();
8040     }
8041 
8042     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
8043     if (StructType *STy = dyn_cast<StructType>(OpTy))
8044       if (STy->getNumElements() == 1)
8045         OpTy = STy->getElementType(0);
8046 
8047     // If OpTy is not a single value, it may be a struct/union that we
8048     // can tile with integers.
8049     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
8050       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
8051       switch (BitSize) {
8052       default: break;
8053       case 1:
8054       case 8:
8055       case 16:
8056       case 32:
8057       case 64:
8058       case 128:
8059         OpTy = IntegerType::get(Context, BitSize);
8060         break;
8061       }
8062     }
8063 
8064     return TLI.getValueType(DL, OpTy, true);
8065   }
8066 };
8067 
8068 
8069 } // end anonymous namespace
8070 
8071 /// Make sure that the output operand \p OpInfo and its corresponding input
8072 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
8073 /// out).
8074 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
8075                                SDISelAsmOperandInfo &MatchingOpInfo,
8076                                SelectionDAG &DAG) {
8077   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
8078     return;
8079 
8080   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
8081   const auto &TLI = DAG.getTargetLoweringInfo();
8082 
8083   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
8084       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
8085                                        OpInfo.ConstraintVT);
8086   std::pair<unsigned, const TargetRegisterClass *> InputRC =
8087       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
8088                                        MatchingOpInfo.ConstraintVT);
8089   if ((OpInfo.ConstraintVT.isInteger() !=
8090        MatchingOpInfo.ConstraintVT.isInteger()) ||
8091       (MatchRC.second != InputRC.second)) {
8092     // FIXME: error out in a more elegant fashion
8093     report_fatal_error("Unsupported asm: input constraint"
8094                        " with a matching output constraint of"
8095                        " incompatible type!");
8096   }
8097   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
8098 }
8099 
8100 /// Get a direct memory input to behave well as an indirect operand.
8101 /// This may introduce stores, hence the need for a \p Chain.
8102 /// \return The (possibly updated) chain.
8103 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
8104                                         SDISelAsmOperandInfo &OpInfo,
8105                                         SelectionDAG &DAG) {
8106   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8107 
8108   // If we don't have an indirect input, put it in the constpool if we can,
8109   // otherwise spill it to a stack slot.
8110   // TODO: This isn't quite right. We need to handle these according to
8111   // the addressing mode that the constraint wants. Also, this may take
8112   // an additional register for the computation and we don't want that
8113   // either.
8114 
8115   // If the operand is a float, integer, or vector constant, spill to a
8116   // constant pool entry to get its address.
8117   const Value *OpVal = OpInfo.CallOperandVal;
8118   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
8119       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
8120     OpInfo.CallOperand = DAG.getConstantPool(
8121         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
8122     return Chain;
8123   }
8124 
8125   // Otherwise, create a stack slot and emit a store to it before the asm.
8126   Type *Ty = OpVal->getType();
8127   auto &DL = DAG.getDataLayout();
8128   uint64_t TySize = DL.getTypeAllocSize(Ty);
8129   MachineFunction &MF = DAG.getMachineFunction();
8130   int SSFI = MF.getFrameInfo().CreateStackObject(
8131       TySize, DL.getPrefTypeAlign(Ty), false);
8132   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
8133   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
8134                             MachinePointerInfo::getFixedStack(MF, SSFI),
8135                             TLI.getMemValueType(DL, Ty));
8136   OpInfo.CallOperand = StackSlot;
8137 
8138   return Chain;
8139 }
8140 
8141 /// GetRegistersForValue - Assign registers (virtual or physical) for the
8142 /// specified operand.  We prefer to assign virtual registers, to allow the
8143 /// register allocator to handle the assignment process.  However, if the asm
8144 /// uses features that we can't model on machineinstrs, we have SDISel do the
8145 /// allocation.  This produces generally horrible, but correct, code.
8146 ///
8147 ///   OpInfo describes the operand
8148 ///   RefOpInfo describes the matching operand if any, the operand otherwise
8149 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
8150                                  SDISelAsmOperandInfo &OpInfo,
8151                                  SDISelAsmOperandInfo &RefOpInfo) {
8152   LLVMContext &Context = *DAG.getContext();
8153   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8154 
8155   MachineFunction &MF = DAG.getMachineFunction();
8156   SmallVector<unsigned, 4> Regs;
8157   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8158 
8159   // No work to do for memory operations.
8160   if (OpInfo.ConstraintType == TargetLowering::C_Memory)
8161     return;
8162 
8163   // If this is a constraint for a single physreg, or a constraint for a
8164   // register class, find it.
8165   unsigned AssignedReg;
8166   const TargetRegisterClass *RC;
8167   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
8168       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
8169   // RC is unset only on failure. Return immediately.
8170   if (!RC)
8171     return;
8172 
8173   // Get the actual register value type.  This is important, because the user
8174   // may have asked for (e.g.) the AX register in i32 type.  We need to
8175   // remember that AX is actually i16 to get the right extension.
8176   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
8177 
8178   if (OpInfo.ConstraintVT != MVT::Other) {
8179     // If this is an FP operand in an integer register (or visa versa), or more
8180     // generally if the operand value disagrees with the register class we plan
8181     // to stick it in, fix the operand type.
8182     //
8183     // If this is an input value, the bitcast to the new type is done now.
8184     // Bitcast for output value is done at the end of visitInlineAsm().
8185     if ((OpInfo.Type == InlineAsm::isOutput ||
8186          OpInfo.Type == InlineAsm::isInput) &&
8187         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
8188       // Try to convert to the first EVT that the reg class contains.  If the
8189       // types are identical size, use a bitcast to convert (e.g. two differing
8190       // vector types).  Note: output bitcast is done at the end of
8191       // visitInlineAsm().
8192       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
8193         // Exclude indirect inputs while they are unsupported because the code
8194         // to perform the load is missing and thus OpInfo.CallOperand still
8195         // refers to the input address rather than the pointed-to value.
8196         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
8197           OpInfo.CallOperand =
8198               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
8199         OpInfo.ConstraintVT = RegVT;
8200         // If the operand is an FP value and we want it in integer registers,
8201         // use the corresponding integer type. This turns an f64 value into
8202         // i64, which can be passed with two i32 values on a 32-bit machine.
8203       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
8204         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
8205         if (OpInfo.Type == InlineAsm::isInput)
8206           OpInfo.CallOperand =
8207               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
8208         OpInfo.ConstraintVT = VT;
8209       }
8210     }
8211   }
8212 
8213   // No need to allocate a matching input constraint since the constraint it's
8214   // matching to has already been allocated.
8215   if (OpInfo.isMatchingInputConstraint())
8216     return;
8217 
8218   EVT ValueVT = OpInfo.ConstraintVT;
8219   if (OpInfo.ConstraintVT == MVT::Other)
8220     ValueVT = RegVT;
8221 
8222   // Initialize NumRegs.
8223   unsigned NumRegs = 1;
8224   if (OpInfo.ConstraintVT != MVT::Other)
8225     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
8226 
8227   // If this is a constraint for a specific physical register, like {r17},
8228   // assign it now.
8229 
8230   // If this associated to a specific register, initialize iterator to correct
8231   // place. If virtual, make sure we have enough registers
8232 
8233   // Initialize iterator if necessary
8234   TargetRegisterClass::iterator I = RC->begin();
8235   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8236 
8237   // Do not check for single registers.
8238   if (AssignedReg) {
8239       for (; *I != AssignedReg; ++I)
8240         assert(I != RC->end() && "AssignedReg should be member of RC");
8241   }
8242 
8243   for (; NumRegs; --NumRegs, ++I) {
8244     assert(I != RC->end() && "Ran out of registers to allocate!");
8245     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
8246     Regs.push_back(R);
8247   }
8248 
8249   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
8250 }
8251 
8252 static unsigned
8253 findMatchingInlineAsmOperand(unsigned OperandNo,
8254                              const std::vector<SDValue> &AsmNodeOperands) {
8255   // Scan until we find the definition we already emitted of this operand.
8256   unsigned CurOp = InlineAsm::Op_FirstOperand;
8257   for (; OperandNo; --OperandNo) {
8258     // Advance to the next operand.
8259     unsigned OpFlag =
8260         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8261     assert((InlineAsm::isRegDefKind(OpFlag) ||
8262             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
8263             InlineAsm::isMemKind(OpFlag)) &&
8264            "Skipped past definitions?");
8265     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
8266   }
8267   return CurOp;
8268 }
8269 
8270 namespace {
8271 
8272 class ExtraFlags {
8273   unsigned Flags = 0;
8274 
8275 public:
8276   explicit ExtraFlags(const CallBase &Call) {
8277     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8278     if (IA->hasSideEffects())
8279       Flags |= InlineAsm::Extra_HasSideEffects;
8280     if (IA->isAlignStack())
8281       Flags |= InlineAsm::Extra_IsAlignStack;
8282     if (Call.isConvergent())
8283       Flags |= InlineAsm::Extra_IsConvergent;
8284     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
8285   }
8286 
8287   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
8288     // Ideally, we would only check against memory constraints.  However, the
8289     // meaning of an Other constraint can be target-specific and we can't easily
8290     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
8291     // for Other constraints as well.
8292     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8293         OpInfo.ConstraintType == TargetLowering::C_Other) {
8294       if (OpInfo.Type == InlineAsm::isInput)
8295         Flags |= InlineAsm::Extra_MayLoad;
8296       else if (OpInfo.Type == InlineAsm::isOutput)
8297         Flags |= InlineAsm::Extra_MayStore;
8298       else if (OpInfo.Type == InlineAsm::isClobber)
8299         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
8300     }
8301   }
8302 
8303   unsigned get() const { return Flags; }
8304 };
8305 
8306 } // end anonymous namespace
8307 
8308 /// visitInlineAsm - Handle a call to an InlineAsm object.
8309 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call) {
8310   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8311 
8312   /// ConstraintOperands - Information about all of the constraints.
8313   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
8314 
8315   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8316   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
8317       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
8318 
8319   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8320   // AsmDialect, MayLoad, MayStore).
8321   bool HasSideEffect = IA->hasSideEffects();
8322   ExtraFlags ExtraInfo(Call);
8323 
8324   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
8325   unsigned ResNo = 0;   // ResNo - The result number of the next output.
8326   unsigned NumMatchingOps = 0;
8327   for (auto &T : TargetConstraints) {
8328     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
8329     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
8330 
8331     // Compute the value type for each operand.
8332     if (OpInfo.Type == InlineAsm::isInput ||
8333         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
8334       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
8335 
8336       // Process the call argument. BasicBlocks are labels, currently appearing
8337       // only in asm's.
8338       if (isa<CallBrInst>(Call) &&
8339           ArgNo - 1 >= (cast<CallBrInst>(&Call)->getNumArgOperands() -
8340                         cast<CallBrInst>(&Call)->getNumIndirectDests() -
8341                         NumMatchingOps) &&
8342           (NumMatchingOps == 0 ||
8343            ArgNo - 1 < (cast<CallBrInst>(&Call)->getNumArgOperands() -
8344                         NumMatchingOps))) {
8345         const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal);
8346         EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true);
8347         OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT);
8348       } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
8349         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
8350       } else {
8351         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8352       }
8353 
8354       EVT VT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI,
8355                                            DAG.getDataLayout());
8356       OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other;
8357     } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
8358       // The return value of the call is this value.  As such, there is no
8359       // corresponding argument.
8360       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
8361       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
8362         OpInfo.ConstraintVT = TLI.getSimpleValueType(
8363             DAG.getDataLayout(), STy->getElementType(ResNo));
8364       } else {
8365         assert(ResNo == 0 && "Asm only has one result!");
8366         OpInfo.ConstraintVT =
8367             TLI.getSimpleValueType(DAG.getDataLayout(), Call.getType());
8368       }
8369       ++ResNo;
8370     } else {
8371       OpInfo.ConstraintVT = MVT::Other;
8372     }
8373 
8374     if (OpInfo.hasMatchingInput())
8375       ++NumMatchingOps;
8376 
8377     if (!HasSideEffect)
8378       HasSideEffect = OpInfo.hasMemory(TLI);
8379 
8380     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8381     // FIXME: Could we compute this on OpInfo rather than T?
8382 
8383     // Compute the constraint code and ConstraintType to use.
8384     TLI.ComputeConstraintToUse(T, SDValue());
8385 
8386     if (T.ConstraintType == TargetLowering::C_Immediate &&
8387         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
8388       // We've delayed emitting a diagnostic like the "n" constraint because
8389       // inlining could cause an integer showing up.
8390       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
8391                                           "' expects an integer constant "
8392                                           "expression");
8393 
8394     ExtraInfo.update(T);
8395   }
8396 
8397 
8398   // We won't need to flush pending loads if this asm doesn't touch
8399   // memory and is nonvolatile.
8400   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8401 
8402   bool IsCallBr = isa<CallBrInst>(Call);
8403   if (IsCallBr) {
8404     // If this is a callbr we need to flush pending exports since inlineasm_br
8405     // is a terminator. We need to do this before nodes are glued to
8406     // the inlineasm_br node.
8407     Chain = getControlRoot();
8408   }
8409 
8410   // Second pass over the constraints: compute which constraint option to use.
8411   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8412     // If this is an output operand with a matching input operand, look up the
8413     // matching input. If their types mismatch, e.g. one is an integer, the
8414     // other is floating point, or their sizes are different, flag it as an
8415     // error.
8416     if (OpInfo.hasMatchingInput()) {
8417       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8418       patchMatchingInput(OpInfo, Input, DAG);
8419     }
8420 
8421     // Compute the constraint code and ConstraintType to use.
8422     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8423 
8424     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8425         OpInfo.Type == InlineAsm::isClobber)
8426       continue;
8427 
8428     // If this is a memory input, and if the operand is not indirect, do what we
8429     // need to provide an address for the memory input.
8430     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8431         !OpInfo.isIndirect) {
8432       assert((OpInfo.isMultipleAlternative ||
8433               (OpInfo.Type == InlineAsm::isInput)) &&
8434              "Can only indirectify direct input operands!");
8435 
8436       // Memory operands really want the address of the value.
8437       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8438 
8439       // There is no longer a Value* corresponding to this operand.
8440       OpInfo.CallOperandVal = nullptr;
8441 
8442       // It is now an indirect operand.
8443       OpInfo.isIndirect = true;
8444     }
8445 
8446   }
8447 
8448   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8449   std::vector<SDValue> AsmNodeOperands;
8450   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
8451   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
8452       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
8453 
8454   // If we have a !srcloc metadata node associated with it, we want to attach
8455   // this to the ultimately generated inline asm machineinstr.  To do this, we
8456   // pass in the third operand as this (potentially null) inline asm MDNode.
8457   const MDNode *SrcLoc = Call.getMetadata("srcloc");
8458   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
8459 
8460   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8461   // bits as operand 3.
8462   AsmNodeOperands.push_back(DAG.getTargetConstant(
8463       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8464 
8465   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8466   // this, assign virtual and physical registers for inputs and otput.
8467   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8468     // Assign Registers.
8469     SDISelAsmOperandInfo &RefOpInfo =
8470         OpInfo.isMatchingInputConstraint()
8471             ? ConstraintOperands[OpInfo.getMatchedOperand()]
8472             : OpInfo;
8473     GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
8474 
8475     auto DetectWriteToReservedRegister = [&]() {
8476       const MachineFunction &MF = DAG.getMachineFunction();
8477       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8478       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
8479         if (Register::isPhysicalRegister(Reg) &&
8480             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
8481           const char *RegName = TRI.getName(Reg);
8482           emitInlineAsmError(Call, "write to reserved register '" +
8483                                        Twine(RegName) + "'");
8484           return true;
8485         }
8486       }
8487       return false;
8488     };
8489 
8490     switch (OpInfo.Type) {
8491     case InlineAsm::isOutput:
8492       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8493         unsigned ConstraintID =
8494             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8495         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8496                "Failed to convert memory constraint code to constraint id.");
8497 
8498         // Add information to the INLINEASM node to know about this output.
8499         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8500         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
8501         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
8502                                                         MVT::i32));
8503         AsmNodeOperands.push_back(OpInfo.CallOperand);
8504       } else {
8505         // Otherwise, this outputs to a register (directly for C_Register /
8506         // C_RegisterClass, and a target-defined fashion for
8507         // C_Immediate/C_Other). Find a register that we can use.
8508         if (OpInfo.AssignedRegs.Regs.empty()) {
8509           emitInlineAsmError(
8510               Call, "couldn't allocate output register for constraint '" +
8511                         Twine(OpInfo.ConstraintCode) + "'");
8512           return;
8513         }
8514 
8515         if (DetectWriteToReservedRegister())
8516           return;
8517 
8518         // Add information to the INLINEASM node to know that this register is
8519         // set.
8520         OpInfo.AssignedRegs.AddInlineAsmOperands(
8521             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
8522                                   : InlineAsm::Kind_RegDef,
8523             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
8524       }
8525       break;
8526 
8527     case InlineAsm::isInput: {
8528       SDValue InOperandVal = OpInfo.CallOperand;
8529 
8530       if (OpInfo.isMatchingInputConstraint()) {
8531         // If this is required to match an output register we have already set,
8532         // just use its register.
8533         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
8534                                                   AsmNodeOperands);
8535         unsigned OpFlag =
8536           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8537         if (InlineAsm::isRegDefKind(OpFlag) ||
8538             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
8539           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8540           if (OpInfo.isIndirect) {
8541             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8542             emitInlineAsmError(Call, "inline asm not supported yet: "
8543                                      "don't know how to handle tied "
8544                                      "indirect register inputs");
8545             return;
8546           }
8547 
8548           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
8549           SmallVector<unsigned, 4> Regs;
8550 
8551           if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) {
8552             unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
8553             MachineRegisterInfo &RegInfo =
8554                 DAG.getMachineFunction().getRegInfo();
8555             for (unsigned i = 0; i != NumRegs; ++i)
8556               Regs.push_back(RegInfo.createVirtualRegister(RC));
8557           } else {
8558             emitInlineAsmError(Call,
8559                                "inline asm error: This value type register "
8560                                "class is not natively supported!");
8561             return;
8562           }
8563 
8564           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8565 
8566           SDLoc dl = getCurSDLoc();
8567           // Use the produced MatchedRegs object to
8568           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call);
8569           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8570                                            true, OpInfo.getMatchedOperand(), dl,
8571                                            DAG, AsmNodeOperands);
8572           break;
8573         }
8574 
8575         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8576         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8577                "Unexpected number of operands");
8578         // Add information to the INLINEASM node to know about this input.
8579         // See InlineAsm.h isUseOperandTiedToDef.
8580         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8581         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8582                                                     OpInfo.getMatchedOperand());
8583         AsmNodeOperands.push_back(DAG.getTargetConstant(
8584             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8585         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8586         break;
8587       }
8588 
8589       // Treat indirect 'X' constraint as memory.
8590       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
8591           OpInfo.isIndirect)
8592         OpInfo.ConstraintType = TargetLowering::C_Memory;
8593 
8594       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8595           OpInfo.ConstraintType == TargetLowering::C_Other) {
8596         std::vector<SDValue> Ops;
8597         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
8598                                           Ops, DAG);
8599         if (Ops.empty()) {
8600           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
8601             if (isa<ConstantSDNode>(InOperandVal)) {
8602               emitInlineAsmError(Call, "value out of range for constraint '" +
8603                                            Twine(OpInfo.ConstraintCode) + "'");
8604               return;
8605             }
8606 
8607           emitInlineAsmError(Call,
8608                              "invalid operand for inline asm constraint '" +
8609                                  Twine(OpInfo.ConstraintCode) + "'");
8610           return;
8611         }
8612 
8613         // Add information to the INLINEASM node to know about this input.
8614         unsigned ResOpType =
8615           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
8616         AsmNodeOperands.push_back(DAG.getTargetConstant(
8617             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8618         llvm::append_range(AsmNodeOperands, Ops);
8619         break;
8620       }
8621 
8622       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8623         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
8624         assert(InOperandVal.getValueType() ==
8625                    TLI.getPointerTy(DAG.getDataLayout()) &&
8626                "Memory operands expect pointer values");
8627 
8628         unsigned ConstraintID =
8629             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8630         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8631                "Failed to convert memory constraint code to constraint id.");
8632 
8633         // Add information to the INLINEASM node to know about this input.
8634         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8635         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
8636         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
8637                                                         getCurSDLoc(),
8638                                                         MVT::i32));
8639         AsmNodeOperands.push_back(InOperandVal);
8640         break;
8641       }
8642 
8643       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
8644               OpInfo.ConstraintType == TargetLowering::C_Register) &&
8645              "Unknown constraint type!");
8646 
8647       // TODO: Support this.
8648       if (OpInfo.isIndirect) {
8649         emitInlineAsmError(
8650             Call, "Don't know how to handle indirect register inputs yet "
8651                   "for constraint '" +
8652                       Twine(OpInfo.ConstraintCode) + "'");
8653         return;
8654       }
8655 
8656       // Copy the input into the appropriate registers.
8657       if (OpInfo.AssignedRegs.Regs.empty()) {
8658         emitInlineAsmError(Call,
8659                            "couldn't allocate input reg for constraint '" +
8660                                Twine(OpInfo.ConstraintCode) + "'");
8661         return;
8662       }
8663 
8664       if (DetectWriteToReservedRegister())
8665         return;
8666 
8667       SDLoc dl = getCurSDLoc();
8668 
8669       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
8670                                         &Call);
8671 
8672       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
8673                                                dl, DAG, AsmNodeOperands);
8674       break;
8675     }
8676     case InlineAsm::isClobber:
8677       // Add the clobbered value to the operand list, so that the register
8678       // allocator is aware that the physreg got clobbered.
8679       if (!OpInfo.AssignedRegs.Regs.empty())
8680         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
8681                                                  false, 0, getCurSDLoc(), DAG,
8682                                                  AsmNodeOperands);
8683       break;
8684     }
8685   }
8686 
8687   // Finish up input operands.  Set the input chain and add the flag last.
8688   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
8689   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
8690 
8691   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
8692   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
8693                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
8694   Flag = Chain.getValue(1);
8695 
8696   // Do additional work to generate outputs.
8697 
8698   SmallVector<EVT, 1> ResultVTs;
8699   SmallVector<SDValue, 1> ResultValues;
8700   SmallVector<SDValue, 8> OutChains;
8701 
8702   llvm::Type *CallResultType = Call.getType();
8703   ArrayRef<Type *> ResultTypes;
8704   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
8705     ResultTypes = StructResult->elements();
8706   else if (!CallResultType->isVoidTy())
8707     ResultTypes = makeArrayRef(CallResultType);
8708 
8709   auto CurResultType = ResultTypes.begin();
8710   auto handleRegAssign = [&](SDValue V) {
8711     assert(CurResultType != ResultTypes.end() && "Unexpected value");
8712     assert((*CurResultType)->isSized() && "Unexpected unsized type");
8713     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
8714     ++CurResultType;
8715     // If the type of the inline asm call site return value is different but has
8716     // same size as the type of the asm output bitcast it.  One example of this
8717     // is for vectors with different width / number of elements.  This can
8718     // happen for register classes that can contain multiple different value
8719     // types.  The preg or vreg allocated may not have the same VT as was
8720     // expected.
8721     //
8722     // This can also happen for a return value that disagrees with the register
8723     // class it is put in, eg. a double in a general-purpose register on a
8724     // 32-bit machine.
8725     if (ResultVT != V.getValueType() &&
8726         ResultVT.getSizeInBits() == V.getValueSizeInBits())
8727       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
8728     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
8729              V.getValueType().isInteger()) {
8730       // If a result value was tied to an input value, the computed result
8731       // may have a wider width than the expected result.  Extract the
8732       // relevant portion.
8733       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
8734     }
8735     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
8736     ResultVTs.push_back(ResultVT);
8737     ResultValues.push_back(V);
8738   };
8739 
8740   // Deal with output operands.
8741   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8742     if (OpInfo.Type == InlineAsm::isOutput) {
8743       SDValue Val;
8744       // Skip trivial output operands.
8745       if (OpInfo.AssignedRegs.Regs.empty())
8746         continue;
8747 
8748       switch (OpInfo.ConstraintType) {
8749       case TargetLowering::C_Register:
8750       case TargetLowering::C_RegisterClass:
8751         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
8752                                                   Chain, &Flag, &Call);
8753         break;
8754       case TargetLowering::C_Immediate:
8755       case TargetLowering::C_Other:
8756         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
8757                                               OpInfo, DAG);
8758         break;
8759       case TargetLowering::C_Memory:
8760         break; // Already handled.
8761       case TargetLowering::C_Unknown:
8762         assert(false && "Unexpected unknown constraint");
8763       }
8764 
8765       // Indirect output manifest as stores. Record output chains.
8766       if (OpInfo.isIndirect) {
8767         const Value *Ptr = OpInfo.CallOperandVal;
8768         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
8769         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
8770                                      MachinePointerInfo(Ptr));
8771         OutChains.push_back(Store);
8772       } else {
8773         // generate CopyFromRegs to associated registers.
8774         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
8775         if (Val.getOpcode() == ISD::MERGE_VALUES) {
8776           for (const SDValue &V : Val->op_values())
8777             handleRegAssign(V);
8778         } else
8779           handleRegAssign(Val);
8780       }
8781     }
8782   }
8783 
8784   // Set results.
8785   if (!ResultValues.empty()) {
8786     assert(CurResultType == ResultTypes.end() &&
8787            "Mismatch in number of ResultTypes");
8788     assert(ResultValues.size() == ResultTypes.size() &&
8789            "Mismatch in number of output operands in asm result");
8790 
8791     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
8792                             DAG.getVTList(ResultVTs), ResultValues);
8793     setValue(&Call, V);
8794   }
8795 
8796   // Collect store chains.
8797   if (!OutChains.empty())
8798     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
8799 
8800   // Only Update Root if inline assembly has a memory effect.
8801   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr)
8802     DAG.setRoot(Chain);
8803 }
8804 
8805 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
8806                                              const Twine &Message) {
8807   LLVMContext &Ctx = *DAG.getContext();
8808   Ctx.emitError(&Call, Message);
8809 
8810   // Make sure we leave the DAG in a valid state
8811   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8812   SmallVector<EVT, 1> ValueVTs;
8813   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
8814 
8815   if (ValueVTs.empty())
8816     return;
8817 
8818   SmallVector<SDValue, 1> Ops;
8819   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
8820     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
8821 
8822   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
8823 }
8824 
8825 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
8826   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
8827                           MVT::Other, getRoot(),
8828                           getValue(I.getArgOperand(0)),
8829                           DAG.getSrcValue(I.getArgOperand(0))));
8830 }
8831 
8832 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
8833   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8834   const DataLayout &DL = DAG.getDataLayout();
8835   SDValue V = DAG.getVAArg(
8836       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
8837       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
8838       DL.getABITypeAlign(I.getType()).value());
8839   DAG.setRoot(V.getValue(1));
8840 
8841   if (I.getType()->isPointerTy())
8842     V = DAG.getPtrExtOrTrunc(
8843         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
8844   setValue(&I, V);
8845 }
8846 
8847 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
8848   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
8849                           MVT::Other, getRoot(),
8850                           getValue(I.getArgOperand(0)),
8851                           DAG.getSrcValue(I.getArgOperand(0))));
8852 }
8853 
8854 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
8855   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
8856                           MVT::Other, getRoot(),
8857                           getValue(I.getArgOperand(0)),
8858                           getValue(I.getArgOperand(1)),
8859                           DAG.getSrcValue(I.getArgOperand(0)),
8860                           DAG.getSrcValue(I.getArgOperand(1))));
8861 }
8862 
8863 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
8864                                                     const Instruction &I,
8865                                                     SDValue Op) {
8866   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
8867   if (!Range)
8868     return Op;
8869 
8870   ConstantRange CR = getConstantRangeFromMetadata(*Range);
8871   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
8872     return Op;
8873 
8874   APInt Lo = CR.getUnsignedMin();
8875   if (!Lo.isMinValue())
8876     return Op;
8877 
8878   APInt Hi = CR.getUnsignedMax();
8879   unsigned Bits = std::max(Hi.getActiveBits(),
8880                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
8881 
8882   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
8883 
8884   SDLoc SL = getCurSDLoc();
8885 
8886   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
8887                              DAG.getValueType(SmallVT));
8888   unsigned NumVals = Op.getNode()->getNumValues();
8889   if (NumVals == 1)
8890     return ZExt;
8891 
8892   SmallVector<SDValue, 4> Ops;
8893 
8894   Ops.push_back(ZExt);
8895   for (unsigned I = 1; I != NumVals; ++I)
8896     Ops.push_back(Op.getValue(I));
8897 
8898   return DAG.getMergeValues(Ops, SL);
8899 }
8900 
8901 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
8902 /// the call being lowered.
8903 ///
8904 /// This is a helper for lowering intrinsics that follow a target calling
8905 /// convention or require stack pointer adjustment. Only a subset of the
8906 /// intrinsic's operands need to participate in the calling convention.
8907 void SelectionDAGBuilder::populateCallLoweringInfo(
8908     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
8909     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
8910     bool IsPatchPoint) {
8911   TargetLowering::ArgListTy Args;
8912   Args.reserve(NumArgs);
8913 
8914   // Populate the argument list.
8915   // Attributes for args start at offset 1, after the return attribute.
8916   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
8917        ArgI != ArgE; ++ArgI) {
8918     const Value *V = Call->getOperand(ArgI);
8919 
8920     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
8921 
8922     TargetLowering::ArgListEntry Entry;
8923     Entry.Node = getValue(V);
8924     Entry.Ty = V->getType();
8925     Entry.setAttributes(Call, ArgI);
8926     Args.push_back(Entry);
8927   }
8928 
8929   CLI.setDebugLoc(getCurSDLoc())
8930       .setChain(getRoot())
8931       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
8932       .setDiscardResult(Call->use_empty())
8933       .setIsPatchPoint(IsPatchPoint)
8934       .setIsPreallocated(
8935           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
8936 }
8937 
8938 /// Add a stack map intrinsic call's live variable operands to a stackmap
8939 /// or patchpoint target node's operand list.
8940 ///
8941 /// Constants are converted to TargetConstants purely as an optimization to
8942 /// avoid constant materialization and register allocation.
8943 ///
8944 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
8945 /// generate addess computation nodes, and so FinalizeISel can convert the
8946 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
8947 /// address materialization and register allocation, but may also be required
8948 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
8949 /// alloca in the entry block, then the runtime may assume that the alloca's
8950 /// StackMap location can be read immediately after compilation and that the
8951 /// location is valid at any point during execution (this is similar to the
8952 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
8953 /// only available in a register, then the runtime would need to trap when
8954 /// execution reaches the StackMap in order to read the alloca's location.
8955 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
8956                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
8957                                 SelectionDAGBuilder &Builder) {
8958   for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) {
8959     SDValue OpVal = Builder.getValue(Call.getArgOperand(i));
8960     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
8961       Ops.push_back(
8962         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
8963       Ops.push_back(
8964         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
8965     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
8966       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
8967       Ops.push_back(Builder.DAG.getTargetFrameIndex(
8968           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
8969     } else
8970       Ops.push_back(OpVal);
8971   }
8972 }
8973 
8974 /// Lower llvm.experimental.stackmap directly to its target opcode.
8975 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
8976   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
8977   //                                  [live variables...])
8978 
8979   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
8980 
8981   SDValue Chain, InFlag, Callee, NullPtr;
8982   SmallVector<SDValue, 32> Ops;
8983 
8984   SDLoc DL = getCurSDLoc();
8985   Callee = getValue(CI.getCalledOperand());
8986   NullPtr = DAG.getIntPtrConstant(0, DL, true);
8987 
8988   // The stackmap intrinsic only records the live variables (the arguments
8989   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
8990   // intrinsic, this won't be lowered to a function call. This means we don't
8991   // have to worry about calling conventions and target specific lowering code.
8992   // Instead we perform the call lowering right here.
8993   //
8994   // chain, flag = CALLSEQ_START(chain, 0, 0)
8995   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
8996   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
8997   //
8998   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
8999   InFlag = Chain.getValue(1);
9000 
9001   // Add the <id> and <numBytes> constants.
9002   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
9003   Ops.push_back(DAG.getTargetConstant(
9004                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
9005   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
9006   Ops.push_back(DAG.getTargetConstant(
9007                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
9008                   MVT::i32));
9009 
9010   // Push live variables for the stack map.
9011   addStackMapLiveVars(CI, 2, DL, Ops, *this);
9012 
9013   // We are not pushing any register mask info here on the operands list,
9014   // because the stackmap doesn't clobber anything.
9015 
9016   // Push the chain and the glue flag.
9017   Ops.push_back(Chain);
9018   Ops.push_back(InFlag);
9019 
9020   // Create the STACKMAP node.
9021   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9022   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
9023   Chain = SDValue(SM, 0);
9024   InFlag = Chain.getValue(1);
9025 
9026   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
9027 
9028   // Stackmaps don't generate values, so nothing goes into the NodeMap.
9029 
9030   // Set the root to the target-lowered call chain.
9031   DAG.setRoot(Chain);
9032 
9033   // Inform the Frame Information that we have a stackmap in this function.
9034   FuncInfo.MF->getFrameInfo().setHasStackMap();
9035 }
9036 
9037 /// Lower llvm.experimental.patchpoint directly to its target opcode.
9038 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
9039                                           const BasicBlock *EHPadBB) {
9040   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
9041   //                                                 i32 <numBytes>,
9042   //                                                 i8* <target>,
9043   //                                                 i32 <numArgs>,
9044   //                                                 [Args...],
9045   //                                                 [live variables...])
9046 
9047   CallingConv::ID CC = CB.getCallingConv();
9048   bool IsAnyRegCC = CC == CallingConv::AnyReg;
9049   bool HasDef = !CB.getType()->isVoidTy();
9050   SDLoc dl = getCurSDLoc();
9051   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
9052 
9053   // Handle immediate and symbolic callees.
9054   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
9055     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
9056                                    /*isTarget=*/true);
9057   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
9058     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
9059                                          SDLoc(SymbolicCallee),
9060                                          SymbolicCallee->getValueType(0));
9061 
9062   // Get the real number of arguments participating in the call <numArgs>
9063   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
9064   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
9065 
9066   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
9067   // Intrinsics include all meta-operands up to but not including CC.
9068   unsigned NumMetaOpers = PatchPointOpers::CCPos;
9069   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
9070          "Not enough arguments provided to the patchpoint intrinsic");
9071 
9072   // For AnyRegCC the arguments are lowered later on manually.
9073   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
9074   Type *ReturnTy =
9075       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
9076 
9077   TargetLowering::CallLoweringInfo CLI(DAG);
9078   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
9079                            ReturnTy, true);
9080   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
9081 
9082   SDNode *CallEnd = Result.second.getNode();
9083   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
9084     CallEnd = CallEnd->getOperand(0).getNode();
9085 
9086   /// Get a call instruction from the call sequence chain.
9087   /// Tail calls are not allowed.
9088   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
9089          "Expected a callseq node.");
9090   SDNode *Call = CallEnd->getOperand(0).getNode();
9091   bool HasGlue = Call->getGluedNode();
9092 
9093   // Replace the target specific call node with the patchable intrinsic.
9094   SmallVector<SDValue, 8> Ops;
9095 
9096   // Add the <id> and <numBytes> constants.
9097   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
9098   Ops.push_back(DAG.getTargetConstant(
9099                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
9100   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
9101   Ops.push_back(DAG.getTargetConstant(
9102                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
9103                   MVT::i32));
9104 
9105   // Add the callee.
9106   Ops.push_back(Callee);
9107 
9108   // Adjust <numArgs> to account for any arguments that have been passed on the
9109   // stack instead.
9110   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
9111   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
9112   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
9113   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
9114 
9115   // Add the calling convention
9116   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
9117 
9118   // Add the arguments we omitted previously. The register allocator should
9119   // place these in any free register.
9120   if (IsAnyRegCC)
9121     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
9122       Ops.push_back(getValue(CB.getArgOperand(i)));
9123 
9124   // Push the arguments from the call instruction up to the register mask.
9125   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
9126   Ops.append(Call->op_begin() + 2, e);
9127 
9128   // Push live variables for the stack map.
9129   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
9130 
9131   // Push the register mask info.
9132   if (HasGlue)
9133     Ops.push_back(*(Call->op_end()-2));
9134   else
9135     Ops.push_back(*(Call->op_end()-1));
9136 
9137   // Push the chain (this is originally the first operand of the call, but
9138   // becomes now the last or second to last operand).
9139   Ops.push_back(*(Call->op_begin()));
9140 
9141   // Push the glue flag (last operand).
9142   if (HasGlue)
9143     Ops.push_back(*(Call->op_end()-1));
9144 
9145   SDVTList NodeTys;
9146   if (IsAnyRegCC && HasDef) {
9147     // Create the return types based on the intrinsic definition
9148     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9149     SmallVector<EVT, 3> ValueVTs;
9150     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
9151     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
9152 
9153     // There is always a chain and a glue type at the end
9154     ValueVTs.push_back(MVT::Other);
9155     ValueVTs.push_back(MVT::Glue);
9156     NodeTys = DAG.getVTList(ValueVTs);
9157   } else
9158     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9159 
9160   // Replace the target specific call node with a PATCHPOINT node.
9161   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
9162                                          dl, NodeTys, Ops);
9163 
9164   // Update the NodeMap.
9165   if (HasDef) {
9166     if (IsAnyRegCC)
9167       setValue(&CB, SDValue(MN, 0));
9168     else
9169       setValue(&CB, Result.first);
9170   }
9171 
9172   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
9173   // call sequence. Furthermore the location of the chain and glue can change
9174   // when the AnyReg calling convention is used and the intrinsic returns a
9175   // value.
9176   if (IsAnyRegCC && HasDef) {
9177     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
9178     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
9179     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
9180   } else
9181     DAG.ReplaceAllUsesWith(Call, MN);
9182   DAG.DeleteNode(Call);
9183 
9184   // Inform the Frame Information that we have a patchpoint in this function.
9185   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
9186 }
9187 
9188 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
9189                                             unsigned Intrinsic) {
9190   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9191   SDValue Op1 = getValue(I.getArgOperand(0));
9192   SDValue Op2;
9193   if (I.getNumArgOperands() > 1)
9194     Op2 = getValue(I.getArgOperand(1));
9195   SDLoc dl = getCurSDLoc();
9196   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
9197   SDValue Res;
9198   SDNodeFlags SDFlags;
9199   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
9200     SDFlags.copyFMF(*FPMO);
9201 
9202   switch (Intrinsic) {
9203   case Intrinsic::vector_reduce_fadd:
9204     if (SDFlags.hasAllowReassociation())
9205       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
9206                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
9207                         SDFlags);
9208     else
9209       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
9210     break;
9211   case Intrinsic::vector_reduce_fmul:
9212     if (SDFlags.hasAllowReassociation())
9213       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
9214                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
9215                         SDFlags);
9216     else
9217       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
9218     break;
9219   case Intrinsic::vector_reduce_add:
9220     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
9221     break;
9222   case Intrinsic::vector_reduce_mul:
9223     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
9224     break;
9225   case Intrinsic::vector_reduce_and:
9226     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
9227     break;
9228   case Intrinsic::vector_reduce_or:
9229     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
9230     break;
9231   case Intrinsic::vector_reduce_xor:
9232     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
9233     break;
9234   case Intrinsic::vector_reduce_smax:
9235     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
9236     break;
9237   case Intrinsic::vector_reduce_smin:
9238     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
9239     break;
9240   case Intrinsic::vector_reduce_umax:
9241     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
9242     break;
9243   case Intrinsic::vector_reduce_umin:
9244     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
9245     break;
9246   case Intrinsic::vector_reduce_fmax:
9247     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
9248     break;
9249   case Intrinsic::vector_reduce_fmin:
9250     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
9251     break;
9252   default:
9253     llvm_unreachable("Unhandled vector reduce intrinsic");
9254   }
9255   setValue(&I, Res);
9256 }
9257 
9258 /// Returns an AttributeList representing the attributes applied to the return
9259 /// value of the given call.
9260 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
9261   SmallVector<Attribute::AttrKind, 2> Attrs;
9262   if (CLI.RetSExt)
9263     Attrs.push_back(Attribute::SExt);
9264   if (CLI.RetZExt)
9265     Attrs.push_back(Attribute::ZExt);
9266   if (CLI.IsInReg)
9267     Attrs.push_back(Attribute::InReg);
9268 
9269   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
9270                             Attrs);
9271 }
9272 
9273 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
9274 /// implementation, which just calls LowerCall.
9275 /// FIXME: When all targets are
9276 /// migrated to using LowerCall, this hook should be integrated into SDISel.
9277 std::pair<SDValue, SDValue>
9278 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
9279   // Handle the incoming return values from the call.
9280   CLI.Ins.clear();
9281   Type *OrigRetTy = CLI.RetTy;
9282   SmallVector<EVT, 4> RetTys;
9283   SmallVector<uint64_t, 4> Offsets;
9284   auto &DL = CLI.DAG.getDataLayout();
9285   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
9286 
9287   if (CLI.IsPostTypeLegalization) {
9288     // If we are lowering a libcall after legalization, split the return type.
9289     SmallVector<EVT, 4> OldRetTys;
9290     SmallVector<uint64_t, 4> OldOffsets;
9291     RetTys.swap(OldRetTys);
9292     Offsets.swap(OldOffsets);
9293 
9294     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
9295       EVT RetVT = OldRetTys[i];
9296       uint64_t Offset = OldOffsets[i];
9297       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
9298       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
9299       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
9300       RetTys.append(NumRegs, RegisterVT);
9301       for (unsigned j = 0; j != NumRegs; ++j)
9302         Offsets.push_back(Offset + j * RegisterVTByteSZ);
9303     }
9304   }
9305 
9306   SmallVector<ISD::OutputArg, 4> Outs;
9307   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
9308 
9309   bool CanLowerReturn =
9310       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
9311                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
9312 
9313   SDValue DemoteStackSlot;
9314   int DemoteStackIdx = -100;
9315   if (!CanLowerReturn) {
9316     // FIXME: equivalent assert?
9317     // assert(!CS.hasInAllocaArgument() &&
9318     //        "sret demotion is incompatible with inalloca");
9319     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
9320     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
9321     MachineFunction &MF = CLI.DAG.getMachineFunction();
9322     DemoteStackIdx =
9323         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
9324     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
9325                                               DL.getAllocaAddrSpace());
9326 
9327     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
9328     ArgListEntry Entry;
9329     Entry.Node = DemoteStackSlot;
9330     Entry.Ty = StackSlotPtrType;
9331     Entry.IsSExt = false;
9332     Entry.IsZExt = false;
9333     Entry.IsInReg = false;
9334     Entry.IsSRet = true;
9335     Entry.IsNest = false;
9336     Entry.IsByVal = false;
9337     Entry.IsByRef = false;
9338     Entry.IsReturned = false;
9339     Entry.IsSwiftSelf = false;
9340     Entry.IsSwiftError = false;
9341     Entry.IsCFGuardTarget = false;
9342     Entry.Alignment = Alignment;
9343     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
9344     CLI.NumFixedArgs += 1;
9345     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
9346 
9347     // sret demotion isn't compatible with tail-calls, since the sret argument
9348     // points into the callers stack frame.
9349     CLI.IsTailCall = false;
9350   } else {
9351     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9352         CLI.RetTy, CLI.CallConv, CLI.IsVarArg);
9353     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9354       ISD::ArgFlagsTy Flags;
9355       if (NeedsRegBlock) {
9356         Flags.setInConsecutiveRegs();
9357         if (I == RetTys.size() - 1)
9358           Flags.setInConsecutiveRegsLast();
9359       }
9360       EVT VT = RetTys[I];
9361       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9362                                                      CLI.CallConv, VT);
9363       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9364                                                        CLI.CallConv, VT);
9365       for (unsigned i = 0; i != NumRegs; ++i) {
9366         ISD::InputArg MyFlags;
9367         MyFlags.Flags = Flags;
9368         MyFlags.VT = RegisterVT;
9369         MyFlags.ArgVT = VT;
9370         MyFlags.Used = CLI.IsReturnValueUsed;
9371         if (CLI.RetTy->isPointerTy()) {
9372           MyFlags.Flags.setPointer();
9373           MyFlags.Flags.setPointerAddrSpace(
9374               cast<PointerType>(CLI.RetTy)->getAddressSpace());
9375         }
9376         if (CLI.RetSExt)
9377           MyFlags.Flags.setSExt();
9378         if (CLI.RetZExt)
9379           MyFlags.Flags.setZExt();
9380         if (CLI.IsInReg)
9381           MyFlags.Flags.setInReg();
9382         CLI.Ins.push_back(MyFlags);
9383       }
9384     }
9385   }
9386 
9387   // We push in swifterror return as the last element of CLI.Ins.
9388   ArgListTy &Args = CLI.getArgs();
9389   if (supportSwiftError()) {
9390     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9391       if (Args[i].IsSwiftError) {
9392         ISD::InputArg MyFlags;
9393         MyFlags.VT = getPointerTy(DL);
9394         MyFlags.ArgVT = EVT(getPointerTy(DL));
9395         MyFlags.Flags.setSwiftError();
9396         CLI.Ins.push_back(MyFlags);
9397       }
9398     }
9399   }
9400 
9401   // Handle all of the outgoing arguments.
9402   CLI.Outs.clear();
9403   CLI.OutVals.clear();
9404   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9405     SmallVector<EVT, 4> ValueVTs;
9406     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
9407     // FIXME: Split arguments if CLI.IsPostTypeLegalization
9408     Type *FinalType = Args[i].Ty;
9409     if (Args[i].IsByVal)
9410       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
9411     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9412         FinalType, CLI.CallConv, CLI.IsVarArg);
9413     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
9414          ++Value) {
9415       EVT VT = ValueVTs[Value];
9416       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
9417       SDValue Op = SDValue(Args[i].Node.getNode(),
9418                            Args[i].Node.getResNo() + Value);
9419       ISD::ArgFlagsTy Flags;
9420 
9421       // Certain targets (such as MIPS), may have a different ABI alignment
9422       // for a type depending on the context. Give the target a chance to
9423       // specify the alignment it wants.
9424       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
9425 
9426       if (Args[i].Ty->isPointerTy()) {
9427         Flags.setPointer();
9428         Flags.setPointerAddrSpace(
9429             cast<PointerType>(Args[i].Ty)->getAddressSpace());
9430       }
9431       if (Args[i].IsZExt)
9432         Flags.setZExt();
9433       if (Args[i].IsSExt)
9434         Flags.setSExt();
9435       if (Args[i].IsInReg) {
9436         // If we are using vectorcall calling convention, a structure that is
9437         // passed InReg - is surely an HVA
9438         if (CLI.CallConv == CallingConv::X86_VectorCall &&
9439             isa<StructType>(FinalType)) {
9440           // The first value of a structure is marked
9441           if (0 == Value)
9442             Flags.setHvaStart();
9443           Flags.setHva();
9444         }
9445         // Set InReg Flag
9446         Flags.setInReg();
9447       }
9448       if (Args[i].IsSRet)
9449         Flags.setSRet();
9450       if (Args[i].IsSwiftSelf)
9451         Flags.setSwiftSelf();
9452       if (Args[i].IsSwiftError)
9453         Flags.setSwiftError();
9454       if (Args[i].IsCFGuardTarget)
9455         Flags.setCFGuardTarget();
9456       if (Args[i].IsByVal)
9457         Flags.setByVal();
9458       if (Args[i].IsByRef)
9459         Flags.setByRef();
9460       if (Args[i].IsPreallocated) {
9461         Flags.setPreallocated();
9462         // Set the byval flag for CCAssignFn callbacks that don't know about
9463         // preallocated.  This way we can know how many bytes we should've
9464         // allocated and how many bytes a callee cleanup function will pop.  If
9465         // we port preallocated to more targets, we'll have to add custom
9466         // preallocated handling in the various CC lowering callbacks.
9467         Flags.setByVal();
9468       }
9469       if (Args[i].IsInAlloca) {
9470         Flags.setInAlloca();
9471         // Set the byval flag for CCAssignFn callbacks that don't know about
9472         // inalloca.  This way we can know how many bytes we should've allocated
9473         // and how many bytes a callee cleanup function will pop.  If we port
9474         // inalloca to more targets, we'll have to add custom inalloca handling
9475         // in the various CC lowering callbacks.
9476         Flags.setByVal();
9477       }
9478       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
9479         PointerType *Ty = cast<PointerType>(Args[i].Ty);
9480         Type *ElementTy = Ty->getElementType();
9481 
9482         unsigned FrameSize = DL.getTypeAllocSize(
9483             Args[i].ByValType ? Args[i].ByValType : ElementTy);
9484         Flags.setByValSize(FrameSize);
9485 
9486         // info is not there but there are cases it cannot get right.
9487         Align FrameAlign;
9488         if (auto MA = Args[i].Alignment)
9489           FrameAlign = *MA;
9490         else
9491           FrameAlign = Align(getByValTypeAlignment(ElementTy, DL));
9492         Flags.setByValAlign(FrameAlign);
9493       }
9494       if (Args[i].IsNest)
9495         Flags.setNest();
9496       if (NeedsRegBlock)
9497         Flags.setInConsecutiveRegs();
9498       Flags.setOrigAlign(OriginalAlignment);
9499 
9500       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9501                                                  CLI.CallConv, VT);
9502       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9503                                                         CLI.CallConv, VT);
9504       SmallVector<SDValue, 4> Parts(NumParts);
9505       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
9506 
9507       if (Args[i].IsSExt)
9508         ExtendKind = ISD::SIGN_EXTEND;
9509       else if (Args[i].IsZExt)
9510         ExtendKind = ISD::ZERO_EXTEND;
9511 
9512       // Conservatively only handle 'returned' on non-vectors that can be lowered,
9513       // for now.
9514       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
9515           CanLowerReturn) {
9516         assert((CLI.RetTy == Args[i].Ty ||
9517                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
9518                  CLI.RetTy->getPointerAddressSpace() ==
9519                      Args[i].Ty->getPointerAddressSpace())) &&
9520                RetTys.size() == NumValues && "unexpected use of 'returned'");
9521         // Before passing 'returned' to the target lowering code, ensure that
9522         // either the register MVT and the actual EVT are the same size or that
9523         // the return value and argument are extended in the same way; in these
9524         // cases it's safe to pass the argument register value unchanged as the
9525         // return register value (although it's at the target's option whether
9526         // to do so)
9527         // TODO: allow code generation to take advantage of partially preserved
9528         // registers rather than clobbering the entire register when the
9529         // parameter extension method is not compatible with the return
9530         // extension method
9531         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
9532             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
9533              CLI.RetZExt == Args[i].IsZExt))
9534           Flags.setReturned();
9535       }
9536 
9537       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
9538                      CLI.CallConv, ExtendKind);
9539 
9540       for (unsigned j = 0; j != NumParts; ++j) {
9541         // if it isn't first piece, alignment must be 1
9542         // For scalable vectors the scalable part is currently handled
9543         // by individual targets, so we just use the known minimum size here.
9544         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
9545                     i < CLI.NumFixedArgs, i,
9546                     j*Parts[j].getValueType().getStoreSize().getKnownMinSize());
9547         if (NumParts > 1 && j == 0)
9548           MyFlags.Flags.setSplit();
9549         else if (j != 0) {
9550           MyFlags.Flags.setOrigAlign(Align(1));
9551           if (j == NumParts - 1)
9552             MyFlags.Flags.setSplitEnd();
9553         }
9554 
9555         CLI.Outs.push_back(MyFlags);
9556         CLI.OutVals.push_back(Parts[j]);
9557       }
9558 
9559       if (NeedsRegBlock && Value == NumValues - 1)
9560         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
9561     }
9562   }
9563 
9564   SmallVector<SDValue, 4> InVals;
9565   CLI.Chain = LowerCall(CLI, InVals);
9566 
9567   // Update CLI.InVals to use outside of this function.
9568   CLI.InVals = InVals;
9569 
9570   // Verify that the target's LowerCall behaved as expected.
9571   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
9572          "LowerCall didn't return a valid chain!");
9573   assert((!CLI.IsTailCall || InVals.empty()) &&
9574          "LowerCall emitted a return value for a tail call!");
9575   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
9576          "LowerCall didn't emit the correct number of values!");
9577 
9578   // For a tail call, the return value is merely live-out and there aren't
9579   // any nodes in the DAG representing it. Return a special value to
9580   // indicate that a tail call has been emitted and no more Instructions
9581   // should be processed in the current block.
9582   if (CLI.IsTailCall) {
9583     CLI.DAG.setRoot(CLI.Chain);
9584     return std::make_pair(SDValue(), SDValue());
9585   }
9586 
9587 #ifndef NDEBUG
9588   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
9589     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
9590     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
9591            "LowerCall emitted a value with the wrong type!");
9592   }
9593 #endif
9594 
9595   SmallVector<SDValue, 4> ReturnValues;
9596   if (!CanLowerReturn) {
9597     // The instruction result is the result of loading from the
9598     // hidden sret parameter.
9599     SmallVector<EVT, 1> PVTs;
9600     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
9601 
9602     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
9603     assert(PVTs.size() == 1 && "Pointers should fit in one register");
9604     EVT PtrVT = PVTs[0];
9605 
9606     unsigned NumValues = RetTys.size();
9607     ReturnValues.resize(NumValues);
9608     SmallVector<SDValue, 4> Chains(NumValues);
9609 
9610     // An aggregate return value cannot wrap around the address space, so
9611     // offsets to its parts don't wrap either.
9612     SDNodeFlags Flags;
9613     Flags.setNoUnsignedWrap(true);
9614 
9615     MachineFunction &MF = CLI.DAG.getMachineFunction();
9616     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
9617     for (unsigned i = 0; i < NumValues; ++i) {
9618       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
9619                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
9620                                                         PtrVT), Flags);
9621       SDValue L = CLI.DAG.getLoad(
9622           RetTys[i], CLI.DL, CLI.Chain, Add,
9623           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
9624                                             DemoteStackIdx, Offsets[i]),
9625           HiddenSRetAlign);
9626       ReturnValues[i] = L;
9627       Chains[i] = L.getValue(1);
9628     }
9629 
9630     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
9631   } else {
9632     // Collect the legal value parts into potentially illegal values
9633     // that correspond to the original function's return values.
9634     Optional<ISD::NodeType> AssertOp;
9635     if (CLI.RetSExt)
9636       AssertOp = ISD::AssertSext;
9637     else if (CLI.RetZExt)
9638       AssertOp = ISD::AssertZext;
9639     unsigned CurReg = 0;
9640     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9641       EVT VT = RetTys[I];
9642       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9643                                                      CLI.CallConv, VT);
9644       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9645                                                        CLI.CallConv, VT);
9646 
9647       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
9648                                               NumRegs, RegisterVT, VT, nullptr,
9649                                               CLI.CallConv, AssertOp));
9650       CurReg += NumRegs;
9651     }
9652 
9653     // For a function returning void, there is no return value. We can't create
9654     // such a node, so we just return a null return value in that case. In
9655     // that case, nothing will actually look at the value.
9656     if (ReturnValues.empty())
9657       return std::make_pair(SDValue(), CLI.Chain);
9658   }
9659 
9660   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
9661                                 CLI.DAG.getVTList(RetTys), ReturnValues);
9662   return std::make_pair(Res, CLI.Chain);
9663 }
9664 
9665 /// Places new result values for the node in Results (their number
9666 /// and types must exactly match those of the original return values of
9667 /// the node), or leaves Results empty, which indicates that the node is not
9668 /// to be custom lowered after all.
9669 void TargetLowering::LowerOperationWrapper(SDNode *N,
9670                                            SmallVectorImpl<SDValue> &Results,
9671                                            SelectionDAG &DAG) const {
9672   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
9673 
9674   if (!Res.getNode())
9675     return;
9676 
9677   // If the original node has one result, take the return value from
9678   // LowerOperation as is. It might not be result number 0.
9679   if (N->getNumValues() == 1) {
9680     Results.push_back(Res);
9681     return;
9682   }
9683 
9684   // If the original node has multiple results, then the return node should
9685   // have the same number of results.
9686   assert((N->getNumValues() == Res->getNumValues()) &&
9687       "Lowering returned the wrong number of results!");
9688 
9689   // Places new result values base on N result number.
9690   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
9691     Results.push_back(Res.getValue(I));
9692 }
9693 
9694 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9695   llvm_unreachable("LowerOperation not implemented for this target!");
9696 }
9697 
9698 void
9699 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
9700   SDValue Op = getNonRegisterValue(V);
9701   assert((Op.getOpcode() != ISD::CopyFromReg ||
9702           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
9703          "Copy from a reg to the same reg!");
9704   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
9705 
9706   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9707   // If this is an InlineAsm we have to match the registers required, not the
9708   // notional registers required by the type.
9709 
9710   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
9711                    None); // This is not an ABI copy.
9712   SDValue Chain = DAG.getEntryNode();
9713 
9714   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
9715                               FuncInfo.PreferredExtendType.end())
9716                                  ? ISD::ANY_EXTEND
9717                                  : FuncInfo.PreferredExtendType[V];
9718   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
9719   PendingExports.push_back(Chain);
9720 }
9721 
9722 #include "llvm/CodeGen/SelectionDAGISel.h"
9723 
9724 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
9725 /// entry block, return true.  This includes arguments used by switches, since
9726 /// the switch may expand into multiple basic blocks.
9727 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
9728   // With FastISel active, we may be splitting blocks, so force creation
9729   // of virtual registers for all non-dead arguments.
9730   if (FastISel)
9731     return A->use_empty();
9732 
9733   const BasicBlock &Entry = A->getParent()->front();
9734   for (const User *U : A->users())
9735     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
9736       return false;  // Use not in entry block.
9737 
9738   return true;
9739 }
9740 
9741 using ArgCopyElisionMapTy =
9742     DenseMap<const Argument *,
9743              std::pair<const AllocaInst *, const StoreInst *>>;
9744 
9745 /// Scan the entry block of the function in FuncInfo for arguments that look
9746 /// like copies into a local alloca. Record any copied arguments in
9747 /// ArgCopyElisionCandidates.
9748 static void
9749 findArgumentCopyElisionCandidates(const DataLayout &DL,
9750                                   FunctionLoweringInfo *FuncInfo,
9751                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
9752   // Record the state of every static alloca used in the entry block. Argument
9753   // allocas are all used in the entry block, so we need approximately as many
9754   // entries as we have arguments.
9755   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
9756   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
9757   unsigned NumArgs = FuncInfo->Fn->arg_size();
9758   StaticAllocas.reserve(NumArgs * 2);
9759 
9760   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
9761     if (!V)
9762       return nullptr;
9763     V = V->stripPointerCasts();
9764     const auto *AI = dyn_cast<AllocaInst>(V);
9765     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
9766       return nullptr;
9767     auto Iter = StaticAllocas.insert({AI, Unknown});
9768     return &Iter.first->second;
9769   };
9770 
9771   // Look for stores of arguments to static allocas. Look through bitcasts and
9772   // GEPs to handle type coercions, as long as the alloca is fully initialized
9773   // by the store. Any non-store use of an alloca escapes it and any subsequent
9774   // unanalyzed store might write it.
9775   // FIXME: Handle structs initialized with multiple stores.
9776   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
9777     // Look for stores, and handle non-store uses conservatively.
9778     const auto *SI = dyn_cast<StoreInst>(&I);
9779     if (!SI) {
9780       // We will look through cast uses, so ignore them completely.
9781       if (I.isCast())
9782         continue;
9783       // Ignore debug info and pseudo op intrinsics, they don't escape or store
9784       // to allocas.
9785       if (I.isDebugOrPseudoInst())
9786         continue;
9787       // This is an unknown instruction. Assume it escapes or writes to all
9788       // static alloca operands.
9789       for (const Use &U : I.operands()) {
9790         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
9791           *Info = StaticAllocaInfo::Clobbered;
9792       }
9793       continue;
9794     }
9795 
9796     // If the stored value is a static alloca, mark it as escaped.
9797     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
9798       *Info = StaticAllocaInfo::Clobbered;
9799 
9800     // Check if the destination is a static alloca.
9801     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
9802     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
9803     if (!Info)
9804       continue;
9805     const AllocaInst *AI = cast<AllocaInst>(Dst);
9806 
9807     // Skip allocas that have been initialized or clobbered.
9808     if (*Info != StaticAllocaInfo::Unknown)
9809       continue;
9810 
9811     // Check if the stored value is an argument, and that this store fully
9812     // initializes the alloca. Don't elide copies from the same argument twice.
9813     const Value *Val = SI->getValueOperand()->stripPointerCasts();
9814     const auto *Arg = dyn_cast<Argument>(Val);
9815     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
9816         Arg->getType()->isEmptyTy() ||
9817         DL.getTypeStoreSize(Arg->getType()) !=
9818             DL.getTypeAllocSize(AI->getAllocatedType()) ||
9819         ArgCopyElisionCandidates.count(Arg)) {
9820       *Info = StaticAllocaInfo::Clobbered;
9821       continue;
9822     }
9823 
9824     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
9825                       << '\n');
9826 
9827     // Mark this alloca and store for argument copy elision.
9828     *Info = StaticAllocaInfo::Elidable;
9829     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
9830 
9831     // Stop scanning if we've seen all arguments. This will happen early in -O0
9832     // builds, which is useful, because -O0 builds have large entry blocks and
9833     // many allocas.
9834     if (ArgCopyElisionCandidates.size() == NumArgs)
9835       break;
9836   }
9837 }
9838 
9839 /// Try to elide argument copies from memory into a local alloca. Succeeds if
9840 /// ArgVal is a load from a suitable fixed stack object.
9841 static void tryToElideArgumentCopy(
9842     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
9843     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
9844     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
9845     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
9846     SDValue ArgVal, bool &ArgHasUses) {
9847   // Check if this is a load from a fixed stack object.
9848   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
9849   if (!LNode)
9850     return;
9851   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
9852   if (!FINode)
9853     return;
9854 
9855   // Check that the fixed stack object is the right size and alignment.
9856   // Look at the alignment that the user wrote on the alloca instead of looking
9857   // at the stack object.
9858   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
9859   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
9860   const AllocaInst *AI = ArgCopyIter->second.first;
9861   int FixedIndex = FINode->getIndex();
9862   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
9863   int OldIndex = AllocaIndex;
9864   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
9865   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
9866     LLVM_DEBUG(
9867         dbgs() << "  argument copy elision failed due to bad fixed stack "
9868                   "object size\n");
9869     return;
9870   }
9871   Align RequiredAlignment = AI->getAlign();
9872   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
9873     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
9874                          "greater than stack argument alignment ("
9875                       << DebugStr(RequiredAlignment) << " vs "
9876                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
9877     return;
9878   }
9879 
9880   // Perform the elision. Delete the old stack object and replace its only use
9881   // in the variable info map. Mark the stack object as mutable.
9882   LLVM_DEBUG({
9883     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
9884            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
9885            << '\n';
9886   });
9887   MFI.RemoveStackObject(OldIndex);
9888   MFI.setIsImmutableObjectIndex(FixedIndex, false);
9889   AllocaIndex = FixedIndex;
9890   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
9891   Chains.push_back(ArgVal.getValue(1));
9892 
9893   // Avoid emitting code for the store implementing the copy.
9894   const StoreInst *SI = ArgCopyIter->second.second;
9895   ElidedArgCopyInstrs.insert(SI);
9896 
9897   // Check for uses of the argument again so that we can avoid exporting ArgVal
9898   // if it is't used by anything other than the store.
9899   for (const Value *U : Arg.users()) {
9900     if (U != SI) {
9901       ArgHasUses = true;
9902       break;
9903     }
9904   }
9905 }
9906 
9907 void SelectionDAGISel::LowerArguments(const Function &F) {
9908   SelectionDAG &DAG = SDB->DAG;
9909   SDLoc dl = SDB->getCurSDLoc();
9910   const DataLayout &DL = DAG.getDataLayout();
9911   SmallVector<ISD::InputArg, 16> Ins;
9912 
9913   // In Naked functions we aren't going to save any registers.
9914   if (F.hasFnAttribute(Attribute::Naked))
9915     return;
9916 
9917   if (!FuncInfo->CanLowerReturn) {
9918     // Put in an sret pointer parameter before all the other parameters.
9919     SmallVector<EVT, 1> ValueVTs;
9920     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9921                     F.getReturnType()->getPointerTo(
9922                         DAG.getDataLayout().getAllocaAddrSpace()),
9923                     ValueVTs);
9924 
9925     // NOTE: Assuming that a pointer will never break down to more than one VT
9926     // or one register.
9927     ISD::ArgFlagsTy Flags;
9928     Flags.setSRet();
9929     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
9930     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
9931                          ISD::InputArg::NoArgIndex, 0);
9932     Ins.push_back(RetArg);
9933   }
9934 
9935   // Look for stores of arguments to static allocas. Mark such arguments with a
9936   // flag to ask the target to give us the memory location of that argument if
9937   // available.
9938   ArgCopyElisionMapTy ArgCopyElisionCandidates;
9939   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
9940                                     ArgCopyElisionCandidates);
9941 
9942   // Set up the incoming argument description vector.
9943   for (const Argument &Arg : F.args()) {
9944     unsigned ArgNo = Arg.getArgNo();
9945     SmallVector<EVT, 4> ValueVTs;
9946     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9947     bool isArgValueUsed = !Arg.use_empty();
9948     unsigned PartBase = 0;
9949     Type *FinalType = Arg.getType();
9950     if (Arg.hasAttribute(Attribute::ByVal))
9951       FinalType = Arg.getParamByValType();
9952     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
9953         FinalType, F.getCallingConv(), F.isVarArg());
9954     for (unsigned Value = 0, NumValues = ValueVTs.size();
9955          Value != NumValues; ++Value) {
9956       EVT VT = ValueVTs[Value];
9957       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
9958       ISD::ArgFlagsTy Flags;
9959 
9960       // Certain targets (such as MIPS), may have a different ABI alignment
9961       // for a type depending on the context. Give the target a chance to
9962       // specify the alignment it wants.
9963       const Align OriginalAlignment(
9964           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
9965 
9966       if (Arg.getType()->isPointerTy()) {
9967         Flags.setPointer();
9968         Flags.setPointerAddrSpace(
9969             cast<PointerType>(Arg.getType())->getAddressSpace());
9970       }
9971       if (Arg.hasAttribute(Attribute::ZExt))
9972         Flags.setZExt();
9973       if (Arg.hasAttribute(Attribute::SExt))
9974         Flags.setSExt();
9975       if (Arg.hasAttribute(Attribute::InReg)) {
9976         // If we are using vectorcall calling convention, a structure that is
9977         // passed InReg - is surely an HVA
9978         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
9979             isa<StructType>(Arg.getType())) {
9980           // The first value of a structure is marked
9981           if (0 == Value)
9982             Flags.setHvaStart();
9983           Flags.setHva();
9984         }
9985         // Set InReg Flag
9986         Flags.setInReg();
9987       }
9988       if (Arg.hasAttribute(Attribute::StructRet))
9989         Flags.setSRet();
9990       if (Arg.hasAttribute(Attribute::SwiftSelf))
9991         Flags.setSwiftSelf();
9992       if (Arg.hasAttribute(Attribute::SwiftError))
9993         Flags.setSwiftError();
9994       if (Arg.hasAttribute(Attribute::ByVal))
9995         Flags.setByVal();
9996       if (Arg.hasAttribute(Attribute::ByRef))
9997         Flags.setByRef();
9998       if (Arg.hasAttribute(Attribute::InAlloca)) {
9999         Flags.setInAlloca();
10000         // Set the byval flag for CCAssignFn callbacks that don't know about
10001         // inalloca.  This way we can know how many bytes we should've allocated
10002         // and how many bytes a callee cleanup function will pop.  If we port
10003         // inalloca to more targets, we'll have to add custom inalloca handling
10004         // in the various CC lowering callbacks.
10005         Flags.setByVal();
10006       }
10007       if (Arg.hasAttribute(Attribute::Preallocated)) {
10008         Flags.setPreallocated();
10009         // Set the byval flag for CCAssignFn callbacks that don't know about
10010         // preallocated.  This way we can know how many bytes we should've
10011         // allocated and how many bytes a callee cleanup function will pop.  If
10012         // we port preallocated to more targets, we'll have to add custom
10013         // preallocated handling in the various CC lowering callbacks.
10014         Flags.setByVal();
10015       }
10016 
10017       Type *ArgMemTy = nullptr;
10018       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
10019           Flags.isByRef()) {
10020         if (!ArgMemTy)
10021           ArgMemTy = Arg.getPointeeInMemoryValueType();
10022 
10023         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
10024 
10025         // For in-memory arguments, size and alignment should be passed from FE.
10026         // BE will guess if this info is not there but there are cases it cannot
10027         // get right.
10028         MaybeAlign MemAlign = Arg.getParamAlign();
10029         if (!MemAlign)
10030           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
10031 
10032         if (Flags.isByRef()) {
10033           Flags.setByRefSize(MemSize);
10034           Flags.setByRefAlign(*MemAlign);
10035         } else {
10036           Flags.setByValSize(MemSize);
10037           Flags.setByValAlign(*MemAlign);
10038         }
10039       }
10040 
10041       if (Arg.hasAttribute(Attribute::Nest))
10042         Flags.setNest();
10043       if (NeedsRegBlock)
10044         Flags.setInConsecutiveRegs();
10045       Flags.setOrigAlign(OriginalAlignment);
10046       if (ArgCopyElisionCandidates.count(&Arg))
10047         Flags.setCopyElisionCandidate();
10048       if (Arg.hasAttribute(Attribute::Returned))
10049         Flags.setReturned();
10050 
10051       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
10052           *CurDAG->getContext(), F.getCallingConv(), VT);
10053       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
10054           *CurDAG->getContext(), F.getCallingConv(), VT);
10055       for (unsigned i = 0; i != NumRegs; ++i) {
10056         // For scalable vectors, use the minimum size; individual targets
10057         // are responsible for handling scalable vector arguments and
10058         // return values.
10059         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
10060                  ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize());
10061         if (NumRegs > 1 && i == 0)
10062           MyFlags.Flags.setSplit();
10063         // if it isn't first piece, alignment must be 1
10064         else if (i > 0) {
10065           MyFlags.Flags.setOrigAlign(Align(1));
10066           if (i == NumRegs - 1)
10067             MyFlags.Flags.setSplitEnd();
10068         }
10069         Ins.push_back(MyFlags);
10070       }
10071       if (NeedsRegBlock && Value == NumValues - 1)
10072         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
10073       PartBase += VT.getStoreSize().getKnownMinSize();
10074     }
10075   }
10076 
10077   // Call the target to set up the argument values.
10078   SmallVector<SDValue, 8> InVals;
10079   SDValue NewRoot = TLI->LowerFormalArguments(
10080       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
10081 
10082   // Verify that the target's LowerFormalArguments behaved as expected.
10083   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
10084          "LowerFormalArguments didn't return a valid chain!");
10085   assert(InVals.size() == Ins.size() &&
10086          "LowerFormalArguments didn't emit the correct number of values!");
10087   LLVM_DEBUG({
10088     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
10089       assert(InVals[i].getNode() &&
10090              "LowerFormalArguments emitted a null value!");
10091       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
10092              "LowerFormalArguments emitted a value with the wrong type!");
10093     }
10094   });
10095 
10096   // Update the DAG with the new chain value resulting from argument lowering.
10097   DAG.setRoot(NewRoot);
10098 
10099   // Set up the argument values.
10100   unsigned i = 0;
10101   if (!FuncInfo->CanLowerReturn) {
10102     // Create a virtual register for the sret pointer, and put in a copy
10103     // from the sret argument into it.
10104     SmallVector<EVT, 1> ValueVTs;
10105     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10106                     F.getReturnType()->getPointerTo(
10107                         DAG.getDataLayout().getAllocaAddrSpace()),
10108                     ValueVTs);
10109     MVT VT = ValueVTs[0].getSimpleVT();
10110     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
10111     Optional<ISD::NodeType> AssertOp = None;
10112     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
10113                                         nullptr, F.getCallingConv(), AssertOp);
10114 
10115     MachineFunction& MF = SDB->DAG.getMachineFunction();
10116     MachineRegisterInfo& RegInfo = MF.getRegInfo();
10117     Register SRetReg =
10118         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
10119     FuncInfo->DemoteRegister = SRetReg;
10120     NewRoot =
10121         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
10122     DAG.setRoot(NewRoot);
10123 
10124     // i indexes lowered arguments.  Bump it past the hidden sret argument.
10125     ++i;
10126   }
10127 
10128   SmallVector<SDValue, 4> Chains;
10129   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
10130   for (const Argument &Arg : F.args()) {
10131     SmallVector<SDValue, 4> ArgValues;
10132     SmallVector<EVT, 4> ValueVTs;
10133     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10134     unsigned NumValues = ValueVTs.size();
10135     if (NumValues == 0)
10136       continue;
10137 
10138     bool ArgHasUses = !Arg.use_empty();
10139 
10140     // Elide the copying store if the target loaded this argument from a
10141     // suitable fixed stack object.
10142     if (Ins[i].Flags.isCopyElisionCandidate()) {
10143       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
10144                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
10145                              InVals[i], ArgHasUses);
10146     }
10147 
10148     // If this argument is unused then remember its value. It is used to generate
10149     // debugging information.
10150     bool isSwiftErrorArg =
10151         TLI->supportSwiftError() &&
10152         Arg.hasAttribute(Attribute::SwiftError);
10153     if (!ArgHasUses && !isSwiftErrorArg) {
10154       SDB->setUnusedArgValue(&Arg, InVals[i]);
10155 
10156       // Also remember any frame index for use in FastISel.
10157       if (FrameIndexSDNode *FI =
10158           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
10159         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10160     }
10161 
10162     for (unsigned Val = 0; Val != NumValues; ++Val) {
10163       EVT VT = ValueVTs[Val];
10164       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
10165                                                       F.getCallingConv(), VT);
10166       unsigned NumParts = TLI->getNumRegistersForCallingConv(
10167           *CurDAG->getContext(), F.getCallingConv(), VT);
10168 
10169       // Even an apparent 'unused' swifterror argument needs to be returned. So
10170       // we do generate a copy for it that can be used on return from the
10171       // function.
10172       if (ArgHasUses || isSwiftErrorArg) {
10173         Optional<ISD::NodeType> AssertOp;
10174         if (Arg.hasAttribute(Attribute::SExt))
10175           AssertOp = ISD::AssertSext;
10176         else if (Arg.hasAttribute(Attribute::ZExt))
10177           AssertOp = ISD::AssertZext;
10178 
10179         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
10180                                              PartVT, VT, nullptr,
10181                                              F.getCallingConv(), AssertOp));
10182       }
10183 
10184       i += NumParts;
10185     }
10186 
10187     // We don't need to do anything else for unused arguments.
10188     if (ArgValues.empty())
10189       continue;
10190 
10191     // Note down frame index.
10192     if (FrameIndexSDNode *FI =
10193         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
10194       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10195 
10196     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
10197                                      SDB->getCurSDLoc());
10198 
10199     SDB->setValue(&Arg, Res);
10200     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
10201       // We want to associate the argument with the frame index, among
10202       // involved operands, that correspond to the lowest address. The
10203       // getCopyFromParts function, called earlier, is swapping the order of
10204       // the operands to BUILD_PAIR depending on endianness. The result of
10205       // that swapping is that the least significant bits of the argument will
10206       // be in the first operand of the BUILD_PAIR node, and the most
10207       // significant bits will be in the second operand.
10208       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
10209       if (LoadSDNode *LNode =
10210           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
10211         if (FrameIndexSDNode *FI =
10212             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
10213           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10214     }
10215 
10216     // Analyses past this point are naive and don't expect an assertion.
10217     if (Res.getOpcode() == ISD::AssertZext)
10218       Res = Res.getOperand(0);
10219 
10220     // Update the SwiftErrorVRegDefMap.
10221     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
10222       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10223       if (Register::isVirtualRegister(Reg))
10224         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
10225                                    Reg);
10226     }
10227 
10228     // If this argument is live outside of the entry block, insert a copy from
10229     // wherever we got it to the vreg that other BB's will reference it as.
10230     if (Res.getOpcode() == ISD::CopyFromReg) {
10231       // If we can, though, try to skip creating an unnecessary vreg.
10232       // FIXME: This isn't very clean... it would be nice to make this more
10233       // general.
10234       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10235       if (Register::isVirtualRegister(Reg)) {
10236         FuncInfo->ValueMap[&Arg] = Reg;
10237         continue;
10238       }
10239     }
10240     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
10241       FuncInfo->InitializeRegForValue(&Arg);
10242       SDB->CopyToExportRegsIfNeeded(&Arg);
10243     }
10244   }
10245 
10246   if (!Chains.empty()) {
10247     Chains.push_back(NewRoot);
10248     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
10249   }
10250 
10251   DAG.setRoot(NewRoot);
10252 
10253   assert(i == InVals.size() && "Argument register count mismatch!");
10254 
10255   // If any argument copy elisions occurred and we have debug info, update the
10256   // stale frame indices used in the dbg.declare variable info table.
10257   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
10258   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
10259     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
10260       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
10261       if (I != ArgCopyElisionFrameIndexMap.end())
10262         VI.Slot = I->second;
10263     }
10264   }
10265 
10266   // Finally, if the target has anything special to do, allow it to do so.
10267   emitFunctionEntryCode();
10268 }
10269 
10270 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
10271 /// ensure constants are generated when needed.  Remember the virtual registers
10272 /// that need to be added to the Machine PHI nodes as input.  We cannot just
10273 /// directly add them, because expansion might result in multiple MBB's for one
10274 /// BB.  As such, the start of the BB might correspond to a different MBB than
10275 /// the end.
10276 void
10277 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
10278   const Instruction *TI = LLVMBB->getTerminator();
10279 
10280   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
10281 
10282   // Check PHI nodes in successors that expect a value to be available from this
10283   // block.
10284   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
10285     const BasicBlock *SuccBB = TI->getSuccessor(succ);
10286     if (!isa<PHINode>(SuccBB->begin())) continue;
10287     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
10288 
10289     // If this terminator has multiple identical successors (common for
10290     // switches), only handle each succ once.
10291     if (!SuccsHandled.insert(SuccMBB).second)
10292       continue;
10293 
10294     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
10295 
10296     // At this point we know that there is a 1-1 correspondence between LLVM PHI
10297     // nodes and Machine PHI nodes, but the incoming operands have not been
10298     // emitted yet.
10299     for (const PHINode &PN : SuccBB->phis()) {
10300       // Ignore dead phi's.
10301       if (PN.use_empty())
10302         continue;
10303 
10304       // Skip empty types
10305       if (PN.getType()->isEmptyTy())
10306         continue;
10307 
10308       unsigned Reg;
10309       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
10310 
10311       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
10312         unsigned &RegOut = ConstantsOut[C];
10313         if (RegOut == 0) {
10314           RegOut = FuncInfo.CreateRegs(C);
10315           CopyValueToVirtualRegister(C, RegOut);
10316         }
10317         Reg = RegOut;
10318       } else {
10319         DenseMap<const Value *, Register>::iterator I =
10320           FuncInfo.ValueMap.find(PHIOp);
10321         if (I != FuncInfo.ValueMap.end())
10322           Reg = I->second;
10323         else {
10324           assert(isa<AllocaInst>(PHIOp) &&
10325                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
10326                  "Didn't codegen value into a register!??");
10327           Reg = FuncInfo.CreateRegs(PHIOp);
10328           CopyValueToVirtualRegister(PHIOp, Reg);
10329         }
10330       }
10331 
10332       // Remember that this register needs to added to the machine PHI node as
10333       // the input for this MBB.
10334       SmallVector<EVT, 4> ValueVTs;
10335       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10336       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
10337       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
10338         EVT VT = ValueVTs[vti];
10339         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
10340         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
10341           FuncInfo.PHINodesToUpdate.push_back(
10342               std::make_pair(&*MBBI++, Reg + i));
10343         Reg += NumRegisters;
10344       }
10345     }
10346   }
10347 
10348   ConstantsOut.clear();
10349 }
10350 
10351 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
10352 /// is 0.
10353 MachineBasicBlock *
10354 SelectionDAGBuilder::StackProtectorDescriptor::
10355 AddSuccessorMBB(const BasicBlock *BB,
10356                 MachineBasicBlock *ParentMBB,
10357                 bool IsLikely,
10358                 MachineBasicBlock *SuccMBB) {
10359   // If SuccBB has not been created yet, create it.
10360   if (!SuccMBB) {
10361     MachineFunction *MF = ParentMBB->getParent();
10362     MachineFunction::iterator BBI(ParentMBB);
10363     SuccMBB = MF->CreateMachineBasicBlock(BB);
10364     MF->insert(++BBI, SuccMBB);
10365   }
10366   // Add it as a successor of ParentMBB.
10367   ParentMBB->addSuccessor(
10368       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
10369   return SuccMBB;
10370 }
10371 
10372 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
10373   MachineFunction::iterator I(MBB);
10374   if (++I == FuncInfo.MF->end())
10375     return nullptr;
10376   return &*I;
10377 }
10378 
10379 /// During lowering new call nodes can be created (such as memset, etc.).
10380 /// Those will become new roots of the current DAG, but complications arise
10381 /// when they are tail calls. In such cases, the call lowering will update
10382 /// the root, but the builder still needs to know that a tail call has been
10383 /// lowered in order to avoid generating an additional return.
10384 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
10385   // If the node is null, we do have a tail call.
10386   if (MaybeTC.getNode() != nullptr)
10387     DAG.setRoot(MaybeTC);
10388   else
10389     HasTailCall = true;
10390 }
10391 
10392 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10393                                         MachineBasicBlock *SwitchMBB,
10394                                         MachineBasicBlock *DefaultMBB) {
10395   MachineFunction *CurMF = FuncInfo.MF;
10396   MachineBasicBlock *NextMBB = nullptr;
10397   MachineFunction::iterator BBI(W.MBB);
10398   if (++BBI != FuncInfo.MF->end())
10399     NextMBB = &*BBI;
10400 
10401   unsigned Size = W.LastCluster - W.FirstCluster + 1;
10402 
10403   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10404 
10405   if (Size == 2 && W.MBB == SwitchMBB) {
10406     // If any two of the cases has the same destination, and if one value
10407     // is the same as the other, but has one bit unset that the other has set,
10408     // use bit manipulation to do two compares at once.  For example:
10409     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10410     // TODO: This could be extended to merge any 2 cases in switches with 3
10411     // cases.
10412     // TODO: Handle cases where W.CaseBB != SwitchBB.
10413     CaseCluster &Small = *W.FirstCluster;
10414     CaseCluster &Big = *W.LastCluster;
10415 
10416     if (Small.Low == Small.High && Big.Low == Big.High &&
10417         Small.MBB == Big.MBB) {
10418       const APInt &SmallValue = Small.Low->getValue();
10419       const APInt &BigValue = Big.Low->getValue();
10420 
10421       // Check that there is only one bit different.
10422       APInt CommonBit = BigValue ^ SmallValue;
10423       if (CommonBit.isPowerOf2()) {
10424         SDValue CondLHS = getValue(Cond);
10425         EVT VT = CondLHS.getValueType();
10426         SDLoc DL = getCurSDLoc();
10427 
10428         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10429                                  DAG.getConstant(CommonBit, DL, VT));
10430         SDValue Cond = DAG.getSetCC(
10431             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10432             ISD::SETEQ);
10433 
10434         // Update successor info.
10435         // Both Small and Big will jump to Small.BB, so we sum up the
10436         // probabilities.
10437         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10438         if (BPI)
10439           addSuccessorWithProb(
10440               SwitchMBB, DefaultMBB,
10441               // The default destination is the first successor in IR.
10442               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10443         else
10444           addSuccessorWithProb(SwitchMBB, DefaultMBB);
10445 
10446         // Insert the true branch.
10447         SDValue BrCond =
10448             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10449                         DAG.getBasicBlock(Small.MBB));
10450         // Insert the false branch.
10451         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10452                              DAG.getBasicBlock(DefaultMBB));
10453 
10454         DAG.setRoot(BrCond);
10455         return;
10456       }
10457     }
10458   }
10459 
10460   if (TM.getOptLevel() != CodeGenOpt::None) {
10461     // Here, we order cases by probability so the most likely case will be
10462     // checked first. However, two clusters can have the same probability in
10463     // which case their relative ordering is non-deterministic. So we use Low
10464     // as a tie-breaker as clusters are guaranteed to never overlap.
10465     llvm::sort(W.FirstCluster, W.LastCluster + 1,
10466                [](const CaseCluster &a, const CaseCluster &b) {
10467       return a.Prob != b.Prob ?
10468              a.Prob > b.Prob :
10469              a.Low->getValue().slt(b.Low->getValue());
10470     });
10471 
10472     // Rearrange the case blocks so that the last one falls through if possible
10473     // without changing the order of probabilities.
10474     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10475       --I;
10476       if (I->Prob > W.LastCluster->Prob)
10477         break;
10478       if (I->Kind == CC_Range && I->MBB == NextMBB) {
10479         std::swap(*I, *W.LastCluster);
10480         break;
10481       }
10482     }
10483   }
10484 
10485   // Compute total probability.
10486   BranchProbability DefaultProb = W.DefaultProb;
10487   BranchProbability UnhandledProbs = DefaultProb;
10488   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10489     UnhandledProbs += I->Prob;
10490 
10491   MachineBasicBlock *CurMBB = W.MBB;
10492   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10493     bool FallthroughUnreachable = false;
10494     MachineBasicBlock *Fallthrough;
10495     if (I == W.LastCluster) {
10496       // For the last cluster, fall through to the default destination.
10497       Fallthrough = DefaultMBB;
10498       FallthroughUnreachable = isa<UnreachableInst>(
10499           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
10500     } else {
10501       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10502       CurMF->insert(BBI, Fallthrough);
10503       // Put Cond in a virtual register to make it available from the new blocks.
10504       ExportFromCurrentBlock(Cond);
10505     }
10506     UnhandledProbs -= I->Prob;
10507 
10508     switch (I->Kind) {
10509       case CC_JumpTable: {
10510         // FIXME: Optimize away range check based on pivot comparisons.
10511         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
10512         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
10513 
10514         // The jump block hasn't been inserted yet; insert it here.
10515         MachineBasicBlock *JumpMBB = JT->MBB;
10516         CurMF->insert(BBI, JumpMBB);
10517 
10518         auto JumpProb = I->Prob;
10519         auto FallthroughProb = UnhandledProbs;
10520 
10521         // If the default statement is a target of the jump table, we evenly
10522         // distribute the default probability to successors of CurMBB. Also
10523         // update the probability on the edge from JumpMBB to Fallthrough.
10524         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10525                                               SE = JumpMBB->succ_end();
10526              SI != SE; ++SI) {
10527           if (*SI == DefaultMBB) {
10528             JumpProb += DefaultProb / 2;
10529             FallthroughProb -= DefaultProb / 2;
10530             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10531             JumpMBB->normalizeSuccProbs();
10532             break;
10533           }
10534         }
10535 
10536         if (FallthroughUnreachable) {
10537           // Skip the range check if the fallthrough block is unreachable.
10538           JTH->OmitRangeCheck = true;
10539         }
10540 
10541         if (!JTH->OmitRangeCheck)
10542           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10543         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10544         CurMBB->normalizeSuccProbs();
10545 
10546         // The jump table header will be inserted in our current block, do the
10547         // range check, and fall through to our fallthrough block.
10548         JTH->HeaderBB = CurMBB;
10549         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10550 
10551         // If we're in the right place, emit the jump table header right now.
10552         if (CurMBB == SwitchMBB) {
10553           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10554           JTH->Emitted = true;
10555         }
10556         break;
10557       }
10558       case CC_BitTests: {
10559         // FIXME: Optimize away range check based on pivot comparisons.
10560         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
10561 
10562         // The bit test blocks haven't been inserted yet; insert them here.
10563         for (BitTestCase &BTC : BTB->Cases)
10564           CurMF->insert(BBI, BTC.ThisBB);
10565 
10566         // Fill in fields of the BitTestBlock.
10567         BTB->Parent = CurMBB;
10568         BTB->Default = Fallthrough;
10569 
10570         BTB->DefaultProb = UnhandledProbs;
10571         // If the cases in bit test don't form a contiguous range, we evenly
10572         // distribute the probability on the edge to Fallthrough to two
10573         // successors of CurMBB.
10574         if (!BTB->ContiguousRange) {
10575           BTB->Prob += DefaultProb / 2;
10576           BTB->DefaultProb -= DefaultProb / 2;
10577         }
10578 
10579         if (FallthroughUnreachable) {
10580           // Skip the range check if the fallthrough block is unreachable.
10581           BTB->OmitRangeCheck = true;
10582         }
10583 
10584         // If we're in the right place, emit the bit test header right now.
10585         if (CurMBB == SwitchMBB) {
10586           visitBitTestHeader(*BTB, SwitchMBB);
10587           BTB->Emitted = true;
10588         }
10589         break;
10590       }
10591       case CC_Range: {
10592         const Value *RHS, *LHS, *MHS;
10593         ISD::CondCode CC;
10594         if (I->Low == I->High) {
10595           // Check Cond == I->Low.
10596           CC = ISD::SETEQ;
10597           LHS = Cond;
10598           RHS=I->Low;
10599           MHS = nullptr;
10600         } else {
10601           // Check I->Low <= Cond <= I->High.
10602           CC = ISD::SETLE;
10603           LHS = I->Low;
10604           MHS = Cond;
10605           RHS = I->High;
10606         }
10607 
10608         // If Fallthrough is unreachable, fold away the comparison.
10609         if (FallthroughUnreachable)
10610           CC = ISD::SETTRUE;
10611 
10612         // The false probability is the sum of all unhandled cases.
10613         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10614                      getCurSDLoc(), I->Prob, UnhandledProbs);
10615 
10616         if (CurMBB == SwitchMBB)
10617           visitSwitchCase(CB, SwitchMBB);
10618         else
10619           SL->SwitchCases.push_back(CB);
10620 
10621         break;
10622       }
10623     }
10624     CurMBB = Fallthrough;
10625   }
10626 }
10627 
10628 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10629                                               CaseClusterIt First,
10630                                               CaseClusterIt Last) {
10631   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10632     if (X.Prob != CC.Prob)
10633       return X.Prob > CC.Prob;
10634 
10635     // Ties are broken by comparing the case value.
10636     return X.Low->getValue().slt(CC.Low->getValue());
10637   });
10638 }
10639 
10640 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10641                                         const SwitchWorkListItem &W,
10642                                         Value *Cond,
10643                                         MachineBasicBlock *SwitchMBB) {
10644   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10645          "Clusters not sorted?");
10646 
10647   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10648 
10649   // Balance the tree based on branch probabilities to create a near-optimal (in
10650   // terms of search time given key frequency) binary search tree. See e.g. Kurt
10651   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10652   CaseClusterIt LastLeft = W.FirstCluster;
10653   CaseClusterIt FirstRight = W.LastCluster;
10654   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10655   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10656 
10657   // Move LastLeft and FirstRight towards each other from opposite directions to
10658   // find a partitioning of the clusters which balances the probability on both
10659   // sides. If LeftProb and RightProb are equal, alternate which side is
10660   // taken to ensure 0-probability nodes are distributed evenly.
10661   unsigned I = 0;
10662   while (LastLeft + 1 < FirstRight) {
10663     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10664       LeftProb += (++LastLeft)->Prob;
10665     else
10666       RightProb += (--FirstRight)->Prob;
10667     I++;
10668   }
10669 
10670   while (true) {
10671     // Our binary search tree differs from a typical BST in that ours can have up
10672     // to three values in each leaf. The pivot selection above doesn't take that
10673     // into account, which means the tree might require more nodes and be less
10674     // efficient. We compensate for this here.
10675 
10676     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10677     unsigned NumRight = W.LastCluster - FirstRight + 1;
10678 
10679     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10680       // If one side has less than 3 clusters, and the other has more than 3,
10681       // consider taking a cluster from the other side.
10682 
10683       if (NumLeft < NumRight) {
10684         // Consider moving the first cluster on the right to the left side.
10685         CaseCluster &CC = *FirstRight;
10686         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10687         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10688         if (LeftSideRank <= RightSideRank) {
10689           // Moving the cluster to the left does not demote it.
10690           ++LastLeft;
10691           ++FirstRight;
10692           continue;
10693         }
10694       } else {
10695         assert(NumRight < NumLeft);
10696         // Consider moving the last element on the left to the right side.
10697         CaseCluster &CC = *LastLeft;
10698         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10699         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10700         if (RightSideRank <= LeftSideRank) {
10701           // Moving the cluster to the right does not demot it.
10702           --LastLeft;
10703           --FirstRight;
10704           continue;
10705         }
10706       }
10707     }
10708     break;
10709   }
10710 
10711   assert(LastLeft + 1 == FirstRight);
10712   assert(LastLeft >= W.FirstCluster);
10713   assert(FirstRight <= W.LastCluster);
10714 
10715   // Use the first element on the right as pivot since we will make less-than
10716   // comparisons against it.
10717   CaseClusterIt PivotCluster = FirstRight;
10718   assert(PivotCluster > W.FirstCluster);
10719   assert(PivotCluster <= W.LastCluster);
10720 
10721   CaseClusterIt FirstLeft = W.FirstCluster;
10722   CaseClusterIt LastRight = W.LastCluster;
10723 
10724   const ConstantInt *Pivot = PivotCluster->Low;
10725 
10726   // New blocks will be inserted immediately after the current one.
10727   MachineFunction::iterator BBI(W.MBB);
10728   ++BBI;
10729 
10730   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10731   // we can branch to its destination directly if it's squeezed exactly in
10732   // between the known lower bound and Pivot - 1.
10733   MachineBasicBlock *LeftMBB;
10734   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10735       FirstLeft->Low == W.GE &&
10736       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10737     LeftMBB = FirstLeft->MBB;
10738   } else {
10739     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10740     FuncInfo.MF->insert(BBI, LeftMBB);
10741     WorkList.push_back(
10742         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10743     // Put Cond in a virtual register to make it available from the new blocks.
10744     ExportFromCurrentBlock(Cond);
10745   }
10746 
10747   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10748   // single cluster, RHS.Low == Pivot, and we can branch to its destination
10749   // directly if RHS.High equals the current upper bound.
10750   MachineBasicBlock *RightMBB;
10751   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10752       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10753     RightMBB = FirstRight->MBB;
10754   } else {
10755     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10756     FuncInfo.MF->insert(BBI, RightMBB);
10757     WorkList.push_back(
10758         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10759     // Put Cond in a virtual register to make it available from the new blocks.
10760     ExportFromCurrentBlock(Cond);
10761   }
10762 
10763   // Create the CaseBlock record that will be used to lower the branch.
10764   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10765                getCurSDLoc(), LeftProb, RightProb);
10766 
10767   if (W.MBB == SwitchMBB)
10768     visitSwitchCase(CB, SwitchMBB);
10769   else
10770     SL->SwitchCases.push_back(CB);
10771 }
10772 
10773 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10774 // from the swith statement.
10775 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10776                                             BranchProbability PeeledCaseProb) {
10777   if (PeeledCaseProb == BranchProbability::getOne())
10778     return BranchProbability::getZero();
10779   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10780 
10781   uint32_t Numerator = CaseProb.getNumerator();
10782   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10783   return BranchProbability(Numerator, std::max(Numerator, Denominator));
10784 }
10785 
10786 // Try to peel the top probability case if it exceeds the threshold.
10787 // Return current MachineBasicBlock for the switch statement if the peeling
10788 // does not occur.
10789 // If the peeling is performed, return the newly created MachineBasicBlock
10790 // for the peeled switch statement. Also update Clusters to remove the peeled
10791 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10792 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10793     const SwitchInst &SI, CaseClusterVector &Clusters,
10794     BranchProbability &PeeledCaseProb) {
10795   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10796   // Don't perform if there is only one cluster or optimizing for size.
10797   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10798       TM.getOptLevel() == CodeGenOpt::None ||
10799       SwitchMBB->getParent()->getFunction().hasMinSize())
10800     return SwitchMBB;
10801 
10802   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10803   unsigned PeeledCaseIndex = 0;
10804   bool SwitchPeeled = false;
10805   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10806     CaseCluster &CC = Clusters[Index];
10807     if (CC.Prob < TopCaseProb)
10808       continue;
10809     TopCaseProb = CC.Prob;
10810     PeeledCaseIndex = Index;
10811     SwitchPeeled = true;
10812   }
10813   if (!SwitchPeeled)
10814     return SwitchMBB;
10815 
10816   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10817                     << TopCaseProb << "\n");
10818 
10819   // Record the MBB for the peeled switch statement.
10820   MachineFunction::iterator BBI(SwitchMBB);
10821   ++BBI;
10822   MachineBasicBlock *PeeledSwitchMBB =
10823       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10824   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10825 
10826   ExportFromCurrentBlock(SI.getCondition());
10827   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10828   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10829                           nullptr,   nullptr,      TopCaseProb.getCompl()};
10830   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10831 
10832   Clusters.erase(PeeledCaseIt);
10833   for (CaseCluster &CC : Clusters) {
10834     LLVM_DEBUG(
10835         dbgs() << "Scale the probablity for one cluster, before scaling: "
10836                << CC.Prob << "\n");
10837     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10838     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10839   }
10840   PeeledCaseProb = TopCaseProb;
10841   return PeeledSwitchMBB;
10842 }
10843 
10844 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10845   // Extract cases from the switch.
10846   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10847   CaseClusterVector Clusters;
10848   Clusters.reserve(SI.getNumCases());
10849   for (auto I : SI.cases()) {
10850     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10851     const ConstantInt *CaseVal = I.getCaseValue();
10852     BranchProbability Prob =
10853         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10854             : BranchProbability(1, SI.getNumCases() + 1);
10855     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10856   }
10857 
10858   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10859 
10860   // Cluster adjacent cases with the same destination. We do this at all
10861   // optimization levels because it's cheap to do and will make codegen faster
10862   // if there are many clusters.
10863   sortAndRangeify(Clusters);
10864 
10865   // The branch probablity of the peeled case.
10866   BranchProbability PeeledCaseProb = BranchProbability::getZero();
10867   MachineBasicBlock *PeeledSwitchMBB =
10868       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10869 
10870   // If there is only the default destination, jump there directly.
10871   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10872   if (Clusters.empty()) {
10873     assert(PeeledSwitchMBB == SwitchMBB);
10874     SwitchMBB->addSuccessor(DefaultMBB);
10875     if (DefaultMBB != NextBlock(SwitchMBB)) {
10876       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10877                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10878     }
10879     return;
10880   }
10881 
10882   SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
10883   SL->findBitTestClusters(Clusters, &SI);
10884 
10885   LLVM_DEBUG({
10886     dbgs() << "Case clusters: ";
10887     for (const CaseCluster &C : Clusters) {
10888       if (C.Kind == CC_JumpTable)
10889         dbgs() << "JT:";
10890       if (C.Kind == CC_BitTests)
10891         dbgs() << "BT:";
10892 
10893       C.Low->getValue().print(dbgs(), true);
10894       if (C.Low != C.High) {
10895         dbgs() << '-';
10896         C.High->getValue().print(dbgs(), true);
10897       }
10898       dbgs() << ' ';
10899     }
10900     dbgs() << '\n';
10901   });
10902 
10903   assert(!Clusters.empty());
10904   SwitchWorkList WorkList;
10905   CaseClusterIt First = Clusters.begin();
10906   CaseClusterIt Last = Clusters.end() - 1;
10907   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10908   // Scale the branchprobability for DefaultMBB if the peel occurs and
10909   // DefaultMBB is not replaced.
10910   if (PeeledCaseProb != BranchProbability::getZero() &&
10911       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10912     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10913   WorkList.push_back(
10914       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10915 
10916   while (!WorkList.empty()) {
10917     SwitchWorkListItem W = WorkList.pop_back_val();
10918     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10919 
10920     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10921         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
10922       // For optimized builds, lower large range as a balanced binary tree.
10923       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10924       continue;
10925     }
10926 
10927     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
10928   }
10929 }
10930 
10931 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
10932   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10933   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
10934 
10935   SDLoc DL = getCurSDLoc();
10936   SDValue V = getValue(I.getOperand(0));
10937   assert(VT == V.getValueType() && "Malformed vector.reverse!");
10938 
10939   if (VT.isScalableVector()) {
10940     setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
10941     return;
10942   }
10943 
10944   // Use VECTOR_SHUFFLE for the fixed-length vector
10945   // to maintain existing behavior.
10946   SmallVector<int, 8> Mask;
10947   unsigned NumElts = VT.getVectorMinNumElements();
10948   for (unsigned i = 0; i != NumElts; ++i)
10949     Mask.push_back(NumElts - 1 - i);
10950 
10951   setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
10952 }
10953 
10954 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
10955   SmallVector<EVT, 4> ValueVTs;
10956   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
10957                   ValueVTs);
10958   unsigned NumValues = ValueVTs.size();
10959   if (NumValues == 0) return;
10960 
10961   SmallVector<SDValue, 4> Values(NumValues);
10962   SDValue Op = getValue(I.getOperand(0));
10963 
10964   for (unsigned i = 0; i != NumValues; ++i)
10965     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
10966                             SDValue(Op.getNode(), Op.getResNo() + i));
10967 
10968   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
10969                            DAG.getVTList(ValueVTs), Values));
10970 }
10971 
10972 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
10973   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10974   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
10975 
10976   SDLoc DL = getCurSDLoc();
10977   SDValue V1 = getValue(I.getOperand(0));
10978   SDValue V2 = getValue(I.getOperand(1));
10979   int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue();
10980 
10981   // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
10982   if (VT.isScalableVector()) {
10983     MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
10984     setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2,
10985                              DAG.getConstant(Imm, DL, IdxVT)));
10986     return;
10987   }
10988 
10989   unsigned NumElts = VT.getVectorNumElements();
10990 
10991   if ((-Imm > NumElts) || (Imm >= NumElts)) {
10992     // Result is undefined if immediate is out-of-bounds.
10993     setValue(&I, DAG.getUNDEF(VT));
10994     return;
10995   }
10996 
10997   uint64_t Idx = (NumElts + Imm) % NumElts;
10998 
10999   // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
11000   SmallVector<int, 8> Mask;
11001   for (unsigned i = 0; i < NumElts; ++i)
11002     Mask.push_back(Idx + i);
11003   setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
11004 }
11005